

Software Applications:
Concepts, Methodologies,
Tools, and Applications

Pierre F. Tiako
Langston University, USA

Hershey • New York
InformatIon ScIence reference

Director of Editorial Content: Kristin Klinger
Senior Managing Editor: Jamie Snavely
Managing Editor: Jeff Ash
Assistant Managing Editor, MVB: Michael Brehm
Assistant Managing Editor: Carole Coulson
Typesetters: Mandy Appicello, Jeff Ash, Kim Barger, Lindsey Bergman, Michael Brehm, Carole Coulson,
 Elizabeth Duke, Jennifer Johnson, Christopher Hrobak, Jamie Snavely, Larissa Vinci, Sean Woznicki
Cover Design: Lisa Tosheff
Printed at: Yurchak Printing Inc.

Published in the United States of America by
Information Science Reference (an imprint of IGI Global)
701 E. Chocolate Avenue, Suite 200
Hershey PA 17033
Tel: 717-533-8845
Fax: 717-533-8661
E-mail: cust@igi-global.com
Web site: http://www.igi-global.com/reference

and in the United Kingdom by
Information Science Reference (an imprint of IGI Global)
3 Henrietta Street
Covent Garden
London WC2E 8LU
Tel: 44 20 7240 0856
Fax: 44 20 7379 0609
Web site: http://www.eurospanbookstore.com

Copyright © 2009 by IGI Global. All rights reserved. No part of this publication may be reproduced, stored or distributed in any form or by
any means, electronic or mechanical, including photocopying, without written permission from the publisher.

Product or company names used in this set are for identification purposes only. Inclusion of the names of the products or companies does
not indicate a claim of ownership by IGI Global of the trademark or registered trademark.

Library of Congress Cataloging-in-Publication Data

Software applications : concepts, methodologies, tools, and applications /

Pierre F. Tiako, editor.

 v. ; cm.

 Includes bibliographical references and index.

 Summary: "This set of books contains a comprehensive collection of over 300

authoritative contributions from top influential experts in the field of

software applications"--Provided by publisher.

 ISBN 978-1-60566-060-8 (hardcover) -- ISBN 978-1-60566-061-5 (ebook) 1.

Computer software. 2. Software engineering. I. Tiako, Pierre F.

 QA76.754S64433 2009

 005.1--dc22

 2009001521

British Cataloguing in Publication Data
A Cataloguing in Publication record for this book is available from the British Library.

All work contributed to this book set is original material. The views expressed in this book are those of the authors, but not necessarily of the
publisher.

Associate Editors
Steve Clarke
University of Hull, UK

Murray E. Jennex
San Diego State University, USA

Annie Becker
Florida Institute of Technology USA

Ari-Veikko Anttiroiko
University of Tampere, Finland

Editorial Advisory Board
Sherif Kamel
American University in Cairo, Egypt

In Lee
Western Illinois University, USA

Jerzy Kisielnicki
Warsaw University, Poland

Keng Siau
University of Nebraska-Lincoln, USA

Amar Gupta
Arizona University, USA

Craig van Slyke
University of Central Florida, USA

John Wang
Montclair State University, USA

Vishanth Weerakkody
Brunel University, UK

Editor-in-Chief

 Mehdi Khosrow-Pour, DBA
 Editor-in-Chief
 Contemporary Research in Information Science and Technology, Book Series

Hershey • New York
InformatIon ScIence reference

Additional Research Collections found in the
“Contemporary Research in Information Science and Technology”

Book Series
Data Mining and Warehousing: Concepts, Methodologies, Tools, and Applications
John Wang, Montclair University, USA • 6-volume set • ISBN 978-1-60566-056-1

Electronic Business: Concepts, Methodologies, Tools, and Applications
In Lee, Western Illinois University • 4-volume set • ISBN 978-1-59904-943-4

Electronic Commerce: Concepts, Methodologies, Tools, and Applications
S. Ann Becker, Florida Institute of Technology, USA • 4-volume set • ISBN 978-1-59904-943-4

Electronic Government: Concepts, Methodologies, Tools, and Applications
Ari-Veikko Anttiroiko, University of Tampere, Finland • 6-volume set • ISBN 978-1-59904-947-2

Knowledge Management: Concepts, Methodologies, Tools, and Applications
Murray E. Jennex, San Diego State University, USA • 6-volume set • ISBN 978-1-59904-933-5

Information Communication Technologies: Concepts, Methodologies, Tools, and Applications
Craig Van Slyke, University of Central Florida, USA • 6-volume set • ISBN 978-1-59904-949-6

Intelligent Information Technologies: Concepts, Methodologies, Tools, and Applications
Vijayan Sugumaran, Oakland University, USA • 4-volume set • ISBN 978-1-59904-941-0

Information Security and Ethics: Concepts, Methodologies, Tools, and Applications
Hamid Nemati, The University of North Carolina at Greensboro, USA • 6-volume set • ISBN 978-1-59904-937-3

Medical Informatics: Concepts, Methodologies, Tools, and Applications
Joseph Tan, Wayne State University, USA • 4-volume set • ISBN 978-1-60566-050-9

Mobile Computing: Concepts, Methodologies, Tools, and Applications
David Taniar, Monash University, Australia • 6-volume set • ISBN 978-1-60566-054-7

Multimedia Technologies: Concepts, Methodologies, Tools, and Applications
Syed Mahbubur Rahman, Minnesota State University, Mankato, USA • 3-volume set • ISBN 978-1-60566-054-7

Virtual Technologies: Concepts, Methodologies, Tools, and Applications
Jerzy Kisielnicki, Warsaw University, Poland • 3-volume set • ISBN 978-1-59904-955-7

Free institution-wide online access with the purchase of a print collection!

Order online at www.igi-global.com or call 717-533-8845 ext.100
Mon–Fri 8:30am–5:00 pm (est) or fax 24 hours a day 717-533-7115

List of Contributors

Abbou, Fouad Mohammed \ Alcatel Network Systems, Malaysia ... 3519
Abdelouahab, Abid \ Multimedia University, Malaysia.. 3519
Abraham, Blanca \ CEMISID Universidad de los Andes, Venezuela ... 975
Adam, Alison \ University of Salford, UK ... 2760
Adams, Paul J. \ Sirius Corporation Ltd., UK .. 3294
Advani, Deepak \ University of London, UK... 3430
Adya, Monica \ Marquette University, USA .. 2115
Afgan, Enis \ University of Alabama at Birmingham, USA ... 328
Aguilar, Jose \ CENDITEL; Centro de Micro Electrónica y Sistemas Distribuidos,
 Universidad de los Andes, Venezuela ... 975
Ahamed, Sheikh I. \ Marquette University, USA .. 2744
Akella, Ram \ University of California, USA .. 991
Akkaladevi, Somasheker \ Virginia State University, USA .. 1446, 1452
Alvarez, Johanna \ CENDITEL, Venezuela ... 975
Amoretti, Francesco \ Università degli Studi di Salerno, Italy ... 102
Ang, Chee Siang \ City University, UK ... 1375
April, Alain \ École de technologie supérieure, Québec, Canada ... 222
Aranda, Gabriela N. \ Universidad Nacional del Comahue, Argentina ... 2102
Aviv, Reuven \ The Open University of Israel, Israel .. 39
Bac, Christian \ GET/INT, France ... 2991
Baker, Jason D. \ Regent University, USA ... 82
Baker, Keith \ Philips Applied Technologies, The Netherlands ... 1233
Baker-Eveleth, Lori \ University of Idaho, USA ... 2019
Bandeira, Liane \ Instituto Atlântico, Brazil ... 152
Bangalore, Purushotham \ University of Alabama at Birmingham, USA .. 328
Barbosa Perkusich, Maria Lígia \ Universidade Católica de Pernambuco, Brazil 3160
Beaumont-Kerridge, John \ University of Luton Business School, UK ... 1394
Beck, Phil \ Southwest Airlines, USA ... 2247
Becker, Steffen \ University of Karlsruhe, Germany ..1111
Bendix, Lars \ Lund Institute of Technology, Sweden .. 291
Berger, Olivier \ GET/INT, France .. 2991
Bernsteiner, Reinhard \ University for Health Sciences, Medical Informatics and
 Technology, Austria ... 1979
Biskup, Thomas \ Carl von Ossietzky University, Oldenburg, Germany .. 611
Bobkowska, Anna E. \ Gdańsk University of Technology, Poland ... 2728

Boetticher, Gary D. \ University of Houston – Clear Lake, USA .. 2865
Bolanos, Daniel \ Universidad Autonoma de Madrid, Spain ... 2029
Boudreau, Marie-Claude \ University of Georgia, USA .. 1822
Braun, Oliver \ Saarland University, Germany ... 684
Brinkman, Barry J. \ Gannon University, USA .. 1951
Bulterman, Dick \ CWI: Centrum voor Wiskunde en Informatica, The Netherlands 1233
Burkhardt, Peter \ IBM, USA ... 3180
Butt, Adeel I. \ Simon Fraser University, Canada ... 2812
Butt, Arsalan \ Simon Fraser University, Canada... 2812
Canton, Maria P. \ South Central College, USA ... 546
Cao, Yiwei \ RWTH Aachen University, Germany ... 1699
Capiluppi, Andrea \ University of Lincoln, UK .. 3294
Carillo, Kevin \ Concordia University, Canada .. 1814
Casey, Valentine \ University of Limerick, Ireland .. 2079
Cavanaugh, Thomas B. \ Embry-Riddle Aeronautical University, USA ... 2325
Cechich, Alejandra \ Universidad Nacional del Comahue, Argentina ... 2102
Cesar, Pablo \ CWI: Centrum voor Wiskunde en Informatica, The Netherlands 1233
Chan, W. K. \ Hong Kong University of Science and Technology, Hong Kong 2894
Chen, Charlie C. \ Appalachian State University, USA .. 1533, 2230
Chen, Thomas M. \ Southern Methodist University, USA ... 450
Cheung, S. C. \ Hong Kong University of Science and Technology, Hong Kong 2894
Chiang, Chia-Chu \ University of Arkansas at Little Rock, USA .. 380
Chroust, G. \ J. Kepler University Linz, Austria ... 588
Clear, Tony \ Auckland University of Technology, New Zealand ... 2172
Comino, Stefano \ University of Trento, Italy .. 66
Conklin, Megan \ Elon University, USA.. 85
Counsell, Steve \ Brunel University, UK .. 3430
Crowston, Kevin \ Syracuse University, USA ... 85, 1079
Cruz-Lara, Samuel \ LORIA-INRIA Lorraine, France ... 1233
Czirkos, Zoltán \ Budapest University of Technology and Economics, Hungary 3391
da Cunha, Paula Luciana \ Instituto Atlântico, Brazil ... 152
de Almeida, Hyggo Oliveira \ Federal University of Campina Grande, Brazil 3160, 3361
de Carvalho, Rodrigo Baroni \ FUMEC University, Brazil ... 438
de Vuyst, Bruno \ Vrije Universiteit Brussel, Belgium .. 2831
Decker, Björn \ Fraunhofer Institute for Experimental Software Engineering (IESE), Germany 856
Deng, Gan \ Vanderbilt University, USA .. 1280
DeSouza, Ruth \ Wairua Consulting Limited, New Zealand ... 804
Dexter, Sara \ University of Virginia, USA .. 708
Dietrich, Jens \ Massey University, New Zealand ... 528
Dittrich, Yvonne \ IT-University of Copenhagen, Denmark .. 2346
Dix, Alan \ Lancaster University, UK .. 122
Dobing, Brian \ University of Lethbridge, Canada ... 1760
Donegan, Paula \ Instituto Atlântico, Brazil .. 152
Doran, James \ IBM Corporation, USA .. 389
Dorji, Phurb \ Jigme Dorji Wangchuck National Referral Hospital, Bhutan 1628
Santos Kucharski, Marcus Vinicius \ Pontifical Catholic University of Paraná, Brazil 1404

Downs, Tom \ University of Queensland, Australia ... 664
Duarte, Francisco J. \ Blaupunkt Auto-Rádio Portugal, & Universidade do Minho, Portugal 2510
Dubinsky, Yael \ IBM Haifa Research Lab, Israel, & Technion–Israel Institute of
 Technology, Israel ... 309, 2700
Dutta, Dev K. \ Richard Ivey School of Business, The University of Western Ontario, Canada 2427
Dwolatzky, Barry \ University of Witwatersrand, South Africa .. 3272
Economides, Anastasios A. \ University of Macedonia, Greece ... 128
Edelist, Liran \ Bar-Ilan University, Israel ... 1358
Egan, Rich \ New Jersey Institute of Technology, USA .. 2472
Ekman, Torbjörn \ Lund Institute of Technology, Sweden .. 291
Elgar, Chris \ SolNet Solutions Limited, New Zealand .. 528
Elliott, Margaret \ University of California, Irvine, USA ... 597
Eriksson, Jeanette \ Blekinge Institute of Technology, Sweden ... 2346
Erlandson, Benjamin E. \ Universidad Rey Juan Carlos, Spain .. 1199
Erlich, Zippy \ The Open University of Israel, Israel ... 39
Eveleth, Daniel M. \ University of Idaho, USA ... 2019
Evermann, Joerg \ Memorial University of Newfoundland, Canada ... 505
Fairchild, Alea \ Vrije Universiteit Brussel, Belgium .. 2831
Faulkner, Stéphane \ University of Namur, Belgium .. 773, 2262
Feldman, Yishai \ IBM Haifa Research Lab, Israel .. 309
Fernandes, João M. \ Universidade do Minho, Portugal ... 2510
Fernández, Luís Eduardo \ University of Cauca Colombia, Colombia ... 3308
Ferneley, Elaine H. \ University of Salford, UK .. 736
Ferreira, Glauber \ Federal University of Campina Grande, Brazil .. 3361
Fink, Kerstin \ University of Innsbruck, Austria ... 1136, 3242
Fitzgerald, Brian \ Lero – Irish Software Engineering Research Centre and University of
 Limerick, Ireland ... 1675
Fjermestad, Jerry \ New Jersey Institute of Technology, USA .. 2472
Floyd, Ingbert R. \ University of Illinois at Urbana-Champaign, USA .. 1641
Fong, Joseph \ City University of Hong Kong, Hong Kong .. 1313
Francq, Pascal \ Université Libre de Bruxelles, Belgium .. 109
Frezza, Stephen \ Gannon University, USA... 1951
Fröming, Jane \ University of Potsdam, Germany .. 2528
Furtado, Elizabeth \ University of Fortaleza, Brazil .. 2307
Ganzha, Maria \ EUH-E and IBS PAN, Poland .. 1507
Gao, Tong \ University of Texas at Dallas, USA .. 3118
García-Castro, Raúl \ Universidad Politécnica de Madrid, Spain ... 3489
Garlan, David \ Carnegie Mellon University, USA ... 3215
Gąsiorowski, Rafał \ Warsaw University of Technology, Poland .. 1507
Gavrilova, Marina L. \ University of Calgary, Canada ... 3258
Gawinecki, Maciej \ IBS PAN, Poland .. 1507
Gelbard, Roy \ Bar-Ilan University, Israel .. 1013, 1358
Georgakarakou, Chrysanthi Ε. \ University of Macedonia, Greece ... 128
Giordano, Joseph \ Air Force Research Laboratory, USA .. 3381
Gokhale, Aniruddha \ Vanderbilt University, USA ... 1280
Gokhale, Swapna S. \ University of Connecticut, USA ... 366

Gomes Soares, Luiz Fernando \ PUC-RIO, Brazil .. 1233
Gómez, John \ Ericsson Chile, Chile ... 2442
Gómez, Jorge Marx \ Carl von Ossietzky University, Oldenburg, Germany 611
Gómez-Pérez, Asunción \ Universidad Politécnica de Madrid, Spain ... 3489
González-Barahona, Jesús M. \ Universidad Rey Juan Carlos, Spain 1199, 1865, 1883
Goodman, Brian \ IBM Corporation, USA ... 389
Gotterbarn, Don \ East Tennessee State University, USA ... 2172
Gray, Jeff \ University of Alabama at Birmingham, USA .. 328, 1280
Gray, Wayne \ The University of Auckland, New Zealand .. 2172
Gronau, Norbert \ University of Potsdam, Germany .. 2528
Guan, Sheng-Uei \ Xian Jiatong-Liverpool University, China .. 486
Guth, Sarah \ Università degli studi di Padova, Italy ... 3196
Hadjiefthymiades, Stathes \ National and Kapodistrian University of Athens, Greece 2843
Hamet, Benoît \ GET/INT, France ... 2991
Happe, Jens \ Universität Oldenburg, Germany ..1111
Hars, Alexander \ Inventivio GmbH, Bayreuth, Germany .. 1906
Hassoun, Youssef \ University of London, UK .. 3430
Hawrysiewycz, Igor \ University of Technology, Sydney, Australia .. 1345
Hazzan, Orit \ Technion – Israel Institute of Technology, Israel ... 2700
Herraiz, Israel \ Universidad Rey Juan Carlos, Spain .. 1883
Herring, Charles \ G-Netech Pty Ltd, Australia.. 648
Heyer, Nils \ Carl von Ossietzky University, Oldenburg, Germany ... 611
Höcht, Christian \ Technical University of Kaiserslautern, Germany .. 834
Holland, Christopher P. \ University of Manchester, UK ... 1478
Hollister, Kimberly \ Montclair State University, USA ... 467, 2547
Horowitz, Ellis \ University of Southern California, USA ... 3037
Hosszú, Gábor \ Budapest University of Technology and Economics, Hungary 3391
Houliston, Bryan \ Auckland University of Technology, New Zealand ... 2172
Howison, James \ Syracuse University, USA ... 85
Hryshko, Andrei \ University of Queensland, Australia ... 664
Hu, Xiaohua \ Drexel University, USA .. 467
Huang, Haiyan \ The Pennsylvania State University, USA ... 2493
Huang, Jian \ University of Calgary, Canada ... 635
Hurtado, Julio A. \ University of Cauca Colombia, Colombia ... 3308
Hyska, Wawrzyniec \ Warsaw University of Technology, Poland .. 1507
Igbide, Efe \ University of Alberta, Canada .. 189
Inampudi, Maheshwar \ IBM Corporation, USA ... 389, 2680
Iwasaki, Yuko \ Yokkaichi University, Japan ... 1498
Izquierdo-Cortazar, Daniel \ Universidad Rey Juan Carlos, Spain ... 1199
Janković-Romano, Mario \ University of Belgrade, Serbia ... 1426
Jensen, Chris \ University of California, Irvine, USA ... 597
Jiang, James \ University of Central Florida, USA ... 2247
Jin, Leigh \ San Francisco State University, USA ... 1822
Jones, M. Cameron \ University of Illinois at Urbana-Champaign, USA 1641
Ju, Khoo Wei \ Malaysia University of Science and Technology, Malaysia 1221
Jullien, Nicolas \ LUSSI TELECOM Bretagne-M@rsouin, France .. 1

Jungman, Hannu \ Tamlink Ltd., Finland ... 1916
Kalliamvakou, Eirini \ Athens University of Economics and Business, Greece 22
Kalra, Rishi \ Symbiosis International University, India ... 2584
Kamthan, Pankaj \ Concordia University, Canada .. 180, 2795
Kannan, Kalapriya \ IBM India Research Labs, India ... 1250
Kantor, Jeffrey \ Bar-Ilan University, Israel & University of Windsor, Canada............................. 1358
Kaptein, Annelies \ Stoneroos, The Netherlands ... 1233
Kautz, Karlheinz \ Copenhagen Business School, Denmark .. 1714
Kawalek, Peter \ University of Manchester, UK ... 1478
Kayacik, H. Gunes \ Dalhousie University, Canada ... 458
Kelsey, Sigrid \ Louisiana State University, USA .. 2338
Kennedy, David M. \ Hong Kong Institute of Education, Hong Kong.. 804
Khalil, Omar \ Kuwait University, Kuwait .. 2614
Khoo, Siau-Cheng \ National University of Singapore, Singapore ... 495
Khoshgoftaar, Taghi M. \ Florida Atlantic University, USA .. 2714
Kile, James F. \ IBM Corporation, USA .. 2680
Kjærgaard, Annemette \ Copenhagen Business School, Denmark .. 1714
Klamma, Ralf \ RWTH Aachen University, Germany ... 1699
Klein, Gary \ United States Air Force Academy, USA ... 2247
Ko, Tung-Mei \ OSSF Project, Taiwan .. 2978
Koch, Manuel \ Free University of Berlin, Germany .. 2775
Koch, Stefan \ Vienna University of Economics and Business Administration, Austria 2963, 3008
Kolomvatsos, Kostas \ National and Kapodistrian University of Athens, Greece 2843
Kolp, Manuel \ Université Catholique de Louvain, Belgium .. 773, 2262
Koru, A. Güneş \ University of Maryland Baltimore County, USA ... 1608
Kowalczuk, Zdzisław \ Gdańsk University of Technology, Poland .. 2461
Koziolek, Heiko \ Universität Oldenburg, Germany ..1111
Krčadinac, Uroš \ University of Belgrade, Serbia .. 1426
LaForge, R. Lawrence \ Clemson University, USA .. 1798
Laporte, Claude Y. \ École de technologie supérieure, Québec, Canada ... 222
Laszlo, Gabor \ Budapest Tech, Hungary .. 1577
Lee, Tsang-Hsiung \ National Chengchi University, Taiwan .. 2064
Lemyre, Pierre-Paul \ Université de Montréal, Canada .. 2803
Lenz, Gunther \ Microsoft, USA .. 1280
Leung, Karl R. P. H. \ Hong Kong Institute of Vocational Education, Hong Kong 2894
Lin, Kwei-Jay \ University of California, USA ... 2978
Lin, Yi-Hsuan \ Creative Commons Taiwan Project, Taiwan .. 2978
Lin, Yuehua \ University of Alabama at Birmingham, USA .. 1280
Lin, Yu-Wei \ University of York, UK .. 95
Lin, Yuwei \ Vrije Universiteit Amsterdam, The Netherlands .. 797
Liu, L. \ Tsinghua University, China .. 743
Lively, William \ Texas A&M University, USA .. 1548
Lo, David \ National University of Singapore, Singapore ... 495
Long, Yuan \ Colorado State University-Pueblo, USA .. 1835
López-Fernández, Luis \ Universidad Rey Juan Carlos, Spain ... 1883
Loucopoulos, Pericles \ Loughborough University, UK .. 1043

Loureiro, Emerson \ Federal University of Campina Grande, Brazil .. 3361
Lowry, Paul Benjamin \ Brigham Young University, USA ... 2194
Lu, Jijun \ University of Connecticut, USA ... 366
Luo, Xin \ The University of New Mexico, USA .. 1446, 1452
Ma, Hui \ University of Texas at Dallas, USA ... 3118
Machado, Ricardo J. \ Universidade do Minho, Portugal ... 2510
Maia, Camila \ Instituto Atlântico, Brazil ... 152
Malik, Amit \ Management Development Institute, India ... 2115
Malone, Alan \ Siemens Corporate Research, USA ... 2079
Malzahn, Dirk \ OrgaTech GmbH, Germany .. 1022
Manenti, Fabio M. \ University of Padua, Italy .. 66
Matos, Cristina \ Instituto Atlântico, Brazil .. 152
McCarthy, Cavan \ Louisiana State University, USA ... 1742
McNaught, Carmel \ Chinese University of Hong Kong, Hong Kong .. 804
Mens, Tom \ University of Mons-Hainaut, Belgium .. 3455
Michlmayr, Martin \ University of Cambridge, UK ... 1865
Milewski, Allen \ Monmouth University, USA ... 1998, 2472
Mnkandla, Ernest \ Monash University, South Africa .. 3272
Montilla, Guillermo \ Universidad de Carabobo, Venezuela ... 1182
Moore, Sarah \ University of Limerick, Ireland .. 2079
Morris, Ed \ RMIT University, Australia ... 718
Mowbray, Andrew \ University of Technology, Sydney, Australia .. 2803
Müller, Dirk \ Chemnitz University of Technology, Germany ... 3455
Munoz-Cornejo, Gilberto \ University of Maryland Baltimore County, USA 1608
Musilek, Petr \ University of Alberta, Canada .. 189
Mylopoulos, J. \ University of Toronto, Canada .. 743
Nanchahal, Amit \ Symbiosis International University, India ... 2584
Nath, Dhruv \ Management Development Institute, India .. 2115
Nechushtai, Gil \ IBM Haifa Research Lab, Israel ... 309
Nechypurenko, Andrey \ Siemens AG, Germany.. 3399
Nelson, Chris \ IBM Corporation, USA ... 1548
Neumann, Christian \ Vienna University of Economics and Business Administration, Austria..... 3008
Ngolah, Cyprian F. \ University of Calgary, Canada and University of Buea, Republic of
 Cameroon .. 3340
Nissilä, Jussi \ University of Turku, Finland .. 2599
Noll, John \ Santa Clara University, USA .. 597
Núñez, Alejandro \ Practia Consulting S.A, Chile .. 2442
Nyongwa, Moses \ University of Manitoba CUSB, Canada .. 1404
O’Neill, Michele \ University of Idaho, USA ... 2019
O’Sullivan, Patrick \ IBM Dublin Lab, Ireland .. 2472
Oba, Katsuya \ OGIS International, Inc., USA ... 942
Okoli, Chitu \ Concordia University, Canada ... 1814
Olfman, Lorne \ Claremont Graduate University, USA .. 2230
Olmedilla, Juan José \ Almira Lab, Spain .. 2646
Orłowski, Cezary \ Gdańsk University of Technology, Poland ... 2461
Ostermann, Herwig \ University for Health Sciences,

Medical Informatics and Technology, Austria .. 1979
Ovaska, Paivi \ South Karelia University of Applied Sciences, Finland ... 2285
Pan, Weidong \ University of Technology, Sydney, Australia .. 1345
Papin-Ramcharan, Jennifer \ The University of the West Indies–St. Augustine Campus,
 Trinidad and Tobago ... 1925
Paprzycki, Marcin \ SWPS and IBS PAN, Poland .. 1507
Pardo, César \ University of Cauca Colombia, Colombia .. 3308
Parisi-Presicce, Francesco \ George Mason University, USA
& University of Rome “La Sapienza”, Italy ... 2775
Park, Eun G. \ McGill University, Canada ... 1160
Park, Joon S. \ Syracuse University, USA ... 3381
Parry, David \ Auckland University of Technology, New Zealand .. 1628
Parry, Emma \ University of Auckland, New Zealand .. 1628
Parsons, Jeffrey \ Memorial University of Newfoundland, Canada ... 1760
Pauls, Karl \ Free University of Berlin, Germany ... 2775
Pedrycz, Witold \ University of Alberta, Canada .. 3142
Perkusich, Angelo \ Federal University of Campina Grande, Brazil 3160, 3361
Petrucco, Corrado \ Università degli studi di Padova, Italy .. 3196
Petrus, Khaleel I. \ University of Southern Queensland, Australia... 1334
Piattini, Mario \ Alarcos Research Group, University of Castilla-La Mancha, Spain 817, 2102
Pichl, Lukáš \ University of Aizu, Japan ... 2379
Pino, Francisco J. \ University of Cauca Colombia, Colombia .. 3308
Pisarek, Szymon \ Warsaw University of Technology, Poland .. 1507
Ploder, Christian \ University of Innsbruck, Austria ... 1136, 3242
Portillo-Rodríguez, Javier \ Alarcos Research Group,
University of Castilla-La Mancha, Spain ... 817
Poulin, Daniel \ Université de Montréal, Canada ... 2803
Puhakka, Mikko \ Helsinki University of Technology, Finland .. 1916
Rajala, Risto \ Helsinki School of Economics, Finland ... 2599
Rajlich, Václav \ Wayne State University, USA ... 910
Ras, Eric \ Fraunhofer Institute for Experimental Software Engineering (IESE), Germany 856
Rech, Jörg \ Fraunhofer Institute for Experiemental Software Engineering (IESE),
 Germany .. 242, 834, 856
Rees, Michael \ Bond University, Australia ... 648
Reformat, Marek \ University of Alberta, Canada ... 189
Reussner, Ralf \ University of Karlsruhe, Germany ...1111
Ribeiro Neto, Pedro Fernandes \ Universidade do Estado do Rio Grande do Norte, Brazil 3160
Richardson, Ita \ University of Limerick, Ireland ... 2079
Robey, Daniel \ Georgia State University, USA ... 1822
Robles, Gregorio \ Universidad Rey Juan Carlos, Spain .. 1199, 1865, 1883
Rosca, Daniela \ Monmouth University, USA .. 1998
Rossi, Alessandro \ University of Trento, Italy .. 66
Rossi, Bruno \ Free University of Bolzano-Bozen, Italy .. 1592, 1657
Roussev, Boris \ University of the Virgin Islands, USA ... 991
Russo, Barbara \ Free University of Bozen-Bolzano, Italy ... 1657
Ryan, Terry \ Claremont Graduate University, USA ... 2230

Sahraoui, Sofiane \ American University of Sharjah, UAE ... 33
Sanchez, Julio \ Minnesota State University, Mankato, USA .. 546
Santaniello, Mauro \ Università degli Studi di Salerno, Italy ... 102
Sarkar, Nurul I. \ Auckland University of Technology, New Zealand ... 1334
Sarnow, Karl \ European Schoolnet (EUN), Belgium ... 2046
Scacchi, Walt \ University of California, Irvine, USA ... 597
Schilling, Albert \ University of Fortaleza, Brazil... 2307
Schlueter Langdon, Christoph \ Center for Telecom Management, University of Southern
 California, USA... 1906
Schmerl, Bradley \ Carnegie Mellon University, USA .. 3215
Schmid, Simone \ University of Potsdam, Germany ... 2528
Schmidt, Douglas C. \ Vanderbilt University, USA ... 1280, 3399
Schmidt, Günter \ Saarland University, Germany .. 684
Scotto, M. \ Free University of Bolzano-Bozen, Italy .. 1592
Scozzi, Barbara \ Politecnico di Bari, Italy ... 1079
Seaman, Carolyn B. \ University of Maryland Baltimore County, USA ... 1608
Segall, Richard S. \ Arkansas State University, USA .. 1164, 1750
Seleim, Ahmed \ Alexandria University, Egypt ... 2614
Seliya, Naeem \ University of Michigan, USA ... 2714
Sengupta, Raja \ McGill University, Canada .. 1434
Seppänen, Marko \ Tampere University of Technology, Finland .. 1916
Serour, Magdy K. \ University of Technology, Sydney, Australia ... 2153
Shah, Abad \ R & D Center of Computer Science, Pakistan ... 3037
Shaw, Duncan R. \ University of Nottingham, UK .. 1478
Shaw, R. S. \ Tamkang University, Taiwan ... 1533
Shen, Pei-Di \ Ming Chuan University, Taiwan ... 2064
Shiu, Herbert \ City University of Hong Kong, Hong Kong ... 1313
Siau, Keng \ University of Nebraska-Lincoln, USA ... 1835
Sierra, Almudena \ Universidad Rey Juan Carlos, Spain ... 2029
Sillitti, A. \ Free University of Bolzano-Bozen, Italy .. 1592
Silva, Leandro \ Federal University of Campina Grande, Brazil ... 3361
Silva, Nuno \ GECAD – Knowledge Engineering and Decision Support Research Group,
 Porto Polytechnic Institute, Portugal ... 1458
Simmons, Dick B. \ Texas A&M University, USA ... 1548
Sindre, Guttorm \ Norwegian University of Science and Technology, Norway 421
Singh, Shawren \ University of South Africa, South Africa ... 122
Singhera, Zafar \ ZAF Consulting, USA ... 3037
Snowdon, Bob \ University of Manchester, UK ... 1478
Sohal, Amrik \ Monash University, Australia .. 2564
Soodeen, Frank \ The University of the West Indies–St. Augustine Campus,
 Trinidad and Tobago ... 1925
Sørensen, Carl-Fredrik \ Norwegian University of Science and Technology, Norway 2359
Soto, Juan Pablo \ Alarcos Research Group, University of Castilla-La Mancha, Spain 817
Sousa, João Pedro \ George Mason University, USA .. 3215
Sousa, Kenia \ University of Fortaleza, Brazil .. 2307
Spaniol, Marc \ Max Planck Institute for Computer Science, Germany ... 1699

Spedding, Paul \ University of Salford, UK ... 2760
Sridhar, Varadharajan \ Management Development Institute, India ... 2115
Srivastava, Biplav \ IBM India Research Labs, India ... 1250
St.Amant, Kirk \ Texas Tech University, USA ... 1934
Staaden, Pieter van \ Media 24 Ltd., South Africa .. 2137
Stanković, Milan \ University of Belgrade, Serbia ... 1426
Staudinger, Roland \ University for Health Sciences, Medical Informatics and Technology,
 Austria ... 1979
Steenkiste, Peter \ Carnegie Mellon University, USA ... 3215
Stone, Peter \ University of Auckland, New Zealand ... 1628
Stone, Robert W. \ University of Idaho, USA .. 2019
Succi, Giancarlo \ Free University of Bolzano, Italy ... 1592, 1657, 3142
Suzuki, Junichi \ University of Massachusetts–Boston, USA ... 942
Taentzer, Gabriele \ Philipps-Universität Marburg, Germany ... 3455
Taibi, Toufik \ United Arab Emirates University, UAE ... 3519
Tally, Gregg W. \ SPARTA, Inc., USA .. 450
Tan, Ping Cheng \ National University of Singapore, Singapore .. 486
Tang, Mei-Huei \ Gannon University, USA ... 1951
Tat, Ewe Hong \ Multimedia University, Malaysia ... 3519
Tavares Ferreira, Marta Araújo \ Federal University of Minas Gerais (UFMG), Brazil............... 438
Tepfenhart, William \ Monmouth University, USA ... 1998
Terán, Oswaldo \ ENDITEL; Centro de Micro Electrónica y Sistemas Distribuidos
 and Centro de Simulación y Modelos, Universidad de los Andes, Venezuela 975
Trauth, Eileen M. \ The Pennsylvania State University, USA ... 2493
Tremaine, Marilyn \ New Jersey Institute of Technology, USA .. 2472
Tsai, Chia-Wen \ Ming Chuan University, Taiwan .. 2064
Twidale, Michael B. \ University of Illinois at Urbana-Champaign, USA...................................... 1641
Urban, Joseph E. \ Arizona State University, USA ... 1548
Urquiza, Alfonso \ Francisco de Vitoria University, Spain ... 2391
Vadén, Tere \ University of Tampere, Finland ... 11
Vaidyanathan, Ganesh \ Indiana University, USA ... 1780
Vainio, Niklas \ University of Tampere, Finland ... 11
van den Berg, Karin \ FreelancePHP, The Netherlands ... 52
Van Nuffel, Dieter \ University of Antwerp, Belgium .. 1559
Vassiliadis, Bill \ Hellenic Open University, Greece.. 923
Ven, Kris \ University of Antwerp, Belgium ... 1559, 1849
Verelst, Jan \ University of Antwerp, Belgium ... 1559, 1849
Verma, Sameer \ San Francisco State University, USA .. 2665
Viamonte, Maria João \ GECAD–Knowledge Engineering and Decision Support
 Research Group, Porto Polytechnic Institute, Portugal ... 1458
Vidal, Juan C. \ University of Cauca Colombia, Colombia .. 3308
Villegas, Hyxia \ Universidad de Carabobo, Venezuela .. 1182
Villegas, Ricardo \ Universidad de Carabobo, Venezuela .. 1182
Vizcaíno, Aurora \ Alarcos Research Group, University of Castilla-La Mancha, Spain 817, 2102
Vuorikari, Riina \ European Schoolnet (EUN), Belgium .. 2046
Wada, Hiroshi \ University of Massachusetts–Boston, USA ... 942

Wahl, Terje \ Norwegian University of Science and Technology, Norway .. 421
Wan Kadir, Wan M.N. \ Universiti Teknologi Malaysia, Malaysia .. 1043
Wand, Yair \ The University of British Columbia, Canada ... 505
Wang, Alf Inge \ Norwegian University of Science and Technology, Norway 2359
Wang, Eric T.G. \ National Central University, Taiwan ... 2247
Wang, Jiacun \ Monmouth University, USA .. 1998
Wang, John \ Montclair State University, USA ... 467
Wang, Yingxu \ University of Calgary, Canada 635, 2915, 2943, 3055, 3076, 3102, 3340
Wang, Zhongxian \ Montclair State University, USA ... 2547
Warboys, Brian \ University of Manchester, UK ... 1478
Wautelet, Yves \ Université catholique de Louvain, Belgium .. 773
Westerlund, Mika \ Helsinki School of Economics, Finland .. 2599
White, Jules \ Vanderbilt University, USA ... 3399
Williamson, Andy \ Wairua Consulting Limited, New Zealand .. 804
Wong, Bernard \ University of Technology Sydney, Australia .. 266
Wong, K. Daniel \ Malaysia University of Science and Technology, Malaysia 1221
Wong, Yuk Kuen \ Griffith University, Australia .. 1151
Woungang, Isaac \ Ryerson University, Canada ... 1404
Wuchner, Egon \ Siemens AG, Germany ... 3399
Xenos, Michalis \ Hellenic Open University, Greece .. 172
Xing, Ruben \ Montclair State University, USA .. 2547
Xu, Shaochun \ Laurentian University, Canada .. 910
Yaeli, Avi \ IBM Haifa Research Lab, Israel .. 309
Yamano, Takuya \ International Christian University, Japan .. 2379
Yan, Ruiliang \ Indiana University Northwest, USA ... 2547
Yeats, Dave \ Auburn University, USA ... 2883
Yen, I-Ling \ University of Texas at Dallas, USA .. 3118
Yu, E. \ University of Toronto, Canada .. 743
Zage, Dolores \ Ball State University, USA.. 2079
Zaphiris, Panayiotis \ City University, UK ... 1375
Zarpas, Emmanuel \ IBM Haifa Research Lab, Israel ... 309
Zhang, Dongsong \ University of Maryland, Baltimore County, USA .. 2194
Zhang, Du \ California State University, USA ... 3325
Zhang, Qingyu \ Arkansas State University, USA ... 1164, 1750
Zhang, Suling \ Kean University, USA .. 2472
Zhu, Dan \ Iowa State University, USA ... 467
Zincir-Heywood, A. Nur \ Dalhousie University, Canada ... 458
Zulkernine, Mohammad \ Queen’s University, Canada .. 2744
Zutshi, Ambika \ Deakin University, Australia ... 2564
Zutshi, Samar \ Monash University, Australia .. 2564

Contents

Volume I

Section I. Fundamental Concepts and Theories

This section serves as the foundation for this exhaustive reference tool by addressing crucial theories
essential to the understanding of software applications computing. Chapters found within these pages
provide an excellent framework in which to position software applications within the field of infor-
mation science and technology. Individual contributions provide overviews of open source software,
software testing, social software, and software quality, while also exploring critical stumbling blocks
of this field. Within this introductory section, the reader can learn and choose from a compendium of
expert research on the elemental theories underscoring the research and application of software ap-
plications.

Chapter 1.1. A Historical Analysis of the Emergence of Free Cooperative Software Production 1
 Nicolas Jullien, LUSSI TELECOM Bretagne-M@rsouin, France

Chapter 1.2. Free Software Philosophy and Open Source .. 11
 Niklas Vainio, University of Tampere, Finland
 Tere Vadén, University of Tampere, Finland

Chapter 1.3. Open Source Software Basics: An Overview of a Revolutionary Research Context 22
 Eirini Kalliamvakou, Athens University of Economics and Business, Greece

Chapter 1.4. Open-Source Software Issues ... 33
 Sofiane Sahraoui, American University of Sharjah, UAE

Chapter 1.5. Open Source Software: Strengths and Weaknesses.. 39
 Zippy Erlich, The Open University of Israel, Israel
 Reuven Aviv, The Open University of Israel, Israel

Chapter 1.6. Open Source Software Evaluation ... 52
 Karin van den Berg, FreelancePHP, The Netherlands

Chapter 1.7. On the Role of Public Policies Supporting Free/Open Source Software 66
 Stefano Comino, University of Trento, Italy
 Fabio M. Manenti, University of Padua, Italy
 Alessandro Rossi, University of Trento, Italy

Chapter 1.8. Open Source Survey Software ... 82
 Jason D. Baker, Regent University, USA

Chapter 1.9. FLOSSmole: A Collaborative Repository for FLOSS Research Data and Analyses 85
 James Howison, Syracuse University, USA
 Megan Conklin, Elon University, USA
 Kevin Crowston, Syracuse University, USA

Chapter 1.10. Free/Libre Open Source Software for Bridging the Digital Divide 95
 Yu-Wei Lin, University of York, UK

Chapter 1.11. Community of Production .. 102
 Francesco Amoretti, Università degli Studi di Salerno, Italy
 Mauro Santaniello, Università degli Studi di Salerno, Italy

Chapter 1.12. E-Democracy: The Social Software Perspective.. 109
 Pascal Francq, Université Libre de Bruxelles, Belgium

Chapter 1.13. Software Engineering and HCI .. 122
 Shawren Singh, University of South Africa, South Africa
 Alan Dix, Lancaster University, UK

Chapter 1.14. Software Agent Technology: An Overview .. 128
 Chrysanthi Ε. Georgakarakou, University of Macedonia, Greece
 Anastasios A. Economides, University of Macedonia, Greece

Chapter 1.15. Automated Software Testing .. 152
 Paula Donegan, Instituto Atlântico, Brazil
 Liane Bandeira, Instituto Atlântico, Brazil
 Cristina Matos, Instituto Atlântico, Brazil
 Paula Luciana da Cunha, Instituto Atlântico, Brazil
 Camila Maia, Instituto Atlântico, Brazil

Chapter 1.16. Software Metrics and Measurements ... 172
 Michalis Xenos, Hellenic Open University, Greece

Chapter 1.17. A Framework for Communicability of Software Documentation 180
 Pankaj Kamthan, Concordia University, Canada

Chapter 1.18. Intelligent Analysis of Software Maintenance Data ... 189
 Marek Reformat, University of Alberta, Canada
 Petr Musilek, University of Alberta, Canada
 Efe Igbide, University of Alberta, Canada

Chapter 1.19. An Overview of Software Quality Concepts and Management Issues 222
 Alain April, École de technologie supérieure, Québec, Canada
 Claude Y. Laporte, École de technologie supérieure, Québec, Canada

Chapter 1.20. Handling of Software Quality Defects in Agile Software Development 242
 Jörg Rech, Fraunhofer Institute for Experiemental Software Engineering (IESE), Germany

Chapter 1.21. Different Views of Software Quality .. 266
 Bernard Wong, University of Technology Sydney, Australia

Chapter 1.22. Software Configuration Management in Agile Development 291
 Lars Bendix, Lund Institute of Technology, Sweden
 Torbjörn Ekman, Lund Institute of Technology, Sweden

Chapter 1.23. Governance of Software Development: The Transition to Agile Scenario 309
 Yael Dubinsky, IBM Haifa Research Lab, Israel & Technion–Israel
 Institute of Technology, Israel
 Avi Yaeli, IBM Haifa Research Lab, Israel
 Yishai Feldman, IBM Haifa Research Lab, Israel
 Emmanuel Zarpas, IBM Haifa Research Lab, Israel
 Gil Nechushtai, IBM Haifa Research Lab, Israel

Chapter 1.24. Domain-Specific Language for Describing Grid Applications 328
 Enis Afgan, University of Alabama at Birmingham, USA
 Purushotham Bangalore, University of Alabama at Birmingham, USA
 Jeff Gray, University of Alabama at Birmingham, USA

Chapter 1.25. Performance Analysis of a Web Server .. 366
 Jijun Lu, University of Connecticut, USA
 Swapna S. Gokhale, University of Connecticut, USA

Chapter 1.26. Software Modernization of Legacy Systems for Web Services Interoperability 380
 Chia-Chu Chiang, University of Arkansas at Little Rock, USA

Chapter 1.27. Approaches to Building High Performance Web Applications: A Practical Look at
Availability, Reliability, and Performance .. 389
 Brian Goodman, IBM Corporation, USA
 Maheshwar Inampudi, IBM Corporation, USA
 James Doran, IBM Corporation, USA

Chapter 1.28. A Survey of Development Methods for Semantic Web Service Systems 421
 Terje Wahl, Norwegian University of Science and Technology, Norway
 Guttorm Sindre, Norwegian University of Science and Technology, Norway

Chapter 1.29. Knowledge Management Software .. 438
 Rodrigo Baroni de Carvalho, FUMEC University, Brazil
 Marta Araújo Tavares Ferreira, Federal University of Minas Gerais (UFMG), Brazil

Chapter 1.30. Malicious Software .. 450
 Thomas M. Chen, Southern Methodist University, USA
 Gregg W. Tally, SPARTA, Inc., USA

Chapter 1.31. Current Challenges in Intrusion Detection Systems .. 458
 H. Gunes Kayacik, Dalhousie University, Canada
 A. Nur Zincir-Heywood, Dalhousie University, Canada

Chapter 1.32. A Comparison and Scenario Analysis of Leading Data Mining Software 467
 John Wang, Montclair State University, USA
 Xiaohua Hu, Drexel University, USA
 Kimberly Hollister, Montclair State University, USA
 Dan Zhu, Iowa State University, USA

Chapter 1.33. Intelligent User Preference Mining .. 486
 Sheng-Uei Guan, Xian Jiatong-Liverpool University, China
 Ping Cheng Tan, National University of Singapore, Singapore

Chapter 1.34. Mining Software Specifications ... 495
 David Lo, National University of Singapore, Singapore
 Siau-Cheng Khoo, National University of Singapore, Singapore

Section II. Development and Design Methodologies

This section provides in-depth coverage of conceptual architectures, frameworks and methodologies
related to the design and implementation of software systems and applications. Throughout these con-
tributions, research fundamentals in the discipline are presented and discussed. From broad examina-
tions to specific discussions on particular frameworks and infrastructures, the research found within
this section spans the discipline while also offering detailed, specific discussions. Basic designs, as well
as abstract developments, are explained within these chapters, and frameworks for designing success-
ful software applications.

Chapter 2.1. Ontology Based Object-Oriented Domain Modeling: Representing Behavior 505
 Joerg Evermann, Memorial University of Newfoundland, Canada
 Yair Wand, The University of British Columbia, Canada

Chapter 2.2. An Ontology Based Representation of Software Design Patterns 528
 Jens Dietrich, Massey University, New Zealand
 Chris Elgar, SolNet Solutions Limited, New Zealand

Chapter 2.3. Class Patterns and Templates in Software Design ... 546
 Julio Sanchez, Minnesota State University, Mankato, USA
 Maria P. Canton, South Central College, USA

Chapter 2.4. Motivation in Component-Based Software Development ... 588
 G. Chroust, J. Kepler University Linz, Austria

Volume II

Chapter 2.5. Multimodal Modeling, Analysis, and Validation of Open Source Software
Development Processes .. 597
 Walt Scacchi, University of California, Irvine, USA
 Chris Jensen, University of California, Irvine, USA
 John Noll, Santa Clara University, USA
 Margaret Elliott, University of California, Irvine, USA

Chapter 2.6. Conceptual Model Driven Software Development (CMDSD) as a Catalyst
Methodology for Building Sound Semantic Web Frameworks .. 611
 Thomas Biskup, Carl von Ossietzky University, Oldenburg, Germany
 Nils Heyer, Carl von Ossietzky University, Oldenburg, Germany
 Jorge Marx Gómez, Carl von Ossietzky University, Oldenburg, Germany

Chapter 2.7. Formal Modeling and Specification of Design Patterns Using RTPA 635
 Yingxu Wang, University of Calgary, Canada
 Jian Huang, University of Calgary, Canada

Chapter 2.8. Building an LMS with Ubiquitous Software .. 648
 Michael Rees, Bond University, Australia
 Charles Herring, G-Netech Pty Ltd, Australia

Chapter 2.9. Development of Machine Learning Software for High Frequency Trading
in Financial Markets ... 664
 Andrei Hryshko, University of Queensland, Australia
 Tom Downs, University of Queensland, Australia

Chapter 2.10. Architecture of an Information System for Personal Financial Planning 684
 Oliver Braun, Saarland University, Germany
 Günter Schmidt, Saarland University, Germany

Chapter 2.11. Educational Theory Into Practice Software (ETIPS) ... 708
 Sara Dexter, University of Virginia, USA

Chapter 2.12. Engineering Reusable Learning Objects .. 718
 Ed Morris, RMIT University, Australia

Chapter 2.13. Covert End User Development: A Study of Success .. 736
 Elaine H. Ferneley, University of Salford, UK

Chapter 2.14. A Social Ontology for Integrating Security and Software Engineering 743
 E. Yu, University of Toronto, Canada
 L. Liu, Tsinghua University, China
 J. Mylopoulos, University of Toronto, Canada

Chapter 2.15. Social Structure Based Design Patterns for Agent-Oriented Software
Engineering ... 773
 Manuel Kolp, Université catholique de Louvain, Belgium
 Stéphane Faulkner, University of Namur, Belgium
 Yves Wautelet, Université catholique de Louvain, Belgium

Chapter 2.16. Women in the Free/Libre Open Source Software Development 797
 Yuwei Lin, Vrije Universiteit Amsterdam, The Netherlands

Chapter 2.17. Managing Intellectual Capital and Intellectual Property within Software
Development Communities of Practice .. 804
 Andy Williamson, Wairua Consulting Limited, New Zealand
 David M. Kennedy, Hong Kong Institute of Education, Hong Kong
 Ruth DeSouza, Wairua Consulting Limited, New Zealand
 Carmel McNaught, Chinese University of Hong Kong, Hong Kong

Chapter 2.18. Developing Knowledge Management Systems from a Knowledge-Based and
Multi-Agent Approach .. 817
 Aurora Vizcaíno, Alarcos Research Group, University of Castilla-la Mancha, Spain
 Juan Pablo Soto, Alarcos Research Group, University of Castilla-la Mancha, Spain
 Javier Portillo-Rodríguez, Alarcos Research Group,
 University of Castilla-la Mancha, Spain
 Mario Piattini, Alarcos Research Group, University of Castilla-la Mancha, Spain

Chapter 2.19. Human-Centered Design of a Semantically Enabled Knowledge Management
System for Agile Software Engineering ... 834
 Christian Höcht, Technical University of Kaiserslautern, Germany
 Jörg Rech, Fraunhofer Institute for Experimental Software Engineering (IESE), Germany

Chapter 2.20. Riki: A System for Knowledge Transfer and Reuse in Software
Engineering Projects ... 856
 Jörg Rech, Fraunhofer Institute for Experimental Software Engineering (IESE), Germany
 Eric Ras, Fraunhofer Institute for Experimental Software Engineering (IESE), Germany
 Björn Decker, Fraunhofer Institute for Experimental Software Engineering (IESE), Germany

Chapter 2.21. Constructivist Learning During Software Development .. 910
 Václav Rajlich, Wayne State University, USA
 Shaochun Xu, Laurentian University, Canada

Chapter 2.22. Designing for Service-Oriented Computing .. 923
 Bill Vassiliadis, Hellenic Open University, Greece

Chapter 2.23. A Model-Driven Development Framework for Non-Functional Aspects in
Service Oriented Architecture ... 942
 Hiroshi Wada, University of Massachusetts–Boston, USA
 Junichi Suzuki, University of Massachusetts–Boston, USA
 Katsuya Oba, OGIS International, Inc., USA

Chapter 2.24. An Incremental Functionality-Oriented Free Software Development Methodology ... 975
 Oswaldo Terán, ENDITEL; Centro de Micro Electrónica y Sistemas Distribuidos
 and Centro de Simulación y Modelos, Universidad de los Andes, Venezuela
 Johanna Alvarez, CENDITEL, Venezuela
 Blanca Abraham, CEMISID Universidad de los Andes, Venezuela
 Jose Aguilar, CENDITEL; Centro de Micro Electrónica y Sistemas Distribuidos,
 Universidad de los Andes, Venezuela

Chapter 2.25. Agile Outsourcing to India: Structure and Management .. 991
 Boris Roussev, University of the Virgin Islands, USA
 Ram Akella, University of California, USA

Chapter 2.26. Decision Rule for Investment in Frameworks of Reuse .. 1013
 Roy Gelbard, Bar-Ilan University, Israel

Chapter 2.27. Integrated Product Life Cycle Management for Software: CMMI, SPICE,
and ISO/IEC 20000 ... 1022
 Dirk Malzahn, OrgaTech GmbH, Germany

Chapter 2.28. BROOD: Business Rules-Driven Object Oriented Design .. 1043
 Pericles Loucopoulos, Loughborough University, UK
 Wan M.N. Wan Kadir, Universiti Teknologi Malaysia, Malaysia

Chapter 2.29. Bug Fixing Practices within Free/Libre Open Source Software Development
Teams .. 1079
 Kevin Crowston, Syracuse University, USA
 Barbara Scozzi, Politecnico di Bari, Italy

Chapter 2.30. Evaluating Performance of Software Architecture Models with
the Palladio Component Model ...1111
 Heiko Koziolek, Universität Oldenburg, Germany
 Steffen Becker, University of Karlsruhe, Germany
 Ralf Reussner, University of Karlsruhe, Germany
 Jens Happe, Universität Oldenburg, Germany

Section III. Tools and Technologies

This section presents extensive coverage of the technology that both derives from and informs software
applications. These chapters provide an in-depth analysis of the use and development of innumerable
devices and tools, while also providing insight into new and upcoming technologies, theories, and
instruments that will soon be commonplace. Within these rigorously researched chapters, readers are
presented with examples of the tools that facilitate and support software design and engineering. In ad-
dition, the successful implementation and resulting impact of these various tools and technologies are
discussed within this collection of chapters.

Chapter 3.1. Knowledge Management Toolkit for SMEs ... 1136
 Kerstin Fink, University of Innsbruck, Austria
 Christian Ploder, University of Innsbruck, Austria

Chapter 3.2. Information Communication Technology Tools for Software Review
and Verification ... 1151
 Yuk Kuen Wong, Griffith University, Australia

Chapter 3.3. Survey Tracker E-Mail/ Web Survey Software .. 1160
 Eun G. Park, McGill University, Canada

Chapter 3.4. A Survey of Selected Software Technologies for Text Mining 1164
 Richard S. Segall, Arkansas State University, USA
 Qingyu Zhang, Arkansas State University, USA

Chapter 3.5. A Software Tool for Reading DICOM Directory Files .. 1182
 Ricardo Villegas, Universidad de Carabobo, Venezuela
 Guillermo Montilla, Universidad de Carabobo, Venezuela
 Hyxia Villegas, Universidad de Carabobo, Venezuela

Volume III

Chapter 3.6. Tools for the Study of the Usual Data Sources found in Libre Software Projects 1199
 Gregorio Robles, Universidad Rey Juan Carlos, Spain
 Jesús M. González-Barahona, Universidad Rey Juan Carlos, Spain
 Daniel Izquierdo-Cortazar, Universidad Rey Juan Carlos, Spain
 Benjamin E. Erlandson, Universidad Rey Juan Carlos, Spain

Chapter 3.7. Software Platforms for Mobile Programming .. 1221
 Khoo Wei Ju, Malaysia University of Science and Technology, Malaysia
 K. Daniel Wong, Malaysia University of Science and Technology, Malaysia

Chapter 3.8. Present and Future of Software Graphics Architectures
for Interactive Digital Television .. 1233
 Pablo Cesar, CWI: Centrum voor Wiskunde en Informatica, The Netherlands
 Keith Baker, Philips Applied Technologies, The Netherlands
 Dick Bulterman, CWI: Centrum voor Wiskunde en Informatica, The Netherlands
 Luiz Fernando Gomes Soares, PUC-RIO, Brazil
 Samuel Cruz-Lara, LORIA-INRIA Lorraine, France
 Annelies Kaptein, Stoneroos, The Netherlands

Chapter 3.9. Design Diagrams as Ontological Sources: Ontology Extraction and Utilization for
Software Asset Reuse .. 1250
 Kalapriya Kannan, IBM India Research Labs, India
 Biplav Srivastava, IBM India Research Labs, India

Chapter 3.10. Evolution in Model-Driven Software Product-Line Architectures 1280
 Gan Deng, Vanderbilt University, USA
 Jeff Gray, University of Alabama at Birmingham, USA
 Douglas C. Schmidt, Vanderbilt University, USA
 Yuehua Lin, University of Alabama at Birmingham, USA
 Aniruddha Gokhale, Vanderbilt University, USA
 Gunther Lenz, Microsoft, USA

Chapter 3.11. Reverse Engineering from an XML Document into an Extended DTD Graph 1313
 Herbert Shiu, City University of Hong Kong, Hong Kong
 Joseph Fong, City University of Hong Kong, Hong Kong

Chapter 3.12. LOGIC-Minimiser: A Software Tool to Enhance Teaching
and Learning Minimization of Boolean Expressions .. 1334
 Nurul I. Sarkar, Auckland University of Technology, New Zealand
 Khaleel I. Petrus, University of Southern Queensland, Australia

Chapter 3.13. Assisting Learners to Dynamically Adjust Learning Processes
Through Software Agents ... 1345
 Weidong Pan, University of Technology, Sydney, Australia
 Igor Hawrysiewycz, University of Technology, Sydney, Australia

Chapter 3.14. Integrating Software Engineering and Costing Aspects
within Project Management Tools .. 1358
 Roy Gelbard, Bar-Ilan University, Israel
 Jeffrey Kantor, Bar-Ilan University & University of Windsor, Israel and Canada
 Liran Edelist, Bar-Ilan University, Israel

Chapter 3.15. Developing Enjoyable Second Language Learning Software Tools:
A Computer Game Paradigm .. 1375
 Chee Siang Ang, City University, UK
 Panayiotis Zaphiris, City University, UK

Chapter 3.16. VIPER: Evaluation of an Integrated Group VoiceIP Software Application
for Teaching and Learning in Higher Education ... 1394
 John Beaumont-Kerridge, University of Luton Business School, UK

Chapter 3.17. A Pliant-Based Software Tool for Courseware Development 1404
 Marcus Vinicius Santos Kucharski, Pontifical Catholic University of Paraná, Brazil
 Isaac Woungang, Ryerson University, Canada
 Moses Nyongwa, University of Manitoba CUSB, Canada

Section IV. Utilization and Application

This section introduces and discusses the ways in which information technology has been used to
shape the realm of software applications and proposes new ways in which IT-related innovations can
be implemented within organizations and in society as a whole. These particular selections highlight,
among other topics, intelligent software agents in e-commerce and utilizing open source software in
organizations. Contributions included in this section provide excellent coverage of today’s changing
environment and insight into how evolutions in software applications impact the fabric of our present-
day global village.

Chapter 4.1. Intelligent Software Agents with Applications in Focus .. 1426
 Mario Janković-Romano, University of Belgrade, Serbia
 Milan Stanković, University of Belgrade, Serbia
 Uroš Krčadinac, University of Belgrade, Serbia

Chapter 4.2. Simulation Modelling within Collaborative Spatial Decision Support
Systems Using “Cause-Effect” Models and Software Agents .. 1434
 Raja Sengupta, McGill University, Canada

Chapter 4.3. Intelligent Software Agents Analysis in E-Commerce I .. 1446
 Xin Luo, The University of New Mexico, USA
 Somasheker Akkaladevi, Virginia State University, USA

Chapter 4.4. Intelligent Software Agents Analysis in E-Commerce II ... 1452
 Xin Luo, The University of New Mexico, USA
 Somasheker Akkaladevi, Virginia State University, USA

Chapter 4.5. A Semantic Web-Based Information Integration Approach for
an Agent-Based Electronic Market ... 1458
 Maria João Viamonte, GECAD – Knowledge Engineering and Decision Support Research
 Group, Porto Polytechnic Institute, Portugal
 Nuno Silva, GECAD – Knowledge Engineering and Decision Support Research Group,
 Porto Polytechnic Institute, Portugal

Chapter 4.6. Electronic Commerce Strategy in the UK Electricity Industry:
The Case of Electric Co and Dataflow Software .. 1478
 Duncan R. Shaw, University of Nottingham, UK
 Christopher P. Holland, University of Manchester, UK
 Peter Kawalek, University of Manchester, UK
 Bob Snowdon, University of Manchester, UK
 Brian Warboys, University of Manchester, UK

Chapter 4.7. IT and Software Industry in Vietnam ... 1498
 Yuko Iwasaki, Yokkaichi University, Japan

Chapter 4.8. Utilizing Semantic Web and Software Agents in a Travel Support System 1507
 Maria Ganzha, EUH-E and IBS PAN, Poland
 Maciej Gawinecki, IBS PAN, Poland
 Marcin Paprzycki, SWPS and IBS PAN, Poland
 Rafał Gąsiorowski, Warsaw University of Technology, Poland
 Szymon Pisarek, Warsaw University of Technology, Poland
 Wawrzyniec Hyska, Warsaw University of Technology, Poland

Chapter 4.9. Online Synchronous vs. Asynchronous Software Training Through
the Behavioral Modeling Approach: A Longitudinal Field Experiment ... 1533
 Charlie C. Chen, Appalachian State University, USA
 R. S. Shaw, Tamkang University, Taiwan

Chapter 4.10. Rapid Insertion of Leading Edge Industrial Strength Software
into University Classrooms ... 1548
 Dick B. Simmons, Texas A&M University, USA
 William Lively, Texas A&M University, USA
 Chris Nelson, IBM Corporation, USA
 Joseph E. Urban, Arizona State University, USA

Chapter 4.11. The Migration of Public Administrations Towards Open Source
Desktop Software: Recommendations from Research and Validation through a Case Study 1559
 Kris Ven, University of Antwerp, Belgium
 Dieter Van Nuffel, University of Antwerp, Belgium
 Jan Verelst, University of Antwerp, Belgium

Chapter 4.12. Issues and Aspects of Open Source Software Usage and Adoption
in the Public Sector ... 1577
 Gabor Laszlo, Budapest Tech, Hungary

Chapter 4.13. An Empirical Study on the Migration to OpenOffice.org
in a Public Administration .. 1592
 Bruno Rossi, Free University of Bolzano-Bozen, Italy
 M. Scotto, Free University of Bolzano-Bozen, Italy
 A. Sillitti, Free University of Bolzano-Bozen, Italy
 Giancarlo Succi, Free University of Bolzano-Bozen, Italy

Chapter 4.14. An Empirical Investigation into the Adoption of Open Source Software
in Hospitals ... 1608
 Gilberto Munoz-Cornejo, University of Maryland Baltimore County, USA
 Carolyn B. Seaman, University of Maryland Baltimore County, USA
 A. Güneş Koru, University of Maryland Baltimore County, USA

Chapter 4.15. Open Source Software: A Key Component of E-Health in Developing Nations 1628
 David Parry, Auckland University of Technology, New Zealand
 Emma Parry, University of Auckland, New Zealand
 Phurb Dorji, Jigme Dorji Wangchuck National Referral Hospital, Bhutan
 Peter Stone, University of Auckland, New Zealand

Chapter 4.16. Patchwork Prototyping with Open Source Software .. 1641
 M. Cameron Jones, University of Illinois at Urbana-Champaign, USA
 Ingbert R. Floyd, University of Illinois at Urbana-Champaign, USA
 Michael B. Twidale, University of Illinois at Urbana-Champaign, USA

Chapter 4.17. Evaluation of a Migration to Open Source Software ... 1657
 Bruno Rossi, Free University of Bozen-Bolzano, Italy
 Barbara Russo, Free University of Bozen-Bolzano, Italy
 Giancarlo Succi, Free University of Bozen-Bolzano, Italy

Chapter 4.18. Open Source Software Adoption: Anatomy of Success and Failure 1675
 Brian Fitzgerald, Lero–Irish Software Engineering Research Centre and
 University of Limerick, Ireland

Chapter 4.19. Media Centric Knowledge Sharing on the Web 2.0 ... 1699
 Marc Spaniol, Max Planck Institute for Computer Science, Germany
 Ralf Klamma, RWTH Aachen University, Germany
 Yiwei Cao, RWTH Aachen University, Germany

Chapter 4.20. Towards an Integrated Model of Knowledge Sharing in Software Development:
Insights from a Case Study ... 1714
 Karlheinz Kautz, Copenhagen Business School, Denmark
 Annemette Kjærgaard, Copenhagen Business School, Denmark

Chapter 4.21. Digital Library Structure and Software .. 1742
 Cavan McCarthy, Louisiana State University, USA

Chapter 4.22. Comparing Four-Selected Data Mining Software .. 1750
 Richard S. Segall, Arkansas State University, USA
 Qingyu Zhang, Arkansas State University, USA

Chapter 4.23. Dimensions of UML Diagram Use: A Survey of Practitioners 1760
 Brian Dobing, University of Lethbridge, Canada
 Jeffrey Parsons, Memorial University of Newfoundland, Canada

Volume IV

Chapter 4.24. Enterprise Resource Systems Software Implementation ... 1780
 Ganesh Vaidyanathan, Indiana University, USA

Chapter 4.25. Teaching Operations Management with Enterprise Software 1798
 R. Lawrence LaForge, Clemson University, USA

Section V. Organizational and Social Implications

This section includes a wide range of research pertaining to the social and organizational impact of
software applications. Chapters introducing this section analyze open source software communities,
while later selections discuss organizational modeling and the analysis of user interfaces. The inqui-
ries and methods presented in this section offer insight into the implications of software applications
at both a personal and organizational level, while also emphasizing potential areas of study within the
discipline.

Chapter 5.1. Open Source Software Communities ... 1814
 Kevin Carillo, Concordia University, Canada
 Chitu Okoli, Concordia University, Canada

Chapter 5.2. Beyond Development: A Research Agenda for Investigating Open Source
Software User Communities ... 1822
 Leigh Jin, San Francisco State University, USA
 Daniel Robey, Georgia State University, USA
 Marie-Claude Boudreau, University of Georgia, USA

Chapter 5.3. Social Network Structures in Open Source Software Development Teams 1835
 Yuan Long, Colorado State University-Pueblo, USA
 Keng Siau, University of Nebraska-Lincoln, USA

Chapter 5.4. The Impact of Ideology on the Organizational Adoption of Open Source Software ... 1849
 Kris Ven, University of Antwerp, Belgium
 Jan Verelst, University of Antwerp, Belgium

Chapter 5.5. Volunteers in Large Libre Software Projects: A Quantitative Analysis Over Time 1865
 Martin Michlmayr, University of Cambridge, UK
 Gregorio Robles, Universidad Rey Juan Carlos, Spain
 Jesus M. Gonzalez-Barahona, Universidad Rey Juan Carlos, Spain

Chapter 5.6. Applying Social Network Analysis Techniques to Community-Driven Libre
Software Projects .. 1883
 Luis López-Fernández, Universidad Rey Juan Carlos, Spain
 Gregorio Robles, Universidad Rey Juan Carlos, Spain
 Jesus M. Gonzalez-Barahona, Universidad Rey Juan Carlos, Spain
 Israel Herraiz, Universidad Rey Juan Carlos, Spain

Chapter 5.7. Open Source Software Business Models and Customer Involvement Economics 1906
 Christoph Schlueter Langdon, Center for Telecom Management,
 University of Southern California, USA
 Alexander Hars, Inventivio GmbH, Bayreuth, Germany

Chapter 5.8. Investing in Open Source Software Companies: Deal Making
from a Venture Capitalist’s Perspective .. 1916
 Mikko Puhakka, Helsinki University of Technology, Finland
 Hannu Jungman, Tamlink Ltd., Finland
 Marko Seppänen, Tampere University of Technology, Finland

Chapter 5.9. Open Source Software: A Developing Country View .. 1925
 Jennifer Papin-Ramcharan, The University of the West Indies–
 St. Augustine Campus, Trinidad and Tobago
 Frank Soodeen, The University of the West Indies–
 St. Augustine Campus, Trinidad and Tobago

Chapter 5.10. Open Source and Outsourcing: A Perspective on Software Use and Professional
Practices Related to International Outsourcing Activities .. 1934
 Kirk St.Amant, Texas Tech University, USA

Chapter 5.11. How to Create a Credible Software Engineering Bachelors Program: Navigating
the Waters of Program Development .. 1951
 Stephen Frezza, Gannon University, USA
 Mei-Huei Tang, Gannon University, USA
 Barry J. Brinkman, Gannon University, USA

Chapter 5.12. Facilitating eLearning with Social Software: Attitudes and Usage
from the Student’s Point of View .. 1979
 Reinhard Bernsteiner, University for Health Sciences, Medical Informatics and Technology, Austria
 Herwig Ostermann, University for Health Sciences, Medical Informatics and Technology, Austria
 Roland Staudinger, University for Health Sciences, Medical Informatics and Technology, Austria

Chapter 5.13. Continuous Curriculum Restructuring in a Graduate
Software Engineering Program ... 1998
 Daniela Rosca, Monmouth University, USA
 William Tepfenhart, Monmouth University, USA
 Jiacun Wang, Monmouth University, USA
 Allen Milewski, Monmouth University, USA

Chapter 5.14. The Influence of Computer-Based In-Class Examination Security Software on
Students’ Attitudes and Examination Performance ... 2019
 Lori Baker-Eveleth, University of Idaho, USA
 Daniel M. Eveleth, University of Idaho, USA
 Michele O’Neill, University of Idaho, USA
 Robert W. Stone, University of Idaho, USA

Chapter 5.15. Integrated Software Testing Learning Environment for Training Senior-Level
Computer Science Students .. 2029
 Daniel Bolanos, Universidad Autonoma de Madrid, Spain
 Almudena Sierra, Universidad Rey Juan Carlos, Spain

Chapter 5.16. European National Educational School Authorities’ Actions Regarding Open
Content and Open Source Software in Education ... 2046
 Riina Vuorikari, European Schoolnet (EUN), Belgium
 Karl Sarnow, European Schoolnet (EUN), Belgium

Chapter 5.17. Enhancing Skills of Application Software via Web-Enabled Problem-Based
Learning and Self-Regulated Learning: An Exploratory Study .. 2064
 Pei-Di Shen, Ming Chuan University, Taiwan
 Tsang-Hsiung Lee, National Chengchi University, Taiwan
 Chia-Wen Tsai, Ming Chuan University, Taiwan

Chapter 5.18. Globalising Software Development in the Local Classroom 2079
 Ita Richardson, University of Limerick, Ireland
 Sarah Moore, University of Limerick, Ireland
 Alan Malone, Siemens Corporate Research, USA
 Valentine Casey, University of Limerick, Ireland
 Dolores Zage, Ball State University, USA

Chapter 5.19. A Requirement Elicitation Methodology for Global Software
Development Teams .. 2102
 Gabriela N. Aranda, Universidad Nacional del Comahue, Argentina
 Aurora Vizcaíno, Universidad de Castilla-La Mancha, Spain
 Alejandra Cechich, Universidad Nacional del Comahue, Argentina
 Mario Piattini, Universidad de Castilla-La Mancha, Spain

Chapter 5.20. Project Quality of Off-Shore Virtual Teams Engaged in Software
Requirements Analysis: An Exploratory Comparative Study ... 2115
 Dhruv Nath, Management Development Institute, India
 Varadharajan Sridhar, Management Development Institute, India
 Monica Adya, Marquette University, USA
 Amit Malik, Management Development Institute, India

Chapter 5.21. A Case Study on the Selection and Evaluation of Software
for an Internet Organisation .. 2137
 Pieter van Staaden, Media 24 Ltd., South Africa

Chapter 5.22. Planning and Managing the Human Factors for the Adoption
and Diffusion of Object-Oriented Software Development Processes ... 2153
 Magdy K. Serour, University of Technology, Sydney, Australia

Chapter 5.23. Developing Software in Bicultural Context: The Role of a SoDIS Inspection 2172
 Don Gotterbarn, East Tennessee State University, USA
 Tony Clear, Auckland University of Technology, New Zealand
 Wayne Gray, The University of Auckland, New Zealand
 Bryan Houliston, Auckland University of Technology, New Zealand

Chapter 5.24. Issues, Limitations, and Opportunities in Cross-Cultural Research
on Collaborative Software in Information Systems .. 2194
 Dongsong Zhang, University of Maryland, Baltimore County, USA
 Paul Benjamin Lowry, Brigham Young University, USA

Chapter 5.25. Online Behavior Modeling: An Effective and Affordable Software
Training Method ... 2230
 Charlie Chen, Appalachian State University, USA
 Terry Ryan, Claremont Graduate University, USA
 Lorne Olfman, Claremont Graduate University, USA

Chapter 5.26. Lack of Skill Risks to Organizational Technology Learning
and Software Project Performance .. 2247
 James Jiang, University of Central Florida, USA
 Gary Klein, United States Air Force Academy, USA
 Phil Beck, Southwest Airlines, USA
 Eric T.G. Wang, National Central University, Taiwan

Chapter 5.27. Patterns for Organizational Modeling .. 2262
 Manuel Kolp, Université catholique de Louvain, Belgium
 Stéphane Faulkner, University of Namur, Belgium

Chapter 5.28. A Multi-Methodological Approach to Study Systems Development in a Software
Organization .. 2285
 Paivi Ovaska, South Karelia University of Applied Sciences, Finland

Chapter 5.29. Integrating Usability, Semiotic, and Software Engineering into a Method for
Evaluating User Interfaces .. 2307
 Kenia Sousa, University of Fortaleza, Brazil
 Albert Schilling, University of Fortaleza, Brazil
 Elizabeth Furtado, University of Fortaleza, Brazil

Chapter 5.30. The Work of Art in the Age of Mechanical Production .. 2325
 Thomas B. Cavanaugh, Embry-Riddle Aeronautical University, USA

Section VI. Managerial Impact

This section presents contemporary coverage of the managerial implications of software applications.
Particular contributions address agile practices in project management, virtual software teams, and
computer-aided management of software development. The managerial research provided in this sec-

tion allows executives, practitioners, and researchers to gain a better sense of how software applica-
tions can inform their practices and behavior.

Chapter 6.1. Open Source Software and the Corporate World ... 2338
 Sigrid Kelsey, Louisiana State University, USA

Chapter 6.2. Combining Tailoring and Evolutionary Software Development for Rapidly
Changing Business Systems ... 2346
 Jeanette Eriksson, Blekinge Institute of Technology, Sweden
 Yvonne Dittrich, IT-University of Copenhagen, Denmark

Chapter 6.3. Differentiated Process Support for Large Software Projects 2359
 Alf Inge Wang, Norwegian University of Science and Technology, Norway
 Carl-Fredrik Sørensen, Norwegian University of Science and Technology, Norway

Volume V

Chapter 6.4. Computer-Aided Management of Software Development in Small Companies 2379
 Lukáš Pichl, University of Aizu, Japan
 Takuya Yamano, International Christian University, Japan

Chapter 6.5. A Survey of Competency Management Software Information Systems in the
Framework of Human Resources Management .. 2391
 Alfonso Urquiza, Francisco de Vitoria University, Spain

Chapter 6.6. Becoming a Learning Organization in the Software Industry:
Is CMM the Silver Bullet? .. 2427
 Dev K. Dutta, Richard Ivey School of Business, The University of Western Ontario, Canada

Chapter 6.7. Agile Practices in Project Management ... 2442
 John Gómez, Ericsson Chile, Chile
 Alejandro Núñez, Practia Consulting S.A, Chile

Chapter 6.8. Project Management in Enterprises: IT Implementation Based on Fuzzy Models 2461
 Cezary Orłowski, Gdańsk University of Technology, Poland
 Zdzisław Kowalczuk, Gdańsk University of Technology, Poland

Chapter 6.9. Occurrence and Effects of Leader Delegation in Virtual Software Teams 2472
 Suling Zhang, Kean University, USA
 Marilyn Tremaine, New Jersey Institute of Technology, USA
 Rich Egan, New Jersey Institute of Technology, USA
 Allen Milewski, Monmouth University, USA
 Patrick O’Sullivan, IBM Dublin Lab, Ireland
 Jerry Fjermestad, New Jersey Institute of Technology, USA

Chapter 6.10. Cultural Diversity Challenges: Issues for Managing Globally Distributed
Knowledge Workers in Software Development .. 2493
 Haiyan Huang, The Pennsylvania State University, USA
 Eileen M. Trauth, The Pennsylvania State University, USA

Chapter 6.11. Business Modeling in Process-Oriented Organizations for RUP-Based Software
Development ... 2510
 Francisco J. Duarte, Blaupunkt Auto-Rádio Portugal, & Universidade do Minho, Portugal
 João M. Fernandes, Universidade do Minho, Portugal
 Ricardo J. Machado, Universidade do Minho, Portugal

Chapter 6.12. Improvement of Software Engineering by Modeling Knowledge-Intensive
Business Processes .. 2528
 Jane Fröming, University of Potsdam, Germany
 Norbert Gronau, University of Potsdam, Germany
 Simone Schmid, University of Potsdam, Germany

Chapter 6.13. A Relative Comparison of Leading Supply Chain Management Software
Packages .. 2547
 Zhongxian Wang, Montclair State University, USA
 Ruiliang Yan, Indiana University Northwest, USA
 Kimberly Hollister, Montclair State University, USA
 Ruben Xing, Montclair State University, USA

Chapter 6.14. How E-Entrepreneurs Operate in the Context of Open Source Software 2564
 Ambika Zutshi, Deakin University, Australia
 Samar Zutshi, Monash University, Australia
 Amrik Sohal, Monash University, Australia

Chapter 6.15. Channel Optimization for On Field Sales Force by Integration of Business
Software on Mobile Platforms .. 2584
 Rishi Kalra, Symbiosis International University, India
 Amit Nanchahal, Symbiosis International University, India

Chapter 6.16. Revenue Models in the Open Source Software Business .. 2599
 Risto Rajala, Helsinki School of Economics, Finland
 Jussi Nissilä, University of Turku, Finland
 Mika Westerlund, Helsinki School of Economics, Finland

Chapter 6.17. Knowledge Management and Organizational Performance in the Egyptian
Software Firms .. 2614
 Ahmed Seleim, Alexandria University, Egypt
 Omar Khalil, Kuwait University, Kuwait

Section VII. Critical Issues

This section addresses conceptual and theoretical issues related to the field of software applications,
which include ethics in software engineering, software piracy, and morality in free and open source
software. Within these chapters, the reader is presented with analysis of the most current and relevant
conceptual inquires within this growing field of study. Overall, contributions within this section ask
unique, often theoretical questions related to the study of software applications and, more often than
not, conclude that solutions are both numerous and contradictory.

Chapter 7.1. A Survey of Object-Oriented Design Quality Improvement .. 2646
 Juan José Olmedilla, Almira Lab, Spain

Chapter 7.2. Software Quality and the Open Source Process ... 2665
 Sameer Verma, San Francisco State University, USA

Chapter 7.3. Agile Software Development Quality Assurance: Agile Project Management,
Quality Metrics, and Methodologies ... 2680
 James F. Kile, IBM Corporation, USA
 Maheshwar R. Inampudi, IBM Corporation, USA

Chapter 7.4. Teaching Agile Software Development Quality Assurance ... 2700
 Orit Hazzan, Technion – Israel Institute of Technology, Israel
 Yael Dubinsky, Technion – Israel Institute of Technology, Israel

Chapter 7.5. Software Quality Modeling with Limited Apriori Defect Data 2714
 Naeem Seliya, University of Michigan, USA
 Taghi M. Khoshgoftaar, Florida Atlantic University, USA

Chapter 7.6. Integrating Quality Criteria and Methods of Evaluation for Software Models 2728
 Anna E. Bobkowska, Gdańsk University of Technology, Poland

Chapter 7.7. Software Security Engineering: Towards Unifying Software Engineering
and Security Engineering .. 2744
 Mohammad Zulkernine, Queen’s University, Canada
 Sheikh I. Ahamed, Marquette University, USA

Chapter 7.8. Trusting Computers Through Trusting Humans: Software Verification
in a Safety-Critical Information System ... 2760
 Alison Adam, University of Salford, UK
 Paul Spedding, University of Salford, UK

Chapter 7.9. Access Control Specification in UML .. 2775
 Manuel Koch, Free University of Berlin, Germany
 Francesco. Parisi-Presicce, University of Rome “La Sapienza”, Italy
 Karl Pauls, Free University of Berlin, Germany

Chapter 7.10. Ethics in Software Engineering .. 2795
 Pankaj Kamthan, Concordia University, Canada

Chapter 7.11. Free Access to Law and Open Source Software ... 2803
 Daniel Poulin, Université de Montréal, Canada
 Andrew Mowbray, University of Technology, Sydney, Australia
 Pierre-Paul Lemyre, Université de Montréal, Canada

Chapter 7.12. Ethical, Cultural and Socio-Economic Factors of Software Piracy Determinants in a
Developing Country: Comparative Analysis of Pakistani and Canadian University Students 2812
 Arsalan Butt, Simon Fraser University, Canada
 Adeel I. Butt, Simon Fraser University, Canada

Chapter 7.13. Legal and Economic Justification for Software Protection .. 2831
 Bruno de Vuyst, Vrije Universiteit Brussel, Belgium
 Alea Fairchild, Vrije Universiteit Brussel, Belgium

Chapter 7.14. How Can We Trust Agents in Multi-Agent Environments? Techniques and
Challenges ... 2843
 Kostas Kolomvatsos, National and Kapodistrian University of Athens, Greece
 Stathes Hadjiefthymiades, National and Kapodistrian University of Athens, Greece

Chapter 7.15. Improving Credibility of Machine Learner Models in Software Engineering 2865
 Gary D. Boetticher, University of Houston – Clear Lake, USA

Chapter 7.16. Morality and Pragmatism in Free Software and Open Source 2883
 Dave Yeats, Auburn University, USA

Chapter 7.17. A Metamorphic Testing Approach for Online Testing of Service-Oriented
Software Applications ... 2894
 W. K. Chan, Hong Kong University of Science and Technology, Hong Kong
 S. C. Cheung, Hong Kong University of Science and Technology, Hong Kong
 Karl R. P. H. Leung, Hong Kong Institute of Vocational Education, Hong Kong

Chapter 7.18. Deductive Semantics of RTPA ... 2915
 Yingxu Wang, University of Calgary, Canada

Chapter 7.19. RTPA: A Denotational Mathematics for Manipulating Intelligent and
Computational Behaviors .. 2943
 Yingxu Wang, University of Calgary, Canada

Chapter 7.20. Measuring the Efficiency of Free and Open Source Software Projects Using
Data Envelopment Analysis .. 2963
 Stefan Koch, Vienna University of Economics and Business Administration, Austria

Volume VI

Chapter 7.21. Examining Open Source Software Licenses through the Creative Commons
Licensing Model ... 2978
 Kwei-Jay Lin, University of California, USA
 Yi-Hsuan Lin, Creative Commons Taiwan Project, Taiwan
 Tung-Mei Ko, OSSF Project, Taiwan

Chapter 7.22. Integration of Libre Software Applications to Create a Collaborative Work
Platform for Researchers at GET .. 2991
 Olivier Berger, GET/INT, France
 Christian Bac, GET/INT, France
 Benoît Hamet, GET/INT, France

Chapter 7.23. Exploring the Effects of Process Characteristics on Products Quality in Open
Source Software Development ... 3008
 Stefan Koch, Vienna University of Economics and Business Administration, Austria
 Christian Neumann, Vienna University of Economics and Business Administration, Austria

Chapter 7.24. A Graphical User Interface (GUI) Testing Methodology ... 3037
 Zafar Singhera, ZAF Consulting, USA
 Ellis Horowitz, University of Southern California, USA
 Abad Shah, R & D Center of Computer Science, Pakistan

Chapter 7.25. On Concept Algebra: A Denotational Mathematical Structure for Knowledge and
Software Modeling .. 3055
 Yingxu Wang, University of Calgary, Canada

Chapter 7.26. On System Algebra: A Denotational Mathematical Structure for Abstract System
Modeling ... 3076
 Yingxu Wang, University of Calgary, Canada

Chapter 7.27. A Cognitive Informatics Reference Model of Autonomous Agent
Systems (AAS).. 3102
 Yingxu Wang, University of Calgary, Canada

Chapter 7.28. A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable
Service-Oriented Systems ... 3118
 I-Ling Yen, University of Texas at Dallas, USA
 Tong Gao, University of Texas at Dallas, USA
 Hui Ma, University of Texas at Dallas, USA

Chapter 7.29. Fuzzy Logic Classifiers and Models in Quantitative Software Engineering 3142
 Witold Pedrycz, University of Alberta, Canada
 Giancarlo Succi, Free University of Bolzano, Italy

Chapter 7.30. A Formal Verification and Validation Approach for Real-Time Databases 3160
 Pedro Fernandes Ribeiro Neto, Universidade do Estado do Rio Grande do Norte, Brazil
 Maria Lígia Barbosa Perkusich, Universidade Católica de Pernambuco, Brazil
 Hyggo Oliveira de Almeida, Federal University of Campina Grande, Brazil
 Angelo Perkusich, Federal University of Campina Grande, Brazil

Section VIII. Emerging Trends

This section highlights research potential within the field of software applications while exploring un-
charted areas of study for the advancement of the discipline. Chapters within this section highlight
evolutions in social software, state-of-the-art agile software methods, and modeling large software sys-
tems. These contributions, which conclude this exhaustive, multi-volume set, provide emerging trends
and suggestions for future research within this rapidly expanding discipline.

Chapter 8.1. Social Software Trends in Business: Introduction ... 3180
 Peter Burkhardt, IBM, USA

Chapter 8.2. Social Software and Language Acquisition ... 3196
 Sarah Guth, Università degli studi di Padova, Italy
 Corrado Petrucco, Università degli studi di Padova, Italy

Chapter 8.3. Activity-Oriented Computing ... 3215
 João Pedro Sousa, George Mason University, USA
 Bradley Schmerl, Carnegie Mellon University, USA
 Peter Steenkiste, Carnegie Mellon University, USA
 David Garlan, Carnegie Mellon University, USA

Chapter 8.4. Integration Concept for Knowledge Processes, Methods, and Software for SMEs 3242
 Kerstin Fink, University of Innsbruck, Austria
 Christian Ploder, University of Innsbruck, Austria

Chapter 8.5. Adaptive Computation Paradigm in Knowledge Representation: Traditional and
 Emerging Applications ... 3258
 Marina L. Gavrilova, University of Calgary, Canada

Chapter 8.6. Agile Software Methods: State-of-the-Art ... 3272
 Ernest Mnkandla, Monash University, South Africa
 Barry Dwolatzky, University of Witwatersrand, South Africa

Chapter 8.7. Bridging the Gap between Agile and Free Software Approaches: The Impact of
Sprinting .. 3294
 Paul J. Adams, Sirius Corporation Ltd., UK
 Andrea Capiluppi, University of Lincoln, UK

Chapter 8.8. Agile SPI: Software Process Agile Improvement—A Colombian Approach to
Software Process Improvement in Small Software Organizations ... 3308
 Julio A. Hurtado, University of Cauca Colombia, Colombia
 Francisco J. Pino, University of Cauca Colombia, Colombia
 Juan C. Vidal, University of Cauca Colombia, Colombia
 César Pardo, University of Cauca Colombia, Colombia
 Luís Eduardo Fernández, University of Cauca Colombia, Colombia

Chapter 8.9. Machine Learning and Value-Based Software Engineering... 3325
 Du Zhang, California State University, USA

Chapter 8.10. An Operational Semantics of Real-Time Process Algebra (RTPA) 3340
 Yingxu Wang, University of Calgary, Canada
 Cyprian F. Ngolah, University of Calgary, Canada and University of Buea,
 Republic of Cameroon

Chapter 8.11. Validation and Verification of Software Systems Using Virtual Reality and
Coloured Petri Nets ... 3361
 Hyggo Oliveira de Almeida, Federal University of Campina Grande, Brazil
 Leandro Silva, Federal University of Campina Grande, Brazil
 Glauber Ferreira, Federal University of Campina Grande, Brazil
 Emerson Loureiro, Federal University of Campina Grande, Brazil
 Angelo Perkusich, Federal University of Campina Grande, Brazil

Chapter 8.12. Software Component Survivability in Information Warfare 3381
 Joon S. Park, Syracuse University, USA
 Joseph Giordano, Air Force Research Laboratory, USA

Chapter 8.13. A Novel Application of the P2P Technology for Intrusion Detection 3391
 Zoltán Czirkos, Budapest University of Technology and Economics, Hungary
 Gábor Hosszú, Budapest University of Technology and Economics, Hungary

Chapter 8.14. Reducing the Complexity of Modeling Large Software Systems 3399
 Jules White, Vanderbilt University, USA
 Douglas C. Schmidt, Vanderbilt University, USA
 Andrey Nechypurenko, Siemens AG, Germany
 Egon Wuchner, Siemens AG, Germany

Chapter 8.15. Heuristics and Metrics for OO Refactoring: A Consolidation and Appraisal of
Current Issues .. 3430
 Steve Counsell, Brunel University, UK
 Youssef Hassoun, University of London, UK
 Deepak Advani, University of London, UK

Chapter 8.16. Model-Driven Software Refactoring .. 3455
 Tom Mens, University of Mons-Hainaut, Belgium
 Gabriele Taentzer, Philipps-Universität Marburg, Germany
 Dirk Müller, Chemnitz University of Technology, Germany

Chapter 8.17. Benchmarking in the Semantic Web .. 3489
 Raúl García-Castro, Universidad Politécnica de Madrid, Spain
 Asunción Gómez-Pérez, Universidad Politécnica de Madrid, Spain

Chapter 8.18. All-Optical Internet: Next-Generation Network Infrastructure for E-Service
Applications .. 3519
 Abid Abdelouahab, Multimedia University, Malaysia
 Fouad Mohammed Abbou, Alcatel Network Systems, Malaysia
 Ewe Hong Tat, Multimedia University, Malaysia
 Toufik Taibi, United Arab Emirates University, UAE

 xxxix

Preface

Since the introduction of von Neumann architecture in the 1940s, which stipulated the critical division
between hardware and software, engineers and programmers alike have been striving to build bigger,
faster and cheaper software applications. This end goal of creating the most elegant program utilizing
the least resources while performing the most work has seen a plethora of developments over the last
several decades. Every innovation from the early programming languages of COBOL and FORTRAN
to the more recent move toward the agile programming method has informed the creation of software
applications designed to meet increasing demands and to answer a greater number of needs in the most
efficient way possible.

Now, with an entire generation of computer users who have come to expect the integration of soft-
ware applications in their everyday lives, there is a call for greater research and development and more
efficient programming in an ever widening spectrum of disciplines from business, government, and
education to everyday use and recreation. To keep up with the demand for newer and better software,
practitioners and researchers must thrive within a fluid environment. They need be cognizant of con-
stant advances that must be considered and responded to in order to ensure the success of developing
software applications.

Due to the ever changing landscape of software applications, it is a constant challenge for researchers
and experts in the development of software applications to absorb the volume of innovations which will
inform and quickly outdate current software applications. Information Science Reference is pleased to
offer a six-volume reference collection on this rapidly growing discipline, in order to empower students,
researchers, academicians, and practitioners with a comprehensive understanding of the most critical
areas within this field of study. This collection provides the most comprehensive, in-depth, and recent
coverage of all issues related to the development of cutting-edge software applications, as well as a single
reference source on all conceptual, methodological, technical and managerial issues, and the opportuni-
ties, future challenges and emerging trends related to the development of software applications,

Entitled “Software Applications: Concepts, Methodologies, Tools, and Applications,” this col-
lection is organized in eight distinct sections, providing the most wide-ranging coverage of topics such
as: 1) Fundamental Concepts and Theories; 2) Development and Design Methodologies; 3) Tools and
Technologies; 4) Utilization and Application; 5) Organizational and Social Implications; 6) Manage-
rial Impact; 7) Critical Issues; and 8) Emerging Trends. The following provides a summary of what is
covered in each section of this multi-volume reference collection:

Section I, Fundamental Concepts and Theories, offers an extensive view of the foundational theories
and concepts which inform the development of software applications. This section begins with the chapter
“A Historical Analysis of the Emergence of Free Cooperative Software Production,” by Nicolas Jullien
which describes the vacillation of open source programming from its popularity in the 1950s to its near
disappearance in the 1980s up through its most recent boom in popularity. Other chapters in the section

xl

such as, “Software Modernization of Legacy Systems for Web Services Interoperability” by Chia-Chu
Chiang and “Intelligent Analysis of Software Maintenance Data” by Marek Reformat, Petr Musilek and
Efe Igbide, deal with the critical issue of analysis and adaptation for the maintenance of software applica-
tions. “Malicious software” by Thomas M. Chen and Gregg W. Tally discusses the problematic topic of
malware. In this chapter, Chen and Tally present malware as one of the most costly and widespread types
of virtual attacks on organizations. This section also contains chapters such as David Lo and Siau-Cheng
Khoo’s “Mining Software Specifications” which discusses the emerging area of data mining, focusing
on drawing out software specifications based on the behavior of a software application.

In Section II, Development and Design Methodologies, the creative stages of software application
design are explored through developmental strategies and design methodologies. This section opens
with “Ontology Based Object-Oriented Domain Modeling: Representing Behavior” by Jeorg Evermann
and Yair Wand. Evermann and Wand describe the usefulness of the object-oriented software modeling
language to the early conceptual stage of application domain analysis for which no specific language is
accepted. More application specific chapters, such as “Building an LMS with Ubiquitous Software” by
Michael Rees and Charles Herring, can be found later in the section. In their chapter, Rees and Herring
present their experience during the development and trial run of an off-the-shelf learning management
system that utilized Microsoft Office Systems at its core. In addition, this section contains selections
like “Bug Fixing Practices within Free/Libre Open Source Software Development Teams” by Kevin
Crowston and Barbara Scozzi which examines the success of debugging in open source software despite
the fact that it is primarily developed by distributed teams.

Section III, Tools and Technologies, begins with Kerstin Fink and Christian Plodder’s chapter “Knowl-
edge Management Toolkit for SMEs” which presents four knowledge processes designed to help small
and medium enterprises take advantage of their intellectual capital. Additional tools for free software
projects are presented in “Tools for the Study of the Usual Data Sources found in Libre Software Proj-
ects” by Gregorio Robles, Jesús M. González-Barahona, Daniel Izquierdo-Cortazar and Israel Herraiz.
Several chapters, such as “A Software Tool for Reading DICOM Directory Files” by Ricardo Villegas,
Guillermo Montilla and Hyxia Villegas and “LOGIC-Minimiser: A Software Tool to Enhance Teaching
and Learning Minimization of Boolean Expressions” by Nurul I. Sarkar and Khaleel I. Petrus discuss
individual tools with specific uses in mind. This overview of various tools and technologies for software
applications comes to a close with “A Pliant-Based Software Tool for Courseware Development” by
Marcus Vinicius dos Santos, Isaac Woungang and Moses Nyongwa. In this chapter, the authors discuss
the use of the Pliant software framework for web-based courseware development.

Section IV, Utilization and Application, describes the implementation of technologies, methodologies,
and theories related to software applications. This section contains chapters such as “Online Synchronous
vs. Asynchronous Software Training Through the Behavioral Modeling Approach: A Longitudinal Field
Experiment” by Charlie C. Chen and R. S. Shaw which compares and contrasts the implementation of
a particular modeling approach in three different learning environments. “Patchwork Prototyping with
Open Source Software” by M. Cameron Jones, Ingbert R. Floyd and Michael B. Twidale proposes the
utilization of a prototype which has been patched together from existing open source resources to pro-
vide real life feedback for software application development. Lawrence R. LaForge’s chapter, entitled
“Teaching Operations Management with Enterprise Software” rounds out the section describing the use
of enterprise software to provide operations management students with an understanding of how opera-
tions management decisions affect various aspects of a manufacturing enterprise.

Section V, Organizational and Social Implications, delves into the vital conversation surrounding the
issues that arise from developments in software design. “The Impact of Ideology on the Organizational
Adoption of Open Source Software” by Kris Ven and Jan Verelst begins the discussion of how ideology

 xli

can factor into the pragmatic decisions of open source software adoption. In their article “Volunteers
in Large Libre Software Projects: A Quantitative Analysis Over Time,” Martin Michlmayr, Gregorio
Robles, and Jesus M. Gonzalez-Barahona investigate the effectiveness of drawing participants to open
source software. Jennifer Papin-Ramcharan and Frank Soodeen offer their perspective on the use of
open source software in developing countries in “Open Source Software: A Developing Country View.”
Other important social issues are also presented in “Facilitating E-Learning with Social Software: At-
titudes and Usage from the Student’s Point of View,” by Reinhard Bernsteiner, Herwig Ostermann, and
Roland Staudinger, and “Planning and Managing the Human Factors for the Adoption and Diffusion of
Object-Oriented Software Development Processes,” by Magdy K. Serour.

This section illuminating the interaction of human beings and software is completed by “Mental
Contents in Interacting with a Multiobjective Optimization Program” by Pertti Saariluoma, Katja Kaario,
Kaisa Miettinen, and Marko M. Mäkelä, which uses a specific psychological theory to analyze interac-
tion with professional software.

Section VI, Managerial Impact, presents contemporary coverage of the managerial applications and
implications in the field of software. “Combining Tailoring and Evolutionary Software Development
for Rapidly Changing Business Systems” by Jeanette Eriksson and Yvonne Dittrich begins this section
with the analysis of a case study performed to evaluate the usability of software for business systems.
The principles of management in software development projects and optimization tools for managerial
decision making, especially in the environment of small IT companies, are thoroughly discussed in “Com-
puter-Aided Management of Software Development in Small Companies,” by Lukáš Pichl and Takuya
Yamano. Also included in this section is the chapter “A Survey of Competency Management Software
Information Systems in the Framework of Human Resources Management,” by Alfonso Urquiza, which
shows the Competency Management Software evolution from a previous fragmented market situation
to a much more integrated scenario in which best of breed single-function oriented product preferences
are now swiftly moving to the Enterprise Resource Planning (ERP) type of architecture. The many
tools available to managers are also explored through selections such as “Channel Optimization for On
Field Sales Force by Integration of Business Software on Mobile Platforms” by Rishi Kalra and Amit
Nanchahal, “Revenue Models in the Open Source Software Business” by Risto Rajala, Jussi Nissilä and
Mika Westerlund, and “Knowledge Management and organizational Performance in the egyptian soft-
ware Firms,” by Ahmed Seleim and Omar Khalil. The chapters in this section provide a comprehensive
survey of the many intersections between software and management.

Section VII, Critical Issues, surveys some of the most important considerations that impact software
development and are in turn influenced by software. Dave Yeats offers his research on the subtle philo-
sophical differences represented in two open source software movements in “Morality and Pragmatism
in Free Software and Open Source.” The more technical issues are also discussed in selections such as
“A Graphical User Interface (GUI) Testing Methodology,” by Zafar Singhera, Ellis Horowitz and Abad
Shah, “A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications,”
by W. K. Chan, S. C. Cheung and Karl R. P. H. Leung, and “A Formal Verification and Validation Ap-
proach for Real-Time Databases,” by Pedro Fernandes Ribeiro Neto, Maria Lígia Barbosa Perkusich,
Hyggo Oliveira de Almeida and Angelo Perkusich, which raise issues surrounding testing. The issues
raised in this section are, in many ways, the crux of software engineering today, giving the reader a full
understanding of the research surrounding the most pressing questions found in this discipline.

The concluding section of this authoritative reference tool, Emerging Trends, highlights research
potential within the field of software while exploring uncharted areas of study for the advancement of the
discipline. “Bridging the Gap between Agile and Free Software Approaches: The Impact of Sprinting”
by J. Paul Adams and Andrea Capiluppi presents an analysis of the effect of sprinting—commonly used

xlii

in the agile programming method—on the free software approach to programming. In addition, this sec-
tion highlights future trends related to social software in chapters such as “Social Software and Language
Acquisition” by Sarah Guth and Corrado Petrucco and “Social Software Trends in Business” by Peter
Burkhardt. The trends highlighted in this section present a broad range of topics for future research and
implementation leading the continued advancement of software application development.

Although the primary organization of the contents in this multi-volume collection is based on its
eight sections, offering a progression of coverage of the important concepts, methodologies, technolo-
gies, applications, social issues, and emerging trends, the reader can also identify specific contents by
utilizing the extensive indexing system listed at the end of each volume. Furthermore to ensure that the
scholar, researcher and educator have access to the entire contents of this multi-volume set as well as
additional coverage that could not be included in the print version of this publication, the publisher will
provide unlimited multi-user electronic access to the online aggregated database of this collection for the
life of edition, free of charge when a library purchases a print copy. This aggregated database provides
far more contents than what can be included in the print version in addition to continual updates. This
unlimited access, coupled with the continuous updates to the database ensures that the most current
research is accessible to knowledge seekers.

Advances in software applications have been both immense and pervasive in the last several decades
as the discipline has continued to grow and thrive with each new development. From the early days,
through the “software crisis” of the late 60s and early 70s and on to the present day, software applications
have become increasingly vital to the everyday user. As software applications become a ubiquitous part
of everyday life, the demand for larger, faster, and more cost effective software applications continues
to grow. This ever increasing demand will lead to greater improvements in this burgeoning discipline.
Access to the most up-to-date research findings and firm knowledge of established techniques and les-
sons learned from other researchers or practicing software developers will facilitate the discovery and
invention of more effective methodologies. This will allow for a greater range of applications and the
creation of better software to serve a greater number of users.

The diverse and comprehensive coverage of software applications in this six-volume authoritative
publication will contribute to a better understanding of all topics, research, and discoveries in this devel-
oping, significant field of study. Furthermore, the contributions included in this multi-volume collection
series will be instrumental in the expansion of the body of knowledge in this enormous field, resulting
in a greater understanding of the fundamentals while fueling the research initiatives in emerging fields.
We at Information Science Reference, along with the editor of this collection and the publisher, hope
that this multi-volume collection will become instrumental in the expansion of the discipline and will
promote the continued growth of all aspects of software applications.

Section I
Fundamental Concepts

and Theories

This section serves as the foundation for this exhaustive reference tool by addressing crucial theories essential to
the understanding of software applications computing. Chapters found within these pages provide an excellent
framework in which to position software applications within the field of information science and technology. In-
dividual contributions provide overviews of open source software, software testing, social software, and software
quality, while also exploring critical stumbling blocks of this field. Within this introductory section, the reader
can learn and choose from a compendium of expert research on the elemental theories underscoring the research
and application of software applications.

 �

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.1
A Historical Analysis of the

Emergence of Free Cooperative
Software Production

Nicolas Jullien
LUSSI TELECOM Bretagne-M@rsouin, France

IntroductIon

Whatever its name, Free/Libre or Open Source
Software (FLOSS), diffusion represents one of the
main evolutions of the Information Technology
(IT) industry in recent years. Operating System
Linux, or Web server Apache (more than 60%
market share on its market), database MySQL or
PHP languages are some examples of broadly-
used FLOSS programs. One of the most original
characteristics of this movement is its collective,
cooperative software development organization
in which a growing number of firms is involved
(some figures in Lakhani & Wolf (2005)). Of
course, programs, because they are codified in-
formation, are quite easy to exchange, and make
the cooperation easier than in other industries.
But, as pointed out by Stallman (1998), if sharing
pieces of software within firms was a dominant
practice in the 1950’s, it declined in the 1970’s,
and almost disappeared in the 1980’s, before
regaining and booming today.

This article aims at explaining the evolution
(and the comeback) of a cooperative, non-market
production.

In the first part, we explain the decrease of
cooperation as a consequence of the evolution of
the computer users, of their demand, and of the
industrial organization constructed to meet this
demand. This theoretical and historical framework
is used in the second part to understand the re-
newal of a cooperative organization, the FLOSS
phenomenon, first among computer-literate users,
and then within the industry.

Software In the hIStory of
the computer InduStry

Among the few works of reference existing on the
evolution of the computer industry, we use the
following as our basis: Mowery (1996), Genthon
(1995), and Dréan (1996). Richardson (1997) and

�

A Historical Analysis of the Emergence of Free Cooperative Software Production

Horn (2004) have analyzed the specificities of the
software industry.

If these authors do not agree on the number of
periods that this industry has gone through since
its birth at the end of World War II, they agree on
two main ruptures:

• The arrival of the IBM 360 series, in the
early 1960’s, opening the mainframe and
mini period when, thanks to the implemen-
tation of an operating system, a standard
machine could be sold to different clients,
but also a program could be used on a fam-
ily of computers, of different power, and not
abandoned when the machine was obsolete;
and

• The arrival of the PC, and specifically the
IBM PC, in the early 1980’s, when the
computer became a personal information
management tool, produced by different
actors.

Each of these periods is characterized by a
technology which has allowed firms to propose
new products to new consumers, changing the
dominant producer-user relations. This has had
an impact on the degree of cooperation in the
software production.

period 1: the Industry of
prototypes – Start: mid-1940’s

As pointed out by Langlois and Mowery (1996),
there was no real differentiation between hardware
and software in that period, and computers were
“unique” products, built for a unique project.
They were computing tools, or research tools,
for research centers (often military in nature, like
H-bomb research centers). Each project allowed
producers and users to negotiate the characteris-
tics of the machine to be built. Also, the software
part was not seen as an independent source of
revenue by firms.

Production is Research

Thus, computer and software development were
a research activity, conducted by high-skilled
users, or Von Hippel (VH) users, in reference
to Von Hippel’s (1988) user who has the compe-
tences to innovate, and being the one who knows
best his needs, is the best to do so (Dréan, 1996;
Genthon, 1995).

Research is Cooperation

In that non-profit, research environment, we think
that cooperation was rather natural, allowing
firms to decrease their research costs and better
answer to users’ requirements. But this coopera-
tion was mainly bilateral cooperation, between the
constructor and the user. There was no network
to exchange punch cards.

period 2: Industrialization – Start:
early 1960’s

Thanks to technological progress (miniaturization
of transistors, compilers, and operating systems),
the scope of use extended in two directions in that
period: the reduction in size and in the price of
computers. This raised the number of organiza-
tions that were able to afford a computer.

According to Genthon (1996), the main
evolution characterizing the period was that the
same program could be implemented in differ-
ent computers (from the same family), allowing
the program to evolve, to grow in size, and to
serve a growing number of users. The computer
had become a tool for centralized processing of
information for organizations (statistics, payment
of salaries, etc.).

The Emergence of a Software Industry

In this period, some pieces of software became
strategic for producers, especially the operating

 �

A Historical Analysis of the Emergence of Free Cooperative Software Production

system, which was the element allowing them
to control the client. In fact, as a program was
developed for and worked with one single oper-
ating system, it became difficult for a client to
break the commercial relation, once initiated,
with a producer.

In “exchange,” this client no longer even needed
to understand the hardware part of the machine
and could clearly (increasingly, throughout the
period) evaluate the cost of its investments in the
software part. This client, increasingly compa-
nies, was also more and more reluctant to publish
in-house developed programs, for competitive
reasons, and because most of the time these
programs were so specific that few contributions
could be expected.

Increased Cooperation, but for R&D
Only

So we can say that the cooperative and open
source development of software, and especially
of innovative software was very strong in univer-
sities (it was during this period that Unix BSD,
TCP/IP Internet protocol, etc., were developed),
but also in some private research centers, like
the Bell Labs (which actually invented the Unix
operating system and licensed it very liberally).
But this diffusion did not extend beyond the area
which Dasgupta and David (1994) called “open
science.”

period 3: Specialization – Start:
Late 1970’s

With the arrival of the micro-processor, the scope
of use extended again in two directions: increase in
power, and reduction in size and price of low-end
computers. The dominant technological concept
of this period was that the same program can be
packaged and distributed to different persons
or organizations, in the same way as for other
tangible goods.

The third period was that of personal but pro-
fessional information processing. As explained
by Mowery (1996), this period was dominated
by economy of scope thanks to the distribution
of standardized computers (PC), but principally
because of the development of standardized
programs.

Research and Innovation are Strategic
Assets to be Valorized

The willingness to close software production and
to sell it as product was reinforced, in industry
as well as in universities:

• In industry, thanks to the adoption of copy-
right protection, allowing the closure of the
source code, but also because of the growing
demand for standard programs, as already
explained, and the decreasing skills of PC
users; they were unable to develop or to
modify their programs, nor to be innova-
tors, and thus unable to cooperate with the
producers (Jullien & Zimmermann, 2006);
and

• In universities, because of the will at the
beginning of the 1980’s, due to the feeling
of economic and industrial decline in the
U.S., to better exploit scientific production,
reinforcing its legal protection (see Coriat &
Orsi (2002) for a complete analysis of intel-
lectual property (IP) evolution during that
period); Coriat and Orsi (2002) have shown
that the consequence has been a segmenta-
tion of production, and a decrease in the
exchange of IP, because of the increased
fee to be paid for access to this IP, but also
because of the transaction costs that this
system has created.

�

A Historical Analysis of the Emergence of Free Cooperative Software Production

Consequence: Decrease of
Cooperation?

Cooperation decreased at the institutional level,
but remained vivid and growing between re-
searchers and VH users (especially those using
Unix workstations) via mailing lists, or “news”
services (Mowery, 1996). We could say that,
alongside these increasingly-closing practices, this
period (especially the 1980’s) led to the structure
of cooperative practice, and also its ideology,
when Richard Stallman created the GNU proj-
ect (1983) and the Free Software Foundation to
support it, and Linus Torvalds started his Linux
project (1991).

The point is thus not to understand why coop-
eration has come back, as actually it has always
existed, but why it has returned to the forefront,
and especially to the industrial agenda.

the fLoSS movement aS a
new framework to organIze
(InduStrIaL) cooperatIon

The creation of the FLOSS movement, in opposi-
tion to the closing trend, has been advocated by
Stallman (1998). We understand his arguments
as the response of a profession (software devel-
opers) to an institutional trend (the closure of
the sources) opposed to their culture, practices,
and productivity. They organized themselves,
creating a structured organization of cooperative
production. With the diffusion of the Internet,
FLOSS products spread, making firms involved
in FLOSS production.

developers’ motivations for a fLoSS
organization

As explained in Lakhani and von Hippel (2003),
Lakhani and Wolf (2005), Demazière et al. (2004),
individual motivations for initiating a Free soft-

ware project or for collaborating in an existing
project are numerous:

• For high-skilled developers, it sometimes
costs less to develop a program from scratch
than to use one which does not exactly meet
its needs. Once developed, a free publication
allows a quicker diffusion and, thus, quicker
feedback, which is very useful to track bugs
and to improve functionalities; and

• Following the same principle, which guided
Stallman’s initiative, such developers find
it very interesting to use FLOSS products
that they can adapt to their needs. The return
of the bug found, the correction of those
bugs, or the modifications, once done, is
relatively inexpensive. And as for freeing
a program, the developer knows that this
problem solution or program modification
will be integrated and maintained in the
next versions.

It is clear that the social capital that a hacker
can earn participating in a FLOSS project (the
“carrier concerns”), pointed out by Lerner and
Tirole (2002), is also a factor for keeping these
persons motivated to do this task. However, this
does not seem to have been anticipated by the
developers who were interviewed (Demazière et
al., 2004; Lakhani & Wolf, 2005).

In addition to this, the movement appears in
an historical context:

• Computer science courses were (and are)
partly based on the principle that it is more ef-
ficient to reuse what exists than to redevelop
from scratch. Raymond (2000) has “codi-
fied” it as the hacker philosophy. Mainly
concentrated in public and private research
centers, this professional culture spread at
the same time that students in computer
science were being hired by firms;

• A personality, Richard Stallman, has made
the difference between a vague feeling of

 �

A Historical Analysis of the Emergence of Free Cooperative Software Production

resentment towards the closure of programs
in the IT professional community and the
construction of a coordinated “riposte.” His
convictions in this regard have led him to
give up his professional situation to defend
them, by creating the Free Software Founda-
tion (FSF). And his charisma allows him to
be respectfully heard and followed by his
“co-developers”; and

• New technical tools, especially the Internet
services (and, before that, the ARPANET/
Usenet), have made this campaign possible
and have largely facilitated the diffusion of
FSF production and of Stallman’s arguments
against the closure of sources.

The consequence of this initiative and of the
use of the Internet network has been the creation
of a structured, organized way of producing soft-
ware cooperatively.

the creation of a Structured
organization for cooperative
production

These voluntary contributions are organized
and coordinated as Raymond (1999) advocated.
Some in-depth studies of such communities have
been conducted, such as the one by Mocus et al.
(2000) on the Apache development organization,
confirming this point.

Kogut and Metiu (2001) show that each project
is led by a core group of developers (the “kernel”)
which develop the majority of the source code.
A larger group follows the development, some-
times reports bugs, and proposes corrections
(“patches”) or new developments. And an even
larger group just uses the program and sometime
posts some questions on the use of this program
on user mailing lists. If, in details, the organiza-
tions differ from one project to another, there are
always mechanisms to select the contributions
and the questions, so the main developers should
not be inundated by peripheral problems. If there

were not such mechanisms, the risk is that the
most productive developers would progressively
dedicate more and more time to addressing basic
problems, thus losing interest in the development
or even withdrawing from it.

Another very important characteristic is
that big projects are split in coordinated, small,
easier-to-manage subprojects. Baldwin and Clark
(2003) show how this modularity reinforces the
will to participate as developers can concentrate
on the part/functionalities which interest them
the most.

As far as FLOSS production was limited to
the community of developers, apart from the
commercial sphere, it only met a very small part
of the users’ needs and had no actual economic
significance. Actually, this was close to the co-
operation existing in the research/Unix world
that we presented in the Increased Cooperation
subsection. Things changed with the diffusion
of the Internet and the consequent evolution of
demand.

According to Porterfield (1999), the Internet
and FLOSS are closely linked; the diffusion of the
Internet, in non-U.S. research centers first and to
the public later, has increased the number of users
and developers of Free software, as the Internet
tools are free software programs. This diffusion
explains the diffusion of FLOSS products within
firms, and the involvement of producers in FLOSS
development.

when cooperation comes Back
to firms

At the beginning of the diffusion of the Internet
within organizations (firms, administrations), in
the early 1990’s, servers were installed by engi-
neers who had discovered these tools when they
were students at a university. Additionally, as they
often did not have any budgets, they installed what
they knew at the lowest cost: “free” software. We
can consider that the base installed in universities
has initiated the “increasing return to adoption”.

�

A Historical Analysis of the Emergence of Free Cooperative Software Production

Actually, the first “FLOSS” firms entered the
market selling Internet applications (Operating
System, Web server, e-mail servers), like RedHat
in 1994, Sendmail Inc. in 1998, and so forth, and
to serve VH users (for instance, RedHat’s Linux
distributions on CdRom were interesting at that
period because of low speed connectivity).

Today, since the announcement made by
IBM in 2001 of investing $1 billion in Linux
development, free software has been adopted in
many commercial offers (Novell, buying Xim-
ian and SuSE, Sun open-sourcing its operating
system, IBM open-sourcing its development
tool software Eclipse, even Microsoft1). Lakhani
and Wolf (2005) notice that “a majority of (...
the) respondents (of their survey) are skilled and
experienced professionals working in IT-related
jobs, with approximately 40 percent being paid
to participate in the FLOSS project.”

This can be explained by the evolutions in
demand induced by this diffusion.

Following Steinmueller (1996), we see the
generalization of computer networking, both
inside and outside organizations, as the main
technical evolution in information technology of
today, in conjunction with miniaturization which
has allowed the appearance of a new range of
“nomad” products like Personal Digital Assistants
(PDA, such as Psion and Palm), mobile phones,
and music players. Network communications
and exchanges between heterogeneous products
and systems are nowadays crucial and require
appropriate standards. Network externalities are
becoming the dominant type of increasing return
to adoption. According to Zimmermann (1999),
to this aim, open solutions are probably the best
guarantee for users and producers for product
reliability throughout time and the successive
releases of the products.

A second aspect stems from the wide diversity
of users and users’ needs that require software
programs (and more particularly, software pack-
ages) to be adapted to the needs and skills of
every individual without losing the economies

of scale. Zimmermann (1998) explains that what
characterizes this evolution of demand and the
technological evolution of software is the increas-
ing interdependence between software programs
built from basic components and modules that
have to be more and more reused, thus becoming
increasingly refined and specialized. Furthermore,
as pointed out by Horn (2004), the related demand
for software customization generates a renewed
services activity for the adaptation of standard-
component software programs.

The split of the FLOSS project into different
subprojects makes them quite modular and easier
to adapt than monolithic programs, generating
commercial offers from new entrants (like Red-
Hat), especially toward those who do not have
the skills to adapt the programs by themselves.
In return, these adoptions reinforced the product,
accelerating the increasing return to adoption
phenomenon.

Considering that, incumbent producers have
adapted their strategies, integrating the use of
FLOSS products when necessary:

• Some of these programs, like Apache, were
dominant in the Internet market. It was ratio-
nal and less expensive to adopt the dominant
design. These firms used the standard and
contributed to it to make sure that the pro-
grams that they produced would certainly
be taken into account by the standard; and

• In some markets, challengers saw opportu-
nities to sponsor a standard in competition
with the dominating standard. This is the
case, for instance, in operating systems:
Some competitors (IBM, HP, Novell now),
of SUN in the Unix market, or of Microsoft
in the operating systems for the servers’
market, had strong incentives to support
Linux to create a competitor to these firms
at a very low cost. Being GPL protected,
this program could not be appropriated by
a single firm, which would mean coming
back to the situation that they resisted by
using Linux.

 �

A Historical Analysis of the Emergence of Free Cooperative Software Production

We think that FLOSS and especially GPL-pro-
tected software, when standardization effects are
important, appears to be a way to solve the “wed-
ding-game” situation: Actors want to impose their
view, but less than to see a competitor imposing
its own. So when you are not the leader, it can be
interesting to favor an open, non-“privatizable”
solution. Such “open” organization allows such
creation of “public industrial goods” (Romer,
1993) and explain the renewal of cooperation in
the software industry.

concLuSIon

So, we could say that a series of convergent in-
terests in the industrial domain has relayed the
professionals’ initiative to “revive” cooperation in
software production, made easier at the beginning
of the 1990’s by the diffusion of a new information
exchange network (the Internet).

This leads to two questions:

• Is that system transposable to another knowl-
edge or information production industry,
such as biotechnologies, increasingly based
on database analysis and bio-computing, or
hardware design, which uses a computer
language, VHDL?

This could be the case if users and produc-
ers could find more efficient, less costly ways to
share a part of their intellectual property, and if
a structure, like FSF, could help to organize this
cooperation.

• Are we witnessing the emergence of a new
period for software ecology, with new tech-
nology, new dominant use (the network), and
a new system of production (FLOSS-based
production)?

This would be the case if the FLOSS produc-
tion succeeds in matching the interests of com-

puter professionals, users-innovators, and firms.
This means succeeding in constructing a model,
granting that these actors should contribute in the
long run, and not just free-ride using the product.
Developing Ousterhout’s (1999), Bessen’s (2002),
Dahlander’s (2004), Feller, Finnegan, and Hayes’s
(2005), Dahlander and Wallin’s (2006), and Jullien
and Zimmermann’s (2006) works, there is a grow-
ing need for studies on business models assuring
returns for firms and incentives to contribute,
but also for studies on the impact of corporate
involvement and agenda on the stability of the
open cooperative organization of production.

referenceS

Arthur, W. B. (1988). Self-reinforcing mechanisms
in economics. In P. W. Anderson, K. J. Arrow,
& D. Pines (Eds.), The economy as an evolving
complex system: SFI studies in the sciences of
complexity. Redwood City, CA: Addison-Wesley
Publishing Company.

Baldwin, C. Y., & Clark, K. B. (2003). The ar-
chitecture of cooperation: How code architecture
mitigates free riding in the open source develop-
ment model. Harvard Business School. Retrieved
from http://opensource.mit.edu/papers/baldwin-
clark.pdf

Bessen, J. (2002). Open source software: Free
provision of complex public goods. Research on
Innovation. Retrieved from http://www.resear-
choninnovation.org/online.htm#oss

Clément-Fontaine, M. (2002). Free licenses: A
juridical analysis. In N. Jullien, M. Clément-Fon-
taine, & J. –M. Dalle (Eds.), New economic mod-
els, new software industry economy (Tech. Rep.
RNTL). French National Network for Software
Technologies Project. Retrieved from http://www.
marsouin.org/IMG/pdf/fichier_rapporte-3.pdf

Coriat, B., & Orsi, F. (2002, December). Establish-
ing a new intellectual property rights regime in

�

A Historical Analysis of the Emergence of Free Cooperative Software Production

the United States: Origins, content, and problems.
Research Policy, 31(7-8).

Dahlander, L. (2004). Appropriating returns from
open innovation processes: A multiple case study
of small firms in open source software. School of
Technology Management and Economics, Chalm-
ers University of Technology. Retrieved from
http://opensource.mit.edu/papers/dahlander.pdf

Dahlander, L., & Wallin, M. W. (2006). A man on
the inside: Unlocking communities as complemen-
tary assets. Research Policy, 35, 1243-1259.

Dasgupta, P., & David, P. (1994). Toward a new
economics of science. Research Policy, 23, 483-
521.

Dréan, G. (1996). L’industrie informatique, struc-
ture, économie, perspectives. Paris: Masson.

Feller, J., Finnegan, P., & Hayes, J. (2005). Busi-
ness models of software development projects
that contributed their efforts to the Libre software
community. Calibre Report. Retrieved from
http://www.calibre.ie/deliverables/D3.2.pdf

Genthon, C. (1995). Croissance et crise de
l’industrie informatique mondiale. Paris: Sy-
ros.

Horn, F. (2004). L’économie des logiciels. repères,
la Découverte.

Jullien, N., & Zimmermann, J. -B. (2006). Free/
libre/open source software (FLOSS): Lessons
for intellectual property rights management in a
knowledge-based economy. M@rsouin Working
Paper n°8-2006. Retrieved from http://www.
marsouin.org/IMG/pdf/Jullien-Zimmermann_8-
2006.pdf

Kogut, B., & Metiu, A. (2001). Open-source
software development and distributed innova-
tion. Oxford Review of Economic Policy, 17(2),
248-264.

Lakhani, K., & von Hippel, E. (2003). How open
source software works: Free user to user assist-
ance. Research Policy, 32, 923-943.

Lakhani, K., & Wolf, R. G. (2005). Why hackers
do what they do: Understanding motivation and
effort in free/open source software projects. In J.
Feller et al. (Eds.), Perspectives on free and open
source software. MIT Press.

Langlois, R. N., & Mowery, D. C. (1996). The
federal government rôle in the development of the
U. S. software industry. In D. C. Mowery (Ed.),
The international computer software industry:
A comparative study of industry evolution and
structure. Oxford University Press.

Mowery, D. C. (Ed.). (1996). The international
computer software industry: A comparative
study of industry evolution and structure. Oxford
University Press.

Ousterhout, J. (1999, April). Free software needs
profit. Communications of the ACM, 42(4), 44-
45.

Porterfield, K. (1999). Retrieved from http://www.
netaction.org/articles/freesoft.html

Raymond, E. S. (1999). The cathedral & the ba-
zaar: Musing on Linux and open source by acci-
dental revolutionary. Sebastopol, CA: O’Reilly.

Raymond, E. S. (2000). A brief history of hacker-
dom. Retrieved from http://www.catb.org/~esr/
writings/cathedral-bazaar/hacker-history/

Richardson, G. B. (1997). Economic analysis,
public policy, and the software industry. In E.
Elgar (Ed.), The economics of imperfect knowledge
- Collected papers of G. B. Richardson: Vol. 97-4.
DRUID Working Paper.

Romer, P. (1993). The economics of new ideas
and new goods. Annual Conference on Develop-
ment Economics, 1992, World Bank, Washington,
DC.

Stallman, R. (1998). The GNU Project. Retrieved
from http://www.gnu.org/gnu/thegnuproject.
html

 �

A Historical Analysis of the Emergence of Free Cooperative Software Production

Steinmueller, W. E. (1996). The U.S. software
industry: An analysis and interpretive history.
In D. C. Mowery (Ed.), The international com-
puter software industry: A comparative study
of industry evolution and structure. Oxford
University Press.

Zimmermann, J. –B. (1998). Un régime de droit
d’auteur: la propriété intellectuelle du logiciel.
Réseaux, 88-89, 91-106.

Zimmermann, J. –B. (1999). Logiciel et propriété
intellectuelle: du copyright au copyleft. Terminal,
80/81, 95-116. Special Issue, Le logiciel libre.

key termS

The ARPANET: “The Advanced Research
Projects Agency NETwork developed by ARPA
of the United States Department of Defense (DoD)
was the world’s first operational packet switching
network, and the predecessor of the global Inter-
net” (extract from Wikipedia article). It has been
designed to connect the U.S. universities working
with the DoD to facilitate cooperation.

Free/Libre Open Source software (FLOSS):
This is software for which the licensee can get the
source code, and is allowed to modify this code
and to redistribute the software and the modifica-
tions. Many terms are used: free, referring to the
freedom to use (not to “free of charge”), libre,
which is the French translation of Free/freedom,
and which is preferred by some writers to avoid
the ambiguous reference to free of charge, and
open source, which focuses more on the access to
the sources than on the freedom to redistribute. In
practice, the differences are not great, and more
and more scholars are choosing the term FLOSS
to name this whole movement.

Free Software Foundation: “Free software is
a matter of liberty, not price. The Free Software
Foundation (FSF), established in 1985, is dedi-

cated to promoting computer users’ rights to use,
study, copy, modify, and redistribute computer
programs. The FSF promotes the development
and use of free software, particularly the GNU
operating system, used widely in its GNU/Linux
variant” (presentation of the Foundation, http://
www.fsf.org)

The GNU project: “The GNU Project was
launched in 1984 to develop a complete Unix-like
operating system which is free software: the GNU
system. Variants of the GNU operating system,
which use the kernel called Linux, are now widely
used [...] (GNU/Linux systems). GNU is a recursive
acronym for “GNU’s Not Unix”; it is pronounced
guh-noo, approximately like canoe” (definition
by the FSF, http://www.gnu.org/)

The GPL (General Public Licence): The
best-known and the most-used FLOSS license;
according to the FSF, “the core legal mechanism
of the GNU GPL is that of “copyleft,” which
requires modified versions of GPL’d software to
be GPL’d themselves”. For an analysis of FLOSS
licenses, see Clément-Fontaine (2002).

Hacker: In this text, this term is used in its
original acceptation, i.e., a highly-skilled devel-
oper.

Increasing return to adoption, defined
by Arthur (1988): This means that the more a
product is adopted, the more new adopters have
an incentive to adopt this product. Arthur (1988)
distinguishes five type of increasing returns:

• Learning effect: Investment in time, money,
and so forth, to learn to use a program, as
well as a programming language, makes it
harder to switch to another offer;

• Network externalities: The choices of the
people you exchange with have an impact on
the evaluation you make for the quality of a
good. For instance, even if a particular text
editor is not the one which is most appropriate
to your document creation needs, you may

�0

A Historical Analysis of the Emergence of Free Cooperative Software Production

choose it because everybody you exchange
with sends you text in that format, and so
you need this editor to read the texts;

• Economy of scale: Because the production
of computer parts involves substantial fixed
costs, the average cost per unit decreases
when production increases. This is especially
the case for software where there are almost
only fixed costs (this is a consequence of the
fact that it presents the characteristics of a
public good);

• Increasing return to information: One
speaks more of a technology since it is widely
distributed; and

• Technological interrelations: A piece of
software does not work alone, but with other
pieces of software. What makes the “value”
of an operating system is the number of
programs available for this system. And the
greater the number of people who choose
an operating system, the wider the range
of software programs for this very system,
and vice versa.

Public Good: This is good which is:

• Non-rivalrous, meaning that it does not
exhibit scarcity, and that once it has been
produced, everyone can benefit from it;
and

• Non-excludable, meaning that once it has
been created, it is impossible to prevent
people from gaining access to the good.
(definition taken in http://www.investordic-
tionary.com/definition/public+good.aspx)

The Usenet (USEr NETwork): “It is a global,
distributed Internet discussion system that evolved
from a general-purpose UUCP network of the
same name. It was conceived by Duke University
graduate students Tom Truscott and Jim Ellis in
1979” (extract from Wikipedia article).

This work was previously published in Encyclopedia of Multimedia Technology and Networking, Second Edition, edited by M.
Pagani, pp. 605-612, copyright 2009 by Information Science Reference (an imprint of IGI Global).

 ��

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.2
Free Software Philosophy and

Open Source
Niklas Vainio

University of Tampere, Finland

Tere Vadén
University of Tampere, Finland

aBStract

This chapter introduces and explains some of
the most relevant features of the free software
philosophy formulated by Richard M. Stallman
in the 1980s. The free software philosophy and
the free software movement built on it histori-
cally preceded the open source movement by a
decade and provided some of the key technologi-
cal, legal and ideological foundations of the open
source movement. Thus, in order to study the
ideology of open source and its differences with
regard to other modes of software production,
it is important to understand the reasoning and
the presuppositions included in Stallman’s free
software philosophy.

IntroductIon

The free software (FS) movement is the key
predecessor of the open source (OS) community.
The FS movement, in turn, is based on arguments
developed by Richard M. Stallman. In crucial
ways, Stallman’s social philosophy creates the
background for the co-operation, co-existence
and differences between the two communities.
Stallman started the FS movement and the GNU
project prompted by his experiences of the early
hacker culture and subsequent events at the MIT
artificial intelligence lab in the 1980s. The project
was founded on a philosophy of software freedom,
and the related views on copyright or the concept
of copyleft. After the creation of the open source
movement in 1998, debates between the two move-
ments have erupted at regular intervals. These

��

Free Software Philosophy and Open Source

debates are grounded in the different ideological
perspectives and sociopsychological motivations
of the movements. The FS movement has laid
technological, legal and ideological cornerstones
that still exist as part of the open source movement.

the SocIohIStorIcaL
Background of the free
Software phILoSophy

The first computer systems were built in the 1940s
and 1950s mainly for military and scientific pur-
poses. One of the earliest research institutes to
use and study computers was the Massachusetts
Institute of Technology (MIT). The artificial in-
telligence (AI) lab at MIT was founded in 1958
and became one of the birthplaces of computer
science and computer culture.

In Hackers (1984), Steven Levy describes the
subculture around the AI lab computers in the
1960s. Young male electronics hobbyists devoted
their time to programming and studying these
machines. They called themselves hackers, a word
denoting a person who enjoys exploring computer
systems, being in control of the systems, and fac-
ing the challenges they present. For a hacker, a
computer is not just a tool, it is also an end in itself.
The computer is something to be respected and
programming has an aesthetics of its own (Hafner
& Lyon, 1996; Levy, 1984; Turkle, 1982).

A subculture was created among the MIT
hackers with traditions and social norms of its
own. Important values for the community were
freedom, intelligence, technical skills, and interest
in the possibilities of computers while bureau-
cracy, secrecy, and lack of mathematical skills
were looked down on. The six rules of this hacker
ethic as later codified by Levy were:

1. Access to computers—and anything which
might teach you something about the way
the world works—should be unlimited and
total. Always yield to the hands-on impera-
tive!

2. All information should be free.
3. Mistrust authority—promote decentraliza-

tion.
4. Hackers should be judged by their hacking,

not bogus criteria such as degrees, age,
race, or position.

5. You can create art and beauty on a com-
puter.

6. Computers can change your life for the bet-
ter. (Levy, 1984, pp. 40-45)1

Computer programs were treated like any
information created by the scientific community:
Software was free for everyone to use, study, and
enhance. Building on programs created by other
programmers was not only allowed, but encour-
aged. On one hand, nobody owned the programs,
and on the other, they were common property of
the community.

In the early 1980s, a conflict arose in the AI
lab when some of the hackers formed a company
called Symbolics to sell computers based on tech-
nology originally developed in the lab. Symbolics
hired most of the hackers, leaving the lab empty.
This, together with the fact that the software on
Symbolics machines was considered a trade secret,
caused a crisis. The community and its way of life
had been destroyed and Stallman later described
himself as “the last survivor of a dead culture”
(Levy, 1984, p. 427; see also Williams, 2002).

Stallman saw an ethical problem in the growing
trend of treating software in terms of property. In
the AI lab, there was a strong spirit of co-opera-
tion and sharing, making the code, in a way, a
medium for social interaction. Thus restrictions
in the access to code were also limitations on how
people could help each other.

In 1984, Stallman published The GNU Mani-
festo announcing his intention to develop a freely
available implementation of the Unix operating
system. He explained his reasons in a section
titled Why I Must Write GNU:

 ��

Free Software Philosophy and Open Source

I consider that the golden rule requires that if I like
a program I must share it with other people who
like it. Software sellers want to divide the users
and conquer them, making each user agree not to
share with others. I refuse to break solidarity with
other users in this way. I cannot in good conscience
sign a nondisclosure agreement or a software
license agreement…So that I can continue to use
computers without dishonor, I have decided to put
together a sufficient body of free software so that
I will be able to get along without any software
that is not free. (Stallman, 2002d, p. 32)

The project gained interest and Stallman
started receiving code contributions from devel-
opers. During the 1980s, major components of
an operating system were developed, including a
system library, shell, C compiler, and a text edi-
tor. However, a core component, the kernel, was
still missing until Linus Torvalds began to work
on the Linux kernel in 1991. During the 1990s,
free software systems based on the Linux kernel
gained in popularity, media hype, and venture
capital investments.

StaLLman’S argumentS In tHE
GNU MANiFEStO and the FrEE
SOFtwArE DEFiNitiON

Stallman’s main argument in The GNU Manifesto
(1984) is the “golden rule” quoted previously: A
useful program should be shared with others who
need it. Stallman started GNU in order to “give
it away free to everyone who can use it” (Stall-
man, 2002d, p. 31) in the spirit of co-operation,
sharing and solidarity. He criticizes proprietary
software sellers for wanting to “divide the users
and conquer them” (Stallman, 2002d, p. 32).
Stallman’s intention here is not anti-capitalist or
anti-business. He gives suggestions on how soft-
ware businesses can operate with free software.
The fundamental ethical problem Stallman sees
in proprietary software is the effect it has on com-

munity and co-operation. For Stallman, himself
a master programmer, the “fundamental act of
friendship among programmers is the sharing of
programs” (Stallman, 2002d, p. 32). Restrictions
on sharing would require programmers to “feel in
conflict” with other programmers rather than feel
as “comrades” (Stallman, 2002d, pp. 32-33).

Stallman suggests that software businesses and
users could change the way they produce and use
software. Instead of selling and buying software
like any other commodity, it could be produced
in co-operation between users and companies.
Although the software would be free, users would
need support, modifications and other related
services which companies could sell. Stallman
argues this would increase productivity by reduc-
ing wasteful duplication of programming work.
Also it would make operating systems a shared
resource for all businesses. If the business model
of a company is not selling software, this would
benefit the company. Being able to study source
code and copying parts of it would increase the
productivity of the programmer.

An important goal in the manifesto is increas-
ing the users’ independence from software sellers.
When software is free, users are no longer at the
mercy of one programmer. Because anyone can
modify a free program, a business can hire anyone
to fix the problem. There can be multiple service
companies to choose from.

For Stallman, the main reason for rejecting
software ownership is good civil spirit, but he
also argues against the concept of copyright and
authorship: “Control over the use of one’s ideas’
really constitutes control over other people’s lives;
and it is usually to make their lives more difficult,”
Stallman (2002d, p. 37) notes. He denies the idea
of copyright as a natural, intrinsic right and re-
minds us that the copyright system was created
to encourage literary authorship at a time when
a printing press was needed to make copies of a
book. At the time, copyright restrictions did little
harm, because so few could invest in the equip-
ment required to make a copy. Today, when copies

��

Free Software Philosophy and Open Source

of digital works can be made at practically zero
cost, copyright restrictions cause harm because
they put limits on the way the works can benefit
society. Stallman (2002d, p. 37) notes that copy-
right licensing is an easy way to make money but
is “harming society as a whole both materially
and spiritually.” He maintains that even if there
was no copyright, creative works would be cre-
ated because people write books and computer
programs on other grounds: fame, self-realization,
and the joy of being creative.

Depending on the context, four different
meanings of the term community can be found
in Stallman’s argument. The first one is that of a
hacker community like the one at MIT’s AI lab.
The second is the computer-using community
interested in business, wasted resources, and
independence from software sellers. The third
community is the society that will benefit from
co-operation and face costs from complicated
copyright and licensing mechanisms and enforce-
ment. The fourth level of community Stallman
mentions is humanity. He argues that because of
the copyright restrictions on computer programs,
the “amount of wealth that humanity derives” is
reduced (Stallman, 2002d, p. 36). In these four
meanings of the term, we can see community
grow from a small group of friends to an interest
group, then to society and finally to humanity as
a whole. As the communities grow in size, the
temporal perspective is expanded: for hacker
friends, the benefits are direct and immediate
whereas in the case of humanity change may
require decades.

In The GNU Manifesto, Stallman mentions
that “everyone will be permitted to modify and
redistribute GNU, but no distributor will be al-
lowed to restrict its further redistribution. That
is to say, proprietary modifications will not be
allowed” (Stallman, 2002d, p. 32). In Free Soft-
ware Definition (Stallman, 2002a), he lists the four
freedoms which a piece of software must meet in
order to be free software. The freedoms are:

• Freedom 0: The freedom to run the program,
for any purpose

• Freedom 1: The freedom to study how the
program works, and adapt it to your needs;
access to the source code is a precondition
for this

• Freedom 2: The freedom to redistribute
copies so you can help your neighbor

• Freedom 3: The freedom to improve the
program, and release your improvements
to the public, so that the whole community
benefits; access to the source code is a pre-
condition for this (Stallman, 2002a, p. 41)

Freedom of software is defined by referring
to the rights of the computer user, who may run
the program for any purpose, good or evil, study
and adapt the software, and distribute copies of
the program, modified or original. It should be
noted that the definition assumes sharing is always
beneficial and desired. It does not matter if the
neighbor or the community has any use for the
software or the skills to use it.

For a piece of software to be free, it would
not be enough to abolish the copyright system.
Because a user needs the source code in order to
effectively exercise freedom 3, the author must
actively promote software freedom by releasing
the source code. Therefore, a co-operative com-
munity is already needed for software freedom.

Stallman makes an important distinction be-
tween free as in free speech and free as in zero
price. The concept of free software is not against
selling software, it is against restrictions put on
the users. Free software can be sold but the seller
may not forbid the users to share or modify it.

copyLeft: the gpL aS LegaL
and SocIaL devIce

Because Stallman was the copyright holder of
the GNU programs that he wrote, he could have
handed the programs to the public domain. Thus

 ��

Free Software Philosophy and Open Source

the programs would have been free. However, re-
leasing the programs to the public domain would
have meant that people would have been able to
distribute the programs in ways which would
have restricted the freedom of users, for instance,
by distributing them without the source code.
A free program would have become non-free.
Stallman wanted the distribution of his programs
or any other free software to stay free forever,
and together with Free Software Foundation
(FSF) legal counsel Eben Moglen, they devised
the GNU General Public License (GPL) for this
purpose (Stallman, 1989; Stallman, 2002b). The
main idea of the GPL is that anyone is free to
use, modify and redistribute a GPLed program
on the condition that the same freedom of use,
modification, and redistribution is also given
to the modified and redistributed program. The
easiest way to fulfill the condition is to release
the redistributed and modified program under the
GPL. The GPL is in this sense “viral”: a GPLed
program can be unified with other code only
if the added code is compatible with the GPL.
The purpose of the GPL is to keep free software
free and to stop it ever becoming a part of pro-
prietary software (Stallman, 2002a, pp. 89-90;
Stallman, 2002c, pp. 20-21). The GPL is called
a copyleft license, because in a sense it turns
around the copyright by giving the user, not only
the author, the freedom to use and to continue
to build on the copylefted work. In this sense,
copyright law and the GPL license built on it are
the artifices that make the free software move-
ment possible. There is some irony to the fact that
the movement in this sense needs the copyright
law in order to function. This is also the reason
why it is not correct to describe the movement as
being against copyright. Consequently, the GPL
has to function well. The original GPL version 1
has been modified into version 2, under which,
for instance, the Linux kernel is released. Cur-
rently, in 2006, a new version, GPLv3, is being
prepared by Stallman and the FSF. The somewhat
unorthodox twist that GPL gives to copyright law

has sometimes aroused suspicion over whether the
GPL is a valid and enforceable license. As Moglen
(2001) notes, most often GPL violations are settled
without much publicity in negotiations between the
FSF and the violator. As the FSF seeks only the
freedom of software, a violator can easily rectify
the situation by starting to comply with the GPL.
It is sometimes argued that the fact that code under
GPL can not lose the property of being free does
not give the user maximum freedom with the code:
the user is not permitted to “close” the code and
release it under a proprietary software license. For
instance, a typical Berkeley Software Distribution
(BSD) license does not require that modifications
or derivative works be free. Proponents of BSD
see this as a good thing, maybe even as a benefit
over the GPL, because the BSD license gives
the developer more possibilities. However, for
Stallman this is not desired, as closing the source
tramples on the possible future uses of the code:
“It is absurd to speak of the ‘freedom to take away
others’ freedom’” (Stallman cited in Butler, 2005).

free Software aS a
poLItIcaL phILoSophy

As described above, Stallman’s free software
philosophy goes beyond the freedom and needs
of an individual programmer. In Stallman’s work,
we find a political philosophy that has roots both
in the liberalist and the communitarian traditions
but accepts neither as such.

Stallman’s ideas on user’s freedom have roots
in the liberalist political philosophy of Thomas
Hobbes, John Locke, John Stuart Mill and oth-
ers. In the Second Treatise of Government (1690),
Locke argued that societies are built on a social
contract in which people agree to give away some
of their personal liberty to escape the cruel reality
of the “state of nature” and receive protection for
the fundamental rights which are life, liberty, and
property. Locke’s influence on political philosophy
can be seen, for example, in the formulation of

��

Free Software Philosophy and Open Source

the U.S. Declaration of Independence and in the
Constitution.

Stallman describes his relation to the liberalist
tradition as follows:

The philosophy of freedom that the United States
is based on has been a major influence for me. I
love what my country used to stand for. ... Science
is also an important influence. Other campaigns
for freedom, including the French and Russian
revolutions, are also inspiring despite the ways
they went astray. (Stallman, 2004)

The four freedoms of free software were
named after the influential speech given by the
U.S. President Franklin D. Roosevelt during
the Second World War in 1941, called The Four
Freedoms (Roosevelt, 1941).

For Locke, freedom means “to be free from
restraint and violence from others” (Locke, 1690,
para. 57). For Stallman, software freedom means
the freedom to run, study, modify, and distribute
the programLocke described the time before orga-
nized society as a natural state where everybody
had complete freedom but had to live in constant
danger. Stallman has described the American
society as a “dog-eat-dog jungle” where antisocial
behavior like competition, greed and exclusion is
rewarded instead of co-operation (Levy, 1984,
p. 416; Stallman, 2002e). Because sharing of
software is forbidden, freedom is restricted in
such a society.

The tension between individualism and com-
munitarianism is constant in Stallman’s philoso-
phy. He started the GNU project because of his
own moral dilemma, but he also argues for it on
a collectivist basis. In the first announcement of
the GNU project (Stallman, 1983), the perspec-
tive was individualist: “So that I can continue to
use computers without violating my principles, I
have decided to put together a sufficient body of
free software so that I will be able to get along
without any software that is not free.” In The
GNU Manifesto (Stallman, 2002d), the words

“violating my principles” were replaced with the
word “dishonor,” indicating a move towards a
more communal view. The tension also arises if
we ask for what and for whom software freedom
is intended. Isaiah Berlin (1969) has introduced
a distinction between the notions of negative
and positive freedom: negative freedom means
freedom from obstacles and restrictions while
positive freedom means control over one’s life
and positive opportunities to fulfill a goal. Both
the liberalist tradition and Stallman mainly use
the negative concept of freedom, but in his em-
phasis on community we can also see aspects of
positive freedom.

Freedom 0, the freedom to run the program,
is a pure example of the negative concept of free-
dom. The user has the right to use the software,
whatever the purpose might be. Freedom 1 has
two components: having permission to study the
program and having the source code. In this sense
freedom 0 is not only about absence of restraints,
it is also about presence of the source code and in
this sense a positive freedom. Likewise, freedom
2 is not only an individualist or negative freedom:
the freedom to redistribute copies is necessary
to help the neighbour. Freedom 3 to improve the
program and release the improvements to the com-
munity is also of a positive nature: It is required
to build a community.

For a programmer, freedom of software is a
fundamental issue related to a way of life, to the
identity of a hacker. Is the freedom relevant only
for programmers? Bradley Kuhn and Richard
Stallman reply:

We formulated our views by looking at what free-
doms are necessary for a good way of life, and
permit useful programs to foster a community of
goodwill, cooperation, and collaboration. Our
criteria for Free Software specify the freedoms
that a program’s users need so that they can
cooperate in a community. We stand for freedom
for programmers as well as for other users. Most
of us are programmers, and we want freedom for

 ��

Free Software Philosophy and Open Source

ourselves as well as for you. But each of us uses
software written by others, and we want freedom
when using that software, not just when using
our own code. We stand for freedom for all users,
whether they program often, occasionally, or not
at all. (Kuhn & Stallman, 2001)

This freedom is for everyone, whether they
need it, use it, or not, just like freedom of speech.
But freedom of software is just a means to a
more important end, which is a co-operative,
free society. Stallman wants to contribute to a
society that is built on solidarity and co-opera-
tion, not exclusion and greed. In a communitarian
way, the argument sees morality and the good of
the individual co-dependent on the good of the
community.

poLItIcaL movement or
deveLopment modeL?
a comparISon of fS and
oS IdeoLogIeS

One of the motivations for launching the Open
Source Initiative (OSI) was the perception that the
ideology and concepts used by the FS movement,
in general, and Richard Stallman, in particular,
were putting off potential collaborators, especially
business partners. Eric S. Raymond explains his
motivations as tactical, rather than principal:

The real disagreement between the OSI and
the FSF, the real axis of discord between those
who speak of “open source” and “free software,”
is not over principles. It’s over tactics and rhetoric.
The open source movement is largely composed
not of people who reject Stallman’s ideals, but
rather of people who reject his rhetoric. (Ray-
mond, 1999)

Thus, the aim of the term open source is to
emphasize the practical benefits of the OS devel-
opment model instead of the moral philosophy
behind the free software ideal. For the actors in
the OS movement, the creation of OS software is

an utilitaristic venture of collaboration, based on
individual needs. According to Eric S. Raymond,
“Every good work of software starts by scratching
a developer’s personal itch” (Raymond, 1999).
This is in clear contrast with the intentional,
systematic, and collective effort described by
Stallman: “essential pieces of GNU software were
developed in order to have a complete free operat-
ing system. They come from a vision and a plan,
not from impulse” (Stallman, 2002c, p. 24).

The main ideological shift was in the professed
motivation for writing code. The software itself
often stayed the same: by definition, free soft-
ware is a subset of open source software. For the
outside world this ideological shift may present
itself as relatively minor, so that in the name of
simplification a common name such as FOSS
(free/open source software) or FLOSS (free/libre
and open source software) is often used. Initially
the two communities also overlapped to a large
degree, but lately some polarization has been in
evidence. For instance, in a recent survey a large
majority of Eclipse developers reported that they
identify with the OS movement, while a clear
majority of Debian developers reported identi-
fication with the FS movement (see Mikkonen,
Vainio, & Vadén, 2006). This development may
be expected to continue, as companies are increas-
ingly taking part and employing programmers in
OS development.

A crucial difference between OS and FS has
to do with the political economy of software
production. However, this distinction is best
described as the difference between business
friendly open source and ideological/political
free software, or capitalist open source and com-
munist free software. These are not the correct
levels of abstraction. For instance, sometimes
the GPL license is more business friendly than a
given non-GPL-compatible open source license.
The fact that the OS community treats code as
a public good might be perceived as odd in cer-
tain types of market economies, while in others
such public goods are seen as necessary drivers

��

Free Software Philosophy and Open Source

of capitalism. By making software a non-scarce
resource, OS has an effect on where and how a
revenue stream is created. However, this merely
reorganizes production and labour, instead of
changing their mode.

Schematically put, FS is a social movement,
while OS is a method for developing software.
Whatever the definitions of systems of economi-
cal production—such as capitalism, communism,
market economy, and so on—may be, OS is non-
committal with regard to the current issues of
political economy, such as copyright, intellectual
property rights and so on. Individual members of
the OS community may or may not have strong
views on the issues, but as a community OS is
mostly interested in the benefits of openness as a
development model. This attitude is well exempli-
fied in the views expressed by Linus Torvalds: “I
can’t totally avoid all political issues, but I try my
best to minimize them. When I do make a state-
ment, I try to be fairly neutral. Again, that comes
from me caring a lot more about the technology
than about the politics, and that usually means that
my opinions are colored mostly by what I think
is the right thing to do technically rather than for
some nebulous good” (quoted in Diamond, 2003).
This pragmatic or “engineering” view on FOSS is
intended to work better than ideological zealotry
in advancing the quality and quantity of code.
In contrast, in order to change a political system
one needs a social movement. As noted previ-
ously, the FS movement is a social movement
based on shared values. While these values are
close to the loosely interconnected values of the
anti-globalization movement (see Stallman, 2005,
2002f), they are not the defining values of socialist
or communist parties or movements. For instance,
the FS movement does not have a stand on class
relations or on how to treat physical property, and
so on. In this sense the FS movement as a social
movement is a specialized, one-cause movement
like many other post-modern social movements.
Again, here lies a crucial distinction: the ethical
principles of FS concern only information, and

only information that is a tool for something.
Typically, a socialist or communist set of values
would emphasize the importance of material (not
immaterial) things and their organization.

Ideologically proximate groups often behave
in a hostile manner towards each other in order to
distinguish themselves; the public controversies
between the FS and OS communities are a good
example. Extra heat is created by the different
perspectives on the politics of freedom. The
Torvaldsian view of “no politics” is tenable only
under the precondition that engineering can be
separated from politics and that focusing on the
engineering part is a non-political act. Stallman,
for one, has consistently rejected this precondi-
tion, and claims that the allegedly non-political
focus on the engineering perspective is, indeed,
a political act that threatens the vigilance needed
for reaching freedom.

A good example of these controversies is the
one over the name (Linux or GNU/Linux) of the
best known FOSS operating system. Since the
mid 1990s, Stallman and the FSF have suggested
that developers use the name GNU/Linux, arguing
that “calling the system GNU/Linux recognizes
the role that our idealism played in building
our community, and helps the public recognize
the practical importance of these ideals” (FSF,
2001). However, true to their pragmatical bent,
OS leaders such as Raymond and Torvalds have
replied that the name Linux has already stuck,
and changing it would create unnecessary in-
convenience. Some of the distributions, such as
Debian, have adopted the naming convention
suggested by the FSF.

concLuSIon: fS aS a hIStorIcaL
Backdrop of oS

The FS movement initiated by Stallman predates
the OS movement by over a decade and the lat-
ter was explicitly formed as an offshoot of the
former. Consequently, the definition of OS soft-

 ��

Free Software Philosophy and Open Source

ware was developed in the context of an ongoing
battle between the FS and proprietary software
models. Arguments presented by Stallman in
the early 1980s still form some of the most lucid
and coherent positions on the social and political
implications of software development. Most im-
portantly, the polarization of the FOSS community
into the FS and OS camps has been only partial.
All of these facts point out how FS has acted as a
necessary background for OS. This background
can roughly be divided in technological, legal
and ideological parts.

On the technological side, FS code often forms
a basis and ancestry for OS projects. The formation
of the operating system Linux or GNU/Linux is
one of the examples where the functions of the FS
movement form an essential cornerstone of exist-
ing OS software. Typically Linux distributions
include major technological components (such as
glibc [the GNU C Library], Coreutils, and gcc)
from the GNU project.2 It is uncontroverted that
without the systematic and prolonged effort by
the FSF the development and adoption of Linux
(the operating system) would not have been as
rapid or widespread as it has been. However, it is
equally clear that several key OS projects, such
as Apache or Eclipse, are not technologically
dependent on GNU.

The legal cornerstone provided to the OS
community by the FSF and Stallman is the GPL
license, under which Linux (the kernel) and several
other key OS projects were developed. The GPL
is concurrently clearly the leading FOSS license,
comprising over 50% of the code in projects main-
tained at SourceForge and of major GNU/Linux
distributions (Wheeler, 2002). The GPL as a
license and the ideal of freedom that it embodies
are the legal lifeblood of both the FS and the OS
communities, even though several other families
of licenses are crucially important.

The ideological foundation provided by the
FS movement is difficult to gauge quantitatively.
Suffice it to say the OS movement is, accord-

ing to its own self-image, a tactical offshoot of
the FS movement. Many of the sociocultural
arguments (openness for reliability, longevity of
code, and user control) and ways of functioning
(collaborative development based on the GPL)
that the OS community uses were spearheaded
by the FS community. Moreover, now that OS is
moving outside its niche in software production
and gaining ground as a modus operandi in other
fields (such as open content, open medicine, open
education, open data, and so on), the OS movement
finds itself again in closer proximity to the ideals
expressed by the FS movement. However, there
are also trends that tend to emphasize the neutral,
engineering point of view that created the need
for the separation of OS from FS in the first place:
as OS software becomes more commonplace and
even omnipresent, the ideological underpinnings
are often overlooked with or without purpose.

referenceS

Berlin, I. (1969). Two concepts of liberty. In I.
Berlin, Four essays on liberty. Oxford, UK:
Oxford University Press.

Butler, T. (2005, March 31). Stallman on the state
of GNU/Linux. Open for Business. Retrieved Feb-
ruary 20, 2006, from http://www.ofb.biz/modules.
php?name=News&file=article&sid=353

Diamond, D. (2003, July 11). The Peacemaker:
How Linus Torvalds, the man behind Linux, keeps
the revolution from becoming a jihad. Wired.
Retrieved February 20, 2006, from http://www.
wired.com/wired/archive/11.07/40torvalds.html

FSF. (2001). GNU/Linux FAQ. Retrieved February
20, 2006, from http://www.gnu.org/gnu/gnu-linux-faq.
html

Hafner, K., & Lyon, M. (1996). Where wizards
stay up late: The origins of the Internet. New York:
Touchstone.

�0

Free Software Philosophy and Open Source

Himanen, P. (2001). The hacker ethic and the
spirit of the information age. New York: Random
House.

Kuhn, B., & Stallman, R. (2001). Freedom or
power? Retrieved February 20, 2006, from
http://www.gnu.org/philosophy/freedom-or-
power.html

Levy, S. (1984). Hackers: Heroes of the computer
revolution. London: Penguin.

Locke, J. (1690). Second treatise of government.
Indianapolis: Hackett.

Mikkonen, T., Vainio, N., & Vadén, T. (2006).
Survey on four OSS communities: Description,
analysis and typology. In N. Helander & M.
Mäntymäki (Eds.), Empirical insights on open
source business. Tampere: Tampere Univer-
sity of Technology and University of Tampere.
Retrieved June 27, 2006, from http://ossi.coss.
fi/ossi/fileadmin/user_upload/Publications/Ossi_
Report_0606.pdf

Moglen, E. (2001). Enforcing the GNU GPL.
Retrieved February 20, 2006, from http://www.
gnu.org/philosophy/enforcing-gpl.html

Raymond, E. S. (1999). Shut up and show them
the code. Retrieved February 20, 2006, from
http://www.catb.org/~esr/writings/shut-up-and-
show-them.html

Raymond, E. S. (2003). The jargon file. Retrieved
June 6, 2006, from http://www.catb.org/jargon/

Roosevelt, F. D. (1941). The four freedoms.
Retrieved February 20, 2006, from http://www.
libertynet.org/~edcivic/fdr.html (May 27, 2004)

Stallman, R. (1983, September 27). New UNIX
implementation. Post on the newsgroup net.unix-
wizards. Retrieved February 20, 2006, from http://
groups.google.com/groups?selm=771%40mit-ed-
die.UUCP

Stallman, R. (1989). GNU General Public License
version 1. Retrieved February 20, 2006, from
http://www.gnu.org/copyleft/copying-1.0.html

Stallman, R. (2002a). Free software definition. In
J. Gay (Ed.), Free software, free society: Selected
essays of Richard M. Stallman (pp. 41-43). Boston:
GNU Press.

Stallman, R. (2002b). GNU General Public Li-
cense version 2. In J. Gay (Ed.), Free software, free
society: Selected essays of Richard M. Stallman
(pp. 195-202). Boston: GNU Press.

Stallman, R. (2002c). The GNU project. In J.
Gay (Ed.), Free software, free society: Selected
essays of Richard M. Stallman (pp. 15-30). Bos-
ton: GNU Press.

Stallman, R. (2002d). The GNU manifesto. In J.
Gay (Ed.), Free software, free society: Selected
essays of Richard M. Stallman (pp. 31-39). Boston:
GNU Press.

Stallman, R. (2002e). Why software should be
free. In J. Gay (Ed.), Free software, free society:
Selected essays of Richard M. Stallman (pp. 119-
132). Boston: GNU Press.

Stallman, R. (2002f). The hacker community and
ethics: An interview with Richard M. Stallman.
Retrieved February 20, 2006, from http://www.
uta.fi/~fiteva/rms_int_en.html

Stallman, R. (2004, January 23). A Q&A session
with Richard M. Stallman. Retrieved February
20, 2006, from http://puggy.symonds.net/~fsug-
kochi/rms-interview.html

Stallman, R. (2005, December 18). Free software
as a social movement. ZNet. Retrieved February
20, 2006, from http://www.zmag.org/content/sho-
warticle.cfm?SectionID=13&ItemID=9350

Turkle, S. (1982). The subjective computer: A
study in the psychology of personal computation.
Social Studies of Science, 12(2), 173-205.

 ��

Free Software Philosophy and Open Source

Wheeler, D. (2001). More than a gigabuck. Es-
timating GNU/Linux’s size. Retrieved February
20, 2006, from http://www.dwheeler.com/sloc/
redhat71-v1/redhat71sloc.html

Wheeler, D. (2002). Make your open source
software GPL-compatible: Or else. Retrieved
February 20, 2006, from http://www.dwheeler.
com/essays/gpl-compatible.html

Williams, S. (2002). Free as in freedom: Richard
Stallman’s crusade for free software. Sebastopol,
CA: O’Reilly.

key termS

Communitarianism: A philosophical view
holding that the primary political goal is the good
life of the community.

Copyleft: The practice of using copyright law
in order to remove restrictions on the distribution
of copies and modified versions of a work for oth-
ers and require the same freedoms be preserved
in modified versions.

Free Software (FS): Software that can be
used, copied, studied, modified, and redistributed
without restriction.

General Public License (GPL): A widely
used free software license, originally written by
Richard M. Stallman for the GNU project.

Hacker Community: A community of more or
less likeminded computer enthusiasts that devel-
oped in the 1960s among programmers working on
early computers in academic institutions, notably
the Massachusetts Institute of Technology. Since
then, the community has spread throughout the
world with the help of personal computers and
the Internet.

Liberalism: A philosophical view holding
that the primary political goal is (individual)
liberty.

endnoteS

1 For alternative formulations of the hacker
ethos, see the entry “hacker ethic” in The
Jargon File, edited by Raymond (2003) and
The Hacker Ethic by Himanen (2001), who
gives the concept a more abstract scope.

2 For a view of the complexity of a GNU/Linux
distribution (see Wheeler, 2001).

This work was previously published in Handbook of Research on Open Source Software: Technological, Economic, and Social
Perspectives, edited by K. St.Amant and B. Still, pp. 1-11, copyright 2007 by Information Science Reference (an imprint of
IGI Global).

��

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.3
Open Source Software Basics:

An Overview of a Revolutionary
Research Context

Eirini Kalliamvakou
Athens University of Economics and Business, Greece

aBStract

The open source software (OSS) development
area of research presents a fresh and generous
domain for analysis and study. In line with this, it
is important to have a high-level understanding of
the “open source phenomenon” before being able
to delve deeper into specific niches of research.
OSS presents a rich picture and because of that,
both academics and practitioners have shown in-
tense interest in producing high-quality literature.
This chapter provides an initial understanding of
what OSS is and how it has come to be the excit-
ing research platform that it is today, attracting
attention from various sources. In addition, we
take an overview of the research streams that have
formed in recent years, and the basic findings of
attempts made to transfer lessons from OSS to
other research areas.

open Source Software at
a gLance

Open source software (OSS) has received growing
attention in recent years from various perspec-
tives. The thriving numbers behind OSS adoption
and contribution have captured the attention of
academic research that, in the past years, has been
trying to decipher the phenomenon of OSS, its
relation to already-conducted research, and its
implications for new research opportunities.

OSS has a definition that focuses on specific
characteristics that software has to serve in or-
der to be labeled as “open source.” The Open
Source Initiative (OSI) is a nonprofit corporation
dedicated to managing and promoting the OSS
definition for the good of the community; thus,
acting as the official organization behind OSS.
Based on the OSS definition provided by OSI, any
software that has the characteristics listed below
is considered to be OSS, and vice versa:

 ��

Open Source Software Basics

• Free redistribution
• Access to source code
• Derived works allowed under the same

license
• Integrity of the author’s source code
• No discrimination against persons or

groups
• No discrimination against fields of en-

deavor
• Distribution of license
• License must not be specific to a product
• License must not restrict other software
• License must be technology-neutral

The current OSS landscape presents a very
interesting picture. Although the idea behind
OSS dates back to the 1960s and the UNIX era
in the 1980s, the official term of OSS was coined
in 1998 and, at the same time, the OSI was cre-
ated. Since then, the OSS movement has evolved
at a very fast pace. Prime examples of successful
OSS projects include operating systems (Linux,
FreeBSD, OpenBSD, NetBSD), Web browsers
(Firefox, Konqueror), graphical environments
(KDE, Gnome), productivity applications (Ope-
nOffice), programming languages and infrastruc-
ture (Apache, MySQL), and development tools
(GNU toolchain, Eclipse). These widely accepted
OSS endeavors show that, today, a wide range of
OSS applications are available and they present
a viable and robust alternative to proprietary
software solutions.

In addition to the presence of prime examples
in the OSS environment, the plethora of OSS
projects is impressive. Project support sites are
online environments that provide tools for listing
and managing OSS projects while supplying infor-
mation such as developer teams, maturity stage,
latest versions, and so forth. Two of the biggest
and most well-known support sites, Sourceforge.
net and Freshmeat, have reported to have more
than 125,000 and 40,000 listed projects in the
summer of 2006, respectively. Although many of
these projects are still in designing stages, these

numbers reveal the dynamics behind OSS and
its evolution/adoption. Furthermore, this striking
progress of OSS provides an intricate motive for
conducting research in such a context.

open Source Software aS
a reSearch context

Open source software is developed in a way dif-
ferent than proprietary software. Development is
done inside communities of developers that work
on code for their personal satisfaction or need.
However, lately, a trend has formed inside large
companies, that pay their employees to contrib-
ute to OSS projects, using this as a platform that
enables them to affect the introduction of new
software features so that the final OSS product
is better aligned with the company’s interests
and needs. An open question remains as to how
expanded this trend currently is, and whether the
“paid volunteers” are involved in the process of
developing OSS software primarily out of their
own satisfaction or are assigned to it exclusively
by their employers.

Independent of this fact, the community-ori-
ented development leads to the efficient produc-
tion of high-quality software available for use by
anyone interested. This is an important element
of OSS, the prime motivation for developers is
not to “make software” as requested by clients
or employers, but mainly to satisfy their own
software needs, which cannot be fulfilled by
vendor-supplied software. After the software is
prototyped, it can be made public for anyone who
wishes to use, modify, and redistribute.

OSS communities have significant similarities
with professional software engineering teams
utilized by software houses. However, these two
organizational structures also portray critical dif-
ferences that show that they stand quite far apart.
It is important to note that since not all companies
organize their software development efforts in
the same mode, and also, there is a wide variety

��

Open Source Software Basics

of organizational structures inside OSS projects,
similarities and differences between them can be
valid upon different occasions. The most basic
differences are pictured in Table1.

Inside OSS communities, there are rules to be
accepted and respected by both the developers and
the users. Also, there is always some hierarchy
of roles, although this hierarchy can take many
forms, depending on the internal organization
of each project and the profiles of its developers
and owners. Through various case studies (Cox,
1998; Gacek et al., 2004; Moon & Sproull, 2000;
Mockus, Fielding, & Herbsleb, et al., 2002; Moon
& Sproull, 2000), a hypothesized model of OSS
project structure is suggested. The model consists
of concentric circles of persons that serve dif-
ferent roles within the project and have different
responsibilities. At the center of this onion-like
form, we find the team of core developers that
contribute most of the code, and also have the role
of overseeing the project’s evolution and design.
Core developers also review and check-in the
patches submitted by co-developers that belong

to the consecutive circle. In the next circle, we
find active users of the project’s product that do
not write code but provide bug reports, testing of
new releases, and also use-cases. Finally, in the
outer circle (for which there is no specific border),
we find the software’s passive users that do not
have an active presence in the project’s mailing
lists and forums. This onion-like structure is
shown in Figure 1.

What is surprising and initially hard to ex-
plain in the case of OSS is how it is possible to
build software of top quality that, in many cases,
outperforms the products of multimillion-dollar
companies with a vast amount of resources. The
answer seems to lie beyond issues of money and
resources and closer to self-organizing com-
munities and networks between developers. The
OSS phenomenon has brought forth a different
perspective in the way software is created. New
paradigms regarding technical, legal, team forma-
tion, and organization and knowledge dissemi-
nation issues have converted OSS development
into an interesting and intriguing research topic.

OSS projects Proprietary software projects

Release planning
process

Own ideals about quality and
features

Time-to-delivery pressure

Quality assurance Developers do not have write
access to the repository

Developers have write access to
the repository

Leadership
Leaders are required to have
proven competence via previous
contributions

Project leadership is a hierarchical
level where people are promoted
by other than technical criteria

Tools and standards

Use of standardized tool chains
(not modern modeling tools and
techniques)

Each project may opt for another
technology leading to different
set of tools (code re-use between
projects is limited)

Motivation of developers
Desire to learn and establish new
skills (fun-to-code)

Typical task assignment by
hierarchical superiors or salary
incentives (not as efficient)

Roles of members
Members assume roles according
to personal interests

Tasks are assigned

Table 1. Differences between OSS and proprietary software projects (Based on Crowston & Howison,
2005)

 ��

Open Source Software Basics

Although the majority of studies, at least at the
beginning of the spread of OSS, were mostly
concerned with the technical elements behind its
success, some other aspects related to OSS soon
presented interesting research questions. Hence,
concepts like community and social interaction
are currently under investigation and reveal their
great importance when interpreting and under-
standing many questions.

Since OSS is presenting such an interesting
research area with useful conclusions and im-
plications also for other domains of research, it
is important that a researcher has at least a brief
overview of discussions and studies that have
formed the OSS literature. In the next section, we
will take a look of at a limited number of very in-
fluential studies that portray the multidisciplinary
approach to OSS research and the intriguing re-
sults that it can provide. Through this approach,
we will be able to gain a deeper understanding
of the research context offered by OSS.

oSS LIterature

As it is expected, the core of researchers of
open source software, at the beginning, mostly

consisted of software engineers with the basic
aim to understand the processes associated with
OSS development and get a global picture of it.
However, as it is evident now, along with the
technical aspects of OSS, also social, economic,
organizational, and other issues form its rich pic-
ture. This is why in the last few years the “OSS
phenomenon” has attracted the attention of not
only software engineers, but also researchers from
many other disciplines and backgrounds.

OSS became a matter of study in the late
1990s, although it can be traced back to the 1980s
and even earlier (Salus, 2005). The first studies
came from individuals actively involved in OSS
development communities (rather than academic
researchers) who published results regarding the
OSS development processes and outcomes as
well as its economic implications for the software
development industry/scenery in general. Also,
popular voices at that time were those of OSS
advocates that discussed ethical and philosophical
aspects of OSS (Stallman, 1999), although pub-
lished later, is a good example). A third group of
references regarded the use of applications, with
little attention to the development process itself.
Academic papers related to OSS began to appear
around 2000 in workshops and in conferences and

Figure 1. The OSS onion-like model of organization (Crowston & Howison, 2005)

Initiator

Release

coordinator

Passive Users

Active Users

Co-developers

Core developers

��

Open Source Software Basics

a little later in scientific journals and magazines.
After extensive research on the literature on OSS
development, we have found almost no significant
references before 1998.

early works try to decipher the
development process

The most widely-known, representative and influ-
ential text of that time is the well-known essay by
Eric S. Raymond “The Cathedral and the Bazaar”
(Raymond, 1998). Although the text is not sup-
ported by an empirical study of many projects
(only the Linux kernel and fetchmail projects
are discussed), “The Cathedral and the Bazaar”
made an important contribution by establishing
a metaphor. Traditional software development
projects were modeled as cathedrals, where the
development process is centralized and highly
dependent on just a few persons whose roles are
clearly defined. Release management follows a
closed planning, user feedback is limited, and
contributions by external developers are not fos-
tered. In opposition to the cathedral we find the
bazaar, where there is lack of planning (at least
in the first stages of the project) and everything
starts with the need of a developer and his/her
ability to create software that meets that need.
Developers publish often and users are regarded as
co-developers under the bazaar model. Obviously,
the bazaar model represents a more flexible and
open way for the software development process
that stands contrary to the cathedral model. It is
important to note that the cathedral model should
not be mistaken as representing only proprietary
software; some OSS projects from the GNU proj-
ect (such as the GNU Compiler Collection and
the GNU Emacs editor) fall under the cathedral
model of development although they are OSS.

Almost immediately after “The Cathedral
and the Bazaar” was released (first through the
Internet, later published), other authors started
either to build on top of it or severely criticize
it. One well-known follow-up came from Bez-

roukov (Bezroukov, 1997), who made a point
saying that the bazaar development model is not
some revolutionary phenomenon, but just a dif-
ferent form of “scientific community.” Bezroukov
considered Raymond’s ideas as too simple to
match reality, and proposed other models based
on academic research that could better explain
the phenomenon.

As far as development models for OSS are
concerned, Vixie compared the classical waterfall
model with the processes used in the production
of OSS (Vixie, 1999). According to Vixie, the
waterfall model is composed of a set of a complete
and logical sequence of steps aiming at obtaining
a final product, while the OSS development model
relies on the absence of formal methods. Such
methods prove unsatisfactory for programmers
who voluntarily devote time to program. This
lack of formality, Vixie argues, is compensated
for by user feedback and by the introduction of
software engineering methods (developers define a
methodology to face a specific problem for which
they are experienced enough). Therefore, it is
obvious through Vixie’s argument that no ad hoc
development model exists for OSS; the methods
and practices evolve with the project and usually
show a tendency to formalization of tasks.

Identifying research Streams in oSS

Although, as it is evident above, the early works in
OSS literature were concerned with the develop-
ment model of OSS, this picture quickly changed.
This coincided with, and was the result of, the
rapid expansion of OSS and its successful use and
adoption by a growing mass of interested parties.
This success needed both to be explained and also
to investigate whether it could prove useful for
other research areas (related or not to software
engineering that was the principal environment
for the birth of OSS). Therefore, the extensive
review of literature for OSS led us to discover and
reveal two main research streams that confirm
these inherent needs. These two research streams
can be visualized in Figure 2.

 ��

Open Source Software Basics

Applying OSS Research Conclusions
to Other Domains

The first research stream uses the conclusions
drawn from OSS case studies and the lessons
learned via studying and investigating OSS, and
tries to identify whether these successful lessons
can be utilized in other contexts. One of the first
concerns has been whether for-profit organizations
could profit by adopting the seemingly effective
practices of OSS. Seeing how the OSS develop-
ment model proves to be successful (judging
from the results it achieves). it would useful for
organizations to follow similar models to make
their own software development models more ef-
ficient. Several studies point that such a shift (from
“traditional” to OSS model of development) can
be achieved given that the organizations will be
willing to change in terms of processes, internal
organization, and philosophy.

Sharma et al. (Sharma, Sugurmaran, & Raja-
gopalan, 2002) argued that the success of the OSS
model is setting the stage for a structural change
in the software industry, transforming it from
manufacturing to a service industry. Therefore,
they explored how for-profit organizations can
foster an environment similar to OSS in order to
reap its numerous advantages to manage their own
software development efforts. After examining
the OSS environment using a framework based on
dimensions of structure, process, and culture (Gal-
braith, 1973; Miles & Snow, 1978; Robey, 1991)
from organizational theory literature, Sharma et
al. (2002) offered their own framework for creating
hybrid-OSS communities inside organizations.

Their proposed framework included properties of
community building, community governance, and
community infrastructure. It appears from this
work that the ability of organizations to move to
a hybrid-OSS environment will depend on:

1. The ability of management and workers to
understand the OSS philosophy

2. The development of mutual trust between
management and workers

3. The workers’ perception of being involved
in challenging and innovative projects

4. The motivation of workers to participate in
such projects

The arguments of Sharma et al. (2002) con-
cerning the internalization of OSS development
model characteristics by organizations is also
asserted by another study published a little earlier.
In a technical report by the Software Engineer-
ing Institute of Carnegie Mellon University, it is
stated that “industries, specifically those in the
software-development business, are beginning
to support the idea of development in the style
of OSS.” The report analyses several OSS case
studies and provides useful conclusions, as well
as a set of guidelines for organizations that con-
sider adopting a model of development or internal
structure similar to an OSS project.

The organizations’ interest to incorporate
the successful OSS mechanisms in their own
practices was also discussed by Cook (2001),
who described the motivators for those involved
in OSS, and then defined the problems that need
to be overcome for this incorporation to happen.

Figure 2. Research streams in OSS literature

OSS lessons

Other
contexts

Theories
established in

OSS
context

��

Open Source Software Basics

OSS motivators, according to Cook, are the same
factors that appear as contradictions between OSS
and CSS (closed-source software). The different
“organizational structure” (the benevolent dicta-
torship), the pool of resources, the level of talent,
the motivations for contribution, and the fact that
OSS is not attempting to redesign the wheel are
the contradictions that are cited as separating
OSS projects from commercial organizations. As
a result, Cook proposes the features that can be
imbibed from OSS environments to traditional
organizations:

1. Interacting with customers in certain do-
mains

2. Rewarding talent
3. Allowing individuals to register as potential

contributors

Following the same line of thought, several
studies have been concerned with whether the suc-
cessful patterns of online and offline collaboration,
team building, and coordination can be utilized
in other contexts besides the OSS development
environment, for example in organizations. Yam-
auchi, Yokozawa, Shinohara, and Ishida (2000),
based on observation, interviews, and quantitative
analysis of two OSS projects (FreeBSD Newconfig
Project and GNU GCC Project), found evidence
that suggests that spontaneous work coordinated
afterward is effective, rational organizational
culture helps achieve agreement among members,
and communications media moderately support
spontaneous work.

These findings could imply a new model of
dispersed collaboration. Although the same argu-
ment is shared by other researchers as well, like
Crowston and Howison (2005), Gallivan (2001)
seems to counter this belief by proposing that trust
and effective online collaboration of OSS develop-
ers is not a critical factor to a project’s success, but
that it is “various control mechanisms [that] can
ensure the effective performance of autonomous
agents who participate in virtual organizations”

(OSS projects are viewed as virtual organizations
by the author). However, Gallivan’s study is not
backed by empirical data to support this claim,
but rather a content analysis of already published
OSS case studies and the literature that they are
based on.

The general effects of OSS on software en-
gineering have been the subject of considerable
analysis. Jorgensen (2001) studied the incremental
software development model followed in the
FreeBSD project where a stream of contributions
goes into a single branch in the repository and is
required to preserve the software in a working
state. This is a process that creates a succession
of development releases, akin to the practices of
OSS that utilize frequent releases, but different
from the commercial software development line
of thought. This fact was also mentioned in “The
Cathedral and the Bazaar,” where the “release
early, release often” (Raymond, 1998) principle of
the bazaar model was discussed for its superior-
ity and more effective results. This incremental
model has had its effects on more and more com-
mercial software development efforts that have
incorporated it.

Scacchi (2002) described and analyzed four
OSS development communities to understand the
requirements for OSS development efforts, and
how the development of these requirements differs
from those traditional to software engineering and
requirements engineering. He discovered eight
kinds of software informalisms (software develop-
ment processes that do not follow the typical route
of software development companies) that play a
critical role in the elicitation, analysis, specifica-
tion, validation, and management of requirements
for developing open source software systems.
This enables considering a reformulation of the
requirements engineering process, having a large
effect on software engineering in general.

All studies presented in this section share
the common characteristic of investigating the
applicability of OSS principles and conclusions
to other areas of research and practice. In the

 ��

Open Source Software Basics

following section, we will review studies that
belong to the second of the two research streams
mentioned earlier.

Investigating how Other Disciplines
Apply to the OSS Context

The second research stream is interested in almost
the opposite approach. Here we see studies that
build on theories established in various disciplines,
and review their applicability in the context of
OSS. The main disciplines accounting for the
majority of the studies of this type are economics,
sociology/psychology, software engineering, and
network analysis.

Lerner and Tirole (2004) acknowledged the
initial puzzlement that OSS causes to an econo-
mist. However, they argued that existing economic
frameworks can explain OSS- related activities.
In their study, they draw on labor and industrial
organization literature to give alternative views
to the OSS trend. Here, programmers are seen
as incurring opportunity costs of time, and the
long-term benefits of participating in OSS projects
are shown. These long-term incentives are further
empowered under three conditions: (a) the more
visible the performance to the relevant audience,
(b) the higher the impact of effort on performance,
and (c) the more informative the performance
about talent, for example, Holmström (1999). As
a result, Lerner and Tirole conclude that there
are economic incentives entangled in the OSS
processes, although they are different from the
incentives in software development companies
and hence may not be directly recognizable.

In a study by Johnson (2002), OSS development
is modeled as the private provision of a public good.
Such models of public good provision have been
studied by many researchers (Bergstrom, Blume,
& Varian, 1986; Bliss & Nalebuff, 1984; Chamber-
lin, 1974; Palfrey & Rosenthal, 1984; Bergstrom,
Blume, & Varian, 1986; Bliss & Nalebuff, 1984)
and are at the center of economic theory. Based
on that, Johnson shows that the superior ability

of the open source method to access the Internet
talent pool, and to utilize more private informa-
tion, provides an advantage over the closed source
method in some situations. Nonetheless, free rid-
ing (which is a crucial problem when discussing
public goods) implies that some valuable projects
will not be produced, even when the community
of developers becomes large.

Bitzer, Wolfram, and Schroder (2004) adapted
a dynamic private-provision-of-public-goods
model to reflect key aspects of the OSS phenom-
enon. In particular, instead of relying on extrinsic
motives for programmers (e.g., signaling), his
model was driven by intrinsic motives of OSS
programmers, arguing that since programming
software is associated with the risk of failure
(e.g., in terms of the development of the software
is not successful or the project does not become
famous), extrinsic motives (signaling) are unable
to explain the OSS phenomenon in full, and can
rarely be linked to the motives of initiators of OSS
projects. This approach, in a sense, challenges
earlier views that analyzed the economic aspects
of OSS based on extrinsic motives. According
to Bitzer et al., the motives for a programmer to
initiate a project are the mix of:

1. The need for a particular software solution
2. Fun or play
3. Gift culture, social standing

Motivation of OSS developers has been a
recurrent theme for studies either from an eco-
nomic (Torvalds & Diamond, 2001; Hars & Ou,
2002; Hertel, Nieder, & Herrmann, et al., 2003;
Krishnamuturthy, 2002; Lakhani & Wolf, 2003)
or a sociological/psychological perspective (We-
ber, 2004).

In discussing a framework for analyzing
OSS, Feller and Fitzerald (2000) study and use
two previous frameworks which that have been
very influential in the IS field: Zachman’s IS
architecture (ISA) and Checkland’s CATWOE
framework from soft systems methodology (SSM).

�0

Open Source Software Basics

Furthermore, Lawrie and Gacek (2002) use basic
software engineering principles and metrics to
discuss dependability issues regarding OSS. There
is a large number of studies discussing technical or
evaluation issues in OSS that draw on the software
engineering scientific area, but their technicality
does not support our analysis, and thus they are
not presented in this literature review.

Through this overview, it became evident that
the area of OSS-related research spans a number
of disciplines and contexts. Researchers of OSS
today are not strictly software engineers, and
issues of interest are not limited to development
and engineering principles. A lot of different
perspectives have been considered in order to
explain OSS expansion and philosophy and, at the
same time, a lot of different domains of research
have stepped up with the desire to utilize all the
successful practices that OSS development has to
offer. It is a collective aim for the research and
analysis of OSS development to continue, and for
knowledge and best practices to be transferred to
other areas as well.

concLuSIon

The purpose of this chapter was really introduc-
tory. Many of the FOSS historical issues as well
as research topics will be covered in detail in the
next chapters, where special emphasis will be
paid to the knowledge and learning management
context. From this point of view, it is really excit-
ing to reveal the mutual beneficial relationships
of FOSS and knowledge and learning manage-
ment and their linkages that support sustainable
performance and development.

referenceS

Bergstrom, T., Blume, L., & Varian, H. (1986).
On the private provision of public goods. Journal
of Public Economics, 29, 25-49.

Bezroukov, N. (1997). A second look at the
cathedral and the bazaar. First Monday, 4(12).
Retrieved on 20/11/2006 http://www.firstmonday.
org/issues/issue4_12/bezroukov/index.html

Bitzer, J., Wolfram, S., & Schroder, P. H. J. (2004).
Intrinsic motivation in open source software
development. MIT Working Paper.

Bliss, C., & Nalebuff, B. (1984). Dragon-slaying
and ballroom dancing: The private supply of a
public good. Journal of Public Economics, 25,
1-12.

Chamberlin, J. (1974). Provision of collective
goods as a function of group size. American
Political Science Review, 68, 707-716.

Cook, J. E. (2001). Open source development: An
Arthurian legend. In J. Feller, B. Fitzgerald, & A.
van der Hoek (Eds.), Making sense of the bazaar:
Proceedings of the 1st Workshop on Open Source
Software Engineering. Retrieved May 19, 2006,
from http://opensource.ucc.ie/icse2001/papers.
htm

Cox, A. (1998). Cathedrals, bazaars and the town
council. Retrieved March 22, 2004, from http://
slashdot.org/features/98/10/13/1423253.shtml

Crowston, K., & Howison, J. (2005). The social
structure of free and open source software de-
velopment. First Monday, 10(2). Retrieved on
20/11/2006 http://www.firstmonday.org/issues/is-
sue10_2/crowston/index.html

Feller, J., & Fitzgerald, B. (2000). A framework
analysis of the open source software development
paradigm. In W. Orlikowski, P. Weill, S. Ang, &
H. Krcmar (Eds.), Proceedings of the 21st Annual
International Conference on Information Systems
(pp. 58-69). Brisbane, Queensland, Australia.

Gacek, C., & Arief, B. (2004). The many meanings
of open source. IEEE software, 21(1), 34–40.

Galbraith, J. R. (1973). Designing complex orga-
nizations. Reading, MA: Addison-Wesley

 ��

Open Source Software Basics

Gallivan, M. J. (2001). Striking a balance between
trust and control in a virtual organization: A con-
tent analysis of open source software case studies.
Information Systems Journal, 11(4), 277-304.

Hars, A., & Ou, S. (2002). Working for free? Mo-
tivations for participating in open-source projects.
International Journal of Electronic Commerce,
6(3), 25-39.

Hertel, G., Nieder, S., & Herrmann, S. (2003).
Motivation of software developers in open source
projects: An Internet-based survey of contributors
to the Linux Kernel. Research Policy (Special Is-
sue: Open Source Software Development), 32(7),
1159-1177.

Homström, B. (1999). Managerial incentive prob-
lems: A dynamic presective. Review of Economic
Studies, 66, 169-182.

Johnson, J.P. (2002). Economics of open source
software: Private provision of a public good.
Journal of Economics & Management Strategy,
11(4), 637-662.

Jørgensen, N. (2001). Putting it all in the trunk:
Incremental software development in the Free-
BSD open source project. Information Systems
Journal, 11(4), 321-336.

Krishnamurthy, S. (2002). Cave or community?
An emprical examination of 100 mature open
source projects. First Monday, 7(6). Retrieved
May 19, 2006, from http://www.firstmonday.
org

Lakhani, K., Arim, R., & Wolf, R. G. (2003). Why
hackers do what they do: Understanding motiva-
tion effort in free/open source software projects.
MIT Sloan School of Management Working Paper,
no. 4425-03.

Lawrie, T., & Gacek, C. (2002). Issues of depend-
ability in open source software development.
ACM SIGSOFT Software Engineering Notes,
27(3), 34-37.

Lerner, J., & Tirole, J. (2004). The economics of
technology sharing: Open source and beyond.
NBER (Working Paper 10956).

Miles, R. E., & Snow, C. C. (1978). Organiza-
tional strategy, structure, and process. New York:
McGraw-Hill.

Mockus, A., Fielding, R. T., & Herbsleb, J. D.
(2002). Two case studies of open source software
development: Apache and Mozilla. ACM Transac-
tions on Software Engineering and Methodology,
11(3), 309-346.

Moon, J. Y., & Sproull, L. (2000). Essence of
distributed work: The case of Linux kernel.
First Monday, 5(11). Retrieved on 20/11/2006
http://www.firstmonday.org/issues/issue5_11/
moon/index.html

Palfrey, T. R., & Rosenthal, H. (1984). Participa-
tion and the provision of discrete public goods: A
strategic analysis. Journal of Public Economics,
24, 171-193.

Pappas, J. (2001). Economics of open source soft-
ware. Working Paper. Retrieved May 19, 2006,
from http://opensource.mit.edu

Raymond, E. S. (1998). The cathedral and the
bazaar. First Monday, 3(3). Retrieved May 19,
2006, from http://www.firstmonday.org/issues/is-
sue3_3/raymond/

Robey, D. (1991). Designing organizations (2nd
ed.). Burr Ridge, IL: Irwin.

Salus, P. (2005). The daemon, the gnu and the
penguin. (Published as a series of articles in
Groklaw). Retrieved May 19, 2006, from http://
www.groklaw.net/article.php?story=200506231
14426823

Stallman, R. (1999). The GNU operating system
and the free software movement. In C. DiBona,
S. Ockman, & M. Stone (Eds.), Open sources:
Voices from the open source revolution. Cam-
bridge, MA: O’Reilly and Associates.

��

Open Source Software Basics

Scacchi, W. (2002). Understanding the require-
ments for developing open source software
systems. IEEE Proceedings - Software, 48(1),
24-39.

Sharma, S., Sugurmaran, V., & Rajagopalan, B.
(2002). A framework for creating hybrid-open
source software communities. Information Sys-
tems Journal, 12(1), 7-25.

Torvalds, L., & Diamond, D. (2001). Just for
fun: The story of an accidental revolutionary.
HarperBusiness.

Vixie, P. (1999). Open source software engineer-
ing. In C. DiBona, S.Ockman, & M. Stone (Eds.),
Open sources: Voices from the open source revolu-
tion. Cambridge, MA: O’Reilly and Associates.

Weber, S. (2004). The success of open source.
Cambridge: Havard University Press.

Yamauchi, Y., Yokozawa, M., Shinohara, T., &
Ishida, T. (2000). Collaboration with lean media:
How open source software succeeds. In Proceed-
ings of the ACM Conference on Computer-Sup-
ported Work (pp. 329-338).

appendIx I: uSefuL urLS

A free/open source research community (also
provides a database of online papers) http://open-
source.mit.edu/

The Free Software Foundation
http://www.fsf.org/

Freshmeat
http://freshmeat.net/

Libresoft
http://libresoft.urjc.es/index

The Open Source Initiative (OSI)
http://www.opensource.org/

SourceForge.net
http://sourceforge.net/

appendIx II: further readIng

DiBona, C., Ockman, S., & Stone, M. (1999). Open
sources: Voices from the open source revolution.
Sebastopol, CA: O’Reilly & Associates.

Glyn Moody, G. (1997). The greatest OS that
(n)ever was. Wired, 5(8). Retrieved from http://
pauillac.inria.fr/~lang/hotlist/free/wired/linux.
html

Raymond, E. S. (2003). The art Of Unix program-
ming. Addison-Wesley.

Senyard, S., & Michlmayr, M. (2004). How to have
a successful free software project. In Proceedings
of the 11th Asia-Pacific Software Engineering
Conference, Busan, Korea (pp. 84-91). IEEE
Computer Society.

This work was previously published in Open Source for Knowledge and Learning Management: Strategies Beyond Tools, edited
by M. Lytras and A. Naeve, pp. 1-15, copyright 2007 by IGI Publishing (an imprint of IGI Global).

 ��

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.4
Open-Source Software Issues

Sofiane Sahraoui
American University of Sharjah, UAE

IntroductIon

Two major research publications have recently
dedicated special issues to the emerging field of
OSS (Research policy, 2003; Management Sci-
ence, 2006). Likewise, major information systems
conferences are starting to list OSS as a research
track (IRMA2004, Working IFIP 8.6) translating
the heightened importance of this phenomenon in
the business world. Undoubtedly, OSS has been
admitted as a legitimate field of study in the realm
of business academics, but OSS research remains
largely trailing the gigantic developments in the
open-source industry. For instance, there are re-
current speculations in specialized IT magazines
that Microsoft will go down the drain with the
OSS phenomenon (Fontana, 2003); Oracle will
have a hard time maintaining its supremacy in the
database market (Bank, 2003); and Apple might
come out the big winner by latching on to OSS
(Brockmeire, 2003). However, there is hardly any

solid piece of academic research to forecast the
outlook of the IT industry in light of the surging
OSS phenomenon. Existing research, including
the two special issues mentioned above, is focusing
on validating models of innovation in a virtual
environment (Franke, 2003; Von Krogh, Spaeth,
& Lakhani, 2003; Hippel, 2001); tracking proj-
ect management dynamics in OSS development
(Hertel, Neidner, & Herrmann, 2003; O’Mahony,
2003); examining the intellectual property, ethi-
cal and legal implications of OSS (Evers, 2000;
Faldetta, 2002); or reworking the economics
underlying software development in the case of
OSS (Zeitlyn, 2003). Much less has been done in
critical areas pertaining to the new competitive
game introduced by OSS; the sustainability of
the OSS business model or models; the strategies
for OSS licensing; the economic and business
viability of OSS in light of potential challenges
and opportunities; and the nascent national and
government IT strategies centered on OSS; plus

��

Open-Source Software issues

a variety of other issues that are beyond the scope
of this short article.

This article seeks to clarify the critical factors
that will increasingly determine the success of
OSS in becoming a mainstream choice for soft-
ware procurement processes. Along with a defini-
tion of each of these factors, potential research
avenues are indicated. However, these factors are
not meant to be exhaustive in any fashion.

oSS: a BrIef defInItIon

The most basic definition of open source software
is software for which the source code is distributed
along with the executable program, and which
includes a license allowing anyone to modify and
redistribute the software.

Actual licenses for OSS vary between dif-
ferent companies and development projects, but
they have certain characteristics in common. The
Open Source Initiative, a group of developers who
disseminate information on the benefits of open
source (see www.opensource.org) has posted on
its Web site a “meta-definition” of basic conditions
they feel should be included in an OSS license.
These include:

• Allowing free redistribution of the soft-
ware without royalties or other fees to the
author.

• Requiring that source code be distributed
with the software or otherwise made avail-
able for no more than the cost of distribu-
tion.

• Allowing anyone to modify the software
or derive other software from it, and to re-
distribute the modified software under the
same license terms.

• Any software distributed under a license
that conforms to these requirements is
open-source software, according to the Open
Source Initiative.

Although OSS solutions are increasingly
available for an increasing number of business
applications, it is very unlikely, however, that users
are currently undertaking comparisons between
alternative solutions. Nonetheless, it is a matter
of timeand probably a short timeuntil open-
source solutions become a must-consider item in
software procurement decisions.

open-Source LIcenSIng

Many different types of OSS licenses are in use,
almost as many as 50. The increasing number of
license types under which open-source software
is distributed could prove damaging to the overall
development of OSS. Nonetheless, as a group
OSS licenses could be clearly distinguished from
conventional proprietary licenses. The latter are
generally designed to take away the user freedom
to share and change the software, which is the
object of the license. By contrast, open-source
licenses explicitly guarantee the freedom to share
and change software without any permission from
its original owner (Evers, 2000).

The General Public License (GPL; see www.
opensource.org/licenses/gpl-license.html is the
most important license, as key open-source soft-
ware solutions are distributed under its terms; most
notably, the Linux kernel (Evers, 2000). Not only
does the GPL guarantee the freedom to share and
change software, but it also requires that anything
linked with the concerned software be distributed
as free software, as well. This is known as the
“virus” effect (Evers, 2000). A consequence of
this is that any software developed based on the
Linux Kernel, for example, has to be shared back
with the open-source community, hence released
under a GPL itself. This has had a very positive
consequence on the development of Linux as a
major player in the server open-source market and
even as a potential contender to unsettle Windows
desktop hegemony. Conversely, other operating
systems distributed under open-source licenses

 ��

Open-Source Software issues

that do not require re-channeling changes, such as
the BSD license, have led to dispersed program-
ming efforts and even an appropriation of open-
source code by proprietary vendors. Apple’s latest
version of its proprietary operating system (i.e.,
Mac OS X) is heavily based on Darwin, a code
that is freely available under the BSD license.

One major research avenue would be to ana-
lyze the open-source strategies that proprietary
vendors are currently undertaking and the oppor-
tunities offered by various licensing schemes to
further such strategies. Such a study will survey
the existing or potential open-source strategies
of proprietary vendors and match them to ap-
propriate licensing schemes, hence performing
a competitive outlook of the OSS industry. The
study would also cover the competitive alterna-
tives, if any, of proprietary vendors that will not
likely go the open-source way.

BuSIneSS modeL

When users acquire software through an open-
source license, they truly become owners of the
software, which means they inherit the right to
modify it, share it, redistribute it and even resell
it if they have made significant additions, which
they can license themselves. Software in the open-
source licensing model, hence, is treated like a
commodity rather than intellectual property that
has to be traced back to its original author. Indeed,
major applications in open source and databases
are in widespread use (i.e., mass market); the
industry has settled on common standards, and
new features are less important than price and
performance, hence reducing the importance
of the intellectual content of the software and
turning it more into a commodity, just like what
generic drugs have done for branded ones (Karp,
2003). Proprietary licensing restrictions would
not allow any of this.

While the concept is appealing from an intel-
lectual and maybe an ethical point of view, it raises
questions about the sustainability of its business
model (Zieger, 2003). As software is steadily
turning into a commodity, will sales volume be
enough to secure the survival and growth of OSS
vendors, especially software that can be virtually
replicated for free? How can OSS vendors make
money from software that is essentially free and
does not require much servicing, then?

Besides pinning down the business model for
OSS, this line of research would analyze existing
OSS business models, both successful and unsuc-
cessful, and speculate on an industry structure
for the OSS market in the long term.

SecurIty and market
opportunItIeS for oSS

OSS would be less susceptible to hackers than
proprietary software. OSS transparency allegedly
increases security because “back doors” used by
hackers can be exposed and programmers can root
out bugs from the code (The Economist Group,
2003). On the other hand, security, a top concern
for software users, is increasingly proving to be
the Achilles’ wheel of proprietary software, and
especially for Windows. A number of govern-
ments around the world are wary of repeated
computer-virus attacks that target Microsoft’s
Windows operating system (Yamada, 2003). The
latest attacks by the Blaster and SoBig viruses
have indeed increased concerns about Windows
security (The Economist Group, 2003).

At this level, one can investigate the magnitude
of the security problem with proprietary software
and the opportunities that OSS could present in
this respect. Along with other factors such as cost,
performance and service support among others,
such a study could give a clear indication on the
true potential of OSS in a particular market or
region.

��

Open-Source Software issues

government and natIonaL
It StrategIeS

Security has yet another aspect that is important
for government clients especially. They usually try
to avoid relying on a single open source, vendor
or center of operation. For instance, the ministry
of interior in Germany justified the country’s
decision to adopt OSS by the need to raise the
level of IT security by avoiding monocultures
(Rajani, 2003). Likewise, the government of China
has been working on a local version of Linux,
on the grounds of self-sufficiency, security and
to avoid being too dependent on a single foreign
supplier (The Economist Group, 2003). OSS is
being increasingly used in politics as an exten-
sion of nationalist discourses advocating national
sovereignty, the right to access to knowledge and
national security. The free software movement in
Brazil, for example, has gained momentum since
the Leftist Workers Party took office in January
2003 (Karp, 2004). The governments of Japan,
China and South Korea will collaborate with ma-
jor high-tech companies to develop open-source
software products that will offer an alternative
to the Windows operating system (Yamada,
2003). Already, 60 countries around the world
are either considering or have passed legislation
that encouragesor requires considerationof
free software. Even in the United States (U.S.),
where proprietary software giants like Microsoft
and Oracle yield massive lobbying power, the
U.S. Congress has established an entity called
the National Technology Alliance to give agen-
cies guidance on how to contract with vendors
using open source, and what kind of technology
is available (Zieger, 2003).

Research is needed to determine the motives
and configurations of national OSS strategies that
have sprung up worldwide. Security is probably
only one element of the equation, alongside cost,
reducing the digital divide and so forth.

totaL coSt of ownerShIp
(tco)

Several studies have been done or are under way
and have reported conflicting findings. Studies
tend to favor those who paid for them (Maguire,
2003) and findings are generally disputed (Var-
ghese, 2003).

TCO means the total amount of money that
the decision of introducing new software costs,
which can exceed the selling price of the software.
Other cost factors include system preparation,
including hardware and other necessary software;
man-hours to handle the software installation,
operation and maintenance; user training; updates;
cost of migration to the new software, including
any changes to business processes; and so forth
(Evers, 2000). The general argument of propri-
etary software vendors is that the cost of software
itself does not exceed 20% to 30% of the TCO,
and even much less than that for organizations
such as schools benefiting from special pricing
schemes (Maguire, 2003b). Beyond that, the OSS
show is allegedly dismal and carries a heavier
cost than proprietary software. Unfortunately,
no methodologically sound research is available
to corroborate or deny such findings. Research
is urgently needed to sift the debate on TCO and
develop costing models for various contexts.

the ethIcaL argument

From an academic point of view, the ethical
debate surrounding OSS is likely to revive the
conventional and overheated debate of software
piracy and its ethical connotation. The OSS model
is indeed throwing the debate open about the
legitimacy and even the ethics of restricting the
“free flow of software.” Many have questioned the
proprietary model of software development and
distribution and deemed it unethical (see www.ne-
taction.org/msoft/world/). Microsoft and its allies
have counter attacked and sought to discredit OSS,

 ��

Open-Source Software issues

likening its challenge of proprietary ownership
to communism and suggesting that its openness
makes it insecure and therefore vulnerable to
terrorism (Fontana, 2003). Microsoft-supported
lobby groups, such as the Initiative for Software
Choice and the Business Software Alliance, have
been staging major campaigns worldwide to con-
fuse the public about the OSS phenomenon and
have blocked legislation supporting the adoption
of OSS by governments in different countries of
the world (Adelstein, 2003).

The ethical argument extends beyond the
issue of copying software, however. The City
of Munich, for instance, did not wish to place
the functioning of government in the hands of a
commercial vendor with proprietary standards
that is accountable to shareholders rather than to
citizens (Fontana, 2003). Besides security, OSS
seems to provide an alternative to governments
not to lock their citizens onto the technology of
one overpowering vendor. Bridging the digital
divide, another ethical imperative for govern-
ments worldwide, seems to be more attainable
with free software.

The issues are many and are worth debating.
Research is first needed to delineate the most
pressing items, lay out the stakes and unfold ra-
tional discourses to engage long-held and perhaps
erroneous perceptions and beliefs. Deconstructing
the classical argument underlying the ethics of
software piracy should be a thrilling endeavor
for any researcher.

concLuSIon

This outline of a research agenda makes no claim
of starting a new research stream that is well
underway. It simply summarizes the author’s
newfound interest and perceptions of the issues
surrounding the OSS phenomenon. In addition,
many important avenues for research have not been
indicated here, simply because the work is at its
inception phases and is based on a limited number

of readings in the area. This shall be expanded
while issues are uncovered and more research is
published. Finally, only business-related issues
have been addressed; issues relating to software
engineering, standards, architecture and so forth
have been purposefully left out.

referenceS

Aldestein, T. (2003). Linux access in state and local
government. Linux Journal, 1-5. Retrieved from
www.Linuxjournal.com/print.php?sid=6927

Bank, D. (2003). ‘Open source’ database poses
Oracle threat. Wall Street Journal (Eastern Edi-
tion), B1.

Brockmeire, J. (2003). Is open source Apple’s
salvation?. NewsFactor Network, 1-2. Retrieved
from www.linuxenterprisenews.com/perl/print-
er/21244/

The Economist Group. (2003). Microsoft at
the power point. Retrieved from www.econo-
mist.com/business/printerfriendly.crm/Story_
ID=2054740

Evers, S. (2000). An introduction to open source
software development. Retrieved from http://user.
cs.tu-berlin.de/~tron/opensource

Faldetta, G. (2002). The content of freedom in
resources: The open source model. Journal of
Business Ethics, 39(1), 179-188.

Fontana, J. (2003). Linux marches on: Microsoft
marshals forces to try to stem open source mo-
mentum. Network World, 20, 1.

Franke, N., & Hippel, V. Satisfying heterogeneous
user needs via innovation toolkits: The case of
Apache security software. Research Policy, 32(7),
1199-1215.

Hertel, G., Neidner, S., & Herrmann, S. (2003).
Motivation of software developers in open source
projects: An Internet-based survey of contributors

��

Open-Source Software issues

to the Linux kernel. Research Policy, 32(7),1159-
1177.

Hippel, V. (2001). Innovation by user communi-
ties: Learning from open-source software. Sloan
Management Review, 42(4), 82-86.

Karp, J. (2003). A Brazilian challenge for Mi-
crosoft: The government’s preference for open
source software may till the playing field. Wall
Street Journal (Eastern Edition), A.14.

Maguire, J. (2003a). Has Linux eclipsed open
source. Enterprise Linux IT, 1-2.

Maguire, J. (2003b). Open source on the brink.
Enterprise Linux, 1-2. Retrieved from www.Linux
enterprise news.com/perl/printer/22278/

O’Mahony, S. (2003). Guarding the commons:
How community managed software projects
to protect their work. Research Policy, 32(7),
1179-1198.

Rajani, N. (2003). Free as in education: Sig-
nificance of free/libre and open source software
for developing countries. Retrieved from www.
maailma.kaapeli.fi/OSSReport1.0.html#mozTo
cId13212

Varghese, S. (2003). Gartner findings on desktop
Linux disputed. SMH, 1-3. Retrieved from www.
smh.com.au/articles/2003/09/16/1063625013703.
html

Von Krogh, G., Spaeth, S., & Lakhani, K. (2003).
Community, joining, and specialization in open
source software innovation: A case study. Re-
search Policy, 32(7), 1217-1241.

Yamada, M. (2003). Asian countries seek Win-
dows alternative. Wall Street Journal (Eastern
Edition), B.10.

Zeitlyn, D. (2003). Gift economies in the develop-
ment of open source software: Anthropological
reflections. Research Policy, 32(7), 1287-1291.

Zieger, A. (2003). Open-minded. Information
Week, 25-28.

key termS

Linux Kernel: Basic programming code for
the Linux operating system.

Linux: Open source operating system.

Open Source Community: Community of
developers that interact virtually to write code
collaboratively.

Open Source Initiative: Group of developers
who disseminate information on the benefits of
open source.

Open Source License: Guarantees the free-
dom to share and change software without any
permission from its original owner.

Open Source Software (OSS): Software for
wish the source code is distributed along with the
executable program.

Proprietary Software: Its source code is not
available.

Source Code: Programming code prior to
execution.

TCO: Total Cost of Ownership (TCO):
The total amount of money that the decision of
introducing new software costs.

This work was previously published in Encyclopedia of Virtual Communities and Technologies, edited by S. Dasgupta, pp.
368-371, copyright 2006 by Information Science Reference (an imprint of IGI Global).

 ��

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.5
Open Source Software:
Strengths and Weaknesses

Zippy Erlich
The Open University of Israel, Israel

Reuven Aviv
The Open University of Israel, Israel

aBStract

The philosophy underlying open source software
(OSS) is enabling programmers to freely access
the software source by distributing the software
source code, thus allowing them to use the soft-
ware for any purpose, to adapt and modify it, and
redistribute the original or the modified source
for further use, modification, and redistribution.
The modifications, which include fixing bugs and
improving the source, evolve the software. This
evolutionary process can produce better software
than the traditional proprietary software, in which
the source is open only to a very few program-
mers and is closed to everybody else who blindly
use it but cannot change or modify it. The idea of
open source software arose about 20 years ago
and in recent years is breaking out into the edu-
cational, commercial, and governmental world.
It offers many opportunities when implemented
appropriately. The chapter will present a detailed

definition of open source software, its philosophy,
its operating principles and rules, and its strengths
and weaknesses in comparison to proprietary
software. A better understanding of the philosophy
underlying open source software will motivate
programmers to utilize the opportunities it offers
and implement it appropriately.

IntroductIon

Open source software (OSS) has attracted sub-
stantial attention in recent years and continues
to grow and evolve. The philosophy underlying
OSS is to allow users free access to, and use of,
software source code, which can then be adapted,
modified, and redistributed in its original or
modified form for further use, modification, and
redistribution. OSS is a revolutionary software
development methodology (Eunice, 1998) that
involves developers in many locations throughout

�0

Open Source Software

the world who share code in order to develop and
refine programs. They fix bugs, adapt and improve
the program, and then redistribute the software,
which thus evolves. Advocates of OSS are quick
to point to the superiority of this approach to
software development. Some well-established
software development companies, however, view
OSS as a threat (AlMarzouq, Zheng, Rong, &
Grover, 2005).

Both the quality and scope of OSS are grow-
ing at an increasing rate. There are already free
alternatives to many of the basic software tools,
utilities, and applications, for example, the free
Linux operating system (Linux Online, 2006), the
Apache Web server (Apache Software Founda-
tion, 2006; Mockus, Fielding, & Herbsleb, 2000),
and the Sendmail mail server (Sendmail Consor-
tium, 2006). With the constant improvement of
OSS packages, there are research projects, even
complex ones, that entirely rely on OSS (Zaritski,
2003). This opens new research and educational
opportunities for installations and organizations
with low software budgets.

Incremental development and the continuity
of projects over long periods of time are distinc-
tive features of OSS development. The software
development processes of large OSS projects are
diverse in their form and practice. Some OSS
begins with releasing a minimal functional code
that is distributed for further additions, modifi-
cation, and improvement by other developers, as
well as by its original authors, based on feedback
from other developers and users. However, open
source projects do not usually start from scratch
(Lerner & Tirole, 2001). The most successful OSS
projects, like Linux and Apache, are largely based
on software provided by academic and research
institutions. In recent years, more and more OSS
has been derived from original software provided
by for-profit companies.

A large potential-user community is not
enough to make an OSS project successful. It
requires dedicated developers. In Raymond’s
(1998) words, “The best OSS projects are those

that scratch the itch of those who know how to
code.” For example, the very successful Linux
project attracted developers who had a direct
interest in improving an operating system for
their own use. Similarly, webmaster developers
contributed to the development of the Apache
Web server project.

Despite the characterization of the OSS ap-
proach as ad hoc and chaotic, OSS projects appear,
in many cases, to be highly organized, with tool
support that focuses on enhancing human col-
laboration, creativity, skill, and learning (Lawrie
& Gacek, 2002). The good initial structural de-
sign of an OSS project is the key to its success.
A well-modularized design allows contributors
to carve off chunks on which they can work. In
addition, the adoption of utility tools and the use
of already existing OSS components are neces-
sary if an OSS project is to succeed.

The growing interest of commercial organiza-
tions in developing and exploiting OSS has led
to an increased research focus on the business-
model aspects of the OSS phenomenon. There
are a number of business models for OSS, all of
which assume the absence of traditional software
licensing fees (Hecker, 2000). The economics of
OSS projects is different from that of proprietary
projects (Lerner & Tirole, 2002). Models of effort
and cost estimation in the development of projects
involving OSS are needed (Asundi, 2005).

In the past, most OSS applications were not
sufficiently user friendly and intuitive, and only
very knowledgeable users could adapt the soft-
ware to their needs. Although the use of OSS is
growing, OSS is still mainly used by technically
sophisticated users, and the majority of aver-
age computer users use standard commercial
proprietary software (Lerner & Tirole, 2002).
The characteristics of open source development
influence OSS usability (Behlendorf, 1999; Nich-
ols, Thomson, & Yeates, 2001; Raymond, 1999),
which is often regarded as one of the reasons for
its limited use. In recent years, the open source
community has shown increased awareness of

 ��

Open Source Software

usability issues (Frishberg, Dirks, Benson, Nick-
ell, & Smith, 2002). Existing human-computer
interface (HCI) techniques and usability improve-
ment methods appropriate for community-based
software development on the Internet can be used
to leverage distributed networked communities to
address issues of usability (Nichols & Twidale,
2003). Some OSS applications, such as the Mozilla
Web browser (Mozilla, 2006; Reis & Fortes, 2002)
and OpenOffice (OpenOffice, 2006), have made
important advances in usability and have become
available for both Windows and Linux users.

As the stability and security of open source
products increase, more organizations seem to
be adopting OSS at a faster rate. There are many
open source community resources and services
online. When implemented appropriately, OSS
offers extensive opportunities for government,
private-sector, and educational institutions. OSS
appears to be playing a significant role in the
acquisition and development plans of the U.S.
Department of Defense and of industry (Hissam,
Weinstock, Plakosh, & Asundi, 2001).

For many organizations, integrating the
revolutionary OSS developmental process into
traditional software development methods may
have a profound effect on existing software de-
velopment and management methodologies and
activities.

The remainder of this chapter will review the
history of OSS and define some key terms and
concepts. It will discuss the incentives to engage
in OSS and its strengths and weakness. Finally, it
will review some OSS business models.

Background

Software source code that is open has been
around in academic and research institute settings
from the earliest days of computing. Feller and
Fitzgerald (2002) provide a detailed historical
background to open source since the 1940s. The
source code of programs developed in universi-

ties, mainly as learning and research tools, was
freely passed around. Many of the key aspects
of computer operating systems were developed
as open source during the 1960s and 1970s in
academic settings, such as Berkeley and MIT, as
well as in research institutes, such as Bell Labs
and Xerox’s Palo Alto Research Center, at a time
when sharing source code was widespread (Lerner
& Tirole, 2002).

The free software (FS) movement began in
the 1980s in academic and research institutes.
The Free Software Foundation (FSF) was estab-
lished by Richard Stallman of the MIT Artificial
Intelligence Laboratory in 1984. The basic idea
underlying the foundation was to facilitate the
development and free dissemination of software.
It is important to note that free in this case relates
not to price, but to freedom of use. The developers
of the Linux operating system bought in to the
FS concept. Linux, initiated by Linus Tovalds in
1991, was the first tangible achievement of the
FS movement (Stallman, 1999). This successful
operating system has, through the collaboration of
the global FS community, grown into the second
most widely used server operating system.

The OSS movement evolved from the FSF
during the 1990s. OSS has more flexible licensing
criteria than the FSF. The widespread use of the
Internet led to acceleration in open source activi-
ties. Numerous open source projects emerged,
and interaction between commercial companies
and the open source community became com-
monplace. Unlike the FS community, the OSS
movement does not view itself as a solution for
proprietary software, but rather as an alternative
to it (Asiri, 2003). This has led to the acceptance of
selective open sourcing, in which companies may
elect to make specific components of the source
code, rather than the entire code, publicly avail-
able, an approach which appeals to the business
community. This allows companies to package
available OSS products with other applications
and extensions, and sell these to customers. Profit
can also be made on the exclusive support pro-

��

Open Source Software

vided with the retail packages, which may include
manuals, software utilities, and support help lines.
For example, Red Hat Software (Red Hat, 2006),
the leading provider of the Linux-based operat-
ing system, founded in 1995, based its business
model on providing Linux software for free and
selling extras such as support, documentation,
and utilities, making it easy for users to install
and use the software.

Definitions: FS and OSS

According to the FSF, FS involves users’ free-
dom to run, copy, distribute, study, change, and
improve software. The FSF defined four kinds
of freedom for software users (Free Software
Foundation, 2006).

1. The freedom to run the program for any
purpose

2. The freedom to study how the program
works, and adapt it to one’s needs; access to
the source code is a precondition for this

3. The freedom to redistribute copies so one
can help a neighbor

4. The freedom to improve the program and
release improvements to the public so that
the whole community benefits; access to the
source code is a precondition for this

The FSF recommends the GNU (a Unix-com-
patible operating system developed by the FSF)
General Public License (GPL; Free Software
Foundation, 1991) to prevent the GNU operating
system software from being turned into propri-
etary software. This involves the use of “copyleft,”
which Stallman (1999) defines as follows:

The central idea of copyleft is that we give everyone
permission to run the program, copy the program,
modify the program, and distribute modified ver-
sions—but not permission to add restrictions of
their own. Thus, the crucial freedoms that define
“free software” are guaranteed to everyone who
has a copy; they become inalienable rights.

The GPL permits the redistribution and reuse
of source code for unfettered use and access as
long as any modifications are also available in the
source code and subject to the same license.

The term OSS was adopted in large part
because of the ambiguous nature of the term FS
(Johnson, 2001). On the most basic level, OSS
simply means software for which the source code
is open and available (Hissam et al., 2001), and
that anyone can freely redistribute, analyze, and
modify while complying with certain criteria
(AlMarzouq et al., 2005). However, OSS does not
just mean access to source code. For a program to
be OSS, a set of distribution terms must apply.

A comprehensive Open Source Definition
(OSD) was published by the Open Source Initia-
tive (OSI). The OSD differentiates itself from
FS by allowing the use of licenses that do not
necessarily provide all the freedoms granted by
the GPL. According to the updated version of the
OSD (1.9), the distribution terms of OSS must
comply with all 10 of the following criteria (Open
Source Initiative, 2005).

1. Free redistribution: The license shall not
restrict any party from selling or giving away
the software as a component of an aggregate
software distribution containing programs
from several different sources. The license
shall not require a royalty or other fee for
such sale.

2. Source code: The program must include
source code, and must allow distribution
in source code as well as compiled form.
Where some form of a product is not dis-
tributed with source code, there must be
a well-publicized means of obtaining the
source code for no more than a reasonable
reproduction cost—preferably, downloading
via the Internet without charge. The source
code must be the preferred form in which
a programmer would modify the program.
Deliberately obfuscated source code is not
allowed. Intermediate forms such as the

 ��

Open Source Software

output of a preprocessor or translator are
not allowed.

3. Derived works: The license must allow
modifications and derived works, and must
allow them to be distributed under the
same terms as the license of the original
software.

4. Integrity of the author’s source code:
The license may restrict source code from
being distributed in modified form only if
the license allows the distribution of patch
files with the source code for the purpose of
modifying the program at build time. The
license must explicitly permit distribution of
software built from modified source code.
The license may require derived works to
carry a different name or version number
from the original software.

5. No discrimination against persons or
groups: The license must not discriminate
against any person or group of persons.

6. No discrimination against fields of en-
deavor: The license must not restrict anyone
from making use of the program in a specific
field of endeavor. For example, it may not
restrict the program from being used in a
business, or from being used for genetic
research.

7. Distribution of license: The rights attached
to the program must apply to all to whom
the program is redistributed without the
need for execution of an additional license
by those parties.

8. License must not be specific to a product:
The rights attached to the program must
not depend on the program’s being part of
a particular software distribution. If the
program is extracted from that distribution
and used or distributed within the terms of
the program’s license, all parties to whom
the program is redistributed should have
the same rights as those that are granted
in conjunction with the original software
distribution.

9. License must not restrict other software:
The license must not place restrictions on
other software that is distributed along with
the licensed software. For example, the li-
cense must not insist that all other programs
distributed on the same medium must be
open source software.

10. License must be technology neutral: No
provision of the license may be predicated
on any individual technology or style of
interface.

Although there are some differences in the
definitions of OSS and FS, the terms are often used
interchangeably. Neither OSS nor FS pertains to
the source code and its quality, but rather to the
rights that a software license must grant. Vari-
ous licensing agreements have been developed
to formalize distribution terms (Hecker, 2000).
Open source licenses define the privileges and
restrictions a licensor must follow in order to use,
modify, or redistribute the open source software.
OSS includes software with source code in the
public domain and software distributed under an
open source license. Examples of open source
licenses include the Apache license, Berkeley
Source Distribution (BSD) License, GNU GPL,
GNU Lesser General Public License (LGPL), MIT
License, Eclipse Public License (EPL), Mozilla
Public License (MPL), and Netscape Public Li-
cense (NPL).

Table 1 provides a comparison of several
common licensing practices described in Perens
(1999).

The OSI has established a legal certification
for OSS, called the OSI certification mark (Open
Source Initiative, 2006b). Software that is dis-
tributed under an OSI-approved license can be
labeled “OSI Certified.”

Incentives to engage in oSS

A growing body of literature addresses the motives
for participation in OSS projects. Lerner and Tirole

��

Open Source Software

(2001) describe incentives for programmers and
software vendors to engage in such projects:

Programmers’ Incentives

• Programmers are motivated by a desire for
peer recognition. Open source program-
mers’ contributions are publicly recognized.
By participating in an OSS project, program-
mers signal their professional abilities to the
public.

• Programmers feel a duty to contribute to a
community that has provided a useful piece
of code.

• Some programmers are motivated by pure
altruism.

• Some sophisticated OSS programmers
enjoy fixing bugs, working on challenging
problems, and enhancing programs.

• OSS is attractive to computer science
students who wish to enter the market as
programmers in higher positions.

Software Vendors’ Incentives

• Vendors make money on OSS comple-
mentary services such as documentation,
installation software, and utilities.

• By allowing their programmers to get in-
volved in OSS projects, vendors keep abreast
of open source developments, which allows
them to better know the competition.

• Vendors benefit from efficient use of global
knowledge. Many companies can collabo-
rate on a product that none of them could
achieve alone.

maIn focuS of the chapter

oSS Strengths and weaknesses

OSS has a number of strengths and weaknesses
compared to traditional proprietary software.

Strengths

The strengths of OSS can be classified into
five main categories: freedom of use; evolu-
tion of software; time, cost, and effort; quality
of software; and advantages to companies and
programmers.

freedom of use

• It allows free access to the software source
code for use, modification, and redistribution
in its original or modified form for further
use, modification, and redistribution.

• OSS users have fundamental control and
flexibility advantages by being able to
modify and maintain their own software to
their liking (Wheeler, 2005).

Table 1. Comparison of licensing practices (Source: Perens, 1999)

License
Can be mixed
with non-free

software

Modifications can
be made private
and not returned

Can be
relicensed
by anyone

Contains special privileges
for the original copyright

holder over others’
modifications

GPL

LGPL X

BSD X X

NPL X X X

MPL X X

Public Domain X X X

 ��

Open Source Software

• OSS allows independence from a sole source
company or vendor. It provides users with the
flexibility and freedom to change between
different software packages, platforms, and
vendors, while secret proprietary standards
lock users into using software from only
one vendor and leave them at the mercy of
the vendor at a later stage (Wong & Sayo,
2004).

• It eliminates support and other problems if
a software vendor goes out of business.

• It prevents a situation in which certain com-
panies dominate the computer industry.

• Users can get free upgrade versions of the
software, switch software versions, and fix
and improve software (Perens, 1999).

evolution of Software

• OSS contributes to software evolution due
to the parallel process of many developers
being simultaneously involved rather than
a single software team in a commercial
proprietary software company (Feller &
Fitzgerald, 2002).

• It enables programmers all over the world
to fix bugs.

• It evolves continuously over time as opposed
to proprietary software whose development
takes place in a series of discrete releases
under the control of the authors.

• OSS represents a viable source of compo-
nents for reuse and to build systems.

time, cost, and effort

• It involves a joint effort by contributors from
countries all over the world, collaborating
via the Internet.

• There is a lower cost of software development
in comparison to proprietary software.

• Open source initiatives allow software to
be developed far more quickly and permits
bugs to be identified sooner.

• The OSS approach is not subject to the same
level of negative external process constraints
of time and budget that can often undermine
the development of dependable systems
within an organizational setting (Lawrie &
Gacek, 2002).

• OSS reduces the cost of using the software
as the licensing is not limited compared to
the limited licensing of proprietary software.
The licensing cost, if any, is low, and most
OSS distributions can be obtained at no
charge. On a licensing cost basis, OSS ap-
plications are almost always much cheaper
than proprietary software (Wong & Sayo,
2004). Open source products can save not-
for-profit organizations, such as universities
and libraries, a lot of money.

• It reduces development time, cost, and effort
by reusing and building on existing open
source code.

• It reduces maintenance and enhancement
costs by sharing maintenance and enhance-
ments among potential users of the same
software application.

Quality of Software

• OSS reduces the number of bugs and en-
hances software quality by using the feed-
back of many users around the world and
other qualified developers who examine the
source code and fix the bugs.

• OSS is under constant peer review by de-
velopers around the world. Linus’ law states
the following: “Given enough eyeballs, all
bugs are shallow” (Raymond, 1998).

• Programmers, knowing in advance that
others will see the code they write, will be
more likely to write the best code they can
possibly write (Raymond, 1998).

• Security vulnerabilities are more quickly
solved when found in OSS than in propri-
etary software (Reinke & Saiedian, 2003).

��

Open Source Software

• OSS represents an alternative approach to
distributed software development able to
offer useful information about common
problems as well as possible solutions
(Johnson, 2001).

advantages to companies
and programmers

• There is an efficient use of global knowl-
edge.

• Programmers learn from existing source
code how to solve similar problems.

• Students, especially computer science
students, can gain excellent programming
experience and make contributions to open
source software by becoming involved in
open source projects (Zaritski, 2003).

• OSS allows groups of companies to col-
laborate in solving the same problem.

• Companies gain leverage from developers
who contribute free improvements to their
software.

• Companies using OSS benefit from its
very rapid development, often by several
collaborating companies, much of it con-
tributed by individuals who simply need
an improvement to serve their own needs
(Perens, 1999).

Weaknesses

OSS weaknesses are mainly related to manage-
ment, quality, and security.

management

• Given the difficulty in managing resources in
closed source proprietary software projects,
planning and delivering projects based on
an open source community can be a much
bigger challenge (Asundi, 2005). The separa-
tion between distributed developers creates
difficulties in coordination and collabora-

tion (Belanger & Collins, 1998; Carmel &
Agarwal, 2001).

• Some OSS projects are developed without
concern for the process of accepting or
rejecting changes to the software.

• Resource allocation and budgeting are more
complex than in proprietary software proj-
ects.

• There is higher fluidity in the membership
of the development team. OSS developers
are not bound to projects by employment
relationships and therefore may come and
go more often (Stewart, Darcy, & Daniel,
2005).

• Existing effort and cost models for pro-
prietary projects are inadequate for OSS
projects, and there is a need to develop new
models.

• Commercial proprietary projects generate
income and thus enable companies to hire
high-quality and motivated programmers.
This is not the case in open source proj-
ects.

Quality and Security

• OSS programmers are not always enthusias-
tic about providing and writing documenta-
tion, therefore some OSS have inadequate
documentation, far below commercial
standards.

• Some OSS applications are not sufficiently
intuitive and user friendly, and are thus ac-
cessible only to very knowledgeable users.

• It appears that there is sometimes a race
among many current OSS projects, which
often results in rapid releases with the soft-
ware consequently containing many bugs
(Hissam et al., 2001).

• The OSS movement has made the life of
cyberterrorists somewhat easier. Since the
source code is open and available, cyberter-
rorists can learn about vulnerabilities in both
OSS and proprietary closed source software

 ��

Open Source Software

(CSS) products. The knowledge that some
components of CSS are descendants of
similar OSS components, or share the same
root code base or the same architecture,
design, or specification provides clues as to
what attacks could be possible against such
software (Hissam et al., 2001).

• There is less variety of applications as com-
pared to proprietary applications.

oSS Business models

The open source model has a lot to offer the busi-
ness world. For a company considering adopting
an open source strategy, open source needs to be
evaluated from a business point of view. It requires
being clear on the advantages and disadvantages of
open source relative to the traditional proprietary
model. There are a number of business models for
OSS, all of which assume the absence of traditional
software licensing fees. As published by the Open
Source Initiative (2006a), there are at least four
known business models based on OSS.

1. Support sellers: In this model, the software
product is effectively given away, but dis-
tribution, branding, and after-sales service
are sold. This is the model followed by, for
example, Red Hat (2006).

2. Loss leader: The open source is given away
as a loss leader and market positioner for
closed software. This is the model followed
by Netscape.

3. Widget frosting: In this model, a hardware
company (for which software is a necessary
adjunct but strictly a cost rather than profit
center) goes open source in order to get better
drivers and cheaper interface tools. Silicon
Graphics, for example, supports and ships
Samba (2006).

4. Accessorizing: This involves selling acces-
sories such as books, compatible hardware,
and complete systems with open source
software preinstalled. It is easy to trivial-

ize this (open source T-shirts, coffee mugs,
Linux penguin dolls), but at least the books
and hardware underlie some clear suc-
cesses: O’Reilly Associates, SSC, and VA
Research are among the companies using
this model.

So far, the exemplars of commercial success
have been service sellers or loss leaders. Never-
theless, there is good reason to believe that the
clearest near-term gains in open source will be
in widget frosting. For widget makers (such as
semiconductor or peripheral-card manufacturers),
interface software is not even potentially a revenue
source. Therefore, the downside of moving to open
source is minimal. (Hecker, 2000, proposes more
models potentially usable by companies creating
or leveraging OSS products.)

concLuSIon

OSS is an alternative method of development that
makes efficient use of global knowledge. It has
captured the attention of academics, software
practitioners, and the entire software community.
Some OSS products have proven to be as reliable
and secure as similar commercial products, and
are a viable source of components from which
to build OSS and CSS systems. Unfortunately,
through OSS products, cyberterrorists also gain
additional information about these components
and discover vulnerabilities in products based
on them.

There are a number of business models for OSS.
Software development companies are beginning
to support OSS-style development. They tend to
try to profit through providing additional value
to OSS products, such as value-added software,
professional documentation, packaging, and
support.

Both the quality and scope of OSS are growing
at an increasing rate and there are already free
alternatives to many of the fundamental software

��

Open Source Software

tools, utilities, and applications that are able to
compete with traditional proprietary software.
However, there is still controversy about whether
OSS is faster, better, and cheaper than proprietary
software. Adopters of OSS should not enter
the realm blindly and should know its benefits
and pitfalls. Further empirical and theoretical
research is needed on developing and managing
OSS projects. Identifying and explicitly modeling
OSS development processes in forms that can be
shared, modified, and redistributed appears to be
an important topic for future investigation (Jensen
& Scacchi, 2005). The open development process
can provide a suitable environment for investiga-
tion of software development processes.

LISt of acronymS

BSD: Berkeley Source Distribution
CSS: Closed source software
FS: Free software
FSF: Free Software Foundation
GNU: GNU Not Unix (recursive acronym)
GPL: General Public License
LGPL: Lesser General Public License
MPL: Mozilla Public License
NPL: Netscape Public License
OSD: Open Source Definition
OSI: Open Source Initiative
OSS: Open source software

referenceS

AlMarzouq, M., Zheng, L., Rong, G., & Grover,
V. (2005). Open source: Concepts, benefits, and
challenges. Communications of the Association
for Information Systems (CAIS), 16, 756-784.

Apache Software Foundation. (2006). Apache
HTTP server project. Retrieved January 8, 2006,
from http://httpd.apache.org/

Asiri, S. (2003). Open source software. ACM
SIGCAS Computers and Society, 33(1), 2.

Asundi, J. (2005). The need for effort estimation
models for open source software projects. In Pro-
ceedings of the Fifth Workshop on Open Source
Software Engineering (5-WOSSE), 1-3.

Behlendorf, B. (1999). Open source as a business
strategy. In M. Stone, S. Ockman, & C. DiBona
(Eds.), Open sources: Voices from the open source
revolution (pp. 149-170). Sebastopol, CA: O’Reilly
& Associates.

Belanger, F., & Collins, R. W. (1998). Distributed
work arrangements: A research framework. The
Information Society, 14(2), 137-152.

Carmel, E., & Agarwal, R. (2001). Tactical ap-
proaches for alleviating distance in global software
development. IEEE Software, 18(2), 22-29.

DiBona, C., Ockman, S., & Stone, M. (Eds.).
(1999). Open sources: Voices from the open
source revolution. Sebastapol, CA: O’Reilly and
Associates.

Eunice, J. (1998). Beyond the cathedral, beyond
the bazaar. Retrieved January 10, 2006, from
http://www.illuminata.com/public/all/catalog.
cgi/cathedral

Feller, J., & Fitzgerald, B. (2002). Understand-
ing open source software development. London:
Addison Wesley.

Free Software Foundation. (1991). GNU general
public license, version 2. Retrieved January 8,
2006, from http://www.gnu.org/licenses/gpl.
html

Free Software Foundation. (2006). Definition of
free software. Retrieved January 8, 2006, from
http://www.fsf.org

Frishberg, N., Dirks, A. M., Benson, C., Nickell,
S., & Smith, S. (2002). Getting to know you: Open
source development meets usability. In Extended
Abstracts of the Conference on Human Factors in
Computer Systems (CHI 2002) (pp. 932-933).

 ��

Open Source Software

Hecker, F. (2000). Setting up shop: The business
of open source software. Retrieved May 31, 2006,
from http://www.hecker.org/writings/setting-up-
shop.html

Hissam, S., Weinstock, C. B., Plakosh, D., &
Asundi, J. (2001). Perspectives on open source
software (Tech. Rep. No. CMU/SEI-2001-TR-
019). Retrieved January 10, 2006, from http://
www.sei.cmu.edu/publications/documents/01.
reports/01tr019.html

Jensen, C., & Scacchi, W. (2005, May 27). Experi-
ences in discovering, modeling, and reenacting
open source software development processes. In
M. Li, B. W. Boehm, & L. J. Osterweil (Eds.),
Unifying the software process spectrum, ISPW
2005, Beijing, China (LNCS Vol. 3840, pp. 449-
462). Berlin, Germany: Springer-Verlag.

Johnson, K. (2001). Open source software de-
velopment. Retrieved January 8, 2006, from
http://chinese-school.netfirms.com/computer-
article-open source.html

Lawrie, T., & Gacek, C. (2002). Issues of depend-
ability in open source software development.
Software Engineering Notes (SIGSOFT), 27(3),
34-37.

Lerner, J., & Tirole, J. (2001). The open source
movement: Key research questions. European
Economic Review, 45(4-6), 819-826.

Lerner, J., & Tirole, J. (2002). Some simple
economics of open source. Journal of Industrial
Economics, 46(2), 125-156.

Linux Online. (2006). Linux. Retrieved January
8, 2006, from http://www.linux.org/

Mockus, A., Fielding, R. T., & Herbsleb, J. (2000).
A case study of open source software develop-
ment: The Apache server. In Proceedings of
the 22nd International Conference on Software
Engineering (pp. 263-272).

Mozilla. (2006). Mozilla. Retrieved January 8,
2006, from http://www.mozilla.org/

Nichols, D. M., Thomson, K., & Yeates, S. A.
(2001). Usability and open source software de-
velopment. In Proceedings of the Symposium on
Computer Human Interaction (pp. 49-54).

Nichols, D. M., & Twidale, M. B. (2003). The
usability of open source software. First Monday,
8(1). Retrieved from http://firstmonday.org/is-
sues/issue8_1/nichols/index.html

OpenOffice. (2006). OpenOffice. Retrieved Janu-
ary 10, 2006, from http://www.openoffice.org/

Open Source Initiative. (2005). The open source
definition. Retrieved January 8, 2006, from http://
www.opensource.org/docs/definition.php

Open Source Initiative. (2006a). Open source
case for business. Retrieved May 31, 2006, from
http://www.opensource.org/advocacy/case_for_
business.php

Open Source Initiative. (2006b). OSI certification
mark and program. Retrieved January 8, 2006,
from http://www.opensource.org/docs/certifica-
tion_mark.php

Perens, B. (1999). The open source definition. In
C. DiBona, S. Ockman, & M. Stone (Eds.), Open
sources: Voices from the open source revolution
(1st ed., pp. 171-188). Sebastopol, CA: O’Reilly
and Associates.

Raymond, E. S. (1998). The cathedral and the
bazaar. Retrieved January 8, 2006, from http://
www.catb.org/~esr/writings/cathedral-bazaar/ca-
thedral-bazaar/

Raymond, E. S. (1999). The revenge of the hack-
ers. In M. Stone, S. Ockman, & C. DiBona (Eds.),
Open sources: Voices from the open source revo-
lution (pp. 207-219). Sebastopol, CA: O’Reilly &
Associates.

Red Hat. (2006). Red Hat. Retrieved May 31,
2006, from http://www.redhat.com/

Reinke, J., & Saiedian, H. (2003). The availability
of source code in relation to timely response to

�0

Open Source Software

security vulnerabilities. Computers & Security,
22(8), 707-724.

Reis, C. R., & Fortes, R. P. d. M. (2002). An over-
view of the software engineering process and tools
in the Mozilla project. In C. Gacek & B. Arief
(Eds.), Proceedings of the Open Source Software
Development Workshop (pp. 155-175).

Samba. (2006). Samba. Retrieved May 31, 2006,
from http://www.sgi.com/products/software/
samba/

Sendmail Consortium. (2006). SendmailTM.
Retrieved January 10, 2006, from http://www.
sendmail.org/

Stallman, R. (1999). The GNU operating system
and the free software movement. In C. DiBona,
S. Ockman, & M. Stone (Eds.), Open sources:
Voices from the open source revolution (pp. 53-
70). Sebastopol, CA: O’Reilly & Associates.

Stewart, K. J., Darcy, D. P., & Daniel, S. L. (2005).
Observations on patterns of development in open
source software projects. In Proceedings of the
Fifth Workshop on Open Source Software Engi-
neering (5-WOSSE) (pp. 1-5).

Wheeler, D. A. (2005). Why open source software/
free software (OSS/FS, FLOSS, or FOSS)? Look
at the numbers! Retrieved January 10, 2006, from
http://www.dwheeler.com/oss_fs_why.html

Wong, K., & Sayo, P. (2004). Free/open source
software: A general introduction. UNDP, Asia-
Pacific Development Information Programme.
Retrieved January 10, 2006, from http://www.iosn.
net/downloads/foss_primer_print_covers.pdf

Zaritski, R. M. (2003). Using open source software
for scientific simulations, data visualization, and
publishing. Journal of Computing Sciences in
Colleges, 19(2), 218-222.

key termS

Closed Source Software (CSS): Non-OSS
for which the source code is not available and not
open. It is closed to modification and distribution
by licenses that explicitly forbid it. The term CSS
is typically used to contrast OSS with proprietary
software.

Copyleft: Permission for everyone to run,
copy, and modify the program, and to distribute
modified versions, but no permission to add re-
strictions of one’s own.

Free Software (FS): Free relates to liberty and
not to price. It is similar to OSS but differs in the
scope of the license. FS does not accept selective
open sourcing in which companies may elect to
make publicly available specific components of
the source code instead of the entire code.

General Public License (GPL): License that
permits the redistribution and reuse of source
code for unfettered use and access as long as any
modifications are also available in the source code
and subject to the same license.

Open Source Software (OSS): Software for
which the source code is open and available. Its
licenses give users the freedom to access and use
the source code for any purpose, to adapt and
modify it, and to redistribute the original or the
modified source code for further use, modifica-
tion, and redistribution.

Proprietary Software (PS): Software pro-
duced and owned by individuals or companies,
usually with no provision to users to access to
the source code, and licensed to users under
restricted licenses in which the software cannot
be redistributed to other users. Some proprietary
software comes with source code—users are free
to use and modify the software, but are restricted
by licenses to redistribute modifications or simply
share the software.

 ��

Open Source Software

Source Code: The original human-readable
version of a program, written in a particular pro-
gramming language. In order to run the program,
the source code is compiled into object code, a
machine-readable binary form.

This work was previously published in Handbook of Research on Open Source Software: Technological, Economic, and Social
Perspectives, edited by K. St.Amant and B. Still, pp. 184-196, copyright 2007 by Information Science Reference (an imprint
of IGI Global).

��

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.6
Open Source Software

Evaluation
Karin van den Berg

FreelancePHP, The Netherlands

aBStract

If a person or corporation decides to use open
source software for a certain purpose, nowadays
the choice in software is large and still growing.
In order to choose the right software package
for the intended purpose, one will need to have
insight and evaluate the software package choices.
This chapter provides an insight into open source
software and its development to those who wish
to evaluate it. Using existing literature on open
source software evaluation, a list of nine evalu-
ation criteria is derived including community,
security, license, and documentation. In the second
section, these criteria and their relevance for open
source software evaluation are explained. Finally,
the future of open source software evaluation is
discussed.

IntroductIon

The open source software market is growing.
Corporations large and small are investing in

open source software. With this growth comes a
need to evaluate this software. Enterprises need
something substantial to base their decisions on
when selecting a product. More and more literature
is being written on the subject, and more will be
written in the near future.

This chapter gives an overview of the available
open source evaluation models and articles, which
is compounded in a list of unique characteristics
of open source. These characteristics can be
used when evaluating this type of software. For
a more in-depth review of this literature and the
characteristics, as well as a case study using this
information, see van den Berg (2005).

open Source Software
evaLuatIon LIterature

The name already tells us something. Open source
software is open—not only free to use but free to
change. Developers are encouraged to participate
in the software’s community. Because of this
unique process, the openness of it all, there is

 ��

Open Source Software Evaluation

far more information available on an open source
software package and its development process.
This information can be used to get a well-rounded
impression of the software. In this chapter we will
see how this can be done.

Though the concept of open source (or free
software) is hardly new, the software has only
in recent years reached the general commercial
and private user. The concept of open source
evaluation is therefore still rather new. There are
a few articles and models on the subject, however,
which we will introduce here and discuss more
thoroughly in the next section.

open Source maturity models

Two maturity models have been developed spe-
cifically for open source software.

The first is the Capgemini Expert Letter open
source maturity model (Duijnhouwer & Widdows,
2003). The model “allows you to determine if or
which open source product is suitable using just
seven clear steps.” Duijnhouwer and Widdows first
explain the usefulness of a maturity model, then
discuss open source product indicators and use these
in the model. The model steps start with product
research and rough selection, then uses the product
indicators to score the product and determine the
importance of the indicators, combining these to
make scorecards. Finally it ends with evaluation.

Second, there is the Navica open source matu-
rity model, which is used in the book Succeeding
with Open Source (Golden, 2005). This model uses
six product elements in three phases: assessing
element maturity, assigning weight factors, and
calculating the product maturity score.

open Source Software
evaluation articles

Aside from the two models, a number of articles on
open source software evaluation have been written.

Crowston et al. (2003) and Crowston, Annabi,
Howison, and Masango (2004) have published

articles in the process of researching open source
software success factors. In these articles, they
attempt to determine which factors contribute to
the success of open source software packages.

Wheeler’s (n.d.) How to Evaluate Open
Source/Free Software (OSS/FS) Programs defines
a number of criteria to use in the evaluation of
open source software, as well as a description of
the recommended process of evaluation. Wheeler
continues to update this online article to include
relevant new information.

Another article defining evaluation criteria for
open source software is Ten Rules for Evaluating
Open Source Software (Donham, 2004). This is a
point-of-view paper from Collaborative Consult-
ing, providing 10 guidelines for evaluating open
source software.

Finally, Nijdam (2003), in a Dutch article
entitled “Vijf Adviezen voor Selectie van OSS-
Componenten” (“Five Recommendations for
Selection of OSS Components”), gives recom-
mendations based on his own experience with
selecting an open source system.

Literature Summary

Table 1 summarizes the criteria derived from the
literature mentioned in the previous two sections
and how they are discussed.

evaLuatIng open
Source Software

The open source software market is in some
ways very different from the traditional software
market. One of the differences is that there is an
abundance of information available concerning
the software and its development process that
is in most cases not available for traditional
software.

The evaluation of traditional software is usu-
ally focused on the functionality and license cost
of the software. In the open source world, the

��

Open Source Software Evaluation

evaluation includes information from a number
of other resources, giving a well-rounded picture
of the software, its development, and its future
prospects.

Using the existing evaluation models and arti-
cles discussed in the previous section, an overview
is given here of the characteristics of open source
software relevant to software evaluation and the
information available on an open source software
project concerning these characteristics.

community

According to Golden (2005, p. 21), “One of the
most important aspects of open source is the
community.”

The user community for most open source
projects is the largest resource available. The
community provides developers, user feedback,
and ideas, and drives the project team. An active
community helps the project move forward. It also
shows the level of interest in the project, which can
provide a measurement of quality and compliance
with user requirements. A well-provided-for com-
munity also shows the team’s interest in the user,
allows the user to participate, and gives voice to
the user’s wishes and requirements.

The user community of an open source project
consists of the people that use the software and
participate in some way, from answering user
questions to reporting bugs and feature requests.
Users in the community sometimes cross the line
into the developer community, which is often a
line made very thin by encouraging participation
and making the developer community accessible
to anyone who is interested. In some cases, the
user and developer community interact fully in
the same discussion areas.

The community of an open source project is
very important because it is the community that
does most of the testing and provides quality
feedback. Instead of using financial resources
to put the software through extensive testing
and quality assurance (QA), like a proprietary
vendor will do, the open source projects have
the community as a resource. The more people
that are interested in a project, the more likely it
is that it will be active and keep going. A large
and active community says something about the
acceptance of the software. If the software was
not good enough to use, there would not be so
many people who cared about its development
(Duijnhouwer & Widdows, 2003).

Table 1.

Criterion Duijnhouwer and
Widdows (2003)

Golden
(2005)

Crowston et
al. (2004)

Wheeler,
(2005)

Donham
(2004) Nijdam (2003)

Community Y Y Team size and
activity level In support - Active groups

Release Activity - Activity level Activity level Maintenance - Active groups

Longevity Age Y - Y Maturity Version

License Y In risk - Y Y Y

Support Y Y - Y Y -

Documentation In ease of
deployment Y - In support Y -

Security Y In risk - Y Y -

Functionality Features in time Y - Y Y Y

Integration Y Y - In functionality In
infrastructure -

 ��

Open Source Software Evaluation

The community is mostly visible in terms of the
following (Crowston et al., 2004; Duijnhouwer &
Widdows, 2003; Golden, 2005; Nijdam, 2003):

• Posts: Number of posts per period and
number of topics

• Users: Number of users and the user-devel-
oper ratio in terms of the number of people
and number of posts; if only users post, the
developers are not as involved as they should
be

• Response time: If and how soon user ques-
tions are answered

• Quality: The quality of posts and replies;
are questions answered to the point, and are
the answers very short or more elaborate?
Is there much discussion about changes and
feature additions?

• Friendliness: How friendly members are
toward each other, especially to newcomers,
also known as “newbies”; the community
should have an open feel to it, encouraging
people to participate

The depth of conversations, as mentioned
in the fourth item, gives a good impression of
how involved the community is with the ongo-
ing development of the project. Much discussion
about the software, in a friendly and constructive
manner, encourages the developers to enhance
the software further. The community activity is
also reflected in other areas such as support and
documentation.

release activity

The activity level of a project consists of the com-
munity activity and the development activity. The
community was discussed above. The develop-
ment activity is reflected in two parts:

• The developer’s participation in the com-
munity

• The development itself—writing or changing
the source code

The latter activity is visible mostly in the re-
lease activity. All software projects release new
versions after a period of time. The number of
releases per period and their significance, meaning
how large the changes are per release (i.e., are there
feature additions or just bug fixes in the release),
illustrates the progress made by the developers.
This gives a good indication of how seriously the
developers are working on the software.

The open source repositories SourceForge1 and
FreshMeat2, where project members can

share files with the public, provide informa-
tion that could be useful to evaluate the release
activity (Wheeler, n.d.).

An open source project often has different
types of releases:

• Stable releases: These are the most im-
portant type for the end user. They are the
versions of software that are deemed suit-
able for production use with minimal risk
of failure.

• Development versions: These can have
different forms, such as beta, daily builds,
or CVS (Concurrent Version System) ver-
sions, each more up to date with the latest
changes. These versions are usually said to
be used “at your own risk” and are not meant
for production use because there is a higher
possibility of errors. A project that releases
new versions of software usually publishes
release notes along with the download that
list all the changes made in the software
since the previous release. Other than the
release notes, the project might also have a
road map, which usually shows what goals
the developers have, how much of these
goals are completed, and when the deadline
or estimated delivery date is for each goal.
Checking how the developers keep up with

��

Open Source Software Evaluation

this road map shows something about how
well the development team can keep to a
schedule.

Though a project might stabilise over time as
it is completed, no project should be completely
static. It is important that it is maintained and
will remain maintained in the future (Wheeler,
n.d.).

The project’s change log can give the following
information (Chavan, 2005):

• The number of releases made per period
of time: Most projects will make several
releases in a year, sometimes once or twice
a month. A year is usually a good period in
which to count the releases.

• The significance of each release: The
change log or release notes explain what has
changed in the release. These descriptions
are sometimes very elaborate, where every
little detail is described, and sometimes very
short, where just large changes are listed.
A good distinction to make is whether the
release only contains bug fixes or also con-
tains enhancements to features or completely
new features. One thing to keep in mind
here is that fewer, more significant releases
is in most cases better than a large number
of less significant releases leading to the
same amount of change over time since the
users will have to upgrade to new versions
each time a release is made, which is not
very user friendly. There should be a good
balance between the number of releases and
the releases’ significance. If the project is
listed on SourceForge and/or FreshMeat,
some of the release activity information is
available there.

Longevity

The longevity of a product is a measure of how
long it has been around. It says something about

a project’s stability and chance of survival. A
project that is just starting is usually still full of
bugs (Golden, 2005). The older a project, the less
likely the developers will suddenly stop (Duijn-
houwer & Widdows, 2003). However, age is not
always a guarantee of survival. First of all, very
old software may be stuck on old technologies
and methods, from which the only escape is to
completely start over. Some software has already
successfully gone through such a cycle, which is
a good sign in terms of maturity. One thing that
needs to be taken into account when products are
not very young is whether or not there is still an
active community around it.

The age and activity level of a project are often
related. Young projects often have a higher activ-
ity level than older ones because once a project
has stabilised and is satisfactory to most users,
the discussions are less frequent and releases are
smaller, containing mostly bug and security fixes.
This does not mean that the activity should ever
be slim to none. As mentioned before, no project
is ever static (Wheeler, n.d.). There is always
something that still needs to be done.

Longevity is checked using the following
criteria (Golden, 2005; Nijdam, 2003):

• Age of the product: The date of the first
release

• Version number: A 0.x number usually
means the developers do not think the soft-
ware is complete or ready for production use
at this time.

If the project is very old, it is worthwhile to
check if it has gone through a cycle of redesign,
or if it is currently having problems with new
technology.

Keep in mind that the version number does
not always tell the whole story. Some projects
might go from 1.0 to 2.0 with the same amount
of change that another project has to go from 1.0
to 1.1. The fast progression of the version number
might be used to create a false sense of progress.

 ��

Open Source Software Evaluation

Other software products are still in a 0.x version
even after a long time and after they are proved
suitable for production use (Nijdam, 2003).

License

The licenses in the open source world reflect
something of the culture. The most important
term in this context is “copyleft,” introduced by
Richard Stallman, which means that the copyright
is used to ensure free software and free deriva-
tive works based on the software (Weber, 2004).
In essence, a copyleft license obligates anyone
who redistributes software under that license in
any way or form to also keep the code and any
derivative code under the license, thus making
any derivatives open source as well.

The most well-known example of a copyleft
license is the GNU GPL (General Public License;
Weber, 2004). This is also one of the most used
licenses. On SourceForge, a large open source
public repository where over 62,000 projects
reside, almost 70%3 of projects use the GNU
GPL as their license. There are some large and
well-known products that do not use SourceForge,
and some of these have their own license, such as
Apache, PHP, and Mozilla (Open Source Initia-
tive [OSI], 2005).

Because copyleft in the GNU GPL is very
strong, an additional version was made called the
LGPL (library GPL, also known as lesser GPL),
which is less restrictive in its copyleft statements,
allowing libraries to be used in other applications
without the need to distribute the source code
(Weber).

A non-copyleft license that is much heard of
is the BSD (Berkeley source distribution) license.
It has been the subject of much controversy and
has had different versions because of that. Com-
ponents that are licensed under the BSD are used
in several commercial software applications,
among which are Microsoft products and Mac
OS X (Wikipedia, 2005a). The license of the
software in use can have unwanted consequences

depending on the goal of the use. If the user plans
to alter and redistribute the software in some way
but does not want to distribute the source code,
a copyleft license is not suitable. In most cases,
however, the user will probably just want to use
the software, perhaps alter it to the environment
somewhat, but not sell it. In that case, the license
itself should at least be OSI approved and prefer-
ably well known. The license should fit with the
intended software use.

As just mentioned, the license should prefer-
ably be an OSI-approved license. If it uses one of
the public licenses, the better known the license,
the more can be found on its use and potential
issues (Wheeler, n.d.).

Support

There are two types of support for a software
product:

• Usage support: The answering of questions
on the installation and use of the software

• Failure support or maintenance: The
solving of problems in the software

Often, the two get mixed at some level because
users do not always know the right way to use
the product. Their support request will start as a
problem report and later becomes part of usage
support (Golden, 2005).

The way support is handled is a measure of
how seriously the developers work on the soft-
ware (Duijnhouwer & Widdows, 2003). One way
to check this is to see if there is a separate bug
tracker4 for the software and how actively it is
being used by both the developers and the users.
When the developers use it but hardly any users
seem to participate, the users may not be pointed
in the right direction to report problems. Aside
from community support, larger or more popu-
lar projects may have paid support options. The
software is free to use, but the user has the option
to get professional support for a fee, either on a

��

Open Source Software Evaluation

service-agreement basis where a subscription fee
is paid for a certain period of time, or a per-incident
fee for each time the user calls on support. The
project leaders themselves may offer something
like this, which is the case for the very popular
open source database server MySQL (2005).

There are companies that offer specialised
support for certain open source software. This
is called third-party support. For example, at the
Mozilla support Web page, it can be seen that
DecisionOne offers paid support for Mozilla’s
popular Web browser FireFox, the e-mail client
Thunderbird, and the Mozilla Suite (Mozilla,
2005). The fact that paid support exists for an
open source product, especially third-party sup-
port, is a sign of maturity and a sign the product
is taken seriously.

Support for open source software is in most cas-
es handled by the community. The community’s
support areas are invaluable resources for solving
problems (Golden, 2005). Mature products often
have paid support options as well if more help or
the security of a support contract is required.

community Support

The usage support is usually found in the com-
munity. Things to look for include the following
(Golden, 2005):

• Does the program have a separate forum

or group for asking installation- and usage-
related questions?

• How active is this forum?
• Are developers participating?
• Are questions answered adequately?
• Is there adequate documentation (see the

documentation section)?

Responses to questions should be to the point
and the responders friendly and helpful. In the
process of evaluating software, the evaluator will
probably be able to post a question. Try to keep to
the etiquette, where the most important rule is to

search for a possible answer on the forum before
posting a question and to given enough relevant
information for others to reproduce the problem
(Golden, 2005; Wheeler, n.d.).

The way the community is organised influ-
ences the community support’s effectiveness. A
large project should have multiple areas for each
part of the project, but the areas should not be
spread to thin. That way, the developers that are
responsible for a certain part of the project are
able to focus on the relevant area without getting
overwhelmed with a large amount of other ques-
tions. If the areas are too specialised and little
activity takes place in each, not enough people
will show interest and questions are more likely
to remain unanswered.

Failure support within the project is often
handled by a bug tracker by which problems are
reported and tracked. Statistical studies have
shown that in successful projects, the number of
developers that fix bugs in open source software
is usually much higher than the number of devel-
opers creating new code (Mockus, Rielding, &
Herbsleb, 2000).

paid Support

Paid support might be available from the project
team itself (Golden, 2005). There may have been
people who have given their opinion about the
quality of this support.

One of the strong signs of the maturity of open
source software is the availability of third-party
support: companies that offer commercial support
services for open source products (Duijnhouwer
& Widdows, 2003). Some companies offer service
contracts, others offer only phone support on a
per-incident basis. Check for paid support options
whether they will be used or not (Duijnhouwer
& Widdows). How the situation may be during
actual use of the software is not always clear and
it can give a better impression of the maturity of
the software.

 ��

Open Source Software Evaluation

documentation

There are two main types of documentation
(Erenkratz & Taylor, 2003):

• User documentation
• Developer documentation

User documentation contains all documents
that describe how to use the system. For certain ap-
plications, there can be different levels in the user
documentation, corresponding with different user
levels and rights. For example, many applications
that have an administrator role have a separate
piece of documentation for administrators. Ad-
ditionally, there can be various user-contributed
tutorials and how-tos, be it on the project’s Web
site or elsewhere. The available documentation
should be adequate for your needs. The more
complex the software, the more you may need
to rely on the user documentation.

The other main type of documentation, which
plays a much larger role in open source software
than in proprietary applications, is developer
documentation. A voluntary decentralised distri-
bution of labour could not work without it (Weber,
2004). The developer documentation concerns
separate documents on how to add or change the
code, as well as documentation within the source
code by way of comments. The comments usu-
ally explain what a section of code does, how to
use and change it, and why it works like it does.
Though this type of documentation may exist for
proprietary software, it is usually not public.

If it is possible that you may want to change
or add to the source code, this documentation is
very valuable. A programmer or at least someone
with some experience in programming will be
better able to evaluate whether this documenta-
tion is set up well, especially by the comments in
the source code. It is a good idea to let someone
with experience take a look at this documentation
(n.d., 2005).

A third type of documentation that is often
available for larger server-based applications is
maintainer documentation, which includes the
install and upgrade instructions. These need to be
clear, with the required infrastructure and the steps
for installing the software properly explained. This
documentation is needed to set up the application.
For this type, again, the complexity of the applica-
tion and its deployment determines the level of
documentation that is needed. Documentation is
often lagging behind the status of the application
since it is often written only after functionality
is created, especially user documentation (Scac-
chi, 2002). It is a good idea to check how often
the documentation is updated, and how much the
documentation is behind compared to the current
status of the software itself.

The documentation for larger projects is often
handled by a documentation team. A discussion
area may exist about the documentation, giving
an indication of the activity level of that team.

Security

Security in software, especially when discussing
open source software, has two sides to it. There
are people who believe security by obscurity is
better, meaning that the inner workings of the
software are hidden by keeping it closed source,
something that open source obviously does not
do. The advocates of security by obscurity see the
openness of open source software as a security
hazard. Others argue that the openness of open
source actually makes it safer because vulner-
abilities in the code are found sooner. Open source
software gives both attackers and defenders great
power over system security (Cowan, 2003; Hoep-
man & Jacobs, 2005).

Security depends strongly on how much at-
tention the developers give to it. The quality of
the code has much to do with it, and that goes
for both proprietary and open source software.
If the code of proprietary software is not secure,
the vulnerabilities may still be found. There are

�0

Open Source Software Evaluation

plenty of examples where this occurs, such as the
Microsoft Windows operating system (OS). The
vulnerabilities are often found by hackers who try
to break the software, sometimes by blunt force or
simple trial and error. In this case, a vulnerability
might get exploited before the vendor knows about
it. The attack is the first clue in that case. The
open source software’s vulnerabilities, however,
could be found by one of the developers or users
just by reviewing the code; he or she can report
the problem so it can be fixed (Payne, 2002). It
is important that the developers take the security
of their software seriously and respond swiftly to
any reported vulnerabilities.

There are various security advisories to check
for bugs in all types of software that make it
vulnerable to attacks. A couple of well-known
advisories are http://www.securityfocus.com and
http://www.secunia.com. Keep in mind that more
popular software will have a higher chance of
having vulnerability reports, so the mere lack of
reports is no proof of its security. On the project’s
Web site, it can be seen, for instance in the release
notes, how serious the project is about security.

functionality

Though functionality comparison is not specific
to open source software evaluation and is properly
covered in most traditional software evaluation
models, there are some points to take into con-
sideration. Open source software often uses the
method described by the phrase “release early and
often” (Raymond, 1998). This method enables
faster error correction (Weber, 2004) by keeping
the software up to date as much as possible. It also
encourages people to contribute because they see
the result of their work in the next release much
sooner (Raymond). However, this often means that
the software is incomplete during the first releases,
at least more so than is customary with proprietary
software. Where vendors of proprietary software
will offer full functionality descriptions for their
software, open source projects might not have the

complete information on the Web site (Golden,
2005). Just like with documentation, the informa-
tion on the Web site might be lagging behind the
actual functionality. Other means of checking
the current functionality set might be needed.
Fortunately, open source software that is freely
available gives the added option of installing the
software to enable the full testing of the func-
tionality, an option that is mostly not available
with proprietary software, for which at most only
limited versions, in terms of functionality or time,
are given freely for trying it out.

One problem with open source projects is that
the documentation is not always up to date with
the latest software. Look beyond the feature list on
the Web site to find out what features the software
has. Two options are to query the developers and
ask the user community (Golden, 2005). Eventu-
ally the software itself should be investigated. If
it is a Web-based application, an online demo
might be available, though installing it on a test
environment could be useful because it also gives
insight on how well the software installs.

A list of functional requirements for the goal
of the software can be used to check if the needed
functionality is available. If such a list is not
given, there may be one available from technology
analyst organisations (Golden, 2005). It is wise
to make a distinction in the list between features
that are absolutely necessary, where the absence
would lead to elimination, and those that would
be a plus, which results in a higher score. If there
is something missing, there is always the option
to build it or have it built.

When comparing functionality, those features
that are part of the functional requirements should
take priority, but additional features may prove
useful later. The features used or requested by
the users in the future are not really predictable.
While evaluating the software, features may be
found in some of the candidates that are very
useful for the goal. These can be added to the
functional requirements.

 ��

Open Source Software Evaluation

Part of the functionality is localisation. The
languages to which the interface and documenta-
tion are translated are a sign of the global interest
taken in the software.

Integration

Duijnhouwer and Widdows (2003) mention three
integration criteria. These are most important
for software that is being used in collaboration
with other software, and for people who are plan-
ning on adapting the software to their use, such
as adding functionality or customising certain
aspects so that it fits better in the organisation’s
environment. The three criteria are discussed in
the next three subsections.

Modularity

Modularity of software means that the software
or part of the software is broken into separate
pieces, each with its own function. This type of
structure has the following advantages:

• Modular software is easier to manage (Gar-
zarelli, 2002; Mockus, Fielding, & Herbsleb,
2002).

• With a base structure that handles the mod-
ules well, people can easily add customised
functionality without touching the core soft-
ware.

• Modular software enables the selection of
the needed functionality, leaving out those
that are not necessary for the intended use.
This way, the software can be customised
without the need for a programmer.

• Modular software can be used in commercial
applications. By making software modular,
not everything needs to be given away as
open source. It is can be used to give away
only parts of software as open source while
the add-on modules are sold as proprietary
software (Duijnhouwer & Widdows, 2003).
This is also called the razor model, as in

giving away the razor for free and charging
for the blade (Golden, 2005).

Evidence of a modular structure can often be
found in several places, such as the source code,
the developer documentation, or the download
section, where modules might be available for
download separate from the core software.

Standards

In the software market, more and more open
standards emerge to make cooperation between
software easier (Golden, 2005). If the software
vendors use these standards in their software, it
makes it easier to communicate between differ-
ent software packages, and to switch between
software packages. In some industries, standards
are far more important than in others. For some
software, there may not even be an applicable
standard.

The use of current and open standards in open
source software is a sign of the software’s maturity
(Duijnhouwer & Widdows, 2003). The feature list
of the software usually lists what standards are
used and with which the software complies.

Collaboration with Other Products

Closely connected to standards is the collabora-
tion with other products. As mentioned before, not
every software type has applicable standards, and
sometimes the formal standards are not used as
much as other formats. Examples of such formats
are the Microsoft Word document format, and
Adobe’s PDF (portable document format). The
office suite OpenOffice.org (2005) has built-in
compatibility for both formats.

Software Requirements

Most software is written for a specific OS, for
example, Microsoft Windows or Linux (Wheeler,
n.d.). Certain types of software also rely on other

��

Open Source Software Evaluation

software, such as a Web server or a database. The
requirements of the software will state which
software and which versions of that software are
compatible. If these requirements are very specific,
it could lead to problems if they are incompatible
with the organisation’s current environment.

the future of open Source
Software evaLuatIon

open Source Software
evaluation Literature

More is being written on open source software
evaluation at the time of writing. For example,
another model called the business readiness rating
(OpenBRR, 2005), aimed at open source software,
was released recently. The research of Crowston
and others is still ongoing, so there will be more
results in the near future to include in the open
source software evaluation process. Given how
recent the rest of the literature discussed in this
chapter is, it is likely that more will be published
on the subject in the next few years.

the future of open Source Software

Open source software is being used increasingly
by corporations worldwide. There is now some
literature available to help with the evaluation of
open source software, and the number of articles
and models is increasing. With this growth in
the field comes more attention from companies,
especially on the enterprise level, which will
cause more demand for solid evaluation models.
Because open source software and the process
around it provide much more information than
traditional software, there is certainly a need for
such models.

This literature will help justify and solidify
the position of open source software evaluation
in a corporate setting, giving more incentive
to use open source software. Most likely, more

companies will be investing time and money in its
development, like we are seeing today in examples
such as Oracle investing in PHP and incorporating
this open source Web development language in
its products (Oracle, 2005), and Novell’s acqui-
sition of SUSE Linux (Novell, 2003). The open
source software evaluation literature can help IT
managers in adopting open source.

concLuSIon

The field of open source software evaluation is
growing, and with that growth more attention
is gained from the large enterprises. With this
attention comes more demand for evaluation
models that can be performed for these corpora-
tions, which will give more growth to the open
source software market as well. In this chapter,
an overview is given of the current literature and
the criteria derived from that literature that can
be used in open source software evaluation. For
each of the criteria—community, release activ-
ity, longevity, license, support, documentation,
security, and functionality—this chapter explains
why it is important in the market and what to do
to evaluate it. This information can be used on
its own or in conjunction with more traditional
evaluation models and additional information
referenced here by companies and individuals
that wish to evaluate and select an open source
software package. It helps to give insight into the
open source software sector.

referenceS

Chavan, A. (2005). Seven criteria for evaluating
open source content management systems. Linux
Journal. Retrieved August 9, 2005, from http://
www.linuxjournal.com/node/8301/

Cowan, C. (2003). Software security for open
source systems. Security & Privacy Magazine,
1(1), 38-45.

 ��

Open Source Software Evaluation

Crowston, K., Annabi, H., & Howison, J. (2003).
Defining open source software project success.
In Twenty-Fourth International Conference on
Information Systems, International Conference
on Software Engineering (ICIS 2003) (pp. 29-33).
Retrieved March 30, 2005, from http://opensource.
mit.edu/papers/crowstonannabihowison.pdf

Crowston, K., Annabi, H., Howison, J., & Ma-
sango, C. (2004). Towards a portfolio of FLOSS
project success measures. Collaboration, Conflict
and Control: The Fourth Workshop on Open
Source Software Engineering, International
Conference on Software Engineering (ICSE
2004), 29-33. Retrieved March 30, 2005, from
http://opensource.ucc.ie/icse2004/Workshop_on_
OSS_Engineering_2004.pdf

Donham, P. (2004). Ten rules for evaluating
open source software. Collaborative Consulting.
Retrieved August 8, 2005, from http://www.col-
laborative.ws/leadership.php?subsection=27

Duijnhouwer, F., & Widdows, C. (2003). Cap-
gemini open source maturity model. Retrieved
February 12, 2006, from http://www.seriouslyo-
pen.org/nuke/html/modules/Downloads/osmm/
GB_Expert_Letter_Open_Source_Maturity_
Model_1.5.3.pdf

Erenkratz, J. R., & Taylor, R. N. (2003). Supporting
distributed and decentralized projects: Drawing
lessons from the open source community (Tech.
Rep.). Institute for Software Research. Retrieved
August 9, 2005, from http://www.erenkrantz.
com/Geeks/Research/Publications/Open-Source-
Process-OSIC.pdf

Garzarelli, G. (2002, June 6-8). The pure con-
vergence of knowledge and rights in economic
organization: The case of open source software
development. Paper presented at the DRUID
Summer Conference 2002 on Industrial dynam-
ics of the new and old economy—Who embraces
whom?, Copenhagen.

Golden, G. (2005). Succeeding with open source.
Boston: Addison-Wesley Pearson Education.

Hoepman, J., & Jacobs, B. (2005). Software secu-
rity through open source (Tech. Rep.). Institute for
Computing and Information Sciences, Radboud
University Nijmegen. Retrieved August 9, 2005,
from http://www.cs.ru.nl/~jhh/publications/oss-
acm.pdf

Mockus, A., Fielding, R. T., & Herbsleb, J. (2000).
A case study of open source software develop-
ment: The Apache Server. In Proceedings of
the 22nd International Conference on Software
Engineering (ICSE 2000). Retrieved on March
30, 2005, from http://opensource.mit.edu/papers/
mockusapache.pdf

Mockus, A., Fielding, R. T., & Herbsleb, J. (2002).
Two case studies of open source software develop-
ment: Apache and Mozilla. ACM Transactions on
Software Engineering and Methodology, 11(3),
309-346.

Mozilla. (2005). Mozilla.org support. Retrieved
February 16, 2005, from http://www.mozilla.
org/support/

MySQL. (2005). MySQL support Web site. Re-
trieved February 16, 2005, from http://www.
mysql.com/support/premier.html

Nijdam, M. (2003). Vijf adviezen voor selectie van
oss-compontenten. Informatie: Maandbladvoor
Informatieverwerking, 45(7), 28-30.

Novell. (2003). Novell announces agreement to
acquire leading enterprise Linux technology
company SUSE LINUX. Retrieved August 8,
2005, from http://www.novell.com/news/press/
archive/2003/11/pr03069.html

OpenBRR. (2005). Business readiness rating
for open source: A proposed open standard to
facilitate assessment and adoption of open source
software (RFC1). Retrieved August 10, 2005,
from http://www.openbrr.org/docs/BRR_white-
paper_2005RFC1.pdf

��

Open Source Software Evaluation

OpenOffice.org. (2005). OpenOffice.org writer
product information. Retrieved August 10, 2005,
from http://www.openoffice.org/product/writer.
html

Open Source Initiative (OSI). (2005). Open Source
Initiative: Open source licenses. Retrieved August
9, 2005, from http://opensource.org/licenses/

Oracle. (2005). Oracle and Zend partner on
development and deployment foundation for
PHP-based applications. Retrieved February
12, 2006, from http://www.oracle.com/corporate/
press/2005_may/05.16.05_oracle_zend_part-
ner_finalsite.html

Payne, C. (2002). On the security of open source
software. Information Systems Journal, 12(1),
61-78.

Raymond, E. S. (1998). The cathedral and the
bazaar. First Monday, 3(3). Retrieved March 30,
2005, from http://www.firstmonday.org/issues/is-
sue3_3/raymond/

Scacchi, W. (2002). Understanding the require-
ments for developing open source software sys-
tems. In IEEE Proceedings: Software, 149, 24-29.
Retrieved March 30, 2005, from http://www1.ics.
uci.edu/wscacchi/Papers/New/Understanding-
OS-Requirements.pdf

Van den Berg, K. (2005). Finding open options: An
open source software evaluation model with a case
study on course management system. Unpublished
master’s thesis, Tilburg University, Tilburg, The
Netherlands. Retrieved August 30, 2005, from
http://www.karinvandenberg.nl/Thesis.pdf

Weber, S. (2004). The success of open source.
Cambridge, MA: Harvard University Press.

Wheeler, W. (n.d.). How to evaluate open source/
free software (OSS/FS) programs. Retrieved
February 17, 2005, from http://www.dwheeler.
com/oss_fs_eval.html

key termS

Community: A group of people with shared
interests that interact. In case of open source soft-
ware, the community is the group of developers
and users that come together, mostly on a Web site,
to discuss, debug, and develop the software.

Documentation: The documents that are
associated with a piece of software. There is
usually user documentation, in the form of help
files, tutorials, and manuals, and there can be
developer documentation, such as programming
guidelines and documents explaining the structure
and workings of the software (source code). In
some cases there is administrator documentation,
which explains how to install and configure the
software. The latter is more important for large
pieces of software, where one installation will be
used by many users, such as Web applications.

License: An agreement that is attached to
the use of a product. In case of software, the
software license agreement defines the terms
under which you are allowed to use the software.
For open source software, there are a number of
common licenses, not bound to a specific piece
of software, that can be used for almost any type
of open source software. These licenses are well
known so users and developers usually know the
conditions of these licenses.

Maturity Model: Not to be confused with
the capability maturity model (CMM), a maturity
model as discussed in this chapter is a model that
can be used to assess the maturity of a software
package, evaluating the software using several
criteria.

Software Longevity: The life expectancy of
software, measured by various factors among
which is its age.

Software Release Activity: The number and
significance of releases that are made for a cer-
tain software package. A release can be a minor

 ��

Open Source Software Evaluation

change such as a bug fix, or a major change such
as added functionality.

Software Security: How well a piece of soft-
ware is built in terms of vulnerabilities and defense
against them. Any software will have some type of
security hole in it that allows a person, often with
hostile intentions, to break into the software and
use it for purposes that are unwanted. It is neces-
sary for developers to minimize these holes and fix
them if they are discovered. In case of open source
software, because the source is public, the users
may help in discovery by examining the source
code. This, however, also means that a person
with hostile intentions can also find these holes
by examining the source code. Thus, it is always
important to keep a close eye on security.

endnoteS

1 http://www.sourceforge.net
2 http://www.freshmeat.net
3 Established using the SourceForge Software

Map on April 20, 2005, at http://sourceforge.
net/softwaremap/trove_list.php?form_
cat=13

4 A bug tracker is an application, often Web
based, through which the users can report
problems with the software, the developers
can assign the bug to someone who will
handle it, and the status of the bug can be
maintained. Bugzilla is one such package
that is often used for this purpose.

This work was previously published in Handbook of Research on Open Source Software: Technological, Economic, and Social
Perspectives, edited by K. St.Amant and B. Still, pp. 197-210, copyright 2007 by Information Science Reference (an imprint
of IGI Global).

��

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.7
On the Role of Public
Policies Supporting

Free/Open Source Software
Stefano Comino

University of Trento, Italy

Fabio M. Manenti
University of Padua, Italy

Alessandro Rossi
University of Trento, Italy

aBStract

Governments’ interest in free/open source soft-
ware is steadily increasing. Several policies aimed
at supporting free/open source software have
been taken or are currently under discussion all
around the world. In this chapter, we review the
basic (economic) rationales for such policy inter-
ventions and we present some summary statistics
on policies taken within the European countries.
We claim that in order to evaluate correctly the
consequences of such interventions one has to
consider both the role and the administrative level
at which such decisions are taken as well as the
typology of software that is involved. Moreover,
we argue that the level playing field cannot be
taken for granted in software markets. Therefore,
non-intrusive public policies that currently prevail
at the European level in terms, for instance, of
the promotion of open standards or in terms of

campaigns aimed at informing IT decision-mak-
ers, are likely to be welfare enhancing.

IntroductIon

Governments’ interest in free/open source (F/OS)
software is steadily increasing. In Europe, this
interest has become visible in the Lisbon Strategy
and in the corresponding eEurope Action Plans
2002 and 2005 approved by the European Com-
mission where it has been clearly stated the key
role of open source software and open standards
in pursuing the general objective of giving all
citizens the opportunity to participate in the global
information society.1

All over the world governments are considering
various policies to support F/OS software; these
policies go from the provision of “best practices”
for the usage of open source to information cam-

 ��

On the role of Public Policies Supporting Free/Open Source Software

paigns aimed at making markets participants
aware of all software alternatives, from simple
expressions of preference towards F/OS software
to large scale adoption of open source solutions
in governments’ offices and schools.

The role of the public sector in the software
market is of primary importance. Governments
not only set the legal and regulatory framework
where economic agents interact, but they are
also big software purchasers;2 this double role
makes governments key players in determining
the future evolution of software markets and it
is therefore of crucial interest to understand both
the motivations and the effects of governments’
interventions in this sector.

This chapter critically reviews the main ar-
guments in favor or against public intervention
supporting F/OS; we also provide some empirical
evidence about the various public interventions
that are already in place in Europe. The chapter
is structured in three parts: in the first part, we
provide a general analytical framework; public
interventions may occur at different administra-
tive levels (i.e., from municipalities to national or
supra-national level), and they may have different
motivations. These complexities have not received
enough attention in the previous analyses on public
interventions towards F/OS; the aim of this section
is to offer a possible taxonomy for governmental
policies in the software market and to discuss
the many rationales for intervention but also the
counterarguments that often have been put for-
ward. In the following section, we present some
evidence concerning the main public initiatives
in Europe. Rather than focusing on any specific
case study, we have collected information from
the European IDABC, the program documenting
the major initiatives supporting F/OS within the
European Union. In this way, we have been able
to draw some general considerations on the mo-
tivations and the characteristics of governments
interventions implemented all across the EU. The
subsequent section concludes by bridging the
theoretical discussion with the empirical analysis.

We claim that, if one considers that the largest
share of the software market is represented by
self-developed or customized products, the exist-
ing literature has placed too much emphasis on
packaged software and arguments against public
support of F/OS might be improperly grounded.
Moreover, we believe that the level playing field
cannot be taken for granted in software markets.
Therefore, non-intrusive public policies that cur-
rently prevail at the European level in terms, for
instance, of the promotion of open standards or in
terms of campaigns aimed at informing IT decision
makers, are likely to be welfare enhancing.

Background: a generaL
framework

It is useful to start our analysis by providing a
general framework for discriminating the large
heterogeneity of public interventions in the
software market. In particular, we claim that, in
order to judge correctly rationales, motivations,
and consequences of public interventions, it is
important to distinguish between the various
roles played by policy makers and the various
categories of software involved. We argue that
many existing contributions, both in the scholarly
and in the practitioners’ debate, have not clearly
taken into account these distinctions.

Public administrations, institutions, and
governments play a double role in the software
industry. On the one side, being big spenders for
software licenses and software development, their
adoption/use decisions represent a significant
share of the demand thus having a major impact on
market equilibrium. On the other side, by acting as
legislators and regulators, governments do in vari-
ous ways determine the evolution of the market;
for instance, it is quite evident that the legislation
towards intellectual property rights, either based
on strong patent protection as in the U.S. or on
weaker copyright legislations as it is within the
EU, has a major influence on the functioning of

��

On the role of Public Policies Supporting Free/Open Source Software

the market and the diverging experiences on the
two sides of the Atlantic stand as a clear example
of this role. Similarly, as we discuss later in the
chapter, governments frequently intervene man-
dating the adoption of open standards/interfaces;
these policies are usually aimed at promoting
compatibility and interoperability between dif-
ferent software platforms, thus creating a level
playing field between different competitors; this
kind of intervention clearly affects the efficiency
of the market and therefore suggests a regulatory
intention of the proponents.3

Obviously, it is often difficult to disentangle
interventions of public authorities as adopters/us-
ers from those motivated on regulatory scopes;
being large users, the decision to adopt a certain
software package taken by public bodies affects
the dynamic evolution of the industry and the
equilibrium outcome, thus having regulatory
consequences on the overall functioning of the
market.

Irrespectively of the role played by a public
administration, interventions may produce differ-
ent consequences depending on the nature of the
product involved. Software is not a commodity
and the industry is extremely heterogeneous;
indeed, the vast majority of software is either
self-developed or custom while packaged soft-
ware represents a minor share of the market.4
The structure, the players, and the dynamics of

mass-market and custom segments of the software
industry are very different as well as different
are likely to be the effects induced by the various
public interventions.

In Table 1 we provide four examples of inter-
ventions distinguishing among different roles of
public administrations and different typologies
of software: three of these interventions are
directly related to the promotion of F/OS, while
the fourth refers to the well-known Microsoft
European antitrust case. This last example relates
to the F/OS world since, as a consequence of the
antitrust action, Microsoft has recently announced
its decision to allow access to some parts of the
source code of its operating system.5

rationales for Intervention:
review of the Literature

The literature on F/OS software in public admin-
istrations is quite substantial. Supporters of F/OS
software have mainly focused on adoption of such
technologies in the public sector and have based
their arguments on technical, cost-efficiency or
political-idealistic grounds. Regulatory scopes
and therefore those rationales based on the con-
sequences of F/OS public adoption on the overall
functioning of the market have been receiving a
much more limited attention by this stream of
research.

Conversely, most of the critical voices in this

Adoption/Development Market Regulation

Custom

August 2005: the French Ministry of Foreign
Affairs starts developing an open source
architecture in order to integrate its computing
system.6

October 2004: the Belgian administration published its
white book concerning the use of open standards and open
specifications for public sector purchased software.7

Packaged

September 2004: the Education Council of
Castilla - La Mancha signed an agreement with
Sun Microsystems to distribute Star Office 6.0
to the region’s schools.8

EU’s 2004 antitrust decision: Microsoft is required to
disclose complete and accurate interface documentation
which would allow non-Microsoft work group servers to
achieve full interoperability with Windows PCs and servers.
This will enable rival vendors to develop products that can
compete on a level playing field in the work group server
operating system market.9

Table 1. Examples of public interventions supporting F/OS or regulating the market10

 ��

On the role of Public Policies Supporting Free/Open Source Software

debate have warned against detrimental conse-
quences of both direct support/intervention and
adoption of F/OS by public administrations on
market performance.

In what follows, we briefly summarize the
debate on F/OS software in the public sector; we
devote the first subsection to provide a general
overview of the most frequent motivations that
have been proposed to justify public support to-
wards open source. In the second subsection we
look at the issue from a more critical viewpoint and
we present the (often) skeptical view held by some
economists and closed source practitioners.

Why Supporting F/OS?

Advocates of the F/OS movement put forward sev-
eral rationales for public policies in the software
market. Leaving aside pure idealistic-philosophi-
cal motives,11 governments should support F/OS
because of its intrinsic superiority with respect
to closed source software. F/OS is considered to
outperform proprietary software in terms of, for
instance, higher reliability, security, flexibility,
and maintainability of the code.12 These superior
features stem both from the organizational mode
of F/OS which is characterized by the presence
of a community of developers that continuously
reviews the source code and fixes possible bugs,
as well as from the fact that the availability of
the source code makes it possible for the user
to adapt the software to her/his own personal
needs and to check every possible defect. Cost-
efficiency is a second common rationale for policy
interventions which is especially important for
those public administrations that are pressured by
budget concerns. The public sector would benefit
from F/OS because of a number of reasons: net
savings due to the reduced or non-existing licens-
ing fees, the opportunity of freely contracting
with software developers for subsequent code
maintenance/upgrade without being locked
into the relationship with the initial provider,
or the possibility of profiting from economies

of reuse/collaborative development.13 Similarly,
a further beneficial effect would follow from a
more efficient employment of public resources
that would be shifted from license costs towards
human capital investments.

With respect to the issue of innovation dy-
namics in the software industry, F/OS advocates
also stress the importance and benefits of public
intervention. Open source licenses guarantee the
availability of the source code and the same legal
rights as those of the original developer to every
individual who is interested in a certain software
product. This wide availability of the “updated
state-of-art,” within an industry characterized by
cumulative generation of knowledge, is perceived
to be of crucial importance to spur innovation. In
this respect, Varian and Shapiro (2003) argue that,
being typically based on open interfaces, F/OS
encourages third-party innovation in terms of
development of, for instance, adds-on and comple-
mentary products.14 Similarly, Benkler (2002)
considers self-organization in the distributed peer
production model more efficient in “acquiring
and processing information about human capital
available to contribute to information production
projects” than traditional institutions, such as
markets and hierarchies. Henkel and von Hippel
(2004) push this argument further, claiming that
“user innovation,” a fundamental trait in F/OS
software development, is welfare enhancing.

From the national perspective, those countries,
whose software industry is lagging behind or is
not competitive in the international markets, may
consider public support to F/OS a viable way to
cultivate a domestic software industry, therefore
reducing their dependency from foreign suppli-
ers; this rationale for public intervention seems
to be ranked particularly high in the agenda of
both emerging15 and developed16 countries. Var-
ian and Shapiro (2003) sponsor this opinion and
emphasize that the GNU/Linux operating system
is “an open platform on which commercial or
open source applications can be built, thereby
spurring the development of a robust domestic

�0

On the role of Public Policies Supporting Free/Open Source Software

industry.”17

Another common motivation for intervening
in support of the F/OS movement is the stimulus
of competition in the software market; this motive
seems particularly relevant for those segments
of the market characterized by the presence of
dominant firms such as in the packaged software
segment18 and, more generally, in software pro-
curement markets where dominant proprietary
systems tie users to single suppliers, thus restrict-
ing competition.19

A More Critical View

During the last few years, several economists and
other scholars have scrutinized the possible role
of public policies in support of F/OS software.
Apart from some relevant exceptions, the majority
of authors seem to be rather skeptical about the
welfare benefits that would accrue from govern-
ments directly stimulating F/OS.20 One leading
argument is that open source has emerged and, in
many cases, has been extremely successful even
without any intervention in place; therefore, there
seems to be no need for public policies in order
for F/OS to flourish. On top of that, focusing on
closed source software, many authors claim that
there is no clear evidence of significant failures in
the software market and, consequently, there is no
urge for governments’ intervention. Evans (2002)
and Evans and Reddy (2002) point out that the
software industry is highly competitive21 and also
its performances in terms of growth, productivity,
and R&D expenditures have been impressively
high.22 In other terms, software markets appear to
be an example of well-functioning markets and,
therefore, public funding to stimulate the emer-
gence of alternatives to closed source software
are prone to pick the “wrong winner.” Moreover,
a strong support to F/OS software may seriously
undermine the incentives of commercial firms to
innovate or to improve the quality of their software
(Schmidt & Schnitzer, 2003).

One of the main arguments in favor of F/OS

is that it guarantees to public administrations sig-
nificant reductions in software expenses; various
authors point out that cost savings obtainable by
adopting F/OS rather than proprietary software
are by far smaller that those expected. The licens-
ing fees represent only a minor part of software
costs and a meaningful comparison between F/OS
and commercial software has to be done in terms
of the total cost of ownership (TCO) which also
includes user training, technical support, main-
tenance, and possible upgrades of the software.
On these grounds, the overall cost advantage of
F/OS is less evident.23

The higher degree of innovativeness that,
according to supporters, characterizes the F/OS
development mode is also a strongly debated
issue. Smith (2002) acknowledges the brilliant
performances of proprietary software companies
in terms of R&D expenditures and resulting in-
novation and declares himself rather skeptical
about F/OS being able to replicate such figures.24
Evans (2002) and Evans and Reddy (2002) go even
further and claim that the theoretical argument
according to which open source implies more
innovation completely lacks of solid empirical
evidence, given that many successful F/OS soft-
ware projects draw strong inspiration from already
existing closed source counterparts.

This discussion reveals a widespread skepti-
cism among economists and closed source advo-
cates about direct government policies in favor
of F/OS software; nonetheless, there is a general
consensus on the need of a broader set of inter-
ventions that somehow ensure the level playing
field in the software market. In particular, various
authors are making strong arguments against
the current system of protection of intellectual
property rights. A long series of decisions taken
by U.S. courts during the last twenty years has
extended software patent protection and has made
it easier for applicants to obtain patents even for
obvious inventions. These facts have induced large
firms to accumulate sizable numbers of software
patents, the so-called patent thickets, that can be

 ��

On the role of Public Policies Supporting Free/Open Source Software

strategically used in order to block competitors’
innovation. As Bessen (2002, p. 13) points out,
U.S. patent legislation may actually “sabotage
the otherwise healthy open source movement”
therefore potentially undermining competition
from F/OS solutions.25

Finally, an issue that has drawn the atten-
tion of several contributors relates to the public
funding of software R&D based on open source
solutions. In this case, the non-rival and non-ex-
cludable nature of software goods, largely due to
negligible replication costs, may induce policy
makers to sponsor F/OS software projects as a
means to increase social welfare.26 While there
is some consensus on the beneficial effects of
this kind of interventions, the usage of restrictive
licensing schemes (such as the GPL), is still very
much debated: the software developed within
publicly funded R&D projects should be made
available to the widest possible audience but
such restrictive licensing terms may undermine
private appropriation of publicly funded basic
science efforts.27 In particular, closed source firms
may be prevented from adopting and developing
complementary applications for software distrib-
uted under GPL-like licensing schemes. Lessig
(2002) suggests that governments should employ
a non-discriminatory approach: publicly funded
code should be released in the public domain or
employing non-restrictive open source licenses
(such as BSD-like ones).

maIn focuS of the chapter

major Interventions in the eu

All across Europe, governments and public agen-
cies are intervening in the software market in
various ways; since September 2003, the major
initiatives are registered on the Open Source
Observatory, a dedicated Web site compiled by
the European Commission within the IDABC
program.28 For each intervention registered on this

Web site a brief abstract and, usually, a series of
official documents and press releases describing
the content of the policy are available. In order
to derive useful information, we have reviewed
the existing documentation focusing on the most
important interventions registered on the IDABC
site, therefore disregarding public initiatives taken
by very small municipalities. The dataset we have
compiled starting from the IDABC documenta-
tion has been complemented with the information
recovered from an independent investigation by
the Center for Strategic and International Studies
(see Lewis, 2004).

It should be noted that given the methodology
used within the IDABC program, the informa-
tion we have gathered does not represent the
complete set of initiatives taken in the European
public sector. Some typologies of policies or
some countries might be underrepresented in
the sample. However, we believe that our effort
to summarize the existing policies in favor of
F/OS software represents a useful starting point
to analyze the major European initiatives within
a unified setting.

Overall, we have collected information about
105 interventions, distributed across 14 European
countries; France is by large the most active coun-
try with more than 28% of the interventions in our
sample.29 Around 8.5% of the policies have been
taken at the EU level and therefore they should
be common to all European countries.

To summarize the information derived from our
dataset, we have grouped policies according to:

• Type of software involved by the inter-
vention: We have distinguished between
custom, packaged software, and broader
interventions aimed at supporting the use
of open standards/interfaces.

• Political and administrative levels at
which the intervention is taken: We have
applied a two-tier classification distinguish-
ing both between government and public
agencies/bureaus (e.g., central government

��

On the role of Public Policies Supporting Free/Open Source Software

vs. postal services) and between central and
local/regional level of intervention (e.g., cen-
tral government vs. local municipality).

• Type of intervention: We have grouped
interventions into three broad categories:
adoption when the government/agency has
decided to adopt a certain software, advi-
sory when the policy consists of a general
claim of preference towards open source
and/or encourages the use of F/OS or it is
aimed at informing potential adopters of
the existence and characteristics of open
source and, finally, development when the
government actively promotes the creation
of new software.

• Rationale for intervention: We have classi-
fied policies into seven non-exclusive broad
categories: cost-efficiency, that pools to-
gether motivations such as savings in license
fees, economies of reuse of the software,
savings from collaborative development of
projects, and more efficient employment
of public resources (e.g., shift from license
fees to investment in human capital); code
availability, combining motivations con-
nected to the technical advantages assured
by transparency, security, robustness, and
quality of the code; interoperability, in which
the rationale for intervention lies in stimulat-
ing the diffusion of open standards and in
promoting interoperability in the software
market; flexibility, in which motivations are
linked to flexibility advantages assured by,
for instance, the possibility of tailoring the
code to the user’s needs, to assure integration
and compatibility with existing systems, and
so on; enhanced competition, combining in-
terventions motivated by levelling the play-
ing field, creating alternatives to proprietary
companies, supporting domestic industries,
stimulating technical independence from
dominant vendors, introducing competition
in support, maintenance, and upgrade of
systems and so forth; efficiency in the public

sector, gathering motivations specifically
related to the diffusion of best practices in
public administration bodies; and, finally,
information diffusion, a category represent-
ing those interventions motivated by the aim
of increasing the available information and
of raising consciousness about F/OS in the
general public or, more specifically, in public
administrations.

Table 2 shows the sample distribution of the
various policies with respect to their type. F/OS
adoption and advisory are the most common
interventions in Europe: together they represent
more of the 80% of the whole sample.

In Table 3 we go further into the detail and
we present how the three types of policies are
distributed between central and local decisional
levels and between governmental authorities
and public bureaus/agencies. More than 80% of
the interventions in our sample are taken at the
governmental level (both local and central) while
agencies have played a much more limited role.
Advisory policies aimed at suggesting and pro-
moting F/OS prevail in central governments while
at the other levels adoption is the most common
type of intervention. This is not surprising once
considered that central governments often provide
“guidelines” for action while operative decisions
are effectively endorsed at the local level and in
agency bodies.

In Table 4 interventions are grouped accord-
ing to the kind of software they are directed to:

Intervention Freq. %

Adoption 47 44.8

Advisory 39 37.1

Development 19 18.1

TOTAL 105 100

Table 2. Public policies classified in terms of type
of intervention

 ��

On the role of Public Policies Supporting Free/Open Source Software

Intervention

Level Development Adoption Advisory TOTAL

Central
Gov.

8
(17.8%)

9
(20%)

28
(62.2%)

45
(100%)

Central
Agency

1
(8.3%)

9
(75%)

2
(16.7%)

12
(100%)

Local
Gov.

9
(21.4%)

24
(57.1%)

9
(21.4%)

42
(100%)

Local
Agency

1
(16.7%)

5
(83.3%)

0
(0%)

6
(100%)

TOTAL
19

(18.1%)
47

(44.8%)
39

(37.1%)
105

(100%)

Table 3. Policies classified in terms of type of intervention and administrative level

Software

Level Custom Packaged Open Std.

Central
Gov. 69% 73% 0%

Central
Agencies 33% 66% 17%

Local
Gov. 38% 78% 5%

Local
Agencies 83% 33% 0%

TOTAL 53% 72% 8%

Table 4. Policies classified in terms of software type and administrative level

either software custom or packaged or towards
the implementation of open standards. Note that
in many cases, the intervention is not restricted
to a unique type of software but it may involve
two or all of them.30 Table 4 suggests that local
governments are more active towards packaged
software while central governments do not seem
to follow any particular pattern.

Restricting the analysis to central governments
and central agencies, we have looked more closely
at the motivations behind interventions. According
to the available information, only in 37 out of 57
of the cases it was possible to collect official state-
ments explicitly accounting for the rationales for
intervention. The information we have gathered
is presented in Table 5. Clearly, given the small
number of observations, some caution has to be

exerted when interpreting these data; however, it
is worthwhile to highlight the major trends that
characterize European policies.

Total figures in Table 5 show that cost-effi-
ciency motivations are the most popular, followed
by interoperability and code availability ones.
Regarding specific policies, adoption policies are
largely motivated by interoperability (viewed at
the level of the single adopter) and cost-efficiency
rationales (in particular, savings on license fees)
while rationales regarding technical advantages
of code availability and flexibility (all subcatego-
ries equally represented) are less cited, therefore
suggesting that short-term advantages might be
more salient than long-term ones in the stated
motivations. On the other hand, pure regulatory
motivations (such as stimulating market competi-

��

On the role of Public Policies Supporting Free/Open Source Software

Ty
pe

 o
f M

ot
iv

at
io

n

In
te

rv
en

tio
n

To
ta

l
C

os
t

E
ffi

ci
en

cy
C

od
e

Av
ai

la
bi

lit
y

In
te

ro
pe

ra
bi

lit
y

Fl
ex

ib
ili

ty
E

nh
an

ce
d

C
om

pe
tit

io
n

E
ffi

ci
en

cy
 in

Pu

bl
ic

 S
ec

to
r

In
fo

rm
at

io
n

D
iff

us
io

n

D
ev

el
op

m
en

t
6

(1
00

%
)

1
(1

7%
)

4
(6

7%
)

1
(1

7%
)

1
(1

7%
)

1
(1

7%
)

0
(0

%
)

1
(1

7%
)

A
do

pt
io

n
11

(1
00

%
)

7
(6

4%
)

2
(1

8%
)

6
(5

5%
)

3
(2

7%
)

2
(1

8%
)

1
(9

%
)

1
(9

%
)

A
dv

is
or

y
20

(1
00

%
)

11
(5

5%
)

7
(3

5%
)

11
(5

5%
)

2
(1

0%
)

8
(4

0%
)

5
(2

5%
)

7
(3

5%
)

TO
TA

L
37

(1
00

%
)

19
(5

1%
)

13
(3

5%
)

18
(4

9%
)

6
(1

6%
)

11
(3

0%
)

6
(1

6%
)

9
(2

4%
)

Table 5. Public policies classified in terms of
rationale for intervention (central government
and agencies only)

tion) are not explicitly accounted for. As far as
advisory policies are concerned, interoperability
(also considered at the market level) and cost-ef-
ficiency (all subcategories equally represented) are
still fundamental rationales, but other regulatory
motivations are popular as well (in particular,
enhancing competition and raising awareness in
markets). Finally, technical advantages of code
availability represents the major rationale for R&D
policies, while, surprisingly, motivation regarding
cost-efficiency are rather infrequent.

future trendS

As we have briefly discussed in a prior section,
economists are rather critical about intrusive
public policies into the software market and, to
some extent, we adhere to this skepticism.

Just to mention some arguments, the soft-
ware industry has really proved to be extremely
dynamic, characterized by high rates of growth
and, while competition in some software segments
might result in “winner-takes-all” outcomes,
dominant positions have been frequently displaced
by new comers (see Schmalensee, 2000); in a
word, markets have performed reasonably well.
Moreover, it is not yet clear if the production mode
of open source is really more innovative than the
proprietary one and empirical evidence on this
issue is far from being clear-cut.

However, we believe that looking at the F/OS
movement from an economic viewpoint, many
relevant aspects have not received so far the at-
tention that they should have deserved and the
evidence on the EU experience reported above
suggests some of the directions towards which the
analysis should look at in order to better under-
stand the actual effects of these policies.

For example, we believe that the distinction
between custom and packaged software has not
been properly taken into account in the literature.
One of the main concerns against public support
towards open source is based on the allegation

 ��

On the role of Public Policies Supporting Free/Open Source Software

that such policies would be detrimental for the
incentives to innovate by commercial firms. We
have already pointed out that almost two thirds
of the market is represented by software that has
been developed internally or that is customized
and, as shown in Table 4, more than half of the
interventions in our sample relates to this latter
type of software. We are convinced that the above
allegation cannot apply to this kind of software:
customized software is by definition software
“on demand” and the incentives to develop new
lines of code arise at the moment of the call for
tender, regardless of the open or close nature of
the source code.

From the evidence presented in a previous
section, it emerges that across the EU, together
with cost saving reasons, public interventions in
support of F/OS founded their motivations primar-
ily on the desire of stimulating an open standard
environment for software applications but also
on the relevance of source code availability and
on the intention to promote more competitive
software markets.

It is recognized that proprietary software is
likely to create important lock-in positions; the
unavailability of the source code renders adopt-
ers dependant on the original software provider
for further maintenance/development/upgrade of
the code. Moreover, the use of closed standards, a
typical solution employed by proprietary vendors,
makes it more difficult for adopters to disengage
themselves from software vendors. The absence
of complete and public documentation regarding
file and data storage formats and other commu-
nication standards might substantially increase
the switching costs thus rendering unprofitable
the migration to other software packages. Lock-
in is certainly a source of a relevant increase in
life-cycle costs but these costs are extremely
difficult to evaluate when one wants to compute
correctly the total cost of ownership of a given
software product.

On the contrary, a relevant feature of both open
source code and open standards is that competition

may be created in the aftermarket, and this may
significantly reduce the cost of service, support,
maintenance and interoperability.31 Moreover,
according to this view, fears of picking “wrong
winners” through governmental advisory or adop-
tion of F/OS solutions should be lessened if one
takes into account that F/OS software is based on
open formats that are commonly available and
that might be employed by closed source vendors
to develop compatible value-added proprietary
solutions or interoperable adds-on and comple-
mentary products.32

While the above arguments apply to cus-
tom software in particular, a regulatory policy
in support of open standards may found solid
justifications also in the context of mass-market
software; as a consequence of strong network
effects, these segments of the software industry
are often characterized by the presence of domi-
nant players whose platforms have the typical
features of “essential facilities.” Controlling an
interface (the key input) allows the dominant firm
to protect its position and possibly to extend it to
other complementary products. Similarly to the
current practice in other industries, also for the
case of software the provision of open access to the
essential facility should be seriously considered
in order to promote competition and to improve
market efficiency.

concLuSIon

The bottom line is to ensure that markets lead to
efficient outcomes and therefore to exclude, based
on economic grounds, that public interventions
might be beneficial relates to the assumption that
all potential adopters are properly informed about
the alternatives that are available in the market.
A recent empirical study on F/OS in the public
sector shows that this is not necessarily the case.
Ghosh and Glott (2005) show that a large share of
IT administrators in the public sector ignore that
in their agencies F/OS was actually employed.33

��

On the role of Public Policies Supporting Free/Open Source Software

More interestingly, the fact of being aware or not
about the current usage of open source software
has a major impact on the evaluation of the po-
tential benefits of F/OS adoption. Nearly 70% of
the “aware IT administrators” finds it useful to
extend the use of open source in their agencies.
This percentage shrinks to 30% among the IT
administrators that were unaware that F/OS soft-
ware was already employed in their institutions.
Clearly, this evidence provides strong support for
policies aimed at informing potential adopters
about the characteristics and the availability of
open source solutions.34

acknowLedgment

The authors would like to thank Bruno Caprile,
Vincenzo D’Andrea, Sebastian Spaeth, Ruben van
Wendel de Joode and two anonymous referees for
their helpful comments on earlier drafts of this
chapter. The usual disclaimer applies. Financial
supports from Progetto di Ateneo 2006—Uni-
versity of Padua (for Stefano Comino and Fabio
Manenti) and from MIUR under the projects
FIRB03 and PRIN05 (for Alessandro Rossi) are
gratefully acknowledged.

referenceS

Benkler, Y. (2002). Coase’s penguin, or, Linux
and the nature of the firm. Yale Law Journal,
112(3), 369-446.

Bessen, J. (2002). What good is free software?
In R. Hahn (Ed.), Government policy toward
open source software (pp. 12-33). Washington,
DC: AEI-Brookings Joint Center for Regulatory
Studies.

Bessen, J., & Hunt, R. M. (2004). An empirical
look at software patents (Working Paper 03-17).

Federal Reserve Bank of Philadelphia.

Comino, S., & Manenti, F. M. (2005). Government
policies supporting open source software for the
mass market. Review of Industrial Organization,
26, 217-240.

Danish Board of Technology. (2002). Open
source software in e-government. Retrieved from
http://www.tekno.dk/pdf/projekter/p03_open-
source_paper_english.pdf

DeLong, J. B., & Froomkin, A. M. (2000). Specu-
lative microeconomics for tomorrow’s economy.
First Monday, 5(2).

Evans, D. S. (2002). Politics and programming:
Government preferences for promoting open
source software. In R. Hahn (Ed.), Government
policy toward open source software (pp. 34-49).
Washington, DC: AEI-Brookings Joint Center
for Regulatory Studies.

Evans, D. S., & Layne-Farrar, A. (2004). Software
patents and open source: The battle over intel-
lectual property rights. Virginia journal of law
and technology, 9(10), 1-28.

Evans, D. S., & Reddy, B. (2002, May 21). Gov-
ernment preferences for promoting open-source
software: A solution in search of a problem. NERA
Economic Consulting report. Retrieved from
http://papers.ssrn.com/sol3/papers.cfm?abstract_
id=313202

Finnish Minister of Finance. (2003). Recommen-
dation on the openness of the code and interfaces
of state information systems (Working Paper
29/2003). Retrieved from http://www.vm.fi/vm/
en/04_publications_and_documents/01_pub-
lications/03_working_group_memoranda/
20031015Recomm/65051.pdf

Forge, S. (2005). Towards an EU policy for open-
source software. In M. Wynants & J. Cornelis
(Eds.), How open is the future? (pp. 489-503).
Brussels, Belgium: VUB Brussels University

 ��

On the role of Public Policies Supporting Free/Open Source Software

Press.

Ghosh, R., & Glott, R. (2005). Free/libre and
open source software: policy support. (Results
and policy paper from survey of governments
authorities.) Maastricht, The Netherlands: Uni-
versity of Maastricht, MERIT.

Ghosh, R., Krieger, B., Glott, R., & Robles, G.
(2002, June). Free/libre and open source software:
Survey and study (Deliverable D18, Final report,
Part 2B: Open source software in the public sector:
policy within the European Union). Maastricht,
The Netherlands: University of Maastricht, In-
ternational Institute of Infonomics.

Henkel, J. (2006). Selective revealing in open in-
novation processes: The case of embedded Linux.
Research Policy, 35(7), 953-969.

Henkel, J., & von Hippel (2004). Welfare implica-
tions of user innovation. The Journal of Technol-
ogy Transfer, 30(1-2), 73-87.4

Lessig, L. (2002). Open source baselines: Com-
pare to what? In R. Hahn (Ed.). Government
policy toward open source software (pp. 50-68).
Washington, DC: AEI-Brookings Joint Center
for Regulatory Studies.

Lewis, J. A. (2004, August 1). Global policies
on open source software. Center for Strategic
and International Studies report. Retrieved from
http://www.csis.org/index.php?option+com_
csis_pubs&task_view&id=3046

Schmalensee, R. (2000). Antitrust issues in
schumpeterian industries, American Economic
Review, 90, 192-196.

Schmidt, K., & Schnitzer, M. (2003). Public sub-
sidies for open source? Some economic policy
issues of the software market. Harvard Journal
of Law and Technology, 16(2), 473-505.

Schmitz, P.E. (2001). Use of open source in
Europe, an IDA study. European Commission,
DG Enterprise. Retrieved from http://europa.

eu.int/idabc/servlets/Doc?id=1973

Schmitz, P.E., & Castiaux, S. (2002). Pooling
open source software, An IDA feasibility study.
Interchange of data between administrations.
European Commission, DG Enterprise. Retrieved
from http://europa.eu.int/idabc/en/document/
2623/5585#feasibility

Smith, B.L. (2002). The future of software: Ena-
bling the marketplace to decide? In R. Hahn (Ed.),
Government policy toward open source software
(pp. 69-86). Washington, DC: AEI-Brookings
Joint Center for Regulatory Studies.

U.S. Federal Trade Commission. (2003). To pro-
mote innovation: the proper balance of competi-
tion and patent law and policy. Retrieved from
http://www.ftc.gov/os/2003/10/innovationrpt.
pdf

Varian, H., & Shapiro, C. (2003). Linux adoption
in the public sector: an economic analysis, mimeo.
University of Berkeley, California.

von Hippel, E. (2005). Democratizing innovation.
Cambridge, MA: MIT Press.

Wheeler, D. A. (2005). Why open source software
/ free software (OSS/FS, FLOSS, or FOSS)? Look
at the numbers! Retrieved from http://www.
dwheeler.com/oss_fs_why.html

key termS

Customers’ Lock-In: A situation in which a
customer is so dependent on a vendor for products
and services that he/she cannot move to another
vendor without substantial switching costs, real
and/or perceived.

Economic Regulation: Set of restrictions pro-
mulgated by government administrative agencies
through rulemaking supported by a threat of sanc-
tion or a fine. The main scope for government’s
regulation is to prevent markets’ failures, in

��

On the role of Public Policies Supporting Free/Open Source Software

other words, situations in which markets do not
efficiently organize production or allocate goods
and services to consumers (as in the presence of
a monopoly/dominant firm).

Essential Facility: In a vertically related mar-
ket, it is defined as a facility, function, process, or
service that meets three criteria: it is monopoly
controlled; a potential competitor requires it as an
input to provide services and to compete down-
stream with the monopoly supplier; and it cannot
be economically or technically duplicated. Facili-
ties that meet this definition shall be subject to
mandatory unbundling and mandated pricing.

Intellectual Property Rights (IPRs): Intel-
lectual property is a term used to refer to the
object of a variety of laws, including patent law,
copyright law, trademark law, trade secret law,
and industrial design law. These laws provide
exclusive rights to certain parties over intangible
subject matter or over the product of intellectual
or creative endeavor; many of them implement
government-granted monopolies.

Proprietary Software (PS): Software prod-
ucts that are designed in such a way that others
cannot access or view a product’s source cod-
ing/the programming that allows the software to
perform certain functions.

Source Code: The programming that allows
software programs to perform certain actions or
functions.

Total Cost of Ownership (TCO): Financial
estimate aimed at helping consumers and enter-
prise managers to assess direct and indirect costs
related to the purchase of any capital investment,
such as (but not limited to) computer software or
hardware.

endnoteS

1 Further details are available at: http://europa.
eu.int/information_society/eeurope/2005/

index_en.htm. All the URLs provided in this
chapter are active at the moment of writing
the chapter (June 2006).

2 Just to give a relevant example, the Dutch
public sector spent around 400 million euros
on software in 1997; see http://www.ososs.
nl.

3 For an example at the transnational level see
the European Interoperability Framework
for pan-European eGovernment services,
mandating a series of policies, standards
and guidelines aimed at “facilitating […]
the interoperability of services and sys-
tems between public administrations, as
well as between administrations and the
public” (http://europa.eu.int/idabc/en/docu-
ment/2319/5644). For an application at the
national level the reader may refer to the
Dutch manual on open standards and open
source software (OSOSS) in the procurement
process, encouraging the adoption of open
standards in the public sector (http://www.
ososs.nl).

4 According to Bessen (2002), packaged soft-
ware has never accounted for more than a
third of software expenses.

5 See, for instance, Microsoft’s Jan. 25, 2006
press release available at http://www.micro-
soft.com/presspass/press/2006/jan06/01-
25EUSourceCodePR.mspx and the com-
ments of Neelie Kroes (European Union’s
antitrust chief), stating that documentation
enabling interoperability, rather than mere
code disclosure, is at issue in order to meet
EU’s requirements (http://today.reuters.
com/business/newsArticle.aspx?type=tec
hnology&storyID=nL26331447).

6 ht t p://eu ropa.eu.int /idabc/en /docu-
ment/4549/469

7 ht t p://eu ropa.eu.int /idabc/en /docu-
ment/3336/469.

8 ht t p://eu ropa.eu.int /idabc/en /docu-
ment/1766/469.

9 ht t p: //eu ropa.eu.int /rapid /pressRe-

 ��

On the role of Public Policies Supporting Free/Open Source Software

le a se sAc t ion .do?refe re nce =I P/0 4/
382&format=HTML&aged=l&language=

 EN&guiLanguage=en.
10 For a brief but comprehensive review of vari-

ous national initiatives and policies on open
source software see the links provided by the
IDABC Open Source Observatory at http://
europa.eu.int/idabc/en/document/1677/471.

11 A notable example of this kind of motiva-
tions can be found in the programs and
activities of the Free Software Foundation,
aimed at affirming the primacy of freedom
ideals in the development and diffusion of
software.

12 For a comprehensive survey on this topic
see Wheeler (2005).

13 Reuse economies are savings due to recy-
cling previously developed code as a basis
for a new project; collaborative development
economies are strategies of mutualization
consisting in partnerships for joint develop-
ment by the public sector, motivated by the
needs of pooling efforts and sharing costs in
building, maintaining and upgrading large
software projects of common interest. See
Schmitz and Castiaux (2002) for an assess-
ment applied to FO/S software.

14 Bessen (2002) holds a similar view.
15 Support to domestic software industry lies at

the core of the IT national policies of India
and China. See, for instance, the remarks of
the Indian President, A.P.J. Abdul Kalam, on
the future challenges of information technol-
ogy for developing countries (http://news.
com.com/2100-1016-1011255.htmlnews.
com.com/2100-1016-1011255.html) or the
speech of the Ministry of Science and Tech-
nology at the 2004 International Conference
on Strategies for Building Software Indus-
tries in Developing Countries (http://www.
iipi.org/Conferences/Hawaii_SW_Confer-
ence/Li%20Paper.pdf).

16 This occurs both at the national as well
as at the local levels. See the statement

by the Finnish Ministry Kyösti Karjula
(http://www.linuxtoday.com/news_story.
php3?ltsn=2002-06-17-011-26-NW-DP-PB)
as an example of the first type and the delib-
eration of the autonomous province of Trento
on the adoption of open standards and open
source software (http://www.linuxtrent.
it/Members/napo/deliberaPAT_n1492.pdf)
as an instance of the second type.

17 Smith (2002) contrasts this view arguing that
in a large number of countries, not only in the
developed ones, a flourishing (proprietary)
software industry already exists.

18 Among others, see the statement made
by Boris Schwartz, deputy leader of the
SPD parliamentary group, during the
debate about the transition towards open
source systems of the city of Munich
(http://www.linuxtoday.com/infrastructure/
2003052600126NWSWPB).

19 See, for instance, the recommendations of
the Danish Board of Technology (2002) on
supporting the emergence of alternatives in
custom built software markets as means to
foster competition and the recommendations
of the Finnish Minister of Finance (2003),
suggesting to include the possession of the
source code in tender drafts in order to assure
competitive bidding in future development
and maintenance.

20 One notable exception is represented by
Lessig (2002) who claims that government
preference towards F/OS is justified by the
presence of externalities that market forces
do not internalize. For instance, software
developed for or adopted by some branches
of the government could be employed use-
fully also by other branches if it is free or
open source; the initial development/adop-
tion decision should take into account also
the potential benefits for future users.

21 These authors provide several figures to
support their argument. In the US the Her-
findahl-Hirschman index (HHI) for the

�0

On the role of Public Policies Supporting Free/Open Source Software

software industry is smaller that the average
HHI computed for the US manufacturing
industries; furthermore, during the period
1996-2000 there has been a decrease by
27% in the quality-adjusted prices for the
packaged software.

22 According to Evans (2002), in the year 2000
the R&D expenditure of software companies
represented one tenth of the overall R&D
undertaken within the industrial sectors
while fifteen years before it accounted for
only 1%.

23 The empirical evidence comparing the TCO
of open vs. close software solutions does not
seem to be conclusive. For a comprehen-
sive overview the reader may refer to the
FlossPols report on policy support (Ghosh
& Glott, 2005).

24 Smith, Microsoft’s senior vice president,
also claims that often, in order to bring the
software to the market, additional invest-
ments have to be done and these can not
accrue from the F/OS world but can only
come from the commercial one.

25 For an empirical analysis on software patents
see Bessen and Hunt (2004). According to
these authors, the strategic accumulation of
patent thickets seems to be the most con-
vincing explanation for the large increase
of software patenting in the US. Similarly,
several panelists, according to a recent US
Federal Trade Commission (2003) report,
support the view that the patent protection
system poses threats to innovation in the
software industry. Lessig (2002) and von
Hippel (2005) argue in favor of lessening
the extent of patent protection in the soft-
ware industry. According to Evans (2002)
and Evans and Layne-Farrar (2004), even
though some (minor) reform of the patent
legislation might be beneficial, software
patents should not be banned altogether.

26 See, for instance DeLong and Froomkin
(2000) for an application to digital goods

markets.
27 Smith (2002) and Lessig (2002) hold the

view that government should finance
R&D activities but the resulting software
should not be distributed under restrictive
licensing schemes. On the contrary, Varian
and Shapiro (2003) focusing on the Linux
case argue that the adoption of GPL does
not necessarily prevents the development
of complementary applications. Henkel
(2006) provides empirical evidence that,
despite GPL’s strict requirements in releas-
ing derived works, firms can adopt several
successful strategies in order to protect their
own code enhancements.

28 IDABC stands for Interoperable Delivery
of European eGovernment Services to
public Administrations, Businesses and
Citizens; the information available on the
Open source Observatory is collected by a
special Web-team from staff members of the
European public sector and also by search-
ing the Internet for relevant information.
The documentation we have collected is
available at the following URL http://europa.
eu.int/idabc/en/chapter/491.

29 The large interest of public authorities in
France has been documented also in a previ-
ous IDABC report, see Schmitz (2001).

30 This fact explains why rows sum up to more
than 100%.

31 On these lines, Ghosh, Krieger, Glott, and
Robles (2002) suggest that whenever it is
feasible governments and public institu-
tions should opt for software open source,
for example, by granting unlimited access
to the source code, the right to modify the
software and that to reproduce and distrib-
ute an unlimited amount of copies of the
modified version under the same license
restrictions. Forge (2005, p. 492) argues that
policy-markers should mandate “backward
compatibility, open access to program in-
terfaces, and separation between operating

 ��

On the role of Public Policies Supporting Free/Open Source Software

systems and applications”.
32 Moreover, it is worth mentioning that in

some cases policies supporting F/OS soft-
ware are inspired by neutrality principles,
therefore suggesting joint use rather than
full substitution of closed source software

by migrating to F/OS systems.
33 According to the authors 30% of IT admin-

istrators were unaware of F/OS software
usage and this figure increases in the case
of small budget public agencies.

34 A welfare analysis of the impact of various
policies supporting F/OS in the presence of
“unaware” potential adopters can be found
in Comino and Manenti (2005).

This work was previously published in Handbook of Research on Open Source Software: Technological, Economic, and Social
Perspectives, edited byK. St. Amant; and B. Still, pp. 412-427, copyright 2007 by Information Science Reference (an imprint
of IGI Global).

��

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.8
Open Source Survey Software

Jason D. Baker
Regent University, USA

aBStract

One of the significant advances in software de-
sign afforded by the Internet has been the open
source movement, an effort to collaboratively
create software and make it widely and freely
available to the online community. Although the
open source movement started with Unix-like
computer operating systems, it has expanded
to include a wide variety of software programs,
including tools to publish and analyze online
surveys. This chapter introduces the open source
movement, and then profiles three leading open
source survey programs: php Easy Survey Package
(phpESP), PHP Surveyor, and the Moodle course
management system.

Background

The open source movement has its roots in the
Unix community and, in particular, the develop-
ment of the GNU Project back in 1984. The goal
of this idealistic group of software developers was
to create an entirely free Unix operating system
so users would not be dependent on commercial
versions from Sun, IBM, and others. Here is the
introduction from the GNU Web page:

The GNU Project was launched in 1984 to
develop a complete Unix-like operating system
which is free software: the GNU system. (GNU
is a recursive acronym for ‘GNU’s Not Unix’; it
is pronounced ‘guh-NEW’.) Variants of the GNU
operating system, which use the kernel Linux,
are now widely used; though these systems are
often referred to as ‘Linux,’ they are more accu-
rately called GNU/Linux systems. (http://www.
gnu.org)

Since then, the movement has grown far be-
yond computer scientists writing operating sys-
tem code, and has become an ideology in which
people freely contribute to content that is made
freely available, and where changes are not only
acceptable, but encouraged, just as long as the
results are offered back to the community. In many
ways, it is a sophisticated countercultural response
to the limitations of copyrights and patents. As
Raymond (1998) declared, “Perhaps in the end
the open-source culture will triumph…simply
because the commercial world cannot win an
evolutionary arms race with open-source com-
munities that can put orders of magnitude more
skilled time into a problem.”

Not surprisingly, the open source approach
has moved beyond computer operating systems
into high-demand computer and Internet-based
applications, including survey software. For those
individuals or organizations unable or uninter-

 ��

Open Source Survey Software

ested in paying commercial hosting companies to
administer online surveys and tests, there are open
source equivalents. Popular open source survey
programs include the php Easy Survey Package
(phpESP) and PHP Surveyor. For educational-style
tests, the Moodle open source course management
system is one of the more popular.

profILeS and commentary

phpESP, PHP Surveyor, and Moodle are all open
source programs that run on Unix Web platforms
and make use of the php scripting language and
the MySQL database system. Each of these
programs can be installed using their respective
Web-based installation programs. Additionally,
many Web hosting providers offer one-click
installation of various open source programs
through a menu-driven program called Fantastico
De Luxe. Fantastico generally comes bundled
with phpESP, PHP Surveyor, and Moodle, along
with other useful open source programs. Once
installed, all three programs can be administered
via a Web-based interface.

phpESP is the older of the survey programs
and features a number of basic and advanced
online survey functions. To create a survey, one
first configures the general survey details, along
with the look and feel of the survey template, and
then populates the survey with individual ques-
tions. A variety of question types are supported
including yes/no, multiple choice, check boxes,
Likert-style scales, short answer, and even essay
(although open-ended questions cannot be tal-
lied the same way as multiple-choice and other
fixed questions). Once all of the questions and
answer options are entered and ordered, the user
can test the survey before publishing it for real.
Once activated, the survey administrator can view
individual and aggregate results through the man-
agement interface, as well as download the results
for analysis in Excel, SPSS, or similar programs.
The strength of phpESP is its varied features,

extensive development history, and simplicity of
code modification. The weakness of the program
is that it lacks detailed documentation and thus,
can be confounding to basic computer users.

PHP Surveyor possesses many of the same
survey features as phpESP, but couples them with
a significantly richer administration interface that
makes the program more accessible to novices.
In addition to 20 different question types ranging
from multiple choice and checkboxes to Likert-
style scales and flexible arrays (which permit
custom text descriptors in each point along the
scale), PHP Surveyor supports open or closed
surveys. Open surveys can be completed by any-
one visiting the Web site, while closed surveys
require registration or invitation to participate.
Furthermore, the survey administrator can prereg-
ister selected users and send out e-mails to solicit
participation in the online survey. PHP Surveyor
also supports branching surveys, which enable
different follow-up questions to be presented
based on answers to previous questions, and uses
a templating feature to change the look and feel of
online surveys. Survey responses can be reviewed
online or downloaded for more in-depth statistical
analysis. While still under heavy development,
PHP Surveyor is likely to become a leading open
source survey program because of its rich feature
set and relative ease of use.

Unlike phpESP and PHP Surveyor, Moodle is
not strictly a survey program, but rather is an open
source course management system (CMS). Moo-
dle can be considered an open source equivalent
to commercial CMSs like Blackboard or WebCT
and thus, is designed for instructional purposes.
It includes features to post course syllabi, docu-
ments, grades, and hold online class discussions.
In addition, however, Moodle includes robust
online quiz and survey modules that can be used
to administer online assessments or surveys. The
quiz module enables instructors to set up assess-
ments, along with the correct answers, so students
can complete these and have their scores provided
instantly. The survey module includes predefined

��

Open Source Survey Software

surveys that can be used with online courses, and
also supports the development of custom surveys.
Results can be viewed online, or downloaded in
Excel or comma-separated value format. Since
Moodle is designed for online courses, complete
with student accounts and registration, it is less
ideal for a public survey than either phpESP or
PHP Surveyor, but has many more options if one
is integrating such online tests and surveys into
coursework.

coSt

All three programs are open source and available
at no cost. In addition to the free download, the
source code is also freely available, and can be
changed as desired.

LocatIon

phpESP is available at http://phpesp.sourceforge.
net

PHP Surveyor is available at http://www.
phpsurveyor.org

Moodle is available at http://www.moodle.
org

referenceS

Dougiamas, M., & Taylor, P. (2003). Moodle: Us-
ing learning communities to create an open source
course management system. In P. Kommers & G.
Richards (Eds.), Proceedings of World Confer-
ence on Educational Multimedia, Hypermedia
and Telecommunications 2003 (pp. 171-178).
Chesapeake, VA: AACE.

Kaskalis, T. H. (2004). Localizing and experienc-
ing electronic questionnaires in an educational
Web site. International Journal Of Information
Technology, 1(4), 187-190.

Rapoza, J. (2005). Open-source survey tool
phpESP stands test of time. eWeek. Retrieved
December 15, 2005, from http://www.eweek.
com/article2/0,1895,1749890,00.asp

Raymond, E. S. (1998, March). The cathedral
and the bazaar. First Monday, 3(3). Retrieved
February 15, 2005, from http://www.firstmonday.
org/issues/issue3_3/raymond/

key termS

Course Management System: A computer
software program designed to support the deliv-
ery of online instruction. Popular CMSs include
Blackboard, WebCT, and Moodle.

Database: A software package for storing in-
formation in a searchable and relational structure.
Popular databases include Oracle, MySQL, SQL
Server, and Access.

Open Source Software: An approach to
software development where multiple individuals
collaboratively write code and release both the
source code and resulting program to the online
community. Anyone is then permitted to freely
use the software and modify the code, provided
that such modifications are again made available
in a public release of the code.

Unix: A popular computer operating system.
Many Web servers run on Unix-based systems.

This work was previously published in Handbook of Research on Electronic Surveys and Measurements, edited by R. Reynolds;
R. Woods; and J. Baker, pp. 416--418, copyright 2007 by Information Science Reference (an imprint of IGI Global).

 ��

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.9
FLOSSmole:

A Collaborative Repository for FLOSS
Research Data and Analyses

James Howison
Syracuse University, USA

Megan Conklin
Elon University, USA

Kevin Crowston
Syracuse University, USA

aBStract

This article introduces and expands on previous
work on a collaborative project, called FLOSSmole
(formerly OSSmole), designed to gather, share,
and store comparable data and analyses of free,
libre, and open source software (FLOSS) develop-
ment for academic research. The project draws
on the ongoing collection and analysis efforts of
many research groups, reducing duplication, and
promoting compatibility both across sources of
FLOSS data and across research groups and analy-
ses. The article outlines current difficulties with
the current typical quantitative FLOSS research
process and uses these to develop requirements
and presents the design of the system.

IntroductIon

This article introduces a collaborative project
called FLOSSmole,1 designed to gather, share,
and store comparable data and analyses of free
and open source software development for aca-
demic research. The project draws on the ongoing
collection and analysis efforts of many research
groups. Our intent in developing FLOSSmole is to
reduce duplication, and to promote compatibility
both across sources of FLOSS data and across
research groups and analyses.

Creating a collaborative data and analysis
repository for research on FLOSS is important
because research should be as reproducible, ex-
tendable, and comparable as possible. Research
with these characteristics creates the opportunity
to employ meta-analyses, exploiting the diversity
of existing research by comparing and contrasting
results to expand our knowledge. Unfortunately,
the current typical FLOSS research project pro-

��

FLOSSmole

ceeds in a way that does not necessarily achieve
these goals. These goals require detailed com-
munal knowledge of the many choices made
throughout a research project. Traditional publi-
cation prioritizes results, but masks or discards
much of the information needed to understand
and exploit the differences in our data collection
and analysis methodologies. FLOSSmole was
originally designed to provide resources and
support to academics seeking to prepare the next
generation of FLOSS research. Since its inception,
FLOSSmole has also been a valuable resource for
nonacademics who are also seeking good data
about development practices in the open source
software industry.

Background of proBLem

Obtaining data on FLOSS projects is both easy
and difficult. It is easy because FLOSS develop-
ment utilizes computer-mediated communications
heavily for both development team interac-
tions and for storing artifacts such as code and
documentation. This way of developing software
leaves a freely available and, in theory at least,
highly accessible trail of data upon which many
academics have built interesting analyses about
optimal organization of development teams, eco-
nomics of building software in the commons, and
the like. Yet, despite this presumed plethora of
data, researchers often face significant practical
challenges in using this data to construct a col-
laborative and deliberative research discourse.
In Figure 1, we outline the research process we
believe is followed in much of the quantitative
literature on FLOSS.

 The first step in collecting online FLOSS data
is selecting which projects and which attributes to
study, two techniques often used in estimation and
selection are census and sampling. (Case studies
are also used but these will not be discussed in
this article.)

Conducting a census means to examine all
cases of a phenomena, taking the measures of
interest to build up an entire accurate picture. Tak-
ing a census is difficult in FLOSS for a number of
reasons. First, it is hard to know how many FLOSS
projects there are “out there,” and it is hard to know
which projects should actually be included. For
example, are corporate-sponsored projects part of
the phenomenon or not? Do single-person projects
count? What about school projects?

Second, the projects themselves, and the re-
cords they leave, are scattered across a surprisingly
large number of locations. It is true that many are
located in the major general repositories, such
as Sourceforge2 and GNU Savannah.3 It is also
true, however, that there are a number of other
repositories of varying sizes and focuses (e.g.,
CodeHaus,4 CPAN5), and that many projects,
including the well-known and much-studied
Apache and Linux projects, prefer to use their own
repositories and their own tools. This diversity of
location effectively hides significant portions of
the FLOSS world from attempts at census. Even
if a full listing of projects and their locations

Figure 1. The typical quantitative FLOSS research
process (notice its noncyclical and noncollabora-
tive nature)

 ��

FLOSSmole

could be collated, there is also the practical dif-
ficulty of dealing with the huge amount of data
— sometimes years and years of e-mails, CVS,
and bug tracker conversations — required to
conduct certain comprehensive analyses.

Do the difficulties with census-taking mean
that sampling would be more effective? By say-
ing sampling we mean taking a random selection
of a small (and thus more manageable) subgroup
of projects that can, through careful selection,
represent the group as a whole. While this will
go some way toward solving the manageability
problem, sampling FLOSS projects is difficult
for the same reason as census-taking: the total
population from which to take the sample selec-
tion is not well-defined. Perhaps more importantly,
sampling open source projects is methodologically
difficult because everything FLOSS research
has shown so far points to massively skewed
distributions across almost all points of research
interest (Conklin, 2004; Xu, Yongqin, Christley,
& Madey, 2004). Selecting, even at random, from
highly skewed distributions does not, in general,
produce a representative sample. The difficulty
of sampling is demonstrated in the tendency of
FLOSS studies to first limit their enquiries to
projects using one repository (usually Source-
forge), and often to draw on samples created for
entirely different purposes (such as top 100 lists
as in Krishnamurthy, 2002), neither of which
is a satisfactory general technique. Selection of
projects to study is further complicated by the
fact that the public repositories contain a large
number of projects that are dormant, relocated,
or dead.

Background: data
coLLectIon dIffIcuLtIeS

Once the projects of interest have been identi-
fied and located, the actual project data must be
collected. There are two techniques that prevail

in the FLOSS literature for collecting data: Web
spidering and obtaining database dumps.

Spidering data is fraught with practical com-
plexities (Howison & Crowston, 2004). Because
the FLOSS repositories are usually maintained
using a database back-end and a Web front-end,
the data model appears straightforward to repro-
duce. The central limitation of spidering, however,
is that the researcher is continually in a state of
discovery. The data model is always open to being
changed by whoever is controlling the repository,
and there is usually no way that the researcher
will know of changes in advance. Spidering is a
time-intensive and resource-consuming process,
and one that is being unnecessarily replicated
throughout the world of FLOSS research.

Getting direct access to the database is clearly
preferable, but not all repositories make their
dumps available. (Some, such as Freshmeat,
provide a nightly build containing several text
files with the majority of their information in-
cluded.) And understandably so because it is not
a costless process to make data-dumps available.
Dumps can contain personally identifiable and
financial information (as with the Sourceforge
linked donation system) and so the data must be
anonymized or otherwise modified to protect this
information. Repositories are facing an increasing
number of requests for database snapshots from
academics and are either seeking a scalable way
to do releases or declining to release the data en-
tirely. It is often unclear whether database dumps
obtained by one research project can be shared
with other academics, so rather than possibly
breach confidentiality or annoy their subjects by
asking for signed releases, it is understandable
that academics who do get a database dump may
not make those dumps easily available. Other
projects, such as the Sourceforge dump avail-
able from Notre Dame6, only provide the dumps
to qualified academic researchers with editorial
restrictions. It is unclear what effect this limitation
will have on research efforts in the open source

��

FLOSSmole

community, however, since research efforts are
certainly not limited to academics.

Even when dumps are available it is necessary
to interpret their database schema. This is not
always as straightforward as one would expect.
After all, the databases were designed to be used to
build Web pages quickly, not to conduct academic
analyses. Furthermore, they have been built over
time and face the complexity that any schema faces
when stretched and scaled beyond its original
intended use: labels are obscured, extra tables
are used, and there are inconsistencies between
old and recently added data. The interpretation
and transformation of this data into information
semantically interesting to researchers is not a
trivial process, and there is no reason to think
that researchers will do this transformation in a
consistent fashion.

Even pristine and labeled data from reposito-
ries is not sufficient because different repositories
store different data. Different forges can have
projects with the same names, different developers
can have the same name across multiple forges,
and the same developer can go by multiple names.
Forges have different terminology for things like
developer roles, project topics, and even program-
ming languages. They often have fields which
are named the same in multiple forges but which
represent different data. Another problematic area
is calculated fields, such as activity or downloads,
for which there is incomplete publicly available
information on their formula or correctness.

Background: data
cLeanIng dIffIcuLtIeS

Once projects have been selected and the avail-
able data harvested, researchers must be confident
that data adequately represent the activities of a
project. For example, projects use repository tools
to differing degrees. For example, many projects
are listed on Sourceforge, and use the mailing lists
and Web hosting provided there. But some of these

same projects will shun the notoriously quirky
“Tracker” bug-tracking system at Sourceforge,
preferring to set up their own tracking systems
using, perhaps, Bugzilla or RT software. Other
projects host their activities outside Sourceforge
but maintain a “placeholder” registration with
little used mailing lists and out of date release
information. It is very difficult, short of detailed
examination of each project, to know whether a
project is fully using a tool. Thus, it is difficult
to state with confidence that the data collected
about that tool is a reasonable depiction of the
project’s activities.

Complete accuracy is, of course, not required
because in large-scale data analysis some “dirty
data” is acceptably handled through statistical
techniques. At a minimum, though, researchers
contemplating the accuracy of their data must
have some reason to believe that there are no
systematic reasons that the data collected in
the name of the group would be unrepresenta-
tive. Unfortunately, given the idiosyncrasies of
FLOSS projects, confidence on this point appears
to require project-by-project verification, a time-
consuming process for individual researchers and
projects, and one that is too frequently repeated
by other researchers.

The conclusion we draw from this analysis
is that each step of the typical FLOSS research
process introduces variability into the data that
underlies any quantitative analysis of FLOSS
development. Decisions about project selection,
collection, and cleaning are compounded through-
out the cycle of research. FLOSS researchers have
not, so far, investigated the extent to which this
variability affects their findings and conclusions.
In addition, the demands of traditional publication
also mean that the decisions are not usually fully
and reproducibly reported.

Our critique is not against the existence of
differences in research methods or even differ-
ence in datasets. There is, rightly, more than one
way to conduct research, and indeed this richness
drives discovery. Rather, our critique is that the

 ��

FLOSSmole

research community is currently unable to begin a
meta-analysis phase or a reflective phase because
the current process of FLOSS research introduces
variability that is difficult to trace. The research
process is also hampered by redundant, wasted
effort in data collection and analysis. It is time to
learn from the free and open source approaches
we are studying and develop an open, collabora-
tive solution to this problem.

propoSIng a SoLutIon:
fLoSSmoLe

The previous problem description motivates our
attempt to build a system to support research into
FLOSS projects. FLOSSmole (formerly OSSmole
— the name was changed to reflect our inclusion
of Free and Libre software in addition to open
source software) is a central repository of data and
analyses about FLOSS projects which have been
collected and prepared in a decentralized manner.
Data repositories have been useful in other fields;
the presence of trusted datasets allows research
communities to focus their efforts. For example,
the TREC datasets have supported a community
of information retrieval specialists facilitating
performance and accuracy comparisons; the UMI
machine learning repositories have been widely
used in the development of new machine learning
algorithms. There are numerous examples from
biology and physics as well. The intention of
FLOSSmole is to provide high-quality and widely
used datasets, and to share standard analyses for
validation, replication, and extension.

reQuIrementS of the
fLoSSmoLe SyStem

Below we list some of our initial requirements
for an optimal data and analysis clearinghouse
for FLOSS data, and we note to what extent

FLOSSmole has met each of these requirements.
The next section expands on additional specific
design attributes of the FLOSSmole system.

An optimal data and analysis repository for
FLOSS data should be:

Collaborative. The system should leverage the
collective effort of FLOSS researchers to
reduce redundancies and to free research-
ers’ time to pursue novel analyses. Thus, in
a manner akin to the BSD rather than the
GPL licensing model, FLOSSmole expects,
but does not require, that those that use data
contribute additional data and the analysis
scripts that they obtain or use.

Available. The system should make the data and
analysis scripts available without compli-
cated usage agreements, where possible
through direct unmonitored download or
through interactive database queries. This
should end the problem of data lockup, and
will ease entry of new researchers with novel
techniques. Freely available data also low-
ers the barriers to collegial replication and
critique. FLOSSmole scripts and data are
open-sourced and available to anyone via the
FLOSSmole Sourceforge project page.7

Comprehensive and compatible. Given the frag-
mentation of FLOSS project storage iden-
tified previously, the system should cover
more than just one repository. The system
should be able to pull historical snapshots
for purposes of replication or extension of
earlier analyses. Compatibility requires
that the system should translate across
repositories allowing researchers to con-
duct both comprehensive and comparative
analyses. (Currently FLOSSmole contains
data from three repositories.) There exists
the potential to develop an “interchange”
format for FLOSSmole project collateral
which projects themselves, which fear data
and tool lock-in, might find convenient and

�0

FLOSSmole

useful as they experiment with new tools
and repositories.

Of high quality. Researchers should be confident
that the data in the system is of high qual-
ity. The origins and collection techniques
for individual data-points must be trace-
able so that errors can be identified and not
repeated. Data validation performed rou-
tinely by researchers can also be shared (for
example, scripts that sanity-check fields or
distributions) and analyses validated against
earlier analyses. By implementing these
requirements, FLOSSmole is potentially
a large advantage over individual research
projects working with nonvalidated single
datasets because it implements the “many
eyeballs” FLOSS methodology for quality
assurance.

Able to support reproducible and comparable
analyses. It is desirable that data extracted
from the database for transformation be
exported with verbose comments detailing
its origins and how to repeat the extraction.
The best way to ensure reproducible and
comparable analyses is to have as much of the
process as possible be script-driven, and in
this goal, FLOSSmole excels. Optimally, the
system should specify a standard application
programming interface (API) for inserting
and accessing data via programmed scripts.
That would allow analyses to specify, using
the API, exactly the data used.

A system that meets these requirements, we
believe, will promote the discovery of knowledge
about FLOSS development by facilitating the next
phase of extension through replication, apposite
critique, and well-grounded comparison.

addItIonaL deSIgn detaILS

The FLOSSmole data model is designed to support
data collection, storage, and analysis from multiple

free and open source forges in a way that meets
the previously stated requirements. This section
lists some additional design details we have made
in implementing our FLOSSmole system.

FLOSSmole is able to take both spidered data
and data inserted from a direct database dump.
The raw data is time stamped and stored in the
database, without overwriting any data previously
collected, including data from the same project
and from the same forge. Finally, periodic raw
and summary reports are generated and made
publicly available on the project Web site.

The type of data that is currently collected
from the various open source forges includes the
full HTML source of the forge data page for the
project, project name, database environments,
programming languages, natural languages,
platforms, open source license type, operating
systems, intended audiences, and the main project
topics. Developer-oriented information includes
number of developers, developer information
(name, username, e-mail), and the developer’s
role on the project. We have also collected issue-
tracking data (mainly bugs), such as date opened,
status, date closed, and priority. Data has been
collected from Sourceforge, GNU Savannah, the
Apache foundation’s Bugzilla and Freshmeat. We
are currently creating mappings between fields
from each of these repositories and assessing how
comparable the fields are. The forge-mapping task
is extensive and time-consuming, but the goal is
to build a dataset that is more complete and is not
specific to only one particular forge.

FLOSSmole is constantly growing and chang-
ing as new forges are added. And because data
from multiple collectors are both expected and
encouraged, it is important that the database also
store information about where each data record
originally came from (i.e., script name, version,
command-line options used, name and contact
information of person donating the data, and date
of collection and donation). This process ensures
accountability for problematic data, yet encour-
ages collaboration between data collectors. The

 ��

FLOSSmole

information is stored inside the database to ensure
that it does not get decoupled from the data.

Likewise, it is a general rule that data are not
overwritten when project details change; rather,
one of the goals of the FLOSSmole project is that
a full historical record of the project be kept in the
database. This will enable researchers to analyze
project and developer changes over time and en-
able access to data that are difficult or impossible
to access once they are no longer viewable from
the repository’s front-end interface.

Access to the FLOSSmole project is two-
pronged: both data and scripts are continually
made available to the public under an open source
license. Anyone can download the FLOSSmole
raw and summary data for use in their own re-
search projects or just to get information about
the state of the art in open source development.
The raw data are provided as multiple text file
“data dumps” from the FLOSSmole database.
Summary files are compiled periodically, and
show basic statistics. Examples of summary
statistics that are commonly published would
be the count of projects using a particular open
source license type, or the count of new projects
in a particular forge by month and year, or the
number of projects that are written using each
programming language. It is our hope that more
sophisticated analyses will be continually be
contributed by researchers, and that the system
will provide dynamic and up-to-date results rather
than the static pictures that traditional publication
unfortunately leaves us.

The scripts that populate the FLOSSmole
database are also available for download under
an open source license. These scripts are given
for two reasons: first, so that interested research-
ers can duplicate and validate our findings, and
second, so that anyone can expand on our work,
for example, by modifying a script to collect data
from a new forge. Indeed this process has begun
with the recent publication of a conference paper
comparing and commenting on our spidering and
summaries and beginning collaboration (Weiss,

2005). FLOSSmole expects and encourages con-
tributions of additional forge data, and interested
researchers should see the FLOSSmole project
page and join the mailing list for information on
how to contribute.

reSuLtS

Because it is a regularly updated, publicly avail-
able data repository, FLOSSmole data have been
used both for constructing basic summary reports
about the state of open source, as well as for
more complex social network analyses of open
source development teams. For example, sum-
mary reports posted as part of the FLOSSmole
project regularly report the number of open source
projects, the number of projects per programming
language, the number of developers per project,
and so forth. These sort of descriptive data are
useful for constructing “state of the industry”
reports, or for compiling general statistical
information about open source projects. The
FLOSSmole collection methods are transparent
and easily reproduced, so FLOSSmole can serve
as a reliable resource for these metrics. Having
a stable and consistently updated source of this
information will also allow metrics to be com-
pared over time. One of the problems with exist-
ing analyses of open source project data is that
researchers will run a collection and analyze it
once, publish the findings, and then never run the
analysis again. The FLOSSmole data model and
collection methodology was designed to support
historical comparisons of this kind.

FLOSSmole data were used in a number of
large-scale social network analyses of FLOSS
project development. Crowston and Howison
(2004) report the results of a SNA centralization
analysis in which the data suggest that, contrary
to the rhetoric of FLOSS practitioner-advocates,
there is no reason to assume that FLOSS projects
share social structures. Further FLOSSmole
data were used in the preparation of Crowston,

��

FLOSSmole

Howison, and Annabi (2006) which, in an effort
to avoid the ambiguities of relying on ratings
or downloads, develops a range of quantitative
measures of FLOSS project success including
the half-life of bugs. FLOSSmole makes available
the full data and analysis scripts, which make
these analyses fully reproducible, and, we hope,
extendable.

FLOSSmole data were also used in a recent
exploration of whether open source development
teams have characteristics typical of a complex
network (Conklin, Howison, & Crowston, 2004).
This research investigated whether FLOSS devel-
opment networks will evolve according to “rich
get richer” or “winner take all” models, as other
self-organized complex networks do. Are new
links (developers) in this network attracted to the
largest, oldest, or fittest existing nodes (project
teams)? The FLOSSmole data were used to deter-
mine that there are indeed many characteristics
of a complex network present in FLOSS software
development, but that there may also be a mutual
selection process between developers and teams
that actually stops FLOSS projects from matching
the “winner take all” model seen in many other
complex networks.

Projects of a nonacademic nature are making
use of FLOSSmole data as well. The Swik project
from SourceLabs8 is a wiki-driven system for
managing facts about other open source software
projects. Swik uses FLOSSmole data to populate
its initial list of projects. Working independently,
the Swik team was able to download FLOSSmole
data and put them to use immediately to save
time and effort during their development process.
By using a dataset that was freely available and
for which the provenance of all data was known
and validated, Swik was able to accelerate their
development cycle.

LImItatIonS and future work

There are, of course, limitations in the FLOSS-
mole project and in our approach. First, we are
limited to collecting data available online, and
we are limited to collecting data gathered as a
direct result of documented project activities.
Of course, electronically documented project ac-
tivities are not the only interactions FLOSS team
members have, and even these activities are not
always available for perusal by outside parties.
Thus while textual data like mailing lists, CVS
comments, Forums, and IRC chat logs could be
included9, FLOSSmole does not aim to capture
unlogged instant messaging, IRC, Voice-over-IP,
or face-to-face interactions of FLOSS developers.
Nor do we intend to store interviews or transcripts
conducted by researchers that would be restricted
by research ethics policies.

There are also dangers in this approach that
should be acknowledged. The standardization
implied in an academic repository, while valuable,
runs the risk of reducing the valuable diversity
that has characterized academic FLOSS research.
We hope to provide a solid and traceable dataset
and basic analyses that will support, not inhibit,
interpretative and theoretical diversity. This di-
versity also means that research is not rendered
directly comparable simply because analyses are
based on FLOSSmole data or scripts; the hard
intellectual work remains and hopefully FLOSS-
mole, by supporting baseline activities, leaves us
more time for such work.

It is quite likely that a functional hierarchy
could develop between cooperating projects,
something akin to the relationship between FLOSS
authors and distributions, such as Debian or Red
Hat and their package management systems (i.e.,
apt and rpm). For example, such an arrangement
would allow groups to specialize in collecting and
cleaning particular sources of data and others to
concentrate on their compatibility. Certainly, we
expect that the existing communities of academics

 ��

FLOSSmole

interested in FLOSS, such as opensource.mit.edu,
will be a source of data and support.

Finally, we must also consider privacy is-
sues. There is some discussion in the research
community about breaching developer privacy
in a large system of aggregated data like ours
(Robles, 2005), specifically in terms of uniquely
identifying developers and analyzing their work
products. FLOSSmole should have the ability to
hash the unique keys indicating a developer’s
identity. This effort will have to be researched,
implemented, and documented for the benefit of
our community.

concLuSIon

Researchers study FLOSS projects in order to
better understand collaborative human behavior
during the process of building software. Yet it
is not clear that current researchers have many
common frames of reference when they write and
speak about the open source phenomenon. As we
study open software development, we learn the
value of openness and accessibility of code and
communications; FLOSSmole is a step towards
applying that to academic research on FLOSS.
It is our hope that by providing a repository of
traceable and comparable data and analyses on
FLOSS projects, FLOSSmole begins to address
these difficulties and supports the development of
a productive ecosystem of FLOSS research.

acknowLedgment

This research was partially supported by NSF
Grants 03-41475, 04-14468, and 05-27457. Any
opinions, findings, conclusions, or recommenda-
tions expressed in this material are those of the
authors and do not necessarily reflect the views
of the National Science Foundation. The authors
thank the FLOSS developers who contributed to
the research.

referenceS

Conklin, M. (2004, July 30). Do the rich get richer?
The impact of power laws on open source develop-
ment projects. In Proceedings of the Open Source
Conference (OSCON), Portland, Oregon.

Conklin, M., Howison, J., & Crowston, K. (2005,
May 17). Collaboration using OSSmole: A reposi-
tory of FLOSS data and analyses. In Proceedings
of the Mining Software Repositories Workshop
(MSR2005) of the 27th International Conference
on Software Engineering (ICSE 2005), St. Louis,
Missouri.

Crowston, K., Howison, J., & Annabi, H. (2006).
Information systems success in free and open
source software development: Theory and
measures. Software Process: Improvement and
practice, 11(2), 123148.

Crowston, K., & Howison, J. (2004). The social
structure of open source software development
teams. First Monday, 10(2). Retrieved from http://
firstmonday.org/issues/issue10_2/crowston/.

Howison, J., & Crowston, K. (2004). The perils and
pitfalls of mining sourceforge. In Proceedings of
the Mining Software Repositories Workshop at the
International Conference on Software Engineer-
ing (ICSE 2004), Edinburgh, Scotland.

Krishnamurthy, S. (2002). Cave or community?
An empirical examination of 100 mature open
source projects. First Monday, 7(6). Retrieved
from http://www.firstmonday.org/issues/is-
sue7_6/krishnamurthy/

Robles, G. (2005, May 17). Developer identifica-
tion methods for integrated data from various
sources. In Proceedings of the International
Workshop on Mining Software Repositories
(MSR2005) of the 27th International Conference
on Software Engineering (ICSE2005), St. Louis,
Missouri.

��

FLOSSmole

Weiss, D. (2005). Quantitative analysis of open
source projects on SourceForge. In Proceedings
of the First International Conference on Open
Source Systems (OSS 2005), Genova, Italy.

Xu, J., Gao, Y., Christley, S., & Madey, G. (2004).
A topological analysis of the open source soft-
ware development community. In Proceedings
of HICSS 2005, Hawaii.

endnoteS

1 FLOSSmole: http://ossmole.sf.net
2 Sourceforge: http://www.sf.net
3 Savannah: http://savannah.gnu.org
4 CodeHaus: http://www.codehaus.org
5 Comprehensive Perl Archive Network:

http://www.cpan.org
6 http://www.nd.edu/~oss/Data/data.

html
7 FLOSSmole: http://ossmole.sf.net
8 Swik: http://swik.net/
9 http://libresoft.urjc.es/Activities/WoP-

DaSD2006

This work was previously published inInternational Journal of Information Technology and Web Engineering, Vol. 1, Issue 3,
edited by E. Damiani; and G. Succi, pp. 17-26, copyright 2006 by IGI Publishing (an imprint of IGI Global).

 ��

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.10
Free/Libre Open Source

Software for Bridging the
Digital Divide

Yu-Wei Lin
University of York, UK

IntroductIon:
the forgotten uSerS In
Software deSIgn

As some scholars claim, the digital divide, refer-
ring to the perceived gap between those who have
access to the latest information technologies and
those who do not, entails that not having access
to this information is an economic and social
handicap (Compaine, 2001). In software design,
structured inequalities operate along the main
axes of gender, race/ethnicity and class. Each
of these in turn generates its own structure of
unequal practices giving rise to institutionalised
sexism, racism or class divisions/conflict. “Gen-
der, race and class also crosscut each other in
various complex ways, sometimes reinforcing and
at other times weakening the impact of existing
inequalities” (Cohen & Kennedy, 2000, p. 100).
For instance, Webster’s research (1996) employing
feminist approaches to study computer system
designs addresses the issue of a male-dominated
system design field, which continuously excludes
female users’ needs, requirements, interests and
values in the innovation process. She criticises
that, “Human factors may be bolted onto existing

methods of systems design, local and contingent
knowledge of work and information handling
processes held by users in an amorphous sense
may now even be incorporated into the systems
design process, but this does not create an aware-
ness of the way in which skills and knowledge are
defined in gender-divided terms” (p. 150).

In a similar course, I argue that users’ expe-
riences in developing or undeveloped countries
are often ignored in mundane software designs
led by developed countries. Although localisa-
tion of information infrastructure is an eminent
issue emerging in current system development,
profit-oriented products and services, such as
Microsoft’s local language program (LLP), do
not really comply with local needs. Rather, this
type of multi-languages software packages, a
software suite fabricated universally for countries
around the world, signify the phenomenon, which
I term the “MacDonaldisation of Windows-Intel
platforms,” which in fact alienates users and the
local contexts.

��

Free/Libre Open Source Software for Bridging the Digital Divide

fLoSS In actIon

In recent years, free/libre open source software
(FLOSS) has emerged as an important phenom-
enon in the information communication technol-
ogy (ICT) sector as well as in the wider public
domain. An increasing number of governments
have endeavoured to either convert the public
administration infrastructure from Windows to
Linux or to adopt FLOSS for similar tasks (e.g.,
Munich in Germany or Zaragoza in Spain) (c.f.,
“Linux in Spain” on LWN.net; C|Net News.com
August 29, 2001). FLOSS transparentises the
often black-boxed software code and allows us-
ers to copy, distribute and modify a programme
received freely. In making source code available,
software technologies can be challenged, adapted,
and ameliorated to satisfy diverse user needs.
Apart from solving the prolonged usability1
problem in software engineering, implementing
FLOSS also helps ground both social and technical
knowledge in locales and bridge the digital divide.
In other words, implementing FLOSS facilitates
technical knowledge (e.g., programming skills
and ICT expertise) and social experiences to be
transported and transferred through the acclaimed
practices of social networking and mutual help
noted prominently in many recent community
studies (e.g., Wellman, 1999; Rheingold, 2000;
Hampton & Wellman, 2003; Jordan et al., 2003;
Lin, 2004a).

There have been a number of tactical consid-
erations of implementing FLOSS in countries or
organisations devoid of intellectual or financial
resources: for economic reasons to save software
costs; for educational reasons to improve human
resource; for political reasons to stop monopoly
proprietary software from expanding their market
share as well as to gain digital autonomy, just
to name a few. Hence, it is a strategic interplay
for local governmental or non-governmental
organisations (NGOs), and FLOSS activists to
coalesce to tackle these inequalities. Because
knowledge transfer is as crucial as infrastructure

implementation, hands-on training made available
to the local users is essential in the execution.
Projects such as the E-Riders2 and Low Income
Networking and Communications3, or events
such as the Summer Source Camp4 and Africa
Source5, all illustrate the transfer of knowledge
and technology across cultural boarders. These
examples also show how the implementation of
FLOSS shapes the lives and identities of local users
as well as software developers around the globe
(Lin, 2004b). Additionally, there is conspicuous
implementation of Linux-based infrastructure in
the local educational, NGO and governmental
organisations in developing countries or regions
(e.g., Washington Post, November 3, 2002). The
advents of embedded technologies such as the
“Simputer,” a Linux handheld applied in India,
are believed to enable affordable, sustainable
village development in places without phones
and power, giving more and more people a voice
in the conversation about their future (Cherlin,
2002). Wireless technologies are amongst others
to bring the Internet to developing countries or
regions to facilitate networking at both local and
global levels. Krag, a Danish expert of wireless
technologies who I met at the 2003 summer
source camp in Croatia, describes wireless tech-
nologies as low-cost and decentralised. Here is a
quote from his talk at the O’reilly 2004 emerging
technology conference6 about the advantage of
wireless technologies:

Billions of people in the world have never
been online. The Internet as a technology is an
elitist tool, reserved for the few and unreachable
by the many. This is a problem not likely to be
solved by the commercial interests of existing
telecommunications companies and existing
ideas about expensive, centralized infrastructure.
But low-cost, decentralized wireless technolo-
gies could have an important role to play, in this
respect. Their low price point and decentralized
nature, and the openness of the standards, mean
that these technologies are incredibly adaptable
to new situations and new uses. (Krag, 2004)

 ��

Free/Libre Open Source Software for Bridging the Digital Divide

Krag and his colleagues have been working
in undeveloped/developing countries around the
world, building up and promoting wireless tech-
nologies (mainly 802.11b standard, also known as
WiFi) for the locals. They bring the Internet and
intranet connectivity to those parts of the world
not included in the plans of the commercial tele-
communications companies. They teach and give
hands-on training to the locals about how to use
ICT, and at the same time build wireless networks
in the countries they visit. In so doing, they hope to
“not only raise awareness and heighten skill sets,
but also gain the experience necessary to build
a central repository of documentation and tools,
targeted specifically at the developing world”
(ibid.). Krag’s words subtly show that working
with the locals de facto benefits the legitimate
knowledge system of wireless technologies by
means of bringing in more empirical cases that
illustrate how infrastructure can be turned into
applications, and how experiments can be turned
into existing proofs. That said, working in unde-
veloped/developing areas in fact is not a one-way
giving episode, rather, it is a reciprocal process
that involves mutual help and mutual learning.
Sometimes, extra functions are endorsed to the
original products or facilities to meet local users’
needs or habits ad hoc. The local contingencies
entail that products and facilities can be renovated
with the new functions and features after being
deployed in local environments. This close link
with global and legitimate knowledge sets also
suggests that local expertise is worth being docu-
mented or transcribed in order to understand the
construction of a knowledge-based society from
both macro and micro levels.

democratISIng Software
InnovatIon proceSS:
whoSe democracy?

Given the advantages of FLOSS, it is believed that
FLOSS is seen as an effective tool and approach

to tackle the digital divide. Although FLOSS
provides more flexibility and economic good for
local users, solutions are mostly identified and
crafted from the point of view of the developed
countries. The collaborative episodes between
NGO and FLOSS sectors illustrated above show
an ambition to mobilise awareness and participa-
tion, and build capacity. However, when taking
the local requirements into account, the social
problem of the digital divide is perceived merely
in the eyes of some NGO and FLOSS workers,
rather than derived from the locals. Whereas
a FLOSS-based solution seems to bridge the
digital divide more efficiently than proprietary
software, it sometimes still ignores that the
political-cultural position of the locals and does
not automatically move towards the centre of the
global society. The cultural differences between
the outsiders and insiders at the locale influence
which perspective in a FLOSS implementation
(e.g., economical, educational, social, political,
technical) should be prioritised. This decision is
a tactic because in the decision-making process,
NGO and FLOSS activists all identify and inter-
pret the social problem from their point of view.
For FLOSS and NGO activists, introducing and
implementing FLOSS denotes a cultural shift of
networking the local with the global. They believe
that ideas and knowledge are the cosmopolitan
valuables, and community building and social
networking are the most effective means to engage
these social capitals that can be amplifiers in an
innovation system. However, the social problems
have different meanings to the local. In some
places, freedom of information is not the priority.
Instead, to endorse the local economic purchase
power is on top of any other concerns. Without
taking the local interests into account, the design
of the information infrastructure, which is out of
context, is likely to be lost in translation. That
said, the social problems addressed, presented
and represented differently by NGO and FLOSS
activists in each local context, are better seen as
articulations of the communication and move-

��

Free/Libre Open Source Software for Bridging the Digital Divide

ments between different forms of knowledge and
cultural practice. In short, “who provides what for
whom” is a crucial question when studying the
implementation of FLOSS. There is a dilemma
of “translation from whom?”

This dilemma has gradually been noticed by
some FLOSS activists who have devoted much
time to implementing FLOSS infrastructure in
undeveloped/developing countries. In the case
of wireless technologies, it is true that wireless
technologies are relatively cheap and have all of
the technical advantages of simplicity, openness,
decentralisation and autonomy. However, when
the digital divide is perceived as a social problem
for NGO and FLOSS activists, it has actually
produced a subtle prejudice invisible to the digital
elite. Indeed, some FLOSS spokespersons have
shown different opinions on mainstream media
policy that “often take the technological configu-
ration of the new media as a ‘given’ or prefigured
system that needs to become more widely diffused
to citizens” (Mansell, 2002, p. 408). However,
as Mansell also points out, arguments such as
Lessig’s research (2000, 2001) “does not exam-
ine the rhetorical forms that help to sustain the
configurations of the new media that are favoured
by an influential minority of technology develop-
ers and producers” (op. cit.). It is likely that the
implementation of FLOSS conversely deteriorates
the opposition between the rich and the poor be-
cause the poor cannot perceive the digital divide
as an urgent problem. It would be a failure of not
being able to correspond the local’s interests and
encourage their motivations.

Is FLOSS a silver bullet for bridging the digital
divide? It could be. Compared with other ICT
based on proprietary software, a FLOSS-based
implementation does provide a better approach
to bridging the digital divide from many aspects,
particularly in terms of mapping and incorporat-
ing local users’ requirements and lowering their
ICT purchase cost (Lin, 2004b; Wheeler, 2004).
However, the degree of empowerment may be
counteracted if local users’ interests are not

fully included in the implementation agenda. So-
called “digital independence” and “participatory
democracy” would be just a proclaimed allega-
tion in the FLOSS hype, as they are in most ICT
advocacy. Having said that, it is not my intention
to deny the advantages of FLOSS and its socio-
technical impacts. But I would like to point out
some blind points remaining in its world wide
implementation and deployment. There has been
a tendency in the development of ICT to facili-
tate human activities with more ubiquitous and
efficient infrastructure and interfaces to meet
users’ needs in various areas. Whilst this vision
of civilisation sounds promising, the accentuation
on ICT’s positivity also leads to all manner of
delusions and falsehoods. When a newly invented
ICT product is praised for its influential potential
to empower consumers, it is yet invalid without
asking whether a product is usable and useful to
users, or without understanding users situated
in different cultural and social contexts. This
focus on the infrastructure building has misled
both the public and the private sectors to believe
a set of dominant and monolithic values, such as
“efficiency,” “modernity,” and “improvement” (in
the context of the “state-of-the-art”). Users are
imposed to accept explicitly or implicitly these
values which are fabricated and fortified to meet
interests of specific social groups. A solitary
identity and socio-technical class is produced to
categorise users: to be connected/wired or to be
alienated from the digital world; to be mobile or
to be outmoded; to be electronic or to be antedi-
luvian. Diverse meanings of “innovation” thus are
muted in this dominant socio-technical context.
Modern users of ICT de facto have lost their
socio-cultural identities, which are grounded in
everyday lives. The digital divide issue is also lost
in this hype that ICT is the vehicle for democratic
participation.

Whilst the emergence of FLOSS broadens
the digital divide issue from a level of access to
information facilities (hardware) to information
contents (software), this extended scope remains

 ��

Free/Libre Open Source Software for Bridging the Digital Divide

the preference of a small group of digital elite. In
this regard, I share the opinion of Thomas and
Wyatt (2000) that access is not the only important
issue for understanding inequality. Instead, it is
the assumptions on which diffusion of Internet
connection is seen as necessarily expanding and
beneficial that should be questioned. In a socio-
logical term, it is more essential to understand
the meaning of “access” to the Internet that is
interpreted and appreciated differently by differ-
ent social groups across geo-cultural borders. A
crucial perspective to be developed while studying
the increasingly prominent FLOSS phenomenon
is to examine critically the role of the intellectual
and their interactions with the local. It requires a
careful examination on the conceptualisation and
organisation of resistance to taken-for-granted re-
alities and dominant forms of social organisation,
which often goes together with a desire for new
technologies. The so-called “digital divide” should
be understood as a situated digital divide.

concLuSIon: tranSferrIng
LocaL expertISe Into a
gLoBaL knowLedge SyStem

This article argues that FLOSS helps developing
regional communities by improving ICT capacity
and empowering users. FLOSS provides local
governments and organisations a shared code
base with higher level of security and a dramatic
reduction of development costs. FLOSS bridges
the digital divide in lessening dependency on
proprietary software and securing the potential
for developing local relevant software. However,
without adequate expertise, after opening up the
black box of software technologies, users are still
left in a feeble situation and strongly depedent
on experts. This is why hands-on training and
a well-networked community providing mutual
help are necessary in the implementation process,
so that participants can learn to read the code,
manipulate the code, and work with the code.

Here, “the code” does not only indicate software
source code, but is more generically referred to
the code of knowledge. Whilst open-source code
is decoded, so is the formal expertise deciphered.
Consequently, software technologies can be chal-
lenged, adapted, and ameliorated to satisfy diverse
user needs and solve the prolonged usability prob-
lem. Nevertheless, this problem will not be solved
in a short time. Whilst open source code can be
exploited and employed by experts programmers
for individual needs, for users, unless they own
or access to the expertise as well, the knowledge
does not transfer onto them straight away after
source code is released. That said, the empow-
erment of technology is not a natural process.
It requires skills and experiences dealing with
and translating the rich information into various
languages which facilitate wider accessibility to
the core of the knowledge system. I suggest that
it is crucial to coalesce the local cultures and
the technologies and to improve the dialogues
between FLOSS developers, implementors and
the locals in order to facilitate the implementation
process. In so doing, knowledge-deciphering and
knowledge-transferring will less likely to get lost
in translation. ICT knowledge thus can be more
appropriately transferred to and relocated in lo-
cals’ daily lives. The global problem of usability,
hence, can be tackled through the grassroots
social networking.

referenceS

C|Net News.com. (2001, August 29). Govern-
ments push open source software. Retrieved May
30, 2004, from http://news.com.com/2100-1001-
272299.html?legacy=cnet

Cha, A.E. (2002, November 3). Europe’s Microsoft
alternative: Region in Spain abandons Windows,
embraces Linux. Washington Post, A01.

Cherlin, E. (2002). Simputer white paper: Comput-
ers for everyone. Retrieved May 30, 2004, from

�00

Free/Libre Open Source Software for Bridging the Digital Divide

http://www.upspace.org/academy/Members/cher-
lin/Simputer%20White%20Paper/file_view/

Cohen, R., & Kennedy, P. (2000). Global sociol-
ogy. London: MacMillan Press Ltd.

Compaine, B. M. (Ed.) (2001). The digital divide:
Facing a crisis or creating a myth? Cambridge,
MA: MIT Press.

Hampton, K., & Wellman, B. (2003). Neighboring
in Netville: How the Internet supports community,
social support and social capital in a wired suburb.
City and Community, 2(4), 277-311.

Jordan, K., & Hauser, J., & Foster, F. (2003). The
augmented social network: Building identity
and trust into the next generation internet. First
Monday, 8(8). Retrieved September 1, 2004, from
http://firstmonday.org/issues/issue8_8/jordan/in-
dex.html

Krag, T. (2004). Wireless networks as a low-cost,
decentralized alternative for the developing world.
A talk given at the O’reilly emerging technology
conference, 9-12 February 2004, San Diego, USA.
Retrieved May 30, 2004, from http://conferences.
oreillynet.com/cs/et2004/view/e_sess/4697

Lessig, L. (2000). Code and other laws of cyber-
space. New York: Basic Books.

Lessig, L. (2001). The future of ideas: The fate of
the commons in a connected world. New York:
Random House.

Lin, Y.-W. (2004a). Epistemologically multiple
actor-centered systems: Pr, EMACS at work!
Ubiquity, 5(1). Retrieved September 1, 2004, from
http://www.acm.org/ubiquity/views/v5i1_lin.
html

Lin, Y.-W. (2004b). Has software development ever
been lost in translation? From local epistemolo-
gies to cosmopolitan expertise. A paper presented
at the 4S-EASST joint conference, 25-28 August
2004, Paris.

LWN.net. Linux in Spain. (n.d.). Retrieved
September 1, 2004, from http://lwn.net/Ar-
ticles/41738/

Mansell, R. (2002). From digital divides to digi-
tal entitlements in knowledge societies. Current
Sociology, 50(3), 407-426.

Rheingold, H. (2000). The virtual community:
Homesteading on the electronic frontier (revised
edition). Cambridge, MA: MIT Press.

Thomas, G., & Wyatt, S. (2000). Access is not the
only problem: Using and controlling the Internet.
In S. Wyatt, F. Henwood, N. Miller, & P. Senker
(Eds.), Technology and In/Equality: Questioning
the information society. London: Routledge.

Webster, J. (1996). Shaping women’s work: Gen-
der, employment and information technology.
London: Longman.

Wellman, B. (Ed.) (1999). Networks in the global
village. Boulder, CO: Westview Press.

Wheeler, D. A. (2004). Why open source software/
free software (OSS/FS)? Look at the numbers!
Retrived September 1, 2004, from http://www.
dwheeler.com/oss_fs_why.html

key termS

Digital Divide: The digital divide is a social
issue referring to the differing amount of informa-
tion between those who have access to computers
and the Internet and those who do not.

FLOSS: Free/Libre Open Source Software
(FLOSS), generically indicating non-proprietary
software, combines the concepts of free software
and open source software. It makes it easier to
talk about one movement and not ignore the
other, and as such, can be used as a compromise
term palatable to adherents of either movement.
It also emphasises the libre meaning of the word
“free” rather than the “free of charge” or gratis
meaning which those unfamiliar with the subject

 �0�

Free/Libre Open Source Software for Bridging the Digital Divide

might assume. This all-inclusive acronym has the
extra advantage of being non-anglo-centric: the F
stands for Frei in German while the L stands for
Libre in French and Spanish, Livre in Portuguese
and Libero in Italian, showing that the concepts
and their implementation are not exclusive to the
English-speaking world.

ICT: Information and communication tech-
nology (ICT) is the technology required for
information processing. In particular the use of
electronic computers and computer software to
convert, store, process, transmit, and retrieve
information.

NGO: A non-governmental organisation
(NGO) is an organisation which is not a part of a
government. Although the definition can techni-
cally include for-profit corporations, the term is
generally restricted to social and cultural groups,
whose primary goal is not commericial. Gener-
ally, although not always, these are non-profit
organisations (NPO) that gain at least a portion
of their funding from private sources.

Social Networking: Social networking de-
scribes the process of connecting individuals
via friends, relatives, and acquaintances. These
networks can then branch out and allow friends
to connect with people inside their accepted
social circle.

Usability: Usability addresses the full spec-
trum of impacts upon user success and satisfaction.
Usability is accomplished through user-centreed
(not necessarily user-driven) design. The us-
ability engineer provides a point-of-view that
is not dependent upon designers’ goals because
the usability engineer’s role is to act as the users’
advocate.

User-Centred Design: User Centered-Design
(UCD) is a software process that seeks to answer
questions about users and their tasks and goals,
then use the findings to drive development and de-
signs, and improve the usability and usefulness.

endnoteS

1 Here, “usability” serves as an umbrella term
that covers generic human-machine interac-
tions (HCI) issues as well as wider acces-
sibility and the digital divide problems.

2 http://www.eriders.net/
3 http://www.lincproject.org
4 http://www.tacticaltech.org/summersource
5 http://www.tacticaltech.org/africasource
6 http://www.oreillynet.com/et2004/

This work was previously published in Encyclopedia of Developing Regional Communities with Information and Communica-
tion Technology, edited by S. Marshall; W. Taylor; and X. Yu, pp. 316-320, copyright 2006 by Information Science Reference
(an imprint of IGI Global).

�0�

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.11
Community of Production

Francesco Amoretti
Università degli Studi di Salerno, Italy

Mauro Santaniello
Università degli Studi di Salerno, Italy

IntroductIon

There is no universal agreement regarding the
meaning of the term “social software.” Clay
Shirky, in his classic speech “A Group is its Own
Worst Enemy,” defined social software as “soft-
ware that supports group interaction” (Shirky,
2003). In this speech, this scholar of digital culture
also observed that this was a “fundamentally
unsatisfying definition in many ways, because it
doesn’t point to a specific class of technology.”

The example offered by Shirky, illustrating
the difficulties of this definition, was electronic
mail, an instrument that could be used in order to
build social groups on the Net, but also to imple-
ment traditional forms of communication such as
broadcasting, or noncommunicative acts such as
spamming. In his effort to underline the social
dimension of this phenomenon, rather than its
purely technological aspects, Shirky decided to
maintain his original proposal, and this enables
scholars engaged in the analysis of virtual com-
munities to maintain a broad definition of social
software. Heterogeneous technologies, such as
instant messaging, peer-to-peer, and even online
multigaming have been brought under the same
conceptual umbrella of social software, exposing

this to a real risk of inflation. In a debate mainly
based on the Web, journalists and experts of the
new media have come to define social software as
software that enables group interaction, without
specifying user behaviour in detail. This approach
has achieved popularity at the same pace as the
broader epistemological interest in so-called
emergent systems, those that, from basic rules
develop complex behaviours not foreseen by
the source code (Johnson, 2002). This definition
may be more useful in preserving the specific
character of social software, on the condition that
we specify this carefully. If we include emergent
behaviour, regardless of which Web technologies
enter into our definition of social software, we
will once again arrive at a definition that includes
both everything and nothing. Emergence is not
to be sought in the completed product, that may
be unanticipated but is at least well-defined at the
end of the productive cycle, but rather resides in
the relationship between the product, understood
as a contingent event, and the whole process of its
production and reproduction. A peculiar charac-
teristic of social software is that, while allowing
a high level of social interaction on the basis of
few rules, it enables the immediate re-elaboration
of products in further collective cycles of produc-

 �0�

Community of Production

tion. In other words, social software is a means of
production whose product is intrinsically a factor
of production. Combining hardware structures
and algorithmic routines with the labour of its
users, a social software platform operates as a
means of production of knowledge goods, and
cognitive capital constitutes the input as well as
the output of the process.

If a hardware-software system is a means
of production of digital goods, social software
represents the means by which those products are
automatically reintroduced into indefinitely-reit-
erated productive cycles. This specification allows
us to narrow down the area of social software to
particular kinds of programmes (excluding, by
definition, instant messaging, peer-to-peer, e-
mail, multiplayer video games, etc.) and to focus
the analysis on generative interaction processes
that distinguish social software from general
network software. Moreover, following this defi-
nition, it is possible to operate a deeper analysis
of this phenomenon, introducing topics such as
the property of hosting servers, the elaboration of
rules and routines that consent reiterated cycle of
production, and the relationships between actors
within productive processes.

normatIve evoLutIon of the
Internet from net95 to weB
2.0

At the end of the 1990s, two particular events
gained wide social significance in the evolution
of global telecommunications networks. First, a
deep restructuring of the fundamental architecture
of the Internet radically transformed the network
which had been born in the ARPA laboratories.
Coming out of a rather narrow military and aca-
demic sphere, the Internet became at once easier
and more complex. Graphical user interface (GUI)
principles simplified computer and database
management for a growing mass of individuals
who were ready to get connected, giving birth

to a vigorous codification of intermediate zones
between man and machine. Operating systems,
appliances, software, automatic updates: the
popularisation of the Net has proceeded through
a constant delegation of terminal management
from the user to the software producer, and in the
case of software distributed under the juridical
instrument of the “license of use,” this delegation
consists in the property of parts of the “personal”
computer. The American constitutionalist Law-
rence Lessig, underlining the social relevance of
this phenomenon, describes the original network
(Net95) as being completely twisted, subject to
the control of those coding authorities that, since
1995, have reconfigured the architecture of cy-
berspace (Lessig, 1999).

The second event that has contributed to the
morphology of the transformation of new infor-
mation technologies is a direct consequence of
the first, and concerns contents, or products, of
this new kind of network. The more Internet has
been regulated by a wide group of code writers,
among which a narrow circle of economic players
who have assumed positions of power, the more
personal relationship networks based upon it have
assumed social significance and cultural reach.
Ease of computer management and development
of applications that allow social interaction in an
intuitive and simple manner have brought blogs,
wiki, syndication and file-sharing platforms to the
scene. The growing use of these Internet-based
applications, a result of the convergence between
the regulation and socialisation of cyberspace,
has slowly attracted the attention of political and
economic organisations due to its capacity to al-
low a widespread and participative use of digital
goods and knowledge. So, the first realisation of
Web 2.0 (or semantic Web) was the product of a
normative process operated for the most part by
software engineers, a product which, arriving
later, attracted the attention of the social sciences,
which tended to view the means of that production
as black boxes. In this period, between the last
two centuries, besides more profound reflection on

�0�

Community of Production

emerging social systems based on social software
platforms, there was scarce interest in the struc-
tures and infrastructures of telecommunications
networks, understood as plentiful resources, never
as a real means of production.

communIty of productIon

the dual reality of Social Software

In the second half of 2006, the Web site called
YouTube reached popularity and suddenly burst
into the Top 10 of most visited Web sites (Alexa,
2006). Just 18 months after its launch, this platform
for video-sharing reached an average of 60 million
visits per day, with hundreds of thousands of clips
being viewed each day in streaming and 65,000
new clips uploaded every 24 hours. YouTube’s
success may be explained, above all, by reference
to the scarce resources that, despite the arguments
of “plenty infrastructure” theorists, characterise
Internet as another complex system of means of
production. Having no resources to host and trans-
mit a great quantity of video information, millions
of individuals use YouTube’s resources in order
to reach the same goal: to share videos. Uploaded
clips, moreover, are immediately available for
other, undefined forms of production of meaning,
that work mainly through three channels. The first
involves categorising videos using labels (called
tags), which are filled in by the user who uploads
them. In this way, both search and correlations
between videos are based on a folksonomy system
that is able to generate bottom-up relationships.
Second, users can express a judgement on the
video’s quality and relevance to the description,
providing single clips with a “reputation.” Third,
a function of the platform is its capacity to supply
code that, pasted in a Web page or a blog, executes
the corresponding clip in a streaming player. This
last function is largely used by publishers who, not
having the required resources to afford stream-
ing connections, use YouTube to retransmit their

own digital productions. Another social software
platform with similar characteristics is Flickr. In
contrast to YouTube, this allows photo, not video,
sharing. The greater number of visits for YouTube
when compared to Flickr (which is estimated to
be the 38th most visited site in the world, with 12
million contacts per day), is partly attributable
to the greater quantity of data necessary to code
videos rather than photos, that is to produce film
transmissions rather than photo-galleries over the
Web. The more storage and bandwidth resources
required, the more users need and use the platform.
This kind of service is without charge, but is not
without economic relevance for the organisations
that manage it. Beside traditional sponsorship,
both Flickr and YouTube largely use content-
targeting advertisement, a technology that allows
one to scan texts and automatically associate
them with ads. Advertisers buy keywords, and
when a keyword is found in a text, an associated
advertisement is displayed near the text. If the
announcement is clicked, the advertiser pays a
sum divided between the firm that manages the
content-targeting technology and the owner of the
Web page upon which the ad was hosted. Gathering
content-targeted advertisement is substantially a
duopoly, provided by Google and Overture, the
latter now being fully controlled by Yahoo. Flickr
and YouTube, on the other hand, are the owners
of Web pages that host texts produced by their
users, and receive the remaining part of the share
paid by the advertiser. Thousands of dollars daily
move toward the bank accounts of social software
platform owners thanks to the work of millions
of volunteers who produce texts and links which
themselves have economic value.

The concept of the user extends from the
sphere of service enjoyment to the sphere of
production, to the detriment of the concept of the
worker. And if industrialisation proceeded via the
eradication of workers’ communities (Polanyi,
1944), digitalisation today appears to produce
value through the creation and management of
delocalised communities of volunteers. This phe-

 �0�

Community of Production

nomenon assumes such an economic importance
in the Internet advertisement sector that not long
ago Yahoo bought Flickr to deliver its ads by its
own, followed by Google, that recently completed
the purchase of YouTube, of which it was already
a supplier of content-targeted advertisements. The
same fate was reserved for del.icio.us, a social
software platform for Web site addresses, taken
over by Yahoo. This situation means that, rather
than sharing the revenues of content-targeting
with these platforms, the two key players in the
market preferred to tackle multimillion dollar
costs in order to implement processes of vertical
organisation, in a market that looked increasingly
polycentric within a few years’ of its opening. This
dynamic, moreover, implies that the overall value
of digital commodities produced on social soft-
ware platforms represents a first order economic
entity in the so-called new economy.

evoLvIng ScenarIoS: from
weB 2.0 to Internet 2

Besides folksonomies, social software platforms
can be based on another principle: real time col-
laborative editing (often called wiki). Users of
this kind of platform can produce text and modify
others’ texts in real time, generating processes of
collective and negotiated production of meaning.
The main actor in this particular segment is the
Web-based encyclopaedia Wikipedia. Founded
in 2001 in the United States, it quickly entered
the 20 most-visited Web sites in the world, with
an average of just under 60 million visits per day.
At the present time, it hosts 5 million definitions
in 229 different languages and idioms. In 2005,
the scientific magazine Nature conducted a com-
parative analysis of Wikipedia and Encyclopaedia
Britannica, reaching the conclusion that the two
are substantially equivalent in accuracy and
trustworthiness, as far as the Natural Sciences
are concerned (Giles, 2005). Unlike the previously
described social software platforms, Wikipedia

doesn’t use paid advertisements, being funded by
donations gathered by the Wikimedia Foundation,
a nonprofit American organisation at whose sum-
mit is a five-member Board of Trustees. With a
quarterly budget that doesn’t exceed $400,000, and
with the explicit goal of producing independent
and free knowledge, Wikipedia expressly refuses
the commodification of its knowledge-based out-
put. But rather than representing the ideal type
of social software, this constitutes an exception,
whose survival is threatened by evolving scenarios
of telecommunication infrastructures. Parallel to
the bottom-up categorisation project of digital
goods in the Web, there is a categorisation project
that concerns not only Web content, but even its
own infrastructures. AT&T, Verizon, Comcast,
and other enterprises that manage global flows of
information have been complaining for several
years about the lack of return on their investments
in telecommunication systems.

So-called network neutrality, the principle
that Isenberg referred to as “netstupidity” dur-
ing the early 1990s, does not allow carriers to
distinguish between the functions of the bits of
information that they transport; that is, whether
they are constitutive of video, e-mail, phone calls,
Web surfing, or whatever. This prevents them
from applying specific fees according to a service
typology that varies on the basis of the media
goods moved by these actors and the resources
employed. Telco’s interests, which are also con-
nected with the traditional phone networks, are
clearly damaged by the architecture of their own
infrastructure, but cannot prevent users from
sidestepping traditional communication fees. If
we consider how these interests are converging
upon those—even wider—of the main owners
of intellectual properties, we can understand
how the architectural reconfiguration of Net
infrastructures have reached an advanced state
of both planning and implementation. Attempts
to protect network neutrality by legal means,
through the introduction of explicit limits in the
U.S. telecommunications legislation, have so

�0�

Community of Production

far failed, and continue to generate transversal
opposition within Congress (Senate Commerce
Committee, 2006. HR.5252).

The Internet 2 project, which alongside the
semantic Web introduces an intelligent infrastruc-
ture that is able to categorise digital commodities
in the Net in a top-down manner, evokes a scenario
in which Web sites could be obliged to pay for
their visitors, and where fees are proportional
to bandwidth used, as well as to the typology
of enlivened media commodities. This kind of
evolution could have a profound impact on those
rare social software platforms exclusively sup-
ported by donations from civil society, thus likely
to augment the probability of a market opening
alongside them in the long term.

concLuSIon

Migration toward cyberspace presents the same
dual aspect that Russel King has observed in rela-
tion to mass migration. It creates particular forms
of social relationships within a space: both social
relations of capitalist production and personal
social relations that reproduce migration chains
over time (King, 1995).

It is of particular significance that, attempt-
ing to shed light on the dual nature of migration
trends, King sought to recalibrate the analysis
of human movements, introducing the theme of
personal relations beside the broader one involving
relations of production. In the case of migration
toward cyberspace, on the other hand, the area
of social relationships was the first to attract the
interest of the social sciences, leaving political
economy themes to the mercy of the theorists of
the new economy.

Social software, one of the outcomes of half-
century-long innovation processes in the cyber-
netic area, highlights the connections between
social and production relationships implied in the
digitalisation of human interactions. Delocalised
human resources, mostly constituted by nonwork-

ers, hardware and software means of production,
are more and more concentrated in interconnected
oligopolies, cycles of production whose routines
accumulate value directly from working activi-
ties not remunerated, in same cases even paid by
workuser to means of production’s owner.

Social software seems to adhere to a compre-
hensive process concerning both the infrastructure
of the Net, with its digital commodity flows, and
relations of production within a system whose
peculiarity is to be equipped with a unique space
where production, trade, and finance can simul-
taneously coexist. Bridled in such a net-space,
communities producing value produce social
behaviours that, beyond their anthropological
significance, assume a substantial economic value.
Immediate value extraction by processes gener-
ated by noneconomic motivations represent one
of most important aspects of the market-based
reorganisation of information technologies and,
from this point of view, social software could
become one of the main arenas for the new rela-
tions emerging between capital, space, and labour
in the current historical conjunction.

referenceS

Alexa Internet Inc. (2006). Traffic rankings. Re-
trieved April 24, 2007, from http://www.alexa.com/
site/ds/top_sites?ts_mode=global&lang=none

Andreson, C. (2004). The long tail. Web site
Wired Magazine. The Condé Nast Publications
Inc. Retrieved April 24, 2007, from http://www.
wired.com/wired/archive/12.10/tail_pr.html

Battelle, J. (2005). The search. How Google and
its rivals rewrote the rules of business and trans-
formed our culture. New York: Penguin Books.

Bourdieu, P. (1977). Outline of a theory of practice.
Cambridge University Press.

Giles, J. (2005). Internet encyclopaedias go head
to head. Nature, 438(12), 900-901.

 �0�

Community of Production

Isenberg, D.S. (1997, August). The rise of the stupid
network. Computer Telephony, 16-26.

Johnson, S.B. (1997). Interface culture. How new
technology transforms the way we create and
communicate. New York: Basic Books.

Johnson, S.B. (2002). Emergence: The connected
lives of ants, brains, cities, and software. New
York: Touchstone.

Kelly, K. (1998). New rules for the new economy:
10 radical strategies for a connected world. New
York: Penguin Books.

King, R. (1995). Migrations, globalization and
place. In D. Massey & P. Jess (Eds.), A place in
the world? Places, cultures and globalization.
Oxford: The Open University.

Lessig, L. (1999). Code and other laws of cyber-
space. New York: Basic Books.

Levine, F., Locke C., Searls, D., & Weinberger,
D. (2000). The Cluetrain Manifesto: The end of
business as usual. New York: Perseus Book.

Polanyi, K. (1944). The great transformation:
The political and economic origins of our time.
Boston: Beacon Hill.

Senate Commerce Committee (2006). Advanced
Telecommunications and Opportunities Reform
Act (HR.5252). Senate of the United States. 109th
Congress 2D Session.

Shapiro, A.L. (2000). The control revolution:
How the Internet is putting individuals in charge
and changing the world we know. USA: Public
Affairs/The Century Foundation.

Shirky, C. (2003, April 24). A group is its own
worst enemy. In Proceedings of the O’Reilly
Emerging Technology Conference in Santa
Clara.

Van Couvering, E. (2004). New media? The
political economy of Internet search engines. In
Paper presented to the Conference of the Interna-

tional Association of Media & Communications
Researchers. Porto Alegre: IAMCR.

Weinberger, D. (2002). Small pieces loosely
joined. A unified theory of the Web. New York:
Perseus Book.

Wiener, N. (1950). Cybernetics: Or the control and
communication in the animal and the machine.
Cambridge: MIT Press.

Wiener, N. (1950). The human use of human be-
ings. Boston: Houghton Mifflin.

key termS

Cognitive Capital: A concept that represents
knowledge as a scarce resource that can be traded
with money, social influence, and political power.
This concept is derived from Pierre Bourdieu’s
concept of “cultural capital,” and it sheds light on
accumulation and exchange processes regarding
cognitive skills, knowledge, and information.
Cognitive capital is now recognized as a key asset
of institutions and economic organizations.

Cybernetics: “Control and communication in
the animal and machine,” as defined by its founder
Norbert Wiener. This discipline studies living be-
ings, machines, and organizations as regulatory
feedback systems. The choice of term, “cyber-
netics,” from Greek Κυβερνήτης (kybernetes,
steersman, governor), shows Wiener’s awareness,
extensively argued in diverse works of his, about
political and social relevance of interactive com-
munication networks.

Folksnomy: System used in information
organization. Rather than providing an ex ante
categorizing project as in taxonomy, it exploits
an open labeling system generating pertinences
through its user cooperation. Assigning a label
(tag) to every piece of information (photo, video,
text, address, etc.) users contribute by donating a
sense to the digital product universe, otherwise

�0�

Community of Production

unable to be tracked and used by its own com-
munity of production.

Graphical User Interface (GUI): Interface
facilitating human-machine interaction, with
graphic elements. Rather than inputting data and
instruction in text format, GUI’s user controls its
elaborator directly manipulating objects: graphic
images, menus, buttons, boxes, and so forth. The
Interface translates user actions into machine
commands, thus representing an intermediate
normative zone between man and machine, a
zone governed by code produced by software
houses.

Instant Messaging (IM): Real-time Internet-
based system allowing communication between
two or more subjects. It represents an evolution
of Internet Relay Chat, to whose decline it con-
tributed. It provides a client software that allows
synchronous conversations by means of interfaces
supplied with many multimedia functionalities
(audio, Webcam, file transfer, animoticons, etc.).
Unlike social software, conversations produced by
IM are not immediately reintroduced in coopera-
tive processes of significance production.

Network Neutrality: Technical and political
characteristic of those networks not allowing
resource discrimination on the basis of their
destination, content, and the applicative class
of technology to which they belong. Debate on
network neutrality initiated in the United States
following an increasingly incisive reprojection
of networks by Internet service providers (ISP)
and telecommunications providers. Opposing
this project reformulating Internet architectures,
first of all, are content providers who would be
obliged to pay, together with users, on the base
of gained visits, used bandwidth, and typologies
of service delivered.

Software: An unambiguous sequence of in-
structions that allows a machine to elaborate in-
formation. Software, also called program, defines
rules and routines by which computer hardware
has to act in order to perform its tasks. Combining
software with physical resources, a computer can
operate as a means of production, creating digital
goods by manipulating a user’s input.

This work was previously published in Encyclopedia of Multimedia Technology and Networking, Second Edition, edited by M.
Pagani, pp. 224-229, copyright 2009 by Information Science Reference (an imprint of IGI Global).

 �0�

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.12
E-Democracy:

The Social Software Perspective

Pascal Francq
Université Libre de Bruxelles, Belgium

aBStract

The success of the Internet has launched McLu-
han’s idea of the global village. Over the years,
the Internet has become a real political medium
which has inspired the emergence of the concept
of e-democracy. Despite some successful applica-
tions, many limitations prevent its wide expansion.
Some of these limitations can be solved with social
software, in particular with the emerging Web
2.0 applications. This kind of applications may
contribute to a better application of e-democracy
processes for local political decisions.

InSIde chapter

The Internet is today a widely used platform to
exchange information and share knowledge. In
this chapter, we propose a prospective study of
the use of the Internet as support for e-democracy
processes. The history of the Internet shows that
social software has always been developed to sup-
port knowledge sharing among net surfers. Since
participating in political issues implies knowledge
sharing, the Internet was rapidly used as a political
medium. The concept of e-democracy, i.e. the use
of information and communication technologies

to allow citizens to participate in the democratic
process, is a natural evolution of this situation.
Several examples demonstrate that e-democracy
can be deployed for local decision purposes. The
experiences have also shown several limitations,
in particular concerning the on-line tools currently
offered. We argue that solutions exist to overcome
these limitations and that their integration in
social software environments may enhance the
concept of e-democracy in order to apply it to
more complex decision-taking situations.

IntroductIon

With the expansion of available information and
the diversity of communication and information
technologies, the Internet is a medium support
that cannot be ignored. Limited to scientists dur-
ing its early days, the Internet became a platform
for knowledge sharing and collaboration for a
variety of domains due to the multitude of social
software developed. In particular, the political
domain was always present on the Internet and
political movements have often used this medium
to support their actions. Today, with one billion
net surfers around the world, many people claim
that the idea of “global village” popularized by

��0

E-Democracy

Marshall McLuhan in the late 1690s (McLuhan
& Fiore, 1967) is a reality. Now that it becomes
possible to engage in discussions with every-
body around the world across geographical and
temporal boundaries, many people believe in
the Internet as a virtual place where different
cultures may peacefully coexist. From this dream
there emerged, in the late 1990s, the concept of
e-democracy. The main idea is to use the infor-
mation and communication technologies to make
citizens participate more directly in the democratic
process. Several examples of the application of
this concept for local decision-taking (decisions
concerning a part of a city or a town) seem to
demonstrate that the idea of e-democracy is no
longer utopian. Moreover, with the emergence of
the “Web2.0” concept, there is an increased use
of social software by net surfers. This chapter
proposes a prospective view of the application
of social software to support e-democracy pro-
cesses. In fact, we argue that social software
can already be useful in this context. Moreover,
we believe that it may be enhanced by integrat-
ing existing technologies to overcome certain
limitations related to the current tools supporting
e-democracy processes. Concretely, the second
section proposes a short historical overview to
show how the Internet, initially developed to
support knowledge networks, was rapidly used
as a political medium. The third section presents
the concept of e-democracy, some examples and
the main limitations of the current applications.
The fourth section proposes an overview of how
modern social software can be used in the context
of e-democracy, and which technologies should
be integrated to propose on-line tools enhancing
the application of e-democracy processes. Since
these evolutions solve some of the e-democracy
limitations, the fifth section briefly analyses in
which context the concept of e-democracy should
be deployed. Finally, the sixth section proposes
some conclusions.

from knowLedge networkS
to poLItIcaL medIa

The history of the Internet studied in section 2.1
shows that new collaboration tools and method-
ologies were continuously developed to increase
knowledge sharing among social networks
(scientific ideas, software, electronic resources,
...). Based on these emerging social networks,
communities of net surfers have collaborated
through the Internet on many different projects
(section 2.2). As soon as the Internet allowed net
surfers to freely exchange ideas, it was rapidly
used to discuss political issues. The result is the
evolution of the Internet to a real political medium
(section 2.3).

Internet as knowledge networks

The Arpanet computer network, the ancestor of to-
day’s Internet, was designed to help researchers to
collaborate. Tools such as e-mail and newsgroups
were developed in the late 1960s to allow research-
ers to discuss their ideas, present their results and
take scientific decisions. Initially limited to the
military research area, the access to Arpanet was
rapidly extended the whole research community.
In the 1980s, Arpanet became the collaboration
platform for many research teams around the
world. The result of this evolution was the cre-
ation in the late 1980s of the Internet as known
today. The main problem with the communication
tools existing that time was their asynchronous
dimension which strongly limits the interactions
between people. With the increased use of the
Internet during the 1990s, new synchronized
communication applications were developed:
instant messaging tools and chat rooms. These
tools provided a new level of interactions in the
communication process between net surfers. As
studied by Rheingold (2000), this technology has
permitted the emergence of virtual communi-
ties of net surfers sharing similar interests. Once

 ���

E-Democracy

communities have emerged, it is possible to make
them live through all modern communication
supports. With the evolution of communication
tools, in particular the net meeting applications,
it has become possible to efficiently organize
discussions involving participants that are not
presented at the same place1. Initially developed
at the beginning of 1990s as simple diffusion
tools for scientific results at CERN, Web sites
have become over the years real knowledge dis-
semination tools. Today, the number of Web sites
containing interesting information has exploded
making the localization of the relevant informa-
tion a crucial issue. Since several technologies
have increased the interactivity between Web
sites and net surfers, the Web can be considered
as a social environment and many modern Web
sites have become real social software.

the Internet as collaboration
platform

With the increasing number of net surfers and the
availability of synchronous communication tools,
the Internet evolves to a collaboration platform.
Built upon virtual communities, net surfers have
started to collaborate, in particular to build freely
available artefacts (software, books, music tunes,
...). Emerging in the early 1980s, the free and open
source software movements are the best examples
of free collaboration through the Internet. By
combining social software with specific collabo-
ration tools, such as source code managing tools,
complex software projects2, comparable in qual-
ity and features to well established commercial
software, were successfully developed (Raymond,
2001). One surprising aspect of these projects is
their ability to manage long-term decisions and
to self-organize the work division across a dozen
of individual developers. Most of the time, when
conflicts appear concerning important decisions
in a given project, such as the choice of a project
leader, a democratic approach is privileged by
the community. This new production process has

been successfully applied to other domains than
software development. Founded in 2001, Wiki-
pedia3, the free content encyclopaedia project,
is the best known example of the application of
the concept of open source to other content than
source code. Despite some problems concerning
the control of the quality of part of the content4,
everybody agrees that Wikipedia demonstrates
that high quality knowledge can be built in a col-
laborative way. In particular, on-line writers must
sometimes reach a comprise as they elaborate
articles discussing controversial issues. Since the
early 2000s, and the emergence of the “Web2.0”
applications5, a new dimension in on-line col-
laboration is proposed. In fact, the role of the net
surfer has dramatically changed: he or she has
been transformed from a “passive consumer of
information” to an active organizer of the Internet
content. The new paradigm behind this social
software is that net surfers should collaborate to
manage shared resources (such as bookmarks,
contacts, videos, ...) they find relevant. Since
current search tools have difficulties treating the
amount of available information on the Internet,
this approach proposes a sort of “human index-
ing” of its content and its users.

the Internet as political medium

Since it is possible to communicate and collaborate
through the Internet, it seems natural that it is a
place where political issues may be discussed. A
close look at the history of the Internet shows that
its use as a political medium is as old as the Inter-
net itself. In fact, as pointed out by Rosenzweig
(1998), it is hard to believe that the creators of the
Arpanet were unaware of the political context
on the late sixties in the USA, in particular the
protests against the Vietnam War mobilizing the
American universities campuses. Moreover, some
authors claim that the success of the Internet can
only be understood if we consider that the first
net surfers have adopt it as a democratic and
interactive communication platform (Hauben &

���

E-Democracy

Hauben, 1997). This latest theory finds an echo
with an analysis of the content of the messages
exchanged in newsgroups carried out in 1998.
This study showed that 12% of the total number
of messages on Usenet were dedicated to politi-
cal subjects (Hill & Hughes, 1998). The fact that
political issues were discussed in newsgroups is
not surprising since it was certainly the first virtual
place where any kind of subjects were discussed.
But, the amount dedicated to politics reveals of
the political awareness of many net surfers at
that time and the existence of politically-oriented
virtual communities. With the growing popularity
of the Web as mass communication and diffusion
medium, many “politically-oriented” organiza-
tions have understood the potential of the Internet
as an internal and external communication tool.
Internally, it provides a collaboration platform
and is a source of information for members and
sympathizers. Externally, the goal is to spread
their ideas on the Net and to sensitize net surfers
to their points of view. With the multiplication
of blogs, it becomes very easy for everybody to
publish their political ideas and to create a new
genre of journalism (Wall, 2005). Conscious that
the Internet is becoming widely used among the
population in some countries, in the late 1990s,
different public authorities deployed e-govern-
ment projects, i.e. using information and com-
munication technologies to better communicate
with their citizens. Today, in some countries,
citizens can use the Internet to access the debates
of parliament, to ask for administrative documents
or to fill their tax returns. In the e-government
approach, the Internet is only used as a commu-
nication medium for governments, but there are
no real interactions between citizens and public
authorities.

e-democracy: appLIcatIonS
and LImItS

If the Internet was used very early to discuss

political issues, it took some time before these
discussions were transformed into real political
actions. The concept of e-democracy emerged
from Internet in the late 1990s (section 3.1) and
was successfully applied to several situations
(section 3.2). But, as analysed in section 3.3, there
are actually some important limitations.

concept of e-democracy

There exist several definitions in the literature for
the concept of e-democracy (sometimes called
cyber-democracy). Nevertheless, all authors
agree that it is related to the use of information
and communication technologies to involve citi-
zens, sometimes called e-citizens, in the political
decision-making processes. If the idea of using
technologies to build a better and more humane
society is not new (Wiener, 1965), the actual de-
velopment of the Internet in our modern societies
makes its realization partially possible. Besides the
multiple theoretical definitions, it is also possible
to define e-democracy as a wide range of actions
that should be available for citizens through the
Internet: voting for people, participating in on-
line referendums, intervening in public debates,
etc. Since we are discussing e-democracy ap-
plications rather than the concept itself, we will
adopt this approach. In particular, we choose the
definition proposed by Vedel (2003) suggesting
that the concept of e-democracy includes three
levels of interactions between e-citizens and
public authorities:

1. Access to information to ensure transpar-
ency in political decisions.

2. Build debates and discussion places between
citizens in order to coordinate political ac-
tions.

3. Participate in public deliberations and deci-
sion-making.

Today, the concept of e-democracy is quite
successful in Northern countries. Two elements
may explain this:

 ���

E-Democracy

1. Many citizens in these countries are petition-
ing for a more participative democracy.

2. In the collective conscience of these coun-
tries, the Internet is widely accessible for
most citizens, even through if the reality is
somewhat different.

Some examples

The Public Electronic Network (PEN), which
started in Santa Monica in 1989 (Rogers, Col-
lins-Jarvis & Schmitz, 1994) is often cited as
the first example of e-democracy application. By
providing a network of terminals, the American
city gave the opportunity to its citizens to discuss
problems together. One of the results of these
discussions was a project to help the homeless
people of the city. Since this experience, several
other cities or regions have deployed some of the
principles of e-democracy (OECD, 2003). Most
of these experiences can be categorized into two
types of democratic interactions:

1. The creation of Internet portals where
citizens can not only consult information
(already available with e-government ap-
plications), but also interact directly with
politicians, for example by sending e-mails
or commenting on proposals.

2. The use of electronic consultations to get the
opinion of citizens. Nevertheless, in most
cases, there is not always an obligation for
public authorities to take the results of these
consultations into account.

If most of e-democracy applications were
organized by public authorities, new situations
emerge today where the e-democratic initiatives
are directly launched by citizens themselves. The
fact that Internet is more and more used to promote
e-petitions (electronic petitions) is certainly the
visible part of this for most net surfers. Successful
uses of e-petitions in the context of local politics

were already pointed out (Macintosh, Malina &
Farrell, 2002). Moreover, some e-petitions have
influenced more global political decisions, such as
during the debate on software patents at the level
of the European Parliament where it was one of
the methods used by the opponents to sensitize the
parliamentarians. Despite the criticism concern-
ing the electronic vote6, several initiatives have
been successfully organized. For example, during
the primary votes of the Democrats in Arizona
in 2002, nearly 50% of the votes were cast using
the Internet (Solop, 2002). The important point of
such initiatives is that Internet should never be the
only way to interact, but one of the possible ways.
In fact, since people can participate from “their
homes”, the Internet may support the participation
of people who would not participate without it.
Some initiatives were more ambitious and aim to
influence global political stakes. During the 2004
US presidential campaign, a Web site allowed
net surfers all over the world “to vote” for their
candidate7. 500.000 net surfers participated in
this virtual election with, of course, no influence
at all on the final results. But, this can be seen
as an interesting experience of e-democracy at
a global level.

main Limitations

Despite some successful e-democracy applica-
tions, there are several important limitations
that impede a generalized deployment. The main
limitation is, of course, the reality of the digital
divide. Many people have not (or rarely) access
to the Internet. This makes e-democracy, in
practice, a preserve for “rich” populations. If this
difference is evident between the South and the
North (geographical digital divide), among the
Northern countries, many people cannot use, at
least regularly and correctly, the Internet (social
digital divide). Besides, several authors claim that
e-democracy will only be available for a small
part of the population which can then control the
political choices (Barber, 2004). Apart from these

���

E-Democracy

problems “outside of the technological sphere”,
the current examples of e-democracy are always
related to very specific issues due to the lack of
adequate integrated solutions. Of course, every-
body would agree that deploying technologies will
never solve all the real problems. Our point is that
some of these problems are directly related to the
underlying tools. To illustrate this, we propose to
study the main limitations associated to the differ-
ent levels of interactions proposed by Vedel (2003).
The first category of interactions is related to the
access of the relevant information for citizens. If
the e-government initiatives can be seen as a first
attempt to offer an access to public information,
most of the time, e-government portals are not
well structured. The consequence is a difficulty
in finding all the relevant information related to a
given problem. Moreover, all necessary informa-
tion to build a real political culture is not available
on e-government portals. It is also useful to access
studies in universities, documents of political
parties, citizens’ testimonies, etc. Accessing other
sources of information, such as the Internet, is an
important issue. But the Internet is characterized
by an increased quantity of available information,
and current search solutions, in particular search
engines, cannot face this complexity (Fogarty, &
Bahls, 2002). Beside this problem of quantity of
information, the quality of the proposed informa-
tion is also problematic, in particular for search
engines which are the most popular search tools.
Most Internet search engines rank highly the docu-
ments which are the most pointed by hyperlinks
on the Web (Brin & Page, 1998). Since hyperlinks
can be interpreted as human assessments on a
given document, i.e. assessments on the ideas
defended by a “politically-oriented” document,
search engines have a tendency to always propose
the documents containing ideas shared by the
majority of net surfers. This problem explains
the frequent criticism that the Internet acts as
support for a certain form of single thought. We
believe that the current search methods should be
enhanced, in particular to ensure the diversity of

the points of view presented to net surfers. The
second category of interactions is related to the
creation of places where citizens can debate over
political issues. As explained earlier, newsgroups
and chat rooms are powerful tools for discus-
sions. Participating in on-line discussions can
make communities emerged (Rheingold, 2000),
in particular net surfers sharing similar ideas and
collaborating with a unique political goal. In fact,
newsgroups were already successfully used for
public on-line consultations (Rosen, 2001). But,
the multiple existing communication channels
where such communities may exist are a brake for
the emergence of large communities of organized
citizens, which is the core of the e-democracy
concept. Of course, if there is a fixed political
reference for a group of people, such as the Web site
of a party or any politically-oriented organization,
a community exists de facto. On the other hand,
limiting the communities built around existing
entities is somewhat reductive. We believe that
networking tools should help people build new
communities and that political portals should
be used to coordinate political actions around
specific subjects. The third category is related to
participating in public debates and decision-mak-
ing. For simple decision-making, such as answer
a simple question (yes/no, for/against) or choose
a candidate, Internet technologies can be used
without any major technical problems. But, for
more complex decision-taking, such as drawing
up a budget for a town or writing a bill, there is
a real lack of well-established on-line tools. We
believe that existing methods managing complex
decision-taking should be integrated in political
portals.

BuILdIng and organIzIng
poLItIcaL networkS

In the previous section, the short overview of
the concept of e-democracy has shown the main
actual limits of its application and some possible

 ���

E-Democracy

directions for enhancement to solve some of these
limitations. These enhancements should support
the building and organization of political networks
not only to group net surfers sharing the same
ideas, but also to provide a discussion environment
where people having different points of view on
a same topic can hold a debate. Today, there is
a need for independent political portals. Such
portals should be sources for information related
to specific political subjects (environment, demo-
cratic participation, education, ...). They should
reference information coming from e-government
applications (since many official political docu-
ments are public) but also from alternative sources.
They should be build upon content management
systems to provide an environment for debates and
collaborative writing of documents. We argue that
a combination of these political portals with other
social software, in particular in the context of the
emerging Web2.0 applications, may contribute to
solve three major problems:

1. Ensure diversity of points of view.
2. Create political networks.
3. Organize complex decision-taking.

diversity of points of view

One of the main stakes behind the concept of e-
democracy is to access to information represent-
ing different points of view on a given problem.
As already explained, the e-government portals
currently developed by several countries should
help to make official information more acces-
sible. But, it is also necessary for e-citizens to
read information coming from other sources
and comment this information with other people,
which is the role of the political portals. Since
they must reference relevant information concern-
ing a particular political subject, they should be
combined with applications helping to access to
interesting information available on the Internet.
Several emerging Web2.0 applications propose
some solutions to the access of information by

providing a platform for a social indexing of
the Web. Social bookmarking applications, such
as del.icio.us, are well known examples. When
net surfers find interesting documents on the
Web, they tag them with keywords. It is then
possible to find all the documents tagged, thus
humanly assessed as relevant, with a given set
of keywords. We already know that applying
the social bookmarking principle can help net
surfers (citizens) to access relevant (political)
content. But this principle can also help citizens
to have a more open mind. In fact, since political
issues are characterized by a diversity of points
of view, it is evident that a given document, a
law or a study for example, may be interpreted
in several ways depending on its readers. This
diversity of points of view on a given document
will probably correspond to different keywords
used to tag this document. So, since net surfers
will see all the keywords used by others to tag
the same documents, it will be possible for them
to have an overview of the different points of
view by analysing the different sets of keywords
used. Once these documents are tagged, they
could be discussed on political portals. Everyone
would agree that the major problem concerning
Internet is related to the quality of the on-line
content. For example, many Web sites around
the world diffuse racist ideas. Currently, there
is no technology that proposes a real solution to
this problem, but several approaches have been
proposed to limit its impact. One of them, used
by several portals such as Internet marketplaces,
is to propose a rating system of users (Chen &
Singh, 2001). This system gives the opportuni-
ties to users to express a degree of trust to others
based on their experiences of the interactions
with them (for example buying something from
them). This approach could be used in another
way in our context: users would rate the people
whom they do not trust. The idea of rating the
non-trusted people rather than rating the trusted
people is to avoid the limitation of the diversity
of points of view. In fact, if users rated people

���

E-Democracy

by trust, it is probable that they would rate well
people sharing the same points of view, and the
consequence would be to connect with people that
reinforce their opinions rather than open them
to diversity. By rating non-trusted people, it will
be possible to identify groups of people who are
never considered as trusted by most users. This
information will be used to filter the informa-
tion proposed or, at least, to inform net surfers
that some political contributions were written by
very untrustworthy people and should be taken
with caution.

Building political networks

The e-democracy concept claims that e-citizens
should be able to act on political decisions. It
seems therefore evident that they must coordinate
their actions. Such a coordination can be built
upon “politically-oriented” virtual communities
through political portals. If several tools exist
to make these communities live (for example
newsgroups) and could be integrated in portals,
building these political networks remains a chal-
lenge. In the previous section, we have explained
how social bookmarking applications may be
used in the context of e-democracy. Moreover,
some researchers have shown that it is possible to
cluster the net surfers based on the keywords they
used to tag documents (Paolillo, & Penumarthy,
2007). But, as already explained, the tags used
represent a certain points of view of the tagged
document. There is therefore a risk that doing a
clustering on a tag-basis will lead to regroup people
sharing the same point of view on a particular
topic, which will reduce the access to a diversity
of points of view. In fact, we need to build com-
munities of people sharing the same interests on
a given topic and not sharing the same points
of view on a given topic. The clustering of net
surfers into communities must therefore be based
on the content of the information. The GALILEI
platform is one of the solutions that proposes a
solution for this problem (Francq, 2007). This

platform implements an approach based on social
browsing. In this approach, the net surfers define
different interests, called profiles, and assess the
documents they consider as relevant for their
profiles. The system computes descriptions for
the different profiles of the net surfers based on
the relevance assessments on documents and a
content analysis. The profiles are then clustered
on the basis of their descriptions: similar profiles
are grouped together in order to define a number
of communities of interests. If this approach is
applied with a corpus of political documents, the
communities will group people sharing common
interests on different political subjects.

organize complex decision-making

One of the main ideas behind the concept of
e-democracy is to make citizens participate in
political decisions-making. In the different ex-
amples existing today, this participation is limited
to making a “simple choice”, such as voting for
a candidate. For more complex decision-making,
there is a lack of on-line tools. A good example
of complex decision-making process is to decide
how to organize the allocations of a given budget.
To solve this problem it is not only necessary to
evaluate the priorities of each citizen, but also
several constraints influence the choice such as
the total budget available. In fact, within a given
budget, a situation may occur where two choices
can be financed: either project with priority 1 or
projects with priority 2 and 3. Choosing between
these two possibilities is not as easy as choos-
ing a unique candidate for an election. Another
complex problem is for several people to reach a
compromise. The collaborative writing of a local
policy is a typical example of this kind of problem.
A first approach for dealing with complex deci-
sion-making is to gather more information from
the participants and to integrate this information
in the final decision. The domain of operations
research has provided a huge number of meth-
ods that help take decisions (Winston, 2003), in

 ���

E-Democracy

particular computer-aided methods for multiple
criteria decision-making. But, in the context of
e-democracy, these computer-aided decision
systems have nevertheless several drawbacks.
Since most citizens do not have the competences
to understand the methods implemented in
these systems, they will probably not correctly
understand how their information will be used
to take the final decision. This means that these
systems can favour the small number of citizens
that know which information they have to give
to defend their points of view, which is one of
the criticisms often made against e-democracy.
Moreover, these systems cannot solve every form
of complex decision-making, such as agreeing to
a comprise. A second approach is to integrate in
political portals methods developed to help a group
of people dealing in complex decision-making.
One of the known method is Delphi (Linstone &
Turoff, 1975). This method structures the group
communication process of a group of individuals
in order to make them solve a complex problem
as a single entity. This method was successfully
applied in several contexts, including:

• building a common interpretation of histori-
cal events.

• evaluating possible budget allocations.
• delineating the pros and cons associated

with potential policy options.

An on-line Web system implementing the
Delphi approach was already developed (Kenis,
1995). It organizes the communication between
a set of users using an interactive process:

1. Each user gives its opinion to a question
asked.

2. A moderator proposes a compromise based
on the different answers.

3. The compromise is submitted to every user.
They can accept it or reject it (and give their

comments).
4. If a given majority does not accept the

proposition, the process is reiterated begin-
ning from the second step.

Many problems remain for this type of ap-
proach, in particular the role of the moderator of
the process, the authentication of the net surfers
participating in the debate or the democratic con-
trol of the process. But, we believe that integrating
such a system can propose a new democratic ap-
proach for solving some complex problems.

e-democracy: whIch context?

It is difficult to evaluate the status of e-democracy.
The paradigms of the global village (McLuhan
& Fiore, 1967) and the capacity of computers to
help human beings (Wiener, 1965) have created
many hopes in the Internet to solve the problem
of the confidence crisis of most modern democra-
cies. Since the information and communication
technologies have demonstrated their capacities
to make people exchange and collaborate, many
people believe that the e-democracy concept must
be promoted. On the one hand, several different
initiatives of this concept have been successfully
applied, in particular to local political decisions.
Moreover, the previous sections have shown that
a combination of specific social software and po-
litical portals may solve some of the limitations
of the application of e-democracy. On the other
hand, many limitations cannot currently be solved.
Firstly, technologies cannot best organize all forms
of decision-making. Secondly, it is necessary to
build new control mechanisms to ensure that the
way technologies are used respects the democratic
process. But, the main limitation is without doubt
the (geographical and social) digital divide. To
think that, from now to the middle of the twenty-
first century, applications of e-democracy will be
widely used seems nowadays utopian. Knowing
that the geographical digital divide will not be

���

E-Democracy

solved rapidly, it is yet possible to limit locally
the social digital divide. Therefore, two main
categories of applications of e-democracy will
probably be developed in the future:

1. For political local choices related to problems
concerning small socially homogeneous
communities of citizens, typically the
management of a town. If e-citizens have
a similar level of access and mastering of
the Internet, on-line collaboration tools can
increase the commitment of the citizens to
final political decisions.

2. For decision-making in organizations where
most members have a regular access to the
Internet, such as the free and open source
community. For nongovernmental organiza-
tions, it may also help since most of their
decisions centres are located in Northern
countries.

We can therefore fear to see in the next decades
an asymmetrical deployment of e-democracy
applications.

concLuSIon

The Internet was originally built as a knowledge
sharing platform for scientists. Its decentralized
schema and the increased facility of content cre-
ation and information access have contributed
to its use as political medium. The concept of
e-democracy was born with the idea of using
information and communication technologies to
help citizens to interact more directly in political
decision-making. In fact, if some examples of
e-democracy processes have successively been
applied in local areas, despite some utopian at-
tempts, the actual on-line solutions have limita-
tions. Today, some of these limitations can be
solved by using and enhancing political portals
and social software. Firstly, the emerging Web2.0
applications propose collaboration solutions to

manage the information on the Internet. If applied
to political content, it may help people to find
information on their political interests as well as
ensure the diversity of points of view. Moreover,
community creation approaches can be used to
link people sharing similar political interests. Fi-
nally, by integrating on-line methods for complex
decision-making on political portals, it is possible
to organize on-line collaboration for a group of
people in order to take complex decisions. The
e-democracy concept has emerged because of
the increased use of the Internet. With the digital
divide existing today, it is impossible to apply this
approach to a wide range of applications. If all
democratic constraints must be respected, only
specific local or social contexts exist where a real
e-democracy process can be applied. Despite the
unsolved limitations, this approach proposes a
real participative democratic process and should
be developed wherever it is possible.

referenceS

Barber, B.R. (2004). Strong Democracy: Par-
ticipatory Politics for a New Age. University of
California Press.

Brin, S., & Page, L. (1998). The antaomy of a large-
scale hypertextual Web search engine. Computer
Networks and ISDN Systems(33), 107-135.

Chen, M., & Singh, J.P. (2001). Computing and
using reputations for internet ratings. Tampa,
Florida, USA : ACM Press.

OECD (2003). Promise and Problems of E-de-
mocracy: Challenges of Online Citizen Engage-
ment.

Fogarty, M., & Bahls, C. (2002). Information Over-
load : Feel the pressure? The Scientist, 16(16).

Francq, P. (2007). The GALILEI Platform: Social
Browsing to Build Communities of Interests and
Share Relevant Information and Expertise. In

 ���

E-Democracy

M.D. Lytras & A. Naeve (Editors), Open source for
knowledge and learning management : strategies
beyond tools. Idea Group Publishing (319-342).

Hauben, M., & Hauben, R. (1997). Netizens: On
the History and Impact of Usenet and the Internet.
IEEE Computer Society Press.

Hill, K.A., & Hughes, J.E. (1998). Cyberpolitics:
Citizen Activism in the Age of the Internet. Row-
man & Littlefield Publishers, Inc.

Kenis, D.G.A. (1995). Improving group decisions:
designing and testing techniques for group deci-
sion support systems applying Delphi principles.
Universiteit Utrecht.

Linstone, H.A., & Turoff, M. (1975). The Delphi
Method: Techniques and Applications. Addison-
Wesley Pub. Co., Advanced Book Program.

Macintosh, A., Malina, A., & Farrell, S. (2002).
Digital Democracy through Electronic Petition-
ing. Digital Government. Dordrecht: Kluwer.

McLuhan, M., & Fiore, Q. (1967). The Medium is
the Massage : An Inventory of Effects (G. Press,
Éd.). Jerome Agel.

Paolillo, J.C., & Penumarthy, S. (2007). The Social
Structure of Tagging Internet Video on del. icio. us.
System Sciences, 2007. HICSS 2007. 40th Annual
Hawaii International Conference on, 85-85.

Raymond, E.S. (2001). The Cathedral and the
Bazaar: Musings on Linux and Open Source by
an Accidental Revolutionary. O’Reilly & As-
sociates.

Rheingold, H. (2000). The Virtual Community.
MIT Press.

Rosen, T. (2001). E-Democracy in Practice:
Swedish Experiences of a New Political Tool.
Stockholm, Swedish Association of Local Authori-
ties and Swedish Federation of County Councils
and Regions, Department of Democracy and

Self-Government.

Rogers, E.M., Collins-Jarvis, L., & Schmitz, J.
(1994). The PEN project in Santa Monica: Interac-
tive communication, equality, and political action.
Journal of the American Society for Information
Science, 45(6), 401-410.

Roy Rosenzweig. (1998). Wizards, Bureaucrats,
Warriors, and Hackers: Writing the History of
the Internet. The American Historical Review,
103(5), 1530-1552.

Solop, F.I. (2002). Digital Democracy Comes
of Age: Internet Voting and the 2000 Arizona
Democratic Primary Election. PS: Political Sci-
ence and Politics, 34(02), 289-293.

Vedel, T. (2003). L’idée de démocratie électro-
nique: Origines, Visions, Questions. Le désen-
chantement démocratique, La Tour d’Aigues:
Editions de l’Aube, 243-266.

Wall, M. (2005). ‘Blogs of war’: Weblogs as news.
Journalism, 6(2), 153.

Wiener, N. (1965). Cybernetics:: Or Control and
Communication in the Animal and the Machine.
Mit Pr.

Winston, W.L. (2003). Operations Research.
Duxbury P.,U.S.

caSe Study

Betavote.com—what if the whole
world could vote in the u.S.
presidential election?

During the 2004 US presidential elections, two
Americans, Daniel Young and Kevin Frost,
claimed that since the decisions of the United
States influence the whole world, every citizen
in the world should participate to the vote of its

��0

E-Democracy

president. They have therefore created a Web site
where net surfers could choose between John
Kerry and George W. Bush. Around 500,000
net surfers participated in this virtual election,
and 88% of them chose senator Kerry as US
president. Also, although these Internet results
did not influence the real results, this initiative
can yet be seen as an experience in e-democracy
at a global level. Nevertheless, it illustrates the
problem of the digital divide. The percentage of
voters is relatively low in comparison to the total
number of net surfers (evaluated to one billion).
Beyond the digital divide, the low number of par-
ticipants also illustrates the lack of relay for such
initiatives on the Internet. Secondly, in the US,
the results of the on-line vote (around 70,000 net
surfers participated) gave the victory to John Kerry
while the real vote gave the victory to George W.
Bush. Since some studies have shown that the
Americans who voted for John Kerry were mostly
“highly educated”, the results of the e-democracy
approach seem to confirm that using the Internet
as a political medium may be the preserve of a
given “elite”, which is one of the criticisms against
e-democracy. It will be interesting to reiterate
this experience during the next US presidential
campaign and make comparisons with the one of
2004. In particular, the total number of net surfers
participating should be analyzed as well as their
geographical distribution.

uSefuL urLS

1. Communauté de communes de Parthenay:
A French example of e-democracy portal,
http://portail.cc-parthenay.fr/Portail2007

2. Council of Europe Forum for the Future
of Democracy, http://www.coe.int/t/e/inte-
grated_projects/democracy/

3. E-Democracy.Org/Minnesota E-Democ-
racy, http://www.e-democracy.org

4. Villes Internet, Villes Internet – agir pour un

internet citoyen, http://www.villesinternet.
net

5. What if the whole world could vote in the
U.S. presidential election?, http://www.
betavote.com

further readIngS

Everard, J. (2001). Virtual states: the Internet and
the boundaries of the nation state. Routledge.

Habermas, J. (1991). The Structural Transfor-
mation of the Public Sphere: An Inquiry Into a
Category of Bourgeois Society. The MIT Press.

Rheingold, H. (2002). Smart Mobs: The Next
Social Revolution. Perseus Books Group.

endnoteS

1 The digital divide is, of course, a problem
since every participant should have an access
to the Internet, a sufficient bandwidth and
the corresponding hardware (microphone,
webcam, etc.).

2 Linux, Mozilla, OpenOffice.org, Apache
or K Desktop Environment are well known
examples of software deployed on millions
of computers today.

3 Wikipedia project: http://www.wikipedia.
org

4 The main criticism concerning Wikipedia is
the difference of quality between the articles.
Some of them may be written by a team of
experts of the corresponding domain, while
others can be written by people without a
real expertise. Many net surfers do not verify
which authors have written which articles,
and suppose that all articles have the same
level of quality.

5 Many “Web2.0” applications appear on the
Internet such as del.ico.us, LinkedIn, etc.

 ���

E-Democracy

6 The democratic control of how technologies
are deployed in the context of the electronic
vote is an important issue. We believe that
this is an “organisational” problem, since it
is possible to control how the information is
gathered and how the software manages this
information. In democracies, independent
commissions should organize this control
and ensure the necessary transparency.

This work was previously published in Knowledge Networks: The Social Software Perspective, edited by M. Lytras; R. Tennyson;
and P. Ordonez de Pablos, pp. 61-73, copyright 2009 by Information Science Reference (an imprint of IGI Global).

���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.13
Software Engineering and HCI

Shawren Singh
University of South Africa, South Africa

Alan Dix
Lancaster University, UK

IntroductIon

technology affecting cBISs

As computer technology continues to leapfrog
forward, CBISs are changing rapidly. These
changes are having an enormous impact on the
capabilities of organizational systems (Turban,
Rainer, & Potter, 2001). The major ICT develop-
ments affecting CBISs can be categorized in three
groupings: hardware-related, software-related,
and hybrid cooperative environments.

hardware-related

Hardware consists of everything in the “physical
layer” of the CBISs. For example, hardware can
include servers, workstations, networks, telecom-
munication equipment, fiber-optic cables, hand-
held computers, scanners, digital capture devices,
and other technology-based infrastructure (Shelly,
Cashman, & Rosenblatt, 2003). Hardware-related
developments relate to the ongoing advances in
the hardware aspects of CBISs.

Software-related

Software refers to the programs that control the
hardware and produce the desired information
or results (Shelly et al., 2003). Software-related
developments in CBIS are related to the ongoing
advances in the software aspects of computing
technology.

hybrid cooperative environments

Hybrid cooperative environments developments
are related to the ongoing advance in the hardware
and software aspects of computing technology.
These technologies create new opportunities on
the Web (e.g., multimedia and virtual reality)
while others fulfill specific needs on the Web
(e.g., electronic commerce (EC) and integrated
home computing).

These ICT developments are important com-
ponents to be considered in the development of
CBIS’s. As new types of technology are developed,
new standards are set for future development.
The advent of hand-held computer devices is one
such example.

 ���

Software Engineering and HCi

Background

a Software engineering view

In an effort to increase the success rate of in-
formation systems implementation, the field of
software engineering (SE) has developed many
techniques. Despite many software success sto-
ries, a considerable amount of software is still
being delivered late, over budget, and with residual
faults (Schach, 2002).

The field of SE is concerned with the develop-
ment of software systems using sound engineering
principles for both technical and non-technical
aspects. Over and above the use of specification,
and design and implementation techniques, human
factors and software management should also be
addressed. Well-engineered software provides
the service required by its users. Such software
should be produced in a cost-effective way and
should be appropriately functional, maintainable,
reliable, efficient, and provide a relevant user
interface (Pressman, 2000a; Shneiderman, 1992;
Whitten, Bentley, & Dittman, 2001).

There are two major development methodolo-
gies that are used to develop IS applications: the
traditional systems development methodology
and the object-oriented (OO) development ap-
proach.

The traditional systems approaches have the
following phases:

• Planning: this involves identifying business
value, analysing feasibility, developing a
work plan, staffing the project, and control-
ling and directing the project.

• Analysis: this involves information gath-
ering (requirements gathering), process
modeling and data modeling.

• Design: this step is comprised of physical
design, architecture design, interface de-
sign, database and file design, and program
design.

• Implementation: this step requires both
construction and installation.

There are various OO methodologies. Al-
though diverse in approach, most OO develop-
ment methodologies follow a defined system
development life cycle. The various phases are
intrinsically equivalent for all of the approaches,
typically proceeding as follows:

• OO Analysis Phase (determining what the
product is going to do) and extracting the objects
(requirements gathering), OO design phase, OO
programming phase (implemented in appropriate
OO programming language), integration phase,
maintenance phase and retirement (Schach,
2002).

One phase of the SE life cycle that is common
to both the traditional development approach and
the OO approach is requirements gathering. Re-
quirements’ gathering is the process of eliciting
the overall requirements of the product from the
customer (user). These requirements encompass
information and control need, product function
and behavior, overall product performance, de-
sign and interface constraints, and other special
needs. The requirements-gathering phase has
the following process: requirements elicitation;
requirements analysis and negotiation; require-
ments specification; system modeling; require-
ments validation; and requirements management
(Pressman, 2000a).

Despite the concerted efforts to develop a suc-
cessful process for developing software, Schach
(2002) identifies the following pitfalls:

• Traditional engineering techniques cannot
be successfully applied to software devel-
opment, causing the software depression
(software crisis). Mullet (1999) summarizes
the software crisis by noting that software
development is seen as a craft rather than
an engineering discipline. The approach

���

Software Engineerging and HCi

to education taken by most higher educa-
tion institutions encourages that “craft”
mentality; lack of professionalism within
the SE world (e.g., the failure of treating
an operating system’s crash as seriously
as a civil engineer would treat the collapse
of a bridge); the high acceptance of fault
tolerance by software engineers (e.g., if the
operating system crashes; reboot hopefully
with minimal damage); the mismatch be-
tween hardware and software developments.
Hardware and software developments are
both taking place at a rapid pace but inde-
pendently of each other. Both hardware and
software developments have a maturation
time to be compatible with each other, but
by that time everything has changed. The
final problem for software engineers is the
constant shifting of the goalposts. Custom-
ers initially think they want one thing but
frequently change their requirements.

Notwithstanding these pitfalls, Pressman
(2000b) argues that SE principles always work. It is
never inappropriate to stress the principles of solid
problem solving, good design, thorough testing,
control of change, and emphasis on quality.

The Web is an intricate and complex combina-
tion of technologies (both hardware and software)
that are at different levels of maturity. Engineer-

ing Web-based EC software, therefore, has its
own unique challenges. In essence, the network
becomes a massive computer that provides an
almost unlimited software resource that can be
accessed by anyone with a modem (Pressman,
2000a). We illustrate these intricacies in Figure
1, which is a representation of a home computer
that is attached to the Internet. It depicts the un-
derlying operating system (the base platform), the
method of connection to the Internet (dial up, the
technology that supports Web activities), browser,
an example of a Web communication language
(HTML), and additional technology that may be
required to be Web active.

All the aspects of Figure 1 will support EC
software in some way or another. An SE defect in
any of these five layers would create a problem.
For example, if the operating system is poorly
engineered, the technology that sits on this plat-
form will give piecemeal functionality at best.
The problem is further complicated by piecemeal
“patch” solutions. These piecemeal solutions can
severely affect the usability of the Web, for ex-
ample by giving cryptic error messages, installing
add-ons that affect some unknown setting that the
users do not understand, or installing add-ons that
require a particular bit of hardware or software
to be present.

Figure 1. EC Web application platform (adapted from Hurst & Gellady, 2000)

550

Software Engineering and HCI

All the aspects of Figure 1 will support EC soft-
ware in some way or another. An SE defect in any of
these five layers would create a problem. For ex-
ample, if the operating system is poorly engineered,
the technology that sits on this platform will give
piecemeal functionality at best. The problem is fur-
ther complicated by piecemeal “patch” solutions.
These piecemeal solutions can severely affect the
usability of the Web, for example by giving cryptic
error messages, installing add-ons that affect some
unknown setting that the users do not understand, or
installing add-ons that require a particular bit of
hardware or software to be present.

The View of HCI Advocates

Human-computer interaction is concerned with the
way in which computers can be used to support
human beings engaged in particular activities. HCI
thus involves the specification, design, implementa-
tion, and evaluation of interactive software systems
in the context of the user’s task and work (Preece,
Rogers, & Sharp, 2002; Preece, Rogers, Sharp,
Benyon, Holland, & Carey, 1994; Shneiderman, 1998).

An aspect related to HCI is interaction design.
Interaction design is the process of designing interac-
tive products to support people in their everyday and
work lives. In particular, it is about creating user
experiences that enhance and extend the way people

work, communicate, and interact (Preece et al.,
2002).

As stated earlier, it is the users’ experience that
affects their activities on the Web. The advocates
of HCI are intent on discovering the key to success-
ful user experiences and so the concept of usability
is intensively investigated in HCI. The ISO 9241-11
standard (1999) defines usability as the following:
the extent to which a product can be used by a
specified set of users, to achieve specified goals
(tasks) with effectiveness, efficiency, and satisfac-
tion in a specified context of use.

INTEGRATED USABILITY

Several researchers have produced sets of generic
usability principles, which can be used in improving
software (e.g., Mayhew, 1999; Preece et al., 1994;
Shneiderman, 1998, 2000). Some of these usability
principles are: learnability, visibility, consistency
and standards, flexibility, robustness, responsive-
ness, feedback, constraints, mappings, affordances,
stability, simplicity, help, and documentation. Un-
fortunately, the definitions of such design and us-
ability principles are mostly too broad or general,
and, in some cases, very vague. Some of these
principles have been adapted for EC (see for ex-
ample Badre, 2002). It has been shown repeatedly

Figure 1. EC Web application platform (adapted from Hurst & Gellady, 2000)

O p e r a t i n g S y s t e m : o p e n i n g a n d c l o s i n g o f w i n d o w s , m e n u s , d i a l o g b o x e s ,
c l i c k i n g ‘S t a r t ’ t o s h u t d o w n t h e c o m p u t e r , e t c .

T C P / I P : r u n n i n g d i a l - u p n e t w o r k t o c a l l t h e I S P , r e t r y i n g i f
n e c e s s a r y , e t c .

B r o w s e r : b o o k m a r k s , h i s t o r y f i l e ,
B a c k / F o r w a r d / H o m e / R e l o a d b u t t o n s , e t c .

H T M L : l i n k s , g r a p h i c s , f r a m e s , f o r m s ,
t a b l e s , e t c .

A d d - o n s : c o o k i e s , p l u g - i n s ,
J a v a , J a v a s c r i p t (a l l o f

w h i c h h a v e t h e i r o w n e r r o r
m e s s a g e s , l i a b l e t o a p p e a r a t
a n y t i m e) , t h e f a m i l i a r D N S

e r r o r , a d b a n n e r s , e t c .

Add-ons: cookies, plug-ins, Java, Java
script (all of which have their own error
messages, liable to appear at any time),
the familiar DNS error, ad banners, etc.

HTML: links, graphics, frames, forms, tables, etc.

Browser: bookmarks, history file, Back/Forward/Home/Reload
buttons, etc.

TCP/IP: running dial-up network to call the ISP, retrying if necessary, etc.

Operating System: opening and closing of windows, menus, dialog boxes, clicking “Start” to shut
down the computer, etc.

 ���

Software Engineering and HCi

the view of hcI advocates

Human-computer interaction is concerned with
the way in which computers can be used to sup-
port human beings engaged in particular activi-
ties. HCI thus involves the specification, design,
implementation, and evaluation of interactive
software systems in the context of the user’s task
and work (Preece, Rogers, & Sharp, 2002; Preece,
Rogers, Sharp, Benyon, Holland, & Carey, 1994;
Shneiderman, 1998).

An aspect related to HCI is interaction design.
Interaction design is the process of designing
interactive products to support people in their
everyday and work lives. In particular, it is about
creating user experiences that enhance and extend
the way people work, communicate, and interact
(Preece et al., 2002).

As stated earlier, it is the users’ experience that
affects their activities on the Web. The advocates
of HCI are intent on discovering the key to suc-
cessful user experiences and so the concept of
usability is intensively investigated in HCI. The
ISO 9241-11 standard (1999) defines usability as
the following: the extent to which a product can be
used by a specified set of users, to achieve speci-
fied goals (tasks) with effectiveness, efficiency,
and satisfaction in a specified context of use.

Integrated uSaBILIty

Several researchers have produced sets of generic
usability principles, which can be used in improv-
ing software (e.g., Mayhew, 1999; Preece et al.,
1994; Shneiderman, 1998, 2000). Some of these
usability principles are: learnability, visibility,
consistency and standards, flexibility, robustness,
responsiveness, feedback, constraints, mappings,
affordances, stability, simplicity, help, and docu-
mentation. Unfortunately, the definitions of such
design and usability principles are mostly too
broad or general, and, in some cases, very vague.
Some of these principles have been adapted for

EC (see for example Badre, 2002). It has been
shown repeatedly that general usability advice is
not effective on its own when designing systems
for a context-specific environment. Therefore, it
is generally difficult for a non-usability expert or
a novice to apply these principles in a particular
domain and situation, taking into account the
unique factors that give rise to problems in that
domain.

We argue that usability advice should be linked
to a context-specific environment. For example, if
a designer is interested in enticing surfers to stop
browsing and engage in transactions, the designer
would be well advised to make different design
choices for an Internet banking site than for an
online library. So, the design of a site for Pick
‘n Pay (supermarket chain), ABSA (commercial
bank), and the University of South Africa’s library
should therefore be approached differently.

The HCI proponents also propose certain life
cycle models. Williges, Williges, and Elkerton
(1987), for example, have produced a model of
development to rectify some of the problems in
the “classic” life cycle model of SE. In this ap-
proach, HCI principles and interface design drive
the whole process. Other such life cycle models
include the Star model of Hartson and Hix (1989),
the Usability Engineering life cycle of Mayhew
(1999), and the Interaction Design model of Pre-
ece et al. (2002). These methods also introduce
various strategies for the development of effec-
tive user interfaces. The argument for putting
forward these alternative development models is
that by spotting user requirements early on in the
development cycle, there will be less of a demand
for code generation and modification in the later
stages of systems development.

future trendS

Standards can serve as good anchor points to
focus the dialogues and collaborative activities.
However, the existing standards are rather incon-

���

Software Engineerging and HCi

sistent and thus confusing. More efforts should
be invested to render these tools more usable and
useful. Specifically, it is worthy to develop imple-
mentation strategies for situating or localizing the
standards so that they can be applied effectively
in particular contexts (Law, 2003).

concLuSIon

Both the SE proponents and the HCI proponents
have a point with regard to their approach. SE
proponents try to produce a workable solution and
HCI proponents try to develop a usable solution.
The two approaches are not mutually exclusive.
A workable solution may not be a usable solution,
and a usable solution may not be a workable solu-
tion. The problem is that the HCI advocates are
isolated from their SE colleagues, who in turn
ignore the HCI advocates. The HCI advocates use
a “blinder approach” in their attempt to develop
software by only focusing on the HCI aspects of
the design of software, while the SE developers
are concerned with a satisfactory solution. The
aspects of Figure 1 will in effect influence the
HCI advocates’ approaches as well as the SE
advocates’ approaches for designing software
for the Web. The uncertainty aspect has to be
factored into the design process.

referenceS

Badre, N. A. (2002). Shaping Web usability:
Interaction design in context. Boston: Addison-
Wesley.

Hartson, H. R., & Hix, D. (1989). Human-computer
interface development: Concepts and systems
for its management. ACM Computing Surveys,
21, 5-92.

Hurst, M., & Gellady, E. (2000). White paper one:
Building a great customer experience to develop
brand, increase loyalty and grow revenues. Cre-

ativegood. Retrieved September 14, 2003, from
http://www.creativegood.com

ISO 9241-11 (1999). Ergonomic requirements
for office work with visual display terminals.
Part 11 Guidance on usability. Retrieved from
http://www.iso.org./iso/en/catalogue DetailPage.
catalogueDetail?csnumber =16883&icsi=13&lcs
z=180&lc53=

Law, E. L. C. (2003). Bridging the HCI-SE gap:
Historical and epistemological perspectives. Paper
presented at the INTERACT Workshop, Zürich,
Switzerland.

Mayhew, D. J. (1999). The usability engineering
lifecycle: A practitioner’s handbook for user inter-
face design. San Francisco: Morgan Kaufmann.

Mullet, D. (1999). The software crisis. University
of North Texas. Retrieved October 20, 2003, from
http://www.unt.edu/benchmarks/archives/1999/
july99/crisis.htm

Preece, J., Rogers, Y., & Sharp, H. (2002). Interac-
tion design: Beyond human-computer interaction.
New York: John Wiley & Sons.

Preece, J., Rogers, Y., Sharp, H., Benyon, D.,
Holland, S., & Carey, T. (1994). Human-computer
interaction. Harlow, UK: Addison-Wesley.

Pressman, R. S. (2000a). Software engineering:
A practitioner’s approach (5th ed.). London:
McGraw Hill.

Pressman, R. S. (2000b). What a tangled Web
we weave. IEEE Software, (January/February),
18-21.

Schach, S. R. (2002). Object-oriented and clas-
sical software engineering (5th ed.). Boston:
McGraw Hill.

Shelly, B. G., Cashman, J. T., & Rosenblatt, J.
H. (2003). Systems analysis and design (5th ed.).
Australia: Thomson: Course Technology.

 ���

Software Engineering and HCi

Shneiderman, B. (1992). Designing the user in-
terface: Strategies for effective human-computer
interaction. Reading, MA: Addison Wesley.

Shneiderman, B. (1998). Design the user interface:
Strategies for effective human-computer interac-
tion (3rd ed.). Reading, MA: Addison-Wesley.

Shneiderman, B. (2000). Universal usability.
Communication of the ACM, 43(5), 84-91.

Stair, R. M. (1992). Principles of information
systems: A managerial approach. Boston: Boyd
& Fraser.

Turban, E., Rainer, R. K., & Potter, E. R. (2001).
Introduction to information technology. New
York: John Wiley & Sons.

Vanderdonckt, J., & Harning, M. B. (2003, Sep-
tember 1-2). Closing the gaps: Software engineer-
ing and human-computer interaction. Interact
2003 Workshop, Zurich, Switzerland. Retrieved
in July 2004, from http://www.interact2003.org/
workshops/ws9-description.html

Whitten, L. J., Bentley, D. L., & Dittman, C. K.
(2001). Systems analysis and design methods (5th
ed.). Boston: McGraw-Hill Irwin.

Williges, R. C., Williges, B. H., & Elkerton, J.
(1987). Software interface design. In G. Salvendy
(Ed.), Handbook of human factors (pp. 1414-1449).
New York: John Wiley & Sons.

key termS

Information Systems: First known as busi-
ness data processing (BDP) and later as manage-
ment information systems (MIS). The operative
word is “system” because it combines technology,
people, processes, and organizational mechanisms
for the purpose of improving organizational
performance.

Interaction Design: The process of designing
interactive products to support people in their
everyday and work lives.

ISO 9241-11: This part of ISO 9241 introduces
the concept of usability but does not make specific
recommendations in terms of product attributes.
Instead, it defines usability as the “extent to which
a product can be used by specified users to achieve
specified goals with effectiveness, efficiency and
satisfaction in a specified context of use.”

Requirements’ Gathering: The process of
eliciting the overall requirements of a product
from the customer.

Software Engineering: Concerned with the
development of software systems using sound
engineering principles for both technical and
non-technical aspects. Over and above the use
of specification, design and implementation tech-
niques, human factors and software management
should also be addressed.

Usability: The ISO 9241-11 standard definition
of usability identifies three different aspects: (1)
a specified set of users, (2) specified goals (asks)
which have to be measurable in terms of effec-
tiveness, efficiency, and satisfaction, and (3) the
context in which the activity is carried out.

This work was previously published in Encyclopedia of Human Computer Interaction, edited by C. Ghaoui, pp. 548-552,
copyright 2006 by Information Science Reference (an imprint of IGI Global).

���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.14
Software Agent Technology:

An Overview

Chrysanthi Ε. Georgakarakou
University of Macedonia, Greece

Anastasios A. Economides
University of Macedonia, Greece

aBStract

This chapter provides an overview of the rapidly
evolving area of software agents and presents
the basic aspects of applying the agent technol-
ogy to virtual enterprises (VE). As the field of
software agents can appear chaotic, this chapter
briefly introduces the key issues rather than
present an in-depth analysis and critique of the
field. In addition to, this chapter investigates the
application of agent technology to virtual enter-
prises and presents current research activity that
focuses on this field serving as an introductory
step. Furthermore, this chapter makes a list of
the most important themes concerning software
agents and the application of agent technology
to virtual enterprises apposing some order and
consistency and serve as a reference point to a
large body of literature.

IntroductIon

The aim of this chapter is to survey some key
research issues in the software agents’ area. It

annotates several researchers’ opinions on many
areas concerning software agents trying to give a
more documentary point of view of each argued
subject. Its main goal is to provide an overview
of the rapidly evolving area of software agents
serving as a reference point to a large body of
literature and outlining the key aspects of soft-
ware agent technology. While this chapter does
not act as an introduction to all the issues in the
software agents’ field, it intends to point the reader
at the primary areas of interest. In addition to,
this chapter investigates the application of agent
technology to virtual enterprises. It presents basic
aspects of applying agent technology to virtual
enterprises serving as an introductory step.

First of all, this overview chapter attempts
to answer the question of what a software agent
is. Secondly, it analyzes the three technologies
that distributed artificial intelligence (DAI) has
evolved: (1) multi-agent system (MAS), (2) dis-
tributed problem solving (DPS), and (3) parallel
AI (PAI). Thereinafter, it makes the distinction
between single agent and multi-agent systems
analyzing their dimensions. In addition to, it goes
through the broad spectrum of agent properties.

 ���

Software Agent technology

Furthermore, it discusses the most acknowledged
classification schemes or taxonomies (typologies)
of software agents proposed in the agent research
community. Moreover, it presents the most well
known agent architecture classification schemes
arguing about each distinct architecture. Besides,
it explores the two most important agent commu-
nication approaches: (1) communication protocols,
and (2) evolving languages. It also discusses about
a number of languages for coordination and com-
munication that have been proposed. It argues
about possible implementations of agent transpor-
tation mechanisms as well. Further, it annotates
prominent ontology specification languages and
editors for ontology creation and maintenance.
Then, it lists and argues standard languages and
several prototype languages for implementing
agent-based systems that have been proposed for
constructing agent-based systems. Afterwards,
it presents a number of tools and platforms that
are available and support activities or phases of
the process of agent-oriented software develop-
ment. Next, it examines several agent oriented
software engineering (AOSE) methodologies that
have been proposed to assist engineers to create
agent-based systems. At the end, it investigates
the application of the agent technology to virtual
enterprises, answering the question of why to use
agents in virtual enterprises and presenting the
current research activity that focuses on the agent
technology applied to virtual enterprises.

Background

As software agents comprise a prominent scientific
area of research activity, a plethora of researchers
have investigated them and stated their own point
of view. Nwana and Ndumu (1996) mention that
software agent technology is a rapidly develop-
ing area of research. According to Wooldridge
and Jennings (1995), the concept of an agent has
become important in both artificial intelligence
(AI) and mainstream computer science. Oliveira,

Fischer, and Stepankova (1999) observe that for
some time now agent-based and multi-agent
systems (MASs) have attracted the interest of
researchers far beyond traditional computer sci-
ence and artificial intelligence (AI).

Although software agent technology demon-
strates expeditious advancement, there is a truly
heterogeneous body of work being carried out
under the “agents” banner (Nwana & Ndumu,
1996). Nwana and Ndumu (1996) introduce soft-
ware agent technology by overviewing the various
agent types currently under investigation by re-
searchers. Nwana (1996) largely reviews software
agents, and makes some strong statements that
are not necessarily widely accepted by the agent
community. Nwana (1996) presents a typology
of agents, next places agents in context, defines
them and overviews critically the rationales, hy-
potheses, goals, challenges, and state-of-the-art
demonstrators of the various agent types of the
proposed typology. Besides, Nwana (1996) at-
tempts to make explicit much of what is usually
implicit in the agents’ literature and proceeds to
overview some other general issues which pertain
to all the types of agents in the typology.

Agent-based and multi-agent systems (MASs)
have attracted the researchers’ interest to great
extents. Oliveira et al. (1999) try to identify fo-
cal points of interest for researchers working in
the area of distributed AI (DAI) and MAS as
well as application oriented researchers coming
from related disciplines, for example, electrical
and mechanical engineering. They do this by
presenting key research topics in DAI and MAS
research and by identifying application domains
in which the DAI and MAS technologies are
most suitable.

Sycara (1998) presents some of the critical no-
tions in MASs and the research work that has ad-
dressed them and organizes these notions around
the concept of problem-solving coherence. Sycara
(1998) believes that problem-solving coherence
is one of the most critical overall characteristics
that an MAS should exhibit.

��0

Software Agent technology

Jennings et al. (1998) provide an overview of
research and development activities in the field of
autonomous agents and multi-agent systems. They
aim to identify key concepts and applications,
and to indicate how they relate to one another.
Some historical context to the field of agent-based
computing is given, and contemporary research
directions are presented. Finally, a range of open
issues and future challenges are highlighted.

Wooldridge and Jennings (1995) aim to
point the reader at what they perceive to be the
most important theoretical and practical issues
associated with the design and construction of
intelligent agents. For convenience, they divide
these issues into three areas (agent theory, agent
architectures, and agent languages). Their paper
is not intended to serve as a tutorial introduction
to all the issues mentioned and includes a short
review of current and potential applications of
agent technology.

Wooldridge (1998) provides an introductory
survey of agent-based computing. The article
begins with an overview of micro-level issues
in agent-based systems: issues related to the
design and construction of individual intelligent
agents. The article then goes on to discuss some
macrolevel issues; issues related to the design
and construction of agent societies. Finally, the
key application areas for agent technology are
surveyed.

An article that should not be omitted at this
point is Weiß’s (2002) paper. Weiß (2002) offers
a guide to the broad body of literature of agent-
oriented software engineering (AOSE). The guide,
which is intended to be of value to both researchers
and practitioners, is structured according to key
issues and key topics that arise when dealing with
AOSE: methods and frameworks for requirements
engineering, analysis, design, and implementa-
tion; languages for programming, communication
and coordination, and ontology specification; and
development tools and platforms.

On the other hand, considering the agent
technology application to virtual enterprises,

Jennings, Norman and Faratin (1998) exhibit
considerable concepts. They argue the case of the
agent-based approach showing how agent tech-
nology can improve efficiency by ensuring that
business activities are better scheduled, executed,
monitored, and coordinated.

According to Camarinha-Matos (2002), multi-
agent systems represent a promising approach to
both model and implement the complex supporting
infrastructures required for virtual enterprises
and related emerging organizations. The current
status of application of this approach to industrial
virtual enterprises, virtual communities, and
remote supervision in the context of networked
collaborative organizations is presented (Camar-
inha-Matos, 2002). Examples of relevant projects
are provided and major challenges and open issues
identified as well (Camarinha-Matos, 2002).

Petersen, Divitini, and Matskin (2001) describe
how virtual enterprises can be modeled using
the AGORA multi-agent architecture, designed
for modelling and supporting cooperative work
among distributed entities. They underline that
the distributed and goal-oriented nature of the
virtual enterprise provides a strong motivation
for the use of agents to model virtual enterprises.
They also mention the main advantages of their
approach.

This chapter provides an overview of research
activity regarding the scientific domain of soft-
ware agents. As the field of software agents can
appear chaotic, this chapter briefly introduces
the key issues rather than present an in-depth
analysis and critique of the field. References to
more detailed treatments are provided. The pur-
pose of this chapter is to make a list of the most
important themes concerning software agents,
apposing some order and consistency and serve
as a reference point to a large body of literature.
In addition to, this chapter makes an introduction
of applying agent technology to virtual enterprises
and describes current research activity that ad-
dresses the above-mentioned issue.

 ���

Software Agent technology

a BrIef overvIew of
Software agent technoLogy

what is a Software agent?

Software agent technology is a rapidly developing
area of research and probably the fastest growing
area of information technology (IT) (Jennings
& Wooldridge, 1996; Nwana & Ndumu, 1996).
Application domains in which agent solutions
are being applied or researched into include
workflow management, telecommunications
network management, air-traffic control, business
process reengineering, data mining, information
retrieval/management, electronic commerce,
education, personal digital assistants (PDAs),
e-mail filtering, digital libraries, command and
control, smart databases, and scheduling/diary
management (Nwana & Ndumu, 1996).

Over the last years, many researchers in the
area of agents have proposed a large variety of
definitions for the “agent” term. It is stated that
it is difficult to give a full definition for the note
of agency. Nwana (1996) predicates there are at
least two reasons why it is so difficult to define
precisely what agents are. Firstly, agent researchers
do not “own” this term in the same way as fuzzy
logicians/AI researchers, for example, own the
term “fuzzy logic”—it is one that is used widely
in everyday parlance as in travel agents, estate
agents, and so forth. Secondly, even within the
software fraternity, the word agent is really an um-
brella term for a heterogeneous body of research
and development (Nwana, 1996). Concerning the
agent definition, Nwana (1996) states:

When we really have to, we define an agent as
referring to a component of software and/or hard-
ware which is capable of acting exactingly in order
to accomplish tasks on behalf of its user. Given
a choice, we would rather say it is an umbrella
term, meta-term or class, which covers a range
of other more specific agent types, and then go
on to list and define what these other agent types

are. This way, we reduce the chances of getting
into the usual prolonged philosophical and ster-
ile arguments which usually proceed the former
definition, when any old software is conceivably
recastable as agent-based software. (p. 6)

Bradshow (1997) identifies two approaches
to the definition of an agent as follows: (1) agent
as an ascription—this approach is based on the
concept that “agency cannot ultimately be char-
acterized by listing a collection of attributes but
rather consists fundamentally as an attribution
on the part of some person,” and (2) agent as a
description: agents are defined by describing the
attributes they should exhibit.

Jennings and Wooldridge (1996) offer a rela-
tively loose notion of an agent as a self-contained
program capable of controlling its own decision-
making and acting, based on its perception of its
environment, in pursuit of one or more objectives
will be used here.

Wooldridge (1998) defines an intelligent
agent as a system that enjoys the following four
properties: autonomy (agents operate without
the direct intervention of humans or others, and
have control over their actions and internal state),
social ability (agents are able to cooperate with
humans or other agents in order to achieve their
tasks), reactivity (agents perceive their environ-
ment, and respond in a timely fashion to changes
that occur in it), and pro-activeness (agents do
not simply act in response to their environment,
they are able to exhibit goal-directed behavior by
taking the initiative).

According to Hayes (1999), an agent is an
entity (either computer or human) that is capa-
ble of carrying out goals, and is part of a larger
community of agents that have mutual influence
on each other. Agents may co-exist on a single
processor, or they may be constructed from physi-
cally, but intercommunicating processors (such
as a community of robots) (Hayes, 1999). The
key concepts in this definition are that agents can
act autonomously to some degree, and they are

���

Software Agent technology

part of a community in which mutual influence
occurs (Hayes, 1999).

Distributed Artificial Intelligence
(daI) technologies

Distributed artificial intelligence (DAI) is a sub-
field of artificial intelligence (AI) which is con-
cerned with a society of problem solvers or agents
interacting in order to solve a common problem:
computers and persons, sensors, aircraft, robots,
and so forth (Green, Hurst, Nangle, Cunningham,
Somers, & Evans, 1997). Such a society is termed a
multi-agent system, namely, a network of problem
solvers that work together to solve problems that
are beyond their individual capabilities (Green
et al., 1997). Software agents have evolved from
multi-agent systems (MAS), which in turn form
one of three broad areas which fall under DAI,
the other two being distributed problem solving
(DPS) and parallel AI (PAI) (Nwana, 1996). There-
fore, agents inherit potential benefits from both
DAI, for example modularity, speed, reliability
and AI (e.g., operation at knowledge level, easier
maintenance, reusability, platform independence)
(Nwana, 1996).

agent Systems

Jennings et al. (1998) state that an agent-based
system is a system in which the key abstraction
used is that of an agent. In principle, an agent-
based system might be conceptualized in terms
of agents, but implemented without any software
structures corresponding to agents at all (Jennings
et al., 1998). A parallel with object-oriented soft-
ware can be drawn, where it is entirely possible
to design a system in terms of objects, but to
implement it without the use of an object-oriented
software environment (Jennings et al., 1998). But
this would at best be unusual, and at worst, coun-
ter-productive (Jennings et al., 1998). According
to Jennings et al. (1998), a similar situation exists
with agent technology and they therefore expect

an agent-based system to be both designed and
implemented in terms of agents.

An agent-based system may contain one or
more agents (Jennings et al., 1998). There are
cases in which a single agent solution is appropri-
ate (Jennings et al., 1998). However, the multi-
agent case—where the system is designed and
implemented as several interacting agents—is
arguably more general and more interesting from
a software engineering standpoint (Jennings et al.,
1998). Multi-agent systems are ideally suited to
representing problems that have multiple problem
solving methods, multiple perspectives and/or
multiple problem solving entities (Jennings et
al., 1998). Such systems have the traditional ad-
vantages of distributed and concurrent problem
solving, but have the additional advantage of so-
phisticated patterns of interactions (Jennings et al.,
1998). Examples of common types of interactions
include: cooperation (working together towards a
common aim), coordination (organizing problem
solving activity so that harmful interactions are
avoided or beneficial interactions are exploited),
and negotiation (coming to an agreement which
is acceptable to all the parties involved) (Jennings
et al., 1998).

As the technology matures and endeavors to
attack more complex, realistic, and large-scale
problems, the need for systems that consist of
multiple agents that communicate in a peer-to-
peer fashion is becoming apparent (Sycara, 1998).
The most powerful tools for handling complexity
are modularity and abstraction (Sycara, 1998).
Multi-agent systems (MASs) offer modularity
(Sycara, 1998). If a problem domain is particu-
larly a complex, large, or unpredictable, then
the only way it can reasonably be addressed is
to develop a number of functionally specific
and (nearly) modular components (agents) that
are specialized at solving a particular problem
aspect (Sycara, 1998). In MASs, applications are
designed and developed in terms of autonomous
software entities (agents) that can flexibly achieve
their objectives by interacting with one another

 ���

Software Agent technology

in terms of high-level protocols and languages
(Zambonelli, Jennings, & Wooldridge, 2003). An
MAS can be defined as a collection of, possibly
heterogeneous, computational entities, having
their own problem solving capabilities and which
are able to interact among them in order to reach
an overall goal (Oliveira et al., 1999).

agent properties

A software agent is a computer system situated in
an environment that acts on behalf of its user and
is characterised by a number of properties (Chira,
2003). Most researchers agree that autonomy is a
crucial property of an agent. Alonso (2002) states
about agents that it is precisely their autonomy
that defines them. Furthermore, cooperation
among different software agents may be very
useful in achieving the objectives an agent has
(Chira, 2003). According to the weak notion of
agency given by Wooldridge and Jennings (1995)
the most general way in which the term agent
is used is to denote hardware or (more usually)
software-based computer system that enjoys the
following properties: autonomy, social ability,
reactivity and pro-activeness (Wooldridge &
Jennings, 1995). Jennings et al. (1998) identify
three key concepts in their definition that they
adapt from (Wooldridge & Jennings, 1995): situ-
atedness, autonomy, and flexibility (by the term
flexible they mean that the system is responsive,
pro-active and social). For Wooldridge (1998), an
intelligent agent is a system that enjoys autonomy,
social ability, reactivity, and pro-activeness. He
also refers to the fact that other researchers argue
that different properties, such as mobility, verac-
ity, benevolence, rationality and learning, should
receive greater emphasis.

An agent may possess many properties in vari-
ous combinations. In continuance, we enumerate
and define all the properties that we adopt for the
purposes of this research:

1. Autonomy: Ιt means that the agent can
act without direct intervention by humans
or other agents and that it has control over
its own actions and internal state (Sycara,
1998).

2. Reactivity or situatedness or sensing and
acting: Ιt means that the agent receives some
form of sensory input from its environment,
and it performs some action that changes
its environment in some way (Chira, 2003;
Sycara, 1998).

3. Proactiveness or goal directed behavior:
Ιt means that the agent does not simply act
in response to its environment; it is able to
exhibit goal-directed behavior by taking
the initiative (Chira, 2003; Odell, 2000;
Wooldridge & Jennings, 1995).

4. Social ability: Ιt means that the agent in-
teracts and friendliness or pleasant social
relations mark this interaction; that is, the
agent is affable, companionable or friendly
(Odell, 2000).

5. Coordination: Ιt means that the agent is
able to perform some activity in a shared
environment with other agents (Odell, 2000).
Activities are often coordinated via plans,
workflows or some other process manage-
ment mechanism (Odell, 2000).

6. Cooperation or collaboration: Ιt means
that the agent is able to coordinate with
other agents to achieve a common purpose;
non-antagonistic agents that succeed or fail
together (Odell, 2000).

7. Flexibility: Ιt means that the system is re-
sponsive (the agents should perceive their
environment and respond in a timely fashion
to changes that occur in it), pro-active and
social (Jennings et al., 1998).

8. Learning or adaptivity: Ιt means that an
agent is capable of (1) reacting flexibly to
changes in its environment; (2) taking goal-
directed initiative, when appropriate; and
(3) learning from its own experience, its

���

Software Agent technology

environment, and interactions with others
(Chira, 2003; Sycara, 1998).

9. Mobility: Ιt means that the agent is able to
transport itself from one machine to another
and across different system architectures
and platforms (Etzioni & Weld, 1995).

10. Temporal continuity: Ιt means that the
agent is a continuously running process, not
a “one-shot” computation that maps a single
input to a single output, then terminates
(Etzioni & Weld, 1995).

11. Personality or character: An agent has
a well-defined, believable personality and
emotional state (Etzioni & Weld, 1995).

12. Reusability: Processes or subsequent in-
stances can require keeping instances of
the class agent for an information handover
or to check and to analyze them according
to their results (Horn, Kupries, & Reinke,
1999).

13. Resource limitation: An agent can only
act as long as it has resources at its disposal
(Horn et al., 1999). These resources are
changed by its acting and possibly also by
delegating (Horn et al., 1999).

14. Veracity: It is the assumption that an agent
will not knowingly communicate false in-
formation (Wooldridge, 1998; Wooldridge
& Jennings, 1995).

15. Benevolence: It is the assumption that agents
do not have conflicting goals and that every
agent will therefore always try to do what is
asked of it (Wooldridge, 1998; Wooldridge
& Jennings, 1995).

16. Rationality: It is the assumption that an
agent will act in order to achieve its goals,
and will not act in such a way as to prevent
its goals being achieved—at least insofar
as its beliefs permit (Wooldridge, 1998;
Wooldridge & Jennings, 1995).

17. Inferential capability: An agent can act
on abstract task specification using prior
knowledge of general goals and preferred
methods to achieve flexibility; goes beyond

the information given, and may have explicit
models of self, user, situation and/or other
agents (Bradshow, 1997).

18. “Knowledge-level” communication abil-
ity: The ability to communicate with per-
sons and other agents with language more
resembling humanlike “speech acts” than
typical symbol-level program-to-program
protocols (Bradshow, 1997).

19. Prediction ability: An agent is predictive
if its model of how the world works is suf-
ficiently accurate to allow it to correctly
predict how it can achieve the task (Goodwin,
1993).

20. Interpretation ability: An agent is inter-
pretive if it can correctly interpret its sensor
readings (Goodwin, 1993).

21. Sound: An agent is sound if it is predictive,
interpretive and rational (Goodwin, 1993).

22. Proxy ability: An agent can act on behalf
of someone or something that is, acting in
the interest of, as a representative of, or for
the benefit of, some entity (Odell, 2000).

23. Intelligence: The agent’s state is formalized
by knowledge and interacts with other agents
using symbolic language (Odell, 2000).

24. Unpredictability: An agent is able to act in
ways that are not fully predictable, even if
all the initial conditions are known (Odell,
2000). It is capable of nondeterministic
behavior (Odell, 2000).

25. Credibility: An agent has a believable per-
sonality and emotional state (Odell, 2000).

26. Transparency and accountability: An
agent must be transparent when required,
but must provide a log of its activities upon
demand (Odell, 2000).

27. Competitiveness: An agent is able to co-
ordinate with other agents except that the
success of one agent implies the failure of
others (Odell, 2000).

28. Ruggedization: An agent is able to deal
with errors and incomplete data robustly
(Odell, 2000).

 ���

Software Agent technology

29. Trustworthiness: An agent adheres to laws
of robotics and is truthful (Odell, 2000).

agent typology

Agents may be usefully classified according to the
subset of these properties that they enjoy (Franklin
& Graesser, 1996). There are, of course, other pos-
sible classifying schemes (Franklin & Graesser,
1996). For example, software agents might be
classified according to the tasks they perform, for
example, information gathering agents or email
filtering agents (Franklin & Graesser, 1996). Or,
they might be classified according to their control
architecture (Franklin & Graesser, 1996). Agents
may also be classified by the range and sensitivity
of their senses, or by the range and effectiveness
of their actions, or by how much internal state
they possess (Franklin & Graesser, 1996).

There are several classification schemes or
taxonomies proposed in the agent research com-
munity from which the following three are well
acknowledged (Chira, 2003): (1) Gilbert’s scope of
intelligent agents (Bradshow, 1997), (2) Nwana’s
(1996) primary attributes dimension typology,
and (3) Franklin’s and Graesser’s (1996) agent
taxonomy.

A typology refers to the study of types of enti-
ties and there are several dimensions to classify
existing software agents (Nwana, 1996). Agents
may be classified according to (Bradshow, 1997):
(1) mobility, as static or mobile, (2) presence
of a symbolic reasoning model, as deliberative
or reactive, (3) exhibition of ideal and primary
attributes, such as autonomy, cooperation and
learning, (4) roles, as information or Internet, (5)
hybrid philosophies, which combine two or more
approaches in a single agent, and (6) secondary
attributes, such as versatility, benevolence, verac-
ity, trustworthiness, temporal continuity, ability
to fail gracefully and mentalistic and emotional
qualities (Nwana, 1996).

Nwana (1996) identifies seven types of agents
(Chira, 2003). Next, we enumerate and describe
each agent type:

1. Collaborative agents: They are “able to
act rationally and autonomously in open
and time-constrained multi-agent environ-
ments” (Chira, 2003; Nwana, 1996). Key
characteristics: autonomy, social ability,
responsiveness, and pro-activeness (Chira,
2003; Nwana, 1996).

2. Interface agents: They support and assist
the user when interacting with one or more
computer applications by learning during the
collaboration process with the user and with
other software agents (Chira, 2003; Nwana,
1996). Key characteristics: autonomy, learn-
ing (mainly from the user but also from other
agents), and cooperation with the user and/or
other agents (Chira, 2003; Nwana, 1996).

3. Mobile agents: They are autonomous soft-
ware programs capable of roaming wide area
networks (such as WWW) and cooperation
while performing duties (e.g., flight reser-
vation, managing a telecommunications’
network) on behalf of its user (Chira, 2003;
Nwana, 1996). Key characteristics: mobil-
ity, autonomy, and cooperation (with other
agents—e.g., to exchange data or informa-
tion) (Chira, 2003; Nwana, 1996).

4. Information/internet agents: They are de-
signed to manage, manipulate or collate the
vast amount of information available from
many distributed sources (information ex-
plosion) (Chira, 2003; Nwana, 1996). These
agents “have varying characteristics: they
may be static or mobile; they may be non-
cooperative or social; and they may or may
not learn” (Chira, 2003; Nwana, 1996).

5. Reactive agents: They act/respond to the
current state of their environment based on
a stimulus-response scheme (Chira, 2003;
Nwana, 1996). These agents are relatively
simple and interact with other agents in basic

���

Software Agent technology

ways but they have the potential to form
more robust and fault tolerant agent-based
systems (Chira, 2003; Nwana, 1996). Key
characteristics: autonomy and reactivity
(Chira, 2003; Nwana, 1996).

6. Hybrid agents: They combine two or more
agent philosophies into a single agent in
order to maximize the strengths and mini-
mize the deficiencies of the most relevant
techniques (for a particular purpose) (Chira,
2003; Nwana, 1996).

7. Smart agents: They are equally character-
ised by autonomy, cooperation, and learning
(Chira, 2003; Nwana, 1996).

According to Nwana (1996), there are some
applications that combine agents from two or
more of the above types. Nwana (1996) refers
to these as heterogeneous agent systems. This
category of agent systems is generally referred
to (by most researchers) as multi-agent systems
(Chira, 2003).

agent architectures

Researchers working in the area of agents’ ar-
chitectures are concerned with the design and
construction of agents that enjoy the properties
of autonomy, reactivity, pro-activeness, and social
ability (Wooldridge, 1998). Wooldridge (1999)
states that agent architecture is essentially a map of
the internals of an agent—its data structures, the
operations that may be performed on these data
structures, and the control flow between these data
structures. Three classes of agent architectures can
be identified (Wooldridge & Jennings, 1995): (1)
deliberative or symbolic architectures are those
designed along the lines proposed by traditional,
symbolic AI, (2) reactive architectures are those
that eschew central symbolic representations of the
agent’s environment, and do not rely on symbolic
reasoning, and (3) hybrid architectures are those
that try to marry the deliberative and reactive
approaches (Wooldridge, 1998). Wooldridge and

Jennings (1995) indicate that agent architectures
can be viewed as software engineering models of
agents and identify the above-mentioned classes
of agent architectures.

Wooldridge (1999) considers four classes of
agents. In our opinion most agents follow one of
these four architectural classes. To continue, we
enumerate and give a short description of each
class:

1. Logic based agents: In which decision-
making is realized through logical deduction
(Wooldridge, 1999).

2. Reactive agents: In which decision-making
is implemented in some form of direct map-
ping from situation to action (Wooldridge,
1999).

3. Belief-desire-intention (BDI) agents: In
which decision-making depends upon the
manipulation of data structures represent-
ing the beliefs, desires, and intentions of the
agent (Wooldridge, 1999).

4. Layered architectures: In which decision
making is realized via various software lay-
ers, each of which is more-or-less explicitly
reasoning about the environment at different
levels of abstraction (Wooldridge, 1999).

agent communication approaches

One of the most important features of an agent
is interaction. In other words, agents recurrently
interact to share information and to perform tasks
to achieve their goals (Kostakos & Taraschi, 2001).
Without communication, different agents cannot
know from each other who is doing what and how
they can cooperate (Bussink, 2004). Therefore
communication is a must if we want to set up a
useful multi-agent system (Bussink, 2004).

There are several approaches to how this
communication can take shape (Bussink, 2004).
The two most important approaches are com-
munication using communication protocols,
and communication using an evolving language

 ���

Software Agent technology

(Bussink, 2004). Both techniques have their
advantages and disadvantages (Bussink, 2004).
In industrial applications communication pro-
tocols will be the best practice, but in systems
where homogeneous agents can work together
language evolution is a good option (Bussink,
2004). The basis for language evolution is in hu-
man communication (Bussink, 2004). The agent
languages consist of grammars and vocabularies,
just like any human language (Bussink, 2004).
Some researchers even do research in the area
of language evolution using agents in order to
get more understanding of how human com-
munication has evolved (Bussink, 2004). For a
long time, the only way agents communicated
was using communication protocols (Bussink,
2004). Therefore research often focussed on this
area and a lot of specifications have been written
(Bussink, 2004). Because of the formal nature of
protocols, there are a quite a few widely known
and used standards (Bussink, 2004).

agent communication Languages
(acLs)

The difficulty to precisely handle coordination
and communication increases with the size of the
agent-based software to be developed. A number
of languages for coordination and communication
have been proposed. Weίβ (2002) enumerates a
list of such languages. Next, we enumerate and
describe the most prominent examples of agent
communication languages (ACLs) according to
Weίβ (2002):

1. Knowledge query and manipulation
language (KQML): It is perhaps the most
widely used agent communication language
(Weίβ, 2002).

2. ARCOL (“ARTIMIS communication lan-
guage”): It is the communication language
used in the ARTIMIS system (Weίβ, 2002).
ARCOL has a smaller set of communication

primitives than KQML, but these can be
composed (Weίβ, 2002).

3. FIPA agent communication language
(FIPA-ACL): It is an agent communication
language that is largely inuenced by ARCOL
(Weίβ, 2002). Together FIPA-ACL, ARCOL,
and KQML establish a quasi standard for
agent communication languages (Weίβ,
2002).

4. Knowledge interchange format (KIF):
It is a logic-based language that has been
designed to express any kind of knowledge
and metaknowledge (Weίβ, 2002). KIF is
a language for content communication,
whereas languages like KQML, ARCOL,
and FIPA-ACL are for intention communi-
cation (Weίβ, 2002).

5. Domain independent COOrdination
language (COOL): It aims at explicitly rep-
resenting and applying coordination knowl-
edge for multi-agent systems and focuses on
rule-based conversation management (Weίβ,
2002). Languages like COOL can be thought
of as supporting a coordination/communi-
cation (or “protocol-sensitive”) layer above
intention communication (Weίβ, 2002).

Apart from these most prominent languages,
several others showing unique properties have
been proposed (Weίβ, 2002). Some of the above-
mentioned languages follow:

1. Interagent communication language (ICL)
(Weίβ, 2002)

2. AgentTalk (Weίβ, 2002)
3. Communication and coordination language

(CoLa) (Weίβ, 2002)
4. Tuple centres spread over networks (TuC-

SoN) (Weίβ, 2002)
5. LuCe (Weίβ, 2002)
6. Simple thread language ++ (STL++) (Weίβ,

2002)
7. Strictly declarative modelling language

(SDML) (Weίβ, 2002)

���

Software Agent technology

agent transportation mechanisms

In agent environments, messages should be
schedulable, as well as event driven (OMG
Agent Working Group, 2000). They can be sent
in synchronous or asynchronous modes (OMG
Agent Working Group, 2000). The transportation
mechanism should support unique addressing
as well as role-based addresses (OMG Agent
Working Group, 2000). Lastly, the transportation
mechanism must support unicast, multicast, and
broadcast modes and such services as broadcast
behavior, nonrepudiation of messages, and logging
(OMG Agent Working Group, 2000). Next, we
enumerate and describe possible implementations
of the agent transportation mechanism:

1. Common object request broker archi-
tecture (COBRA): It is the acronym for
common object request broker architecture,
OMG’s open, vendor-independent architec-
ture and infrastructure that computer appli-
cations use to work together over networks
(The Object Management Group). Using the
standard protocol IIOP, a CORBA-based
program from any vendor, on almost any
computer, operating system, programming
language, and network, can interoperate
with a CORBA-based program from the
same or another vendor, on almost any other
computer, operating system, programming
language, and network (The Object Manage-
ment Group).

2. Object management group (OMG) mes-
saging services: OMG is an international
trade association incorporated as a nonprofit
in the United States (The Object Manage-
ment Group). The OMG is currently specify-
ing a new messaging service (The CORBA
Object Group Service).

3. JAVA messaging service: It is the standard
API for sending and receiving messages
(Creative Science Systems).

4. Remote method invocation (RMI): It
defines and supports a distributed object
model for the Java language hiding the
ORB from the programmer and providing
an API for the development of distributed
applications (Bracho, Matteo, & Metzner,
1999). Java remote method invocation (Java
RMI) enables the programmer to create
distributed Java technology-based to Java
technology-based applications, in which
the methods of remote Java objects can be
invoked from other Java virtual machines,
possibly on different hosts (Java.sun.com).

5. Distributed component object model
(DCOM): Microsoft® Distributed COM
(DCOM) extends the component object
model (COM) to support communication
among objects on different computers—on a
LAN, a WAN, or even the Internet (DCOM
Technical Overview). With DCOM, your
application can be distributed at locations
that make the most sense to your customer
and to the application (DCOM technical
overview).

6. Enterprise Java Beans events: The newest
Java component model is Enterprise Java
Beans (Tuukka Vartiainen, Java Beans, and
Enterprise Java Beans). Besides its name, the
Java language and the idea of component
based software re-use; it has little or no
similarities with the Java Beans standard
(Tuukka Vartiainen, Java Beans, and En-
terprise Java Beans). Enterprise Java Beans
are located on the server and they support a
distributed programming model that could
be described as a flexible, two-way, object-
oriented version of traditional client-server
programming (Tuukka Vartiainen, Java
Beans, and Enterprise Java Beans).

ontology Languages and editors

Besides an ACL, a common understanding of
the concepts used among agents is necessary for

 ���

Software Agent technology

a meaningful agent communication. A common
ontology is required for representing the knowl-
edge from various domains of discourse (OMG
Agent Working Group, 2000). The ACL remains
just syntax without a shared common ontology
containing the terms used in agent communication
and the knowledge associated with them (Nwana
& Wooldridge, 1996). Next, we enumerate and
describe the most elaborated examples of such
languages according to Weίβ (2002):

1. Ontolingua and frame logic: They are
frame-based languages (Weίβ, 2002). Both
of them extend first-order predicate logics
(Weίβ, 2002). The key modeling primitive of
these languages are frames as known from
artificial intelligence (Weίβ, 2002).

2. CLASSIC and LOOM: They are descrip-
tion logics that allow an intentional definition
of concepts (Weίβ, 2002).

3. CycL: It extends first-order predicate logic
and was developed to enable the specification
of large common-sense ontologies (Weίβ,
2002).

In addition, we enumerate and describe the
most prominent ontology specification languages
that are conform to syntactic and semantic Web
standards according to Weίβ (2002):

1. Simple HTML ontology extension
(SHOE): It is a language that slightly ex-
tends HTML and enables a hierarchical
classification of HTML documents and the
specification of relationships among them
(Weίβ, 2002).

2. Ontology exchange language (XOL): It is
an XML- and frame-based language for the
exchange of ontologies (Weίβ, 2002).

3. Ontology inference layer (OIL): It aims
at unifying formal semantics as offered by
description logics, rich modelling primitives
as offered by frame-based languages, and
the XML and RDF Web standards (Weίβ,

2002). OIL can be seen as an extension of
XOL offering both an XML-based and an
RDF-based syntax (Weίβ, 2002).

4. DAML-ONT and DAML-OIL: They
are the DAML (DARPA Agent Markup
Language) languages (Weίβ, 2002). DAML-
OIL, which replaces DAML-ONT and rep-
resents the state of the art in the field, has
well-defined model-theoretic and axiomatic
semantics (Weίβ, 2002).

Furthermore, we enumerate and describe three
good examples of editors for ontology creation
and maintenance according to Weίβ (2002):

1. Protégé: It supports single-user ontology
acquisition (Weίβ, 2002).

2. Webonto: It supports multiple-user ontology
acquisition over the Web (Weίβ, 2002).

3. OntoEdit: It supports multilingual develop-
ment of ontologies and multiple inheritances
(Weίβ, 2002).

Languages for constructing
agent-Based Systems

Most agent systems are probably written in
Java and C/C++ (Weίβ, 2002). Apart from these
standard languages, several prototype languages
for implementing agent-based systems have been
proposed that all aim at enabling a programmer to
better realize agent-specific conceptions (Weiß,
2002). Three paradigms for implementing agent
systems have been proposed: agent-oriented
programming, market-oriented programming and
interaction-oriented programming (Weiß, 2002).
Weίβ (2002) lists some of most prominent and
best understood prototype languages following
the agent-oriented paradigm (references to these
languages are provided in Weiß, 2002). Next,
we enumerate and describe the above mentioned
prototype languages:

��0

Software Agent technology

1. AGENT-0, PLACA and AGENT-K:
AGENT-0 realizes the basic ideas of the
agent-oriented programming paradigm as
formulated by Shoham (Weίβ, 2002). A
language that extends AGENT-0 toward
planning is PLACA, and a language that
aims at integrating AGENT-0 and KQML
is AGENT-K (Weίβ, 2002).

2. Concurrent MetateM: It allows specifying
the intended behavior of an agent based on
temporal logics (Weίβ, 2002).

3. AgentSpeak (L): It is a rule-based language
that has a formal operational semantics and
that assumes agents to consist of intentions,
beliefs, recorded events, and plan rules
(Weίβ, 2002). AgentSpeak (L) is based on an
abstraction of the PRS architecture (Weίβ,
2002).

4. 3APL: It incorporates features from impera-
tive and logic programming (Weίβ, 2002).
3APL has well defined operational semantics
and supports monitoring and revising of
agent goals (Weίβ, 2002).

5. ConGolog: It is a concurrent logic-based
language initially designed for high-level
robot programming (Weίβ, 2002).

6. Agent process interaction language
(APRIL), multiagent interaction and im-
plementation language (MAIL/MAI2L),
and VIVA: Other examples of languages
following the agent-oriented programming
paradigm (Weίβ, 2002).

Nwana and Wooldridge (1996) classify con-
structing agent application languages according to
a typology. Next, we present the above-mentioned
classification (Nwana & Wooldridge, 1996):

1. Collaborative agents: The actor language
actors and the agent-oriented programming
languages Agent-0 and Placa.

2. Interface, information and mobile agents:
The scripting languages TCL/Tk, Safe-TCL,

Safe-Tk, Java, Telescript, Active Web tools,
Python, Obliq, April and Scheme-48.

3. Reactive agents: The reactive language
RTA/ABLE.

However traditional languages are still
used to construct agent applications (Nwana &
Wooldridge, 1996). It is possible to implement
agent-based systems in languages like Pascal, C,
Lisp, or Prolog (Nwana & Wooldridge, 1996). But
as a rule, one would not choose to do so because
such languages are not particularly well suited to
the job (Nwana & Wooldridge, 1996). Typically,
object-oriented languages such as Smalltalk, Java,
or C++ lend themselves more easily for the con-
struction of agent systems (Nwana & Wooldridge,
1996). This is because the concept of an “agent”
is not too distant from that of an “object”: Agents
share some properties with objects such as encap-
sulation, and frequently, inheritance and message
passing (Nwana & Wooldridge, 1996). However,
agents differ distinctly from objects vis-à-vis
polymorphism (Nwana & Wooldridge, 1996).

tools and platforms

A number of tools and platforms are available
that support activities or phases of the process
of agent-oriented software development (Weiβ,
2002). Most of them are built on top of and inte-
grated with Java (Weiβ, 2002). While almost all
available tools and platforms have their focus on
implementation support, some of them do also
support analysis, design, and test/debugging
activities (Weiβ, 2002).

Weίβ (2002) makes a list of such tools and plat-
forms separating them into often-sited academic
and research prototypes and into commercial
products for development support. References to
the following tools and a brief description as well
can be found in (Weiβ, 2002). Next, we present
the above-mentioned classification:

 ���

Software Agent technology

1. Academic and research activity: ZEUS,
Java Agent DEvelopment framework
(JADE), Lightweight extensible agent plat-
form (LEAP), agenTool, RETSINA, Java
agent template, lite (JATLite), FIPA-OS,
MADKIT, SIM_AGENT, Java-based agent
framework for multi-agent systems (JAF-
MAS), agent building shell (ABS), open
agent architecture (OAA), and Agentis

2. Commercial activity: AgentBuilder, JACK,
intelligent agent factory and grasshopper

Serenko and Detlor (2002) state about the
term agent toolkit that each vendor uses its own
explanation of the term and for the needs of their
report define an agent toolkit as any software
package, application or development environ-
ment that provides agent builders with a sufficient
level of abstraction to allow them to implement
intelligent agents with desired attributes, fea-
tures and rules. Some toolkits may offer only a
platform for agent development, whereas others
may provide features for visual programming
(Serenko & Detlor, 2002). Serenko and Detlor
(2002) categorize the available agent toolkits on
the market into four major categories. Next, we
present the four categories and the representative
toolkits of each category:

1. Mobile agent toolkits: Concordia, Gossip,
FarGo, and IBM Aglets

2. Multi-agent toolkits: MadKit, ZEUS,
JADE, JATLite, and MAST

3. General purpose toolkits: FIPA-OS and
Ascape

4. Internet agent toolkits: Microsoft Agent,
Voyager, and NetStepper

agent-oriented Software
engineering (aoSe) methodologies

Agent researchers have produced methodologies
to assist engineers to create agent-based systems
(Agent-Oriented Software Engineering). Some

researchers have taken agent theory as their
starting point and have produced methodologies
that are rooted in that theory (Agent-Oriented
Software Engineering). Other researchers have
taken object techniques as their point of departure
and have enriched them to be suitable for agents
(Agent-Oriented Software Engineering). Others
have taken knowledge engineering concepts and
have extended them (Agent-Oriented Software
Engineering). Researchers also have tried to
assemble methodologies by combining features
from different methodologies (Agent-Oriented
Software Engineering). Yet other researchers have
produced methodologies based on both agent and
object technologies (Agent-Oriented Software
Engineering).

Methodologies having as background the agent
and multi-agent technology are characterized by
a clear focus on capturing social-level abstrac-
tions such as agent, group, or organization, that
is, on abstractions that are above the conventional
object level (Weiβ, 2002). Methodologies having
as background the object orientation are charac-
terized by the attempt to appropriately extend
existing object-oriented techniques such that they
also capture the notion of agency (Weiβ, 2002).
Methodologies having engineering background
knowledge are characterized by an emphasis on
the identification, acquisition and modeling of
knowledge to be used by the agent components
of a software system (Weiβ, 2002).

The most popular approaches based on agent
and multi-agent technology are the following:

1. Generic architecture for information
availability (GAIA): This is a method that
distinguishes between analysis and design
and associates different models with these
two phases (Weiβ, 2002). Gaia focuses on
organizational aspects in terms of concepts
such as roles, interactions and acquaintances
(Weiβ, 2002).

2. Societies in open and distributed agent
spaces (SODA): This is another good

���

Software Agent technology

example of an analysis and design method
that concentrates on the social (interagent)
aspects of agent systems and that employs
the concept of coordination models (Weiβ,
2002).

3. Cassiopeia: This is a design method that
distinguishes three levels of behavior—el-
ementary, relational, and organizational—
and aims at capturing both structural and
dynamic aspects of the target system (Weiβ,
2002).

4. Aalaadin: This is a general analysis and
design framework that has its focus on the
organizational level of multi-agent systems
and is built on the three core concepts of
agents, groups, and roles (Weiβ, 2002).

The most popular approaches based on object-
oriented technology are the following:

1. KGR: This is a design and specification
method for a particular class of agents,
namely, BDI agents (Weiβ, 2002).

2. Multiagent systems engineering (MaSE):
This method covers design and initial im-
plementation through two languages called
agent modeling language (AgML) and agent
definition language (AgDL) and builds upon
OMT and UML (Weiβ, 2002).

3. Multiagent systems iterative view engi-
neering (MASSIVE): This method covers
analysis, design and code generation, and
combines standard software engineering
techniques such as multi-view modeling,
round-trip engineering, and iterative en-
hancement (Weiβ, 2002).

4. Agent-oriented analysis and design
(AOAD): This analysis and design method
proposes the use of extended class respon-
sibility cards (CRCs) and the use of both the
object modelling technique (OMT) and the
responsibility driven design (RDD) method
known from object-oriented development
(Weiβ, 2002).

5. Multi-agent scenario-based (MASB):
MASB is an analysis and design method
that covers issues of both objects and agents
via behavior diagrams, data models, transi-
tion diagrams, and object life cycles (Weiβ,
2002).

The most popular approaches based on knowl-
edge engineering technology are the following:

1. Conceptual modelling of multi-agent sys-
tems (CoMoMAS): This is an elaborated
extension of the CommonKADS meth-
odology, supporting analysis, design, and
automated code generation (Weiβ, 2002).

2. Multi-agent system commonKADS
(MAS-CommonKADS): This is another
extension of CommonKADS that supports
analysis and design of agent-oriented sys-
tems (Weiβ, 2002).

Other agent-oriented software engineering
methodologies (AOSE) are tropos, agent-oriented
analysis and design, agent modelling technique
for systems of BDI agents, agent oriented meth-
odology for enterprise modelling, a process for
agent societies specification and implementation
(PASSI), prometheus, AOR, ROADMAP, OPM
/MAS, ingenias, DESIRE, AAII methodology,
cooperative information agents design, adept,
AUML, ADELFE, MESSAGE /UML, the styx
agent methology, SABPO, expectation-oriented
analysis and design (EXPAND) and ODAC (Cer-
nuzzi, Cossentino, & Zambonelli, 2004; Iglesias,
Garijo, & Gonzalez, 1999; Agent-Oriented Soft-
ware Engineering; Faculty Science Unitn; Weiβ,
2002; Wooldridge & Ciancarini, 2000).

 ���

Software Agent technology

agentS In vIrtuaL
enterprISeS (veS)

what is a virtual enterprise?

The term, and the concept, “virtual enterprise”
(VE) emerged already in the beginning of the
1990s and could be seen as the further optimi-
zation and perfection of the basic ideas about
dynamic networking (Putnik, 2004). Although the
virtual enterprise research represents a growing
and multidisciplinary area it still lacks a precise
definition of the concepts and an agreement on the
used terminology (Camarinha-Matos, 2002). So
far, there is no unified definition for this paradigm
and a number of terms are even competing in the
literature while referring to different aspects and
scopes of virtual enterprises (Camarinha-Matos,
2002). Akin concepts are supported by Gijsen,
Szirbik, and Wagner (2002); Freitas Mundim, Rossi,
and Stocchetti (2000); Putnik (2004) and Petersen
et al. (2001).

The definitions range from the virtual enter-
prise as a simple subcontracting network to the
virtual enterprise as a dynamic network, in which
the partners share that share resources, risks and
even markets, and which operates in a virtual en-
vironment or with virtual agents (Putnik, 2004).
According to Do, Halatchev, and Neumann (2000)
a virtual enterprise is a form of cooperation of
independent market players (enterprises, freelanc-
ers authorities, etc.) which combine their core
competencies in order to manufacture a product or
to provide a service. Marík and McFarlane (2005)
conclude that a virtual enterprise represents a
cluster of organizations collaborating to achieve
one or more goals. Katz and Schuh (1999) define
that the virtual enterprise is based on the ability
to create temporary co-operations and to realize
the value of a short business opportunity that the
partners cannot (or can, but only to lesser extent)
capture on their own. Other attempts at defining
virtual enterprises are listed in (Petersen et al.,
2001).

In our opinion, an interesting definition that
we adopt is the following:

A goal-oriented constellation of (semi)autonomous
distributed entities. Each entity, which can be an
organization and/or an individual, attempts to
maximize its own profits as well as contribute
to defining and achieving the overall goals of
the virtual enterprise. Virtual enterprises are
not rigid organizational structures within rigid
frameworks, but rather (heterogeneous) ensem-
bles, continuously evolving over time. (Petersen
et al., 2001, p. 2)

why to use agents in virtual
enterprises?

Marík and McFarlane (2005) state that a virtual
enterprise might address problems ranging from
simple membership to distributed inventory
management and synchronization of supply,
production, and distribution schedules. They
also support that these problems are inherently
distributed, with each organization willing to
share only limited information and having its
own business goals in conjunction with the over-
all goal. All the above statements orientate to an
agent technology solution.

According to Jennings et al. (1998), consider-
ing a virtual enterprise, the domain involves an
inherent distribution of data, problem solving
capabilities and responsibilities. In addition, the
integrity of the existing organizational structure
and the autonomy of its sub-parts need to be
maintained (Jennings et al., 1998). Moreover,
interactions are fairly sophisticated, including
negotiation, information sharing, and coordina-
tion (Jennings et al., 1998). Besides, the problem
solution cannot be entirely prescribed (Jennings
et al., 1998). According to Jennings et al. (1998),
all the above observations motivate the choice of
agents as a technology solution as well.

According to Fox and Gruninger (1998), the
entrepreneurial and virtual nature of the agile

���

Software Agent technology

enterprise coupled with the need for people and
information to have a strategic impact entails a
greater degree of communication, coordination
and cooperation within and among enterprises.
In other words, the agile organization must be
integrated (meaning by the term integrated the
structural, behavioural and information integra-
tion of the enterprise) (Fox & Gruninger, 1998).
Petersen et al. (2001) support that cooperation is
required both to perform work and to adapt the
constellation to the varying needs of the environ-
ment. They state that goal-oriented and distributed
nature of virtual enterprises implies that there is
no central control; rather, the control is decentral-
ized. According to their opinion, the distributed
and goal-oriented nature of the virtual enterprise
provides a strong motivation for the use of agents
to model virtual enterprises.

The following parallelism demonstrates
remarkable interest. According to Rahwan,
Kowalczyk, and Yang (2001) the virtual enter-
prise creation could be viewed as a Cooperative
System design problem. A Cooperative System
is a system in which a set of autonomous agents
(computational and human) interact with each
other through sharing their information, deci-
sion making capabilities and other resources, and
distributing the corresponding workload among
themselves, in order to achieve common and
complementary goals (Camarinha-Matos & Afsar-
manesh, 1998). The above parallelism motivates
as well the agents as a technology solution.

The nature of agents, by definition, enables
decentralized control of the enterprise, which
is desirable in a dynamic and flexible environ-
ment, and the behavior of the complete enterprise
emerges as a result of the behaviors of the indi-
vidual agents (Petersen et al., 2001).

Another strong point in favor of the adop-
tion of agents is their versatility (Petersen et al.,
2001). They can play two main roles (Petersen et
al., 2001). First, they provide a flexible means of
modeling the virtual enterprise in terms of co-
operative work among the agents (Petersen et al.,

2001). Second, they can be used to provide active
support to the members of the virtual enterprise
(Petersen et al., 2001). Thus, agents being com-
putational entities, the resulting model provides
an easy and efficient passage to the computational
support that is required by virtual enterprises
(Petersen et al., 2001).

According to Marík and McFarlane (2005),
MASs and relevant technologies consider each
company as an agent able to carry out specific
(usually quite complex) functions. The agents
are registered with a certain platform and com-
municate in a standard agent communication
language (Marík & McFarlane, 2005). Virtual
enterprise formation, as well as the joint plan-
ning and scheduling activities, is based on jointly
known negotiation rules and scenarios (Marík
& McFarlane, 2005). These are very similar (or
identical) to protocols or auctions in the MAS
domain (Marík & McFarlane, 2005). The highly
specialized members of a virtual enterprise, such
as brokers or professional network organizers,
can easily find their counterparts in the MAS
community—for example, various middle agents
and brokers (Marík & McFarlane, 2005). The
negotiation and brokering algorithms that have
proven useful for the MAS domain can serve to
formalize (and later automate) the corresponding
virtual enterprise processes (Marík & McFarlane,
2005). Specialized agents called meta-agents
could also serve as tools both to help detect the
network’s less efficient parts or bottlenecks and to
provide advice supporting the virtual enterprise’s
self-evolution in the desired direction (Marík &
McFarlane, 2005). Virtual enterprise creation
is analogous to coalition formation in the MAS
domain (Marík & McFarlane, 2005).

They also support that MAS concept of
knowledge sharing, which classifies knowledge
as public, private, and semiprivate, has high
potential for virtual enterprises. Requirements
for keeping agents’ knowledge confidential and
preventing knowledge disclosure, as well as
specific security principles used with MASs,

 ���

Software Agent technology

can be reused for virtual enterprises (Marík &
McFarlane, 2005).

current research activity focusing
on agents in virtual enterprises (ve)

Virtual enterprises have recently received increas-
ing attention. Due to the advancement of distrib-
uted information technology and the changing
needs of the business community, enterprises
are expected to be more agile and responsive
(Petersen et al., 2001). Many current develop-
ments in multi-agent systems (MAS) are more
and more focused on the production of robust
development environments (Camarinha-Matos,
2002). Considerable efforts are also being put on
standardization of architectures and communica-
tion languages, which are important requirements
for the industrial application of the paradigm
(Camarinha-Matos, 2002). We have observed that
there is a remarkable body of literature that stud-
ies the application of agent technology to virtual
enterprises as researchers pay enough attention
to this scientific area of activity. In continuance
of the study, some prominent research efforts
follow.

According to Yonghe and Biqing (1999), deci-
sion and control processes within the domain of
virtual enterprises have not received deserved
attention till now. Based on agent technology, they
bought up architecture for control and decision-
making during the dynamic creation and operation
of a virtual enterprise. An approach for integrating
different business units is presented (Yonghe &
Biqing, 1999). Prototype software simulating the
design of a new product in a virtual enterprise is
developed (Yonghe & Biqing, 1999).

Petersen, Jinghai, and Matskin (2003) present
the virtual enterprise formation process as an
agent interaction protocol and an approach to
its implementation. They have focused on the
selection of partners within the formation proc-
ess in order to understand these interactions and
the contents of the messages that are exchanged

between the agents. Based on this, they describe
how the AGORA multi-agent architecture can
be used to support the formation of a virtual
enterprise.

Gou, Huang, Liu, and Li (2001) propose an
agent-based virtual enterprise model and provide
the agent collaboration mechanisms under the
model, thereby achieving the agent based virtual
enterprise modeling and operation control. Their
agent-based approach achieves distributed control
over the whole business process execution of the
virtual enterprise.

According to Fankhauser and Tesch (1999),
negotiations encourage agents to reason about the
interests of their opponents. Thus, negotiations
suffer from counter speculations (Fankhauser
& Tesch, 1999). Auctions apply to asymmetric
trading only; they either favor the auctioneer or
the bidders (Fankhauser & Tesch, 1999). Both
mechanisms do not promote agents to tell the
truth (Fankhauser & Tesch, 1999). Therefore, they
propose to use a trust-broker to mediate between
the agents. They introduce three symmetric,
negotiation free one-step protocols to carry out
a sequence of decisions for agents with possibly
conflicting interests. The protocols achieve sub-
stantially better overall benefit than random or
hostile selection, and they avoid lies (Fankhauser
& Tesch, 1999). They analyze the protocols with
respect to informed vs. uninformed lies, and with
respect to beneficial vs. malevolent lies, and show
that agents are best off to know and announce
their true interests.

Gong and Wang’s (2000) research is a contri-
bution to the model of multi-agent system (MAS)
for supporting the dynamic enterprise model
(DEM). It separates the business process from
the organizational structure (organizational struc-
ture tier and business process tier), models each
of them as MAS, and coordinates agents by the
“yellow page” mechanism (Gong & Wang, 2000).
This model not only can regulate itself in terms
of DEM, but also is centered on the coordination
strategies between agents composing it (Gong

���

Software Agent technology

& Wang, 2000). It is believed that the model of
MAS is a practical way to build flexible enterprise
information system (Gong & Wang, 2000).

Chrysanthis, Znati, Banerjee, and Shi-Kuo
(1999) view the establishment of a virtual en-
terprise as a problem of dynamically expanding
and integrating workflows in decentralized, au-
tonomous and interacting workflow management
systems. They focus on the idea of mobile agents
called adlets and their use in establishing virtual
enterprises that involves advertising, negotiating
and exchanging control information and data as
well as its management.

Szirbik, Aerts, Wortmann, Hammer, and
Goossenaerts (2000) propose a systematisation
of the monitoring and control aspects in a virtual
enterprise. As an instrument, they use the mobile
agent paradigm, defining the concept of a mobile
agent web (MA-web). According to them, one of
the roles of the agents in this environment is to
mediate negotiations between the parties of the
virtual enterprise. They make some assumptions
about the new behavior and code of conduct in
the MA-web, such as the willingness to share
data and knowledge.

Based on the analysis of why agent-based
mechanism is suitable and only suitable for cross-
domain cooperation of virtual enterprise, Zhang
et al. (2004) propose a framework to implement it.
In their framework, there is a service information
supply-demand center that is in charge of service
information management, and agent is responsible
for cooperative partner selecting before coopera-
tion and interaction during cooperation. The rel-
evant key strategies and basic interaction models
are also described (Zhang et al., 2004).

Ouzounis and Tschammer (2001) discuss
concepts and technologies that are considered
to satisfy key requirements of dynamic virtual
enterprises, and propose DIVE, a framework for
the specification, execution and management of
shared business processes in dynamic virtual
enterprises.

Suh et al. (2005) describe an open and flexible
infrastructure to support dynamic collaboration
among companies through the entire lifecycle of
the virtual enterprise. The proposed approach is
an agent-enhanced architecture on which the con-
versation model is grafted (Suh et al., 2005). The
collaboration among enterprises is modelled by a
collaboration policy, which is a machine-readable
specification of a pattern of message exchange
among agents participating in the collaboration
(Suh et al., 2005).

future trendS

Luck, McBurney, and Gonzalez-Palacios (2006)
stated a thorough and outstanding approach about
the future of multi-agent systems. As we consider
their point of view extremely prominent, we ap-
pose at this point of the chapter some parts of
their findings (for a more complete investigation
consult (Luck et al., 2006)). Luck et al. (2006)
extrapolated future trends in multi-agent systems
by classifying them into four broad phases (cur-
rent, short-term future, medium-term future and
long-term future) of development of multi-agent
system technology over the next decade.

At first phase, multi-agent systems are typically
designed by one design team for one corporate
environment, with participating agents sharing
common high-level goals in a single domain (Luck
et al., 2006). These systems may be characterized
as closed (Luck et al., 2006). The communication
languages and interaction protocols are typically
in-house protocols, defined by the design team
prior to any agent interactions (Luck et al., 2006).
Design approaches, as well as development plat-
forms, tend to be ad hoc, inspired by the agent
paradigm (Luck et al., 2006). There is also an
increased focus on taking methodologies out of the
laboratory and into development environments,
with commercial work being done on establishing
industrial-strength development techniques and
notations (Luck et al., 2006).

 ���

Software Agent technology

In the short-term future, multi-agent systems
will increasingly be designed to cross corporate
boundaries, so that the participating agents have
fewer goals in common, although their interactions
will still concern a common domain, and the agents
will be designed by the same team, and will share
common domain knowledge (Luck et al., 2006).
Standard agent communication languages will
be used, but interaction protocols will be mixed
between standard and nonstandard ones (Luck et
al., 2006). Development methodologies, languages
and tools will have reached a degree of maturity,
and systems will be designed on top of standard
infrastructures such as Web services or Grid
services, for example (Luck et al., 2006).

In the medium term future, multi-agent sys-
tems will permit participation by heterogeneous
agents, designed by different designers or teams
(Luck et al., 2006). Any agent will be able to
participate in these systems, provided their (ob-
servable) behavior conforms to publicly stated
requirements and standards (Luck et al., 2006).
However, these open systems will typically be
specific to particular application domains (Luck
et al., 2006). The languages and protocols used
in these systems will be agreed and standardized
(Luck et al., 2006).

In the long-term future, we will see the de-
velopment of open multi-agent systems spanning
multiple application domains, and involving
heterogeneous participants developed by diverse
design teams (Luck et al., 2006). Agents seeking
to participate in these systems will be able to
learn the appropriate behavior for participation
in the course of interacting, rather than having
to prove adherence before entry (Luck et al.,
2006). Selection of communications protocols
and mechanisms, and of participant strategies,
will be undertaken automatically, without human
intervention (Luck et al., 2006).

The above-mentioned aspect about future
is enhanced with the AOSE Technical Forum
Group’s (2004) perception of the future trends
in the area of agent-oriented software engineer-

ing. According to AOSE Technical Forum Group
(2004), the research in the area of agent-oriented
software engineering is still in its early stages,
and several challenges need to be faced before
agent-oriented software engineering becoming a
widely accepted and a practically usable paradigm
for the development of complex software systems.
One possible way to identify and frame the key
research challenges in the area of agent-oriented
software engineering is to recognize that such
challenges may be very different depending on
the “scale of observation” adopted to model and
build a software system (AOSE Technical Forum
Group, 2004).

At one extreme, the micro scale of observation
is that where the system to be engineered has to
rely on the controllable and predictable behavior
of (a typically limited number) individual agents,
as well as on their mutual interactions (AOSE
Technical Forum Group, 2004). There, the key
engineering challenges are related to extending
traditional software engineering approaches
toward agent-oriented abstractions (AOSE Tech-
nical Forum Group, 2004). Brand new modeling
and notational tools, as well as possibly brand new
software process models may be needed (AOSE
Technical Forum Group, 2004).

At the other extreme, the macro scale of ob-
servation is the one where a multi-agent system is
conceived as a multitude of interacting agents, for
which the overall behavior of the system, rather
than the mere behavior of individuals, is the key
of interest (AOSE Technical Forum Group, 2004).
In this case, a discipline of agent-oriented soft-
ware engineering should focus on totally different
problems, and should be able to develop novel
“systemic” approaches to software engineering,
possibly getting inspiration from areas such as
complex systems sciences and systemic biology
(AOSE Technical Forum Group, 2004).

In between, the meso scale of observation is
where the need of predictability and control, typi-
cal of the micro scale, clashes with the emergence
of phenomena typical of the macro scale (AOSE

���

Software Agent technology

Technical Forum Group, 2004). Therefore, any
engineering approach at the meso scale requires
accounting for problems that are typical of both
the micro and the macro scale, and possibly for
new problems specific to the meso scale (AOSE
Technical Forum Group, 2004). These include:
identifying the boundaries of a systems—which
may be challenging in the case of open multi-
agent systems; electing trust as a primary design
issue; identifying suitable infrastructures for
multi-agent systems support (AOSE Technical
Forum Group, 2004).

As concerns the virtual enterprises’ scientific
domain, we believe that agent technology has
much to offer with respect to the formation and
the operation of a virtual enterprise. According
to Camarinha-Matos (2002), several challenges
remain open for MAS requiring further research,
such as support for the full life cycle of the virtual
enterprise, adoption of contract-based coordina-
tion models, necessary integration of MAS with
several other paradigms, interoperation with
legacy systems and enterprise applications, inclu-
sion of specialized protocols and standards, and
support of robust safety mechanisms.

There is a need to integrate ACL with mecha-
nisms for safe communications (cryptography,
digital signature, certification, etc.) that have been
developed for virtual enterprises and e-commerce
(Camarinha-Matos, 2002). The development of
advanced simulation tools to support planning,
optimization, and assessment of operation of
virtual enterprises and distributed business proc-
esses is another open challenge that can benefit
from a MAS approach (Camarinha-Matos, 2002).
Finally it is important to stress that in order to
be accepted by the industrial community, MAS
applications need to be successfully demonstrated
in complex real world pilot systems (Camarinha-
Matos, 2002).

concLuSIon

The area of software agents is vibrant and
rapidly developing. A number of fundamental
advances have been made in the design and the
implementation of software agents as well as in
the interaction between software agents. In this
brief chapter, we have tried to convey some of
the key concepts of the active field of software
agents and make a reference point to a large body
of literature outlining essential issues. We were
limited to enumerate our findings of our survey
regarding software agent technology, instead of
judging them, aiming to provide a synoptic review
of the basic aspects. It is up to the reader to judge
how successful we have been in meeting our goal
in this chapter. In addition, we have argued the
issue of applying the agent technology to virtual
enterprise. Our purpose was to offer a brief in-
troduction of the application of agent technology
to virtual enterprises and to provide some useful
hints for further studying concerning the above-
mentioned theme.

referenceS

Agent-Oriented Software Engineering. Research
Area Examination (2005). Retrieved from http://
www.deg.byu.edu/proposals/ResearchAreaEx-
amMuhammedJM.pdf

Alonso, E. (2002). AI and agents: State of the art.
AI Magazine, 23(3), 25-29.

AOSE Technical Forum Group (2004). AL3-
TF1 Report. Retrieved January 31, 2007, from
http://www.pa.icar.cnr.it/~cossentino/al3tf1/docs/
aose_tfg1_report.pdf

Bracho, A., Matteo, A., & Metzner, C. (1999).
A taxonomy for comparing distributed objects
technologies. CLEI Electronic Journal, 2(2).

 ���

Software Agent technology

Bradshow, J. M. (1997). An introduction to soft-
ware agents. In J. M. Bradshow (Ed.), Software
agents. Cambridge: MIT Press.

Bussink, D. (2004). A comparison of language
evolution and communication protocols in multi-
agent systems. In Proceedings of the 1st Twente
Student Conference on IT, Track C—Intelli-
gent_Interaction. Retrieved January 31, 2007,
from http://referaat.ewi.utwente.nl/

Camarinha-Matos, L. M. (2002). Multi-agent
systems in virtual enterprises. In Proceedings of
AIS2002—International Conference on AI, Simu-
lation and Planning in High Autonomy Systems,
Lisbon, Portugal (pp. 27-36).

Camarinha-Matos, L. M., & Afsarmanesh, H.
(1998). Cooperative systems challenges in virtual
enterprises. In Proceedings of CESA’98—IMCAS
Multiconference on Computational Engineering
in Systems Applications, Nabeu—Hammamet,
Tunisia.

Chira, C. (2003). Software agents. (IDIMS Re-
port). Retrieved January 31, 2007, from http://pan.
nuigalway.ie/code/docs/agents.pdf

Chrysanthis, P. K., Znati, T., Banerjee, S., & Shi-
Kuo, C. (1999). Establishing virtual enterprises
by means of mobile agents. In Proceedings of the
Ninth International Workshop on Research Issues
on Data Engineering: Information Technology for
Virtual Enterprises RIDE-VE ’99 (pp.116-123).

Cernuzzi, L., Cossentino, M., & Zambonelli, F.
(2004). Process models for agent-based develop-
ment. http://www.pa.icar.cnr.it/~cossentino/pa-
per/eaai_zambonelli_draft.pdf

Creative Science Systems (CSS). Retrieved from
http://www.creativescience.com/Products/soa.
shtml

DCOM Technical Overview, Microsoft Cor-
poration. (1996). Retrieved from http://msdn.
microsoft.com/library/default.asp?url=/library/
en-us/dndcom/html/msdn_dcomtec.asp

Do, V., Halatchev, M., & Neumann, D. (2000).
A context-based approach to support virtual
enterprises. In Proceedings of the 33rd Hawaii
International Conference on System Sciences.

Etzioni, O., & Weld, D. S. (1995). Intelligent agents
on the Internet: Fact, fiction and forecast. IEEE
Expert, 10(4), 44-49.

Faculty Science Unitn. University of Trento. AOSE
Methologies. (n.d.) Retrieved from http://www.
science.unitn.it/~recla/aose/

Fankhauser, P., & Tesch, T. (1999). Agents, a
broker, and lies. In Proceedings of the Ninth
International Workshop on Research Issues on
Data Engineering: Information Technology for
Virtual Enterprises RIDE-VE ’99 (pp.56-63).

Fox, M. S., & Gruninger, M. (1998). Enterprise
modelling. AI Magazine, 109-121.

Franklin, S., & Graesser, A. (1996). Is it an agent,
or just a program?: A taxonomy for autonomous
agents. In Proceedings of the Third International
Workshop on Agent Theories, Architectures and
Languages.

Freitas Mundim, A. P., Rossi, A., & Stocchetti,
A. (2000). SME in global markets: Challenges,
opportunities and threats. Brasilian Electronic
Journal of Economics, 3(1).

Gijsen, J. W. J., Szirbik, N. B., & Wagner, G. (2002).
Agent technologies for virtual enterprises in the
one-of-a-kind-production industry. International
Journal of Electronic Commerce, 7(1), 9-26.

Goodwin, R. (1993). Formalizing properties of
agents (Tech. Rep.) Pittsburgh, PA: Carnegie-Mel-
lon University, School of Computer Science.

Gong, B., & Wang, S. (2000). Model of MAS: Sup-
porting dynamic enterprise model. In Proceedings
of the 3rd World Congress on Intelligent Control
and Automation (pp. 2042-2046).

Gou, H., Huang, B., Liu, W., & Li, Y. (2001).
Agent-based virtual enterprise modeling and

��0

Software Agent technology

operation control. In Proceedings of the 2001
IEEE International Conference on Systems, Man,
and Cybernetics (pp. 2058-2063).

Green, S., Hurst, L., Nangle, B., Cunningham, D.
P., Somers, F., & Evans, D. R. (1997). Software
agents: A review (Tech. Rep. No.TCS-CS-1997-
06). Trinity College Dublin, Broadcom Éireann
Research Ltd.

Hayes, C. C. (1999). Agents in a nutshell: A very
brief introduction. IEEE Transactions on Knowl-
edge and Data Engineering, 11(1), 127-132.

Horn, E., Kupries, M., & Reinke, T. (1999).
Properties and models of software agents and
prefabrication for agent application systems. In
Proceedings of the International Conference on
System Sciences (HICSS-32), Software Technol-
ogy Track

Iglesias, C. A., Garijo, M., & Gonzalez, J. C.
(1999). A survey of agent-oriented methologies. In
Proceedings of the Fifth International Workshop
on Agent Theories, Architectures, and Languages
(ATAL-98) (pp. 317-330).

Java.sun.com. The Source for Java Developers.
Retrieved from http://java.sun.com/products/
jdk/rmi/

Jennings, N. R., Norman, T. J., & Faratin, P.
(1998). ADEPT: An agent-based approach to
business process management. ACM SIGMOD
Record, 27(4), 32-39.

Jennings, N. R., Sycara, K., & Wooldridge, M.
(1998). A roadmap of agent research and devel-
opment. Autonomous Agents and Multi-Agent
Systems Journal, 1(1), 7-38.

Jennings, N., & Wooldridge, M. (1996). Software
agents. IEE Review, 17-20.

Katz, B. R., & Schuh, G. (1999). The virtual
enterprise. Retrieved January 31, 2007, from
http://portal.cetim.org/file/1/68/KatzySchuh-
1999-The_virtual_enterprise.pdf

Kostakos, V., & Taraschi, C. (2001). Agents.
Retrieved January 31, 2007, from http://www.
cs.bath.ac.uk/~vk/files/agents.pdf

Luck, M., McBurney, P., & Gonzalez-Palacios,
J. (2006). Agent-based computing and program-
ming of agent systems (LNCS 3862, pp. 23-37).
Springer.

Marίk, V., & McFarlane, D. C. (2005). Industrial
adoption of agent-based technologies. IEEE Intel-
ligent Systems, 20(1), 27-35

Nwana, H. S. (1996). Software agents: An over-
view. Knowledge Engineering Review, 11(3),
1-40.

Nwana, H., & Ndumu, D. (1996). A brief intro-
duction to software agent technology. In Pro-
ceedings of the Unicom Seminar on “Real-World
Applications of Intelligent Agent Technology”
(pp. 278-292).

Nwana, H., & Wooldridge, M. (1996). Software
agent technologies. BT Technology Journal,
14(4), 68-78.

Odell, J. (2000). Agents: Technology and usage
(Part 1). Executive Report, 3(4).

Oliveira, E., Fischer, K., & Stepankova, O. (1999).
Multi-agent systems: Which research for which
applications. Robotics and Autonomous Systems,
27, 91-106.

OMG Agent Working Group (2000). Agent tech-
nology. Green paper, OMG Document ec/8/1/00,
(1).

Ouzounis, V. K., & Tschammer, V. (2001). An
agent-based life cycle management for dynamic
virtual enterprises. In Proceedings of the Sixth
International Conference on Computer Supported
Cooperative Work in Design (pp. 451-459).

Petersen, S. A., Divitini, M., & Matskin, M. (2001).
An agent-based approach to modeling virtual
enterprises. Production Planning & Control,
12(3), 224-233.

 ���

Software Agent technology

Petersen, S. A., Jinghai, R., & Matskin, M. (2003).
Virtual enterprise formation with agents: An ap-
proach to implementation. In Proceedings of the
IAT 2003, IEEE/VVIC International Conference
on Intelligent Agent Technology (pp. 527-530).

Putnik, G. D. (2004). Virtual Enterprise as a
“flow” enterprise. In Proceedings of the Fourth
Annual Meeting of the European Chaos and
Complexity in Organisations Network ECCON
- ECCON 2005.

Rahwan, I., Kowalczyk, R., & Yang, Y. (2001).
Virtual enterprise design: BDI agents vs. objects.
Advances in artificial intelligence (LNCS 2112,
pp. 147-157).

Serenko, & Deltor, B. (2002). Agent toolkits: A
general overview of the market and an assess-
ment of instructor satisfaction with utilizing in the
classroom (Working Paper No. 455). Retrieved
January 31, 2007, from http://www.business.
mcmaster.ca/msis/profs/detlorb/nserc/McMas-
ter_Working_Paper_455.pdf

Sycara, K. P. (1998). Multi-agent systems. AI
Magazine, 19(2), 79-92.

Sycara, K. P. (1998). The many faces of agents.
AI Magazine, 19(2), 11-12.

Szirbik, N., Aerts, A., Wortmann, H., Hammer,
D., & Goossenaerts, J. (2000). Mediating negotia-
tions in a virtual enterprise via mobile agents.In
Proceedings of the Academia/Industry Working
Conference on Research Challenges (pp. 237-
242).

The Object Management Group. (n.d.). CORBA®
BASICS. Retrieved from http://www.omg.org/get-
tingstarted/corbafaq.htm

The Object Management Group. (n.d.). Retrieved
from http://www.omg.org

The CORBA Object Group Service. A Service
Approach to Object Groups in CORBA, No 1867.
(1998). Retrieved from http://lsrwww.epfl.ch/
OGS/thesis/

Tuukka Vartiainen, Java Beans, and Enterprise
Java Beans. (n.d.). Retrieved from http://www.
cs.helsinki.fi/u/campa/teaching/tukka-final.pdf

Weiß, G. (2002). Agent orientation in software
engineering. Knowledge Engineering Review,
16(4), 349-373.

Wooldridge, M. (1998). Agent-based computing.
Interoperable Communication Networks, 1(1),
71-97.

Wooldridge, M. (1999). Intelligent agents. In G.
Weiss (Ed.), Multi-agent systems. MIT Press.

Wooldridge, M., & Ciancarini, P. (2000). Agent-
oriented software engineering: The state of the
art. In P. Ciancarini & M. Wooldridge (Eds.),
Proceedings of the First International Workshop
on Agent-Oriented Software Engineering (pp.
1-28).

Wooldridge, M., & Jennings, N. R. (1995). Intel-
ligent agents: Theory and practice. The Knowledge
Engineering Review, 10(2), 115-152.

Yan, Z., Meilin, S., & Shaohua, Z. (2004). An
agent-based framework for cross-domain coopera-
tion of virtual enterprise. In Proceedings of the 8th
International Conference on Computer Supported
Cooperative Work in Design (pp. 291-296).

Yonghe, L., & Biqing, H. (1999). Virtual enter-
prise: An agent-based approach for decision and
control. In Proceedings of the IEEE SMC ’99
International Conference on Systems, Man, and
Cybernetics (pp. 451-456).

Zambonelli, F., Jennings, N., & Wooldridge,
M. (2003). Developing multiagent systems: The
Gaia methology. ACM Transactions on Software
Engineering and Methodology, 12(3).

This work was previously published in Agent and Web Service Technologies in Virtual Enterprises, edited by N. Protogeros,
pp. 1-24, copyright 2008 by Information Science Reference (an imprint of IGI Global).

���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.15
Automated Software Testing

Paula Donegan
Instituto Atlântico, Brazil

Liane Bandeira
Instituto Atlântico, Brazil

Cristina Matos
Instituto Atlântico, Brazil

Paula Luciana da Cunha
Instituto Atlântico, Brazil

Camila Maia
Instituto Atlântico, Brazil

aBStract

This chapter approaches paramount aspects re-
lated to test automation, introducing the impor-
tance of implementation in the software market
and essential bases, such as adjustment to the
organizational reality and establishment of an
efficient strategy. Types of tools and directives
for a successful implantation are presented. Test
automation has been considered the main measure
taken to enhance test efficiency — fundamental
in the software-development process. Responsible
for verifying and/or validating the quality of the
executable product compared to performed docu-
mentation and client requirements. Therefore,
with the chapter content here provided, we aim

to provide the reader with an understanding of
test automation and grant relevant orientations to
assist implementing it.

IntroductIon

Given the growing complexity of applications
and new technologies, such as the advent of the
client/server environment (in particular Web ap-
plications), the effort necessary for application
testing has increased.

To assure that software conforms to require-
ments, various test stages may be identified: unit,
integration, system, and acceptance. Bugs’ impact
increases with the evolution of the test stage in

 ���

Automated Software testing

which they are found, in other words, the cost
of detecting errors during unit test is less than
integration and system tests.

Each use case has test objects that may need
to be retested several times during the project,
demanding resources. These retests normally
are required when a new functionality is added
or when a bug is corrected, because there is no
guarantee that the changes made will impact
negatively on other parts already constructed.
Therefore, the assistance of a tool capable of
repeating a test already executed in the past is
quite interesting.

Besides, multiple execution paths and diversity
of possible inputs and outputs of an application
complicate the execution of manual tests, which
may be simplified by automation. In addition, per-
formance, load and volume tests are examples of
tests that are difficult to be accomplished without
the help of automated testing tools. There are also
some types of tests that are almost impossible
to be executed manually, for example, a test to
verify a system’s performance with thousands or
millions of simultaneous accesses or having to
use an enormous amount of data.

Automating software tests speeds development
and reduces retesting effort spent in each stage,
thus reducing time and cost. However, this reduc-
tion is normally noticed only after a while, because
there are high investments in the implantation
stage, such as organizational needs, training, and
tools acquisition. Automation allows increase of
amplitude and depth of developed tests.

Testing automation might or might not be
helpful. It allows one to take advantage of idle
machine time (i.e., the period in which the devel-
oper is not working) to execute tests. Therefore,
test execution can be more effective and waste
less resources.

Background

Automated software testing is an activity that
seems to have obvious benefits: tests may be ex-
ecuted swiftly, are more consistent, and may be
repeated various times without increasing cost.
However, it is not a trivial activity and requires
effective planning and elaborate test-case defini-
tion, as well as other characteristics, which will
be explained in more detail later in this chapter.
Benefits and risks, possible tools, an implantation
methodology and directives for script generation
are also described.

An automated test between different phases
of the development process has the purpose of
verifying if what was constructed from that
stage backwards is correct and is adequate as an
input for the next stage. An example would be a
programmer testing a software component before
doing the integration of components.

The generated test process is automated and
capable of ensuring that the system logically
operates according to the code by executing the
functions through a series of test cases.

With a tool, you can expect the test script to
conduct the verification processes and return
results that verify whether the product under test
meets code logic.

A test engineer usually follows a procedure
to decide whether a problem found is a defect.
However, an automated test tool makes decisions
based on methods invocation, during which it
detects errors and defects. Thus, the tool makes an
effort to remind the developers of the importance
of adopting a good error-handling technique.

But, can a tool verify that all test tasks have
been performed? The answer is based on the
requirements of your organization and on the
architecture of the software project (Li & Wu,
2004).

���

Automated Software testing

Tests to validate a product against specified
client requirements are more subjective and can-
not always be automated. An example is a test
executed by a user in a beta-program.

manuaL teStIng vS.
automated teStIng

Software testing is necessary to guarantee the
quality of a software product, may be performed
during the whole software development process,
in a manual, automated or hybrid manner, using
different types of tests and tools.

Automated software testing simulates system
behavior using tools. The test actions performed
on the application are specified in code (scripts
and test classes). In a context where required tests
are not possible or viable to be executed manually,
automated software testing is very important. As
examples in which automated tests are indicated,
one has Automated tests are used in regression,
load, performance, and endurance tests and tests
involving a vast amount of data.

Regression tests require testing all constructed
functionalities after one of them is changed or
a new one is inserted. Automation helps in this
process, providing repetition of tasks already
executed. Thus, functionality tests already re-
corded may be executed again, decreasing retest
efforts.

For load tests, a high amount of users simul-
taneously accessing the application is necessary
(e.g., in the order of 100; 1,000; and 10,000). How
can such a test be performed? Automation is a
resource that can easily simulate this scenario.

When using test performance, an automation
test tool is used to capture time measurements
each time they are executed. Performance deg-
radations can be detected by collecting these
measurements and reviewing them as time series
(Karner, 1993).

Endurance testing requires automation. In this
type of test, a specific application behavior is ob-
served with the execution of its functionalities for
a certain amount of time — weeks or months. This
way, it is possible to detect problems like memory
leaks, stack corruption and wild pointers.

Some specific tests — such as installation,
configuration, and usability tests and specific
hardware operations tests — require a strong
human intervention, as well as a specific human
evaluation and validation. Manual tests are recom-
mended for these kinds of tests, being executed
by at least one person, following a test procedure
with application input and output data.

Test automation has a high cost. Training and
scripts maintenance are necessary and, in case
the tools used are not free, licenses are needed
according to the number of users. However, au-
tomation has become essential given to systems’
high complexity, need of performance and stress
testing, resulting in increase of testing time and
cost, reduction of software quality and, after
the recognition of importance of software tests,
pressure over project development teams has
increased.

Test execution may also be performed with
hybrid methods, characterized by applying jointly
manual and automated techniques in the same
project. The choice will depend on a thorough
analysis of time and resources available and test
complexity. The degree of maintenance and hu-
man intervention must be taken into consideration
given to application modifications.

Many tests are not executed many times dur-
ing a project life cycle. In these cases it is more
advantageous to execute the tests manually,
because efforts employed in their automation
do not provide large returns. Therefore, it is not
recommended to automate 100% of the tests.

Manual and automated tests should not be
compared only in terms of time, effort, and cost,
because the value of a test is especially in the

 ���

Automated Software testing

information it provides. In the same way, manual
and automated tests are not allowed to be compared
in many cases, because they provide distinctive
information, as seen before, for every type of test,
one of them is normally indicated.

However, in certain situations it might be a
reasonable goal to create the most extensive au-
tomated test suite, such as contractual or regula-
tory reasons, when it is necessary to prove that
the final version passed a strong battery of tests;
when tests will be delivered with the product so
that customers can also run the tests themselves;
when the product has stringent requirements for
backwards compatibility, remaining for many ver-
sions, or when the only way to test some products
is by writing programs to exercise them (Kaner,
Bach, & Pettichord, 2002).

overvIew of automated
teStIng

Nowadays automated testing is considered the
main resource to improve the efficiency of a test
process (Rios & Moreira, 2003), using tools so
that the computer is responsible for assistance,
design achievement, execution or tests control.
Information collection and their quick dissemina-
tion are assisted by automated tests to provide a
faster feedback to the development team (Kaner,
2002).

Tools to execute automated tests normally
simulate the use of an application by several
users simultaneously, a high load of data pro-
cessing, as well as repetition of tasks previously
executed. Besides, automating regression tests
is of great relevance for the maintenance phase,
since tests executed during development may be
repeated in new tests, when the system is already
in production.

When the automation does not apply to the
entire test process, it can be used to execute
punctual tests. This occurs normally with some
types of tests — such as load and performance

tests — because they are truly difficult to be per-
formed without the help of a tool, requiring big
effort and many computational resources.

The preparation of automated tests takes more
time than manual tests. This is mainly a conse-
quence of high effort and cost necessary to gener-
ate and maintain automation code. Therefore, so
that the investment may bring satisfactory return
on investment, automation must help to achieve
the specific tests mission (Kaner, 2002), providing
a supply of functional and nonfunctional tests.

Automation must be introduced in a context
where the test process is well performed, with
well-defined activities and with a mature and
experienced test team. Otherwise, automation will
not assist the achievement of test objectives. For
this reason, test processes must be fixed before
automating them.

Specific management treatment is required,
in other words, planning, execution, and control,
because normally automation is characterized by
its innovation and high investments, complexity,
and risks. Without this management, the expected
benefits may not be achieved, besides consuming
resources and dispersing the team from their test
objectives, consequently interfering on the quality
of tested products. Moreover, previous strategies
and planning definitions are necessary, so that
risks are controlled, possibility of scripts reuse
is increased and automation optimized.

Automated testing tools do not replace testers,
nor will their work be simpler. Actually their effort
will be redirected to essential activities of the test
automation process. For this reason, it is of great
relevance to prepare the group, because the suc-
cess of automated testing depends predominantly
on their skills.

teSt-StageS automatIon

Test automation may be applied to diverse stages:
unit, integration, and systemic. Each one has
peculiar characteristics and is implemented in a

���

Automated Software testing

different way. Next, these aspects will be shown
for each test stage.

automated unit testing

Unit tests consist of testing components individu-
ally. The tester verifies the input domain only
for the unit in question, ignoring the rest of the
system. These tests require code construction
executed during depuration mode.

The developer has the responsibility to ascer-
tain that units are correctly constructed, analyzing
code, comparing it with the system’s specification
and checking if any functionality is missing or
was not completely developed.

Tests and error corrections may be made at
any stage of the development cycle. Nevertheless,
some authors like Boehm (1981), have shown that
the cost of searching and finding errors increases
while the development advances. It is cheaper to
fix defects during the codification stage.

Procedure to implement unit testing:

1. Prepare test environment.
2. Define input domain based on requirements

and use cases.
3. Define, for every input, expected output

based on requirements and use cases.
4. Implement components to be tested.
5. Group unit tests in collections of compo-

nents.
6. Implement unit tests.
7. Execute unit testing.
8. Fix component tested, if there is an error.
9. Execute step 8 while any error remains.

Unit testing consists basically of:

1. Variables initiation, including database
population.

2. Business rules or input functions are ap-
plied.

3. Destruction of variables, including the clean-
ing up of data input to data base.

4. Comparison between results of applied
function with expected results, failing in
case they differ.

Grouping unit tests forms a tree, where the
leaves consist of the unit tests and in the other
nodes are the groupings of unit tests. This tech-
nique allows automating and executing all tests,
a subset of them, or each one individually.

Unit test automation enables dynamic problem
detection, generating automated reports, and fa-
cilitates execution of regression tests, which are
necessary for every meaningful code update.

automated Integrated testing

Integrated tests are performed to test various parts
of the system (components, modules, applica-
tions, etc.) that were separately developed in a
set. Integration tests are executed after each of the
system’s parts has been tested individually, using
unit tests or systemic tests, in case of applications
that communicate (with each other).

Analyzing the time line, you can notice that
integrated tests are mainly performed after a
unit test and before systemic tests, normally are
executed by developers that create their own
builds and test integrates units or by a specialized
testing team.

Procedure to implement integrated tests:

1. Prepare test environment, using test data and
test server, which are configured to simulate
the production environment.

2. Identify test cases based on requirements
and architecture.

3. Detail procedures for each test case.
4. Implement integrated tests.
5. Execute integrated tests.
6. Analyze results. If errors are found, they

must be registered in the problem reports
tool and associated to responsibles for the
corresponding corrections. If none are found
codification may stop.

 ���

Automated Software testing

7. Fix problems encountered.
8. Execute tests again. After ending it, return

to step 6.

automated System testing

System testing is the most misunderstood and
most difficult testing process. System testing
is not a process of testing the functions of the
complete system or program, because this would
be redundant with the process of function test-
ing (Myers, 2004). System testing compares the
system or program with its original objectives
(requirements).

In this stage a test environment, compatible
with the one in which the system or program will
be used, is necessary.

Various test types are performed during this
stage: usability, functionality, performance, stress,
and so on. Some of these may be automated to
make execution more agile, especially in case of
regression tests.

Systemic tests may be automated in several
ways, but a list follows with their basic activi-
ties:

1. Prepare test environment, installing and
configuring necessary hardware and soft-
ware.

2. Design test cases.
3. Define automation strategy.
4. Select project scope for automation.
5. Implement systemic test scripts for each test

case.
6. Execute systemic test.
7. Analyze results. If errors are found, they

must be registered in the problems report
tool and associated to responsibles for the
corresponding corrections.

8. Fix problems found.
9. Generate reports with tests status.
10. Execute tests again, returning to step 6 after

finishing them.

automation techniques

Automated functional test tools make use of some
techniques that differentiate themselves basically
because of the contents of the generated scripts:
record & playback, scripts programming, data-
driven and keyword-driven. These techniques
will be explained as follows:

• Record and playback: Technique that con-
sists of recording a test execution made on
the application’s interface and playing back
this execution later. The generated scripts
contain unalterable data, test procedures,
and expected results. The advantage of this
technique is the simplicity of generating
scripts. However, there is a high sensibility
to changes, which restricts a script’s lifetime.
For example, a simple change of an inter-
face may lead to the necessity of recording
again all the scripts, implying a high script
maintenance cost.

• Scripts programming: Considering the
components of the generated scripts, this
technique is similar to the one above. How-
ever, this one allows updating generated
scripts. With this resource, script program-
ming has a higher rate of reuse, longer life-
time, and less difficulties to be maintained,
compared to the technique of Record &
Playback. Nevertheless, there is still a big
volume of scripts and high-maintenance
cost (Fantinato, Cunha, Dias, Mizuno, &
Cunha, 2004).

• Data-driven: This is a technique that ap-
proaches test-data extraction through scripts,
storing them in separate files. Therefore,
scripts will only contain test procedures and
actions for the application. This technique
is useful for tests using different inputs and
combinations of scripts with common test
procedures (Kaner, 2002). This way, main-
tenance requires a reduced effort when it is

���

Automated Software testing

necessary to include, update, or delete any
test data. However, this technique depends
on the test-execution logic, in other words,
if any step is added to the procedure (or
removed) the script needs to be generated
again.

 Nevertheless, it allows automating in paral-
lel: test data can be created while test pro-
cedures are being generated. The extraction
of test data from scripts provides tests that
are easy to understand and revise. Many test
tools include direct support for the technique
data-driven (Kaner, 2002).

• Keyword-driven: Based on retrieving test
procedures from scripts, remaining only
test data and specific test actions, which
are identified by keywords. This resource’s
operation, being invoked by keywords and
even receiving parameters, is similar to
that of structured-program functions. An
important enhancement of this technique
is the reduction of script-maintenance ef-
fort if there is incorporation, removal, or
modification of any step of a test-procedure
execution (Fantinato et al., 2004).

 In spite of tools existent in the market rec-
ommending a specific testing technique,
the organization needs to establish the most
adequate technique according to their own
test context after analyzing all possibili-
ties.

good practices for automation

A list of relevant practices to improve systemic
test-script implementation and reuse follows,
which may be used according to the adopted
technique:

• When recording a script for a test case, some
necessary initialization may be necessary
— such as database connection, variables,
and functions — which can be shared be-

tween test cases of the same use case or even
between many use cases.

• Each script may be recorded independently
from the others, having its own variables,
initialization, and so on, although it would
be better to share common objects for test
scripts, in other words, use the concept of
modularity. For example, if it is necessary
to clean up a database for a specific use case
before executing any test script, or if there
are common script steps, a text file to store
these steps may be used and later on can be
included at scripts execution time. If these
steps change, only one place will have to be
modified.

• Another practice is to define functions ex-
ecuting a common activity for many scripts,
and only call it from those scripts.

• A clean and robust code must be imple-
mented. Comments should be made for
important lines or code blocks. While
implementing, possible maintenance may
not be discarded.

• When a flow alteration or verification point
in a script is recorded again, there must be
some care to update only script sections
where there really must be a change.

• To delete any garbage shown in a form, before
inserting any data, a combination of keys
should be used (“HOME”, “SHIFT+END”
and “DELETE”) when recording an action
of data input.

• If test scripts are recorded initially from
a prototype (in case the application is still
not available), it is necessary to certify that
names of fields and IDs of clickable icons
on screen will not be altered. If they are
changed, the script will need an update
later.

• Dynamic data for test scripts should be used
(test data separate of scripts). The immediate
benefit is that, if additional data is needed,
more records can simply be added; there is

 ���

Automated Software testing

no need to modify the test script (Mosley
& Posey, 2003).

BenefItS and rISkS

The benefits of automated tests are innumerable.
Some of them will be described here, as well as
risks that were considered most important.

A growing number of software versions to be
tested exhausts the capacity of manual tests in
terms of time, patience, input variation, attributes
combination and, as consequence, cost. With
advent of increasingly complex, integrated, and
critical software, automated tests have become
a necessity.

Benefits of test automation may be observed
in any test stage, such as unit tests, integrated
tests, and systemic tests.

Unit testing is a way of efficiently granting an
applications quality. In this stage, a big quantity
of errors can be detected and easier corrected.
The manual execution of unit tests is a difficult
process that consumes time and resources, being
practically unviable since almost all system units
must be tested, depending on the context, such as
functions, subroutines, components, or classes.

Benefits of automated unit tests are easily
noticed. During the project’s life cycle unit tests,
automation can decrease the costs of rewriting
code, because more errors are found still in the
codification stage. This test stage also grants more
security when doing updates, since the entire set
of tests are executed automatically. It is easier for
programmers to write test routines that retain their
value in time and assure the correct functioning
of units. Besides, automated unit testing provides
test results immediately after their execution.

In integrated tests, where the focus is on
systems architecture and integration between
different units developed, it is also indispensable
to execute them automatically. The integration
between system units may occur daily during the
development process and it is important to always

test the relationships between those components
using automatic mechanisms, like continuous
integration.

Automation of systemic tests requires at-
tention and planning, because in this stage the
functionalities’ behavior is verified according to
specified requirements. System testing is con-
ducted at a higher level. During systemic tests,
an examination is made of integration of parts
that make up the entire system (Dustin, Rashka,
& Paul, 1999).

For each test stage, automation must take into
consideration possible software changes. How-
ever, systemic test scripts have their execution re-
corded in an application interface, therefore, there
must be a special care avoiding costs of rework.
Flexible scripts (dependencies with interface are
minimized) can assist scripts maintenance.

In general, test automation in any stage al-
lows:

• Test effort reduction: Introduction of auto-
mated test tools will not immediately reduce
the test effort. Experience has shown that a
learning curve is associated with attempts
to apply automated testing to a new project
and to achieve effective use of automated
testing.

 While the testing effort will likely increase
at first, a playback on test tool investment
will appear after the first iteration of the
tools’ implementation, due to improved
productivity of the test team.

 Manual tests must still be performed on the
project, while a learning curve may exist due
to effort with familiarization and efficiency
in the use of the tool (Dustin et al., 1999).

• Schedule reduction: As the testing effort
may actually increase, the testing schedule
will not experience an initial decrease but
may instead become extended. Therefore,
permission to increase the schedule is re-
quired when initially introducing an auto-
mated test tool. Once an automatic testing

��0

Automated Software testing

process is established and effectively imple-
mented, the project can expect to experience
gains in productivity and turnaround time,
having a positive effect on schedule and cost
(Dustin et al.,1999).

• Improved regression testing: An auto-
mated test tool provides simplified regres-
sion testing. Automated regression testing
can verify in an expedient manner that no
new bugs were introduced into a new build
(Dustin et al., 1999).

• Improved focus on advanced test issues:
Automated testing allows simple repeatable
tests. A significant amount of tests are con-
ducted on the basic user-interface operations
of an application.

 Besides delaying other tests, the tedium of
these tests exacts a very high toll on manual
testers. Manual testing can become stalled
due to the repetition of these tests, at the
expense of progress on other required tests.
Automated testing presents the opportunity
to move on more quickly and to perform a
more comprehensive test within the sched-
ule allowed. That is, automatic creation of
user interface operability tests gets these
tests out of the way rapidly and releases test
resources, allowing test teams to turn their
creativity and effort to more complicated
problems and concerns.

• Increased test coverage: Automated testing
may increase breadth and depth of test cover-
age, yet there will still not be enough time
or resources to perform a 100% exhaustive
test. Even with automation, testing every
combination of a system exhaustively is im-
possible. Therefore, there must be strategies
(equivalence partitioning) to select relevant
test data.

• Productivity increase: Having increased
test coverage, automation also increases
productivity. Testers may verify more test
cases in less time than when using manual
tests.

• Improved performance testing: Many
load-testing tools are available that allow
one to automatically test the performance of
a system’s functionalities, producing timing
numbers and graphs and thresholds of the
system. There is no longer the necessity to
sit with a stopwatch in hand. The objective
of performance testing is to demonstrate
that a system functions in accordance with
its performance requirement specifications
regarding acceptable response time, while
processing the required transaction volumes
on a production-size database (Dustin et al.,
1999).

From these benefits, we can observe that

automation is essential, because, even with an
extremely experienced tester, it is almost impos-
sible to know all the relations and combinations
between attributes of medium- and large-sized
applications.

Even so, the implementation of a solution for
automated tests, even with excellent test tools
available, is not trivial and can fail mainly due
to:

• Nonqualified test team: An automated
tool requires new skills for test analysts,
therefore additional training is required. An
efficient automation is not that simple. Test
scripts automatically generated by the tool
during recording must be modified manu-
ally, which requires scripting knowledge,
so as to make the scripts robust, reusable,
and maintainable. To be able to modify the
scripts, the test engineer must be trained
on the tool and the tool’s built-in scripting
language (Dustin et al., 1999).

• Inadequate tools: The automation tool must
be in accordance to the company’s business
needs with the test process introduced.
There are many tools that automate tests
and a correct choice cooperates to fully use
features offered. There is not a tool clearly

 ���

Automated Software testing

superior to other tools for every situation.
The choice of the most adequate tool de-
pends on characteristics of applications,
test stages to be automated, as well as the
adopted organizational test policy.

 Simply using tools, by themselves, will not
promote a significant quality enhancement
of developed products, if not accompanied
by an adoption of a work methodology.

 An incorrect choice may lead to automa-
tion failure, once the organizational testing
needs will not be completely suppressed and
resources and efforts addressed to manual
tests deviated. Besides, given to the affected
credibility, it may be difficult to obtain fur-
ther investments of higher management to
proceed with automation or even to reinforce
manual tests.

• Elevated cost with systemic test scripts
maintenance: This aspect may not com-
pensate automation costs. Systemic test
scripts have to be flexible enough to easily
support various changes and insertion of
new functionalities that appear during a
project’s life cycle.

 To create scripts easy maintainable, profes-
sionals with experience in software devel-
opment are important. They are supposed
to be capable of designing a modular script
structure, in the same way as when doing a
normal software design.

• Automation of every test type: As ex-
plained in this chapter, when tests require
high human intervention it is not recom-
mended to focus on automated tests.

• Lack of planning and control of the au-
tomation process: Test automation must
be considered a separate project from the
software development process. Cautions
related to project management have to be
taken, such as concerns with scope, time,
cost, quality, integration, resources, and
risks.

Execution of automated tests helps to provide
reliable and stable applications. However, to
reduce associated costs and risks, it is important
to analyze factors mentioned earlier on. Thus
automation benefits can be more evident in the
organization and risks can be controlled by miti-
gation and/or contingency.

automated teSt tooLS

The tools for automated testing are instruments
to make the testing process easier, replacing
and/or assisting manual tests performed by tes-
ters. Various tools exist to be used in the various
test stages.

Many organizations have successfully chosen
and purchased a test tool, but around half of those
organizations have not achieved any benefit from
their investment because their tools have ended up
not being used (shelfware) (Fewster & Graham,
1999). A way of easing this risk is by knowing
better the available market categories and types
of automated tools.

categories and types

While GUI-testing tools (also called “capture/
playback” tools or functional-testing tools) are
much hyped in the testing industry, it is important
to be aware of the other types of tools available to
support the testing life cycle. This item provides
an overview of the available tools, listed in Table
1, supporting the various test activities.

The existent divisions of types of test tools are
not uniform. Therefore, to be more didactic and
easier to understand the purpose of each test tool,
they may be divided into categories, and those
categories have many types of tools associated
with them, according to their objectives:

• Test-development tools: Assist test plan
elaboration and generation of test cases and

���

Automated Software testing

Tool Category Type of Tool Description Example

Test-procedure
generator

Generates test procedures from
requirements/design/object models

 TYX — Test
Procedure
Generation
Wizards

Test-data generator Generates test data
 Tnsgen
 DTM Data

Generator

Test
Development

Test-data extraction Extraction and verification of test data Kapow Web
Collector

Unit testing Unit API testing and assertions
verification

 PyUnit
 JUnit
 HttpUnit

Memory-leak
detection

Verify that an application is properly
managing its memory resources

 JProbe
 Pruify

GUI-testing
(capture/playback)

Automate GUI tests by recording user
interactions with systems, so they may
be replayed automatically

 Robot
 WinRunner
 QARun
 Functional Tester

Load, performance,
and stress testing Load/performance and stress testing

 Robot
 LoadRunner
 JMeter
 JProbe

Test
Execution

Network testing
Monitoring, measuring, testing, and
diagnosing performance across entire
network

 CSSCheck
 Bobby

Test management

Provide such test-management functions
as test-procedure documentation,
storage, and
traceability

 TestManager
 TestDirector
 QADirector

Code-coverage
analyzers and code
instrumentors

Identify untested code and support
dynamic testing

 Clover
 NoUnit
 Jtest

Metrics reporting

Read source code and display metrics
information, such as complexity of data
flow, data structure, and control flow.
Can provide metrics about code size in
terms of numbers of modules, operands,
operators, and lines of code.

 McCabe Visual
Quality

Usability
measurement

User profiling, task analysis,
prototyping, and user walkthroughs SUMI

Test Support

Defect tracking
(bug tracking) Manage data base with found defects

 ClearQuest
 Bugzilla
 Jira

Table 1. Tools by category and type

 ���

Automated Software testing

input data. Test development is responsible
for designing tests and test data, being the
most important set of activities in a testing
process. Tests must enclose all requirements,
otherwise, they will be invalid.

• Test execution tools: Assist test case execu-
tion and results evaluation; include also the
capture/programming of test scripts.

• Test support tools: Assists test-specific
activities, not being considered particular
for tests. Include tools to support revisions,
inspections, walkthroughs, project manage-
ment, as well as tools for defect tracking and
database managing.

Following are some key points regarding
some of the types of test tools, according to their
categories.

Test-Development Tools

• Test-procedure generators: A require-
ments-management tool may be coupled
with a specification-based test-procedure
(case) generator. The requirements-manage-
ment tool is used to capture requirements
information, which is then processed by
the test-procedure generator. The generator
creates test procedures by statistical, algo-
rithmic, or heuristic means. In statistical
test-procedure generation, the tool chooses
input structures and values in a statistically
random distribution, or a distribution that
matches the usage profile of the software
under test (Dustin, 2002).

 Most often, test-procedure generators em-
ploy action-, data-, logic-, event-, and state-
driven strategies. Each of these strategies
is employed to probe for a different kind
of software defect. When generating test
procedures by heuristic- or failure-directed
means, the tool uses information provided
by the test engineer. Failures discovered
frequently in the past by the test engineer are

entered into the tool. The tool then becomes
knowledge-based, using the knowledge of
historical failures to generate test proce-
dures.

• Test-data generators: Test-data generators
aid the testing process by automatically
generating test data. Many tools on the
market support the generation of test data
and populating databases. Test-data genera-
tors can quickly populate a database based
on a set of rules, whether data is needed for
functional testing, data-driven load testing,
or performance and stress testing.

• Test-data extraction tools: Using produc-
tion data for testing purposes increases
the integrity of testing by allowing testing
teams to establish test scenarios using real
test cases rather than relying on fabricated
testing environments.

 A test-data extraction tool minimizes time
to create test data and maximizes integrity
and usability of data.

Test-Execution Tools

• Unit-testing tools: This type of tool is
used to program and execute tests in units
of the developed application. The units are
normally classes, methods, or flows. Gen-
erally a unit-testing tool supports only one
development language.

• Memory-leak detection tools: These tools
are used for a specific purpose: to verify that
an application is properly using its memory
resources. These tools ascertain whether
an application is failing to release memory
allocated to it, and provide runtime error
detection. Since memory issues are involved
in many program defects, including perfor-
mance problems, it is worthwhile to test an
application’s memory usage frequently.

• GUI-testing tools (capture/playback
tools): Many automated GUI testing tools
are on the market. These tools usually in-

���

Automated Software testing

clude a record-and-playback feature, which
allows the test engineer to create (record),
modify, and run (playback) automated tests
across many environments. Tools that record
the GUI components at the user-interface
control are most useful. The record activity
captures the keystrokes entered by the test
engineer, automatically creating a script in a
high-level language in the background. This
recording is a computer program, referred to
as a test script. Using only the capture and
playback features of such a tool uses only
about one-tenth of its capacity, however. To
get the best value from a capture/playback
tool, engineers should take advantage of the
tool’s built-in scripting language.

 To create a reusable and maintainable test
procedure, the test engineer must modify
the recorded script. The outcome of the
script becomes the baseline test. The script
can then be played back on a new software
build to compare its results to the baseline.
The results can be compared pixel-by-pixel,
character-by-character, or property-by-
property, depending on the test-comparison
type, and the tool automatically pinpoints
the difference between the expected and
actual result (Dustin, 2002).

• Load, performance, and stress testing
tools: Performance-testing tools allow the
tester to examine the response time and
load capabilities of a system or application.
The tools can be programmed to run on a
number of client machines simultaneously
to measure a client-server system’s response
times when accessed by many users at
once. Stress testing involves running the
client machines in high-stress scenarios to
determine whether and when they break.

• Network-testing tools: The popularity of
applications operating in client/server or
Web environments introduces new complex-
ity to the testing effort. The test engineer no
longer exercises a single, closed application

operating on a single system, as in the past.
Client-server architecture involves three
separate components: the server, the client,
and the network. Interplatform connectivity
increases potential for errors. As a result, the
testing process must cover the performance
of the server and the network, the overall
system performance, and functionality
across the three components (Dustin, 2002).
Many network test tools allow the test engi-
neer to monitor, measure, test, and diagnose
performance across an entire network.

Test-Support Tools

• Test-management tools: Test-management
tools support the planning, management,
and analysis of all aspects of the testing life
cycle. Some test-management tools, such as
IBM’s Rational TestStudio, are integrated
with requirement- and configuration-man-
agement and defect-tracking tools, in order
to simplify the entire testing life cycle.

• Code-coverage analyzers and code-in-
strumentors tools: Measuring structural
coverage enables the development and test
teams to gain insight into the effectiveness
of tests and test suites. They are able to
quantify the design complexities, help pro-
duce the integration tests, and measure the
number of integration tests that have not been
executed. Some of them measure multiple
levels of test coverage, including segment,
branch, and conditional coverage.

• Metrics reporting tools: Tools responsible
for reporting metrics analyze code complex-
ity and identify application passages that
offer a higher fault risk, reporting quality
metrics. With these tools it is possible to
know parts of code that have or have not
been tested.

 The usage of metrics-reporting tools assures
higher product quality, because it is possible
to have metrics showing the quality of what

 ���

Automated Software testing

is being developed.
• Usability-measurement tools: Usability

engineering is a discipline that includes user-
interface design, ergonomic concerns, hu-
man factors, graphics design, and industrial
and cognitive psychology. Usability testing
is largely a manual process of determining
the ease of use and other characteristics of a
system’s interface (Dustin, 2002). However,
some automated tools can assist with this
process, although they should never replace
human verification of the interface.

• Defect tracking (bug tracking): Most of
the existing commercial tools present a
conjunction of tool types or even categories.
It may be a big advantage to obtain these
integrated tools. However in some cases not
all functionalities are needed and the tools
cost may be an inhibitor. Therefore, it is
very important to analyze test tools’ costs
and benefits thoroughly.

 Some test tools are intrusive, because it may
be necessary to insert special code into the
application program so that the automated
tool may work correctly, interacting with
the testing tool. Development engineers may
be reluctant to incorporate this extra code.
They may fear it will cause the system to
operate improperly or require complicated
adjustments to make it work properly. To
avoid such conflicts, test engineers should
involve the development staff in selecting
an automated tool and if the tool requires
code additions (not all tools do), developers
need to know that well in advance.

 Intrusive tools pose the risk that defects
introduced by testing hooks (code inserted
specifically to facilitate testing) and in-
strumentation could interfere with normal
functioning of the system.

 Besides, as with all technologies, test tools
can be unpredictable. For example, reposi-
tories may become corrupt; baselines may
not be restored, or may not always behave as

expected. Often, much time must be spent
tracking down a problem or restoring a back-
up of a corrupted repository. Test tools are
also complex applications in themselves, so
they may have defects that interfere with the
testing effort.

programming Languages of
automated test tools

It has already been mentioned that there are a lot
of test tools available on the market, and testing
teams have used the tools and achieved great
success. These test automation tools also include
writing (i.e., coding) test scripts, which are soft-
ware programs (Mosley & Posey, 2003). As such,
they have their own programming languages
and/or language extensions that are required to
accommodate software-testing events, such as
Java (JUnit and JProbe) or Visual Basic; in one
of the standard scripting languages such as Perl,
CGI, or VB Script; or in the operating system’s
command procedure language (Unix).

The scripting language is usually embedded in
a capture/playback tool that has an accompanying
source code editor. Some popular test tools write
test scripts in Visual Basic 6.0 and execute the
script in Visual Studio IDE. There is also literature
that introduces how to write test scripts in Visual
Basic 6.0 by hand. Some other tools are written
in Java, such as JUnit, and JProbe and there are
tools to write test scripts for software products
run on Unix, Linux, and other platforms.

test tools development

The usage of an automated tool will not always
be adequate or provide necessary benefits. Di-
versified factors may lead to the necessity of
building a tool:

• Application incompatibility: The applica-
tion may contain an element that will cause
compatibility problems with any capture/

���

Automated Software testing

playback tool on the market. If a work-around
cannot be created, it may not be possible
to use the capture/playback tool. Even if a
work-around can be created, it may not be
worth the effort, being more beneficial to
create a customized tool.

• Operating system incompatibility: If there
is a market absence of a tool, compatible
with the various operation systems in use,
there is no other choice than to consider
building a customized tool that will work
in the specific environment under test.

• Specialized testing needs: In case the test
tool cannot reach a critical/complex com-
ponent, an enhancement to the tool may be
developed.

In case the organization chooses to develop a
testing tool, resources, cost and time need to be
determined, as well as management permission.
The tools development must be treated as devel-
opment effort of the project that demanded the
use of the tool (Fewster & Graham, 1999). Many
books provide detailed explanations of how to
proceed to develop a test tool inside an organiza-
tion, such as Li and Wu (2004) and Fewster and
Graham (1999).

ImpLantatIon of teSt
automatIon

Many companies, certain of the advantages of
test automation, want to define a process of test
automation to enhance the software-testing pro-
cess, but do not know how to do it. Next, some
phases are described which may be used for the
test-automation implantation.

Introduce automated test Ideas

In this stage, the expectations management related
to test automation and explanation of its benefits

are performed, introducing automated test ideas
to the organization.

Some imagine that a lot of time is spent with
automation and that it has high costs. Therefore
it is important to study its applicability (Donegan
et al., 2005), verifying management, financial and
structural benefits and risks involved, because the
advantages and disadvantages of automation are
to be made clear for everyone. At this moment,
those involved with the implantation, including
internal investors, are supposed to be conscious
that normally the return on investment will be
obtained in a medium or long term, since test
automation does not reduce testing time as soon
as it is introduced. This occurs given to time spent
with tools initial learning, adaptation to the new
testing process, among other factors mentioned
before.

Generally, introducing tests automation re-
quires a lot of investment. That does not happen
only with the acquisition of a tool, but also with
professional preparation of stakeholders and with
maintenance of existent hardware to support the
one being installed. Those variables must be
considered in the projects’ budget.

In this stage, an open communication with high
management is fundamental, being constantly
informed of organizational risks already detected,
as well as direct benefits of automation, so that
they may support the entire automation process
even being aware of the existent challenges.

It is important to form a team with special-
ized professionals to begin the implantation of
tests automation. The team must have at least one
representative with knowledge of the organiza-
tional culture. These professionals will also be
responsible for conducting the next stage.

After taking into account all the factors men-
tioned, the organization might take the decision
of beginning test automation, or may abort the
idea, being aware of risks and benefits involved.
In case the decision is positive, some of the initial
automated test ideas above have to be detailed in

 ���

Automated Software testing

a tests automation plan, defining tasks that will
be executed.

choose test tool

This stage guides the choice and evaluation of
necessary tools for test automation.

Initially, the requirements of the tool are re-
searched, according to organizational necessities:
available resources, architecture of developed
applications, platforms used, automation tool
language, type and stage of desired test, and oth-
ers. If possible, requirements should be prioritized
conforming to the level of importance, making
it possible to focus on key requirements in the
evaluation process.

According to the requirements of highest
importance, available tools in the market are se-
lected. In case there is not any tool accessible to
provide the organizational needs, the possibility
of developing a homemade tool must be taken
into account, which was seen earlier on in the
chapter.

However, generally, a single test tool will not
fulfill all the automated testing requirements for
an organization, unless that organization works
only with one type of operating system and one
type of application. Expectations must be man-
aged. It must be made clear that currently there is
not a single tool on the market that is compatible
with all operating systems and programming lan-
guages. This is only one reason why several tools
are required to test the various technologies.

After preselecting the tools, there must be
an assurance that the tools will fulfill the re-
quirements and other points, like usability and
performance. A way of doing this is using demo
versions or doing hands-on. As a consequence,
one or more tools are selected, according to
company needs.

Refine Testing Process

This stage sketches the refinement of the organiza-
tional test process, including necessary activities
for automated tests.

As an aftermath of the test tools choice, the
process of implantation of automation begins. Now
it is necessary to lay out objectives and strategies,
by means of common architectures used in orga-
nizational projects. The strategy for automation
in a company must contemplate directives that
increase codification use and decrease their main-
tenance. See the “Good Practices” section.

After establishing these aspects, automation
activities are defined. These activities are incor-
porated into the organizational testing process
and stakeholders need to be properly trained. The
mainly affected stakeholders are investigated, and
a definition of the course goals (such as time and
scope) is made.

A good way to consolidate the test process and
chosen tools is to define a project to be automated
and tested, called pilot project, applying the new
test process and tools. It is necessary to monitor
process planning, test-case elaboration, code
creation, and tests execution and, especially, the
results must be evaluated (Molinari, 2003).

All those involved in the test automation
must participate, so that pertinent directives to
the organizational context may be outlined and
so that their commitment with the “Automation
Product” is assured.

develop test automation

Test Automation Planning

Conducting a common process of a Test Plan
and designing test automation characterize the
planning stage.

���

Automated Software testing

For the Test Plan, the scope of automation
is defined and involved risks of the project in
question are investigated, analyzed, and quali-
fied. Besides, a test-automation strategy must be
defined to orientate execution and monitoring,
based on factors such as test scope, reuse of code,
maintenance effort, and availability of time and
resources.

Conventions of suites and code nomination
may be established, as well as logical grouping rel-
evant to worked scope. The most complex groups
have to be identified and described in detail.

Test cases must have a well-defined design as
they provide relevant information about the sys-
tem to be tested without considering if tests are
manual or automated. These test cases have to be
analyzed, in order to identify the best automation
possibilities. At this point, the test analyst must
have a good understanding of how to raise valu-
able automation opportunities, in other words,
opportunities that bring great aggregate value.

In case of automation of functional tests,
another step consists of planning and designing
useful test data, identifying the best way to com-
municate with code. See “Automation Techniques”
section.

Test Automation Execution

Test execution approaches installation and con-
figuration of tool and environment to initiate tests.
This environment must also consider performance
tests, which use various stations or virtual users.
All necessary information concerning the envi-
ronment must be contained in the test plan.

The preparation of a manual with instructions
concerning chosen tools, test design information
and adopted conventions is relevant.

The test team must develop test code based
on the premises established during the planning
stage and on the test projects already developed.
The codes must be simple, robust, maintainable
and, if possible, reusable.

After the test codes have been developed,
unit, integrated and systemic tests can be per-
formed. Generally, a different team of the one
that executes systemic tests executes unit and
integrated tests.

Each test team must report detected errors dur-
ing test execution (integrated and systemic tests).
A tool to report bugs facilitates this step.

Test Automation Management

Now that the tests are already planned and ex-
ecuted, they need to be managed. Control is es-
sential for the test automation evolution analysis,
with the perspective of analyzing if the new form
of performing tests is acceptable and adaptable.
Automation management is also fundamental to
identify some points adopted during the planning
stage that need to be adjusted, or even to reevaluate
the tool with the purpose of certifying usability
in the organization’s context.

Tests codification must be constantly moni-
tored, so that it can be a reflex of the application in
such a way that modifications made in the product
during its life cycle can also be contemplated in
test code. This activity prevents reporting errors
to the development team, caused by failure of
test codification.

For systemic tests automation, when errors
are found, it is necessary to do an analysis of
them before sending the report to the develop-
ment team, filtering duplicities and fake bugs,
which are bugs caused by errors made during
codification of tests.

Evaluate and Improve Test Automation

Automated test activities evaluation must be made
during the whole test life cycle, so that improve-
ments may be implanted. These enhancements can
be observed along with execution of automated
tests in organizational projects. Many of them
are incorporated punctually into projects. The

 ���

Automated Software testing

company is, therefore, responsible for collecting,
evaluating, and incorporating the improvements
to the organizational process, when it is the case.
Afterwards, stakeholders must be informed of
changes made to the process and, if necessary,
be trained.

Another important point is the test tool per-
formance evaluation and determining what can
be done to enhance it in the next project or test
cycle.

reLated workS

There are many works related to test automa-
tion: reports and case studies of organizations
that have implemented automated software tests;
research projects published in diverse events and
magazines, creating models for test automation,
elaborating efficient techniques for different types
of automated tests, as well as others.

Organizations that develop software are con-
stantly automating their tests to improve process
and product quality, there are many examples to
be found nowadays, here are two specific organi-
zations using automated tests: Instituto Atlântico
and BMC Software.

Instituto Atlântico implanted automation of
functional system tests initially in a pilot project
and, nowadays, automated tests are being used
in other projects of the organization. Time spent
to develop automated use case tests sometimes
is superior to the time necessary to test it manu-
ally. However, Instituto Atlântico uses regression
tests and this economizes time to execute tests,
recovering the amount of time already used with
codification after some increments. The tools used
are those from Rational IBM: Robot, Test Manager
and, more recently, Functional Tester. More details
can be read in Donegan et. al (2005).

BMC Software developed a system to automate
tests of a products suite called BMC’s MetaSuite
— family of applications client/server. They for-

mulated orientations to choose people to automate
tests and what should be automated.

BMC uses the tool QA Partner. One of the
main gains using this tool is the easy maintenance
of test scripts. Test cases are implemented before
the interface is completely ready, because the test
cases are independent of implementation details.
In a week, BMC executed around three times
each test case of three suite products. And those
tests could be amply repeated in a more consis-
tent manner. More information can be found in
Pettichord (2001).

There are some interesting publications fol-
lowing, related to test automation, providing new
approaches to automation. They may be adopted
by organizations, if they are in conformity with
objectives and purposes of the organization or
specific project using automated tests.

Interface-driven model-Based test
automation

The paper describes an interface-driven approach
that combines requirement modeling to support
automated test case and test driver generation. It
focuses on how test engineers can develop more
reusable models by clarifying textual require-
ments as models in terms of component or system
interfaces. The focus of interface-driven modeling
has been recognized as an improvement over the
process of requirement-driven model-based test
automation (Blackburn, Chandramouli, Busser,
& Nauman, 2002).

model-Based approach to Security
test automation

The paper summarizes the results of applying
a model-based approach to automate security
functional testing. The approach involves devel-
oping models of security function specifications
(SFS) as the basis for automatic test-vector and
test-driver generation (Blackburn, Busser, &
Nauman, 2002).

��0

Automated Software testing

further readIng

A very good place to do some further reading is
in the Web site http://www.stickyminds.com. You
can find every kind of papers related to software
tests, including some very interesting related to
automated software testing

In terms of tools to automate tests, if you are
interested in more examples of existent tools,
we advise you to access Brian Marick’s website
http://www.testingfaqs.org (Marick, 2005). He
presents an extensive list of tools for some types
of automated tests. To learn more about the devel-
opment of a tool to automate tests, it is interest-
ing to read “Effective Software Test Automation
— Developing an Automated Software Testing
Tool” (Li, 2004), a book that teaches how to build
a fully automated testing tool and provides expert
guidance on deploying it in ways reaching high
benefits.

In the section “Implantation of Test Automa-
tion” we showed a brief methodology to automate
tests in an organization, however if you desire
some further readings, it is interesting to read
about the automate testing life-cycle methodology
(ATLM) by Dustin, Rashka, and Paul (1999).

concLuSIon

Good planning, clear definition of roles of those
involved with automated tests, adequate tools and
implantation with strong management to control
risks and costs are essential so that the automated
tests are successful in an organization.

Risks and benefits involved with automation
need to be researched and afterwards informed to
all stakeholders involved, especially to the high
management, so that there is an effective compro-
mise. Nevertheless, results obtained during test
automation also have to be disclosed.

Automated tests are capable of increasing test
coverage; because of time gain, cost subsided by

future problems, and increase of the application’s
stability and investors trust.

A methodology for implantation of test automa-
tion was explained in this chapter, suggesting test
automation to be implanted in stages, beginning
with the decision of automation until process
improvement, facilitating an efficient manage-
ment and control of the automation process. An
important stage for test automation is the choice
of tools to be used. To make the right choice it is
important to know the organization’s real needs,
testing-process maturity, test-team experience,
automation techniques, and advantages and dis-
advantages of available commercial tools.

When initiating test automation it is impor-
tant to customize the organizational test process
according to required activities necessary for
automated tests, training professionals, prepar-
ing environment, among other aspects given
along the chapter. Thus it is possible to perceive
that test automation must be treated as a project,
requiring a plan, activities execution, and results
monitoring. Therefore, it is more likely to obtain
a positive return for the organization.

referenceS

Blackburn, M., Busser, R., & Nauman, A. (2002).
Interface-driven model-based test automation
— Starwest 2002. Retrieved September 2, 2005,
from http://www.software.org/pub/externalpa-
pers/starwest_2002.pdf

Blackburn, M., Chandramouli, R., Busser, R., &
Nauman, A. (2002). Interface-driven model-based
test automation — Quality Week 2002. Retrieved
September 2, 2005, from http://www.software.
org/pub/externalpapers/blackburn_issre_2002.
pdf

Boehm, B. (1981). Software engineering econom-
ics. Englewood Cliffs, NJ: Prentice Hall.

 ���

Automated Software testing

Donegan, P., Bandeira, L., Matos, A., Cunha, P.,
Maia, C., & Pires, G. (2005) Aplicabilidade da
automação de testes funcionais — a experiência
no instituto atlântico. In Simpósio brasileiro
de qualidade de software (pp. 447-454). Porto
Alegre: Pontifícia Universidade Católica do Rio
Grande do Sul.

Dustin, E. (2002). Effective software testing: 50
specific ways to improve your testing. Boston:
Pearson Education.

Dustin, E., Rashka, J., & Paul, J. (1999). Automated
software testing: Introduction, management, and
performance. Boston: Addison Wesley.

Fantinato, M., Cunha, A., Dias, S., Mizuno, S.,
& Cunha, C. (2004). AutoTest — Um framework
reutilizável para a automação de teste funcional de
software. In Anais SBQS — Simpósio brasileiro
de qualidade de software (pp. 286-300). Brasília,
Brazil: Universidade católica de Brasília.

Fewster, M., & Graham, D. (1999). Software test
automation: Effective use of test execution tools.
Boston: Addison Wesley.

Kaner, C., Bach, J., & Pettichord, B. (2002). les-
sons learned in software testing: A context-driven
approach. New York: John Wiley & Sons.

Karner, G. (1993). Metrics for objectory. Unpub-
lished diploma thesis, University of Linköping,
Sweden.

Li, K., & Wu, M. (2004). Effective software test
automation: Developing an Automated software
testing tool. Alamdea, CA: Sybex.

Marick, B. (2005). Testingfaqs.org — An infor-
mation resource for software testers. Retrieved
September 2, 2005, from http://testingfaqs.org

McGraw, G., & Michael, C. (1996, July). Auto-
matic generation of test-cases for software testing.
In CogSci 1996, Proceedings of the 18t h Annual
Conference of the Cognitive Science Society (pp.
370-375). Mahwah, NJ: Lawrence Erlbaum.

Molinari, L. (2003). Testes de software — pro-
duzindo sistemas melhores e mais confiáveis. São
Paulo, Brazil: Ed. Erica.

Mosley, D., & Posey, B. (2003). Just enough soft-
ware test automation. New York: Yourdon Press
Series, Prentice Hall.

Myers, G. (2004). The art of software testing.
New York: John Wiley & Sons.

Pettichord, B. (2001). Success with test automa-
tion. Revised version of a Quality Week paper. San
Francisco. Retrieved September 02, 2005, from
http://www.io.com/~wazmo/succpap.htm

Rios, E., & Moreira, T. (2003). Projeto & engen-
haria de software — testes de software. Rio de
Janeiro, Brazil: Atlas Book.

This work was previously published in Verification, Validation and Testing in Software Engineering, edited by A. Dasso, pp.
82-110, copyright 2007 by Idea Group Publishing (an imprint of IGI Global).

���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.16
Software Metrics

and Measurements

Michalis Xenos
Hellenic Open University, Greece

IntroductIon

In the past few years, a large number of e-gov-
ernment and e-commerce systems have been
developed, thus resulting to a constantly increas-
ing number of software developers involved in
software development for such systems. To ensure
the production of high quality e-government and e-
commerce systems, it is important for developers
to collect and analyze measurable data that guide
estimation, decision making, and assessment. It is
common sense that one can control and manage
better what he is able to measure.

Although there are major differences be-
tween e-commerce and e-government (e.g., ac-
cess, structure and accountability; Jorgenson &
Cable, 2002) there are no significant differences
in terms of software metrics that can be applied
to both. Metrics are used in e-government and
e-commerce software development to measure
various factors related to software quality and can

be classified as product metrics, process metrics
and recourse metrics. Product metrics are also
called software metrics. These are metrics that are
directly related to the product itself, such as code
statements, delivered executables, manuals, and
strive to measure product quality, or attributes of
the product that can be related to product quality.
Process metrics focus on the process of software
development and measure process characteristics,
aiming to detect problems or to push forward suc-
cessful practices. Resource metrics are related to
the resources required for software development
and their performance.

This article focuses on product metrics and
on how such metrics can aid in design, predic-
tion and assessment of the final product quality,
provide data used for decision making, cost and
effort estimation, fault prevention, testing time
reduction, and, consequently, aid in producing
better software for e-government and e-com-
merce systems.

 ���

Software Metrics and Measurements

Background

Measurement is the process by which numbers or
symbols are assigned to attributes of entities in the
real world so as to describe such entities accord-
ing to clearly defined rules (Fenton & Pfleeger,
2004). In software development, measurements
are conducted by using metrics. A metric is an
empirical assignment of a value to an entity
aiming to describe a specific characteristic of
this entity. Measurements have been introduced
into the e-government and e-commerce software
development process in order to satisfy the need
to control software development and produce
higher quality results.

Since the mid 1970s when the first software
metrics were proposed, a large number of metrics
have been proposed in the following years. The
proliferation of metrics was followed by more
practical proposals on how to interpret results
from metrics (see Shepperd & Ince, 1990) and
methods combining metrics into measurement
methodologies (see Xenos, 2003).

Public or private entities involved in software
development for e-gsovernment and e-commerce
applications can select from a variety of applied
metrics those that are more suitable to be included
in the development process (e.g., see Goodman,
2004; Kan, 2003). Therefore, taking into account
the volume of literature that exists about software
metrics, it is no more a question of finding metrics
for an e-government or e-commerce project, rather
than selecting the appropriate ones and exten-
sively training engineering teams to utilize them
(Hirsh, 2005). Given the large number of metrics
(measuring almost everything), any attempt to
select a metric without basing the selection on a
detailed breakdown of the development needs and
an extensive investigation of the proposed metric’s
applicability would result in minor benefits from
its use or no benefits at all. To benefit from the
use of metrics, apart from fully understanding the
various existing metrics, one should also define

well why he wants to measure, what to measure
and when is the right time to measure it.

So the first question is: Why use metrics? The
answer to this question is that metrics are needed
to provide understanding of different elements of
e-government and e-commerce software projects.
Because it is not always clear what causes a proj-
ect to fail, it is essential to measure and record
characteristics of good projects as well as bad
ones. Metrics provide indicators for the developed
software. As Ragland (1995) stated, indicators are
metrics or combinations of metrics that provide
insights of the software development process, the
software project, or the product itself. Measure-
ments aim at the assessment of the status of the
development process and the developed product.
Therefore, metrics can be used for performance
evaluation, cost estimation as Stamelos and
Angelis (2001) have proposed, effort estimation,
improving productivity, selecting best practices
and—in general—for improving the quality of
e-government and e-commerce systems.

This discussion leads to the next question:
What to measure? As previously mentioned,
process and product are what we need to measure.
One may argue that, since the result of e-govern-
ment and e-commerce projects is software, what
we need to measure is only software. This is not
true. According to Deming (1986), if the product
you have developed is erroneous, do not just fix
the errors, but also fix the process that allowed the
errors into the product. This way you will not have
to keep fixing the error in subsequent productions.
Therefore, both process and product metrics and
measurements are important in e-government and
e-commerce software development.

It must be noted that, before selecting the ap-
propriate metrics, it is very important to define the
desired product quality characteristics. The selec-
tion of quality characteristics aids in defining what
needs to be measured and what needs not, depend-
ing on the particular needs of the e-government
and e-commerce application. In the early 1970s,

���

Software Metrics and Measurements

McCall, Richards, and Walters (1977) defined a
framework for measuring such characteristics and
proposed the Factors Criteria Metrics model—also
known as FCM model—defining what is software
quality in terms of subcharacteristics. Incorporat-
ing FCM and experience from similar proposals,
years later, the ISO standard ISO/IEC 9126 (2001)
standardized what product quality is in terms of
subcharacteristics. Therefore the definition of
product quality is important, as product metrics
are used in the software development procedure
to measure those product characteristics that are
related to product quality.

Having defined the goals and reasons for mea-
suring, the next question is: When to measure?
Although measurements should be conducted
throughout the entire e-government and e-com-
merce software development life cycle, their scope
varies depending on the development phase. Dif-
ferent measurement goals are defined at different
development phases, thus resulting into different
kinds of metrics. In the early phases of e-govern-
ment and e-commerce software development,
metrics are used mainly for estimation purposes.
It is useful to collect metrics relating to different
projects as these can serve as historical data for
future projects, aiding in better results.

In the intermediate phases of the e-govern-
ment and e-commerce development process,
metrics are used for project monitoring purposes
and, in the meantime, code metrics are used to
prevent errors. Furthermore, defect reports dur-
ing testing are used for evaluating product qual-
ity and calibrating the measurement methods of
the early phases. This purpose is also served by
collecting external measurement data following
project delivery, namely during the beta testing
or maintenance phases of an e-government or
e-commerce project. So the time to measure is
determined by the requirements and the aims of
the measurement program and can vary from a
project to another.

Summarizing, using an oversimplifying state-
ment, it could be said that metrics are an important

instrument for the development of software to be
integrated into e-government and e-commerce
systems; metrics aid in making estimations in the
early phases of a project, preventing problems in
intermediate phases and evaluating quality in the
late project phases.

uSIng metrIcS In Software
deveLopment for
e-government and
e-commerce SyStemS

This section classifies product metrics in two
categories—internal and external—provides a
short definition and examples of each category,
and discusses their advantages and disadvantages.
The section concludes by presenting how these
metrics can be combined and used in software
development for e-government and e-commerce
systems.

Product metrics can be categorized (Fenton
& Pfleeger, 2004) as internal product metrics
and external product metrics. Internal product
metrics are those used to measure attributes of
the product that can be measured directly by ex-
amining the product on its own irrespectively of
its behavior. External product metrics are those
used to measure attributes of the product that can
be measured only with respect to how the product
relates to its environment.

Internal metrics

Internal metrics can be classified in three catego-
ries based on the product attributes they measure.
These categories are size, complexity, and data
metrics. As far as internal product metrics in
general are concerned, it is important to mention
that one of their major advantages is that they are
easy to automate and therefore data collection can
be made in an easy, automated, and cost-effective
way. Furthermore, the measurement results can
also be analyzed in an automated way using statis-

 ���

Software Metrics and Measurements

tical techniques and thus conclusions can be drawn
rapidly. Tools such as QSUP (Xenos, Thanos, &
Christodoulakis, 1996), Emerald (Hudepohl et
al., 1996), GQM automation (Lavazza, 2000),
and so forth have rendered internal measurements
very easy to conduct. The screenshot from the
metrics results of QSUP shown in Figure 1 is
an example of the simple and automated way in
which such measurements can be conducted. For
further examples regarding metrics application,
see Xenos (2003).

On the other hand, it should be mentioned
that a major among the disadvantages of internal
product measurements is the fact that they are often
difficult to interpret. In other cases, the internal

quantities measured are not clearly related to the
external quality characteristics that one wants to
assess. Such problems can only be solved in the
framework of a well-defined measurement method
that combines internal and external metrics, as
will be discussed next.

external metrics

Based on the ISO/IEC 9126 (2001) standard and
on similar works such as Jung and Kim (2004),
the external factors affecting software quality
are Functionality, Usability, Efficiency and Re-
liability. For their definitions see “Key Terms,”
as defined by Kitchenham and Pfleeger (1996).

Figure 1. The results presentation window from QSUP Internal metrics

Table 1. High-level characteristics of e-commerce systems

���

Software Metrics and Measurements

External metrics are used to measure directly
these four factors or the characteristics of which
these factors are composed. For example, a set of
high-level quality characteristics of e-commerce
systems is presented in Table 1 (Stefani & Xenos
2001). This is important for the distinction between
generic metrics and metrics defined especially for
e-commerce systems.

Unlike internal metrics (measuring software
internal characteristics and aiming at relating
measurements of such characteristics to these
factors), external metrics measure directly these
factors or their characteristics. Such metrics can
be based on subjective estimates. Among the
means employed by external metrics are surveys
on user opinion providing valuable measurements
for software functionality or usability. Measures
like defect reports or mean time between failures
are used to determine product reliability, whereas
measures like memory usage are used to deter-
mine efficiency.

As already mentioned, the application of
external metrics implies that a certain extent of
subjectivity is involved; even metrics that appear
to be objective are often characterized by some
degree of subjectivity. For example, defect reports
seem to be a solid metric that can be used to ob-
jectively measure reliability. But the number of
defect reports submitted by a user is influenced by
issues such as the time and the extent of product
usage, the user experience and even the user’s
motivation to edit and submit a defect report.
Therefore, such metrics must be analyzed very
carefully and under a framework that will take
under consideration such issues.

One of the major advantages of external
metrics is that they measure directly the desired
external product quality characteristics, thus
no further analysis or interpretation is needed.
Additionally, external metrics contribute to a
great extent to what is considered to be one of
the main goals of e-government and e-commerce
quality: user satisfaction. On the other hand,
disadvantages and problems should be seriously

taken under consideration when deciding to use
external metrics, the most important of which
being that such metrics are not objective and as
a result additional effort is required to ensure
their objectivity. Furthermore, they are not as cost
effective as internal measurements and in many
cases it is difficult to conduct measurements due
to high error rates especially in cases that error
detection techniques have not been used during
measurements.

combining Internal and external
metrics into a measurement method

As already mentioned, internal and external
measurements must be conducted under a well-
defined framework with precise goals. Before
selecting the appropriate metrics for any project,
a quality manual should be established collecting
and documenting all metrics available for use
in the software developing entity. This manual
is a basic component of the metrics application
process and includes the metrics, the measure-
ment techniques as well as the guidelines for the
application of metrics, the data analysis and the
corrective actions required for improving the
developing process of e-government and e-com-
merce systems. It should also be mentioned that
the quality manual includes all metrics that are
available regardless of how many times they have
been used, or the availability of measurements data
from past software development projects.

Then, for each e-government or e-commerce
project, a set of metrics appropriate for this par-
ticular project is selected from the quality manual.
The criteria on which the selection of metrics is
based are the particular quality factors that the
project places emphasis on. This set of metrics
is documented—using the guidelines available
in the quality manual—and consists the quality
plan of the particular project. Thus, an e-govern-
ment or e-commerce project quality plan should
include all the metrics, measurement guidelines
and goals applicable for the project. It is self-

 ���

Software Metrics and Measurements

evident that the project plan of a specific project
may be entirely different from another project’s
plan and may use a completely different set of
metrics. Figure 2 presents an illustration of the
above procedure.

The quality plan of each e-government or e-
commerce project should include internal metrics
so as to provide an easy and inexpensive way to
detect possible causes for low product quality,
as this might be perceived by the end-users, and
take early corrective action. It should also include
external metrics—applied during alpha or beta
testing and post shipment—so as to measure
external quality factors, as well as the soundness
of the internal metrics and measurements results
or even calibrate internal metrics.

It should be noted that the successful selection
of metrics and measurement techniques to be
included in an entity’s quality manual is heavily
dependent on the entity’s maturity. The adoption
of sophisticated techniques and complex metrics
by a company may prove to be ineffective, if
it is not supported by years of experience with
metrics and measurements and large volumes of
data from past project measurements. Software
developing companies should always keep this
fact in mind and set feasible measurement goals

not aiming too high at the early stages of metrics
application.

future trendS

For about 3 decades now, metrics have been used
for the estimation of product related issues (such
as product size, required effort, time required for
testing, etc.) for early detection and prevention
of problems during development and for product
assessment after product release. Although in
both cases metrics have proved to be successful
in practice and have aided significantly towards
developing higher quality e-government and e-
commerce applications, the benefits from the use
of metrics are not commonly recognized. This
is partly due to the lack of awareness of metrics
in small- and medium-size software developing
companies. Although metrics are extensively used
in large companies, in many cases, small- and
medium-size enterprises are not even aware of the
prospect and benefits of using metrics. However,
this is constantly changing. More and more small-
and medium-size e-government and e-commerce
software-developing companies become aware of
product metrics and measurements. Besides, the
adoption of standards such as the ISO, or assess-
ment in CMM higher levels, has contributed to
this change since both standards are encouraging
the use of metrics.

Another issue that is expected to change in
the near future is the availability of more sophis-
ticated tools. Although many measurement tools
are available, using a number of metrics, there
are not many tools available yet combining past
projects’ measurement data with current project
data in order to aid in decision making. Combin-
ing metrics with decision support techniques, or
methods for resolving uncertainty will lead to
the development of valuable tools, which can aid
towards higher quality software for e-government
and e-commerce systems. A recent approach
towards this direction (Fenton, Krause, & Neil,

Quality manual

Metrics
Measurement tools

Measurement guidelines
Measurement techniques
Data analysis methods

Project plan �
(used only for project 1)

Project plan �
(used only for project 2)

Project plan N
(used only for project N)

Figure 2. Selection of metrics for each project

���

Software Metrics and Measurements

2002) is using metrics and Bayesian networks for
controlling software development, by automati-
cally predicting defects in the released product.

concLuSIon

This article introduced the reader to software
metrics that are used to provide insight about dif-
ferent elements of e-government or e-commerce
systems software. It presented internal metrics
that can be applied prior to the release of the
product to provide indications relating to quality
characteristics, and external metrics applied after
product delivery to give information about user
perception of product quality.

Software metrics can be used to measure
various factors related to software product devel-
opment. These factors include estimation, early
detection and prevention of problems, product
assessment, etc. Their utilization within a mea-
surements framework in combination to the use
of automated tools can aid towards development
process control and higher quality software for
e-government and e-commerce systems.

Our focus was placed on the particular factors
affecting the quality of e-government or e-com-
merce software. Such software can be measured
effectively using a combination of generic internal
software metrics and external metrics. The for-
mer are appropriate for most types of software,
whereas the latter are designed especially for
e-government or e-commerce systems.

referenceS

Deming, W. (1986). Out of the crisis. Cambridge,
MA: MIT Center for Advanced Engineering
Study.

Fenton, N., Krause, P., & Neil, M. (2002). Software
measurement: Uncertainty and causal modeling.
IEEE Software, 19(4), 116-122.

Fenton, N. E., & Pfleeger, S. L. (1997). Software
metrics: A rigorous & practical approach. Boston:
PWS Publishing Co.

Goodman P. (2004) Software metrics: Best prac-
tices for successful IT management. CT: Rothstein
Associates Inc.

Hirsh B. (2005). Positive reinforcement as a qual-
ity tool. IEEE Software, 22(2), 62-63.

Hudepohl, J. P., Aud, S. J., Khoshgoftaar, T. M.,
Allen, E. B., & Maykand, J. (1996). Emerald:
Software metrics and models on the desktop.
IEEE Software, 13(5), 56-60.

ISO/IEC 9126. (2001). Software product evalu-
ation—Quality characteristics and guidelines
for the user. Geneva, Switzerland: International
Organization for Standardization.

Jorgenson D., & Cable, S. (2002). Facing the
challenges of e-government: A case study of the
city of Corpus Christi, Texas. SAM Advanced
Management Journal, 67(3), 15-21.

Jung, H., & Kim, S. (2004). Measuring software
product quality: A survey of ISO/IEC 9126. IEEE
Software, 21(5), 88-92.

Kan, S. H. (2003). Metrics and models in software
quality engineering (2n d ed.). Boston: Addison-
Wesley.

Kitchenham, B., & Pfleeger, S. (1996). Software
quality: The elusive target. IEEE Software, 13(1),
12-21.

Lavazza, L. (2000). Providing automated sup-
port for the GQM measurement process. IEEE
Software, 17(3), 56-62.

McCall, J. A., Richards, P. K., & Walters, G. F.
(1977). Factors in software quality (Vols. I, II, III).
US Rome Air Development Center Reports (NTIS
No. AD/A-049, 14-55), Sunnyvale, California.

Ragland, B. (1995, March). Measure, metric or
indicator: What’s the difference? Crosstalk, 8,
11-21.

 ���

Software Metrics and Measurements

Shepperd, M., & Ince, D. (1990). The use of metrics
in the early detection of design errors. Proceed-
ings of Software Engineering, Washington, DC,
February 20-22 (pp. 76-81).

Stamelos, I., & Angelis, L. (2001). Managing
uncertainty in project portfolio cost estimation.
Information & Software Technology, 43(13),
759-768.

Stefani, A., & Xenos, M. (2001). A model for
assessing the quality of e-commerce systems.
Proceedings of the PC-HCI 2001 Conference
on Human Computer Interaction. Patras (pp.
105-109).

Xenos, M. (2003). Technical issues related to IT
governance tactics: Product metrics, measure-
ments and process control. In W. Grembergen
(Ed.), Strategies for information technology
governance (pp. 216-244). Hershey, PA: Idea
Group.

Xenos, M., Thanos, P., & Christodoulakis, D.
(1996). QSUP: A supporting environment for
preserving quality standards. Proceedings of
the Sixth International Conference on Software
Quality, Dundee, Scotland.

key termS

External Metric: A metric used to measure
attributes of the product that can be measured
only with respect to how the product relates to
its environment.

Functionality: The external quality factor that
refers to a set of functions and specified properties
that satisfy stated or implied needs.

Internal Metric: A metric used to measure
attributes of the product that can be measured
directly by examining the product on its own,
irrespective of its behavior.

Measurement: A process by which numbers
or symbols are assigned to attributes of entities in
the real world in such a way as to describe them
according to clearly defined rules.

Metric: An empirical assignment of a value
in an entity aiming to describe a specific charac-
teristic of this entity.

Quality Manual: A manual used by the
software developing company that includes the
metrics, the measurement techniques, the guide-
lines for the application of metrics data analysis,
and the corrective actions required for improving
the software developing process.

Quality Plan: A plan developed particularly
for each software project that includes all the
metrics, measurement guidelines and goals ap-
plicable for this project only.

Usability: The external quality factor that
is defined as a set of attributes that bear
on the effort needed for the use and on
the individual assessment of such use by a
stated or implied set of users.

This work was previously published in Encyclopedia of E-Commerce, E-Government, and Mobile Commerce, edited by M.
Khosrow-Pour, pp. 1029-1034, copyright 2006 by Idea Group Reference (an imprint of IGI Global).

��0

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.17
A Framework for

Communicability of Software
Documentation

Pankaj Kamthan
Concordia University, Canada

IntroductIon

The role of communication is central to any
software development. The documentation forms
the message carrier within the communication
infrastructure of a software project.

As software development processes shift from
predictive to adaptive environments and serve an
ever more hardware diverse demographic, new
communication challenges arise. For example, an
engineer may want to be able to remotely author a
document in a shell environment without the need
of any special purpose software, port it to differ-
ent computer architectures, and provide different
views of it to users without making modifications
to the original. However, the current state of af-
fairs of software documentation is inadequate to
respond to such expectations.

In this article, we take the position that the
ability of documents to be able to communicate
at all levels intrinsically depends upon their
representation. The rest of the article proceeds
as follows. We first outline the background

necessary for later discussion. This is followed
by a proposal for a quality-based framework for
representing software documentation in descrip-
tive markup and application to agile software
documentation. Next, challenges and avenues for
future research are outlined. Finally, concluding
remarks are given.

Background

Since the origins of software, and subsequently
the recognition of software engineering as a dis-
cipline, documentation has had an important role
to play. The use of documentation in software has
a long and rich history (Furuta, Scofield, & Shaw,
1982; Goldfarb, 1981; Knuth, 1992).

There are various means that have been used
for expressing software documentation. The
documents could for example be expressed in
structured natural language text (mimicking
typewriting); Rich Text Format (RTF) and its
implementations such as Microsoft Word; Hy-

 ���

A Framework for Communicability of Software Documentation

pertext Markup Language (HTML), which sup-
ports multiple language characters and symbols
that can reach a broad demographic worldwide,
incorporates features of print publishing, and
supports hyperlinking; the Portable Document
Format (PDF); and TEX/LATEX and their varia-
tions that are oriented to mathematical typeset-
ting. However, these traditional means suffer
from one or more of the following limitations:
they are proprietary and can only be authored or
rendered by a proprietary software; the focus is
not on software engineering but other disciplines
such as generic office or scientific use; and the
focus is mainly on the presentation or processing
rather than on representation.

Descriptive markup (Goldfarb, 1981) is based
on a rich model of text known as the ordered
hierarchy of content objects (OHCO) (Coombs,
Renear, & DeRose, 1987; DeRose, Durand, My-
lonas, & Renear, 1997) that lends a hierarchical
structure to documents. The Standard Generalized
Markup Language (SGML) and its simplifica-
tion the Extensible Markup Language (XML)
are exemplary of descriptive markup. SGML/
XML are both meta-markup mechanisms that
lend a suitable basis for a concrete serialization
syntax for expressing information in a software
document. They define a document in terms of its
OHCO structure with mnemonic names, usually
inspired by the domain being addressed, for the
content objects of the data. There is a large and
increasing base of markup languages based on
SGML/XML.

The focus in this article is primarily on XML.
Indeed, the use of XML for software process
documents has been proposed (Clements et
al., 2002; Mundle, 2001). The DocBook/XML
markup language has been deployed for software
user documentation. These efforts, however, are
oriented towards technology rather than descrip-
tive markup or communicability (or quality in
general); they do not provide comparisons with

other means of representations, and they do not
include details of challenges posed during docu-
ment engineering.

deScrIptIve markup and
repreSentatIon of Software
documentatIon

We look at a software document from two view-
points, namely that of a producer and that of a
consumer. Based on that, the representation re-
quirements that we consider pertinent for software
documentation are the following:

• Communicability Concerns for a Docu-
ment Producer: A provider, who is re-
sponsible for both internal and external
documentation, could be interested in any
of the following aspects: be able to express
the domain under consideration well; have
the flexibility of authoring and serving
documents in different modalities; readily
move documents between computing envi-
ronments and over networks; easily manage
the collection of documents, particularly as
they scale (grow in number).

• Communicability Concerns for a Docu-
ment Consumer. A consumer, whose main
concern is external documentation, could be
interested in any of the following aspects:
access the documents on the device he/she
is using that may be stand alone or con-
nected to the Internet, and in the natural
language/characters of choice; read or listen
to the documents in the way he/she prefers
that they should be presented; may want to
simply look at the table of contents before
reading further, or look up the definition of
a term used in the main document. In some
sense, a consumer would like a document
to be “personalized.”

���

A Framework for Communicability of Software Documentation

These requirements motivated the proposal
of a communicability framework, which we now
discuss in detail.

a framework for communicability of
descriptive markup-Based Software
documentation

The discussion of software documents and their
representations that follows is based on the frame-
work given in Table 1.

Semiotics (Nöth, 1990) is concerned with the
use of symbols to convey knowledge. From a semi-
otics’ perspective, a representation can be viewed
on three interrelated levels: syntactic, semantic,
and pragmatic. Our concern here is the pragmatic
level, which is the practical knowledge needed
to use a language for communicative purposes.
Indeed, the goal of pragmatic quality is compre-
hension (Lindland, Sindre, & Sølvberg, 1994), and
communicability is a prerequisite to that.

We acknowledge that there are time, effort, and
budgetary constraints on producing a software
document. We therefore include feasibility, a part
of decision theory, as an all-encompassing factor to
make the representation framework practical.

We now consider other aspects of the frame-
work in more detail, starting with the principles

underlying documents and their descriptive
markup realizations.

document engineering principles
with a descriptive markup
perspective

The principles presented here are inspired by
the established software engineering principles
(Ghezzi, Jazayeri, & Mandrioli, 2003).

• [DEP1] Separation of Concerns: There are
various concerns in document production
and delivery, and to manage them effectively,
each of these semantically different concerns
need to be addressed separately. In particu-
lar, separation by parts, time, quality, and
views are of special interest. SGML/XML
provide means for separating structure,
presentation, and logic in a document.

• [DEP2] Abstraction: This principle is
based on the idea that it is often necessary
in documents to highlight only the essentials
while suppressing the details. The provision
for table of contents and index of terms in
a document are examples of abstraction. In
descriptive markup, this could be realized
by using mnemonic labels <section> and

Software Document

Pragmatic goal Communicability

Feasibility

Quality attributes of concern Evolvability, Heterogeneity, Interoperability,
Processability, Renderability, Traceability, Universality

Engineering principles
Abstraction, Anticipation of Change, Formality,
Generality, Incrementality, Modularity, Separation of
Concerns

Representation model Descriptive Markup

Table 1. A high level view of the elements of a framework for communicability of software documentation

 ���

A Framework for Communicability of Software Documentation

<term> to encapsulate the name of a section
and a special term, respectively and collating
such appearances to obtain the desired result.
Other examples in SGML/XML include the
use of comments (<!-- ... -->) and in
general metadata, the use of entities, or the
use of a style sheet to hide content that one
typically does not want rendered.

• [DEP3] Modularity: This principle is
one way to realize separation by parts and
therefore a special case of [DEP1] but is
significant enough to be included separately
here. [DEP2] is a prerequisite for modularity,
which is essential for flexibility of future
documents (Malloy, 2005). SGML and par-
ticularly XML provide various opportunities
for modular documents, for example, by
basing OHCO structure on a parent-child
hierarchy, by including the concept of enti-
ties, or by “hiding” attributes inside the
definition of an element in a document.

• [DEP4] Anticipation of Change: This
principle is based on the premise that change
in a (nontrivial) document is inevitable
and to accommodate change we must be
adequately prepared. By being text based
(rather than binary) and being vendor and
device independent, SGML/XML support
this principle.

• [DEP5] Incrementally: This principle is
related to [DEP1] and [DEP4] and is based
on the notion that creating a representation
of a document in increments should be en-
couraged. SGML/XML are in agreement
with this. Indeed, it is a common markup
practice to develop documents iteratively
(in manageable steps) and check for con-
formance after each iteration.

• [DEP6] Generality: This principle is based
on the assertion that the more general a
document representation is, the broader the
audience it can reach and the more reusable
in different situations it is. SGML/XML
are neutral to user context, vendor, domain,

device, network, or programming language.
They also support the largest character set
currently available, namely the Universal
Character Set (UCS)/Unicode.

• [DEP7] Formality: This principle, by
requiring a formal (logical) syntax and
semantics, aims to reduce the potential of
ambiguity, contradictions, or misinterpreta-
tions and enables a more precise description
of documents. XML has a well-defined
syntax and semantics (Renear, Dubin,
Sperberg-McQueen, & Huitfeldt, 2002).
The Document Type Definition (DTD)
provides a grammar for structural and data
type constraints on the syntax and content
of the elements and attributes in SGML/
XML documents. In the case of XML, the
capabilities of DTD have been strengthened
in other grammar languages such as XML
Schema and RELAX NG.

attributes Impacting
communicability of a Software
document

In the following discussion we consider com-
municability as a “meta-concern” and discuss the
low level list of attributes to address it. We also
highlight relevant relationships between these at-
tributes and with the abovementioned principles
where needed.

• [CA1] Evolvability:This attribute especially
depends on [DEP1-5]. Once a software
document is created, it is highly likely that
it will be maintained for corrective, adap-
tive, or perfective purposes. For example,
a user manual may need to be transformed
on computers with different capabilities for
users with individual needs. The Resource
Description Framework (RDF) and Dublin
Core Metadata Element Set (DCMES) pro-
vide support for metadata (such as author
information, date/time, history, or version-

���

A Framework for Communicability of Software Documentation

ing) that can help track modifications.
• [CA2] Heterogeneity: This attribute espe-

cially depends on [DEP4-6] and is related to
[CA3]. The elements of a document may need
to be represented in a variety of different
forms such as text, graphic, mathematical
symbols, and so forth, and subsequently ag-
gregated. Therefore, a representation must
accommodate the possible compound or
heterogeneous nature of a document. SGML/
XML documents can be heterogeneous,
where fragments of different markup (or
even nonmarkup as long as the characters
in it do not violate the document’s character
encoding) could be placed in a single docu-
ment. XML Inclusions (XInclude) allows
multiple possibilities of reuse: using a frag-
ment of another document, a fragment of the
current document, or an entire document
(Figure 1).

• [CA3] Interoperability: This attribute is
related to [CA2]. The heterogeneous forms
in a document not only need to coexist in
the same information container but also
need to “talk” (interface) with each other
and with the parent document. Namespaces
in XML is a mechanism for uniquely iden-

tifying XML elements and attributes of a
markup language, thus making it possible
to create heterogeneous documents that
unambiguously mix elements and attributes
from multiple different XML documents
(Figure 2).

• [CA4] Processability: This attribute de-
pends on all [DEP1-7] and supports [CA5].
At times, we may need to manipulate (re-
cast/transform, extract/filter, query, and so
on) software documents to suit different
circumstances. Support for querying XML
documents is provided by XQuery and
client- or server-side tree-based process-
ing of XML documents is enabled by the
Document Object Model (DOM) for which
stable implementations are available. Exten-
sible Stylesheet Language (XSL) is a style
sheet language for associating presentation
semantics with arbitrarily complex XML
documents, while its companion XSL Trans-
formations (XSLT) is a style sheet language
for transforming XML documents into other
documents, including nonXML, documents
(Figure 2).

• [CA5] Renderability: This attribute es-
pecially depends on [DEP1-2]. A software

Figure 1. Opportunities of reuse for a software
document in an XML environment

Figure 2. A heterogeneous software document in a
descriptive markup transformation environment

Point Point

Point

Include
Include

Include

Point/Include

Reference

Link

Transformation

Heterogeneous
Software Document Source

Tablet
Computer

Electronic Book
Reader

Mobile Device

Voice
Browser

Printer

 ���

A Framework for Communicability of Software Documentation

document must ultimately be rendered to a
user’s environment, and therefore presenta-
tion semantics (such as fonts, horizontal and
vertical layout, pagination, and so on). The
Document Style Semantics and Specification
Language (DSSSL) is a style sheet language
for SGML documents (that inspired XSL/
XSLT). The Cascading Style Sheets (CSS) is
a style sheet language for presenting simple
XML documents on devices and agents with
a variety of different configurations such as
in Figure 2.

• [CA6] Traceability: This attribute depends
on [DEP1,3]. A trace from A to B requires
identification and location of, and means
to reach, B from A. XML provides an id
attribute for local identification of an ele-
ment that can be used in conjunction with
the Uniform Resource Identifier (URI)
for global identification. HyTime, an ISO
Standard, provides sophisticated linking
functionalities for SGML documents includ-
ing multi-directional links and linking to
nonSGML data such as video clips. XML
Linking Language (XLink) extends the
unidirectional linking support in HTML
and provides powerful bidirectional linking
capabilities necessary for hypertext.

• [CA7] Universality: This attribute depends
on [DEP6], and its underlying premise is that
software documents should be created for
all, irrespective of their individual context.
XML is in agreement with the standards for
accessibility and internationalization.

application of the framework:
the case of agile documentation

The bureaucracy inherent to traditional predictive
software development processes and their perhaps
over emphasis on documentation has in the last
decade led to a shift to adaptive environments such

as Extreme Programming (XP) and the Unified
Process (UP). Although they are not document
driven, documents continue to play an important
role in stakeholder communication.

The term agile document was introduced
in (Ambler, 2002) to imply customer-oriented,
lightweight documents that could serve XP and
UP. A collection of patterns for writing effective
agile software documentation is given in (Rüping,
2003). Many of the patterns in it that deal with
presentation and representation of documents
can be concretely dealt with in our framework.
For example, communicability aspects of struc-
turing individual documents patterns are given
by [CA1-7], layout and typography patterns are
subsumed by [CA4, 5], whereas infrastructure
and technical organization patterns are covered
by [DEP1] and [CA1-4, 6].

challenges to the descriptive
markup approach to Software
documentation

There are a few technical challenges to repre-
sentations in descriptive markup. For example,
descriptive markup in its source form, particularly
when there are complex (usually nonlinear) struc-
tural relationships involved, can be error prone
for direct authoring and is not considered very
readable. There are openly available and mature
SGML/XML authoring tools that ameliorate
this to a certain extent. The processing based on
DOM or transformations based on XSLT lead to
in-memory tree, which is not always efficient for
large documents for demanding situations (say,
being transformed over a low bandwidth network
in real time). One solution to this approach has
been to use XSLT compilers instead of interpret-
ers. Similarly, event-based processing such as
Simple API for XML (SAX) could complement
the DOM.

���

A Framework for Communicability of Software Documentation

future trendS

As software documents become increasingly large
in size and number and aim to serve diverse us-
ers, a systematic document engineering process
is highly desirable. There are currently limited
efforts in that direction (Glushko & McGrath,
2005).

XML, like any other technology, has its own set
of issues if not used appropriately while authoring
or processing (Harold, 2003) or if used beyond
its scope (Megginson, 2005). In fact, addressing
the issue of quality in all early software repre-
sentations is crucial. To do that, an evaluation of
XML using the Cognitive Dimensions of Nota-
tions (CDs) (Green, 1989), a generic framework
for describing the utility of information artifacts
by taking the system environment and the user
characteristics into consideration, would be of
interest.

A natural amplification of the previous discus-
sion is a closer synergy with the current knowledge
representation initiatives that are based on de-
scriptive markup. The Semantic Web has recently
emerged as an extension of the current Web that
adds technological infrastructure for better knowl-
edge representation, interpretation, and reasoning
(Hendler, Lassila, & Berners-Lee, 2001) and could
provide much more powerful representations of
knowledge in a software document.

Finally, in spite of its broad use, documentation
is not automatically useful by itself: Its value is
realized only if it is well done (Weinberg, 1998),
which could be viewed as one of or a combination
of more than one dimensions of communicabil-
ity. As documents become more like interactive
applications, where they act as user interfaces to
services provided by the software, the significance
of assuring and evaluating their communicability
will only increase.

concLuSIon

Representation of documents so as to assure their
communicability to the participants at all levels
is critical. One way to foster that is by partition-
ing communicability into a manageable number
of dimensions that could be dealt with directly
and by choosing a suitable means of representa-
tion of software documents such as descriptive
markup. The principles and attributes presented
in our framework provide a basis for communi-
cability dimensions and the SGML/XML family
provides established technologies for descriptive
markup.

The most important requirement for com-
municability from both the producer’s and the
consumer’s standpoint is that they should have
options. Indeed, if software documents are seen
as carriers of commonsense knowledge (Minsky,
2000), then we should not seek one uniform way
to present or represent them. This is echoed in
the Redundant Recoding principle (Green, 1989),
which is the ability to express information in a
representation in more than one way, each of
which simplifies different cognitive tasks. For that,
documents need to be systematically created and
strive for high quality. They also need to become
intelligent, which in computational context usually
implies that they carry knowledge amenable for
automated processing. The Semantic Web pro-
vides a vehicle for representing knowledgeable
software documents in descriptive markup.

referenceS

Ambler, S.W. (2002). Agile modeling: Effective
practices for extreme programming and the uni-
fied process. John Wiley & Sons.

 ���

A Framework for Communicability of Software Documentation

Clements, P., Bachmann, F., Bass, L., Garlan,
D., Ivers, J., Little, R., et al. (2002). Document-
ing software architectures: Views and beyond.
Addison-Wesley.

Coombs, J. H., Renear, A. H., & DeRose, S. J.
(1987). Markup systems and the future of scholarly
text processing. Communications of the ACM,
30(11), 933-947.

DeRose, S. J., Durand, D. G., Mylonas, E., & Re-
near, A. H. (1997). What is text, really? Journal
of Computer Documentation, 21(3), 1-24.

Furuta, R., Scofield, J., & Shaw, A. (1982). Docu-
ment formatting systems: Survey, concepts, and is-
sues. ACM Computing Surveys, 14(3), 417-472.

Ghezzi, C., Jazayeri, M., & Mandrioli, D. (2003).
Fundamentals of software engineering (2nd ed.).
Prentice Hall.

Glushko, R. J., & McGrath, T. (2005). Document
engineering. Cambridge, MA: MIT Press.

Goldfarb, C. F. (1981, June 8-10). A generalized
approach to document markup. Proceedings of
the ACM SIGPLAN SIGOA Symposium on Text
Manipulation, Portland, (pp. 68-73).

Green, T. R. G. (1989). Cognitive dimensions
of notations. In V. A. Sutcliffe & L. Macaulay
(Eds.), People and computers (pp. 443-460). UK:
Cambridge University Press.

Harold, E. R. (2003). Effective XML. Addison-
Wesley.

Hendler, J., Lassila, O., & Berners-Lee, T. (2001).
The Semantic Web. Scientific American, 284(5),
34-43.

Knuth, D. E. (1992). Literate programming (CSLI
Lecture Notes, Number 27). USA: Stanford Uni-
versity, Center for the Study of Language and
Information.

Lindland, O. I., Sindre, G., & Sølvberg, A. (1994).
Understanding quality in conceptual modeling.
IEEE Software, 11(2), 42-49.

Malloy, T. (2005, November 2-4). The future
of documents. Proceedings of the 2005 ACM
Symposium on Document Engineering (DocEng
2005), Bristol, UK, (pp.1-1).

Megginson, D. (2005). Imperfect XML. Addison-
Wesley.

Minsky, M. (2000). Commonsense-based in-
terfaces. Communications of the ACM, 43(8),
66-73.

Mundle, D. (2001, May 15). Using XML for
software process documents. Proceedings of the
XML Technologies and Software Engineering
(XSE 2001), Toronto, Canada.

Nöth, W. (1990). Handbook of semiotics. Bloom-
ington: Indiana University Press.

Renear, A., Dubin, D., Sperberg-McQueen, C. M.,
& Huitfeldt, C. (2002, November 8-9). Towards
a semantics for XML markup. Proceedings of
2002 ACM Symposium on Document Engineering
(DocEng 2002), McLean, USA (pp. 119-126).

Rüping, A. (2003). Agile documentation: A pat-
tern guide to producing lightweight documents
for software projects. John Wiley & Sons.

Spiel, C. (2002). Writing documentation, Part III:
DocBook/XML. Linux Gazette, 75.

Weinberg, G. M. (1998). The psychology of com-
puter programming (silver anniversary edition).
New York: Dorset House.

key termS

Agile Document: A customer-oriented light-
weight document that need not be perfect but just
good enough.

���

A Framework for Communicability of Software Documentation

Descriptive Markup: A model of text that
focuses on the description of information using
markup delimiters for consumption by both hu-
mans and machines.

Document Engineering: A discipline that is
concerned with principles, tools, and processes
that improve the ability to create, manage, and
maintain documents.

Knowledge Representation: The study of
how knowledge about the world can be represented
and the kinds of reasoning that can be carried out
with that knowledge.

Ontology: An explicit, formal specification of
a conceptualization that consists of a set of terms
in a domain and the relations among them.

Semiotics: The field of study of signs and their
representations.

Single Source Approach: A technique that
encourages a once-only creation of a resource,
such as a document, in a manner so that it could
be reused or repurposed for different contexts.

This work was previously published in Encyclopedia of Information Science and Technology, Second Edition, edited by M.
Khosrow-Pour, pp. 1574-1579, copyright 2009 by Information Science Reference (an imprint of IGI Global).

 ���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.18
Intelligent Analysis of Software

Maintenance Data
Marek Reformat

University of Alberta, Canada

Petr Musilek
University of Alberta, Canada

Efe Igbide
University of Alberta, Canada

aBStract

Amount of software engineering data gathered
by software companies amplifies importance of
tools and techniques dedicated to processing and
analysis of data. More and more methods are be-
ing developed to extract knowledge from data and
build data models. In such cases, selection of the
most suitable data processing methods and quality
of extracted knowledge is of great importance.
Software maintenance is one of the most time
and effort-consuming tasks among all phases of
a software life cycle. Maintenance managers and
personnel look for methods and tools supporting
analysis of software maintenance data in order to
gain knowledge needed to prepare better plans
and schedules of software maintenance activities.
Software engineering data models should provide

quantitative as well as qualitative outputs. It is
desirable to build these models based on a well-
delineated logic structure. Such models would
enhance maintainers’ understanding of factors
which influence maintenance efforts. This chapter
focuses on defect-related activities that are the core
of corrective maintenance. Two aspects of these
activities are considered: a number of software
components that have to be examined during
a defect removing process, and time needed to
remove a single defect. Analysis of the available
datasets leads to development of data models,
extraction of IF-THEN rules from these models,
and construction of ensemble-based prediction
systems that are built based on these data models.
The data models are developed using well-known
tools such as See5/C5.0 and 4cRuleBuilder, and
a new multi-level evolutionary-based algorithm.

��0

intelligent Analysis of Software Maintenance Data

Single data models are put together into ensemble
prediction systems that use elements of evidence
theory for the purpose of inference about a degree
of belief in the final prediction.

IntroductIon

Many organizations want to prepare reliable
schedules of maintenance tasks. Such schedules
would lead to on-time realization of these tasks
and better management of resources. This is an
important issue, especially in the case where
maintenance tasks account for more than half of a
typical software budget (Glass, 1989; Smith, 1999).
Because of that, the software industry is exhibit-
ing an increased interest in improving software
maintenance processes. Software engineers use a
number of different tools to support maintenance
activities and make them more efficient. The most
commonly used tools are tools for model-based
software component analysis, metrics extrac-
tion, measurements presentation, and statistical
analysis and evaluation. Besides that, software
maintainers need tools that would help them to
understand relationships between attributes of
software components and maintenance tasks.
Knowledge gained in this way would increase
understanding of influence of software compo-
nent attributes, such as size of code, complexity,
functionality, and so forth, on efforts associated
with realization of maintenance tasks.

There are four different categories of software
maintenance: corrective—it involves changing
software to remove defects; adaptive—it leads
to changing software due to changes in software
operating environment; perfective—it embraces
activates that lead to improvement of maintain-
ability, performance, or other software quality
attributes; and preventive—it is defined as main-
tenance performed for the purpose of preventing
problems before they happen. The corrective
software maintenance is associated with activities
related to elimination of software defects. This

process is a key factor in ensuring timely releases
of software and its updates, and high quality of
software. Different tools and systems are used to
support activities that are directly related to cor-
rection of defects. However, there is also a need
to build systems that support decision-making
tasks and lead to preparation of schedules and
plans for defect removal processes. These systems
should not only provide quantitative predictions
but also give indications about plausibility of these
predictions. Additionally, they should provide
maintenance engineers with knowledge about
defect removal efforts that explain obtained pre-
dictions. In summary, it is desirable to have a tool
equipped with the ability to retrieve knowledge
about relationships between attributes describing
software and factors that directly or indirectly
influence defect elimination activities.

Some of the important questions asked by
managers and software maintenance engineers
regarding removal of defects from software
systems are:

• Does a defect removal process depend on
functionality of software components?

• Does a defect removal process depend on the
time when a defect entered the system?

• What are the factors that influence time
needed to correct a single defect?

• What kind of relations between software
component attributes and time needed to
remove a defect can be found from software
maintenance data?

• How confident can someone be about de-
pendencies that have been found between
a defect removal process and attributes of
software components?

This chapter focuses on building software
maintenance data models and their analysis. The
aim is to build a prediction system that is able to
provide software maintenance engineers with
predictions regarding defect elimination efforts,
knowledge about factors that influence these

 ���

intelligent Analysis of Software Maintenance Data

efforts, and confidence measures for obtained
predictions and gained knowledge.

Fulfillment of these objectives is achieved by
the application of soft computing and machine
learning methods for processing software en-
gineering data. In a nutshell, the main idea of
the proposed approach is to use multiple data
processing techniques to build a number of data
models, and then use elements of evidence theory
to “merge” the outcomes of these data models. In
this context, a prediction system is built of several
rule-based models. The attractiveness of these
models comes from the fact that they are built
of IF-THEN rules that are easy to understand by
people. In this chapter, three different tools for
constructing IF-THEN rules are used. One of
them constructs rules directly from the data, and
the other two build decision trees first and extract
rules from the trees. As the result, a large set of
IF-THEN rules is created. Each rule is evaluated
based on its capability to perform predictions.
This evaluation is quantified by degrees of belief
that represent goodness of the rules. The degrees
of belief assigned to the rules that are fired, for a
given input data point, are used to infer an overall
outcome of the prediction system. The inference
engine used in the system is built based on ele-
ments of evidence theory.

This chapter can be divided into three distinc-
tive parts. The first part embraces background
information related to data models. It starts
with a description of work related to the area of
software engineering data models (the Software
Data Models section). An overview of rule-based
systems and ensemble prediction systems is in
the Rule-Based Models and Ensemble Systems
section. The Evidence Theory and Ensemble-
Based System section contains a description of the
proposed ensemble-based prediction system. This
section also contains an overview of the concept
of the proposed system, its basic components,
and the inference engine. The second part of the
chapter is dedicated to the description of the da-
tasets used here and the results of their analysis.

In the Software Engineering Maintenace Data
section, a software dataset is presented. Predic-
tions of efforts needed to remove defects are pre-
sented in the Base-Level Data Models, Extracted
Knowledge and Confidence in Results section.
This section also includes a set of IF-THEN rules
which represent knowledge extracted from the
software maintenance models. Descriptions of
ensemble-based prediction systems and analysis
of their predictions are in the Ensemble-Based
Prediction System section. And, finally, there is
the Conclusions section.

The third part of the chapter contains three
appendices: Appendix I is a short introduction to
Evolutionary Computing; Appendix II is a brief
introduction to the topic of decision trees and an
evolutionary-based technique used for construc-
tion of decision trees; and Appendix III describes
elements of evidence theory and the transferable
belief model.

Software data modeLS

Software engineering data collected during devel-
opment and maintenance activities are seen as a
valuable source of information about relationships
that exist among software attributes and different
aspects of software activities. A very important
aspect that becomes very often associated with
software systems is software quality. Software
quality can be defined two-fold: (1) as the degree
to which a system, component, or process meets
specified requirements; and (2) as the degree to
which a system, component, or process meets
customer or user needs or expectations (IEEE
610.12). In light of that definition, the most es-
sential expectation is the absence of defects in
software systems. This aspect alone touches
almost every phase of a software life cycle. The
coding, testing, and integration, as well as the
maintenance phase are directly related to the issue
of constructing high quality software. However,
building and maintaining a defect-free system

���

intelligent Analysis of Software Maintenance Data

is not a trivial task. Many activities, embraced
under the umbrella of software quality assurance,
are performed in order to detect defects, localize
them in a code, remove them, and finally verify
that the removal process has been successful. In
order to plan these activities effectively, there is
a need to understand what makes a code defec-
tive, and how much time and effort is needed to
isolate and eliminate defects. Development of
software prediction models attempts to address
those issues.

Prediction models aim at predicting outcomes
on the basis of a given set of variables: they
estimate what should be the outcome of a given
situation with a certain condition defined by the
values of the given set of variables. The steps
that have to be performed during development
of such models are:

• selection of the outcome attribute;
• selection of predictor (input) variables;
• data collection;
• assembly of the model;
• validation of the model; and
• updates and modifications of the model.

In the case of software engineering, prediction
models that can be used to predict a number of
quantities related to software quality and mainte-
nance activities, are used for many years. These
models proved to provide reasonable accuracy
(Schneidewind, 1995, 1997). Many different
software metrics are utilized as predictor (input)
variables. The most common ones are complex-
ity and size metrics, testing metrics, and process
quality data.

The most popular software prediction models
are models predicting quality-related aspects of
software modules. A number of these models
have been reported in the literature:

• Tree-Based Models: Both classification
and regression trees are used to categorize
software modules and functions; different re-

gression tree algorithms—CART1-LS (least
squares), S-PLUS, and CART-LAD (least
absolute deviation)—are used to build trees
to predict the number of faults in modules in
Khoshgoftaar and Seliya (2002); in another
case, regression trees are constructed using
a concept of fault density (Gokhale & Lyu,
1997); a study on the use of a classification
tree algorithm to identify fault prone soft-
ware modules based on product and process
metrics is presented in Khoshgoftaar and
Allen (1999); tree-based models are used to
uncover relationships between defects and
software metrics, and to identify high-de-
fect modules together with their associated
measurement characteristics (Takahashi,
Muroaka, & Nakamura, 1997; Troster &
Tian, 1995);

• Artificial Neural Network-Based Models:
Neural networks are recognized for their
ability to provide good results when dealing
with data that have complex relationships
between inputs and outputs; neural networks
are used to classify program modules as ei-
ther high or low risk based on two criteria—a
number of changes to enhance modules and
a number of changes to remove defects from
modules (Khoshgoftaar & Allen, 1998;
Khoshgoftaar & Lanning, 1995);

• Case-Based Reasoning Models: Case-
based reasoning (CBR) relies on previous
experiences and uses analogy to solve
problems; CBR is applied to predict soft-
ware quality of the system by discovering
fault-prone modules using product and
process metrics as independent variables
(Berkovich, 2000);

• Fuzzy-Based Models: Concepts of fuzzy
sets and logic are used to build data models
using linguistic labels; the work related to
building fuzzy-based systems for predic-
tion purposes is presented in Reformat,
Pedrycz, and Pizzi (2004), where fuzzy
neural networks are constructed for defect

 ���

intelligent Analysis of Software Maintenance Data

predictions; a fuzzy clustering is used in
Yuan, Khoshgoftaar, Allen, and Ganesan
(2000), where a modeling technique that
integrates fuzzy subtractive clustering with
module-order modeling for software qual-
ity prediction is presented, a case study of
a large legacy telecommunication system
to predict whether each module should be
considered fault-prone is conducted;

• Bayesian Belief Network-Based Models:
Bayesian belief networks (BBN) address a
complex web of interconnections between
multiple factors; belief networks are used
for modeling the complexities of software
taking uncertainty into consideration (Neil
& Fenton, 1996; Neil, Krause, & Fenton,
2003). BBN are also applied to construct
prediction models that focus on the struc-
ture of the software development process
explicitly representing complex relation-
ships between metrics (Amasaki, Takagi,
Mizuno, & Kikuno, 2003).

Thorough comparisons of different approaches
used for building software quality prediction
models can be found in Fenton and Neil (1999,
2005) and Khoshgoftaar and Seliya (2003).

Besides classification of software modules, a
close attention is also given to the issues related
to prediction of efforts associated with detection
and correction of defects. One of the first papers
dedicated to the topic of prediction of mainte-
nance efforts is Jorgensen (1995). This paper
reports on the development and use of several
software maintenance effort prediction models.
These models are developed applying regression
analysis, neural networks, and the optimized set
reduction method. The models are used to predict
maintenance task efforts based on the datasets
collected from a large Norwegian company. The
variables included in the effort prediction models
are: a cause of task, a degree of change on a code,
a type of operation on a code, and confidence of

maintainer. An explanation of efforts associated
with software changes made to correct faults
while software is undergoing development is
investigated in Evanco (1999, 2001). In this case,
the ordinal response models are developed to
predict efforts needed to isolate and fix a defect.
The predictor variables include extent of change,
a type of change, an internal complexity of the
software components undergoing the change, as
well as fault locality and characteristics of the
software components being changed. The models
are developed and validated on three Ada proj-
ects. A model for estimating adaptive software
maintenance efforts in person hours is described
in Hayes, Patel, and Zhao (2004). A number of
metrics, such as the lines of code changed and
the number of operators changed, are found to be
strongly correlated to maintenance efforts.

ruLe-BaSed modeLS and en-
SemBLe SyStemS

Data models can be categorized into two major
groups: black-box models and white-box models.
The black-box models provide a user with the out-
put values without indicating a way in which those
outputs are calculated. This means that knowledge
about relationships existing between the inputs
and the output is not discovered. Conversely, the
white-box data models, also called transparent
models, allow their users to gain knowledge about
the data being modeled. A careful inspection of
a model’s structure and its analysis provides an
insight into relationships existing among values of
data attributes. Rule-based models are well-known
examples of white-box models. A rule-based
model consists of a number of IF-THEN rules. A
number of different techniques for development
of IF-THEN rules exist. Some of these techniques
construct rules directly from the data, while oth-
ers build decision tress first and then extract rules
from the trees.

���

intelligent Analysis of Software Maintenance Data

rule-Based models

Rule-based modeling is a most common form of
computational model. Rules are generally well
suited to study behavior of many different phenom-
ena. These models receive information describing
a situation, process that information using a set
of rules, and produce a specific response as their
output (Luger, 2002; Winston, 1992). Their overall
structure is presented in Figure 1.

In its simplest form, a rule-based model is just
a set of IF-THEN statements called rules, which
encode knowledge about phenomenon being
modeled. Each rule consists of an IF part called
the premise or antecedent (a conjunction of condi-
tions), and a THEN part called the consequent or
conclusion (predicted category). When the IF part
is true, the rule is said to fire, and the THEN part
is asserted—it is considered to be a fact.

A set of IF-THEN rules is processed using
Boolean logic. The expert system literature
distinguishes between “forward chaining” and
“backward chaining” as a method of logical
reasoning. Forward chaining starts with a set of
characteristics about a situation—a feature vector
of independent variables—and applies these as
needed until a conclusion is reached. Backward
chaining, in contrast, starts with a possible con-
clusion—a hypothesis—and then seeks informa-
tion that might validate the conclusion. Forward

chaining systems are primarily data-driven, while
backward chaining systems are goal-driven. A
forward chaining method of reasoning is used
in prediction systems.

The IF-THEN based model with forward
chaining works in the following way: the system
examines all the rule conditions (IF) and deter-
mines a subset, the conflict set, of the rules whose
conditions are satisfied. Of this conflict set, one
of those rules is triggered (fired). When the rule
is fired, any actions specified in its THEN clause
are carried out. Which rule is chosen to fire is a
function of the conflict resolution strategy. Which
strategy is chosen can be determined by the prob-
lem and is seen as one of the important aspects of
the development of rule-based systems.

In any case, it is vital as it controls which of
the applicable rules are fired and thus how the
entire system behaves. There are several dif-
ferent strategies, but here are a few of the most
common ones:

• First Applicable: Is based on the fact that
the rules are put in a specified order. The
first applicable rule is fired.

• Random: It is based on a random selection
of a single rule from the conflict set. This
randomly selected rule is fired.

• Most Specific: This category is based on
the number of conditions attached to each
rule. From the conflict set, the rule with the
most conditions is chosen.

• Least Recently Used: Is based on the fact
that each rule is accompanied by a time
stamp indicating the last time it was used.
A rule with the oldest time stamp is fired.

• “Best” Rule: This is based on the fact that
each rule is given a “weight” which speci-
fies how much it should be considered over
other rules. The rule with the highest weight
is fired.

Another important aspect of the develop-
ment of rule-based models, besides the reason-

Figure 1. Structure of a rule-based model

 ���

intelligent Analysis of Software Maintenance Data

ing scheme, is the generation of rules. As it has
been mentioned earlier, there are many different
methods and techniques of doing that. IF-THEN
rules can be generated on the basis of expert
knowledge where they are created by a person
during interaction with a domain expert, or
automatically derived from available data using
a variety of different approaches and tools (see
Appendix II; RuleQuest; 4cData).

ensemble Systems

A ensemble system is composed of several inde-
pendently built models called base-level models.
Each base-level model is developed differently by
applying different construction techniques/meth-
ods using a single set of training data points, or
using single technique that is applied to differ-
ent data point subsets. The prediction outcome
of such a system is based on processing outputs
coming from all base-level models being part
of the system. The process of construction of a
ensemble system embraces two important phases
(Todorovski & Dzeroski, 2000):

• the generation of a diverse set of base-level
models; and

• the combination of outcomes generated by
these models.

There are two groups of approaches for gen-
eration of base-level models. The first group can
be represented by probably the most popular and
simplest approach where a single learning algo-
rithm is applied to different subsets of training
data. Two best known methods are: random sam-
pling with replacement called bagging (Breiman
1996; Todorovski et al., 2000), and re-weighting
misclassified training data points called boosting
(Freund & Schapire, 1996; Todorovski et al., 2000).
The other group of methods is based on apply-
ing some modifications to model construction
algorithms while using an identical set of train-
ing data points. A number of works is dedicated

to comparison of such methods (Ali, 1995; Ali
& Pazzani, 1996; Kononenko & Kovacic, 1992;
Kwok & Carter, 1990).

The second important task of constructing en-
semble systems is the fusion of outputs generated
by base-level models. The most popular techniques
applied here are distribution summation, voting,
and naïve Bayesian combination (Kononenko
et al., 1992). Another technique of combining
models’ outputs is based on the application of
meta-decision trees. The role of meta-decision
trees is to specify which model should be used to
obtain a final classification. An extensive experi-
mental evaluation of a new algorithm for learning
meta-decision trees based on C4.5 algorithm was
performed in Todorovski et al. (2000). In total,
five learning algorithms of generating multi-model
systems have been compared: two algorithms for
learning decision trees, a rule learning algorithm,
a nearest neighbor algorithm, and a naïve Bayes
algorithm (Winer, Brown, & Michels, 1991). A
building system based on multiple models can
improve the accuracy and stability of the system
significantly.

evIdence theory and enSem-
BLe-BaSed SyStem

Application of different methods for generation
of IF-THEN rules may lead to the discovery of
different relationships among data attributes.
The same situation occurs when a single rule-
generation method is used on different subsets
of the same data. The aim is to take advantage
of that and build a system that combines many
rule-based models and generates a single output
based on the outputs of the base-level models. The
fact that the rules, which constitute the models,
are not equally good creates a need for taking that
into consideration. This means that a process of
combining the outputs of rules has to use infor-
mation about prediction capabilities of the rules,
that is, information about a number of proper and

���

intelligent Analysis of Software Maintenance Data

false predictions made by each rule. The proposed
system addresses these issues. It is based on the
utilization of the following ideas:

• Application of a number of rule-based
models constructed using different meth-
ods on the same/or different subsets of
data: This provides means for thorough ex-
ploitation of different extraction techniques
and increases possibilities of discovering
significant facets of knowledge embedded
in the data.

• Application of the concept of basic belief
masses from evidence theory (Shafer,
1976; Smets, 1988) that are used to rep-
resent goodness of the rules: This provides
assessment of quality of the rules from the
point of view of their prediction capabili-
ties.

• Utilization of the transferable belief model
(Smets, 1994): Built on the evidence theory
to reason, based on basic belief masses, about
a given data point belonging to a specific
category and to provide a confidence mea-
sure for the result.

concept

The pivotal point of the proposed system is the
application of elements of evidence theory. The

basic concept of the theory—basic belief mass (see
Appendix III for details)—is also a fundamental
concept used to build the proposed prediction sys-
tem. In a nutshell, the approach can be described in
just a few sentences: all IF-THEN rules are treated
as propositions equipped with basic belief masses
(bbm in short); the bbm of all rules which are fired
at a given time are used by an inference engine
to derive probabilities of occurrence of different
outcomes (the universe of possible outcomes is
defined a priori and is related to the phenomenon
under investigation).

The bbm represents the degree of belief that
something is true. Once bbm is assigned to a rule
it means that if the rule is satisfied by a given data
point then there is the belief equal to bbm that this
data point belongs to a category indicated by the
rule. At the same time, the belief of value 1-bbm
is assign to a statement that it is not known to
which category the data point belongs. In other
words, every rule, which is satisfied by a given
data point “generates” two numbers:

• one that indicates a belief that a given data
point belongs to a category indicated by the
rule (its value is equal to bbm); and

• one that indicates that a given data point
can belong to any category (its value is 1-
bbm).

Figure 2. The structure of an ensemble-based prediction system

 ���

intelligent Analysis of Software Maintenance Data

Of course, the higher the bbm value of the
rule, the higher the belief that a given data point
belongs to a category indicated by the rule, and
the smaller the belief that a data point can belong
to any category.

Figure 2 presents the structure of the system
and the data flow during a prediction process. The
system is composed of a set of validated models
and an inference engine. For prediction purposes,
a new data point is fed into each model. The bbm
values of all rules fired by the data point together
with categories identified by these rules constitute
the input to the inference engine. Details of this
engine are presented in the sub-section, Infer-
ence Engine.

development and validation of
If-then models

The construction stages of the proposed en-
semble-based prediction system are shown in
Figure 3. The first step in this process is the
development of IF-THEN based models using

different techniques. These models are built based
on a subset of available data, which is called a
training dataset.2 This process can be performed
multiple times using different training sets. This
means better exploration and exploitation of the
available data.

The value of bbm is assigned to each rule based
on its coverage and prediction rate. Each rule of
each model is “checked” against all training data
points. This process results in generation of bbmT
(T stands for training) values. They are indicators
of goodness of the rules. The formula (called the
Laplace ratio) used for calculations of bbmT is:

_ 1
_ _ 2

T
T

T T

No Classifiedbbm
No Classified No Misclassified

+
=

+ +
 (1)

where No_ClassifiedT represents a number of
training data points properly classified for a given
category, and No_MisclassifiedT represents a to-
tal number of training data points that has been
misclassified by the rule.

Figure 3. Construction of an ensemble-based prediction system: Development and validation stages

���

intelligent Analysis of Software Maintenance Data

The first step in the evaluation of goodness
of rules is performed based on their prediction
capabilities tested against the data used for their
development. To make this evaluation more reli-
able, the second step of the evaluation of rules’
goodness is performed. This process is based on
the performance of the rules when they are “tested”
against data that has not been used during the
development purposes. This subset of the data is
called a validation dataset. BbmV (where V stands
for validation) values are calculated:

 _ 1
_ _ 2

V
V

V V

No Classifiedbbm
No Classified No Misclassified

+
=

+ +
 (2)

This time, No_ClassifiedV represents a number
of validation data points properly classified for a
given category, and No_MisClassifiedV represents
a total number of validation data points misclas-
sified by the rule.

Following that, both bbmT and bbmV values
are combined. It means that bbmT values are
updated. For this purpose, the Dempster’s com-

bination rule is used (Appendix III, Equation 8).
The formula is:

(1.0 (1.0)*(1.0))UPDATE T Vbbm bbm bbm= - - -

 (3)

These two stages, as shown in Figure 3, con-
stitute the construction process of the ensemble-
based prediction system. For each split of data
into training and validation sets, a number of
different models can be constructed. Overall, the
process results in a number of different base-level
models, which are building blocks of the proposed
prediction system.

Inference engine

The base-level models developed using differ-
ent methods and data subsets together with the
inference engine constitute the ensemble-based
prediction system (Figure 2). The inference engine
is an implementation of the following concept. A
new data point is sent to all models. It activates
a number of rules that leads to generation of

Figure 4. The inference engine, its inputs and outputs (a case with two possible outcomes)

 ���

intelligent Analysis of Software Maintenance Data

outputs and bbm (bbmUPDATE to be precise) values.
The bbm values indicate the belief that this data
point belongs either to the same or to a number
of different categories. In the case where a single
category is identified by all outputs, the inference
engine is not engaged—it is predicted that the data
point belongs to the identified category. In the case
where a number of different categories are identi-
fied, the transferable belief model (TBM) (Smets
& Kennes, 1994) is used to derive possibilities
that the data point belongs to each of the identified
categories. This process is represented in Figure
4. All models that have their rules fired provide
results and bbm values to the inference engine. A
table filled with bbm values is constructed. Each
row of this table represents a possible combination
of existing categories in the domain of interest
(Ø, A, B, A or B in Figure 4). The TBM processes
this table. The results are presented as pignistic
probabilities of the data point belonging to dif-
ferent categories. This process is illustrated by a
simple example.

Example

Two IF-THEN based models have been built to
represent relationships between an n-dimensional
input and a single-dimensional output. There are
two categories distinguished in the output space:
I and II. Each of the models contains three IF-
THEN rules for each category. Rules and their
bbm values are shown in the Table 1.

Let’s assume that a new data point has been
obtained and the system is used to predict which
category this point belongs to. When checked
against all rules listed previously, the input data
point satisfies the following set of rules: from the
first model—M1-c1-R2, M1-c1-R3, and from the
second—M2-c2-R1 and M2-c2-R3. Bbm values
associated with satisfied rules are: 0.85 and 0.75
from the first model, and 0.90 and 0.85 from the
second model. Table 2 is prepared based on these
values. In the case of the first model, two rules are
fired. The values 0.85 and 0.75 represent beliefs
that the data point belongs to the category I, the
values 0.15 and 0.25 indicate that there is still belief
that this point can belong to any category—in this
case, category I or category II. The same process
is repeated for the rules from the second model.
The values in Table 2 are the input to TBM.

Inside TBM, the bbm values are combined us-
ing the conjunctive combination rule (Appendix
III, Equation 11). The results of this operation are
presented in Table 3.

The next step is to calculate pignistic prob-
abilities BetP. One of these probabilities repre-
sents the belief that the data point belongs to the
category I, another that it belongs to the category

Table 1. Bbm values of model outputs
Model Output IF-THEN rule bbm

first I M1-c1-R1 0.60
M1-c1-R2 0.85
M1-c1-R3 0.75

II M1-c2-R1 0.67
M1-c2-R2 0.94
M1-c2-R3 0.80

second I M2-c1-R1 0.80
M2-c1-R2 0.90
M2-c1-R3 0.67

II M2-c2-R1 0.90
M2-c2-R2 0.94
M2-c2-R3 0.85

Table 2. Bbms assigned to each possible category by satisfied rules
Possible outcome M1-c1-R2 M1-c1-R3 M2-c2-R1 M2-c2-R3

0 0 0 0 0
Category I 0.85 0.75 0 0
Category II 0 0 0.90 0.85
Category I or II 0.15 0.25 0.10 0.15

�00

intelligent Analysis of Software Maintenance Data

II. These pignistic probabilities BetP are computed
based on the bbm values according to the TBM
using Equation 8 from Appendix III as shown
in Box 1.

As the result of these calculations, Table 4 was
created. Based on the values from this table, it
can be said that in this particular case, a predic-
tion is as follows: the new data point belongs to
Category I with the belief of 0.2834, and to the
Category II with the belief of 0.7166.

Software engIneerIng
maIntenance data

The process of development of base-level predic-
tion models, extraction of knowledge, and con-

struction of the ensemble-based prediction system
is illustrated using the dataset from the Naval
Research Laboratories (The Data and Analysis
Centre for Software). The details regarding the
origin of the data and their attributes are presented
next. For the experimental purposes, the dataset
has been divided into three sets: a training set
containing data points that are used to develop
base-level data models, a validation set containing
data that are used to validate confidence in rules
extracted from the models, and a testing set that
contains data points used to evaluate prediction
capabilities of the models.3

The data were collected at the Naval Research
Laboratories (NRL) to evaluate development
methodologies used on the project called The
Architecture Research Facility (ARF). This
project was to aid the rapid simulation of dif-
ferent computer architectures for research and
evaluation purposes.

The original dataset consists of 117 defect
reports dealing with 143 defects, which were
isolated and corrected during ARF develop-
ment. The dataset also includes 253 records
describing each component in the project. For
the purposes of the chapter, the original dataset
is pre-processed. The main emphasis is put on
defect elimination activates. In particular, two
aspects are of interest: a number of components
that have to be examined during elimination of a
defect; and the effort needed to correct a defect.

Table 3. Basic belief masses assigned to each
possible output

x m(x)
0 0.9481
Category I 0.0144
Category II 0.0369
Category I or II 0.0006

Table 4. Pignistic probability (BetP) values
BetP(Category I) 0.2834
BetP(Category II) 0.7166

() 0.0006() 0.0144
2 2() 0.2834

1 (0) 1 0.9481

m CatIorIIm CatI
BetP CatI

m

+ +
= = =

- -

() 0.0006() 0.0369
2 2() 0.7166

1 (0) 1 0.9481

m CatIorIIm CatII
BetP CatII

m

+ +
= = =

- -

Box 1. Equation 8 from Appendix III

 �0�

intelligent Analysis of Software Maintenance Data

The modified dataset contains only data related
to components with defects. There are 129 data
points. Table 5 contains a few examples of these
data points. The data points have been divided
into three sets: a training set of 86 data points,
a validation set containing 20 data points, and a
testing set which has 23 data points.

The number of components that have to be
examined during elimination of a defect is the first
aspect of maintenance activities investigated in
the chapter. The attributes of data points used in
this case are represented in Table 6. There are two
groups of attributes in the INPUT set. The first one
represents types of defects of interest and develop-
ment phases during which these defects have been
introduced into a system. The second set contains
attributes describing software components such

as line of codes, number of comments, number
of preprocessor statements, as well as subjective
complexity and functionality. The OUTPUT is
Number of Components Examined.

The second point of interest is related directly
to a process of elimination of defects. In this case,
the attention is put on the time needed to remove
a single defect. The attributes of data points used
in this case are shown in Table 7. As it can be
seen, the attributes chosen here are almost identi-
cal to the ones from the previous investigation.
The only difference is that the attribute Number
of Examined Components has been added to the
first group of INPUT attributes. This time, the
OUTPUT attribute is Effort needed to Eliminate
a Defect.

Table 5. Examples of data points

Type of defect Phase of
Entering

Lines
of

Code

No. of
Comm.

Preproc.
Statements

Subjective
Complexity Funct.

No. of
Exam.
Comp.

Elimination
Time

clerical code test 88 29 6 easy error handling single <1 hour, 1day>
language code test 83 42 2 easy control single <1 hour, 1day>
clerical code test 40 14 2 easy control single < 1 hour

single design code test 24 16 2 easy control single <1 hour, 1day>
multiple design 56 37 6 moderate control multiple <1 hour, 1day>

multiple design design 269 165 4 hard computational single <1 hour, 1day>
multiple code test 105 63 8 moderate control multiple > 1 day
language code test 188 116 3 hard computational multiple <1 hour, 1day>
language code test 168 103 5 moderate computational single <1 hour

Table 6. List of attributes of the NRL data—Set I

INPUT

type of defect
requirements_incorrect, functional_spec_incorrect,
single_design_error, multiple_design_error,
language_error, clerical_error, multiple_errors, other

phase when defect entered system
requirements_definition, functional_specification,
design, code_testing

lines of code <0, 635>
no. of comments <0, 360>
no. of preprocessor statements <0, 42>
subjective complexity easy, moderate, hard
functionality computational, control, data_processing, error_handling
OUTPUT

no. of components examined
single component
multiple components

�0�

intelligent Analysis of Software Maintenance Data

BaSe-LeveL data modeLS,
extracted knowLedge and
confIdence In reSuLtS

The first step in data analysis and modeling is
dedicated to the development of base-level data
models that can be used for prediction purposes.
The base-level models used here are rule-based
models (see the Rule-Based Models and Ensemble
System section). Three methods of building these
models are selected in order to illustrate the idea
of utilization of very different model development
techniques. The first rule-based model is gener-
ated using See5/C5.0 (RuleQuest). The See5/C5
tool is an updated version of the well-known C4.5
algorithm (Quinlan, 1993). It has the capability
of generating classifiers that are expressed as
decision trees or sets of IF-THEN rules. The
commercially-available tool called 4cRuleBuilder
(4cData) is used to build the second data model.
This tool uses supervised learning techniques to
generate a data model from discrete numerical
or nominal data, and has built-in discretiza-
tion schemes for continuous attributes. Overall,
4cRuleBuilder generates compact rules that use a
small number of selectors. The third model is a set
of rules extracted from a decision tree constructed

using the evolutionary-based technique GAGP
described in Appendix II. In general, different
model development techniques can be used to
build rule-based data models which become ele-
ments of the proposed prediction system.

The following step in the analysis of data
focuses on the evaluation of IF-THEN rules that
represent relationships between attributes of soft-
ware components and different defect measures:
a number of components examined to remove a
defect and the time needed to eliminate a defect.
At that point, the goodness of rules is estimated via
monitoring and validation of prediction capabili-
ties of the rules (see the Development and Valida-
tion of the IF-THEN Models sub-section).

number of components examined
during elimination of defect

First, the issue of a number of components that
has to be examined in order to eliminate a defect
is investigated. Three base-level prediction models
have provided the prediction rates that are pre-
sented in Table 8. A visual inspection of decision
trees (for See5/C5.0 and GAGP) and rules (for
4cRuleBuilder) has indicated existence of terminal
nodes of trees and rules for both categories, single

Table 7. List of attributes of the NRL data—Set II

INPUT

type of defect
requirements_incorrect, functional_spec_incorrect,
single_design_error, multiple_design_error,
language_error, clerical_error, multiple_errors, other

phase when defect entered system
requirements_definition, functional_specification,
design, code_testing

no. of components examined single component, multiple components
lines of code <0, 635>
no. of comments <0, 360>
no. of preprocessor statements <0, 42>
subjective complexity easy, moderate, hard
functionality computational, control, data_processing, error_handling
OUTPUT

time needed to eliminate a defect
less than 1 hour
between 1 hour and 1 day
more than 1 day

 �0�

intelligent Analysis of Software Maintenance Data

component examined and multiple components
examined. The model generated by See5/C5.0 tool
provides the highest prediction rate.4

Validation Process

Eleven IF-THEN rules are extracted from the
decision tree generated by See5C5.0—four rules
for the category single component examined and
seven for multiple components examined. The
application of 4cRuleBuilder tool results in six
rules for single component examined, and five
rules for multiple components examined. GAGP
method leads to the generation of 21 rules: 14 for
single component examined and seven for multiple
components examined. In total, 43 rules are gener-
ated. Right now, the task is to select a relatively
small set of rules that are the most significant

and valuable for maintainers. Following the idea
of goodness of rules (see the Development and
Validation of the IF-THEN Models sub-section),
the bbmUPDATE values are used to “rank” all the
rules and select the best ones.

The bbm values assigned to the rules are
presented in Table 9. The table contains only the
rules that are best after the development stage
(with the highest values of bbmT) and the ones
that are the best after the validation stage (with
the highest value of bbmUPDATE).

The rules generated by See5/C5.0 that are the
best after the development process are also the
best after the validation process (see bold entries
in Table 9). For the rules NC_See5_c1_15 and
NC_See5_c_2, their bbm values have increased
after the validation phase. As it can be seen on
the basis of other rules, none of the updated bbm
values is smaller that the original one (there are
some cases where bbm values do not change—this
means that a rule has not been satisfied by any
validation data point).

The same validation process has been per-
formed on rules generated by 4cRuleBuilder.
In the case of two rules NC_4cRB_c1_1 and
NC_4cRB_c2_3, their bbm values have in-
creased and the rules stay among the best ones.
For the other two rules—NC_4cRB_c1_1 and
NC_4cRB_c2_2—their bbm values have not
changed. However, the bbm values of the other
two rules NC_4cRB_c1_2 and NC_4cRB_c2_1
have increased and have become higher than the
bbm values of NC_4cRB_c1_1 and NC_4cRB_
c2_2. As the result, a set of best rules has been
modified.

The validation process performed on rules
generated by GAGP method has brought a single
change in the category—multiple components
examined (see Table 9). The rule NC_GAGP_c2_3
has been replaced by NC_GAGP_c2_7, which
has the higher value of bbm. The bbm values of
the rules from the category single component
examined have improved.

Model Prediction Rate
See5/C5.0 65.22%

4cRuleBuilder 60.87%
GAGP 56.52%

Table 8. NRL data prediction models: Prediction
rates for number of examined components

Table 9. Original and updated bbm values
rule bbmT bbmUPDATE

See5/C5.0
NC_See5_c1_1 0.791 0.833
NC_See5_c1_2 0.770 0.750
NC_See5_c2_1 0.833 0.883
NC_See5_c2_2 0.800 0.889

4cRuleBuilder
NC_4cRB_c1_1 0.950 0.950
NC_4cRB_c1_2 0.929 0.985
NC_4cRB_c1_5 0.941 0.988
NC_4cRB_c2_1 0.818 0.900
NC_4cRB_c2_2 0.898 0.898
NC_4cRB_c2_3 0.857 0.923

GAGP
NC_GAGP_c1_2 0.909 0.952
NC_GAGP_c1_9 0.889 0.941
NC_GAGP_c2_1 0.800 0.889
NC_GAGP_c2_3 0.857 0.857
NC_GAGP_c2_7 0.765 0.907

�0�

intelligent Analysis of Software Maintenance Data

Analysis of Best Rules

For the category single component examined,
the range of bbmUPDATE values is from 0.750 to
0.988. The rules with highest bbmUPDATE values
are generated by 4cRuleBuilder: NC_4cRB_c1_2
with bbmUPDATE of 0.985, and NC_4cRB_c1_5 with
bbmUPDATE of 0.988. The rules NC_See5_c1_1 and
NC_See5_c1_2, generated by See5/C5.0, have the
lowest bbmUPDATE values among three sets.

An interesting observation can be made when
all the rules from the category single component
examined are compared. Rules NC_GAGP_c1_9
and NC_4cRB_c1_5 are similar (see the following
rules). It looks like both of them use the attributes
defect type and functionality to predict a single
component examination. The set of values of the
attribute defect type from both rules are overlap-
ping. In the case of the attribute functionality, the
values used by the GAGP generated rule are a
subset of the values used by the rule generated by
4cRuleBuilder. Such similarity and high bbmUPDATE
values of these rules indicate that both of them can
be used to support prediction for a single compo-
nent examination. The conclusion which can be
derived here is: if defect type is Clerical_Error
or Requirements_Incorrect and functionality
of components with these defects is Control or
Error_Handling then there is a need to examine
just one component to be able to understand an
impact of these defects and remove them.

rule: nc_4crB_c1_5:
if DEFECT_TYPE is Multiple_Design_Error or
Clerical_Error or Functional_Spec_Incorrect &
 FUNCTIONALITY is Error_Handling or Control or
Data_Accessing
then SIngLe component is examined

rule: nc_4crB_c1_9:
if DEFECT_TYPE is Clerical_Error or
Requirements_Incorrect &
 FUNCTIONALITY is Error_Handling or Control
then SIngLe component is examined

Another pair of rules that draws attention is
the pair containing the rules NC_4cRB_c1_2 and
NC_GAGP_c1_2 (see the following rules). The
rule generated by GAGP method uses a subset of
values of the attribute defect type that are used
by the rule NC_4cRB_c1_2. Also in the case of
the attribute lines of code, there is some substan-
tial overlapping. Overall, the rule generated by
4cRuleBuilder seems more specific. Once again,
high values of bbmUPDATE make these rules good
candidates for prediction activities.

rule nc_4crB_c1_2:
if DEFECT_TYPE is Single_Design_Error or
Multiple_Design_Error or Clerical_Error or

Language_Use_Error or Functional_Spec._
Incorrect or Multiple_Error &

PHASE WHEN ERROR ENTERD SYSTEM
is Requirements_Definition or Functional_
Specification or Code_Testing &

 LINES OF CODE is less than �� or in the range
<�0�, ���> or more than �0� &

NUMBER OF COMMENTS is less than �� or in
the range <��, �0�> or more than ��� &
 NUMBER OF PREPROCESSOR STATEMENTS
is less than �

then SIngLe component is examined

rule nc_gagp_c1_2:
if DEFECT_TYPE is Single_Design_Error or
Multiple_Design_Error or Multiple_Error &

LINES OF CODE is less than ��� &
COMPLEXITY is Easy

then SIngLe component is examined

From rules generated by See5/C5.0, only
one rule—NC_See5_c1_1—is attractive. It is
a very simple rule with relatively high value of
bbmUPDATE, and a high coverage—more than 30
data points satisfied both the antecedent and the
consequential parts of this rule. It is also a very
intuitive rule. Definitely it is worth considering
during a prediction process.

rule nc_See5_c1_1:
if COMPLEXITY is Easy
then SIngLe component is examined

 �0�

intelligent Analysis of Software Maintenance Data

In the case of the category multiple compo-
nents examined, the rules have bbmUPDATE values
in the range: from 0.833 up to 0.923. Smaller
maximum indicates that it is difficult to find a
dominating rule describing a relationship among
attributes of software components and a need for
multiple components examination. The inspection
of the rules points only to a single pair of rules
NC_See5_c2_2 and NC_GAGP_c2_2 (see the
following rules). There is a perfect much in the
case of the attributes defect type and complex-
ity. There is also some overlap existing for the
attribute lines of codes. Based on that and high
values of bbmUPDATE, this pair can be treated as
plausible rules describing a relationship among
software attributes and a number of components
which should be examined to fully understand
an impact the defect Functional_Spec._Incor-
rect makes.

rule nc_See5_c2_2:
if DEFECT_TYPE is Functional_Spec._Incorrect &

LINES OF CODE is more than ��� &
COMPLEXITY is Easy

then muLtIpLe componentS are examined

rule nc_ gagp_c2_2:
if DEFECT_TYPE is Functional_Spec._Incorrect &

LINES OF CODE is in the range <���, ���> &
COMPLEXITY is Easy &
FUNCTIONALITY is Computational

then muLtIpLe componentS are examined

time needed to eliminate a defect

The prediction rates for the models representing
effort needed to eliminate a defect are presented

in Table 10. In this case, the highest prediction
rate is obtained using the model generated by
GAGP method.

Validation Process

Prediction models developed for the second
NRL dataset leads to the extraction of 49 rules.
Validation of rules generated by See5/C5.0 has
brought only one change (see Table 11). The rule
ET_See5_c2_2 has been replaced by the rule
ET_See5_c2_4.

The bbmUPDATE value of the rule ET_See5_c2_4
increased and suppressed the bbmUPDATE value
of the rule ET_See5_c2_2. A similar situation
has occurred in the case of rules generated by
4cRuleBuilder. Only one rule has been replaced
by a new rule. In this case, however, it has hap-
pened in the category effort for elimination of a
defect less than one hour. The rule ET_4cRB_c1_1
has been replaced by ET_4cRB_c1_6. Validation
of the original set of rules generated by GAGP
method has also brought a single change. In the

Table 10. NRL data prediction models: Prediction
rates for defect removal time

Model Prediction Rate
See5/C5.0 56.52%

4cRuleBuilder 56.52%
GAGP 65.22%

rule bbmT bbmUPDATE

See5/C5.0
ET_See5_c1_1 0.938 0.974
ET_See5_c1_2 0.667 0.800
ET_See5_c2_1 0.875 0.875
ET_See5_c2_2 0.833 0.833
ET_See5_c2_4 0.727 0.842
ET_See5_c3_1 0.556 0.714

4cRuleBuilder
ET_4cRB_c1_1 0.900 0.844
ET_4cRB_c1_2 0.944 0.966
ET_4cRB_c1_6 0.857 0.968
ET_4cRB_c2_1 0.882 0.938
ET_4cRB_c2_9 0.900 0.947
ET_4cRB_c3_1 0.500 0.500

GAGP
ET_GAGP_c1_3 0.889 0.970
ET_GAGP_c1_7 0.889 0.889
ET_GAGP_c2_1 0.667 0.833
ET_GAGP_c2_4 0.833 0.714
ET_GAGP_c2_6 0.875 0.875

Table 11. Original and updated bbm values

�0�

intelligent Analysis of Software Maintenance Data

case of the category effort for elimination of a
defect more than one hour but less than one day,
the bbmUPDATE value of the rule ET_GAGP_c2_4
has decreased. At the same time, the bbmUPDATE
value of the rule ET_GABP_c2_1 has increased
from 0.666 to 0.833, and this rule has become one
of the best rules.

Analysis of Best Rules

As in the case of the previous experiment, let’s
examine the best IF-THEN rules (marked by
bold fonts in Table 11). For the category effort for
elimination of a defect less than one hour the range
of bbmUPDATE values is from 0.800 to 0.974. The
examination of the rules from this category points
to three rules ET_See5_c1_1, ET_GAGP_c1_3,
and ET_GAGP_c1_7 (see the following rules).
High values of bbmUPDATE and similarity of the
rules mean that they can be summed up with
a very simple statement: if defect type is Cleri-
cal_Error then time need to correct this defect
is less than one hour.

rule et_See5_c1_1:
if DEFECT TYPE is Clerical_Error
then defect eLImInatIon tIme is less than 1
hour

rule et_gagp_c1_3:
if DEFECT TYPE is Clerical_Error &

FUNCTIONALITY is Computational or Data_
Accessing

then defect eLImInatIon tIme is less than 1
hour

rule et_gagp_c1_7:
if DEFECT TYPE is Clerical_Error &

FUNCTIONALITY is Control
then defect eLImInatIon tIme is less than 1
hour

In the category effort for elimination of a defect
more than one hour but less than one day the
rules generated by 4cRuleBuilder have the highest
values of bbmUPDATE. A rule ET_4cRB_c2_1 (see

the following rules) seems to be a very important
one. Two other rules—ET_See5_c2_4 generated
by See5/C5.0 and ET_GAGP_c2_6 generated by
GAGP method—are very similar. The rule ET_
See5_c2_4 overlaps with ET_4cRB_c2_1 in the
case of the attributes—defect type and complexity.
The rule ET_GAGP_c2_6 overlaps in the case of
the attributes—defect type and functionality. All
this and the high bbmUPDATE values indicate that
these three rules can be useful in prediction of
time needed to eliminate defects.

rule et_4crB_c2_1:
if DEFECT TYPE is Multiple_Design_Error or

Language_Use_Error or Functional_Spec._
Incorrect or Other_Error &

NUMBER OF COMMENTS in less than ��0 or
more than ��� &

NUMBER OF PREPROCESSOR STATEMENTS
is less than � or more than �0 &

COMPLEXITY is Easy or Moderate &
FUNCTIONALITY is Computational or Data_

Accessing or Error_Handling
then defect eLImInatIon tIme is more than 1
hour but less than 1 day

rule et_See5_c2_4:
if DEFECT TYPE is Language_Use_Error &

COMPLEXITY is Easy
then defect eLImInatIon tIme is more than 1
hour but less than 1 day

rule et_gagp_c2_6:
if DEFECT_TYPE is Single_Design_Error or
Other_Error &

FUNCTIONALITY is Computational or Data_
Accessing

then defect eLImInatIon tIme is more than 1
hour but less than 1 day

The category effort for elimination of a defect
more than one day is very poorly represented in
the generated sets of rules. A possible reason for
that is a very non-uniform distribution of data
points among three categories. The category effort
for elimination of a defect more than one day is
represented by only three per cent of data points.
The rule generated by See5/C5.0 is the best. Its
bbmUPDATE value is 0.714.

 �0�

intelligent Analysis of Software Maintenance Data

rule et_See5_c3_1:
if NUMBER_OF_COMPONENTS_EXAMINED is
Multiple &

COMPLEXITY is Hard
then defect eLImInatIon tIme is more than 1
day

enSemBLe-BaSed predIctIon
SyStem

The IF-THEN rules have been extracted from the
base-level data models (see the Base-Level Data
Models, Extracted Knowledge and Confidence
in Results section). An important aspect of this
extraction is related to the concept of rules’ good-
ness. As the result, all rules have been evaluated
and confidence measures (bbm values) have been
assigned to them. The next step is to use this and
build a system that combines different rules and
takes these confidence measures into account.
The results of this task are presented in the fol-
lowing text.

number of components examined

The ensemble-based prediction system for predict-
ing the number of components to be examined
during defect removal is constructed. It is tested
on all data points from the testing set. Two as-
pects of the results are important—a prediction
rate and confidence measures for the obtained
predictions.

The testing set contains 23 data points. Using
only a single set of rules generated by See5/C5.0,
4cRuleBuilder, and GAGP, the prediction rates are
65.22%, 60.87%, and 56.52%, respectively (see
Table 8). In the case of the ensemble-based predic-
tion systems, the prediction rate has increased.
The system that uses voting as the fusion method
provides the prediction rate of 69.57%, and the
system proposed here, that uses the elements of
evidence theory, has the prediction rate of 73.91%
(this translates to 17 proper predictions). Among
all testing data points, seven data points satisfy
rules that indicate contradicting predictions. The
rest of the data points are uniquely identified as
belonging to a single category (most data points
satisfy at least a single rule from each model,
however some points satisfy only rules coming
from two models). In all these cases, the pignistic
probability BetP that a given data point belongs
to a single category is very high at 0.99. More
interesting is the case of seven data points that
have led to non-unanimous prediction results.
The rules that are satisfied by these seven points
are presented in Table 12.

It can be easily observed that each of these
points is not univocally classified to a single
category. Rules generated by See5/C5.0 have
problems with data points no. 1 (two rules of dif-
ferent categories fired), 4 (wrong rule fired), and
7 (two rules of different categories fired). Rules
generated by 4cRuleBuilder are misled for points
no. 2 (two rules of different categories fired), 3

Table 12. Rules satisfied by the seven “confusing” data points
See5/C5.0 4cRuleBuilder GAGP Original

Category
Predicted
Category

1 c1_4 c2_4 c1_3 c1_10 I I
2 c1_4 c1_5 c2_2 c1_4 I I

3 c1_4 c2_3 I II

4 c1_4 c2_1 c1_13 II II
5 c1_1 c2_1 c1_12 I I

6 c2_7
c1_2 c2_1
c1_6

 c2_7 II II

7 c1_4 c2_5 c2_3 c2_3 II II

�0�

intelligent Analysis of Software Maintenance Data

(no rules fired), 5 (wrong rule fired), and 6 (two
rules of different categories fired). In the case of
rules generated by GAGP points no. 3 (wrong
rule fired) and 4 (wrong rule fired) are wrongly
predicted. The BetP values obtained for these
seven points are shown in Table 13.

Special attention should be paid to the data
point no. 4. Rules generated by See5/C5.0 (NC_
See5_c1_4 with bbmUPDATE of 0.545) and GAGP
(NC_GAGP_c1_13 with bbmUPDATE of 0.667)
indicate that the point should be classified as
category I. However, the rule NC_4cRB_c2_1,
which is one of the best 4cRuleBuilder rules and
has bbmUPDATE value of 0.900, has a strong influ-
ence on the overall result.

time needed to eliminate a defect

The ensemble-based prediction system is also
built for predicting time needed to remove a
single defect. Prediction rates and the confidence
measures for obtained predictions are recorded.
The testing set contains 23 data points. Using
only a single set of rules generated by See5/C5.0,
4cRuleBuilder, and GAGP, the prediction rates are
56.52%, 56.52%, and 65.22%, respectively (see
Table 10). The prediction rate increases to 78.26%
(this translates to 18 proper predictions) for the
proposed ensemble-based prediction system that
uses basic belief masses. The ensemble-based
system with voting has the prediction rate of

Table 13. BetP values for the seven “confusing” data points
Data points 1 2 3 4 5 6 7
BetP (cat. I: single comp. examined) 0.892 0.993 0.207 0.391 0.843 0.014 0.005
BetP (cat. II: multiple comp. examined) 0.108 0.007 0.793 0.609 0.157 0.986 0.995

Table 14. Rules satisfied by the 12 “confusing” data points

See5/C5.0 4cRuleBuilder GAGP Original
Category

Predicted
Category

1 c1_3 c2_6 c1_6 I I
2 c1_3 c2_6 c2_3 c2_2 III II
3 c2_6 c1_6 c2_2 III II
4 c1_3 c2_1 c2_9 I I

5 c2_4
 c2_2 c3_1
 c2_5
 c2_6

 c2_2 II II

6 c3_
1 c1_4 c2_2 c3_1 c2_3 III III

7 c1_3 c2_6 c1_1 c2_4 c2_1 I II
8 c2_8 c2_2 c3_1 II II

9 c1_3 c2_2
 c2_3
 c2_7

II II

10
c1_1
c1_3

c1_2 c2_5
c1_3

c1_3 I I

11 c1_3 c2_4 c1_1 II I
12 c1_1 c1_2 c2_5 c1_3 I I

 �0�

intelligent Analysis of Software Maintenance Data

69.57%. The analysis of the proposed predic-
tion process indicates that 12 data points satisfy
rules that indicate contradicting predictions.
The remaining 11 data points are unanimously
predicted by the rules of the system. Confidence
measures for these predictions are around 0.99.
The rules fired for the 12 “confusing” points are
presented in Table 14.

It can be easily observed that each of these
points is not univocally classified to a single
category. Rules generated by See5/C5.0 have
problems with data points no. 1 (two rules of
different categories fired), 2 (two rules of dif-
ferent categories fired), 3 (wrong rule fired), 4
(two rules of different categories fired), 7 (two
rules of different categories fired), 9 (two rules
of different categories fired), and 11 (two rules
of different categories fired). Rules generated
by 4cRuleBuilder are misled for points no. 1
(no rules fired), 2 (wrong rule fired), 4 (no rules
fired), 5 (two rules of different categories fired),
6 (three rules of different categories fired), 7 (two
rules of different categories fired), 8 (two rules
of different categories fired), 10 (two rules of
different categories fired), 11 (wrong rule fired),
and 12 (two rules of different categories fired).
In the case of the rules generated by GAGP, the

points no. 2, 3, 6, 7, and 11 are wrongly predicted
due to firing of the wrong rule. The values of the
pignistic probabilities BetP calculated by TBM
are included in Tables 15 and 16.

The most interesting are data points no. 3, 6,
and 7. In the case of the point number 3, the rules
generated by See5/C5.0 and GAGP indicate that
this point should belong to the category I, however
a higher bbmUPDATE value of the 4cRuleBuilder rule
(comparing to bbmUPDATE of See5/C5.0 and GAGP
rules) has changed the verdict of the prediction
system. It can be seen that the probability that
the point belongs to the category II is relatively
high—0.878. The point number 6, on the other
hand, satisfies one rule of the category I, two rules
of the category II, and two rules of the category
III. The prediction system classifies this data point
to a proper category. However, in the case of BetP
probabilities, it can be seen that BetP(category
III) is only slightly larger than BetP(category
II). In the case of the point no. 7, a high bbmUP-

DATE value of GAGP rule ET_GAGP_c2_1 (sup-
ported by bbmUPDATE values of ET_See5_c2_6 and
ET_4cRB_c2_4) has caused false prediction; the
rules ET_See5_c1_3 and ET_4cRB_c1_1 have
bbmUPDATE values too small to increase the value
of the probability BetP for Category I.

Table 15. BetP values for the 12 “confusing” data points: Points 1 to 6

Data points 1 2 3 4 5 6
BetP (cat. I: time less than 1 hour) 0.638 0.031 0.599 0.055 0.001 0.108
BetP (cat. II: time between 1 hour and 1 day) 0.308 0.962 0.381 0.932 0.996 0.434
BetP (cat. III: time more than 1 day) 0.054 0.007 0.020 0.013 0.003 0.458

Table 16. BetP values for the 12 “confusing” data points: Points 7 to 12

Data points 7 8 9 10 11 12
BetP (cat. I: time less than 1 hour) 0.119 0.014 0.002 0.999 0.673 0.999
BetP (cat. II: time between 1 hour and 1 day) 0.878 0.913 0.998 0.001 0.309 0.001
BetP (cat. III: time more than 1 day) 0.003 0.055 0.000 0.000 0.018 0.000

��0

intelligent Analysis of Software Maintenance Data

concLuSIon

In this chapter, an intelligent method of analysis
of software engineering data is illustrated. It
applies evolutionary computation methods for
development of models, and elements of evidence
theory to combine base-level models in order to
create an ensemble-based prediction system that
has capabilities to determine confidence measures
for the generated predictions. Application of a
number of rule-based models developed with dif-
ferent techniques enhances prediction capabilities
and allows for more comprehensive extraction of
knowledge from the data. Confidence measures
associated with predictions and extracted knowl-
edge help to better understand the relationships
between attributes of data and the mechanisms
leading to generation of predictions.

Proposed method is applied to analysis of
software corrective maintenance data. The pur-
pose of this analysis is to find and understand
relationships between attributes of software, types
of defects, and efforts needed to conduct defect
elimination tasks. Special attention is put on two
aspects of defect elimination process: a number of
software components that have to be examined to
remove a single defect and a total time needed to
remove a defect. The prediction systems, extracted
knowledge, and results of prediction processes
are described and investigated.

acknowLedgment

The author would like to acknowledge the support
of the Alberta Software Engineering Research
Consortium (ASERC) and the Natural Sciences
and Engineering Research Council of Canada
(NSERC).

referenceS

4cData. Data mining and knowledge discovery
tools and services. Retrieved September 25, 2006,
from http://www.4cdata.net

Ali, K. (1995). A comparison of methods for
learning and combining evidence from multiple
models. Technical Report 95-47. Dept. of In-
formation and Computer Science, University of
California, Irvine.

Ali, K., & Pazzani, M. (1996). Error reduction
through learning multiple descriptions. Machine
Learning, 24, 173-202.

Amasaki, S., Takagi, Y., Mizuno, O., & Kikuno,
T. (2003). A Bayesian belief network for assessing
the likelihood of fault content. 14th International
Symposium on Software Reliability Engineering,
Denver, Colorado, USA, November 17-20 (pp.
215-226). Washington, D.C.: IEEE Computer
Society.

Back, T., Fogel, D. B., & Michalewicz, Z. (Eds.).
(2000). Evolutionary computations I. Bristol, UK:
Institute of Physics Publishing.

Berkovich, Y. (2000). Software quality prediction
using case-based reasoning. PhD thesis. Boca
Raton, FL: Florida Atlantic University.

Breiman, L. (1996). Bagging predictors. Machine
Learning, 24, 123-140.

Breiman, L., Friedman, J. H., Olshen, R. A., &
Stone, C. J. (1984). Classification and regression
trees. Belmont, CA: Wadsworth International
Group.

The Data and Analysis Centre for Software.
Retrieved September 25, 2006, from http://www.
thedacs.com

 ���

intelligent Analysis of Software Maintenance Data

Dempster, A. P. (1968). A generalization of Bayes-
ian inference. Journal of Royal Statistical Society,
Series B(30), 205-247.

Evanco, W. M. (1999). Analyzing change effort in
software during development. In Proceedings of
Sixth International Software Metrics Symposium
(METRICS’99), Boca Raton, FL, November 4-6
(pp. 179-188). Washington, D.C.: IEEE Computer
Society.

Evanco, W. M. (2001). Prediction models for
software fault correction effort. Proceedings of
the Fifth Conference on Software Maintenance
and Reengineering, CSMR 2001, Lisbon, Portugal,
March 14-16 (pp. 114-120). Washington, D.C.:
IEEE Computer Society.

Fenton, N. E., & Neil, M. (1999). A critique of
software defect prediction models. IEEE Transac-
tions of Software Engineering, 25(5), 675-689.

Fenton, N. E., & Neil, M. (2005). A critique of
software defect prediction models. In D. Zhang, &
J. J. P. Tsai (Eds.), Machine learning applications
in software engineering (pp. 72-86). Singapore:
World Scientific Publishing Co.

Freund, Y., & Schapire, R. E. (1996). Experiments
with a new boosting algorithm. 13th International
Conference on Machine Learning, Bari, Italy, July
3-6 (pp. 148-156). San Francisco, CA: Morgan
Kaufmann.

Glass, R. (1989). Software maintenance docu-
mentation. Annual ACM Conference on Systems
Documentation, Pittsburgh, PA, November 8-10
(pp. 18-23). New York: ACM Press.

Gokhale, S. S., & Lyu., M. R. (1997). Regression
tree modeling for the prediction of software qual-
ity. In the Proceedings of the Third International
Conference on Reliability and Quality of Design,
Anaheim, CA, USA, March 12-14 (pp. 31-36). New
Brunswick, NJ: International Society of Science
and Applied Technology.

Goldberg, D. E. (1989). Genetic algorithms in
search, optimization, and machine learning.
Reading, MA: Addison-Wesley.

Hayes, J. H., Patel, S. C., & Zhao, L. (2004). A
metrics-based software maintenance effort model.
In the Proceedings of the Eighth Euromicro Work-
ing Conference on Software Maintenance and
Reengineering (CSMR’04), Tempere, Finland,
March 24-26 (pp. 254-260). Washington, D.C.:
IEEE Computer Society.

Holland, J. H. (1972). Adaptation in natural and
artificial systems (2nd ed.). Cambridge, MA:
MIT Press.

IEEE 610.12. IEEE Standard Glossary of Software
Engineering Terminology.

Jorgensen, M. (1995). Experience with the ac-
curacy of software maintenance task effort pre-
diction models. IEEE Transactions of Software
Engineering, 21(8), 674-681.

Khoshgoftaar, T. M., & Allen, E. B. (1998). Neural
networks for software quality prediction. In W.
Pedrycz, & J. F. Peters (Eds.), Computational intel-
ligence in software engineering, the Advances in
Fuzzy Systems – Applications and Theory Series
(pp. 33-63). Singapore: World Scientific.

Khoshgoftaar, T. M., Allen, E. B., Naik, A., Jones,
W., & Hudepohl, J. (1998). Modeling software
quality with classification trees. In the Proceed-
ings of the Fourth International Conference on
Reliability and Quality of Design, Seattle, Au-
gust 12-14 (pp. 178-182). New Brunswick, NJ:
International Society of Science and Applied
Technology.

Khoshgoftaar, T. M., & Lanning, D. L. (1995).
A neural network approach for early detection of
program modules having high risk in the main-
tenance phase. Journal of Systems and Software,
29(1), 85-91.

���

intelligent Analysis of Software Maintenance Data

Khoshgoftaar, T. M., & Seliya, N. (2002). Tree-
based software quality models for fault predic-
tion. In the Proceedings of Eight International
Software Metrics Symposium, Ottawa, Canada,
June 4-7 (pp. 203-214). Los Alamitos, CA: IEEE
Computer Society.

Khoshgoftaar, T. M., & Seliya, N. (2003). Fault
prediction modeling for software quality estima-
tion: Comparing commonly used techniques.
Empirical Software Engineering, 8, 255-283.

Kononenko, M., & Kovacic, M. (1992). Learning
as optimization: Stochastic generation of multiple
knowledge. 9th International Workshop on Ma-
chine Learning, Aberdeen, UK, July 1-3 (pp. 257-
262). San Francisco, CA: Morgan Kaufmann.

Koza, J. R. (1992). Genetic programming: On the
programming of computers by means of natural
selection. Cambridge, MA: MIT Press.

Kwok, S., & Carter, C. (1990). Multiple decision
trees. Uncertainty in Artificial Intelligence, 4,
327-335.

Luger, G. (2002). Artificial intelligence: Struc-
tures and strategies for complex problem-solving.
Reading, MA: Addison Wesley.

Mitchell, T. (1997). Machine learning. Boston,
MA: McGraw Hill.

Neil, M., & Fenton, N. (1996). Predicting soft-
ware quality using Bayesian belief networks.
21st Annual Software Engineering Workshop,
NASA/Goddard Space Flight Centre, Washington
D.C., December 4-5 (pp. 217-230).

Neil, M., Krause, P., & Fenton, N. E. (2003).
Software quality prediction using Bayesian net-
works. In T. M. Khoshgoftaar (Ed.), Software
engineering with computational intelligence
(Chapter 6). International Series in Engineering
and Computers Science. Hingham, MA: Kluwer
Academic Publishers.

Quinlan J. R. (1993). C4.5: Programs for machine
learning. San Francisco, CA: Morgan Kaufmann
Publishers.

Reformat, M., Pedrycz, W., & Pizzi, N. (2004).
Building a software experience factory using
granular-based models. Fuzzy Sets and Systems,
145(1), 111-140.

RuleQuest Research Data Mining Tools. Re-
trieved September 25, 2006, from http://www.
rulequest.com

Savage, L. J. (1954). Foundations of statistics.
New York: Wiley.

Schneidewind, N. F. (1995). Software metrics
validation: Space shuttle flight software example.
Annals of Software Engineering, 1, 287-309.

Schneidewind, N. F. (1997). Software metrics
model for integrating quality control and predic-
tion. In the Proceedings of the 8th International
Symposium on Software Reliability Engineering,
Albuquerque, NM, USA, November 2-5 (pp.
402-415). Washington, D.C.: IEEE Computer
Society.

Shafer, G. (1976). A mathematical theory of
evidence. Princeton, NJ: Princeton University
Press.

Smets, P. (1988). Belief functions. In P. Smets,
A. Mamdani, D. Dubois, & H. Prade (Eds.), Non
standard logics for automated reasoning (pp.
253-286). London: Academic Press.

Smets, P. (1992). The concept of distinct evidence.
IPMU 92 Proceedings, Palma de Mallorca, July
6-10, (pp. 253-286). Lecture Notes in Computer
Science, LNCS 682. Berlin, Germany: Springer
Verlag.

Smets, P., & Kennes, R. (1994). The transfer-
able belief model. Artificial Intelligence, 66,
191-234.

 ���

intelligent Analysis of Software Maintenance Data

Smith, D. (1999). Designing maintainable soft-
ware. New York: Springer.

Takahashi, R., Muroaka, Y., & Nakamura, Y.
(1997). Building software quality classification
trees: Approach, experimentation, evaluation.
In the Proceedings of the Eighth International
Symposium on Software Reliability Engineering,
Albuquerque, New Mexico, USA, November 2-5
(pp. 222-233). Washington, D.C.: IEEE Computer
Society.

Todorovski, L. & Dzeroski, S. (2000). Combin-
ing multiple models with meta decision trees.
4th European Conference on Principles of Data
Mining and Knowledge Discovery (pp. 54-64).
Berlin: Springer.

Troster, J., & Tian, J. (1995). Measurement and
defect modeling for a legacy software system.
Annals of Software Engineering, 1, 95-118.

Winer, B. J., Brown, D. R., & Michels, K. M.
(1991). Statistical principles in experimental
design. Boston, MA: McGraw-Hill.

Winston, P. H. (1992). Artificial intelligence.
Reading, MA: Addison Wesley.

Yuan, X., Khoshgoftaar, T. M., Allen, E. B., &
Ganesan, K. (2000). An application of fuzzy
clustering to software quality prediction. In the
Proceedings of the Third IEEE Symposium on
Application-Specific Systems and Software Engi-
neering Technology (ASSET’00) (pp. 85-90).

endnoteS

1 CART stands for Classification And Regres-
sion Trees (Breiman, Friedman, Olshen, &
Stone, 1984).

2 The proposed approach assumes the fol-
lowing split of data: 20% of data points are
randomly selected to constitute a testing
dataset, this set does not change for the time
of the whole experiment, the data points
from this set are used for evaluation of con-
structed ensemble-based prediction systems;
the remaining 80% of data is randomly split
into a training set (60%) and a validation set
(20%).

3 The dataset is divided into training, vali-
dation, and testing sets to comply with the
construction process of the ensemble-based
prediction system (see the Evidence Theory
and Ensemble-Based System section).

4 All results presented in the chapter are for
testing data.

5 The following schema has been applied
to identify generated rules: <two letters
identifying dataset name>-<construction
method>-<class number>-<rule number>.

���

intelligent Analysis of Software Maintenance Data

appendIx I: evoLutIonary computIng

A variety of evolutionary algorithms (EAs), such as genetic algorithms (Goldberg, 1989) and genetic
programming (Koza, 1992), have been successfully applied to numerous problems (Back, Fogel, &
Michalewicz, 2000) both at the level of structural and parametric optimization. EAs are search methods
utilizing the principles of natural selection and genetics (Holland, 1972). Concisely, EAs operate on a set
of candidate solutions, called a population, to a given problem. The candidate solutions are evaluated
based on their ability to solve the problem. The results of the evaluation are used in a process of form-
ing a new set of solutions. The choice of individuals that are passed to the next population is performed
in a process called selection. This process is based on “goodness” of candidate solutions. Additionally,
genetic operators, that is, crossover and mutation, are employed to modify selected candidates. Such
sequence of actions is repeated until some final criterion is fulfilled. The sequence of activities of EAs
is presented in Figure 5.

genetic algorithms

Genetic algorithms (GAs) (Goldberg, 1989) are one of the most popular EAs. In the case of GAs, candi-
date solutions to a given problem are encoded into chromosome-like data structures named genotypes.
The problem to be solved is encoded into a special function called a fitness function. This function
embraces all requirements imposed on the solution to the problem. The genotypes, after being decoded
into phenotypes which are solutions in the problem domain, constitute inputs to the fitness function.
They are evaluated based on their ability to solve the problem. The results of the evaluation are used in
a selection process based on favoring individuals with higher fitness values. The selection can be per-
formed in numerous ways. One of them is called stochastic sampling with replacement. In this method,
the entire population is mapped onto a roulette wheel where each individual is represented by the area
corresponding to its fitness. Individuals of the next population are chosen by repetitive spinning of the
roulette wheel.

Finally, the operations of crossover and mutation are performed on the individuals. Crossover al-
lows exchange of information among individual genotypes in the population and provides innovative
capability to the GAs. Its role is to explore the search space in a process of exchanging chromosome
parts. Two randomly selected chromosomes are “cut” and “merge” to “produce” a new one. Two parent
chromosomes are randomly selected, and two children are created by swapping sequences of genes.
In its simplest form, a single crossover point is used. The percentage of individuals that go through
crossover is “controlled” by the crossover probability pc.

The role of mutation is to introduce diversity into the population and promote a probabilistic-like
traversing of the search space. Mutation builds a new chromosome by making an alteration to a single
gene. All genes in all chromosomes are altered with the mutation probability pm.

The evolution of candidate solutions is halted when perfect fitness is achieved or some specified maxi-
mum number of generations is passed. The candidate solution that has the best fitness, after termination,
is deemed as the discovered solution. Originally, only chromosomes with binary genes have been used.
However, right now there are versions of GAs that use integer or floating-point numbers as genes.

 ���

intelligent Analysis of Software Maintenance Data

genetic programming

Genetic programming (GP) (Koza, 1992) can be seen as an extension of the genetic paradigm into the
area of programs. It means, that objects, which constitute population, are not fixed-length strings that
encode candidate solutions to the given problem, but they are programs. In general, these programs are
expressed as parse trees, rather than as lines of code.

In the case of GP, each candidate solution is built using two sets:

• the function set, F = {f1(b_1); f2(b_2); …; fn(b_n) }, of functions with arity > 0; each function from F
takes a specified number of arguments, defined as b1; b2; … bn;

• the terminal set T = { t1; t2; …; tn } of 0-arity functions or constants.

Sets F and T are defined a priori. The process of constructing candidate solutions starts by selecting
a function, fi, randomly from the set F. For each of the bi arguments, this process is repeated where a
random function or terminal may be selected to fill each argument position. If a terminal is selected, the
generation process is completed for this branch of the function. If a function is selected, the generation
process is recursively applied to each argument of this function. A user specifies a maximum depth of
parse trees in order to limit the size of the candidates. For example, using the function set F = {AND;
OR; NOT} and the terminal set T = {a; b; c; d}, two sample programs that could be created are shown
in Figure 6.

Depending on the type of elements of the function and terminal sets, different structures can be built
and different problems can be targeted. All stages of evolutionary algorithms—selection, crossover and
mutation—are applied to all structures. Modifications of these structures are performed via manipula-
tions on the lists (Koza, 1992).

Detailed descriptions of GP, GAs, or other evolutionary-based algorithms can be found in Back et
al. (2000), Goldberg (1989), Holland (1972), and Koza (1992).

���

intelligent Analysis of Software Maintenance Data

appendIx II: decISIon treSS aS data modeLS and theIr
evoLutIonary-BaSed conStructIon

decision trees

Decision trees are very attractive representations of underlying data relationships (Mitchell, 1997). They
are very intuitive and relatively easy to understand by users. Their graphical representation provides
a simple way of finding connections among data points and translating them into IF-THEN rules. The
trees are very well suited to perform classification/prediction tasks.

Decision trees consist of a series of nodes with a top node called the root node. Each tree is built by
means of a top down growth procedure. The building process is based on training data that contain data
points (vectors) with a number of attributes. One of these attributes determines the category to which
the data point belongs. At each node, called the attribute node, the training data is partitioned to the
children nodes using a splitting rule (see Figure 7). A splitting rule can be of the form: if V < c then s
belongs to L, otherwise to R, where V is a selected attribute, c is a constant, s is the data sample and L
and R are the left and right branches of the node. In this case, splitting is done using one attribute and a
node has two branches (two children). In general, a node can have more branches and the splitting can
be done based on several attributes. The best splitting for each node is searched based on a “purity”
function calculated from the data. The data is considered pure when they contain data points from
only one category. Most frequently used purity functions are entropy, gini-index, and twoing-rule. The
data portion that falls into each children node is partitioned again in an effort to maximize the purity
function. The tree is constructed until the purity of the data points in each leaf node is at a pre-defined
level. Each leaf node is then labeled with a category determined based on majority rule: node is labeled
to the category to which majority of the training data points at that node belong. Such nodes are called
terminal nodes.

evolutionary-Based construction of decision trees

Concept

The approach used for construction of decision trees is based on combination of genetic algorithms
(GAs) and genetic programming (GP). This approach allows for targeting two problems simultane-
ously—searching for the best splitting in attribute domains (discretization problem) and finding the most
suitable attributes for splitting rules. The approach combines GAs’ strength to search through numeric
spaces together with GP’s strength to search symbolic spaces. Moreover, a process of construction of
decision trees—defining splitting and selecting node attributes—can be “controlled” by different func-
tions which represent different objectives essential for a given classification/prediction process. In a
nutshell, the approach is to construct a decision tree via performing two-level optimization: parametric
using GAs and structural using GP.

A graphical illustration of the approach is shown in Figure 8. The GA is used at the higher level and
its goal is to search for the best splitting of attributes’ domains. The GA operates on a population of
strings, where each string—GA chromosome—is a set of possible splittings for all attributes. Each GA
chromosome is evaluated via a fitness function. Evaluation of each chromosome is performed by running

 ���

intelligent Analysis of Software Maintenance Data

a GP optimization. This means that the GP searches for the best decision tree that can be constructed
for the splitting represented by the GA chromosome. Consequently, the GP operates on a population
of lists that are blueprints of decision trees. In other words, each individual of the GP population—a
list—represents a single decision tree. The population of decision trees evolves according to the rules of
selection and genetic operations of crossover and mutation. Each GP individual is evaluated by means
of a certain fitness function. The GP returns the best value of the fitness function together with the best
decision tree to the GA. The fitness value returned by the GP becomes the fitness value of the evaluated
GA chromosome. Such approach ensures evaluation of each GA chromosome based on the best possible
decision tree that can be constructed for the splitting represented by this chromosome.

To find the best solution, the GA creates and continuously modifies chromosomes—splittings and
then, for each splitting, it invokes GP to generate the best decision tree. The following algorithm sum-
marizes the steps that are used with the multi-level approach:

Step 1: randomly generate an initial population of GA chromosomes (each chromosome contains information about a number
of splittings and about splitting points for each attribute);

Step 2: WHILE termination criterion not reached DO:
 Step 2_1: evaluate each GA chromosome (splitting) by invoking GP
 Step 2_1_1: randomly generate an initial population of trees for a given splitting;
 Step 2_1_2: WHILE termination criterion not reached DO:
 Step 2_1_2_1: calculate a performance measure (fitness value) representing how well each candidate solution

performs the designated task, in the case when candidate solutions are decision trees it means classification/
prediction of data points from a training dataset;

 Step 2_1_2_2: select the decision trees for reproduction;
 Step 2_1_2_3: modify decision trees using crossover and mutation;
 Step 2_1_3: identify the fittest solution to the problem -- the best decision tree and return it to GA
 Step 2_2: select candidate solutions—splittings—for reproduction to the next generation;
 Step 2_3: apply genetic operators (crossover and mutation) to combine and modify splittings;
Step 3: identify the fittest solution—the best splitting and associated with it the best decision tree.

Optimization Objective

One of the most important aspects of the approach is its flexibility to construct decision trees based
on objectives that can reflect different requirements regarding the classification/prediction process and
the different character of data. These objectives are represented by fitness functions. The role of the
fitness function is to assess how well the decision tree classifies the training data. The simplest fitness
function represents a single objective ensuring the highest classification/prediction rate without tak-
ing into consideration the classification/prediction rate for each data category. In such case, the fitness
function is as follows:

_ A
KFit Fun
N

=

(4)

where N represents the number of data points in a training set, and K represents the number of correctly
classified/predicted data points. Such fitness function gives good results when the numbers of data
points in each category are comparable. In many cases, the character of processed data is such that not

���

intelligent Analysis of Software Maintenance Data

all categories are represented equally. In this case, a fitness function should be such that it ensures the
highest possible classification/classification rate for each category. An example of such fitness functions
is presented in the following:

1

1_
c

i
B

ii

kFit Fun
n=

+
= ∏

(5)

where c represents a number of different categories, ni represents a number of data samples that belong
to a category i, and ki is a number of correctly classified data points of a category i.

 ���

intelligent Analysis of Software Maintenance Data

appendIx III: BaSIcS of evIdence theory

Let’s start with a set of worlds Ω called the frame of discernment. One of the worlds, denoted ω0, cor-
responds to the actual world. The agent (it may be a piece of software, system) does not know which
world in Ω corresponds to the actual world ω0. Nevertheless, the agent has some idea, some opinion
about which world might be the actual one. So for every subset I of Ω, called the focal element, the agent
can express the strength of its opinion that the actual world ω0 belongs to A. This strength is denoted
bel(A) and called a belief function (see the following text for the formal definition). Extreme values for
bel denote full belief (1) or no belief at all (0). The larger bel(A), the stronger the agent believes that ω0
belongs to A.

Basic Belief assignments

One of the concepts of the theory is a basic belief assignment (bba). Related to belief function bel, one
can define its so-called Moebius transform, denoted m and called a basic belief assignment. Let

 m : 2Ω → [0,1]

where m(A) is called the basic belief mass (bbm) given to A ⊆ Ω. The value of m(A) represents belief that
supports A—that is, the fact that the actual world ω0 belongs to A without supporting any more specific
subset. In the case, when ω0 belongs to A, and nothing more is known about the value of ω0, then some
part of belief will be given to A, but no subset of A will get any positive support. In that case, m(A) > 0
and m(B)=0 for all B ⊆ A and B ≠ A.

Belief functions

The bbm m(A) does not quantify belief, denoted bel(A), that the actual world ω0 belongs to A. Indeed,
the bbm m(B) given to any subset B of A also supports that ω0 belongs to A. Hence, the belief bel(A) is
obtained by summing all the bbm m(B) for B ⊆ A. At the end:

() ()
B A

bel B m B
∅≠ ⊆

= ∑ ,A A∀ ⊆ Ω ≠ ∅
 (6)
 () 0bel ∅ =

The belief function bel satisfies the following inequality:

 (7)

1 2

1 2 1 2

1, , ,..., :

(...) () ()... (1) (...)

n

n
n i i j n

i i j

n A A A

bel A A A bel A bel A A bel A A A
>

∀ > ∀ ⊆ Ω

∪ ∪ ∪ ≥ - ∩ - ∩ ∩ ∩∑ ∑

��0

intelligent Analysis of Software Maintenance Data

As such, the meaning of these inequalities is not obvious except when n=2. These inequalities gen-
eralize the idea that agent’s belief that the actual world belongs to A ⊆ Ω can be larger than the sum of
the beliefs the agent gives to the elements of a partition of A.

combination of two Belief functions

Suppose there are two “distinct” pieces of evidence Ev1 and Ev2 produced by two sources of infor-
mation. Let bel1 and bel2 be the belief functions induced by each piece of evidence. These two belief
functions, with the focal elements Ai and Bj respectively, may be combined into a new belief function
using Dempster’s (1968) rule of combination. The rule specifies the combined belief mass, m, assigned
to each focal element Ck, where C is the set of all subsets produced by A and B. The rule is:

;

() ()

()
1 () ()
i j k k

i j

i j
A B C C

k
i j

A B

m A m B

m C
m A m B

∩ = ≠∅

∩ =∅

=
-

∑

∑ (8)

where the focal elements of bel1=A={A1, A2, …, Ai} and bel2=B={B1, B2, …, Bj}. The combination of two
belief functions is also know as taking the orthogonal sum, ⊕, and is written as:

3 1 2 1((),..., ())kbel bel bel m C m C= ⊕ = (9)

The meaning of distinct for two pieces of evidence has been left undefined. It lacks rigorous defini-
tion. Intuitively, it means the absence of any relation. In this case, the belief function bel2 induced by
the second source is not influenced by the knowledge of the belief function bel1 induced by the first
source and vice versa (Smets, 1992).

transferable Belief model

Dempster-Shafer theory has been used to develop the transferable belief model (TBM) (Smets, 1994).
The model represents quantified beliefs and is based on belief functions bel. The TBM departs from
the classical Bayesian approach in that the additivity encountered in probability theory is not assumed.
For instance, there is no assumption that bel(A)=0 implies that bel(¬A) = 1. In fact bel(A) = bel(¬A) =
0 is even possible. The additivity property is replaced by inequalities like:

() () () ()bel A B bel A bel B bel A B∪ ≥ + - ∩ (10)

In the TBM, one assumes that bel is a capacity monotone of order infinite. Given a belief function
bel, a probability function is generated that is used to make decision by maximizing expected utilities.
It requires the construction of the betting frame, that is, a list of alternatives on which the bet must be
made. Let BetFrame denotes the betting frame. The granularity of BetFrame is such that if by necessity
two alternatives are not distinguishable from a consequence-utility point of view, than they are pooled
into the same granule.

 ���

intelligent Analysis of Software Maintenance Data

Once the betting frame is determined, the bbms are transformed by the so-called pignistic transfor-
mation into the pignistic probabilities BetP : 2Ω → [0,1] with:

,

() #()()
1 () #()

FrameX Bet X

m X A XBetP A
m X⊆ ≠∅

∩
=

- ∅∑ (11)

for all

,FrameA Bet A⊆ ≠ ∅

#(X) is the number of granules of the betting frame BetFrame in X, and m() is called the basic belief
mass. By construction, the pignistic probability function BetP is a probability function, but it is qualified
as pignistic to avoid the error that would consist in considering this probability function as someone’s
beliefs. Someone’s beliefs are represented by bel, and BetP is just the additive measure needed to com-
pute expected utilities when decision must be made (Savage, 1954).

This work was previously published in Advances in Machine Learning Applications in Software Engineering, edited by D.
Zhang and J. Tsai, pp. 14-51, copyright 2007 by IGI Publishing (an imprint of IGI Global).

���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.19
An Overview of Software Quality

Concepts and Management Issues
Alain April

École de technologie supérieure, Québec, Canada

Claude Y. Laporte
École de technologie supérieure, Québec, Canada

aBStract

This chapter introduces the generally accepted
knowledge on software quality that has been in-
cluded in the (SWEBOK) Software Engineering
Body of Knowledge (ISOTR 19759, 2005). One
chapter of the SWEBOK is dedicated to software
quality (April et al., 2005). It argues that ethics
play an important role in applying the quality
models and the notions of cost of quality for
software engineers. It also describes the minimal
content required in a software quality assurance
plan. Finally an overview of what to expect in the
upcoming international standards on software
quality requirements, which transcend the life
cycle activities of all IT processes, is presented.

IntroductIon

The business value of a software product results
from its quality as perceived by both acquirers
and end users. Therefore, quality is increasingly
seen as a critical attribute of software, since its
absence results in financial loss as well as dis-
satisfied users, and may even endanger lives. For
example, Therac-25, a computer-driven radiation
system, seriously injured and killed patients by
massive overdosing (Levenson & Turner, 1993).
Improving recognition of the importance of setting
software quality requirements and of assessing
quality causes a shift in the “center of gravity”
of software engineering from creating technol-
ogy-centered solutions to satisfying stakeholders.

 ���

An Overview of Software Quality Concepts and Management issues

Software acquisition, development, maintenance,
and operations organizations confronted with such
a shift are, in general, not adequately equipped to
deal with it. Until recently, they did not have at
their disposal the quality models or measurement
instruments to allow (or facilitate) the engineering
of quality throughout the entire software prod-
uct life cycle. The objective of software product
quality engineering is to achieve the required
quality of the product through the definition of
quality requirements and their implementation,
measurement of appropriate quality attributes, and
evaluation of the resulting quality. The objective
is, in fact, software product quality.

This chapter is structured in accordance with
the SWEBOK classification of the software qual-
ity body of knowledge (www.swebok.org) shown
in Figure 1.

Software QuaLIty
fundamentaLS

Agreement on quality requirements, as well as
clear communication on what constitutes qual-

ity, require that the many aspects of quality be
formally defined and discussed. Over the years,
authors and organizations have defined the term
“quality” differently. IBM used the phrase “mar-
ket-driven quality”, which is based on achieving
total customer satisfaction. This definition was
influenced by the total quality management ap-
proach of Phil Crosby (1979), who defined quality
as “conformance to user requirements”. Watts
Humphrey (Humphrey, 1990), looking at quality
in the software industry, defined it as “achieving
excellent levels of fitness for use”. More recently,
quality has been defined in ISO 9001 (2000) as “the
degree to which a set of inherent characteristics
fulfills the requirements.” The next section looks
at how organizational culture and individual ethics
play a role in quality in the organization.

culture and ethics

Edward B. Tylor (1871) defined human culture as
“that complex whole which includes knowledge,
belief, art, morals, law, custom, and any other capa-
bilities and habits acquired by man as a member of
society.” Culture guides the behaviors, activities,

Software
Quality

Software
Qualiy

Fundamentals

Software
Quality

Management
Process

Practical
Considerations

-Software quality
assurance process

-Software quality requirements
-Software quality measurement

Software
Quality

Software
Quality

Fundamentals

Software
Quality

Management
Process

Practical
Considerations

-Culture and ethics
-Value and cost of quality
-Model and quality characteristics

-Software quality

-Software product
quality

-Software quality requirements
-
-Software quality improvement

quality measurement

Software
Quality

Software
Qualiy

Fundamentals

Software
Quality

Management
Process

Practical
Considerations

-Software quality
assurance process

-Software quality requirements
-Software quality measurement

Software
Quality

Software
Quality

Fundamentals

Software
Quality

Management
Process

Practical
Considerations

-Culture and ethics
-Value and cost of quality
-Model and quality characteristics

-Software quality

-Software product
quality

-Software quality requirements
-
-Software quality improvement

quality measurement

Figure 1. Adapted breakdown of software quality topics (ISOTR 19759, 2005)

���

An Overview of Software Quality Concepts and Management issues

priorities, and decisions of an individual, as well
as those of an organization. Karl Wiegers (1996),
in his book Creating a Software Engineering
Culture, illustrates (see Figure 2) the interaction
between the software engineering culture of an or-
ganization, its software engineers and its projects.
Why should we, as technical people, care about
such a “soft” issue? First, a quality culture cannot
be bought. It needs to be developed, mostly at the
beginning, by the founders of the organization.
Then, as employees are selected and hired, the
initial leader’s culture will start to slowly adjust
to the pressures of the environment, as shown in
Figure 2. Quality culture cannot be “bolted on”
to an organization; it has to be designed-in and
nurtured. The ultimate aim of upper management
is to instill a culture that will allow the develop-
ment of high-quality products and offer them at
competitive prices, in order to generate revenues
and dividends in an organization where employees
are committed and satisfied.

The second reason why we should be inter-
ested in the cultural aspects of quality is that
any change an organization wants to make, for

example, moving up on the Capability Matu-
rity Model integrationS M (CMMiSM) (SEI, 2002)
maturity scale, cannot simply be ordered; the
organization has to cope with the current culture
when making a change in maturity, especially
when such a change implies a profound change
in that culture. An organization cannot just “buy
and deploy” off-the-shelf processes that contain
quality. It has been demonstrated that one of
the major inhibitors of change is the culture of
the organization. The management of change is
imperative (Laporte & Trudel, 1998) in order to
achieve the desired result.

The issue of quality is also central to the Code
of Ethics, developed by and for software engi-
neers, which was released in 1999 (Gotterbarn,
1999; Gotterbarn et al., 1999; IEEE-CS, 1999).
The Code describes eight top-level technical and
professional obligations against which peers, the
public, and legal bodies can measure a software
engineer’s ethical behavior. Each top-level ob-
ligation, called a principle, is described in one
sentence and supported by a number of clauses
which gives examples and details to help in inter-

Figure 2. A software engineering culture (Wiegers, 1996)

 ���

An Overview of Software Quality Concepts and Management issues

pretation and implementation of that obligation.
Software engineers adopting the Code commit to
eight principles of quality and morality. The fol-
lowing are examples: Principle 3 (Product) states
that software engineers shall ensure that their
products and related modifications meet the high-
est professional standards possible. This principle
is supported by 15 clauses, and clause 3.10 reads
that software engineers shall ensure adequate
testing, debugging, and review of software and
related documents on which they work. The Code
has been translated into eight languages: Chinese,
Croatian, English, French, Hebrew, Italian, Japa-
nese, and Spanish, and all versions are available
at http://seeri.etsu.edu/Codes/default.shtm. It has
been publicly adopted by many organizations, as
well as by a few universities as part of their cur-
riculum in software engineering.

value and costs of Quality

To promote a quality approach to software, a
number of arguments must be developed to sup-
port its value and benefits. Quality, as a whole, is
not always perceived positively and is a hard sell

for software project managers. One famous book
(Crosby, 1979) addressing the cost of quality has
been published on this topic. Since its publica-
tion, many organizations, mainly manufacturers,
have successfully promoted the use of the cost of
quality concepts and framework in their project
management processes. A few papers have been
published on the adoption of these concepts in
the software industry (Campanella, 1990; Diaz,
2002; Dobbins, 1999; Galin, 2004a; Mandeville,
1990; Slaughter et al., 1998), but very few case
studies have been published by the software in-
dustry itself (Dion, 1993; Haley, 1996; Houston,
1999; Knox, 1993). A paper by Haley of Raytheon
(Haley, 1996) illustrates very well the links
between the cost of rework and the investment
needed to reduce waste. Haley also illustrates that
a long-term perspective is needed, as well as a
commitment from senior management, in order
to capture the benefits. Another fact illustrated by
Haley is the link between the investment/benefits
and the Capability Maturity Model for Software
(CMM) (Paulk et al., 1993) maturity level of an
organization (see Figure 3). At the initial CMM
maturity level, most, if not all, organizations have

0

�0

�0

�0

�0

�0

�0

�0

Pe
rce

nt
ag

e
of

 to
ta

l p
ro

jec
t c

os
t

Year

CMM level �
Start of intiative
 CMM level �

TCoSQ

Prevention
Rework

Appraisal

Cost of
Conformance

Rework

�� �� �� �0 �� �� �� �� �� ��

Figure 3. Improvement data (Dion, 1993; Haley, 1996)

���

An Overview of Software Quality Concepts and Management issues

no reliable data or measurement system. When
an organization has reached levels 2 and 3, it has
the foundation to measure and select beneficial
process improvement areas. Many organizations
have published the results obtained in climbing
the maturity ladder. They show the relationships
between maturity level, quality, productivity, and
project cost.

Galin (2004b), in a recent software quality
assurance book, illustrates the cost and benefits
of quality practices. As shown in Table 1, the
addition of effective quality practices, such as
inspection and review, even reduce the cost of
a project by eliminating rework. The left-hand
column lists typical quality assurance activities,
such as reviews and inspections, of an on-going
project. The middle column shows the effective-
ness of typical defect removal activities included
in a software quality plan. It shows that such a
process would deliver a product where 93.1% of
the total defects have been detected, leaving 6.9%
of them, for a QA cost of 1014.3 units. On the
right-hand side, two activities have been added to
the quality plan: a design inspection and a code
inspection. Even though these activities are not
free (18.5 and 158.6 units, respectively), the net
result is that 97.4% of the total defects have been
detected, leaving only 2.6% of the defects in op-

eration. Note also that the total QA cost is 760.4
units, compared to 1014.3 units previously.

The following quote from Norman Augustine
(1997) summarizes this section: “It costs a lot to
build bad products.”

model and Quality characteristics

Quality models for software have been developed
to assess both software processes and software
products. Software process engineering has made
many advances in the last decade and has intro-
duced numerous quality models and standards
concerned with the definition, implementation,
measurement, management, change, and im-
provement of the software engineering process
itself. Assessing the quality of software products
requires that the quality characteristics of software
be defined and measured. The quality of a software
product is determined by its properties. Some of
these are inherent to the software product, while
others are assigned, by priority, to the software
product during its requirements definition process.
Process quality is concerned with the technical
and managerial activities within the software
engineering process that are performed during
software acquisition, development, maintenance,
and operation.

Quality assurance activity Standard plan
Percentage of Cost of removing
defects removed defects (cost units)

Comprehensive plan
Percentage of Cost of removing
defects removed defects (cost units)

1. Requirements specification review
2. Design inspection
3. Design review
4. Code inspection
5. Unit test – code
6. Integration test
7. Documentation review
8. System test
Total for internal QA activities
Defects detected during operation

 7.5% 7.5
 -- --
 21.3% 53.2
 -- --
 25.6 166.4
 17.8% 284.8
 13.9% 222.4
 7.0% 280
 93.1% 1014.3
 6.9% 759

 9% 9
 28.7% 71.8
 7.4% 18.5
 24.4% 158.6
 4.2% 27.3
 9.8% 156.8
 9.9% 158.4
 4% 160.
 97.4 760.4
 2.6% 286

Total 100.0% 1773.3 100% 1046.4

Table 1. Illustration of the cost and benefits of quality practices (Galin, 2004a)

 ���

An Overview of Software Quality Concepts and Management issues

In contrast, software product quality models
describe the many quality attributes of software.
These have been presented by many authors
(Boehm et al., 1978; McCall et al., 1977) and have
more history. Although this is an older topic, it
has not quite reached the popularity of software
process quality models. During the early years,
the terminology for software product quality
differed from one model of software quality to
another. Each model had a different number of
hierarchical levels and number of characteris-
tics, and the different naming conventions were
especially confusing. Based on these efforts, the
International Organization for Standardization
(ISO) normalized three software product quality
models (i.e., internal quality, external quality, and
quality in use) (ISO 9126, 2001) and accompanied
them with a set of guides like ISO/IEC14598 which
explains how to evaluate a software product (see
Figure 4).

Software QuaLIty
management proceSS

Software quality management (SQM) defines
processes, process owners, requirements for those
processes, measurements of the process, their
outputs, and, finally, feedback channels (Arthur,
1992). SQM processes are useful for evaluating the
process outcome as well as the final product.

The Juran Trilogy Diagram, illustrated in Fig-
ure 5, depicts quality management as comprising
three basic processes: quality planning, quality
control, and quality improvement. The diagram
shows how waste caused by mismanaging quality,
or not managing it, can be reduced by introducing
quality improvement and feeding back the lessons
learned from this into the quality planning process.
Many, if not most, software engineering managers
are not aware of the magnitude of the waste, i.e.,
between 30 and 40%, in their processes.

Establish
Evaluation
Requirements

Specification
of the
Evaluation

Design
of the
Evaluation

Execution
of the
Evaluation

-Establish purpose of evaluation
-Identify types of product
-Identify quality model

-Select metrics
-Establish rating level
-Establish criteria for assessment

-Produce evaluation plan

-Measure characteristics
-Compare with criteria
-Assess results

9126-1
Quality
Characteristics

9126-2, 3
External,
Internal Metrics

14598-6
Evaluation
Modules

Execution
of the
Evaluation

-
-
-

-
-
-Establish criteria for assessment

-

-Measure characteristics
-Compare with criteria
-Assess results

External,

Establish
Evaluation
Requirements

Specification
of the
Evaluation

Design
of the
Evaluation

Execution
of the
Evaluation

-Establish purpose of evaluation
-Identify types of product
-Identify quality model

-Select metrics
-Establish rating level
-Establish criteria for assessment

-Produce evaluation plan

-Measure characteristics
-Compare with criteria
-Assess results

9126-1
Quality
Characteristics

9126-2, 3
External,
Internal Metrics

14598-6
Evaluation
Modules

Execution
of the
Evaluation

-
-
-

-
-
-Establish criteria for assessment

-

-Measure characteristics
-Compare with criteria
-Assess results

External,

Figure 4. ISO/IEC 14598 – Evaluation process (Sur03)

���

An Overview of Software Quality Concepts and Management issues

Software quality management processes
consist of many activities. Some may find defects
directly, while others indicate where further ex-
amination may be valuable. Planning for software
quality involves:

1. defining the required product in terms of its
quality characteristics;

2. planning the processes to achieve the re-
quired product quality.

Some of the specific SQM processes are defined
in standard IEEE 12207 (1996):

• Quality assurance process
• Verification process
• Validation process
• Review process
• Audit process

These processes encourage quality and also
find possible problems, but they differ somewhat in

their emphasis. SQM processes help ensure better
software quality in a given project. They also, as
a by-product, provide management with general
information, including an indication of the quality
of the entire software engineering process.

SQM processes consist of tasks and techniques
to indicate how software plans (e.g., management,
development, and configuration management) are
being implemented and how well the intermedi-
ate and final products are meeting their speci-
fied requirements. Results from these tasks are
assembled into reports for management before
corrective action is taken. The management of
an SQM process is tasked with ensuring that the
results of these reports are accurate.

As described in this Knowledge Area (KA),
SQM processes are closely related; they can
overlap and are sometimes even combined.
They seem largely reactive in nature because
they address the processes as practiced and the
products as produced, but they have a major role
at the planning stage in being proactive in terms

Figure 5. Juran trilogy diagram

 ���

An Overview of Software Quality Concepts and Management issues

of the processes and procedures needed to attain
the quality characteristics and degree of quality
needed by the stakeholders in the software.

Risk management can also play an important
role in delivering quality software. Incorporat-
ing disciplined risk analysis and management
techniques into the software life cycle processes
can increase the potential for producing a quality
product (Charette, 1989). Refer to the Software
Engineering Management KA of the SWEBOK
for material related to risk management.

Software Quality assurance process

Software quality assurance processes have been
found to have a direct effect on the quality of a
software product. During a software development
project, it is difficult to completely distinguish the
quality of the process used to develop the software
from the quality of the product itself. Process qual-
ity assurance influences process quality, which
in turn influences the quality characteristics of
the software product.

Process quality is addressed by two important
process models, ISO9001 and CMMiSM (SEI,
2002). First, ISO9001:2000 (ISO 9001, 2000)
is an international standard, while CMMi is a
process model. Compliance with the key quality
concepts of the ISO9001:2000 standard requires
an interpretation for each industry. Software, a
service industry, has initially had more difficulty
interpreting and implementing the ISO9001 stan-
dards (Bouman et al., 1999; May, 2002; Niessink,
2000). Service organizations also experience
greater difficulty dissociating the final product
from the processes used in its production (May,
2002). To help with this problem, additional
guidance has been developed by the ISO for the
implementation of ISO9001:2000 in the software
industry (Hailey, 1998; May, 2002). This guide,
numbered ISO90003 (2004), helps link all the
software-related standards to the quality system
required by ISO9001:2000.

In contrast, CMMi (SEI, 2002) is a process
model which proposes proven practices at different
maturity levels. It is divided into process areas, and
the following are key to quality management: (a)
process and product quality assurance; (b) process
verification; and (c) process validation.

There was initially some debate over whether
ISO9001:2000 or CMMi should be used by
software engineers to ensure quality. It has been
observed that many organizations use their
ISO9001 certification assets as a stepping stone
toward meeting the CMMi requirements. It is
believed that level 3 of CMMi is reachable for
an organization that already has ISO9001:2000
certification. In competitive situations, it is not
unusual to find that the two are used concurrently
to meet shared quality objectives.

In general, process quality models are con-
cerned with process outcomes. However, in order
to achieve the process outcomes desired (e.g.,
better quality, better maintainability, greater
customer satisfaction), we have to implement and
measure the process in action.

Current quality models are not complete at this
time, as there are many other factors to consider
which have an impact on outcomes. Other factors,
such as the context, industry domain, capabil-
ity of the staff, and the tools used also play an
important role (see Figure 6). “Furthermore, the
extent to which the process is institutionalized or
implemented (i.e., process fidelity) is important, as
it may explain why ‘good’ processes do not give
the desired outcomes” (ISOTR19759, 2005).

Process Process
Outcomes

Context

Process Process
Outcomes

Context

Figure 6. Relationships between process and
outcomes (ISOTR19759, 2005)

��0

An Overview of Software Quality Concepts and Management issues

A word of caution is needed with regard to
the term software quality assurance (SQA). It is
actually a misnomer, because SQA cannot assure
quality, but only provide adequate assurance.
ISO 12207 (ISO/IEC12207.0-96) defines an SQA
process as a process for providing adequate as-
surance that the software products and processes
in the project life cycle conform to their speci-
fied requirements and adhere to their established
plans.

The persons or groups providing SQA ser-
vices need to be independent of the developers
in order to provide an unbiased opinion on the
conformance of products and processes to the
standards imposed by a customer, an organiza-
tion, or a country. SQA services can be provided
by an entity that may be internal or external to
the developing organization.

An SQA plan, often mandated by an SQA stan-
dard, derives its requirements from the contract,
the project plan, and the organization’s quality
system. It defines the means that will be used
to ensure that software developed for a specific
product satisfies the user’s requirements and is of
the highest quality possible within project con-
straints. The content and format of an SQA plan
are available in government documents, such as
ESA and NASA, or publicly, in standards such
as IEEE standard 730 (IEEE730, 2002).

ISO/IEC 12207 (1996) proposes a minimal
content for the SQA plan:

• Quality standards, methodologies, pro-
cedures, and tools for performing quality
assurance activities (or their references in
the organization’s official documentation);

• Procedures for contract review and their
coordination;

• Procedures for identification, collection,
filing, maintenance, and disposition of
quality records; resources, schedule, and
responsibilities for conducting the quality
assurance activities;

• Selected activities and tasks from processes,
such as verification, validation, joint review,
audit, and problem resolution.

To illustrate the importance of SQA prac-
tices, Table 2 (Cusumano et al., 2003) lists a few
practices included in a sample of Japanese and
American organizational processes. The data
show the percentage of sampled projects using a
particular practice.

Practices Used Japan US
Architectural specifications 7 0.4% 5 4.8%
Functional specifications 9 2.6% 7 4.2%
Detailed designs 8 5.2% 32.3%
Design reviews 1 00% 77.4%
Code reviews 74.1% 71%
Regression testing 96.3% 71%

Table 2. Organizational quality practices (Cu-
sumano et al., 2003)

Performance Crieria Japan US
Median output (see note 1) 4 69 2 70
Median defect rate (see note 2) .020 . 400
Note 1: Output per programmer-month of effort in new

Lines of Code (LOC).
Note 2: Number of defects reported per 1000 LOC (in the

12 months after delivery to customers).

Table 3. Performance comparison (Cusumano
et al., 2003)

 Japan – 1990 Japan - 2003 US – 1990 US -2003
Productivity 389 469 245 270
Quality .20 .020 . 83 . 400

Table 4. Productivity and quality improvements over a decade (Cusumano et al., 2003)

 ���

An Overview of Software Quality Concepts and Management issues

Table 3 from the same paper shows the per-
formance data resulting from implementation of
the practices. As can be observed, the increased
performance of the practices in Japan resulted in
increased productivity and quality performance
in that country.

Table 4 illustrates the important improvements,
especially in quality, measured in Japan and the
US over the 10-year period.

Software product Quality

The quality of software is not only influenced by
the quality of the process used to develop it, but by
the quality of the product as well. Software product
quality has also been the subject of much research
and of many international standards and publi-
cations. Software engineers determine, with the
stakeholders, the real purpose of future software.
In this regard, it is of prime importance to keep
in mind that the customer’s requirements come
first and that they should include non-functional
requirements like quality, not just functionality.
Thus, the software engineer has a responsibility
to elicit quality requirements from future software
which may not be made explicit at the outset. It is

key that the software engineer assess their relative
importance, as well as the level of difficulty in
achieving each of them. The section on value and
cost of quality presented the additional processes
associated with defining and assessing software
quality that need to be added to software projects,
and each carries additional costs.

Software product quality standards define the
related quality characteristics and subcharacter-
istics, as well as measures which are useful for
assessing software product quality (Suryn et al.,
2003). In the standards, the meaning of the term
product is extended to include any artifact which
is a software process outcome used to build the
final software product. Examples of a product
include, but are not limited to, an entire system
requirements specification, a software require-
ments specification for a software component of
a system, a design module, code, test documen-
tation or reports produced as a result of quality
analysis tasks.

The software product quality model provided
in ISO/IEC 9126-1 (ISO9126, 2001) defines six
quality characteristics: functionality, reliability,
usability, maintainability, portability and effi-
ciency, as well as quality in use, which is defined as

Figure 7. External/internal quality of ISO/IEC 9126 (ISO9126-2001)

���

An Overview of Software Quality Concepts and Management issues

effectiveness, productivity, safety, and satisfaction
(see Figure 7). The six quality characteristics have
defined subcharacteristics, and the standard also
allows for user-defined components. The intention
is that the defined quality characteristics cover
all quality aspects of interest for most software
products and, as such, can be used as a checklist
for ensuring complete coverage of quality early
in the specifications phase.

The quality model suggests three views: inter-
nal quality, external quality, and quality in use.

Internal quality provides a ‘white box’ view of
the software and addresses properties of the soft-
ware product that typically are available during
development. External quality provides a ‘black
box’ view of the software and addresses proper-
ties related to its execution. “The quality-in-use
view is related to application of the software in its
operational environment, for carrying out speci-
fied tasks by specified users. Internal quality has
an impact on external quality, which again has an
impact on quality in use. (Suryn et al., 2003)

External and internal quality models presented
by ISO/IEC9126 are less trivial and have to be
explained further. Let us take the maintainability
of software as a quality attribute, and see both the
external and internal perspectives in action.

From an external point of view, maintain-
ability attempts to measure the effort required
to diagnose, analyze, and apply a change to a
software product. Thus, an external measure of
maintainability would constitute the effort to
make a specific change.

From an internal product point of view, the
quality model proposes measurement of the at-
tributes of the software that influence the effort
required to modify it. A good example is source
code complexity. Structural complexity measures
are generally extracted from the source code
using observations on the program/classes/mod-
ule/functions and graph representation of software
source code. The more complex the source code,

the more difficult it is to grasp its meaning and
to understand and document it. These studies are
based on work carried out in the 1970s by Curtis,
Halstead, and McCabe (Curtis, 1979; Halstead,
1978; McCabe, 1976). These are all internal mea-
sures, which in turn affect the external point of
view of maintainability.

While most product quality publications
have described product quality in terms of the
final software and system performance, sound
software engineering practice requires that key
artifacts impacting quality be evaluated through-
out the software development and maintenance
processes.

practIcaL conSIderatIonS

Software Quality requirements

In order to implement software process and prod-
uct quality, the software engineer must choose and
document quality characteristics at the outset of
the projects during the requirements definition
process. A generic life cycle model like ISO/IEC
15288 — System life cycle processes demonstrates
generic stages of a typical development process
(Figure 8) and the mapping to show how standards
can be used across all stages of the life cycle of
a software product.

We have already stated that both functional
and non-functional requirements are captured us-
ing the requirements definition process (Pfleeger,
2001). Functional requirements specify what
a product should do. Non-functional require-
ments, also called quality requirements, place
constraints on the functional requirements. The
quality requirements need to refer to a quality
model, like the one described in ISO/IEC 9126-
1, to be well understood. Quality requirements
address important issues of quality for software
products. Software product quality requirements
are needed for:

 ���

An Overview of Software Quality Concepts and Management issues

• Specification (including contractual agree-
ment and call for tender)

• Planning (e.g., feasibility analysis and trans-
lation of external quality requirements into
internal quality requirements)

• Development (early identification of quality
problems during development)

• Evaluation (objective assessment and certi-
fication of software product quality)

The requirements definition process typically
takes all stakeholders’ needs, requirements, and
expectations into consideration and ranks them by
priority. All relevant stakeholders must be identi-
fied before the exercise begins. A first analysis
activity during the requirements definition pro-
cess is aimed at identifying user requirements,
sometimes also called business requirements.
This view of software requirements should be
documented in wording that is easily understood
by both users and customers.

Business requirements describe the func-
tionality that the software executes as needed by
the stakeholders. Good functional requirements
are expressed clearly and are consistent. All
requirements need to be correct, non-redundant,
and not be in conflict with other requirements.
Each requirement has to be uniquely identified
and traceable to identified stakeholders. They
should also be documented in the business re-
quirements specification (BRS). If a stakeholder
requirement is not taken into consideration, the
software engineer needs to state the reason why
in the documentation.

The second analysis activity is aimed at trans-
forming stakeholder functional requirements into
system requirements that can be used by designers
to build software. This more technical view of
requirements is called a software requirements
specification (SRS). During this second analysis
activity, the quality requirements are added to the
functional requirements. They need to be stated

SW Product Quality
Requirements

Product Development

Product in Use

Stakeholder Requirements
Definition Process

Requirements Analysis Process

Architectural Design Process

Implementation Process

Integration Process

Verification Process

Transition Process

Validation Process

Operation Process

Maintenance Process

Disposal Process

SW Product Quality
Requirements

Product Development

Product in Use

Stakeholder Requirements
Definition Process

Requirements Analysis Process

Architectural Design Process

Implementation Process

Integration Process

Verification Process

Transition Process

Validation Process

Operation Process

Maintenance Process

Disposal Process

Figure 8. Product life cycle mapping to the technical process life cycle (Suryn et al., 2003)

���

An Overview of Software Quality Concepts and Management issues

clearly and unambiguously. It is the software
engineer’s responsibility to go through each qual-
ity characteristic and assess the need to include it
in the project. System requirements should also
be verifiable and state both the business require-
ments and the non-functional requirements that
the software must possess in order to satisfy all
stakeholder requirements. If they do not, they
may be viewed, interpreted, implemented, and
evaluated differently by different stakeholders. If
the software engineer does not become involved
in promoting the non-functional requirements,
they may be ignored altogether. This may result
in software which is inconsistent with user ex-
pectations and therefore of poor quality.

We have often talked about stakeholders, but
who are they? Stakeholders include all individuals
and organizations with a legitimate interest in the
software. Different stakeholders will express dif-
ferent needs and expectations that represent their
own perspective. For example, operators, testers,
and quality engineers are stakeholders. These
needs and expectations may change throughout
the system’s life cycle and need to be controlled
when changed. The stakeholders rarely express
non-functional requirements, as they may have
an unclear understanding of what quality really
means in a software process. In reality, they typi-
cally perceive it initially as more of an overhead
than anything else. Quality requirements will
often appear as part of a contractual agreement
between acquirer and developer. They may also
be required for a specific product quality evalu-
ation when some level of software criticality is
reached and human lives are at risk.

We have already stated that a software qual-
ity requirement should refer to a specific quality
model. To clearly specify quality requirements,
ISO/IEC working group six (WG6) of the software
engineering subcommittee (SC7) is developing
a standard as part of the new ISO/IEC 25000
— SQuaRE (Software Product Quality Require-
ments and Evaluation) initiative. The Quality

Requirements standard will include a new section
for the specification of quality requirements.

A number of obligations are likely to be
imposed on software engineers that demand
conformance to this new section of ISO/IEC
25000. First, each quality requirement will need
to be categorized and prioritized according to an
explicit quality model, like:

• Quality-in-use requirement;
• External quality requirement;
• Internal quality requirement.

A software quality requirement will also need
to be specified with reference to a set of func-
tional properties. It is also possible that critical
functional properties will create an obligation to
impose some quality characteristics on a quality
requirement.

Since each quality requirement needs to be
assessed throughout all the life cycle stages, it
needs to be specified in terms of a measurement
function and be assigned target values. This new
standard will provide examples of measures which
may be adapted to specific organizational needs
for specifying quality requirements. This new
standard is also likely to recommend that software
engineers develop and maintain a list of quality
measures that are used consistently across their
organization. Applying the same set of measures
makes it possible to create a homogeneous reposi-
tory of historical data, which in turn helps in the
creation of predictive models such as productivity
and estimation models.

The new standard could also focus on the no-
tion of the degree of uncertainty associated with
a quality requirement. Measures tending to yield
large deviations need to be explained because of
their erratic behavior. Explanations include the
measurement process of that measure and the
errors associated with each of its components.

Many quality standards already identify the
review and approval stages, so that the set of

 ���

An Overview of Software Quality Concepts and Management issues

quality requirements is identified and reviewed,
and who approved them is clearly stated. The last
item likely to appear in such a standard refers to
the need for quality requirements, just like func-
tional requirements, to be managed according to
a configuration and change management system
throughout the entire project.

Software Quality measurement

The main reason why product quality measure-
ment is only slowly gaining acceptance is the
inherent difficulty of measuring in a practical
way its quality-impacting processes and artifacts
throughout the software engineering process.
Some product quality perspectives (e.g., size and
source code structure) have been easier to mea-
sure than others (e.g., suitability, replaceability,
and attractiveness). “Furthermore, some of the
dimensions of quality (e.g., usability, maintain-
ability and value to the client) are likely to require
measurement in qualitative rather than quantita-
tive form” (ISOTR19759, 2005).

For practical purposes, the software engineer
will need to define the quality requirements and
the means to assess them early on in the life cycle
of the project. During the requirements defini-
tion stage, statements about the quality of each
quality characteristic are defined as expressing
the capability of the software to perform at, and
maintain, a specified level of service. The mea-
surement approach requires that individuals who
carry out software engineering activities capture

the measures and make a judgment about the
degree to which the many software properties
fulfill their specified requirements as agreed by
the stakeholders. Both qualitative and quantita-
tive measures can be collected during all stages
of the software life cycle.

The ISO9126 quality model offers definitions
of software properties which can be distinguished
as quantitative or qualitative. Before quality at-
tributes can be captured and validated, someone
has to design them. Then, the most practical
means possible must be implemented to measure
them.

We measure by applying measurement method
rules (see Step 2 in Figure 9). A measurement
method is a logical sequence of operations that
can be used by software engineering personnel
to quantify an attribute on a specified scale.
The result of applying a measurement method
is called a base measure. The ISO9126 quality
characteristics that were defined and agreed on
can now be measured.

A list of “Quality Measures” is available
in ISO/IEC 9126 and ISO/IEC 14598, and the
standards present examples of mathematical
definitions and guidance for practical measure-
ment of internal quality, external quality, and
quality in use.

The proposed ISO/IEC 25000–SQuaRE will
help by providing guidance, as follows:

• Measurement reference model and guide
— to present introductory explanations, the

Design of the
measurement

method

Application of
the

measurement
method rules

Measurement
result

analysis

Exploitation of
the

measurement
result

Step � Step �Step �Step �

Figure 9. Software measurement method (Abran & Jacquet, 1997)

���

An Overview of Software Quality Concepts and Management issues

reference model and the definitions that
are common to measurement primitives,
internal measures, external measures, and
quality-in-use measures. The document will
also provide guidance to users for selecting
(or developing) and applying appropriate
measures;

 Example: the construction phase creates
intermediate, non-executable software
products that can only be evaluated from a
static point of view. In this case, users will
be directed to the internal quality mea-
sures standard, where they can choose the
measures that best serve their information
needs;

• Measurement primitives — to define a
set of base and derived measures, or the
measurement constructs for the internal
quality, external quality, and quality-in-use
measurements;

• Measures for internal quality — to define
a set of internal measures for quantitatively
measuring internal software quality in terms
of quality characteristics and subcharacter-
istics;

• Measures for external quality — to define
a set of external measures for quantitatively
measuring external software quality in terms
of quality characteristics and subcharacter-
istics;

• Measures for quality in use — to define
a set of measures for measuring quality in
use. The document will provide guidance
on the use of the quality-in-use measures.

Software Quality Improvement

As defined by the ISO/IEC 12207 (1996) stan-
dard, an Improvement Process is a process for
establishing, assessing, measuring, controlling,
and improving a software life cycle process. This
definition assumes that an organization already
has a written development process in place. A
first step in any improvement strategy is to assess

the current situation (i.e., a baseline), and then to
identify improvement goals and implement the
actions required to achieve the goals. Similarly,
quality improvement should follow the same steps.
Important assumptions are that the organization
has stable processes such that data collected are
reliable and that they are quality data. If no data
are available, some baseline activities have to be
performed. The measurement and analysis process
area of the CMMi (SEI, 2002) describes the basic
components of such a process.

The organization then has to establish quality
goals. One approach is to use the well-known
Goal Quality Metric (GQM) method (Basili &
Rombach, 1988). The organization determines
its business goals, and then the technical person-
nel establish quality goals in order to meet the
organization’s goals. The quality goals could be
established using the Cost of Quality approach
or a standard business case approach, that is, by
evaluating the cost of prevention and evaluation
and the cost of internal and external failure.

Quality could be improved, first, by removing
defects as early as possible in the development
life cycle using techniques such as reviews, walk-
throughs, and inspections (IEEE-1028, 1997),
and second, by putting in place defect prevention
activities. Software inspection (Gilb & Graham,
1993; IEEE-1028, 1997; Radice, 2002) is an ex-
ample of a widely recognized quality improve-
ment practice. A Web site displays this technique
and provides a wealth of supporting information
(www.goldpractices.com/practices/fi/index.php).
The inspection process is typically composed
of six stages: plan, kick-off meeting, document
checking, logging meeting, editing (i.e., rework),
and follow-up (Figure 10).

As shown in Table 5, the defect detection ef-
fectiveness of inspections can reach 84%. Radice
(2002) has collected data from organizations of
different CMMi maturity levels which show an
effectiveness varying from as low as 50% to as
much as 100% (Table 6).

 ���

An Overview of Software Quality Concepts and Management issues

Figure 10. Inspection process (Adapted from Holland, 1998)

Defect Detection

Technique

Minimum Value Most Likely Value Maximum Value

Design Inspections 25% 57% 84%

Code Inspections 19% 57% 70%

CMM Maturity Level Defect Removal Effectiveness

Level 5 90% - 100%

Level 4 75% - 90%

Level 3 65% - 75%

Level 2 50% - 65%

Level 1 Less than 50%

Defect Detection

Technique

Minimum Value Most Likely Value Maximum Value

Design Inspections 0.58 1.58 2.9

Code Inspections 0.67 1.46 2.7

Testing 4.5 6 17

Table 7. Distribution of average effort to detect defects (Briand et al., 1998)

Table 6. Defect detection effectiveness (Radice, 2002)

Table 5. Distribution of defect detection effectiveness of inspections (Briand et al., 1998)

���

An Overview of Software Quality Concepts and Management issues

It is interesting to note that using inspection
to detect defects is more effective than testing.
Table 7 (Briand et al., 1998) shows the average
effort required to detect defects in hours per defect.
Unfortunately, even though it has been around for
close to 30 years (Fagan, 1976), most organiza-
tions ignore this practice. Many organizations, if
not most, rely only on tests performed toward the
end of the development process to identify defects,
even though tests are much less effective than
inspections at defect removal. One of the reasons
is that inspections find defects where they occur,
while testing finds only the symptoms, and then
only very late in the development cycle.

future trendS and
concLuSIon

To illustrate the current state of the quality of
many shrink wrap software vendors, here is a
typical warranty statement as printed on a software
product: By opening this sealed software media
package, you accept and agree to the terms and
conditions printed below. If you do not agree, do
not open the package. Simply return the sealed
package. The software media is distributed on
an ‘AS IS’ basis, without warranty. Neither the
authors, the software developers nor Acme Inc
make any representation, or warranty, either
express or implied, with respect to the software
programs, their quality, accuracy, or fitness for a
specific purpose. Therefore, neither the authors,
the software developers nor Acme Inc shall have
any liability to you or any other person or entity
with respect to any liability, loss, or damage
caused or alleged to have been caused directly
or indirectly by the programs contained on the
media. This includes, but is not limited to, inter-
ruption of service, loss of data, loss of consulting
or anticipatory profits, or consequential damages
from the use of these programs. If the media is
defective, you may return it for a replacement.

As more customers demand quality from their
vendors, the competitive marketplace will even-
tually respond to these demands, and software
products will be warranted in the same way as any
other products. Vendors will be held responsible
for making the appropriate corrections at their
expense like other industrial sectors. Already a
few organizations have demonstrated that qual-
ity, productivity, cycle time, and cost could all
be improved provided that senior management
commit adequate resources and time to improve-
ment. Diaz (1997, 2002) has published results of
major improvement programs at Motorola and
General Dynamics. For example, at General
Dynamics, rework dropped from 23.2% to 6.8%,
phase containment effectiveness increased from
25.5% to 87.3%, defects reported by customers
dropped from 3.2 per thousand source lines of
code (KSLOC) to 0.19, and productivity increased
by a factor of 2.9. Such organizations have the
data to manage the quality of their processes and
their products. As stated by Boehm and Sullivan
(2000), since design is an investment activity,
knowing the economics of software engineering,
these organizations can offer their customers an
optimized value proposition by using the proper
processes, tools, and metrics.

There is no instant gain, however, as illustrated
in Figure 3. It takes time to define and stabilize
a process, measure its performances, and make
improvements. Those organizations that have
succeeded know that improvements require not
only resources, but also a major culture change.
By definition, a cultural change takes time and
can rarely be imposed, and it has to be managed
from the top, with senior executives no longer
requesting unrealistic schedules with unrealistic
budgets to deliver quality products. Moreover, if
software developers in the West do not shape up
rapidly, what has happened and is still happening
to the automobile industry may happen to them,
that is, a take-over by foreign, high-quality, lower-
cost manufacturers.

 ���

An Overview of Software Quality Concepts and Management issues

With the arrival of India (Moitra, 2001) and
China (Ju, 2001) into the software market with
their focus on quality and process maturity, the
software industry will be pushed to move faster;
otherwise, Darwin will favor those who survive
this fight.

referenceS

Abran, A., & Jacquet, J.-P. (1997, June 2-6).
From software metrics to software measure-
ment methods: A process model. Proceedings of
the Third International Symposium and Forum
on Software Engineering Standards (ISESS97),
Walnut Creek, CA.

April, A., Reeker, L., & Wallace, D. (2005).
Software quality. Guide to the software engineer-
ing body of knowledge (Ironman version) (pp.
157-170). Los Alamitos, CA: IEEE-Computer
Society Press.

Arthur, L. J. (1992). Improving software qual-
ity: An insider’s guide to TQM. New York: John
Wiley & Sons.

Augustine, N. R. (1997). Augustine’s Laws (6t h ed.).
Reston, VA: American Institute of Aeronautics
and Astronautics.

Basili, V. R., & Rombach, H. D. (1988). The
TAME project: Towards improvement-oriented
software environments. IEEE Transactions on
Software Engineering, 14(6), 758-773.

Boehm, B. W., Brown, J. R., Kaspar, H., Lipow,
M., McLeod, G., & Merritt, M. (1978). Character-
istics of software quality. TRW series on software
technologies. Amsterdam, The Netherlands:
North-Holland.

Boehm, B. W., & Sullivan, K. J. (2000, June 4-11).
Software economics: A roadmap. Proceedings of
the Future of Software Engineering, International
Conference on Software Engineering, Limerick,
Ireland.

Bouman, J., Trienekens, J., & Van der Zwan, M.
(1999). Specification of service level agreements,
clarifying concepts on the basis of practical re-
search. Proceedings of Software Technology and
Engineering Practice (pp. 11-19). Los Alamitos,
CA: IEEE Computer Society.

Briand, L., El Emam, K., Laitenberger, O., &
Fussbroich, T. (1998). Using simulation to build
inspection efficiency benchmarks for development
projects. Proceedings of the IEEE 20th Inter-
national Conference on Software Engineering
(ICSE 1998) (pp. 340-349). Los Alamitos, CA:
IEEE Computer Society.

Campanella, J. (1990). Principles of quality costs
(3rd ed). Milwaukee, WI: American Society for
Quality Control.

Charette, R. N. (1989). Software engineering
risk analysis and management. New York: Mc-
Graw-Hill.

Crosby, P. B. (1979). Quality is free. New York:
McGraw-Hill.

Curtis, B. (1979). In search of software complex-
ity. Proceedings of the IEEE PINY Workshop on
Quantitative Software Models (pp. 95-106). Los
Alamitos CA: IEEE Computer Society.

Cusumano, M., MacCormack, A., Kemerer, C.,
& Grandall, B. (2003). Software development
worldwide: The state of the practice. IEEE Soft-
ware, 20(6), 28–34. Figures abstracted from
IEEE Software.

Diaz, M. (1997). How software process improve-
ment helped Motorola. IEEE Software, 14(5),
75-81.

Diaz, M. (2002). How CMM impacts quality, pro-
ductivity, rework, and the bottom line. Crosstalk
Journal, U.S. Department of Defense, Hill Air
Force Base UT, 15(3), 9-14.

Dion, R. (1993). Process improvement and the
corporate balance sheet. IEEE Software, 10(4),
28-35. Figure abstracted from IEEE Software.

��0

An Overview of Software Quality Concepts and Management issues

Dobbins, H. D. (1999). The cost of software qual-
ity. Handbook of software quality assurance.
(3rd ed.) (pp. 195-216). Upper Saddle River, NJ:
Prentice Hall PTR.

Fagan, M. E. (1976). Design and code inspections
to reduce errors in program development. IBM
System Journal, 15(3), 182-211.

Galin, D. (2004a). Toward an inclusive model for
the costs of software quality. Software Quality
Professional, 6(4), 25-31.

Galin, D. (2004b). Software quality assurance.
Harlow, UK: Addison-Wesley.

Gilb, T., & Graham, D. (1993). Software inspec-
tion. Wokingham, UK: Addison-Wesley.

Gotterbarn, D., Miller, K., & Rogerson, S. (1999).
Computer society and ACM approve software
engineering code of ethics. IEEE Computer,
32(10), 84-88.

Gotterbarn, F. (1999) How the new software
engineering code of ethics affects you. IEEE
Software, 16(6), 58-64.

Hailey, V. A. (1998). A comparison of ISO9001
and the SPICE framework, SPICE: an empiricist’s
perspective. Proceedings of the Second IEEE
International Software Engineering Standards
Symposium (ISESS 1998) (pp. 233-268). Los
Alamitos, CA: IEEE Computer Society.

Haley, T. J. (1996). Software process improvement
at Raytheon. IEEE Software, 13(6), 33-41. Figure
abstracted from IEEE Software.

Halstead, M. H. (1978, August 21-22). Software
science: A progress report. U.S. Army Computer
Systems Command Software Life Cycle Manage-
ment Workshop. IEEE.

Holland, D. (1998). Document inspection as an
agent of change. In A. Jarvis & L. Hayes (Eds.),
Dare to be excellent. Upper Saddle River, NJ:
Prentice Hall.

Houston, D. (1999). Cost of software quality: Justi-
fying software process improvement to managers.
Software Quality Professional, 1(2), 8-16.

Humphrey, W. (1990). Managing the software
process. Software Engineering Institute: Ad-
dison-Wesley.

IEEE 730, IEEE Std 730-2002. (2002). IEEE
Standard for Software Quality Assurance Plans.
IEEE.

IEEE 1028, IEEE Std 1028-1997. (1997). IEEE
Standard for Software Reviews. IEEE.

IEEE 12207, IEEE/EIA 12207.0-1996. (1996).
Industry Implementation of Int. Std. ISO/IEC
12207:95, Standard for Information Technology-
Software Life Cycle Processes. IEEE.

IEEE-CS, IEEE-CS-1999. (1999) Software Engi-
neering Code of Ethics and Professional Practice,
IEEE-CS/ACM, 1999. Retrieved February 2,
2005, from http://www.computer.org/certifica-
tion/ethics.htm

ISO9001. (2000, December 15). Quality manage-
ment systems — Requirements. International
Organisation for Standardisation (3r d ed.). Ge-
neva, Switzerland: International Organisation for
Standardisation.

ISO90003, International Standards Organiza-
tion. Software Engineering: Guidelines for the
application of ISO9001:2000 to computer soft-
ware, ISO/IEC Standard 90003:2004. (2004).
Geneva Switzerland: International Organization
for Standardization/International Electrotechni-
cal Commission.

ISO9126, International Standards Organization.
(2001). Software Engineering-Product Quality-
Part 1: Quality Model, ISO/IEC Standard 9126-1.
Geneva, Switzerland: International Organization
for Standardization/International Electrotechni-
cal Commission.

 ���

An Overview of Software Quality Concepts and Management issues

ISOTR19759, International Standards Organi-
zation. (2005). Software Engineering Body of
Knowledge (Tech. Rep. No. ISO/IEC PRF TR
19759).

Ju, D. (2001). China’s budding software industry.
IEEE Software, 18(3), 92-95.

Knox, S. T. (1993). Modeling the cost of software
quality. Digital Technical Journal, 5(4), 9-16.

Laporte, C. Y., & Trudel, S. (1998). Addressing the
people issues of process improvement activities at
Oerlikon Aerospace. Software Process-Improve-
ment and Practice, 4(1), 187-198.

Levenson, N., & Turner, C. (1993). An investiga-
tion of the Therac-25 accidents. IEEE Computer,
26(7), 18-41.

Mandeville, W. A. (1990). Software cost of qual-
ity. Proceedings of the IEEE Journal on Selected
Areas on Communications, 8(2), 315-318.

May, W. (2002). A global applying ISO9001:2000
to software products. Quality Systems Update,
12(8), 7-13.

McCabe, T. J. (1976). A complexity measure.
IEEE Transactions on Software Engineering,
2(4), 308-320.

McCall, J., Richards, P., & Walters, G. (1977).
Factors in software quality (Vol. I-III). New York:
Rome Air Defense Centre.

Moitra, D. (2001). India’s software industry. IEEE
Software, 18(1), 77-80.

Niessink, F. (2000). Perspectives on improving
software maintenance. Doctoral dissertation,

Dutch Graduate School for Information and
Knowledge Systems, Utrecht, The Netherlands.

Paulk, M., Curtis, B., Chrissis, M. B., & Weber, C.
V. (1993). Capability maturity model for software
version 1.1 (Tech. Rep. No. CMU-SEI-93-TR-24).
Software Engineering Institute.

Pfleeger, S. L. (2001). Software engineering:
Theory and practice (2n d ed.). Englewood Cliffs,
NJ: Prentice Hall.

Radice, R. (2002). High quality low cost software
inspections. Andover, MA: Paradoxicon.

SEI, Software Engineering Institute. (2002). Ca-
pability maturity model integration for software
engineering (CMMi) (Version 1.1) (Tech. Rep. No.
CMU/SEI-2002-TR-028) (pp. 94-528). Pittsburgh,
PA: Carnegie Mellon University.

Slaughter, S. A., Harter, D. E., & Krishnan, M.
A. (1998). Evaluating the cost of software quality.
Communications of the ACM, 41(8), 10-17.

Suryn, W., Abran, A., & April, A. (2003). ISO/IEC
SQuaRE: The second generation of standards
for software product quality. Proceedings of the
Seventh IASTED International Conference on
Software Engineering and Applications, Marina
del Rey, CA.

Tylor, E. B., Sir. (1871). Primitive culture: Re-
searches into the development of mythology,
philosophy, religion, art and custom. London:
John Murray.

Wiegers, W. (1996). Creating a software engineer-
ing culture. New York: Dorset House.

This work was previously published in Measuring Information Systems Delivery Quality, edited by E. Duggan and J. Reichgelt,
pp. 28-54, copyright 2006 by Idea Group Publishing (an imprint of IGI Global).

���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.20
Handling of Software

Quality Defects in Agile
Software Development

Jörg Rech
Fraunhofer Institute for Experiemental Software Engineering (IESE), Germany

aBStract

Software quality assurance is concerned with
the efficient and effective development of large,
reliable, and high-quality software systems. In
agile software development and maintenance,
refactoring is an important phase for the continu-
ous improvement of a software system by remov-
ing quality defects like code smells. As time is a
crucial factor in agile development, not all quality
defects can be removed in one refactoring phase
(especially in one iteration). Documentation of
quality defects that are found during automated
or manual discovery activities (e.g., pair pro-
gramming) is necessary to avoid wasting time by
rediscovering them in later phases. Unfortunately,
the documentation and handling of existing qual-
ity defects and refactoring activities is a common
problem in software maintenance. To recall the
rationales why changes were carried out, informa-
tion has to be extracted from either proprietary
documentations or software versioning systems.

In this chapter, we describe a process for the re-
curring and sustainable discovery, handling, and
treatment of quality defects in software systems.
An annotation language is presented that is used
to store information about quality defects found
in source code and that represents the defect and
treatment history of a part of a software system.
The process and annotation language can not
only be used to support quality defect discovery
processes, but is also applicable in testing and
inspection processes.

IntroductIon

The success of software organizations—espe-
cially those that apply agile methods—depends on
their ability to facilitate continuous improvement
of their products in order to reduce cost, effort,
and time-to-market, but also to restrain the ever
increasing complexity and size of software sys-
tems. Nowadays, industrial software development

 ���

Handling of Software Quality Defects in Agile Software Development

is a highly dynamic and complex activity, which
is not only determined by the choice of the right
technologies and methodologies, but also by the
knowledge and skills of the people involved. This
increases the need for software organizations to
develop or rework existing systems with high
quality within short periods of time using auto-
mated techniques to support developers, testers,
and maintainers during their work.

Agile software development methods were
invented to minimize the risk of developing
low-quality software systems with rigid process-
based methods. They impose as little overhead
as possible in order to develop software as fast
as possible and with continuous feedback from
the customers. These methods (and especially
extreme programming (XP)) are based upon
several core practices, such as simple design,
meaning that systems should be built as simply
as possible and complexity should be removed,
if at all possible.

In agile software development, organizations
use quality assurance activities like refactoring
to tackle defects that reduce software quality.
Refactoring is necessary to remove quality de-
fects (i.e., bad smells in code, architecture smells,
anti-patterns, design flaws, negative design
characteristics, software anomalies, etc.), which
are introduced by quick and often unsystematic
development. As time is a crucial factor in agile
development, not all quality defects can be re-
moved in one refactoring phase (especially in one
iteration). But the effort for the manual discovery,
handling, and treatment of these quality defects
results in either incomplete or costly refactoring
phases.

A common problem in software maintenance is
the lack of documentation to store this knowledge
required for carrying out the maintenance tasks.
While software systems evolve over time, their
transformation is either recorded explicitly in a
documentation or implicitly through a versioning
system. Typically, problems encountered or deci-
sions made during the development phases get lost

and have to be rediscovered in later maintenance
phases. Both expected and unexpected CAPP
(corrective, adaptive, preventive, or perfective)
activities use and produce important information,
which is not systematically recorded during the
evolution of a system. As a result, maintenance
becomes unnecessarily hard and the only coun-
termeasures are, for example, to document every
problem, incident, or decision in a documentation
system like bugzilla (Serrano & Ciordia, 2005).
The direct documentation of quality defects that
are found during automated or manual discovery
activities (e.g., code analyses, pair programming,
or inspections) is necessary to avoid wasting time
by rediscovering them in later phases.

In order to support software maintainers
in their work, we need a central and persistent
point (i.e., across the product’s life cycle) where
necessary information is stored. To address this
issue, we introduce our annotation language,
which can be used to record information about
quality characteristics and defects found in
source code, and which represents the defect and
treatment history of a part of a software system.
The annotation language can not only be used
to support quality defect discovery processes,
but is also applicable for testing and inspection
processes. Furthermore, the annotation language
can be exploited for tool support, with the tool
keeping track and guiding the developer through
the maintenance procedure.

Our research is concerned with the develop-
ment of techniques for the discovery of quality
defects as well as a quality-driven and experience-
based method for the refactoring of large-scale
software systems. The instruments developed
consist of a technology and methodology to sup-
port decisions of both managers and engineers.
This support includes information about where,
when, and in what configuration quality defects
should be engaged to reach a specific configuration
of quality goals (e.g., improve maintainability or
reusability). Information from the diagnosis of
quality defects supports maintainers in select-

���

Handling of Software Quality Defects in Agile Software Development

ing countermeasures and acts as a source for
initiating preventive measures (e.g., software
inspections).

This chapter targets the handling of quality
defects in object-oriented software systems and
services. It is concerned with the theory, method-
ology, and technology for the handling of defects
that deteriorate software qualities as defined in
ISO 9126 (e.g., maintainability, reusability, or per-
formance). We describe the relevant background
and related work concerning quality defects and
quality defect handling in agile software proj-
ects, as well as existing handling techniques and
annotation languages. The subsequent section
encompasses the morphology of quality defects
as well as their discovery techniques. As the core
of this chapter, we present the techniques for
handling quality defects after their discovery in
an agile and time-critical environment and define
an annotation language to record information
about quality defects and their history in source
code. Thereafter, a section is used to describe
the annotation language that is used to record
the treatment history and decisions in the code
itself. Finally, we summarize several lessons
learned and requirements one should keep in mind
when building and using quality defect handling
methods and notations in an agile environment.
At the end of this chapter, we summarize the
described approach and give an outlook to future
work and trends.

Background

This section is concerned with the background
and related work in agile software engineering,
refactoring, and quality defects. It gives an over-
view of quality defect discovery, the documenta-
tion of defects, as well as source code annotation
languages.

agile Software development

Agile software development methods impose as
little overhead as possible in order to develop
software as fast as possible and with continuous
feedback from the customers. Agile methods have
in common that small releases of the software
system are developed in short iterations in order to
create a running system with a subset of the func-
tionality needed for the customer. Therefore, the
development phase is split into several activities,
which are followed by small maintenance phases.
In contrast to traditional, process-oriented SE,
where all requirements and use cases are elicited,
agile methods focus on few essential requirements
and incrementally develop a functional system in
several short development iterations.

Today, extreme programming (XP) (Beck,
1999) is the best-known agile software devel-
opment approach. 0 shows the general process
model of XP, which is closely connected to
refactoring, basically being its cradle (Beck &
Fowler, 1999).

These agile methods (and especially extreme
programming (XP)) are based upon 12 principles
(Beck, 1999). We mention four of these principles,
as they are relevant to our work.

1. Planning Game is the collective planning of
releases and iterations in the agile develop-
ment process and is necessary for quickly
determining the scope of the next release.
If the requirements for the next iteration
are coherent and concise, more focus can
be given to one topic or subsystem without
making changes across the whole system.

2. Small releases are used to develop a large
system by first putting a simple system into
production and then releasing new versions
in short cycles. The smaller the change to the
system, the smaller the risk of introducing
complexity or defects that are overlooked
in the refactoring (or SQA) phases.

 ���

Handling of Software Quality Defects in Agile Software Development

3. Simple design means that systems are built
as simply as possible, and complexity in the
software system is removed, if at all possible.
The more understandable, analyzable, and
changeable a system is, the less functional-
ity has to be refactored or reimplemented
in subsequent iterations or maintenance
projects.

4. Refactoring is necessary for removing
qualitative defects that are introduced by
quick and often unsystematic development.
Decision support during refactoring helps
the software engineer to improve the sys-
tem.

In the highly dynamic processes used in
agile methods, teams and organizations need
automated tools and techniques that support their
work without consuming much time. Especially
in the refactoring phase, where the software is
revised, automation can be used to detect qual-
ity defects such as code smells (Fowler, 1999),
antipatterns (Brown, Malveau, McCormick, &
Mowbray, 1998), design flaws (Riel, 1996), design
characteristics (Whitmire, 1997), or bug patterns
(Allen, 2002). Techniques from KDD support the
refactoring of software systems (Rech, 2004),

and techniques from knowledge management
can foster experience-based refactoring (Rech
& Ras, 2004).

Quality defect discovery

A central research problem in software mainte-
nance is still the inability to change software easily
and quickly (Mens & Tourwe, 2004). To improve
the quality of their products, organizations often
use quality assurance techniques to tackle defects
that reduce software quality. The techniques for
the discovery of quality defects are based upon
several research fields.

• Software Inspections (Aurum, Petersson,
& Wohlin, 2002; Ciolkowski, Laitenberger,
Rombach, Shull, & Perry, 2002), and espe-
cially code inspections are concerned with
the process of manually inspecting software
products in order to find potential ambigui-
ties as well as functional and non-functional
problems (Brykczynski, 1999). While the
specific evaluation of code fragments is
probably more precise than automated
techniques, the effort for the inspection is
higher, the completeness of an inspection

Figure 1. Agile software development (here the XP process)

Spike
Prototyping

Release
Planning

Development
Iteration

A cceptance
Test

user Stories

architectural
Spike

Spike

Small releases

pair programming
(SQa)

Next Iteration

unit testing / test
first (SQa)

test first (SQa)

���

Handling of Software Quality Defects in Agile Software Development

regarding the whole system is smaller, and
the number of quality defects searched for
is smaller.

• Software testing (Liggesmeyer, 2003) and
debugging is concerned with the discovery
of defects regarding the functionality and
reliability as defined in a specification or
unit test case in static and dynamic environ-
ments.

• Software product metrics (Fenton & Neil,
1999) are used in software analysis to mea-
sure the complexity, cohesion, coupling, or
other characteristics of the software product,
which are further analyzed and interpreted
to estimate the effort for development or to
evaluate the quality of the software product.
Tools for software analysis in existence today
are used to monitor dynamic or static aspects
of software systems in order to manually
identify potential problems in the architec-
ture or find sources for negative effects on
the quality.

Furthermore, several specific techniques for
quality defect discovery already exist (Marinescu,
2004; Rapu, Ducasse, Girba, & Marinescu, 2004).
Most of the tools such as Checkstyle, FindBugs,
Hammurapi, or PMD analyze the source code
of software systems to find violations of project-
specific programming guidelines, missing or
overcomplicated expressions, as well as poten-
tial language-specific functional defects or bug
patterns. Nowadays, the Sotograph can identify
“architectural smells” that are based on metrics
regarding size or coupling (Roock & Lippert,
2005).

But the information from these techniques
and the resulting CAPP or refactoring activities
are typically lost after some time if they are not
documented in external documents or defect man-
agement systems (e.g., bugzilla). And even these
external data sources are prone to get lost over
several years of maintenance and infrastructure

changes. The only information that will not get
lost is typically the source code itself.

refactoring

Beside the development of software systems, the
effort for software evolution and maintenance is
estimated to amount to 50% to 80% of the overall
development cost (Verhoef, 2000). One step in the
evolution and development of software systems
is the process of reworking parts of the software
in order to improve its structure and quality (e.g.,
maintainability, reliability, usability, etc.), but not
its functionality. This process of improving the in-
ternal quality of object-oriented software systems
in agile software development is called refactor-
ing (Fowler, 1999). While refactoring originates
in from the agile world, it can, nevertheless, be
used in plan-driven (resp. heavyweight) software
engineering. In general, refactoring (Fowler,
1999; Mens et al., 2004) is necessary to remove
quality defects that are introduced by quick and
often unsystematic development.

The primary goal of agile methods is the
rapid development of software systems that are
continuously adapted to customer requirements
without large process overhead. During the last
few years, refactoring has become an important
part in agile processes for improving the structure
of software systems between development cycles.
Refactoring is able to reduce the cost, effort, and
time-to-market of software systems. Develop-
ment, maintenance, and reengineering effort
are reduced by restructuring existing software
systems (on the basis of best practices, design
heuristics, and software engineering principles),
especially in the process of understanding (the
impact of new changes in) a system. A reduction
of effort also reduces the length of projects and
therefore, cost and time-to-market. Furthermore,
refactoring improves product quality and there-
fore is able to reduce the complexity and size of
software systems. Especially in agile software

 ���

Handling of Software Quality Defects in Agile Software Development

development, methods as well as tools to sup-
port refactoring are becoming more and more
important (Mens, Demeyer, Du Bois, Stenten,
& Van Gorp, 2003).

However, performing manual discovery of
quality defects that should be refactored result
in either very short or costly refactoring phases.
While several automations for refactoring have
already been developed (e.g., “extract method”
refactoring), the location, analysis, and removal
is still an unsystematic, intuitive, and manual
process. Today, several techniques and methods
exist to support software quality assurance (SQA)
on higher levels of abstraction (e.g., requirement
inspections) or between development iterations
(e.g., testing). Organizations use techniques like
refactoring to tackle quality defects (i.e., bad
smells in code (Beck & Fowler, 1999), architecture
smells (Roock et al., 2005), anti-patterns (Brown
et al., 1998), design flaws (Riel, 1996; Whitmire,
1997), and software anomalies (IEEE-1044, 1995),
etc.) that reduce software quality.

Refactoring does not stop after discovery;
even if we had solved the problem of discover-
ing every quality defect possible, the information
about the defect, the rationales of whether it is
removed (or not), and the refactorings used have
to be documented in order to support maintainers
and reengineers in later phases. If one knows how
to remove a specific quality defect or a group of
quality defects, one still needs support, as it is not
clear where and under which conditions refactor-
ing activities should be used. Furthermore, product
managers need support to organize chains of refac-
torings and to analyze the impact of changes due to
refactorings on the software system. Analogously,
quality managers and engineers need information
to assess the software quality, identify potential
problems, select feasible countermeasures, and
plan the refactoring process as well as preventive
measures (e.g., code inspections).

defect documentation

Today, various repositories exist for document-
ing of information about defects, incidents, or
other issues regarding software changes. This
information can be stored in configuration man-
agement systems (e.g., CVS, SourceSafe), code
reuse repositories (e.g., ReDiscovery, InQuisiX),
or defect management systems.

The last category is also known as bug tracking
(Serrano et al., 2005), issue tracking (Johnson &
Dubois, 2003), defect tracking (Fukui, 2002), or
source code review systems (Remillard, 2005).
They enable a software engineer to record in-
formation about the location, causes, effects, or
reproducibility of a defect. Typical representatives
of defect management systems are open-source
variants such as Bugzilla (Serrano et al., 2005),
Scarab (Tigris, 2005), Mantis (Mantis, 2005),
or TRAC (TRAC, 2005). Commercial versions
include Tuppas (Tuppas, 2005), Census from
Metaquest (MetaQuest, 2005), JIRA from At-
lassian (Atlassian, 2005), or SSM from Force10
(Force10, 2005). These tools are predominantly
used in defect handling to describe defects on
the lower abstractions of software systems (i.e.,
source code) (Koru & Tian, 2004) separated from
the code.

Defect classification schemes (Freimut, 2001;
Pepper, Moreau, & Hennion, 2005) like ODC (Or-
thogonal Defect Classification) (Chillarege, 1996)
are used, for example, in conjunction with these
tools to describe the defects and the activity and
status a defect is involved in. The ODC process
consists of an opening and closing process for
defect detection that uses information about the
target for further removal activities. Typically,
removal activities are executed, but changes,
decisions, and experiences are not documented
at all—except for small informal comments when
the software system is checked into a software
repository like CVS.

���

Handling of Software Quality Defects in Agile Software Development

From our point of view, the direct storage of
information about defects, decisions about them,
or refactorings applied in the code (as a central
point of information) via annotation languages
such as JavaDoc (Kramer, 1999), doxygen (van
Heesch, 2005), or ePyDoc (Loper, 2004) seems
to be a more promising solution. The next section
describes the relevant background and related
work for annotation languages, which are used
to record historical information about the evolu-
tion of a code fragment (e.g., a method, class,
subsystem, etc.).

Source code annotation Languages

Annotation languages such as JavaDoc (Kramer,
1999), ePyDoc (ePyDoc, 2005), ProgDOC (Simo-
nis & Weiss, 2003), or Doxygen (van Heesch, 2005)
are typically used to describe the characteristics
and functionality of code fragments (i.e., classes,
methods, packages, etc.) in the source code itself
or in additional files. Today several extensions,
especially to JavaDoc, are known that enable us
to annotate which patterns (Hallum, 2002; Tor-
chiano, 2002), aspects (Sametinger & Riebisch,
2002), or refactorings (Roock & Havenstein,
2002) were or will be used on the source code,
and which help us to describe characteristics such
as invariants, pre-/ post-conditions, or reviewer
names (JSR-260, 2005; Tullmann, 2002). These
extensions to the annotation language are called
taglets. They are used by doclets in the extraction
using, for example, the JavaDoc program. These
tools collect the distributed information blocks
and generate a (online) documentation rendered
in HTML or another file format (e.g., PDF) for
better viewing. Typically, these documentations
describe the application program interface (API)
as a reference for software engineers. Similarly,
tools and notations like Xdoclet offer additional
tags that are used to generate many artifacts such
as XML descriptors or source code. These files
are generated from templates using the informa-

tion provided in the source code and its JavaDoc
tags.

Typical content of code annotations is, for
example, used to describe the:

• Purpose of a class, field, or method.
• Existence of (functional) defects or work-

arounds.
• Examples of using the code fragment.

In the following sections and tables, we de-
scribe the tags currently available for annotating
source code using JavaDoc. JavaDoc is a name
for an annotation language as well as the name
of a tool from Sun Microsystems to generate
API documentation and is currently the industry
standard for documenting software systems in
Java. The tool uses the tags from the JavaDoc
language to generate the API documentation in
HTML format. It provides an API for creating
doclets and taglets, which allows extending the
system with one’s own tags (via taglets) and the
documentation with additional information (via
doclets).

As listed in 0, JavaDoc currently consists of
19 tags that might be used to describe distin-
guished information (e.g., such as return values
of a method) or to format text passages (e.g., to
emphasize exemplary source code). The standard
tags appear as “@tag” and might include inline
tags, which appear within curly brackets “{@
tag}.” Inline tags only appear within, respectively
behind, standard tags or in the description field
(e.g., “@pat.name … {@pat.role …}”).

Developers can use the JavaDoc tags when
documenting source code in a special comment
block by starting it with “/**” and ending it with
“*/.” A tag is indicated by using an “@” (“at”) sign
right before the tag name. An example of a JavaDoc
comment used for a method is in Box 1.

As an extension to JavaDoc, four refactoring
tags were developed in Roock et al. (2002) as
described in 0.

 ���

Handling of Software Quality Defects in Agile Software Development

/** Start of JavaDoc comment
* Sorts an array using quicksort Description of the method
* @author John Doe Indicate the author
* @param productArray Describe a parameter
* @return Array The sorted array Describe the return value
*/ End of JavaDoc comment

Table 1. General tags of the JavaDoc annotation language
Tag Description Origin Type
@author May appear several times and indicates who has created or modified the

code.
JavaDoc 1.0 Context

@param Describes one parameter of a method (or template class). JavaDoc 1.0 Function
@return Describes the returned object of a method. JavaDoc 1.0 Function
@throws Describes the (exception-) objects that are thrown by this method. JavaDoc 1.2 Function
@exception Synonym for @throws. JavaDoc 1.0 Function
@version States the version of this code structure. JavaDoc 1.0 Context
@since States the version since when this code was implemented and available

to others.
JavaDoc 1.1 Context

@deprecated Indicates that this code structure should not be used anymore. JavaDoc 1.0 Status
@see Adds a comment or link to the “See also” section of the documentation.

May link to another part of the documentation (i.e., code).
JavaDoc 1.0 Reference

@serialData Comments the types and order of data in a serialized form. JavaDoc 1.2 Context
@serialField Comments a ObjectStreamField. JavaDoc 1.2 Context
@serial Comments default serializable fields. JavaDoc 1.2 Context
<@code> Formats text in code font (similar to <code>). JavaDoc 1.5 Format
<@docRoot> Represents the relative path to the root of the documentation. JavaDoc 1.3 Reference
<@inherit-
Doc>

Copies the documentation from the nearest inherited code structure. JavaDoc 1.4 Reference

<@link> Links to another part of the documentation (i.e., code structure) as the
@see tag but stays inline with the text and is formated as “code.”

JavaDoc 1.2 Reference

<@linkPlain> Identical to <@link> but is displayed in normal text format (i.e., not
code format).

JavaDoc 1.4 Reference

<@literal> Displays text without interpreting it as HTML or nested JavaDoc. JavaDoc 1.5 Format
<@value> The value of a local static field or of the specified constant in another

code.
JavaDoc 1.4 Reference

Table 2. Refactoring tags by Roock et al. (2002)

Tag Description
@past Describes the previous version of the signature.
@future Describes the future signature of the element.
@paramDef States the default value expected for a parameter. The syntax is @paramDef <parameter> =

<value>.
@default Defines the default implementation of an abstract method.

Box 1.

��0

Handling of Software Quality Defects in Agile Software Development

Table 3. Pattern tags by Torchiano (2002)
Tag Description
@pat.name States the standard name of the pattern as defined in (Gamma, Richard, Johnson, & Vlissides,

1994) (and other).
<@pat.role> Inline-tag of pat.name that describes the part of the pattern that is represented by this element

(e.g., “Leaf” in a composite pattern).
@pat.task Describes the task performed by the pattern or its role.
@pat.use Describes the use of the pattern or a role, typically by a method.

Table 4. Other tags
Tag Description
@contract Defines bounds of a parameter (or other value). Syntax is “@contract <requires> <min> <=

<parameter> <= <max>.”
@inv, @invariant States an invariant. Syntax is “@inv <boolean expression>.”
@pre States the precondition for a method.
@post States the postcondition for a method. This includes information about side effects (e.g.,

changes to global variables, fields in an object, changes to a parameter, and return values (ex-
cept if stated in @return).

@issue Indicates a new requirement or feature that could be implemented. Syntax is @issue [descrip-
tion ...].

@reviewedBy Indicates a code review for the associated class/interface was completed by a reviewer. Syntax
is @reviewedby <name> <date> [notes ...].

@license Indicates the copyright license used for this code fragment. Syntax is @license [description ...].
@category Annotates the element with a free attribute / category. @category <category>.
@example @example <description>.
@tutorial Link to a tutorial.
@index Defines the text that should appear in the index created by JavaDoc.
@exclude States that this element should not be included in the API by the JavaDoc command.
@todo Indicates that further work has to be done on this element.
@internal Comments to this element that are internal to the developer or company.
@obsolete Used if deprecated elements are actually removed from the API.
@threadSafe Indicates whether this element is threadsafe.
@pattern Formally describes a pattern existence with the syntax @pattern <pattern name>.<instance

name> <role name> <text>.
@aspect Describes an aspect existence with the syntax @aspect <name> <text>.
@trace Describes a pattern existence with the syntax @trace <name> <text>.

 ���

Handling of Software Quality Defects in Agile Software Development

To note the existence of patterns in a software
system as well as the task and role as described in
the pattern definitions, several tags were developed
by Torchiano (2002) and are listed in 0.

Furthermore, several other groups of annota-
tions exist for various purposes. The following tags
are from Roock et al. (2002) (@contract), Kramer
(1998) (@inv, @pre, @post), Tullmann (2002) (@
issue, @todo, @reviewedBy, @license), Samet-
inger et al. (2002) (@pattern, @aspect, @trace),
and JSR-260 (2005) (@category, @example, @
tutorial, @index, @exclude, @todo, @internal,
@obsolete, @threadSafe).

The characteristics of source code annotation
languages can be differentiated by the number of
tags and the formality of their expressiveness.
We differentiate between three categories of
formality:

1. Formal: An explicit and unambiguous speci-
fication of the content. A formal tag might
include an informal section like a descrip-
tion or note to the formal part (e.g., the tag
“param” in JavaDoc has an informal part
to describe the meaning of the parameter).
In particular, the formal part of a tag must
be processable by a computer.

2. Semi-formal: A structured or formal rep-
resentation that is ambiguous or not directly
processable by a computer.

3. Informal: An unstructured and possibly
ambiguous specification of content.

In summary, the tags used in JavaDoc and its
extensions can be used to describe characteristics
of the source code on a relatively granular or semi-
formal level. The processing of these annotations
can be used to generate API documentations with
additional information about patterns, aspects,
or signature changes. The recording of quality
defects discovered and refactorings applied as
well as rationales or experiences about their ap-
plication can only be accomplished using free
text in the API description.

Furthermore, these annotation languages and
their extensions have different target areas in the
field of software quality assurance in order to store
information about tests, inspections, patterns, and
refactorings. 0 shows a comparison of several
annotation languages in relevant areas.

Quality defects and Quality defect
discovery

The main concern of software quality assurance
(SQA) is the efficient and effective development of
large, reliable, and high-quality software systems.
In agile software development, organizations use
techniques like refactoring to tackle “bad smells in
code” (Beck et al., 1999), which reduce software

Table 5. Annotation languages in comparison

Language Extension # of
Tags Test Info Inspection Info Pattern Info Refactoring

Info

JavaDoc 1.5

Standard 19 No No No No
Roock et
al. 5 Semi-Formal

(1) No No Informal (4)

Torchiano 10 No No Semi-Formal
(3) No

Samet-
inger et al. 3 No No Informal (3) No

Tullmann 4 No Informal (1) No No
Kramer 3 Informal (3) No No No
JSR-260 9 No No No No

���

Handling of Software Quality Defects in Agile Software Development

qualities such as maintainability, changeability,
or reusability. Other groups of defects that do
not attack functional, but rather non-functional
aspects of a software system are architecture
smells (Roock & Lippert, 2004), anti-patterns
(Brown et al., 1998), design flaws (Riel, 1996;
Whitmire, 1997), and software anomalies in
general (IEEE-1044, 1995).

In this chapter, we use the umbrella term
quality defects (QD) for any defect in software
systems that has an effect on software quality
(e.g., as defined in ISO 9126), but does not directly
affect functionality. Whether the quality defect is
automatically discoverable (Dromey, 1996, 2003)
or not (Lauesen & Younessi, 1998), an annotation
language and method that can be used to support
the handling of quality defects should record in-
formation about quality characteristics and qual-
ity defects in order to represent their status and
treatment history. This section will elaborate on
this concept and describe several quality defects,
their interrelation, symptoms, and effects.

Today, various forms of quality defects exist
with different types of granularity. Some target
problems in methods and classes, while others
describe problems on the architecture or even
process levels. In this chapter, we only focus on
quality defects on the code level. The representa-
tives on this level are:

• Code Smells: The term code smell is an
abbreviation of “bad smells in code,” which
were described in Beck et al. (1999). Today,
we have many code smells that are semi-for-
mally described and can be used for manual
inspection and discovery. There are at least
38 known code smells with 22 in Fowler
(1999), 9 new ones in Wake (2003), 5 new
ones in Kerievsky (2005), and 2 in Tourwe
and Mens (2003). Code smells are indicators
for refactoring and typically include a set
of alternative refactoring activities in their
description, which might be used to remove
them.

• Architectural Smells: Very similar to code
smells are architectural smells that describe
problems on the design level. Yet, the 31
architectural smells described in Roock et
al. (2005) do not only apply on the design
level but also on the code level. They typi-
cally describe problems regarding classes in
object-oriented software and interrelations
between them.

• Anti-Patterns: Design patterns (Gamma
et al., 1994) and anti-patterns (Brown et
al., 1998) represent typical and reoccurring
patterns of good and bad software architec-
tures and were the start of the description
of many patterns in diverse software phases
and products. While patterns typically state
and emphasize a single solution to multiple
problems, anti-patterns typically state and
emphasize a single problem to multiple solu-
tions. An anti-pattern is a general, proven,
and non-beneficial problem (i.e., bad solu-
tion) in a software product or process. It
strongly classifies the problem that exhibits
negative consequences and provides a solu-
tion. Built upon similar experiences, these
anti-patterns represent “worst-practices”
about how to structure or build a software
architecture. An example is the “lava flow”
anti-pattern, which warns about developing
a software system without stopping some-
times and reengineering the system. The
larger and older such a software system
gets, the more dead code and solidified (bad)
decisions it carries along.

• Bug Patterns: These patterns are concerned
with functional aspects that are typically
found in debugging and testing activities. In
Allen (2002), 15 bug patterns are described,
which describe underlying bugs in a software
system.

• Design Flaws and (Negative) Design Char-
acteristics: Whitmire (1997) describes nine
distinct and measurable characteristics of an
object-oriented design. These characteristics

 ���

Handling of Software Quality Defects in Agile Software Development

such as “similarity” describe the degree to
which two or more classes or domain-level
abstractions are similar in terms of their
structure, function, behavior, or purpose.

• Design Heuristics: Design heuristics pro-
vide support on how to construct software
systems and, in a way, define quality defects
by their absence. They range from the “in-
formation hiding” principle to guidelines
such as “Eliminate irrelevant classes from
your design.” There are 61 design heuristics
described in Riel (1996) and 14 principles
described in Roock et al. (2005).

As listed, there are many quality defects of
various granularities and they are described in
different forms. To give a more concrete idea
of quality, we describe two of them in the fol-
lowing:

1. Long Method: In object-oriented program-
ming, one should pay attention to the fact
that methods are not too long. The longer
a method, the more difficult it is to be un-
derstood by a developer. Comprehensibility
and readability are negatively affected by the
length of a method and thus negatively affect
maintainability and testability. Moreover,
a short understandable method typically
needs less comments than a long one. An-

other advantage of short methods is the fact
that a developer does not constantly scroll
and break his reading flow. The most obvi-
ous method for discovering long methods
is the metric number of lines (LOC) per
method. But the question of which method
is too long and constitutes a problem is not
easily answered. This must either be speci-
fied or found by detecting anomalies from
the standard distribution. Nevertheless,
a method exceeding this threshold value
must not necessarily be shortened if other,
more important, quality constraints would
be negatively affected.

2. Shotgun Surgery: This denotes the problem
that several classes are always changed in
the same group, for example, if the system
is adapted to a new database scheme and
the same two classes are changed each time.
The expandability of the system is thus
constrained, and if one class is forgotten
during a change, it is more likely to fail.
The discovery of shotgun surgery is very
difficulty and requires either change metrics
or specified rules.

While these problems might not represent
problems that have a directly tangible effect on
quality, they might become problematic in future
evolution or refactoring activities and should be

Figure 2. Conceptual model of the quality defect ontology (software product level)

fosters causes causes

So
lv

ed
 b

y

pr
ev

en
ts

P re-dis pos ition S ymptomDefect

T reatment

P revention

C aus e

���

Handling of Software Quality Defects in Agile Software Development

removed as fast as possible—if the time is avail-
able. These are only two of many described qual-
ity defects. Nevertheless, they show that quality
defects describe problems on different levels of
complexity and might occur in parallel in one
situation (i.e., in one code fragment).

0 depicts the general model for the concepts
that are used to describe quality defects and that
are linked to them. A software system might have
predispositions that foster or enable the creation
of quality defects. These defects themselves have
causes that are responsible for the defects being
integrated into the system. The quality defects
might have a negative as well as a positive ef-
fect on specific qualities and are perceivable via
specific symptoms. Finally, the defects are solved
or removed via specific treatments after they are
discovered, or the causes might be prevented by
special preventive measures.

In software engineering (SE) and especially
in the case of quality defects for a software prod-
uct, the context of a defect can be described as
listed in 0.

In the example on the right side, the predisposi-
tion “bad architecture” causes a “cluttered func-
tionality,” which results in a “shotgun surgery”
defect. This quality defect can be discovered by
the symptom of “recurring changes to the same
set of software units” and might be removed by
the “inline class” refactoring. A prevention of this
problem would be a “good” systematic architecture
with clear separation of functionality (e.g., in the
form of a pattern-based architecture).

handling of Quality defects

Typically, during agile development with short
iterations, several quality defects are introduced

Table 6. Examples for software engineering techniques

Example 1 Example 2
Predisposition Data processing system Lack of good architecture/design
Cause Large data processing algorithms Distributed functionality
Defect “Long method” “Shotgun surgery”
Side-effects of defect Increase analyzability effort Increased maintenance effort
Symptom Many lines of code Recurrent changes to the same units
Treatment Extract method Inline class(es)
Side-effects of treatment Increased subroutine calls (worsens

performance)
Divergent change

Prevention Optimize algorithm (phase) Pattern-based architecture

Figure 3. The quality defect discovery and handling process model

Quality defect handling

Discover
Defects

Code &
V ersions

Plan
Removal

A nalyze
Defect

M ark
Code

Refactor
Code

Document
Change

A nalyze
Cause

Quality Ef fects

SW
Dev.

Prevention

Quality
M odel

QM
Dev.

QD
M odel

QDD
Techniques

A nnotation
Language

 ���

Handling of Software Quality Defects in Agile Software Development

into the software system and are discovered es-
pecially in the refactoring phase. To facilitate the
annotation of source code and the processing of
quality defect removal, a mechanism to store the
information from the QDD process is required.

the handling process

In the following, the general process of quality
defect discovery and refactoring is depicted. 0
shows the process model that is either initiated
during software development or during a special
maintenance (resp. refactoring) activity.

In the execution of the process, the following
sub-processes are performed:

• Discover Defects: Manual or automatic
quality defect discovery techniques are
used to analyze the source code and ver-
sions thereof from the software repository.
Potential quality defects are identified and
the affected code (of the most current ver-
sion) is annotated.

• Plan Removal: Based on the discovered
quality defects (annotated with a special
tag) and a previously defined quality model,
a sequential plan for the refactoring of the
software system (or part thereof) is con-
structed.

• Analyze Defects: The software engineer
processes the list of potential quality de-
fects based on their priority, analyzes the
affected software system (or part thereof),
and decides if the quality defect is truly
present and if the software system can be
modified without creating too many new
quality defects.

• Refactor Code: If the quality defect is to
be removed from the software system, the
engineer is briefed about the existing qual-
ity defects and their rationales as well as
about available refactorings, their impact
on software quality, and previously made

experiences with the kind of quality defect
and refactoring at hand.

• Mark Code: If a potential quality defect
is unavoidable or its removal would have
a negative impact on an important quality
(e.g., performance), this decision is recorded
in the affected part of the software system
to prevent future analysis of this part.

• Document Change: After the refactoring or
marking, the software system is annotated
with specific tags about the change or deci-
sion, and the experience about the activity
is recorded within an experience database
(i.e., a database in an experience factory
(Basili, Caldiera, & Rombach, 1994b) for
storing, formalizing, and generalizing
experiences about software development
and refactoring activities (e.g., to construct
defect patterns from multiple similar defect
descriptions)).

• Analyze Cause: Statistics, information, and
experiences about the existence of quality
defects in the software systems are fed back
into the early phases of the software develop-
ment process to prevent or at least reduce
their reoccurrence. Preventive measures
include, for example, software requirement
inspections or goal-oriented training of
employees. Furthermore, information about
dependencies between qualities, quality de-
fects, and refactorings are fed back into the
quality model development process in order
to continuously improve the techniques for
quality model development.

decision Support in handling

In order to support decisions about what to refac-
tor in a software system, we developed several
methods and techniques. The following questions
act as the guiding theme for the development and
enactment of decision-making (i.e., the “plan
removal” or “refactor code” phase) as well as

���

Handling of Software Quality Defects in Agile Software Development

understanding (i.e., the “analyze defect” or “docu-
ment change” phase) in refactoring phases:

• Decision problem 1: Which quality defects
should be refactored and which might stay
in the system?

• Decision problem 2: In which sequence
should one refactor multiple quality defects
in order to minimize effort?

• Comprehension problem 1: How does one
understand and detect the quality defect in
the concrete situation?

• Comprehension problem 2: How does one
understand the refactoring in the concrete
situation and its effect on the software sys-
tem?

• Decision problem 3: Which refactoring
should one use if multiple ones are avail-
able?

• Comprehension problem 3: Which infor-
mation should one record after refactoring
or marking for later evolution, maintenance,
or reengineering activities?

• Decision problem 4: Did the understanding
of the problem or the refactoring result in
valuable experience that should be recorded

to support later activities (possibly by oth-
ers)?

• Comprehension problem 5: How should
one record the experience?

decision Support in Software
refactoring

Our approach encompasses several methods for
supporting the decision of where, when, and in
what sequence to refactor a software system as
depicted in 0. Beginning from the left upper corner
and going counterclockwise, knowledge about
quality defects from defect discovery processes
is used to retrieve experiences associated with
similar defects from previous refactorings. These
experiences are used to handle quality defects in
the defect removal phase. Additionally, suitable
experiences are augmented by so-called micro-
didactical arrangements (MDA) (Ras, Avram,
Waterson, & Weibelzahl, 2005), which initiate
learning processes and aim at improving the
understandability, applicability, and adaptability
of the experience in the specific context.

As shown in 0, we define six phases, based on
the quality improvement paradigm (QIP) (Basili,

Figure 4. Experience-based semi-automatic reuse of refactoring experiences

Selected
refactoring
experience

Software verification
e.g., Inspections

Software validation
e.g., Code Testing

Software diagnosis
e.g., Code Analysis,
Mining

refactoring
experiences

defects
e.g., Bugs,
Code smells

micro-didactical
arrangement (mda)

e.g., augmented
refactoring experiences

Software documents
e.g., Code, Designs, …

defect removal
phase

e.g., Refactoring

Project 1

Project n

Daily
Work

Finding bugs, code smells, defect flaws, ...

learning
goal

LeB pB
SE-Ontology

Pedagogical Agent

Refactoring
experience

pattern
learning
elements

Selection of experience
e.g., Inspections

Defect Discovery

Creation of MDAs

 ���

Handling of Software Quality Defects in Agile Software Development

Caldiera, & Rombach, 1994a), for the continuous
handling of quality defects. In contrast to the qual-
ity defect handling process as depicted in 0, these
phases are not concerned with quality defects in
a specific product, but with the learning process
about the quality defects themselves and their
effect on the software qualities. 0 represents the
realizations of phase 2 (“discover defect”), phase 3
(“plan removal”), and phase 4 (the “quality defect
handling” block).

In 0, we first start with the definition of the
quality model consisting of qualities that should
be monitored and improved. For example, this
may result in different goals (i.e., quality as-
pects), as reusability demands more flexibility
or “openness,” while maintainability requires
more simplicity. Phase 2 is concerned with the
measurement and preprocessing of the source code
to build a basis for quality defect discovery (i.e.,
“discover defects”). Results from the discovery
process (i.e., quality defects) are represented and
prioritized to plan the refactoring in phase 3 (i.e.,
“plan removal”). Here, the responsible person has
to decide which refactorings have to be executed
(i.e., “analyze defect”) in what configuration and
sequence, in order to minimize work (e.g., change
conflicts) and maximize the effect on a specific
quality. In phase 4, the refactoring itself is (or is
not) applied to the software system (i.e., “Refactor
Code” or “Mark Code”) by the developer, which
results in an improved product. Phase 5 compares
the improved product with the original product to
detect changes and their impact on the remaining
system (i.e., “analyze cause”). Finally, in phase
6, we document the experiences and data about
the refactoring activity, changes to the software
system, and other effects in order to learn from
our work and continuously improve the model of
relationships between quality, refactorings, and
quality defects.

As indicated previously, the KDD sub-pro-
cesses are grouped in phase 2. We select source
code from a specific build, preprocess the code,
and store the results in the code warehouse, ana-

lyze the data to discover quality defects, discover
deviations from average behavior, cluster code
blocks with severe or multiple quality defects,
and represent discovered and prioritized quality
defects to the user.

an example of dS for Qdd

For example, we may detect a method in an ob-
ject-oriented software system that has a length of
300 LOC. As described in Fowler (1999), this is
a code smell called long method. A long method
is a problem especially in maintenance phases, as
the responsible maintainer will have a hard time
understanding the function of this method.

One suitable refactoring for the mentioned
code smell might be the refactoring simply called
extract method: the source code of the long
method is reviewed to detect blocks that can be
encapsulated into new (sub-)methods. Experiences
with the extract method refactoring are used to
support the decision on where, when, how, and
if the refactoring has to been implemented. For
example, the developer might remark that every
block of code that has a common meaning, and
could be commented respectively, could also be
extracted into several smaller methods. Further-
more, the developer might note that the extraction
of (sub-) methods, from methods implementing

Figure 5. Quality-driven refactoring

6. report 6. report
changechange

4. refactor 4. refactor
productproduct

3. plan 3. plan
refactoringrefactoring

1. define 1. define
QualitiesQualities

2. 2. analyzeanalyze
productproduct

5. monitor 5. monitor
QualityQuality

refactoring refactoring
experiencesexperiences

���

Handling of Software Quality Defects in Agile Software Development

complex algorithms, can affect the performance
requirements of the software system and therefore
might not be applicable.

Additionally, the generation of new methods
might create another smell called “large class”
(i.e., the presence of too many methods in a class),
which might complicate the case even further.
Finally, the new experiences are annotated by
the developer and stored in the refactoring ex-
perience base.

While this example only touches a simple
quality defect and refactoring, more complex
refactorings influence inheritance relations or
introduce design patterns (Fowler, 1999).

an annotation Language to Support
Quality defect handling

This section describes, defines, and explains a
language that will be used to annotate code frag-
ments that are either contaminated by quality
defects or checked by a software engineer and
cleared of quality defects. As described in the
background section, several annotation languages
for the annotation of source code already exist
that are not adequate. This new language is used
to keep decisions about quality defects persistent
and over time builds a “medical history” of the
source code fragment (e.g., a class).

goals and characteristics of
annotation Languages

All annotation languages represent a basis for
describing additional information about the
software system directly at the code level. Target
groups (or users) for the documentation/annota-
tion language are:

• Developers, who want to use the source
code and acquire information via the API
descriptions (e.g., for software libraries).

• Testers, who want to develop test cases and
need information about the pre- and post-

conditions as well as the functionality to be
tested.

• Maintainers, who want to evolve the system
and need information about existing qual-
ity defects, rationales for their persistence
(e.g., refactoring would cause loss of perfor-
mance), or past refactorings (e.g., to update
the software documentation such as design
documents).

In our case, an annotation language that is
targeted at supporting the handling of quality
defects should encompass several key aspects.
The requirements for such an annotation language
should cover uses such as:

• Annotate change for later understanding by
the same and other readers (e.g., maintain-
ers).

• Mark fragment that a quality defect is de-
tected but can or must stay in the system.

• Note membership in a larger quality defect
or refactoring activity that encompassed
multiple code fragments for later impact
analyses.

• Annotate quality aspects for later reuse,
etc.

• Tag additional information in the code
fragment freely or based on a classification
(e.g., “problematic class,” “quicksort algo-
rithm,” “part of subsystem X”) to support
later reuse or maintenance/reengineering
activities (similar to social software or Web
2.0 approaches).

We identified the following information blocks
of an annotation language that should be recorded
with an annotation language and that are based
on the six knowledge types from knowledge
management (Mason, 2005):

• Know-what: Record the currently present
quality defects that were found manually or
automatically.

 ���

Handling of Software Quality Defects in Agile Software Development

• Know-how: Record the transformation
history (similar to the medical history of a
human patient).

• Know-why: Record the rationales why a
refactoring was applied or why a quality
defect is still present in order to prevent
recurrent defect analysis or refactoring at-
tempts.

• Know-where: Record the location in the
annotated code as well as associated code
fragments that where changed as well.

• Know-who: Record the tool or person (i.e.,
developer or maintainer) who applied the
refactoring.

• Know-when: Record the time or version
when the quality defect was found or the
refactoring was applied. This could also be
used to define a trigger when a refactoring
has to be applied (e.g., if several other (larger)
refactorings or design decision have to be
made).

• Context: Record the frame of reference
or context in which the quality defect was
discovered. This includes especially the
quality model used to decide which quality
defect has a higher priority over other quality
defects.

The following requirements for tags and other
constructs in such an annotation language to sup-
port refactoring and maintenance activities are:

• Unambiguous: The names of tags, quality
defects, refactorings, or other reoccurring
terms should be unique and used consistently
throughout the system.

• Machine-readable: The syntax of tags
should be formal, exact, and consistent to
avoid confusion and enable the interpreta-
tion and usage by supporting systems (e.g.,
defect discovery tools).

• Local completeness: The power of the
syntax should be large enough to cover all
existing cases. Full comprehensiveness is

probably not possible except by allowing
informal free text attributes.

• Flexibility: The syntax should not limit the
extension by new tags or tag attributes.

• Independence: Tags should describe infor-
mation that is mutually exclusive, and the
occurrence of two or more tags should be
independent from one another.

Beside the additional documentation of the
software system, the annotation language will
increase the semantic coupling between code
fragments and reduce the presence of quality
defects such as “shotgun surgery.”

RAL: The Refactoring Annotation Language

The refactoring annotation language (RAL)
is used to record the currently existing quality
characteristics, symptoms, defects, and refac-
toring of a code fragment regarding a specific
quality model. Furthermore, it is used to store the
rationales and treatment history (e.g., sequence
of refactorings).

In the following tables, the core set of tags
from RAL are described based on the JavaDoc
syntax and using existing JavaDoc and supportive
tags, that are used in the description and will be
described after the core tags. Information blocks
starting with a double cross “#” indicate an ID or
standardized term from an external, controlled
vocabulary or taxonomy.

A symptom tag as defined in 0 describes a
metric or characteristic of the code fragment and
is used as an indicator for the statistical or rule-
based identification of quality defects. The tag
acts as an annotation of a specific symptom from
a controlled vocabulary in order to have a unique
identifier and a reference for further information
about the symptom. The since tag from JavaDoc
is used to identify the version based on which the
quality symptom was first calculated.

The quality defect as defined in 0 represents a
code smell, antipattern, etc. present in this code

��0

Handling of Software Quality Defects in Agile Software Development

fragment. It is used to annotate a specific quality
defect from a controlled vocabulary in order to
have a unique identifier and reference for more
information about a specific quality defect type
and potential treatments. The since tag from Ja-
vaDoc is used to identify the version where the
quality defect was first noticed.

A refactoring tag as defined in 0 is a descrip-
tion of a single refactoring that was applied for
removing one or more quality defects. Optionally,
a project-internal URI to other code fragments
directly affected by the refactoring (e.g., if two
classes interchange a method during the same
refactoring) can be stated.

The quality model tag as defined in 0 is used
as a reference to the quality model that defines
which quality characteristics are important, what

priority or decision model lies beneath, and which
quality defects are relevant to a specific part of the
software system. Optionally, it refers to a URI of
a file containing the specific (machine-readable)
quality model.

The supportive tags used in the previous tag
descriptions are given in 0.

Depending on the processor that would render a
quality documentation from these tags, some tags
might be used only once and inherited by lower
levels. For example, the quality model tag needs
only be stated once (e.g., for the whole project)
or twice (e.g., for the client and server part) in a
software system.

RAL is primarily used to annotate source
code. Therefore, in order to annotate documents
of higher abstraction, like UML-based design

Table 7. The @symptom tag

Tag Syntax @symptom <#Symptom-ID> <@value value> <@since #version>
Example @symptom “LOC” @value “732” @since 1.2

Table 8. The @defect tag

Tag Syntax @defect <#QD-ID> <@since #version> <@status #Status> <@rationale text>
Example @defect “Long Method” @since 1.2 @status “untreated”

Table 9. The @refactoring tag

Tag Syntax @refactoring <#Refactoring-ID> <@rationale text> <@status #Status> <@link fragment> <@
author name>

Example @refactoring “Extract Method” “Applied as quality model rates maintainability higher than per-
formance” @status “treated” @link “ExtractedMethod” @author “John Doe”

Table 10. The @quality-model tag

Tag Syntax: @quality-model Name <@see file>
Example @quality-model “QM-Dep1-Project2” @see

Table 11. Support tags

Tag Description

@status “@status #status” indicates the current status of the superior tag or source code using the vocabulary
“discovered,” “inWork,” “treated,” or (deliberately) “untreated.”

@rationale “@rationale text” declares a rationale about the existence or status of the superior tag or source code.

 ���

Handling of Software Quality Defects in Agile Software Development

documents (e.g., platform-independent models in
MDA) using the XMI Format or formal require-
ment documents, similar languages (probably
based on other languages such as JavaDoc) need
to be defined.

handling Quality defects using raL

Software annotation languages like JavaDoc or
Doxygen and extensions like RAL can now be used
to document the functionality, structure, quality,
and treatment history of the software system at
the code level. The formal basis of the language
enables tools to read and write this information
automatically to generate special documents or
trigger specific actions.

The core tags @symptom, @defect, and @
refactoring build on top of each other and
might be recorded by several different tools. This
enables the intertwined cooperation of different
tools, each with a specific focus, such as to cal-
culate metrics or to discover quality defects. For
example, one tool might measure the source code
and its versions to extract numerical and histori-
cal information and write it into @symptom tags
(e.g., lines of code). Another tool might analyze
this information to infer quality defects (e.g.,
“long method”) that are recorded in @defect
tags. Finally, a tool might offer refactorings to a
developer or a maintainer during his work and
note applied refactorings or rationales in explicit
@refactoring tags.

Developers and maintainers of a software
system are supported in the handling of quality
defects in the following activities:

• Repetitive refactoring of a specific kind
of quality defect (e.g., “large method”), as
they do not have to switch between different
defects or refactoring concepts.

• Reuse of knowledge about the refactoring of
specific quality defects to judge new quality
defects.

• Recapitulation of the change history of the
code fragment to update software documen-
tation such as design documents.

• Retrieval of information about persons who
developed or refactored this part of the sys-
tem and should know about its purpose and
functionality.

• Product or quality managers of the software
system might use the information to:

• Evaluate the quality based on information
extracted via the tags about the amount or
distribution of quality defects.

• Analyze specific dates or groups of persons
that might have introduced specific kinds
of quality defects and might need further
training.

Summary and outLook

Agile software development methods were
invented to minimize the risk of developing
low-quality software systems with rigid process-
based methods. They impose as little overhead
as possible in order to develop software as fast
as possible and with continuous feedback from
the customers. To assure quality, agile software
development organizations use activities such
as refactoring between development iterations.
Refactoring, or the restructuring of a software
system without changing its behavior, is neces-
sary to remove quality defects (i.e., bad smells in
code, architecture smells, anti-patterns, design
flaws, software anomalies, etc.) that are introduced
by quick and often unsystematic development.
However, the effort for the manual discovery of
these quality defects results in either incomplete or
costly refactoring phases. Furthermore, software
quality assurance methods seem to ignore their
recurring application.

In this chapter, we described a process for the
recurring and sustainable discovery, handling, and
treatment of quality defects in software systems.

���

Handling of Software Quality Defects in Agile Software Development

We described the complexity of the discovery
and handling of quality defects in object-oriented
source code to support the software refactoring
process. Based on the formal definition of qual-
ity defects, we gave examples of how to support
the recurring and sustainable handling of quality
defects. The annotation language presented is
used to store information about quality defects
found in source code and represents the defect and
treatment history of a part of a software system.
The process and annotation language can not
only be used to support quality defect discovery
processes, but also has the potential to be applied
in testing and inspection processes.

Recapitulating, we specified an annotation
language that can be used in agile software main-
tenance and refactoring to record information
about quality defects, refactorings, and rationales
about them. Similar annotation languages such as
JavaDoc or doxygen as well as third party exten-
sions are not able to encode this information in a
machine-readable and unambiguous format.

The proposed framework including the
handling process promises systematic and semi-
automatic support of refactoring activities for
developers, maintainers, and quality managers.
The approach for recording quality defects and
code transformations in order to monitor refactor-
ing activities will make maintenance activities
simpler and increase overall software quality.
Likewise, the user monitors daily builds of the
software to detect code smells, identical quality
defects, or groups thereof, and initiates repetitive
refactoring activities, minimizing effort caused
by task switches.

reQuIrementS for QuaLIty
defect handLIng In agILe Se

When building systems and languages for quality
defect handling in agile software development,
several requirements should be kept in mind.

The annotation language in the form of a code
annotation language like JavaDoc or in the form
of an external documentation such as a Defect
Tracking system or a Wiki should be integrated
into the programming language used and into the
development environment. If it is not integrated,
the information might easily be lost due to the
high workload and time constraints in agile de-
velopment. Especially in an agile environment,
the developers, testers, and maintainers should
be burdened with as little additional effort as
possible.

Therefore, the more formal the descriptions
of an annotation language are and the more in-
formation can be extracted from the code and
development environment (e.g., from the refactor-
ing techniques), the less information is required
from the developers.

outLook

The trend in research is to increase automation of
the mentioned processes in order to support the
developers with automated refactoring or defect
discovery systems.

We expect to further assist software engineers
and managers in their work and in decision mak-
ing. One current research task is the development
of taglets and doclets to generate specific evolution
documents. Furthermore, we are working on the
analysis and synthesis of discovery techniques
with statistical and analytical methods based
on textual, structural, numerical, and historical
information.

Although we can record and use this infor-
mation in several applications, we currently do
not know if the amount of information might
overwhelm or annoy the developer and main-
tainer. If dozens of quality defects are found and
additional refactorings are recorded, this might
be confusing and should be hidden (e.g., in an
editor of the IDE) from the developer. Very old

 ���

Handling of Software Quality Defects in Agile Software Development

information (e.g., from previous releases of the
software) might even be removed and stored in
an external document or database.

referenceS

Allen, E. (2002). Bug patterns in Java. New York;
Berkeley, CA: Apress.

Atlassian. (2005). JIRA Web site. Retrieved
October 6, 2005, from http://www.atlassian.
com/software/jira/

Aurum, A., Petersson, H., & Wohlin, C. (2002).
State-of-the-art: Software inspections after 25
years. Software testing. Verification and Reli-
ability, 12(3), 133-154.

Basili, V. R., Caldiera, G., & Rombach, D. (1994a).
The goal question metric approach. In Encyclope-
dia of software engineering (1st ed., pp. 528-532).
New York: John Wiley & Son.

Basili, V. R., Caldiera, G., & Rombach, H. D.
(1994b). Experience factory. In J. J. Marciniak
(Ed.), Encyclopedia of software engineering (Vol.
1, pp. 469-476). New York: John Wiley & Sons.

Beck, K. (1999). eXtreme programming eX-
plained: Embrace change. Reading, MA: Ad-
dison-Wesley.

Beck, K., & Fowler, M. (1999). Bad smells in code.
In G. Booch, I. Jacobson, & J. Rumbaugh (Eds.),
Refactoring: Improving the design of existing
code (1st ed., pp. 75-88). Addison-Wesley Object
Technology Series.

Brown, W. J., Malveau, R. C., McCormick, H. W.,
& Mowbray, T. J. (1998). AntiPatterns: Refactor-
ing software, architectures, and projects in crisis.
New York: John Wiley & Sons, Inc.

Brykczynski, B. (1999). A survey of software
inspection checklists. Software Engineering
Notes, 24(1), 82-89.

Chillarege, R. (1996). Orthogonal defect classifica-
tion. In M. R. Lyu (Ed.), Handbook of software
reliability engineering (pp. xxv, 850 p.). New
York: IEEE Computer Society Press.

Ciolkowski, M., Laitenberger, O., Rombach, D.,
Shull, F., & Perry, D. (2002). Software inspections,
reviews, and walkthroughs. Paper presented at the
24th International Conference on Software Engi-
neering (ICSE 2002), New York, USA, Soc.

Dromey, R. G. (1996). Cornering the chimera.
IEEE Software, 13(1), 33-43.

Dromey, R. G. (2003). Software quality—Pre-
vention versus cure? Software Quality Journal,
11(3), 197-210.

ePyDoc. (2005). Epydoc Web site. Retrieved May
10, 2005, from http://epydoc.sourceforge.net/

Fenton, N. E., & Neil, M. (1999). Software metrics:
Successes, failures, and new directions. Journal
of Systems and Software, 47(2-3), 149-157.

Force10. (2005). Software support management
system (SSM) Web site. Retrieved October 6, 2005,
from http://www.f10software.com/

Fowler, M. (1999). Refactoring: Improving the de-
sign of existing code (1st ed.). Addison-Wesley.

Freimut, B. (2001). Developing and using defect
classification schemes (Technical Report No.
IESE-Report No. 072.01/E). Kaiserslautern:
Fraunhofer IESE.

Fukui, S. (2002). Introduction of the software
configuration management team and defect track-
ing system for global distributed development.
Paper presented at the 7th European Conference
on Software Quality (ECSQ 2002), Helsinki,
Finland, June 9-13, 2002.

Gamma, E., Richard, H., Johnson, R., & Vlis-
sides, J. (1994). Design patterns: Elements of
reusable object-oriented software (3rd ed., Vol.
5). Addison-Wesley.

���

Handling of Software Quality Defects in Agile Software Development

Hallum, A. M. (2002). Documenting patterns.
Unpublished Master Thesis, Norges Teknisk-
Naturvitenskapelige Universitet.

IEEE-1044. (1995). IEEE guide to classification
for software anomalies. IEEE Std 1044.1-1995.

Johnson, J. N., & Dubois, P. F. (2003). Issue track-
ing. Computing in Science & Engineering, 5(6),
717, November-December.

JSR-260. (2005). Javadoc Tag Technology Up-
date (JSR-260). Retrieved October 6, 2005, from
http://www.jcp.org/en/jsr/detail?id=260

Kerievsky, J. (2005). Refactoring to patterns.
Boston: Addison-Wesley.

Koru, A. G., & Tian, J. (2004). Defect handling
in medium and large open source projects. IEEE
Software, 21(4), 54-61.

Kramer, D. (1999, September 12-14). API docu-
mentation from source code comments: A case
study of Javadoc. Paper presented at the 17th Inter-
national Conference on Computer Documentation
(SIGDOC 99), New Orleans, LA.

Kramer, R. (1998). iContract—The Java(tm)
Design by Contract(tm) Tool. In Technology of
object-oriented languages and systems, TOOLS
26 (pp. 295-307). Santa Barbara, CA: IEEE
Computer Society.

Lauesen, S., & Younessi, H. (1998). Is software
quality visible in the code? IEEE Software, 15(4),
69-73.

Liggesmeyer, P. (2003). Testing safety-critical
software in theory and practice: A summary. IT
Information Technology, 45(1), 39-45.

Loper, E. (2004). Epydoc: API documentation
extraction in python. Retrieved from http://epydoc.
sourceforge.net/pycon-epydoc.pdf

Mantis. (2005). Mantis Web site. Retrieved Octo-
ber 6, 2005, from http://www.mantisbt.org/

Marinescu, R. (2004, September 11-14). Detec-
tion strategies: Metrics-based rules for detecting
design flaws. Paper presented at the 20th Inter-
national Conference on Software Maintenance,
Chicago, IL.

Mason, J. (2005). From e-learning to e-knowl-
edge. In M. Rao (Ed.), Knowledge management
tools and techniques (pp. 320-328). London:
Elsevier.

Mens, T., Demeyer, S., Du Bois, B., Stenten,
H., & Van Gorp, P. (2003). Refactoring: Current
research and future trends. Electronic Notes in
Theoretical Computer Science, 82(3), 17.

Mens, T., & Tourwe, T. (2004). A survey of soft-
ware refactoring. IEEE Transactions on Software
Engineering, 30(2), 126-139.

MetaQuest. (2005). Census Web site. Retrieved
October 6, 2005, from http://www.metaquest.
com/Solutions/BugTracking/BugTracking.html

Pepper, D., Moreau, O., & Hennion, G. (2005,
April 11-12). Inline automated defect classifica-
tion: A novel approach to defect management.
Paper presented at the IEEE/SEMI Advanced
Semiconductor Manufacturing Conference and
Workshop, Munich, Germany.

Rapu, D., Ducasse, S., Girba, T., & Marinescu,
R. (2004). Using history information to improve
design flaws detection. Paper presented at the 8th
European Conference on Software Maintenance
and Reengineering, Tampere, Finland.

Ras, E., Avram, G., Waterson, P., & Weibelzahl,
S. (2005). Using Weblogs for knowledge sharing
and learning in information spaces. Journal of
Universal Computer Science, 11(3), 394-409.

Rech, J. (2004). Towards knowledge discovery
in software repositories to support refactoring.
Paper presented at the Workshop on Knowledge
Oriented Maintenance (KOM) at SEKE 2004,
Banff, Canada.

 ���

Handling of Software Quality Defects in Agile Software Development

Rech, J., & Ras, E. (2004). Experience-based
refactoring for goal-oriented software quality
improvement. Paper presented at the 1st Interna-
tional Workshop on Software Quality (SOQUA
2004), Erfurt, Germany.

Remillard, J. (2005). Source code review systems.
IEEE Software, 22(1), 74-77.

Riel, A. J. (1996). Object-oriented design heuris-
tics. Reading, MA: Addison-Wesley.

Roock, S., & Havenstein, A. (2002). Refactor-
ing tags for automatic refactoring of framework
dependent applications. Paper presented at the
Extreme Programming Conference XP 2002,
Villasimius, Cagliari, Italy.

Roock, S., & Lippert, M. (2004). Refactorings in
großen Softwareprojekten: Komplexe Restruktu-
rierungen erfolgreich durchführen (in German).
Heidelberg: dpunkt Verlag.

Roock, S., & Lippert, M. (2005). Refactoring in
large software projects. John Wiley & Sons.

Sametinger, J., & Riebisch, M. (2002, March
11-13). Evolution support by homogeneously
documenting patterns, aspects, and traces.
Paper presented at the 6th European Conference
on Software Maintenance and Reengineering,
Budapest, Hungary.

Serrano, N., & Ciordia, I. (2005). Bugzilla,
ITracker, and other bug trackers. IEEE Software,
22(2), 11-13.

Simonis, V., & Weiss, R. (2003, July 9-12).
PROGDOC—a new program documentation
system. Paper presented at the 5th International
Andrei Ershov Memorial Conference (PSI 2003)
Perspectives of System Informatics, Novosibirsk,
Russia.

Tigris. (2005). Scarab Web site. Retrieved October
6, 2005, from http://scarab.tigris.org/

Torchiano, M. (2002, October 3-6). Documenting
pattern use in Java programs. Paper presented at
the Proceedings of the International Conference
on Software Maintenance (ICSM), Montreal,
Que., Canada.

Tourwe, T., & Mens, T. (2003). Identifying refac-
toring opportunities using logic meta program-
ming. IEEE Computer, Reengineering Forum;
Univ. Sannio. In Proceedings 7th European
Conference on Software Maintenance and Reen-
gineering, Los Alamitos, CA (xi+2420 2091-2100).
IEEE Comput. Soc.

TRAC. (2005). TRAC Web site. Retrieved October
6, 2005, from http://projects.edgewall.com/trac/

Tullmann, P. (2002). Pat’s taglet collection.
Retrieved October 6, 2005, from http://www.
tullmann.org/pat/taglets/

Tuppas. (2005). Tuppas Web site. Retrieved
October 6, 2005, from http://www.tuppas.com/
Defects.htm

van Heesch, D. (2005). Doxygen—a documenta-
tion system. Retrieved from http://www.doxygen.
org/

Verhoef, C. (2000, September 5-7). How to
implement the future? Paper presented at the
Proceedings of the 26th EUROMICRO Confer-
ence (EUROMICRO2000), Maastricht, The
Netherlands.

Wake, W. C. (2003). Refactoring workbook (1st
ed.). Pearson Education.

Whitmire, S. A. (1997). Object-oriented design
measurement. New York: John Wiley & Sons.

This work was previously published in An Overview of Knowledge Management, edited by J.N.D. Gupta, S.K. Sharma, and J.
Hsu, pp. 90-113, copyright 2007 by IGI Publishing (an imprint of IGI Global).

���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.21
Different Views

of Software Quality
Bernard Wong

University of Technology Sydney, Australia

aBStract

This chapter examines the different definitions
of quality and compares the different models and
frameworks for software quality evaluation. It
will look at both historical and current literature.
The chapter will give special attention to recent
research on the Software Evaluation Framework,
a framework for software evaluation, which gives
the rationale for the choice of characteristics used
in software quality evaluation, supplies the under-
pinning explanation for the multiple views of qual-
ity, and describes the areas of motivation behind
software quality evaluation. The framework has
its theoretical foundations on value-chain models,
found in the disciplines of cognitive psychology
and consumer research, and introduces the use of
cognitive structures as a means of describing the
many definitions of quality. The author hopes that
this chapter will give researchers and practitioners
a better understanding of the different views of
software quality, why there are differences, and
how to represent these differences.

IntroductIon

Adopting an appropriate Quality Assurance phi-
losophy has been often viewed as the means of
improving productivity and software quality (Hat-
ton, 1993; Myers, 1993). However unless quality is
defined, it is very difficult for an organization to
know whether it has achieved quality clearly. To
date, this has usually involved conformance to a
standard such as AS3563 or ISO9001 or following
the Capability Maturity Model of the SEI. The
challenge often faced is that one finds as many
definitions of quality as writers on the subject.
Perhaps, the latter have been remarkably few in
number considering the obvious importance of
the concept and the frequent appearance of the
term quality in everyday language.

Though the topic of software quality has been
around for decades, software product quality
research is still relatively immature, and today
it is still difficult for a user to compare software
quality across products. Researchers are still not
clear as to what is a good measure of software

 ���

Different Views of Software Quality

quality because of the variety of interpretations of
the meaning of quality, of the meanings of terms
to describe its aspects, of criteria for including or
excluding aspects in a model of software, and of the
degree to which software development procedures
should be included in the definition. A particularly
important distinction is between what represents
quality for the user and what represents quality
for the developer of a software product.

Perceptions of software quality are generally
formed on the basis of an array of cues. Most
notably, these cues include product characteristics
(Boehm et al., 1976; Carpenter & Murine, 1984;
Cavano & McCall, 1978; McCall et al., 1977;
Kitchenham & Pfleeger, 1996; Kitchenham &
Walker, 1986; Sunazuka et al., 1985). The cues are
often categorized as either extrinsic or intrinsic to
the perceived quality. Simply, intrinsic cues refer
to product characteristics that cannot be changed
or manipulated without also changing the physi-
cal characteristics of the product itself; extrinsic
cues are characteristics that are not part of the
product (Olson & Jacoby, 1972). Price and brand
are thus considered to be extrinsic with respect
to product quality.

This chapter examines the different definitions
of quality and compares the different models and
frameworks for software quality evaluation. This
chapter will address both the topics of interest
for the information systems community and the
software engineering community. It will look at
both historical and current literature. The chapter
will give special attention to recent research on
the Software Evaluation Framework, a framework
for software evaluation, which gives the rationale
for the choice of characteristics used in software
quality evaluation, supplies the underpinning
explanation for the multiple views of quality,
and describes the areas of motivation behind
software quality evaluation. The framework has
its theoretical foundations on value-chain models,
found in the disciplines of cognitive psychology
and consumer research, and introduces the use

of cognitive structures as a means of describing
the many definitions of quality.

Background

Software users today are demanding higher qual-
ity than ever before, and many of them are willing
to pay a higher price for better quality software
products. The issue of software quality has come
to the forefront in Europe, the United Kingdom,
the United States, and more recently Australia.
The quality movement in software is not new. A
search of the information systems literature has
shown that attempts to achieve quality software
have been on-going for many years. Software
quality models include the product-based view
(Boehm et al., 1976; Carpenter & Murine, 1984;
Cavano & McCall, 1978; McCall et al., 1977;
Kitchenham & Pfleeger, 1996; Kitchenham &
Walker, 1986; Sunazuka et al., 1985), process
focused models following a manufacturing-based
view (Coallier, 1994; Dowson, 1993; Humphrey,
1988; Ould, 1992; Paulk, 1991), and more recently,
techniques and tools to cater for the user-based
view (Delen & Rijsenbrij, 1992; Erikkson &
McFadden, 1993; Juliff, 1994; Kitchenham, 1987;
Kitchenham & Pickard, 1987; Thompsett, 1993;
Vidgen et al., 1994). However, the many models
and approaches seem to contradict each other at
times. Garvin (1984) tries to explain these contra-
dictions by introducing different views of quality.
He describes the models as transcendental-based
view, product-based view, manufacturing-based
view, economic-based view, and user-based view,
which we will define later.

As the software market matures, users want
to be assured of quality. They no longer accept
the claims of the IT department at face value,
but expect demonstrations of quality. There is
a firm belief that an effective quality system
leads to increased productivity and permanently
reduced costs, because it enables management

���

Different Views of Software Quality

to reduce defect correction costs by emphasizing
prevention. A better-designed development pro-
cess will accrue fewer lifetime costs, and higher
productivity will therefore be possible. As such,
many attempts at improving quality have been
to focus on the development processes. However,
productivity measurements are worthless unless
they are substantiated by quality measurements.
To develop software quickly, on time, and within
budget is no good if the product developed is full
of defects. It is the view of many that the costs of
correcting defects in software late in development
can be orders of magnitude greater than the cost
of correcting them early (Kitchenham & Pfleeger,
1996; Pfleeger, 2001). Preventing defects in the first
place can save even more. Productivity measure-
ments require quality measurements.

The market for software is increasingly a global
one, and organizations will find it increasingly
difficult to succeed and compete in that market
unless they produce and are seen to produce
quality products and services. From simple issues
concerning efforts required to develop software
systems, there have been a myriad of develop-
ments and directions that have occurred since
the beginning of the last decade concerning the
process of software development. From all of
these new directions, the consideration of the
quality of the software produced is one of the
major thrusts that have occurred. Software used
to be a technical business, in which functionality
was the key determinant of success. Today, one
can no longer just adopt this view.

the meanIng of QuaLIty

The Oxford English Dictionary (OED, 1990)
states that quality is the “degree of excellence.”
While this definition of quality is found in an
internationally accepted dictionary, it must be
pointed out that there are many variations to this
definition, which are not given here.

A formal definition of quality is provided by
the International Standards Organization (ISO,
1986): The totality of features and characteristics
of a product or service that bear on its ability to
satisfy specified or implied needs.

This standard definition associates quality
with the products’ or services’ ability to fulfill
its function. It recognizes that this is achieved
through the features and characteristics of the
product. Quality is associated both with having
the required range of attributes and with achieving
satisfactory performance in each attribute.

The best-known and most widely adopted
definition of quality is simply “fitness for use” or
some variant thereof. For example, Wimmer (1975)
and Genth (1981) adopted the definition “fitness
for use.” Box (1984) defined quality as “the degree
to which a product fulfils its functions, given the
needs of the consumer,” and Kotler (1984) speaks
of “the rated ability of the brand to perform its
functions as perceived by consumers.” Kawlath
(1969) defined perceived quality as “the fitness
for certain goals.”

Maynes (1976) proposed the following defini-
tion: “The quality of a specimen (a product/brand/
seller/combination) consists of the extent to which
the specimen provides the service characteristics
that the individual consumer desires.” A similar
definition is suggested by Monroe and Krishnan
(1985): “Perceived product quality is the perceived
ability of a product to provide satisfaction rela-
tive to the available alternatives.” Kuehn and Day
(1962) stated that the quality of a product depends
on how well it fits in with patterns of consumer
preferences.

Kupsch and Hufschmied (1978) regarded
quality as a bundle of need-satisfying attributes.
A similar position was taken by Oxenfeldt (1950).
Bockenhoff and Hamm (1983) defined quality as
the composite of all product attributes irrespective
of whether these attributes are in reality existent
in the product and objectively measurable, and
whether consumers are correct in their evalua-
tions.

 ���

Different Views of Software Quality

Thurstone (1985) suggested: “Quality is the
index that reflects the extent to which the customer
feels that his need, the product, and his expecta-
tions for that product overlap.” He concluded that
the relevant measure of quality does not reside in
the product but in the customer. A similar posi-
tion is taken by Wolff (1986) who argued that
quality should be measured from the customer’s
perspective: “If the customer says it’s good, it’s
good; if he says it’s bad, it’s bad.”

Trenkle (1983) distinguished three manifesta-
tions of quality:

• neutral concept (i.e., “much quality” - “not
much quality”), defined as the nature of a
product, given by the whole of all the attri-
butes which discriminates the product from
the other products in the same category;

• evaluative concept (“good quality” - “bad
quality”), defined as the fitness for use of
a product, given by the whole of all the at-
tributes that are relevant to the evaluation
of the product;

• positive judgment (“quality products”), de-
fined as superior or excellent with respect
to all attributes.

Some researchers have followed Wittgenstein’s
(1953) linguistic approach that “the meaning of
a word is its use in the language” and explored
the word quality in terms of everyday use of the
term. For instance, quality often means reliability,
general approval, or general excellence in the eyes
of the consumers (Holbrook & Corfman, 1983).
The ordinary language approach, however, does
not get one very far conceptually with respect to
the meaning of perceived quality.

the different perspectives of Quality

There are numerous definitions and meanings
given to quality. The previous section lists some
of the popular definitions; however, they do not
necessarily describe the perceptions of quality

held by all individuals. David Garvin (1984)
concluded in his paper “that quality is a complex
and multifaceted concept.” He described quality as
being made up of five different perspectives — the
transcendental-based view, the product-based
view, the manufacturing-based view, the econom-
ics-based view, and the user-based view.

Transcendental-Based View

According to the transcendental-based view, qual-
ity is synonymous with “innate excellence.” It is
both absolute and universally recognizable, a mark
of uncompromising standards and high achieve-
ment. Nevertheless, proponents of this view claim
that quality cannot be defined precisely; rather, it
is a simple, not analyzable property that we learn
to recognize only through experience. This defini-
tion borrows heavily from Plato’s discussion of
beauty, where he argues that beauty is one of the
“platonic forms,” and, therefore, a term that cannot
be defined. Like other such terms that philosophers
consider to be “logically primitive,” beauty (and
perhaps quality as well) can be understood only
after one is exposed to a succession of objects
that display its characteristics.

Product-Based View

Product-based definitions are quite different;
they view quality as a precise and measurable
variable. According to this view, differences in
quality reflect differences in the quantity of some
ingredient or attribute possessed by a product. For
example, high quality ice cream has high butterfat
content, just as fine rugs have a large number
of knots per square inch. This approach lends a
vertical or hierarchical dimension to quality, for
goods can be ranked according to the amount of
the desired attribute they possess. However, an
unambiguous ranking is possible only if virtu-
ally all buyers consider the attributes in question
preferable.

��0

Different Views of Software Quality

Product-based definitions of quality first
appeared in the economics literature, where
they were quickly incorporated into theoretical
models. In fact, the early economic research on
quality focused almost exclusively on durability,
simply because it was so easily translated in the
above framework. Since durable goods provide a
stream of services over time, increased durability
implies a longer stream of services — in effect,
more of the good. With regard to software, dura-
bility can be understood as the length of time a
piece of software is used in a live environment.
Of course, one recognizes that the software may
need upgrades from time to time, as products
can require repairs or modifications. Quality
differences could, therefore, be treated as dif-
ferences in quantity, considerably simplifying
the mathematics.

There are two obvious corollaries to this ap-
proach. First, higher quality can only be obtained
at higher cost. Because quality reflects the quantity
of attributes that a product produces, and because
attributes are considered to be costly to produce,
higher quality goods will be more expensive. Sec-
ond, quality is viewed as an inherent characteristic
of goods, rather than as something ascribed to
them. Because quality reflects the presence or
absence of measurable product attributes, it can
be assessed objectively and is based on more than
preferences alone.

User-Based View

Garvin (1984) states that the user-based definitions
start from the opposite premise that quality “lies
in the eyes of the beholder.” Individual consumers
are assumed to have different wants or needs, and
those goods that best satisfy their preferences are
those that they regard as having the highest qual-
ity. This is an idiosyncratic and personal view of
quality and one that is highly subjective. In the
marketing literature, it has led to the notion of
“ideal points:” precise combinations of product
attributes that provide the greatest satisfaction to

a specified consumer; in the economics literature,
to the view that quality differences are captured
by shifts in a product’s demand curve and in the
operations management literature, to the concepts
of “fitness for use.” There are two problems in each
of these concepts. The first is practical — how
to aggregate widely varying individual prefer-
ences so that it leads to meaningful definitions
of quality at the market level. The second is more
fundamental — how to distinguish those product
attributes that connote quality from those that
simply maximize consumer satisfaction.

A more basic problem with the user-based
view is its equation of quality with maximum
satisfaction. While the two are related, they are
by no means identical. A product that maximizes
satisfaction is certainly preferable to one that
meets fewer needs, but is it necessarily better as
well? The implied equivalence often breaks down
in practice. A consumer may enjoy a particular
brand because of its unusual features, yet may
still regard some other brand as being of higher
quality. In the latter assessment, the product’s
objective characteristics are also considered.

Even perfectly objective characteristics, how-
ever, are open to varying interpretations. Today,
durability is regarded as an important element
of quality. Long-lived products are generally
preferred to those that wear out more quickly.
This was not always true until the late nineteenth
century; durable goods were primarily possessions
of the poor, for only wealthy individuals could
afford delicate products that required frequent
replacement or repair. The result was a long-stand-
ing association between durability and inferior
quality, a view that changed only with the mass
production of luxury items made possible by the
Industrial Revolution.

Manufacturing-Based View

Manufacturing-based definitions focus on the
supply side of the equation and are primarily
concerned with engineering and manufactur-

 ���

Different Views of Software Quality

ing practice. Virtually, all manufacturing-based
definitions identify quality as “conformance to
requirements.” Once a design or a specification
has been established, any deviation implies that
the specification may not be complete. Excellence
is equated with meeting specifications and with
“making it right the first time.”

While this approach recognizes the consumer’s
interest in quality, its primary focus is internal.
Quality is defined in a manner that simplifies
engineering and production control. On the design
side, this has led to an emphasis on reliability
engineering (Boehm, 1963; Garvin, 1984); on the
manufacturing side, to an emphasis on statistical
quality control (Garvin, 1984; Juran & Gryna,
1980). Both techniques are designed to weed
out deviations early: the former, by analyzing a
product’s basic components, identifying possible
failure modes, and then proposing alternative
designs to enhance reliability; and the latter,
by employing statistical techniques to discover
when a production process is performing outside
acceptable limits.

Each of these techniques is focused on the same
end: cost reduction. According to the manufac-
turing-based approach, improvements in quality
(which are equivalent to reductions in the number
of deviations) lead to lower costs, for preventing
defects is viewed as less expensive than repairing
or reworking them (Crosby, 1978; Erikkson & Mc-
Fadden, 1993; Garvin, 1984). Organizations are,
therefore, assumed to be performing suboptimally:
were they only to increase their expenditures on
prevention and inspection — testing prototypes
more carefully or weeding out a larger number
of defective components before they become part
of fully assembled units — they would find their
rework, scrap, and warranty expenses falling by
an even greater amount.

Economic-Based View

Economic-based definitions define quality in
terms of costs and prices. According to this view,

a quality product is one that provides perfor-
mance at an acceptable price or conformance at
an acceptable cost. Under this approach, a $500
running shoe, no matter how well constructed,
could not be a quality product, for it would find
few buyers.

Garvin shows how each of these views can
be used to define product quality. Engineers who
believe a product has set characteristics often adopt
the product-based view. These characteristics are
used as the measure of quality. The manufactur-
ing-based view is adopted when one believes the
quality development process determines a quality
product. And more recently, many organizations
have been certified with the Capability Maturity
Model, CMM, or SPICE (Paulk, 1991; Paulk et al.,
1993). Certification assesses the manufacturing
process and is awarded on successfully having a
quality management system in place. Economists
who believe that price has a correlation with
quality adopt the economics-based view. And
lastly, the user-based view is the one which em-
phasizes that each individual will have his or her
own perception of quality. Garvin (1984) states
that most existing definitions of quality fall into
one of these categories, be they conformance to
specification, meeting user requirements, or best
development practice.

In a more recent paper, Braa and Ogrim (1994)
also tried to expand the definition of quality.
Rather than just focusing on technical properties,
they considered the functional and organizational
aspects of quality. Five aspects of quality are
introduced.

Technical Quality

Technical quality refers to a system’s structure
and performance. The technical quality of a com-
puter system is the basis of its functionality — the
computer must perform expected operations.
However, there is no need for a technically excel-
lent computer system; it is more important that it
suits the work tasks it is supposed to support.

���

Different Views of Software Quality

Use Quality

By use quality we mean quality as experienced
by the users when working with the computer-
based system. Use quality is difficult to specify
in advance. It is often necessary to experiment
with design models, such as prototypes, to ex-
press needs and claims (Greenbaum & Kyng,
1991). Throughout the specification and design
activities, users and developers will then learn
about the limitations and the possibilities of the
computer system in use. Consequently, learning
is an important factor in the specification process,
as well as in design.

Aesthetic Quality

In many other disciplines, such as the car indus-
try, or building industry, aesthetic quality is used
to evaluate the quality of artifacts. The idea of
aesthetics is usually related to physical objects.
However, aesthetics can also be applied to imma-
terial objects, for example, the notion of elegant
proofs in mathematics. However, the aesthetic
perspective is almost always neglected in software
development (Dahlborn & Mathiassen, 1993;
Stolterman, 1991). One possible exception is the
design of user interfaces. An aspect of aesthetic
quality is “elegance,” introduced as a criterion by
which to assess quality (Checkland & Scholes,
1990). An attempt to increase aesthetic quality
and make it more visible is to raise questions
such as: Is the transformation well designed? Is
it aesthetically pleasant? Is it overcomplicated? Is
it over- or under-engineered? These assessments
allow the users’ subjective experiences as well as
the professionals’ experience of similar systems
to be included in the judgment of quality.

Symbolic Quality

Computer systems are not only artifacts, they are
also used as symbols in the organization. This
view is supported by Feldman and March’s (1981)

study of the use of information in organizations.
They found that information is often used symboli-
cally, e.g., signaling a well-driven organization,
independent of whether the information is used
or not. Symbolic, as well as aesthetic, aspects
of computer systems are important factors in
tailoring a system to the business philosophy and
organization culture. For example, an organization
wishing to have an innovative and modern image
should have computer systems with graphical
user interfaces and colors. Symbolic quality may
be contradictory to the use quality. This can be
illustrated by a hotel owner who wanted to in-
stall a computerized reception system. It turned
out that the main purpose of the system was to
create the impression of a modern, successfully
run hotel and to recruit educated personnel. Not
much attention was paid to the functionality of
the system. If the motivation is of a symbolic
character, as in this example, the use quality will
probably be ignored.

Organizational Quality

When a computer system is well adapted to the
organization, it can be said to be of high orga-
nizational quality. When assessing the quality
of information systems, questions of economy,
power and interests will arise sooner or later: Are
the computer systems developed for the interests
of individual users, for groups of users, or for the
organization as a whole? Different user groups
may have diverging, perhaps contradictory, ideas
of what signifies good quality. A personnel control
and wage system might represent good use quality
for management and the personnel department,
but not for the workers who are being controlled.
A medical journal system in a hospital may be
of good quality for the doctors, but at the same
time decrease the influence of the nurses and use
of their competence. This may, in turn, decrease
the quality if their work. The different groups of
users make different demands on functionality,
in order to support their work. If these different

 ���

Different Views of Software Quality

interests are not met, an intersection of several
interests is developed and the result could be a
computer system, which is not suited for anyone.
This, in turn, may decrease the organizational
quality of the system.

Hyatt and Rosenberg (1996) add another
quality perspective, the project manager’s view.
The project manager views the software quality
as “software that works well enough to serve its
intended function and is available when needed”.
Project managers are usually concerned in pro-
ducing software that is reliable, maintainable,
and keeps customers satisfied. They usually
face budget and/or time constraints, which will
impede either one of their quality goals. The
constraints will potentially sacrifice the testing
(level, extent, and depth), walkthrough inspec-
tions, and documentation, which are some of the
factors contributing to software quality. While
Hyatt and Rosenberg focus only on the view of
the project manager, it must be pointed out that
many definitions of quality share this same view
(Box, 1984; Genth, 1981; Wimmer, 1975).

the Software perspective of Quality

Researchers in the software engineering area
have tried different ways to define quality. In
fact, they have moved progressively from the
product-based view, to the manufacturing-based
view, and more recently to the user-based view.
They have also focused heavily on technical qual-
ity with a growing consideration for use quality
and aesthetic quality. However, no models in
software engineering seem to exist following the
transcendental, economic, aesthetic, symbolic, or
organizational based views of quality.

Table 1 presents some of the software qual-
ity models introduced in this chapter. There are
other quality models; however, these are the most
discussed models in the literature. These are only
the most notable among many in research. At first
glance, the list of software quality models gleaned
from a review of literature is daunting. One might
conclude that they are many and varied; however,
many of these models are developments of earlier
ones, and some are combinations of others with

Table 1. Various software quality models and their relationship to Garvin’s and Braa’s quality perspectives

���

Different Views of Software Quality

and without uniqueness. For example, ISO qual-
ity factors are very similar to those in the earlier
McCall and Boehm models. Bootstrap, Trillium,
and MMM are all evolutions of CMM. SPICE is
an evolution of Bootstrap, CMM, trillium, and
ISO9001. SCOPE and PROCESSUS are efforts
at combining process and product through con-
necting ISO9001 and ISO9126. And SQUID uses
elements of ISO9126 and McCall. In most cases,
the reworking can be considered one researcher’s
improvements on another’s. This leaves few
originals. Shari Pfleeger (1997) states that since
models illustrate the relationship between appar-
ently separate events, the lack of real variety in
models in software engineering is symptomatic
of a lack of system focus.

The research on software quality indicates that
it is divided into two main schools of thought.
There is the Product school, where practitioners
advocate that to clearly define, measure, and im-
prove quality, one must measure characteristics
of the software product which best influence
quality. Then there is the Process school, where
practitioners advocate that one may be unable to
properly define quality, but states that a product’s
quality is improved when the software engineering
process used to make the product is improved. A
process model’s quality factors refer to the product
development life cycle as a way of expressing the
product’s quality.

According to this product-process division,
Boehm’s model, the COQUAMO model, McCall’s
model, Murine’s SQM model, ISO9126, SQUID,
and Dromey’s model are all examples of product
models: they focus on the final product. The pro-
cess model includes ISO9001-3, CMM, SPICE,
BOOTSTRAP, Trillium, and MMM. SCOPE and
PROCESSUS are a composite of both product and
process models.

The Product Quality models are basically those
models that view quality as inherent in the prod-
uct itself. These models decompose the product
quality into a number of quality factors (some
models describe it as quality features, criteria,

or characteristics). They are decomposed further
into lower levels. The lowest are the metrics to
measure or indicate the criteria. The metrics are
used to assess the quality of the software. The
result of the assessment is compared against a set
of acceptance criteria. This determines whether
the software can be released. Many of the software
quality models in this group do not suggest what
metric values are acceptable and hence leave it to
the software practitioner to decide.

The Process Quality models are those models
that emphasize process improvement and devel-
opment standards, with the aim that the process
improvements will lead to improving the quality
of the product. In the past, much software develop-
ment was performed without proper process and
management control. The software developers
were more guided by intuitive approach or habit,
rather than by using any particular standards.
Rae et al. (1995) emphasizes the importance of
standardizing the development process and states
that it will reduce software development to a
rational and well-defined series of tasks, which
can be managed and controlled (Rae et al., 1995).
Watts Humphrey (1988), in introducing the CMM,
stated that the premise of the CMM lies in the
relationship between the quality of the process
and the quality of the product. The belief is that
effective process management will be the key
factor in producing high quality software. How-
ever, Gillies (1992), Paulk et al. (1993), and Rae
et al. (1995) indicated that the adoption of a good
quality process will not automatically guarantee
a good quality product.

Schneidewind (1996) and Fenton (1996) de-
bated whether the existence of a standard process
is good enough to improve the quality of software.
Schneidewind’s view is that there is a need for
a standard first, even though it is not perfect.
Fenton argued that a good standard process is
required to improve the quality of a product and
a bad standard will not help at all. In my opinion,
a standard is necessary as a guideline. However,
as resources to set up the standards are scarce,

 ���

Different Views of Software Quality

they have to be initially established as well as
possible. The standards have to be constantly
reviewed and updated, because the technology
and software engineering methodology change.
Fenton suggested that organizations should con-
tribute to the resources.

Voas (1997) criticizes the software process
movement in general and claims that the focus
of software process movement and methods on
improving quality give the impression that “clean
pipes can produce only clean water.” He states
that we must not forget the part to be played by
product oriented methods, with their focus on
software metrics and system level testing that
allow the developing product to be sampled for its
internal quality. He claims that the preoccupation
with process quality in the software industry is
partly a result of the difficulty of reliable testing.
And software metrics, he adds, as do others such
as Gulezian (1995), brings its own set of problems
related to what exactly measures should be, as
well as how and when they are best measured.
For example, although software reliability assess-
ment has been accepted as a measure of software
quality, most reliability models predict failure by
looking at error history (Voas, 1997). Unfortu-
nately, this data can be computed differently by
different models, so the reliability results may not
even be reliable. Gulezian states that structural
metrics cannot capture the dynamics of software
behavior where an input is transformed into an
output by a set of instructions. Thus we see from
this direction that much of the future of software
quality lies linked to research in metrics, and pro-
viding some acknowledgment of the roles of both
product and process measurement in the quality
of a piece of software. While much more can be
said of the process models, focus in the rest of the
chapter will be given to product quality.

criticism of models

The product models, particularly McCall’s and
Boehm’s models (and the later ISO9126), have had

similar criticisms aimed at them from multiple
directions (Rozman et al., 1977). These criticisms
have all stated that there is a lack of clear criteria
for selection of not only the higher-level qual-
ity attributes but also of the subcharacteristics.
There is a lack of consensus between researchers
on what level a quality characteristic should be
placed and for the apparent arbitrary placement of
these characteristics, for the lack of agreement on
terminology, and for the paucity of discussion of
the measurement aspect of each of the models. An
additional complication and criticism of McCall’s
and Boehm’s models is that each of the quality
subcharacteristics is not related to a single quality
factor. This complicates measurement and inter-
pretation of results. For example, McCall’s model
shows the quality factor flexibility influenced by
quality characteristics of self-descriptiveness,
expandability, generality, modularity. To further
confound interpretation of any measurements
that might have been gathered, these same qual-
ity subcharacteristics also influence the quality
factors portability, reusability, interoperability as
well as testability and maintainability. In ISO9126
each subcharacteristic influences only one high
level quality factor — the model is completely
hierarchical.

Gillies (1992) and Kitchenham and Pfleeger
(1996) stated that there are a number of issues
with the hierarchical models:

1. The selection of quality factors and criteria
seem to be made arbitrarily. It implies that
there is no rationale for determining:

• which factors should be included in
the quality model and

• which criteria relate to a particular
quality factor.

2. The hierarchical models cannot be tested
or validated, because they do not define the
quality factors in a measurable way.

3. The measurement methods of both models

���

Different Views of Software Quality

have a large degree of subjectivity, hence
the software quality cannot be measured
objectively.

4. In 1987, Perry Gillies (1992) pointed out
that some quality factors or criteria conflict
with each other due to inverse relationships.
For example, there is an inverse relation-
ship between usability and efficiency. The
improvements in human-computer interface
will increase the usability of the software;
however, it will lead to reduction in efficiency
as more coding will be required.

Despite the criticism, both models (especially
McCall’s) form the basis for most of the research
in software quality today.

Kitchenham and Walker (1986) made a number
of observations. They stated that there seemed
to be little supporting rationale for including or
excluding any particular quality factor or criteria.
In fact, definitions of quality factors and criteria
were not always consistent when comparing one
model to the next. Different terminologies between
the models exist, with little explanation for the
meanings behind them. There was no rationale
for deciding which criteria relate to a particular
factor. Thus the selection of quality characteristics
and subcharacteristics can seem arbitrary. The
lack of rationale makes it impossible to determine
whether the model is a complete or consistent
definition of quality.

Though quality has been widely used and ac-
cepted, the differences between them highlights
how one’s view can dictate the perception of
quality. The degree of subjectivity varies substan-
tially from one question to another, even though
all responses are treated equally. This variation
makes combining metrics difficult, if not impos-
sible. Moreover, when appropriate, the detail and
complexity of the response should be reflected in
a richer measurement scale. For example, while
it is reasonable to expect a yes or no response to
the question “Does this module have a single exit
or entry point?”, questions about documentation

clarity probably require a multiple-point ordinal
scale to reflect the variety of possible answers.

The models recommend direct measures,
but most of them do not describe clearly how
to conduct the measure. There appears to be no
description of how the lowest level metrics are
composed into an overall assessment of higher
leveled characteristics. In particular, then, there
is no means for verifying that the chosen metrics
affect the observed behavior of a factor. That is,
there is no attempt to measure factors at the top
of the hierarchy, so the models are not testable.

more recent developments
of product models

Dromey’s Model

A more recent and promising model of product
quality is found in Dromey (1995), who strongly
pushes for a more comprehensive software quality
model. He holds that software does not manifest
quality attributes; rather it exhibits product
characteristics that imply or contribute to quality
attributes. He states that most models fail to deal
with the product characteristics. Dromey’s model
expresses the same internal view as the classic
Boehm and McCall models, because he specifi-
cally aims at quality of software code (although
he claims this can be applied equally well to other
artifacts of the development cycle such as require-
ments specification or user interfaces). He states
that the requirements of any product model are
that it provides an adaptable methodical system
for building quality into software, and it classifies
software characteristics and quality defects. He
proposes a bottom up/top down approach. In bot-
tom up one begins with a set of structural forms
whose quality carrying properties are identified
and must be satisfied. These properties impact
certain higher leveled quality attributes. This al-
lows a bottom up movement by ensuring particular
product properties are satisfied, for example, for
programmers. In his top down appraisal, designers

 ���

Different Views of Software Quality

begin with the quality attribute and move to the
quality carrying property. In this way, for example,
designers may identify properties that need to be
satisfied for each structural form.

Dromey’s model is broad enough to be ap-
plied across languages and projects — as long
as it evolves as new languages evolve. Dromey
provides a substantial contribution to the software
quality field in that he has provided a complex
analysis, which established direct lines between
tangible product characteristics and quality at-
tributes. However, his complete disregard for
characteristics that can be evaluated externally
could be argued to result in an excellent product
that does not do what the customer has requested.
The model also needs to be broadened to include
the same principles applied to other aspects of
the design process such as requirements speci-
fication.

The Dromey model has been developed to
address many of the problems of the earlier mod-
els. Dromey (1995) criticized the earlier quality
models for failing to deal adequately with the
product characteristic problems and to link the
quality factors/attributes to product characteris-
tics. He points out that hierarchical models that
use top-down decomposition are usually rather
vague in their definitions of lower levels. They
thus offer little help to software developers who
need to build quality products. To overcome this,
he proposed specific quality-carrying properties
and systematic classification of quality defects.
The quality-carrying properties are:

1. Correctness properties (minimal generic
requirements for correctness)

2. Structural properties (low level, intramodule
design issues)

3. Modularity properties (high level, intermod-
ule design issues)

4. Descriptive properties (various forms of
specification/documentation)

Correctness properties fall broadly into three
categories that deal with computability, complete-
ness, and consistency. Structural properties have
focused upon the way individual statements and
statement components are implemented and the
way statements and statement blocks are com-
posed, related to one another, and utilized. The
modularity properties address the high-level
design issues associated with modules and how
they interface with the rest of the system. And the
descriptive properties reflect how well the software
is described. Explicit comments are added to a
program to document how the implementation
realizes its desired functionality by manipulating
variables with prescribed properties.

Dromey believes that it is impossible to build
high-level quality attributes such as reliability or
maintainability into products. Rather, software
engineers must build components that exhibit a
consistent, harmonious and complete set of prod-
uct properties that result in the manifestations of
quality attributes.

Dromey’s approach is important because it
allows us to verify models. It establishes a crite-
rion for including a particular software property
in a model and a means of establishing when the
model is incomplete. For example, each quality-
carrying property has quality impact, for example,
reliability and quality defects. By identifying the
defects, the software developer will take measures
to prevent the defect from occurring.

Kitchenham and Pfleeger (1996) noted that
Dromey’s quality model provides a constructive
approach to engineering software quality which
can be refined and improved further. Dromey
even developed tools to assist in the production
of quality software, a static analyzer to detect
quality defects, and a programming language
aimed at preventing developers from building
defects into their programs.

The criticism of Dromey’s model is that he
does not use the metric approach in measuring

���

Different Views of Software Quality

the software quality. This is because he uses
the concept of defect classification. However,
as Kitchenham and Pfleeger (1996) pointed out,
the model is proof that there are other means to
measure quality.

Constructive Quality Model
(COQUAMO)

Kitchenham shares Dromey’s concern for the need
for precision in measurement out of the quality
models. She has developed various models in her
search to define and measure software quality.
COQUAMO (Gulezian, 1995) was developed
to further this research. It was the REQUEST
(Reliability and Quality for European Software
Technology) project which adapted Boehm’s
COCOMO model to use the more precise mea-
surement of Rome Laboratory Software Quality
Framework. (RLSQF provided a framework for
using certain metrics for measuring 29 software
oriented attributes and relating them to 13 user-
oriented quality factors). The beauty of CO-
QUAMO was that Kitchenham saw the need for
measurement tools to vary from one environment
to another. This was a substantial improvement
on all research to date, which had been trying to
increase the objective measurements for specific
characteristics, without producing any results.

Kitchenham introduced the concept of a
“quality profile” and made a distinction between
subjective and objective quality measures. It is
an attempt to integrate the user, manufacturer,
and product views in one software quality model
(Kitchenham & Pfleeger, 1996). The COQUAMO
model was developed based on Gilb’s model and
Garvin’s views of quality (Gillies, 1992).

The COQUAMO model consists of the fol-
lowing components:

1. Transcendent Properties: these are quali-
tative measures that are hard to measure.
People have different views and definitions.
An example is usability.

2. Quality Factors: these are system charac-
teristics, which are made up of measurable
factors of quality metrics and quality attri-
butes. The quality factors themselves could
be subjective or objective characteristics
such as reliability and flexibility.

3. Merit Indices: these define the system
subjectively. They are measured subjectively
by quality ratings.

The objectives of COQUAMO and the relevant
tools to assist the software developers are in the
following table:

• to predict product quality
• to monitor progress toward quality
• to evaluate the results as feedback to improve

prediction of the next project

The initial input to COQUAMO-l are estimates
of the following quality drivers:

• product attributes such as quality require-
ments

• process attributes such as process matu-
rity

• personnel attributes such as the developer’s
experience and motivation

• project attributes such the quality norm
expected

• organizational attributes such as quality
management

coQuamo-1
prediction

coQuamo-2
monitoring

coQuamo-3
evaluation

Figure 1. COQUAMO toolset diagram (Gillies,
1992)

 ���

Different Views of Software Quality

The toolset of COQUAMO-2 consists of
guidelines to monitor the progress toward quality
product, while toolset COQUAMO-3 provides
guidelines to assess the quality of the product
and compare it against the prediction. The result
of this will be input to COQUAMO-1 for the
next project.

The distinctive characteristic of this model that
differentiates it from previous models is that the
evaluation and feedback processes are introduced
here to improve the quality of software in the next
project. There is a similarity with some aspects
of Total Quality Management (TQM) in software
quality modeling, that is, improvement of quality.
This is featured by the COQUAMO-3 toolset.

The SQUID Product Model

The SQUID model, an ESPRIT 3 SQUID project
(Kitchenham et al., 1997), was the result of a
reassessment by Kitchenham of what consti-
tuted a quality model. It was developed after
COQUAMO and after the results of the ESPRIT
project concluded that there were no software
product metrics that were likely to be good predic-
tors of final product qualities. Kitchenham built
SQUID based on these results and held firmly
to the importance of monitoring and controlling
internal measures.

Based on the McCall and ISO9126 models,
SQUID aimed to use measurable properties to
link internal properties and external characteris-
tics to quality characteristics. A key principle to
the SQUID model is that it must be customized
for each project/product. Kitchenham states that
the underlying principle of SQUID is that soft-
ware quality requirements cannot be considered
independently from a particular software prod-
uct. Kitchenham acknowledges her alignment
with Gilb (1996) on this point when he states
that quality requirements arise from the opera-
tional properties required of the software, or of
its support/maintenance environment. SQUID
provides a concrete link between a concrete

feature/component and the quality factor. The
SQUID approach is to use measurement as the
link between the product quality requirements
and the quality characteristics (it uses ISO9126
characteristics as accepted results of research). In
the application of the model to a product, concrete
internal measures, with targets, are developed for
the desired software properties, which reference
quality characteristics. For example, the internal
measures for the software property correctness
were the number of faults detected, and the group-
ing into which the faults fell.

The SQUID model comes far closer than any
in being able to balance the need for internal
and external views and being able to consider
the change in characteristics and metrics that
are involved with each type of software in each
context. The model’s necessary broadness to suit
this recognized need means that it takes a different
form from the other models. There is no naming
of quality factors and quality characteristics. The
true strength of this model, as already stated, is
its ability to be used in any project.

Other Approaches to Quality Evaluation

Quality Function Deployment (QFD) is a rigorous
and high-structured process used in manufactur-
ing. It provides a means of translating customer
requirements into the appropriate technical re-
quirements for each stage of product development
and production. The process has been adopted in
software engineering (Delen & Rijsenbrij, 1992;
Erikkson & McFadden, 1993; Juliff, 1994; Thomp-
sett, 1993). It required that before each software
development project began, the appropriate char-
acteristics along with the degree of importance of
these characteristics had to be first identified by
the stakeholders. The project quality would then
be measured against these functions. Though
QFD is very much a product definition process
which helps businesses identify and integrate user
needs and requirements to a product, Thompsett
(1993) states that QFD is a tool which can help

��0

Different Views of Software Quality

define software quality. Erikkson and McFad-
den (1993) claim that this approach gives a good
structure within which users’ needs are taken
into account and progressively refined to give
appropriate product metrics. QFD has been de-
scribed as a customer-driven system that attempts
to get early coupling between the requirements
of the customer and system designers. It has not
only proven itself in manufacturing and service
environments, but has been shown to be equally
beneficial in software development (Erikkson &
McFadden, 1993; Juliff, 1994; Thompsett, 1993).
Erikkson & McFadden (1993) describe several
benefits of QFD from their case study:

• QFD encourages focus on customer needs
and helps to prioritize the requirements.

• QFD encourages developers to think in
terms of defect prevention.

• QFD is a powerful communication vehicle
that allows modeling of the discussions be-
tween customers, software designers, and
other participants.

• QFD allows easy tracking of important
customer requirements to the related soft-
ware characteristics, product features, and
product metrics.

• QFD provides an opportunity to follow the
consequences in the process.

• As can be seen from this list, QFD is a
powerful manufacturing process to ensure
customer requirements are met. QFD differs
from traditional models, in that its approach
is to develop software products from the
customers’ perspective, not from the sup-
pliers’ perspective. While QFD supports
the many views of quality, described by
Garvin (1984), it does not try to understand
the differences, nor does it try to identify
similarities between customers.

Vidgen et al. (1994) proposed a framework to
define quality based on the multiview development
method (Wood, 1992; Wood-Harper & Avison,

1992). They believed that multiple perspectives
of software quality are required if one is to as-
sess product quality properly. The framework
was based on customer satisfaction, relating the
product with its use and the services provided to
support it. The three views of IS quality provide
the basis for the multiple perspective. It was not
merely an exercise in looking at the same object
from different angles, but it entailed different
assumptions about what quality is. Though this
framework was introduced, no further research
followed.

Criticism of These Recent Models

Kitchenham acknowledges some problems with
the SQUID model (Kitchenham et al., 1997). Using
the ISO9126 model as a framework led her to make
recommendations for on-going improvements to
the ISO9126 standard. Among her recommenda-
tions is a request for a further broadening of the
ISO9126 standard. Her reasons are good ones and
may lead critics of the broadness of ISO9126 to
rethink their reasons for seeking further specific-
ity. She says that insofar as software products do
not have a standard set of functional requirements,
then it seems that rather than give a fixed set of
quality requirements, the standards should specify
how the quality characteristics should be defined
by those involved in the project. From this generic
outline, the development team would have guid-
ance to develop their product model. Kitchenham
also states that the lower level properties should
be clearly classified as external or internal char-
acteristics. She finally recommends that research
should focus on ways to validate quality models.
She acknowledges the contribution Dromey’s
(1995) research has made in providing a criterion
for including a software property in a model.
Dromey supports this need for a broad model
to be developed by those involved in the project
and states that it would involve the project team
specifying the subcharacteristics of each quality
characteristic of each component, establishing the

 ���

Different Views of Software Quality

metrics that correlate to the characteristics of the
software product and to the environment in which
it is functioning, and to provide a rating level that
expresses a degree of user satisfaction. Since each
set of users and developers needs is different, each
rating level will change. This is a complex task
that would require much guidance.

Vollman (1993) provides additional comment
on this issue of model broadness: not only is the
subdivision of quality characteristics influenced
by the evaluator’s point of view and the product’s
context, but when this occurs, the algorithms ap-
plied when evaluating will need to differ. In 1993,
the ISO9000 standards included a publication that
was the precursor to this need for the measure
to be applied by multiple evaluators in multiple
situations, and stated that an organization should
use whatever metrics it deems appropriate to
its applications as long as the ISO9000 metrics
methodology is followed. Schneidewind (1993)
states that this broadness allows metrics to be
used by developers, managers, quality assurance
organizations, maintainers, and users. Clearly the
newest metric for software quality measurement
will receive much heated discussion as a result
of the move to balance internal measures with
measures of external product attributes.

From this section, it can be concluded that there
have been vast improvements in defining software
quality. Yet overall, software product quality
research is still relatively immature, and today
it is still difficult for a user to compare software
quality across products. Researchers are still not
clear as to what is a good measure of software
quality because of the variety of interpretations of
the meaning of quality, of the meanings of terms
to describe its aspects, of criteria for including
or excluding aspects in a model of software, and
of the degree to which software development
procedures should be included in the definition
(Comerford, 1993). Although many of the criti-
cisms of product models are valid, Voas (1997)
proposes that because product-oriented methods
are more focused on achieving quality than as-

sessing it, they play a critical role in software
quality research. He contends firmly that software
behavior, irrespective of the software’s develop-
ment history, is what defines software quality.
He sees organizations and research caught in a
bind with software testing measuring the right
thing but with insufficient precision and process
measurement more accurately measuring the
wrong thing.

meaSurIng QuaLIty wIth
the Software evaLuatIon
framework

There have been many studies on the topic of
software quality, yet little empirical studies on
what influences the perception of quality for dif-
ferent people. Earlier research of Wong (Wong,
1998; Wong & Jeffery, 1995, 1996) concluded
that different groups of people view quality in
different ways and that it was possible to group
people with similar definitions of quality and
similar choices of characteristics in their quality
assessment process.

During the past 30 years there have been
many studies on the topic of software quality;
however, there have been none on a framework
for software quality, which considers the moti-
vation behind the evaluation process, other than
the earlier version of this framework introduced
by Wong and Jeffery (2001). This framework is
based on the notion that software evaluators are
influenced by their job roles. This is supported
by earlier studies (Wong, 1998; Wong & Jeffery,
1995, 1996) where stakeholders with different
job roles were found to focus on different sets of
software characteristics when evaluating software
quality. What motivates these differences is found
within the broader context of value, where studies
have shown that values are a powerful force in
influencing the behavior of individuals (Rokeach,
1968; Yankelovich, 1981).

���

Different Views of Software Quality

The theoretical basis for developing such a
framework was based on the theory found in
cognitive psychology and adopted by Gutman’s
Means-End Chain Model (Bagozzi, 1997; Bagozzi
& Dabholkar, 2000; Gutman, 1982, 1997; Valette-
Florence, 1998), which posits that linkages
between product characteristics, consequences
produced through usage, and personal values of
users underlie the decision-making process or, in
this case, the software quality evaluation process.
It is the aim of the framework to not only show
the relationships between the characteristics and
software quality, but also show that there are
relationships between the characteristics and the
desired consequences, and between the charac-
teristics and the sought-after values.

Personal values are beliefs people have about
important aspects of themselves and the goals
toward which they are striving. Personal values
are the penultimate consequences of behavior for
people: their feelings of self-esteem, belonging,
security, or other value orientations. As such,
personal values are part of the central core of
a person. That is, personal values determine
which consequences are desired and which are
undesired.

Values have been shown to be a powerful force
in influencing the behaviors of individuals in all
aspects of their lives (Rokeach, 1968; Yankelov-
ich, 1981). It is proposed in this research, that
their use in software quality evaluation shows
the behavior of software evaluators and the re-
lationship between the software characteristics,
the desired consequences, and the values sought.
Several attempts in consumer research have been
made to provide a theoretical and conceptual
structure connecting consumers’ values to their
behavior (Gutman, 1982; Howard, 1977; Vinson
et al., 1977; Young & Feigin, 1975). The basis
by which the study is performed is via adopting
Gutman’s means-end chain model (Bagozzi, 1997;
Bagozzi & Dabholkar, 2000; Gutman, 1982, 1997;
Valette-Florence 1998), which posits that linkages
between product characteristics, consequences

produced through usage, and personal values of
users underlie the decision-making process or, in
our case, the software quality evaluation process.
The term means refers to the software product and
services, and ends refers to the personal values
important to the user.

Gutman’s model is able to give a complete
representation of the means-end chain, repre-
senting linkages from the characteristics to the
values, along with the capability of explicating the
chain. Earlier models (Howard, 1977; Vinson et
al., 1977; Young & Feigin, 1975) failed to consider
the means-end chain. They focused only on the
consequences and values without considering how
they relate to the characteristics or attributes. The
means-end chain model seeks to explain how a
person’s choice of a product or service enables him
or her to achieve his or her desired result. Such a
framework consists of elements that represent the
major usage processes that link personal values to
behavior. Two assumptions underlie this model:

• all user actions have consequences; and
• all users learn to associate particular con-

sequences from the usage of the product or
service.

Consequences may be desirable or undesirable;
they may stem directly from usage or the act of
usage, or occur indirectly at a later point in time
or from others’ reaction to one’s consumption
behavior. The central aspect of the model is that
users choose actions that produce desired conse-
quences and minimize undesired consequences.
Of course, because it is the characteristics that
produce consequences, consideration for the
characteristics that the software product possesses
must be made. Therefore, it is important to make
aware the characteristic-consequence relations.
Overall, the characteristic-consequence-value
interrelations are the focus of the model. Values
provide the overall direction, consequences deter-
mine the selection of specific behavior in specific
situations, and the characteristics are what is in

 ���

Different Views of Software Quality

the actual software product that produces the
consequences. It is knowledge of this structure
that permits us to examine the underlying mean-
ing of quality.

As highlighted in the literature, the benefit
of utilizing Gutman’s model in the framework
is that it shows how the desired values influence
the behaviors of individuals in all aspects of their
lives (Gutman, 1982; Rokeach, 1968; Yankelov-
ich, 1981). Gutman’s model suggests that the
desired consequences and the values sought are
the motivators behind the choice of characteristic
for software evaluation. In addition to this, the
framework also highlights the significance of this
relationship through the relationships between
characteristics and consequences and also be-
tween the characteristics and value. It is through

these relationships that the possibility of using
the characteristics to evaluate each consequence
and value becomes apparent.

The framework shown in Figure 2 is based
on Gutman’s Means-End Chain Model. As can
be seen in this diagram, the framework consists
of a number of boxes describing the three ele-
ments of Gutman’s model, the stakeholders who
evaluate the software quality, the outcome for the
quality evaluation, and the arrows linking these
elements, while also describing the direction of
the influence. The Means-End Chain Model has
been placed in the main box, as it is proposed,
in this framework, to be the central influence
for the choice of characteristics used in software
evaluation, and the influence for the differences
found between stakeholders. The framework not

Stakeholders

Users

Developers

Other
Stakeholders

Metrics
appropriate
to phase of

Development
Methodology

evaluate different
characterIStIcS

of the software

desired
conSe-
Quence

desired
vaLue

MEANS-END CHAiN MODEL wong (2002)

QUALITY
Evaluation

Capability
for achieving

CONSEQ

Capability
for achieving

VALUE

Cognitive Structures for each
Stakeholder

Wong & Jeffery (�00�)

Wong & Jeffery (�00�)

Figure 2. SEF: Software evaluation framework

���

Different Views of Software Quality

only shows the related elements, which influence
software quality evaluation, but also introduces a
way of describing the relationships between the
characteristics, the consequences, and the values.
These diagrams are called cognitive structures.
Cognitive structures can be drawn for each
stakeholder, allowing stakeholder differences to
be described through a diagram (Wong, 2002,
2003a; Wong & Jeffery, 2001).

The recent studies of Wong and Jeffery (Wong,
2002, 2002a; Wong & Jeffery, 2001, 2002) provide
the premise to this framework. An exploratory
study by Wong and Jeffery (2001), utilized a
qualitative approach to explore the influence
of value on the choice of characteristics, and to
determine whether cognitive structures could
be used as a tool to represent the links between
the characteristics, consequences, and values.
The results of the study not only gave strong
support for the influence of value on the choice
of characteristic in software evaluation, but also
supported earlier pilot studies on stakeholder
differences (Wong, 1998; Wong & Jeffery, 1995,
1996), identifying different cognitive structures
for users and developers.

A more recent paper by Wong (2002a) reported
on a large quantitative study, which tested the ap-
propriateness of utilizing Gutman’s Means-End
Chain Model (Bagozzi, 1997; Bagozzi & Dabhol-
kar, 2000; Gutman, 1982, 1997; Valette-Florence,
1998) in software evaluation. Unlike previous
studies of Gutman’s Model, this study showed
strong support for the Means-End Chain Model in
a software evaluation setting. The results showed
strong correlations between the characteristics,
the consequences and the values, and supported
the results of the qualitative study (Wong & Jef-
fery, 2001) described earlier.

The Software Evaluation Framework has
also been applied to the requirements phase of
the software development project (Wong, 2003a,
2003b, 2004). The results showed support for the
use of the framework. The results showed that the
measurements between the different phases are

not the same, though the motivation behind the
choice of these measurements is the same for a
stakeholder group. The study also finds that the
two groups of stakeholders are very similar in
the measurements they choose for evaluating
requirements documents; however, the motivation
behind their choice of these measurements differs
between the stakeholder groups. These results are
a contrast to that of the implementation phase.
More recently, studies have also been conducted
on the metrics, which could be used to measure
the characteristics of the software product (Wong,
2003a, 2003c, 2004, 2004a).

concLuSIon

An exhaustive and critical review of the research
concerned specifically with software product
quality is reviewed in this chapter. It is clear that
some models have provided more progress toward
refining the definition of software quality while
others have contributed to a better understanding
of the process for measuring software quality.
While the attempts of many of the models have
been admirable, the development of the Software
Evaluation Framework has succeeded in introduc-
ing a framework which fills the gaps found in
many of the models.

Several broad conclusions can be drawn from
the literature.

First, it is understood that there are different
views of quality and that an understanding of
these views is required; however, it is difficult
to adopt all views at the same time when evalu-
ating software. Though a number of assertions
have been made in the literature regarding the
multiple views of quality, there have not been
many studies to support this, nor are there any
frameworks or models which give the rationale
for the different views.

Second, we know little about what rationale
is used for selecting a characteristic for software
evaluation. There is a need to consider what

 ���

Different Views of Software Quality

motivates the characteristics used in software
evaluation for EACH different view.

Third, the Software Evaluation Framework,
introduced in this chapter, showed support for
applying Gutman’s Means-End Chain Model in
software quality evaluation. The results endorse
the links between characteristics, consequences
and values, which have been regarded as rich
constructs for understanding software evaluator
behavior (Izard, 1972; Rokeach, 1973; Tolman,
1951). The results of the study provided further
evidence of a connection between patterns of
characteristics, consequences, and values and
gives valuable support for the use of cognitive
structures as a means of describing this relation-
ship. Knowing this relationship is valuable for
marketing and promoting the software, which
is important for software acceptance. Software
developers have often been challenged with con-
ducting appropriate software demonstrations. For
many developers, there is a lack of understanding
of what is important to the user. The Software
Evaluation Framework introduces the motivation
for user acceptance of the software and allows the
developer to have a better understanding of the
desired consequences and how they are related
to the software. The framework is valuable for
understanding the differences in views of qual-
ity among the many stakeholders in a software
development project. The cognitive structures
introduced a way of describing these differences,
showing clearly the characteristics of the software
product, which are significant in their evaluation
of software quality, along with the desired conse-
quences and sought-after values associated with
these characteristics.

Fourth, the use of the cognitive structures,
introduced in the Software Evaluation Framework,
can better the understanding of the characteristics
selected for quality evaluation and how they are
related to what the evaluators seek as desired
consequences from the use of the software. The

cognitive structures not only showed that users and
developers differ in their choice of characteristics,
but show differences in the consequences sought
and the values desired. Software Quality has been
described as a combination of characteristics, with
ISO9126 being adopted as the current international
standard. However, though support for ISO9126
appeared in some of the results, evidence sug-
gests that non-ISO9126 characteristics are also
important when evaluating software quality. This
is supported by the cognitive structures and the re-
sults of earlier studies of Wong and Jeffery (Wong,
1998; Wong & Jeffery, 1995, 1996). The results
found that ISO9126 characteristics, usability, and
functionality strongly affect software quality for
both developers and users, while technical char-
acteristics, like portability and maintainability,
were only significant for the developers. How-
ever, the results surprisingly found operational
characteristics, like efficiency and reliability, to
minimally affect software quality. This result was
not expected since many of the measurements for
software quality, like defects and failures, focus
on reliability. As to the non-ISO9126 character-
istics, support was found to be important for both
users and developers, while the economic and
institutional characteristics were only relevant for
users. It is evident that further work is required to
identify whether the non-ISO9126 characteristics
should be part of the ISO9126 set of characteristics.
The use of the cognitive structures can also help
to identify the problems that may be occurring
in current evaluation practices. Software Qual-
ity is seldom confined to just one characteristic,
though very often, reliability seems to be the
only focus. Defects and failures have often been
the only metrics collected. While reliability, an
operational characteristic, is important, the results
of the research show that other metrics need to
be collected if a more generally applicable set of
measure for Software Quality is desired for dif-
ferent stakeholders.

���

Different Views of Software Quality

referenceS

Bagozzi, R. (1997, September 1997). Goal-directed
behaviors in marketing: Cognitive and emotional.
Psychology & Marketing, 14, 539-543.

Bagozzi, R., & Dabholkar, P. (2000, July). Dis-
cursive psychology: An alternative conceptual
foundation to means-end chain theory. Psychology
& Marketing, 17, 535-586.

Bockenhoff, E., & Hamm, U. (1983). Perspektiven
des Marktes für Alternativ erzeugte Nahrungsmit-
tel. Berichte über Landwirtschaft, 61, 341-381.
(Cited in Steenkamp, 1989).

Boehm, G. (1963 April). Reliability engineering.
Fortune, pp. 124-127.

Boehm, B., Brown, J., & Lipow, M. (1976).
Quantitative evaluation of chance of receiving
desired consequences. Proceedings of the Second
International Conference on Software Engineer-
ing (pp. 592-605).

Box, J. (1984). Product quality assessment by
consumers – the role of product information.
Proceedings of the XIth International Research
Seminar in Marketing, Aix-en-Provence (pp.
176-197).

Braa, K., & Ogrim, L. (1994). Critical view of
the application of the ISO standard for quality
assurance. Journal of Information Systems, 5,
253-269.

Carpenter, S., & Murine, G. (1984, May). Measur-
ing software product quality. Quality Progress,
16-20.

Cavano, J., & McCall, J. (1978, November). A
framework for the measurement of chance of
receiving desired consequences. Proceedings of
the ACM SQA Workshop (pp. 133-139).

Checkland, P., & Scholes, J. (1990). Soft systems
methodology in action. Chichester, UK: Wiley.

Coallier, F. (1994, January). How ISO9001 fits into
the software world. IEEE Software.

Comerford, R. (1993, January). Software. IEEE
Spectrum, pp. 30-33.

Crosby, P. (1978). Quality is free. Maidenhead:
McGraw-Hill.

Dahlborn, B., & Mathiassen, L. (1993). Computers
in context. The philosophy and practice of systems
design. Cambridge, MA: NCC Blackwell.

Delen, G., & Rijsenbrij, D. (1992). The specifica-
tion, engineering, and measurement of informa-
tion systems quality. Journal of Systems and
Software, 17(3), 205-217.

Dowson, M. (1993). Software process themes
and issues. Proceedings of the 2nd International
Conference on the Software Process: Continuous
Software Process Improvement (pp. 54-60).

Dromey, R. (1995, February). A model for software
product quality. IEEE Transactions on Software
Engineering, 21(2), 146-162.

Erikkson, I., & McFadden, F. (1993). Quality
function deployment: A tool to improve software
quality. Information and Software Technology,
35(9), 491-498.

Feldman, M.S., & March, J.G. (1981). Information
in organizations as signal and symbol. Adminis-
trative Science Quarterly, 26, 171-186.

Fenton, N. (1996, January). Do standards improve
quality: A counterpoint. IEEE Software, 13(1),
23-24.

Garvin, D. (1984). What does “product quality”
really mean? Sloan Management Review, 24.

Genth, M. (1981). Qualität und Automobile
– Eine Untersuchung am Beispiel des deutschen
Automobilmarktes 1974-1977. Frankfurt: Lang,
in Steenkamp Product Quality. (Cited in Steen-
kamp, 1989).

 ���

Different Views of Software Quality

Gilb, T. (1996, January). Level 6: Why we can’t
get there from here. IEEE Software, 97-103.

Gillies, A. (1992). Software quality, theory and
management (1st ed.). London: Chapman &
Hall.

Greenbaum, J., & Kyng, M. (1991). Design at
work: Cooperative design of computer systems.
NJ: Lawrence Erlbaum.

Gulezian, R. (1995). Software quality measure-
ment and modeling, maturity, control and im-
provement. IEEE COMPCON 1995 Proceedings
(pp. 52-60).

Gutman, J. (1982). A means-end chain model based
on consumer categorization processes. Journal of
Marketing, 46(Spring), 60-72.

Gutman, J. (1997). Means-end chains as goal
hierarchies. Psychology & Marketing, 14(6),
545-560.

Hatton, L. (1993). The automation of software
process and product quality, chance of receiving
desired consequences Management I. Computa-
tional Mechanics Publications.

Holbrook, M.B., & Corfman, K.P. (1983). Qual-
ity and other types of value in the consumption
experience: Phaedrus rides again. In Jacoby
& Olson (Eds.), Perceived quality (pp. 31-57).
Lexington.

Howard, J.A. (1977). Consumer behaviour: Ap-
plication of theory. New York: McGraw-Hill.

Humphrey, W. (1988, March). Characterising the
software process: A maturity framework. IEEE
Software, 5(2), 73-79.

Hyatt, L., & Rosenberg, L. (1996, April). A soft-
ware quality model and metrics for identifying
project risks and assessing software quality. Pro-
ceedings of the 8th Annual Software Technology
Conference, Utah.

ISO. (1986). ISO8402 Quality-Vocabulary, In-
ternational Organization for Standardization,
Geneva.

Izard, C. (1972). Human emotions. New York:
Plenum Press.

Juliff, P. (1994). Chance of receiving desired
consequences Function Deployment, Chance of
receiving desired consequences Management II
Vol 1. Computational Mechanics Publications.

Juran, J.M., & Gryna, F.M. (1980). Quality plan-
ning and analysis. New York: McGraw-Hill.

Kawlath, A. (1969). Theoretische Grundlagen der
Qualitätspolitik. Wiesbaden, Germany: Gabler
GmbH, in Steenkamp Product Quality. (Cited in
Steenkamp, 1989).

Kitchenham, B. (1987, July). Towards a construc-
tive quality model. Part 1: Chance of receiving
desired consequences modeling, measurement and
prediction. Software Engineering Journal.

Kitchenham, B., Linkman, S., Pasquini, A., &
Nanni, V. (1997). The SQUID approach to defin-
ing a quality model. Software Quality Journal,
6, 211-233.

Kitchenham, B., & Pfleeger, S. (1996, January).
Software quality: The elusive target. IEEE Soft-
ware.

Kitchenham, B., & Pickard, L. (1987, July). To-
wards a constructive quality model. Part 2: Statisti-
cal techniques for modeling chance of receiving
desired consequences in the ESPRIT REQUEST
project. Software Engineering Journal.

Kitchenham, B., & Walker, J. (1986, September).
The meaning of quality. Software Engineering 86:
Proceedings of BCS-IEE Software Engineering
86 Conference, Southampton, England.

Kotler, P. (1984). Marketing management: Analy-
sis, planning and control (5th ed.). Englewood
Cliffs, NJ: Prentice Hall.

���

Different Views of Software Quality

Kuehn, A., & Day, R. (1962). Strategy of product
quality. Harvard Business Review, 40, 100-110.

Kupsch, P., & Hufschmied, P. (1978). Die Struktur
von Qualitätsurteilen und das Informationver-
halten von Konsumenten beim Kauf langlebiger
Gebrauchsgüter. Oplagen: Westdeutscher Verlag.
(Cited in Steenkamp, 1989).

Maynes, E.S. (1976b). Decision-making for con-
sumers. New York: MacMillan Publishing.

McCall, J., Richards, P., & Walters, G. (1977,
November). Factors in chance of receiving desired
consequences, Vol 1, 2, & 3.

Monroe, K., & Krishnan, R. (1985). The effect
of price and subjective product evaluations. In J.
Jacoby & J.C. Olson (Eds.), Perceived quality (pp.
209-232). Lexington: Lexington Books.

Myers, W. (1993, March). Debating the many ways
to achieve quality. IEEE Software.

OED. (1990). Oxford English Dictionary.

Olson, J.C., & Jacoby, J. (1972). Cue utilization
in the quality perception process. Proceedings of
the Third Annual Conference of the Association
for Consumer Research, Iowa City, Iowa (pp.
167-179).

Ould, M. (1992). Chance of receiving desired
consequences. Improvement through Process
Assessment - A view from the UK. Proceedings
of the IEEE Colloquium on Chance of receiving
desired consequences.

Oxenfeldt, A.R. (1950). Consumer knowledge: Its
measurement and extent. Review of Economics
and Statistics, 32, 300-316.

Paulk, M.C. (1991). Capability maturity model
for software (Report CMU/SEI-91-TR-24). SEI,
Carnegie Mellon University.

Paulk, M.C., Curtis, B., Chrissis, M.B., & Weber,
C.V. (1993, July). The capability maturity model,
Version 1.1. IEEE Software, 10(4), 18-27.

Pfleeger, S.L. (2001). Software engineering:
Theory and practice (2nd ed.). Prentice Hall.

Pfleeger, S.L., Jeffery, R., Curtis, B., & Kitch-
enham, B. (1997, March/April). Status report on
software measurement. IEEE Software, 34-43.

Rae, A., Robert, P., & Hausen, H.L. (1995).
Software evaluation for certification. Principles,
practice and legal liability. UK: McGraw-Hill.

Rokeach, M. (1968). Beliefs, attitudes and values.
San Francisco: Jossey-Bass.

Rokeach, M. (1973). The nature of human values.
New York: Free Press.

Rombach, D., & Basili, V. (1990). Practical benefits
of goal-oriented measurement. Proceedings of
the Annual Workshop of the Centre for Software
Reliability: Reliability and Measurement, Gar-
misch-Partenkirchen, Germany.

Rozman, I., Horvat, R., Gyorkos, J., & Hericko,
M. (1977). PROCESSUS - Integration of SEI
CMM and ISO quality models. Software Quality
Journal, 6, 37-63.

Schneidewind, N.F. (1993, April). New software
quality metrics methodology standards fill mea-
surement needs. IEEE Computer, 105-196.

Schneidewind, N.F. (1996, January). Do standards
improve quality: A point. IEEE Software, 13(1),
22-24.

Stolterman, E. (1991). Designarbetets dolda ratio-
nalitet. PhD thesis, Research Report No. 14:91.
Information Processing and Computer Science,
Institutionen för Informationsbehandling, Ad-
ministrativ Databehandling University of Umeå.
(Cited in Braa et al., 1994).

Sunazuka, T., Azuma, M., & Yamagishi, N.
(1985). Chance of receiving desired consequences.
Assessment technology. Proceedings of the
IEEE 8th International Conference on Sofware
Engineering.

 ���

Different Views of Software Quality

Thompsett, R. (1993). Quality agreements for
quality systems. Proceedings of Australian
Computer Society, Victorian Branch, Annual
Conference.

Thurstone, W.R. (1985). Quality is between the
customer’s ears. Across the Board, pp. 29-32.

Tolman, E. (1951). A psychological model. In T.
Parsons & E. Shils (Eds.), Towards a general
theory of reasoned action (pp. 148-163). Cam-
bridge: Harvard University Press.

Trenkle, K. (1983). Lebensmittelqualität und
Verbraucherschutz. AID-verbrauchersdienst, pp.
211-216. (Cited in Steenkamp, 1989).

Valette-Florence, P. (1998, June). A causal analy-
sis of means-end hierarchies in a cross-cultural
context: Metholodogical refinements. Journal of
Business Research, 42(2), 161-166.

Vidgen, R., Wood, J., & Wood-Harper, A. (1994).
Customer satisfaction: The need for multiple per-
spectives of information system quality. Chance
of receiving desired consequences Management
II Vol 1. Computaional Mechanics Publications.

Vinson, D.E., Scott, J.E., & Lamont, L.M. (1977,
April). The role of personal values in marketing
and consumer behaviour. Journal of Marketing,
41, 44-50.

Voas, J.M. (1997, July/August). Can clean pipes
produce dirty water? IEEE Software, pp. 93-95.

Vollman, T.E. (1993, June). Software quality
assessment and standards. Computer, 6(6), 118-
120.

Wimmer, F. (1975). Das Qualitatsurteil des
Konsumenten: Theoretische Grundlagen und
Empirische Ergebnisse. Frankfurt: Lang. (Cited
in Steenkamp, 1989).

Wittgenstein, L. (1953). Philosophical investiga-
tions. New York: MacMillan.

Wolff, M.F. (1986). Quality/process control:
What R and D can do. Research Management,
pp. 9-11.

Wong, B. (1998). Factors influencing software
quality judgment (Tech. Rep.). CSIRO.

Wong, B. (2002, May 25). Comprehending soft-
ware quality: The role of cognitive structures.
Proceedings of the International Workshop on
Software Quality (in conjunction with ICSE
2002).

Wong, B. (2002a). The appropriateness of
Gutman’s means-end chain model in software
evaluation. Proceedings of the 2002 International
Symposium on Empirical Software Engineering
(ISESE 2002).

Wong, B. (2003). Measurements used in software
quality evaluation. Proceedings of the 2003 In-
ternational Conference on Software Engineering
Research and Practice (SERP 2003).

Wong, B. (2003a). Applying the software evalu-
ation framework “SEF” to the software de-
velopment life cycle. Proceedings of the 2003
International Symposium on Empirical Software
Engineering (ISESE 2003).

Wong, B. (2003b). Measuring the quality of the
requirements specification document for an
e-commerce project. Proceedings of the 2003
International Business Information Management
Conference (IBIM 2003).

Wong, B. (2003c). A study of the metrics applied
to the software evaluation framework “SEF”.
Proceedings of the Third International Conference
on Quality Software (QSIC 2003).

Wong, B. (2004). A study of the metrics for measur-
ing the quality of the requirements specification
document. Proceedings of the 2004 International
Conference on Software Engineering Research
and Practice (SERP 2004).

��0

Different Views of Software Quality

Wong, B. (2004a, December). The software
evaluation framework “SEF” extended. Informa-
tion and Software Technology Journal, 46(15),
1037-1047.

Wong, B., & Jeffery, R. (1995, November 22-24).
Quality metrics: ISO9126 and stakeholder per-
ceptions. Proceedings of the Second Australian
Conference on Software Metrics (ACOSM’95),
Sydney (pp. 54-65).

Wong, B., & Jeffery, R. (1996). A pilot study of
stakeholder perceptions of quality (Tech. Rep.),
CSIRO.

Wong, B., & Jeffery, R. (2001). Cognitive struc-
tures of software evaluation: A means-end chain
analysis of quality. Proceedings of the Third Inter-
national Conference on Product Focused Software
Process Improvement (PROFES 2001).

Wong, B., & Jeffery, R. (2002). A framework on
software quality. Proceedings of the Fourth Inter-

national Conference on Product Focused Software
Process Improvement (PROFES 2002).

Wood, J.R. (1992). Linking soft systems meth-
odology (SSM) and information systems (IS).
Systemist - Information Systems Special Edition,
14(3), 133-135.

Wood-Harper, A.T., & Avison, D. (1992). Reflec-
tions from the experience of using multiview:
Through the lens of soft systems methodology.
Systemist, 14(3), 136-145.

Yankelovich, D. (1981, April). New rules in Ameri-
can life: Search for self-fulfilment in a world turned
upside down. Psychology Today, pp. 60.

Young, D.E., & Feigin, E. (1975, July). Using the
benefit chain for improved strategy formulation.
Journal of Marketing, 39, 72-74.

This work was previously published in Measuring Information Systems Delivery Quality, edited by E. Duggan and J. Reichgelt,
pp. 55-89, copyright 2006 by Idea Group Publishing (an imprint of IGI Global).

 ���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.22
Software Configuration
Management in Agile

Development
Lars Bendix

Lund Institute of Technology, Sweden

Torbjörn Ekman
Lund Institute of Technology, Sweden

aBStract

Software configuration management (SCM) is
an essential part of any software project and
its importance is even greater on agile projects
because of the frequency of changes. In this
chapter, we argue that SCM needs to be done dif-
ferently and cover more aspects on agile projects.
We also explain how SCM processes and tools
contribute both directly and indirectly to quality
assurance. We give a brief introduction to central
SCM principles and define a number of typical
agile activities related to SCM. Subsequently,
we show that there are general SCM guidelines
for how to support and strengthen these typical
agile activities. Furthermore, we establish a set of
requirements that an agile method must satisfy to
benefit the most from SCM. Following our general
guidelines, an agile project can adapt the SCM

processes and tools to its specific agile method
and its particular context.

IntroductIon

In traditional software development organisations,
software configuration management (SCM) is
often pushed onto the projects by the quality as-
surance (QA) organisation. This is done because
SCM in part can implement some QA measures
and in part can support the developers in their work
and therefore helps them to produce better quality.
The same holds true for agile methods—SCM
can directly and in-directly contribute to better
QA on agile projects.

Software configuration management (SCM)
is a set of processes for managing changes and
modifications to software systems during their

���

Software Configuration Management in Agile Development

entire life cycle. Agile methods embrace change
and focus on how to respond rapidly to changes
in the requirements and the environment (Beck,
1999a). So it seems obvious that SCM should be
an even more important part of agile methods
than it is of traditional development methods.
However, SCM is often associated with heavily
process-oriented software development and the
way it is commonly carried out might not transfer
directly to an agile setting. We believe there is a
need for SCM in agile development but that ist
should be carried out in a different way. There
is a need for the general values and principles of
SCM, which we consider universal for all develop-
ment methods, and there is a need for the general
techniques and processes, which we are certain
will be of even greater help to agile developers
than they are to traditional developers.

There are some major differences in agile proj-
ects compared to traditional projects that heavily
influence the way SCM can—and should—be
carried out. Agile methods shift the focus from
the relation between a project’s management and
the customer to the relation between developers
and the customer. While traditional SCM focuses
on the projects and company layers in Figure 1,
there is a need to support developers as well when
using SCM in agile projects. Shorter iterations,

more frequent releases, and closer collaboration
within a development team contribute to a much
greater stress on SCM processes and tools.

Agile methods are people-oriented rather than
process-oriented and put the developer and the
customer in focus. As a consequence, SCM has
to shift its primary focus from control activities
to that of service and support activities. The main
focus on audits and control needs to be replaced
by a main focus on supporting the highly iterative
way of working of both the team and the devel-
opers, as seen in Figure 2. From a QA point of
view, the control measures are moved down to
the developers themselves with the purpose of
shortening the feedback loop in agile methods. So
SCM does not directly contribute to the QA on an
agile project, this is the task of the processes that
the agile method in question prescribes. However,
by supporting said processes and making them
easier and safer to practice SCM indirectly is a
big factor in QA on agile projects.

The traditional process-oriented view of SCM
has also lead to several misconceptions of agile
methods from an SCM point of view. The lack
of explicit use of SCM and its terminology has
lead quite a few people to conclude that agile
methods are not safe due to an apparent lack of
rigorous change management. However, a lot of

Figure 1. The different layers of SCM Figure 2. The main development loops in agile

 ���

Software Configuration Management in Agile Development

SCM activities are actually carried out in agile
methods although they are not mentioned explic-
itly. Bendix and Hedin (2002) identify a need
for better support from SCM, in particular for
refactoring in order for this practice to be viable.
Koskela (2003) reviews agile methods in general
from an SCM point of view and concludes that
only a few of the existing agile methods take
SCM explicitly into account. He also notices that
most methods highly value SCM tool support but
that SCM planning has been completely forgot-
ten. There is thus a need to provide guidance for
using SCM or for implementing SCM in agile.
The SCM literature mostly takes the control-
oriented view of SCM (Berlack, 1992; Buckley,
1993; Hass, 2003; Leon, 2005) and there is very
little written about team- and developer-oriented
support activities (Babich, 1986; Mikkelsen &
Pherigo, 1997; Bendix & Vinter, 2001; Berczuk
& Appleton, 2003). These activities are the ones
that can benefit agile methods the most and should
therefore be emphasized more when used in an
agile setting. However, it is important to stress
that agile methods need the whole range of SCM
support from developer through to customer.

In the next section, we provide background
information about SCM for those who are not
so familiar with SCM, and describe and define a
number of SCM-related agile activities to estab-
lish a terminology. In Section 3, we give general
guidelines for how these agile activities can be
supported by SCM and how agile methods could
benefit from adopting more SCM principles. We
also provide pointers to literature where more
details can be found. Future trends for SCM in
the agile context are described in Section 4, and
in Section 5 we draw our conclusions.

Background

This section gives an introduction to the concepts
and terminology in SCM that serve as a back-
ground for the analysis in following sections.

We also define and describe activities in agile
methods that are related to SCM or affected by
SCM in one way or the other.

Scm activities

SCM is a method for controlling the develop-
ment and modifications of software systems and
products during their entire life cycle (Crnkovic,
Asklund, & Persson Dahlqvist, 2003). From this
viewpoint, SCM is traditionally divided into the
following activities: configuration identifica-
tion, configuration control, configuration status
accounting, and configuration audit (Leon,
2005). These activities reflect mostly the part of
a development project with relations to the cus-
tomer. However, since agile methods are often
more developer centric, there is also a need for a
more developer-oriented view of SCM than the
traditional control-oriented view above. Typi-
cal developer-oriented aspects of SCM include:
version control, build management, workspace
management, concurrency control, change man-
agement, and release management (Bendix &
Vinter, 2001). We present each activity from a
general perspective and explain both its purpose
and what is included in the activity. After this
introduction, the reader should be familiar with
these basic SCM concepts and their purpose,
so we can use them for our analysis in the next
section.

Configuration Identification

Configuration identification is the activity where
a system is divided into uniquely identifiable
components, called configuration items, for the
purpose of software configuration management.
The physical and functional characteristics of each
configuration item are documented including its
interfaces and change history. Each configuration
item is given a unique identifier and version to
distinguish it from other items and other versions
of the same item. This allows us to reason about

���

Software Configuration Management in Agile Development

a system in a consistent way both regarding its
structure and history. Each item can be either a
single unit or a collection (configuration) of lower
level items allowing hierarchical composition.
During configuration identification a project
baseline and its contents are also defined, which
helps to control change as all changes apply to
this uniquely defined baseline.

Configuration Control

Software is very different from hardware as it can
be changed quickly and easily, but doing so in an
uncontrolled manner often leads to chaos. Con-
figuration control is about enabling this flexibility
in a controlled way through formal change control
procedures including the following steps: evalu-
ation, coordination, approval or disapproval, and
implementation of changes. A proposed change
request typically originates from requests for
new features, enhancement of existing features,
bug reports, etc. A request is first evaluated by
a Change Control Board (CCB) that approves
or disapproves the request. An impact analysis
is performed by the CCB to determine how the
change would affect the system if implemented.
If a request is approved, the proposed change
is assigned to a developer for implementation.
This implementation then needs to be verified
through testing to ensure that the change has been
implemented as agreed upon before the CCB can
finally close the change request.

Configuration Status Accounting

Developers are able to track the current status of
changes by formalizing the recording and report-
ing of established configuration items, status of
proposed changes, and implementation of ap-
proved changes. Configuration status accounting
is the task to provide all kinds of information
related to configuration items and the activities
that affect them. This also includes change logs,
progress reports, and transaction logs. Configu-

ration status accounting enables tracking of the
complete history of a software product at any time
during its life cycle and also allows changes to be
tracked compared to a particular baseline.

Configuration Audits

The process of determining whether a configura-
tion item, for instance a release, conforms to its
configuration documents is called configuration
audit. There are several kinds of audits each
with its own purpose but with the common goal
to ensure that development plans and processes
are followed. A functional configuration audit
is a formal evaluation that a configuration item
has achieved the performance characteristics and
functions defined in its configuration document.
This process often involves testing of various
kinds. A physical configuration audit determines
the conformity between the actual produced con-
figuration item and the configuration according to
the configuration documents. A typical example
is to ensure that all items identified during con-
figuration identification are included in a product
baseline prior to shipping. An in-process audit
ensures that the defined SCM activities are being
properly applied and controlled and is typically
carried out by a QA team.

version control

A version control system is an invaluable tool
in providing history tracking for configuration
items. Items are stored, versions are created, and
their historical development is registered and
conveniently accessible. A fundamental invariant
is that versions are immutable. This means that
as soon as a configuration item is given a version
number, we are assured that it is unique and its
contents cannot be changed unless we create a
new version. We can therefore recreate any ver-
sion at any point in time. Version control systems
typically support configuration status accounting
by providing automatic support for history track-

 ���

Software Configuration Management in Agile Development

ing of configuration items. Furthermore, changes
between individual versions of a configuration
item can be compared automatically and vari-
ous logs are typically attached to versions of a
configuration item.

Build management

Build management handles the problem of put-
ting together modules in order to build a running
system. The description of dependencies and
information about how to compile items are given
in a system model, which is used to derive object
code and to link it together. Multiple variants
of the same system can be described in a single
system model and the build management tool
will derive different configurations, effectively
building a tailored system for each platform or
product variant. The build process is most often
automated, ranging from simple build scripts
to compilation in heterogeneous environments
with support for parallel compilation. Incremen-
tal builds, that only compile and link what has
changed, can be used during development for fast
turn around times, while a full build, rebuilding
the entire system from scratch, is normally used
during system integration and release.

workspace management

The different versions of configuration items in a
project are usually kept in a repository by the ver-
sion control tool. Because these versions must be
immutable, developers cannot be allowed to work
directly within this repository. Instead, they have
to take out a copy, modify it, and add the modified
copy to the repository. This also allows developers
to work in a controlled environment where they are
protected from other people’s changes and where
they can test their own changes prior to releasing
them to the repository. Workspace management
must provide functionality to create a workspace
from a selected set of files in the repository. At
the termination of that workspace, all changes

performed in the workspace need to be added to
the repository. While working in the workspace,
a developer needs to update his workspace, in a
controlled fashion, with changes that other people
may have added to the repository.

concurrency control

When multiple developers work on the same
system at the same time, they need a way to
synchronize their work; otherwise it may happen
that more than one developer make changes to the
same set of files or modules. If this situation is not
detected or avoided, the last developer to add his
or her changes to the repository will effectively
erase the changes made by others. The standard
way to avoid this situation is to provide a locking
mechanism, such that only the developer who
has the lock can change the file. A more flexible
solution is to allow people to work in parallel and
then to provide a merge facility that can combine
changes made to the same file. Compatible changes
can be merged automatically while incompatible
changes will result in a merge conflict that has
to be resolved manually. It is worth noticing that
conflicts are resolved in the workspace of the
developer that triggered the conflict, who is the
proper person to resolve it.

change management

There are multiple and complex reasons for
changes and change management needs to cover all
types of changes to a system. Change management
includes tools and processes that support the orga-
nization and tracking of changes from the origin
of the change to the approval of the implemented
source code. Various tools are used to collect data
during the process of handling a change request. It
is important to keep traceability between a change
request and its actual implementation, but also to
allow each piece of code to be associated to an
explicit change request. Change management is
also used to provide valuable metrics about the
progress of project execution.

���

Software Configuration Management in Agile Development

release management

Release management deals with both the formal
aspects of the company releasing to the customer
and the more informal aspects of the developers
releasing to the project. For a customer release, we
need to carry out both a physical and a functional
configuration audit before the actual release. In
order to be able to later re-create a release, we
can use a bill-of-material that records what went
into the release and how it was built. Releas-
ing changes to the project is a matter of how to
integrate changes from the developers. We need
to decide on when and how that is done, and in
particular on the “quality” of the changes before
they may be released.

agile activities

This section identifies a set of agile activities that
either implement SCM activities or are directly
affected by SCM activities. The presentation
builds on our view of agile methods as being in-
cremental, cooperative, and adaptive. Incremental
in that they stress continuous delivery with short
release cycles. Cooperative in that they rely on
teams of motivated individuals working towards
a common goal. Adaptive in that they welcome
changing requirements and reflect on how to be-
come more effective. While all activities presented
in this section may not be available in every agile
method, we consider them representative for the
agile way of developing software.

parallel work

Most projects contain some kind of parallel work,
either by partitioning a project into sub-projects
that are developed in parallel, or by implementing
multiple features in parallel.

Traditional projects often try to split projects
into disjoint sub-projects that are later combined
into a whole. The incremental and adaptive nature

of agile methods requires integration to be done
continuously since new features are added as their
need is discovered. Agile methods will therefore
inevitably lead to cooperative work on the same,
shared code base, which needs to be coordinated.
To become effective, the developers need support
to work on new features in isolation and then merge
their features into the shared code base.

continuous Integration

Continuous integration means that members of a
team integrate their changes frequently. This al-
lows all developers to benefit from a change as soon
as possible, and enables early testing of changes
in their real context. Continuous integration also
implies that each member should integrate changes
from the rest of the team for early detection of
incompatible changes. The frequent integra-
tion decreases the overall integration cost since
incompatible changes are detected and resolved
early, in turn reducing the complex integration
problems that are common in traditional projects
that integrate less often.

regular Builds

Agile projects value frequent releases of software
to the customer and rapid feedback. This implies
more frequent builds than in traditional projects.
Releases, providing added value to the customer,
need to be built regularly, perhaps on a weekly
or monthly basis. Internal builds, used by the
team only, have to be extremely quick to enable
rapid feedback during continuous integration and
test-driven development. This requires builds to
be automated to a large extent to be feasible in
practice.

refactoring

The incremental nature of agile methods requires
continuous Refactoring of code to maintain high
quality. Refactorings need to be carried out as

 ���

Software Configuration Management in Agile Development

a series of steps that are reversible, so one can
always back out if a refactoring does not work.
This practice relies heavily on automated testing
to ensure that a change does not break the system.
In practice, this also means that it requires quick
builds when verifying behavioural preservation
of each step.

test-driven development

Test-driven development is the practice that test
drives the design and implementation of new
features. Implementation of tests and production
code is interleaved to provide rapid feedback on
implementation and design decisions. Automated
testing builds a foundation for many of the pre-
sented practices and requires extremely quick
builds to enable a short feedback loop.

planning game

The planning game handles scheduling of an
XP project. While not all agile methods have an
explicit planning game, they surely have some
kind of lightweight iterative planning. We em-
phasize planning activities such as what features
to implement, how to manage changes, and how
to assign team resources. This kind of planning
shares many characteristics with the handling of
change requests in traditional projects.

Scm In an agILe context

In the previous section, we defined some agile
activities that are related to SCM and we also
outlined and described the activities that make up
the field of SCM. In this section, we will show how
SCM can provide support for such agile activi-
ties so they succeed and also how agile methods
can gain even more value from SCM. It was
demonstrated in Asklund, Bendix, and Ekman
(2004) that agile methods, in this case exempli-
fied by XP, do not go against the fundamental

principles of SCM. However, it also showed that,
in general, agile methods do not provide explicit
nor complete guidance for using or implement-
ing SCM. Furthermore, the focus of SCM also
needs to shift from control to service and support
(Angstadt, 2000) when used in agile. SCM does
not require compliance from agile, but has a lot
of good advice that you can adapt to your project
if you feel the need for it—and thus value people
and interactions before tools and processes (Agile
Manifesto, 2001).

In this section, we first look at how SCM can
support and service the agile activities we defined
in the previous section. Next, we look at how agile
methods could add new activities and processes
from SCM and in this way obtain the full benefit
of support from SCM.

how can Scm techniques Support
agile?

SCM is not just about control and stopping
changes. It actually provides a whole range of
techniques and processes that can service and sup-
port also agile development teams. Agile methods
may tell you what you should do in order to be
agile or lean, but in most cases, they are also very
lean in actually giving advice on how to carry
out these agile processes. In this sub-section, we
show how SCM techniques can be used to support
and strengthen the following SCM-related agile
activities: parallel work, continuous integration,
regular builds, refactoring, test-driven develop-
ment, and planning game.

parallel work

Agile teams will be working in parallel on the
same system. Not only on different parts of the
system leading to shared data, but also on the
same parts of the system, leading to simultaneous
update and double maintenance. Babich (1986)
explains all the possible problems there are when
coordinating a team working in parallel—and

���

Software Configuration Management in Agile Development

also the solutions.
The most common way of letting people work

in parallel is not to have collective code ownership,
but private code ownership and locking of files
that need to be changed. This leads to a “split and
combine” strategy where only one person owns
some specific code and is allowed to change it.
Industry believes that this solves the problem,
but the “shared data” problem (Babich, 1986)
shows that even this apparently safe practice has
its problems (e.g., combining the splits). These
problems are obviously present if you practise
parallel work as well. In addition, we have to
solve the “simultaneous update” problem and
the “double maintenance” problem, when people
actually work on the same file(s) in parallel.

The “shared data” problem is fairly simple
to solve—if the problem is sharing, then isolate
yourself. Create a physical or virtual workspace
that contains all of the code and use that to work
in splendid isolation from other people’s changes.
Obviously you cannot ignore that other people
make changes, but having your own workspace,
you are in command of when to “take in” those
changes and will be perfectly aware of what is
happening.

The “simultaneous update” problem only oc-
curs for collective code ownership where more
people make changes to the same code at the
same time. Again, the solution is fairly simple,
you must be able to detect that the latest version,
commonly found in the central repository, is not
the version that you used for making your changes.
If that is not the case, it means that someone has
worked in parallel and has put a new version into
the repository. If you add your version to the
repository, it will “shadow” the previous version
and effectively undo the changes done in that
version. If you do not have versioning, the new
version will simply overwrite and permanently
erase the other person’s changes. Instead you
must “integrate” the parallel changes and put the

resulting combined change into the repository or
file system. There are tools that can help you in
performing this merge.

The “double maintenance” problem is a con-
sequence of the “protection” from the “shared
data” problem. In the multiple workspaces, we
will have multiple copies of every file and ac-
cording to Babich (1986) they will soon cease to
be identical. When we make a change to a file in
one workspace, we will have to make the same
change to the same file in all the other workspaces
to keep the file identical in all copies. It sounds
complicated but is really simple, even though it
requires some discipline. Once you have made a
change, you put it in the repository and—sooner
or later—the other people will take it in from
the repository and integrate it if they have made
changes in parallel (see the “simultaneous update”
problem).

A special case of parallel work is distributed
development where the developers are physically
separated. This situation is well known in the
SCM community and the described solutions
(Bellagio & Milligan 2005) are equally appli-
cable to distributed development as to parallel
work. There are solutions that make tools scale
to this setting as well. Distributed development
is thus not different from parallel work from an
SCM perspective, as long as the development
process that SCM supports scales to distributed
development.

In summary, we need a repository where we
can store all the shared files and a workspace
where we can change the files. The most impor-
tant aspect of the repository is that it can detect
parallel work and that it can help us in sorting
out such parallel work. Also it should be easy and
simple to create whole workspaces. Most version
control tools are able to do that and there is no
need to use locking, which prevents real parallel
work, since optimistic sharing works well. We
must thus choose a tool that can implement the
copy-merge work model (Feiler, 1991).

 ���

Software Configuration Management in Agile Development

continuous Integration

In traditional projects, the integration of the
contributions of many people is always a painful
process that can take days or even weeks. There-
fore, continuous integration seems like a mission
impossible, but this is actually not the case. The
reason why integration is painful can be found
in the “double maintenance” problem (Babich,
1986)—the longer we carry on the double main-
tenance without integrating changes, the greater
the task of integration will be. So there are good
reasons for integrating as often as possible, for
instance after each added feature.

Integrating your change into the team’s shared
repository is often a two-step process. The reason
is that tools usually cannot solve merge conflicts
and re-run automated tests to check the quality in
one step. First, you have to carry out a “download”
(or subscription) integration where you take all the
changes that have been added to the repository
since you last integrated and integrate them into
your workspace, as shown in Figure 3, where a box
represents a new version of the configuration. If
nothing new has happened, you are safe and can
do the “upload” (or publication) integration, which
simply adds your changes as the latest versions in
the repository. If something has changed in the
repository, it can be either new versions of files
that you have not changed—these can simply be
copied into your workspace—or files that you have
changed where there may be conflicting changes.

In the latter case you have to merge the repository
changes into your own changes. At this point, all
other people’s changes have been integrated with
your changes and your workspace is up-to-date,
so you could just add the result to the repository.
However, you should check that the integration
actually produced a viable result and check the
quality of it. This can be done by running a set
of quality tests (e.g., unit tests, acceptance tests),
and if everything works well, then you can add
the result to the repository—if your workspace is
still up-to-date. Otherwise, you have to continue
to do “download” integrations and quality checks
until you finally succeed and can do the “upload”
integration, as shown in Figure 3.

This way of working (except for the upload
quality control) is implemented in the strict long
transactions work model (Feiler, 1991). You will
notice that in this process, the upload integration
is a simple copy of a consistent and quality as-
sured workspace. All the work is performed in
the download integration. Following the advice
of Babich (1986), this burden can be lessened if
it is carried out often as the changes you have to
integrate are smaller. So for your own sake you
should download integrate as often as possible.
Moreover, for the sake of the team you should up-
load (publish) immediately when you have finished
a task or story so other people get the possibility
to synchronize their work with yours.

What we have described here is the common-
ality between the slightly different models and
approaches presented in Aiello (2003), Appleton,

Figure 3. Download and upload integration

�00

Software Configuration Management in Agile Development

Berczuk, and Konieczka (2003a, 2003b, 2004a),
Appleton, Berczuk, and Cowham (2005), Farah
(2004), Fowler and Foemmel (2006), Moreira
(2004) and Sayko (2004). If you are interested in
the details about how you can vary your approach
to continuous integration depending on your
context, you can consult the references.

Continuous integration leads to an increased
velocity of change compared to traditional devel-
opment. This puts additional strains on the inte-
gration process but is not a performance problem
on the actual integration per se. However, there
may be performance issues when the integration
is combined with a quality gate mechanism used
to determine whether changes are of sufficient
quality to be integrated in the common repository
or not. Even if this quality gate process is fully
automated, it will be much slower than the actual
merge and upload operation and may become a
bottleneck in the integration process. It may there-
fore not always be possible to be true to the ideal
that developers should carefully test their code
before uploading their changes in which case you
could use a more complex model for continuous
integration (Fowler & Foemmel, 2006) that we
will describe next under regular builds.

regular Builds

When releases become frequent it also becomes
important to be able to build and release in a
lean way. If not, much time will be “wasted” in
producing these releases that are needed to get
customer feedback. Making it lean can be done

in three ways: having always releasable code in
the repository, performing a less formal release
process, and automation of the build and release
processes.

Before you can even think about releasing
your code, you have to assure that the code you
have is of good quality. In traditional development
methods this is often done by a separate team that
integrates the code and does QA. In agile, this is
done by the developers as they go. The ideal situ-
ation is that the code in the repository is always
of the highest quality and releasable at any time.
This is not always possible and you can then use
a mix between the traditional way and the agile
ideal by having multiple development lines. The
developers use an integration line to check in
high quality code and to stay in sync with the rest
of the developers. The QA-team uses a separate
line to pull in changes from the integration line
and does a proper and formal QA before they
“promote” the approved change to the release
line, as seen in Figure 4.

In agile methods, there is a general tendency
to move the focus of QA from coming late in
the development process, just before release, to
being a centre of attention as early as possible in
the development process. This means that agile
can do with a less formal release process than
traditional projects because much of the work has
already been done. However, there is still a need
to do physical and functional audits and to work
with bill-of-materials such that earlier releases can
be re-created again if needed. In agile methods,
functional audits can be carried out by running the

Figure 4. Working with integration and release lines

146

Software Configuration Management in Agile Development

actual creation of the release can be automated by
using build tools; acceptance tests and the veri-
fication that all files are there can be automated
by writing simple scripts.

More information about regular builds can be
found in Appleton and Cowham (2004b).

Refactoring

Refactoring is an important part of agile methods
but also to some extent in traditional methods.
The purpose of a Refactoring is not to implement
new functionality, but rather to simplify the code
and design.

In general, there are two different situations
where you do refactorings: as part of a story to
simplify the code before and/or after the imple-
mentation of the story’s functionality; and archi-
tectural refactorings that are needed to implement
a whole new set of features. In both cases, the two
main problems are that a refactoring may touch
large parts of the code and that the refactoring
should be traceable and possible to undo. The latter
means that there is the need for version control
tool to keep track of the steps of each refactoring
and make it possible to back out of a refactoring
if it turns out that is does not work.

The fact that refactorings tend to be “global”
possibly affecting large parts of the code, puts even
greater strains on the continuous integration since
there are more possibilities of merge conflicts.
The recommendation for successful application
of continuous integration is to integrate very often

to reduce the risk of merge conflicts. The same
goes for refactorings that should be split up into
many small steps that are integrated immediately
when they are done.

If you need to refactor code to facilitate the
ease of implementing a story, then this refactoring
should be seen as a separate step and integrated
separately—the same goes if you need to refac-
tor after the implementation of the story. For the
architectural refactorings, we need to split the
refactoring up into smaller tasks such that there
will be as little time as possible between integra-
tions to lower the risk of merge conflicts. Larger
refactorings should also be planned and analysed
for impact such that it is possible to coordinate
the work to keep down the parallel work, or at
least to make people aware of the fact that it is
going on.

For a more specific treatment of the problems
architectural refactorings can cause to SCM tools
and the continuous integration process and how
these problems can be dealt with, we refer the
reader to Ekman and Asklund (2004) and Dig,
Nguyen, and Johnson (2006).

Test-Driven Development

The short version of test-driven development
is design a little—where you design and write
tests, code a little, and finally run the tests to get
feedback. Here the crucial part is to get feedback
on what you have just changed or added. If that
cannot happen very quickly, test-driven develop-

Figure 4. Working with integration and release lines

 �0�

Software Configuration Management in Agile Development

acceptance tests. They are the specification of the
requirements that should be implemented. To be
really sure that we have implemented everything
we claim, we should check the list of acceptance
tests against the list of requirements we claim
have been implemented in this release. We also
need to check whether all the files that should be
in the release (e.g., configuration files, manual,
documentation, etc.) are actually there.

When releasing becomes a frequent action,
there is a much greater need to automate it. The
actual creation of the release can be automated by
using build tools; acceptance tests and the veri-
fication that all files are there can be automated
by writing simple scripts.

More information about regular builds can be
found in Appleton and Cowham (2004b).

refactoring

Refactoring is an important part of agile methods
but also to some extent in traditional methods.
The purpose of a Refactoring is not to implement
new functionality, but rather to simplify the code
and design.

In general, there are two different situations
where you do refactorings: as part of a story to
simplify the code before and/or after the imple-
mentation of the story’s functionality; and archi-
tectural refactorings that are needed to implement
a whole new set of features. In both cases, the two
main problems are that a refactoring may touch
large parts of the code and that the refactoring
should be traceable and possible to undo. The latter
means that there is the need for version control
tool to keep track of the steps of each refactoring
and make it possible to back out of a refactoring
if it turns out that is does not work.

The fact that refactorings tend to be “global”
possibly affecting large parts of the code, puts even
greater strains on the continuous integration since
there are more possibilities of merge conflicts.
The recommendation for successful application
of continuous integration is to integrate very often

to reduce the risk of merge conflicts. The same
goes for refactorings that should be split up into
many small steps that are integrated immediately
when they are done.

If you need to refactor code to facilitate the
ease of implementing a story, then this refactoring
should be seen as a separate step and integrated
separately—the same goes if you need to refac-
tor after the implementation of the story. For the
architectural refactorings, we need to split the
refactoring up into smaller tasks such that there
will be as little time as possible between integra-
tions to lower the risk of merge conflicts. Larger
refactorings should also be planned and analysed
for impact such that it is possible to coordinate
the work to keep down the parallel work, or at
least to make people aware of the fact that it is
going on.

For a more specific treatment of the problems
architectural refactorings can cause to SCM tools
and the continuous integration process and how
these problems can be dealt with, we refer the
reader to Ekman and Asklund (2004) and Dig,
Nguyen, and Johnson (2006).

test-driven development

The short version of test-driven development
is design a little—where you design and write
tests, code a little, and finally run the tests to get
feedback. Here the crucial part is to get feedback
on what you have just changed or added. If that
cannot happen very quickly, test-driven develop-
ment breaks down with respect to doing it in small
increments. If you want to run your tests after
writing a little code, you must be able to re-build
the application you want to test very quickly—if
you have to wait too long you are tempted to not
follow the process as it is intended.

So what is needed is extremely quick re-builds,
a matter of a few minutes or less, and the good
news is that SCM can provide that. There are
techniques for doing minimal, incremental builds
that will give you a fast turn-around time, so you

�0�

Software Configuration Management in Agile Development

can run your tests often without having to wait too
long. Make (Feldman, 1979) is the ancestor of all
minimal, incremental build tools, but there exists
a lot of research on how to trade “consistency”
of a build for time (Adams, Weinert, & Tichy,
1989; Schwanke & Kaiser, 1988). For the small
pair development loop in Figure 2, we might be
satisfied with less than 100% consistency of the
build as long as it is blisteringly fast. For the big
team development loop in Figure 2 (i.e., integrating
with others), speed might not be that important
while consistency of the build is crucial. A prop-
erly set up SCM system will allow developers to
have flexible build strategies that are tailored to
specific parts of their development cycle.

Another aspect of test-driven development is
that if we get an unexpected result of a test-run,
then we have to go bug hunting. What is it that
has caused the malfunction? If you run tests often,
it means that you introduced the bug in the code
that you wrote most recently—or as Babich puts
it “an ounce of derivation is worth a pound of
analysis” (Babich, 1986)—meaning that if we can
tell the difference in the code between now and
before, we are well under way with finding the
bug. Version control tools provide functionality
for showing the difference between two versions
of the same file and some tools can even show
the structural differences between two versions
of a configuration.

planning game

Agile methods use stories, or similar lightweight
specification techniques, as the way that customers
specify the requirements of the system, and ac-
ceptance tests to specify the detailed functionality.
These stories specify changes to the system and
correspond to change requests when analyzed
from an SCM perspective. The stories, or change
requests, have to be estimated for implementation
cost by the developers and then prioritised and
scheduled by the customer during the planning
game. For someone coming from SCM this sounds

very much like the traditional way of handling
change requests: an impact analysis has to be
carried out to provide sufficient information for
the Change Control Board to be able to make its
decision whether to implement the change re-
quest, defer it, or reject it. So we can see that the
parallel to estimation in agile is impact analysis
(Bohner & Arnold, 1996) in traditional SCM.
Likewise, the parallel to the customer prioritising
is the chair of the Change Control Board taking
decisions (Daniels, 1985). For the planning game
to work properly, it is important that everyone is
aware of what his or her role is—and that they
seek information that will allow them to fill that
role well. It is also important to be aware of the
fact that the traditional formal change request
handling process can indeed—and should—be
scaled to fit the agility and informality that is
needed in an agile method.

how can Scm add more value to
agile?

In agile methods, there is very much focus on
the developers and the production process. In the
previous sub-section, we have seen how many
of these processes can be well supported by
techniques and principles from SCM. However,
agile methods often overlook the aspects of SCM
that deal with the relation to the customer and
where traditional SCM has special emphasis. In
the following, we look at the traditional SCM as
represented by the four activities of configuration
identification, configuration control, configura-
tion status accounting, and configuration audit
(Leon, 2005). For each activity, we describe what
new activities and processes could be added to
agile methods to help provide a more covering
support for the development team.

Configuration Identification

The most relevant part of configuration identi-
fication for agile methods is the identification

 �0�

Software Configuration Management in Agile Development

and organisation of configuration items. Some
artefacts are so important for a project that they
become configuration items and go into the shared
repository. Other artefacts (e.g., sketches, experi-
ments, notes, etc.) have a more private nature and
they should not be shared in order not to confuse
other people. However, it may still be convenient
to save and version some of the private artefacts
to benefit from versioning even though they are
not configuration items. They can be put into the
repository but it is very important that the arte-
facts, configuration items and not, are structured
in such a way that it is absolutely clear what a
configuration item is and what a private artefact
is. Structuring of the repository is an activity that
is also important when it contains only configura-
tion items.

Configuration identification is an SCM activ-
ity that traditionally is done up-front, which goes
against the agile philosophy. However, there can
be some reason in actually trying to follow the
experience that SCM provides. Rules for identify-
ing configuration items should be agreed upon,
such that they can be put into the repository and
information about them shared as early as possible.
More importantly, though, is that the structuring
of configuration items should not be allowed to
just grow as the project proceeds, because most
SCM tools do not support name space version-
ing (Milligan, 2003) (i.e., handling structural
changes to the repository while retaining the
change history).

Configuration Control

The part of configuration control that deals with
the handling of change requests is taken care of
by a planning game or similar activity. However,
two important aspects of configuration control
are neglected by most agile methods: tracking
and traceability.

In traditional SCM, change requests are
tracked through their entire lifetime from concep-
tion to completion. At any given point in time, it is

important to know the current state of the change
request and who has been assigned responsibility
for it. This can benefit agile methods too as they
also need to manage changes and coordinate the
work of different people. In some agile methods
there is an explicit tracker role (chromatic, 2003)
that is responsible for this activity.

Traceability is an important property of
traditional SCM and is sometimes claimed to
be the main reason for having SCM. It should
be possible to trace changes made to a file back
to the specific change request they implement.
Likewise, it should be possible to trace the files
that were changed when implementing a certain
change request. The files that are related to a
change request are not just source code files,
but all files that are affected by that change (e.g.,
test cases, documentation, etc). Another aspect
of traceability is to be able to know exactly what
went into a specific build or release—and what
configurations contain a specific version of a
specific file. The main advantage of having good
traceability is to allow for a better impact analysis
so we can be informed of the consequences of
changes and improve the coordination between
people on the team.

Configuration Status Accounting

This activity should be seen as a service to every-
one involved in a project including developers and
the customer, even though it traditionally has been
used primarily by management and in particular
project managers. Configuration status accounting
can be looked at as simple data mining where you
collect and present data of interest. Many agile
methods are very code centred and the repository
is the place where we keep the configuration items
that are important for the project, so it is natural
to place the meta-data to mine in the same reposi-
tory. Configuration status accounting does not
need to be an upfront activity like configuration
identification, but can be added as you discover
the need. However, you should be aware that the

�0�

Software Configuration Management in Agile Development

later you start collecting data to mine, the less
data and history you get to mine. Usually this is
seen as an activity that benefits only managers,
but there can be much support for the develop-
ers too—all you have to do it to say what kind of
meta-data you want collected and how you want
it to be presented. If you do not document changes
in writing, then it is important that you can get
hold of the person that did a change; when you
have shared code, then it is important to see who
is currently working on what.

Configuration Audit

Configuration audit can be looked at as a verifica-
tion activity. The actual work, considered as a QA
activity, has been done elsewhere as part of other
processes, but during the configuration audits,
it gets verified that it has actually been carried
out. The functional configuration audits verify
that we have taken care of and properly closed
all change requests scheduled for a specific build
or release. The physical configuration audit is a
“sanity check” that covers the physical aspects
(e.g., that all components/files are there—CD, box,
manual) and that it can actually be installed. Even
though configuration audit is not directly a QA
activity, it contributes to the quality of the product
by verifying that certain SCM and QA activities
have actually been carried out as agreed upon.
Configuration audits are needed not because we
mistrust people, but because from time to time
people can be careless and forget something. The
basis for automating the functional configuration
audit in agile is there through the use of unit and
acceptance tests.

Scm plans and roles

You definitely need to plan and design your SCM
activities and processes very carefully on an agile
project. Moreover, they have to be carried out
differently from how they are done on traditional

projects and the developers will need to know
more about SCM because they are doing more
of it on an agile project.

This does not imply that you should write big
detailed SCM plans the same way as it is being
done for traditional projects. The agile manifesto
(Agile Manifesto, 2001) values working software
over comprehensive documentation. The same
goes for SCM where you should value working
SCM processes over comprehensive SCM plans.
In general, what needs to be documented are
processes and activities that are either complex
or carried out rarely. The documentation needs to
be kept alive and used—otherwise it will not be
up-to-date and should be discarded. We can rely
on face-to-face conversation to convey informa-
tion within a team when working in small groups
and maybe even in pairs. However, if the team
grows or we have a high turnover of personnel,
that might call for more documentation. If pos-
sible, processes should be automated, in which
case they are also documented.

In general, agile projects do not have the same
specialization in roles as on traditional projects.
Everyone participates in all aspects of the project
and should be able to carry out everything—at
least in theory. This means that all developers
should have sufficient knowledge about SCM
to be able to carry out SCM-related activities
by themselves. There will, for instance, not be
a dedicated SCM-person to do daily or weekly
builds or releases on an agile project. However, to
do the design of the SCM-related work processes,
even an agile team will need the help of an SCM
expert who should work in close collaboration
with the team such that individuals and interac-
tion are valued over processes and tools (Agile
Manifesto, 2001).

Scm tools

In general, SCM is very process centric and
could, in theory, be carried out by following these

 �0�

Software Configuration Management in Agile Development

processes manually. However, agile methods try
to automate the most frequently used processes
and have tools take care of them (e.g., repository
tools, build tools, automated merge tools, etc).
Fortunately, the requirements that agile methods
have to SCM tooling are not very demanding
and can, more or less, easily be satisfied by most
tools. For this reason, we do not want to give any
tool recommendations or discuss specific tools,
but rather focus on the general requirements and
a couple of things to look out for. Furthermore,
most often, you just use the tool that is given or
the selection is based on political issues.

Using parallel work, we would need a tool
that works without locking and thus has powerful
merge capabilities to get as painless an integra-
tion as possible. Using test-driven development,
we need to build very often so a fast build tool
is very helpful—and preferably it will be flex-
ible such that we can sometimes choose to trade
speed for consistency. Working always against
baselines, it would be nice if the repository tool
would automatically handle bound configurations
(Asklund, Bendix, Christensen, & Magnusson,
1999) so we should not do that manually.

However, a couple of things should be taken
into account about SCM tooling. Because of refac-
toring and the fact that the architecture is grown
organically, there will be changes to the structure
of the files in the repository. This means that if
the tool does not support name space versioning
(Milligan, 2003), we will have a harder time because
we lose history information and have no support
for merging differing structures. However, this
can be handled manually and by not carrying out
structural changes in parallel with other work. It
is much more problematic to actually change your
repository tool in the middle of a project. Often you
can migrate the code and the versions but you lose
the meta-data that is equally as valuable for your
work as the actual code. Therefore, if possible, you
should try to anticipate the possible success and
growth of the project and make sure that the tool
will scale to match future requirements.

future trendS

While resisting the temptation to predict the fu-
ture, we can safely assume that the increased use
and awareness of SCM in agile development will
result in a body of best practices and increased
interaction between agile and SCM activities.
Furthermore, we expect to see progress in tool
support, including better merge support and in-
creased traceability to name a few.

Continuous integration is an activity that has
already received much attention and is quite ma-
ture and well understood. Many other SCM-related
activities require continuous integration and we
expect to see them mature accordingly when that
foundation is now set. This will result in new best
practices and perhaps specific SCM-related sub-
practices to make these best practices explicit.
A first attempt to specify SCM sub-practices for
an agile setting is presented in Asklund, Bendix,
and Ekman. (2004) and we expect them to mature
and more sub-practices to follow.

SCM tools provide invaluable support and we
envision two future trends. There is a trend to
integrate various SCM-related tools into suites
that support the entire line of SCM activities.
These tools can be configured to adhere to pretty
much any desired development process. They may,
however, be somewhat heavyweight for an agile
setting and as a contrast, we see the use of more
lightweight tools. Most SCM activities described
in this chapter can be supported by simple merge
tools with concurrency detection.

Parallel work with collective code ownership
can benefit from improved merge support. Current
merge tools often operate on plain text at the file
level and could be improved by using more fine-
grained merge control, perhaps even with syntactic
and partially semantics aware merge. An alterna-
tive approach is to use very fine-grained merge
combined with support for increased awareness
to lower the risk of merge conflicts. The increased
use of SCM will also require merge support for

�0�

Software Configuration Management in Agile Development

other artefacts than source files.
The use of SCM in agile development will

enable better support for traceability and track-
ing of changes. A little extra effort can provide
bi-directional traceability between requirements,
defects, and implementation. However, more ex-
perience is needed to determine actual benefits
in an agile context before one can motivate and
justify this extra “overhead.”

SCM is being used more and more in agile
methods, despite not being mentioned explicitly.
However, it is often carried out in the same way
as in traditional projects, but can benefit from
being adapted to this new setting. The practices
presented in this chapter adapt SCM for agile
methods but more widespread use will lead to
even more tailored SCM. In particular, SCM
practices will be further refined to fit an agile
environment and probably lead to more agile
SCM. Some of these ideas may indeed transfer to
traditional projects, providing more lightweight
SCM in that setting as well.

concLuSIon

SCM provides valuable activities that enhance
the QA for agile development. The main quality
enhancement does not stem directly from SCM but
indirectly by supporting other quality enhancing
activities. Traceability is, for instance, crucial to
evaluate any kind of quality work, and configu-
ration audits verify that SCM and QA activities
have been carried out.

We have shown how typical agile activities
can be supported directly by SCM techniques
while retaining their agile properties. For instance,
continuous integration demands support from
SCM tools and processes to succeed while build
and release management can help to streamline
the release process to enable frequent releases.
SCM can thus be used to support and strengthen
such developer-oriented activities.

SCM is traditionally very strong in aspects

that deal with the relation to the customer. Agile
methods can benefit from these activities as well.
Configuration control allows precise tracking of
progress and traceability for each change request.
Lightweight SCM plans simplify coordination
within a team and help in effective use of other
SCM-related activities. These are areas that are of-
ten not mentioned explicitly in agile literature.

There is, in general, no conflict between
agile methods and SCM—quite the contrary.
Agile methods and SCM blend well together
and enhance each other’s strengths. Safe SCM
with rigorous change management can indeed
be carried out in an agile project and be tailored
to agile requirements.

SCM tools provide help in automating many
agile activities, but we must stress that what is
important are the SCM processes and not so much
a particular set of tools. There are also many agile
activities that could be supported even better by
enhanced tool support. For instance, current merge
tools are often fairly poor at handling structural
merges such as refactorings; often this results
in loss of version history and traceability, and
incomprehensible merge conflicts.

Many agile teams already benefit from SCM,
but we believe that a more complete set of SCM
activities can be offered to the agile community.
Tailored processes and tools will add even more
value and may indeed result in SCM activities
that are themselves agile, which may even have
an impact on more traditional software develop-
ment methods.

referenceS

Adams, R., Weinert, A., & Tichy, W. (1989).
Software change dynamics or half of all ADA
compilations are redundant. Proceedings
of the 2nd European Software Engineering
Conference,Coventry, UK.

Agile Manifesto (2001). Manifesto for agile soft-
ware development. Retrieved June 1, 2006, from

 �0�

Software Configuration Management in Agile Development

http://agilemanifesto.org/

Aiello, B. (2003). Behaviorally speaking: Continu-
ous integration: Managing chaos for quality! CM
Journal, September.

Angstadt, B. (2000). SCM: More than support
and control. Crosstalk: The Journal of Defence
Software Engineering, March.

Appleton, B., & Cowham, R. (2004b). Release
management: Making it lean and agile. CM
Journal, August.

Appleton, B., Berczuk, S., & Konieczka, S.
(2003a). Continuous integration: Just another
buzz word? CM Journal, September.

Appleton, B., Berczuk, S., & Konieczka, S.
(2003b). Codeline merging and locking: Con-
tinuous updates and two-phased commits. CM
Journal, November.

Appleton, B., Berczuk, S., & Konieczka, S.
(2004a). Continuous staging: Scaling continuous
integration to multiple component teams. CM
Journal, March.

Appleton, B., Berczuk, S., & Cowham, R. (2005).
Branching and merging: An agile perspective.
CM Journal, July.

Asklund, U., Bendix L., Christensen H. B., &
Magnusson, B. (1999, September 5-7). The unified
extensional versioning model. Proceedings of the
9th International Symposium on System Configu-
ration Management, Toulouse, France.

Asklund, U., Bendix, L., & Ekman, T. (2004,
August 17-19). Software configuration manage-
ment practices for extreme programming teams.
Proceedings of the 11th Nordic Workshop on
Programming and Software Development Tools
and Techniques, Turku, Finland.

Babich, W. A. (1986). Software configuration
management: Coordination for team productivity.
Addison-Wesley.

Beck, K. (1999a). Embracing change with extreme
programming. IEEE Computer, 32(10), 70-77.

Beck, K. (1999b). Extreme programming ex-
plained: Embrace change. Addison-Wesley.

Bellagio, D. E., & Milligan, T. J. (2005). Software
configuration management strategies and IBM
Rational ClearCase. IBM Press.

Bendix, L., & Vinter, O. (2001, November 19-23).
Configuration management from a developer’s
perspective. Proceedings of the EuroSTAR 2001
Conference, Stockholm, Sweden.

Bendix, L., & Hedin, G. (2002). Summary of the
subworkshop on extreme programming. Nordic
Journal of Computing, 9(3), 261-266.

Berczuk, S., & Appleton, S. (2003). Software con-
figuration management patterns: Effective team-
work, Practical Integration. Addison-Wesley.

Berlack, H. R. (1992). Software configuration
management. John Wiley & Sons.

Bohner, S. A., & Arnold, R. S. (1996). Software
change impact analysis. IEEE Computer Society
Press.

Buckley, F. J. (1993). Implementing configuration
management: Hardware, software, and firmware.
IEEE Computer Society Press.

Chromatic. (2003). Chromatic: Extreme program-
ming pocket guide. O’Reilly & Associates.

Crnkovic, I., Asklund, U., & Persson Dahlqvist,
A. (2003). Implementing and integrating product
data management and software configuration
management. Artech House.

Daniels, M. A. (1985). Principles of configuration
management. Advanced Applications Consul-
tants, Inc.

Dig, D., Nguyen, T. N., & Johnson, R. (2006).
Refactoring-aware software configuration man-
agement (Tech. Rep. UIUCDCS-R-2006-2710).

�0�

Software Configuration Management in Agile Development

Department of Computer Science, University of
Illinois at Urbana-Champaign.

Ekman, T., & Asklund, U. (2004). Refactoring-
aware versioning in eclipse. Electronic Notes in
Theoretical Computer Science, 107, 57-69.

Farah, J. (2004). Making incremental integration
work for you. CM Journal, November.

Feiler, P. H. (1991). Configuration management
models in commercial environments (Tech. Rep.
CMU/SEI-91-TR-7). Carnegie-Mellon University/
Software Engineering Institute.

Feldman, S. I. (1979). Make—A program for main-
taining computer programs. Software—Practice
and Experience, 9(3), 255-265.

Fowler, M., & Foemmel, M. (2006). Continuous
integration. Retrieved June 1, 2006, from http://
www.martinfowler.com/articles/continuousIn-
tegration.html

Hass, A. M. (2003). Configuration management
principles and practice. Addison-Wesley.

Koskela, J. (2003). Software configuration man-

agement in agile methods. VTT publications: 514,
VTT Tietopalvelu.

Leon, A. (2005). Software configuration manage-
ment handbook. Artech House.

Mikkelsen, T., & Pherigo, S. (1997). Practical
software configuration management: The Late-
night developer’s handbook. Prentice Hall.

Milligan, T. (2003). Better software configuration
management means better business: the seven
keys to improving business value. IBM Rational
white paper.

Moreira, M. (2004). Approaching continuous
integration. CM Journal, November.

Sayko, M. (2004). The role of incremental integra-
tion in a parallel development environment. CM
Journal, November.

Schwanke, R. W., & Kaiser, G. E. (1988, January
27-29). Living with inconsistency in large systems.
Proceedings of the International Workshop on
Software Version and Configuration Control,
Grassau, Germany.

This work was previously published in Agile Software Development Quality Assurance, edited by I. Stamelos and P. Sfetsos,
pp. 136-153, copyright 2007 by Information Science Reference (an imprint of IGI Global).

 �0�

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.23
Governance of Software

Development:
The Transition to Agile Scenario

Yael Dubinsky
IBM Haifa Research Lab, Israel

Technion–Israel Institute of Technology, Israel

Avi Yaeli
IBM Haifa Research Lab, Israel

Yishai Feldman
IBM Haifa Research Lab, Israel

Emmanuel Zarpas
IBM Haifa Research Lab, Israel

Gil Nechushtai
IBM Haifa Research Lab, Israel

aBStract

Governance is the exercise of control and direc-
tion over a subject such as a society, an organi-
zation, processes, or artifacts, by using laws and
policies that are defined, deployed, and executed.
In this chapter we develop this definition into a
formal conceptual model that can be applied to
a variety of governance domains. At the heart
of this model lies the concept of the governance
solution and its lifecycle. The governance solution

embodies the set of mechanisms—decision rights,
policies, controls, and measurements—applied
to a governance scope in order to achieve some
governance goals. As part of the lifecycle, the
effectiveness of the governance solution is mea-
sured, and corrections and alignments are made
as necessary. We demonstrate how this model
can be applied to multiple governance domains
by providing examples from IT governance as
well as software-development governance. We
conclude by providing a detailed scenario in the

��0

Governance of Software Development

software-development governance space, which
looks at large software organizations undergoing
transition to agile development methodology. We
further demonstrate how the governance model
is instantiated and evolved in the context of this
scenario.

IntroductIon

The field of information technology (IT) gover-
nance has garnered an increased amount of atten-
tion in recent years. However, it is still struggling
to provide a universally agreed-upon definition
and a complete model for IT governance, along
with the required tools and techniques.

The definitions of IT governance that can be
found in the literature from Broadbent (1998),
Chulani, Clay, Yaeli, Wegman, and Cantor (2006),
Van Grembergen and De Haes (2004), Weill and
Ross (2004), and Williams (2005) and they all
share common ideas, such as the need to increase
the value of IT to the organization while reducing
risk. For example, Weill and Ross (2004) focus
on decision rights and define IT governance as
“specifying the decision rights and accountability
framework to encourage desirable behavior in
the use of IT” (p. 8). Van Grembergen and De
Haes (2004) address the alignment of the IT or-
ganization with the business needs, and define IT
governance as “the leadership and organizational
structures, processes, and relational mechanisms
that ensure that the organization’s IT sustains and
extends the organization’s strategy and objec-
tives” (p. 1).

Chulani et al. (2006) include both decision
rights and the alignment with business needs:
“Within IBM, a widely accepted definition for
IT governance is:

• Governance that pertains to an organiza-
tion’s information technology activities and
the way those activities support the goals of
the business

• Decision making rights associated with
IT as well as the mechanisms and policies
used to measure and control the way IT
decisions are made and carried out within
the organization” (p. 10).

In recent years, several IT governance and
control frameworks, such as CobiT1, ITIL2, ISO-
177993 have been developed. These frameworks
help business management, IT management,
quality practitioners, and auditors understand
what needs to be done; yet they are far from being
complete. Dahlberg and Kivijärvi (2006) outline
the limitations of CobiT as a process-centric
framework and suggest a new framework that
takes an integrated process and structural ap-
proach, and links into corporate governance.

Another limitation stems from the fact that
CobiT is a high-level framework targeted at IT
organizations that support a business unit or a
business organization. CobiT considers software
development activities only within the context of
providing a supporting service in a value chain
for another business unit, rather than as a central
business activity in itself. Software development
activities are briefly described in CobiT as part of
the high-level control objective AI2, “Acquire and
Maintain Application Software.” CobiT thus lacks
a description of governance mechanisms that are
appropriate for organizations with a large focus on
software development. To that end, organizations
need to refer to other standards and frameworks
that focus more on software development and
control of software development activities.

This chapter is aimed at bridging the gap
between high-level IT governance and software
development governance. We first present a model
for governance in general, and then use the model
to describe IT and software development domain-
specific governance. The model is built based on
a review of the literature and a set of scenarios, as
explained in the next section. We use the process
of transition to agile software development (Beck
& Andres, 2004; Dubinsky, Hazzan, Talby, &

 ���

Governance of Software Development

Keren, 2006; Highsmith, 2002) to demonstrate
the domain-specific governance schemes.

The agile approach to software development
has emerged over the last decade, becoming
mainstream as more and more organizations adopt
agile practices (Barnett, 2006). The approach is
based on a manifesto4 that emphasizes the indi-
viduals involved in the software development,
collaboration with the customer, and the need
to provide testable working software. Several
principles and methods (Highsmith, 2002) are
used by software teams in different capacities
(Ambler, 2007). As agile software development
becomes more common, software organizations
are becoming more interested in governing the
transition to an agile approach.

We present data from the first author’s involve-
ment in two software-development projects that
were carried out at two different organizations that
underwent the transition to agile. The first project
was developed by the IT department of a financial
organization. The second project was developed
by the software group of an international product
provider. The action research method (Lewin,
1948) is used in this field of transition to agile
processes, where the researchers plan an action,
execute it while collecting data, analyze the data
and reflect on it, and then define the next action
by refining their role. The data emerged from
their participation in planning sessions, guiding
retrospective processes, involvement in refining
the process and product measures, and consulting
to higher management on the adoption of agile
methodologies into the work procedures.

governance modeL

This section presents a model for governance. The
purpose of the model is to uniformly represent the
main concepts involved in a governing process
and their interrelationships. The development of
this model started with a literature review, and

built upon existing work using a set of scenarios
that relate to project management, software engi-
neering, and development processes. The litera-
ture review included CobiT; Val IT5; ISO 17799;
OCEG Foundation6; CMMI7; SWEBOK8; Weill
and Ross (2004); and Abrams, von Känel, Muel-
ler, Pfitzmann, and Ruschka-Taylor (2006). The
set of scenarios is based on our field experience
as well as experiences of other practitioners and
researchers with whom we collaborate. The model
attempts to abstract the elements of governance
found in the various references and domains. We
therefore start with the dictionary definitions of
the word governance rather than with one of the
many domain governance definitions that exist
in previous works.

We begin by examining the general meaning of
governance and incrementally introduce elements
of the model that stem from that basic definition.
The model reflects our view of how governance
and governance processes should be organized
and may require modifications to describe some
existing situations.

The word govern is defined9 as “to exercise
continuous sovereign authority over; especially
to control and direct the making and administra-
tion of policy in” and also “to control, direct, or
strongly influence the actions and conduct of.”
The first part of the definition implies that

• Governance is an ongoing process;
• There must exist an entity with legitimate

rights to exercise authority over the things
that are subject to governance;

• Governance is concerned with controlling
the way policies and laws are established.

The second part of the definition suggests that
the purpose of governance is to influence or affect
the activities, state, or behavior of the subjects
being governed. Hence, governance affects and
regulates its subjects through the administration
of policies.

���

Governance of Software Development

Scoping authority over Subjects

The definition of governance specifies that gov-
ernance exercises legitimate authority over the
subjects being administered. We need a way
to describe the boundaries of the subjects and
activities being governed, as well as the bound-
aries of the area of jurisdiction over which the
governing entity will have legitimate authority.
Furthermore, we know that people are subject to
multiple governing bodies, such as national and
local governments, as well as the organizations
where they work. It is therefore necessary to
describe multiple authority hierarchies and the
relationships across these levels.

A governance scope represents a set of enti-
ties and relationships that are subject to acts of
governance. Governance scope is hierarchically
decomposable so that it can capture the hierarchi-
cal nature of society and business organizations.
However, in order to represent multiple overlap-
ping hierarchies, a governance scope can belong
to more than a single hierarchy. In principle, a
scope can identify organizations, suborganiza-
tions, processes, activities, roles, and artifacts;
it can then establish the boundaries over the
entities that are governed. In the context of cor-
porate governance, the scope would be the entire
organization and its activities. In the case of IT
governance, the scope would be the IT organiza-
tion, processes, activities, roles, and resources.
According to Cantor and Sanders (2007), it is
often useful to express the scope of governance
in terms of processes within organizations, since

there are many existing standards that consistently
decompose the entire activities of organizations
into processes and activities. Examples of such
standards include CobiT and ITIL.

A governing body, sometime referred to as the
government, represents the set of roles that have
the right to exercise authority over the governance
scope. Within social and business organizations, it
is common to find multiple governing bodies, each
of which focuses on different kinds of scopes and
is concerned with different governance needs. It
is therefore useful to think about the arrangement
of governing bodies in hierarchies and to align
them with the hierarchies of governance scopes.
By doing so, we can express the delegation of
legitimate authority between governing bodies
across the organization hierarchy, and the fact
that legislation enacted by one governing body
needs to conform, or at least not conflict with,
legislation done by another governing body higher
in the governing hierarchy chain. For example,
a local government cannot create laws that vio-
late national and federal laws. Within business
organizations, it is common to find a hierarchy
of governing bodies based on an organizational
structure. We also consider process owners as
governing bodies who are given authority to ex-
ercise control and legislation within the scope of
their processes. Figure 1 illustrates the hierarchical
nature of governance scopes and the relationships
between these and the governing bodies.

There is a large body of political science litera-
ture that talks about types of governments (e.g.,
democracy, monarchy), how they are established,

Figure 1. Modeling governance scopes and governing bodies

 ���

Governance of Software Development

and the accountability of the governors to their
constituents. The current version of our model
does not address those elements of political models
of governments.

goals of governance

According to the second part of the definition,
the purpose of governance is to influence the
activities, state, or behavior of the subjects being
governed. The need to influence the subjects in the
first place often stems from external forces that
place constraints or requirements on the activi-
ties within the governance scope. For example,
state government regulations place constraints on
organizations that do business within the juris-
diction of the state. Another example is the need
to establish or update service delivery policies
based on new security policies established by
the larger organization. A final example is an IT
organization that needs to control costs or improve
performance based on business needs.

Hence, the context represents the overall situ-
ation and set of internal and external relationships
in which a governance scope exists and in which
its activities take place. The context sometimes
acts as the driver or source of requirements for
the act of governance.

A governance goal represents the desired
state that the initiative or act of governance is
trying to achieve within the governance scope.
A goal needs to be measurable and provide a
clear indication of how success and failure will
be assessed. Governance goals are hierarchically
decomposable, allowing the nesting of sub-goals.
In this case, the success criteria of a high-level
goal can be expressed as functions of the success
criteria of the sub-goals. An example of a gover-
nance goal in business organizations is “ensuring
that the organization performs effectively and
efficiently against the requirements and impera-
tives coming from its context, and to ensure the
delivery of the expected outcome.” It is useful to
express the governance goals in the terminology

of the context; this enhances the communication
between different stakeholders by providing a
common vocabulary.

governance mechanisms

Based on our governance definition, governance
requires the means to “control, direct, or strongly
influence the actions and conduct” of the governed
subjects. A governance mechanism represents
an abstraction of the possible mechanisms that
can be used to regulate, influence, or control
the actions and conduct of elements described
within the governance scope in order to achieve
some governance goal. There are many kinds
of governance mechanisms that have been sug-
gested and categorized by academia, industry
standards, and vendors. Weill and Ross (2004)
highlight three categories of mechanisms: deci-
sion-making structures, process alignment, and
communication mechanisms. CobiT focuses on
mechanisms to control processes, and identifies
policies, procedures, practices, and organizational
structures as means of control. IBM identifies two
major groups of mechanisms that are established
in the governance process (Chulani et al., 2006;
Ericsson, 2007):

• Static mechanisms: Chains of responsibil-
ity, authority, and communication (decision
rights);

• Dynamic mechanisms: Measurement, pol-
icy, standards, and control mechanisms.

All these definitions are compatible and cover
more or less the same types of mechanisms, al-
though the organization and focus are sometimes
different. The following are several examples of
these mechanisms and how they influence the
governance scope:

• Decision rights mechanisms are the means
through which an organization can establish,
charter, and communicate the roles and

���

Governance of Software Development

responsibilities for particular management
and decision-making processes. Typically,
the decision rights are documented and
communicated in a policy, such as a spend-
ing policy that allows a first-line manager
to approve spending up to $3000 without a
senior manager’s signature. A RACI matrix
(Hallows, 2001) is an example of a structured
way to describe decision rights.

• Policies, procedures, guidelines, practices,
and standards mechanisms all instruct the
subjects under governance at varying level
of formalism and strictness of the desired
behavior or how to conduct their activi-
ties. Controls, measurements, and decision
authority are often documented and com-
municated in policies and procedures.

• Control and measurement mechanisms
provide the means for people with deci-
sion-making rights to control and monitor
the activities for which they are responsible.
Decision checkpoints, incentives, and policy
assertions are examples of controls. For ex-
ample, a project funding approval checkpoint
is a control in the project funding process.
An ROI measurement is a mechanism used
to measure the return of investment in an
asset. Another example is the measurement
of estimated versus actual development

time for software development tasks. Note
that measurement has a dual role: it enables
monitoring but also acts as an influencing
mechanism that drives the behavior of the
subjects.

The governance mechanism should provide a
clear statement of its desired effect on the gover-
nance scope via one or more governance goals.
Furthermore, governance mechanisms can be
hierarchical, allowing governance goals to be
met by a hierarchy of governance mechanisms.
Figure 2 shows the part of the model that describes
governance goals, scopes, and mechanisms. A
governance mechanism affects a governance
scope to realize a governance goal. In addition, a
hierarchy of governance mechanisms can realize
a hierarchy of governance goals.

governance points and observables

In order for a governance mechanism to control
and monitor an activity within the governance
scope, it is necessary to identify the exact situation
in the governance scope and the exact condition
under which the governance mechanism should
operate. This identification also serves as the
specification for how to implement and deploy
the governance mechanism. A governance point
represents a specified location and situation within

Figure 2. Modeling governance scopes, mechanisms, and goals

 ���

Governance of Software Development

the governance scope to which a governance
mechanism should be applied. For example, a
policy that enables a first-line manager to approve
vacations that do not exceed two consecutive
weeks creates a governance point. This point is
the set of situations in which first-line manag-
ers in the governance scope should decide upon
vacation approvals.

From an operational perspective, it is useful
to express governance points in the context of
artifact lifecycles, where events, activities, and
state transitions of the artifacts act as potential
points to which governance mechanisms can be
applied. This creates a common structure for
the definition of governance points. It also sup-
ports the implementation and integration of the
governance mechanism into the processes and
software automation of the activities described
in the governance scope.

A governance observable represents a metric,
event, piece of information, or artifact metadata
that can be observed by a governance mechanism
at a governance point. This provides the means to
characterize the behavior of the governance scope
by identifying observable information that could

be used to help achieve the governance goals. It
also allows the identification of specific properties
within the governance scope that are relevant to
achieving a governance goal. For example, such
properties may include an event or attribute that
are used for calculating a metric.

governance Solutions and the
governance process

So far we have shown how governance mecha-
nisms can be associated with governance scopes
to achieve governance goals. Often, sets of mecha-
nisms, scopes, and goals collectively have some
significance from the perspective of an organi-
zation, process, or initiative. In such cases, it is
useful to refer to them as a group. A governance
solution represents the collection of governance
mechanisms applied to a set of governance scopes
to achieve a set of related governance goals. For
example, an IT governance solution is the set of
governance mechanisms that are applied in the
scope of an IT organization, its processes, and
activities, to achieve the IT governance goals. Note
that the term governance solution is commonly

Figure 3. The governance lifecycle (adapted from Cantor & Sanders, 2007; used with permission)

���

Governance of Software Development

used (e.g., Cantor & Sanders, 2007) to denote
the specification of the mechanisms, scopes, and
goals. However, as we discuss next, a governance
solution has its own lifecycle and it is necessary
to discuss the state of the solution at specification
time as well as at other phases of its lifecycle.

As presented in the definition, governance
is an ongoing process. In fact, it is an iterative
process through which the governance solution is
established and evolved. In Figure 3, we present
the lifecycle of that process and typical activities
that are likely to take place in each phase of the
lifecycle. Among different lifecycle views, such
as the plan–do–study–act (PDSA) cycle (Tague,
2004), we have chosen to adapt the approach of
Cantor and Sanders (2007) to governance lifecycle.
This approach emphasizes the separation between
activities to establish and evolve a governance
solution, and those relating to the execution of
the governance solution.

The governance process has four major
phases:

1. Assess: The current governance solution
is evaluated and new requirements for
the governance solution are analyzed and
planned. This includes measuring gover-
nance effectiveness metrics, assessing key
performance indicators against previously
defined governance goals, and planning how
to address new governance needs arising
from the context, such as new regulations.

2. Define: The governance solution is defined.
The governance goals are captured and
governance effectiveness measurements are
defined. The scopes to bring under gover-
nance are determined and the governance
mechanisms are specified.

3. Implement: This phase includes all the steps
necessary to realize the defined governance
specification and prepare it for execution by
the organization. This phase could include
process reengineering, automation and tool
support, education, infrastructure deploy-

ment, policy announcement, and so forth.
The governance model presented here does
not focus on the artifacts generated in this
phase.

4. Execute: The solution has already been
deployed in the organization and manage-
ment is expected to execute the governance
solution. Managers and other specified roles
are exercising their decision rights and play-
ing a role in controlling and monitoring the
scopes under their responsibility.

The governance lifecycle shows a clear sepa-

ration between activities done to establish and
evolve a governance solution and those that are
done while executing a governance solution. This
observation can be useful for understanding the
relationships between the roles of governors and
managers. It can be said that governors are re-
sponsible for establishing a governance solution
while managers are responsible for executing the
governance solution. Moreover, a governing body
will sometimes assign decision rights to itself;
in those cases, the governing body is also an ac-
tor in the execution of the governance solution.
Similarly, some managers may sit in governing
bodies; in those cases, they assume multiple roles
of both governor and manager.

The governance solution can be viewed as
having states that correspond to the governance
process phases. It is interesting to note that there is
always some version of a governance solution that
is in the state of “executing” for any given scope.
In each iteration of the lifecycle, the governance
process can modify an executing governance
solution by defining, implementing, and deploy-
ing a new version of that solution. Furthermore,
some steps of the Assess phase of the governance
lifecycle may also be running continuously by
monitoring the executing governance solution.

A governance execution result represents the
result of applying a governance mechanism at a
particular time. It is a measurement that relates to
the governance scope, but is used in the context

 ���

Governance of Software Development

of the governance assessment phase. Examples of
such measurements might be compliance records/
status or governance performance indicators.

Figure 4 illustrates the model of the governance
solution. A governance mechanism can be used to
affect some behavior within a governance scope
to realize some governance goal. The governance
mechanism can be applied at specific governance
points within the governance scope to affect or
observe some behavior within the scope. The
result of applying the mechanisms is stored in a
governance execution result that is produced by
the mechanism.

Systems of governance Solutions

We are seeing a proliferation of governance solu-
tions established by multiple governing bodies to
cover a wide range of governance scopes. How
are governance solutions related and how can
the solutions be orchestrated to scale up when
governing a large organization?

To answer this question, we make the follow-
ing observations:

• There are multiple governance processes
that are executed asynchronously by dif-
ferent governing bodies. Each has its own
lifecycle and the governance solution of
different governing bodies can be in dif-
ferent states. Furthermore, the cycle time
may not be the same in all governance pro-
cesses. Some processes may have a one-year
cycle, while others have a quarterly cycle,
depending on how adaptive and responsive
the governance should be to the changing
scope and context.

• Governance solutions have relationships. For
example, governance decisions made by the
large organization will have an effect on the
governance solutions established for smaller
organization scopes. In fact, the former
can be viewed as part of the context of the
latter. For example, a larger organization
can define a policy stating that all sub-or-
ganizations should be ISO-certified within
two years. This imposes a requirement for
each organization to initiate a governance
solution focusing on ISO certification.

Figure 4. Modeling the governance solution

���

Governance of Software Development

• Governance solutions can be defined for
varying granularities of scope. For example,
governance solutions that are established by
the board of directors and apply to an entire
organization may coexist with a governance
solution that focuses on development policies
for a 30-person agile project.

To summarize, while the governance solution
can autonomously execute for any given scope and
goal, it can also link to other governance solutions
either through the context or by establishing gov-
ernance mechanisms that affect other governance
solutions. These two characteristics ensure the
scalability of the governance model.

tranSItIon to agILe ScenarIo:
a governance perSpectIve

In this section, we present some of the data that
was gathered in two different organizations that
underwent a transition to agile development. The
first (denoted by A) is a financial organization us-
ing software developed by an agile team, which
is part of the organization’s IT department. The
team actually works for another organization
(denoted by Â) and is outsourced to organization
A to develop and maintain its software products.
The second organization (denoted by B) is a
global company that manufactures devices with
embedded software. Several distributed teams,
one of which has started to use agile methods,

develop the software. The data was gathered by
observations in planning sessions and develop-
ment activities, consultation to higher manage-
ment, and by guiding the retrospective process
of the agile team.

We use the governance concepts described
in the previous section to present the case of
software development governance and analyze
the transition-to-agile processes in the two or-
ganizations.

Governance scope. In both organizations,
the transition to agile development began with
one project. The management of organization Â
decided to improve the delivery time of software
projects and selected the project in organization
A as an experiment for the agile approach. The
intention of the management of organization Â
was to extend use of the agile approach to more of
its software projects. Examining the governance
scope in this case, we denote by GS1 the scope
that contains the project team and its activities.
Figure 5 schematically shows GS1 as an inner
scope in the two different hierarchies of organi-
zations A and Â. In organization A, GS1 is part
of the IT governance; in organization Â, GS1 is
part of the software development governance. The
teammates are the employees of organization Â
outsourced to A.

In organization B, the project team and its
activities are defined as the governance scope,
which is within the hierarchy of the software
development governance in this organization. In
this case, the project manager together with his

Figure 5. Hierarchy of governance scopes in organizations A and Â

 A

IT Governance

 Â

Software
Development
Governance

GS1

 ���

Governance of Software Development

team leaders learned about the agile approach and
decided to start the transition in their jurisdiction.
In parallel, they started the process of convincing
their upper management that it was worthwhile.
This was different from organization Â, where
the direction of governance is top-down.

Governing body. The governing body in the
case of GS1 included governors from both orga-
nizations A and Â. The governors from organiza-
tion A were the CIO and the domain expert that
served as the onsite customer. This expert was
responsible for directing the team according to the
release vision, giving them the requirements for
each iteration, and prioritizing the requirements.
The CIO and the domain expert could delegate
authority to others in organization A, such as
the people responsible for the infrastructure and
those who tested the system as end users. The
governors from organization Â continuously
monitored this process in order to learn about its
benefits and drawbacks. They worked together
with the governors of organization A, who agreed
to cooperate in implementing a new approach to
software development.

In organization B, the project manager and
team leaders served as the governing body. As
part of the transition process, the role of method-
ologist was suggested. This person was in charge
of maintaining and enhancing the methodology
(Dubinsky & Hazzan, 2006). Although other
roles that are concerned with the transition (e.g.,
tracker) were rotated among teammates, the per-
son who performed this role did it consistently
and continued to learn about agile methods. She
also took upon herself to educate other teams in
the organization about agile concepts. As a result,
she naturally joined the governing body and is
involved in every decision this body makes.

Governance goals. The governance goals of
organization A are different from the governance
goals of organization Â. Though they share the
same scope, the context is different. The governing
body of organization A is concerned with the needs
of the IT users inside the organization and who use

the software to support the business activities of
this organization. In contrast, the governing body
of organization Â is concerned with the kind of
contracts it signs with its customers (in this case,
organization A) and how these can be improved to
increase business benefits as well as provide high
quality products. This difference in governance
goals on the same scope requires special attention
when dealing with the mechanisms that should
be used in this compound solution.

In organization B, the governance goals were
derived from previous experience of the govern-
ing body in running software projects in this
and other organizations. The goals refer on the
one hand to the professional aspects of software
production and on the other hand to the way the
project is viewed in the context of the organization.
Hence, one goal is to improve the way software
requirements are dealt with and to shorten the
time-to-market. Another goal is to follow the
software development process used in this orga-
nization and published in an internal handbook.
The decision to implement the agile approach to
cope with the first goal implied that the governing
body should communicate to higher management
the changes caused by the agile implementation,
especially these that do not fit existing procedures.
They would also need to reconcile the governance
solutions used inside the team and in its relations
with the rest of the organization.

Governance mechanisms. The adoption of
an agile approach implied several governance
mechanisms. The most conspicuous was the work
procedure that required short development itera-
tions. In both organizations A and B, a release
contains about eight iterations of two weeks each.
When uncertainty increased, usually towards the
end of the release, the iterations were shortened
to one week. An iteration of two weeks was com-
posed of one day of presentations and planning,
and nine days of development. During the day
of presentations and planning, the team presents
the artifacts of the previous iteration to the cus-
tomer and, together with the customer, plans the

��0

Governance of Software Development

functionality to be developed in the next iteration.
During the nine days of development, the team
develops the required functionality and no new
requirements are accommodated.

Another example of a mechanism that was
derived from the agile approach is the policy that
states who the customer is and the definition of
this role. In both organizations A and B, before
the transition-to-agile process, the project man-
ager played the role of the customer in setting
the functionality developed by the team, along
with the priorities and schedule. This behavior
caused an on-going negotiation between the proj-
ect manager and the real customer. The project
manager generally refused to change requests
that the real customer prioritized as important
and continued to distribute work to the team as
seemed necessary. The agile approach set the rules
clearly: the customer is the one who provides the
software requirements, decides what the team
will develop in every iteration, and the priorities
of these requirements. Of course, the customer
can and should receive all the professional ad-
vice the team and the project manager can give.
The customers should commit themselves to the
process of development, be available during the
iteration, particularly in the presentations where
they gave feedback and in planning sessions
where they reviewed the progress. The project
manager should manage the development process
and people so that a high quality software product
will be developed.

The agile metrics are used in both organiza-
tions as the measurements of the process and
product. Each team contains a tracker who is
responsible for collecting the data required by the
metrics and for communicating them at the end of
the presentation of the iteration artifacts. The agile
metrics can be used as governance observables.
One measurement that was used by both teams
is the calculation of estimated time of completed
tasks versus the actual time that was invested
to develop them. Next, we present governance
observables that illustrate this measurement.

Governance points and observables as
part of the governance lifecycle. The notions of
governance scope, governing body, governance
goals, and mechanisms are part of the Define and
Implement phases of the governance lifecycle (see
Figure 3). The governance points and observables
exist in the Execute phase. The following are
two kinds of governance mechanisms that are
found in both organizations and that provide
observables data:

• The measurement of estimated time of daily-
completed tasks versus the actual time that
was invested to develop them.

• The policy of conducting one-hour retro-
spectives at every iteration (Talby, Hazzan,
Dubinsky & Keren, 2006).

These mechanisms belong to specific goals that
are common in processes of transition to agile in
general and were specifically set as goals also in
our two cases.

• The first goal was to shorten delivery time.
One of the mechanisms that serve this goal
is measuring team velocity, which can be
perceived as the amount of productive work
units per iteration (Beck & Fowler, 2000).
The agile approach recommends small
releases of two to three months, each of
which consists of short iterations of two to
four weeks. Measuring team velocity per
iteration enables ongoing visibility of the
progress information as well as the ability
to make decisions on how to continue.

• The second goal was to continuously im-
prove the process by gradually adopting
agile practices. One of the mechanisms that
serve this goal is when teammates reflect on
their activities (Hazzan, 2002; Kerth, 2001;
Schön, 1983) after every iteration, before
they start planning the next iteration. This
is done as part of a retrospective process that
enables individuals and teams to share ideas

 ���

Governance of Software Development

about the major issues that emerge in their
software development environments, think
about ways to improve, and make decisions
to support these improvements.

The data on team velocity and retrospective
processes can be presented as governance observ-
ables that emerged in the Execute phase and are
used as part of the Assess phase of the governance
lifecycle. We present these observables in the fol-
lowing sections. We note that there are further
issues that are relevant to the transition to agile
scenario, such as testing and quality assurance,
simplicity as a concept, and the role scheme, which
are not addressed here.

team velocity

The first governance observable is the graph of
estimated time of completed tasks versus the
actual time that was invested to develop them.
One associated governance point occurs every
development day when the tracker displays the
graph during the stand-up-meeting that starts the
team’s workday. This is done in order to trace the
team’s daily progress. Another governance point
that uses the same observable occurs every two
weeks in the presentation of the iteration artifacts.

This is done in order to trace the team’s iteration
progress. The daily progress is measured against
the iteration commitment. The iteration progress
is measured against the release commitment.
We used this data to better understand the agile
process. From the governance perspective, we
can decide if this mechanism can assist us in the
Assess phase to follow up on the performance of
the governance solution.

Each day, in each of the teams, the tracker
added two new points to the graph. The “total
estimated” point represented the cumulative es-
timations of all tasks that were completed by the
previous day and the “total done” point represented
the cumulative actual time devoted to those tasks.
A completed task was counted when the developer
in charge completed the coding, unit testing, and
integration with the entire developed system.

Figure 6 shows the graphs of estimations versus
actual time in the third iteration for the team in
organization A. The third (linear) line provides
the expected pace according to available time. As
can be observed, there is a significant difference
between the time that is available for development
and the time that is actually used for development.
This phenomenon also happened in the case of
the team in organization B. There are several
reasons that may cause this behavior. Firstly, only

Figure 6. Estimation vs. actual development time in iteration 3 (team A)

11

E s tim atio n v s . A ctu al D evelop ment T im e

0

50

100

150

200

250

300

1 2 3 4 5 6

D evelop ment D ays

H ou rs

Tota l E stim ated
Tota l D one
E xpected P ace

���

Governance of Software Development

completed tasks are calculated. Although some
teammates had invested time in other tasks, this
time was not taken into consideration if the task
was not complete before the end of the iteration.
Secondly, there is often time invested in urgent
tasks that come up, such as support service for end
users who work with modules that are in produc-
tion. Thirdly, some developers, whose time was
taken into account, may have been absent.

Figure 7 shows the graphs of estimations versus
actual time in the second (Figure 7a) and forth
(Figure 7b) iterations of the team in organization
B. The Expected Pace line is the ratio between the
total working hours of all teammates in the itera-

tion and the number of days in the iteration.
We observe that at the end of the second it-

eration (Figure 7a), the amount of time actually
spent on completed tasks (159 hours) was 30%
less than the available time according to the ex-
pected pace (229 hours). This can be explained
by the fact that tasks in progress that were not
completed in this iteration were not counted. In
the fourth iteration (Figure 7b), however, all tasks
were completed. In such cases the total-expected
point unites with the expected pace point since
this was the amount of hours that was considered
in the work planning.

Figure 7. Estimation vs. actual development time in iterations 2 and 4 (team B)

E s tim atio n v s . A ctu al D evelop ment T im e

0

50
100
150
200
250

1 2 3 4 5 6 7 8 9
D evelop ment D ays

H ou rs

Tota l E stim ated

Tota l D one
E xpected P ace

a) Iteration 2

E s tim atio n v s . A ctu al D evelop ment T im e

0

50

100

150

200

1 2 3 4 5 6 7 8

D evelop ment D ays

H ou rs

Tota l E s tim ated
Tota l D one
E xpec ted P ace

(b) Iteration 4

 ���

Governance of Software Development

We further observe that in both iterations, the
distribution into tasks was reasonably good. Too
many dependencies between tasks can delay their
completion, causing a nearly flat total-done line
until close to the end of the iteration and then a
sudden increase when many tasks are completed
together.

Figure 8 summarizes the estimation versus
actual times and the expected pace for each of
the first four iterations for this team. We observe
that estimates are too high in the first three itera-
tions: 14% in the first (167 hours estimate vs. 144
actual) and second iterations (184 hours estimate
vs. 159 actual) and 20% in the third (92 hours
estimate vs. 74 actual). In the fourth iteration, in
contrast, estimates were low by 4% (174 hours
estimate vs. 180 actual).

In the three first iterations, the total-done
time was less than the expected pace. In the
first two iterations, the gap was 30% (144
hours vs. 207 and 159 hours vs. 229), and in
the third iteration the gap was 48% (74 hours
vs. 144). In the fourth iteration, the gap was
–4% (180 hours vs. 174), which implies a certain
improvement in the quality of the estimations.

Another issue that affected these measure-
ments was the variability in team size. The rea-

sons for the drop in the expected pace in the third
iteration are personnel changes, travel of several
teammates, and sick leave for two teammates.

retrospective process

The second governance point that we present
concerns the retrospective process that guides
the software development process. The agile ap-
proach use reflection sessions and a retrospective
process as an internal practice (Beck & Andres,
2004; Salo, 2005; Talby et al., 2006). The teams
in organizations A and B adopted the practice of
one-hour reflection between the presentation of the
artifacts of the previous iteration and the planning
of the next iteration (Talby et al., 2006).

A reflection session was conducted in orga-
nization A between the first two releases of the
transition-to-agile process. Teammates filled out
an anonymous individual questionnaire contain-
ing questions mainly about the characteristics of
the previous release and the expectations from the
next one. We review some of the data that was
collected during the discussion that followed.
Reflecting on “the best thing that happened in
the first release,” these were the teammates’
comments:

Figure 8. Estimation vs. actual development time in the first 4 iterations (team B)

0

50

100

150

200

250

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Ho u rs

Tota l Ex timate Tota l Done Ex pec ted Pac e

���

Governance of Software Development

• “Focus on the goal with the customer’s global
view”

• “Cooperation”
• “It takes less time to develop tasks compared

with the previous method”
• “End to end [development] shortens pro-

cesses and integration”
• “A platform to talk about problem was cre-

ated, sit together and hear problems”
• “Good communication between team and

customers, there is someone to approach
with questions”

• “People started new things, like modules”
• “Setting priorities gives focus”

Reflecting on “what can be changed in the next
release,” teammates generated a list and then voted
for the following as the most important:

• Improve the integration process
• Adopt the methodology into the QA pro-

cess
• Perform better follow-up

One of the first reflection sessions in organiza-
tion B was dedicated to the relationships between
the team and the organization. Teammates filled
out an anonymous individual questionnaire con-
taining questions about the organization’s goals
and values, existing policies, and the way the
team could contribute to the organization and vice
versa. One of the questions asked them to rate

their level of agreement with several statements
on the organization’s existing policy on software
quality. Table 1 shows the teammates’ answers;
the number in each cell represents the number of
people who gave that answer. Based on this and
similar data, we suggest that the reflection sessions
can be considered as a governance mechanism
that is activated in the Execute phase and feeds
the Assess phase of the governance lifecycle.

In a broader perspective, the data that emerges
from the retrospective process, together with other
governance observables, can assist the governance
follow-up in the Assess phase. During the Assess
phase, a complete perspective on the governance
solution lifecycle is gained. Specifically, we can
follow up the transition-to-agile process and
continuously steer it according to the governance
information.

concLuSIon and future
dIrectIonS

Starting from a comprehensive definition of
governance and its components, we presented
a high-level governance model, which includes
the main components and the relationships be-
tween them. To validate the model framework,
we showed how to conceptually instantiate it for
both IT governance and software development
governance, in the context of transition-to-agile
software development in large organizations.

Table 1. Teammates reflection on the organizational policy on software quality (majority is marked with
grey)

Statement
1

Strongly
disagree

2 3 4 5
Strongly

agree
No answer

I’m familiar with the policy 2 1 4 5

I follow the policy in my project 1 6 3 2

Most projects in the organization follow the policy 3 2 4 3

 ���

Governance of Software Development

We are now developing a governance lifecycle
platform based on the model presented here. It
should serve as a single point of administration for
the governance of software development activities.
The main parts of the governance solution platform
are the governance module, the data module, the
scheduler, and the user interface.

In brief, the governance module manages the
governance lifecycle by supporting the govern-
ing body and relevant roles. The data module
contains a data adapter that mediates between
the application and the database. The database
includes all the information from the different
data sources available in software development
environments:

• Software development artifacts such as code,
test, specifications, models, and bug list

• Software management artifacts such as task
plans and estimation graphs;

• Activity indicators that capture the state of
the activities and tasks being performed;
and

• Governance observables such as measures,
policies, decision rights, and roles

The scheduler is responsible for scheduling
tasks for governance mechanisms that are used
within the governance solution. The user interface
presents views appropriate to each of the dif-
ferent roles that are involved in the governance
process.

In light of the development of the governance
lifecycle platform, we suggest extending the
development component of existing governance
tools according to our model. This way, the model
presented in this chapter can be used to augment
existing IT governance models (e.g., CobiT and
ITIL) to close the gap between the IT governance
model and the governance of software develop-
ment activities.

acknowLedgment

We would like to thank Clive Gee and Duncan
Clark for their significant contribution to the UML
model. We would like to thank Murray Cantor,
Duncan Clark, Clive Gee, John Falkl, Steve Gra-
ham, Christine Draper, Greg Rader, and Calvin
Powers for numerous discussions and ideas.

Orit Hazzan participated in consulting for one
of the organizations. We would like to thank her
for fruitful discussions.

referenceS

Abrams, C., von Känel, J., Mueller, S., Pfitzmann,
B., & Ruschka-Taylor, S. (2006). Optimized enter-
prise risk management (Research Report RZ3657).
IBM. Retrieved May 14, 2008, from http://domino.
research.ibm.com/library/cyberdig.nsf/papers/
0C4791FC96DEF130852571D0003F5F15/$File/
rz3657.pdf

Ambler, S. (2007). Agile adoption rate survey:
March 2007. Retrieved May 14, 2008, from http://
www.ambysoft.com/surveys/agileMarch2007.
htm

Barnett, L. (2006). And the agile survey says. Agile
Journal March 6, 2006. Retrieved May 14, 2008,
from http://www.agilejournal.com/articles/from-
the-editor/and-the-agile-survey-says%85.html

Beck, K., & Andres, C. (2004). Extreme program-
ming explained (2nd ed.). Boston, Massachusetts:
Addison-Wesley.

Beck, K., & Fowler, M. (2000). Planning extreme
programming. Boston, Massachusetts: Addison-
Wesley.

Broadbent, M. (1998). Leading governance,
business and IT processes: The organizational

���

Governance of Software Development

fabric of business and IT partnership. Findings
Gartner Group, 31 December 1998, document
#FIND-19981231-01.

Cantor, M., & Sanders, J. (2007). Operational
IT governance. Retrieved May 14, 2008, from
http://www.ibm.com/developerworks/rational/li-
brary/may07/cantor_sanders/index.html

Chulani, S., Clay, W., Yaeli, A., Wegman,,
M. N., & Cantor, M. (2006). Understand-
ing IT governance: Definitions, contexts, and
concerns (Research Report RC24064). IBM.
Retrieved May 14, 2008, from http://domino.
research.ibm.com/library/cyberdig.nsf/papers/
38905EEA124CDDFB852571FE00569CCE/
$File/rc24064.pdf

Dahlberg, T., & Kivijärvi, H. (2006). An inte-
grated framework for IT governance and the
development and validation of an assessment
instrument. In Proceedings of the 39th Hawaii
International Conference on Systems Sciences,
Kauai, Hawaii.

Dubinsky, Y., & Hazzan, O. (2006). Using a role
scheme to derive software project metrics. Journal
of Systems Architecture, 52, 693–699.

Dubinsky, Y., Hazzan, O., Talby, D., & Keren, A.
(2006). System analysis and design in a large-scale
software project: the case of transition to agile
development. In Proceedigns of the the Eigth
International Conference on Enterprise Informa-
tion Systems, Paphos, Cyprus.

Ericsson, M. (2007). The governance landscape:
Steering and measuring development organiza-
tions to align with business strategy. Retrieved
May 14, 2008, from http://www.ibm.com/devel-
operworks/rational/library/feb07/ericsson/

Hallows, J. E. (2001). The project management
office toolkit. Newton Square, Pennsylvania:
Project Management Institute.

Hazzan, O. (2002). The reflective practitioner per-
spective in software engineering education. The
Journal of Systems and Software, 63(3), 161-171.

Highsmith, J. (2002). Agile software development
ecosystems. Boston: Addison-Wesley.

Kerth, N. L. (2001). Project retrospectives: A hand-
book for team reviews. New York: Dorset House
Publishing Company.

Lewin, K. (1948). Resolving social conflicts;
Selected papers on group dynamics. New York:
Harper & Row.

Salo, O. (2005). Systematical validation of learn-
ing in agile software development environment.
In Proceedings of the the Seventh International
Workshop on Learning Software Organizations,
Kaiserslautern, Germany.

Schön, D. A. (1983). The reflective practitioner.
New York: Basic Books.

Tague, N. R. (2004). The quality toolbox (2nd ed.).
Milwaukee, WI: ASQ Quality Press.

Talby, D., Hazzan, O., Dubinsky, Y., & Keren, A.
(2006). Reflections on reflection in agile software
development. In Proceedings of the Agile 2006
Conference, Minneapolis, Minnesota.

Van Grembergen, W., & De Haes, S. (2004). IT
governance and its mechanisms. Information
Systems Control Journal, 1. Retrieved May 14,
2008, from http://www.isaca.org/Template.cfm?S
ection=Home&Template=/ContentManagement/
ContentDisplay.cfm&ContentID=16771

Weill, P., & Ross, J. W. (2004). IT governance. Wa-
tertown, MA: Harvard Business School Press.

Williams, P. A. (2005). The buck stops here. IT
Leadership, 1. Retrieved May 14, 2008, from http://
www.the-itleader.com/features/feature258/

 ���

Governance of Software Development

endnoteS

1 Control Objectives for Information and re-
lated Technology (CobiT®); see http://www.
itgi.org.

2 Details on ITIL® can be found at: http://
www.itil.co.uk.

3 Information on ISO-17799 security controls
can be found at: http://www.iso-17799.
com,

4 The Agile Manifest at www.agilemanifesto.
org.

5 Val-IT Governance Framework: www.isaca.
org/valit.

6 Open Compliance & Ethics Group (OCEG)
Foundation redbook: http://www.oceg.org/
view/Foundation.

7 Capability Maturity Model Integration
(CMMI): http://www.sei.cmu.edu/cmmi.

8 The Software Engineering Body of Knowl-
edge (SWEBOK): http://www.swebok.org.

9 Merriam-Webster Online Dictionary defini-
tion at http://www.merriam-webster.com.
Other dictionaries offer similar defini-
tions.

This work was previously published in Information Technology Governance and Service Management: Frameworks and Adap-
tations, edited by A. Cater-Steel, pp. 266-284, copyright 2009 by Information Science Reference (an imprint of IGI Global).

���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.24
 Domain-Specific Language for
Describing Grid Applications

Enis Afgan
University of Alabama at Birmingham, USA

Purushotham Bangalore
University of Alabama at Birmingham, USA

Jeff Gray
University of Alabama at Birmingham, USA

aBStract

Grid computing environments are dynamic and
heterogeneous in nature. In order to realize ap-
plication-specific Quality of Service agreements
within a grid, specifications at the level of an
application are required. This chapter intro-
duces an XML-based schema language (called
the Application Specification Language, ASL)
and a corresponding modeling tool that can be
used to describe applications in grid computing
environments. Such application descriptions al-
low derivation of guided and autonomic service
developments for installation and invocation
routines throughout the grid. In order to promote
the language and ease the application description
process, a domain-specific tool is also introduced.
Based on our experience, the ASL in combination

with higher level models improves, simplifies
and promotes the grid application deployment
process while simultaneously minimizing tedious
and error-prone tasks such as manual application
description composition.

IntroductIon

Grid computing (Foster, Kesselman, & Tuecke,
2001) has gained popularity as the emerging ar-
chitecture for next-generation high performance
distributed computing. Grid computing provides
ubiquitous access to distributed high performance
computing (HPC) resources that are shared be-
tween multiple organizations through virtualiza-
tion and aggregation. This is realized through a
layer of software (e.g., grid middleware), thus

 ���

 Domain-Specific Language for Describing Grid Applications

making grid applications extremely software-
intensive systems where the value of software is
equivalent to the value of the underlying infra-
structure. Grid middleware provides a standard
set of services for authentication, authorization,
resource allocation and management, job sched-
uling, submission, monitoring, and data transfer
and management (Berman, Hey, & Fox, 2003b).
Software packages and tools based on open-
source/open-standard approaches such as Globus
Toolkit (Foster & Kesselman, 1997) have enabled
the deployment of “production quality” compu-
tational grids. Several domain-specific grids are
currently operational, for example, Grid Physics
Network (GriPhyN) (GriPhyN, 2006), Network
for Earthquake Engineering Simulation (NEES-
Grid) (NEES, 2006), International Virtual Data
Grid Laboratory (IVDGL) (IVDGL, 2006), Open
Science Grid (Grid, 2007), and Particle Physics
Data Grid Collaboratory Pilot (Grid2003) (PPDG,
2006). Grid computing has offered researchers
enormous computing and data storage capabilities
by providing seamless access to geographically
distributed resources through the creation of
virtual organizations (VOs).

Despite the many benefits of grid computing,
the grid itself does not provide a novel program-
ming paradigm for developing new applications.
Furthermore, no formal methodology exists for
porting existing legacy applications to the grid.
Most of the applications developed for the grid
are based on traditional HPC or distributed com-
puting principles. Typical HPC applications are
developed using implicit parallel programming
techniques (e.g., compiler-based automatic paral-
lelization and directive-based parallelization) or
explicit parallel programming techniques (e.g.,
threads and message-passing). After an HPC
application is developed and tested on local
resources, it is then deployed; that is, the entire
application (source code, dataset, scripts) is trans-
ferred to a remote site, compiled on a remote host,
and made available for execution.

Deploying an application on the grid requires
additional steps that involve user intervention,
great insight into the internal structure of the
application, as well as familiarity with the vari-
ous grid computing technologies and toolkits.
In addition, the progressive steps of application
execution and job submission may involve many
additional steps required from the end-user, not
necessarily found in a typical application. Due
to this inherent complexity and difficulty using
the grid, several approaches have attempted to
simplify grid deployment and configuration by
developing technologies such as Web portals
(Gannon et al., 2003), workflow systems (Aalst &
Hee, 2002), and component assembly (Armstrong
et al., 1999). The ultimate goal of such efforts is
to enable the adoption of grid technologies and
applications to a wider group of end-users who
are not familiar with programming languages and
the lower level grid infrastructure. The potential
impact for improving grid accessibility to such
users is significant (e.g., applied science research-
ers, distributed organizations, and organizations
with variable computational requirements).

To tailor the complexities of a user’s view of
the vast amount of grid software by addressing the
goals of end-user accessibility, there is a need to
standardize and simplify the process of application
deployment on the grid. As part of the contribution
of this chapter, we present a new language called
the Application Specification Language (ASL)
(Afgan & Bangalore, 2007) that can be used by
application developers and end-users to describe
details of a given application. The ASL allows an
application to be represented in the heterogeneous
world of the grid by capturing its functionality,
options and differences as compared with other
applications found in the grid. Through the use
of ASL, application descriptions can be made
available for immediate use or further advance-
ments among applications such as job schedulers,
automated interface generators and application-
specific on-demand help provisioning. The ASL

��0

 Domain-Specific Language for Describing Grid Applications

can also be used to describe how an application
is combined with other matching services and
software. The ability to specify the composition
of services can facilitate the creation of new and
added functionality, as well as enable further
advancement of existing tools that can take ad-
vantage of the provided information.

To ease the process of collecting application
description data and the description generation,
a domain-specific modeling language (DSML)
has been designed to assist in automating the
grid application description and deployment pro-
cesses. We believe that higher level models will
improve, simplify and promote the grid applica-
tion description and deployment process while
minimizing tedious and error-prone tasks such
as manual composition of application descrip-

tions. The process of using the ASL and DSML
within the context of grid deployment is shown in
Figure 1, which outlines the major steps required
for grid application development, publication and
deployment. This figure highlights the global
interaction between grid components and sum-
marizes the ideas presented in this chapter. Upon
development of an application, the developer
can provide an application-specific description
of a new application in the language described
in this chapter. The application is registered by
a service that can subsequently be queried by
users, schedulers, or other tools. Information in
the application description provides necessary
data to enable automated integration with other
available tools and services (e.g., Grid Security
Infrastructure (GSI) (Foster, Kesselman, Tsudik,

M I D D L E W A R E

3. Register
description

1. Develop application

2. Create
application
description

End-user

User interface

Scheduler

Job manager

4. Deploy
application

AASSLL

AAIISS

MDS

GSI

RLS

Cost

Services

Figure 1. Architecture using existing grid middleware technologies coupled with the technologies intro-
duced throughout this chapter to enable improved application description and deployment

 ���

 Domain-Specific Language for Describing Grid Applications

& Tuecke, 1998), Monitoring and Discovery Ser-
vice (MDS) (Czajkowski et al., 1998), Resource
Specification Language (RSL) (Czajkowski et al.,
1998), Application Information Service (AIS))
as well as services still in development (e.g.,
cost). The focus of this chapter is on step 2 in
the figure, whose addition to the global picture
provides missing but beneficial functionality in
the overall infrastructure. The dotted lines in the
figure indicate possible interaction with a set of
external events.

The rest of this chapter is organized as fol-
lows. The next section introduces grid computing
concepts and provides a taxonomy of grid users.
This is followed by a section that builds on grid
technologies and provides examples of grid ap-
plication development and deployment through a
sample scenario outlining some of the difficulties
with the current grid technologies. These issues
are addressed in the section entitled Application
Specification Language, which provides an in-
troduction of a new language. The construction
of this language is eased by a support tool based
on metamodeling technology introduced and
described in the Modeling Wizards to Generate
ASL section. The end of the paper presents future
trends and conclusions.

an overvIew of grId
computIng

Grid computing represents one of the new frontiers
of computing. As the grid matures, many existing
technologies will have to be revised and adopted
to incorporate new ideas and concepts required
by this evolving environment. Furthermore, many
new technologies will arise as the result of emerg-
ing opportunities. This section introduces basic
concepts of grid computing and presents a user
categorization within this paradigm.

grid computing Background

The grid community has witnessed increased
adoption over the past several years as the emerg-
ing architecture for next-generation high perfor-
mance distributed computing. Grid computing is a
culmination of distributed computing (Tanenbaum
& Steen, 2002) and high-performance comput-
ing (Kumar, Grama, Gupta, & Karypis, 1994).
The grid integrates networking, communication,
computation and information to provide a virtual
platform for theoretically unlimited compute
power and data management (Berman, Fox, &
Hey, 2003a). It is designed to provide ubiquitous
access to the vast number of resources and enables
sharing between multiple organizations providing
desired resource virtualization and aggregation.
Virtual Organizations (VO) (Foster et al., 2001)
represent aggregations of communities that may
share national and international boundaries but
have common objectives. Through VOs, grid com-
puting is capable of aggregating heterogeneous
resources that belong to different administrative
domains to create a unique and valuable resource
for the scientific community.

The VOs that are available in the grid are en-
abled through the use of middleware that provides
a standard set of services for authentication, autho-
rization, resource allocation and management, job
scheduling, submission, and monitoring. Through
this model, individual resources within an orga-
nization are virtualized into a common pool of
accessible resources. The Globus Toolkit (GT)
(Foster & Kesselman, 1997) is the most popular
grid infrastructure framework for enabling the
creation of grid applications. The GT offers all
the basic technologies required for setting up a
grid environment to support user creation, job
submission and monitoring that span traditional
boundaries (e.g., single institution environment
setup). The technologies associated with the GT
include:

���

 Domain-Specific Language for Describing Grid Applications

• Grid Security Infrastructure (GSI) (Foster et
al., 1998) is used for user authentication;

• Global Resource Allocation Manager
(GRAM) (Czajkowski et al., 1998) assists
in remote resource job management;

• Monitoring and Discovery System (MDS)
(Czajkowski, Fitzgerald, Foster, & Kessel-
man, 2001) offers information discovery
and state of resources; and

• GridFTP (Allcock et al., 2001) provides file
transfer capabilities in the grid environ-
ment.

On top of the low-level grid middleware
tools, an additional layer of grid system software
packages provides an abstraction layer that hides
complexities such as authentication, resource
discovery, and file transfer. These intermedi-
ate layers offer direct interaction with the grid
middleware allowing communication at a higher
level of abstraction. Examples of such packages
are portals (Gannon et al., 2003; Novotny, Rus-
sell, & Wehrens, 2004) and application schedulers
(Afgan, 2004; Buyya, Abramson, & Giddy, 2000;
Huedo, Montero, & Llorente, 2004) that provide

a solid layer for using the grid as well as many
options to develop grid applications.

The top-most layer found in grid computing
is the application layer that interacts directly with
an end-user. A grid application is considered to be
any application that is capable of exploiting grid
resources through the use of grid middleware.
The possibilities for using the grid are restricted
only by the usability of the system as a whole. The
end-result is a highly software-intensive system
where, on top of the middleware functionality,
lays the unlimited layer of application software
offering a myriad of options and combinations
to be explored by application developers as well
as end-users. Figure 2 shows the overall layered
structure of grid computing.

Because the grid is still an emerging technol-
ogy, applications that were originally developed
to run in more traditional environments may be
adopted to take advantage of the benefits offered
by grid technologies. The process of converting an
existing legacy application to make use of the grid
is called application deployment or grid enable-
ment. The primary benefit an application gains,
once grid-enabled, is the ability to use compute
power more efficiently. Another benefit is that
long running jobs can be broken up to execute in
parallel on multiple resources to decrease turn-
around time or increase efficiency. Additionally,
larger data sets can be stored as well as processed
without putting the load on any single system. By
evolving a legacy application, the heterogeneity
of the grid can be exploited to benefit the applica-
tion as a whole by executing different application
segments on separate (i.e., heterogeneous) systems
making each segment take maximum advantage
offered by underlying hardware, and in the end,
gain maximum benefit for the application as a
whole (Chase, 2005). With the diverse pool of
available resources and the wider pool of avail-
able applications, ensuring mutual compatibility
and maintainability becomes a major challenge.
Some of the difficulties arise between the involved
parties because individual requirements are not

Grid
Resources

Grid
Middleware

Grid
Tools and Services

Grid
Applications

G lobus Toolk it
G S I M DS RL S .. .

M y P rox y
S im pleC A

Figure 2. Layered structure of grid computing

 ���

 Domain-Specific Language for Describing Grid Applications

stated in a standard, clear, and concise way and
thus provide no opportunities for automation or
standardized reliability.

grId uSer category
cLaSSIfIcatIon

This section provides an overview of the roles and
goals of individual grid users. The section identi-
fies the specific requirements that are imposed by
each user category, as well as the provisioning tools
that accommodate their needs. The categories of
users introduced in this section are middleware
developer, application deployer, application de-
veloper, resource owner, and end-user. In some
cases, a single person may play multiple roles
(e.g., application developer and deployer).

middleware developer

As the interconnecting fiber of the grid, middle-
ware represents the mechanism that facilitates the
management of underlying resources as well as
development of grid applications. Grid middle-
ware is capable of delivering and sharing compute
and data resources over secure channels while
hiding intrinsic platform differences among the
available resources. The middleware developers
are key participants in the grid ecosystem and
are closely connected to all other user categories.
Middleware developers consider feature requests
from user groups and participate in the design
and implementation of the middleware standards
that shape the way the grid operates. Examples
of grid middleware include: the Globus Toolkit,
Message Passing Interface (MPI) (Forum, 1998),
Condor (Litzkow, Livny, & Mutka, 1988), Storage
Resource Broker (SRB) (Baru, Morre, Rajasekar,
& Wan, 1998), Web portals (GridSphere (Novotny
et al., 2004), and the Open Grid Computing En-
vironment (OGCE) (Gannon et al., 2003).

application deployer

An application deployer has the responsibility of
performing the necessary work to grid-enable a
legacy application. Due to the well-known pos-
sibility of high costs and challenges of applica-
tion modification, the community focus is not on
modifying the source code, but rather adopting
the application through creation of wrappers that
convert the entire application into a grid-enabled
solution (Afgan, Sathyanarayana, & Bangalore,
2006; McConnell, 1996). The deployment process
and wrapper creation for one of the five strategies
is performed using a combination of the follow-
ing techniques:

• Create script interfaces for command-line
tools.

• Program directly to the Globus Toolkit using
an available C API.

• Use a commodity toolkit such as Java CoG
kit (Laszewski, Foster, Gawor, & Lane,
2001).

• Use the Grid Application Toolkit (GAT)
(Allen et al., 2005).

• Use Grid Services (Sotomayor & Childers,
2005).

Because the application deployer is working
with an existing application that may have sev-
eral peculiarities, as well as the heterogeneity of
grid resources, many issues may arise offsetting
expected application performance or even cor-
rect execution. One of the causes of the evolution
problem is the lack of standardized application
information (Ulrich, 2002). The application
deployer must placate the existing user base and
should not modify the original application require-
ments to address the grid-related concerns. If any
modifications are required during the deployment
process, to better accommodate needs of either
end-user or the resource owner, currently, there

���

 Domain-Specific Language for Describing Grid Applications

is no effective way to convey the modifications
that took place (as compared to the descriptive
information pertinent to the original application)
to either of those users categories.

application developer

As the grid gains acceptance, more applications
will be custom tailored to take advantage of the
benefits offered by the grid. Traditional program-
ming techniques and methodologies (i.e., sequen-
tial or parallel) have their own set of challenges.
Incorporating the grid into a legacy application
poses a new set of accidental complexities. Most
of the programming techniques and application
types available when developing grid applications
come from the HPC area or traditional distributed
computing.

Grid services, which are based on the Service-
Oriented Architecture (SOA) (Foster, Kesselman,
Nick, & Tuecke, 2002a), represent the future of
grid application development. However, grid
services are hard to develop and deploy, as evi-
denced by the following steps that are required to
develop a single, standalone service (Sotomayor
& Childers, 2005):

1. Define and specify the service’s interface
so clients know how to invoke it.

2. Implement the given interface for the service;
implement any related libraries.

3. Define the deployment parameters to indi-
cate the specifics of the service.

4. Deploy the service to a grid service con-
tainer.

5. Register the service so it can be discovered
by other services.

In addition to coding difficulties, other issues
arise when developing grid applications. These
issues include security, licensing, job manage-
ment, and synchronization. Another major step
in application development is aggregation of
newly created services or already existing ones

through library calls and advanced programming
techniques. Application creation will need to be
tailored to extract maximum benefit from the grid
for a wider community of users. Examples of such
use include advertising application requirements
(e.g., service name, installation instructions,
license requirements), as well as minimum hard-
ware requirements (e.g., CPU speed, underlying
network infrastructure, memory consumption).
Unfortunately, current methods do not provide an
adequate solution to address these issues.

resource owner

Resource owners and providers assist in run-
ning the most basic layer of the grid multitier
architecture, which consists of the resources
(e.g., networks, computer, storage nodes), the
middle-tier (e.g., middleware, certificate authority,
portals), and the clients (e.g., GT clients, GUIs).
Resource owners are responsible for maintaining
their respective resources by meeting hardware re-
quirements for individual applications, installing
those applications, obtaining relevant libraries and
compilers, maintaining applications, and enforc-
ing policies. Beyond the initial cost of installing
the grid environment, there is the natural cost of
running individual clusters, as well as keeping
licenses, subscriptions, and libraries up to date.
The resource owners must also be cognizant of
the Quality of Service (QoS) agreements between
participating users (e.g., compatibility, application
versioning, standardization). In order for grid
computing to move further into the mainstream,
resource providers must be able to reduce their
operating costs, increase resource utilization and
find a benefit in sharing their resources with the
wider community.

end-user

The role of the resource owners is aligned to the
bottom of Figure 2. At the top of Figure 2 are
end-users who rely upon the results of a grid

 ���

 Domain-Specific Language for Describing Grid Applications

application. In order for the grid to become a
commodity computing technology, there is a
need to attract a wide variety of users. Some of
the issues preventing widespread adoption are
the complexities and dynamics involved in job
submission and job management, which are not
yet tailored for lay-persons (i.e., those who are not
computer savvy). Consider the following scenario
that exemplifies the manual steps needed to submit
a job on the grid:

1. Select the resources needed by an application.
2. Create a proxy certificate (e.g., grid-proxy-init).
3. Copy the necessary source code and input files

to a remote host (e.g., globus-url-copy).
4. Create a Resource Specification Language

(RSL) (Czajkowski et al., 1998) string.
5. Submit the job for execution (e.g., globus-

job-run, globus-job-submit).
6. Copy output files generated from the remote

host to local machine (e.g., globus-url-copy).

Although the general concept of the above
steps exists in many distributed contexts, the in-
troduction of the grid manifests as an additional
obstacle toward application usage. As such, the
grid requires a level of computer expertise that is
not within the skill sets of general end-users. The
complexities of manual job submission, typified
by the above six steps, can be ameliorated by the
following user-friendly approaches:

• Write a client using a commodity toolkit (e.g.,
Java CoG Kit (Laszewski et al., 2001)).

• Write an interface to a grid service.
• Use a portal (e.g., OGCE (Gannon et al.,

2003) or a grid-port (Thomas, Mock, Dahan,
Mueller, Sutton, & Boisseau, 2001)).

• Use a workflow systems (e.g., Chimera (Fos-
ter, Voeckler, Wilde, & Zhao, 2002b)).

• Use a component framework (e.g., Arm-
strong et al., 1999).

All of the above techniques are viable choices
and present gradual improvements in usability,
customization and acceptance. Whichever layer
of abstraction the above techniques provide, one
common goal is to simplify job submission by
abstracting grid resources from the end-user.

From the grid user classification and descrip-
tion, there are numerous requirements imposed
by each of the user groups. This point is further
complicated when user roles are combined and
intertwined with a need to provide an effective
way to address individual user concerns from
application development and registration to ap-
plication usage. By helping to solve this problem,
users will be empowered to create and use grid
applications while improving overall grid ac-
ceptance and resource utilization.

grId appLIcatIon depLoyment
ScenarIo

Software engineering researchers have introduced
many helpful principles (e.g., information hiding
(Parnas, 1972)) and best practices (e.g., design
patterns (Gamma, Helm, Johnson, & Vlissides,
1994)) with the goal of simplifying the develop-
ment process. Despite the improvements offered
by traditional software engineering principles,
there still remain many open questions when it
comes to new technologies such as the grid. For
example, developing applications to execute in
parallel computing environments changes some
of the underlying assumptions; this is due to the
focus of performance as the primary concern,
rather than maintainability, evolution, and change-
ability. Parallel computing (Kumar et al., 1994) is
based on a set of models primarily governed by
the communication patterns between algorithmic
iterations within an application. The following
categories represent various types of parallel
programs based on communication patterns (full

���

 Domain-Specific Language for Describing Grid Applications

details and descriptions of the individual sections
are provided in the section entitled Application
name and description):

1. Sequential applications
2. Parametric Sweep applications
3. Master-Worker applications
4. All-Worker applications
5. Loosely coupled parallel applications
6. Tightly couple parallel applications
7. Workflow applications

Development of parallel applications entails
coordination between computation and commu-
nication as limited by the underlying hardware
architecture. Depending on the problem type,
one communication pattern may be a better
choice over another based on the constraints of a
specific application context. Once developed, the
application is deployed on a targeted architecture.
Occasionally, hardware-specific optimizations
are performed to customize the code for optimal
execution. Developing applications for parallel
computing environments is guided by the concept
of overlapping communication with computation,
thus maximizing the use of resources. Although
the optimal solution of any application is rarely
achieved, the actuality of the application execut-
ing on a single, dedicated resource results in a
reasonably understood platform to build upon. On
the other hand, developing the applications for the
grid under the constraints of parallel computing
introduces new obstacles and complications. The
execution resource becomes a virtual entity oc-
casionally available and with a high failure rate.
The communication between iterations and ap-
plication modules is not only exponentially slower
but also highly unstable. The development of such
applications raises the complexity considerations
to a higher level and introduces a whole new field
of application deployment as a significant part in
the application lifecycle.

Most current grid environments are based on
the concepts embodied in Service-Oriented Ar-

chitecture (SOA) (Foster et al., 2002a) and Web
Services (Gottschalk, Graham, Kreger, & Snell,
2002). Applications deployed on existing grids
are submitted as grid services, which are Web
services with extended functionality to include
support for stateful behavior, lifecycle manage-
ment, and notifications (Foster et al., 2002a).
The development of a grid service proceeds in
several steps requiring expertise in many fields
(Sotomayor & Childers, 2005). When developing
traditional parallel applications, it is required for
individual subtasks to work toward a common
goal. The same idea transfers to the context of
the grid, but additional difficulties arise because
many applications that already exist and conform
to this subtask model are not grid-aware, which
requires major reengineering. The bottom line is
that many existing software applications devel-
oped by the parallel applications community will
not be rewritten to comply with the grid model,
but will rather be adopted by the use of wrappers.
This introduces new obstacles because different
user categories must interact to achieve the com-
mon goal. Originally, an application developer
was able to develop an application and deploy it
on a resource because they possessed the required
expertise. By adopting the grid, the requirements
related to application deployment have risen and
require new expertise, often not readily and easily
available due to the involved complexities. This
implies the need for a new domain expert (i.e., a
grid specialist) who possesses deep understand-
ing of the technology and is able to transform
traditional applications into grid applications.
The drawback to this solution is that additional
communication is necessary at the development
level, which prolongs the application development.
Furthermore, the delivery process is perplexed
with new possibilities to introduce errors due to
miscommunication or misunderstanding.

The application deployment process on a grid
is a nontrivial task. The user must first determine
what resources are available and then decide the
most suitable resource for a particular applica-

 ���

 Domain-Specific Language for Describing Grid Applications

tion. It is important to differentiate the applica-
tion development process from the application
deployment process. As stated earlier, typical
HPC applications are developed using a specific
programming language and parallel programming
paradigm (e.g., compiler directive-based, threads,
message-passing, combination of threads and
message-passing) and often the programming
paradigm chosen decides the application deploy-
ment platform. If the application uses a shared-
memory programming paradigm then the appli-
cation can be deployed only on a shared memory
system, whereas an application developed using
the message-passing paradigm can be deployed
on both distributed memory and shared memory
systems. Furthermore, applications might have
specific requirements (e.g., processor architecture,
amount of memory, disk space, interconnection
network, libraries, operating system) to deliver
desired performance and scalability. An applica-
tion developer could describe these requirements
using application deployment descriptors, or
hints could be added about various performance
implications and space/time tradeoffs. For com-
mercial software packages, information about
licensing and subscription could also be provided
by the deployment descriptors. An application
scheduler may use these descriptors to select a
suitable resource and schedule the application
for execution.

As a concrete example showing the full process
of application deployment, we will outline the
options and necessary steps required to enable
an application such as the Basic Local Align-
ment Search Tool (BLAST) (Altschul, Gish,
Miller, Myers, & Lipman, 1990), a frequently used
bioinformatics application to perform sequence
similarity searches, to execute on a local campus
grid, such as UABGrid (Gemmill & Bangalore,
2005). Portions of the following steps assume the
availability of grid middleware such as the Globus
Toolkit (GT) (Foster & Kesselman, 1999). This
sample scenario assumes that a user authentica-
tion system is in place and that the user is able to

access available resources using middleware tools.
The following represents the scenario:

1. Obtain a valid user authentication proxy.
2. Manually log into each of the available

resources and download BLAST.
3. Install BLAST individually on each re-

source.
4. Create a wrapper application that is respon-

sible for necessary file transfers, iterative job
submissions, job monitoring and notification
using a grid middleware API or a commodity
toolkit such as the Java CoG Kit (Laszewski
et al., 2001). The wrapper developer must
be aware of the method of interapplication
communication and design the wrapper
to accommodate for the appropriate task
parallelization and communication methods
with respect to the grid middleware. Also,
additional levels of parallelization can be
introduced at this level as is the case with
a locally developed wrapper (Afgan et al.,
2006). If a scheduler is not available for
task scheduling among grid resources, this
feature should also be included as part of
the wrapper functionality.

5. Create a user interface where the applica-
tion can be invoked. This can range from a
set of command-line tools to a Web-based
portal.

As can be seen from the given scenario, the
process of enabling an application to execute on
the grid requires a significant effort and high-
level of expertise from the application deployer.
Depending on the complexity of the wrapper, it
may turn into a completely new application de-
veloped to maximize the potential of the original
application in this new environment. One of the
drawbacks is the requirement of the deployer to
have a reasonably deep understanding of the ap-
plication to ensure that the wrapper is correctly
implemented.

���

 Domain-Specific Language for Describing Grid Applications

appLIcatIon SpecIfIcatIon
Language

motivation and Background

A goal of an application developer is to see their
solution adopted quickly by a large group of
end-users. However, the typical path to adoption
requires frequent interaction with end-users to ad-
dress numerous questions, such as: how to install
the application, how to invoke it, the purpose and
function of the available options and arguments, as
well as how to improve performance for a specific
platform configuration. Through the lifetime of
the application, additional documentation is cre-
ated to address such common questions. However,
with a new version of the software, much of this
work needs to be discarded and redone. Avoiding
this pipeline of events is challenging, but through
gradual and systematic adoption of the technique
proposed in this chapter, it is possible to provide
more automated support for the end-user.

Computing has evolved from a user-centric
context (where every detail of code execution
needed human attentiveness and interaction) to a
global service-driven view (such as Web Services,
where complex, data dependent, goal seeking
interactions and computations of independently
developed components can be achieved with
absolutely no human intervention). From this
progression, we observe the common approach
where automatic communication between pro-
grams is enabled. This is generally accomplished
through definition of standard languages that
specify protocols observed between applica-
tions. The following languages represent efforts
within the grid community to automate specific
deployment tasks:

• Job submission description language
(JSDL) (Anjomshoaa et al., 2005): A
recently completed standard from the Job
Submission Working Group (JSWG, 2007)
within the Open Grid Forum (OGF) (OGF,

2007). The JSDL is a specification of an
abstract and independent language used for
describing requirements of computational
jobs in grid environments. It contains a
vocabulary and normative XML schema
that builds on the idea of standardizing a
language to accommodate a variety of job
management systems, which alleviates the
problem of heterogeneity in the grid. By
having a standard language available, a job
submission description can enable diverse
job management systems to communicate
and complement job description in a more
simplified manner.

• Resource specification language (RSL)
(Czajkowski et al., 1998): Provides a
common interchange language to describe
resources and jobs to run on them. It is a
language developed by the Globus Toolkit
Project (Foster & Kesselman, 1999) and is
represented by various <name, value> pairs
that are used by the Grid Resource Allocation
Manager (GRAM) (Czajkowski et al., 1998)
to perform complex resource descriptions in
cooperation with other components in the
system. RSL preceded JSDL, so RSL can
be seen as an earlier scaled-down version
of JSDL.

• Resource description language (RDL)
(Anjomshoaa et al., 2005): A language
that is part of the JSDL standard document
for describing underlying grid resources
in terms of CPU speed, number of CPUs,
and main memory. Even though not yet
realized, the concept of this language has
been propagated through other tools such
as Condor and ClassAds (Solomon, 2004)
and the necessary information (e.g., cur-
rent resource status) can be obtained from
MDS (Czajkowski et al., 2001) and Ganglia
(Massie, Chun, & Culler, 2004).

The above mentioned languages have been
developed to enable standardized exchange of

 ���

 Domain-Specific Language for Describing Grid Applications

information between grid resources and provide
support for direct and concrete communication
between these resources. By defining documents
specified by these language constraints, one can
rely on automated negotiation during the job
submission process without regard for the hetero-
geneity of the underlying hardware and software.
When mapping the above mentioned languages
to individual grid user categories, the JSDL and
RSL map most favorably to the end-user category
(where the user is mainly interested in adopting
the grid as a pool of resources). The JSDL and
RSL enable users to limit and perform resource
selection. At the same time, RDL can be classi-
fied as a language for allowing resource owners
to describe the capabilities of their resources and
advertise that information for wider use through
mechanisms such as MDS and Ganglia. What
is evidently missing is the need to support the
application developer. Once an application is
developed, there is no standardized way to pub-
licize the name and capabilities of the application
in a manner that can be accessed by other tools.
Rather, the application developer and the end-user
are forced to interact in an interrogative manner,
perhaps using a wiki or similar tools to advertise
the availability of an application.

By supporting a method for capturing the core
purpose of the application, requirements, and
options, the end-user is provided with specific
information that describes the application. After
successful installation, the second most important
feature enabling application use is the interface
that the application provides to its users. With
respect to grid applications, the most appropriate
way to interact with an application is through a
Web-based interface that requires no local instal-
lation of the application. A Web-based interaction
may also provide special tools and knowledge to
access available resources (Gannon et al., 2003;
Hernandez, Bangalore, Gray, Guan, & Reilly,
2006). By providing a default standardized in-
terface to the given application automatically, a
resource owner may reuse the interface rather than

implement their own. The benefit for the end-user
is that the interface stays constant across different
providers. An additional benefit is a reduction of
possible errors in interface generation originating
from the resource provider due to possible misun-
derstanding or lack of application knowledge. The
Pasteur Institute Software Environment (PISE)
(Letondal, 2000) is an example of previous work
where this idea has been adopted in practice.
PISE is a transformation tool that receives as
input a PISE-DTD compliant XML document
and interprets the document to create any of the
suite of interfaces ranging from HTML to CGI
and IPSH (Letondal, 2000). A scalable core is
also provided by PISE that can be extended to
add additional interface interpreters as needed.
PISE currently contains a database of over 200
XML documents corresponding to interfaces for
various applications that are primarily focused on
bioinformatics. By leveraging ideas and technolo-
gies such as those provided by PISE, many of
the accidental complexities associated with grid
application deployment can be removed.

description of the Language

To address the challenges raised in the previ-
ous sections, we present a new language called
the Application Specification Language (ASL)
(Afgan & Bangalore, 2007). As a new approach
toward application specification that focuses on
the needs of grid users and grid applications,
the ASL is able to capture essential application
information. Through standardized protocols,
tools can be passed the information about an ap-
plication that is specified in an ASL description.
ASL is a language for describing any application’s
requirements, attributes, and options. The ASL
directly supports the ability to capture application-
specific information that is not necessarily found
in the general pool of available description tags.
Through the use of ASL, factors such as software
and hardware requirements, data constraints, and
algorithm complexity can be provided to a user. As

��0

 Domain-Specific Language for Describing Grid Applications

can be seen in Figure 3, the ASL may be composed
with other groups of established grid languages
(e.g., JSDL/RSL, RDL). The interactions implied
in the triangle connect all perspectives and user
categories of a grid environment, which enable
communication to take place over well-designed
paths to facilitate further communication, refine-
ment, contract creation and the possibility of
higher QoS for all participants.

ASL is applicable before and during installa-
tion, during job scheduling, during job execution,
and even after the job has completed. It can be
complemented and modified as knowledge about
an application increases. The ASL can be used
with legacy applications (requiring adaptation),
or with newly developed applications designed
specifically for the grid (often called “Smart
Applications”). By providing a standardized way
to describe application requirements, the ASL
enables an automated capability to compare ap-
plications. Without ASL, such comparisons are
very hard to perform manually because of their
subjectivity. Such comparisons can be useful in
numerous cases, such as application schedul-
ing and software cost estimation (Afgan et al.,
2006).

In essence, ASL is an extended application
version of RSL. It provides a set of specialized

tags used to capture application-specific details
and thus provide a description of an application.
The goal of this language is to use application-
specific descriptions that enable deployment,
maintenance, and execution of an application in
a standardized and simplified way. The structure
of the language is intended to describe entire,
operational applications rather than individual
components of an application or other software
that may subsequently be composed into an
application. The intent of ASL and individual
ASL documents is to enable needed commu-
nication between heterogeneous resources in
the grid through standard interfaces. Just like
ASL’s sister languages JSDL and RSL, ASL
is not a grammar-based language, but rather a
specification language establishing and defining
a standard interface needed for heterogeneous
grid resources to communicate with each other.
A grammar-based language refers to a language
that is defined and constrained by a context-free
grammar. A schema-based language is rooted in
an XML schema and is constrained by the tags
defined in the associated schema.

By providing the appropriate set of tags, ASL
enables application comparison and interface gen-
eration. Because every grid application is custom
built to meet a certain need, the implementation
details may be difficult to describe. Many of the
options available during application specification
often require significant human intervention as
well as use of human language descriptions that
cannot be modeled and captured by a general-
purpose computer language (e.g., Java or C++).
Providing a standardized set of tags to capture
information about an application in a concise and
precise manner is difficult. The requirements
imposed when selecting a given set of tags must
focus on capturing the core set of characteristics
describing any application and then provide an
extended set of tags that allow unique application
components to be specified. Our first attempt at
defining this set of tags considered existing lan-
guages such as JSDL and RSL, which capture job

ASL
Application developer

RDL
Resource owner

JSDL/RSL
End-user

Figure 3. ASL-RDL-JSDL/RSL triangle showing
direct communication paths between correspond-
ing user categories

 ���

 Domain-Specific Language for Describing Grid Applications

submission requirements that map onto resource
and application requirements. Examples of such
tags include numerical values (e.g., CPU speed
and amount of main memory required), as well as
a predefined set of values (e.g., operating system
and CPU architecture type).

Additional tags were created by a systematic
analysis of characteristics that describe an applica-
tion but were not required for application invoca-
tion (e.g., max number of CPUs an application
scales to). Many of these tags are simple in nature,
allowing the definition of a range of valid values
that can be used to validate data entered by the
end-user. The more difficult set of requirements
deals with values that are dependent on each other,
but can be viewed individually as containers of
simple values. Thus, these tags were organized
in groups where subelements define individual
pieces of the larger component. An example is the
operating system requirement. An application may
be suitable for many operating systems as well
as different versions of an individual operating
system. Thus, creating higher level elements that
contain equivalent subelements allows different
version dependencies to be specified (please see
Figure 4).

One concern with adopting ASL, especially
when viewed from the perspective of a developer
creating the ASL document, is the requirement

of the document syntax to be specified correctly
(i.e., equivalent tags may have a different meaning
when placed in different element groups). The most
difficult part of describing an application concisely
occurs with tags that cannot be constrained to a
set of predefined values (e.g., tags that represent
a human readable text string, such as copyright
policy). The obvious impediment with such tags
is the lack of precision needed for formal inter-
pretation. However, the additional information
provided within these tags can benefit end-user
understandability of the application. The use of
the tags for all types of descriptors (e.g., simple,
complex groups and natural language) helps to
partition the entire document and provide guided
help for natural language descriptors. A further
benefit of such tags is the possibility of develop-
ing additional translators to generate application
Web documentation automatically.

The completed ASL document consists of
several parts (discussed in subsequent sections of
this chapter) each focusing on a particular portion
of an application deployment lifecycle. With the
blend of the formal tags (i.e., computer readable)
and informal tags (i.e., end-user understandable),
the ASL assists in application description from
different perspectives and provides user support
in multiple formats. Examples of interpretation
include an application description Web page with
installation and invocation instructions, script
generation for automated application installation,
as well as optimal system requirements for job
submission.

Structure of the Language

An ASL document consists of four distinct yet
related sections that are described in XML. By
dividing the document into these distinct sections,
an ASL document is more modular and allows for
easier initial generation and later modification.
With the use of appropriate tools, each section
of the document can have its own permissions,
which allows the document to be modified in-

Operating Systems

Operating System

Type
Version
Release
…

Operating System

…

Figure 4. Grouped set of elements and subelements
with appropriate tags

���

 Domain-Specific Language for Describing Grid Applications

dependently and securely. As the application
receives a wider user base, additional informa-
tion may become available from its users. As a
result of multiple executions of an application,
additional information can be gathered, such as
profiles of application performance, unexpected
behavior, or suggestions for future enhancements.
Beyond the collection of application information,
the segregation of the document into appropriate
sections allows for shorter search times among
users allowing them to focus on sections of the
document of most interest. To provide segrega-
tion of information collection and retrieval, an
ASL document consists of application name and
description, installation requirements, job invoca-
tion requirements, and hints.

The sections are not directly connected to each
other, but the data is stored only once per ASL
document. Because of this, inadvertent refer-
ences to information provided in other parts of
the document may exist. These sections are cor-
respondingly mapped to XML with appropriate
tags. Each of the sections is described below and
the schema is provided for the given section.

Application Name and Description

The application name and description section
contains the most basic information about an ap-
plication and acts as the application identification
component. It specifies the name and version of
the application as can be found in an application
repository. This section also contains subelements
such as the application description describing
the application in a human readable format. The
description identifies the problem the application
solves and maps the application to an application
category. The application category element is
limited to a predefined set of values as described
below. It is intended to offer better understanding
of the application deployment process on the grid
and it is essential in classifying different types of
applications deployed in a grid environment. The
majority of the applications typically deployed

in a grid environment can be classified into the
following categories:

1. Sequential applications: Traditional appli-
cations developed to execute on a single node
machine. For the applications that require
larger resources (e.g., more memory, disk,
or faster CPUs), the grid will also provide
redundancy, fail-safe capability, and excess
capacity.

2. Parametric sweeps: Multiple copies of se-
quential jobs using different input datasets
or parameters. These applications are often
submitted independently by a single user in
an effort to reduce overall task execution
time. Benefits of using the grid are the same
as sequential applications with the addition
of multiple instance coordination performed
by grid tools and middleware.

3. Master-Worker applications: Master-
worker or bag-of-tasks model (Kumar et al.,
1994), where a master process distributes
work (either statically or dynamically) to a
set of worker processes and aggregates the
results at the end. Many financial and bioin-
formatics applications fall into this category,
each in constant need of surplus compute
resources. The main differences between
parametric sweeps and master-worker ap-
plications is that the individual tasks do not
have to be executing the same code, but a
workflow system can be in place with the
master-worker model possibly delivering
a more complex application functionality.
The coordination between the worker nodes
and task assignment must be handled by the
master process.

4. All-Worker applications: Similar to the
master-worker model, except that each pro-
cess involved, including the master, share the
workload equally and data is exchanged be-
tween individual processes in some pattern
(point-to-point or group communication).

 ���

 Domain-Specific Language for Describing Grid Applications

5. Loosely coupled parallel applications:
Parallel applications (e.g., coupled fluid
flow and wave models) that exchange data
occasionally through files during execution
(e.g., beginning and ending of an outer itera-
tion).

6. Tightly coupled parallel applications:
A single Message Passing Interface (MPI)
(Forum, 1998) application distributed across
multiple systems sharing data during the
execution, possibly at frequent intervals,
through passed messages. It requires interop-
erability between different MPI libraries or
an MPI library such as MPICH-G2 (Karonis,
Toonen, & Foster, 2003).

7. Workflow applications: A model connect-
ing many individual applications executing
at different geographically distributed loca-
tions, which are chained together to perform
a complex simulation. For an application
to be classified as a workflow application,
additional information is needed to identify
dependencies with other applications in
terms of input and output data streams.

When selecting the application category for an
ASL specification, the following considerations
should be examined by a user composing the
document. Applications that belong to catego-
ries (1) and (2) can be distributed and scheduled
across any available computational resource on
the grid because there is no synchronization or
coordination required between individual tasks.
However, applications in categories (3) and (4)
must be scheduled on a single computational re-
source and cannot be distributed across multiple
resources. This does not imply that the application
may not use additional, distributed resources. If
an application has been developed specifically for
the grid, it can utilize middleware components
to enable cross-resource task execution. In that
case, task scheduling is the responsibility of the
application itself because it would be deployed on
a dedicated resource. Applications in categories (5)

and (6) expect that the individual applications are
distributed and assume that the individual tasks
are scheduled to execute at the same time (through
advanced reservation or mutual agreement with
the resource providers). Workflow applications
(category 7) assume that the scheduler can trig-
ger the execution of one or more applications as
described by the workflow. Because most of the
existing schedulers (Berman et al., 2001; Casa-
nova, Obertelli, Bernan, & Wolski, 2000; Huedo
et al., 2004; Venugopal, Buyya, & Winton, 2005)
do not handle advance reservation, the use of
workflow applications is limited and intended
mostly for future generations of applications and
grid schedulers.

The remaining elements in this section are
illustrated in Figure 5. Category element set
has a predefined set of values from which a user
must choose. The remaining elements found
in this schema section do not have their values
predefined, but can be defined by the person cre-
ating the document enabling desired application
description.

Figure 5. Application description section schema

���

 Domain-Specific Language for Describing Grid Applications

Installation Requirements

The installation requirements section of an ASL
document contains a set of required elements
that describe the pre-installation requirements
as well as the installation procedure. Some of
the examples of this type of element set include
minimum processor speed, processor architec-
ture, minimum amount of memory needed for
installation of the application, libraries, applica-
tions required for the installation procedure (e.g.,
compilers, (un)packaging tools), licenses needed
for application installation, network requirements,
and required amount of disk space for the instal-
lation. The tags used are simple declarations
that specify the value of a predefined type (e.g.,
string, integer). Even though this model may
result in unnecessary inconsistencies between
application descriptions, we believe at this stage
of ASL development and definition this variability
is necessary to allow for the correct words to be
selected from a constrained set of choices. The

full schema of the installation requirements sec-
tion is given in Figure 6.

Among the elements defined in the installation
category are SoftwareDependencies and Applica-
tions Required tags. The information these tags
contain is intended strictly to be used during the
installation procedure. The SoftwareDependen-
cies tag refers to any other software that will be
needed for the application execution. This can be
viewed as a prerequisite for the installation; that
is, in case software packages declared within this
tag are not installed, the application cannot be
expected to execute. Examples of such software
dependencies would include Perl (Wall, Chris-
tiansen, & Orwant, 2000) with certain libraries
and Postgres database (Momjian, 2000). With
respect to installation, the ApplicationsRequired
tag refers to other complete applications required
to perform the installation. These applications
may be invoked during the installation procedure,
such as unpackaging and installation tools (e.g.,
Ant, make).

Figure 6. Application installation section schema

 ���

 Domain-Specific Language for Describing Grid Applications

Job Invocation Requirements

The job invocation requirements section focuses
on providing a user with the information needed to
execute the application. Starting with the execut-
able name, it also provides the available switches
and minimum hardware requirements, as well
as allows the developer to specify the number
of input and output files with examples of their
respective formats. This section does not represent
a duplication of effort found in JSDL/RSL, but
it is alternatively used to specify requirements
for the entire application. Such specification is
needed not only when executing a single job, but
to describe the available options and how to use
them. Rather than specifying exact input files
and other job-specific parameters, the category
defines application requirements, such as: the
required input files, required format of those
files, any output files and corresponding format
of the output files, libraries required to invoke
the application, and licenses needed to run the
application. This capability can be viewed as a
more detailed version of man pages in UNIX.
This category allows the developer to be shielded
through a contract-like document; that is, if any
of the requirements are not met, the application
cannot be expected to execute correctly.

The majority of the application description is
provided in this section of the ASL document,
so it is natural for a set of tools to be based on
this category. An example tool is a translator that
formats the appropriate information into a Web
page allowing the information to be read through
a browser, or a correct and application-specific job
submission interface. Another example tool serves
as a data verification tool that ensures input files
are in the correct format. The complete schema
is shown in Figure 8 on the next page. Similar to
the installation section, the application invocation
section has elements SoftwareDependencies and
RequiresApplications. In this context, software
dependencies refer to any software packages that
are necessary and will be used as part of the ap-

Figure 7. Hints section schema

Figure 8. Application invocation section schema

���

 Domain-Specific Language for Describing Grid Applications

plication during its execution. An example would
include a call to a Perl module. The description
of the application requirements tag is similar to
the description from the application installation
section of ASL, where it specifies any other
applications that may be invoked during this
application’s execution. This tag can be used to
specify the requirements for a workflow, even
though any further enforcement and coordination
during execution must be done within the given
application.

Hints

Due to the inherent variability of applications,
information describing an application may not
be adequately captured in the preceding sections
of ASL due to noncompliance and uniqueness of
the application. Also, the succinctness of available
options in ASL tags or already existing data may
prevent additional and possibly more complete
application information to be stored. In order to
accommodate for these possible shortcomings,
there is an additional section found in every ASL
document, which is entitled Hints. This section
contains instructions and comments, mostly
in natural language, which provide additional
information about the application. The purpose
of this information is to allow detailed descrip-
tions for areas of high application complexity,
either for the users of the applications or other
developers who may use this application as a
base layer for development. Another important
goal behind this section and its element set is
that it can be accessed and edited by a wide user
group. Performance information may be stored
in this section to specify the optimal parameters
on a particular hardware architecture.

Depending on application type (e.g., se-
quential, embarrassingly parallel, MPI-based
application), certain input parameters (e.g., size
of input file, input file format, number of proces-
sors) may alter application performance and thus
information found here could be useful for the

resource owner, end-user and even the scheduler
developer. By giving permissions to a wide range
of users, known bugs as well as suggestions for
future advancements can be documented. A large
portion of its use can be found in troubleshoot-
ing an application where expected errors can
be explained. Figure 7 shows the current Hints
section schema.

example aSL documents

This section demonstrates the use of ASL to de-
scribe an initial set of applications that show the
ability of the language to specify and distinguish
applications. In these examples, ASL was manu-
ally generated by providing the values associated
with appropriate tags as defined in the schema.
This generation is quite straightforward, which
provides the user variability in selecting the tags
to be defined depending on the application. The
rest of this section provides snippets of ASL
documents with their respective applications.
Differences between applications are outlined
and the ability of ASL to capture these differ-
ences is discussed.

Application Descriptions

To show the ability of ASL to capture descriptions
of applications belonging to different categories,
three applications are specified, each from a dif-
ferent application category. The first two applica-
tions correspond to the sample scenario described
in the Grid Application Deployment Scenario
section. The first application is a sequential ap-
plication implemented in Perl called QuerySplit
that performs segmentation of the BLAST input
query file (please see Figure 10). The QuerySplit
application takes a text file as a parameter, which
contains query sequences of variable length. It
then proceeds to analyze the file and create sev-
eral smaller files, each containing a number of
queries so that the overall size of all the files is as
close to each other as possible. This application

 ���

 Domain-Specific Language for Describing Grid Applications

is used by the second application called Dynamic
BLAST, a master-worker type application (Afgan
et al., 2006) (please see Figure 11 and Figure 12).
Dynamic BLAST is a custom-built application
intended to maximize the use of small, distributed,
readily available resources found in the grid to
minimize the time needed to perform BLAST
searches (Altschul et al., 1990). It uses established
grid protocols for communication and task coor-
dination while the custom scheduler handles task
allocation and data transfers. The final applica-
tion for this chapter is a parallel implementation
of matrix-matrix multiplication using Cannon’s
algorithm (Cannon, 1969) (please see Figure 13
and Figure 14). Figure 9 illustrates relationships
between application categories, applications, and
corresponding ASL documents.

ASL is a schema and tag driven language
enabling a new type of communication between
heterogeneous grid resources. As indicated earlier
by Figure 3, ASL enables capturing of application
developer specific information and subsequent
communication between other existing languages.
In this context, the information that needs to be
communicated is the information that can be
compared to information already existing in
other, currently available languages. In the grid
environment, the goal of such information is to

mitigate inherent heterogeneity of underlying
resources, and thus the information needs to be
capable of representing individual components
of communicating systems that are the cause of
this heterogeneity.

ASL Document Snippets

This section provides selected snippets with
essential parts of the application descriptions
outlining the capabilities of ASL to capture ap-
plication information and how dependencies can
be drawn between applications, software packages
and required libraries.

Figure 10 is an example of a complete ASL Jo-
bInvocationSection for the QuerySplit application
described in the previous section. This description
starts off by capturing all the basic application
run-time information (lines 2 through 9), such as
the application invocation method, the minimum
amount of memory required for the application
to run, as well as the minimum speed of a host
CPU. The most significant part of the provided
example is to show how to describe an input file
for an application. Lines 10 through 39 point out
that the given application requires one input file to
be provided in plain text (i.e., ASCII) and should
be formatted according to the comments avail-
able in lines 17 through 33. In particular, lines 18
and 19 indicate that the properties input file must
contain two plain text fields with user name and
job name, respectively, followed by a pointer to
another input file. The format of the contained
input file is described as being in FASTA format
(FASTA, 2006) whose sample is also provided
in the format tag. The tags used for capturing
necessary information (e.g., text) map favorably
to individual components of a job submission
interface (e.g., HTML). By analyzing the available
tags and provided information, enough details
are available to fully automate creation of a job
submission interface by a higher level tool with
items such as text boxes, radio buttons and drop-
down menus with entries predefined in the ASL

Q ueryS p lit
A S L

D ynam ic
B LA S T

A S L

C annon ’s
M atrix M u lt

A S L

Q ueryS p lit
A pp lica tion

D ynam ic
B LA S T

A pp lica tion

C annon ’s
M atrix M u lt
A pp lica tion

F igure 10 F igures 11 & 12 F igures 13 & 14

S equentia l
A pp lica tion

M aster-
W orker

A pp lica tion

T igh tly
P ara lle l

A pp lica tion

Figure 9. Relationship between application cate-
gories, applications and shown ASL documents

���

 Domain-Specific Language for Describing Grid Applications

Figure 10. ASL document snippet showing Job Invocation Section for the QuerySplit application
1. <asl:JobInvocationRequirements>
2. <asl:ExecutableName>QuerySplit</asl:ExecutableName>
3. <asl:ExecutionInstructions>Usage: perl QuerySplit propertieFile

</asl:ExecutionInstructions>
4. <asl:PhysicalMemory>
5. <asl:LowerBoundedRange>5.0</asl:LowerBoundedRange>
6. </asl:PhysicalMemory>
7. <asl:IndividualCPUSpeed>
8. <asl:LowerBoundedRange>200.0</asl:LowerBoundedRange>
9. </asl:IndividualCPUSpeed>
10. <asl:InputFiles>
11. <asl:NumberOfInputFiles>1</asl:NumberOfInputFiles>
12. <asl:InputFile>
13. <asl:Name>PropertiesFile</asl:Name>
14. <asl:Required>true</asl:Required>
15. <asl:Description>Job properties file whose format is described below.

 </asl:Description>
16. <asl:FileType>ASCII</asl:FileType>
17. <asl:Format>
18. <asl:Text required="1">userName</asl:Text>
19. <asl:Text required="1">jobName</asl:Text>
20. <asl:InputFile>
21. <asl:Name>queryInputFileName</asl:Name>
22. <asl:Required>true</asl:Required>
23. <asl:Description>This input file is submitted as part of the properties
24. input file. A query input file in FASTA format containing at least one
25. query.</asl:Description>
26. <asl:FileType>FASTA</asl:FileType>
27. <asl:Format>
28. >gi|5524211|gb|AAD44166.1| cytochrome b (Elephas maximus maximus)
29. LCLYTHIGRNIYYGSYLYSETWNTGIMLLLITMATAFMGYVLPWGQ
30. MSFWGATVITNLFSAIPYIGTNLVEWIWGGFSVDKATLNRFFAFHFIL
31. PFTMVALAGVHLTFLHETGSNNPLGLTSDSDKIPFHPYYTIKDFLGLL
32. </asl:Format>
33. </asl:InputFile>
34. <asl:Text required="0">totalNumFragments</asl:Text>
35. </asl:Format>
36. <asl:SizeLimit><asl:UpperBound>0.1</asl:UpperBound></asl:SizeLimit>
37. </asl:InputFile>
38. </asl:InputFiles>
39. </asl:JobInvocationRequirements>

Figure 11. Job Invocation Section of ASL for Dynamic BLAST application showing input file options

1. …
2. <asl:InputFiles>
3. <asl:NumberOfInputFiles>1</asl:NumberOfInputFiles>
4. <asl:InputFile>
5. <asl:Name>PropertiesFile</asl:Name>
6. …
7. <asl:List>
8. <asl:Radio>
9. <asl:lText>blastp</asl:lText>
10. <asl:lText>blastn</asl:lText>
11. <asl:lText>blastx</asl:lText>
12. <asl:lText>tblastn</asl:lText>
13. <asl:lText>tblastx</asl:lText>
14. <asl:lText>psiblastpn</asl:lText>
15. </asl:Radio>
16. </asl:List>
17. …
18. </asl:InputFile>
19. ...
20. </asl:InputFiles>

 ���

 Domain-Specific Language for Describing Grid Applications

Figure 12. Job Invocation Section of ASL for Dynamic BLAST application showing application, library,
and software dependencies

Figure 13. Job Invocation Section of ASL for parallel matrix-matrix multiplication application showing
and describing application invocation options and arguments

Figure 14. Job Invocation Section of ASL for parallel matrix-matrix multiplication application showing
ability of ASL to capture memory and network requirements

1. <asl:ApplicationsRequired>
2. <asl:ApplicationRequired>
3. <asl:Name>GridWay</asl:Name>
4. <asl:Version>5.0+</asl:Version>
5. </asl:ApplicationRequired>
6. <asl:ApplicationRequired>
7. <asl:Name>QuerySplit</asl:Name>
8. <asl:Version>1.0</asl:Version>
9. </asl:ApplicationRequired>
10. </asl:ApplicationsRequired>
11. <asl:RequiredLibraries>
12. <asl:RequiredLibrary>
13. <asl:Name>org.ggf.drmaa.*</asl:Name>
14. </asl:RequiredLibrary>
15. </asl:RequiredLibraries>
16. <asl:SoftwareDependencies>
17. <asl:SoftwareDependency>
18. <asl:Name>GlobusToolkit</asl:Name>
19. <asl:Version>4.0.2+</asl:Version>
20. </asl:SoftwareDependency>
21. <asl:SoftwareDependency>
22. <asl:Name>java</asl:Name>
23. <asl:Version>1.5+</asl:Version>
24. </asl:SoftwareDependency>
25. </asl:SoftwareDependencies>

1. <asl:ExecutableName>pmatmul</asl:ExecutableName>
2. <asl:ExecutionInstructions>Usage: mpirun -np <numCPUs> pmatmul <N> <P>

<Q> <flag> </numCPUs>
3. </asl:ExecutionInstructions>
4. <asl:Options>
5. <asl:Option>
6. <asl:Arguments>
7. <asl:Argument>N</asl:Argument>
8. <asl:Description>Matrix size. Works for square matrices

 only.</asl:Description>
9. </asl:Arguments>
10. <asl:Required>true</asl:Required>
11. </asl:Option>
12. <asl:Option>
13. …
14. </asl:Option>

1. <asl:PhysicalMemory>
2. <asl:Formula>5*N^2/sqrt(P)</asl:Formula>
3. </asl:PhysicalMemory>
4. <asl:Network>
5. <asl:Type>single</asl:Type>
6. </asl:Network>
7. <asl:CPUCount>
8. <asl:LowerBoundedRange>2.0</asl:LowerBoundedRange>
9. </asl:CPUCount>

��0

 Domain-Specific Language for Describing Grid Applications

document. Through this approach, an application-
specific job submission interface can be generated
directly from the application description, thus
properly directed by an application developer
rather than an application deployer.

Figure 11 provides an example of how an ap-
plication developer can provide all the available
values for a selected application invocation op-
tion, even within an input file. The XML snippet
describes an application’s single input file argu-
ment options. These are listed in lines 8 through
15, which limit the user’s choice to any single
value when invoking the application. This is an
additional example of how ASL information can
be applied in dual context for automated interface
generation denoting that this information belongs
to a single list and can be organized into a radio
button group.

Figure 12 is a continuation of the ASL docu-
ment for a Dynamic BLAST application. This
snippet highlights the application, library, and
software dependencies that Dynamic BLAST
depends on or requires. As can be seen from the
XML, a Dynamic BLAST application depends
on being able to correctly invoke two other ap-
plications, namely GridWay (Huedo et al., 2004)
and QuerySplit, whose description was provided
in Figure 10. This idea, although simple to com-
prehend, has a significant potential in terms of
application dependency visualization and instal-
lation tools. Through the use of this formalized
method of declaring direct dependencies, much
automation can be achieved. The remainder of the
application description, shown in lines 11 through
15, indicates that Dynamic BLAST requires a
specified library. Finally, lines 16 through 25
denote other software packages required to run
Dynamic BLAST.

Figure 13 also shows the job invocation section
of a parallel matrix-matrix multiplication. Line 3
specifies the format of the invocation command
with several options. Lines 5 through 11 point out
the necessary details about the first argument (e.g.,
description, whether it is required or optional).

The remainder of the argument descriptions is
omitted for brevity, but the information provided
shows the ability of ASL to structurally and for-
mally capture such information while allowing
the user enough freedom to describe each of the
arguments at the desired level of detail.

Finally, Figure 14 points out two more inter-
esting points supported by ASL. Lines 4 through
6 deal with network requirements. Because this
application is an example of a tightly coupled
parallel application, the communication patterns
are frequent throughout the algorithm iterations
and thus the message passing requires the exis-
tence of a fast-speed, local network. Although this
requirement can be built into an ASL definition
and made a default requirement for all applica-
tions of this type, advances in message-passing
technologies are enabling the communication to
take place across administrative domains (e.g.,
MPICH-G2 (Karonis et al., 2003)), which would
make this a possible hindrance to future ap-
plications. To avoid this limitation, the network
type tag accepts “single” as its value denoting
this application can be executed only on a local
network, limited to a single resource. There are
other possibilities here, but these options would
all require relationships to be made between parts
of an ASL document. The final interesting feature
found in this part of the sample ASL document
is the use of formulas as part of the application
description (line 2). This information can be used
by a scheduler when the input data is already
known to perform not only application-specific
but also data-specific scheduling.

Application of ASL Documents

The previous section provided an overview of
ASL, its schema, and its sample use for various
application categories. The examples demon-
strated the capability of ASL to capture needed
information as well as provide concrete samples
for its creation. The use, possibilities, extensions,
and limitation of the language will be explored

 ���

 Domain-Specific Language for Describing Grid Applications

over time as its use becomes more widespread
and tools emerge. Some examples of possible
functionality and tools that can make use of ASL,
either by complementing existing technologies
or enabling new ones, are outlined in the Future
Trends section of this chapter. In addition, this
section introduces several projects with different
goals and how adoption of ASL would improve
them.

GridBench (Tsouloupas & Dikaiakos) is a
project that focuses on providing a core set of
benchmarks that characterize grid resources.
Use of such benchmarks allows prediction of
performance and scalability of compositions of
applications on desired systems. The proposed
framework supports collecting, archiving, and
publishing collected data. The goal of GridBench
is to provide a collection of kernels representative
of applications and application categories that can
be used to benchmark and characterize compo-
nents that affect performance of applications and
resources, allowing comparisons to be made. Use
of ASL in this context to describe applications and
subsequently include performance information
into an ASL document enables automated shar-
ing of performance associated with individual
application and resources. Additional projects
similar to GridBench that could use ASL are
STAPL (Thomas et al., 2005), Prophesy (Taylor
et al., 2000), and application performance predic-
tors such as Downey (1997), Gibbons (1997) and
Smith, Foster and Taylor (1998).

GridWay (Montero, Huedo, & Llorente, 2006)
aims at supporting the “submit and forget” ideol-
ogy where the user is abstracted from the grid
middleware details by supporting easier and
more efficient job execution on the grid. GridWay
works on top of the Globus Toolkit and provides
a job manager-like interface for its user where a
job can be submitted, status checked, and results
retrieved. Use of ASL in this context is broad and
could include enablement of application-specific
information to be presented to the user when
selecting among several applications to execute,

matching of performance of selected application
to available resources, as well as fully automating
application invocation parameters and options.
Additional examples of grid resource brokers
that could benefit from ASL in similar ways as
GridWay include Nimrod/G and its parametric
job description language (Steen, 2004), Condor-
G (Frey, Tannenbaum, Foster, Livny, & Tuecke,
2001) and incorporation of ASL into ClassAds.

The dynamic nature of workflow systems
demands the need for Grid services to be auto-
matically generated according to the execution
environment and resources available for execu-
tion. GridDeploy (Guan, Velusamy, & Bangalore,
2005) is a toolkit for automatically deploying
applications as Grid services, and providing the
necessary infrastructure for other applications to
invoke them. Integration of ASL into GridDeploy
would enable more streamlined generation of
needed services because ASL provides needed
descriptions of applications and corresponding
performance on various resources. Use of stan-
dardized protocols to combine information avail-
able in ASL along with information from JSDL
and MDS can enable user and job-oriented service
composition by tools such as GridDeploy.

modeLIng wIzardS to
generate aSL

There are several accidental complexities that
emerge when using XML as a specification lan-
guage. For example, an XML file is embodied
as linear text, which makes it difficult to capture
hierarchical structures that are shared across a
document. To represent hierarchy, it is often the
case that an XML document contains multiple
links to other parts of the document. This reduces
the comprehensibility of the XML document
because it requires the user to search through
the whole file for the desired section link. This
becomes unfeasible as the size of the XML file
grows. Furthermore, the extensive tags that de-

���

 Domain-Specific Language for Describing Grid Applications

lineate the sections of an XML document make
it very verbose, which introduces another degree
for error in terms of the syntactical correctness
of the document. In essence, XML serves as
an excellent machine readable format due to its
formal structure, but has many limitations as a
human-centered language. This section introduces
the approach we adopted that allows an end-user
to specify properties about their grid application
from higher level abstractions using a graphical
modeling language. These models serve as input
to a translator that assists in generating the ASL
specification. An overview of domain-specific
modeling is presented in the next section, fol-
lowed by a description of a modeling language
that generates wizards for extracting information
required in an ASL specification.

Domain-Specific Modeling:
reducing the effects of platform
dependency

Model-driven Engineering (MDE) (Schmidt,
2006) represents a design approach that enables
description of the essential characteristics of an
application in a manner that is decoupled from the
details of a specific technology (e.g., dependence
on specific middleware or programming lan-
guage). Domain-Specific Modeling (DSM) (Gray,
Tolvanen, Kelly, Gokhale, Neema, & Sprinkle,
2007) is an MDE methodology that generates cus-
tomized modeling languages and environments
from metamodels that define a narrow domain of
interest. In this context, a model corresponds to
an abstraction whose concrete syntax is rendered
in a graphical iconic notation that assists domain
experts in constructing a problem description
using concepts familiar to them. A model com-
piler can be associated with a specific modeling
language to generate different artifacts (e.g.,
source code or deployment files) from a model.
DSM has been shown to offer specific techni-
cal advantages in supporting rapid evolution of
computer-based systems when the hardware and

software configuration is tightly coupled and must
frequently evolve to a new configuration schema
(e.g., retooling an automotive factory (Long et al.,
1998), or reconfiguring an avionics product-line
(Gray, Lin, & Zhang, 2006)).

A benefit of DSM is the ability to describe
properties of a system at a high-level of abstraction
and in a platform-independent notation, which
protects key intellectual assets from technology
obsolescence. Initial research in DSM offers a
contribution to end-user programming by sup-
porting experts who may not have software
development skills (e.g., physicists and avionics
engineers) with a visual notation for expressing
domain concepts in a specific problem space;
thus, hiding the accidental complexities of using a
general-purpose programming language. In DSM,
models and model transformations are first-class
entities in the development process and represent
the initial point for generation of low-level details
in the solution space.

The goal of providing new language abstrac-
tions appropriate to the specific programming task
and user has been a common objective of language
researchers for several decades (Floyd, 1979) and
shares a common vision with another new ap-
proach called intentional programming (Simonyi,
Christerson, & Clifford, 2006). Furthermore, the
DSM philosophy of narrowly defined modeling
languages can be contrasted with larger standard-
ized modeling languages, such as the UML, which
are fixed and whose size and complexity (France,
Ghosh, & Dinh-Trong, 2006) provide abstractions
that may not be needed in every domain, adding
to the confusion of domain experts. The concept
of “little languages” (Bentley, 1986), or simi-
larly named Domain-specific Languages (DSLs)
(Deursen, Klint, & Visser, 2000; Wile, 2004),
share the same intent of DSM, but with different
concrete syntax (i.e., DSLs are typically textual
languages rather than graphical).

The Generic Modeling Environment (GME)
(Balasubramanian, Gokhale, Karsai, Sztipano-
vits, & Neema, 2006) is the metamodeling tool

 ���

 Domain-Specific Language for Describing Grid Applications

that we used in our approach to DSM. The next
sections present our use of the GME to provide
a modeling language that generates wizards for
constructing an ASL specification.

aSL wizard metamodel

The use of a higher level graphical modeling
language to create ASL specifications consists
of constructing the necessary modeling elements
describing an application and filling in the param-
eters that describe the corresponding application
feature. This method would help to remove many
of the errors in formatting an ASL document to
ensure that the document was created correctly
(i.e., the application developer would be alleviated
of a lot of typing and checking the correctness
of XML tags). However, ASL is a language that
has a one-to-one mapping between a value and
tag pair (i.e., XML tag and the associated value).
Because of this, the benefits of adopting a modeling
language specifically for ASL are minimized. We
realized that a much more significant improvement
could be offered by guiding a user in creating an
ASL document through wizards. The subsequent
challenge became the specific technique to gener-
ate the implementation of the wizard.

Depending on the application type, entire ele-
ment sets available in ASL may not make sense
for a particular application. Non-savvy users may
find themselves overwhelmed with the number of

available options when creating such a document,
resulting in slower acceptance or rejection of the
ASL. There is a need to ease this transition and
provide tools enabling quick and guided creation
of such documents. Unfortunately, due to the need
to have many possible variations of individual
wizards to handle different application categories
and variations within these categories, a single
wizard would fail to accommodate all the needs.
Generating many wizards is prohibitive due to the
possibly large number of wizard variations, as well
as their temporary lifespan. To accommodate for
these variable needs, we have realized a method
to generate custom wizards using high-level, do-
main-specific models. The approach considers the
desired components found in ASL and connects
them into a meaningful event-driven workflow.
The result is a customized wizard that assists in
creating a complete ASL document. Figure 15
shows the generation pipeline: a metamodel de-
fines the wizard modeling language, from which
specific instance configurations are created; from
the instance models, the specific wizard is created
(either in HTML, or some other technology); the
generated wizards then create the corresponding
ASL based on the user response to the wizard
interaction.

There are two levels of indirection that are il-
lustrated in Figure 15. The first level is specified in
the instance models, which describe the essential
elements of each wizard page and the control flow

Figure 15. Three-level modeling stack used to generate ASL

ASL

ASL

ASL

AASSLL ddooccuummeennttss

ASL

WWiizzaarrddssIInnssttaannccee mmooddeellssMMeettaammooddeell

���

 Domain-Specific Language for Describing Grid Applications

(CF) between each page based on user interac-
tion. The instance models must handle creation
of objects composing the wizard being generated
and must also process all of the possible choices
available to adjust the control flow of the wizard.
The second level of indirection is built into the gen-
erated wizard pages. The wizards are responsible
for the actual generation of the ASL document.
The control flow captured by the wizards must
format the output of an ASL document and store
the necessary data in the ASL document. The
wizards must also pass any needed information
among the wizard pages. To summarize, there
are two levels of generation: the generation of
wizard pages from the instance models, and the
generation of ASL from the wizards; in essence,
the process represents a generator of a generator,
a unique concept within the area of DSM.

Figure 16 is a diagram showing the possible
branching of the wizard pages depending on the
user input. The first key observation is the pos-
sibility of any single page to be used at multiple
levels of the wizard by several parent pages. The

second observation is the number of required loca-
tions where automatic handling of the control flow
and ASL document generation must take place.
The model must allow the user accessibility and
connectivity to individual pages between differ-
ent stages of the wizard. This is handled through
multiple levels of wizard generation within the
model where the same level pages are all viewed
on the same aspect within GME. Connections are
allowed to be made between compatible objects at
appropriate levels through the use of constraints.
Connections between individual pages are then
made accordingly by the user. The difficulty
raised by this approach is the size of the instance
model as well as the multiplicity of possible
connections resulting in an instance model that
is difficult to comprehend. The major obstacle
in change adoption and correct execution of the
composed wizard comes from the fact that the
generator needs to be capable of handling multiple
instances of control flow. Each connection that is
made at the instance model level must be handled
automatically by the generator to provide correct

Figure 16. Wizard flow showing multiplicity of generated wizard pages and control flow (CF) at each
junction as the ASL document is being generated

CCFF

CCFF

CCFF

CCFF
CCFF

CCFF

CCFF

ASL ASL ASL ASL

 ���

 Domain-Specific Language for Describing Grid Applications

execution flow. Beyond making static connections
between wizard pages, additional code must be
generated that is model-specific and corresponds
to the choices the user is presented at each stage
of the wizard.

generating a wizard

To highlight the challenges involved in construct-
ing the ASL-driven wizards, this section provides
a short scenario to illustrate the multiple levels of
control the models must represent. From the per-
spective of the model user, the elements provided
by the modeling language (i.e., the constructs
defined in the metamodel) correspond to por-
tions of an ASL document. These are classified
as individual components ranging from high-level
components (e.g., an entire job invocation section)
down to low-level components (e.g., tags such
as the application executable name). The iconic
representation of these modeling elements, as
viewed from a user perspective, are shown in
Figure 17.

The end-user is considered to be the domain
expert who helps create a model representing the
wizard control flow. This is the first difficult task
to be handled by the metamodel and subsequently

the code generator within the model compiler.
The challenge arises from the need for the con-
nections to be made between wizard pages when
the initial wizard code is generated, as well as
the additional code that needs to be incorporated
to handle user choices. This implies that group
components that exist in the metamodel (that
correspond to equivalent structures in the ASL),
such as a drop down menu with many options,
must be decomposed into individual pieces and
conditional connections made to subsequent pages
of the wizard from each of these options. This
presents an inherent burden on the model user
due to the large number of possible combinations
as well as coordination of model layering where
complying pages can be reused. The solution is
found in the composition of ASL wizard pages.
Instead of coupling all of the ASL sections onto a
single page, the wizard and corresponding pages
can be split into a form. As such, the scope of
the ASL is reduced, thus limiting the number of
elements, connections and choices the user must
consider in the model. The downside to this so-
lution is that equivalent pages within the wizard
may belong to a different scope and cannot be
reused. Because the division is starting from
the most general concepts and progressing into

Figure 17. Available model components describing ASL wizard pages

���

 Domain-Specific Language for Describing Grid Applications

more detailed elements of an ASL document, this
behavior should be minimized.

Figure 18 shows the skeleton of a typical
ASL document with the indication of the neces-
sary connections at this level for the generating
wizard. The top-down scoping of the wizard can
also be seen in this figure. Because the goal of the
project is to simplify ASL generation, individual
sections of the model (and thus wizard) directly
map to the resulting ASL document. After a given
layer of the wizard is fully generated (as shown
in Figure 18), the user can provide further details
on each individual section. This is accomplished
by double-clicking the desired section (i.e., GME
model) and opening a new set of model options.
This step can be seen in Figure 19 where further
details of the ApplicationDescription section are
provided. The components used at this level map
directly to the interface of the generated wizard
(except the Category section, which is a model
requiring individual elements to be provided by
accessing the lower layer). This is primarily an
example of a two-layer composition where wizard
interface components were provided immediately,
although additional layers could also be created
requiring more pages and connections to be made,
as they map to the appropriate page.

The model compiler that performs the trans-
formation from the model to the generated wiz-
ards is presented with a challenge to deliver the
requested code among the possible variations.
This considerably complicates the code generator
within the model compiler. The most difficult part
of developing the metamodel and model compiler
is the control flow component of the wizard where
the connecting pages of the wizard must execute
additional connection point code to handle storage
and passing of the necessary information between
wizard pages. The method of message passing is
not defined by the user but rather implied by the
generated model. This logic must be customized to
the particular wizard and be completely transpar-
ent to the end-user. Beyond making the necessary
connections at the page level, the generator must
be capable of composing necessary code, includ-
ing page scoping.

To illustrate this idea, a sample workflow
can be followed: Upon generation of the wizard,
a user instantiates it and provides some data to
the wizard. The wizard advances to a subsequent
page where the user is asked for more data, this
page may branch off into several possible pages,

Figure 18. Model view of an ASL document
skeleton

Figure 19. The details of the Application Descrip-
tion element set

 ���

 Domain-Specific Language for Describing Grid Applications

and so forth. Selection of the subsequent page is
determined from a user’s input at run-time. As
each page may branch into multiple subsequent
pages, and even though the paths to individual
pages may differ, some of the pages may be
equivalent in context. At each step of the wizard,
control flow code logic must be provided by the
wizard generator to accommodate for this vari-
ability and workflow coordination. In addition, the
code for data storage that incrementally constructs
the resulting ASL document must be generated
by the wizard.

We have written a model compiler that gener-
ates HTML to represent the wizard pages. This
model compiler creates and formats the necessary
HTML forms for each wizard page. The compiler
also generates the control flow and how the data
is passed between each wizard page (i.e., using
CGI POST, GET). As the ASL document is being
created from multiple levels within the wizard, an
additional concern is the correctness of the cre-
ated document with respect to the generation of
proper tags for each ASL element. As discussed
in the previous section, ASL contains tags that

are lexicographically equivalent. If the tags are
placed outside of the correct context, an applica-
tion interpreting the ASL specification would not
be able to disambiguate the ASL. All of these
difficulties must be handled in a generic manner
within the generated code to accommodate the
numerous permutations that may arise. A sample
HTML-based wizard can be seen in Figure 20.
The generated HTML page is part of the wizard
and has been automatically created by the model
compiler. The HTML is generated by the Appli-
cationDescription section of the model presented
in Figure 18 and Figure 19. Each of the individual
components has properties associated with them;
thus, the ordering and layering of the wizard is
based on the ordering property provided by the
user when creating an instance model. Each of
the components can also have help information,
which appears as a text balloon in the generated
wizard.

We have found that describing an applica-
tion from a higher level of abstraction reduces
the learning curve for a new technology such
as ASL, but it has drawbacks in that it requires
a new tool to be added in the repertoire of an
application developer. The only related tool that
accomplishes a similar idea of composing wiz-
ards from a higher level specification targets the
.Net platform and generates MS Windows forms
wizards (Actipro, 2006). However, integration of
interoperable tools that share a single interface can
advance the productivity of a software developer.
An example is the Grid Automation and Genera-
tive Environment (GAUGE) (Hernandez et al.,
2006), which also reduces accidental complexities
of grid development through adoption of DSM.
Because the development process within GAUGE
takes place within GME, its extension to include
concepts introduced by ASL represents a possible
integration opportunity. By incorporating and
extending an intelligent agent used for the ap-
plication development process, data can also be
extracted automatically to populate sections of the
corresponding ASL document, thus reducing the

Figure 20. Sample page of generated wizard to
collect initial application information

���

 Domain-Specific Language for Describing Grid Applications

work required by the application developer. The
integration with GAUGE represents future work
that can ease the path of ASL adoption.

future trendS

As the general adoption of the grid moves from
the research labs and campus infrastructures into
mainstream industry (with the goal of offering
high-levels of Quality of Service), many compo-
nents (in terms of pervasive availability, secure
use of systems, and seamless access) must still
be provided. Many of the individual components
and additional functionalities are being addressed
by many researchers. The following is a list of
research issues and further advancements that
remain open in the context of this chapter as it
fits into the larger picture of the grid:

• The initial schema and corresponding ASL
documents have been constructed to ensure
the language is capable of representing ap-
plications. The ASL schema should also be
able to define individual components that
comprise an application. The differences
between two applications should also be
discernable from the respective ASL speci-
fications. Many more applications need to
be described with the goal of adjusting the
ASL schema to address new application
categories.

• Publicizing the benefits of the ASL is neces-
sary to promote adoption by the wider grid
community. The current focus considers the
standardization of the ASL within the Open
Grid Forum. This is following a standardiza-
tion path similar to JSDL.

• Additional tools are required to promote
generation of ASL, such as the modeling
approach described in this chapter.

• Tools that make use of ASL are of significant
importance. Many tools can be adapted to

make use of ASL documents but standard-
ization is required before these actions can
take place. Examples of such tools include
the following:
°	 Application information services

(AIS), which represent a suite of ser-
vices where registration, discovery, and
monitoring of an application could take
place at the level of a VO. Through a set
of interfaces, the users would be able
to discover services and applications,
and obtain help documentation.

°	 Automated HTML application help
generator, which would be an applica-
tion to interpret ASL documents and
generate application-related informa-
tion. This can be as simple as a static
Web page being generated as the default
help documentation or a more advanced
on-demand search-and-match custom
page generation based on user queries
of problem identification to include the
latest available information.

°	 GridRPM, would be an application
to take advantage of installation and
dependency information available
through the mesh of ASL documents
(as available in AIS) and automati-
cally construct descriptor files before
proceeding with automatic application
installation and deployment.

°	 Grid scheduler applications could
utilize the ASL information to perform
application-specific scheduling without
the need to keep historical application
execution data.

°	 Accounting and software license
accountability is an area of the grid
currently in its initial stages but will
advance quickly in response to the high
demand of grid services from industry.
This area provides a vast number of
options where relevant information

 ���

 Domain-Specific Language for Describing Grid Applications

can be stored into ASL documents and
later used through automated billing
and license verification.

concLuSIon

This chapter provides an overview of developing
intensive software applications in a grid comput-
ing environment along with the taxonomy of grid
users. For each user category the specific respon-
sibilities, roles, and requirements were described.
A sample application scenario was provided to
illustrate the interaction required among the dif-
ferent user categories and the grid middleware.
The functionality provided by the grid middleware
to accomplish the successful deployment of the
sample scenario was presented and difficulties
with the current solutions were also outlined.
To further illustrate the complexity involved in
deploying grid applications, the grid applications
were categorized into seven major categories. For
each deployment category the various steps in-
volved in the deployment process were discussed.
It was noted that there is no support currently
available for the application developer category to
describe the requirements and capabilities of an
application. In order to accommodate this need,
a new language was presented–the Application
Specification Language (ASL)–that supports the
description of applications in a grid environment.
Examples outlining the capabilities of ASL were
provided using the sample application scenario.
Finally, the chapter described a supporting model-
ing language for generating ASL documents from
a higher level specification, which minimizes the
effort of an application developer and deployer.

ASL enables the application developer to
describe the application requirements and capa-
bilities. Using domain-specific modeling for the
creation of ASL documents reduces some of the
accidental complexities encountered in the grid
application development and deployment pro-
cess. Metamodeling techniques could be further

extended to provide additional tools for applying
information available in ASL to other areas of
grid computing (e.g., automated user interface
generation for job registration, submission, and
monitoring). The work presented here takes a bot-
tom-up approach to solving some of the problems
in information availability and standardization
between grid entities (e.g., applications, users,
and resources) in the heterogeneous environment.
Through the adoption of technology presented
here, individual pieces within a complex grid
system can communicate through a common
language and at the appropriate level of granu-
larity permitting context-controlled information
delivery in a range or formats. Overall adoption
of the domain-specific modeling ideas into the
area of grid computing as an effective tool to
leverage some of the grid-inherent difficulties
may result in shorter application development
and deployment times by reducing complexity
and expertise required.

acknowLedgment

This was supported in part by an NSF CAREER
award (CCF-0643725).

referenceS

Aalst, W. V. D., & Hee, K. V. (2002). Workflow
management: Models, methods, and systems.
Cambridge, MA: The MIT Press.

Actipro. (2006). Actipro wizard - Wizard Gen-
eration.NET framework windows forms control.
Retrieved March 23, 2008, from http://www.
actiprosoftware.com/Products/DotNet/Win-
dowsForms/Wizard/Default.aspx

Afgan, E. (2004). Role of the resource broker in
the grid. In Proceedings of the 42nd Annual ACM
Southeast Conference, (pp. 299-300). Huntsville,
AL: ACM Press.

��0

 Domain-Specific Language for Describing Grid Applications

Afgan, E., & Bangalore, P. (2007). Application
specification language (ASL)–a language for
describing applications in grid computing. In
Proceedings of the 4th International Conference
on Grid Services Engineering and Management
- GSEM 2007, Leipzig, Germany.

Afgan, E., Sathyanarayana, P., & Bangalore, P.
(2006). Dynamic task distribution in the grid for
BLAST. In Proceedings of Granular Computing
2006, (pp. 554-557). Atlanta, GA: IEEE.

Allcock, B., Bester, J., Bresnahan, J., Chervenak,
A. L., Foster, I., Kesselman, C., et al. (2001). Data
management and transfer in high-performance
computational grid environments. Parallel Com-
puting, 28(5), 749-771.

Allen, G., Davis, K., Goodale, T., Hutanu, A.,
Kaiser, H., Kielmann, T., et al. (2005). The grid
application toolkit: Toward generic and easy ap-
plication programming interfaces for the grid.
Proceedings of the IEEE, 93(3), 534-550.

Altschul, S. F., Gish, W., Miller, W., Myers, E.
W., & Lipman, D. J. (1990). Basic local alignment
search tool. Mol Biol, 215(3), 403-410.

Anjomshoaa, A., Brisard, F., Drescher, M., Fel-
lows, D., Ly, A., McGough, S., et al. (2005). Job
submission description language (JSDL) specifi-
cation, version 1.0 (Tech. Rep. No. GFD-R.056).
Global Grid Forum (GGF).

Armstrong, R., Gannon, D., Geist, A., Keahey,
K., Kohn, S., McInnes, L., et al. (1999). Toward
a common component architecture for high-per-
formance scientific computing. In Proceedings
of the High-Performance Distributed Computing
Conference (HPDC), (pp. 115-124). Redondo
Beach, CA: IEEE Computer Society.

Balasubramanian, K., Gokhale, A., Karsai, G.,
Sztipanovits, J., & Neema, S. (2006). Developing
applications using model-driven design environ-
ments. IEEE Computer, 39(2), 33-40.

Baru, C., Moore, R., Rajasekar, A., & Wan, M.
(1998). The SDSC storage resource broker. In
Proceedings of CASCON ‘98, (pp.). Toronto,
Canada: IBM Press.

Bentley, J. (1986). Little languages. Communica-
tions of the ACM, 29(8), 711-721.

Berman, F., Chien, A., Cooper, K., Dongarra, J.,
Foster, I., Gannon, D., et al. (2001). The GrADS
project: Software support for high-level grid
application development. International Journal
of High Performance Computing Applications,
15(4), 327-344.

Berman, F., Fox, G., & Hey, T. (2003a). The grid:
Past, present, future. In F. Berman, G. Fox, & T.
Hey (Eds.), Grid computing--making the global
infrastructure a reality (pp. 9-51). Hoboken, NJ:
John Wiley & Sons.

Berman, F., Hey, A., & Fox, G. (Eds.). (2003b).
Grid computing: Making the global infrastructure
a reality. New York: John Wiley & Sons.

Buyya, R., Abramson, D., & Giddy, J. (2000). Nim-
rod-G: An architecture for a resource management
and scheduling in a global computational grid. In
Proceedings of the 4th International Conference
and Exhibition on High Performance Computing
in Asia-Pacific Region (HPC ASIA 2000), (pp.
283-289). Beijing, China: IEEE CS Press.

Cannon, L. (1969). A cellular computer to imple-
ment the Kalman Filter Algorithm. Bozeman, MT:
Montana State University.

Casanova, H., Obertelli, G., Berman, F., & Wolski,
R. (2000). The AppLeS parameter sweep template:
User-level middleware for the grid. Supercomput-
ing 2000. Dallas, TX: IEEE Computer Society.

Chase, N. (2005). Grid-enable an existing Java
technology application: IBM. Retrieved March
23, 2008, from http://www.ibm.com/developer-
works/edu/gr-dw-gr-javagrid-i.html

 ���

 Domain-Specific Language for Describing Grid Applications

Czajkowski, K., Fitzgerald, S., Foster, I., & Kes-
selman, C. (2001). Grid information services for
distributed resource sharing. In Proceedings of
the 10th IEEE Symposium on High Performance
Distributed Computing (HPDC), (pp. 181-195).
Los Alamitos, CA: IEEE Computer Society.

Czajkowski, K., Foster, I., Kesselman, C., Martin,
S., Smith, W., & Tuecke, S. (1998). A resource
management architecture for metacomputing
systems. In Proceedings of the IPPS/SPDP Work-
shop on Job Scheduling Strategies for Parallel
Processing, (pp. 62-82). Springer-Verlag.

Deursen, A. V., Klint, P., & Visser, J. (2000).
Domain-specific languages: An annotated bibli-
ography. ACM SIGPLAN Notices, 35(6), 26-36.

Downey, A. (1997). Predicting queue times on
space-sharing parallel computers. In Proceed-
ings of the International Parallel Processing
Symposium (IPPS ‘97), (pp. 209-218). Geneva,
Switzerland.

FASTA. (2006, December 4). FASTA format. Re-
trieved March 23, 2008, from http://en.wikipedia.
org/wiki/Fasta

Floyd, R. (1979). The paradigms of programming.
Communications of the ACM, 22(8), 455-460.

Forum, M. P. I. (1998). MPI message-passing
interface standard, version 2.0. Retrieved March
23, 2008, from http://www.mpi-forum.org/docs/
docs.html

Foster, I., & Kesselman, C. (1997). Globus: A
metacomputing infrastructure toolkit. Interna-
tional Journal of Supercomputer Applications,
11(2), 115-128.

Foster, I., & Kesselman, C. (1999). The Globus
toolkit. In I. Foster & C. Kesselman (Eds.), The
grid: Blueprint for a new computing infra-
structure (pp. 259-278). San Francisco: Morgan
Kaufmann.

Foster, I., Kesselman, C., Nick, J., & Tuecke, S.
(2002a). The physiology of the grid: An open grid
services architecture for distributed systems inte-
gration. Global Grid Forum, Open Grid Service
Infrastructure Working Group.

Foster, I., Kesselman, C., Tsudik, G., & Tuecke,
S. (1998). A security architecture for compu-
tational grids. In Proceedings of the 5th ACM
Conference on Computer and Communication
Security Conference, (pp. 83-92). San Francisco:
ACM Press.

Foster, I., Kesselman, C., & Tuecke, S. (2001). The
anatomy of the grid. Lecture Notes in Computer
Science, 2150, 1-28.

Foster, I., Voeckler, J., Wilde, M., & Zhao, Y.
(2002b). Chimera: A virtual data system for
representing, querying, and automating data
derivation. In Proceedings of the 14th Interna-
tional Conference on Scientific and Statistical
Database Management (SSDBM’02), (pp. 37-46).
Edinburgh, Scotland.

France, R., Ghosh, S., & Dinh-Trong, T. (2006).
Model-driven development using UML 2: Prom-
ises and pitfalls. IEEE Computer (Special Issue
on Model-Driven Engineering, 39(2), 41-48.

Frey, J., Tannenbaum, T., Foster, I., Livny, M.,
& Tuecke, S. (2001). Condor-G: A computation
management agent for multi-institutional grids.
In Proceedings of the IEEE Symposium on High
Performance Distributed Computing (HPDC10),
(pp. 9). San Francisco, CA.

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1994). Design patterns: Elements of reusable
object-oriented software. Reading, MA: Ad-
dison-Wesley.

Gannon, D., Fox, G., Pierce, M., Plale, B., Lasze-
wski, G. V., Severance, C., et al. (2003). Grid
portals: A scientist’s access point for grid services.
Global Grid Forum (GGF).

���

 Domain-Specific Language for Describing Grid Applications

Gemmill, J., & Bangalore, P. (2005). UABGrid--a
campus-wide distributed computational infra-
structure. Birmingham, AL: UAB. Retrieved
March 23, 2008, from http://uabgrid.uab.edu/

Gibbons, R. (1997). A historical application pro-
filer for use by parallel schedulers. Lecture Notes
in Computer Science, 1291, 58-77.

Gottschalk, K., Graham, S., Kreger, H., & Snell, J.
(2002). Introduction to Web services architecture.
IBM Systems Journal, 41(2), 170-178.

Gray, J., Lin, Y., & Zhang, J. (2006). Automating
change evolution in model-driven engineering.
IEEE Computer, 39(2), 51-58.

Gray, J., Tolvanen, J. P., Kelly, S., Gokhale, A.,
Neema, S., & Sprinkle, J. (2007). Domain-specific
modeling. In P. Fishwick (Ed.), Handbook on dy-
namic system modeling (1st ed.). CRC Press.

Grid, O. S. (2007, Januray 19). Open science grid.
Retrieved March 23, 2008, from http://www.
opensciencegrid.org/

GriPhyN. (2006, July 30). GriPhyN--grid phys-
ics network. Retrieved March 23, 2008, from
http://www.griphyn.org/

Guan, Z., Velusamy, V., & Bangalore, P. (2005).
GridDeploy: A toolkit for deploying applications
as grid services.In Proceedings of the Interna-
tional Conference on Information Technology
Coding and Computing, Las Vegas, NV.

Hernandez, F. A., Bangalore, P., Gray, J., Guan, Z.,
& Reilly, K. (2006). GAUGE: Grid automation and
generative environment using domain engineering
and domain modeling for drafting applications for
the grid. Concurrency and Computation: Practice
& Experience, 18(10), 1293-1316.

Huedo, E., Montero, R. S., & Llorente, I. M.
(2004). A framework for adaptive execution on
grids. Journal of Software: Practice and Experi-
ence, 34(7), 631-651.

IVDGL. (2006, July 30). International virtual
data grid laboratory. Retrieved March 23, 2008,
from http://www.ivdgl.org/

JSWG. (2007). Job submission description lan-
guage WG (JSDL-WG). Retrieved March 23,
2008, from https://forge.gridforum.org/projects/
jsdl-wg/

Karonis, N., Toonen, B., & Foster, I. (2003).
MPICH-G2: A grid-enabled implementation of
the message passing interface. Journal of Paral-
lel and Distributed Computing (JPDC), 63(5),
551-563.

Kumar, V., Grama, A., Gupta, A., & Karypis, G.
(1994). Introduction to parallel computing: Design
and analysis of algorithms. Redwood City, CA:
Benjamin/Cummings.

Laszewski, G. V., Foster, I., Gawor, J., & Lane, P.
(2001). A Java commodity grid kit. Concurrency
and Computation: Practice and Experience,
13(8-9), 643-662.

Letondal, C. (2000). A Web interface generator
for molecular biology programs in Unix. Bioin-
formatics, 17(1), 73-82.

Litzkow, M., Livny, M., & Mutka, M. (1988). Con-
dor--a hunter of idle workstations. In Proceedings
of the 8th International Conference of Distributed
Computing Systems, (pp. 104-111).

Massie, M. L., Chun, B. N., & Culler, D. E. (2004).
The Ganglia distributed monitoring system: De-
sign, Implementation, and Experience. Parallel
Computing, 30(7), 817-840.

McConnell, S. (1996). Rapid development (1st
ed.). Redmond, WA: Microsoft Press.

Momjian, B. (2000). PostgreSQL: Introduction
and concepts (1st ed.): Pearson Education.

Montero, R. S., Huedo, E., & Llorente, I. M.
(2006). Grid scheduling infrastructures based
on the GridWay meta-scheduler. IEEE Techni-

 ���

 Domain-Specific Language for Describing Grid Applications

cal Committee on Scalable Computing (TCSC)
Newsletter, 8(2).

NEES. (2006, November 6). Network for earth-
quake engineering simulation. Retrieved March
23, 2008, from http://it.nees.org/

Novotny, J., Russell, M., & Wehrens, O. (2004).
GridSphere: A portal framework for building
collaborations. Concurrency and Computation:
Practice & Experience, 16(5), 503-513.

OGF. (2007). Open grid forum. Retrieved March
23, 2008, from http://www.ogf.org

PPDG. (2006, July). Particle physics data grid.
Retrieved March 23, 2008, from http://www.
ppdg.net/

Schmidt, D. (2006). Model-driven engineering.
IEEE Computer, 39(2), 25-32.

Simonyi, C., Christerson, M., & Clifford, S.
(2006). Intentional software. Object oriented
programming systems languages and applica-
tions (OOPSLA), (pp. 451-464). Portland, OR:
ACM Press.

Smith, W., Foster, I., & Taylor, V. (1998). Predicting
application run times using historical information.
In Proceedings of the Workshop on Job Scheduling
Strategies for Parallel Processing, (pp. 122-142).
Springer-Verlag.

Solomon, M. (2004, May). The ClassAd language
reference manual. Retrieved March 23, 2008, from
http://www.cs.wisc.edu/condor/classad/refman/

Sotomayor, B., & Childers, L. (2005). Globus
toolkit: Programming Java services (1st ed.).
Morgan Kaufmann.

Steen, M. V. (2004). Nimrod-G resource broker
for service-oriented grid computing. Retrieved
March 23, 2008, from http://dsonline.computer.
org/0107/departments/res0107_print.htm

Tanenbaum, A. S., & Steen, M. V. (2002). Dis-
tributed systems: Principles and paradigms.
Prentice Hall.

Taylor, V., Wu, X., Geisler, J., Li, X., Lan, Z.,
Stevens, R., et al. (2000). Prophesy: An infra-
structure for analyzing and modeling the perfor-
mance of parallel and distributed applications. In
Proceedings of the High Performance Distributed
Computing (HPDC) 2000, Pittsburgh, PA, (pp.
302-303).

Thomas, M., Mock, S., Dahan, M., Mueller, K.,
Sutton, D., & Boisseau, J. (2001). The GridPort
toolkit: A system for building grid portals. In
Proceedings of the Tenth IEEE International
Symposium on High Performance Distributed
Computing (HPDC), (pp. 216-227). San Fran-
cisco: IEEE.

Thomas, N., Tanase, G., Tkachyshyn, O., Per-
due, J., Amato, N., & Rauchwerger, L. (2005).
A framework for adaptive algorithm selection in
STAPL. In Proceedings of the ACM SIGPLAN
2005 Symposium on Principles and Practices of
Parallel Programming (PPoPP), Chicago, IL.

Tsouloupas, G., & Dikaiakos, M. (2003). Grid-
Bench: A tool for benchmarking grids. In Pro-
ceedings of the 4th International Workshop on
Grid Computing (Grid2003), Phoenix, AZ, (pp.
60-67).

Ulrich, W. M. (2002). Legacy systems: Transfor-
mation strategies (1st ed.). Prentice Hall PTR.

Venugopal, S., Buyya, R., & Winton, L. (2005).
A grid service broker for scheduling e-science
applications on global data grids. Journal of
Concurrency and Computation: Practice and
Experience, 18(6), 685-699.

Wall, L., Christiansen, T., & Orwant, J. (2000).
Programming Perl (3rd ed., Vol. 2000). O’Reilly
Media.

���

 Domain-Specific Language for Describing Grid Applications

Wile, D. (2004). Lessons learned from real DSL
experiments. Science of Computer Programming,
51(3), 265-290.

addItIonaL readIng

Afgan, E., & Purushotham, B. (2007). Compu-
tation cost in grid computing environments. In
Proceedings of the First International Workshop
on the Economics of Software and Computation
in Conjunction with International Conference on
Software Engineering (ICSE) 2007, Minneapolis,
MN, (pp. 9-13).

Batory, D. (2006). Multiple models in model-driv-
en engineering, product lines, and metaprogram-
ming. IBM Systems Journal, 45(3), 451-461.

Brooks, F. P. (1987). No silver bullet-essence and
accidents of software. IEEE Computer, 20(4),
10-19.

Buyya, R., & Murshed, M. (2002). GridSim: A
toolkit for the modeling and simulation of dis-
tributed resource management and scheduling for
grid computing. The Journal of Concurrency and
Computation: Practice and Experience (CCPE),
14(13-15), 1175-1220.

Cao, F., Bryant, B. R., Raje, R. R., Auguston, M.,
Olson, A. M., & Burt, C. C. (2005). A component
assembly approach based on aspect-oriented
generative domain modeling. Electronic Notes in
Theoretical Computer Science, 114, 119-136.

Cunha, J. C., & Rana, O. F. (2005). Grid comput-
ing: Software environments and tools (1st ed.).
Springer-Verlag.

Foster, I., & Kesselman, C. (1998). The grid:
Blueprint for a new computing infrastructure (1st
ed.). Morgan Kaufmann.

Hernandez, F., Bangalore, P., Gray, J., & Reilly,
K. (2004). A graphical modeling environment for

the generation of workflows for the Globus toolkit.
In Proceedings of the Workshop on Component
Models and Systems for Grid Applications, 18th
Annual ACM International Conference on Su-
percomputing, Saint-Malo, France.

Hey, A. J. G., Papay, J., & Surridge, M. (2005).
The role of performance engineering techniques
in the context of the Grid. Concurrency and
Computation: Practice & Experience, 17(2-4),
297-316.

Horst, J., Messina, E., Kramer, T., & Huang, H.-M.
(1997). Precise definition of software component
specifications. In Proceedings of the 7th Sympo-
sium on Computer-Aided Control System Design
(CACSD ‘97), (pp. 145-150). Gent, Belgium.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda,
C., Lopes, C. V., Loingtier, J., et al. (1997). As-
pect-oriented programming. In Proceedings of
the European Conference on Object-Oriented
Programming (ECOOP), (pp. 220-242). Jyvos-
kyla, Finland: Springer-Verlag.

Kra, D. (2004). Six strategies for grid application
enablement: IBM. Retrieved March 23, 2008,
from http://www.ibm.com/developerworks/grid/
library/gr-enable/

Kurtev, I., Bézivin, J., Jouault, F., & Valduriez,
P. (2006). Model-based DSL frameworks. In
Proceedings of the Companion of the 21st Annual
ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applica-
tions (OOPSLA), Portland, OR, (pp. 602-616).

Nabrzyski, J., Schopf, J. M., & Weglarz, J. (2003).
Grid resource management: State of the art and
future trends. International series in opera-
tions research & management science (1st ed.).
Springer-Verlag.

Silva, V. (2005). Grid computing for developers
(Programming Series) (1st ed.). Charles River
Media.

 ���

 Domain-Specific Language for Describing Grid Applications

Sodhi, S., & Subhlok, J. (2005). Automatic con-
struction and evaluation of performance skeletons.
In Proceedings of the 19th International Parallel
and Distributed Processing Symposium (IPDPS
‘05), Denver, CO, (p. 10).

Song, H., Liu, X., Jakobsen, D., Bhagwan, R.,
Zhang, X., Taura, K., et al. (2000). The MicroGrid:
A scientific tool for modeling computational grids.
In Proceedings of the IEEE Supercomputing (SC
2000), Dallas, TX.

This work was previously published in Designing Software-Intensive Systems: Methods and Principles, edited by P. Tiako, pp.
402-438, copyright 2009 by Information Science Reference (an imprint of IGI Global).

���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.25
Performance Analysis of a

Web Server
Jijun Lu

University of Connecticut, USA

Swapna S. Gokhale
University of Connecticut, USA

aBStract

With the rapid development and widespread
use of the Internet, Web servers have become
a dominant source of information and services.
The use of Web servers in business and critical
application domains imposes stringent perfor-
mance requirements on them. These performance
requirements cast a direct influence on the choice
of the configuration options of the hardware and
the software infrastructure on which a Web server
is deployed. In addition to the selection of con-
figuration options, for a given level of load and a
particular hardware and software configuration,
it is necessary to estimate the performance of a
Web server prior to deployment.

IntroductIon and motIvatIon

The World Wide Web (WWW) has experienced
an exponential growth in the last 10 years and

today Web servers are important sources of in-
formation and services. Web servers, which are
typically based on the HTTP protocol running
over TCP/IP, are expected to serve millions of
transaction requests per day with acceptable
performance, which may be defined in terms of
transaction throughput and latency experienced
by the users (Van der Mei, Hariharan, & Reeser,
2001). The stringent performance requirements
imposed on Web servers have a direct influence
on the configuration options of the hardware and
software infrastructure used for deployment.
Hardware configuration options may include the
capacity and the number of processors and caching
strategies. Software configuration options may
include the number of server threads/processes
to serve client requests, the buffer size, and the
scheduling discipline. Prior to deployment, for a
given level of load, it is necessary to determine the
hardware and software configuration options that
would provide acceptable server performance.

 ���

Performance Analysis of a web Server

One of the ways of estimating the performance
of a Web server is by conducting actual measure-
ments. While the measurement-based approach
may be viable to estimate the performance for a
given set of configuration options, it is cumber-
some and expensive for “predictive” or “what-if”
analysis and for an exploration of a set of alterna-
tive configurations. Model-based analysis, which
consists of capturing the relevant aspects of a
Web server into an appropriate model, validating
the model and then using the validated model to
predict the performance for different settings is
an attractive alternative to the measurement-based
approach.

Web servers receive and process a continuous
stream of requests. As a result, a vast majority
of their time is spent waiting for I/O operations
to complete, making them particularly apt to fall
under the category of I/O intensive applications
(Ling, Mullen, & Lin, 2000). The performance of
such I/O intensive applications (responsiveness,
scalability, and throughput) can be improved dra-
matically if they are provided with the capability
to process multiple requests concurrently. Thus,
modern Web servers invariably process multiple
requests concurrently to enhance their perfor-
mance and to fulfill their workload demands.
Considering the concurrent processing capabil-
ity, we propose the use of a multiserver M/G/m
queue to model a Web server with an I/O intensive
workload. The performance metric of interest
is the response time of a client request. Since
there is no known analytically or computation-
ally tractable method to derive an exact solution
for the response time of the M/G/m queue, we
use an approximation proposed by Sakasegawa
(1977). We validate the model for deterministic
and heavy-tailed workloads using experimenta-
tion. Our results indicate that the M/G/m queue
provides a reasonable estimate of the response
time for moderately high traffic intensity. The
conceptual simplicity of the model combined
with the fact that it needs the estimation of very
few parameters makes it easy to apply.

The balance of the article is organized as fol-
lows: First, we present the performance model
of a Web server. We then discuss the workload
characteristics used for the experimental valida-
tion of the model, followed by a description of
the experimental infrastructure used for valida-
tion. Subsequently, we present and discuss the
experimental results. Research related to the
present work is summarized next. Finally, we of-
fer concluding remarks and directions for future
research.

performance modeL

We describe the performance model of a Web
server in this section. Towards this end, we first
provide an overview of the software architecture
of a Web server. Subsequently, we discuss the
rationale for modeling a Web server using an M/
G/m queue and present an analytical expression
to compute the approximate response time.

web Server Software architecture

Modern Web servers implement concurrent
processing capability using a thread-based, a
process-based, or a hybrid approach (Menasce,
2003). An example of a thread-based server is the
Microsoft IIS server (Microsoft Corporation, n.d.),
a process-based server is the Apache HTTP server
1.3, and a hybrid server is the Apache HTTP server
2.0 (Apache Software Foundation, n.d.).

In both the thread-based and process-based
architectures, to avoid the overheads of forking a
process/thread for every request, the Web server
can fork a pool of processes/threads at start-up.
If all these threads/processes are busy, either ad-
ditional threads/processes can be forked or the
request waits in a queue. In the former case, the
size of the thread/process pool changes dynami-
cally, whereas in the latter case the size of the
thread/process pool is fixed and a new request

���

Performance Analysis of a web Server

waits in the queue if all the threads/processes
are busy.

Queuing model

We assume that the Web server consists of a static
thread/process pool, with the number of threads/
processes in the pool or the pool size, denoted m.
Requests arrive at the server according to a Pois-

son distribution and the request service time is
exponentially distributed. In most Web servers,
the capacity of the queue to hold requests when
all the threads/processes are busy is typically
very large to ensure low probability of denying
a request. Thus, for the purpose of modeling we
assume the queue size to be infinite. The queuing
model that coincides with these characteristics
of a Web server, capable of processing requests

Figure 1. M/G/m queuing model

Symbol Meaning
R Response time
m Number of servers
l Arrival rate
m Service rate

cs
Coefficient of variance of service time
(ratio of standard deviation to the mean)

r Traffic intensity r = l/(mm)

Table 1. Parameters of the M/G/m queuing model

 ���

Performance Analysis of a web Server

concurrently is an M/G/m queue. We note that
since the model is based on the existence of
concurrent processing capabilities, and not on
the specific implementation of concurrency, it is
general and equally applicable to a thread-based,
a process-based or hybrid architecture.

Figure 1 shows a pictorial depiction of the
M/G/m queue. The arrival process is Poisson with
rate and there are m parallel servers serving the
requests. The service times of the requests are
independent and identically distributed random
variables, with a general distribution that has a
finite mean m-1 and a finite coefficient of variance
cs (the ratio of standard deviation to the mean).
Specifically, for deterministic service times, cs =
0; for exponential service times, cs = 1; and for
heavy-tailed service times, cs → ∞ (Lipsky, 1992).
Let r = l/(mm) denote the traffic intensity, also
known as utilization factor (Lipsky, 1992). For a
stable system r < 1 and the queuing discipline is
first-come-first-served (FCFS). Table 1 summa-
rizes the parameters of the M/G/m model.

The performance metric of interest is the
expected or the average response time of a client
request denoted R. Except for certain special cases,
there is no known analytically or computationally
tractable method to derive an exact solution for
the response time of the M/G/m queue. Several
approximations have been proposed (Hokstad,
1978; Kimura, 1983; Sakasegawa, 1977; Yao,
1985) and among these we consider the one by
Sakasegawa (Sakasegawa, 1977) since it requires
very few parameters and involves straightforward
computations. Using this approximation, the mean
number of requests in the queue for the M/G/m
model is given by:

2(1)2(1)
2 1

m
s

q
cL

++ r
≈

- r (1)

Equation (1) indicates that the queue length
increases as r increases. Further, for a service
time distribution with high variability (where cs

is high), such as in the heavy-tailed distribution
(Crovella, Taqqu, & Bestavros, 1998), the queue
length will increase very rapidly.

Using Equation (1), the mean response time
for the M/G/m queue as per Little’s law (Klein-
rock, 1976) is:

/ /

2(1)2

1/

(1)1/
2 1

q
M G m

m
s

L
R

c +

≈ m + =
l

+ r
m +

l - r (2)

Since a single server queue is commonly used
to model a Web server (Cao, Anderson, Nyberg,
& Kihl, 2003; Nossenson & Attiya, 2004; Squil-
lante, Yao, & Zhang, 1999), we compare the mean
response time of a multiserver M/G/m queue to
the response time of a single-server M/G/1 queue,
which is given by:

′−
′+

+=
12

)1(/1
22

1//
s

GM
cR

 (3)

where r' = l/ m = mr. Notice that RM/G/1> RM/G/M
holds for ∀m ≥ 2.

workLoad characterIStIcS

We consider service scenarios where each request
is for a single static file and the server responds
to the client with the file. Since the file size is
demonstrated to be heavy-tailed (Crovella et
al., 1998), we consider two types of workloads,
namely, deterministic and heavy-tailed, which
are described next.

deterministic workload

For a deterministic workload, all the requests are
for the same file size in a single experiment. We
consider four deterministic workloads with file

��0

Performance Analysis of a web Server

sizes of 64 KB, 128 KB, 256 KB, and 512 KB.
The smallest size considered is 64 KB due to the
measurement granularity, which is 10 msec for
our test bed (described in the next section). We
note that even for a deterministic workload, in
which the file size in every request is the same,
the service time on an experimental test bed/real
system will fluctuate (Lipsky, 1992), implying
that cs ≠ 0 in Equation (1). Since the magnitude
of these fluctuations is expected to be small com-
pared to the actual service time, we use the term
deterministic workload to indicate a relatively
stable workload compared to the heavy-tailed
one described next.

heavy-tailed workload

In this section we discuss how the heavy-tailed
workload was generated based on the Pareto dis-
tribution, which has been widely used to model
such characteristics in a variety of phenomena
including inter-arrival times (Paxson & Floyd,
1995), burst sizes (Charsinski, 2000), topologi-
cal properties (Faloutsos, Faloutsos, & Faloutsos,
1999), workload properties (Crovella et al., 1998),
and error rates (Goseva-Postojanova, Mazimdar,
& Singh, 2004).

The Pareto distribution is characterized by a
shape parameter a and a scale parameter k. The
probability density function (pdf) of the Pareto
distribution is given by:

f(x) = akax-a-1 (4)

where a, k > 0 and x > k. The cumulative distri-
bution function (CDF) of the Pareto distribution
is given by:

F(x) = 1 - kax-a (5)

When a > 1, the Pareto distribution has a finite
mean which is given by:

1
][

−
=

kXE (6)

A series of numbers following the Pareto
distribution can be generated by computing the
inverse of the CDF presented in Equation (5) as
below (Jin & Bestavros, 2005):

x = F-1(u) = k(1-u)-1/a (7)

In Equation (7), if a and k are known, then
for random variates ui’s generated from the
uniform distribution U(0,1), {xi}’s following the
Pareto distribution can be generated. Note here
xi > k for every i. It is expected that most {xi}’s
will have values close to k, with a small number
being extraordinary high. When the shape pa-
rameter a of the Pareto distribution is fixed, the
scale parameter k for a given mean E[X] can be
obtained as follows:

k = E[X] (1 - 1/a) (8)

We set the value of the shape parameter a to
1.36, based on prior research (Crovella, Taqqu &
Bestavros, 1998). Four different mean file sizes,
namely, 120 KB, 150 KB, 180 KB, and 200 KB
were considered, and for each mean file size,
using the preselected shape parameter a, the
scale parameter k was obtained using Equation
(8). Using the (a, k) pair, the CDF

iSF of file size
Si is obtained. The probability of each file size is
then computed as:

1i i iS S SP F F (9)

The individual file sizes considered are 64
KB, 128 KB, 256 KB, 512 KB, 1 MB, and 2 MB
and the distributions of these file sizes in the four
workloads are reported in Table 2.

experImentaL InfraStructure

In this section, we describe the experimental
infrastructure used for model validation. We also

 ���

Performance Analysis of a web Server

describe the process used to estimate the mean
service time for each file size.

test Bed description

The experimental infrastructure comprises of a
single server and a single client, with configura-
tions summarized in Table 3. Both computers are
connected via a 100M Ethernet across a LAN.

In a multithreaded server, as the size of the
thread pool increases, each thread may experience
some performance degradation. However, when
the thread pool size is below a threshold, this
degradation is negligible (Xu & Bode, 2004). As

a rule of thumb, to ensure negligible degradation,
the size of the thread pool should be twice the
number of CPUs on the host machine (Ling et al.,
2000; Richter, 2000). Thus, for the single processor
server in our test bed, the size of the thread pool
is set to 2. The configurations of the Web server
used in the experiments are summarized in Table
4. Since the maximum queue length used is very
large as compared to the number of threads, the
assumption of infinite queue length needed to
apply the M/G/m model is reasonable.

Service time estimation

Table 2. File size distribution (
iSP) in heavy-tailed workload

File size (Si)
Mean file size iS

120KB 150KB 180KB 200KB
64 KB 0.6099 0.4776 0.3305 0.2274
128 KB 0.2381 0.3189 0.4086 0.4716
256 KB 0.0928 0.1242 0.1592 0.1837
512 KB 0.0361 0.0484 0.0620 0.0716
1 MB 0.0141 0.0189 0.0242 0.0279
2 MB 0.0055 0.0073 0.0094 0.0109

Machine Hardware Software

Server
Dell OptiPlex GX260 (Intel Pentium 4 processor at
2.4GHz, 1GB of RAM, 40GB hard driver and Intel
PRO 1000 MT network adapter)

Microsoft Windows
XP Professional SP2,
Microsoft IIS 5.1

Client
IBM ThinkPad T40 (Intel Pentium-M processor at
1.5GHz, 1GB of RAM, 40GB hard driver and Intel
PRO 100 VE network adaptor)

Microsoft Windows
XP Professional SP2

Table 3. System configuration parameters

���

Performance Analysis of a web Server

To compute the mean response time of a workload
based on the M/G/m model using Equation (2), the
mean service time for the workload needs to be
obtained. The mean service time of a workload
will depend on the distribution of the file sizes
in the workload and the mean service time for
each of those file sizes. Thus, to obtain the mean
service times of the workloads, the mean service
times of the file sizes in the workload need to be
obtained.

To obtain the mean service time for a single file
size, client requests at a very low arrival rate such
that the traffic intensity is low (less than 0.4%)
were presented to the server. For each file size,
the average response time was computed using
response time measurements for 200 requests.
The low traffic intensity causes negligible queu-
ing delay and the response time mostly consists
of the service time. Thus, the mean service time
was approximated by the response time under
very low load, which for each file size is sum-
marized in Table 5.

reSuLtS and dIScuSSIon

In this section we present and discuss the results
of the experimental validation of the M/G/m

model. Several experimental scenarios for both
deterministic and heavy-tailed workloads were
considered, with each scenario comprised of a
single workload (deterministic or heavy-tailed).
For the deterministic workload, all the client
requests were for the same file size. For the
heavy-tailed workload, requests were generated
according to the file size distribution for a given
mean file size. In each scenario, request arrivals
were generated according to a Poisson distribu-
tion with varying rates, chosen to maintain the
condition r < 1 necessary for a stable system.
Due to the high variability of the arrival rates of
the Poisson process and for the file size distribu-
tions, the steady state mean queue length given
by Equation (1) increases with r (Lipsky, 1992).
The traffic intensity is considered to be low for r
< 0.3, medium for 0.3 ≤ r ≤ 0.5, and high for r ≥
0.5 (Lipsky, 1992; Nossenson & Attiya, 2004).

For each arrival rate, using the measured re-
sponse times of 200 requests, the average response
time was obtained. The mean response times were
computed for the M/G/m model from Equation
(2) and M/G/1 model from Equation (3) using
MATLAB. For each workload, the traffic intensity
r for each arrival rate is also reported.

deterministic workload

Table 4. Web server configurations

Parameter Value
CPU 1
Thread 2
Web caching No
Network Bandwidth 100 Mbps
Maximum queue
length

 3000

Table 5. Mean service time of each file size
(msec)

File size (Si) Service time (
iST)

64 KB 10.00
128 KB 16.25
256 KB 32.85
512 KB 69.13
1 MB 133.03
2 MB 286.38

 ���

Performance Analysis of a web Server

The measured and the computed response times
along with the traffic intensities for deterministic
workloads of 64 KB, 128 KB, 256 KB, and 512
KB are reported in Tables 6, 7, 8, and 9, respec-
tively. The results indicate that the response time
predicted by the M/G/m model is very close to the
measured response time for low to moderately high
loads, with value of r around 0.5. The predicted
response time is lower than the measured, and the

deviations are within 7–8% for low and medium
traffic intensities. As the traffic intensity increases,
greater deviations occur. However, the deviation
is within 10% even for high traffic intensities,
with r close to 0.6. For the arrival rates and file
size distributions, the system is already heavily
loaded when r ≥ 0.5 (Nossenson & Attiya, 2004)
which cause these deviations.

The results also indicate that the response time
predicted by the M/G/1 model is always higher

1/l r Rmeasure RM/G/m RM/G/1

2000 0.0024 10.07 10.00 10.03
1000 0.0049 10.17 10.01 10.05
500 0.0098 10.36 10.06 10.10
200 0.0243 10.55 10.14 10.26
100 0.0463 10.80 10.30 10.56
50 0.1067 11.05 10.79 11.25
40 0.1283 11.72 11.32 11.67
30 0.1743 12.74 12.03 12.50
20 0.2953 13.46 12.64 15.00
15 0.5405 16.88 15.41 --

Table 6. Deterministic workload (Si = 64KB) (msec)

1/l r Rmeasure RM/G/m RM/G/1

2000 0.0045 17.07 16.26 16.32
1000 0.0083 17.20 16.33 16.38
500 0.0182 17.80 16.71 16.82
200 0.0446 18.11 17.08 17.17
100 0.0861 18.63 17.37 17.83
50 0.1764 20.38 17.13 20.16
40 0.2614 23.35 21.97 21.81
30 0.3485 24.47 22.72 25.85
20 0.5650 27.26 24.84 --

Table 7. Deterministic workload (Si = 128KB) (msec)

���

Performance Analysis of a web Server

than the response time predicted by the M/G/m
model. As the arrival rate increases, the rate at
which the predicted response time increases is
much higher for the M/G/1 model as compared
to the M/G/m model. Further, as the arrival rate
l approaches service rate m while maintaining l
< m, the response time predicted by the M/G/1
model deviates significantly from the measured
response time. When m < l < 2m, the response
time of the single-server M/G/1 model is not
meaningful since it leads to r' > 1, resulting in
an unstable system. The M/G/m model, however,
still represents a stable system for 0.5 < r < 1
and hence provides meaningful predictions of
response time. Thus, a single-server queue is not

adequate to represent a Web server equipped with
concurrent processing capabilities.

heavy-tailed workload

To compute the average response time for a
heavy-tailed workload using Equation (2), the
mean service time for the workload with a given
mean file size can be computed using:

∑∑=
i

SSS iii
PTT

 (10)

where Si denotes the file size,
iST the mean service

1/l r Rmeasure RM/G/m RM/G/1

2000 0.0082 33.15 32.86 33.12
1000 0.0164 33.75 32.83 33.41
500 0.0329 34.07 32.97 34.01
200 0.0936 36.51 34.76 36.08
100 0.1947 39.25 38.09 40.89
50 0.3912 45.25 43.86 64.31
40 0.4993 50.38 47.45 108.31
35 0.5889 62.11 56.13 --

1/l r Rmeasure RM/G/m RM/G/1

2000 0.0178 69.25 69.13 70.37
1000 0.0334 69.67 69.34 71.70
500 0.0688 70.53 69.74 74.68
200 0.1738 71.22 71.13 87.39
100 0.3944 90.13 87.45 146.53
80 0.5073 105.65 96.91 --
70 0.5683 110.69 100.26 --

Table 8. Deterministic workload (Si = 256KB) (msec)

Table 9. Deterministic workload (Si = 512KB) (msec)

 ���

Performance Analysis of a web Server

time of file size Si, iSP the probability of requesting
a file of size Si, and

iST the mean service time of
a workload with mean file size iS . As discussed
earlier, the mean file sizes considered are 120KB,
150KB, 180KB, and 200KB. The mean service
times of these workloads computed using the
service times and probabilities reported in Table
2 and Table 5 respectively, are summarized in
Table 10.

The measured and the computed response
times for the heavy-tailed workload for different
mean file sizes are summarized in Tables 11, 12,
13, and 14. The trend in the deviation between
the predicted and measured response times in this
case is similar as in the case of the deterministic

workload. The predicted and the mean response
times are within 10%, with the predicted one be-
ing lower than the measured for low and medium
traffic intensities (r < 0.5). As indicated earlier,
for the arrival rate and file size distributions, the
system is already heavily loaded when r < 0.5
(Nossenson & Attiya, 2004) which cause these
deviations. We note, however, that the difference
between the computed and measured response
time is around 12% even for moderately high
traffic intensity with r close to 0.6. The response
times predicted by the M/G/1 model follow similar
trends as in the case of deterministic workload.

reLated reSearch

Several efforts have focused on Web server and
workload performance modeling and analysis.
Slothouber (1996) proposes to model a Web server
as an open queuing network. Heidemann, Obracz-
ka, and Touch (1997) present analytical models
for the interaction of HTTP with several transport
layers. Van der Mei et al. (2001) present an end-
to-end queuing model for the performance of Web
servers, encompassing the impact of client work-
load characteristics, server hardware/software

Mean file size (iS) Mean service time (
iST)

120 KB 18.95
150 KB 21.99
180 KB 25.37
200 KB 27.74

Table 10. Mean service times of heavy-tailed
workload (msec)

1/l r Rmeasure RM/G/m RM/G/1

2000 0.0047 19.65 18.95 19.04
1000 0.0097 20.30 19.34 19.43
500 0.0198 20.60 19.34 19.52
200 0.0534 21.25 19.98 20.04
100 0.1066 23.25 21.93 22.17
50 0.2414 24.25 22.56 24.73
40 0.2875 27.12 24.97 27.48
30 0.3731 31.27 28.92 35.20
20 0.5547 40.39 35.94 --

Table 11. Heavy-tailed workload (iS = 120KB)

���

Performance Analysis of a web Server

1/l r Rmeasure RM/G/m RM/G/1

2000 0.0053 22.32 22.00 22.11
1000 0.0099 23.05 22.52 22.74
500 0.0255 24.31 23.64 23.80
200 0.0582 26.44 24.50 24.75
100 0.1215 27.31 25.30 25.89
50 0.2253 27.64 25.59 30.62
40 0.2974 29.22 26.97 35.41
30 0.4455 32.78 29.94 52.17
25 0.5631 38.25 34.03 --

Table 12. Heavy-tailed workload (iS = 150KB)

1/l r Rmeasure RM/G/m RM/G/1

2000 0.0056 25.63 25.37 25.53
1000 0.0117 25.86 25.41 25.70
500 0.0243 27.48 26.35 26.65
200 0.0673 28.69 27.23 27.61
100 0.1291 30.67 29.63 30.68
50 0.2843 33.40 31.90 38.44
40 0.3636 35.02 32.33 47.37
30 0.5303 43.12 39.15 --

Table 13. Heavy-tailed workload (iS = 180KB)

1/l r Rmeasure RM/G/m RM/G/1

2000 0.0066 28.43 27.74 27.94
1000 0.0136 29.28 28.21 28.64
500 0.0266 30.55 29.01 29.55
200 0.0714 31.17 29.87 30.97
100 0.1553 33.65 31.88 33.06
50 0.3105 37.75 35.08 45.02
40 0.4006 39.66 36.89 59.12
30 0.5637 49.50 44.15 --

Table 14. Heavy-tailed workload (iS = 200KB)

 ���

Performance Analysis of a web Server

configurations, communication protocols, and
interconnect topologies. Kamra, Misra, and Na-
hum (2004) present a control-theoretic approach
that achieves dual objectives, namely, preventing
overload and enforcing absolute response times.
Cao et al. (2003) use an M/G/1/K*PS queuing
model to model the performance of a Web server.
Nossenson and Attiya (2004) introduce a new
N-Burst/G/1 queuing model with heavy-tailed
service time distribution for Web server perfor-
mance modeling. Squillante et al. (1999) employ
a G/G/1 queue to model high-volume Web sites.
Liu, Heo, and Sha (2005) provide a model of a
three-tiered Web services architecture, where
each tier is modeled by a multistation queuing
center. Kant and Sundaram (2000) present a queu-
ing network model for a multiprocessor system
running a static Web workload. Hu, Nanda, and
Yang (1999) measure and analyze the behavior of
a Web server driven by benchmarks and propose
techniques for performance improvement. Hard-
wick, Papaefstathiou, and Guimbellot (2001) use
a performance modeling framework, to create a
performance analysis tool for database-backed
Web sites. Kohavi and Parekh (2003) offer several
useful, practical recommendations for supple-
mentary analyses. Iyengar, Challenger, Dias, and
Dantzig (2000) present techniques to be used at
popular sites to improve performance and avail-
ability based on two case studies.

Previous works mostly use a single server
queue to model a Web server. However, modern
Web servers typically have multiple processes/
threads that work independently and simultane-
ously to service requests. Thus, it is appropriate
to consider this system a multiserver system, as
in the M/G/m model in this article. While being
an accurate representation of the characteristics of
a modern Web server, the M/G/m model is simple
to comprehend, needs the estimation of very few
parameters, and involves straightforward compu-
tations, which makes it easy to apply. Since the
model is not tied to a specific implementation of
concurrency, it is equally applicable to a thread-
based, a process-based, or hybrid architecture.

concLuSIon and future
reSearch

In this article we propose the use of an M/G/m
queue to model the performance of a Web server
capable of processing multiple requests concur-
rently. The performance metric of interest is the
response time of a client request. We validate
the model experimentally for deterministic and
heavy-tailed workloads. Our results indicate that
the M/G/m queue provides a reasonable estimate
of the service response time for low to moderately
high traffic intensities. It is a more accurate rep-
resentation of modern server characteristics, is
conceptually simple, requires the estimation of
very few parameters, involves straightforward
computations, and is hence easy to apply.

Our future research includes extending the
methodology to: (i) consider general arrival pro-
cesses in performance analysis (Nossenson &
Attiya, 2004), (ii) apply the methodology to model
the performance of an application server in a three-
tier Web services architecture, and (iii) consider
QoS provisioning and overload control.

referenceS

Apache Software Foundation (n.d.). Apache HTTP
server project. Retrieved June 9, 2008, from
http://httpd.apache.org/

Cao, J., Andersson, M., Nyberg, C., & Kihl, M.
(2003). Web server performance modeling using
an M/G/1/K*PS queue. In Proceedings of the 10th
International Conference on Telecommunications
(pp. 1501–1506).

Crovella, M., Taqqu, M. S., & Bestavros, A.
(1998). Heavy-tailed probability distributions in
the World Wide Web. A practical guide to heavy
tails: Statistical techniques and application.

���

Performance Analysis of a web Server

Boston: Birkhauser.

Faloutsos, M., Faloutsos, P., & Faloutsos, C. (1999).
On the power-law relationships of the Internet
topology. In Proceedings of ACM SIGCOMM
(pp. 251–262).

Goseva-Postojanova, K., Mazimdar, S., & Singh,
A. (2004). Empirical study of session-based
workload and reliability of Web servers. In
Proceedings of the 15th International Symposium
on Software Reliability Engineering (pp. 403–
414).

Hardwick, J. C., Papaefstathiou, E., & Guimbellot,
D. (2001). Modeling the performance of e-
commerce sites. In Proceedings of the 27th
International Conference of the Computer
Measurement Group (pp. 3–12).

Heidemann, J., Obraczka, K., & Touch, J. (1997).
Modeling the performance of HTTP over several
transport protocols. IEEE/ACM Transactions on
Networking, 5(5), 616–630.

Hokstad, P.(1978). Approximation for the M/G/m
queue. Operations Research, 26(3), 510–523.

Hu, Y., Nanda, A., & Yang, Q. (1999). Measurement,
analysis and performance improvement of the
Apache Web server. In Proceedings of the IEEE
International Performance, Computing and
Communications Conference (pp. 261–267).

Iyengar, A., Challenger, J., Dias, D., & Dantzig,
P. (2000). High-performance Web site design
techniques. IEEE Internet Computing, 4(2),
17–26.

Jin, S., & Bestavros, A. (2005). Generating
Internet streaming media objects and workloads
(chap. 1, Recent advances on Web content
delivery). Kluwer Academic Publishers.

Kamra, A., Misra, V., & Nahum, E. (2004).
Controlling the performance of 3-tiered Web
sites: Modeling, design and implementation.
In Proceedings of SIGMETRICS 2004/

PERFORMANCE 2004 (pp. 414–415).

Kant, K., & Sundaram, C. R. M. (2000). A server
performance model for static Web workloads. In
Proceedings of the IEEE International Symposium
on Performance Analysis of Systems and Software
(pp. 201–206).

Kimura, T. (1983). Diffusion approximation for
an M/G/m queue. Operations Research, 31(2),
304–321.

Kleinrock, L. (1976). Queueing systems, Volume
1: Theory. New York: John Wiley & Sons.

Kohavi, R., & Parekh, R. (2003). Ten supplementary
analyses to improve e-commerce Web sites. In
Proceedings of the 5th WEBKDD Workshop
(pp. 29–36).

Ling, Y., Mullen, T., & Lin, X. (2000). Analysis of
optimal thread pool size. ACM SIGOPS Operating
System Review, 34(2), 42–55.

Lipsky, L. (1992). Queueing theory: A linear
algebraic approach. New York: McMillan and
Company.

Liu, X., Heo, J., & Sha, L. (2005). Modeling
3-tiered Web applications. In Proceedings of
the 13th IEEE International Symposium on
Modeling, Analysis and Simulation of Computer
Telecommunications Systems (pp. 307–310).

Menasce, D. (2003). Web server software
architecture. IEEE Internet Computing, 7(6),
78–81.

Microsoft Corporation (n.d). Internet information
services (IIS). Retrieved June 9, 2008, from
http://www.microsoft.com/WindowsServer2003/
iis/default.mspx

Nossenson, R., & Attiya, H. (2004). The N-
burst/G/1 model with heavy-tailed service-times
distribution. In Proceedings of the International
Symposium on Modeling, Analysis, and Simulation
of Computer and Telecommunications Systems

 ���

Performance Analysis of a web Server

(pp. 131–138).

Paxson, V., & Floyd, S. (1995). Wide area traffic:
The failure of Poisson modeling. IEEE/ACM
Transactions on Networking, 3(3), 226–244.

Richter, J. (2000). Programming server-side
applications for Microsoft Windows 2000.
Microsoft Press.

Sakasegawa, H. (1977). An approximation formula
Lq = arb/(1-r). Annals of the Institute of Statistical
Mathematics, 29(1), 67–75.

Slothouber, L. (1996). A model of Web server
performance. In Proceedings of the 5th
International World Wide Web Conference.

Squillante, M. S., Yao, D. D., & Zhang, L. (1999).
Web traffic modeling and Web server performance
analysis. In Proceedings of the 38th Conference
on Decision and Control (pp. 4432–4439).

Van der Mei, R. D., Hariharan, R., & Reeser,
P. (2001). Web server performance modeling.
Telecommunication Systems, 16(3–4), 361–378.

Xu, D., & Bode, B. (2004). Performance study
and dynamic optimization design for thread pool
systems. In Proceedings of the International
Conference on Computing, Communications and
Control Technologies.

Yao, D. (1985). Refining the diffusion approximation
for the M/G/m queue. Operations Research, 33(6),
1266–1277.

This work was previously published in the International Journal of Information Technology and Web Engineering, edited by
G. Alkhatib, Volume 3, Issue 3, pp. 50-65, copyright 2008 by IGI Publishing (an imprint of IGI Global).

��0

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.26
Software Modernization of

Legacy Systems for
Web Services Interoperability

Chia-Chu Chiang
University of Arkansas at Little Rock, USA

IntroductIon

Software maintenance is an inevitable process
due to program evolution (Lehman & Belady,
1985). Adaptive maintenance (Schenidewind,
1987) is an activity used to adapt software to new
environments or new requirements due to the
evolving needs of new platforms, new operating
systems, new software, and evolving business
requirements. For example, companies have been
adapting their legacy systems to Web-enabling
environments of doing business that could not have
been imagined even a decade ago (Khosrow-Pour
& Herman, 2001; Werthner & Ricci, 2004).

To understand software modernization of
legacy systems for Web services, it is necessary to
address how legacy integration has evolved from
centralized computing to distributed, component-
based computing due to the advent and widespread
use of object-oriented and client-server technolo-
gies. Legacy systems were typically developed on
a centralized, terminal-to-host architecture. Users

usually accessed their legacy systems through
terminals that included character-based menus and
data entry screens. Consequently, legacy systems
built on the central mainframe are inaccessible
remotely without adaptations.

Component-based middleware technolo-
gies, such as Java RMI, common object request
broker architecture (CORBA), and component
object model/distributed component object model
(COM/DCOM), provide solutions to support the
interoperability of legacy systems in a heteroge-
neous and distributed environment (Chiang, 2001).
Unfortunately, the technologies have proved to be
insufficient in application integration solutions
for several reasons (Stal, 2002). Although the
technologies share common communication archi-
tectural foundations, the implementation of each
technology differs in several aspects, including
the object models provided, the communication
protocols, and data marshaling/demarshaling.
Due to the proprietary implementations of the
technologies, they do not interoperate well with

 ���

Software Modernization of Legacy Systems for web Services interoperability

each other. Obviously, existing component-based
middleware only partially solves the interoper-
ability problems of legacy systems. More effort is
still required to make the legacy systems totally
interoperable in a heterogeneous and distributed
environment.

Background

Web services have been widely considered as a
better solution to legacy integration for software
interoperability using open standards that include
extensible markup language (XML), the simple
object access protocol (SOAP), the Web services
description language (WSDL), and the universal
description, discovery, and integration (UDDI)
(Chung, Lin, & Mathieu, 2003; Stal, 2002; Zhang
& Yang, 2004). Service requesters and providers
follow the Web service standards for message
exchanges. When a service provider has a service
for public exposure, it must write a description
of the service in WSDL and register the service
description with UDDI to a global repository. A
service requester can then query the repository
using UDDI to retrieve the service description. The
service requester uses the service description in
WSDL to send requests, and the service provider
replies to the requests under SOAP.

Legacy modernIzatIon for
weB ServIceS and chaLLengeS

There are three main reasons for modernizing
legacy systems: to reduce the system evolution
risk, to recoup the investment on the systems,
and to make the system distributed and scalable
for business-to-consumer and business-to-busi-
ness, as well as making it highly available to
Web users.

Companies usually have two approaches to
turn their legacy systems into Web services:
wrapping and reengineering. Wrapping provides a

cost-effective way to integrate legacy systems with
Web services into a heterogeneously distributed
computing environment. Unfortunately, the wrap-
ping approach requires the whole legacy system to
be exposed to the public as a Web service, which
fails to properly abstract the system (Vinoski,
2002; Vogels, 2003). Furthermore, the wrapping
approach increases the difficulty of maintaining
the legacy system in the long run. Thus, the wrap-
ping approach is generally a temporary solution,
rather than a strategic one. The reengineering
approach applies reverse engineering techniques
to legacy systems to recover business rules, and
develop Web services from the extracted business
rules. This approach streamlines legacy systems
but is highly dependent on the success of recovery
on the business rules from legacy systems.

Wrapping legacy systems for Web services
can be performed through wrappers or adapters.
A wrapper is built to encapsulate a legacy system
and provide access to the legacy system through
the encapsulation layer. This layer exposes only
the methods with parameter attributes to remote
service requesters. In addition, the wrapper must
resolve the incompatible communication issues
between the legacy systems and the Web server us-
ing SOAP/XML messaging. Therefore, program-
mers are required to write a wrapper to reconcile
the issues, as well as a WSDL for public exposure.
Unfortunately, a wrapper is difficult to maintain,
inefficient, and error-prone (Engelen, Gupta, &
Pant, 2003). A sample Web service architecture
via a wrapper is shown in Figure 1.

Turning legacy systems in middleware-based
components into Web services is slightly differ-
ent from the technique described above. Because
the legacy system has already been wrapped in
middleware, companies may be unwilling to un-
wrap their systems in order to turn the system
into a Web service. Fortunately, there are Web
services toolkits available to turn middleware-
based componentized legacy systems into Web
services (Engelen, Gupta, & Pant, 2003). First,
the toolkits translate the interface definition of a

���

Software Modernization of Legacy Systems for web Services interoperability

component in the interface definition language
(IDL) into a service description in WSDL for pub-
lic exposure. These toolkits then provide a wrap-
per component that enables distributed access to
the component as a Web service through SOAP.
A service requester can then find the WSDL in
the registry and interact with the component as a
Web service. Using the Web services toolkits, the
creation of a wrapper component can be simpli-
fied. However, the technique could quickly reach
design limitations as legacy systems continue
to evolve. One limitation is that the operating
system and programming language support in
middleware is totally dependent on the develop-
ment and deployment platforms that are offered
by middleware vendors. In many situations, the
platforms supporting the legacy systems may not
be available for the development of middleware.
An alternative to solve this problem is to create

an adapter on an available platform and use some
other strategy.

An adapter can resolve the language and plat-
form dependency through inter-language bind-
ing, inter-process communications, and network
communications. Compared to a wrapper, the
adapter provides a better and more flexible solu-
tion to encapsulate legacy systems by reducing
some degree of platform, operating system, and
programming language dependency. However, an
adapter may create an additional point of failure
introduced by a service provider. A sample ar-
chitecture of using an adapter is shown in Figure
2, and an application of this architecture is the
IBM Web Services Technologies (Barcia, Hines,
Alcott, & Botzum, 2004; Kreger, 2001).

In Figure 2, a Web service adapter is developed
for each service invocation. The connection be-
tween the legacy systems and the adapter can be

Figure 1. A Web service architecture to access legacy systems via wrappers

Web Server

UDDI
Repository

Publish the Service

Service Requester

Find the
Service

Send Requests and Receive
Results

Service Provider

Legacy Systems

W
r
a
p
p
e
r

SOAP
XML-Based
Messaging

 ���

Software Modernization of Legacy Systems for web Services interoperability

any communication protocol that includes TCP/IP
and CICS supported by the backend server host-
ing the legacy system. The Web service adapter
may call one single backend system per SOAP
service request. It is also possible for the adapter to
transform one SOAP request to multiple requests
to one or more backend systems. The combined
results of the backend requests are composed into
one SOAP response, which is then passed back
to the server requester.

Unlike the wrapping approach, the reengineer-
ing approach develops business rules from legacy
systems into Web services. Legacy systems are
first thoroughly analyzed for understanding. Code
corresponding to the business rules is identified
and extracted into a library for the creation of
Web services as shown in Figure 3.

Next, the interface of the extracted code as a
Web service is constructed for creating the Web

service in WSDL. The WSDL specification is then
compiled into a skeleton of a service provider as
shown in Figure 4. Whenever a service requester
sends a request message to the service provider,
the skeleton automatically demarshals the request
and invokes the service. When the service pro-
vider returns the results, the skeleton marshals
the results into a response message and sends the
response back to the service requester.

The WSDL specification of a service provider
is also used to create a stub of a service requester
for the invocation of the service remotely. The
WSDL specification is retrieved from a UDDI
repository, and a description of the remote pro-
cedures is created from the WSDL specification.
The description of the remote procedures is then
compiled into a stub of the service requester
for marshaling and demarshaling request and
response messages at runtime. The development

Figure 2. A Web service architecture to access legacy systems via adapters

UDDI
Repository

Publish the Service

Service Requester

Find the
Service

Send Requests and Receive
Results

Service Provider

Web Server

Web Service
Adapter

Web Service
Adapter

Web Service
Adapter

...

Legacy Systems on IBM Mainframe

SOAP/
XML

Messaging

Network
Coomunications

���

Software Modernization of Legacy Systems for web Services interoperability

Figure 3. Code extraction from legacy systems Figure 4. Creation of skeletons via a WSDL
compiler

Legacy Systems

Program
Understanding and

Reverse Engineering

Code Extraction

Business Rule for a
Web Service

Extracted
Code Library

WSDL ConstructionDescripton of Web
Service in WSDL

WSDL Specification
Compilation

Skeletons

Extracted CodeExtracted Code
Retieval

Development of
Interface of the
Extracted Code

Descripton of
Remote

Procedures

UDDI
Repository

WSDL Specification
Registration

Extracted Code
Library

Figure 5. Construction of service requester and provider executables

Stubs

Skeletons

Service Requester
Construction

Service Provider
Construction

Web Services Run-
Time Library

Service Requester
Source Code

Service Provider
Source Code

Extracted
Code Library

Source Code
Compilation and

Linking

Source Code
Compilation and

Linking

Service Requester
Executable

Service Provider
Executable

WSDL Specification
Retrieval

UDDI
Repository

Description of
Web Service in

WSDL
Extracted Code

Retrieval
Extracted Code

Generation of
Intreface of Remote

Procedures

Interface of Remote
Procedures

Compile Intreface of
Remote Proedures

into Stubs

Web Services Run-
Time Library

 ���

Software Modernization of Legacy Systems for web Services interoperability

strategy of constructing executable files of a
service requester and provider for Web services
is illustrated in Figure 5.

In this approach, a WSDL specification does
not define any language bindings. This allows
stubs and skeletons to be constructed in any
programming languages, such as C, C++, Vi-
sual Basic, Perl, and Python. Because a service
provider’s skeleton leaves the implementation
of the service unspecified, the extracted code
from the legacy system can be inserted into the
skeleton to make the concrete implementation
of the service. This approach is more than just
converting code from one language to another. It
is the conversion of an entire system architecture
into a Web services architecture, including the
user interfaces and database structures. The ap-
proach to developing Web services takes the same
development strategy as the middleware approach
for the development of distributed applications.
The proxies are automatically generated from a
WSDL specification describing the interface of
the service. The extracted code from the legacy
system fills in the concrete implementation of the
service. Samples of the reengineering approach
can be found in references (Engelen, Gupta, &
Pant, 2003; Graveley, 2001). Two primary Web
services architectures supporting the reengineer-
ing approach are the Java 2 platform Enterprise
Edition (J2EE) and the .NET platform (Erl, 2005).
The J2EE platform is a development and runtime
environment based on the Java programming lan-
guage. The .NET platform (MacDonald, 2003) is
a proprietary development and runtime environ-
ment developed for use with Windows operating
systems. The .NET platform provides unified
support for a set of programming languages in-
cluding Visual Basic, C, C++, and C#.

Web services identification plays an important
role in the reengineering approach. It starts with
program understanding. Program understanding
via reverse engineering provides different views
of abstraction of legacy systems which are helpful

for identifying services. The code corresponding
to the services is extracted from the legacy sys-
tems in terms of the business rules defined in the
systems. Several techniques used for supporting
reverse engineering and design recovery activi-
ties have been cataloged in various collections
and surveys (Arnold, 1994; Bellay & Gall, 1997;
Zvegintzov, 1997). Program slicing techniques
(Huang et al., 1996; Sneed & Erdos, 1996; Wang,
Sun, Yang, He, & Maddineni, 2004) are used to
extract source code corresponding to the business
rules from legacy systems. The extracted code
may be used as a candidate for Web services. Due
to the inherent complexity of the system and the
language in which it is written, existing program
slicing techniques cannot be fully automated yet.
Therefore, human interventions are required to
filter the candidates and should be kept to a mini-
mum. Clustering techniques (Wiggerts, 1997)
can be used to group the relevant extracted code
into classes in terms of the attributes that provide
promising candidates for Web services.

 Despite all its promises and glories (Arsan-
jani, Hailpern, Martin, & Tarr, 2003), software
modernization of legacy systems for Web services
is not free of associated risks and challenges
(Tilley et al., 2002). From a business perspective,
there are issues of cost, manpower, management,
maintenance, personnel pressure, and return on
investment that must be examined when consid-
ering the integration of legacy systems to a Web
services computing environment. The immaturity
of these technologies may also offer technical chal-
lenges. The current generation of Web services
infrastructures and tools has problems of large
space consumption and performance degradation.
Tools of reverse engineering and program slicing
are not mature enough to be fully automated. These
issues need to be addressed as these technologies
evolve. In order to make a rational decision on the
potential of each technology, one must assess the
costs, limitations, and risks (Seacord, Plakosh, &
Lewis, 2003; Ulrich, 2002). The issues, problems,

���

Software Modernization of Legacy Systems for web Services interoperability

and limitations of modernizing legacy systems for
Web services interoperability are summarized as
follows:

• Economics of modernizing legacy sys-
tems: Inability to assess the costs of each
approach

• Security: Maintaining secure and safe sys-
tems and keeping unauthorized user access
out

• Performance: Degrading the system’s
performance due to the migration from one
environment to another or from one language
to another

• Quality: Failing to attain the quality of the
system due to a poorly designed quality plan
or unforeseen results from the migration

• Acceptance: Rejection of the system by us-
ers due to lack of knowledge of the Internet
and its usefulness

• Exposure points: Risks associated with
accessing the firm’s systems remotely

• Privacy and confidentiality agreements:
Addressing an individual’s right to privacy
and the sharing of confidential informa-
tion

• Automated tools: Effective tools that reduce
user intervention during the migration

future trendS

Companies will continuously modernize their
legacy systems from centralized to distributed and
Web-enabled environments due to the needs of
evolving business requirements. Companies may
choose to outsource the legacy modernization
process for Web services to another company that
specializes in such tasks. Automated tools used
for extracting business rules from legacy systems
will be continuously required for construction
of Web services. Web service support tools that
migrate middleware-based components into Web

services will continue to improve the technology
for reliability and transactional guarantees.

concLuSIon

The applications of the World Wide Web (WWW)
are used not only for information gathering, but
also as an exciting technological breakthrough
providing companies with new opportunities for
conducting their businesses. Business applications
must respond to changing business requirements
quickly to combat conflicts resulting from having
heterogeneous computing environments. Mod-
ernizing legacy systems for Web services plays
a key role for companies to achieve their system
integration. The critical issues discussed in this
paper provide many implications and challenges
to the companies. These issues must be dealt with
before new issues arise as Web services technolo-
gies continue to evolve.

referenceS

Arnold, R. S. (1994). Software reengineering. Los
Altimos, CA: IEEE Computer Society Press.

Arsanjani, A., Hailpern, B., Martin, J., & Tarr,
P. (2003). Web services: Promises and compro-
mises. ACM Queue, 1(1). Retrieved March 27,
2006, from http://www.acmqueue.org/modules.
php?name=Content&pa=showpage&pid =31

Barcia, R., Hines, B., Alcott, T., & Botzum,
K. (2004). IBM WebSphere: Development and
advanced configuration. New York: Prentice
Hall PTR.

Bellay, B., & Gall, H. (1997). A comparison of
four reverse engineering tools. Proceedings of the
4th Working Conference on Reverse Engineering
(pp. 2-11).

 ���

Software Modernization of Legacy Systems for web Services interoperability

Chiang, C-C. (2001). Wrapping legacy systems
for use in heterogeneous computing environ-
ments. Information and Software Technology,
43(8), 497-507.

Chikofsky, E. J., & Cross II, J. H. (1990). Reverse
engineering and design recovery: A taxonomy.
IEEE Software, 7(1), 13-17.

Christensen, E., Curbera, F., Meredith, G., &
Weerawarana, S. (2001). Web services description
language (WSDL) 1.1. Retrieved March 27, 2006,
from http://www.w3.org/TR/wsdl

Chung, J.-Y., Lin, K.-J., & Mathieu, R. G. (2003).
Web services computing: Advancing software
interoperability. Computer, 36(10), 35-37.

Engelen, R., Gupta, G., & Pant, S. (2003). Devel-
oping Web services for C and C++. IEEE Internet
Computing, 7(2), 53-61.

Erl, T. (2005). Service-oriented architecture:
Concepts, technology, and design. New York:
Prentice Hall PTR.

Graveley, A. (2001). Making SOAP with soup.
Proceedings of Ottawa Linux Symposium. Re-
trieved from http://lwn.net/2001/features/OLS/
pdf/pdf/soup.pdf

Haas, H., & Brown, A. (2004). Web services glos-
sary. Retrieved March 27, 2006, from http://www.
w3.org/TR/ws-gloss/

Huang, H., Tsai, W. T., Bhattacharya, S., Chen,
X. P., Wang, Y., & Sun, J. (1996). Business rule
extraction from legacy code. Proceedings of
IEEE 20th Computer Software and Applications
(pp. 162-167).

Institute of Electrical and Electronics Engineering.
(1993). IEEE standard for software maintenance
(IEEE Publication No. IEEE STD 1219). Los Al-
timos, CA: IEEE Computer Society Press.

Khosrow-Pour, M., & Herman, N. (2001). Web-
enabled technologies assessment and manage-
ment: critical issues. In Khosrow-Pour & Herman

(Eds.), Managing Web-enabled technologies in
organizations: A global perspective (pp. 1-22).
Hershey, PA: Idea Group Publishing.

Kreger, H. (2001). Web services conceptual
architecture (WSCA 1.0). Retrieved March 27,
2006, from http://www-306.ibm.com/software/
solutions/webservices/pdf/WSCA.pdf

Lehman, M. M., & Belady, L. (1985). Program
evolution: Processes of software change. London:
Academic Press.

MacDonald, M. (2003). Microsoft .NET distrib-
uted applications: Integrating XML Web services
and .NET remoting. Redmond, NY: Microsoft
Press.

Schneidewind, N. F. (1987). The state of software
maintenance. IEEE Transactions on Software
Engineering, 13(3), 303-310.

Seacord, R. C., Plakosh, D., & Lewis, G. (2003).
Modernizing legacy systems: Software tech-
nologies, engineering processes, and business
practices. Boston: Addison-Wesley.

Sneed, H. M., & Erdos, K. (1996). Extracting
business rules from source code. Proceedings
of IEEE 4th International Workshop on Program
Comprehension (pp. 240-247).

Stal, M. (2002). Web services: Beyond compo-
nent-based computing. Communications of the
ACM, 45(10), 71-76.

Tilley, S., Gerdes, J., Hamilton, T., Huang, S.,
Müller, H., & Wong, K. (2002). Adoption chal-
lenges in migrating to Web services. Proceedings
of the Fourth International Workshop on Web
Site Evolution.

Ulrich, W. M. (2002). Legacy systems: Trans-
formation strategies. New York: Prentice Hall
PTR.

Vinoski, S. (2002). Web services interaction
model. IEEE Internet Computing, 6(3), 89-91.

���

Software Modernization of Legacy Systems for web Services interoperability

Vogels, W. (2003). Web services are not distributed
objects. IEEE Internet Computing, 7(6), 59-66.

Wang, X., Sun, J., Yang, X., He, Z., & Maddineni,
S. R. (2004). Business rules extraction from large
legacy systems. Proceedings of IEEE Eighth
European Conference on Software Maintenance
and Reengineering (pp. 249-254).

Werthner, H., & Ricci, F. (2004). E-commerce
and tourism. Communication of the ACM, 47(12),
101-105.

Wiggerts, T. A. (1997). Using clustering al-
gorithms in legacy systems remodularization.
Proceedings of the Fourth Working Conference
on Reverse Engineering (pp. 33-43).

Zhang, Z., & Yang, H. (2004). Incubating services
in legacy systems for architectural migration.
Proceedings of the 11th Asia-Pacific Software
Engineering Conference (pp. 196-203).

Zvegintzov, N. (1997). A resource guide to year
2000 tools. Computer, 30(3), 58-63.

key termS

Reverse Engineering: Reverse engineering is
the process of discovering the functions and their
interrelationships of a software system as well as
creating representations of the system in another
form or at a higher level of abstraction.

SOAP: The W3C definition of SOAP is “a set
of protocols governing the format and processing
rules of SOAP messages.”

Software Maintenance: Software mainte-
nance is the process of enhancing and adapting
a software product after delivery as well as cor-
recting faults.

Software Reengineering: Chikofsky and
Cross define software reengineering as “the ex-
amination and alternation of a software system
to reconstitute it in a new form and subsequent
implementation of that form.”

UDDI: UDDI is a Web services registry and
discovery technology for strings and retrieving
Web services interfaces.

Web Services: The W3C definition of a Web
service is “a software system designed to support
interoperable machine-to-machine interaction
over a network. It has an interface described in
WSDL. Other systems interact with the Web
services using SOAP messaging defined in the
WSDL specification.”

WSDL: The W3C definition of WSDL is “an
XML format for describing Web services inter-
faces, message types, operations, and protocol
mappings.”

This work was previously published in Encyclopedia of Internet Technologies and Applications, edited by M. Freire & M.
Pereira, pp. 551-557, copyright 2008 by Information Science Reference (an imprint of IGI Global).

 ���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.27
Approaches to Building High

Performance Web Applications:
A Practical Look at Availability,

Reliability, and Performance

Brian Goodman
IBM Corporation, USA

Maheshwar Inampudi
IBM Corporation, USA

James Doran
IBM Corporation, USA

aBStract

In this chapter, we introduce five practices to help
build scalable, resilient Web applications. In 2004,
IBM launched its expertise location system, bring-
ing together two legacy systems and transforming
the employee’s ability to find and connect with
their extensive network. This chapter reviews
five of the many issues that challenge enterprise
Web applications: resource contention, managing
transactions, application resiliency, geographic
diversity, and exception perception manage-
ment. Using the IBM expertise location system
as context, we will present five key methods that

mitigate these risks, achieving high availability
and high performance goals.

IntroductIon

In this chapter, we introduce five practices for
building scalable, resilient Web applications.
First, we briefly review the context in which IBM
launched its internal expertise location system in
2004. We then introduce the challenges we faced
in implementing the business requirements and
present five key methods that mitigated risks to
achieving our high availability and performance
goals.

��0

Approaches to Building High Performance web Applications

Specifically, we will look at:

• caching strategies for high availability
Web applications: beyond storing copies of
HTML (Challenger, Dantzig, & Iyengar,
1998; Iyengar & Challenger, 1997);

• asynchronous task processing within Web
applications: removing non-essential linear
logic from high-volume transactions (Grand,
2002);

• building self-reliant autonomous behavior:
encapsulating through services achieving
tight integration with true loose coupling
(Birman, van Renesse, & Vogels, 2004);

• client-side Model View Control (MVC):
moving MVC to the browser supercharging
the response times and getting a “wow” user
experience (Murry, 2005; Sun Microsys-
tems, 2002);

• graceful degradation: keeping users thinking
and feeling “fast,” “reliable,” and “always
on” (Florins & Vanderdonckt, 2004).

caching Strategies

Caching strategies are a core part of high-per-
forming Web experiences. In many cases (Amiri,
Park, & Tewari, 2002; Candan, Li, Luo, Hsiung,
& Agrawal, 2001; Liebmann & Dustdar, 2004;
Rodriguez, Spanner, & Biersack, 2001), the as-
sumption is that caching occurs at the edge of
the network, the closest point to the consumer
and the furthest from the data or application.
Another somewhat overlooked approach is object
caching.

Davison (2001) provides a wonderful primer
on Web caching that illustrates the principles of
caching and highlights some of the issues that
may arise due to its use. Edge caching, or Web
caching, is focused on storing and managing
Web pages (static or dynamic) to help speed up
transaction times. As the complexity of Web
architecture evolves, applications have become
more distributed. Edge solutions exemplify this,

placing caches of content, sometimes fragments
of executable code, in multiple geographical
locations.

In recent years, object caching has enjoyed a
revival and is now seen as a more desirable com-
ponent of Web application architecture. Caching
objects and sharing them across an infrastructure
is a compelling capability. Often, the cost as-
sociated with building an object is considered
quite high. The difference with an object cache
mechanism is that it often resides at the Web server
(Jadav & Gupta, 1997), the Web application, or
as a middleware between the data and the Web
application logic. Once an object is built, it can
be cached, distributed, and managed for future
reuse; it delivers performance at the application
layer, whereas edge caching offers performance
benefits to the delivery of data.

The strategies and issues found in edge caching
are very similar to those encountered in object
caching, and understanding their roles can offer
a more complete view of a caching strategy. If it
is possible to reuse an object (whether it is HTML
or an object created from multiple data sources),
an opportunity exists to increase performance.
Caching takes advantage of predicting what re-
source might be required in the near future and
storing a copy for later use. Later in the chapter,
we explore approaches to managing custom object
caches and situations where they can provide
impressive benefits.

asynchronous processing

Asynchronous processing is often thought of as
multithreaded computing or parallel computing,
both of which are far more technical than intended.
A common trap in transaction processing is the
preconceived notion that all processing has to be
linear. There are opportunities to move non-criti-
cal or batch-oriented logic out of the critical path
of handling a transaction. However, this often
introduces a level of complexity that surrounds
the execution of tasks that are not time-critical.

 ���

Approaches to Building High Performance web Applications

For example, Reynal (2005) offers a palatable
introduction to failure detectors, a common
component of an asynchronous system. Failure
detectors help the system decide when activity
is not behaving as it should. For instance, an
asynchronous task might connect to an XML
feed to refresh a local data cache. Obviously, a
simple rule such as all transactions must take no
longer than one minute to be considered healthy
might suffice. At the other end of the spectrum,
a failure detector might consider many variables
such as historical averages or current operating
features like a process’ memory usage. Asyn-
chronous processing offers the opportunity to
offload activities that are less time-sensitive and
speed up a given transaction. While it introduces
a different level of management, it can be done
very effectively and contributes to the overall
performance of a system.

resilient and autonomic Behavior

In recent years, resilient and autonomic behavior
has been posited as one of the next great evolu-
tions in computing, driven primarily by the need
to reduce maintenance and administration of in-
creasingly large and distributed systems (Kephart,
2005). The goal is to embed the capability for an
entire system, including hardware, middleware
and user facing systems, to take a proactive ap-
proach towards maintaining a level of performance
and reliability with little or no human interven-
tion. At the core of this motivation is the need to
build resiliency and autonomic capability into
the component portfolio itself. Service-oriented
architecture (SOA) is seen as an opportunity to
provide systems with more resilient and autonomic
features (Gurguis & Zeid, 2005). The increased
dependency on Web services as a critical part of
an application’s building blocks introduces a new
requirement of availability. Birman et al. (2004)
discuss making Web services highly available
through extending the base standards with high
assurance, enhanced communication, and fault

detection, an insightful collection of capabilities
that enable more consistent performance. While
SOA offers loose coupling, problems in one part
of the system can have ripple effects on others.
Availability, resiliency, and self-management are
core attributes to a high performance system.

client-Side model view control

Within the last year, a great deal of focus has
been placed on richer Web application front
ends (Paulson, 2005; Weiss, 2005). Web 2.0 or
Ajax (Asynchronous JavaScript and XML) offer
compelling user experiences by delivering the
model view control (MVC) design paradigm to
the browser. The Web client can update its data
without end user action or refreshing the user
experience. The current page does not need to
reload to pull new data. It uses JavaScript and
the browser’s XMLHttpRequest object to connect
back to the server. The server might be running
a Web service, but it is not required. The docu-
ment format does not have to be XML, though it
often is. Using the Ajax approach to build user
interfaces for Web applications delivers a more
responsive user experience. Later in the chap-
ter, we examine the use of the Web 2.0 model to
deliver a high performance Web experience to
bandwidth-constrained geographies. Deliver-
ing a fast end-user experience can be the key to
persuading users that they are working with a
superior application.

graceful degradation

Andoni and Staddon (2005) offer a unique ap-
proach to notifying users that their status with
application is about to change. They describe
how a user might have access to a certain level
of content, but are delinquent on the payment of
a bill, thus jeopardizing access to the service.
Andoni and Staddon offer an example of graceful
degradation where the service not only delivers
a less optimal experience, but links the warning

���

Approaches to Building High Performance web Applications

of their eminent status change to the content that
they are viewing. The idea is that the user gets
less and less value out of the content; for example,
video content becomes choppier (Andoni et al,
2005). The key to graceful degradation is in al-
tering the user experience to communicate that
some features are not available while maintaining
the overall performance and availability of the
application. All too often, applications are built
with hard dependencies on certain features that
do (but should not) prevent users from benefiting
from the other unaffected capabilities. Building
high performance applications involves offering
a system that can temporarily modify itself to
maintain an acceptable level of performance while
setting expectations, so that end users are subtly
aware of any issues but are not helpless.

Using each of these approaches, we will iden-
tify the circumstances that lead the architectural
and design changes, review the relevant design pat-
terns, discuss the real-world implementation, and
consider the before and after results. While IBM’s
expertise solution offers many opportunities for
innovative thinking, the concepts discussed in this
chapter are generally applicable when reviewing
or designing Web applications for high load, high
availability and fast performance.

SettIng the context

Web application design and architecture have ma-
tured greatly in recent years. Numerous books and
articles discuss everything from design patterns
and enterprise architecture to solution deployment
strategy and high availability infrastructure (Alur,
Crupi, & Malks, 2001; Eckstein, 2003; Fowler,
2000; Gamma, 2002; Grand, 2002; Schmid &
Rossi, 2004). The current art grew out of the need
to provide highly scalable and fast Web experi-
ences to match the growing sophistication of end
users (Burns, Rees, & Long, 2001; Goodman &
Kebinger, 2004; Iyengar & Challenger, 1997;
Malveau & Mowbray, 2001; Schmid & Rossi,

2004; Zhang & Buy, 2003). One area lacking
in the current literature is a real-world strategy
for applying appropriate design patterns and
architectural approaches that improve the perfor-
mance and reliability of today’s enterprise Web
experiences. In addition, intranets often impose
additional constraints, budgets, legacy systems,
network bandwidth limitations, and the general
desire to do more with less (Appel, Dhadwal, &
Pietraszek, 2003).

Intranets are a fertile ground for trying new
approaches in the hope of solving real problems.
The payoff for finding the right architecture or
design is that it often leads to solutions that perform
to expectations, are easily maintained and, most
importantly, help transform the business. Popular
examples of this are expertise location systems
(AskMeCorp, 2005; Autonomy, 2005; Entopia,
2005; Tacit, 2005). These systems allow users to
find people or answers to questions in a fast and
efficient way. Helping employees in an enterprise
to find each other or other knowledge repositories
has a direct impact on the company’s ability to
draw from its network in real-time.

Example: Amy is a sales representative with
Acme, Inc., and is at a client’s location pitching
her products. The client has introduced a new
requirement, integrating two technologies with
Acme’s solutions. Amy quickly does a search
across the company for people with knowledge
of the technologies in question. She gets twenty
results, including three senior level technical ar-
chitects and two that have actually worked with
the client in the past. Amy holds her own, saying
that there are experts in the company with those
technologies, and we could certainly revisit and
explore how it might come together. During the
break, Amy chats with her colleagues to get more
background, sends email to a few of them, and
creates a group so she can refer to them at a later
time. Amy is able to demonstrate responsiveness
and strong ties to her company for the rest of the
client visit.

 ���

Approaches to Building High Performance web Applications

In 2004, IBM redesigned its internal corpo-
rate directory, “BluePages,” to include extensive
profiling information, updated search capabilities,
real-time connection and common Web services.
Some of the challenges included managing an in-
crease in data (10-fold), a demanding world-wide
target population, and a geographically-dispersed
infrastructure. These are the somewhat typical is-
sues architects face today, and the 2004 redesign
proved several best-practice approaches to high
performance Web application design.

chaLLengeS In BuILdIng
hIgh performance weB
appLIcatIonS

data-driven web applications drive
contention to the data Source

Over the last few years, Web applications have
moved from basic content presentation with a
few dynamic elements to more advanced content
personalization and collaboration capabilities.
Regardless of where a given application lives on
that spectrum, most aggregate data and every
request to the Web application incurs at least one
hit to a data source. This introduces some obvi-
ous opportunities to manage transactions, while
ensuring that the contention to the data source is
minimized. Among the many ways practitioners
address this space are connection pooling, data
source replication, and resetting expectations to
redefine requirements.

Pooling

Connection pooling is the primary tool for ensur-
ing fast transactions to data sources. Object pools
are collections of already created and initialized
objects (Grand, 2002). The pool often limits the
number of possible objects to maintain resource
predictability and force a level of resource manage-
ment. Objects are created beforehand to eliminate

the performance cost associated with creating
and initializing the objects for use. In the case of
a database connection pool, a series of database
connection objects are created that maintain a
connection to the database. This eliminates the
need to create a connection or initialize any re-
quired parameters. Many application platforms
provide database connection pooling as part of
their design: however, object pools are fairly
straightforward to implement and are required
when there is no “out of the box” solution. In the
end, connection pooling is all about making the
transaction perform so well that any contention
for a managed resource is minimized.

Replicate the Data Source

Enterprises often have guidance and standards for
reuse and data mart creation and management.
The goal is often to minimize redundant data in
multiple places. The side affect of centralizing data
is that many exploiting applications are requesting
the same data source. If deployed properly, this is
a suitable strategy: Each exploiter is given access
to a specific number of connections, reducing one
application’s impact on another. An issue is still
not resolved when databases are geographically
separate from the exploiting application. Data-
base connection pools and database connection
tools usually connect to databases over a network
protocol that carries all the risk of network la-
tency and instability. One method of mitigating
this variable is to replicate the data source to the
same subnet as the application server (Pacitti &
Simon, 2000). By collocating the data source
with the Web application, the number of issues
introduced by the network is greatly reduced. If
there was an issue with contention or network
performance, they are addressed. As with many
of these solutions, contention can still exist (Ab-
badi & Toueg, 1989; Pacitti & Simon, 2000), but
by addressing the performance of every link,
contention is minimized.

���

Approaches to Building High Performance web Applications

Do Less, Simplify Views, Reduce
Functionality

A requirements document is an architect’s best
friend. It clearly specifies both functional require-
ments (i.e., users need to be able to send pages from
the Website) and non-functional requirements (i.e.,
needs to handle 200 concurrent users per second).
Therefore, the client has a clear understanding
of what he/she/it is asking and what the service
provider is committing to deliver. There are times
when requirements are accepted even with little
knowledge of what will be required to fulfill the
commitment. This is very common when the
team either lacks the experience necessary to size
appropriately or when it is breaking new ground.
During these times, practitioners often return
to their customers, presenting the issues of the
moment and convincing everyone that the right
thing to do is revisit the requirements document.
If there is too much occurring in a given user sce-
nario (impacting the ability to support a certain
service level), the team must consider whether it
should be doing less, simplifying view or reducing
functionality. Sometimes this really is the only
option; after all, ambitious customers ask for the
world, and it is the service provider’s job to help
realize that vision as best he/she/it can.

transaction-Based Systems tend to
do too much

In the early days of the Web developer, applica-
tions were often created as Fast-CGIs hooked into
Web servers, persistent in memory and performing
functions on each request. The more promising
applications often provided considerable value,
but increased in complexity. Application design
went through a period of linear programming and
with the maturation of application models such
as J2EE, developers were able to branch out into
an object-oriented world where solutions were
created by pulling together modular components.
Unfortunately, the practitioners did not evolve at

the same rate as the technology. All this is to say,
developers of transaction-based systems often do
too much in one area of the application, reducing
flexibility and manageability.

The Servlet Controller

One of the common approaches to structure a
Web application is to use a servlet controller (Alur
et al., 2001), which handle all the requests into
an application. They often perform some very
basic request preparation and then forward the
transaction to other servlets to perform specific
tasks. Servlet controllers act as the gate keepers
to the application, providing a single face to the
end user while maintaining the flexibility and
modularity of specialized servlets that handle
only the function required at any one time.

STRUTS

One of the most popular implementations em-
ploying a servlet controller is STRUTS from the
Apache Software Foundation (Apache Founda-
tion, 2005). STRUTS is a very robust framework
that allows Web applications to be built based on
some of the best design patterns (Sun Microsys-
tems, 2002). STRUTS includes several features
that address the transition from a single bloated
application to a highly modular system.

Deal with Slow Performance by Adding
Servers /Over-Scale

There are times when a change to the requirements
document is not an option. The next favorite solu-
tion is to scale the application horizontally. “We
will just add more hardware” is what we often
hear. This traditional approach usually means
you have enough servers to handle peak loads,
and during the lower traffic hours the application
is over-provisioned. Adding hardware to solve
an architectural or design problem is a tactical
solution which only masks the problem. Adding

 ���

Approaches to Building High Performance web Applications

hardware often helps address load issues, but the
increase in resource brings an increase in com-
plexity. There is a balance to be found between
budget, hardware capability, and application
architecture and design.

Complex Applications Need Tender
Loving Care

Even the simplest applications have a tendency
to become complicated. Companies often have
legacy systems, a variety of existing hardware,
software and processes, and the integration task
can therefore be daunting. Even the most skilled,
well-funded projects have weak points. These
Achilles heels often require constant monitor-
ing.

Some systems integrate with in-shop or third-
party monitoring systems, allowing systems
administrators to be notified when issues arise.
The basic checks include making a request to the
application, and as long as there is a response,
trouble goes unnoticed. Some systems are more
proactive, looking for errors and response times.
However, with the desire to mask errors or erratic
behavior from end users, monitoring tools have a
difficult time relying on the basic tests. The Web
application may be performing fine, while the
database is down.

Savvy developers build in special servlets that
perform end-to-end tests of their Web applica-
tion. These test servlets make a series of calls
to ensure that all is right from the application’s
perspective. However, this level of development
is often unfunded because the value it provides is
seen only when there is a problem, and even then
it simply quickens the time to resolution instead
of eliminating it. Applications with a myriad
of dependencies, network files stores, LDAP
(Lightweight Directory Access Protocol) servers,
databases, and Web services require monitoring
as well. To an end user, an unresponsive or non-
functioning application is as good as no application
(Goodman et al., 2004).

the platform and plumbing can
Impact perceived performance

Managing end user perception is a key task in
achieving high customer satisfaction. With the
continual push for a service-oriented architecture
and componentization, the dependency list keeps
growing. Exposing services also means provid-
ing consistent, reliable service; impacting and
exploiting applications in acceptable ways. One
of the problems is that not everything is managed
in the application architecture layer. Platform and
network plumbing can have serious impacts to
perceived performance.

Applications are often made up of many com-
ponents and software stacks. Each component
contributes to the overall application platform, and
it is possible to combine modules that work better
or worse. This fact often drives solution providers
into single-silo approaches, embracing a single
vendor or a specific recipe of vendors to deliver
solutions. A more mature approach is to realize
the need for standards-based solutions to ensure
that components are easily mixed and matched
without impacting the exact implementation of
the application.

Network conditions have an obvious effect on
applications, especially when a global audience is
considered. A fast application in North America
(.25 - .50 ms response time) can become slow in
Asia Pacific (5-15 sec). Some of these challenges
arise simply because of the amount of content
being shuttled across networks. Some delay can
be minimized through caching edge servers, bet-
ter network backbones, and globally-distributed
solutions.

unexpected errors happen, but
who needs to know?

Application developers are told to handle errors
with grace, but the definition of “grace” often
varies in meaning and context (Nielsen, 2003;
Preece, 1994; Raskin, 2000). If an application

���

Approaches to Building High Performance web Applications

supports a very small audience, it might be
preferred not to spend a lot of time on exception
handling. In most cases, though, applications are
meant to benefit a larger population and, often, a
demanding user.

The most basic approach to handling errors
is to employ custom error pages, so that at least
the error looks like it was intended to be read and
responded to. This is the minimal amount of effort
required to keep up appearances.

Some developers have resorted to irrational
behavior to confuse the user. If an error occurs
when submitting a form, some applications
redirect the user to a different page, possibly
unrelated, in the hopes of confusing or at least
giving the appearance that the user might have
actually been at fault. “When in doubt, redirect
to the home page” is a motto no one should be
fond of, but it happens.

More sophisticated developers include a clear
and direct message acknowledging the error.
Sometimes an alert is generated for the benefit
of the systems team; other times, the Web appli-
cations present the message to stop any further
complaint. These approaches often tailor errors
with reasonably coherent messages. Instead of
ERROR 500, it might read “We’re sorry! The
application is currently having difficulty handling
your request.”

approacheS to BuILdIng more
reSILIent weB appLIcatIonS

Numerous challenges face application developers
and architects developing scalable Web applica-
tions that also maintain performance and reli-
ability. In the previous section, we covered five
scenarios that often plague Web applications: data
source contention; performing too many tasks;
care and maintenance; platform and network
capability; and exception handling. With each
of these areas, we explored some of the popular
approaches for addressing the problem space.

In this section we examine alternative ap-
proaches to these problems that have proven best
practices in our own architecture and application
design. We will cover:

• Caching strategies for high-availability
Web applications: beyond storing copies of
HTML (Challenger et al., 1998; Iyengar et
al., 1997)

• Asynchronous task processing within Web
applications: removing non-essential linear
logic from high-volume transactions (Grand,
2002)

• Building self-reliant autonomous behavior:
encapsulating through services achieving

Table 1. Sample non-functional requirements (NFR) for an enterprise application

Target Measured By

Scalability Up to 250 requests per second Application stability

Performance
- For 95% of the transactions < 7

seconds
- For 5% transactions < 10 seconds

Probe tools measuring response
times at different geographies

Availability 99.96% during schedules service hours Tools measuring availability
metrics

 ���

Approaches to Building High Performance web Applications

tight integration with true loose coupling
(Birman et al., 2004)

• Client-side Model View Control (MVC):
moving MVC to the browser supercharging
the response times and getting a “wow” user
experience (Murry, 2005; Sun Microsys-
tems, 2002)

• Graceful degradation: keeping users think-
ing and feeling “fast,” “reliable,” and “always
on” (Florins et al., 2004)

high-availability application Layer
caching

One of the challenges that busy Web applications
and Web portals face is the need to perform data
source queries to deliver features and functions to
end users. As we reviewed earlier, this often drives
contention to the data source. One overlooked
approach is to design smart caching strategies to
minimize calls to the data source. This aversion
is well warranted, as the decision to cache often
has implications in terms of high availability, data
freshness, synchronization challenges, and real-

time management. The following section reviews
two strategies for caching: database-driven cach-
ing and more dynamic LDAP caching.

Database-Driven Caching

Typically, relational databases comprise a mix of
static lookup-type tables and dynamic or updat-
able data sets. Each of these offer opportunities
for application layer caching. To help provide
context to these situations, we will use the IBM
expertise location system as an example.

Static Table Data Cache

One of the popular aspects of an employee’s profile
is the contextual information which we display
alongside the more central content. A drastic
change from the previous version is the area of the
profile that depicts organization structure. When
this profile view was initially designed, the pages
were getting response times around 850-1000
milliseconds and were driving, on average, six
times more LDAP operations to our enterprise

Figure 1. Example of a BluePages profile view with reporting structure (right)

���

Approaches to Building High Performance web Applications

directory than the second most common function
of viewing employee records.

While there are several factors contributing to
the performance attributes, the primary one was
the introducing of the reporting structure on every
profile. To help address both of these undesirable
characteristics, we designed a cache holding re-
porting structure information for all users, using
a local database as the source. Obviously, there is
huge performance gain by replacing three LDAP
operations with three lookups in a local memory
object. Reusing the application data source to build
the data structure alleviated any additional work
from the corporate LDAP directories.

Caching lookup tables and other relatively
stable areas of the database is easy and reduces
the workload on the database and the application.
It is a simple way of maintaining the user experi-
ence while improving performance.

Dynamic Table Data Cache

Static data is an easy and obvious caching oppor-
tunity, one that many architects and developers
can easily apply to existing or new applications

with very little investment. Obviously, things get
challenging when caching occurs at the applica-
tion layer, and the data has the possibility of being
updated. Suddenly, maintaining appearances to
an end user has to be well thought-out.

With the move to a modern Web application,
IBM’s expertise location exposed several com-
mon services and introduced an unexpected load.
Caching at the service layer played a very impor-
tant role in sustaining the growing popularity of
service-oriented architecture and Web services.

In this type of cache, we need to deal with a
table data which gets updated continuously by
the Web application.

There are three key parts of this design (Figure
2): the scheduler, cache manager (Grand, 2002),
and high-availability data structure. The sched-
uler initiates the cache manager and, in follow-on
versions, also manages any message queues and
events that trigger cache management features,
such as changing the schedule for refresh. It per-
forms most of the critical operations managing
the cache data structures. Obviously, the cache
manager is responsible for making calls to a
Data Access Object (Alur et al., 2002) to load the

Figure 2. Highly-available data cache

 ���

Approaches to Building High Performance web Applications

cache. This might be from the database or from
the file system, depending on the configuration.
The file system was used to eliminate start-up
lag at risk of displaying stale data. For example,
the reports-to chain cache (organizational) data
object in BluePages is approximately 18MB size.
It takes enough time that cycling the application
produces undesired load and delay. By automati-
cally committing the data structures in memory
to disk, the cache manager can load instantly and
update as needed.

The cache manager works with two data
structures, the primary and secondary caches.
Various data structures operate slightly differ-
ently and, often, some level of synchronization
is required when performing manipulations. To
eliminate contention of the data cache, a second
one is created by the cache manager. It uses the
second one to perform any management operations
(add, update, delete) and sets a Boolean flag to
immediately put it into play. The other cache can
then be deleted or saved depending on the refresh

strategy. For example, if the database is designed
with time-stamps on changing data, deleting the
cache is somewhat wasteful. There might be only
five changes, and there is really no need to transfer
all of the other data. By selecting only the items
that changed and updating those in memory cache,
updates can happen frequently and take effect
more promptly with less resource churn.

One of the major undertakings for BluePages
was the introduction of Web-based manage-
ment for key subsystems (Figure 3). The cache
management is one example of these Web-based
management systems.

Web-based management of the cached object
allows us to monitor the data that is in memory.
For the reports-to chain cache, it shows data for
an employee’s reporting structure. It also allows
an administrator to manage the data in memory
(create, update, delete), commit those changes
to the file system or database, and reload the
cache, if necessary. Providing administrators
with management capabilities to key subsystem

Figure 3. Data cache Web-based administration

�00

Approaches to Building High Performance web Applications

components removes the specialists from having
to perform more risky manual tasks in support
of an application. It also allows the application
to appear more responsive by supporting more
real-time management instead of code changes
or manual application restarts.

By using strategic caching, BluePages was
able to see a reduction of 800 milliseconds in
response time. Approximately 750 milliseconds
were due to the reports-to chain cache and ~50
milliseconds were associated with database calls.
Currently the same page delivers a 70ms server-
side response time.

Another situation in which dynamic data cach-
ing plays an important role is the design of service
implementations. Most services (Web services,
XML-RCP, URL APIs, etc) take a considerable
amount of overhead to process a request. For
example, in Web services, a decent amount of
XML is being manipulated; this in turn creates
a considerable amount of garbage. Consider that
overhead on top of the need to actually service
the request by hitting data sources or performing
calculations. BluePages receives approximately
3.2 million service calls per day and supports a

response time of a few milliseconds for service
exploiters. To achieve this level of efficiency,
caching was employed to enable smarter transac-
tion processing.

The key to smarter transaction processing is
providing a proxy between the transaction request
and the service logic, or process. The proxy deter-
mines if the request should pass into the process
stage or if the request for whatever reason deserves
a cached, static, or predefined response.

In the BluePages architecture, this “service
cache layer” pre-fetches basic information related
to the service and decides if it has enough infor-
mation to respond. More specifically, BluePages
offers a URL API to access a user’s personal
photo. The cache layer stores all the unique IDs
and uses this information to short-circuit the
request. If the request is for a user that does not
have a photo, a redirect to a default image can be
sent. The redirect is used instead of a full photo
to keep the transaction light and to ensure that
browsers get an opportunity to cache the default
image for faster rendering.

In BluePages, this cache avoids over one mil-
lion service calls from reaching the processing

Figure 4. Using caching to avoid unnecessary transactions

 �0�

Approaches to Building High Performance web Applications

phase of the service. That translates into over one
million database calls while improving overall
response times.

Dynamic LDAP Caching

Sometimes caching all the data in RAM is just a
waste of space. LDAP caching with some level of
detail is probably not the best candidate to load
into RAM. Presumably there is a high level of
caching at the LDAP server, so it is best not to
add another layer. Therefore, a cache is needed
that builds based on usage, and some general rules
about how memory can be reclaimed and which
entries are always a “good idea” to have.

The typical reporting view includes a list of
individuals related to the current profile. While
one LDAP connection can be established with
multiple queries executed, the transaction itself is
still somewhat intensive. We think of the transac-
tion time with LDAP as being very fast, and it
is; but when you deal with so many transactions,

general queuing theory and rendering speed tend
to get the better of us. A read from RAM is simply
much faster than a transaction to LDAP.

This view is supported with the lazy loading
(Grand, 1999) dynamic LDAP cache. At least
three levels of the chain already exist, and the
subsequent entries are cached for future use.

The LDAP Cache Controller servlet acts as
the central management point. It delivers the
subsystem management views, and Web appli-
cations use a static method to access the Cache
Manager (Grand, 2002). The Cache Manager is
the object that populates the cache and fails over
to LDAP as needed. It keeps track of metrics and
performs any regular updates based on the Data
Refresh Scheduler.

As with the other cache subsystem, the LDAP
cache has a management interface. The main dif-
ference is the cache statistics view. With a database
view, the hit rate is not relevant. In many cases,
it is 100%. In the case of a dynamic cache where
you are building it based on usage, hit rates are

Figure 5. BluePages reporting structure tab

�0�

Approaches to Building High Performance web Applications

Figure 6. Dynamic LDAP cache

Figure 7. Dynamic LDAP cache Web administration

 �0�

Approaches to Building High Performance web Applications

everything. When you consider that the only views
driving this usage are organization structures (the
third most accessed view), it is astounding that
we experience an 80% hit rate.

In order to avoid the added traffic, caching was
used. On some pages, we save up to 6 seconds—an
eternity in Web time.

• Cache hit rate is 80% with a peak size of
80K entries stored

• Total LDAP call reduction by ~792K per
day (240K queries vs. 48K queries)

• Avoiding up to ~6-10 LDAP operations and
a response time of ~1000-1500 milliseconds
on each organizational page

asynchronous task processing

Making Transactions Non-Linear

One of the themes that this chapter raises is
the notion that many operations can happen
asynchronously (Grand, 2002). However, many
architects and developers do not take the time to
think about how to build their system to support
it. Often implementing function wins out over
responsible use of resources. A typical Web trans-
action is performed through a GET or a POST
to a servlet or CGI. The servlet or CGI processes
the request and returns a response. In many ways
this is linear programming. If you use message

Figure 8. BluePages Web administration view of last ten searches

�0�

Approaches to Building High Performance web Applications

queuing systems in your Web applications today,
then you might already know the wonders of
responding without necessarily completing the
entire transaction. To help illustrate this design
point, BluePages offers a couple of examples, all
based on the same pattern.

One of the design criteria for the online
administration page was to track operation sta-
tistics in real-time: Who were the last ten users
to log-in (success/failure), what were the last ten
searches, and so forth. One of the more costly
aspects of collecting such performance statistics
is that it takes cycles away from performing the
user facing operations. The problem to solve was
how to perform the tasks as part of a transaction
without constantly having a locked state around
a data structure, or processing requests while we
should be sending back results.

The basic solution is based around a block-
ing queue design pattern (Grand, 2002; Kabutz,
2001) dequeueing only when there are objects
present in the queue. This avoids spinning extra
cycles with no operation. In the class diagram

(Figure 9), SampleBlockingQueueClient is a
client/component exploiter of QueueManager.
QueueManager manages the thread and message
brokering. QueueManager is initialized with a
QueueEventHandler and uses that interface to
interact with other implementations of handling
the queue. For example, some queues need to be
priority-sorted or dequeued based on some other
criteria. The GenericQueueItem happens to be the
object being enqueued and dequeued. It is a very
simple and effective design pattern.

An example from BluePages illustrates the
real-world use further. BluePages provides a key-
word search to employee profiles. A user might
search for other employees in the company who
know about a certain client and a technology.
The servlet processes the request and enqueues
a value object to the queue with minimal amount
of data (i.e., the query terms, the URL, the user
ID, a time-stamp, etc.) and then respond with the
search results. Asynchronously, a thread uses a
QueueEventHandler object to decide which item
in the queue should be dequeued and then passes

Figure 9. Blocking queue class diagram

 �0�

Approaches to Building High Performance web Applications

that object to get handled. The object performs
any calculations (number of searches, list man-
agement, and clustering or trend-type calculation)
and stores the data to be presented and used in
other ways. An example of where this data can
be used is in the popular, “what are other people
searching for right now” capability. Even though
the insert is synchronized (we used a Java Ar-
rayList), they take more precedent because there
are more enqueues than dequeues at any given
time. You can see in the sample screen shot of the
BluePages administration interface that the peak
queue size for this specific server instance is 268,
so we know the approach is working.

In some cases, a soft-queue is not sufficient,
and a real message queue subsystem is required.
The proposal of this section is simply to raise the
issue that not all aspects of a transaction need to
complete during the duration of handling a request.
There are times when it is not encouraged, and
specifically for J2EE, it is suggested to be incor-
rect. For example, when performing database
transactions asynchronously, a transaction is
preferred for all the security context concerns
(Brown, 2005). Asynchronous beans helps al-
leviate some of this limitation, as discussed in
the next section.

Asynchronous Beans in J�EE

Spinning new threads from a servlet for asynchro-
nous task processing is a common design approach
until recent times. Some of the drawbacks of this
approach include: The transaction loses container
security, transaction scope, and lack of failover
during critical failures.

J2EE came up with a standard solution to solve
this problem, in which the servlet request places
the task information as a message in queue, and
message-driven beans (MDB) read this message.
A message-driven bean is an enterprise bean that
allows J2EE applications to process messages
asynchronously. It acts as a JMS message lis-
tener, which is similar to an event listener except

that it receives messages instead of events. The
messages may be sent by any J2EE component,
an application client, another enterprise bean, or
a Web component, or by a JMS application or
system that does not use J2EE technology. MDBs
process the task in an asynchronous way within the
container, taking advantage of all the container’s
built-in features. As soon as the request message
is processed, the MDB can place a response on the
response queue. Servlet requests can keep polling
the response queue for the status of the request
submitted to let the end user know the results of
the asynchronous task.

Business Grid Computing

Web application architectures often require batch
processing of some of the maintenance tasks. It is
not uncommon to have developers rewriting code
with stand-alone applications or scripts to perform
these operations outside of the Web container.
This results in code redundancy and, obviously,
such implementation loses the application server
container advantages. Advanced J2EE containers
such as IBM WebSphere Extended Deployment,
allow asynchronous task processing by allowing
batch, long-running or compute-intensive tasks
to run within the container; the best application
is chosen for this task based on resource utiliza-
tion.

The business grid function in WebSphere
Extended Deployment extends the WebSphere
Application Server to accommodate applications
that need to perform long-running work alongside
transactional applications. Long-running work
might take hours or even days to complete, and
consumes large amounts of memory or processing
power while it runs.

While IBM and other companies have ad-
vanced application platforms to help with the
task of batch processing as an architect or ap-
plication designer, it is important to ensure that
your applications have a strategy to minimize the
duplication of code and fragmentation.

�0�

Approaches to Building High Performance web Applications

application resiliency

As more applications are designed to participate
in Service-Oriented Architectures, they increase
their dependency on resources outside of their con-
trol. Applications make calls to external interfaces,
such as databases, LDAP, messaging servers,
SOAP-based Web service calls, or even HTTP-
based services. Suddenly, the performance of an
application depends on the external interfaces of
other applications and services (Krishnamurthi
& Bultan, 2005). The availability or poor perfor-
mance of external services potentially impacts the
availability of the dependent exploiting applica-
tions. This section will look at how applications
can employ a more autonomic, resilient approach
to these situations.

Human Required: The SOAP Fault
Specification

For Web Services, W3C built the SOAP Fault
(W3C, 2003) to represent the availability status of
the service providers. The information provided

by SOAP Fault is similar to the reason-phrase
provided by HTTP (Internet Society, 1999) which
underscores the nature of the problem (Table 2).
One of the problems with these approaches is that
system designers end up using generic issue codes,
making it almost impossible to know what is really
going wrong. Issues can be detected, but a human
is still required. What if the dependant hosting
environment has problems? This could result in
Web application servers accepting requests, filling
queues, and in turn affecting the entire infrastruc-
ture. This becomes even more unattractive if the
hosting environment provides shared hosting or
manages entry through proxy servers. A SOAP
Fault indicates that an issue occurred with that
transaction; however, it places the next step back
onto the calling application, which may very well
keep making service calls and impacting the
overall application performance.

Communicating Availability

Transaction or session-specific errors often indi-
cate that something is wrong, but a hung socket

<?xml version=”1.0” encoding=”UTF-8”?>
<soap:Envelope
 xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/” >
 <soap:Body>
 <soap:Fault>
 <faultcode>-1000</faultcode>
 <faultstring>Database is unavailable.</faultstring>
 <detail/>
 </soap:Fault>
 </soap:Body>
 </soap:Envelope>

Table 2. Example of SOAP fault

 �0�

Approaches to Building High Performance web Applications

connection or a cascading error may never return
a satisfactory message to allow an exploiting
application to respond appropriately. In order to
provide a higher level of resiliency, real-time status
is required. UDDI servers can identify several
end points, which may allow a Web service client
the opportunity to use a different system to ac-
complish the same task. The problem is that any
one of those services may be having problems.
To help address this situation, system availability
is included as part of the interaction between the
service consumer, service discovery, and service
provider.

This model (Figure 10) provides a level of
service availability above and beyond the typi-
cal transaction-based error. Service clients can
be advised of issues through simple calls to an
independent third party, which allows appropri-
ate logic to take place to maintain a higher level
of service. This technique is similar to network
dispatcher models, where a single service pro-

vides a feedback loop to ensure that servers in
a cluster are available before being dispatched.
For example, an asynchronous process may
test the availability of an externally-dependant
service through the central availability system.
The response will provide information similar to
typical faults; however, it is received outside of
a transaction with the provider. This eliminates
hung sockets or other variables that are only vis-
ible to the provider. Updates to availability status
can be made from other enterprise monitoring
tools, allowing for an integrated knowledge base
of service availability.

In Figure 11, Enterprise Directory is a service
provider. In this case, the service provider makes
use of Tivoli Service Management to monitor its
services. ED Monitor is one such service moni-
toring tool. BluePages monitors the health of the
enterprise directory to failover or degrade service
as necessary. Applications cannot perform in
autonomic ways without being informed about

Figure 10. Service availability system for more predictable operations

�0�

Approaches to Building High Performance web Applications

their state, the state of the environment and, more
importantly, the state of the systems and services
on which it depends.

client-Side model view control
(mvc)

The Model View Control (Sun Microsystems,
2002) design pattern is a very popular approach
to Web application design. Its one limitation is
that the view is created server-side and must be
transmitted to the client for interpretation. Mov-
ing MVC to the client truly separates the view
from the middleware. The need for such activ-
ity is rooted in the desire for richer interactions
and faster transactions. This section addresses
client-side MVC and getting that “wow” user
experience.

Common challenges for any enterprise Web ap-
plication include internationalization and a variety

of hosting issues that may impact responsiveness.
While there are frameworks for addressing lan-
guage translation among a diverse group of end
users, the system deployment is often centrally
located, resulting in poor performance for loca-
tions with limited bandwidth or congested links.
BluePages is a real-world example of an enterprise
application offering internationalization while
being hosted from a single geography.

Figure 12 charts response times for the same
page for Asia Pacific, Europe, and the United
States. BluePages is deployed in the United States
and, as the chart depicts, the performance of the
application degrades as the end user’s location
moves further away.

The problem with the traditional (server-side)
MVC design pattern is that it renders the entire
view at the server, and makes the application and
infrastructure components transmit the data to the
Web clients. Web applications end up sending a

Figure 11. BluePages system checking availability of enterprise directory

 �0�

Approaches to Building High Performance web Applications

considerable amount of HTML back to the client
Web browsers to achieve a rich user interface.

Consider users that rely on client-installed
applications (VB-based, Lotus-based, or even
Oracle forms), which query for information from
a server. The amount of data transferred is the
smallest possible, as it is no longer transmitting
the view. The client-side applications display the
data using the front-end logic held at the client.
The client server model helps illustrate the benefits
of a client-controlled view; however, it brings all
the negative issues that drove the Web revolution.
The ideal situation is a richer client side view that
is managed via the Web.

The decision regarding whether to use client-
side MVC or server-side MVC may depends on
several factors, including the kind of application,
end user connectivity, or even how much data is
being transferred to the client browser and what
impact it has on the overall performance of the
Web application. There are two approaches to
client-side MVC: JavaScript Templates and the
XMLHttpObject.

Client-Side MVC: Using JavaScript
Templates

Using the JavaScript Template design pattern
places all the rendering of the user interface into
client-side cacheable assets. In this design pattern,
the Controller Servlet invokes a Model Servlet.
The Model code executes business logic, includ-
ing actions such as retrieving information from
database systems or other external services. The
Model servlet passes values to the View Control-
ler to render an XML document or HTML/plain
text response. The View Controller decides
which JavaScript template should be invoked for
a particular service response. Once the response
reaches the client browser, the JavaScript template
specified by the View Controller renders the
information retrieved by the service call. All the
necessary HTML logic needed to display a rich
GUI Web page is already built into the JavaScript
templates.

This design pattern is dependent on how Ja-
vaScript files are cached by the Web browsers.

Figure 12. BluePages response time comparison

��0

Approaches to Building High Performance web Applications

When a JavaScript file is requested through the
browser, it is also accompanied by HTTP header
directives that tell the browser how long the object
can be considered fresh. Freshness translates to
how long the resource can be retrieved directly
from the browser cache instead of making calls
to the originating end point. Since the browser
represents the cache closest to the end user, it of-
fers the maximum performance benefit whenever
content can be stored there. Another consideration
is that the JavaScript templates need to change
infrequently to support a longer client-side time-
out. Using this design pattern, BluePages shows
a ten-fold improvement.

Client-Side MVC Using XMLHttpObject

Every modern Web browser has some form of
XMLHttpObject that provides a socket connec-
tion to the originating server. This provides the
opportunity to make subsequent asynchronous
calls. Coupled with Dynamic HTML (DHTML),
the user interface can be updated without a browser
refresh. Avoiding the browser refresh provides a
richer user experience because the context of the
interaction is maintained. This is a popular ap-
proach and is often referred to as “Asynchronous
JavaScript and XML” (AJAX) (Murry, 2005). The
most popular examples are found from Google

Figure 13. Client-side MVC, JavaScript templates

Table 3. Sample search results response time comparison

Search
Keyword

Number of
Results

Server-Side MVC Design
Response Times

Client-Side MVC Design
Response Times

Smith, Chris 30 14.12 1.482
Linda 28 8.32 1.803
Kline 42 8.47 2.093
Kile 8 6.43 1.172
Inampudi 3 6.17 1.042

 ���

Approaches to Building High Performance web Applications

(GMail, Google Suggest, and Google Maps)
(Google, 2005a, 2005b, 2005c).

In this design, pattern applications make
asynchronous HTTP calls using XMLHttpObjects
via JavaScript. A server-side service returns a
response object. The response could be SOAP,
XML, plain text, or JavaScript. The response
text is then processed by the logic in JavaScript
methods. Using DHTML, the content is displayed
on the Web page.

Another use of this design pattern is depicted
in Figure 15. As the user enters the employee’s
name for the search, the type-ahead engine makes

a service call to retrieve matches from BluePages
user dictionary. The list of potential names is dis-
played in the pull-down list based on the retrieved
matches. As the user types more characters, the
search is refined. In this scenario, it is important
that the list retrieval is faster than the end user’s
typing speed.

Network Bandwidth Savings

Client-side MVC has another important advan-
tage: network bandwidth savings. Since client-side
MVC makes use of static templates to render the

Figure 14. Client-Side MVC using XMLHttpObject

Figure 15. BluePages type ahead engine using XMLHttpObject

���

Approaches to Building High Performance web Applications

user interface, the look and feel for an application
can be cached in the client browser. The data that
gets transferred to the client browser becomes
much smaller.

While client-side MVC introduces some ad-
ditional design complexity for Web applications,
it can be worthwhile to achieve richer interfaces
and more responsive Web experiences. There are
sure to be many perspectives on the advantages
and disadvantages of client-side MVC before it
is universally accepted, but it has the potential to
address some of the long-standing issues of Web
application architecture.

graceful degradation

Most degrees in computer science and informa-
tion technology do not require a class in human-
computer interface design. It is not uncommon
for an application to let the end user know that
there was an error, for example, that it could not
write to the memory and thus had to halt. The
developer might have thought that the error would
never occur, but even some of the common issue
messages are unfriendly.

While there has been plenty of discussion
over making exceptions appear informative and
friendly (Nielson, 2000; Preece, 1994; Raskin,
2000), there is less focus around graceful degra-
dation (Andoni et al., 2005; Florins et al., 2004;

Herlihy & Wing, 1987). The driving principal
is that an application can go beyond responding
with friendly errors and actually disable features
and functions until the environment stabilizes.
Web applications in particular are vulnerable
to an increasing number of dependencies: Web
services, databases, LDAP directories, and file
systems. Any single dependency can bring a Web
application to a halt, and an unresponsive Web
application might as well be a dead application.
A simple method to address some of these issues
is to place a timeout on the transaction, forcibly
breaking the process to return an error to the end
user. It is better to say something is broken than to
be truly unavailable. This is really the first step.
The second step is to prevent future access to the
resource until a successful transaction indicates
that the resource is again available. The chal-
lenge is to monitor your dependencies and code
against the availability of those resources. If a
database becomes unavailable, a backup might
be used or menu items might be disabled, with
ample indication to the end user that some of the
features to which they may be accustomed have
been disabled temporarily.

The BluePages Web application has many
dependencies on external resources, and this pro-
vides an excellent real-world example. As part of
the application, a service interface exposes read
access to a back-end data store. Simple requests

Table 4. BluePages search performance using JavaScript template design pattern

ED Search Current Implementation BPv6 Implementation

Page size

77.9KB

(Search on “kline” 25 results/page)

18.7KB

(Search on “kline” 25 results/page)

Data transfer / day 77.9 GB 18.7 GB

 ���

Approaches to Building High Performance web Applications

to the service return a person object in the form
of a DSML XML document. It happens that the
full-text search engine requires XML documents
to be written on a file system. This allows the file
system to be the primary data source with the
database as a backup. The added resources and
processing required for reading a record from
the database and returning an XML document
are less preferable than serving up a static XML
document. A simple servlet proxies requests to the
appropriate data handlers by referencing a Boolean
flag. This flag is used as an availability indicator
of the primary data source. This indicator is set
in two ways. First, any transaction which fails
accessing the file system will set the flag so sub-
sequent calls are routed to the secondary method.
Second, an asynchronous process periodically
checks the primary resource and proactively sets
the flag in the hope that it will catch the issue
before a failing request does. Additionally, this
process sets the flag back when its periodic test
no longer fails. From an exploiter’s perspective,
the service rarely fails. At most, there is a slight

slowdown in performance, which is undesirable,
but better than failing altogether. Adding a proxy
layer between the requestor and the actual data
access method lets the application short-circuit a
potentially grave situation early, preserving the
rest of the application.

Another example includes a typical depen-
dency on a database or LDAP directory. BlueP-
ages provides both directory lookup and free
text search. The truth is that the free text search
can provide similar search results to that of the
directory query, but the results are not exactly the
same. Based on the previous example, it is easy
to imagine the monitoring system provided in the
application. The difference here is that if there is
a problem with the LDAP resource, the current
deployment has no effective way for failover.
Instead of simply sending an error or notifying
the user that the LDAP servers are causing a
problem (not exactly something the average user
understands), a subsequent query is automatically
performed using the free text search. An unre-
sponsive directory message might imply that the

Figure 16. Dedicated resources vs. shared utility

���

Approaches to Building High Performance web Applications

Web application itself can no longer perform any
useful function. In our case this is not accurate,
but end users should not have to figure this out.
The search results are not perfect, but often they
will suffice. Moreover, it is a single step to an end
user; they cannot use the application improperly.
Even if they do not see the general message that
some features are disabled, the query is handled
and results are provided as best as possible. The
results are labeled appropriately, and the error
messages are well communicated, while the user
maintains access to the information. In this case
we alter the behavior of the application slightly
to support a more satisfying application experi-
ence. Failure is communicated, and next steps
are clearly provided.

The principal of graceful degradation means
that, as an application begins to fail, it does so in
a way that is not jarring to the end users or other
components or subsystems. If a single feature is
broken, disable the components that rely on that
feature, provide a method for resuming work,
or failover to a backup method. There are times
where budget, design limitations, or schedule
restrict the ability to implement applications in
this way, but the benefits are quite significant. Ap-
plications that gracefully degrade and re-enable
as possible are easier to manage and maintain.
They change the mode of application instability
to monitoring, instead of scrambling to reboot
and provide service. In some ways, we are talking
about building smarter systems. At the heart of
any autonomy is a core system that can indicate
for it and others that a problem exists.

future trendS

Just as software design and architecture con-
tinue to evolve, underlying infrastructure and
middleware continue to provide an ecosystem
within which applications can execute. Key to
maximizing future infrastructure advances is the
ability for an application to tolerate and to exploit

many of these advances. Recently, autonomic
computing technologies have advanced to the
point where grid-like technologies can be deliv-
ered, without the need for disruptive approaches
to be embedded within application designs. By
having a middleware environment that provides
the needed abstraction layer around the underly-
ing physical deployment topology, applications
can be managed against a set of predetermined
policies. These policies, while enforcing against
a breach of their predefined goals, will provision
and de-provision instances of an application, all
without having the application or pre-mediation
of the event.

Given today’s large dynamically-configurable
operating systems/hardware, applications should
provide ample opportunities for the hypervisor
to capitalize on parallelism. Key to this ability is
having applications designed with clear units of
work spawning threads which are then separately
managed and driven to their logical conclusion.
Just as loosely coupled applications need to
understand their dependencies on downstream
processing, highly threaded applications need
to understand and take steps to ensure that they
provide exception handling, for the non-serialized
processing that is likely to occur.

In focusing on the maturing of the infrastruc-
ture and middleware, a key strategy within the
industry is to deliver computing resources as a
dependable, scalable, and transparent commod-
ity which applications exploit through standard
development and interface models. This strategy
is squarely focused at delivery of the infrastruc-
ture as a utility.

utility computing

Utility computing is a provisioning paradigm
in which a service provider makes computing
resources available to a consumer as needed. In-
frastructure management and the ability to charge
for specific usage, rather than the traditional fixed
rate model, are central to the value proposition.

 ���

Approaches to Building High Performance web Applications

The utility computing vision makes several
promises revolving around reducing IT com-
plexity, pricing based on usage and decreasing
operating, and capital costs to the enterprise.
Adapting an infrastructure to a utility comput-
ing model is not simply about making changes
to IT infrastructure; people and business process
changes are also critical for future success (Wha-
tis.com, 2005)

A sub-strategy of utility computing is directly
associated with consolidation. In a shared utility
computing model, a service provider looks to
centralize its computing resources to serve a large
audience reducing overhead while maintaining
business resiliency. The value proposition for
utility computing can be difficult to express, but
the following points to help articulate it:

• Efficiency yields cost savings: In ac-
cordance with industry observations, the
average machine utilization of datacenter
systems is between 15 and 25 percent (Coul-
ter, 2005).

• Abstraction and virtualization yields
flexibility: A dynamic infrastructure allows
the environment to proactively respond to
changing application loads (Chase, An-
derson, Thakar, Vahdat, & Doyle, 2001).
Through virtualization, transparent provi-
sioning of system resources is performed
against a constantly reevaluated set of poli-
cies. As load decreases and the likelihood
of a policy breach is diminished, systems
are de-provisioned and reallocated to other
services. This increases the overall utiliza-
tion of assets and saves money through less
upfront infrastructure.

• Standardizing the infrastructure stack
speeds implementation: By having a utility
computing mindset, individual applications
are freed from the overhead of having to
procure, setup, and test dedicated infrastruc-
ture, which typically has long lead times
and capital expenditure associated with it.

This process is typically repeated numerous
times within an enterprise portfolio, and
little if any economies of scale are lever-
aged. By driving standardization into the
infrastructure stack and a predictable set of
services, applications can execute against a
set of assumptions and deploy into a shared
resource pool without unique and dedicated
resources.

In order to support this utility computing
services model, many fundamental infrastructure
services are needed, such as the ability to meter,
bill, provision, and de-provision the infrastructure.
Niche industries will focus on these core services
with much of the discussion around virtualization
centers on increasing the utilization of assets.
Standardization is key to a successful business
in utility computing.

As the industry continues to move toward the
utility delivery model, application architectures
will need to evolve to a platform agnostic per-
spective where the MIPS and GIGs are of inter-
est, rather than which level of operating system
or service pack exists. Additional planning and
specification will be required to externalize how
an application is to be scaled, depending on the
real-time operating characteristics.

 Today’s visualization tools allow the manage-
ment of entire resource pools and proactively man-
age its utilization (IBM, 2005b). Virtualization is
a journey in which applications and middleware
are abstracted from progressively greater layers
of the machine physical characteristics.

In a utility computing environment character-
istic, workloads are highly distributed; applica-
tions instances must be allocated and de-allocated
frequently and with minimal overhead and latency.
Without this on-demand provisioning scheme,
it will be difficult to maximize the efficiency of
the core infrastructure. Currently, low utilization
rates continue as a result of massive infrastructure
build-outs. These build-outs are a direct result
of static, fixed computing limitations and, quite

���

Approaches to Building High Performance web Applications

frankly, over-funded approaches to guarantee
application availability; maintaining high utili-
zation rates in all resources is critical if utility
providers are to be profitable. Understanding how
utility computing impacts their work is critical
to architects, developers, and strategists catching
the wave the first time around.

concLuSIon

Every enterprise application has special consid-
erations to achieve functional and non-functional
requirements. As practitioners, we all look for a
common platform to help alleviate some of our
woes. It is not uncommon for people to say, “We
will just add more servers,” or “CPUs are getting
faster and RAM is getting cheaper.” It is true
that application platform and server management
can contribute substantially to success. The key
to successful Web applications is the approach
taken to application design and architecture while
providing the necessary abstraction layers to
allow exploitation by an ever-maturing systems
management set of technologies. A well-designed
application will thrive in future computing envi-
ronments, but no amount of autonomics will ef-
ficiently deliver a poorly-designed application.

This chapter reviewed five common challenges
in enterprise Web application design: resource
contention, managing transactions, application
resiliency, geographically-diverse and excep-
tion/perception management. Using our experi-
ences with IBM’s expertise location system, we
presented five key methods:

• High-availability application layer cach-
ing

• Asynchronous task processing
• Self-reliant, autonomous behaviors
• Client-side MVC
• Graceful degradation

Finally, looking at trends that will continue to
change and impact enterprise application design
and architecture offers some insight to upcoming
challenges. While the approaches in this chapter
are somewhat generic, they are by no means the
only way to address these issues. However, over
the last 18 months, we have witnessed their im-
mense contribution to the resilience, scalability,
and overall performance from transaction time to
network throughput and bandwidth usage.

referenceS

Abbadi, A. E., & Toueg, S. (1989, June). Maintain-
ing availability in partitioned replicated databases.
ACM Trans. Database Syst., 14(2), 264-290.

Alur, D., Crupi, J., & Malks, D. (2001). Core J2EE
patterns: Best practices and design strategies, pp.
172-407. Palo Alto, CA: Prentice Hall.

Amiri, K., Park, S., & Tewari, R. (2002, No-
vember 4-9). A self-managing data cache for
edge-of-network Web applications. In Proceed-
ings of the Eleventh International Conference
on Information and Knowledge Management,
CIKM 2002, McLean, VA (pp. 177-185). New
York: ACM Press..

Andoni, A., & Staddon, J. (2005, June 5-8).
Graceful service degradation (or, how to know
your payment is late). In Proceedings of the 6th
ACM Conference on Electronic Commerce, EC
2005, Vancouver, BC, Canada (pp. 9-18). New
York: ACM Press.

Apache Foundation (2005). The Apache Struts
Web Application Framework. Retrieved Septem-
ber 10, 2005, from http://struts.apache.org/

Appel, A., Dhadwal, A., & Pietraszek, W. E.
(2003). More bang for the IT buck. The McKinsey
Quarterly, 2, 130-141.

 ���

Approaches to Building High Performance web Applications

AskMeCorp Inc. (2005). Knowledge Management
Software and Services | AskMe. Retrieved June
7, 2005, from http://www.askmecorp.com

Autonomy Inc. (2005). Autonomy. Retrieved June
7, 2005, from http://www.autonomy.com

Bates, M., Davis, K., & Haynes, D. (2003). Re-
inventing IT services. The McKinsey Quarterly,
2, 144-153.

Birman, K., van Renesse, R., & Vogels, W. (2004,
May 23-28). Adding high availability and auto-
nomic behavior to Web services. In Proceedings
of the 26th International Conference on Software
Engineering (pp. 17-26). Washington, DC: IEEE
Computer Society.

Brown, K. (2005). Asynchronous queries in J2EE.
JavaRanch. Retrieved from http://javaranch.
com/newsletter/200403/AsynchronousProcess-
ingFromServlets.html

Burns, R. C., Rees, R. M., & Long, D. D .E. (2001).
Efficient data distribution in a Web server farm.
Internet Computing, IEEE, 5(4), 56-65.

Candan, K. S., Li, W., Luo, Q., Hsiung, W., &
Agrawal, D. (2001, May 21-24). Enabling dynamic
content caching for database-driven Web sites. In
T. Sellis (Ed.), In Proceedings of the 2001 ACM
SIGMOD International Conference on Manage-
ment of Data, Santa Barbara, CA (pp. 532-543).
New York: ACM Press.

Challenger, J., Dantzig, P., & Iyengar, A. (1998).
A scalable and highly available system for serving
dynamic data at frequently accessed Web sites.
In Proceedings of ACM/IEEE Supercomputing
98 (SC 98). New York: ACM Press.

Chase, J. S., Anderson, D. C., Thakar, P. N., Vah-
dat, A. M., & Doyle, R. P. (2001, October 21-24).
Managing energy and server resources in hosting
centers. In Proceedings of the Eighteenth ACM
Symposium on Operating Systems Principles,

SOSP ’01, Banff, Alberta, Canada (pp. 103-116).
New York: ACM Press.

Coulter, T. (2005). Utility computing reality.
Retrieved September 10, 2005, from http://www.
line56.com/articles/default.asp?ArticleID=6467

Davison, B. D. (2001). A Web caching primer.
Internet Computing, IEEE, 5(4) 38-45, Jul/Aug
2001

Eckstein, R. (Ed.). (2003). Java enterprise best
practices. Sebastopol: O’Reilly & Associates,
Inc.

Entopia (2005). Entopia—solutions for informa-
tion discovery. Retrieved June 7, 2005, from
http://www.entopia.com/

Florins, M., & Vanderdonckt, J. (2004, January
13-16). Graceful degradation of user interfaces
as a design method for multiplatform systems. In
Proceedings of the 9th International Conference
on Intelligent User Interface (IUI ’04), Funchal,
Madeira, Portugal (pp. 140-147). New York:
ACM Press.

Fowler, M. (2000). Refactoring: Improving the
design of existing code. Upper Saddle River, NJ:
Addison-Wesley.

Goodman, B. (2002). Accelerate your Web ser-
vices with caching: Drive your solutions into the
fast lane. Retrieved June 7, 2005, from http://www-
106.ibm.com/developerworks/webservices/li-
brary/ws-cach1/?ca=degrL19wscaching

Goodman, B., & Kebinger, J. (2004). Increase
stability and responsiveness by short-circuiting
code: Keep your Web applications running when
tasks lock up. IBM Developer Works. Retrieved
June 7, 2005, from http://www-106.ibm.com/de-
veloperworks/web/library/wa-shortcir/?ca=dgr-
lnxw09ShortCircuit

Google (2005a). Google Gmail Beta. Retrieved
September 10, 2005, from http://mail.google.
com/

���

Approaches to Building High Performance web Applications

Google (2005b). Google Maps Beta. Retrieved
September 10, 2005, from http://maps.google.
com

Google (2005c). Google Suggest Beta. Retrieved
September 10, 2005, from http://maps.google.
com

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1995). Design patterns. Upper Saddle River,
NJ: Addison-Wesley Professional.

Grand, M. (1999). Patterns in Java, (vol. 2): Lazy
initialization (pp. 233-237). New York: John Wiley
and Sons, Inc.

Grand, M. (2002). Java enterprise design pat-
terns, pp 159-500. New York: John Wiley and
Sons, Inc.

Gurguis, S. A., & Zeid, A. (2005, May 21-21).
Towards autonomic Web services: Achieving
self-healing using Web services. In Proceedings
of the 2005 Workshop on Design and Evolution of
Autonomic Application Software (DEAS ’05), St.
Louis, MO (pp. 1-5). New York: ACM Press.

Hammar Cloyd, M. (2001). Designing user-
centered Web applications in Web time.
IEEE Software, 18(1), 62-69.

Hassan, A. E., & Holt, R. C. (2002, May 19-25).
Architecture recovery of Web applications. In
Proceedings of the 24th International Conference
on Software Engineering, ICSE ’02, Orlando, FL
(pp. 349-359). New York: ACM Press.

Herlihy, M. P., & Wing, J. M. (1987, August 10-12).
Specifying graceful degradation in distributed
systems. In F. B. Schneider (Ed.), In Proceed-
ings of the Sixth Annual ACM Symposium on
Principles of Distributed Computing (PODC
’87), Vancouver, BC, Canada, (pp. 167-177). New
York: ACM Press.

IBM. (2005a). IBM Software: WebSphere Ex-
tended Deployment. Retrieved September 10,

2005, from http://www.ibm.com/software/web-
servers/appserv/extend

IBM. (2005b). IBM Tivoli Provisioning Man-
ager—Product overview. Retrieved September
10, 2005, from http://www.ibm.com/software/
tivoli/products/prov-mgr/

Internet Society (1999). Hypertext Transfer
Protocol—HTTP/1.1. Retrieved September 10,
2005, from http://www.w3.org/Protocols/rfc2616/
rfc2616.html

Iyengar, A., & Challenger, J. (1997). Improving
Web server performance by caching dynamic
data. In Proceedings of the Usenix Symposium
of Internet Technology and Systems, Usenix As-
sociation: Berkeley, CA (pp. 49-60).

Iyengar, A., Challenger, J., Dias, D., & Dantzig, P.
(2000). High performance Web site design tech-
niques. IEEE Internet Computing, 4(2), 17-26.

Jadav, D., & Gupta, M. (1997). Caching of large
database objects in Web servers. In Proceed-
ings of the Seventh International Workshop on
Research Issues in Data Engineering, April 7-8,
1997, (pp.10-19).

Kabutz, H. (2001). Blocking queue. The Java™
Specialists’ Newsletter (016). Retrieved September
10, 2005, from http://www.enterprisedeveloper.
com/developers/javaspecialist/Issue016.html

Kaplan, J., Loffler, M., & Roberts, R. (2004).
Managing next-generation IT infrastructure.
McKinsey on IT, 3.

Kephart, J. O. (2005). Research challenges of
autonomic computing. In Proceedings of the 27th
International Conference on Software Engineer-
ing, ICSE ’05, St. Louis, MO, May 15-21, 2005
(pp. 15-22). New York: ACM Press

Krishnamurthi, S., & Bultan, T. (2005). Discus-
sion summary: Characteristics of Web services
and their impact on testing, analysis, and verifi-

 ���

Approaches to Building High Performance web Applications

cation. SIGSOFT Softw. Eng. Notes, 30(1) (Jan.
2005), 5.

Liebmann, E., & Dustdar, S. (2004). Adaptive
data dissemination and caching for edge service
architectures built with the J2EE. In Proceedings
of the 2004 ACM Symposium on Applied Comput-
ing, SAC ’04, Nicosia, Cyprus, March 14-17, 2004
(pp. 1717-1724). New York: ACM Press.

Liu, Y., Ngu, A. H., & Zeng, L. Z. (2004). QoS
computation and policing in dynamic Web service
selection. In Proceedings of the 13th International
World Wide Web Conference on Alternate Track
Papers & Posters, WWW Alt. ’04, New York,
NY, May 19-21, 2004 (pp. 66-73). New York:
ACM Press.

Malveau, R., & Mowbray, T. J. (2001). Software
architect bootcamp. Upper Saddle River, NJ:
Addison-Wesley.

Murry, G. (2005). Asynchronous JavaScript Tech-
nology and XML (AJAX) with Java 2 Platform,
Enterprise Edition. Retrieved September 10,
2005, from http://java.sun.com/developer/tech-
nicalArticles/J2EE/AJAX

Neville, S (2003). Emerging standards and futures
in enterprise integration. Patterns and Best Prac-
tices for Enterprises. Retrieved September 10,
2005, from http://enterpriseintegrationpatterns.
com/Future.html

Nielsen, J. (2000). Designing Web usability. In-
dianapolis, IN: New Riders Publishing.

Pacitti, E., & Simon, E. (2000). Update propaga-
tion strategies to improve freshness in lazy master
replicated databases. The VLDB Journal, 8(3-4)
(Feb. 2000), 305-318.

Paulson, L. D. (2005). Building rich Web ap-
plications with Ajax. Computer, 38(10) (Oct.
2005), 14-17.

Preece, J. (1994). Human computer interaction.
(pp. 159-163) Reading, MA: Addison Wesley.

Raskin, J. (2000). The humane interface. (pp.
178-183) Reading, MA: Addison Wesley.

Reynal, M. (2005). A short introduction to failure
detectors for asynchronous distributed systems.
SIGACT News, 36(1) (Mar. 2005), 53-70.

Rodriguez, P., Spanner, C., & Biersack, E. W.
(2001). Analysis of Web caching architectures:
Hierarchical and distributed caching. IEEE/ACM
Transactions on Networking, 9(4) (Aug. 2001)
404-418.

Schmid, H.A., & Rossi, G. (2004). Modeling and
designing processes in e-commerce applications.
IEEE Internet Computing, 8(1), 19- 27.

Stelting, S., & Maassen, O. (2002). Applied Java
patterns. Palo Alto, CA: Prentice Hall.

Strong, P. (2005). Enterprise grid computing.
ACM Queue, 3(6), 50-59.

Sun Microsystems (2002). Designing Enterprise
Applications with the J2EETM Platform (2nd ed.),
Web-Tier MVC Controller Design. Retrieved
September 10, 2005, from http://java.sun.com/
blueprints/guidelines/designing_enterprise_ap-
plications_2e/web-tier/web-tier5.html

Tacit (2005). Connect the dots to make the right
connections happen. Tacit. Retrieved June 7, 2005,
from http://www.tacit.com

W3C (2003). SOAP Version 1.2 Part 1: Messaging
Framework: SOAPFault. Retrieved September
10, 2005, from http://www.w3.org/TR/soap12-
part1/#soapfault

Weiss, A. (2005). WebOS: Say goodbye to desk-
top applications. netWorker, 9(4) (Dec. 2005),
18-26.

Whatis.com (2005). General computing terms:
Utility computing. TechTarget. Retrieved Sep-
tember 8, 2005, from http://whatis.techtarget.
com/definition/0,,sid9_gci904539,00.html

��0

Approaches to Building High Performance web Applications

Zhang, J., & Buy, U. (2003). A framework for
the efficient production of Web applications. In
Proceedings of the Eighth IEEE International

Symposium on Computers and Communication,
ISCC, 2003. 30(1) (pp. 419- 424).

This work was previously published in Architecture of Reliable Web Applications Software, edited by M. Radaideh & H. Al-
Ameed, pp. 112-146, copyright 2007 by IGI Publishing (an imprint of IGI Global).

 ���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.28
A Survey of Development

Methods for Semantic Web
Service Systems

Terje Wahl
Norwegian University of Science and Technology, Norway

Guttorm Sindre
Norwegian University of Science and Technology, Norway

aBStract

Semantic web services (SWS) hold the promise
of enabling dynamic discovery of candidate web
services fitting a particular specified need. One
interesting question is what impact this will have
on software and systems engineering methods
– will mainstream methods like RUP still be suit-
able, or will new or adapted methods be needed?
This article surveys the state-of-the-art in methods
specifically tailored for the engineering of SWS
systems, looking at development methods trying
to cover the entire lifecycle as well as methods
covering only one or two phases. Some of the
surveyed methods are specifically meant to deal
with semantics, others are for the engineering of
service-oriented systems in general. The survey
reveals that there are many proposals being made

in this area, some extensions of mainstream
methods like RUP, others more experimental.
[Article copies are available for purchase from
InfoSci-on-Demand.com]

IntroductIon

During recent years, the software industry has
increasingly acknowledged that using discrete
building blocks of software provides an effective
way of engineering such systems (Stojanovic &
Dahanayake, 2005). The 1990’s saw an increased
use of component based development (CBD),
but this is now giving way to the increasingly
popular technologies of Web Services and Ser-
vice Oriented Architectures (SOA) (Stojanovic
& Dahanayake, 2005). In the future, Semantic

���

A Survey of Development Methods for Semantic web Service Systems

Web Services (SWS) may provide an even more
powerful way of rapidly building flexible and
advanced Service Oriented Systems (SOS).

technology versus development
methods

When information systems are developed based
on some specific technology, this implies the use
of some underlying basic concepts such as ser-
vice, requester, and provider, and a certain way
of thinking about the structure and organization
of the information systems. Hence, it is impor-
tant that the system engineering methods match
the underlying technology, to be able to create
systems of high quality in a more effective man-
ner. To effectively develop or adapt methods for
engineering of SWS systems, there is a need for
understanding what special concerns arise when
engineering these systems. New engineering
methods or adaptations of general methods may
be desirable if special concerns are to be taken
into consideration.

The service concept elevates the abstraction
level and aims at empowering business users to
create and execute software systems based on
SOA (Erl, 2005; Stojanovic et al., 2004). Many
technology standards for SOS and Web Services-
systems have emerged, but little attention has been
given to methods for modeling and designing such
systems (Cabral et al., 2004). The amount of new
technology is growing and it changes over time,
making development complex and error-prone.
As a result, increased application adaptability,
widespread reuse and commercialization is slowed
without proper support from methods and devel-
opment tools (Cabral et al., 2004).

motivation and purpose

This article surveys the current state-of-the-art
in engineering methods specifically tailored for
the requirements specification, modeling, design
and development of SWS systems. Methods may

also be in the form of specially designed tools for
supporting the development of SWS systems. The
motivation for providing such a survey in terms
of its utility for the reader is as follows:

• Giving an overview of methodological dif-
ferences that have been envisioned between
SWS systems development and current
mainstream software development.

• Giving an overview of, and some comparison
of, different methods and techniques that
have been proposed to deal with the specific
challenges of developing SWS systems, so
that the reader can more easily navigate the
plethora of existing proposals and possibly
find a method which is useful in the reader’s
own context (whether this be research or
practice).

We try to analyze what makes the development
of SWS systems different and unique compared
to the development of other kinds of information
systems. From the survey we also try to identify
what special concerns the methods take into
consideration, and compare these concerns in the
analysis. We perform a simple classification and
comparison of the different methods and tools.
In the end, we identify some suggested areas for
future research into methods and tools supporting
the engineering of SWS-based systems.

Scope

This article focuses on requirements specification,
modeling, design / development, and testing /
evaluation methods for creating SWS-based sys-
tems for end-users. It does not focus on methods
for developing new technologies or frameworks
for such systems, but rather attempts to look at
what becomes important if assuming that the
proper technical infrastructure is in place. As a
result, we are focused on methods that involve
users, with more or less technical skills, to see
what systematic approach, actions, processes and

 ���

A Survey of Development Methods for Semantic web Service Systems

tools are required to create a system for end-users
based on an existing infrastructure framework.

Engineering of SWS systems may be seen
from two perspectives: Engineering of individual
SWS (as a service provider), or engineering of
SOS utilizing SWS (SWS-based systems, as a
service requester). When building the latter kinds
of systems, there is often a need for simultane-
ously developing services - not only utilizing
existing ones. This article tries to cover both
these perspectives. On the other hand, the design,
development and utilization of general domain
ontologies are important aspects of developing
SWS systems, but are considered beyond the
scope of this article.

Many methods for engineering of informa-
tion systems in general or SOS in general, e.g.,
(Stojanovic et al., 2004) might be useful for the
engineering of SWS systems. This might espe-
cially be true for methods supporting modeling
and elicitation of requirements, such as interview-
ing, workshops, etc. These methods are however
considered beyond the scope of this article.

research Questions and methods

The research questions of this study are as fol-
lows: 1) What methods have been proposed
specifically for the development of semantic
web service systems? 2) How mature are these
methods, e.g., in terms of empirical evaluations
and tool support?

In the framework of (Glass et al., 2004) the
research method of this article would be classified
as Literature Review / Analysis. In a more recent
taxonomy by (Mora et al., 2008) where IS research
is divided into four quadrants according to the
dimensions conceptual / empirical and behavioral
/ design, this article would fall into the category
conceptual behavioral research, as it does not
design anything new, rather reviewing existing
proposals, and this review is on a conceptual level
rather than performing empirical comparisons
of various software engineering methods. As

discussed by (Kitchenham, 2004) there are two
types of reviews, the traditional / conventional
and the systematic. Systematic reviews have sev-
eral advantages in terms of the thoroughness of
procedure and confidence in the final result, but
also disadvantages in a much heavier workload
due to its formality, therefore requiring much
longer time. The review reported in this article
would not fully satisfy all of the strict criteria for
a systematic review as formulated by Kitchenham,
but has many aspects of a systematic review in
that it makes an unbiased analysis of a large col-
lection of works rather than considering a more
limited and biased collection of sources.

The literature search for this study was per-
formed by searching in Thomson ISI, IEEE and
ACM Digital Libraries, and Google Scholar with
phrases “web service” and “service-oriented”
combined with development stage terms such as
“analysis”, “requirements”, “design”, “develop-
ment”, “composition”, and “testing”. The sources
that emerged from this search were quickly evalu-
ated by reading the abstract or browsing through
the full paper (if available) to determine its
relevance to our study. The most relevant ones
were then selected for further analysis, the inclu-
sion/exclusion criterion being whether the paper
really proposed or discussed a method for service-
oriented systems development (rather than merely
discussing advantages of service-orientation or
proposing components or architecture of such
systems). The reference list of found papers was
also used to harvest further papers that for some
reason did not pop up in the initial search.

organization of this article

Section 2 presents related work and explains how
the current article is different from previous sur-
veys in the field. Section 3 discusses the special
challenges in the engineering of SWS systems,
emphasizing how this is different from more tradi-
tional software development, and motivating why
specific methods are needed although mainstream

���

A Survey of Development Methods for Semantic web Service Systems

development methods can partially be used or
adapted to this purpose. Section 4 presents the
surveyed methods and tools, which are compared
and discussed in section 5. Section 6 concludes
and suggests further research directions.

reLated work

Some work has been done on surveying the state
of the art in SWS technologies and frameworks,
e.g., (Cabral et al., 2004), and for the underlying
technologies of service-oriented architecture,
there is a thorough survey in (Papazoglou & van
den Heuvel, 2007). (Küngas & Matskin, 2006)
perform a survey of commercial and governmental
web services to see which data they use, but this
is more an investigation of the services as such,
not of software development methods related to
semantic web services.

(Srivastava & Koehler, 2003) have performed
a survey of current solutions and open problems
regarding web service composition. They focus on
solutions used in industry vs. solutions proposed
by academia. (Rao & Su, 2004) make a survey
of automated approaches to service composition,
referencing some of the same articles as this one,
but of course missing those published after 2004.
(Zimmermann et al., 2005) discuss analysis and
design techniques for service-oriented develop-
ment in a survey-like manner, however, with fairly
few references the paper is more a survey of issues
than of sources in the field. (Ramollari et al., 2007)
present a survey of service-oriented development
methodologies. The survey is most focused on
the analysis and design stages, but does not focus
specifically on semantic web services.

Hence, the main differences of the current
survey compared to these previous ones is a
more specific focus on engineering methods for
SWS systems without restricting ourselves to any
specific development stage, as well as looking at
a broader range of methods.

SemantIc weB ServIceS and
Software
engIneerIng

Potential Benefits of Semantics

Existing technologies for traditional web ser-
vices only allow descriptions at the syntactic
level (Cabral et al., 2004). This makes it difficult
for requesters and providers to understand the
meaning of the inputs and outputs and the real
functionality of the service. This limitation may
be overcome with the use of SWS. Semantic de-
scriptions of web services are needed to enable
automated discovery, composition and execution
across heterogeneous users and domains (Cabral
et al., 2004). Each SWS is described in a service
ontology, enabling machines to understand its
capabilities and reason over it related to other
domain knowledge.

According to (Cabral et al., 2004), SWS
infrastructures can be described along three
different dimensions, as shown in Figure 1: Us-
age activities, architecture and service ontology.
These dimensions are about the business, physi-
cal and conceptual level requirements for SWS
respectively.

Special Lifecycle concerns for SwS
Systems

(Blake, 2007) discusses lifecycle issues in the
development of service-oriented systems. Two
different lifecycles are proposed. The develop-
ment of single services is seen as similar to more
traditional development, thus possible to do within
mainstream lifecycles, for instance of RUP-like
conceptualization and analysis, followed by itera-
tive cycles of design, development, and testing, and
finalized by deployment and retirement. However,
the development of larger systems composed by
such services, called service-centric software
systems management, is seen as quite different,

 ���

A Survey of Development Methods for Semantic web Service Systems

thus needing a new kind of lifecycle with several
different roles participating. Business-process
engineers will be responsible for business-process
conceptualization and domain analysis. Software
engineers will then be responsible for the sub-
sequent design stage. This has an iterative cycle
much similar to the previous lifecycle, but the
nature of the steps is different: service discovery,
service composition, and evaluation. Finally, the
operation stage is also different in nature, with
the steps on-demand composition and rebinding,
indicating a much higher dynamicity than for the
traditional lifecycle.

(Gu & Lago, 2007) propose a more complex
picture, illustrating the roles of several actors in
one lifecycle picture. The main roles, however,
are the service provider and application provider,
which correspond to the two different kinds of
lifecycle suggested by (Blake, 2007), and many
similar aspects can be seen covered in both propos-
als. A somewhat more traditional lifecycle, much
inspired by RUP, can be seen in (Papazoglou &

van den Heuvel, 2006), identifying four differ-
ent approaches to service-oriented applications:
green-field, top-down, bottom-up, and meet-in-
the-middle development.

(Tsai et al., 2006) mention four challenges for
service-oriented software engineering, namely
decomposition challenge, utility challenge, quality
challenge, and certification challenge, and state
that service-oriented development has somewhat
different methodological needs from the current
mainstream focus on OOA / OOD with methods
such as RUP and MSF. Yet, as pointed out by
(Zimmermann et al., 2005) many of the general
principles found in such mainstream methods still
apply also in service-oriented software engineer-
ing, and extensions or adaptations of mainstream
methods may therefore be one approach to better
address service-oriented development. Some
examples of RUP extensions are IBM’s RUP
for SOA (IBM, 2006) and the Service-Oriented
Unified Process (Mittal, 2007). Sun’s SOA RQ
method (Sun, 2006) and the method proposed in

Figure 1. SWS infrastructure dimensions, adapted from (Cabral et al., 2004)

� International Journal of Information Systems in the Service Sector, 1(2), 1-16, April-June 2009

Copyright © 2009, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

services as such, not of software development
methods related to semantic web services.

(Srivastava & Koehler, 2003) have per-
formed a survey of current solutions and open
problems regarding web service composition.
They focus on solutions used in industry vs.
solutions proposed by academia. (Rao & Su,
2004) make a survey of automated approaches
to service composition, referencing some of the
same articles as this one, but of course missing
those published after 2004. (Zimmermann et al.,
2005) discuss analysis and design techniques for
service-oriented development in a survey-like
manner, however, with fairly few references the
paper is more a survey of issues than of sources
in the field. (Ramollari et al., 2007) present a
survey of service-oriented development meth-
odologies. The survey is most focused on the
analysis and design stages, but does not focus
specifically on semantic web services.

Hence, the main differences of the current
survey compared to these previous ones is a
more specific focus on engineering methods
for SWS systems without restricting ourselves
to any specific development stage, as well as
looking at a broader range of methods.

SEMAnTIC wEb SERvICES
And SOFTwARE
EnGInEERInG

Potential Benefits of Semantics

Existing technologies for traditional web ser-
vices only allow descriptions at the syntactic
level (Cabral et al., 2004). This makes it difficult
for requesters and providers to understand the
meaning of the inputs and outputs and the real
functionality of the service. This limitation may
be overcome with the use of SWS. Semantic
descriptions of web services are needed to enable
automated discovery, composition and execu-
tion across heterogeneous users and domains
(Cabral et al., 2004). Each SWS is described
in a service ontology, enabling machines to
understand its capabilities and reason over it
related to other domain knowledge.

According to (Cabral et al., 2004), SWS
infrastructures can be described along three
different dimensions, as shown in Figure 1:
Usage activities, architecture and service ontol-
ogy. These dimensions are about the business,
physical and conceptual level requirements for
SWS respectively.

Figure 1. SWS infrastructure dimensions, adapted from (Cabral et al., 2004)

���

A Survey of Development Methods for Semantic web Service Systems

(Papazoglou & van den Heuvel, 2006) are also
partly based on or have many similarities with
RUP. Another example of a relationship between
mainstream and service-oriented software devel-
opment is OMG’s effort to combine MDA with
SOA, and to provide a meta-model for defining
ontologies to help the construction of semantic
web applications in an MDA context (OMG, 2006).
The UML SOA profile proposed by (Johnston,
2005) can be seen as a related effort to align
service-oriented development with mainstream
techniques.

Another view on lifecycle can be found in situ-
ations where the idea is not to build new software
but to offer services to a customer, for instance in
a sourcing situation. The Information Technology
Infrastructure Library, version 3 (ITIL v3) has
made an increasing focus on service-oriented
approaches in IT service management (Greiner,
2007; Keel et al., 2007). From the perspective of
the service-provider, the following lifecycle ac-
tivities are envisioned: Service Strategy, Service
Design, Service Transition, Service Operation,
and Continual Service Improvement (Greiner,
2007). ITIL provides a common vocabulary for
these activities, as well as guidelines to how they
should be conducted.

Special phase concerns for SwS
Systems

To find suitable specialized engineering methods,
there is a need for understanding what special
concerns arise when engineering systems based
on SWS. On the requirements level, service-ori-
entation poses both challenges and opportunities.
The introduction of a new architectural paradigm
might mean that some traditional development
methods are no longer appropriate, and that new
methods are needed. On the other hand, the pres-
ence and possible reuse of existing services might
make requirements engineering easier (Jones et
al., 2005) – for instance, functionality of available
services might inspire stakeholders to become

clear about requirements they were not aware
of, and could also enable rapid prototyping for
elicitation and validation purposes.

Moreover, requirements engineering chal-
lenges can be found on two different levels,
requirements for single services (which should,
for instance, be as generic as possible to make the
service competitive for usage in a wide range of
applications), and requirements for applications
or systems composed of various services, where
the goal is to satisfy the needs of the stakeholders
of that particular application. This is quite similar
to the old distinction between development for
reuse and development with reuse (Sindre et al.,
1995).

To understand challenges in design and later
development stages we need to know what parts
of a system must be implemented if we assume
that there already exists a suitable infrastructure
framework on which to build the system? An-
swering this question requires us to analyze what
components and functions of the system are (or
are envisioned to be) fully automated elements
that need no involvement from the (business)
user or system developer that are creating the
end-user system.

All the architecture components for SWS (as
shown in Figure 1) are meant to be automatic
functions in an SWS framework. For example,
reasoning is supposed to be performed without
human intervention. Regarding the activities
performed in an SWS system, most of these are
clearly desired to be automatically performed, e.g.,
publishing and invocation of services. However,
some of the activities may need to be performed
manually or at least semi-automatically, depend-
ing on the complexity and type of system. This
especially applies to composition and selection of
services (D. Martin et al., 2004). A system per-
forming simple tasks within a well known domain
may perform fully automated service composi-
tion and selection if the underlying framework
is sufficiently robust and advanced (D. Martin et
al., 2004). But some tasks may be so complicated

 ���

A Survey of Development Methods for Semantic web Service Systems

that they require a user to manually specify how
different services are to be composed, or manu-
ally select desired services from lists of possible
matches. In addition, sometimes users will want
to be able to influence the composition process,
e.g., if they only have a basic overall idea of their
requirements for the system (Kim & Gil, 2004).
One method of manually specifying a composition
may be to define a process flow for the execution
of a combination of different activities.

The service ontology, describing the service
extensively, will usually have to be manually
specified. This is done when implementing a
service as a service provider, and must assure that
the capabilities of the service are aligned with its
service description (its service ontology). When
specifying requirements for a SWS system, an
overall service ontology may be created manu-
ally to specify the goal and requirements of the
system, or a business process may be manually
created and service ontologies defined for each
of the activities in the process.

Service-oriented systems also have special
challenges in the testing and evaluation phase. As
pointed out by (Offutt & Xu, 2004) the testing of
web service applications is difficult because they
are distributed applications with runtime behav-
iors that differ from more traditional applications.
For instance, the fact that service providers may
change the implementation of a service at any time,
introduces new challenges to regression testing
(Ruth, 2008) and quality evaluation (Bianculli
& Ghezzi, 2007).

empowering the end user

Since the first software systems were created,
systems have been developed at an increasing level
of abstraction, making it easier for non-technical
users to participate. SOS engineering (including
SWS systems engineering) takes aim at provid-
ing modeling, design and development methods
that map high-level business requirements to the
technical implementation (Stojanovic & Dahanay-

ake, 2005). Doing this will empower end-users to
specify, design and develop their own systems,
and thus “bridge the gap between business and
IT” (Stojanovic & Dahanayake, 2005). Hence it
is important that the methods and tools require
as little technical skills as possible. Properly set
up, and assuming an adequate supply of various
services from providers, it could be possible for
non-technical users to develop SWS systems in
a fashion similar to Model Driven Development
(MDD).

overvIew of methodS and
tooLS

In this section we survey methods and tools that
support the engineering of SWS systems. We focus
on methods and tools from the user perspective,
i.e. involving user interaction.

requirements for SwS Systems

The EU-funded IP project “Service Centric
Systems Engineering” (SeCSE) has addressed
various aspects of the development of service-
oriented applications, including the requirements
process (Jones et al., 2005; Zachos et al., 2007).
This is envisioned as an iterative cycle between
requirements formulation and searching for ser-
vices. Starting with an incomplete requirements
specification, some possible services may be
found in a service repository, these may again
provide ideas – either because of functionality
they contain, or properties they are lacking – for
more detailed requirements. Tool support is
developed for the approach, including a require-
ments assistant (UCaRE), a service discovery
tool (EDDiE), and a service exploration tool. An
evaluation of UCaRE is presented in (Zachos et
al., 2007), while the EDDiE tool is presented in
more detail in (Dourdas et al., 2006).

While the efforts around UCaRE have mainly
addressed the requirements specification of larger

���

A Survey of Development Methods for Semantic web Service Systems

systems (to be composed of services), another
effort within SeCSE has addressed the specifica-
tion of single services (Walkerdine et al., 2007).
A faceted specification approach is used to aid
the later retrieval and comparison of services
according to system specification. Also here,
tool support has been developed and evaluated
through a case study.

(Barn et al., 2007) propose a tool workbench
(SOA-MDK) for model-based development of ser-
vice-oriented systems. The approach is inspired by
component-based development, and the develop-
ment method starts by developing business process
models and information models, which can be
considered RE activities on the system level. These
models are then factored, and services allocated
to the various parts. Finally, WSDL specifications
are generated for the various services. A somewhat
similar approach, but considering use cases plus
non-functional requirements rather than business
process models in the early stages, is proposed
by (Dexter et al., 2007).

modeling and design of SwS

(Timm & Gannod, 2005) recognize that the learn-
ing curve for the OWL-S descriptions language is
steep, and that the current state of tool support is
limited. They have created an automated software
tool that uses model-driven architecture (MDA)
techniques to generate OWL-S descriptions. The
manual input to this tool is the description of an
SWS in the form of a UML model specified in
a standard UML modeling tool. Conversion to
OWL-S is done via an XML representation of
the UML model and XSLT.

(Jaeger et al., 2005) propose a methodology
for developing OWL-S descriptions that consists
of three main steps: Generation of an OWL-S
template, identification of available ontologies, and
performing classification. Tasks in this methodol-
ogy that must be performed manually are adapt-
ing or designing an ontology that describes the

relevant domain, and classifications of the service,
its inputs/outputs and any optional additions.

(Elenius et al., 2005) have created a develop-
ment tool for SWS, in the form of an OWL-S editor
which aims to be easy and intuitive. The editor
is implemented as a plug-in to the Protégé OWL
ontology editor, and allows for engineering of all
aspects of SWS by providing specialized views
and design features wherever deemed necessary
by the authors.

(Scicluna et al., 2004) discuss how the difficult
task of developing an OWL-S specification can
result in incorrect specifications of the descrip-
tion or lead the user to rather utilize some other
type of description language. They have created
the OWL-S editor tool OwlsWiz, which enables
creation of OWL-S ontologies from a WSDL
description by presenting the user to a step-by-
step process of inputting information. It allows
a fast way of creating SWS descriptions while
using well known standards such as WSDL and
UML Activity Diagrams. Their main objective
with the tool is to abstract away the underlying
complexity of the OWL-S format and offer a
relatively user-friendly way of building complex
descriptions.

(Klein & Koenig-Ries, 2003) present an ap-
proach to improving the usability of DAML-S
(now named OWL-S) by suggesting a process and
a tool. The process guides through the activities
needed to create adequate SWS descriptions by
introducing a layered ontology of services, consist-
ing of an upper service ontology, an ontology for
the service category, and several domain ontolo-
gies. Their graphical tool DINST implements this
process and claim to offer a comfortable way of
editing SWS descriptions.

(Heß et al., 2004) state that manually creating
semantic metadata for services is tedious and
error-prone. They propose a semi-automatic tool
(ASSAM) for assisting a user in creating semantic
metadata for SWS in the OWL-S format. ASSAM
consists of two parts; a WSDL annotator appli-

 ���

A Survey of Development Methods for Semantic web Service Systems

cation, and OATS (Operation Aggregation Tool
for Web Services), a data aggregation/schema
matching algorithm. The WSDL annotator ap-
plication uses machine learning to provide the
user with a point-and-click interface containing
suggestions on how to semantically annotate a
web service. The tools have been evaluated, and
findings indicate their usefulness.

(Brambilla et al., 2007) propose a framework
for developing semantic web service systems
cross-cutting several enterprises. The proposed
approach utilizes several available techniques,
such as BPMN for the specification of business
process models and WebML for the development
of web applications. WSMO ontologies are semi-
automatically elicited from the design of the ap-
plications. Their model-driven design process is
seen as consisting of four steps: process design,
data design, hypertext design, and semantic de-
scription. For this approach, a CASE-tool has also
been presented (Brambilla et al., 2006).

composition of Semantic web
Services

(Sirin et al., 2004) have developed a goal-ori-
ented and interactive composition approach
that utilizes matchmaking algorithms to assist
users in filtering and selecting services while
building the composition. They have created a
semi-automatic tool that uses OWL-S service
descriptions and filters and selects services us-
ing matchmaking algorithms. The system has
two separate components: One component is an
inference engine that stores service requirements
and processes match requests. The other is the
composer that generates the service composition
workflow. The composer communicates with the
inference engine to discover possible matching
services, and presents them to users that may cre-
ate a workflow of services based on the choices
presented at each step. Users enter constraints on
the service parameters from a form generated by
the system using the ontologies that define those

parameters. Users make the final selection of the
specific services at each step.

(Kim & Gil, 2004) have developed a framework
for interactive composition of SWS that guide us-
ers in sketching a composition of services. They
argue that users benefit when employing intelligent
tools that help them specify complete and correct
pathways, even if there is only a small number
of services that need to be put together. Their
approach is to first take existing service descrip-
tions and extend them with domain ontologies and
task ontologies that attend to various task types
in the domain. Their analysis tool CAT (Compo-
sition Analysis Tool) then uses these ontologies
when examining and giving specific suggestions
regarding the user’s solution. They demonstrate
how CAT may be useful in a case study regarding
the domain of earthquake science.

The Service Component Architecture (SCA)
(Chappell, 2007) is a joint effort in by a number
of American companies, defining a platform for
how to program web services and how to assemble
them. However, it focuses more on defining nec-
essary standards and infrastructure, and less on
software engineering methods.

IRS-III (Hakimpour et al., 2005) is a frame-
work for structured web service composition.
Their approach is supported by a tool which au-
tomatically recommends candidate web services
to satisfy the specified composition context.

testing / evaluation of
Service-oriented Systems

(Offutt & Xu, 2004) present an approach for au-
tomated generation of test cases for web service
systems, based on data perturbation. Automated
test generation is also the topic of (Sinha &
Paradkar, 2006), proposing an approach based on
finite state machines. In this approach, WSDL-S
specifications are taken as input, hence utilizing
some provided semantics of services.

(E. Martin et al., 2007) presents a prototype
tool for robustness testing of web service systems,

��0

A Survey of Development Methods for Semantic web Service Systems

but this is for web services in general, not specifi-
cally for semantic web services.

(Ruth, 2008) presents algorithms for safe test
selection when performing regression testing on
web service applications. (Penta et al., 2007) pro-
pose the usage of genetic algorithms to produce
test data for examining whether web services
adhere to service level agreements.

As for evaluation, (Bianculli & Ghezzi, 2007)
propose an approach for run-time quality moni-
toring of conversational web services, based on
algebraic specifications. (Zhu et al., 2006) present
an approach for model-driven generation of bench-
marks to evaluate service-oriented systems.

methods Spanning Several
development phases

(Gomez-Perez & González-Cabero, 2004) pro-
pose a framework for design and semi-automatic
composition of SWS at a language-independent
and knowledge level. The framework is directly
based on the stack of ontologies that describe all
the features of SWS. The framework specifies
how to create SWS with the capabilities required
by an external agent or user, focusing on three
models: An instance model (specifying the SWS
at the knowledge level), a checking model (utiliz-
ing design rules - called axioms - to check that
there are no inconsistencies or errors in ontology
instances) and a translation model (translating
the service modeled at the knowledge level into
an SWS-oriented language such as OWL-S
combined with WDSL/SOAP). A prototype tool
called ODE SWS has been implemented as an
integrated part of WebODE, which is a platform
for ontology development. The tool allows users
to manually design descriptions and composi-
tions of services at a conceptual level using a
graphical user interface. The service model and
composition is automatically checked for errors
before performing an automatic translation into
the OWL-S specification.

(Howard & Kerschberg, 2004) recognize
the need for a comprehensive and overarching
framework that deals with the processing and
workflow requirements of Virtual Organizations,
maps these into a group of service-oriented activi-
ties, dynamically configures these activities from
available services and manages the choreography
and execution of these services. They propose
such a framework, which they call the Knowl-
edge-based Dynamic Semantic Web Services
(KDSWS) Framework. The framework deals with
specification of service requirements, mapping
of these requirements to composable services,
and coordination of the execution of services
conforming to enterprise workflow requirements.
The KDSWS Framework has a functional archi-
tecture containing a user layer. The idea is that
users would visit a portal of the e-enterprise,
compose their request as a high-level task, and
cooperate with a planning agent to decompose the
task into a plan that is automatically processed
further. A framework implementation is planned
in the future.

(Papazoglou & van den Heuvel, 2006) propose
a method which is inspired by RUP, combined with
business process modeling and component-based
development, covering all phases from planning to
deployment and execution of the service-oriented
system. However, while all phases are mentioned,
some of them (e.g., testing) are discussed in rather
general terms, not containing any suggestions
of specific service-oriented techniques for that
phase. The development of an integrated tool set
supporting the approach is mentioned as future
work in the article.

comparISon and dIScuSSIon

In this section we perform a simple classification
and comparison of the different methods and tools,
and discuss the result.

 ���

A Survey of Development Methods for Semantic web Service Systems

Table 1 below gives an overview of the
methods and tools identified in the survey deal-
ing with stages before testing. It indicates what
development phase the methods are intended
for, whether tool support is documented for the
method (the first Y/N in the Tool & Eval col-
umn), and if the usefulness of the method/tool
is evaluated (the second Y/N in the Tool & Eval

column). Note that an N in one of these columns
does not necessarily mean that tool support or
evaluations has not been established, only that
this was not found documented in the publica-
tion. Furthermore, the “Lang” column indicates
which modeling languages are utilized by the
approach, and the final “Proc” column whether
it makes any particular assumptions about the

Table 1. An overview of methods and tools supporting the engineering of SWS systems

Approach Phase Tool &
eval Lang Proc

SOA-MDK (Barn et
al., 2007; Dexter et al.,
2007)

reqs Y Y
BPM, info.

mod.
Use cases

Inspired
by CBD

SeCSE (Walkerdine et
al., 2007; Zachos et al.,
2007)

reqs,
design,
comp.

Y Y
Use cases,

Struct natural
lang, WSDL

Ex-
tended
RUP

(Timm & Gannod,
2005) design Y N UML, OWL-S no

(Jaeger et al., 2005) design N N OWL-S no
(Elenius et al., 2005) design Y N OWL-S no

(Scicluna et al., 2004) design Y N
OWL-S,

WSDL, UML
AD

no

(Klein & Koenig-Ries,
2003) design Y N OWL-S no

(Heß et al., 2004) design Y Y OWL-S,
WSDL no

(Brambilla et al., 2007) design Y Y
BPMN,
WebML,
WSMO

Own
process

(Gomez-Perez &
González-Cabero, 2004)

design,
comp. Y N OWL-S no

(Sirin et al., 2004) comp. Y N OWL-S no
(Kim & Gil, 2004) comp. Y Y WSDL no
IRS-III (Hakimpour et
al., 2005) comp. Y Y WSMO,

UPML no

(Howard & Kerschberg,
2004) all N N KDL, KDSPL Own

process
(Papazoglou & van den
Heuvel, 2006) all N N BPEL Inspired

by RUP

���

A Survey of Development Methods for Semantic web Service Systems

overall development process, e.g., being related
to RUP or component-based development (CBD).
Note here that a “no” does not necessarily mean
that the approach could not be used together with,
e.g., RUP, only that the publication does not make
any particular assumption about this. Hence a
“no” here may in some ways be a disadvantage
(no overall process provided) but also in some
ways an advantage (the proposed technique can
potentially be used with many different larger-
scale development methods).

Table 2 similarly gives an overview of the
surveyed approaches to testing and evaluation of
service-oriented systems. The columns indicate
what kind of testing the technique supports, what
kind of specifications it takes as input, what it
delivers as output, and what approach is used for
the intermediate processing.

The list of methods might not be comprehen-
sive, but despite of this it may be argued that much
more research has been done on the enabling
technologies of SWS than research regarding

methods for requirements engineering, model-
ing, design and composition of systems based on
these technologies.

Most of the methods (all but two) are accompa-
nied by a software tool. This might indicate that the
need for tool support is recognized and reckoned
with. However, most of the tools are at an early
stage of development and undergoing continued
development, showing that this research area is
still somewhat experimental and immature. Yet,
there is a positive trend that publications from
the last 2-3 years tend to include evaluations of
the proposed methods, while earlier publications
did not.

Several methods focus on modeling & design
or composition or both phases of development,
but only two of the methods focus explicitly on
requirements specification for SWS systems.
This may be because this has not received a lot
of attention in research, or because more general
methods apply well to specifying requirements
for SWS systems. Many methods talk about cre-

Table 2. An overview of test and evaluation methods

Source Kind of testing input output approach
(Offutt & Xu,
2004) functional XML test cases Data pertur-

bation
(Sinha &
Paradkar,
2006)

functional WSDL-
S Test cases

Extended
finite state
machines

(E. Martin et
al., 2007) robustness WSDL Test cases,

test results
Java code
generation

(Ruth, 2008) regression WSDL Test selec-
tions agents

(Penta et al.,
2007)

Service level
agreement

WS-
BPEL Test data Genetic algo-

rithms

(Bianculli &
Ghezzi, 2007)

Perceived quality
(run-time monitor-

ing)
BPEL Quality

Evaluation
Algebraic

specifications

(Zhu et al.,
2006)

Performance /
benchmarking UML benchmark MDA

 ���

A Survey of Development Methods for Semantic web Service Systems

ating specifications of SWS systems, however it
is important to note that a specification/descrip-
tion of a system is not the same as the system
requirements.

Several of the suggested approaches underline
the importance of user friendliness for the users
that will make use of the methods and tools, by
minimizing the needed amount of user input and
the technical skills needed to provide it. This might
point towards the underlying technologies being
complex, and a wish for relatively non-technical
business users to be able to create SWS systems
in a fashion similar to Model Driven Develop-
ment (MDD).

Most of the methods and tools utilize the
OWL-S specification, indicating that it is very
popular compared to other alternative technolo-
gies. Although most of the papers in this survey
briefly rationalize the usefulness and argue the
general benefits of their methods or correctness
of their tools, only six of the methods have been
evaluated for their usefulness. This hints at the
relative immaturity of this research area, and a
large potential for further research.

concLuSIon and SuggeStIonS
for future reSearch

Engineering of Semantic Web Services (SWS)
systems include two important tasks that usually
must be performed with input from a human user;
requirements engineering, and modeling and
design. In addition, manual input might often be
needed when composing SWS into a workflow.
Most of the other parts of SWS systems engi-
neering are at least envisioned to be performed
automatically. This indicates that engineering of
SWS systems might become similar in fashion to
Model Driven Development (MDD).

Our findings indicate that although some
research have been done regarding methods for
requirements engineering, modeling, design and
composition of SWS systems, this research area is

still somewhat experimental and immature. The
need for tool support is recognized and reckoned
with, and especially the approaches published in
2007 or later tend to come with working tool sup-
port, although this is often in the form of research
prototypes that may not always be easily integrated
with other mainstream software development
tools. The OWL-S specification seems to be
very popular in use compared to other alternative
technologies. Methods for requirements engineer-
ing specifically aimed at SWS systems have not
received a lot of attention. This might indicate that
more general methods apply well to specifying
requirements for SWS systems.

Research is being done to allow business users
to be able to create SWS systems with as little
technical knowledge as possible. This might also
lead to engineering of SWS systems being per-
formed in a fashion similar to MDD. There is also
an evident convergence between business process
modeling, enterprise application integration and
service-orientation, for instance exemplified by
the fact that many BPMS tools take a service-
oriented approach. This convergence can also be
seen in the survey, as languages such as BPMN
and BPEL are included in several of the surveyed
approaches in Table 1 and 2. The typical picture,
however, is that the largest and most comprehen-
sive tools tend to address service-oriented devel-
opment in general, without any particular focus on
semantics, while the tools that are ambitious on
semantics tend to be smaller research prototypes
with a more limited scope, dealing with only
one or a few development phases. Hence, better
tool support can be envisioned when ambitious
semantic-based functionality also reaches the
mainstream tools.

Future research is needed on methods for
engineering of SWS systems. In particular, there
is a need for further refinement of tools support-
ing the methods, and there is a strong need for
research evaluating the usefulness of the proposed
methods and tools. It will also prove valuable to
do more research on requirements engineering for

���

A Survey of Development Methods for Semantic web Service Systems

SWS systems, to examine if general requirements
engineering methods are adequate, or if more
suitable methods can be found when considering
the distinctive character of SWS systems.

acknowLedgment

This work was performed in the context of the
project WISEMOD, funded by the Norwegian
Research Council.

referenceS

Barn, B., Dexter, H., Oussena, S., & Sparks, D.
(2007). SOA-MDK: Towards a method develop-
ment kit for service oriented system development.
In G. Magyar, G. Knapp, W. Wojtkowski, W. G.
Wojtkowski & J. Zupančič (Eds.), Advances in
information systems development: New methods
and practice for the networked society (pp. 191-
201). Berlin: Springer.

Bianculli, D., & Ghezzi, C. (2007). Monitoring
conversational web services. Paper presented at
the 2nd International Workshop on Service Ori-
ented Software Engineering (IW-SOSWE’07),
Dubrovnik, Croatia. Retrieved 21.1., 2008, from
http://www.selab.isti.cnr.it/IW-SOSWE07/pro-
gram.html.

Blake, M. B. (2007). Decomposing composition:
Service-oriented software engineers. IEEE Sof-
tware, 24(6), 68-77.

Brambilla, M., Ceri, S., Comai, S., & Fraternali, P.
(2006). A CASE tool for modelling and automati-
cally generating web service-enabled applications.
Int. J. Web Engineering and Technology, 2(4).

Brambilla, M., Ceri, S., Facca, F. M., Celino, I.,
Cerizza, D., & Della Valle, E. (2007). Model-
driven design and development of semantic
web service applications. ACM Transactions on
Internet Technology, 8(1), 3:1-3:31.

Cabral, L., Domingue, J., Motta, E., Payne, T. R.,
& Hakimpour, F. (2004). Approaches to semantic
web services: An overview and comparisons.
Paper presented at the ESWS’04.

Chappell, D. (2007). Introducing sca: Chappell
& Associates.

Dexter, H., Petch, J., & Powley, D. (2007, 11-12
Jan). Establishing an SOA composite applications
development process for work-based learning
and competency progression management. Pa-
per presented at the 2nd TENCompetence Open
Workshop, Manchester, UK. Retrieved 20.1.,
2008, from http://www.medicine.manchester.
ac.uk/helm/TENCompPaper.pdf

Dourdas, N., Zhu, X., Maiden, N., Jones, S., &
Zachos, K. (2006). Discovering remote software
services that satisfy requirements: Patterns for
query reformulation. In Dubois, E. & Pohl, K.
(Eds.): Advanced Information Systems Engi-
neering, 18th International Conference, CAiSE
2006, Luxembourg, June 5-9, 2006, Proceedings.
Lecture Notes in Computer Science 4001 (pp.
239-254), Berlin: Springer.

Elenius, D., Denker, G., Martin, D., Gilham, F.,
Khouri, J., Sadaati, S., et al. (2005). The OWL-
S editor: A development tool for semantic web
services. In Gómez-Pérez, A. & Euzenat, J. (Eds.):
The Semantic Web: Research and Applications,
Second European Semantic Web Conference,
ESWC 2005, Heraklion, Crete, Greece, May
29 - June 1, 2005, Proceedings. Lecture Notes
in Computer Science 3532 (pp. 78-92). Berlin:
Springer.

Erl, T. (2005). Service-oriented architecture:
Concepts, technology, and design. Upper Saddle
River, NJ: Prentice-Hall.

Glass, R. L., Ramesh, V., & Vessey, I. (2004).
An analysis of research in computing disciplines.
Communications of the ACM, 47(6), 89-94.

 ���

A Survey of Development Methods for Semantic web Service Systems

Gomez-Perez, A., & González-Cabero, R. (2004,
22-24 Mar). A framework for design and compo-
sition of semantic web services. Paper presented
at the First International Semantic Web Services
Symposium, Palo Alto, CA. Retrieved 22.4.,
2007, from http://www.daml.ecs.soton.ac.uk/SSS-
SWS04/44.pdf

Greiner, L. (2007). ITIL: The international reposi-
tory of it wisdom. Business: the 8th layer, 9-11.

Gu, Q., & Lago, P. (2007). A stakeholder-driven
service life cycle model for soa. Paper presented
at the 2nd International Workshop on Service
Oriented Software Engineering (IW-SOSWE’07),
Dubrovnik, Croatia. Retrieved 21.1., 2008, from
http://www.selab.isti.cnr.it/IW-SOSWE07/pro-
gram.html.

Hakimpour, F., Sell, D., Cabral, L., Domingue, J.,
& Motta, E. (2005). Semantic web service compo-
sition in IRS-III: The structured approach. Paper
presented at the 7th IEEE International Conference
on E-Commerce Technology (CEC’05).

Heß, A., Johnston, E., & Kushmerick, N. (2004).
Assam: A tool for semi-automatically annotating
semantic web services. Paper presented at the In-
ternational Semantic Web Conference (ISWC04),
Hiroshima, Japan.

Howard, R., & Kerschberg, L. (2004). A frame-
work for dynamic semantic web services man-
agement. International Journal of Cooperative
Information Systems, 13(4), 441-485.

IBM. (2006). IBM RUP for service-oriented
modeling and architecture v2.4. Retrieved 2.4.,
2008, from http://www.ibm.com/developerworks/
rational/downloads/06/rmc_soma/

Jaeger, M. C., Engel, L., & Geihs, K. (2005). A
methodology for developing OWL-S descriptions.
Paper presented at the Workshop on Web Services
and Interoperability at First International Confer-
ence on Interoperability of Enterprise Software
and Applications, Geneva, Switzerland.

Johnston, S. (2005). UML 2.0 profile for software
services. Retrieved 4.4., 2008, from http://
www-128.ibm.com/developerworks/rational/li-
brary/05/419_soa/

Jones, S. V., Maiden, N. A. M., Zachos, K., & Zhu,
X. (2005). How service-centric systems change
the requirements process. Paper presented at the
11th International Workshop on Requirements
Engineering: Foundation for Software Quality
(REFSQ’05), Porto, Portugal, 13-14 Jun.

Keel, A. J., Orr, M. A., Hernandez, R. R., Pa-
trocinio, E. A., & Bouchard, J. (2007). From a
technology-oriented to a service-oriented ap-
proach to IT management. IBM Systems Journal,
46(3), 549-564.

Kim, J., & Gil, Y. (2004). Towards interactive
composition of semantic web services. Paper
presented at the First International Semantic Web
Services Symposium.

Kitchenham, B. (2004). Procedures for perform-
ing systematic reviews (Technical Report No.
TR/SE-04-01). Keele, Staffordshire, UK: Keele
University.

Klein, M., & Koenig-Ries, B. (2003). A process
and a tool for creating service descriptions based
on DAML-S. Paper presented at the 4th Interna-
tional Workshop Technologies for E-Services
(TES 2003).

Küngas, P., & Matskin, M. (2006, 19-25 Feb). Web
services roadmap: The semantic web perspective.
Paper presented at the AICT/ICIW’06.

Martin, D., Paolucci, M., McIlraith, S., Burstein,
M., McDermott, D., McGuinness, D., et al. (2004).
Bringing semantics to web services: The OWL-S
approach. Paper presented at the First Interna-
tional Workshop on Semantic Web Services and
Web Process Composition.

Martin, E., Basu, S., & Xie, T. (2007). WebSob:
A tool for robustness testing of web services. 29th
International Conference on Software Engineer-

���

A Survey of Development Methods for Semantic web Service Systems

ing (ICSE 2007), Minneapolis, MN, USA, May
20-26, 2007, Companion Volume (pp. 65-66). Los
Vaqueros, CA: IEEE Computer Society.

Mora, M., Gelman, O., Paradice, D., & Cervantes,
F. (2008). The Case for Conceptual Research in
Information Systems. In: Janczewski, L. & Guti-
errez, J.: Proceedings of the 2008 International
Conference in Information Resources Manage-
ment (pp 1-10), Hershey, Pennsylvania: IRMA.

Mittal, K. (2007). Service oriented unified process.
Retrieved 3.3., 2008, from http://www.kunalmit-
tal.com/html/soup.shtml

Offutt, J., & Xu, W. (2004). Generating test cases
for web services using data perturbation. ACM
SIGSOFT Software Engineering Notes, 29(5),
1-10.

OMG. (2006). Ontology definition metamodel.
Retrieved 3.4., 2008, from http://www.omg.org/
cgi-bin/doc?ad/06-05-01.pdf

Papazoglou, M. P., & van den Heuvel, W.-J. (2006).
Service-oriented design and development method-
ology. International Journal of Web Engineering
and Technology, 2(4), 412-442.

Papazoglou, M. P., & van den Heuvel, W.-J. (2007).
Service-oriented architectures: Approaches,
technologies and research issues. VLDB Journal,
16, 389-415.

Penta, M. D., Canfora, G., Esposito, G., Mazza,
V., & Bruno, M. (2007). Search-based testing of
service level agreements. In Thierens, D. et al.
(Eds.), GECCO´07 - Genetic and Evolutionary
Computation Conference, (pp. 1090-1097), New
York: ACM Press.

Ramollari, E., Dranidis, D., & Simons, A. J. H.
(2007). A survey of service oriented development
methodologies. Paper presented at the 2nd Euro-
pean Young Researchers Workshop on Service
Oriented Computing, Leicester, UK. Retrieved
3.2., 2008, from http://www.dcs.shef.ac.uk/~ajhs/
research/papers/soasurvey.pdf

Rao, J., & Su, X. (2004). A survey of automated
web service composition methods. In J. Cardoso
& A. Sheth (Eds.), Semantic web services and
web process composition (pp. 43-54): Springer
(LNCS 3387).

Ruth, M. E. (2008). Concurrency in a decen-
tralized automatic regression test selection
framework for web services. Paper presented at
the 15th ACM Mardi Gras conference (MG’08),
Baton Rouge, LA.

Scicluna, J., Abela, C., & Montebello, M. (2004).
Visual modeling of OWL-S services. Paper pre-
sented at the IADIS International Conference
WWW/Internet, Madrid, Spain.

Sindre, G., Conradi, R., & Karlsson, E.-A. (1995).
The reboot approach to software reuse. Journal
of Systems and Software, 30(3), 201-212.

Sinha, A., & Paradkar, A. (2006). Model-based
functional conformance testing of web services
operating on persistent data. In Proceedings
of the 2006 workshop on Testing, analysis, and
verification of web services and applications
(TAV-WEB’06), Portland, Maine (pp. 17-22).
New York: ACM.

Sirin, E., Parsia, B., & J., H. (2004). Filtering and
selecting semantic web services with interactive
composition techniques. IEEE Intelligent Systems,
19(4), 42–49.

Srivastava, B., & Koehler, J. (2003). Web serv-
ice composition - current solutions and open
problems. Paper presented at the ICAPS 2003
Workshop on Planning for Web Services, Trento,
Italy.

Stojanovic, Z., & Dahanayake, A. (2005). Serv-
ice-oriented software system engineering: Chal-
lenges and practices: Preface. In Z. Stojanovic &
A. Dahanayake (Eds.), Service-oriented software
system engineering: Challenges and practices
(pp. vii-xv). Hershey, PA: Idea Group.

 ���

A Survey of Development Methods for Semantic web Service Systems

Stojanovic, Z., Dahanayake, A., & Sol, H. (2004).
Modeling and design of service-oriented archi-
tecture. In International Conference on Systems,
Man and Cybernetics (pp. 4147 - 4152), IEEE.

Sun. (2006). SOA RQ methodology: A pragmatic
approach. Retrieved 2.4., 2008, from http://www.
sun.com/products/soa/soa_methodology.pdf

Timm, J. T. E., & Gannod, G. C. (2005, 11-15
Jul). A model-driven approach for specifying
semantic web services. Proceedings of the IEEE
International Conference on Web Services (pp.
313-320), Los Vaqueros, CA: IEEE Computer
Society Press.

Tsai, W. T., Malek, M., Chen, Y., & Bastani, F.
(2006, May 27-28). Perspectives on service-ori-
ented computing and service-oriented system
engineering. In Proceedings International Work-
shop on Service Oriented Software Engineering
(pp. 3-10), IEEE.

Walkerdine, J., Hutchinson, J., Sawyer, P., Dob-
son, G., & Onditi, V. (2007). A faceted approach

to service specification. Paper presented at the
Second International Conference on Internet and
Web Applications and Services (ICIW’07).

Zachos, K., Maiden, N. A. M., Zhu, X., & Jones,
S. (2007, 11-15 Jun). Discovering web services
to specify more complete system requirements.
In Opdahl, A.L., Sindre, G. & Krogstie, J.: 19th
Conference on Advanced Information Systems
Engineering (CAiSE’07), Proceedings, Lecture
Notes in Computer Science 4495 (pp. 142-157),
Berlin: Springer.

Zhu, L., Gorton, I., Liu, Y., & Bui, N. B. (2006).
Model driven benchmark generation for web
services. In International Workshop on Service
Oriented Software Engineering (pp. 33-39),
IEEE.

Zimmermann, O., Schlimm, N., Waller, G., &
Pestel, M. (2005). Analysis and design techniques
for service-oriented development and integration.
GI Jahrestagung(2), 606-611.

This work was previously published in the International Journal of Information Systems in the Service Sector, edited by J. Wang,
Volume 1, Issue 2, pp. 1-16, copyright 2009 by IGI Publishing (an imprint of IGI Global).

���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.29
Knowledge Management

Software
Rodrigo Baroni de Carvalho

FUMEC University, Brazil

Marta Araújo Tavares Ferreira
Federal University of Minas Gerais (UFMG), Brazil

IntroductIon

Due to the vagueness of the concept of knowledge,
the software market for knowledge management
(KM) seems to be quite confusing. Technology
vendors are developing different implementations
of the KM concepts in their software products.
Because of the variety and quantity of KM tools
available on the market, a typology may be a valu-
able aid to organizations that are searching and
evaluating KM software suitable to their needs.

The objective of this article is to present a typology
that links software features to knowledge processes
described in the SECI (socialization, externalization,
combination, internalization) model developed by
Nonaka and Takeuchi (1995). KM solutions such
as intranet systems, content-management systems
(CMSs), groupware, work flow, artificial intel-
ligence- (AI) based systems, business intelligence
(BI), knowledge-map systems, innovation support,
competitive intelligence (CI) tools, and knowledge

portals are discussed in terms of their potential
contributions to the processes of socialization, ex-
ternalization, internalization, and combination.

Background

KM intends to be an area of research and practice
that deepens the understanding of knowledge pro-
cesses in organizations and develops procedures
and instruments to support the transformation of
knowledge into economic and social progress. In
fact, different aspects of these issues have been
studied for decades in many different disciplines
as R&D (research and development) and innova-
tion management, information systems manage-
ment, information science, computer science,
library studies, innovation economics, science
and technology social studies, epistemology, and
many others. Maybe one of the most important
contributions of the KM concept is the creation

 ���

Knowledge Management Software

of a space (in academy and in the business world)
where these many groups and points of view may
discuss and work together.

KM studies analyze people, organizations,
processes, and technology. Although technol-
ogy is not the main component of KM, it would
be naive to implement KM without considering
any technological support. According to Stewart
(1998), the intellectual capital of an organization
has three dimensions: human capital, structural
capital, and client capital. Structural capital is de-
fined as the organizational systems and structures
that store and transfer knowledge, and it includes
the quality and extent of information systems, da-
tabases, patents, written procedures, and business
documents. From this perspective, KM software
should be considered as an important component
of the structural capital of organizations.

This article assumes that IT has a supporting
role, not the main role, in a KM program. Accord-
ing to Terra (2000), KM has seven dimensions:
strategy, culture and organizational values, orga-
nizational structure, human resource skills, IT,
measuring, and environmental learning. There-
fore, IT is only one of the dimensions of KM, and
technology alone does not transform information
into knowledge. The KM ultimate challenge is
to increase the chances of innovation through
knowledge creation. The role of IT in this context
is to extend the human capacity of knowledge
creation through the speed, memory extension,
and communication facilities of technology.

Nonaka and Takeuchi (1995) have analyzed the
knowledge-creation process of Japanese organiza-
tions and developed a framework (SECI model).
This model relates the knowledge creation of firms
to four knowledge conversion processes.

• Socialization (S): the process of sharing tacit
knowledge through shared experiences. As
apprentices learn the craft of their masses
through observation, imitation, and practice,
so do employees of a firm learn new skills
through on-the-job training.

• Externalization (E): where tacit knowl-
edge is articulated into explicit knowledge
with the help of metaphors and analogies.
Externalization is triggered by dialog and
collective reflection.

• Combination (C): the process of converting
explicit knowledge into more systematic sets
of explicit knowledge.

• Internalization (I): where explicit knowl-
edge is converted into tacit knowledge. This
usually occurs when explicit knowledge is
put into practice. It is also related to shared
mental models and work practices.

These interactions build a continuous spiral
from the individual to organizational level. Ponzi
(2004) used bibliometric techniques to analyze
2,240 source records obtained from scientific cita-
tion indexes. His research revealed that Nonaka
and Takeuchi (1995) is the top most cited reference
in the KM area and the most influential work. Due
to this popularity, we have decided to use the SECI
model to help individuals who already know this
framework but need a better understanding of the
KM software market.

There are some related works concerning KM
software categorization: Barnes (2001), Bellaver
and Lusa (2002), Davenport and Prusak (1998),
Fernandez, Gonzalez, and Sabherwal (2004),
Maier (2004), Malhotra (2000), Rollet (2003),
Ruggles (1997), and Tiwana (2002). None of these
academic works establish a direct relationship
between the KM systems and the SECI model.
The authors usually prefer to use their own KM
framework to analyze the link between knowl-
edge processes and KM systems. There is also
another type of proposal for categorization, that
is, Microsoft (2000), which has been developed by
vendors and is very IT based. It is not the objec-
tive of this article to discuss the differences and
the similarities among these proposals, but they
have been considered in the development of the
typology presented here.

��0

Knowledge Management Software

maIn focuS of the artIcLe

The main objective of this article is to present a
typology of KM solutions present on the market
that comprehends 10 categories, each of which
emphasizes specific KM aspects. It also intends
to identify which of the knowledge-conversion
processes (Nonaka & Takeuchi, 1995) is supported
by each software category. This article concludes
by presenting some trends in KM software devel-
opment and suggesting some guidelines for the
launching of KM programs supported by IT.

To accomplish our objective, it was necessary
to explore the software market in order to classify
KM tools. The major difficulty in accomplish-
ing this task was the establishment of limits on
a growing market. A sample of KM software
was constructed through information collected
on KM-related sites selected in Nascimento and
Neves (1999), on advertisements in KM magazines
(KM World, KM Magazine, and DM Review), and
in digital libraries (http://brint.com). The explor-
atory research resulted in a list of 26 software
vendors that were contacted, from which 21 sent
folders, technical briefings, and demo versions of
their software. The analysis of each KM system
basically consisted of an installation and feature
checkup. It was tested if the features advertised
by the vendor were really supported by the KM
system. After the analysis of these tools, it was
possible to identify some common features among
them, which originated the typology’s first version.
This version (Carvalho, 2000) was composed of
eight categories.

After this period, Collins (2003), Detlor
(2004), Firestone (2003), Kim, Chaudhury, and
Rao (2002), and Raol, Koong, Liu, and Yu (2002)
published research related to the evaluation of
KM software and the emergence of knowledge
portals. Due to the development of the KM soft-
ware market and influenced by the previously
mentioned works, this typology was reviewed and
updated in 2004. As a result, two new categories
have been incorporated: competitive intelligence

tools and knowledge portals. The KM systems are
then discussed in terms of their contributions to
the four knowledge conversion modes developed
by Nonaka and Takeuchi (1995).

As a result of this research, 10 KM software
categories are presented as follows:

• Intranet-based systems
• Content management systems
• Groupware
• Work flow
• Artificial intelligence-based systems
• Business intelligence
• Knowledge map systems
• Innovation support tools
• Competitive intelligence tools
• Knowledge portals

Intranet-Based Systems

An intranet is an appropriate tool to systematize
and add the explicit knowledge that is dispersed
through departments. Intranets are organizational
assets and an important part of the structural
dimension of intellectual capital, as described by
Stewart (1998). The communication in intranets
is usually passive because the user has to pull the
information. Nevertheless, the efficient usage of
intranets is closely related to a wider comprehen-
sion of information management contribution to
organizational performance. An intranet, like
other systems described in this article, should be
understood as a part of the organizational infor-
mation context, and its usefulness is influenced
by culture, values, and principles concerning
strategic information management. This explains
why, despite the wide and varied set of features
made possible by intranets, they have been used
in most organizations primarily for basic infor-
mation access, that is, the retrieval of corporate
documents (Choo, Detlor, & Turnbull, 2000).

According to Choo et al. (2000), intranets are
quite helpful in promoting the externalization,
combination, and internalization processes. The

 ���

Knowledge Management Software

combination process is supported by unified access
to multiple content sources, and internalization
occurs when there is a dissemination of success
stories and best practices on the intranet. Part of
the intranet content is generated by employees who
have decided to document their experiences and
externalize their knowledge. Web server software,
such as Apache HTTP (hypertext transfer proto-
col) Server, offers the basic features for intranet
deployment.

content management Systems

CMSs manage repositories of important corporate
documents and contribute to the organization of
the vast amount of documents generated by office
activities. Paperwork is still a reality, and each
document is a source of nonstructured information
that could be lost if not well organized. According
to Rollet (2003), existing paper documents are
brought into the CMS through scanning, and opti-
cal character recognition (OCR) software analyzes
the resulting image files and translates them into
computer-readable text. Bennet (1997) states that
CMSs provide more efficient retrieval, and better
security and version control of documents. File
Net and Excalibur Retrieval Ware are examples
of CMSs. These systems have many features-
cataloging, metadata, searching, versioning, and
indexing-that were inherited from the traditional
information retrieval (IR) systems, which are
studied in the field of library science.

CMSs deal only with the explicit dimension
of knowledge, supporting then the combination
process. The focus of CMS is primarily on provid-
ing access to existing documents in any available
media: fax, e-mails, HTML (hypertext markup
language) forms, computer reports, paper, video,
audio, or spreadsheets.

groupware

Organizations are searching for flexible structures
that can easily adapt to a changing environment.

The need of cooperation between geographi-
cally dispersed work groups is a critical issue to
global organizations. Groupware systems have a
push style where information is sent to the user.
Groupware is a blend of synchronous (like chat),
asynchronous (like e-mail), and community-fo-
cused tools (like e-groups). Informal communica-
tion predominates in a groupware environment.
Groupware systems are well suited to support
communities of practice, where specialists of a
given domain of knowledge, who may be dispersed
all over the world, exchange their expertise in
order to find solutions to specific problems.

According to Nonaka and Takeuchi (1995), the
externalization of tacit knowledge is induced by
dialog and collective reflection. Groupware helps
this process by permitting collaboration and the
exchange of nonstructured messages. Discussion
groups and chats are common groupware features
that make possible the gradual articulation of tacit
knowledge. The development of technologies,
such as videoconferencing and instant messaging,
has contributed to a better quality of interaction
among groupware users. These enriched virtual
environments provide a suitable context for the
socialization and internalization processes. Choo
et al. (2000) present online apprenticeship as an
example of socialization supported by groupware.
The Microsoft groupware suite (MS Exchange,
MS Outlook, MS Messenger) and the Lotus family
(Notes, Sametime, Lotus Workplace) are examples
of groupware packages.

work flow

Work flow systems support standardized business
processes. These systems regulate the information
flow from person to person, place to place, and
task to task in processes that require ordered and
structured information. The objective of work flow
systems is to establish and accelerate the process
flow, following its steps and tracking each activity
that composes the process. They make explicit
the knowledge that is embedded in standard pro-

���

Knowledge Management Software

cesses, mainly supporting the formal codification
of existing knowledge (externalization).

Cruz (1998) defines the three basic elements
of work flow, also called the three Rs model.

• Roles: set of skills to execute a specific
task

• Rules: features that define how the data
should be processed

• Routes: logical paths for the knowledge
flow through the process

Work flow systems, like ARIS Toolset, present
features that support the graphical representation
of existing processes. These systems are also used
for business process reengineering (BPR) because
they make explicit who does what in what order,
and what products or services are produced. An-
other interesting feature of work flow systems is
simulation, which permits the dynamic analysis of
business processes. The simulation supplies infor-
mation about the execution of processes, process
weak points, and resource bottlenecks. Work flow
systems are usually integrated with groupware and
CMSs in order to provide an organized document
flow across knowledge workers, supporting then
the execution of a business process.

Artificial Intelligence-Based Systems

AI is the computer-science field that has produced
the first studies relating information to knowledge.
Expert systems, CBR (case-based reasoning)
systems, and neural networks are some types
of systems that use AI techniques. An expert
system is built on the observation of a specialist
at work and on the mapping of part of his or her
knowledge into derivation rules.

As Davenport and Prusak (1998) explain, CBR
systems support learning from a set of narratives
or cases related to a problem. When a user has a
problem, he or she can check in the case database
in order to find if it is related to a problem that
has already been solved. CBR systems use pat-

tern matching algorithms to retrieve cases that
are more similar to the problem stated before.
The user can interact with the system by analyz-
ing the solutions of existing cases and refining
the search. CBR systems have been successfully
used in help desk and call-center applications.
They help contributors to externalize what has
been learned from experience through the nar-
rative of cases.

On the other hand, frequent users of the CBR
system can internalize the knowledge that is
represented into the system. This knowledge can
also be restructured and represented in another
manner. According to Rollet (2003), fundamental
prerequisites for AI methods are suitable ways of
representing knowledge, and automated reason-
ing typically uses highly formalized knowledge
bases consisting of explicit rules, using, for
instance, predicate logic. AI is also important
for the development of software components,
like intelligent agents, that can be used in a wide
range of information systems, helping search and
retrieval features.

Neural networks, like CA-Neugents, are more
sophisticated systems that use statistical instru-
ments to process cause-effect examples and to
learn the relationships involved in the solution of
problems. Neural networks are very flexible and
intelligent systems because each new input results
in an automatic reprogramming and consequent
addition of new relationships.

Business Intelligence

Business intelligence is a set of tools used to
manipulate a mass of operational data and to
extract essential business information from them.
BI systems comprehend the following:

• Front-end systems: They consist of a com-
prehensive set of data analysis tools like
OLAP (online analytical processing), data
mining, query, and reporting.

 ���

Knowledge Management Software

• Back-end systems: DBMSs (database
management systems), data warehouses,
and data marts.

DBMSs are the basis of a BI solution. First, the
operational data generated by business transac-
tions are extracted from the DBMS, filtered by
some criteria, and then moved to the data ware-
house. After this BI back-end loading step, the
front-end tools are able to identify hidden patterns
inside the data, and the user is free to build his or
her own queries and strategic reports. BI systems,
like Business Objects and Oracle 10g BI, provide
end users with self-service access to information
stored in data marts, data warehouses, and online
transaction processing (OLTP) systems. As Choo
(1998) explains, organizations are using analysis
tools to reveal patterns that would otherwise re-
main buried in their huge operational databases;
software for OLAP, a front-end BI tool, allow
users to create multidimensional views of large
amounts of data as they “slice and dice” the data
in various ways to discover patterns and trends.

The focus of BI is decision making. BI sys-
tems excel in the job of sorting, categorizing,
and structuring information, and facilitating the
reconfiguration of existing information (combina-
tion) as well as creating new information.

knowledge map Systems

Also known as expertise locators, knowledge
maps work like yellow pages that contain a “who-
knows-what” list. A knowledge map does not
store knowledge. The map just points to people
who own it, creating opportunities for knowledge
exchange.

A standard knowledge map is fed with profiles
of competencies of the members of an organiza-
tion. The knowledge map provides an expert loca-
tor feature that helps users to find the expert’s best
suited to work on a specific problem or project.
A knowledge map categorizes an organization’s

expertise into searchable catalogs. By using a
knowledge map, it is easier to identify people in
terms of whom they know, what they know, and
how proficient they are at a given task.

Human resource specialists use knowledge
maps to match existing competencies with strate-
gic targets and to identify what kinds of know-how,
essential for growth, are currently available. Ac-
cording to Terra (2000), knowledge maps facilitate
tacit knowledge exchange because they provide
faster expert search and increase the chance of
personal meetings. This approximation can prob-
ably result in face-to-face contacts that promote
shared experiences and learning by observation,
imitation, and praxis (socialization).

Innovation Support tools

Amidon (2000) defines innovation as the ap-
plication of new ideas to products or services.
The result of innovation can be observed by the
number of new patents, the design modifications
of existing products, and the development of new
products. Innovation support tools are systems
that contribute to knowledge generation along
the product design process. These tools intend
to create a virtual environment that stimulates
the multiplication of insights and are especially
used in industrial R & D. An innovation support
tool may include different features.

• A technical database where patents, articles,
and research projects are recorded

• Graphic simulation features, which can
facilitate internalization

• Combinatory tools, which help to consider
unusual possibilities in the design of innova-
tions

Innovation support tools, like Goldfire In-
novator from Invention Machines, are generally
based on a scientific content or patent database
that allows users to conceive new products, correct

���

Knowledge Management Software

product defects, design feature modifications to
existing products, identify technology trends and
future product road maps, or improve production
processes. The combination process is also sup-
ported because an engineer can combine existing
explicit knowledge to generate new patents or
product specifications.

competitive Intelligence tools

FULD & Company Inc. (2000) describes the CI
cycle in five steps.

• Planning and direction: the identification
of questions that will drive the information
gathering phase

• Published information collection
• Primary source collection: information

gathering from people rather than from
published sources

• Analysis and production: the transforma-
tion of the collected data into meaningful
assessment

• Report and inform: the delivery of critical
intelligence in a coherent manner to corpo-
rate decision makers

FULD and Company Inc. (2000) has evaluated
the CI software offered on the market and has con-
cluded that they offer better support to the second
and fifth steps of the CI cycle. The other steps are
very human based and are only slightly benefited
by technology. In the second step, software agents
perform the automatic collection of timely infor-
mation from news feeds and search the Internet
and corporate intranets. In the fifth step, CI tools
accelerate the dissemination of reports by sending
e-mail reports according to users’ preferences. CI
tools concentrate on the combination process of
the knowledge conversion spiral. They act like a
probe on information sources: The information
that is obtained is filtered and classified before
dissemination so it is disseminated in an adequate

format to facilitate combination. On the other
hand, CI tools contribute to sense making, which
is related to the internalization process. According
to Choo (1998), organizations first have to make
sense of what is happening in their environments
in order to develop a shared interpretation that
can serve as a guide to action.

knowledge portals

In an attempt to consolidate various departmental
intranets, organizations are constructing corpo-
rate intranets or portals (Choo et al., 2000). A
great contribution of portals is the integration of
heterogeneous information sources, providing a
standard interface to the users. According to the
authors, a portal’s primary function is to provide a
transparent directory of information already avail-
able elsewhere, not to act as a separate source of
information itself. Common elements contained
in corporate portal design include an enterprise
taxonomy or classification of information catego-
ries that helps to ease retrieval, a search engine,
and links to internal and external Web sites and
information sources.

The personalization feature of portals enables
end users to organize their work by community,
interest, task, or job focus. Besides providing
personal access to knowledge, portals help users
in the job of building community places. Online
awareness and real-chat capabilities are available
throughout the portal. Therefore, the user can see
who is online, connect with them instantly, and
get immediate answers.

But portals are evolving into more complex and
interactive gateways so that they may integrate
in a single solution many KM tools’ features pre-
sented before. They are becoming single points of
entry through which end users and communities
can perform their business tasks, and evolving
into virtual places where people can get in touch
with other people who share common interests.
Knowledge portals are the next generation of

 ���

Knowledge Management Software

EIPs (enterprise information portals). Knowl-
edge portals support all knowledge processes
described in the SECI model because portals are
in fact the amalgamation of many KM systems
presented before.

Table 1 presents the 10 classes of KM software
discussed in this article, their main contribution to
knowledge conversion processes, the disciplinary
origin of their main concepts, and some examples.
The examples are merely illustrative and do not

represent a recommendation or preference for any
technology vendor.

It is interesting to notice how KM software
covers a large spectrum of features, information
resources, and users. For instance, CMSs are
made to retrieve documents while knowledge
map systems exist to find people. Like CMSs,
BI supports the combination process. However,
CMSs deal basically with documents that are
usually nonstructured and appear in a great va-

Table 1. Categories of knowledge management software: Summary table

Category Dominating Knowledge
Conversion Processes

Origin of Concepts Examples

Intranet-Based
Systems

Externalization, Combination,
Internalization

Computer Networks
(Web Technology)

Apache HTTP
Server

Content
Management
Systems

Combination Information Science Excalibur Retrieval
Ware and File Net

Groupware Socialization, Externalization,
Internalization

CSCW (Computer-
Supported Cooperative
Work)

Lotus Family (Notes,
Sametime) and MS
Suite (Exchange,
Outlook, Messenger)

Work Flow Externalization Organization and
Methods

ARIS Toolset (IDS
Scheer)

Artificial
Intelligence-
Based Systems

Externalization, Combination,
Internalization

Artificial Intelligence Neugents (Computer
Associates)

Business
Intelligence

Combination Database Management Business Objects and
Oracle 10g BI

Knowledge
Maps

Socialization Information Science
and Human Resource
Management

Gingo (Trivium) and
Lotus Discovery
Server

Innovation
Support Tools

Combination, Internalization Innovation and
Technology Management

Goldfire Innovator
(Invention Machines)

Competitive
Intelligence
Tools

Combination Strategic Management
and Information Science

Knowledge Works
(Cipher Systems) and
Vigipro (CRIQ/CGI)

Knowledge
Portals

Socialization, Externalization,
Combination, Internalization

Computer Networks and
Information Science

Hummingbird and
Plumtree

���

Knowledge Management Software

riety of formats, while the basic BI structure is a
database record with specific attributes and a stan-
dardized format. Finally, the users of innovation
support tools are usually technicians, engineers,
or scientists who are involved in some creative
design process inside an R & D department, while
managers are BI’s typical users.

future trendS

There seems to be a trend of functional conver-
gence in KM systems. Preserving initial features,
vendors are incorporating extra features from oth-
ers categories described in the typology presented
in this article, transforming their products into
KM-integrated suites. For instance, a BI system
may start to offer a knowledge map feature in a
new version. So, it seems that increasingly, KM
software will be classified in more than one of
the presented categories, which can be alterna-
tively considered as an array of features for KM
systems.

The portal technology is the materialization of
this convergence trend. Scientific research about
portal features and types of KM systems seems
to merge, following the movement of the KM
software market. Collins (2003) and Detlor (2004)
are examples of this recent approach. According to
Collins, the knowledge portal’s basic features are
BI, collaboration, and content management. As a
result, a basic portal will require the integration of
at least four KM systems presented in this article:
the intranet, CMS, groupware, and BI.

Integration can be a cumbersome task and may
not be seen as a short-term project, especially in
the case where there are heterogeneous systems
scattered all over the organization. Firestone
(2003) emphasizes the role of XML (extensible
markup language) in portal architecture and
presents relations between portal-integration
efforts and the current research concerning EAI
(enterprise application integration). The better
choice is to consider a knowledge portal as a

gradual project, allowing organizations to expand
later the capabilities and functionalities delivered
through the portal.

concLuSIon

The wise selection of KM software requires a
previous analysis of an organization’s knowledge
needs. Among the considerations to be addressed
in some organizations is the fact, for instance, that
a low level of socialization may be the critical
point; in other ones, externalization may need
to be improved.

As to the adoption process, it is interesting
to notice the differences between KM software
and ERP (enterprise resource planning) systems.
ERPs are usually implemented in a top-down
style, and the organization generally has to ad-
just its processes to the system in a short period
of time. It is impossible to do the same with a
KM system. The commitment and motivation of
members are crucial to any KM program, much
more than better KM software. KM requires a
long term strategy to involve people and break
paradigms. Also, policies referring to participa-
tion, flexibility, autonomy, and career evolution
must surely be adapted.

KM software can be considered an interdis-
ciplinary business because their development
requires not only technical skills, but also a deep
understanding of social and managerial aspects. In
this sense, Choo et al. (2000) suggest that intranet
designers look for the lessons learned from the field
of CSCW. Recommendations include the need to
ensure that everyone benefits from groupware, the
need to understand the current work practice, and
the involvement of users in design.

As a result of the research presented in this
article, we conclude that KM software is evolv-
ing in order to offer an integrated platform for
organizational knowledge conversion processes.
But this does not mean that the resources of KM
software are already well exploited by the orga-

 ���

Knowledge Management Software

nizations that have adopted them. As reported in
literature and as we have ourselves learned from
the study of two Brazilian organization systems
(Carvalho, 2000), their potential is most frequently
underevaluated and unexplored. In fact, their
actual utilization stresses mainly their support
of information access and retrieval, while their
communication and collaboration dimensions are
yet to be discovered.

The implementation of KM systems is a com-
plex process. The KM software needs not only
to be integrated to the existing IT infrastructure,
but to the organizational culture, procedures, and
human resource policy as well. The correct bal-
ance between managerial and technical aspects
constitutes one of KM-tool adoption’s greatest
challenges. According to Detlor (2004), culture
and user behaviors are the key drivers and inhibi-
tors of internal sharing, and organizations should
develop ways of stimulating people to use and
contribute to KM systems.

Many organizations that are implementing KM
programs focus exclusively on the conversion of
human capital into structural capital. They think of
KM as an opportunity to extract part of the knowl-
edge of their employees and store it in knowledge
bases. This approach misunderstands the dynamic
and complex characteristics of knowledge, its
tacit-prevailing nature, and the fact that, more
than existing knowledge, the incessant creation
of knowledge is the distinctive feature.

The KM concept has recently been severely
criticized (Berkman, 2001), and one of the rea-
sons for this may be the excessive emphasis on
software and methodologies per se. This argu-
ment emphasizes the importance of considering
technology in its context, that is, of relating it to
the complexity of knowledge processes in order
not to over (or under) estimate technology, or to
miss the opportunity of bringing knowledge to
where it belongs: the center of organizational
attention.

referenceS

Amidon, D. (2000). Knowledge innovation. Re-
trieved from http://www.entovation.com

Barnes, S. (2001). Knowledge management sys-
tems: Theory and practice. London: Thomson
Learning Europe.

Bellaver, R., & Lusa, J. (2002). Knowledge man-
agement strategy and technology. Norwood, MA:
Artech House.

Bennet, G. (1997). Intranets: Como implantar
com sucesso na sua empresa. Rio de Janeiro,
Brazil: Campus.

Berkman, E. (2001). When bad things happen to
good ideas. Darwin Magazine. Retrieved from
http://www.darwinmag.com

Carvalho, R. B. (2000). Aplicações de softwares
de gestão do conhecimento: Tipologia e usos.
MSc dissertation, Programa de Pós-Graduação
em Ciência da Informação da UFMG, Belo Hori-
zonte, Brazil.

Choo, C. W. (1998). The knowing organization.
Oxford, UK: Oxford University Press.

Choo, C. W., Detlor, B., & Turnbull, D. (2000).
Web work: Information seeking and knowledge
work on the World Wide Web. Dordrecht, Ger-
many: Kluwer Academic Publishers.

Collins, H. (2003). Enterprise knowledge portals.
New York: Amacon.

Cruz, T. (1998). Workflow: A tecnologia que
vai revolucionar processos. São Paulo, Brazil:
Atlas.

Davenport, T., & Prusak, L. (1998). Working
knowledge: How organizations manage what
they know. Boston: HBS Press.

Detlor, B. (2004). Towards knowledge portals.
Boston: Kluwer Academic Publishers.

���

Knowledge Management Software

Fernandez, I., Gonzalez, A., & Sabherwal, R.
(2004). Knowledge management and KM software
package. Harlow, UK: Pearson.

Firestone, J. (2003). Enterprise information por-
tals and knowledge management. Burlington,
UK: Butterworth-Heinemann.

FULD & Company Inc. (2000). Intelligence
software report. Retrieved from http://www.
fuld.com

Kim, Y., Chaudhury, A., & Rao, H. (2002). A
knowledge management perspective to evaluation
of enterprise information portals. In knowledge
and process management (Version 9, pp. 57-71).
Indianapolis, IN: John Wiley & Sons.

Maier, R. (2004). Knowledge management
systems: Information and communication tech-
nologies for knowledge management. Heidelberg,
Germany: Springer-Verlag.

Malhotra, Y. (2000). Knowledge management and
virtual organizations. Hershey, PA: IGP.

Microsoft. (2000). Knowledge management:
Produtividade organizacional. ComputerWorld,
319, 11-12.

Nascimento, N., & Neves, J. T. R. (1999). A gestão
do donhecimento na World Wide Web: Reflexões
sobre a pesquisa de informações na rede. Perspec-
tivas em Ciência da Informação, 4, 29-48.

Nonaka, I., & Takeuchi, H. (1995). The knowledge
creating company. New York: Oxford Press.

Ponzi, L. (2004). Knowledge management: Birth
of a discipline. In Knowledge management lessons
learned. Medford, NJ: Information Today.

Raol, J., Koong, K., Liu, L., & Yu, C. (2002). An
identification and classification of enterprise portal
functions and features. Industrial Management
Data Systems, 102. Retrieved from http://www.
emerald insight.com/0263-55777.htm

Rollet, H. (2003). Knowledge management:
Processes and technologies. Boston: Kluwer
Academic Publishers.

Ruggles, R. (1997). Knowledge management tools.
Burlington, UK: Butterworth-Heinemann.

Stewart, T. (1998). Capital intelectual. Rio de
Janeiro, Brazil: Campus.

Terra, J. C. C. (2000). Gestão do conhecimento:
O grande desafio empresarial. São Paulo, Brazil:
Negócio Editora.

Tiwana, A. (2002). The knowledge manage-
ment toolkit: Practical techniques for building
a knowledge management system. New York:
Prentice Hall.

key termS

Competitive Intelligence: Set of interrelated
measures that aim at systematically feeding the
organizational decision process with information
about the organizational environment in order to
make it possible for people to learn about it, to
anticipate its evolution, and to make better deci-
sions in consequence.

CSCW (Computer-Supported Cooperative
Work): Branch of computer science dedicated to
the study of groupware technologies.

Enterprise Information Portal (EIP): Single
Web interface to corporate information.

Expert System: A special type of artificial
intelligence system that contains a limited domain
knowledge base, an inference mechanism to ma-
nipulate this base, and an interface to permit the
input of new data and user dialog.

Groupware: Type of software that is designed
to help teams that are geographically dispersed
who need to work together.

 ���

Knowledge Management Software

Intelligent Agent: Software component ca-
pable of acting autonomously by perceiving the
environment, evaluating choices, and deciding
on actions without checking the user.

Knowledge Portal: A personalized interface
to online resources for knowledge workers to
integrate applications and data. It is an evolution
of EIP.

Neural Networks: A system composed of a
large number of software nodes connected by
weighted links. The system learns by adjust-
ing those weights through repetitive learning
cycles.

OLAP (Online Analytical Processing):
Front-end tool that allows the analysis of multidi-
mensional data. It is commonly used in business
intelligence systems.

This work was previously published in Encyclopedia of Knowledge Management, edited by D. Schwartz, pp. 410-418, copyright
2006 by Information Science Reference (an imprint of IGI Global).

��0

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.30
Malicious Software

Thomas M. Chen
Southern Methodist University, USA

Gregg W. Tally
SPARTA, Inc., USA

IntroductIon

Malicious software (malware) allows an intruder
to take over or damage a target host without the
owner’s consent and often without his or her
knowledge. Over the past thirty years, malware
has become a more serious worldwide problem as
Internet-connected computers have proliferated
and operating systems have become more com-
plex. Today, the average PC user must be more
cognizant of computer security than ever before
due to the constant threat of possible infection.
Although exact costs are difficult to determine,
there is little doubt that malware has widespread
impact on equipment damages, loss of data,
and loss of productivity. According to surveys,
malware is one of the most common and costly
types of attack on organizations (CERT, CSO, &
ECTF, 2005).

In the early days of computing, malware was
predominantly viruses and Trojan horses that
spread among computers mainly by floppy disks
and shared files (Grimes, 2001). The typical virus

writer was a young male experimenting by him-
self and looking for notoriety. Today, malware
is largely worms, viruses, spyware, bots, and
Trojans proliferating through computer networks.
Worms are a particular concern due to their ability
to spread by themselves through computer net-
works. They can exploit weaknesses in operating
systems or common applications such as Web and
e-mail clients. They are often used as vehicles to
install other types of malware onto hosts. Many
thousands of worms and viruses are constantly
tracked by the WildList (Wildlist Organization
International, 2006) and antivirus companies.

Naturally, host-based and network-based
defenses have also evolved in sophistication
in response to growing threats. Surveys have
found that organizations almost universally use
antivirus software, firewalls, intrusion detection
systems, and other means of protection (Gordon,
Loeb, Lucyshyn, & Richardson, 2005). These
defenses certainly block a tremendous amount of
malware and prevent global disasters. However,
their effectiveness is widely known to be limited

 ���

Malicious Software

by their ability to accurately detect malware.
Detection accuracy is critical because malware
must be blocked without interfering with legiti-
mate computer activities or network traffic. This
difficulty is compounded by the creativity of
attackers continually attempting to invent new
methods to avoid detection.

Background

Self-replicating malware

Malware can be classified into self-replicating
or nonself-replicating. Self-replicating malware
consists of viruses and worms. Fred Cohen
originated the term virus after biological viruses
for their manner of parasitically injecting their
RNA into a normal cell, which then hijack the
cell’s reproductive process to produce copies of
the virus (Cohen, 1994). Analogously, computer
viruses attach their code to a normal program
or file, which takes over control of execution of
the infected program to copy the virus code to
another program.

Polymorphism was a major development in
virus evolution around 1990. Polymorphic viruses
are able to scramble their form to have at most
a few bytes in common between copies to avoid
detection by virus scanners. In 1991, the dark
avenger’s mutation engine was an easy to use
program for adding polymorphism to any virus.
A number of other “mutation engines” were sub-
sequently created by other virus writers.

A new wave of mass-mailing viruses began
with Melissa in 1999. It was a macro virus in-
fecting Microsoft Word normal templates. On
infected computers, it launched Microsoft Outlook
and e-mailed copies of itself to 50 recipients in
the address book. It demonstrated the effective-
ness of e-mail as a propagation vector, infecting
100,000 computers in 3 days. Since then, e-mail
has continued to be a popular vector for viruses
and worms because e-mail is used by everyone

across different operating systems (Harley, Slade,
& Gattiker, 2001). Mass-mailing worms today
often carry their own SMTP engines to mail
themselves and circumvent security features in
e-mail programs.

Whereas viruses are program fragments de-
pendent on execution of a host program, worms
are standalone programs capable of spreading
by themselves (Nazario, 2004; Skoudis, 2004).
A worm searches for potential targets through a
computer network and sends a copy of itself if the
target is successfully compromised. Worms take
advantage of networks and have proliferated as
Internet connectivity has become ubiquitous.

One of the earliest and most famous worms
was written by Robert Morris Jr. in 1988. Perhaps
released accidentally, it disabled 6,000 hosts,
which was 10% of the ARPANET (the predecessor
to the Internet). A number of fast worms, notably
Code Red I, Code Red II, and Nimda appeared
in 2001. Two years later, another wave of fast
worms included SQL Slammer/Sapphire, Blaster,
and Sobig.F. The following year was dominated
by MyDoom, Netsky, and Bagle worms (Turner
et al., 2006).

Nonself-replicating malware classification
of nonself-replicating malware into disjoint
subcategories is difficult because many types
of nonself-replicating malware share similar
characteristics. Perhaps the largest category is
Trojan horses defined as programs with hidden
malicious functions. A Trojan horse may be dis-
guised as a legitimate program to avoid detection.
For example, a Trojan horse could be installed on
a host with the name of a legitimate system file
(displacing that file). Alternatively, the intention
of the disguise could be to deceive users into
executing it. For example, a Trojan horse could
appear to be a graphic attachment in an e-mail
message but in actuality be a malicious program.
Trojans do not replicate by themselves but could
spread by file sharing or downloading.

Remote administration or access trojans
(RATs) are a well-known type of trojan horse

���

Malicious Software

giving covert remote control to attackers. One of
the first was Netbus written in 1998. It works in a
client-server fashion with the server component
installed on the target machine responding to the
attacker’s client. Another well-known RAT was
Back Orifice released by Cult of the Dead Cow in
1998, which was later released as an open source
version Back Orifice 2000.

A backdoor is software giving access to a
system bypassing normal authentication mecha-
nisms (Skoudis, 2004). Programmers have writ-
ten backdoors sometimes to allow convenient
access for legitimate testing or administrative
purposes, but backdoors can be installed and
exploited by attackers to maintain covert remote
control after a target has been compromised. For
example, the Nimda worm dropped a backdoor
on infected hosts.

Relatively recently, bots such as Spybot and
Gaobot have become a major problem (Turner et
al., 2006). Bots installed on a group of hosts act
as a large bot net to carry out a remote attacker’s
instructions which are typically communicated
via Internet relay chat (IRC). Bot net sizes in the
thousands to hundreds of thousands have been
observed. Bot nets have been rented or sold as
platforms for spamming, distributed denial of
service, and other criminal activities (Lewis,
2005).

A rootkit is low-level software, possibly at the
kernel level, designed to conceal certain files and
processes. Rootkits are sometimes bundled as part
of malware such as worms (Hoglund & Butler,
2006) because the concealment allows attackers
to maintain longer control over their targets.

Spyware is software that collects and sends
personal information through the network to a
remote attacker (Evans, 2005). Spyware may
be bundled with a legitimate program, and its
presence may be mentioned in a end user license
agreement (EULA). Commonly, a type of spy-
ware called adware is bundled for the purpose
of collecting information about user behavior to
customize delivery of advertising. Accepting the

EULA is considered explicit agreement to instal-
lation of the spyware, but many people neglect
to read EULAs carefully. More pernicious types
of spyware deliberately hide their presence and
attempt to steal personal data by recording data
to a file which is transmitted to or retrieved by a
remote attacker.

maLIcIouS Software

Malware involves an ongoing conflict between
attackers and defenders. Worms are a prime
example of a malware attack. Computers are typi-
cally protected by a combination of host-based
and network-based defenses.

Self replication basics worms actively select
and attack their targets through a network au-
tomatically. The capability for self replication
is enabled by certain functions in the worm
code (Skoudis, 2004). First, a function for target
location chooses the next host for attack. The
simplest algorithm chooses random IP address
as pseudorandomly generated 32-bit numbers.
Random target selection is not completely effec-
tive because the B and C class address spaces are
more populated. Hence, some worms target B and
C class addresses more often. Also, some worms
favor targets on the same local area network as the
victim because they are easier to reach. Another
common way to identify targets is to harvest e-
mail addresses from the victim host.

Second, a function in the worm code must
contain the infection mechanism to compromise
a selected target. The most common method is an
exploit of a vulnerability. Most operating systems
and applications software have vulnerabilities or
weaknesses discovered over time. The most com-
mon type of vulnerability is a buffer overflow,
which can lead to running arbitrary malicious
code on a target host if attacked successfully
(Foster, Osipov, Bhalla, & Heinen, 2005). When a
vulnerability is discovered, the software developer
is usually notified privately and given a chance

 ���

Malicious Software

to develop a patch or update. The vulnerability
may be publicly disclosed later along with the
patch. Vulnerabilities are regularly published in
Microsoft security bulletins, CERT advisories,
Bugtraq, MITRE CVEs, and other places. This
process allows users to update their systems before
attackers can write the exploit code that takes ad-
vantage of the vulnerability. Other vulnerabilities
may be discovered by attackers but not disclosed,
in hopes of catching targets unprotected against
so-called zero-day exploits.

Exploits are not the only way for worms to
spread. Social engineering takes advantage of
human gullibility to trick users into taking an
action to help the worm (e.g., opening an e-mail
attachment). Password attacks attempt to compro-
mise a target by trying default passwords, easily
guessed passwords, or cracking the password file.
Another way to spread is to look for backdoors
left by other worms.

Worms can easily include multiple exploits to
compromise more targets faster. The Morris worm
was an example using a combination of different
exploits to attack targets: a buffer overflow exploit
of the Unix finger daemon; an exploit of the debug
mode of the sendmail program; and cracking the
password file by a dictionary attack. Another
prominent example of a blended threat was Nimda
in 2001, using five different vectors.

A third function in the worm code enables
replication of the worm to a compromised target.
Replication might be combined with the exploit.
For example, SQL Slammer/Sapphire carried a
buffer overflow exploit and a copy of the worm
within a single 404-byte UDP packet.

Finally, worm code may optionally contain a
payload. The payload is executed on the target and
might be virtually anything such as data theft, data
deletion, or installation of other malware.

host-Based defenses

The most common suite of host-based defenses
includes antivirus software, spyware detection

software, and a personal firewall. Antivirus and
antispyware software aim to identify specific
malware, disinfect, or remove infected files, and
prevent new infections if possible. Antivirus and
antispyware programs largely work by signatures,
which are sets of characteristics that will identify
a specific malware (Szor, 2005). Signatures are
preferred for their accuracy in identifying known
malware, but new malware without a matching
signature can escape detection. Antivirus soft-
ware typically include heuristic rules to detect
suspicious new malware based on their behavior
or construction. For example, behavior blocking
looks at the behavior of programs and raises a
warning if the behavior appears suspicious. The
disadvantage of heuristics is a possibly high rate
of false positives (false alarms).

Another defense against malware is software
patching. Software developers often publicize
new vulnerabilities along with patches for them.
This works for known vulnerabilities but not all
vulnerabilities are known by the developers. Also,
it can be inconvenient for users to keep up with
regular patching.

Host-based intrusion detection systems are
processes that observe system activities and raise
alarms for suspicious activities. For example, if
someone fails several consecutive login attempts,
that would be a suspicious activity suggesting that
the person does not know the correct password.

Lastly, computers typically include personal
firewalls, implemented as software at the network
interface. Incoming and outgoing traffic is blocked
according to the firewall policies. There might be
firewalls on the perimeter of a user’s network, but
a personal firewall allows packet filtering to be
customized to individual preferences.

network-Based defenses

Compared to host-based defenses, network-
based defenses have the advantage of providing
broad protection to groups of users without any
special requirements on hosts (Nazario, 2004).

���

Malicious Software

Firewalls are perhaps the best known network
defense (Northcutt, Zeltser, Winters, Fredrick, &
Ritchey, 2002). Firewalls apply filtering rules to
block malicious traffic including malware. Rules
are often based on fields in packet header fields
such as source and destination addresses, source
and destination ports, and protocol.

Routers with access control lists (ACLs) can
block traffic similarly to firewalls. Routers must
process packet headers for the purpose of forward-
ing packets along the correct routes. ACLs are
simply additional rules to specify which packets
are dropped.

Network-based intrusion detection systems
(IDS) are specialized equipment to observe and
classify traffic as normal, suspicious, or mali-
cious. IDS raise alarms for suspicious traffic but
do not take active actions (intrusion prevention
systems have that additional capability to block
malicious traffic). Like antivirus software, IDS
typically work by a combination of signature-
based and behavior-based detection (also called
misuse and anomaly detection). Signatures are
traffic characteristics that unique identify malware
traffic and are preferred for accurate detection.
However, not all malware traffic is known, and
therefore malware might escape signature-based
detection (Riordan, Wespi, & Zamboni, 2005).
Behavior-based or anomaly detection aims to
identify all suspicious traffic that deviates in some
sense from normal traffic.

Honeypots are decoy computers intentionally
set up to look vulnerable to attackers (Spitzner,
2003). They are not used for legitimate services
so all traffic received by a honeypot is unsolicited
and inherently suspicious. Their general purpose
is to learn about attacker behavior but can be con-
figured to collect malware, particularly worms that
choose their targets automatically and randomly.
The risks associated with malware impose the
necessity for special precautions to limit possibly
compromised honeypots from spreading malware
to other computers.

chaLLengeS

New vulnerabilities are constantly being dis-
covered in operating systems and applications
software, giving rise to new exploits for malware.
Turner et al. (2006) reported an average of 10
new vulnerabilities discovered per day. Accurate
detection of new exploits requires signatures, but
signatures usually takes a few hours to days to
develop. In the absence of a signature, the effec-
tiveness of defenses will depend on the accuracy of
anomaly (or behavior-based) detection. Anomaly
detection based on unique behavioral traits of
worms is an active area of research (Al-Ham-
madi & Leckie, 2005; Gu, Sharif, Qin, Dagon,
Lee, & Riley, 2004; Kawaguchi, Azuma, Ueda,
Shigeno, & Okada, 2006). For example, random
worms might be inferred by the observation of
a large number of failed connection messages
(Berk, Bakos, & Morris, 2003). Another active
research problem is automated defenses after
detection such as automatic generation of worm
signatures (Newsome, Karp, & Song, 2005; Sim-
khada, Tsunoda, Waizumi, & Nemoto, 2005) or
dynamic quarantine (Moore, Shannon, Voelker,
& Savage, 2003).

The situation is complicated by the many
means of self-preservation that malware today
often use. First, malware attempts to be stealthy
through polymorphism or rootkit techniques.
Second, malware can actively attack defenses.
It is not uncommon for viruses and worms to
disable antivirus software on targets by stopping
antivirus processes and disabling registry keys.
Third, malware has the capability to dynami-
cally download new code or plug-ins, changing
its functionality.

future trendS

Malware is always seeking new propagation vec-
tors in addition to the Internet. Recently, malware

 ���

Malicious Software

has begun to spread via wireless networks to mo-
bile devices such as cell phones and PDAs and is
increasingly targeting instant messaging (Turner
et al., 2006). E-mail and social engineering will
continue to be popular propagation vectors.

The changing nature of payloads, increas-
ingly towards remote control and data theft,
suggests that malware is become more used for
cybercrimes. Malware for profit has been called
crimeware. This trend is also suggested by in-
creasing use of stealth techniques.

Finally, worm outbreaks have become faster
than humans can respond. For example, SQL
Slammer/Sapphire is reported to have infected 90
percent of the vulnerable hosts within 10 minutes.
This trend means more dependence on automated
defenses in the future. However, the effectiveness
of automated defenses will depend on a solution
to the problem of accurate detection.

concLuSIon

Current defenses based on signatures and anomaly
detection are imperfect. Signatures are preferred
for accuracy but take time to develop and distrib-
ute. On the other hand, anomaly detection has the
difficult challenge of differentiating normal from
malicious behavior. In the future, malware attacks
will be carried out faster, and we will depend more
on automated defenses. These defenses will need
solutions to automating signature development
and making anomaly detection more accurate.

Finally, users are an important part of security.
Since malware often use social engineering, user
education and awareness of secure practices (such
as patching and antivirus updating) are essential.
Just as with anything valuable, users must be
constantly vigilant to protect their computers
and data.

referenceS

Al-Hammadi, Y., & Leckie, C. (2005). Anomaly
detection for Internet worms. In Proceedings of
IEEE IM 2005 (pp. 133-146).

Berk, V., Bakos, G., & Morris, R. (2003). Design-
ing a framework for active worm detection on
global networks. In Proceedings of the 1st IEEE
International Workshop on Info. Assurance (pp.
13-23).

CERT, CSO, and ECTF. (2005). 2005 e-crime
watch survey. Retrieved April 24, 2006, from
http://www.cert.org/archive/pdf/ecrimesum-
mary05.pdf

Cohen, F. (1994). A short course on computer
viruses. New York: Wiley & Sons.

Evans, G. (2005). Spyware study and reference
guide. Marina Del Rey, CA: Ligatt Publishing.

Foster, J., Osipov, V., Bhalla, N., & Heinen, N.
(2005). Buffer overflow attacks: Detect, exploit,
prevent. Rockland, MA: Syngress Publishing.

Gordon, L., Loeb, M., Lucyshyn, W., & Rich-
ardson, R. (2005). CSI/FBI computer crime and
security survey. Retrieved April 24, 2006, from
http://www.gocsi.com

Grimes, R. (2001). Malicious mobile code. Se-
bastopol, CA: O’Reilly & Associates.

Gu, G., Sharif, M., Qin, X., Dagon, D., Lee,
W., & Riley, G. (2004). Worm detection, early
warning, and response based on local victim
information. In Proceedings of the 20th IEEE An-
nual Computer Security Applications Conference
(pp. 136-145).

Harley, D., Slade, R., & Gattiker, R. (2001). Viruses
revealed. New York: McGraw-Hill.

Hoglund, G., & Butler, J. (2006). Rootkits: Sub-
verting the windows kernel. Upper Saddle River,
NJ: Addison-Wesley.

���

Malicious Software

Kawaguchi, N., Azuma, Y., Ueda, S., Shigeno, H.,
& Okada, K. (2006). ACTM: Anomaly connection
tree method to detect silent worms. In Proceed-
ings of the 20th IEEE International Conference
on Advanced Information Networking and Ap-
plication (pp. 901-908).

Lewis, J. (2005). McAfee virtual criminology
report: North American study into organized
crime and the Internet. Retrieved April 24, 2006,
from http://www.mcafeesecurity.com/us/lo-
cal_content/misc/mcafee_na_virtual_criminol-
ogy_report.pdf

Moore, D., Shannon, C., Voelker, G., & Savage,
S. (2003). Internet quarantine: Requirements for
containing self-propagating code. In Proceedings
of IEEE INFOCOM 2003.

Nazario, J. (2004). Defense and detection strat-
egies against Internet worms. Norwood, MA:
Artech House.

Newsome, J., Karp, B., & Song, D. (2005).
Polygraph: Automatically generating signatures
for polymorphic worms. In Proceedings of the
2005 IEEE Symp. on Security and Privacy (pp.
226-241).

Northcutt, S., Zeltser, L., Winters, S., Fredrick,
K., & Ritchey, R. (2002). Inside network perim-
eter security: The definitive guide to firewalls,
vpns, routers, and intrusion detection systems.
Indianapolis, IN: New Riders.

Riordan, J., Wespi, A., & Zamboni, D. (2005). How
to hook worms. IEEE Spectrum, 42(5), 32-36.

Simkhada, K., Tsunoda, H., Waizumi, Y., &
Nemoto, Y. (2005). Differencing worm flows and
normal flows for automatic generation of worm
signatures. In Proceedings of IEEE International
Symp. on Multimedia.

Skoudis, E. (2004). Malware: Fighting malicious
code. Upper Saddle River, NJ: Prentice-Hall
PTR.

Spitzner, L. (2003). Honeypots: Tracking hackers.
Boston, MA: Pearson Education.

Szor, P. (2005). The art of computer virus research
and defense. Upper Saddle River, NJ: Addison-
Wesley.

Turner, D., Entwisle, S., Friedrichs, O., Ahmad,
D., Blackbird, J., & Fossi, M. (2006). Symantec
Internet security threat report: Trends for July
2005-December 2005. Retrieved April 24, 2006,
from http://www.symantec.com.

Wildlist Organization International. (2006). Re-
trieved April 24, 2006 from http://www.wildlist.
org/WildList/.

key termS

Antivirus: Software to detect viruses and
worms, clean infected files, and prevent new
infections.

Exploit: Software written to take advantage
of a specific vulnerability.

Firewall: A device or software to selectively
filter packets.

Intrusion Detection System: A device or
software to detect suspicious or malicious ac-
tivities.

Malware: Software intended to perform a
malicious action.

Rootkit: Low-level software designed to avoid
detection on a compromised host.

Spyware: A type of malware that collects
personal user information and transmits to a
remote attacker.

Trojan Horse: A type of malware with a hid-
den malicious function.

 ���

Malicious Software

Virus: A type of self-replicating malware that
infects other files or programs.

Vulnerability: A security weakness in operat-
ing system or application software.

Worm: A standalone program capable of
automated replicating itself through a computer
network.

This work was previously published in Encyclopedia of Internet Technologies and Applications, edited by M. Freire & M.
Pereira, pp. 284-290, copyright 2008 by Information Science Reference (an imprint of IGI Global).

���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.31
Current Challenges in Intrusion

Detection Systems
H. Gunes Kayacik

Dalhousie University, Canada

A. Nur Zincir-Heywood
Dalhousie University, Canada

IntroductIon

Along with its numerous benefits, the Internet
also created numerous ways to compromise the
security and stability of the systems connected
to it. In 1995, 171 vulnerabilities were reported
to CERT/CC © while in 2003, there were 3,784
reported vulnerabilities, increasing to 8,064 in
2006 (CERT/CC©, 2006). Operations, which
are primarily designed to protect the availability,
confidentiality, and integrity of critical network
information systems are considered to be within
the scope of security management. Security man-
agement operations protect computer networks
against denial-of-service attacks, unauthorized
disclosure of information, and the modification
or destruction of data. Moreover, the automated
detection and immediate reporting of these events
are required in order to provide the basis for a
timely response to attacks (Bass, 2000). Security

management plays an important, albeit often ne-
glected, role in network management tasks.

Defensive operations can be categorized in
two groups: static and dynamic. Static defense
mechanisms are analogous to the fences around
the premises of a building. In other words, static
defensive operations are intended to provide bar-
riers to attacks. Keeping operating systems and
other software up-to-date and deploying firewalls
at entry points are examples of static defense solu-
tions. Frequent software updates can remove the
software vulnerabilities, which are susceptible
to exploits. Firewalls provide access control at
the entry point; they therefore function in much
the same way as a physical gate on a house. In
other words, the objective of a firewall is to keep
intruders out rather than catching them. Static
defense mechanisms are the first line of defense,
they are relatively easy to deploy and provide
significant defense improvement compared to the

 ���

Current Challenges in intrusion Detection Systems

initial unguarded state of the computer network.
Moreover, they act as the foundation for more
sophisticated defense mechanisms.

No system is totally foolproof. It is safe to
assume that intruders are always one step ahead
in finding security holes in current systems. This
calls attention to the need for dynamic defenses.
Dynamic defense mechanisms are analogous to
burglar alarms, which monitor the premises to find
evidence of break-ins. Built upon static defense
mechanisms, dynamic defense operations aim
to catch the attacks and log information about
the incidents such as source and nature of the
attack. Therefore, dynamic defense operations
accompany the static defense operations to provide
comprehensive information about the state of the
computer networks and connected systems.

Intrusion detection systems are examples
of dynamic defense mechanisms. An intrusion
detection system (IDS) is a combination of soft-
ware and hardware, which collects and analyzes
data collected from networks and the connected
systems to determine if there is an attack (Allen,
Christie, Fithen, McHugh, Pickel, & Stoner, 1999).
Intrusion detection systems complement static
defense mechanisms by double-checking firewalls
for configuration errors, and then catching the at-
tacks that firewalls let in or never perceive (such
as insider attacks). IDSs are generally analyzed
from two aspects:

• IDS deployment: Whether to monitor in-
coming traffic or host information.

• Detection methodologies: Whether to
employ the signatures of known attacks or
to employ the models of normal behavior.

Regardless of the aspects above, intrusion
detection systems correspond to today’s dynamic
defense mechanisms. Although they are not
flawless, current intrusion detection systems are
an essential part of the formulation of an entire
defense policy.

detectIon methodoLogIeS

Different detection methodologies can be em-
ployed to search for the evidence of attacks. Two
major categories exist as detection methodologies:
misuse and anomaly detection. Misuse detection
systems rely on the definitions of misuse pat-
terns, which are the descriptions of attacks or
unauthorized actions (Kemmerer & Vigna, 2002).
A misuse pattern should summarize the distinc-
tive features of an attack and is often called the
signature of the attack in question. In the case of
signature based IDS, when a signature appears
on the resource monitored, the IDS records the
relevant information about the incident in a log file.
Signature-based systems are the most common
examples of misuse detection systems. In terms
of advantages, signature-based systems, by defini-
tion, are very accurate at detecting known attacks,
which are included in their signature database.
Moreover, since signatures are associated with
specific misuse behavior, it is easy to determine
the attack type. On the other hand, their detection
capabilities are limited to those within signature
database. As the new attacks are discovered, a
signature database requires continuous updating
to include the new attack signatures, resulting in
potential scalability problems. Furthermore, at-
tackers are known to alter their exploits to evade
signatures. Work by Vigna, Robertson, Balzarotti
(2004) described a methodology to generate varia-
tions of an exploit to test the quality of detection
signatures. Stochastic modification of code was
employed to generate variants of exploits to render
the attack undetectable. Techniques such as packet
splitting, evasion, and polymorphic shellcode
were discussed.

As opposed to misuse IDSs, anomaly detection
systems utilize models of the acceptable behavior
of the users. These models are also referred to as
normal behavior models. Anomaly-based IDSs
search for the deviations from the normal behavior.
Deviations from the normal behavior are consid-

��0

Current Challenges in intrusion Detection Systems

ered as anomalies or attacks. As an advantage
over signature-based systems, anomaly-based
systems can detect known and unknown (i.e., new)
attacks as long as the attack behavior deviates
sufficiently from the normal behavior. However,
if the attack is similar to the normal behavior, it
may not be detected. Moreover, it is difficult to
associate deviations with specific attacks since the
anomaly-based IDSs only utilize models of normal
behavior. As the users change their behavior as
a result of additional service or hardware, even
the normal activities of a user may start raising
alarms. In that case, models of normal behavior
should be redefined to maintain the effectiveness
of the anomaly-based IDS. Similar to the case of
misuse IDSs, attackers are known to alter their
exploits to be recognized as normal behavior by
the detector, hence evading detection. The general
approach employed for evading anomaly detectors
is based on the generation of mimicry attacks to
perform evasion. A mimicry attack is an exploit
that exhibits legitimate normal behavior while
performing malicious actions. Methodologies ex-
ist to create mimicry attack automatically (Giffin,
Jha, & Miller, 2006; Kayacik, Zincir-Heywood,
& Heywood, 2007) or manually (Kruegel, Kirda,
Mutz, 2005; Tan, Killourhy, & Maxion, 2002;
Wagner & Soto, 2002).

In today’s intrusion detection systems, human
input is essential to maintain the accuracy of the
system. In the case of signature-based systems,
as new attacks are discovered, security experts
examine the attacks to create corresponding detec-
tion signatures. In the case of anomaly systems,
experts are needed to define the normal behavior.
Therefore, regardless of the detection methodol-
ogy, frequent maintenance is essential to uphold
the performance of the IDS.

Given the importance of IDSs, it is imperative
to test them to determine their performance and
eliminate their weaknesses. For this purpose,
researchers conduct tests on standard benchmarks
(Kayacik & Zincir-Heywood, 2003; Pickering,
2002). When measuring the performance of

intrusion detection systems, the detection and
false positive rates are used to summarize dif-
ferent characteristics of classification accuracy.
In simple terms, false positives (or false alarms)
are the alarms generated by a nonexistent attack.
For instance, if an IDS raises alarms for the le-
gitimate activity of a user, these log entries are
false alarms. On the other hand, detection rate is
the number of correctly identified attacks over
all attack instances, where correct identification
implies the attack is detected by its distinctive
features. An intrusion detection system becomes
more accurate as it detects more attacks and raises
fewer false alarms.

IdS depLoyment StrategIeS

In addition to the detection methodologies, data is
collected from two main sources: traffic passing
through the network and the hosts connected to
the network. Therefore, according to where they
are deployed, IDSs are divided into two categories:
those that analyze network traffic and those that
analyze information available on hosts such as
operating system audit trails. The current trend
in intrusion detection is to combine both host-
based and network-based information to develop
hybrid systems and therefore not rely on any one
methodology. In both approaches however, the
amount of audit data is extensive, thus incurring
large processing overheads. A balance, therefore,
exists between the use of resources, and the
accuracy and timeliness of intrusion detection
information.

Network-based IDSs inspect the packets pass-
ing through the network for signs of an attack.
However, the amount of data passing through the
network stream is extensive, resulting in a trade off
between the number of detectors and the amount
of analysis each detector performs. Depending on
throughput requirements, a network-based IDS
may inspect only packet headers or include the
content. Moreover, multiple detectors are typi-

 ���

Current Challenges in intrusion Detection Systems

cally employed at strategic locations in order to
distribute the task. Conversely, when deploying
attacks, intruders can evade IDSs by altering the
traffic. For instance, fragmenting the content into
smaller packets causes IDSs to see one piece of
the attack data at a time, which is insufficient
to detect the attack. Thus, network-based IDSs,
which perform content inspection, need to as-
semble the received packets and maintain state
information of the open connections, where this
becomes increasingly difficult if a detector only
receives part of the original attack or becomes
“flooded” with packets.

A host-based IDS monitors resources such as
system calls made by critical applications, logs, file
systems, processor, and disk resources. Example
signs of intrusion on host resources are unusual
system call sequences, critical file modifications,
segmentation fault errors, crashed services, or
extensive usage of the processors. As opposed to
network based IDSs, host-based IDSs can detect
attacks, which are transmitted over an encrypted
channel. Moreover, information regarding the
software that is running on the host is available to
host-based IDS. For instance, an attack targeting
an exploit on an older version of a web server might
be harmless for the recent versions. Network-based
IDSs have no way of determining whether the
exploit has a successful chance, or of using a priori
information to constrain the database of potential
attacks. Moreover, network management practices
are often critical in simplifying the IDS problem
by providing appropriate behavioral constraints,
thus making it significantly more difficult to hide
malicious behaviors (Cunningham, Lippmann, &
Webster, 2001).

chaLLengeS

The intrusion detection problem has three basic
competing requirements: speed, accuracy, and
adaptability. The speed problem represents a
quality of service issue. The more analysis (ac-

curate) the detector, the higher the computational
overhead. Conversely, accuracy requires suf-
ficient time and information to provide a useful
detector. Moreover, the rapid introduction of
both new exploits and the corresponding rate of
propagation require that detectors be based on
a very flexible/scalable architecture. In today’s
network technology, where gigabit Ethernet is
widely available, existing systems face significant
challenges merely to maintain pace with current
data streams (Kemmerer & Vigna, 2002).

An intrusion detection system becomes more
accurate as it detects more attacks and raises fewer
false alarms. IDSs that monitor highly active
resources are likely to have large logs, which in
turn complicate the analysis. If such an IDS has
high false alarm rate, the administrator will have
to sift through thousands of log entries, which
actually represent normal events, to find the at-
tack related entries. Therefore, increasing false
alarm rates will decrease the administrator’s con-
fidence in the IDS. Moreover, intrusion detection
systems are still reliant on human input in order
to maintain the accuracy of the system. In case
of signature-based systems, as new attacks are
discovered, security experts examine the attacks
to create corresponding detection signatures. In
the case of anomaly systems, experts are needed
to define the normal behavior. This leads to the
adaptability problem. The capability of the current
intrusion detection systems for adaptation is very
limited. This makes them inefficient in detecting
new or unknown attacks or adapting to changing
environments (i.e., human intervention is always
required). Although a new research area, incor-
poration of machine learning algorithms provides
a potential solution for accuracy and adaptability
of the intrusion detection problem.

current exampLeS of IdS

Intrusion detection systems reviewed here are
by no means a complete list but a subset of open

���

Current Challenges in intrusion Detection Systems

source and commercial products, which are
intended to provide readers different intrusion
detection practices.

• Snort: Snort is one of the best-known light-
weight IDSs, which focuses on performance,
flexibility, and simplicity. It is an open-
source intrusion detection system that is
now in quite widespread use (Roesch, 1999).
Snort is a network-based IDS which employs
signature-based detection methods. It can
detect various attacks and probes including
instances of buffer overflows, stealth port
scans, common gateway interface attacks,
and service message block system probes
(Roesch, 1999). Hence, Snort is an example
of active intrusion detection systems that
detects possible attacks or access violations
while they are occurring (CERT/CC ©,
2001).

• Cisco IOS (IDS Component): Cisco IOS
provides a cost-effective way to deploy a
firewall with network-based intrusion detec-
tion capabilities. In addition to the firewall
features, Cisco IOS Firewall has 59 built-in,
static signatures to detect common attacks
and misuse attempts (Cisco Systems, 2003).
The IDS process on the firewall router in-
spects packet headers for intrusion detection
by using those 59 signatures. In some cases,
routers may examine the whole packet and
maintain the state information for the con-
nection. Upon attack detection, the firewall
can be configured to log the incident, drop
the packet or reset the connection.

• Tripwire: When an attack takes place,
attackers usually replace critical system
files with their versions to inflict damage.
Tripwire (Tripwire Web Site, 2004) is an
open-source host-based tool, which per-
forms periodic checks to determine which
files are modified in the file system. To do
so, Tripwire takes snapshots of critical files.
Snapshot is a unique mathematical signature

of the file where even the smallest change
results in a different snapshot. If the file is
modified, the new snapshot will be differ-
ent than the old one, therefore critical file
modification would be detected. Tripwire is
different from the other intrusion detection
systems because rather than looking for signs
of intrusion, Tripwire looks for file modifi-
cations. Tripwire also offers a commercial
version of the open source detector.

• Stide: Stide (Forest et al.,1996) employs
a methodology based on immune systems
where the problem is characterized as dis-
tinguishing self from nonself (normal and
abnormal behaviors respectively). An event
horizon is built from a sliding window ap-
plied to the sequence of system calls made
by an application during normal use. The
sequences formed by the sliding window
are then stored in a table, which comprises
the normal database. During the detection
phase, if a pattern from the sliding window
is not in the normal database, it is flagged as
an anomaly. Recent work proposed improve-
ments on Stide by employing finite state
automata (Sekar et al., 2001), virtual path
tables (Feng et al., 2003) and static analysis
of the source code of the application (Wagner
et al., 2001).

future trendS

As indicated above, various machine learning
approaches have been proposed in an attempt
to improve on the generic signature-based IDS.
The basic motivation is to measure how close a
behavior is to some previously established gold
standard of misuse or normal behavior. Depending
on the level of a priori or domain knowledge, it
may be possible to design detectors for specific
categories of attack (e.g., Denial of Service, User
to Root, Remote to Local). Generic machine learn-
ing approaches include clustering or data-mining

 ���

Current Challenges in intrusion Detection Systems

in which case the data is effectively unlabeled.
The overriding assumption is that behaviors are
sufficiently different for normal and abnormal
behaviors to fall into different “clusters.” Specific
examples of such algorithms include artificial
immune systems (Hofmeyr & Forrest, 2000) as
well as various neural network (Kayacik, Zincir-
Heywood, & Heywood, 2003; Lee & Heinbuch,
2001) and clustering algorithms (Eskin, Arnold,
Prerau, Portnoy, & Stolfo, 2002).

Naturally, the usefulness of machine learning
systems is influenced by the features on which the
approach is based (Lee & Stolfo, 2001). Domain
knowledge that has the capability to significantly
simplify detectors utilizing machine learning
often make use of the fact that attacks are spe-
cific to protocol-service combinations. Thus, first
partitioning data based on the protocol-service
combination significantly simplifies the task of
the detector (Ramadas, Ostermann, & Tjaden,
2003).

When labeled data is available, then supervised
learning algorithms are more appropriate. Again,
any number of machine learning approaches have
been proposed, including: decision trees (Elkan,
2000), neural networks (Hofmann & Sick, 2003),
and genetic programming (Song, Heywood, &
Zincir-Heywood, 2003). However, irrespective
of the particular machine learning methodology,
all such methods need to address the scalability
problem. That is to say, datasets characterizing the
IDS problem are exceptionally large (by machine
learning standards). Moreover, the continuing
evolution of the base of attacks also requires that
any machine learning approach also have the ca-
pability for online or incremental learning. Finally,
to be of use to network management practitioners,
it would also be useful if machine learning solu-
tions were transparent. That is to say, rather than
provide “black box solutions,” it is much more
desirable if solutions could be reverse engineered
for verification purposes. Many of these issues
are still outstanding, with cases that explicitly

address the computational overhead in learning
against large datasets only just appearing (Song,
Heywood, & Zincir-Heywood, 2003).

concLuSIon

Intrusion detection system is a crucial part of
the defensive operations, which complements
the static defenses such as firewalls. Essentially,
intrusion detection is searching for signs of at-
tacks and when an intrusion is detected, intrusion
detection system can take an action to stop the
attack by closing the connection or report the
incident for further analysis by administrators.
According to the detection methodology, intru-
sion detection systems can be categorized as
misuse detection and anomaly detection systems.
According to the deployment, they can be clas-
sified as network-based or host-based, although
such distinction is coming to an end in today’s
intrusion detection systems where information is
collected from both network and host resources.
In terms of performance, an intrusion detection
system gets more accurate, as it detects more
attacks and raises fewer false alarms. However,
no intrusion detection is infallible, attackers use
detector weaknesses and blind spots to evade
intrusion detection systems. Fortunately, penetra-
tion testing and ethical hacking became a part of
the field of research.

referenceS

Allen, J., Christie, A., Fithen, W., McHugh, J.,
Pickel, J., & Stoner, E. (1999). State of the prac-
tice of intrusion detection technologie (CMU/SEI
Tech. Rep. No. CMU/SEI-99-TR-028). Retrieved
December 1, 2007, from http://www.sei.cmu.
edu/publications/documents/99.reports/99tr028/
99tr028abstract.html

���

Current Challenges in intrusion Detection Systems

Bass, T. (2000). Intrusion detection systems and
multisensor data fusion. Communications of the
ACM, 43(4), 99-105.

CERT/CC © (2006). Incident statistics 1988-2006.
Retrieved December 1, 2007, from http://www.
cert.org/stats/

CERT/CC © (2001). Identifying tools that aid in
detecting signs of intrusion. Retrieved December
1, 2007, from http://www.cert.org/security-im-
provement/implementations/i042.07.html

Cisco Systems Inc. (2003). Cisco IOS firewall
intrusion detection system documentation. Re-
trieved December 1, 2007, from http://www.
cisco.com/univercd/cc/td/doc/product/software/
ios120/120newft/120t/120t5/iosfw2/ios_ids.htm

Cunningham, R. K., Lippmann, R. P., & Webster
S. E. (2001). Detecting and displaying novel com-
puter attacks with macroscope. IEEE Transac-
tions on Systems, Man, and Cybernetics – Part
A, 31(4), 275-280.

Elkan C. (2000). Results of the KDD’99 clas-
sifier learning. ACM SIGKDD Explorations, 1,
63-64.

Eskin, E., Arnold, A., Prerau, M., Portnoy, L., &
Stolfo S. (2002) A geometric framework for unsu-
pervised anomaly detection: Detecting attacks in
unlabeled data. In D. Barbara & S. Jajodia (Eds.),
Applications of Data Mining in Computer Security
(chapter 4). Kluwer. ISBN 1-4020-7054-3.

Feng, H., Kolesnikov, O., Fogla, P., Lee, W., &
Gong, W. (2003). Anomaly detection using call
stack information. In Proceedings of the 2003
IEEE Symposium on Security and Privacy (pp.
62-74), Washington, D.C. IEEE Computer Society
Press.

Forrest, S., Hofmeyr, S. A., Somayaji, A., &
Longstaff, T. A. (1996). A sense of self for unix
processes. In Proceedings of the 1996 IEEE Sym-
posium on Security and Privacy (pp. 120-128). Los
Alamitos, CA: IEEE Computer Society Press.

Giffin, J. T., Jha, S., & Miller, B. (2006). Auto-
mated discovery of mimicry attacks. In Proceed-
ings of the International Symposium on Recent
Advances in Intrusion Detection (RAID), Ham-
burg, Germany.

Hofman, A., & Sick, B. (2003). Evolutionary
optimization of radial basis function networks
for intrusion detection. In Proceedings of the
International Joint IEEE-INNS Conference on
Neural Networks (pp. 415-420).

Hofmeyr, S. A., & Forrest, S. (2000). Architecture
for an artificial immune system. Evolutionary
Computation, 8(4), 443-473.

Kayacik, G., & Zincir-Heywood, N. (2003). A case
study of three open source security management
tools. In Proceedings of International Symposium
on Integrated Network Management.

Kayacik, G., Zincir-Heywood, N., & Heywood, M.
(2003). On the capability of an som based intrusion
detection system. In Proceedings of International
Joint Conference on Neural Networks.

Kayacik, G., Zincir-Heywood, N., & Heywood,
M. (2007). Automatically evading IDS using GP
authored attacks. In Proceedings of the IEEE
Computational Intelligence for Security and
Defense Applications.

Kemmerer, R. A., & Vigna, G. (2002, April).
Intrusion detection: A brief history and overview.
IEEE Security and Privacy, pp. 27-29.

Kruegel, C., Kirda, E., Mutz, D., Robertson, W.,
& Vigna, G. (2005). Automating mimicry attacks
using static binary analysis. In Proceedings of the
USENIX Security Symposium (pp. 161-176).

Lee, S. C., & Heinhuch, D. V. (2001). Training
a neural-network based intrusion detector to
recognize novel attacks. IEEE Transactions on
Systems, Man, and Cybernetics – Part A, 31(4),
294-299.

 ���

Current Challenges in intrusion Detection Systems

Pickering, K. (2002). Evaluating the viability of
intrusion detection system benchmarking. B.S.
thesis submitted to The Faculty of the School of
Engineering and Applied Science, University of
Virginia. Retrieved December 1, 2007, from http://
www.cs.virginia.edu/~evans/students.html

Ramadas, M., Ostermann, S., & Tjaden, B.
(2003). Detecting anomalous network traffic with
self-organizing maps. In Proceedings of the 6th
International Symposium on Recent Advances
in Intrusion Detection (LNCS 2820, pp. 36-54).
Springer-Verlag.

Roesch, M. (1999). Snort: Lightweight intrusion
detection for networks. In Proceedings of the
13th Systems Administration Conference (pp.
229-238).

Sekar, R., Bendre, K., Dhurjati, D., Bollineni,
P. (2001). A fast automaton-based method for
detecting anomalous program behaviors. In Pro-
ceedings of 2001 IEEE Symposium on Security
and Privacy (pp. 144-155), Oakland, CA. IEEE
Computer Society Press.

Song, D., Heywood, M. I., & Zincir-Heywood,
A. N. (2003). A linear genetic programming
approach to intrusion detection. In Proceedings
of the Genetic and Evolutionary Computation
Conference (GECCO’03).

Tan, K. M. C., Killourhy, K. S., & Maxion, R. A.
(2002). Undermining an anomaly-based intrusion
detection system using common exploits. In Pro-
ceedings of the 5th International Symposium on
Recent Advances in Intrusion Detection. (LNCS
2820, pp. 54-73).

Tripwire Web Site. (2004). Home of the Tripwire
open source project. Retrieved December 1, 2007,
from http://www.tripwire.org/

Vigna, G., Robertson, W., & Balzarotti, D. (2004).
Testing network based intrusion detection sig-
natures using mutant exploits. In Proceedings

of the ACM Conference on Computer Security
(pp. 21-30).

Wagner, D., Dean, D. (2001). Intrusion detection
via static analysis. In Proceedings of the 2001
IEEE Symposium on Security and Privacy (pp.
156-169), Oakland, CA. IEEE Computer Society
Press.

Wagner, D., & Soto, P. (2002). Mimicry attacks
on host based intrusion detection systems. In
Proceedings of the ACM Conference on Computer
and Communications Security (pp. 255-264).

Wenke, L., Stolfo, S.J., Chan, P.K., Eskin, E.,
Wei, F., Miller, M., Hershkop, S., & Junxin, Z.
(2001). Real time data mining-based intrusion
detection. In Proceedings of DARPA Information
Survivability Conference & Exposition II (vol.1,
pp. 89-100), Anaheim, CA.

key termS

Attack vs. Intrusion: A subtle difference—in-
trusions are the attacks that succeed. Therefore,
the term attack represents both successful and
attempted intrusions.

CERT / CC ©: CERT Coordination Center.
Computer security incident response team, which
provide technical assistance, analyze the trends
of attacks, and provide response for incidents.
Documentation and statistics are published at
their web site: http://www.cert.org.

Exploit: Taking advantage of a software
vulnerability to carry out an attack. To minimize
the risk of exploits, security updates, or software
patches should be applied frequently.

Fragmentation: When the data packet is too
large to transfer on given network, it is divided
into smaller packets. These smaller packets are
reassembled on destination host. Among with

���

Current Challenges in intrusion Detection Systems

other methods, intruders can deliberately divide
the data packets to evade IDSs.

Light Weight IDS: An intrusion detection
system, which is easy to deploy and have smaller
footprint on system resources.

Logging: Recording vital information about
an incident. Recorded information should be suf-
ficient to identify the time, origin, target, and if
applicable, characteristics of the attack.

Machine Learning: A research area of
artificial intelligence, which is interested in de-
veloping algorithms to extract knowledge from
the given data.

Open Source Software: Software with its
source code available for users to inspect and
modify to build different versions.

Penetration Testing: A part of computer se-
curity research, where the objective of an “ethical
hacker” is to discover the weaknesses and blind
spots of the security software such as intrusion
detection systems.

Security Management: In network manage-
ment, the task of defining and enforcing rules and
regulations regarding the use of the resources.

This work was previously published in Encyclopedia of Multimedia Technology and Networking, Second Edition, edited by M.
Pagani, pp. 305-311, copyright 2009 by Information Science Reference (an imprint of IGI Global).

 ���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.32
A Comparison and Scenario

Analysis of Leading
Data Mining Software

John Wang
Montclair State University, USA

Xiaohua Hu
Drexel University, USA

Kimberly Hollister
Montclair State University, USA

Dan Zhu
Iowa State University, USA

aBStract

Finding the right software is often hindered by
different criteria as well as by technology changes.
We performed an analytic hierarchy process
(AHP) analysis using Expert Choice to determine
which data mining package was best suitable for
us. Deliberating a dozen alternatives and objec-
tives led us to a series of pair-wise comparisons.
When further synthesizing the results, Expert
Choice helped us provide a clear rationale for the
decision. The issue is that data mining technology
is changing very rapidly. Our article focused only

on the major suppliers typically available in the
market place. The method and the process that
we have used can be easily applied to analyze and
compare other data mining software or knowledge
management initiatives.

IntroductIon

Based on the knowledge life cycle model, four
stages of knowledge creation, knowledge storage/
retrieval, knowledge transfer, and knowledge ap-
plication have been proposed by Alavi and Leidner

���

A Comparison and Scenario Analysis of Leading Data Mining Software

(2001) and confirmed by Jennex (2006). “To be
effective knowledge management systems, KMS,
must support the various knowledge management
functions of knowledge capture, storage, search,
retrieval, and use” (Jennex, 2006, p.3). Knowledge
discovery is generally one of the important stages
or phases of KM. And while this incorporates
identifying critical knowledge (this may also be
what this stage is called), using data mining to aid
in knowledge discovery is appropriate as being
a useful KM tool.

Data mining is a promising tool that assists
companies to uncover patterns hidden in their data.
These patterns may be further used to forecast
customer behavior, products and processes. It
is important that managers who understand the
business, the data, and the general nature of the
analytical methods are involved. Realistic expec-
tation can yield rewarding results across a wide
range of applications, from improving revenues to
reducing costs (Davenport & Harris, 2007; Porter
& Miller, 2001). It is crucial to properly collect
and prepare the data, and to check the models
against the real figures. The best model is often
found after managers build models of several dif-
ferent types or by trying different technologies
or algorithms. This alone demonstrates the active
role managers play in the data mining or other
knowledge management processes.

Selecting software is a practical yet very im-
portant problem for a company (James, Hakim,
Chandras, King, & Variar, 2004). However, not
enough attention is given to this critical task. Cur-
rent literature is quite limited because selecting
software is such a complex problem, due to many
criteria and frequent technology changes (Elder
IV & Abbott, 1998; Giraud-Carrier & Povel,
2003). Haughton, Deichmann, Eshghi, Sayek,
Teebagy, and Topi (2003) generally reviewed
several computer software packages for data
mining, including SPSS Clementine, XLMiner,
Quadstone, GhostMiner, and SAS Enterprise
Miner. Corral, Griffin, and Jennex (2005) exam-

ined the potential of knowledge management in
data warehousing from an expert’s perspective.
Jennex (2006) introduced technologies in support
of knowledge management systems.

Firstly, this article will take a brief look at
data mining today, through describing some
of the opportunities, applications and available
technologies. We will then discuss and analyze
several of the most powerful data mining software
tools available on the market today. Ultimately,
we will also attempt to provide an analytical
analysis and comparison among the brands we
have selected. Our selection is based, in part, on
our own experience using data mining software as
well as writing data mining code, SQL code and
our work as relational database administrators.
For our analytical comparison we will be using
Expert Choice (Version 11) advanced decision
support software.

data mInIng Software

Data mining software analyzes- based on open-
ended user queries- relationships and patterns
that are stored in transaction data. Available are
several types of analytical software: statistical,
machine learning and neural networks, decision
trees, Naive-Bayes, K-Nearest Neighbor, rule
induction, clustering, rules based, linear and
logistical regression time sequence, and so forth.
Along the lines of Mena (1998) and Martin (2005),
the basic steps of data mining for knowledge
discoveries are:

1. Define business problem
2. Build data mining data base
3. Explore data
4. Prepare data for modeling
5. Build model
6. Evaluate model
7. Deploy model
8. Results

 ���

A Comparison and Scenario Analysis of Leading Data Mining Software

Note: Each of these steps contains managerial
issues which must be addressed.

The key to knowledge discovery is a true
understanding of your data and your business.
Without this understanding, no algorithm is going
to provide you with a result in which you should
confide. Moreover, without this background you
will not be able to identify the problems you are
trying to solve, prepare the data for mining, or
correctly interpret the results. There are many
tasks involved in the construction of a database:
data collection, data description, selection, data
quality assessment and data cleansing, consoli-
dation and integration, metadata construction,
and maintaining the database. In exploring the
data, the manager must choose the appropriate
hardware to accomplish this feat. The goal is to
identify the most important fields in predicting
an outcome, and determine which derived values
may be useful. According to O Chan (2005), a
good interface and fast computer response are
very important in this phase because the very
nature of your exploration is changed when you
often have to wait up to 30 minutes for some
graphs to be created.

Preparing data for modeling consists of four
main parts: selecting variables, selecting rows,
constructing new variables and transforming
variables. The managerial decision in this case
focuses on identifying key variables to examine,
nonfully functional variables inclusive. The time it
takes to build a model increases with the number
of variables while blindly including extraneous
columns can lead to incorrect models. The most
important thing to remember about data model
building is that it is an interactive process. Many
alternative models may have to be examined to
find one that is most appropriate in solving your
business problem. A manager searching for a
good model may go back and amend the data he
or she is using or even modify his or her problem
statement. In the evaluation and interpretation
process, the accuracy rate found during testing

applies only to the data on which the model was
built. The accuracy may vary if the data to which
the model is applied differ in important and un-
predictable ways from the original data set.

Once a data mining model is built and vali-
dated, it can be used in two main ways. First, the
manager may recommend actions based on simply
viewing the model and its results. For example,
the manager may look at the clusters the model
has identified, the rules that define the model or
the lift and ROI charts that depict the effect of
the model. The second process involves applying
the model to different datasets. The manager may
use the model to flag records based on their clas-
sification or assign a score such as the probability
of an action.

data mining Software alternatives

As stated earlier in our introduction, there are
numerous data mining software alternatives that
vary in the number of modeling and visualization
nodes as well as in price. We have elected the fol-
lowing eight software vendors for comparison due
to a limitation of trial version of Expert Choice
(Version 11):

• Clementine from SPSS
• DB2 Intelligent Miner from IBM
• Enterprise Miner from SAS
• GhostMiner by Fujitsu
• Insightful Miner V5.2 for Insightful
• Megaputer PolyAnalyst
• Microsoft SQL Server 2005 Enterprise Edi-

tion
• Oracle Data Miner

Although there are various other comparable
programs available, we were limited in our
selection. One of the limiting factors was the
inadequacy of alternatives in our decision tools’
evaluation copy.

��0

A Comparison and Scenario Analysis of Leading Data Mining Software

decision tool

To aid in comparing our software choices, we used
an evaluation copy of Expert Choice version 11,
a leading software solution construed to analyze,
categorize, prioritize, select, allocate and choose
a selection based on relevant criteria (Expert
Choice Inc, 2007). Expert Choice incorporates a
process known as Analytical Hierarchical Process
(AHP) into its software (Saaty & Vargas, 2006;
Saaty, 1980, 1996, 2001, 2005). Research has
demonstrated that AHP is a powerful decision-
making tool that can help organizations avoid
making costly mistakes caused by bad decisions
(Hemaida & Schmits, 2006). AHP was developed
by Saaty and Kearns and consists of four stages
(Roper-Lowe & Sharp, 1990). The first stage is to
construct a hierarchy where the primary objective,
or goal, is at the highest level. Criteria, which can
also be subdivided, follow in decreasing order. At
the bottom of the hierarchy are the alternatives to
be evaluated. The second stage calculates weights
for the criteria using pair-wise comparisons. In
the next stage, the alternatives are also compared
to each other in respect to each criterion. Finally,
all weighted scores are tallied to yield a final
score. The alternative with the highest score is
considered the best alternative.

SampLe productS

In this section, we will analyze the various fea-
tures and benefits offered by each of our software
alternatives that are to be considered, as well as
researching product reviews and professional
opinions. The information gathered from this
analysis will serve as the basis for the pair-wise
comparisons of the software alternatives with
respect to each of our criteria In other words, we
will investigate how important one choice is over
the other alternative given a specific criterion,
when comparing any two software alternatives,

cart by Salford Systems

CART is an easy to use decision tree tool that
uses the CART algorithm and boosting. Its main
objective is to rifle through databases, identifying
significant patterns and relationships, which are
then used to generate predictive models. CART
uses an exhaustive, recursive partitioning routine
to generate binary splits by posing a series of yes-
no questions. It searches for questions that split
nodes into relatively homogenous child nodes.
As the tree evolves, the nodes become more ho-
mogenous, identifying segments. CART supports
more than 80 file formats, including SAP, SPSS
databases such as Oracle and Informix, Excel
spreadsheets, and Lotus 1-2-3 spreadsheets.

CART was formulated from the original
CART code developed by Stanford University
and University of California at Berkeley statisti-
cians. The frequent addition of new features and
capabilities continually enhances the procedure,
strengthening the accuracy and reliability of the
results. CART has a no-stopping rule, which
makes it unique. This means that more data are
read and compared, and it ensures that important
data are not overlooked by stopping too soon. It
produces an over-grown tree, and immediately
prunes it back for the most optimal results. CART
also uses a powerful binary split search approach.
This means the trees are more sparing with data
and detect more structure before too little data
are left for learning. Next, CART uses automatic
self-validation procedures, which are essential in
avoiding the trap of finding patterns that apply
only to the training data.

CART was designed for both technical and
nontechnical users. It can quickly identify im-
portant data relationships. It offers users some
flexibility, with the choice of how to split criteria.
It also offers different models for scalability. The
results are easy to read and understand, with deci-
sion tree diagrams drawn out. Salford Systems
understands that expert and timely technical

 ���

A Comparison and Scenario Analysis of Leading Data Mining Software

support is a critical part of the business, which
is why they offer many means of customer train-
ing and support. The company offers both public
and private on-site instruction, user seminars,
hand-on training courses, consultation services,
and e-mail, NetMeeting, and phone support from
offices worldwide.

SpSS—clementine

Clementine data mining software by SPSS is use-
ful for organizations using SPSS infrastructure
as well as those with mixed platforms. This pro-
gram supports both client and server platforms,
including the Windows family of products and
Sun Solaris, HP-UX11i, IBM AIX, and OS/400
server platforms.

With regard to reliability, Clementine by
SPSS supports decision trees, neural networks,
regression, self-organizing maps, clustering, and
association rules (Lampe & Garcia, 2004). How-
ever, the author states that Clementine implements
“a broad set of statistical algorithms, but fewer
than in the SAS and IBM packages” (Lampe &
Garcia, 2004, p. 18).

In the area of efficiency, Clementine works
with SPSS, SAS and SQL and can export to C
code and Predictive Model Markup Language
(PPML) (Angus, 2006). It can also handle criti-
cal data preparation, rapid modeling, and model
scoring tasks. These tasks are all performed us-
ing GUI graphical layouts, workflow diagrams,
scatterplots, distribution, histogram, multiplot
and Web charts (which are unique to Clementine
(Haughton et al., 2003)).

Training and support for Clementine are
available from SPSS in the form of online tuto-
rials, downloadable overview and demos of the
program, along with online technical support and
excellent help screens. The price of Clementine
starts at $75,000 (Angus, 2006).

enterprise miner by SaS

Enterprise Miner was developed by SAS Cor-
poration, which was originally called Statistical
Analysis System. Enterprise Miner is an integrated
software product that provides widespread busi-
ness solutions for data mining based on SEMMA
(Sample, Explore, Modify, Model, Assess) meth-
odology. It has many different statistical tools
including decision trees, clustering, linear and
logistic regression and neural networks. Data
preparation tools include outlier detection, vari-
able transformations, random sampling, and the
partitioning of data sets into training, test, and
validation data sets. Its advanced GUI allows you
to review large amounts of data in multidimen-
sional histograms with ease, as well as compare
modeling results graphically.

 Enterprise Miner includes several procedures
that automate traditional analysis tasks, such as
choosing the variables to include in a model and
applying the appropriate transformations. The
system also provides extensive visualization to
help users explore the data to decide on additional
manipulations that the system itself does not
recommend. Enterprise Miners’ graphical user
interface and automated framework indicate that
the user does not have to know how the tools work
to use them. Release 8.2 provides cross-platform
national language support that is especially im-
portant to international customers.

ghostminer by fujitsu

GhostMiner is a data mining software product
from Fujitsu that not only supports common
databases (or spreadsheets) and mature machine
learning algorithms, but also assists with data
preparation and selection, model validation,
multimodels (like committees or k-classifiers),
and visualization. GhostMiner provides a large
range of data preparation techniques and a broad

���

A Comparison and Scenario Analysis of Leading Data Mining Software

scope of selection of featured methods. Choice
of data mining algorithms and visualization
techniques are integrated.

GhostMiner offers several project features
unique to their platform, which enables users to
create simple interfaces for their specific needs.
GhostMiner has a human machine interface
(HMI) that is fairly user friendly and easy to start
up right out of the box. The system is so easy to
use that it actually has a feel of being too user
friendly and may be missing some of the power
of the larger server based data mining software
tool such as Darwin IBM and Oracle. GhostMiner
can be loaded directly onto a Windows based
PC and is equally adept at data mining a system
database as it is a series of spreadsheets, text or
ASCII files.

GhostMiner contains both data preprocessing
capabilities as well as data visualization capabili-
ties. Data preprocessing includes data normal-
ization, standardization and many preliminary
statistical analysis functions, such as variance,
standard deviation, mean and median across the
entire database. GhostMiner does not have the
inherent flexibility of some of the larger, more
robust products, and also does not offer the same
levels of support as the products offered by Oracle
and IBM. GhostMiner is a product marketed to
small to mid size users who are looking for a
simple to use product at a lower price than some
of its larger, well known counterparts.

Insightful-Insightful miner

Insightful Miner is a cost effective data mining
software program. The software has numerous
model types, algorithms and visualizers, including
decision trees, Block Model Averaging, linear and
logistic regression, neural networks, Naïve Bayes,
Cox proportional hazard models, K-means clus-
tering and others. Insightful Miner offers highly
scalable algorithms, which train models on very
large data sets without the need for sampling or
aggregation. Insightful also offers data prepro-

cessing and data cleansing as well as exploratory
data analysis and visualization. Insightful Miner’s
cost is typically $12,000.

According to a product review in DM Review
(Lurie, 2004) the main strength of Insightful Miner
is its ability to scale large data sets in an accessible
manner. It provides the analytic tools required to
transform fragmented raw data into “actionable
knowledge” (Lurie, 2004, p. 88). Insightful Miner
provides cutting edge analytics and reporting tools
to identify patterns, trends and relationships in
data. Insightfuls’ simplicity allows users to quickly
aggregate, clean and analyze data. Its powerful
reporting and modeling capabilities allow users
to deliver clear, usable analytics to designers and
producers. Simple visual work maps make it easy
for users to become productive relatively quickly.
Insightful Miner provides excellent product sup-
port and its documentation is complete and easy
to understand.

In another product review of Insightful Miner
(Deal, 2004), the software was found to be a
comprehensive data mining application that in-
cludes extensive data input, data manipulation,
and analysis capabilities. Insightful Miner can
efficiently process large amounts of data by us-
ing a chunking and processing algorithm that is
intended to be scalable to the mass of data used
for each analysis. Insightfuls’ ability to integrate
S-Plus strengthens and extends its functionality.
Deal (2004) stated that Insightful Miner “is a very
simple and intuitive process” (p. 46).

IBm-Intelligent miner

IBM Intelligent Miner V7R1 is very user friendly
software. It is an essential e-commerce tool, as it
can aid in handling transactions as they come in.
It has business intelligence applications, which
allow it to make decisions that would be good
for any business, large or small. The intelligence
part of the software could cut costs and increase
profits. The data screens help with decision mak-
ing and improvement on processes that are out of

 ���

A Comparison and Scenario Analysis of Leading Data Mining Software

date. It also maximizes the business to customer
relationship, because of the personalization the
software can provide for each client. This software
package is also compatible with Windows, AIX,
Solaris and Linux servers.

IBM Intelligent Miner V7R1 has IM Scoring,
in which the user has an advantage, because scores
and ranks are done in real time. This means that
as a new transaction takes place, it would then
reorganize the scores/ranks of the customers’
information. For example, when a customer buys
an item off the Internet, the software would up-
date for the payment due and when it should be
posted. The same would apply for a dentist visit:
after 6 months it would indicate that it is time
for another checkup for the particular patient. As
the appointment would approach, the higher the
person would be on the list, that is, moving up the
ranks. Another advantage with the IM Scoring is
the high performance and scalability of mining
functions, thus making sampling obsolete.

The best aspect of this product is its user
friendliness. The whole staff would be content
with it. It can also be updated easily, without
any disruption to the business. IBM is currently
promoting the DB2 Query Management Facility
version 8.1, because in March 2006, IBM withdrew
Intelligent Miner from all marketing and ended
all its support for Intelligent Miner tools.

megaputer-polyanalyst

Another data mining software package is Poly-
Analyst (the newest version is 4.6) made by the
Megaputer Company. This company is quite
small, especially compared to some of the other
companies we have profiled. Megaputer Intelli-
gence Inc. is a leading developer and distributor
of advanced software tools for data mining, text
mining, and intelligent e-commerce personaliza-
tion. The tools help reveal knowledge hidden in
data. They add intelligence and insight to every
step of the business decision-making process.

Because the Megaputer Company focuses
primarily on data mining programs, they can
offer a more comprehensive program than other
companies who simply have a data mining com-
ponent to existing products. They offer a vast
array of algorithms from which a consumer can
choose the ones they need specifically, making
the product ready to be customized. The price for
an older version of PolyAnalyst (the most recent
pricing data found) is an affordable $2,300 for
the base version and can go up to $14,900 with
all the algorithms. Also, the developer kit for
PolyAnalyst is available for $16,000.

PolyAnalyst can be run either on a stand-alone
system or in a client/server configuration, where
the server would handle the data processing. It
only works with the Microsoft Windows O/S,
which shows that it is not as portable as some
other products analyzed. Also, Megaputer offers
possible users a free evaluation version to decide
if this is the software right for them. The pro-
gram offers a rich set of features. PolyAnalyst by
Megaputer seems to be a feature rich data mining
software package. The price and ala carte feature
set seem more suited for a smaller company that
cannot afford to use a more expensive data min-
ing solution that would require the use of highly
trained employees.

oracle–oracle data mining

Oracle Data Miner is the graphical user interface
for Oracle Data Mining (Release 10.1 and above)
that helps data analysts mine their Oracle data to
find valuable hidden information, patterns, and
new insights. Oracle Data Mining is a powerful
data mining software embedded in the Oracle
Database that enables you to discover new infor-
mation hidden in your data and helps businesses
target their best customers and find and prevent
fraud.

Oracle provides unique portability across all
major platforms including Windows, Solaris, HP-

���

A Comparison and Scenario Analysis of Leading Data Mining Software

UX, IBM AIX, Compaq Tru64, and Linux and
ensures that applications run without modification
after changing platforms. There are two common
ways to architect a database: client/server or mul-
titier. Two basic memory structures are associated
with Oracle software: the system global area and
the program global area.

Oracle Data Miner facilitates interactive
data preparation, data mining model creation,
evaluation, refinement and model scoring. Oracle
Data Mining provides the following supervised
data mining algorithms: Naïve Bayes, Adaptive
Bayes Network, decision trees, Support Vector
Machines, and attribute importance. Unsuper-
vised algorithms are: clustering, association
rules, feature selection, anomaly detection, text
mining and unstructured data, and life sciences
algorithm. Mining Activity Guides provide struc-
tured templates for all users to explore and mine
their data.

Oracle Data Mining (ODM) enables companies
to extract information efficiently from the very
largest databases, and build integrated business
intelligence applications and support data min-
ing problems such as: classification, prediction,
regression, clustering, associations, attribute
importance, feature extraction and sequence
similarity searches and analysis. When the capa-
bilities of Oracle Data Mining are combined with
the ability of the RDBMS to access, preprocess,
retrieve and analyze data, they create a very
powerful platform for data analysis.

Oracle Data Mining can generate valuable
new insights and reports that can help proactively
manage your business, according to the Oracle
Discoverer report. Oracle Data Miner models can
be visualized graphically and can be display in
tables, histograms, line graphs and pie graphs.
Data may be in either Excel or the Database. Sig-
nificant productivity enhancements are achieved
by eliminating the extraction of data from the
database to special-purpose data mining tools
(Berger & Haberstroh, 2005).

Data size is unlimited. The expert analyst
can adjust some or all of the parameters manu-
ally, but the option to allow the algorithms to
optimize the parameters intelligently, with no
intervention, is available. There are free demos
available: Oracle Data Mining, Integration with
Oracle BI EE, Spreadsheet Add-in for Predictive
Analytics, and Text Mining. The tutorial Oracle
by Example series and online training provides
valuable hands-on experience, step-by-step in-
structions on how to implement various technol-
ogy solutions to business problems. Oracle Data
Mining significantly reduces the cost of data
mining. Savings are realized in the avoidance
of additional hardware purchases for computing
and storage environments, redundant copies and
multiple versions of the data and duplication of
personnel who perform similar functions. Data-
base analytics includes: engine, basic statistics
(free), data mining, and text mining.

SQL Server 2005

SQL server 2005 is Microsoft’s solution to data-
base management and data mining. SQL Server
database platform provides enterprise-class data
management with integrated business intelligence
(BI) tools. SQL Server 2005 combines analysis, re-
porting, integration, and notification. SQL server
is closely integrated with Microsoft Visual Studio,
the Microsoft Office System, and a suite of new
development tools, including the Business Intel-
ligence Development Studio (Bednarz, 2005).

Microsoft SQL Server series utilizes the Win-
dows operating system and features four discrete
algorithms. HMI features include a Windows’
interface, as well as complete integration with the
Microsoft Office suite. Reports that are served by
the Report Server in Reporting Services can run in
the context of Microsoft SharePoint Portal Server
and Microsoft Office System applications such as
Microsoft Word and Microsoft Excel (Fontana,
2005). SharePoint can be used to subscribe to

 ���

A Comparison and Scenario Analysis of Leading Data Mining Software

reports, create new versions of reports, and distrib-
ute reports. SQL Server 2005 also supports rich,
full-text search applications. Query performance
and scalability have been improved dramatically,
and new management tools will provide greater
insight into the full-text implementation.

SQL Server also features an online restore
function, database encryption and a fast recovery
option. It also has a system with built-in scalabil-
ity features such as parallel partition processing,
creation of remote relational online analytical
processing (ROLAP) or hybrid online analyti-
cal processing (HOLAP) partitions, distributed
partitioned cubes, persisted calculations, and
proactive caching.

comparISon

We use Expert Choice in the evaluation process
and will attempt to analytically quantify the
aspects of data mining software that best define
overall product quality. Before we describe the
decision making process, we would like to pres-
ent several assumptions on which our decision
will be based:

1. In addition to our experience, we will rely
on manufacture specifications, descriptions
and described attributes, along with third
party reviews where available.

2. We will base our needs on fundamental busi-
ness goals such as business-related decision
making and business-driven information
analysis. Although this definition may seem
overly broad, we will attempt to further
limit our scope by eliminating research and
development, educational and political as
well as most human resource applications.

3. Because we are using a trial version of
Expert Choice advanced decision making
software, there will be limits with respect
to importing and exporting data as well as

with printing and possibly some advanced
analytical tools. Therefore, we will utilize
screen captures embedded into this docu-
ment, and will manually write any necessary
data as opposed to systematic imports or
exports.

criteria revisited

Our selection process will be centered on the
below mentioned software quality criteria. We
will attempt to compare all of our selections based
on the specified criteria. Using Expert Choice,
we will make objective ratings of each product,
comparing in a pair-wise manner, attributes that
define each element.

• Portability: the amount of platform inde-
pendence; the number of support platforms
and supported software architectures as well
as any software requirements needed to run
the software.

• Reliability: the degree of completeness,
accuracy and consistency, any stated war-
ranty and support provided by the vendor.
The number of data models and algorithms
available with the software as well as any
templates or custom models available for
creation of projects.

• Efficiency: the degree of efficiency and ac-
cessibility; the degree in which the product
supports the general business goal assump-
tions and the number of tools available for
data preprocessing.

• Human engineering: how well the soft-
ware interfaces and communicates with the
outside world, plus the quality of the human
machine interface (HMI). Testability – how
well the software is structured; how results
are displayed and how results are reintro-
duced into the process if applicable.

• Understanding: degree of self-descriptive-
ness; the degree of simplicity of the machine

���

A Comparison and Scenario Analysis of Leading Data Mining Software

interface, the use of graphical user interfaces,
visual programming ability, summary re-
ports, and data model visualization.

• Modifiability: the degree of augmentation
ability and the ability to change over time
and expand; the use of batch processing
and any expert options as well as data size
limitations.

• Price, training and support: price of
product, availability of evaluation or demo
versions, and the amount of post purchase
support included in the package.

evaluation model

Our evaluation criteria, as entered in the Expert
Choice, are as follows:

• Portability: evaluated in terms of:
Hardware platform (PC, Unix/Solaris

workstation, etc.).
	 Software Architecture (standalone,

client/server, thin client).
	 Software requirements (DB2, SAS,

Base, Java/JRE, Oracle, and so
forth.

• Reliability - evaluated in terms of:
	 What model classes does the tool sup-

port?
	 How many algorithms does the tool

use?
	 Does the tool allow custom model

creation or simply uses templates?
	 What is the reputation of the vendor

supplying the tool?
• Efficiency evaluated in terms of:

	 How well does the product support our
general business goal assumption?

	 Ability to perform data preprocess-
ing.

• Human Engineering evaluated in terms
of:
	 Simplicity of HMI (human machine

interface)

 Graphical layout
	 Visual programming ability

• Testability evaluated in terms of dissemina-
tion and deployment:
	 How well the results are reintroduced

into the process “closing the loop”
	 How results are displayed

• Understanding in terms of evaluation and
interpretation of data:
	 Are summary reports available?
	 Can the model be visualized graphi-

cally?
• Modifiability in terms of scalability and

upgrades:
	 What is the data set size limit?
	 Are there expert options or batch

processing?
• Training and support evaluated in terms

of:
	 Is a free demo available?
	 Is any free training or support avail-

able with the purchase?
• Price (where available) – if pricing is not

available we will note our evaluation as
price neutral.

procedure of expert choIce

Let’s use five products to demonstrate the whole
process of Expert Choice on a small scale. We
commence with pair-wise comparisons for each
of our criteria. Figure 1 is a screen capture of
our initial results of priorities. As can be seen
in Table 1, we placed a great deal of importance
on Human Engineering (weight of .220), slightly
less on Training and Support (w=. 193) and then
on Understanding (w=. 190). Our main driver
was that for the software to be successful, people
had to know and understand it. Our next highest
priority was Reliability, with a relative weight of
.142, followed by Portability, which is platform
and hardware independence, with a relative
weight of .128.

 ���

A Comparison and Scenario Analysis of Leading Data Mining Software

Next, we perform a pair-wise comparison of
each software tool for each criterion; that is, we
compare the components of each criterion on a
case-by-case basis, assigning relative strengths
and weaknesses to each product. Although this
process is quite tedious, it provides an accurate
measurement for each product. Table 2 shows
an example of a pair-wise comparison for the
contribution of hardware platform independence

to overall platform independence, which is a con-
tributor to overall portability within our quality
structure.

Table 3 shows a graphical representation from
the pair-wise comparison between all products for
the hardware contribution, to overall portability.
The screen capture shows a weight for each prod-
uct with SQL Server as the best in class (with a
weight of .269) and GhostMiner as last in class
(with a weight of .109). These criteria are also
weighted individually so as to roll up into the
overall contribution toward portability.

overall results

Table 4 shows the overall results from Expert
Choice advanced decision support software. From
the first iteration of our selection process, the best
solution for our chosen attributes and assigned
priorities is the CART product, with an overall
weight of .268, followed by SAS Enterprise with
an overall weight of .223. We also performed
several iterations, changing the weights of our
criteria.

Table 5 shows the assigned weights of each
category along with the overall score for all of
the objects. This tool allows dynamic sensitivity

Table 1. Weights assigned to criteria

Category Priorities
Human Engineering 0.22
Training and Support 0.193
Understandability 0.19
Reliability 0.142
Portability 0.128
Modifiability 0.051
Efficiency 0.039
Testability 0.022
Price 0.016

 CART by Sal-
ford Systems

SAS Enter-
prise Miner

Oracle
8i

Ghost-
Miner

SQL
Server
2005

CART by Salford
Systems 3.0 3.0 3.0 7.0

SAS Enterprise Miner 2.0 3.0 4.0
Oracle 8i 3.0 3.0
GhostMiner 4.0
SQL Server 2005

Inconsistency: 0.73

Table 2. Pair-wise comparison grid WRT hardware platform

���

A Comparison and Scenario Analysis of Leading Data Mining Software

analysis with respect to changing priorities. We
used this tool to look at how much a change in one
weight changes the overall goal. Using this tool
is similar to the sensitivity analysis performed in

Excel Solver; however, instead of listed ranges the
Expert Choice tool allows for dynamic manipu-
lation. From the chart, we can see our weighted
emphasis on Human Engineering (22%), Training

Vendor Class
Weighting

CART by Salford
Systems 0.268

SAS Enterprise Miner 0.223
Oracle 8i 0.215
GhostMiner 0.141
SQP Server 2005 0.152

Overall inconsistency: 0.28

Table 3. Class weightings for overall hardware
platform independence

Vendor Overall
Weight

CART by Salford
Systems 0.191

SAS Enterprise
Miner 0.215

Oracle 8i 0.222
GhostMiner 0.109
SQP Server 2005 0.263

Inconsistency: 0.73

Table 4. Results from “Choosing a data mining
software vendor”

Category
Cat-
egory
Weight

Vendor

Vendor
Prefer-
ence
Weight

Portability 12.8% CART by Salford
Systems 26.8%

Reliability 14.2% SAS Enterprise
Miner 22.3%

Efficiency 3.9% Oracle 8i 21.5%
Human Engineering 22.0% GhostMiner 14.1%
Testability 2.2% SQL Server 2005 15.2%
Understandability 19.0%
Modifiability 5.1%
Training and Support 19.3%
Price 1.6%

Table 5. Dynamic sensitivity analysis

 ���

A Comparison and Scenario Analysis of Leading Data Mining Software

and Support (19.3%) and Understandability. The
window on the right shows which system best fits
our stated criteria.

In Table 6 we change our requirements in
order to verify the strength of our decision. We
increase the importance of Price from 1.6% all
the way up to 33.5%. We also change our Hu-
man Engineering requirement from 22% down
to 5.8%, and also reduce Training and Technical
Support, Portability, Reliability, Efficiency and
Modifiability (flexibility) substantially and still
came up with CART systems as our best overall
choice (24% weight).

ScenarIo anaLySIS

We now start to compare eight leading data mining
packages based on seven criteria. Determining
the best software is a multiple objective decision-
making process because different companies
may have completely different needs. An array

of software may each be the best choice because
their design and performance are defined within a
certain type of institution. Usually, one data min-
ing software cannot be the best for every scenario.
This is because specific software cannot meet the
expectations of every type of institution; therefore,
the creation of scenarios is a very important tool
in term of decision-making process.

In order to make this project more accurate and
realistic, we have combined different scenarios.
Factors, such as size, budget, type of business,
and the type of data we have to manipulate, can
affect the software we attempt to choose and
the reasons why we choose it. Having simulated
many scenarios, we found that size is a decisive
factor. For instance, if we choose two companies
with different sizes and follow a traditional rea-
soning, the tentative result may contradict with
our intuition.

After researching all the alternatives, we used
our decision tool, Expert Choice, to make pair-
wise comparisons for each of them. A total of 392

Category
Cat-
egory
Weight

Vendor Vendor Pref-
erence Weight

Portability 0.1% CART by Salford
Systems 24.0%

Reliability 2.6% SAS Enterprise
Miner 18.5%

Efficiency 3.2% Oracle 8i 17.1%
Human Engineering 5.8% GhostMiner 20.8%
Testability 3.3% SQL Server 2005 19.6%
Understandability 21.5%
Modifiability 4.1%
Training and Support 15.7%
Price 33.5%

Table 6. Dynamic sensitivity analysis with different constraints

��0

A Comparison and Scenario Analysis of Leading Data Mining Software

pair-wise comparisons were required to compare
each of the alternatives with respect to each of the
criteria (196 comparisons for each scenario). This
was in addition to the 42 pair-wise comparisons
required to assign weights to each criterion with
respect to the goal (21 comparisons for each
scenario). After completing all of the pair-wise
comparisons the software synthesized all of the
weights of the alternatives with the weights of the
criteria and selected the best alternative of each
of the two scenarios. Table 7 below summarizes
the weights of the pair-wise comparisons for each
of the alternatives with respect to each criterion.
As with the weights of the criteria, there is also a

direct relationship between the calculated weights
in each column and the respective criterion. In
other words, the higher a number is in a given
column the more important that sized company
views that particular software for that specific
criterion.

Based on our research of all the alternatives
and the weighted criteria calculated by our deci-
sion tool, the software has determined that for a
small-sized company the top three alternatives
are Insightful Miner, Megaputer PolyAnalyst,
and SAS Enterprise Miner. These results were
somewhat unexpected. We had anticipated that
Insightful, Megaputer, and GhostMiner would

Synthesized
Weights - with

respect to criteria

Efficiency Human Engineering\
Understandability Modifiability Portability

Large Small Large Small Large Small Large Small
Clementine 0.213 0.153 0.154 0.154 0.159 0.159 0.200 0.059
Enterprise Miner 0.176 0.174 0.155 0.155 0.151 0.151 0.221 0.059
GhostMiner 0.110 0.102 0.124 0.124 0.069 0.069 0.069 0.235
Insightful Miner 0.142 0.168 0.135 0.135 0.108 0.108 0.097 0.235
Intelligent Miner 0.106 0.130 0.112 0.112 0.155 0.155 0.097 0.059
Megaputer 0.086 0.091 0.090 0.090 0.060 0.060 0.067 0.235
Oracle Data
Miner 0.102 0.103 0.104 0.104 0.151 0.151 0.148 0.059

SQL Server 2005 0.066 0.078 0.126 0.126 0.147 0.147 0.079 0.059

Synthesized Weights
– continued

Reliability Training and
Support\Price Testability

Large Small Large Small Large Small
Clementine 0.194 0.194 0.040 0.036 0.156 0.156
Enterprise Miner 0.206 0.206 0.027 0.025 0.149 0.149
GhostMiner 0.069 0.069 0.170 0.194 0.116 0.116
Insightful Miner 0.107 0.107 0.261 0.266 0.147 0.147
Intelligent Miner 0.110 0.110 0.029 0.024 0.099 0.099
Megaputer 0.147 0.147 0.261 0.349 0.151 0.151
Oracle Data Miner 0.101 0.101 0.108 0.051 0.096 0.096
SQL Server 2005 0.066 0.066 0.104 0.054 0.086 0.086

Table 7. Weights assigned to each alternative for both a small and large-sized company

 ���

A Comparison and Scenario Analysis of Leading Data Mining Software

be among the top three or four alternatives for a
small-sized company, primarily because each of
these vendors offer stand-alone versions of their
software and are also the least expensive among
all the alternatives. However, GhostMiner ranked
lower than expected while SAS Enterprise Miner
ranked higher. A closer analysis of the pair-wise
comparisons shows that SAS was more efficient
and had better human engineering than Ghost-
Miner. Because of the weights given to these two
criteria, SAS Enterprise Miner was able to beat
all of the other alternatives despite its cost.

According to our decision tool, the top three
alternatives for a large company are SPSS Cle-
mentine, followed by SAS Enterprise Miner and
Insightful Miner. There was not one overwhelm-
ing choice for a large company. The differences
in weight among the top three alternatives were
relatively small (16.7%, 15.9%, and 13.5%, respec-
tively). These results were also a little unantici-
pated. All of the software reviews that we have
read rated SPSS and SAS among the top leading
data mining software that are commercially avail-
able. We had not expected Insightful Miner to
rank among the top three alternatives for a large
company. We anticipated that Microsoft, IBM,
or Oracle would round out the top three alterna-
tives because these vendors offer enterprise class

DBMS. Upon closer examination of the software
analysis, Insightful Miner’s visualization and
modeling nodes were comparable to those of an
enterprise class data mining software program
such as Enterprise Miner and Clementine. In addi-
tion, a closer review of the pair-wise comparisons
showed that Insightful Miner ranked higher than
the other alternatives (with the exception of SAS
and SPSS) in human engineering and efficiency.
It also tied for top weight for Training and Sup-
port/Price. Table 8 below summarizes the results
of the Expert Choice software.

Certainly, different companies may have dif-
ferent priorities, preferences, and prerequisites.
We have explored a few individual scenarios.

Special Case 1: This is a large international
company, with thousands of employees, doing
business between U.S., Mexico and other countries
in Latin America. It is an import and export com-
pany. The main goal of using data mining software
is to determine the best distribution methods in
order to maximize profits. Keeping costs down
so it can compete with other companies is always
a concern. The three main criteria this company
is looking for in a software package are: Training
and Support with multilingual support because
of the language difference between the countries,

Synthesized Weights - with respect to goal Large Company Small Company
Clementine 0.167 0.138
Enterprise Miner 0.159 0.140
GhostMiner 0.102 0.123
Insightful Miner 0.135 0.160
Intelligent Miner 0.112 0.104
Megaputer 0.106 0.146
Oracle Data Miner 0.115 0.098
SQL Server 2005 0.102 0.092
Overall inconsistency ratio 0.010 0.020

Table 8. Summary of synthesized results for each sized company

���

A Comparison and Scenario Analysis of Leading Data Mining Software

Human Engineering to assure that employees
in different countries with possibly different
computer skill levels, will be able to adapt and
use the software, and Portability because it is an
established company with an IT department and
different platforms that include Microsoft, IBM
and Sun Microsystems, as well as a range of
desktop operating systems that includes Windows
2000 and XP, Linux, and old legacy equipment.
They must be certain that the software is com-
patible with all existing platforms. Because large
amounts of data are processed, software must be
robust and reliable as well.

• Our goal is: To find the best data mining
software.

• Our criteria are: Listed seven factors. The
three most important criteria are Training
and Support, Human engineering, and Por-
tability.

• Our alternatives are: Clementine, En-
terprise Miner, Oracle, Microsoft SQL,
IBM DB2, Salford CART, Megaputer, and
Insightful Miner.

Criteria Weights
Portability .215
Modifiability .181
Training and Support .147
Human Engineering/
Testability .130

Understandability .119
Reliability .109
Efficiency .100

Software Ranking
Clementine .136
Enterprise
Miner .126

Oracle .162
Microsoft SQL .109
IBM DB2 .117
Salford CART .123
Megaputer .111
Insightful
Miner .117

Special Case 2: This is a large national cor-
poration, between 500 and 1,000 employees, in
the retail industry with many branches throughout
the country. They already have an IT department
and different types of platforms, including Unix
Servers and Microsoft 2000 and 2003, as well as
XP and 2000 Workstations. Portability is very
important to make sure that the software is able
to run with the platforms already in place. This
company already has a well-established customer
base, so the goal of choosing data mining software
is to find the best way to maximize customer
retention, while lowering costs. The three most
important criteria that this company is looking
for in a software package are: Portability, Effi-
ciency to assure it supports the general business
goal assumption, and Modifiability because it is
a growing business, and they want to be sure that
they can go back and customize the software if
necessary.

 ���

A Comparison and Scenario Analysis of Leading Data Mining Software

• Our goal is: To find the best data mining
software.

• Our criteria are: Listed seven factors. The
three most important criteria are portability,
efficiency, and modifiability.

• Our alternatives are: Clementine, En-
terprise Miner, Oracle, Microsoft SQL,
IBM DB2, Salford CART, Megaputer, and
Insightful Miner.

Criteria Weights
Modifiability .217
Portability .171
Efficiency .153
Reliability .132
Training and Support .126
Human Engineering/
Testability .123

Understandability .078

Software Ranking
Clementine .134
Enterprise
Miner .127

Oracle .163
Microsoft SQL .110
IBM DB2 .115
Salford CART .125
Megaputer .108
Insightful
Miner .117

Special Case 3: This is a small start-up
landscaping and construction company with less
than 50 employees. The employees have limited
knowledge of computers and software. The goal
of using data mining software is to find the best
way to attract new customers.

• Our goal is: To find the best data mining
software.

• Our: criteria are: Listed seven factors. The
three most important criteria we are looking
for are Human engineering, Training and
Support, and Understandability.

• Our alternatives are: Clementine, En-
terprise Miner, Oracle, Microsoft SQL,
IBM DB2, Salford CART, Megaputer, and
Insightful Miner.

Criteria Weights
Training and Support .226
Human Engineering/Testability .201
Understandability .166
Reliability .145
Efficiency .130
Modifiability .076
Portability .055

Software Ranking
Clementine .132
Enterprise
Miner .124

Oracle .150
Microsoft
SQL .124

IBM DB2 .117
Salford
CART .122

Megaputer .114
Insightful
Miner .118

other cases

Online Company/E-commerce

An online/e-commerce company in the recently
growing industry: First of all, because an Internet
company has both actual and potential custom-
ers, it needs a tool that can hold and analyze
large amounts of data. Secondly, it might have
engineers or a technical department, so it may
not put weight on human engineering and training
and support. Consequently, we put more weight
on modifiability and less weight on engineering
and support. As a result, Oracle would be the best
tool for an online/e-commerce company because it
scores the highest among eight tools. If Oracle is
not available, IBM would be the second choice.

���

A Comparison and Scenario Analysis of Leading Data Mining Software

Educational Institutions

Data mining software is used worldwide in the
educational industry. One of Megaputer’s data
mining software called PolyAnalyst gets a ma-
jority of its business from educational industry.
Microsoft SQL came in first place with Ghost-
Miner as the runner up.

Even though these scenarios can be used as
references, they did not apply to every type of
institution. Thus, it will be interesting to see what
other choices are available in term of the best data
mining software. What would be the best data
mining software for a medical institution?

concLuSIon

With the use of Expert Choice we were able to
analytically evaluate eight products within a
complex yet controlled environment. The detailed
analysis included prioritizing our constraints,
evaluating the contributing criteria, entering
comparative data and performing relevant sen-
sitivity analysis. The software, Expert Choice,
performed the analysis, based on our definition,
priorities and data.

Data mining technology is changing very
rapidly. Our article focused only on the major
suppliers typically available in the market place.
There is no definite and explicit answer as to
which tool is better suited to potential clients,
mainly due to their unique priorities. As there
are so many variables to quantify, the problem
needs to be defined. Based on what approach the
problem requires, then and only then can tools
start being quantified. Certainly, the method and
the process that we have used can be easily ap-
plied to analyze and compare other data mining
software for each potential user. Although there
is no pattern for pairing the correct software with
the proper institution, with the use of this process,
every institution should be able to determine

which data mining software is the best for their
operations.

acknowLedgment

We would like to thank Dr. Jennex, the Edit-in-
Chief of IJKM, for his tremendous help and guid-
ance during the period of revising our manuscript
for more than one year. Dr. Jennex has suggested
Scenario Analysis, a practical and wonderful idea,
and offered many other specific suggestions.

referenceS

Alavi, M., & Leidner, D.E. (2001). Knowledge
management systems: Emerging views and
practices from the field. In Proceedings of the
32nd Hawaii International Conference on Systems
Sciences. IEEE Computer Society.

Angus, J. (2006). Clementine 8.1 melds BA with
BI. InfoWorld, 26(19), 28-29.

Bednarz, A. (2005). Microsoft beefs up SQL
Server database. Network World, 22(13), 12.

Berger, C., & Haberstroh, B. (2005). Oracle data
mining 10g release 2: Know more, do more, spend
less. Oracle White Papers. Retrieved November
8, 2007 from http://www.oracle.com/technology/
products/bi/odm/pdf/bwp_db_odm_10gr2_0905.
pdf

Corral, K., Griffin, J., & Jennex, M.E. (2005).
Expert’s perspective: The potential of knowledge
management in Data Warehousing. Business
Intelligence Journal, 10(1), 36-40.

Davenport, T., & Harris, J. G. (2007). Competing
on analytics: The new science of winning. Harvard
Business School Press.

Deal, K. (2004). The quest for prediction. Market-
ing Research, 16(4), 45-47.

 ���

A Comparison and Scenario Analysis of Leading Data Mining Software

Elder IV, J.F., & Abbott, D.W. (1998, August 28).
A comparison of leading data mining tools. In
Proceedings of the Fourth International Confer-
ence on Knowledge Discovery & Data 5Mining,
New York.

Expert Choice Inc. (2007). Expert Choice 11.
Retrieved November 8, 2007, from http://www.
expertchoice.com/software/

Fontana, J. (2005). Microsoft’s future in BI market
unclear. Network World, 22(43), 9-14.

Giraud-Carrier, C., & Povel, O. (2003). Charac-
terizing data mining software. Intelligent Data
Analysis, 7(3), 181-192.

Haughton, D., Deichmann, J., Eshghi, A., Sayek,
S., Teebagy, N., & Topi, A. (2003). A review of
software packages for data mining. The American
Statistician, 57(4), 290-309.

Hemaida, R., & Schmits, J. (2006). An analytical
approach to vendor selection. Industrial Manage-
ment, 48(3), 18-24.

James, G., Hakim, J., Chandras, R., King, N., &
Variar, G. (2004). Reviewers’ choice: Only the best
survive. Intelligent Enterprise, 7(1), 34-38.

Jennex, M.E. (2006, April). Technologies in
support of knowledge management systems. In
Proceedings of the 6th International Forum on
Knowledge Management, Tunis.

Lampe, J. C., & Garcia, A. (2004). Data mining: An
in-depth look. Internal Auditing, 19(2), 4-20.

Lurie, I. (2004). Product Review: Insightful Miner.
DM Review, 14(6), 88.

Martin, W. E. (2005). Managing information
technology (5th ed.). Saddle River, NJ: Prentice
Hall.

Mena, J. (1998). Data mining FAQ’s. DM Re-
view.

O Chan, J. (2000). Enterprise information system
strategy and planning. Journal of American Busi-
ness, Cambridge, 6(2), 148-154.

Porter, M. E., & Miller, V. (2001). Strategy and
the Internet. Harvard Business Review, 72(3),
62-68.

Roper-Lowe, G. C., & Sharp, J. A. (1990). The
analytic hierarchy process and its application to an
information technology decision. The Journal of
the Operational Research Society, 41(1), 49-59.

Saaty, T.L. (1980). Multicriteria decision making:
The analytic hierarchy process. RWS Publica-
tions.

Saaty, T.L. (1996). Decision making with de-
pendence and feedback: The analytic network
process. Pittsburgh, PA: RWS Publications.

Saaty, T.L. (2001). The analytic network process
(2nd version). Pittsburgh, PA: RWS Publications.

Saaty, T.L. (2005). Theory and applications of
the analytic network process. Pittsburgh. PA:
RWS Publications.

Saaty, T.L., & Vargas, L.G. (2006). Decision mak-
ing with the analytic network process: Economic,
political, social and technological applications
with benefits, opportunities, costs and risks. New
York: Springer-Verlag.

This work was previously published in the International Journal of Knowledge Management, edited by M. Jennex, Volume 4,
Issue 2, pp. 17-34, copyright 2008 by IGI Publishing (an imprint of IGI Global).

���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.33
Intelligent User Preference

Mining
Sheng-Uei Guan

Xian Jiatong-Liverpool University, China

Ping Cheng Tan
National University of Singapore, Singapore

IntroductIon

A business-to-consumer environment can be
developed through software agents (Guan, Zhu,
& Maung, 2004; Maes, 1994; Nwana & Ndumu,
1996; Wang, Guan, & Chan, 2002) to satisfy the
needs of consumers patronizing online e-com-
merce or m-commerce stores. This includes intel-
ligent filtering services (Chanan & Yadav, 2000)
and product brokering services to understand
user’s needs better before alerting users of suitable
products according to their preference.

We present an approach to capture individual
user response towards product attributes including
nonquantifiable responses. The proposed solution
can capture the user’s specific preference and
recommend a list of products from the product
database. With the proposed approach, the sys-
tem can handle any unaccounted attribute that
is undefined in the system. The system is able
to cater to any unaccounted attribute through a

general descriptions field found in most product
databases. In addition, the system can adapt to
changes in user’s preference.

Background

In e-commerce activities, consumers are confused
by the large number of options and varieties of
goods available. There is a need to provide on
top of the existing filtering and search services
(Bierwirth, 2000) an effective piece of software
in the form of a product brokering agent to un-
derstand their needs and help them in selecting
products.

Definitions

A user’s choice in selecting a preferred product is
often influenced by the product attributes rang-
ing from price to brand name. This research will

 ���

intelligent User Preference Mining

classify attributes as accounted, unaccounted, and
detected. The same attributes may also be classi-
fied as quantifiable or nonquantifiable. Accounted
attributes are attributes that the system is specially
customized to handle. A system is designed to
capture the user’s choice in terms of price and
brand name, making them accounted attributes.
Unaccounted attributes are not predefined in
the system ontology. The system does not know
whether an unaccounted attribute represents a
product feature. Such attributes merely appear
in the product descriptions field of the database.
The system will attempt to identify unaccounted
attributes that affect the user’s preference and
consider them as detected attributes. Thus, de-
tected attributes are unaccounted attributes that
are detected to be crucial in affecting the user’s
preference.

Quantifiable attributes contain specific nu-
meric values (e.g., memory size) and their values
are well defined. Nonquantifiable attributes on
the other hand do not have any logical or numeric
values, and their valuation could differ from user
to user (e.g., brand name). The proposed system
defines price and quality of a product in the
ontology and considers them to be quantifiable,
accounted attributes.

related work

One of the research goals among related work is to
understand a user’s needs before recommending
products through the use of product brokering
services. Due to the difference in complexity,
different approaches were proposed to handle
quantifiable and nonquantifiable attributes. One
approach to handling quantifiable attributes is
to compile these attributes and assign weights
representing their relative importance to the user
(Guan, Ngoo, & Zhu, 2002; Sheth & Maes, 1993;
Zhu & Guan, 2001). The weights are adjusted to
reflect the user’s preference.

Much research aimed at creating an interface
to understand user preference in the context of

nonquantifiable attributes. This represents a
more complex problem as attributes are highly
subjective with no discrete metric to measure
their values. Different users give different values
to a particular attribute. MARI (Multi-Attribute
Resource Intermediary) (MARI, 2007) proposed
a “word-of-mouth” approach to solving this prob-
lem. The project split up users into general groups
and estimated their preference to a specific set of
attributes through the group each user belongs
to. Another approach to handling nonquantifi-
able attributes involves requesting the user for
preferred attributes. Shearin and Liberman (2001)
provided a learning tool for users to explore their
preferences before requesting them to suggest
desirable attributes.

The problems in related work lie in the handling
of nonquantifiable attributes, as the approaches
are too general. Most work so far only attempted
to catch user preference through generalization
and stereotyping instead of understanding specific
user needs. Another problem is that most works
are only able to handle a specific set of attributes.
The attributes to be handled are hard-coded into
the system design, and the consequence is that
it is not able to handle attributes that are unac-
counted. However, the list of product attributes is
often large. The approach used in related research
may not be able to cover all the attributes, as they
need to classify them into the ontology.

deScrIptIon of InteLLIgent
uSer preference detectIon

The proposed approach attempts to capture user
preference based on two quantifiable accounted
attributes, price and quality. It learns incremen-
tally any unaccounted attribute that affects a
user’s preference. If any unaccounted attribute
is suspected, the system comes up with a list of
candidate attributes and verifies their importance
through a genetic algorithm (Haupt & Haupt,
1998). Thus, attributes that were unaccounted for

���

intelligent User Preference Mining

previously will be considered. The unaccounted
attributes are derived from the general descrip-
tions field of a product. The approach is therefore
adaptive in nature, as the system is not restricted
by the attributes it is designed to cater to.

The overall procedure is shown in Figure 1.
The system first retrieves any captured informa-
tion regarding the user from previous feedback
and generates a list of products from the product
database for the user to rank and investigates the
presence of any unaccounted attribute affecting
the user’s preference. The system then compiles
a list of possible attributes that are unaccounted
for by analyzing the user feedback and rank these
attributes according to their suspicion levels. The
most suspicious attributes and any information
captured from previous feedback are then veri-

fied using a genetic algorithm. If two cycles of
feedback are completed, the system attempts to
generalize any quantifiable attributes to form a
generic group of attributes. The system finally
optimizes the information collected by the genetic
algorithm and recommends a list of products from
the product database to the user according to the
preference captured.

tangible Score

In our application, we shall consider two quantifi-
able attributes, price and quality, as the basis in
deriving the tangible score. The effect of these two
attributes is always accounted for. The equation to
derive this score is as shown in Equations 1-3.

Figure 1. System flowchart diagram

Start

Get user preference from
previous feedback

Get user
feedback

Create a suspect list of
unaccounted attributes

1)

 2) Previous user preference

Create feedback to
clear controversy

2 feedbacks
taken?

Generate user
feedback

Form a generic
group for
quantifiable
attributes

Any
controversy?

Any
unaccounted

Recommend
products

 Yes
Yes

No

No

Yes

No

 ���

intelligent User Preference Mining

ScorePrice Competitive = PrefWeight*(MaxPrice
– Price)/MaxPrice (1)

ScoreQuality = (1.0–PrefWeight)*Quality
 (2)

Equation 1 measures the price competitiveness
of the product. PrefWeight is the weight or impor-
tance the user places on price competitiveness as
compared to quality with values ranging from 0 to
1.0. A value of 1.0 indicates that 100% of the user’s
preference is based on price competitiveness. A
product with a price close to the most expensive
product will have a low score in terms of price
competitiveness and vice versa.

Equation 2 measures the score given to qual-
ity. The quality attribute measures the quality of
the product and takes a value ranging from 0.0
to 1.0. The value of “1.0 – PrefWeight” measures
the importance of quality to the user. The final
score given to tangible attributes are computed
by adding Equations 1 and 2 as shown in Equa-
tion 3 below.

TangibleScore = ScorePriceCompetitive + ScoreQuality

 (3)

Modification Score for detected
attributes

The modification score is the score assigned to
all detected attributes by the system. These de-
tected attributes were previously unaccounted
for but had been detected by the system to be an
attribute in the user’s preference. These include
all other attributes

∑
=

-=
utesNoOfAttrib

i
i oreTangibleScK

1
*)1(Scoreon Modificati

 (4)

besides price and quality. As these attributes may
not have a quantifiable value, the score is taken as
a factor of the TangibleScore derived earlier. The

modification score is shown in Equation 4 whereby
the modification factor K is introduced.

The values of each modification factor K ranges
between 0.0 and 2.0. A value of K is assigned for
each newly detected attribute. The modification
factor K takes a value of 1.0 that gives a modifica-
tion score of 0 when the detected attribute does
not affect the user’s choice. When K<1.0, there is
a negative or penalty score for the particular at-
tribute when the user has negative interest. When
K >1.0, we have a bonus score to the attributes
when the user has positive preference towards
certain attributes. The final score for the product
is as shown in Equation 5 as the sum of tangible
and modification scores.

Final Score = Tangible Score + Modification
Score (5)

a ranking System for user
feedback

As shown in Equations 1 and 2 earlier, there is
a need to capture user preference in terms of the
PrefWeight in Equation 1 and the various modi-
fication factor K in Equation 4. The system will
request the user to rank a list of products. The
system makes use of this ranked list to assess a
best value for PrefWeight in Equations 1 and 2.
In case when no unaccounted attributes affect the
user’s feedback, the agents will be evolved and
optimized along the PrefWeight gradient.

fitness of agents

The fitness of each agent depends on the similarity
between the agent’s ranking of the product and the
ranking made by the user. It reflects the fitness of
agents in capturing the user’s preference.

unaccounted attribute detection

To demonstrate the system’s ability to detect
unaccounted attribute, the ontology will contain

��0

intelligent User Preference Mining

only price and quality while all other attributes
are unaccounted and remain to be detected, if
they are relevant to the user. These unaccounted
attributes include nonquantifiable attributes that
are subjective in nature. The unaccounted attri-
butes can be retrieved by analyzing the descrip-
tions field of a product database thus allowing
new attributes to be included without the need
of change in system design.

The system first goes through a detection stage
where it comes up with a list of attributes that
affect the user’s preference. These attributes are
considered as unaccounted attributes as the system
has not accounted for them during this stage. A
confidence score is assigned to each attribute ac-
cording to the possibility of it being the dominant
attribute influencing the user’s preference.

The system will request the user to rank a list
of products after that it analyzes the feedback
according to the process as shown in Figure 2.
The agents then attempt to explain the ranking by
optimizing the PriceWeight and various K values.
The fittest agent will give each product a score.

The system loops through the 10 products that
are ranked by the user and compares the score
given to products. If the user ranks a product higher
than another, this product should have a higher
score than a lower ranked product. However,
if the agent awards a higher score to a product
ranked lower than another, the product is deemed
to contain an unaccounted attribute causing an
illogical ranking. This process is able to identify
all products containing positive unaccounted at-
tributes that the user has preference for.

The next step is to identify the unaccounted
attributes inside these products that cause such
illogical rankings. The product descriptions for
these products with illogical rankings are ana-
lyzed and tokenized. Each word in the product
descriptions field is considered as a possible unac-
counted attribute affecting the user’s preference.
Each token is considered as a possible attribute
affecting the user’s taste. The system will analyze
the situation and modify the confidence score
according to the cases as shown.

Figure 2. Chromosome encoding

Score Product N <
Score Product N+1?

Agent assigns
score to each

product

Analyze user
feedback with
available info

N = 1

Illogical ranking:
Product N contains

unaccounted attributes.

N = N+1

Extract all

N = 10?

1

0

1

0

Logical ranking

 ���

intelligent User Preference Mining

1. The token appears in other products and
shows no illogical ranking: deduction of
points.

2. The token appears in other products
and shows illogical ranking: addition of
points.

Confirmation of attributes

The attributes captured in previous feedbacks may
be relevant in the current feedback as the user may
choose to provide more than one set of feedback.
The system thus makes a conjecture that the user’s
preference is influenced by certain attributes
affecting him in previous feedbacks if available
and eight other new attributes with the highest
confidence score. The effect of these attributes
on the user’s preference is verified next.

Each agent in the system will estimate the
user’s preference by randomly assigning a modi-
fication factor (“K” value) for each of the eight
attributes with high confidence score. Attributes
identified to be positive are given K values greater
than 1.0 while negative attributes would have K
values less than 1.0. The PrefWeight and K values
are optimized by a genetic algorithm to improve
the fitness level of the agents.

optimization using genetic
algorithm

The status of detected attributes perceived by the
agents and the most suspicious attributes will be
verified here. The PrefWeight and various K val-
ues will be optimized to produce maximum agent
fitness. As this is a multidimensional problem
(Osyczka, 2001) with each new K value introduc-
ing a new dimension, we use a genetic algorithm
to convert the attributes into binary strings. The
agents are evolved under the genetic algorithm to
optimize the fitness of each agent. The attributes
of each agent are converted into a binary string
as shown in Figure 3, and each bit represents a
chromosome. In the design, 10 bits are used to
represent the PrefWeight while 5 bits are used to
represent the various K values.

Incremental detection System

The system takes an incremental detection ap-
proach in understanding user preference, and the
results show success in analyzing complex user
preference. The system acknowledges that not
all vital attributes may be captured within one
set of feedback and thus considers refinement of

Figure 3. Process identifying products with illogical rankings

Binary 10bits (Pref. Weight* 1023)

K1 = 0.2 K2 = 1.0 K3 = 1.8

1011001100 000110 011111 111000 6 bits

Binary 6bits (KN* 63.0 / 2.0)

Pref. Weight = 0.7 KN = 1.8

���

intelligent User Preference Mining

the results of previous sets. The attributes that
affect a user’s preference in one feedback become
the prime candidates in the next set of feedback.
In this way, the attributes that are detected are
preserved and verified while new unaccounted
attributes are being detected allowing the agents
to learn incrementally about the attributes that
affect the user’s preference. However, some of
the information captured by the system may be
no longer valid as the number of feedback cycles
increase. This creates a problem in the incremental
detection system, as the information may not be
relevant. To solve this problem, the system checks
the validity of past attributes affecting the user’s
preference and delete attributes that are no lon-
ger relevant in the current feedback. Each set of
feedback contains two feedback cycles.

Both feedback cycles attempt to detect the
presence of any unaccounted attributes. In ad-
dition, the first cycle will delete any attributes
that are passed from previous feedbacks and no
longer relevant. These attributes should have a
K value of 1.0 after we apply the genetic algo-
rithm. Any controversial attributes detected by
the first cycle will be clarified under the second
feedback cycle.

ImpLementatIon of InteLLIgent
uSer preference SyStem

A prototype was created to simulate the product
broker. An independent program is written and
run in the background to simulate the user. This
program is used to provide feedback to the sys-
tem and ranks the list of products on behalf of a
simulated user who is affected by price and quality
as well as a list of unaccounted attributes. The
system is also affected by some generic groups
of quantifiable attributes. It was observed that
the performance of the system is closely related
to the complexity of the problem. More complex
problems tend to have lower overall performance.

However, this is alleviated by providing multiple
sets of feedback. The system was able to detect
those attributes affecting the user’s preference,
and in the cases tested, the gap in performance
was negligible. The system also demonstrated
its ability to adapt to changes in user preference.
This is important when multiple sets of feedback
are involved as the user’s preference may vary
between feedback cycles.

future trendS

The current system generated user feedbacks
to clarify any doubts on suspicious attributes.
However, more than half of the feedbacks were
generated in random to increase the chances of
detecting new attributes. These random feedbacks
were generated with products of different brand
names having an equal chance of being selected
to add to the variety of the products used for
feedbacks. This could be improved by generat-
ing feedbacks to test certain popular attributes to
increase the detection capabilities.

concLuSIon

We have presented a solution in handling unac-
counted attributes without the need of change in
the ontology or system design. The results showed
that the system is indeed capable of capturing the
user’s preferences even when unknown attributes
were present. The system is also able to handle
the presence of multiple unaccounted attributes
and classify quantifiable attributes into a generic
group. Given the possibility that unaccounted
attributes could remain undetected during the
process of mining, it could happen that a list
of products recommended to the user has none
matched against her preference or worse, that the
user who makes a purchase based on available
information and subsequently he discovers that

 ���

intelligent User Preference Mining

there were other products better meeting his needs.
How to ameliorate such a situation is a challenging
task, and it is on our future research agenda.

referenceS

Bierwirth, C. (2000). Adaptive search and the
management of logistic systems: Base models for
learning agents. Kluwer Academic Publishers.

Chanan, G., & Yadav, S. B. (2001). A conceptual
model of an intelligent catalog search system.
Journal of Organizational and Electronic Com-
merce, 11(1), 31-46.

Guan, S.-U., Ngoo, C. S., & Zhu, F. (2002).
HandyBroker: An intelligent product-brokering
agent for m-commerce applications with user
preference tracking. Electronic Commerce and
Research Applications, 1(3-4), 314-330.

Guan, S.-U., Zhu, F., & Maung, M. T. (2004). A
factory-based approach to support e-commerce
agent fabrication. Electronic Commerce and
Research Applications, 3(1), 39-53.

Haupt, R. L., & Haupt, S. E. (1998). Practical
genetic algorithm. John Wiley & Sons.

Maes, P. (1994). Agents that reduce work and
information overload. Communications of the
ACM, 37(7), 30-40.

MARI. (2007). Retrieved March 4, 2008, from
http://agents.media.mit.edu/projects_previous.
html

 Nwana, H.S., and Ndumu, D.T. (1996). An in-
troduction to agent technology. BT Technology
Journal, 14(4), 55-67.

Osyczka, A. (2001). Evolutionary Algorithms for
Single and Multicriteria Design Optimization.
Physica-Verlag.

Shearin, S., & Lieberman, H. (2001). Intelligent
profiling by example. In Proceedings of the In-

ternational Conference on Intelligent User Inter-
faces, Santa De, New Mexico (pp. 145-151).

Sheth, B., & Maes, P. (1993). Evolving agents for
personalized information filtering. In Proceedings
of the 9th Conference on Artificial Intelligence for
Applications (pp. 345-352). IEEE Press.

Wang, T., Guan, S.-U., & Chan, T.K. (2002).
Integrity protection for code-on-demand mobile
agents in e-commerce. Journal of Systems and
Software, 60(3), 211-221.

Zhu, F.M., & Guan, S.-U. (2001). Evolving soft-
ware agents in e-commerce with gp operators
and knowledge exchange. In Proceedings of
the 2001 IEEE Systems, Man and Cybernetics
Conference.

key termS

Accounted Attribute: A quality, feature, or
characteristic that is listed in product specifi-
cations of a specific product.

Attribute: A quality, feature, or character-
istic that some product has.

E-Commerce: Consists primarily of the
distributing, buying, selling, marketing, and
servicing of products or services over electronic
systems such as the Internet and other computer
networks.

Genetic Algorithms: Search technique used
in computer science to find approximate solutions
to optimization and search problems. Genetic
algorithms are a particular class of evolution-
ary algorithm that uses techniques inspired by
evolutionary biology such as inheritance, muta-
tion, natural selection, and recombination (or
crossover).

M-Commerce: M-commerce, or mobile
commerce, stands for electronic commerce made
through mobile devices.

���

intelligent User Preference Mining

Ontology: Studies being or existence and their
basic categories and relationships, to determine
what entities and what types of entities exist.

Product Brokering: A broker is a party that
mediates between a buyer and a seller.

Software Agent: An abstraction, a program
that describes software that acts for a user or other
program in a relationship of agency.

Tokenize: The process of converting a se-
quence of characters into a sequence of tokens
or symbols.

This work was previously published in Encyclopedia of Information Communication Technology, edited by A. Cartelli & M.
Palma, pp. 470-476, copyright 2009 by Information Science Reference (an imprint of IGI Global).

 ���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 1.34
Mining Software Specifications

David Lo
National University of Singapore, Singapore

Siau-Cheng Khoo
National University of Singapore, Singapore

IntroductIon

Software is a ubiquitous component in our daily
life. It ranges from large software systems like
operating systems to small embedded systems like
vending machines, both of which we frequently
interact with. Reducing software related costs and
ensuring correctness and dependability of soft-
ware are certainly worthwhile goals to pursue.

Due to the short-time-to-market requirement
imposed on many software projects, documented
software specifications are often lacking, incom-
plete and outdated (Deelstra, Sinnema & Bosch
2004). Lack of documented software specifica-
tions contributes to difficulties in understanding
existing systems. The latter is termed program
comprehension and is estimated to contribute
up to 45% of total software cost which goes to
billions of dollars (Erlikh 2000, Standish 1984;
Canfora & Cimitile 2002; BEA 2007). Lack of
specifications also hampers automated effort of

program verification and testing (Ammons, Bodik
& Larus 2002).

One solution to address the above problems
is mining (or automatic extraction of) software
specification from program execution traces.
Given a set of program traces, candidate partial
specifications pertaining to the behavior a piece
of software obeys can be mined.

In this chapter, we will describe recent stud-
ies on mining software specifications. Software
specification mining has been one of the new
directions in data mining (Lo, Khoo & Liu 2007a,
Lo & Khoo 2007). Existing specification mining
techniques can be categorized based on the form
of specifications they mine. We will categorize
and describe specification mining algorithms for
mining five different target formalisms: Boolean
expressions, automata (Hopcroft, Motwani &
Ullman 2001), Linear Temporal Logic (Huth &
Ryan 2003), frequent patterns (Han & Kamber
2006) and Live Sequence Charts (Harel & Marelly
2003).

���

Mining Software Specifications

Background

Different from many other engineering prod-
ucts, software changes often during its lifespan
(Lehman & Belady 1985). The process of mak-
ing changes to a piece of software e.g., to fix
bugs, to add features, etc., is known as software
maintenance. During maintenance, there is a
need to understand the current version of the
software to be changed. This process is termed
as program comprehension. Program comprehen-
sion is estimated to take up to 50% of software
maintenance efforts which in turn is estimated
to contribute up to 90% of total software costs
(Erlikh 2000, Standish 1984; Canfora & Cimitile
2002). Considering the $216.0 billion of software
component contribution to the US GDP at second
quarter 2007, the cost associated with program
comprehension potentially goes up to billions of
dollars (BEA 2007). One of the root causes of
this problem is the fact that documented soft-
ware specification is often missing, incomplete
or outdated (Deelstra, Sinnema & Bosch 2004).
Mining software specifications is a promising
solution to reduce software costs by reducing
program comprehension efforts.

On another angle, software dependability is
a well sought after goal. Ensuring software runs
correctly at all times and identifying bugs are
two major activities pertaining to dependability.
Dependability is certainly an important issue
as incorrect software has caused the loss of bil-
lions of dollars and even the loss of lives (NIST
2002; ESA & CNES 1996; GAO 1992). There are
existing tools for performing program verifica-
tion. These tools take formal specifications and
automatically check them against programs to
discover inconsistencies, identify bugs or ensure
that all possible paths in the program satisfy the
specification (Clarke, Grumberg & Peled 1999).
However, programmers’ reluctance and difficulty
in writing formal specifications have been some
of the barriers to the widespread adoption of such
tools in the industry (Ammons, Bodik & Larus

2002, Holtzmann 2002). Mining software speci-
fications can help to improve software depend-
ability by providing these formal specifications
automatically to these tools.

maIn focuS

There are a number of specification mining
algorithms available. These algorithms can be
categorized into families based on the target
specification formalisms they mine. These include
specification miners that mine Boolean expres-
sions (Ernst, Cockrell, Griswold and Notkin
2001), automata (Cook & Wolf 1998; Reiss &
Reinieris, 2001; Ammons, Bodik & Larus 2002;
Lo & Khoo 2006a; Lo & Khoo 2006b; Mariani,
Papagiannakis and Pezzè 2007; Archaya, Xie,
Pei & Xu, 2007; etc.), Linear Temporal Logic
expressions (Yang, et al. 2006; Lo, Khoo & Liu
2007b; Lo, Khoo & Liu 2008, etc.), frequent
patterns (Li & Zhou, 2005; El-Ramly, Stroulia
& Sorenson, 2002; Lo, Khoo & Liu 2007a; etc.)
and Live Sequence Charts (Lo, Maoz & Khoo
2007a, Lo, Maoz & Khoo 2007b).

These mined specifications can aid program-
mers in understanding existing software systems.
Also, a mined specification can be converted to
run-time tests (Mariani, Papagiannakis & Pezzè
2007; Lo, Maoz & Khoo 2007a; Lo, Maoz &
Khoo 2007b) or input as properties-to-verify to
standard program verification tools (Yang, Evans,
Bhardwaj, Bhat and Das, 2006; Lo, Khoo & Liu
2007b).

preliminaries

Before proceeding further, let us describe some
preliminaries. Specifications can be mined from
either traces or code. A program trace is a sequence
of events. Each event in a trace can correspond
to a statement being executed, or a method be-
ing called, etc. In many work, an event is simply
the signature of a method that is being called.

 ���

Mining Software Specifications

Traces can be collected in various ways. A com-
mon method is to instrument a code by inserting
`print’ statement to various locations in the code.
Running the instrumented code will produce a
trace file which can then be analyzed.

mining Boolean expressions

Ernst, Cockrell, Griswold and Notkin (2001) pro-
pose an algorithm that mines Boolean expressions
from program execution traces at specific program
points. Sample Boolean expressions mined are
x=y+z, x>5, etc. The algorithm is based on a set
of templates which is then matched against the
program execution traces. Template instances
that are satisfied by the traces above a certain
threshold are outputted to the user.

mining automata

Simply put, an automaton is a labeled transition
system with start and end nodes. Traversing an
automaton from start to end nodes will produce
a sentence, which will correspond to a program
behavior (e.g., file protocol: open-read-write-
close). An automaton represents a set of valid
sentences that a program can behave. An example
of an automaton representing a file protocol is
drawn in Figure 1.

One of the pioneering work on mining au-
tomata is the work by Ammons, Bodik and Larus

(2002). In their work, a set of pre-processed traces
are input to an automata learner (Raman & Patrick,
1997). The output of the learner is a specification
in the form of an automaton learned from the trace
file. This automaton is then presented to end users
for fine tuning and modifications.

Lo and Khoo (2006a) define several metrics
for assessing the quality of specification mining
algorithms that mine automata. Among these
metrics, precision and recall are introduced as
measures of accuracy to existing specification
miners producing automata. Precision refers to the
proportion of sentences accepted by the language
described by the mined automaton that are also
accepted by the true specification. Recall refers
to the proportion of sentences accepted by the
language described by the true specification that
are also accepted by the mined automaton. In the
same work, a simulation framework is proposed
to evaluate existing work on mining automaton-
based specifications, which also help identify
room for improvement.

Lo and Khoo (2006b) next propose an ar-
chitecture using trace filtering and clustering
to improve the quality of existing specification
miners. The architecture pre-processes the traces
by first filtering anomalies in the traces and then
clustering them into similar groups. Each group
is then fed separately to an existing specifica-
tion mining algorithm to produce an automaton
describing a partial specification of a system.
These partial specifications are later merged
into a unified automaton. It has been shown that
the quality of the resultant specification min-
ing algorithm after filtering and clustering are
employed is better than before. In particular, in
a case study on a Concurrent Versions System
(CVS) application, the precision is doubled with
a small reduction in recall.

Mariani, Papagiannakis and Pezzè (2007)
use an improved automata learner (Mariani and
Pezzè, 2005) and a Boolean expressions miner
(Ernst, Cockrell, Griswold and Notkin, 2001) to
generate regression tests of third party or Com-

Figure 1. File protocol specification

0 1 2open

read

writeclose

close

���

Mining Software Specifications

mercial off-the-shelf (COTS) components. Their
algorithm first learns an automaton and a set of
Boolean expressions and then converts them to
regression tests to ensure the compatibility of third
party components when used together.

Other work on mining automata includes:
(Archaya, Xie, Pei & Xu, 2007; Reiss & Reinieris,
2001; Cook & Wolf 1998; etc.)

mining Linear temporal Logic
expressions

Linear Temporal Logic (LTL) is a formalism for
specifying precise temporal requirements. It mod-
els time as a sequence of states where each state
is an event from a fixed set. The full description
of LTL can be found in (Huth & Ryan, 2004).
Here, we focus on 3 temporal operators of LTL
namely G, X and F. The operator X refers to the
next state, F refers to the current or a future state,
and G captures all future states (globally). In
software there are many requirements expressible
in LTL, for example:

1. Whenever (globally when) resource.lock is
called, (from the next state onwards) finally
resource.unlock is eventually called

 Or
 G(resource.lock->XF (resource.unlock))
2. Whenever (globally when) a correct pin is

entered and user requested money and the
balance is sufficient, (from the next state
onwards) finally an ATM eventually dis-
penses money

 Or
 G(correct_ pin->XG(request_ money-

>XG(sufficient->XF(dispense))))

Yang, Evans, Bhardwaj, Bhat and Das (2006)
mine significant two-event temporal logic expres-
sions stating “whenever an event E1 occurs eventu-
ally an event E2 occurs” from program execution
traces. An expression is significant if it satisfies
a minimum threshold of `̀ satisfaction rate’’. The

algorithm is limited to mining two-event temporal
logic expressions due to the exponential complex-
ity involved in mining expressions of arbitrary
sizes. To capture behaviors involving more than
two events, they proposed a partial solution where
previously mined two-event expressions are con-
catenated to form longer expressions. However,
not all more-than-two event expressions can be
mined this way, and superfluous rules that are not
significant might be introduced in this process.

Lo, Khoo and Liu (2007b, 2008) extend this
work by devising an algorithm to mine significant
LTL expressions of arbitrary sizes. An expression
is significant if it obeys minimum thresholds of
support and confidence. A novel search space
pruning strategy is employed to enable efficient
mining of rules of arbitrary size.

mining frequent patterns

Li and Zhou (2005) use a closed itemset min-
ing algorithm by (Grahne & Zhu 2003) in their
proposed algorithm called PR-Miner to recover
elements of a program (function, variable, etc)
that are often used together in a code. These
associations among program elements can be
composed as rules that reflect implicit program-
ming rules in code.

El-Ramly, Stroulia and Sorenson (2002) pro-
pose a new pattern mining algorithm to mine
frequent user-usage scenarios of a GUI based
program composed of screens – these scenarios
are termed as interaction patterns. Given a set of
series of screen ids, frequent interaction patterns
capturing common user interactions with the GUI
are obtained.

Lo, Khoo and Liu (2007a) propose a new pat-
tern mining algorithm to mine frequent patterns
of program behavior from program execution
traces —these patterns are termed as iterative
patterns. Patterns can occur repeatedly within a
program trace and across multiple traces. These
patterns follow some constraints of Live Sequence
Charts (LSC), which is one of the standards in

 ���

Mining Software Specifications

software modeling community. An example of
a specification mined from the transaction com-
ponent of JBoss Application Server is shown in
Figure 2. It specifies that a series of connection
setup events is followed by transaction manager
setup events, transaction setup events, transac-
tion commit events and eventually transaction
disposal events.

mining Live Sequence charts

Lo, Maoz and Khoo (2007a, 2007b) extend the
work on mining iterative pattern (Lo, Khoo &
Liu, 2007a) and propose an algorithm to mine
significant Live Sequence Charts (LSC) from
program execution traces. A chart is significant
if it obeys minimum thresholds of support and
confidence. While iterative pattern follows some
of the semantics of LSC they are not LSC. LSC
is a formal version of UML sequence diagram
with pre- and post- chart. An LSC specifies that

when the behavior specified by the pre-chart oc-
curs, the behavior specified by the post-chart will
also occurs. Mined LSCs are also different from
Linear Temporal Logic expressions mined in (Lo,
Khoo & Liu, 2007b, Lo, Khoo & Liu, 2008) as the
satisfactions of the pre- and post- charts conform
to the semantics of LSC (Harel & Marelly 2003).
Also for mining LSCs, an event in a trace is a triple
(caller, callee, method signature). An example of a
mined chart from Jeti instant messaging applica-
tion (Jeti 2006) is shown in Figure 3. It describes
a series of methods that are being called when a
user of Jeti draws a line in the shared canvas with
another communication party.

We have reviewed various approaches to
mine different forms of software specifications.
The specifications mined can aid user in under-
standing existing software and serve as input to
other software engineering tasks, e.g., software
verification, testing, etc.

Figure 2. A sample iterative pattern (of 32 events) mined from JBoss application server (note: diagram
is read top to bottom, left to right)

C
on

ne
ct

io
n

Se
t U

p

TransactionManagerLocator.getInstance
TransactionManagerLocator.locate
TransactionManagerLocator.tryJNDI
TransactionManagerLocator.usePrivateAPI

T
xM

an
ag

er

Se
t U

p

TxManager.begin
XidFactory.newXid
XidFactory.getNextId
XidImpl.getTrulyGlobalId

T
ra

ns
ac

tio
n

C
om

m
it

TxManager.commit
TransactionImpl.commit
TransactionImpl.beforePrepare
TransactionImpl.checkIntegrity
TransactionImpl.checkBeforeStatus
TransactionImpl.endResources
TransactionImpl.completeTransaction
TransactionImpl.cancelTimeout
TransactionImpl.doAfterCompletion
TransactionImpl.instanceDone

T
ra

ns
ac

tio
n

Se
t U

p

TransactionImpl.associateCurrentThread
TransactionImpl.getLocalId
XidImpl.getLocalId
LocalId.hashCode
TransactionImpl.equals
TransactionImpl.getLocalIdValue
XidImpl.getLocalIdValue
TransactionImpl.getLocalIdValue
XidImpl.getLocalIdValue T

ra
ns

ac
tio

n
D

is
po

sa
l TxManager.releaseTransactionImpl

TransactionImpl.getLocalId
XidImpl.getLocalId
LocalId.hashCode
LocalId.equals

�00

Mining Software Specifications

future trendS

As program traces can be huge, there is a need
to improve the efficiency of existing techniques
further. Further industrial case studies are also
needed to adapt existing techniques to the in-
dustry. A comparison of existing techniques will
do well to help users to better understand which
technique works best in a particular situation.
There is much room for further theoretical and
practical contributions to the domain of mining
software specifications.

concLuSIon

Software is a ubiquitous component of our daily
life. Documented software specifications are often
missing, incomplete and outdated. This causes
difficulties in understanding software systems.
Program comprehension accounts for a significant
proportion of total software cost. On another angle,

programmers’ reluctance and difficulty in writing
formal specifications have been some barriers to
the wide spread adoption of automatic program
verification tools. Specification mining is one of
the promising solutions to the above problems. It
can provide candidate specifications to aid pro-
grammers in understanding existing programs.
The specification can also be input to program
verification tools and converted to run-time tests
to aid program verification and bug detection. In
the future, we look forward to more theoretical
and technical contribution to this field, as well
as more case studies and the availability of more
open source tools.

referenceS

Ammons, G., Bodik, R., and Larus, J. (2002).
Mining specifications. Proceedings of the 29th
Symposium on Principles of Programming Lan-
guages, 4-16.

Figure 3. A sample LSC mined from Jeti messaginge application (boxes, arrows, dotted arrows and solid
arrows correspond to classes, method calls, pre-chart and post-chart respectively)

LSC Draw shape

Mode Picture
Chat

JID Picture
History Backend Connect Output

getMyJID)

toString(…)
draw(…)

addShapeDrawnByMe(…)
send(…)

send(…)
send(…)

LSC Draw shape

Mode Picture
Chat

JID Picture
History Backend Connect Output

getMyJID)

toString(…)
draw(…)

addShapeDrawnByMe(…)
send(…)

send(…)
send(…)

 �0�

Mining Software Specifications

Archaya, M., Xie, T., J. Pei, and J. Xu (2007).
Mining API patterns as partial orders from
source code: from usage scenarios to specifica-
tions. Proceedings of the 6th Joint Meeting of
European Software Engineering Conference
and Symposium on the Foundations of Software
Engineering, 25-34.

Canfora, G. and Cimitile, A. (2002). Software
maintenance. Handbook of Software Engineering
and Knowledge Engineering (Volume 1), 91-120,
World Scientific.

Clarke, E.M., Grumberg, O. and Peled, D.A.
(1999). Model checking. MIT Press.

Cook, J.E. and Wolf, A.L. (1998). Discovering
models of software processes from event-based
data. ACM Transactions on Software Engineering
and Methodology, 7(3):215-249.

Deelstra, S., Sinnema, M. and Bosch, J. (2004).
Experiences in software product families:
Problems and issues during product derivation.
Proceedings of the 3rd Software Product Line
Conference, 165-182.

El-Ramly,.M, Stroulia, E., and Sorenson, P. (2002)
From run-time behavior to usage scenarios: An
interaction-pattern mining approach. Proceed-
ings of International Conference on Knowledge
Discovery and Data Mining, 315-324.

Erlikh, L. (2000). Leveraging legacy system dol-
lars for e-business. IEEE IT Pro, 2(3), 17-23.

Ernst, M.D., Cockrell, J., Griswold, W.G., and
Notkin, D. Dynamically discovering likely pro-
gram invariants to support program evolution,
IEEE Transactions on Software Engineering,
27(2), 99-123.

European Space Agency (ESA) and Centre Na-
tional d’Etudes Spatiales (CNES) Independent
Enquiry Board. (1996). ARIANE 5 – flight 501
failure: Report by the inquiry board. A copy at:
http://www.ima.umn.edu/~arnold/disasters/ari-
ane5rep.html.

Grahne, G. and Zhu, J. (2003). Efficiently using
prefix-trees in mining frequent itemsets. Pro-
ceedings of the 1st Workshop on Frequent Itemset
Mining Implementation.

Han, J. and Kamber, M. (2003). Data mining:
concepts and techniques. Morgan Kaufmann.

Harel, D. and Marelly, R. (2003). Come, let’s play:
Scenario-based programming using LSCs and
the play-engine. Springer-Verlag.

Holtzmann, G.J. (2002) The logic of bugs. (2002).
Proceedings of the 10th Symposium on Founda-
tions of Software Engineering, 81-87.

Hopcroft, J. E., Motwani, R. and Ullman, J.D.
(2001). Introduction to automata theory, lan-
guages, and computation. Addison Wesley.

Huth, M. and Ryan, M. (2003). Logic in computer
science: Modeling and reasoning about systems.
Cambridge Press.

Jeti. Version 0.7.6 (Oct. 2006). http://jeti.source-
forge.net/.

Lehman, M. and Belady, L. (1985). Program
Evolution – Processes of Software Change.
Academic Press.

Lo, D., Khoo, S-C. (2006a). QUARK: Empirical
assessment of automaton-based specification
miners. Proceedings of the 13th IEEE Working
Conference on Reverse Engineering, 51-60.

Lo, D., Khoo, S-C. (2006b). SMArTIC: Toward
building an accurate, robust and scalable speci-
fication miner. Proceedings of the 14th ACM
SIGSOFT Symposium on Foundations of Software
Engineering, 265-275.

Lo, D., Khoo, S-C, Liu, C. (2007a). Efficient min-
ing of iterative patterns for software specification
discovery. Proceedings of the 13th International
Conference on Knowledge Discovery and Data
Mining, 460-469.

�0�

Mining Software Specifications

Lo, D., Khoo, S-C, Liu, C. (2007b). Mining
temporal rules from program execution traces.
Proceedings of the 3rd International Workshop
on Program Comprehension through Dynamic
Analysis, 24-28.

Lo, D., Khoo, S-C, Liu, C. (2008). Efficient mining
of recurrent rules from a sequence database. Pro-
ceedings of the 13th International Conference on
Database Systems for Advance Applications.

Lo, D., Maoz, S. and Khoo, S-C. (2007a). Mining
modal scenarios from execution traces. Compan-
ion to the 22nd Conference on Object-Oriented
Programming, Systems, Languages, and Applica-
tions, 777-778.

Lo, D., Maoz, S. and Khoo, S-C. (2007b). Mining
modal scenario based specifications from execu-
tion traces of reactive systems. Proceedings of
the 22nd International Conference on Automated
Software Engineering, 465-468.

Lo, D., Khoo, S-C. (2007). Software specification
discovery: A new data mining approach. NSF
Symposium on Next Generation Data Mining.

Mariani, L., Papagiannakis and S., Pezzè, (2007).
Compatibility and regression testing of COTS-
component-based software. Proceedings of the
29th International Conference on Sofware En-
gineering, 85-95.

Mariani, L. and S., Pezzè, (2005). Behavior cap-
ture and test: Automated analysis of component
integration. Proceedings of the 10th International
Conference on Engineering of Complex Computer
Systems, 292-301.

Raman, A.V. and Patrick, J.D. (1997). The sk-
strings method for inferring PFSA. Proceedings
of the Workshop on Automata Induction, Gram-
matical Inference and Language Acquisition.

Reiss, S.P. and Renieris, M. (2001). Encoding
program executions. Proceedings of the Inter-
national Conference on Software Engineering,
221-230.

Standish, T. (1984). An essay on software reuse.
IEEE Transactions on Software Engineering,
5(10): 494-497.

US Bureau of Economic Analysis (BEA). (Sept
2007) BEA: News release: Gross domestic prod-
uct. Online at: http://www.bea.gov/newsreleases/
national/gdp/gdpnewsrelease.htm.

US National Institute of Standards and Technology
(NIST). (2002). Software errors cost U.S. economy
$59.5 billion annually. Online at: http://www.nist.
gov/public affairs/releases/n02-10.htm

US Government Accountability Office (GAO).
(1992).GAO report: Patriot missile defense – soft-
ware problem led to system failure at Dhahran,
Saudi. A copy at: http://www.fas.org/spp/star-
wars/gao/im92026.htm.

Yang, J., Evans, D., Bhardwaj, D., Bhat, T. and
Das, M. (2006). Perracotta: Mining temporal
API rules from imperfect traces. Proceedings of
the 28th International Conference on Software
Engineering, 282-291.

key termS

Automaton: A labeled transition system with
start and end nodes describing a language. A path
from the start to an end node corresponds to a
sentence in the language.

Linear Temporal Logic: Formalism com-
monly used to describe temporal requirements
precisely. There are a few basic operations given
with symbols G, X, F, U, W, R corresponding to
English language terms ‘Globally’, ‘neXt’, ‘Fi-
nally’, ‘Until’, ‘Weak-until’ and ‘Release’.

Live Sequence Charts: A formal version of
UML sequence diagram. It is composed of a pre-
and post- chart. The pre-chart describes a condi-
tion which if satisfied entails that the behavior
described in the post-chart will occur.

 �0�

Mining Software Specifications

Program Comprehension: A process of
understanding a piece of software.

Program Instrumentation: Simply put, it
is a process of inserting `print’ statements to
an existing program such that by running the
instrumented program, it will produce a trace
file reflecting the behavior of the program when
the program is run.

Program Testing: A process find defects in a
piece of software by running a set of test cases.

Program Trace: A series of events where
each event can correspond to a statement that is
being executed, a function that is being called etc.,
depending on the abstraction level considered in
producing the trace.

Program Verification: A process to ensure
that software is always correct no matter what
input is given with respect to some properties,
e.g., whenever a resource is locked for usage, it
is eventually released.

Software Maintenance: A process of incor-
porating changes to existing software, e.g., bug
fixes, feature additions, etc., while ensuring the
resultant software works well.

Specification Mining or Specification Dis-
covery: A process for automated extraction of
software specification from program artifacts. We
use artifacts in a liberal sense to include program
traces, code, repository, data, etc.

Software Specification: A description on how
a piece of software is supposed to behave.

This work was previously published in Encyclopedia of Data Warehousing and Mining, Second Edition, edited by J. Wang, pp.
1303-1309, copyright 2009 by Information Science Reference (an imprint of IGI Global).

Section II
Development and Design

Methodologies

This section provides in-depth coverage of conceptual architectures, frameworks and methodologies
related to the design and implementation of software systems and applications. Throughout these contri-
butions, research fundamentals in the discipline are presented and discussed. From broad examinations
to specific discussions on particular frameworks and infrastructures, the research found within this
section spans the discipline while also offering detailed, specific discussions. Basic designs, as well as
abstract developments, are explained within these chapters, and frameworks for designing successful
software applications.

 �0�

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.1
Ontology Based Object-Oriented

Domain Modeling:
Representing Behavior

Joerg Evermann
Memorial University of Newfoundland, Canada

Yair Wand
The University of British Columbia, Canada

aBStract

An important step in developing the requirements
for an information system is analyzing the ap-
plication domain. In this step, conceptual models
are used for representing an application domain.
However, while languages for software design are
available and widely used, no generally accepted
language exists for conceptual modeling. This
work suggests the use of object-oriented software
modeling languages also for conceptual modeling.
Such use can support a more accurate transition
from domain models to software models. As
software-modeling languages were not intended
for modeling application domains, their constructs
lack the required semantics. While previous papers
addressed the representation of structural ele-
ments of domains using object concepts, this paper
addresses behavioral aspects, related to change

and interaction. The proposed semantics are based
on a mapping between ontological concepts that
describe behavior and object-oriented constructs
related to dynamics. Based on these mappings,
modeling rules are proposed to guide the modeler
in creating ontologically well-formed models. The
mappings and rules are exemplified using UML
and are demonstrated using a case study.

IntroductIon

A good understanding of the application domain
is necessary to develop the requirements for in-
formation systems (IS). Such understanding can
be facilitated with the use of conceptual models.
Conceptual modeling is the “activity of formally
describing some aspects of the physical and
social world for the purpose of understanding”
(Mylopoulos, 1992).

�0�

Ontology Based Object-Oriented Domain Modeling

Despite possible benefits to IS development of
using conceptual models, no widely used formal
or semi-formal language for conceptual model-
ing exists. In contrast, formal and semi-formal
languages, notably object-oriented languages, are
commonly used in software design. As reported
in (Dobing & Parsons, 2006, 2008) and also found
in our case study (Sec. 8), practitioners, for lack
of a language specific to conceptual modeling,
have been using software design languages for
this purpose. However, this often occurs in an
unguided way, possibly leading to confusion and
difficulties in understanding. Without guidance,
the support of UML for describing domains other
than software is poor and this can lead to miscom-
munication (Smolander & Rossi, 2008).

Adopting widely used and well-accepted
object-oriented languages, usually employed for
software design, in a guided way and with clearly
specified semantics for conceptual modeling, has
several potential benefits: (1) It can provide a
shared language to support better communication
between analysts and software designers. (2) It
can help mitigate translation problems between the
conceptual and the software models, (also called
“impedance mismatch” (Cilia, Haupt, Mezini, &
Buchmann, 2003; Kolp, Giorgini, & Mylopou-
los, 2002; Roe, 2003; Rozen & Shasha, 1989).
More specifically, because the domain model is
specified in the same language as software, the
domain model can also serve as an initial model
of the software system (Coad & Yourdon, 1991),
which can subsequently be adapted to particular
technologies. Such technology-driven refactoring
is beyond the scope of this paper. The discussion
in Section 9 will revisit this point in more detail.
(3) A clear representation of application aspects
can reduce possible confusion of business and
implementation aspects in conceptual models
(Parsons & Wand, 1997). (4) Assigning semantics
to language constructs for domain representation
purposes can provide modeling rules (Evermann
& Wand, 2005a).

Because object-oriented languages were not
developed for conceptual modeling, they lack ap-
plication domain semantics. For example, while
language constructs such as “Method” or “Opera-
tion” have clear meaning for software design, it
less clear what they represent in the application
domain. However, assigning application domain
semantics to language constructs, while necessary
for their use in application domain modeling, is
insufficient. It is also desirable to identify modeling
rules to ensure that the created models represent
only really possible situations in the application
domain. Modeling rules can improve the ability
to communicate and reason about the domain by
restricting the possible interpretations of a model
(Hadar & Soffer, 2006), and hence can support
convergence of the domain understanding among
different stakeholders, a pre-requisite for devel-
opment and implementation success. Therefore,
such rules can improve the effectiveness of the
created models as ways to communicate and
reason about the domain (Reinhartz-Berger &
Sturm, 2008).

Previous research (Evermann & Wand, 2005b)
proposed the use of object-oriented design lan-
guages for modeling the structural aspects of ap-
plication domains. That research proposed specific
application domain semantics for the static struc-
ture constructs found in UML class diagrams, and
suggested modeling rules to develop well-formed
and meaningful (with respect to perceptions of
the real world application domain) models. The
present work addresses the behavioral aspects of
conceptual modeling, focusing on constructs to
describe change and interaction. We exclude use
case related constructs as they describe external
interactions with a system, whereas the remaining
UML constructs describe the system itself.

Our approach is based on the use of ontology,
a specification of concepts that exist in a domain.
Previously, ontologies have been used mostly to
evaluate modeling languages (Green & Rose-
mann, 2000; Opdahl & Henderson-Sellers, 2002;
Opdahl, Henderson-Sellers, & Barbier, 1999).

 �0�

Ontology Based Object-Oriented Domain Modeling

This work extends the ontological approach to
prescribe modeling rules for using constructs
related to dynamic to model behavioral aspects of
a domain. We use the Unified Modeling Language
UML (OMG, 2005) as a specific instantiation
of object-oriented software design languages,
due to its wide acceptance (Dobing & Parsons,
2006, 2008).

The paper is organized as follows. Section 2
presents the research methodology, followed by an
introduction to ontology and the specific ontology
used for this research (Sec. 3). These introduc-
tions are limited to the analysis of behavior and
interactions. The main sections (Sec. 4-7) develop
the proposed semantics and modeling rules. The
paper closes with a presentation of case study
research that provides empirical support for the
proposed semantics and rules (Sec. 8).

reSearch methodoLogy

To assign application domain semantics to object-
oriented language constructs, we create map-
pings between language constructs and domain
concepts. Domain concepts are specified in terms
of an ontology. Ontology is an area of study that
is “that branch of philosophy which deals with
the order and structure of reality in the broadest
sense possible” (Angeles, 1981). A particular
ontology specifies what exists and how things
behave in a domain. Ontological mappings are
established by the following two steps (Wand &
Weber, 1993):

1. Representation mapping: Assign each on-
tological concept a language construct with
which to represent it.

2. Interpretation mapping: Assign each lan-
guage construct an ontological interpreta-
tion.

Once ontological mappings have been estab-
lished, the transfer of ontological assumptions and

constraints to the language generates modeling
rules. This transfer is based on the principle that
relationships between ontological concepts should
also hold between the language constructs that
are used to represent them.

Our analysis is guided by the principle that the
mappings should retain the existing relationships
between language constructs, so as not to affect
its software design semantics. For example, as
associations can relate UML classes, there should
be something that relates the ontological concepts
to which UML classes are mapped. If this con-
dition cannot be satisfied, then the assignment
of semantics to object constructs cannot be ac-
complished without violating some fundamental
design language aspects. Given this requirement,
the mapping of one language construct has impli-
cations for the possible mapping of other, related
ones. We address these interdependencies by us-
ing an iterative method, changing our perspective
repeatedly between the representation mapping
and the interpretation mapping. We begin by pro-
posing an initial representation mapping for core
ontological concepts (Section 4). Based on this
mapping, we propose an interpretation mapping
for related, as yet unmapped, language constructs
(Section 5). We repeat this for a second time to
cover all remaining ontological concepts and
language constructs (Sections 6, 7). In this way,
we ensure a mapping that is internally consistent
and respects the existing dependencies between
language constructs as much as possible.

This iterative methodology also addresses the
problem of “correct” interpretation of the ontology
and the language specifications. As both specifica-
tions are texts that must be read and interpreted,
the iterative methodology follows the hermeneutic
cycle (Gadamer, 1976; Ricoeur, 1976), recognized
as essential in interpretive IS research (Boland,
1985; Chalmers, 2004; Myers, 1995; Prasad, 2002).
This prevents premature assignment of meaning
and allows the entire meaning of the language and
ontology specifications to emerge.

�0�

Ontology Based Object-Oriented Domain Modeling

Our work has the following limitations. First,
it is not our purpose to suggest modeling rules
for software design. The derived rules are ap-
propriate for conceptual modeling but may not
be so for software design. However, models that
conform to our rules are valid software models,
as we do not violate the existing software se-
mantics of the language. Second, our rules do
not guide us in how to perceive the world. Thus,
we might suggest rules on how to use modeling
constructs such as objects and classes, but not on
how to identify them in the domain. For example,
we do not offer rules that tell the modeler how
to identify things in the domain. Instead, our
rules are of the kind that, given the modeler has
already identified a thing, the rules tell her how
to model it in object-oriented terms. Third, it is
beyond the scope of a single paper to examine
all UML constructs, as several hundreds UML
constructs exist. We restrict ourselves to the basic
constructs commonly seen in UML diagrams.
Furthermore, some language constructs serve a
purely syntactic purpose or only have meanings
in the software context and cannot be assigned
any domain semantics (e.g. Pseudo State, Stub
State). We consider these constructs not relevant
for conceptual modelling. We also exclude use
case related constructs, as they describe external
interactions with a system, whereas the remaining
UML constructs describe the system itself.

ontoLogy

The term ontology has seen increasing use in
such areas as information systems, artificial intel-
ligence, and knowledge engineering (Gruninger &
Lee, 2002; Noy & Hafner, 1997; Uschold & Grun-
inger, 1996). The present research takes up the call
for a return to philosophical ontology (Guarino &
Welty, 2002; Smith & Welty, 2001). An ontology
is taken to be a commitment to the belief in the
existence of certain entities in external reality, for
example the business and organizational world.

A specific ontology is a set of assumptions about
what exists or is perceived to exist in a domain.
Adopting an ontology is a fundamental philosophi-
cal choice that cannot be justified a-priori. As
any philosophy, it is the framework that enables
one to carry out research (Kuhn, 1996), and the
merits of its adoption can only be assessed based
on the results of that research. Some reasons for
our choice of ontology, based on previous research
results, are given below.

the Bunge-ontology

The specific ontology chosen for our purposes is
based on the work of Mario Bunge (1977, 1979).
We use this particular ontology for pragmatic
reasons:

• It is based on ontological work done over a
long period (Bunge, 1977, pg. xiii).

• It is an axiomatic system and formally rep-
resented in set theory notation.

• It has not been developed specifically for use
in software development, but is instead based
on “the ontological presuppositions of con-
temporary scientific research” (Bunge, 1977,
pg. xiii). Thus, its use can help distinguish
between domain and software concepts.

• It has been shown to provide a good
benchmark for the evaluation of modeling
languages and methods (Dussart, Aubert,
& Patry, 2004; Evermann & Wand, 2005b;
Opdahl & Henderson-Sellers, 2001; Parsons
& Wand, 1997; Rosemann & Green, 2000;
Soffer, Golany, Dori, & Wand, 2001; Wand,
Storey, & Weber, 1999; Wand & Weber,
1989, 1993; Weber & Zhang, 1996).

• It has been used to assign ontological mean-
ing to object concepts (Wand, 1989).

• It has been empirically shown to lead to use-
ful outcomes (Bodart, Patel, Sim, & Weber,
2001; Cockroft & Rowles, 2003; Evermann
& Wand, 2006; Gemino, 1999; Weber &
Zhang, 1996).

 �0�

Ontology Based Object-Oriented Domain Modeling

The following paragraphs introduce the onto-
logical concepts of Bunge’s work (Bunge, 1977,
1979). This is necessarily an incomplete exposi-
tion of the entire ontology, including only the
concepts relevant to this paper. A brief synopsis
is presented in Table 1.

The world is made up of substantial things that
exist physically in the world. Things can com-
bine to form a composite thing. Things possess
(substantial) properties. Properties in general are
those possessed by a set of things, for example
“color,” “speed,, “salary,” and so on. Individual
properties, that is, properties of an individual
thing, can be considered values of properties in
general, (e.g., a specific thing is blue in color, and
is traveling at a speed of 100 mph; a specific thing
is a person earning a salary of $50,000). Intrinsic
properties are those that a thing possesses by

itself, whereas mutual properties exist between
two or more things. Composites possess emergent
properties, that is, properties not possessed by
any component. A law is any restriction on the
properties of a thing.

Any thing can be described by a set of attri-
butes, which (Bunge, 1977) also calls state func-
tions. A set of state functions is called a functional
schema or model. A thing can be described by
many different schemata. For example, a person
may be described by height and weight, or de-
scribed by location and organizational unit. The
state of a thing is defined as the set of values of
all state functions comprising a particular model.
The lawful state space of a thing is defined by
constraining the values of the state functions to
those values consistent with the laws the thing
adheres to.

Ontological Concept Explanation

Thing Fundamental concept. The world consists of things and only of things.

Property Things have properties.

Intrinsic Property Property of one thing.

Mutual Property Property of two or more things.

Law Restriction of or relation on properties.

Composition Things can be composed to form composite things.

Emergent Property Property of a composite thing that is not a property of one of its components.

State Function Function describing a property of a thing. Synonymous with attribute.

Functional Schema
(Model)

Set of state functions describing things. A model of things that are similar in
some ways.

State Value vector of state functions of a functional schema.

Natural Kind Set of things adhering to same laws (common behavior).

Quantitative Change Change of state of a thing.

Qualitative Change Change of natural kind of a thing by loss or acquisition of properties.

Event Change of state.

Process Ordered set of events of one thing.

Lawful Transformation Path in state space between an initial and a final state, where all points on the
path are lawful states.

History The states a thing traverses over time.

Action A thing A acts on a thing B iff the state history of B depends on the existence
of A.

Interaction Two or more things acting on each other.

Table 1. Concepts of the Bunge-ontology

��0

Ontology Based Object-Oriented Domain Modeling

All things change, and every change is a change
of things. A change may be quantitative, in which
case the values of one or more state functions (and
individual properties) are changed, or it may be
qualitative, in which case state functions (and gen-
eral properties) are acquired or lost. Concurrent
with loss or acquisition of properties is the loss
or acquisition of behavior as things lose or gain
possible ways in which they can change. Change
always involves the change of state of some thing.
Since all things are changeable, every lawful state
space contains at least two distinct states.

A discrete change is termed an event. An
event can be described as an ordered pair of
states. An event is defined for the state space of
a single thing. A change in one thing may also
be a change in another (e.g., changes of mutual
properties). This is an interaction consisting of
two distinct events in the two things. If the state
space is non-denumerable, that is for continu-
ous change, a change is represented by a triple
(si,sf,g) representing the initial state, the final
state and a function g, the lawful transformation,
which represents the path in the state space that
the thing traverses. All possible changes must be
in accordance with laws.

Interaction is defined through the state history
of a thing: If the state history of one thing depends
on the existence of another thing then the second
is said to act on the first. Things interact, if each
acts upon the other. Every thing acts on, and is
acted on, by other things. Changes occur as a
consequence of laws: If two properties are lawfully
related and one changes, then the other may also
change, depending on the laws that relate them.
Since laws relate properties of one thing only, for
a thing A to act on a thing B as the result of laws,
there must exist a mutual property of A and B
which is lawfully related to (intrinsic) properties
of A and B. Furthermore, interaction may give rise
to mutual properties. The interaction of a person
enrolling at a university to become a student would
give rise to the mutual property “tuition fee bal-
ance.” Hence, some properties necessarily exist

prior to interaction and some others may exist
post interaction (Evermann, 2005).

repreSentatIon mappIng

We base our mapping process on the mapping of
some fundamental concepts in existing research
(Evermann & Wand, 2005b). These fundamental
mappings are in agreement also with other work on
UML and Bunge’s ontology (Dussart et al., 2004;
Evermann, 2005; Opdahl & Henderson-Sellers,
2001, 2002). Table 2 shows these mappings. With
these fundamental mapping of Table 2 in mind,
we begin our mapping of concepts related to
change and behavior.

States and State transitions

The central concepts of behavior in Bunge’s
ontology are states and state transitions. Object-
oriented languages such as UML also provide
states and state transition. We propose to represent
ontological states by object-states and ontological
state transitions by object-state transitions. Some
consequences follow from this mapping.

In Bunge’s ontology, a state is the complete
assignment of values to the state functions, that
is a vector of the values of all state functions.
While the object-oriented literature has noted
the connection between attributes and states
(Booch, 1994; Coad & Yourdon, 1990; Jacobson,
1992; Rumbaugh, 1991), UML does not support
modeling this connection. We therefore propose
the following rule to preserve the ontological
relationship between states and properties also
in object-oriented languages:

Rule 1: Every object-state must be defined by a
specific assignment of values to a set of attributes
of the object for which the state is defined.

This rule ensures that appropriate attributes are
modeled to be able to fully represent the dynamics

 ���

Ontology Based Object-Oriented Domain Modeling

allowed by the state space and the transitions within
this space. For example, if a student in a university
domain has two states, “passed” or “failed,” this
must be modeled using some attributes (for example
“Course Credits” with different number of course
credits defining each state, “passed” or “failed”).

Ontologically, every change of state changes the
value of at least one state function. For example,
when a student passes a course (transitions from
“failed” to “passed” standing), the changed value
would be that of the attribute “Course Credits”.
Hence, from Rule 1 follows:

Corollary 1: An object’s state transition must
change the value of at least one of its attributes.

Interpretation mapping (1st
Iteration)

Sub-States

Object-oriented languages like UML allow the
definition of a state hierarchy in which a state
may contain sub-states. An object in a sub-state

is also in the super-state containing that sub-state.
In Bunge’s ontology, states do not have sub-states.
Hence, we must find an ontological interpretation
for this object-oriented “shorthand” notation.

Ontologically, sub-states can be interpreted
using two different functional schemata of the
represented thing, spanning two different state
spaces. For example, let a telephone answering
machine have a state “Passive” and a composite state
“Active” with sub-states “Greeting Recording,”
“Message Recording,” and “Message Playback.”
States “Active” and “Passive” can be characterized
by an attribute “Tape Speed” (zero for “Passive”
and greater than zero “Active”). This is one model
of the answering machine. Distinguishing among
the sub-states of “Active” requires additional state
functions, for example “Recording Source” (with
values “Microphone” or “Telephone Line”), and
“Mode” (with values “Recording” or “Playback”).
Thus, the second model is defined by three attri-
butes. In this model it is possible to distinguish be-
tween states such as “Message Recording” (“Tape
Speed > zero,” “Recording Source=Telephone
Line,” and “Mode=Recording”), and “Greeting

Ontological Concept Object Construct in UML Remarks

Thing Object

Property Attribute

Intrinsic Property Attribute of ‘ordinary’ class

Mutual Property Attribute of association class

Emergent Property Class attribute Attribute of an aggregate made of class
instances.

Functional Schema Class

Natural Kind Set of objects (extension of class) Described by class.

Composition Aggregation

Composition
Does not have an ontological equivalence.
In ontology things exist independent of
whether they are components or not.

Association Does not have an ontological equivalence.
Implies interaction (Evermann, 2005).

A collection of mutual
properties that are generated
together

Association class

Table 2. Prior mappings of fundamental concepts

���

Ontology Based Object-Oriented Domain Modeling

Recording” (“Tape Speed > zero,” “Recording
Source=Microphone,” and “Mode-recording”).

Formally, let state x (defined by a set of state
variables a=a1) be a point in state space spx,
spanned by attribute a. Let sub-state y be a point
in state space spy

, spanned by attribute set a and
a set of additional attributes b. Multiple points
in spy, for example <a=a

1
, b=b

1
>, <a=a

1
, b=b

2
>,

and so on can be mapped to a single point x in
sp

x
. State space sp

x
 is a projection of sp

y
 onto

attribute set a. Based on the above example and
this formal discussion we propose the following
rule and corollary:

Rule 2 : Ob jec t -or i en ted sub-s ta te s
are defined using attributes in addi-
tion to those defining the super-state.

Corollary 2: For an object transitioning among
sub-states, the values of only those attributes
change, that are not used to define the super-
state.

In object-oriented languages, two or more sub-
states of the same super-state may be concurrent.
In addition to the conditions on the super- and
sub-states expressed by Rule 2 and Corollary 2
we require that, for two sub-states of a common
super-state to be concurrent, the two higher-di-
mensional state spaces are independent:

Corollary 3: Concurrent sub-states require mu-
tually disjoint sets of additional attributes in the
class description.

The rules proposed in this section help to en-
sure that the attribute definitions for object classes
are sufficient to support the desired behavioral
characteristics of the object as expressed in state
charts. Specifically, in UML, the proposed lan-
guage rules relate elements of state charts with
those of class diagrams.

active States

Some object-oriented languages allow modeling
of object states during which the object undergoes
a change. In UML 1.x, these were called action
states. In UML 2.0, actions and activities are
separated from states. However, the notion of
a state during which changes occur remains, as
behavior can be associated with states in the form
of a “DoActivity.” This is incompatible with the
ontological notion that a state is an assignment of
values to attributes at a specific instance in time.
Again, we must identify the proper ontological
interpretation of this object-oriented “shorthand
notation”.

We build on our interpretation of object-ori-
ented sub-states: If a change occurs while a thing
is in a certain state, there must exist a state variable
not employed for the state definition and that state
variable may change. Hence, action states can be
represented by means of sub-states:

Rule 3: Action states are composite states com-
prising a set of sub-states. The object transitions
among the sub-states while in the action state. State
charts and class diagrams must reflect this.

For example, the situation in Figure 1A is
equivalent to that in Figure 1B. An item that is in
the action state of “being shipped” undergoes state
transitions while being in that state, for example
from state “On Shelf” to a new state “In Packing
System” and so on.

operations

Bunge’s ontology provides no construct that is
equivalent to methods or operations in object-
oriented languages. It has been suggested that
these are software related constructs that are
without relevance for real-world models (Par-
sons & Wand, 1991, 1997) and thus need not be
interpreted ontologically. However, as operations
feature prominently in object-oriented modelling,

 ���

Ontology Based Object-Oriented Domain Modeling

this section shows how operations are related to
state transitions, thereby gaining an ontological
interpretation, and derives rules for their use in
conceptual modeling.

Whereas operations specify behavior only
in abstract terms, a method provides a specific
implementation of an operation2. As Bunge’s
ontology expresses dynamics through states and
transitions, we must use these concepts to assign
domain semantics to methods and operations.

We note that in the object approach, the entire
range of behavior of an object (except creation
and reclassification, i.e. qualitative change) is
determined by its set of operations. Ontologically,
every change of a thing is describable in terms of
state transitions. We therefore propose:

Rule 4: The quantitative behavior of objects of
a particular class (for each model) is entirely
describable by a top-level state chart SC0 associ-
ated with the class.

Since the behavior of objects is limited to the
operations defined on the object:

Rule 5: Every object-oriented state-transition in
SC0 must correspond to an operation modeled for
the class of objects that SC0 is associated with
and vice versa.

Since in our ontology every thing is able to
change, we propose the following:

Corollary 4: Every object must have at least one
operation.

Bunge’s ontology, as adapted in (Wand &
Weber, 1993, 1995), distinguishes among stable
and unstable states. A thing can only leave a
stable state due to interaction. In object-oriented
descriptions, an object remains in a particular state
until an operation is invoked on it. An operation
reflects the complete response to this invocation;
the object then awaits another operation to be
invoked. Since we have proposed that operations
are realizations of top-level state transitions, we
add now the rule that top-level state transitions
are transitions from and to stable states:

Corollary 5: States in SC0 represent stable
states.

Figure 1. Action-states

Being shipped

Being shipped

On Shelf

In Packing System

On Loading Dock

On Truck

(A) (B)

���

Ontology Based Object-Oriented Domain Modeling

The above rules and corollaries allow the
modeler to identify operations that may have
been missed in constructing the class diagram,
or identify operations for which there are no
corresponding state transitions. Such operations
would be redundant. Figure 2 shows an example.
Consider a car that can be in three states, engine
“Stopped,” engine “Running,” and going “For-
ward.” Assume the states of a car are defined as
in Table 3. Then the class definition in Figure 2
(A) is consistent with the top-level state chart SC0
depicted in Figure 2 (B).

Explicitly modeling the link between opera-
tions and state transitions provides the operation
and method designer a way of ensuring that the
full state description of a system is realized. It
also helps ensure that operations do not implement
change beyond that in the state description.

Behavior

In object-oriented languages such as UML, state
charts may be used to specify the behavior that

implements an operation. These state charts
must follow some rules. In general, behavior
represents lawful transformations that describe
in greater detail the state transition represented
by an operation. Hence, the beginning and end of
the path in state space represented by a particular
state chart must match the initial and final states
of the operation whose behavior this state chart
describes:

Corollary 6: A state chart describing an opera-
tion must begin and end with the initial and final
state of the transition in SC0 that corresponds to
the operation.

Corollary 7: The behavior represented by a state
chart must modify the attribute values of the object
in a way that corresponds to the values defined for
the initial and the final state of the state chart.

These rules and corollaries allow the modeler
to identify incomplete state charts. If a state chart
describing a particular behavior does not begin and
end with the proper states, it may be incomplete.
Corollary 7 can help design behavior specifica-
tions that conform to the state description by
providing pre- and post-conditions of a method.
For example, let the answering machine switch
from state “Message Recording” to state “Passive.”

(A) (B)

Car

Speed
RPM
Gear

Start
Stop
Forward
Halt

Stopped Running

Forward

Start

Stop
Forward Halt

Figure 2. Class definition and state chart

Stopped (Speed = 0, RPM = 0)

Running (Speed = 0, RPM = 1000, Gear = 0)

Forward (Speed = 50, RPM = 3000, Gear = 1)

Table 3. Example state definitions

 ���

Ontology Based Object-Oriented Domain Modeling

The initial state is characterized by attributes and
values “Tape Speed > 0,” “Recording Source =
Telephone Line,” and “Mode = Recording” while
the final state is defined by “Tape Speed = 0.” A
method implementing an operation corresponding
to this state transition should assume the object
representing the answering machine is in a state
possessing attributes according to the initial state
and must ensure the assignment of object attributes
according to the final state.

repreSentatIon mappIng

In Bunge’s ontology, interaction is represented by
state transitions, rather than message-passing, as
in object-oriented modeling. Ontologically, inter-
action arises because things adhere to laws that
must be satisfied at all times: When an event in
thing A changes a property that is lawfully related
to a property of thing B (this relation must be via
mutual properties), the property of thing B may
need to adjust so that the law remains satisfied.
Hence, interactions can, in theory, be derived
from the knowledge of the laws, for example by
means of constraint solving (Mackworth, 1977) or
constraint programming (Van Hentenryck, 1989).
We say “in theory” because these methods are
not generally applicable and, except for special
cases, not computationally efficient.

It is the object-oriented system designer’s
task to ensure that the modeled message-pass-
ing pattern satisfies all application domain laws
(often termed business rules). It is often the case
that such laws are only implicitly understood by
analysts, rather than being explicitly stated and
modeled. A rigorous ontological analysis of the
domain can help explicate the existence of laws
or constraints and suggest possible ways how
laws (business rules) can be implemented via
interactions (message passing).

The discussion of Bunge’s ontology in Section
3 suggests that since laws constrain the state vari-
ables of only a single thing, changes between two

things must happen by virtue of mutual proper-
ties. Thus, a change of a mutual property in one
thing does not lead to a change in another thing
but is a change in a property of another thing.
Since mutual properties are mapped to associa-
tion class attributes (see Table 2), we derive the
following rule:

Rule 6: For every two classes of objects between
which message passing is declared, there exists an
association class with at least one attribute.

This rule can help the modeler to identify
which messages need to be shown in a model and
between which two objects an association class
needs to be identified. This in turn can provide
for a richer analysis of the application domain.
The case study in Section 8 demonstrates that this
is feasible as the number of relevant messages,
and therefore the number of association classes,
typically remains manageable.

The scope of the model and level of abstrac-
tion determines whether a particular thing and
its mutual properties should be modeled. Clearly,
one does not wish to model individual atoms and
molecules even though they are ultimately the
connected things. Scope and level of abstraction
are determined based on the model purpose prior
to modeling. For example, intermediate com-
munication mechanisms such as communication
systems are typically outside the scope of a model
of a business (but not a technical) domain: A tele-
phone line between two people possesses mutual
properties with both the speaker and the listener.
It is these mutual properties and the properties
of the phone line (voltage, waveform, etc.) that
undergo change. However, as the telephone line
is typically outside of the model scope, it and
its properties will not be included in the model.
Instead, the interaction between the two individu-
als will be considered using properties shared
directly between the individuals, such as shared
beliefs, goals, and so on that may be affected by
the interaction.

���

Ontology Based Object-Oriented Domain Modeling

In Bunge’s ontology every thing acts on and is
acted upon by other things. Hence, there should
be interactions originating from and terminating
on the thing:

Rule 7: Every object must be the receiver and
sender of, or responder to, some message.

This rule shows the need to critically examine
the interactions or information flows. One could
argue that things in the environment of a system
may only send but not receive messages, for ex-
ample a customer ordering a product, a student
registering for a course, and so on. Nevertheless,
even for these examples, the actions of ordering
and registering are pointless unless the customer
and the student also receive messages. This could
be order acknowledgements or shipping details for
the customer. For the student, the messages may
involve tuition fee billing or textbook require-
ment messages. Neither customers nor students
will only send messages without expecting to
receive any. This rule also illustrates differences
between software and domain models. Consider
a LineItem object in a transaction application
that might in a software model be shown as only
receiving messages. However, as we wish to de-
scribe the domain, rather than the software, we
require an interpretation of what a LineItem
object represents. For example, it might represent
a particular product being ordered by a particular
customer. In that case, it is not a thing, but an
event or activity, and should not be modeled as
an object.

Often, a thing is made up of parts. In such cases,
it is sufficient for any of its parts to receive and
send some message to satisfy rule 7. The receiving
and sending must not necessarily be done by the
same part. For example, assume an object A with
parts P1 and P

2
. If P

1
 receives messages (is acted

upon) but does not send any messages (acts on),
and P2 sends messages but does not receive any,
we consider rule 7 to be satisfied, as the object A
both receives and sends messages. In this case,

some interaction necessarily exists between the
parts P1 and P

2
 (which is not shown on the level

of the composite object).
A specific instance of such a composite ob-

ject is the domain environment. The necessarily
limited scope of any model leads to some things
interacting with things beyond the model scope,
that is, with the environment. Rather than showing
the individual objects comprising the environ-
ment (which are outside the scope), the modeler
may instead choose to designate one thing as the
environment, with the understanding that it is a
composite object and subject to message passing
amongst its parts.

In summary, while we suggest that message
passing is not ontologically real, we advocate its
use in conceptual modeling to represent interac-
tion, with the understanding that the ontologically
real interaction occurs by mutual properties and
therefore requires association classes.

Interpretation mapping
(2nd Iteration)

Message passing is one of the core concepts of
the object-oriented approach. It is the mechanism
by which object interaction is realized. Messages
can be interpreted in two ways, depending on the
ontological status we ascribe to them:

• Messages are not things in the world. They
are abstract concepts that serve as descrip-
tions, illustrations, abstractions or represen-
tations of interaction (Wand, 1989).

• Messages are substantive things in the world.
They are ontologically real.

There are two arguments against the second
interpretation (Evermann, 2005). First, the mes-
sage passing mechanism for interaction has pre-
viously been examined with respect to Bunge’s
ontology and found to be an unsuitable construct
or mechanism for describing real world business
domains (Parsons & Wand, 1991, 1997; Wand &

 ���

Ontology Based Object-Oriented Domain Modeling

Weber, 1993). Consider the following examples:

– The machine sends a message to the ma-
chined item to move itself to a new loca-
tion.

– The general ledger sends a message to an
office desk to depreciate its value.

– A truck sends a message to the crate to load
itself onto the loading dock.

While acceptable in software specifications,
such messages are not likely to be observed
between these things in the real world. Clearly,
a machine does not send messages to machined
items to move them. Instead, an operator moves
items to and from the machine.

Second, if messages did represent real things
in the world, they should be represented as objects
(see Table 2). Instead of two objects interacting
directly, one object would have to interact with
a message object, which in turn would need to
interact with the second object. This would lead
to an infinite regress. Based on these two reasons,
we interpret messages as abstract expressions of
interaction, not as things. Consequently, they are
mapped to the ontological concept of interaction,
not to things.

In UML, messages are associated with value
specifications (their arguments). Specifying
message arguments implies that interaction oc-
curs through changes to the value of properties
represented by the message parameters. However,
message arguments do not refer to attributes of
either the sending or receiving object, and are
therefore not interpreted as (mutual) properties.

To summarize, messages and their arguments
do not have a direct ontological interpretation, but
express interaction. In turn, Sect. 6 proposed that
interpretation should be expressed using associa-
tion class attributes.

caSe Study

A case study was conducted to examine the feasi-
bility of the proposed modeling rules in practical
situations. The organization under study was a
large North American university. The project
under study was the provision of an opportunity
for prospective students to assess their likelihood
of admittance3. This project was chosen as the
basis for the case study for two reasons. (1) The
main stakeholders and informants of the analysis
were still available for interviews. Their involve-
ment with the project and the analysis was recent
so that rich data could still be gathered. (2) The
project team had used UML for an initial model
of the organizational domain. UML class dia-
grams were used specifically for understanding
the organizational domain. The project leader
confirmed there was no intention to use them for
later software design and all coding would be done
independent of any generated UML model. It was
hoped that additional insight could be gained by
comparing the project team’s UML model with
that developed as part of this case study. When
this case study was begun, the project was almost
at the beginning of the implementation stage.
Figure 3 shows the class diagram developed by
the project team.

As part of the case study, an independent busi-
ness analysis was undertaken by the first author in
order to model the domain of student admissions
and assessment. This served two purposes: (1) it
tested the applicability of the proposed modeling
rules and (2) produced an alternative model with
ontological semantics, which could be compared
to the original one created by the project team.
Interviews were conducted with stakeholders and
informants who contributed to the project. All
interviews were conducted on-site using open-
ended questions. The following interviews were
conducted for purposes of domain analysis and
model creation:

���

Ontology Based Object-Oriented Domain Modeling

• Approx 1-hour interview with director,
student systems, IT services

• Approx 1.5-hour interview with a high school
student recruiter

• Approx 2-hour interview with an admissions
officer

• Three approx 1-hour interviews with three
first year university students

• Three approx 1 hour interviews with lead
analyst of the project

In addition, access was provided to all project
documentation, mainly requirements documents
generated from a prior business process reengi-
neering project. Moreover, frequent e-mail con-
tact was maintained with the lead analyst of the
project for clarification and discussion of details.
For purposes of evaluating and comparing the
independently generated model, more interviews
were conducted:

Figure 3. UML class diagram developed by project team

 ���

Ontology Based Object-Oriented Domain Modeling

• Approx. 2-hour interview with the project
leader

• Approx. 2-hour interview with the lead
developer

For preparation for these interviews, the en-
tire set of independently created diagrams was
provided two weeks prior to the interview with a
request to carefully examine these for correctness,
usefulness, usability and to compare these to the
project’s own UML model. The interviewees were
made aware of these aims before the interviews
commenced.

The process of analyzing the domain and
modeling it according to the proposed ontologi-
cal semantics and rules showed that all produced
diagrams were valid UML models, and adhered
to all UML syntactic rules. The models were
neither trivial nor overly complex. Hence, use of
the rules was found to be at least feasible in this
practical setting. The independently generated
model consisted of the following diagrams:

• 20 class diagrams showing 35 classes and
14 association classes,

• Eight sequence diagrams showing 37 mes-
sages, representing interactions that occur
through changes to the attributes of the 14
association classes,

• Two state charts showing seven states and
sub-states.

An excerpt of the class model is shown in Fig-
ure 5. In the model, application is not a thing (it
is not represented as a class, but as an association
class). Its attributes reflect mutual properties, the
result of an interaction between the university and
the applicant. Either the applicant or the univer-
sity can modify these mutual properties, which
would be further interaction between university
and the applicant. Similarly, acknowledgement
is not a thing (it is not represented as a class,
but as an association class). Its attributes reflect
mutual properties, the results of the application

event/activity and can be changed by either the
university or the applicant. Such changes are
interactions. Note further that while the domain
describes student admissions, there is no admis-
sion object. Instead, in the state chart in Figure
4, “accepted” is a state that the university can
have with respect to a student. One may model
acceptance as a state transition to this state, that
is, a change in the university object.

The process of business analysis and modeling
showed that at various stages in the process the
rules and proposed semantics led the modeler to
include information in the model that was not
necessary for building software, but that was
important for domain understanding.

With respect to action and interaction, the
general absence of detailed state charts in the
independent business re-analysis indicated mostly
qualitative interactions (e.g. a student enrolling,
a student being admitted, etc.). This might not
be surprising, as non-technical, human organiza-
tional systems appear to generally involve more
qualitative than quantitative change.

When quantitative change was modeled (e.g.
as a transition between the states “Not Admis-
sible,” “Conditionally Admitted,” and “Uncon-
ditionally Admitted” based on revisions to the
required grades), application of the rules led to
a fundamental insight into the domain. Instead
of assigning states such as “on hold,” “pending,”
“admitted,” and so on to the student, the rules led
us to assign such states to the university (Figure
4). The student’s state cannot change without
interaction, and changes to admission criteria
by the university do not affect the student per se,
but only the student’s admissibility with respect
to the university. Hence, it was concluded that
these states were states of the university, defined
using mutual properties of the university and the
student. Consequently, the university possesses an
independent sub-state machine for each student.
This observation confirms the notion that in the
real world it is the university that can change the
state of the students (i.e., those aspects of state

��0

Ontology Based Object-Oriented Domain Modeling

Figure 4. Example state chart diagram from the case study

 Pending

Hold

PayFee

Conditionally
Admitted

Unconditionally
Accepted

NotAdmissable

BBA
Admissable

 Pending

Hold

PayFee

Conditionally
Admitted

Unconditionally
Accepted

NotAdmissable

BBA
Admissable

etc...

 ���

Ontology Based Object-Oriented Domain Modeling

related to the university), and it is the university
that holds the state information. Thus, modeling
the admission domain with the view that admission
information is part of the university state leads
to a more realistic model. However, this may not
be intuitively obvious to software designers or
programmers.

The initial models created by the project team
did not provide any operations. Attributes were
assumed to be provided with accessor operations.
Either approach hides the semantics of the changes
inside any behavior implementations. Hence, this
information might not be “visible” for the domain
understanding and conceptual modeling process,
and might be implicitly assumed by the software
designer.

The newly developed models included opera-
tions for all object classes, developed based on the

requirements to express qualitative and quanti-
tative change. The former was derived from the
different sub-classes that students can be in, the
latter as expressed in state charts. In this way, the
capabilities of an object of a given class become
explicit and clear. Moreover, as these operations
are related to external stimuli, modeled as mes-
sages in the sequence diagrams (e.g., Figure 6),
the ordering of the changes expressed by methods
can be deduced. For example (Figures 5, 6), it is
clear that an In-Province Student (students refer
to high-school, rather than university students
in this domain) can become an applicant. The
university can then process the application of the
applicant and the Ministry of Education can ad-
minister exams for the In-Province Student. This
information was lacking in the model developed
by the project team. Explicating it in the concep-

Figure 5. Excerpt of the case study class diagram

High School

Name

Name

TeacherName
DOB

In-Province
Student

Apply
AttendClass

Name|1..n]
Type|1..n]
Semester|1..n]
Standing|1..n]

Ministry of
Education

Jurisdiction

AdministerExam

In-Province
Applicant

Semester|1..n]
Standing|1..n]

Subject|1..n]

Provincial Exam
Standings

Acknowledgment

StudentID
Password

Application

Date
Program
Fee Balance

Acknowledge Application
Admit
Reject

University

�

�

1..`

`

`

` `

Figure 6. Excerpt of the case study sequence diagram

:Student :Teacher University: University

Apply

AcknowledgeApplication

*[�..n]:AttendClass

*[�..n]:ProvincialExamination

: Ministry of
Education

���

Ontology Based Object-Oriented Domain Modeling

tual model improved understanding and allowed
critique and assessment of the correctness of the
information about the application domain.

Subsequent discussion with two project team
members, the project lead (LF) and the lead de-
veloper (CH) of the project, were undertaken to
corroborate and confirm these observations. Both
suggested that the newly developed models indeed
included more information about the domain
under study. Both team members commented on
the fact that the original model contained many
hidden and implicit assumptions:

We relied a lot on assumptions that were never
written down in the model ... yours is more com-
prehensive. (CH - lead developer)

Ours [models] have all sorts of stuff around that
is assumed but not modeled. (LF - project lead)

This may be in part due to the additional in-
formation included in the model. Note that this
is contextual information, that is, information
about aspects of the domain that would not be
reflected in the design of the software. As such,
this information would be useful in allowing
team members and stakeholders to discover why
the design for the information system is defined
one way or another, even though the information
does not itself constitute or directly affect the
software design.

The second important purpose for a conceptual
model besides the representation of a real world
domain is the starting point for software design.
The alternative model was seen as appropriate
for this purpose:

I don’t see any reason why you couldn’t just take
these [the models] and run with them. (CH)

During the discussion with the project lead, it
also became clear that the use of UML without
any guidelines was a substantial challenge in the
project. Some analysts were aware of the subtle

differences between possible interpretation and
the difficulties associated with them:

It’s normally difficult to model a course object,
because it is a relationship ... What do you mean
by a course? The curriculum, the interaction, the
grade? (LF)

Another interesting finding is that the extensive
use of sequence diagrams and modeling of inter-
actions, which is a central aspect of the proposed
ontological semantics and rules, was viewed as
something that should be included more often in
projects but is not done:

They don’t get done as official project documents.
When developers meet, two thirds of them will
use in-official sequence diagrams ... That makes
things much clearer. (CH)

This observation suggests that the interaction-
centered perspective enforced by the proposed
guidelines can make a positive contribution to
understanding. Interactions are not officially
documented, yet interaction diagrams appear as
unofficial tools. This seems to indicate that ex-
plicit modeling of interactions, as prescribed by
the proposed rules, can help with understanding
of the model and the domain. This demonstrates
the importance of interactions in analyzing a
real-world domain.

When the modeling rules were revealed at
the end of the case study, the project lead and
lead developer agreed that modeling rules were
necessary and helpful, both for guiding the mod-
eling process and for ensuring model quality and
consistency:

Such rules would have helped in our group. The
rules would tell whether a model is good and can
help answer some questions. They seemed like a
lot of valid questions to ask. (CH)

 ���

Ontology Based Object-Oriented Domain Modeling

Rules can force the modelers to think deeper about
what they’re modeling. (LF)

In summary, the case study supported the
use of the proposed rules and confirmed their
potential usefulness in understanding the domain
and communicating that understanding through
conceptual models.

discussion

The objective of this work was to extend the use
of object-oriented languages from software design
to conceptual modeling of an application domain.
This required that domain semantics be assigned
to language constructs, which was done by defin-
ing mappings between language constructs and
ontological concepts (Table 4). The article began
by examining the central ontological concepts
related to change and interaction and mapped
them to object-oriented constructs. The ontological
elements used include states, state transitions and
lawful transformations. With this representation
mapping in mind, object-oriented constructs such
as sub-states, activity states and partitions were
examined. We then re-examined ontological inter-
action and discussed the object-oriented concept
of message passing.

Table 4 shows that most of the basic ontologi-
cal concepts can be assigned an object-oriented
equivalent. This mapping is either a one-to-one

relation by definition or has been made so by
our proposed modeling rules. This indicates that
object-oriented languages can be used to model
application domains.

Based on the proposed mappings, the article
explored the consequences of transferring on-
tological assumptions to the language, resulting
in a set of rules. These rules are applicable to
object-oriented languages when they are used
for conceptual modeling. However, they may not
be applicable to, nor are they intended for, using
object-oriented languages for software design. Yet,
the rules do not contradict existing rules for using
object constructs for software design.

These results extend well-known and widely
used object-oriented languages into the domain of
business analysis and conceptual modeling. The
use of the same language for both domain modeling
and software design can bridge the gap between
system analysis and software design, often called
“impedance mismatch” (Cilia et al., 2003; Kolp et
al., 2002; Roe, 2003; Rozen & Shasha, 1989). Tra-
ditionally, the use of different languages required
either a translation of the conceptual model to the
software design model, or a relatively independent
development of the software model based on the
designer’s understanding of the problem. Using
the same language eliminates the translation step
(Evermann & Wand, 2005a). Thus, it can eliminate
a possible source of errors, inadvertent alterations,
omissions, and so on. Figure 7 shows the traditional

Ontological Concept Object-Oriented
Construct Remarks

State State Connection with attributes of objects made.

State Sub-state

State Action State Action states are composite states.

Transition Transition

Transition Operation

Lawful Transformation Method

Interaction Message Not a substantial thing.

Table 4. Summary of interpretations related to behavior and interaction

���

Ontology Based Object-Oriented Domain Modeling

process. The domain is represented in a domain
model, using a domain modeling language (1). This
is then translated, a potentially error-prone step, to
a software model in different language (2), which
is then transformed to software (3).

Figure 8 shows software development without
translating between modeling languages. The
modeling language elements are interpreted with
respect to the domain (1) and used to represent
the domain using a common modeling language
(2). Then, the semantics of the modeling language
are assumed with respect to software (3) and the
same model is interpreted as a software design
model (4).

Domain analysts as well as software developers
can use the same familiar language to communicate
not only amongst themselves but also between the
two groups, reducing the potential for misunder-
standings and misinterpretation of diagrams.

Additionally, the use of the modeling rules
leads to further benefits. Application of ontologi-
cal modeling rules have been shown to reduce the
variability in conceptual models (Hadar & Soffer,
2006). A reduction in the range of possible mod-
els of a domain allows easier and more effective
stakeholder communication and can improve the

consensus of stakeholders on how to describe
the domain. It can also promote convergence of
model interpretations, thus helping to ensure that
stakeholders share the same problem and domain
understanding.

concLuSIon

The research results were tested on a case study
that demonstrated the feasibility and applicability
of the proposed semantics and modeling rules for
medium size projects. The resulting models were
found to be helpful and the modeling rules useful
in the construction of the domain model.

Finally, we note that the results depend on the
ontological model assumed. Thus, their validity
can only be demonstrated by empirical methods.
Such methods would include in particular, con-
trolled experiments and realistic case studies.
While experiments can test the usability of the
rules and clarity of the resulting models (Ever-
mann & Wand, 2006), case studies are required
to examine the applicability and usefulness of
the method.

Figure 7. Traditional process using model translations, from (Evermann & Wand, 2005a)

(Perceived) Domain Domain Model

Domain
Modelling Language

Software Model

Software
Modelling Language

Software

System Analysis System Design

1

2

3

Figure 8. Process without model translation, using common modeling language, from (Evermann &
Wand, 2005a)

(Perceived) Domain Software

System Analysis System Design

1

2

3

Modelling Language

Model
4

 ���

Ontology Based Object-Oriented Domain Modeling

referenceS

Angeles, P. (1981). Dictionary of philosophy. New
York: Harper Perennial.

Bodart, F., Patel, A., Sim, M., & Weber, R. (2001).
Should optional properties be used in conceptual
modelling? A theory and three empirical tests.
Information Systems Research, 12(4).

Boland, R. (1985). Phenomenology: A preferred
approach to research in information systems. In
E. Mumford, R. Hirschheim, G. Fitzgerald &
T. Wood-Harper (Eds.), Research methods in
information systems. Elsevier.

Booch, G. (1994). Object oriented analysis and
design with applications. Redwood City, CA:
Benjamin/Cummings.

Bunge, M. A. (1977). Ontology I: The furniture of
the world (Vol. 3). Dordrecht, Holland: D. Reidel
Publishing Company.

Bunge, M. A. (1979). Ontology Ii: A world of
systems (Vol. 4). Dordrecht, Hollond: D. Reidel
Publishing Company.

Chalmers, M. (2004). Hermeneutics, informa-
tion, and representation. European Journal of
Information Systems, 13, 210-220.

Cilia, M., Haupt, M., Mezini, M., & Buchmann,
A. (2003). The convergence of AOP and active
databases: Towards reactive middleware. Paper
presented at the International Conference on
Generative Programming and Component En-
gineering GPCE.

Coad, P., & Yourdon, E. (1990). Object-oriented
analysis. Englewood Cliffs, NJ: Yourdon Press.

Coad, P., & Yourdon, E. (1991). Object-oriented
design. Englewood Cliffs, NJ: Prentice-Hall,
Inc.

Cockroft, S., & Rowles, S. (2003). Ontological
evaluation of health models: Some early findings.

Paper presented at the 7th Pacific Asia Confer-
ence on Information Systems PACIS, Adelaide,
Australia.

Dobing, B., & Parsons, J. (2006). How the UML
is used. Communications of the ACM, 49(5).

Dobing, B., & Parsons, J. (2008). Dimensions
of UML diagram use: A survey of practitioners.
Journal of Database Management, 19(1).

Dussart, A., Aubert, B. A., & Patry, M. (2004).
An evaluation of inter-organizational workflow
modeling formalisms. Journal of Database Man-
agement, 15(2), 74-104.

Evermann, J. (2005). The association construct
in conceptual modeling - An analysis using the
bunge ontological model. Paper presented at the
17th International Conference on Advanced Infor-
mation Systems Engineering, Porto, Portugal.

Evermann, J., & Wand, Y. (2005a). Ontological
semantics and formal syntax. IEEE Transactions
on Software Engineering, 31(1), 21-37.

Evermann, J., & Wand, Y. (2005b). Ontology-
based object-oriented business modelling: Fun-
damental concepts. Requirements Engineering,
10(2), 146-160.

Evermann, J., & Wand, Y. (2006). Ontological
modelling rules for UML: An empirical assess-
ment. Journal of Computer Information Systems,
47(1).

Gadamer, H.-G. (1976). Philosophical hermeneu-
tics: University of California Press.

Gemino, A. (1999). Empirical comparisons of sys-
tems analysis modeling techniques. Unpublished
PhD Thesis, The University of British Columbia,
Vancouver, BC.

Green, P., & Rosemann, M. (2000). Ontological
analysis of integrated process modelling. Infor-
mation Systems, 25(2).

���

Ontology Based Object-Oriented Domain Modeling

Gruninger, M., & Lee, J. (2002). Ontology ap-
plications and design. Communications of the
ACM, 45(2).

Guarino, N., & Welty, C. (2002). Evaluating onto-
logical decisions with ontoclean. Communications
of the ACM, 45(2), 61-65.

Hadar, I., & Soffer, P. (2006). Variations in con-
ceptual modeling: Classification and ontological
analysis. Journal of the AIS, 7(8).

Jacobson, I. (1992). Object-oriented software
engineering: A use case driven approach. Wok-
ingham, MA: Addison-Wesley.

Kolp, M., Giorgini, P., & Mylopoulos, J. (2002).
Information systems development through social
structures. Paper presented at the International
Conference on Software Engineering and Knowl-
edge Engineering SEKE.

Kuhn, T. (1996). The structure of scientific revo-
lutions. Chicago, IL: The University of Chicago
Press.

Mackworth, A. K. (1977). Consistency in networks
of relations. Artificial Intelligence, 99-118.

Myers, M. (1995). Dialectical hermeneutics: A
theoretical framework for the implementation
of information systems. Information Systems
Journal, 5, 51-70.

Mylopoulos, J. (1992). Conceptual modeling
and telos. In P. Locoupoulos & R. Zicari (Eds.),
Conceptual modeling, databases, and cases. New
York, NY: John Wiley & Sons, Inc.

Noy, N. F., & Hafner, C. D. (1997). The state of the
art in ontology design: A survey and comparative
review. AI Magazine, 18(3), 53-74.

OMG. (2005). Unified modeling language: Su-
perstructure, version 2.0 (No. formal/05-07-04):
The Object Management Group.

Opdahl, A., & Henderson-Sellers, B. (2001).
Grounding the OML meta-model in ontology.

The Journal of Systems and Software, 57(2),
119-143.

Opdahl, A., & Henderson-Sellers, B. (2002).
Ontological evaluation of the UML using the
Bunge-Wand-Weber model. Software and Systems
Modeling, 1(1), 43-67.

Opdahl, A., Henderson-Sellers, B., & Barbier,
F. (1999). An ontological evaluation of the OML
metamodel. In E. Falkenberg & K. Lyytinen (Eds.),
Information system concepts: An integrated dis-
cipline emerging: IFIP/Kluwer.

Parsons, J., & Wand, Y. (1991). The object para-
digm - two for the price of one? Paper presented
at the Workshop on Information Technology and
Systems WITS.

Parsons, J., & Wand, Y. (1997). Using objects for
systems analysis. Communications of the ACM,
40(12), 104-110.

Prasad, A. (2002). The contest over meaning:
Hermeneutics as an interpretive methodology for
understanding texts. Organizational Research
Methods, 5, 12-33.

Reinhartz-Berger, I., & Sturm, A. (2008). Enhanc-
ing UML models: A domain analysis approach.
Journal of Database Management, 19(1).

Ricoeur, P. (1976). Interpretation theory: Dis-
course and the surplus of meaning. Fort Worth,
TX: The Texas Christian University Press.

Roe, P. (2003). Distributed XML objects. Paper
presented at the Joint Modular Languages Con-
ference JMLC.

Rosemann, M., & Green, P. (2000). Integrated
process modelling: An ontological analysis. In-
formation Systems, 25(2), 73-87.

Rozen, S., & Shasha, D. (1989). Using a relational
system on Wall Street: The good, the bad, the
ugly, and the ideal. Communications of the ACM,
32(8), 988-993.

 ���

Ontology Based Object-Oriented Domain Modeling

Rumbaugh, J. (1991). Object oriented model-
ing and design. Englewood Cliffs, NJ: Prentice
Hall.

Smith, B., & Welty, C. (2001). Ontology: Towards
a new synthesis. Paper presented at the Second
International conference on Formal Ontology and
Information Systems FOIS, Qgunquit, Maine.

Smolander, K., & Rossi, M. (2008). Conflicts,
compromises, and political decisions: Method-
ological challenges of enterprise-wide e-busi-
ness architecture creation. Journal of Database
Management, 19(1).

Soffer, P., Golany, B., Dori, D., & Wand, Y. (2001).
Modelling off-the-shelf information systems
requirements: An ontological approach. Require-
ments Engineering, 6(3), 183-199.

Uschold, M., & Gruninger, M. (1996). Ontologies:
Principles, methods, and applications. Knowledge
Engineering Review, 11(2).

Van Hentenryck, P. (1989). Consistency tech-
niques in logic programming. Cambridge MA:
MIT Press.

Wand, Y. (1989). A proposal for a formal model
of objects. In W. Kim & F. Lochovsky (Eds.),
Object-oriented concepts, languages, applica-
tions and databases (pp. 537-559): ACM Press/
Addison-Wesley.

Wand, Y., Storey, V., & Weber, R. (1999). An
ontological analysis of the relationship construct
in conceptual modeling. ACM Transactions on
Database Systems, 24(4), 494-528.

Wand, Y., & Weber, R. (1989). An ontological
evaluation of systems analysis and design meth-
ods. In E. Falkenberg & P. Lindgreen (Eds.), In-
formation system concepts: An in-depth analysis:
Elsevier Science Publishers, B.V.

Wand, Y., & Weber, R. (1993). On the ontological
expressiveness of information systems analysis

and design grammars. Journal of Information
Systems, 3, 217-237.

Wand, Y., & Weber, R. (1995). On the deep struc-
ture of information systems. Information Systems
Journal, (5), 203-223.

Weber, R., & Zhang, Y. (1996). An analytical
evaluation of Niam’s grammar for conceptual
schema diagrams. Information Systems Journal,
6(2), 147-170.

endnoteS

1 The first author was with the School of In-
formation Management, Victoria University
of Wellington, Wellington, New Zealand for
the duration of this research.

2 The terminology changed in UML 2.0.
Here, operations are associated with be-
havior. Opaque behavior is a special class
of behavior and represents what was called
a method in UML 1.5.

3 Bunge’s ontology is applicable to this do-
main comprising a university, high schools
and other composite objects. According to
Bunge (1977), certain things are composed
of other things (composite things, pg. 114,
Definition 3.4). Furthermore, if the parts of
things interact, the composite thing is known
as a system (Bunge, 1979, pg. 6, definition
1.1). Moreover, Bunge (1979) expounds a
hierarchy of systems (ontological levels) that
includes psychological and social/technical
systems. For example, a university depart-
ment is neither a simple (basic) thing, nor a
mere composite, but a system with interacting
(“connected”) parts. The BWW ontology has
been applied to a diverse range of domains,
such as enterprise systems, workflows and
business processes, etc., showing that it is
applicable to organizational and social phe-
nomena.

This work was previously published in Journal of Database Management, Vol. 20, Issue 1, edited by K. Siau, pp. 48-77, copy-
right 2009 by IGI Publishing (an imprint of IGI Global).

���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.2
An Ontology Based Representation

of Software Design Patterns
Jens Dietrich

Massey University, New Zealand

Chris Elgar
SolNet Solutions Limited, New Zealand

aBStract

This chapter introduces an approach to define
Design patterns using semantic Web technolo-
gies. For this purpose, a vocabulary based on
the Web ontology language OWL is developed.
Design patterns can be defined as RDF docu-
ments instantiating this vocabulary, and can be
published as resources on standard Web servers.
This facilitates the use of patterns as knowledge
artefacts shared by the software engineering com-
munity. The instantiation of patterns in programs
is discussed, and the design of a tool is presented
that can x-ray programs for pattern instances based
on their formal definitions.

IntroductIon

Design patterns are artefacts used to share knowl-
edge across particular communities. Software

Design patterns (Gamma, Helm, Johnson, &
Vlissides, 1995) describe structural and behav-
ioural properties of software, and are used by
the software engineering community in order
to exchange knowledge about software design.
Currently, this is done the old-fashioned way:
patterns are published in books or on Web sites,
and consumed by people reading and applying
them. This includes recognising pattern instances
in programs in order to comprehend the struc-
ture of complex programs, and using patterns as
design blueprints in order to address a specific
design problem.

The main limitation with this modus operandi
is the lack of tool support—patterns have to be
found, and good and appropriate patterns have to
be selected manually. A more effective, tool sup-
ported way of processing patterns (in particular
instantiation and recognition) requires a formal
representation of the patterns that supports reason-
ing about patterns. There are some obvious con-

 ���

An Ontology Based representation of Software Design Patterns

tenders of modeling frameworks and languages
that could be used for this purpose. This includes
first order predicate logic, higher order logic, and
UML based modeling languages (either profiles
or separate, MOF based modeling languages).
In recent years, several approaches to Design
pattern formalisation have been proposed based
on these choices. While these representations
allow us to reason about the internal structure of
a pattern, there is limited support for reasoning
about the patterns themselves, their metadata,
and relationships to other patterns. Moreover,
logic based and UML based approaches usually
lead to monolithic, static models. While this has
advantages (for instance, to ensure the consistency
of the models) it does not support the sharing of
patterns in an open environment like the Internet.
Here, knowledge is distributed and inherently
inconsistent, and additional means are needed
to deal with inconsistency. This is one of the key
issues addressed by the Semantic Web initiative
endorsed by the W3C (Berners-Lee, Hendler, &
Lassila, 2001). The Semantic Web is based on the
idea of a distributed, open knowledge base where
everybody can publish knowledge in the form of
simple subject-predicate-object assertions. This
leads necessarily to inconsistencies that must be
resolved. The key to solving this problem is the
prioritisation of knowledge based on metadata
annotations—knowledge is selected based on the
author, the time of creation, and other explicit and
harvested metadata.

Another issue is whether it is realistic to hope
that the software engineering community will
adopt one particular model or vocabulary to repre-
sent patterns. It seems more likely that there will
be multiple models, each supported by a particular
community, standard body, or vendor group. Map-
pings defining transformations between instances
of the respective models will have to be developed.
In the case of formal logic, this is only possible
with higher order constructs describing the rela-
tionship between different predicates, functions,
and types. For UML based models, standards to

transform instances of different meta models are
only emerging now in the realm of model driven
architecture (MDA), in particular QVT (“MOF
QVT Final Adopted Specification,” 2005). On the
other hand, modern ontology languages like OWL
have built-in support to express the relationship
between different ontologies.

We claim that a modeling language suitable to
publish Design patterns on the Web should meet
the following requirements:

1. A formal semantics is needed in order to
safeguard reasoning about the patterns.

2. Pattern definitions must be easy to process
by tools. In particular, this is the case if an
XML based serialization format is sup-
ported.

3. There must be facilities to describe the
relationships with alternative models, lan-
guages, or pattern vocabularies.

4. The physical distribution of pattern defi-
nitions and the separation of schema and
instances must be supported. The pattern
definition language itself should be deployed
as a network resource and single pattern
definitions should reference this resource. In
particular, it should be possible to validate
the pattern definitions against such a central
schema. This is similar to the validation of
XML documents against their XML schema
or DTD. Furthermore, patterns refining other
patterns can also refer to them as network
resources, and clients can easily resolve these
references using standard network clients.

It appears that a pattern deifintion language
based on the Web ontology language OWL
(McGuinness & Harmelen, 2004) meets these
requirements. Firstly, OWL has a formal seman-
tics (Patel-Schneider, Hayes, & Horrocks, 2004)
and built-in derivation rules which support safe
reasoning about patterns. This can be used to infer
additional knowledge from models or to check
them for consistency. Secondly, OWL ontologies

��0

An Ontology Based representation of Software Design Patterns

(both schemas and instances) can be serialised as
XML using the RDF/XML syntax, and a grow-
ing number of tools are available to facilitate the
work with OWL knowledge bases, including edi-
tors like Protégé (Knublauch, Musen, & Rector,
2004), APIs like Jena (“Jena – A Semantic Web
Framework for Java,” 2006), documentation tools
like OWLDoc (“OWLDoc,” 2006) and reasoners
such as Fact (Horrocks, 1999), Pellet (Sirin, Par-
sia, Grau, Kalyanpur, & Katz, 2006) and Racer
(Haarslev & Moeller, 2001). Thirdly, OWL has
built-in constructs that can be used to describe
the relationship between different vocabularies.
Fourthly, OWL has a simple yet powerful import
facility (owl:imports1) that can be used to refer-
ence the assertions made in external knowledge
bases. In particular, this feature can be used to
link ontology instances with a central ontology
schema.

For this reason we believe that OWL is a suit-
able language to formalise Design patterns. In this
chapter, we will present an ontology that can be
used to define patterns. We discuss how metadata
can be used to reason about patterns, and sketch
how tools can process these definitions. This
leads to a discussion on Design pattern instances.
The results presented here are mainly based on
Dietrich and Elgar (2005a, 2005b).

Background

The Semantic Web initiative aims at turning the
Web currently focusing on human end users into
a Web that also contains content that can be pro-
cessed by machines (Berners-Lee et al., 2001). The
basic infrastructure is provided by the resource
description framework RDF (Klyne & Carroll,
2004)—a simple language that uses subject-predi-
cate-object constructs to describe resources. This
strongly resembles the structure of the Web for
humans consisting of node-link-node triples with
Web pages being the nodes and the hyper links
connecting them being the edges.

Meaning is added to RDF by using an ontology
language such as RDFS, DAML-OIL, or OWL.
We focus on OWL as it is the most expressive of
these languages, and has been standardised by the
W3C. Using OWL, resources can be associated
with resource types (classes), and predicates2 can
be defined for associating instances of certain
classes. Furthermore, several constraints can be
expressed restricting properties, and rules can be
added to allow the assertion of new, additional
properties. The formal semantics of OWL defines
the precise meaning of these language constructs,
and forms the sound base for OWL reasoners
(Patel-Schneider et al., 2004). By describing
how concepts are used in context, ontologies are
defined—shared terminologies or “specifications
of a conceptualization” (Gruber, 1993).

In Dietrich and Elgar (2005a), we have de-
veloped a terminology expressive enough to
define basic Design patterns, and open enough
to be extended whenever more expressiveness is
required. This openness is important to define
patterns that have a limited scope. Traditional
pattern catalogues like the GangOf4 catalogue aim
at programming language independent patterns,
and their scope is object-oriented programming in
general. However, it does make sense to publish
patterns that refer to features not present in all
languages, such as inner classes and annotations
(Java) or class instance variables (Smalltalk). The
scope of these patterns is a certain programming
language, and they are shared within their re-
spective communities. While the core ontology
presented here does not directly support such
PL specific patterns, it can be easily extended in
various ways to do so.

Using OWL (or RDF for that matter) has
another advantage: patterns are identified by
uniform resource identifiers (URIs). These URIs
are usually composed from the pattern name
and a name space. This allows distinguishing
between several flavours of one pattern all using
the same name. A good example is Iterator. The
definitions presented in Gamma et al. (1995) and

 ���

An Ontology Based representation of Software Design Patterns

Grand (1998) differ—the GangOf4 definition has
an additional first() method. The Iterator pattern
used in Java is again different—there is an addi-
tional, optional remove() method. Adding a name
space and referencing the pattern with the full
URI immediately removes the ambiguity from
the pattern definitions.

an ontoLogy for Software
deSIgn patternS

metamodeling architecture

The formal definition of Design patterns, their
participants, and the properties of and relation-
ships between the participants proposed here is
based on an OWL ontology, that is, on a system
of OWL classes, their properties, and relation-
ships. These classes are instantiated in Design
pattern definitions. Design patterns themselves
do not contain classes, methods, and similar pro-
gramming artefacts, but only placeholders or role
names for such artefacts. In other words, Design
pattern definitions contain typed variables that
are instantiated by a particular pattern instance
found in a concrete program. It has been pointed
out by Eden (2002a) that for this reason UML class
models are not suitable to represent Design pat-
terns. The same applies to other M1 models—they
contain concrete classes, not variables. In Dietrich
and Elgar (2005a) we have proposed a meta model
architecture to tackle this problem (Figure 1). The
lower layers correspond to MOF M0 (application
objects) and M1 (application classes, members,
and associations). M1 artefacts instantiate pattern
participants defined using the pattern description
language (PDL). These are the variables found in
pattern definitions like the AbstractFactory and the
AbstractProduct in the AbstractFactory (Gamma et al.,
1995) pattern. These variables are typed. The types
are constraints restricting the kind of (M1) artefact
that can instantiate these variables. These types
are modeled in the object design ontology layer

(ODOL). In ODOL, the (OWL) ontology defined
is the base for the pattern definitions. It contains
classes such as ClassTemplate and MethodTemplate
and their relationships, as well as the Pattern class
representing patterns themselves. The meta model
of ODOL is OWL– ODOL contains instances
of OWL classes (for instance, owl:Class and owl:
ObjectProperty).

the ontology Schema

The ODOL ontology presented here is a revised
version of the ontology presented in Dietrich
and Elgar (2005a), adding pattern refinement
and aligning it with the refactoring meta model
proposed in Tichelaar, Ducasse, Demeyer, and
Nierstrasz (2000). This adds significant expres-
siveness to the ontology, as it makes it possible to
attribute relationships between participants such
as Access, Association, and Invocation. Figure 2
does not show the full ontology, and in particular
the data type properties (owl:DatatypeProperty) are
omitted for space reasons. This includes the ab-
stractness of class templates, access modifiers for
member templates, cardinalities for associations,
and similar properties. For the complete ontology,
the reader is referred to “The ODOL OWL On-
tology” (2006). The graph syntax used in Figure
2 and Figure 3 should not be confused with the
RDF instantiation syntax. While the nodes do

Figure 1. Metamodeling architecture

in
st

an
tia

tio
n

ab
st

ra
ct

io
n

Web Ontology Language (OWL)
owl:Class, owl:ObjectProperty, ..

Object Design Ontology (ODOL)
Pattern, Participant, ClassTemplate

Pattern Description Language (PDL)
AbstractFactory, AbstractFactory.ConcreteProduct, ..

Application Classes (M�)
java.sql.Connection, java.util.List, ..

Application Objects (M0)
aList[“�”,’”�”,”�”], Customer@��d�0�f, ..

platform
independent

platform
specific

���

An Ontology Based representation of Software Design Patterns

represent RDF resources (the OWL classes that
are part of ODOL), the edges are object proper-
ties (owl:ObjectProperty) having the start node as
the domain (rdfs:domain) and the end node as the
range (rdfs:range). This is different from standard
RDF graphs. We emphasise this difference by
underlining the property names.

Built-In rules

The model has a number of constraints describing
its intended meaning. In particular, object proper-
ties are associated with OWL property types. For
these types, the OWL semantics defines rules that

can be used by reasoners to check the consistency
of the model, and to infer additional assertions.
This implies that pattern definitions do not have
to include assertions that are redundant according
to those rules. However, it is useful to have these
redundant statements when processing pattern
definitions, as this results in a better connected
graph that is easier to process by applications.
Table 1 shows some of the built-in rules.

In addition to these rules, the ontology contains
references to informal definitions of some of the
concepts defined. For instance, the (XML version
of the) ontology contains the following references
to Web sites intended for end users:

Figure 2. The ODOL ontology: Class hierarchy

Figure 3. The ODOL ontology: Object properties

ClassTemplate

MethodTemplate

Association-
Template

MemberTemplate

Constructor-
Template

Pattern Participant

rdfs:subClassOf

rdfs:subClassOf

Invocation

Access

rdfs:subClassOf

FieldTemplate

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

rdfs:subClassOf

owl:Thing

rdfs:subClassOfrdfs:subClassOf

Behaviour

rdfs:subClassOf

rdfs:subClassOf

ClassTemplate MethodTemplate

AssociationTemplate

MemberTemplate

ConstructorTemplate

Pattern Participantparticipant Invocation

Access

FieldTemplate

target
invokes

invokedBy

isClientIn
client supplier

isSubpatternOf

contains

owner

accessedIn

differentFrom

acessed
accessesdeclaredReturnType

actualReturnType

isSubclassOf

overrides

inheritedFrom

Behaviour

parameter

 ���

An Ontology Based representation of Software Design Patterns

 <owl:Class rdf:ID=”Pattern”>
 <owl:sameAs
 rdf:resource=”http://en.wikipedia.org/wiki/De-
sign_pattern_
 %��computer_science%��”/>
 <owl:sameAs
 rdf:resource=”http://hillside.net/patterns/defini-
tion.html”/>
 </owl:Class>

Code Snippet 1: Informal definition of pat-
tern in ODOL.

While the formal rules listed in Table 1 can be
used directly by tools to process pattern defini-
tions, these statements are intended for human
end users like application programmers in order to
help them to write correct applications consuming
the patterns defined using this ontology. Using the
terminology proposed by Uschold (2003), ODOL
contains formal semantics intended for machine
processing as well as informal semantics intended
for human processing.

Defining Patterns

While the Design pattern ontology resembles
the classical UML meta model, it contains some
features that add additional expressiveness needed
to represent Design patterns. For instance, the

AbstractFactory pattern (Gamma et al., 1995) con-
tains a ConcreteFactory method that overrides an
AbstractFactory method and returns an instance
of a ConcreteProduct class. The declared return
type of the ConcreteFactory method instantiation
equals the declared return type of the abstract
method instantiation. Therefore, we must be able
to distinguish between declared return type and
the actual return type. In Code Snippet 2, the
declared return type of the create method is the
Connection class, while the actual return type is
the ConnectionImpl class.

1. public Connection create () {
2. return new ConnentionImpl () ;
3. }

Code Snippet 2: A concrete factory method.

To address this problem, the ontology has two
object properties associating method templates
with return types (class templates): declaredRe-
turnType and actualReturnType. There is an implicit
constraint relating these two properties that can
be expressed as a rule:

actualReturnType(m,t�) & declaredReturnType(m,t�)
⇒isSubclassOf(t�,t�)

Currently, this kind of rule is not part of the

Table 1. ODOL rules (selection)

Property Domain Range Rule(s)

isSubPatternOf Pattern Pattern transitive

contains ClassTemplate MemberTemplate inverseOf “owner”

owner MemberTemplate ClassTemplate inverseOf “contains”,
functional

associationClient AssociationTemplate ClassTemplate functional,
inverseOf “isClientIn”

associationSupplier AssociationTemplate ClassTemplate functional

isClientIn ClassTemplate AssociationTemplate inverseOf “associationClient”

isSubclassOf ClassTemplate ClassTemplate transitive

overrides MethodTemplate MethodTemplate transitive

���

An Ontology Based representation of Software Design Patterns

ontology. Languages like OWL do not support
custom derivation rules, although this area is an ac-
tive area of research with emerging standards such
as RuleML (Boley, Tabet, & Wagner, 2001) and
SWRL (Patel-Schneider et al., 2004). Therefore,
the isSubclassOf property cannot be inferred and
has to be added explicitly to the pattern definition,
and it remains the responsibility of the client to
check the constraint. On the instance level, this
would usually be done by a compiler.

The definition of AbstractFactory (without data
type properties) is depicted in Figure 4 and Figure
5. The types are defined in the central ontology
deployed at a certain URL. This resource is ex-
plicitly imported using an owl:imports directive.
This allows maintaining a central ontology that
can be referenced by different patterns.

Figure 4. The AbstractFactory pattern (participants and their types)

from wop.owl (imported)

AbstractFactory

AbstractFactory.
AbstractFactory

AbstractFactory.
ConcreteFactory

AbstractFactory.
AbstractProduct

AbstractFactory.
ConcreteProduct

AbstractFactory.
AbstractFactory.

Creator

AbstractFactory.
ConcreteFactory.

Creator

wop:participant

wop:participant

wop:participant

wop:participant

wop:participant
wop:participant

Pattern ClassTemplate MethodTemplate

rdf:type

rdf:type

rdf:type

rdf:type

rdf:type

rdf:type

rdf:type

AbstractFactory.rdf

Figure 5. The AbstractFactory pattern (other object properties)

AbstractFactory.
AbstractFactory

AbstractFactory.
ConcreteFactory

AbstractFactory.
AbstractProduct

AbstractFactory.
ConcreteProduct

AbstractFactory.
AbstractFactory.

Creator

AbstractFactory.
ConcreteFactory.

Creator

wop:isSubclassOf

wop:isSubclassOf

wop:declaredReturnType wop:actualreturntype
wop:declaredReturnType

wop:owner wop:owner

wop:overrides

 ���

An Ontology Based representation of Software Design Patterns

Pattern Refinement

Pattern refinement defines an inheritance relation-
ship between patterns. Using refinement, patterns
inherit participants from parent patterns, and
add new participants or new relationships. The
simplest form of refinement is a pattern definition
that imports another pattern, references all of the
participants using the wop:participant property,
and adds new participants and properties.

In addition to this, ODOL contains additional
constructs to support multiple inheritance and
joins between participants inherited from differ-
ent parents. The isSubPatternOf property associates
a pattern with a parent pattern. This property is
not functional, that is, multiple inheritance is ex-
plicitly permitted. The semantics of this property
is that all participants and their properties of the
parent pattern are appended to the definition of
the importing pattern. Using a derivation rule,
this can be expressed as follows:

isSubPatternOf(pat�,pat�) & participant(pat�,part) ⇒
participant(pat�,part)

The inheritedFrom relationship identifies par-
ticipants with participants inherited from parents.
The semantics is simple, the bindings for these
participants must be the same. This property is
also not functional, that is, a “local” participant
can be associated with more than one imported/
inherited participant. This allows joining inher-
ited participants, as depicted in Figure 6. In this
example, the CompositeVisitor is a Visitor (Gamma
et al., 1995) visiting a Composite (Gamma et al.,
1995) structure. It refines both the Visitor and the
CompositeVisitor pattern.
Multiple inheritance can lead to conflicts, for
instance if participants with contradicting prop-
erties are defined. It is again part of the informal
semantics of ODOL to require that inheritedFrom
can only associate properties with no conflicting
ODOL properties. That means that:

1. If two joined participants have an ODOL
data type property, then the values of these
participants must be the same.

2. The graph containing participants and
ODOL object properties obtained by replac-
ing the participants referenced using the
inheritedFrom predicate by the referencing
participants must be consistent.

Figure 6. Definition of CompositeVisitor using pattern refinement (imported participants are represented
by the shapes with a darker colour)

CompositeVisitor

Composite

isSubPatternOf isSubPatternOf

CompositeVisitor.Element

inheritedFrom

Composite.Component

participant

Visitor

Composite.Container

participant

Visitor.Element

participant

inheritedFrom

Visitor.ConcreteElement

participant

CompositeVisitor.
ConcreteElement

inheritedFrom inheritedFrom

participant

participant

���

An Ontology Based representation of Software Design Patterns

An example for how condition 2 could be vio-
lated is the following situation: let R be a functional
property in ODOL, and let R(a,b) and R(c,d) be
statements in two pattern definitions P1 and P2
(written in relational syntax). If P is a sub pattern
of both P1 and P2 with conditions joining a and c,
but no condition joining b and d, the “functional”
condition for R would be violated.

Note that both integrity conditions are explic-
itly referring to the ODOL vocabulary. Conflicts
in other vocabularies might not be as critical. In
particular, conflicts concerning metadata (such as
dc:Description or dc:Creator) are acceptable.

attaching meta Information

Reasoning about patterns becomes important
if patterns are published in an open, essentially
uncontrolled and unmoderated environment like
the Internet. In particular, this reasoning will
facilitate the selection of trustworthy knowledge.
There are no special constructs in ODOL to sup-
port metadata, instead standard vocabularies are
used. In particular, the Dublin Core (“The Dublin
Core Metadata Initiative,” 2006) properties can be
used to annotate the pattern instances in pattern
definitions. Using these annotations, derivation
rules can be used to select all GangOf4 patterns
(using an assertion like “dc:Creator=GangOf�”). Of-
ten, additional predicates have to be used in these
rules, either based on explicit meta information,
or on harvested meta information such as:

1. isSecure: Has an HTTPS connection been
used to download patterns?

2. isKnownBy: Is the pattern resource refer-
enced by the Web sites of pattern commu-
nities such as hillside.net or on vendor Web
sites like ibm.com.

3. isWellknown: Is the pattern definition
known as well referenced by Google? That
is, does the Google query link:<aPatternURL>
return more than 42 results?

InStantIatIng deSIgn patternS

pattern Instances

Defining the patterns in OWL/RDF enables us to
deploy the pattern definitions on standard Web
servers, where they can be found and accessed by
applications and standard search engines. There
are several use cases describing how to process
Design patterns, the most important one being
Design pattern recognition in programs. This en-
ables users to X-Ray complex software packages in
order to improve program comprehension. It may
also be used to measure Design pattern density
in software package in order to quantify design
quality: the use of best practise Design patterns
can be considered as desirable as it makes it easier
for teams to communicate about design.

The Design pattern definitions can be easily
translated into derivation rules in typed first order
logic with the pattern itself as the predicate in
the head of the respective rule, and the pattern
participants as free variables. The precise defini-
tion is presented in Dietrich and Elgar (2005b),
and we use the AbstractFactory pattern to explain
the transformation. The pattern has the following
participants: AbstractFactory (af), AbstractProduct
(ap), ConcreteFactory (cf), ConcreteProduct (cp),
AbstractFactory.Creator (afc), ConcreteFactory.Cre-
ator (cfc). These participants are associated with
typed variables, and the types are the respective
ODOL classes. The head of the rule is Abstract
Factory(af,ap,cf,cp,afc,cfc). The prerequisites of
the rule are:

1. isSubclassOf(cf, af)
2. isSubclassOf(cp, ap)
3. contains(af, afc)
4. contains(cf.cfc)
5. declaredReturnType(afc,ap)
6. declaredReturnType(cfc,ap)
7. actualReturnType(cfc, cp)
8. overrides(cfc, afc)
9. isAbstract(af,”abstract”)

 ���

An Ontology Based representation of Software Design Patterns

10. isAbstract(afc, ”abstract”)
11. isAbstract(ap,”abstract”)
12. ..

That is, object properties are translated into
binary constraints associating participants with
other participants (or more precisely, the respec-
tive variables), while data type properties are
transformed into binary predicates associating
participants with string literals. The typing im-
poses additional constraints that can be seen as
unary predicates. In the AbstractFactory example,
this would lead to additional prerequisites such as
isClass(af), isMethod(afc), and so forth. Similar to
the mechanisms proposed by other authors (Beyer,
Noack, & Lewerentz, 2003; Eden, 2002a; Krae-
mer & Prechelt, 1996), Design pattern detection
becomes a matter of instantiating the variables
in these rules. The values binding the variables
are artefacts from the program to be analysed.
Artefacts include classes and their members, but
also associations, method invocations, and field
accesses. If Var(P) denotes the set of participants
in a pattern P and A(Progr) the set of artefacts in a
program Progr, then a pattern instance is a function
instance:Var(P)→A(Progr).

Instantiation requires a universe of artefacts
to be extracted from the analysed program, and a
set of ground facts for the predicates used in the
rules instantiated using these artefacts. Because
the rules are structurally fairly simple (datalog
without negation), the only challenge is to find
the appropriate fact base. The universe itself must
contain representations of the artefacts found in the
program. These could either be names, instances
of classes of the programming language represent-
ing artefacts (such as reflection frameworks), or
instances of classes from separate object models
describing the structure of programs. As far as
the fact base is concerned, there are some funda-
mentally different approaches that can be used to
instantiate predicates. This includes:

1. Using the reflective features of the program-
ming language itself. Most modern PLs offer
such a feature, and relationships such as
membership, return type, and inheritance
can be easily instantiated.

2. Source code analysis. Reflection based
analysis is usually not suitable to instanti-
ate associations and invocations. This often
requires source code analysis. The respective
concepts have been studied comprehensively
in the realm of compiler technology. Source
code is usually represented by abstract
syntax trees (AST), and analysis is done
using AST visitors. Using visitors, symbol
tables are compiled to resolve the references
between artefacts.

3. Naming pattern analysis. Often naming
patterns do have meaning, and they can be
used for program analysis as well. A good
example for meaningful naming patterns is
the java bean specification (“The JavaBeans
Spec,” 2006).The use of certain prefixes for
method names and parameter signatures in-
dicates that there are certain properties of and
relationships between objects. An example is
the one to many relationship between event
sources and event listeners. Tools such as
GUI builders use these semantics.

4. Behavioural analysis. Based on the run and
observe approach, behavioural analysis
can detect relationships not accessible by
any of the above methods. This includes
the analysis of code that uses reflection,
for instance the interpretation of strings
as methods. Behavioural analysis requires
that the program can be executed “com-
pletely,” that is, that each code branch is
visited during code execution. In some
cases, complete execution is provided by
test suites, particularly if test-case driven
methodologies like extreme programming
(Beck, 1999) are used in conjunction with
tools measuring test coverage. Technically,
behavioural analysis can take advantage of

���

An Ontology Based representation of Software Design Patterns

debugging APIs or newer approaches used
to instrument code (for instance, aspect-
oriented programming).

client architecture

The WebOfPatterns (WOP) project (“The WebOf-
Patterns Project,” 2006) is a client that consumes
and produces pattern definitions based on ODOL.
Technically, the client is an Eclipse plugin. It inter-
prets the pattern definitions in Java, and features
the following functionality: a pattern scanner with
a built-in HTTP client that downloads patterns
from a given URL, detects pattern instances in
Eclipse Java projects and compiles JavaDoc style
(HTML and XML) reports from the findings. The
client also supports several pattern aggregations
(see page 15). A pattern browser generates a graph
from pattern definitions that can be navigated
in a browser-like manner. A pattern publish-
ing wizard allows users to select artefacts, their
properties and relationships from projects, give
those artefacts abstract role names, and generate
the pattern definition as a RDF file. This file can
then be deployed on a standard Web server.

The WOP client serves as a reference applica-
tion for the ontology. It contains guidelines on how
to consume the ontology based pattern definitions.
This makes it part of the “formal semantics for hu-
man processing” (Uschold, 2003). This is similar
to software specifications—many specs consist
mainly of interfaces (UML, IDL, Java interfaces).
The semantics of these interfaces is defined by
documents, formal constraints (like OCL), and
test suites. Often, a reference implementation
is provided that can be considered as part of the
semantics—software engineers are referred to the
reference implementation if the other parts of the
specification leave questions open.

The pattern scanner is the most important part
of the WOP client, as it has to map the structures
defined in the ontology to the structures found in
the Java programming language. This is rather
simple for some elements, as there is an obvious

homomorphism (structure preserving mapping)
between the ontology and the grammar of the
programming language—classes have methods,
methods have return types, and so forth. It is
less obvious for participants that have no direct
counterparts in Java, such as Association.

The WOP Client has the following struc-
ture:

• Participants are represented by Java classes
in the nz.ac.massey.cs.wop package. Example:
AssociationTemplate, ClassTemplate, Participant,
Pattern.

• Artefacts instantiating the participants are
represented by Java classes in the nz.ac.
massey.cs.wop.reflect package. Example: As-
sociation, JClass, JMethod, and so forth.

• Object properties are represented by classes
implementing the interface nz.ac.massey.
cs.wop.BinaryConstraint<SOURCE,TARGET> in
the nz.ac.massey.cs.wop.constraints package.
Example: IS_SUBCLASS_OF, OVERRIDES.

• Data type properties are represented
by subclasses of nz.ac.massey.cs.wop.
UnaryConstraint<TYPE> in the nz.ac.massey.
cs.wop.constraints package. Examples: IS_AB-
STRACT_CLASS, IS_PUBLIC_MEMBER.

The type parameters of the generic constraint
classes represent the types associated by the re-
spective constraints. This must be consistent with
the domain and the range types of the associated
object property. The constraints contain methods
defining the extension of the respective (unary or
binary) predicate in the context of the program
investigated. The Eclipse project analysed is
represented by an instance of Workspace. This
contains a reference to a class loader, the byte
code location(s), the source code location(s), and
entry points for behavioural analysis. In particular,
the BinaryConstraint interface defines the follow-
ing three methods (SOURCE and TARGET are the
generic type parameters):

1. boolean check(SOURCE,TARGET,Workspace)
2. Iterator<SOURCE> getPossibleSourceInstances(

Workspace,TARGET)
3. Iterator<TARGET> getPossibleTargetInstances(W

orkspace,SOURCE)

 ���

An Ontology Based representation of Software Design Patterns

Code Snippet 3: Methods in BinaryCon-
straint defining the semantics of an object
property in Java

These methods precisely define the semantics
of the associated object property. The first method
allows verifying whether two given instances
instantiate the predicate. The other two methods
return an iterator over possible instances if one
instance is known. This supports the “navigation”
of the predicates. There is no method that com-
putes the entire extension of the predicate (i.e.,
an iterator over SOURCE-TARGET pairs). This is
highly inefficient and can generally be avoided
by choosing appropriate algorithms to resolve
the constraints.

For instance, the IS_SUBCLASS_OF class imple-
ments BinaryConstraint as follows:

1. Both SOURCE and TARGET are JClass,
JClass.

2. If instances of both source and target are
given, reflection (isAssignableFrom in java.
lang.Class) is used to check whether class 1
is a subclass of class 2.

3. If only the source is known, the reflection
methods getSuperclass() and getInterfaces() are
recursively called, the results are collected
in a collection and an iterator over this col-
lection is returned.

4. If only the target is known, all classes in the
workspace are scanned to find all subclasses
of the target, and the respective iterator is
returned.

In general, classes implementing the interface
nz.ac.massey.cs.wop.reflect.Analyser provide the
structural information needed by the constraint
classes. Analysers are organised as a chain, and
if an analyser cannot provide the information
requested the next analyser is called (ChainO-
fResponsibility pattern (Gamma et al., 1995)).
The analysers currently implemented are based

on reflection, (Eclipse) AST analysis, and naming
pattern analysis.

The pattern scanner itself uses cost-based
scheduling to arrange the constraint in an op-
timal order. It always attempts to solve “cheap”
constraints (like those that can be verified using
reflection) first, and arranges constraints so that at
least one of the participants is already known. This
is facilitated by having redundant constraints (the
deductive closure according to the rules encoded
in the ontology in Table 1), as this results in a
better connected graph consisting of participants
as nodes and binary constraints as edges. The
ontology itself is accessed using the Jena (“Jena
– A Semantic Web Framework for Java,” 2006)
framework that includes an OWL reasoner.

The constraint resolution process uses a
simplified version of SLD (Robinson, 1965).
The unification can be simplified as there are no
complex terms in the pattern rule.

validation

The question arises whether the formal pattern
definitions and the tool processing them (the
pattern scanner) capture the meaning of the
respective pattern. This includes two aspects:
firstly, correctness, that is, are all pattern in-
stances detected intended instances? Secondly,
completeness, that is, are all intended instances
found by the scanner? In other terms, are there
false positives (correctness) and are there false
negatives (completeness)?

The WebOfPatterns client has been validated
using test cases based on code that is part of two
text books on patterns in Java (Grand, 1998; Stelt-
ing & Maassen, 2001). While this validation is
successful in the sense that all test cases succeed,
it has some obvious weaknesses. Firstly, the code
examples used in these text books are (on purpose)
very simple, and more complex language features
such as inner classes and reflection, are avoided.
The current version of the WebOfPatterns source

��0

An Ontology Based representation of Software Design Patterns

code analyser does not support inner classes,
and therefore certain instances of predicates like
actualReturnType and invokedBy are not detected.
That is, the fact base built by the client is incom-
plete. Therefore, certain pattern instances are not
found—there are false negatives. But as this is
mainly due to limitations of the current imple-
mentation of the analysers, the problem should
be solved as the client is improved. If behavioural
analysis is used, the completeness of the fact base
still depends on whether the analyser is able to
cover the entire program. This would be the case
for programs with unit test cases and 100% test
coverage.

An interesting approach to validation would
be the comparison of scan results with the results
produced by other tools such as CrocoPat (Beyer,
Noack, & Lewerentz, 2003) and Fujaba (Niere,
Schafer, Wadsack, Wendehals, & Welsh, 2002).

The question whether there are false posi-
tives is more difficult to answer and requires the
analysis of some scan results. This leads to the
introduction of some new concepts related to
pattern instantiation.

normal and aggregated Instances

The analysis of pattern instances found in non
trivial programs reveals a number of “unintended
instances.” Most of them feature different partici-
pants instantiated by one artefact. For instance,
consider the following code snippet:

1. public abstract class A {
2. public abstract A copy () ;
3. }
4. public class AImpl extends A {
5. public A copy () {
6. A clone = new AImpl () ;
7. / / configure, set instance variables
8. return clone;
9. }
10. }

This program instantiates AbstractFactory in a
trivial way: A is both the AbstractFactory (role) and
the AbstractProduct, while AImpl is the ConcreteFactory
and the ConcreteProduct. In this program, a clone-
able structure is defined, with A representing the
specification of the structure and AImpl being an
implementor. The question arises whether there
is an implicit constraint in AbstractFactory that
requires that the factory and the product must be
different. The ontology does contain the respective
language feature, the wop:differentFrom prop-
erty3. For some patterns, there is clearly a need
for such a constraint. For example, in the Proxy
(Gamma et al., 1995) pattern, the Proxy (wrapper)
and the RealSubject (the wrapped class) must be
different. For other patterns the situation is less
clear. In this case we opt for not having such an
explicit constraint. This leaves two options open:
to use the refinement mechanism to add such an
explicit constraint in a sub pattern, or make it a
feature of the client to add the wop:differentFrom
constraints on demand. Conceptually, we call
instances of patterns where different participants
are mapped to different artefacts normal. In other
terms, normal pattern instances are injective.

The number of “good” instances found is sur-
prisingly high. Often it is useful to identify some
instances by abstracting from certain details. For
instance, two AbstractFactory instances might be
considered equal if all abstract participants are
mapped to the same artefacts. Two instances of
Bridge (Gamma et al., 1995) could be considered
variants of the same instance if they have the
same abstraction and the same implementor. In
general, pattern aggregation is used to identify
certain patterns. Instead of considering pattern
instances as defined above, classes of instances
modulo an equivalence relation ~. This relation
meets the following three conditions:

1. Reflexivity: ∀ instance: instance ~ instance
2. Symmetry: ∀ instance�,instance�: instance�~

instance� ⇒ instance�~ instance�

 ���

An Ontology Based representation of Software Design Patterns

3. Transitivity: ∀ instance�,instance�,instance�:
instance�~ instance� & instance�~ instance� ⇒ in-
stance�~ instance�

Such a relation can be defined as projection
with respect to a subset of participants S that are
part of a pattern as follows:

instance� ~S instance� if f ∀p∈S:instance�(p) =
instance�(p)

There are a number of possible aggregations,
each defining a separate view on the structure of
the program investigated.

1. Identify instances if they map all marked
participants to the same artefacts. This al-
lows a default aggregation to be built into
the ontology, making this aggregation part
of the pattern itself. For this purpose, the
ontology has a built-in data type property
isAggregationPoint that allows tagging
participants explicitly.

2. Identify instances if they map abstract par-
ticipants to the same artefacts.

3. Identify instances if they map abstract
classes to the same artefacts.

4. Identify instances mapping abstract class
templates to the same classes, and method
templates to methods sharing the same name
and the same owner class. This allows the
identification of instances containing over-
loaded methods.

5. No aggregation (“null aggregator”).

Aggregation of instances is an alternative to
using higher order logic constructs like Eden’s

higher dimension entities (Eden, 2002b) to de-
scribe patterns. By adding default aggregation
support to the pattern definition itself but also
allowing tools to override it by applying no or
alternative aggregations we gain greater flex-
ibility in supporting alternative views on the
system design.

Limitations of our approach and
future trends

There are some known limitations with the
approach presented here. ODOL is not expres-
sive enough to describe constraints referencing
instances (and not classes). An example of a pat-
tern that uses this kind of constraint is Prototype
(Gamma et al., 1995). The Prototype participant
contains a clone() method. The semantics of this
method is to provide a copy of the Prototype ob-
ject. In Java style syntax, this can be written as
follows: “prototype.clone()!=prototype”. This cannot
be expressed directly using the current version
of ODOL. To address this problem, a data type
property isClone is defined in ODOL. The seman-
tics of this method is mainly informal, and the
responsibility to interpret it correctly is delegated
to applications. Obviously, there is a trade-off
here between ontological reductionism (having a
small number of modeling primitives with a clear
semantics) on the one side, and how simple and
convenient it is for software engineers to use the
ontology on the other side. In the long term, the
solution is to have more expressive vocabularies
and to define more derived concepts by means
of explicit rules.

There are entire families of patterns for which
the ontology presented here is not appropriate.

Table 2. Scan results

Package Timed
(s)

Abstract-
Factory

Adapter Bridge Composite Proxy Template-
Method

Mandarax 3.4 35 166 91 0 3 2 495

MySQL Con-
nectorJ 3.1.12

134 56 289 28 0 0 0

���

An Ontology Based representation of Software Design Patterns

Architectural patterns (Buschmann, Meunier,
Rohnert, Sommerlad, Stal, Sommerlad, et al.,
1996) use concepts such as tier and layer. On the
other hand, code level patterns like lazy initialisa-
tion refer to concepts used in PL grammars like
blocks and error handlers.

A very promising direction for further research
is the adoption of the approach presented by
Fowler (1999) and Opdyke (1992) for refactoring.
A formal, ontology based refactoring language
would enable software engineers to find solutions
to design problems on the Web, and to perform
them in the context of the programming language
used. The design problems themselves can be
described using an ontology similar to the one
presented here as antipatterns. By means of addi-
tional derivation rules similarity between patterns
can be defined, further increasing the chances of
finding a solution to problems encountered.

The relationship between the platform inde-
pendent ontology layer and the interpretation of
these concepts in a particular programming lan-
guage is an interesting area for further research.
We have argued that a client is more than just an
implementation. The client has to interpret the
concepts found in the ontology correctly. This
warrants a closer integration of ontology and cli-
ent. In particular, for languages like Java where
components can be deployed as Web resources,5
RDF statements can be used to associate object
properties and their correct interpretation in a
context given by a programming language (Java)
and a client application (WOP).

Package/ Pattern No
Aggregation

Built-in
Aggregation

Group by
abstract participants

Group by
abstract classes

Mandarax 3.4 /
AbstractFactory

166 48 48 29

MySQL ConnectorJ 3.1.12 /
AbstractFactory

56 46 46 16

MySQL ConnectorJ 3.1.12 /
Bridge

28 1 8 1

Table 3. Pattern instance aggregation

The pattern scanner presented here is far
from being mature. Despite the gaps in the AST
analyser mentioned, there are other issues related
to scalability. The main benefit of having a scal-
able pattern scanner in the standard toolbox of
software engineers (in the form of ANT tasks, or
Eclipse plugins) is that this will enable researchers
to gather vast amounts of empirical data about
software design, and how this design evolves. This
may lead to new research on pattern based metrics,
and investigations into quantifying the correlation
between patterns and software quality.

concLuSIon

In this chapter, we have shown how techniques
developed in the realm of the semantic Web can
be used to formalise software Design patterns.
We have elaborated an ontology based on the Web
ontology language OWL and have shown how this
fits into a meta modeling framework that extends
the meta modeling architecture used by the OMG.
Several aspects related to pattern instantiation
discussed are not only relevant to our approach,
but should be addressed whenever Design pat-
terns are formalised. In particular, this concerns
validation and pattern instance aggregation.

The semantic Web offers tremendous oppor-
tunities for the software engineering community.
This community is most likely to adapt the se-
mantic Web as it is already accustomed to share
much of the knowledge it produces on the Web.
It has pioneered the use of Wikis and Blogs, and

 ���

An Ontology Based representation of Software Design Patterns

has found solutions for how to deal with inconsis-
tencies in open environments. A good example is
open source repositories like SourceForge using
source control systems such as Subversion or
CVS. Participating programmers produce incon-
sistencies that are resolved with merge and diff
tools based on metadata (version tags, commit
time, committer). Giving this community better
tools to share their knowledge will significantly
improve the way software engineering is done.
It could eventually lead to an open eco system of
patterns (and antipatterns, and refactoring, and
...) where Darwinian forces lead to the survival
of the fittest.

Critical for the semantic Web to succeed in
software engineering as well as in general is the
availability of tools to manage the knowledge
produced. Of particular importance is search
engine support, for example, to be able to query
Google for RDF resources containing instances
of the ODOL ontology. Furthermore, modules
that allow reasoning about knowledge based on
customisable rules and mainly harvested metadata
are needed.

Once the community accepts this approach,
it is likely that domain specific ontologies will
emerge serving the needs of particular commu-
nities. These communities are not necessarily
organised around programming languages or
vendors, but also application areas (desktop,
server, embedded), industries (financial, e-com-
merce) or programming paradigms (Aspect-Ori-
ented Programming). We will have to deal with a
multidimensional space of ontologies. This poses
new challenges for describing the relationships
between these ontologies.

referenceS

Beck, K. (1999). Extreme programming explained:
Embrace change. Addison-Wesley Professional.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001,
May). The Semantic Web. Scientific American,
34-43.

Beyer, D., Noack, A., & Lewerentz, C. (2003).
Simple and efficient relational querying of soft-
ware structures. In Paper presented at the 10th
Working Conference on Reverse Engineering
(WCRE 2003).

Boley, H., Tabet, S., & Wagner, G. (2001). De-
sign rationale of RuleML: A markup language
for Semantic Web rules. Paper presented at the
International Semantic Web Working Symposium
(SWWS).

Buschmann, F., Meunier, R., Rohnert, H., Som-
merlad, P., Stal, M., Sommerlad, P., et al. (1996).
Pattern-oriented software architecture, vol. 1: A
system of patterns (1st ed.). John Wiley & Sons.

Dietrich, J., & Elgar, C. (2005a). A formal de-
scription of Design patterns using OWL. Paper
presented at the Australian Software Engineering
Conference (ASWEC), 2005.

Dietrich, J., & Elgar, C. (2005b). Towards a Web
of patterns. Paper presented at the Workshop on
Semantic Web Enabled Software Engineering
(SWESE), Galway.

The Dublin Core Metadata Initiative. (2006).
Retrieved November 16, 2006, from http://dub-
lincore.org/

Eden, A. (2002a). LePUS, A visual formalism for
object-oriented architectures. Paper presented at
the 6th World Conference on Integrated Design
and Process Technology, Pasadena, California.

Eden, A. (2002b). A theory of object-oriented
design. Information Systems Frontiers, 4(4),
379-391.

Fowler, M. (1999). Refactoring: Improving the
design of existing code. Reading, MA: Addison-
Wesley.

���

An Ontology Based representation of Software Design Patterns

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1995). Design patterns: Elements of reusable
object-oriented software: Addison-Wesley.

Grand, M. (1998). Patterns in Java: A catalog of
reusable Design patterns illustrated with UML.
Wiley.

Gruber, T.R. (1993). A translation approach to
portable ontologies. Knowledge Acquisition,
5(2), 199-220.

Haarslev, V., & Moeller, R. (2001). Description
of the RACER system and its applications. Paper
presented at the 2001 International Workshop on
Description Logics (DL2001), Stanford.

Horrocks, I. (1999). FaCT and iFaCT. Paper
presented at the 1999 International Workshop on
Description Logics (DL’99).

The JavaBeans Spec. (2006). Retrieved November
16, 2006, from http://java.sun.com/products/java-
beans/docs/spec.html

Jena – A Semantic Web Framework for Java.
(2006). Retrieved November 16, 2006, from
http://jena.sourceforge.net/

Klyne, G., & Carroll, J.J. (2004). Resource
description framework (RDF): Concepts and
abstract syntax. W3C recommendation. Re-
trieved November 16. 2006, from http://www.
w3.org/TR/rdf-concepts/

Knublauch, H., Musen, M., & Rector, A. (2004).
Editing description logics ontologies with the
Protégé OWL plugin. Paper presented at the
International Workshop on Description Logics,
Whistler, British Columbia.

Kraemer, C., & Prechelt, L. (1996). Design re-
covery by automated search for structural Design
patterns in object-oriented software. Paper pre-
sented at the 3rd Working Conference on Reverse
Engineering (WCRE ‚96).

McGuinness, D.L., & Harmelen, F.V. (2004). OWL
Web ontology language overview. W3C recom-

mendation. Retrieved November 16,2006, from
http://www.w3.org/TR/owl-features/

MOF QVT Final Adopted Specification. (2005).
Retrieved November 16, 2006, from http://www.
omg.org/docs/ptc/05-11-01.pdf

Niere, J., Schafer, W., Wadsack, J.P., Wendehals,
L., & Welsh, J. (2002). Towards pattern-based
design recovery. Paper presented at the 24th In-
ternational Conference on Software Engineering
(ICSE 2002).

The ODOL OWL Ontology. (2006). Retrieved
November 16, 2006, from http://www-ist.massey.
ac.nz/wop/20060324/wop.owl

Opdyke, W.F. (1992). Refactoring object-oriented
frameworks. University of Illinois at Urbana-
Champaign, IL.

OWLDoc. (2006). Retrieved November 16, 2006,
from http://co-ode.man.ac.uk/downloads/owldoc/
co-ode-index.php

Patel-Schneider, P.F., Hayes, P., & Horrocks, I.
(2004). OWL Web ontology language semantics
and abstract syntax, W3C recommendation.
Retrieved November 16, 2006, from http://www.
w3.org/TR/owl-semantics/

Robinson, J.A. (1965). A machine-oriented logic
based on the resolution principle. Journal of the
ACM, 12(1), 23-41.

Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., &
Katz, Y. (2006). Pellet: A practical OWL-DL rea-
soner. Journal of Web Semantics (To Appear).

Stelting, S., & Maassen, O. (2001). Applied Java
patterns. Prentice Hall PTR.

Tichelaar, S., Ducasse, S., Demeyer, S., & Nier-
strasz, O. (2000). A meta-model for language-
independent refactoring. Paper presented at
the International Symposium on Principles of
Software Evolution.

 ���

An Ontology Based representation of Software Design Patterns

Uschold, M. (2003). Where are the semantics in
the semantic Web? AI Magazine, 24(3), 25-36.

The WebOfPatterns Project. (2006). Retrieved
November 16, 2006, from http://www-ist.massey.
ac.nz/wop/

endnoteS

1 Name space prefixes used in this chapter
are defined as follows:

 xmlns:wop=”http://www.massey.ac.nz/iist/cs/
pattern/ontology#”

 xmlns:rdf=”http://www.w3.org/1999/02/22-rdf-
syntax-ns#”

 x m l ns:xsd=” ht t p: //w w w.w3.org /20 01/
XMLSchema#”

 xmlns:rdfs=”http://www.w3.org/2000/01/rdf-
schema#”

 xmlns:owl=”http://www.w3.org/2002/07/
owl#”

 xmlns:dc=”http://purl.org/dc/elements/1.1/”
2 In OWL, properties are called data type

properties and relationships/predicates as-
sociating resources are called object proper-
ties.

3 This property is different from owl:differ-
entFrom that states that two individuals are
different. The semantics of wop:differentFrom
is that the respective participants have to be
instantiated by different artefacts.

4 These results have been obtained using the
following configuration: Pentium 4 CPU
3.20 GHz, 1GB RAM, Windows XP Pro,
Java 1.5.0_06, Eclipse 3.1.0

5 Jar files can be deployed on Web servers
and accessed using a special URL class
loader.

This work was previously published in Design Pattern Formalization Techniques, edited by T. Taibi, pp. 258-279, copyright
2007 by IGI Publishing (an imprint of IGI Global).

���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.3
Class Patterns and Templates in

Software Design
Julio Sanchez

Minnesota State University, Mankato, USA

Maria P. Canton
South Central College, USA

aBStract

This chapter describes the use of design patterns
as reusable components in program design. The
discussion includes the two core elements: the class
diagram and examples implemented in code. The
authors believe that although precanned patterns
have been popular in the literature, it is the patterns
that we personally create or adapt that are most
useful. Only after gaining intimate familiarity
with a particular class structure will we be able to
use it in an application. In addition to the conven-
tional treatment of class patterns, the discussion
includes the notion of a class template. A template
describes functionality and object relations within
a single class, while patterns refer to structures of
communicating and interacting classes. The class
template fosters reusability by providing a guide
in solving a specific implementation problem. The
chapter includes several class templates that could
be useful to the software developer.

deSIgn patternS

Engineers and architects have reused design
elements for many years (Alexander, Ishikawa,
Silverstein, Jacobson, Fiksdahl-King, & Angel,
1977); however, the notion of reusing elements
of software design dates back only to the early
1990s. The work of Anderson (1990), Coplien
(1992), and Beck and Johnson (1994) set the
background for the book Design Patterns by
Gamma, Helm, Johnson, and Vlissides (1995),
which many considered the first comprehensive
work on the subject.

The main justification for reusing program
design components is based on the fact that the
design stage is one of the most laborious and
time-consuming phases of program development.
Design reuse is founded in the assumption that
once a programmer or programming group has
found a class or object structure that solves a
particular design problem, this pattern can then
be reused in other projects, with considerable
savings in the design effort. Anyone who has
participated in the development of a substantial

 ���

Class Patterns and templates in Software Design

software project appreciates the advantages of
reusing program design components.

The present-day approach to design reuse is
based on a model of class associations and rela-
tionships called a class pattern or an object model.
In this sense, a pattern is a solution to a design
problem. Therefore, a programming problem is at
the origin of every pattern. From this assumption
we deduce that a pattern must offer a viable solu-
tion; it must represent a class structure that can
be readily coded in the language of choice.

The fact that a programming problem is at the
root of every design pattern, and the assumption
that the solution offered by a particular pattern
must be readily implementable in code, are the
premises on which we base our approach to this
topic. In the context of this chapter we see a design
pattern as consisting of two core elements: a class
diagram and a coded example or template, fully
implemented in code. Every working programmer
knows how to take a piece of existing code and
reengineer it to solve the problem at hand. How-
ever, snippets of code that may or may not compile
correctly are more a tease than a real aide.

Although we consider that design patterns are
a reasonable and practical methodology, we must
also add that it is the patterns that we ourselves
create, refine, or adapt that are the most useful.
It is difficult to believe that we can design and
code a program based on someone else’s class
diagrams. Program design and coding is a task
too elaborate and complicated to be done by
imitation or by proxy. A programmer must gain
intimate familiarity with a particular class and
object structure before committing to its adoption
in a project. These thoughts lead to the conclusion
that it is more important to explain how we can
develop our own design patterns than to offer an
extensive catalog of someone’s class diagrams,
which can be difficult to understand, and even
more difficult to apply.

cLaSS tempLateS

Occasionally, a programmer or program designer’s
need is not for a structure of communicating and
interacting classes but for a description of the
implementation of a specific functionality within
a single class. In this case we can speak of a class
template rather than of a pattern. The purpose of
a class template is also to foster reusability by
providing a specific guide for solving a particular
implementation problem. In the following sections
we include several class templates that could be
useful to the practicing developer.

a pattern is Born

We begin our discussion by following through
the development of a design pattern, from the
original problem, through a possible solution, to
its implementation in code, and concluding in a
general-purpose class diagram.

One of the most obvious and frequent uses of
dynamic polymorphism is in the implementation
of class libraries. The simplest usable architec-
ture is by means of an abstract class and several
modules in the form of derived classes that pro-
vide the specific implementations of the library’s
functionality. Client code accesses a polymorphic
method in the base class and the corresponding
implementation is selected according to the object
referenced. But in the real world a library usually
consists of more than one method. Since many
languages allow mixing virtual and nonvirtual
functions in an abstract class, it is possible to
include nonvirtual methods along with virtual and
pure virtual ones. The problem in this case is that
abstract classes cannot be instantiated; therefore,
client code cannot create an object through which
it can access the nonvirtual methods in the base
class. A possible but not very effective solution
is to use one of the derived classes to access the
nonvirtual methods in the base class. Figure 1
depicts this situation.

���

Class Patterns and templates in Software Design

The first problem of the class diagram in Figure
1 is that the client code accesses the nonvirtual
MethodB() in the base class by means of a pointer
to one of the derived classes. A second, and per-
haps more important one, is that method selection
must take place in the client’s code. Both of these
characteristics expose the class structure and add
a substantial processing burden to the client.

There are several possible solutions to the
first problem. We could make the base class a
concrete class with MethodA() as a simple virtual
function, with no real implementation. In this
case MethodB() becomes immediately acces-
sible. Another solution would be to create a new
class to hold the nonvirtual methods originally
in the base class and have this new class inherit
abstractly. However, neither of these solutions
addresses the most important problem, which is
that client code must perform method selection.

It is this characteristic of inheritance that breaks
encapsulation.

Encapsulation can be preserved by using object
composition instead of inheritance. Also, combin-
ing object composition and inheritance achieves
dynamic binding of polymorphic methods while
preserving encapsulation. Figure 2 is a possible
class diagram for implementing the library by
means of object composition and inheritance.

design of a veSa true color Library

The design of a VESA true color graphics library
can be based on combining object composition
and class inheritance. The minimal functionality
of this library can be stated as follows:

1. A way of setting the desired VESA true
color mode.

Client

XXLibMod�XXLibMod� XXLibMod�

MethodA = 0
MethodB()

MethodA() MethodA() MethodA()

XXLib

access to
MethodB()

Figure 1. A class library implemented through dynamic polymorphism

Figure 2. An alternative implementation of the class library

Client

XXLibMod�XXLibMod� XXLibMod�

MethodA() = 0
MethodB()

mod_code
*base_ptr

MethodA() MethodA() MethodA()

XXLibModsXXLib

 ���

Class Patterns and templates in Software Design

2. A way of obtaining the current VESA mode
as well as the vertical and horizontal resolu-
tion.

3. A way of drawing a screen pixel defined in
terms of its x and y screen coordinates and
its color attribute.

4. A way of reading the color attribute of a
screen pixel located at given screen coor-
dinates.

Figure 3 is a diagram of the library classes.
Observing the class diagram in Figure 3 we

detect some features of the class structure:

1. The nonvirtual methods are located in the
class named VesaTCLib.

2. VesaTCLib is a concrete class and can be
instantiated by the client.

3. The mode-dependent, polymorphic meth-
ods for setting and reading pixels, named
DrawPixel() and ReadPixel(), respectively,
are located in an inheritance structure.

4. The methods named GetPixel() and Set-
Pixel() in the class VesaTCLib provide access
by means of a pointer to the polymorphic
methods DrawPixel() and ReadPixel().

The result of this class design is that the
implementation is now transparent to the client,
as shown by the gray shaded background in Fig-
ure 3. The following program (Box 1) contains
the schematic implementation of the class and
inheritance structure in Figure 3.

The previous code sample, named SAMP-
01.CPP, deserves a few additional comments.
The constructor receives a coded signature that
defines the VESA true color mode requested by the
caller. A switch construct stores the VESA mode
number, vertical and horizontal resolution, and
the address of the library methods used in setting
and reading a pixel in this mode. Therefore, the
contingency code executes only once, when the
object is created. Thereafter, each object of the
class VesaTCLib is associated with a particular
mode and keeps the address of the method to be
used in its own pixel setting and reading opera-
tions. The methods GetPixel() and ReadPixel()
of the class VesaTCLib are the client’s interface
to the pixel-level primitives in the library. The
actual setting and reading of a screen pixel is
performed as follows:

Figure 3. Class diagram for a VESA true color graphics library

VesaMode���H

Client

VesaMode���HVesaMode���H VesaMode��BH

DrawPixel()=0
ReadPixel()=0

DrawPixel()
ReadPixel()

DrawPixel()
ReadPixel()

DrawPixel()
ReadPixel()

DrawPixel()
ReadPixel()

VesaTCModes

not visible to clientVesaTCLib

SetPixel()
GetPixel()
GetVesaMode()
GetModeVRes()
GetModeHRes()

vesa_mode_num;
vert_res;
hor_res;
*base_ptr

��0

Class Patterns and templates in Software Design

//***

// C++ program to illustrate implementation of a VESA true

// color graphics library using object composition and class

// inheritance

// Filename: SAMP-01.CPP

//***

#include <iostream.h>

//***

// classes

//***

// Abstract base class

class VesaTCModes {

public:

// Pure virtual functions

 virtual void DrawPixel(int, int, int) = 0;

 virtual unsigned long ReadPixel(int, int) = 0;

};

//******************************

// Polymorphic classes

//******************************

// Note: methods have stub implementations in this demo

// program

class VesaMode112H : public VesaTCModes {

public:

 virtual void DrawPixel(int row, int column, int color) {

 cout << “Setting pixel in Mode 112H\n”;

 return;

 }

 virtual unsigned long ReadPixel(int row, int column) {

 cout << “Reading pixel in Mode 112H\n” ;

 return 0;

 }

};

class VesaMode115H : public VesaTCModes {

public:

 virtual void DrawPixel(int row, int column, int color) {

 cout << “Setting pixel in Mode 115H\n”;

Box 1.

continued on following page

 ���

Class Patterns and templates in Software Design

 return;

 }

 virtual unsigned long ReadPixel(int row, int column) {

 cout << “Reading pixel in Mode 115H\n” ;

 return 0;

 }

};

class VesaMode118H : public VesaTCModes {

public:

 virtual void DrawPixel(int row, int column, int color) {

 cout << “Setting pixel in Mode 118H\n”;

 return;

 }

 virtual unsigned long ReadPixel(int row, int column) {

 cout << “Reading pixel in Mode 118H\n”;

 return 0;

 }

};

class VesaMode11BH : public VesaTCModes {

public:

 virtual void DrawPixel(int row, int column, int color) {

 cout << “Setting pixel in Mode 11BH\n”;

 return;

 }

 virtual unsigned long ReadPixel(int row, int column) {

 cout << “Reading pixel in Mode 11BH\n”;

 return 0;

 }

};

//************************

// non-virtual classes

//************************

class VesaTCLib {

private:

 int vesa _ mode _ num; // Object data

 int vert _ res;

 int hor _ res;

 VesaMode112H obj _ 112H; // Objects of derived classes

 VesaMode115H obj _ 115H; // required for filling pointer

 VesaMode118H obj _ 118H;

Box 1. continued

continued on following page

���

Class Patterns and templates in Software Design

 VesaMode11BH obj _ 11BH;

 VesaTCModes *base _ ptr; // Base class pointer

public:

 VesaTCLib (int); // Constructor

// Other methods

 int GetVesaMode();

 int GetModeVRes();

 int GetModeHRes();

 void SetPixel(int, int, int);

 void GetPixel(int, int);

};

//******************************

// Methods for class VesaTCLib

//******************************

// Constructor

VesaTCLib::VesaTCLib(int vesa _ mode) {

/* The constructor is passed a mode code as follows:

 1 = VESA mode 112H

 2 = VESA mode 115H

 3 = VESA mode 118H

 4 = VESA mode 11BH

According to the mode selected, code sets the definition,

VESA mode number, and a pointer to the corresponding

object of the library module.

*/

 switch (vesa _ mode) {

 case (1):

 vesa _ mode _ num = 0x112;

 hor _ res = 640;

 vert _ res = 480;

 base _ ptr = &obj _ 112H;

 break;

 case (2):

 vesa _ mode _ num = 0x115;

 hor _ res = 800;

 vert _ res = 600;

 base _ ptr = &obj _ 115H;

 break;

 case (3):

 vesa _ mode _ num = 0x118;

 hor _ res = 1024;

Box 1. continued

continued on following page

 ���

Class Patterns and templates in Software Design

 vert _ res = 768;

 base _ ptr = &obj _ 118H;

 break;

 case (4):

 vesa _ mode _ num = 0x11b;

 hor _ res = 1280;

 vert _ res = 1024;

 base _ ptr = &obj _ 11BH;

 break;

 default:

 vesa _ mode _ num = 0x0;

 hor _ res = 0;

 vert _ res = 0;

 base _ ptr = &obj _ 112H;

 }

}

// Methods for reading and setting a screen pixel

void VesaTCLib::SetPixel(int row, int col, int attribute) {

 base _ ptr->DrawPixel(row, col, attribute);

};

void VesaTCLib::GetPixel(int row, int col) {

 base _ ptr->ReadPixel(row, col);

};

// Methods that return the mode information

int VesaTCLib::GetVesaMode() {

 return vesa _ mode _ num;

}

int VesaTCLib::GetModeVRes() {

 return vert _ res;

}

int VesaTCLib::GetModeHRes() {

 return hor _ res;

}

//***

// client code

//***

main() {

Box 1. continued

continued on following page

���

Class Patterns and templates in Software Design

// Objects of class VesaTCLib

 VesaTCLib obj _ 1(1); // Object and mode code

 VesaTCLib obj _ 2(2);

 VesaTCLib obj _ 3(3);

 VesaTCLib obj _ 4(4);

// Operations on obj _ 1, mode code 1

 cout << “\nVESA mode: “ << hex << obj _ 1.GetVesaMode();

 cout << “\nHorizontal Res: “ << dec << obj _ 1.GetModeHRes();

 cout << “\nVertical Res: “ << obj _ 1.GetModeVRes() << “\n”;

 obj _ 1.SetPixel(12, 18, 0xff00);

 obj _ 1.GetPixel(122, 133);

 cout << “\n”;

// Operations on obj _ 2, mode code 2

 cout << “VESA mode: “ << hex << obj _ 2.GetVesaMode();

 cout << “\nHorizontal Res: “ << dec << obj _ 2.GetModeHRes();

 cout << “\nVertical Res: “ << obj _ 2.GetModeVRes() << “\n”;

 obj _ 2.SetPixel(12, 18, 0xff00);

 obj _ 2.GetPixel(122, 133);

 cout << “\n”;

// Operations on obj _ 3, mode code 3

 cout << “VESA mode: “ << hex << obj _ 3.GetVesaMode();

 cout << “\nHorizontal Res: “ << dec << obj _ 3.GetModeHRes();

 cout << “\nVertical Res: “ << obj _ 3.GetModeVRes() << “\n”;

 obj _ 3.SetPixel(12, 18, 0xff00);

 obj _ 3.GetPixel(122, 133);

 cout << “\n”;

// Operations on obj _ 4, mode code 4

 cout << “VESA mode: “ << hex << obj _ 4.GetVesaMode();

 cout << “\nHorizontal Res: “ << dec << obj _ 4.GetModeHRes();

 cout << “\nVertical Res: “ << obj _ 4.GetModeVRes() << “\n”;

 obj _ 4.SetPixel(12, 18, 0xff00);

 obj _ 4.GetPixel(122, 133);

 cout << “\n”;

 return 0;

}

Box 1. continued

continued on following page

 ���

Class Patterns and templates in Software Design

void VesaTCLib::SetPixel(int row, int col,

int atts) {

 base _ ptr->DrawPixel(row, col, attri-

bute);

};

void VesaTCLib::GetPixel(int row, int

col) {

 base _ ptr->ReadPixel(row, col);

};

The processing in this case is done with a
smaller processing overhead. The principal advan-
tage of the new class design and implementation
can be summarized as follows:

1. Contingency code to select the correspond-
ing mode-dependant, pixel-level primitives
is now located in the constructor; therefore, it
executes only when the object is created.

2. Client code does not need to perform the
mode selection operations, which have been
transferred to the library classes.

3. Client code does not see or access the class
inheritance structure since the pixel-level
operations are handled transparently.

developing the pattern

In the previous sections we addressed a program-
ming problem and found one possible solution
that could be implemented in code. We also
constructed a class diagram that reflects the
relationships and associations of this solution
in object-oriented terms. In order to make this
solution easier to reuse we can eliminate all the
case-specific elements from both the pattern and
the coded example. Furthermore, the resulting
abstraction can be given a name that provides an
easy reference to the particular case.

In selecting a name for a design pattern we must
carefully consider its purpose and applicability.
Observe that the class structure for constructing
the VESA true color library is probably applicable

to many programming problems that are not re-
lated to computer graphics, or even to libraries.
Its fundamental purpose is to provide an interface
to an inheritance structure so that its operational
details are hidden from client code. Since interface
is too general a term, we could think of the word
concealer in this context. For the lack of a better
term we call this pattern a concealer, since its
purpose is to conceal an inheritance structure so
that its existence and operation are made trans-
parent to the client. Figure 4 shows the concealer
pattern in a more abstract form.

unifying dissimilar Interfaces

A simple but frequent design problem is to present
a unified and friendly interface to a set of classes
that perform different operations, for example, a
set of classes that calculates the area of different
geometrical figures, such as a parallelogram, a
circle, a rectangle, and a square. The formula
for the area of a parallelogram requires three
parameters: the base, the side, and the included
angle. The area of the circle and the square require
a single parameter, in one case the radius and in
the other one the side. The area of a rectangle
requires two: the length and the width. Our task
is to provide the client with a single interface to
the calculation of the area of any one of these
four geometrical figures. This class structure is
known as a unifier pattern.

In the previous example the implementation
could be based on the client passing four param-
eters. The first one is a signature code indicating
the geometrical figure, the other three parameters
hold the pertinent dimensional information. By
convention, we agree that unnecessary parameters
are set to NULL. The class diagram in Figure 5
represents one possible solution.

In the case of Figure 5 the method selection
is based on an object of the corresponding class,
therefore, it is a case of object composition. An
alternative implementation could easily be based
on pointers instead of object instances. Program

���

Class Patterns and templates in Software Design

Client

Derived� Derived�

MethodA() = 0MethodB()
. . .

*base_ptr

MethodA() MethodA()

BaseConcealer

Figure 4. A Concealer pattern

Figure 5. Implementing an interface class

C lient

R ec tang le

no t v is ib le to cl ie nt

P ara l le logram

G etA re a()

A re a()
A re a()

fig_ty pe
param 1
param 2
param 3

param 1
param 2

param 1
param 2
param 3

G eo F igu re

C irc le Sq uare

A re a() A re a()

param 1 param 1

GetArea() {
 switch (fig_type) {
 case (1):
 Circle obj_cir;
 obj_cir.Area(param1);
 .
 case (2):
 .
 .

SAMP-02.CPP shows the necessary processing
in the first case (Box 2).

Note that in program SAMP-02.CPP the ob-
jects are instantiated inside the switch construct
in the GetArea() method. This ensures that only
the necessary object is created in each iteration
of GetArea(). Since the objects have local scope
their lifetime expires when GetArea() returns.
Therefore, only the necessary memory is used.

Unifier patterns have found frequent use in
modeling object-oriented frameworks. InterViews
2.6 defined a similar construct for modeling in-
terface elements such as buttons, scrollbars, and
menus (Vlissides, 1988).

an Interface pattern

By generalizing the class diagram in Figure 5
we can develop an interface pattern in which a
class provides access to other classes that imple-
ment certain functionality. Figure 6 shows this
generalization.

aggregated class hierarchies

On occasions we may need to implement a set
of classes related hierarchically. For example, a
program can draw geometrical figures, such as
circles, squares, and triangles, where each of the
figures is contained in an invisible, rectangular

 ���

Class Patterns and templates in Software Design

//***

// C++ program to illustrate implementation of an interface

// class

// Filename: SAMP-02.CPP

//***

#include <iostream.h>

#include <math.h>

#define PI 3.1415

//****************************

// classes

//****************************

//

class Circle {

public:

 float Area(float radius) {

 return (radius * radius * PI);

 }

};

class Rectangle {

public:

 float Area(float height, float width) {

 return (height * width);

 }

};

class Parallelogram {

public:

 float Area(float base, float side, float angle) {

 return (base * side * sin (angle));

 }

};

class Square {

public:

 float Area(float side) {

 return (side * side);

 }

};

Box 2.

continued on following page

���

Class Patterns and templates in Software Design

// Interface class

class GeoFigure {

private:

 int fig _ type;

 float param1;

 float param2;

 float param3;

public:

 GeoFigure(int, float, float, float);

 void GetArea();

};

// Constructor

GeoFigure::GeoFigure(int type, float data1, float data2,

 float data3) {

 param1 = data1;

 param2 = data2;

 param3 = data3;

 fig _ type = type;

};

// Implementation of GetArea() method

void GeoFigure::GetArea() {

float area;

 switch (fig _ type) {

 case (1): // Circle

 Circle obj _ cir;

 area = obj _ cir.Area(param1);

 break;

 case (2): // Rectangle

 Rectangle obj _ rec;

 area = obj _ rec.Area(param1, param2);

 break;

 case (3): // Parallelogram

 Parallelogram obj _ par;

 area = obj _ par.Area(param1, param2, param3);

 break;

 case (4): // Square

 Square obj _ sqr;

 area = obj _ sqr.Area(param1);

 break;

 }

Box 2. continued

continued on following page

 ���

Class Patterns and templates in Software Design

 cout << “The area is of this object is: “

 << area << “\n”;

};

//****************************

// main()

//****************************

main() {

 GeoFigure obj1(1, 3, NULL, NULL); // A circle object

 GeoFigure obj2(2, 12, 4, NULL); // A rectangle object

 GeoFigure obj3(3, 12, 4, 0.7); // A parallelogram object

 GeoFigure obj4(4, 3, NULL, NULL); // A square object

 cout << “\nCalculating areas of objects...\n”;

// Calculate areas

 obj1.GetArea(); // Area of circle object

 obj2.GetArea(); // Area of rectangle object

 obj3.GetArea(); // Area of parallelogram object

 obj4.GetArea(); // Area of square

 return 0;

}

Box 2. continued

Figure 6. An interface pattern

Client

Method�()

Interface

ClassA ClassB

Method�() Method�()

��0

Class Patterns and templates in Software Design

frame. Also assume that in this case the figure and
its containing frame are so related that the creat-
ing of a figure (i.e., a circle, rectangle, or triangle)
mandates the creation of its container frame.

A library of figure-drawing primitives could
be provided by means of four classes: three to
create the circle, square, and triangle figures,
and one to generate the containing frame. The
client would create an object of the corresponding
figure and then one of the frame. Alternatively,
figure-drawing classes could be linked to the
frame generation class so that for each figure
a corresponding frame object would be auto-
matically created. With this approach, the frame
generation operation is transparent to the client
and programming is simplified.

We can add complications to the preceding
example without altering its validity. For instance,
we can assume that each frame implies the creation
of another element called a border, and that the
border must be contained in still another one called
a window. Therefore, the resulting hierarchy is a
geometrical figure, contained in a frame, requir-
ing a border, which, in turn, must exist inside a
window. In this example the object structure is
mandated by the problem description since all the
classes in the hierarchy are obligatory.

A class hierarchy can be implemented in C++
by inheritance, because the creation of an object
of a derived class forces the creation of one of its
parent class. If the inheritance hierarchy consists
of more than one class, then the constructor of the
classes higher in the hierarchy are called in order
of derivation. Destructors are called in reverse
order. The program SAMP-03.CPP demonstrates
constructors and destructors in an inheritance
hierarchy (Box 3).

When program SAM12-03.CPP executes the
following messages are displayed:

Constructing a BaseA object
Constructing a Derived1 object
Constructing a Derived2 object
Destroying a Derived2 object

Destroying a Derived1 object
Destroying a BaseA object

a class hierarchy by object
composition

One way of solving the problem described at the
beginning of this section is to use inheritance. For
example, we could implement a class hierarchy in
which Circle, Square, and Rectangle were derived
from a base class called Figure. The Figure class
could contain polymorphic methods for calculat-
ing and drawing the geometrical object, as well
as methods for creating the frame, the border, and
the window. In this case the client would have
the responsibility of calling all of the required
methods. This is an example of how inheritance
often constraints programming and exposes the
underlying class structure.

Although in some cases a solution based on
class inheritance may be acceptable, it often
happens that the hierarchy of super classes is
related to a particular method of a derived class,
or to several related methods, but not to all of
them (Gamma et al., 1995). Consider the case of
several types of geometrical figures, all of which
must be part of a window, contain a border, and
be enclosed in a frame as described previously.
In this case the figure-drawing methods could be
made part of an inheritance structure; however,
the methods that produce the window, border,
and frame need not be part of the inheritance
construct since these elements are required for any
of the geometrical figures. One possible solution
is to implement a class structure in which some
methods form part of an inheritance association
while others are implemented by means of object
composition. Figure 7 shows a possible class
diagram for this case.

In Figure 7 there are two mechanisms collabo-
rating within the class structure. An inheritance
element provides polymorphic methods that can
be selected at run time in the conventional man-
ner. Simultaneously, another class hierarchy is

 ���

Class Patterns and templates in Software Design

//***

// C++ program to illustrate constructors and destructors in

// a class inheritance hierarchy

// Filename: SAMP-03.CPP

//***

#include <iostream.h>

//****************************

// classes

//****************************

class BaseA {

public:

 BaseA() {

 cout << “Constructing a BaseA object\n”;

 }

 ~BaseA() {

 cout << “Destroying a BaseA object\n”;

 }

};

class Derived1 : public BaseA {

public:

 Derived1() {

 cout << “Constructing a Derived1 object\n”;

 }

 ~Derived1() {

 cout << “Destroying a Derived1 object\n”;

 }

};

class Derived2 : public Derived1 {

public:

 Derived2() {

 cout << “Constructing a Derived2 object\n”;

 }

 ~Derived2() {

 cout << “Destroying a Derived2 object\n”;

 }

};

Box 3.

continued on following page

���

Class Patterns and templates in Software Design

based on object composition. Note that the method
Draw() of the classes Circle, Square, and Triangle,
contains an object of the class Frame. Also note
that the class Frame contains an object of Border,
which contains an object of Window. Therefore,
we can say that a circle, a square, and a triangle
are a kind of figure and that all of them have a
frame, a border, and a window. The program
SAMP-04.CPP is an implementation of the class
diagram in Figure 7 (Box 4).

Note in the program SAMP-04.CPP, as well as
in Figure 7, that it is the method named Draw() in
the concrete classes of the inheritance structure
that instantiates the object of the class higher in
the hierarchy, in this case the class named Frame.
Once this object is referenced, the remainder of
the hierarchy is produced automatically by means
of the member object mechanism. The purpose
of this construct is that the object hierarchy is
generated when the method named Draw() ex-

//****************************

// main()

//****************************

main() {

// Program creates a single object of the lower class in the

// hierarchy. Constructors and destructors of the class higher

// in the hierarchy are automatically executed.

 Derived2 obj _ d;

 return 0;

}

Box 3. continued

Figure 7. Class hierarchy by object composition

Client

not visible to client

SquareCircle Triangle

Draw()=0
Calculate()=0

Draw()

Calculate()
 Frame obj_f

Draw()

Calculate()
 Frame obj_f

Draw()

Calculate()
 Frame obj_f

Figure

FrameBorderWindow

Window obj_w Border obj_b

 ���

Class Patterns and templates in Software Design

//***

// C++ program to illustrate a class hierarchy by object

// composition

// Filename: SAMP-04.CPP

//***

#include <iostream.h>

//****************************

// classes

//****************************

class Window {

public:

Window() {

 cout << “Creating a window\n”;

 }

};

class Border {

private:

 Window obj _ w; // Border class contains Window object

public:

 Border() {

 cout << “Drawing a border\n”;

Box 4.

continued on following page

ecutes, not when an object of the lower classes is
instantiated. We can certify this operation when
the program executes.

There may be cases in which we prefer that the
hierarchy of super classes be instantiated at the
time that the object of the lower class is created.
In the example in Figure 7 this could be achieved
by having a member object of the Frame class in
the base class named Figure.

a chain reaction pattern

In the class diagram of Figure 7 we note that when
the lower classes (Circle, Square, and Triangle)

instantiate an object of the class higher in the hi-
erarchy, they start a chain reaction that produces
objects of the entire hierarchy. We can abstract
this operation by means of a class diagram that
focuses exclusively on the chain reaction element,
as is the case in Figure 8.

In Figure 8 we have implemented chaining
by referencing the first chained object within a
method of the Chainer class, and then by member
objects of the chained classes. There are many
other ways of implementing a chain reaction
effect.

���

Class Patterns and templates in Software Design

 }

};

class Frame {

private:

 Border obj _ b; // Frame class contains Border object

public:

 Frame() {

 cout << “Drawing a frame\n”;

 }

 virtual void Draw() { return; };

};

// Abstract class

class Figure {

public:

 virtual void Draw() = 0;

 virtual void Calculate() = 0;

};

// Circle, Triangle and Square are at the bottom of the class

// hierarchy

class Circle : public Figure {

public:

 virtual void Draw() {

 Frame obj _ f;

 cout << “Drawing a circle\n”;

 }

 virtual void Calculate() {

 cout << “Calculating a circle\n”;

 }

};

class Square : public Figure {

public:

 virtual void Draw() {

 Frame obj _ f;

 cout << “Drawing a square\n”;

 }

 virtual void Calculate() {

 cout << “Calculating a square\n”;

 }

Box 4. continued

continued on following page

 ���

Class Patterns and templates in Software Design

};

class Triangle : public Figure {

public:

 virtual void Draw() {

 Frame obj _ f;

 cout << “Drawing a triangle\n”;

 }

 virtual void Calculate() {

 cout << “Calculating a triangle\n”;

 }

};

//****************************

// main()

//****************************

main() {

 Figure *base _ ptr; // Pointer to base class

 Circle obj _ c; // Circle, Square, and Triangle

 Square obj _ s; // objects

 Triangle obj _ t;

 cout << “\n\n”;

 base _ ptr = &obj _ c; // Draw a circle and its hierarchical

 base _ ptr->Draw(); // super classes

 cout << “\n”;

 base _ ptr = &obj _ s; // Draw a square and its hierarchical

 base _ ptr->Draw(); // super classes

 cout << “\n”;

 base _ ptr = &obj _ t; // Draw a triangle and its hierarchical

 base _ ptr->Draw(); // super classes

 cout << “\n”;

 base _ ptr->Calculate(); // Calculate() method does not generate

 // an object hierarchy

 return 0;

}

Box 4. continued

���

Class Patterns and templates in Software Design

object chaining

A programming problem often encountered con-
sists of determining which, if any, among a pos-
sible set of actions has taken place. For example,
an error handling routine posts the corresponding
messages and directs execution according to the
value of an error code. A common way of perform-
ing the method selection is by contingency code
that examines the error code and determines the
corresponding action. In C++ this type of selec-
tion is usually based on a switch construct or on
a series of nested if statements. Alternatively,
we can use object composition to create a chain
in which each object examines a code operand
passed to it. If it corresponds to the one mapped
to its own action, then the object performs the
corresponding operation, if not, it passes along
the request to the next object in a chain. The last
object in the chain returns a special value if no
valid handler is found.

One of the advantages of using an object chain
is that it can be expanded simply by inserting
new object handlers anywhere along its mem-
bers. To expand a selection mechanism based
on contingency code we usually have to modify
the selecting method by recoding the switch or
nested if statements.

an object chain example

A slightly more complicated case is one in which
the selected object must return a value back to the
original caller. For example, we define a series of
classes that perform arithmetic operations which
take two operands. The classes are called Addi-
tion, Subtraction, Multiplication, and Division. An
operation code is furnished as a third parameter
to a class called Operation, containing a method
called SelectOp() that calls the Add method in the
first object in the chain. In this case the object is
of the Addition class. Add() examines the opcode
operand; if it corresponds to the add operation,
add executes and returns the sum to the caller.
If not, it passes the object to Subtract, which
proceeds in a similar fashion. Figure 9 shows the
class structure for this example.

The program SAMP-05.CPP shows the pro-
cessing details for implementing an object chain
(Box 5).

an object chain pattern

We can generalize the example of an object chain
in Figure 9 and abstract its basic components. In
this case the fundamental characteristic of the
class structure is a series of related methods, each
one of which inspects a program condition that
determines whether the method is to respond with
a processing action or pass the request along to

Figure 8. A chain reaction pattern

Client

Chainer

ChainedA

MethodA()
 ChainedA obj_A

ChainedB

ChainedX obj_X ChainedB obj_B

 ���

Class Patterns and templates in Software Design

Figure 9. Class diagram for an object chain

Client

SelectOp()

Operation

AdditionSubtractionMultiplication

Division

Sub()Mult()

Div()

Add()

 .
float Sub(p1, p2, opcode){
 if (opcode == 2)
 return p1 - p2;
 else
 return(objm.Mult(p1,
 p2, opcode);
 .
 .

the next object in the chain. Figure 10 is a class
diagram for an object chain pattern.

StrIng handLIng cLaSS
tempLate

The solution of some program development
problems is based on patterns of interacting
classes and objects, while others simply require
a description of the internal structure of a single
class. In this case we speak of a class template.
For example, programs that deal with strings or
that perform substantial string manipulations
could profit from a particular class design that is
optimized for string handling.

String operations

A string that is defined at run time is sometimes
difficult to store as an array since its length may
not be known beforehand. The C++ new and de-
lete operators can be used to allocate memory in

the free store area, but it is easier to implement a
class that performs all string-handling operations
consistently and efficiently, rather than to create
and delete each string individually. Implement-
ing a string-handling class is possible because
the new and delete operators can be used from
within member functions and pointers are valid
class members.

String operations often require knowing the
string’s length. The strlen() function defined in
the string.h header file returns this value. Alter-
natively, we can implement a string as an object
that contains a pointer to a buffer that holds the
string itself and a variable that represents its
length. A parameterized constructor can take care
of initializing the string object storage using the
new operator as well as its length parameter. The
contents of the string passed by the caller are then
copied into its allocated storage. This operation
determines that the two data members associated
with each string object are stored independently,
however, they remain associated to the object and
can be readily accessed as a pair.

���

Class Patterns and templates in Software Design

//***

// C++ program to illustrate an object chain

// Filename: SAMP-05.CPP

//***

#include <iostream.h>

//****************************

// classes

//****************************

class Division {

public:

 float Div(float param1, float param2, int opcode) {

 if (opcode == 4)

 return (param1 / param2);

 else

 return 0;

 }

};

class Multiplication {

private:

 Division obj _ div;

public:

 float Mult(float param1, float param2, int opcode) {

 if (opcode == 3)

 return (param1 * param2);

 else

 return (obj _ div.Div(param1, param2, opcode));

 }

};

class Subtraction {

private:

 Multiplication obj _ mult;

public:

 float Sub(float param1, float param2, int opcode) {

 if (opcode == 2)

 return (param1 - param2);

 else

Box 5.

continued on following page

 ���

Class Patterns and templates in Software Design

 return (obj _ mult.Mult(param1, param2, opcode));

 }

};

class Addition {

private:

Subtraction obj _ sub;

public:

 float Add(float param1, float param2, int opcode) {

 if (opcode == 1)

 return (param1 + param2);

 else

 return (obj _ sub.Sub(param1, param2, opcode));

 }

};

class Operation{

private:

 float param1;

 float param2;

 int opcode;

 Addition obj _ add;

public:

 Operation(float val1, float val2, int op) {

 param1 = val1;

 param2 = val2;

 opcode = op;

 }

 float SelectOp() {

 return (obj _ add.Add(param1, param2, opcode));

 }

};

//****************************

// main()

//****************************

main() {

 Operation obj _ 1(12, 6, 1); // Declaring objects of the

 Operation obj _ 2(12, 6, 2); // four established opcodes

 Operation obj _ 3(12, 6, 3);

 Operation obj _ 4(12, 6, 4);

Box 5. continued

continued on following page

��0

Class Patterns and templates in Software Design

 cout << “\n”;

// Performing operation on objects

 cout << “Operation on obj _ 1: “ << obj _ 1.SelectOp() << “\n”;

 cout << “Operation on obj _ 2: “ << obj _ 2.SelectOp() << “\n”;

 cout << “Operation on obj _ 3: “ << obj _ 3.SelectOp() << “\n”;

 cout << “Operation on obj _ 4: “ << obj _ 4.SelectOp() << “\n”;

 return 0;

}

Box 5. continued

Client

ObjectChainer

ClassB

ClassA obj_a

ClassB obj_bClassX obj_x

ClassA

MethodA()

MethodB()

MethodC()

MethodA(cond){
 if(cond)
 .
 .
 else
 obj_a.MethodB()

Figure 10. Object chain pattern

In addition to the parameterized constructor,
the proposed class could have a default construc-
tor that initializes both data members to zero
whenever it is necessary. An explicit destructor
method is also required in this case. The fact that
the new operator is used to allocate space for
the string buffer implies that the delete operator
must be used to free the allocated memory. Other
useful methods would be to get the length of the
string and to insert a character in a string, to read
a string character by specifying its index, and to
append a new string to an existing one. Additional
functionalities can be added by editing the class or
by inheriting its methods. Figure 11 class diagram
can serve as a template in this case.

The following program (Box 6) implements
the string handling class template of Figure 11.

comBInIng functIonaLItIeS

In the implementation of libraries, toolkits, and
application frameworks (Deutsch, 1989) we
often come across a situation in which a given
functionality is scattered among several classes.
Rather than giving a client access to each one of
these individual classes it is often a reasonable
alternative to combine several methods into a
single class which can then be presented and
documented as standard interface.

 ���

Class Patterns and templates in Software Design

a mixer pattern

One of the practical uses of multiple inheritance
is in combining functionalities by creating a class
that inherits from two or more classes. The inherit-
ing class serves to mix and unify the methods of
the participating base classes. The class in Figure
12 shows a pattern based on multiple inheritance
into a mixer class.

The following code fragment shows how to
implement multiple inheritance in the case of the
mixer class in Figure 12:

// Multiple inheritance

class Mixer : public ClassA, public ClassB,

public ClassC {

 // Implementation

};

When implementing multiple inheritance we
must be careful to avoid situations which could
lead to resolution conflicts; for example, inheriting
a method that has the same name and interface in
the parent classes, or inheriting multiple copies
of the same method.

an oBject-cLaSSIfIer
tempLate

The objects in a class need not have identical
signatures. A class can contain several param-
eterized constructors that create objects with
different numbers or types of parameters. In this
sense the constructors serve as object classifiers
since each constructor executes according to the
object’s signature. The constructor can also store
the object’s type in a variable so that the object
can be declassified during processing. For ex-
ample, we wish to provide a class that calculates
the area of various types of geometrical figures.
Some figures such as the square require a single
parameter, other figures such as the rectangle,
have two parameters, and still others like the
parallelogram have three parameters. If there
is a parameterized constructor for each object
signature, then the processing is automatically
directed to the corresponding constructor, which
can also preserve the object’s type by storing an
associated code. This action of the constructor is
consistent with the notion of function overloading.

Figure 11. String handler class template

Client

String

String()
~String()
String(*s tring)
InsertChar()
GetChar()
AppendStr()
GetLength()
Display()

str_len
*str_buf

// Parameterized constructor
String(char * s){
 str_len = strlen(s);
 str_buf = new char[str_len + 1];
 strcpy (str_buf, s);
}
 .
 .

���

Class Patterns and templates in Software Design

Processing routines can dereference the object
type and proceed accordingly.

Implementing the Object Classifier

The following program (Box 7) shows the process-
ing for implementing a class named GeoFigure
with four constructors: a default constructor that
zeroes all the variables, and three parameterized
constructors, one for each object signature. The

constructors of the GeoFigure class perform object
classification as the objects are created.

Observe in the program SAMP-07.CPP that
processing operations that are often the client’s
burden are now handled by the class. The clas-
sifier class encapsulates knowledge about each
object type, which is encoded and preserved
with its signature. Thereafter, client code need
not classify objects into squares, rectangles, or
parallelograms, since this information is held

ClassA

Method�()

ClassB

Method�()

ClassC

Method�()

Mixer

Method�()
Method�()
Method�()

Figure 12. Mixer pattern for combining disperse functionalities

//***

// C++ class template for an object classifier class

// Filename: SAMP-07.CPP

//***

#include <iostream.h>

#include <math.h>

//****************************

// classes

//****************************

class GeoFigure {

private:

 float dim1;

 float dim2;

Box 7.

continued on following page

 ���

Class Patterns and templates in Software Design

 float dim3;

 int fig _ type;

public:

// Declaration of four constructors for GeoFigure class

 GeoFigure();

 GeoFigure(float);

 GeoFigure(float, float);

 GeoFigure(float, float, float);

// Area() method uses object signature

 float Area();
};

// Parameterless constructor

GeoFigure::GeoFigure() {

 dim1 = 0;

 dim2 = 0;

 dim3 = 0;

 fig _ type = 0;

}

// Constructor with a single parameter

GeoFigure :: GeoFigure(float x){

 dim1 = x;

 fig _ type = 1;

}

// Constructor with two parameters

GeoFigure :: GeoFigure(float x, float y){

 dim1 = x;

 dim2 = y;

 fig _ type = 2;

}

// Constructor with three parameters

GeoFigure :: GeoFigure(float x, float y, float z){

 dim1 = x;

 dim2 = y;

 dim3 = z;

 fig _ type = 3;

}

float GeoFigure::Area() {

 switch (fig _ type) {

 case (0):

Box 7.

continued on following page

���

Class Patterns and templates in Software Design

 return 0;

 case (1):

 return dim1 * dim1;

 case (2):

 return dim1 * dim2;

 case (3):

 return dim1 * (dim2 * sin(dim3));

 }

 return 0;

 }

Box 7.

//****************************

// main()

//****************************

main() {

 GeoFigure fig0; // Objects with different signatures

 GeoFigure fig1(12);

 GeoFigure fig2(12, 6);

 GeoFigure fig3(12, 6, 0.6);

// Calculating areas according to object signatures

 cout << “\nArea of fig1: “ << fig1.Area();

 cout << “\nArea of fig2: “ << fig2.Area();

 cout << “\nArea of fig3: “ << fig3.Area();

 cout << “\nArea of fig0: “ << fig0.Area() << “\n”;

 return 0;

}

in the class and handled transparently by its
methods. The objects created by the classifier
class know not only their dimensions but also
their geometrical type, which in turn defines the
processing operations necessary for performing
calculations such as the area.

A classifier class is appropriate whenever
there are objects with different signatures and
their signatures determine the applicable pro-
cessing operations or methods. Figure 13 is a
generalized diagram for a classifier class; it can
serve as a template for implementing this type
of processing.

compoSIng mIxed oBjectS

Libraries, toolkits, and frameworks often provide
two types of services to a client. A first level ser-
vice performs the more elementary operations.
A second-level service, called an aggregate or
composite, allows combining several primitives
to achieve a joint result. The pattern is referred
to as a composite pattern. The composite is based
on the notion of a Glyph, which is a class that
encompasses all objects in

a document (Calder, 1990). Composite pat-
terns are found in most object-oriented systems,

 ���

Class Patterns and templates in Software Design

including the original View class of Smalltalk
(Krasner & Pope, 1988). Also in financial appli-
cations, aggregation of assets in a portfolio have
been modeled using a Composite class (Birrer &
Eggenschwiler, 1993).

a graphics toolkit

For example, a drawing program provides primi-
tives for drawing geometrical figures such as lines,
rectangles, and ellipses, for displaying bitmaps,
and for showing text messages. A second-level
function (the composite) allows combining of
the primitive elements into a single unit that is
handled as an individual program component. In
the context of graphics programming, the term
“descriptor” is often used to represent a drawing
primitive and the term “segment” to represent a
composite that contains one or more primitives.

Often a toolkit designer gives access to both
the primitive and composite functions. In other
words, the programmer using the drawing toolkit
mentioned in the preceding paragraph would be

able to create drawings that contained any com-
bination of primitive and composite objects using
a single, uniform, interface. In this example it
may be useful to think of a composite as a list of
instructions that includes the methods of one or
more primitives. Figure 14 shows an image that
contains both primitive and composite objects.
The composite objects consist of a rectangle, a
bitmap, an ellipse, and a text message. The primi-
tive objects are text, a rectangle, and an ellipse.

The class structure for the sample toolkit could
consist of a class for every one of the primitive
operations and a composite class for combining
several primitives into a drawing segment. An
abstract class at the top of the hierarchy can serve
to define an interface. Figure 15 shows the class
structure for the graphics toolkit.

Note in Figure15 that the abstract class Image
provides a general interface to the toolkit. The
class Segment contains the implementation of the
segment-level operations, the methods CreateSeg-
ment(), DeleteSegment(), and DrawSegment().
The drawing primitives are the leaves of the tree

Figure 13. Object classifier class template

Client

Classifier

Classifier()
Classifier(type)
Classifier(type, type)
Classifier(type, type, type)
MethodA()

dim�
dim�
dim�
obj_type

// Parameterized constructor
Classifier(int x, int y){
 dim1 = x;
 dim2 = y;
 obj_type = 2;
}
 .
 .

���

Class Patterns and templates in Software Design

Figure 14. Primitive and composite objects in a graphics toolkit

Figure 15. Tree structure for creating simple and composite objects

race car at Indianapolis �00

sample text message

composite
object

primit ive
objects

Image

Segment

Client

Segment ptr_ar[]
segment_size

CreateSegment() = 0
DeleteSegment() = 0
DrawSegment() = 0
Draw() = 0

CreateSegment()
DeleteSegment()
DrawSegment()
Draw()

Line

Draw()

Rectangle

Draw()

Ellipse

Draw()

Bitmap

Draw()

Text

Draw()

 ���

Class Patterns and templates in Software Design

structure. Program SAMP-08.CPP (Box 8) is a
partial implementation of the class diagram in
Figure 15. Note that the classes Bitmap and Text
were omitted in the sample code.

In the program SAMP-08.CPP the segment
operation is based on an array of pointers. For
this mechanism to work we need to implement
run-time polymorphism since the composite (each
instance of the Segment class) is created during
program execution. In C++ run-time polymor-
phism can be achieved by inheritance and virtual
functions. In this case the function Draw() is a
pure virtual function in the abstract class Im-
age, a virtual function in the class Segment, and
is implemented in the leaf elements of the tree,
which are the classes Line, Rectangle, and Ellipse.
By making Draw() a simple virtual function we
avoid making Segment into an abstract class.
Therefore we can instantiate objects of Segment
and still access the polymorphic methods in the
leaf classes.

The actual code for implementing an array of
pointers to objects has several interesting points.
The array is defined in the private group of the
Segment class, as follows:

Segment *ptr _ ar[100];

This creates an array of pointers to the class
Segment, and assigns up to 100 possible entries
for each instantiation. The actual pointers are
inserted in the array when the user selects one
of the menu options offered during the execution
of CreateSegment(). At this time a pointer to the
Segment base class is reset to one of the derived
classes, one of the Draw() methods at the leaves
of the inheritance structure. The selected method
is then placed in the pointer array named ptr_ar[].
For example, if the user selected the r (rectangle)
menu option the following lines would instantiate
and insert the pointer:

case (‘r’):

 ptr _ ss = &obj _ rr; // Base pointer

set to derived object

 ptr _ ar[n] = ptr _ ss; // Pointer placed

in array

 n++; // Array index is bumped

 break;

Although it may appear that the same effect
could be achieved by using a pointer to the method
in the derived class, this is not the case. In this
application a pointer to a derived class will be
unstable and unreliable.

At the conclusion of the CreateSegment()
method it is necessary to preserve with each object
a count of the number of points that it contains.
The seg_size variable is initialized to the number
of pointers in the array in the statement:

seg _ size = n;

At the conclusion of the CreateSegment()
method, the array of pointers has been created
and initialized for each object of the Segment
class, and the number of pointers is preserved in
the variable seg_size. Executing the segment is
a matter of recovering each of the pointers in a
loop and executing the corresponding methods
in the conventional manner. The following loop
shows the implementation:

for(int x = 0; x < seg _ size; x++)

 ptr _ ar[x]->Draw();

pattern for an oBject
factory

By eliminating all the unnecessary elements in
the class structure of Figure 15 we can construct
a general class pattern for creating simple and
composite objects. This version of the Composite
class can be considered as a simple object factory
which uses an array to store one or more pointers
to objects. In addition, each object of the Com-
posite class keeps count of the number of pointers

���

Class Patterns and templates in Software Design

//***

// C++ program to illustrate the creation of simple and

// composite objects

// Filename: SAMP-08.CPP

//***

#include <iostream.h>

#include <stdlib.h>

#include <conio.h>

//****************************

// classes

//****************************

// Image class provides a general interface

class Image {

public:

 void virtual CreateSegment() = 0;

 void virtual DrawSegment() = 0;

 void virtual Draw() = 0;

};

class Segment : public Image {

private:

 Segment *ptr _ ar[100]; // Array of pointers

 int seg _ size; // Entries in array

public:

 void CreateSegment();

 void DrawSegment();

 void DeleteSegment();

 void virtual Draw() { return; };

};

class Rectangle : public Segment {

public:

 void Draw() { cout << “\ndrawing a rectangle”; }

};

class Ellipse : public Segment {

public:

 void Draw() { cout << “\ndrawing an ellipse”; }

Box 8.

continued on following page

 ���

Class Patterns and templates in Software Design

};

class Line : public Segment {

public:

 void Draw() { cout << “\ndrawing a line”; }

};

// Implementation of methods in Segment class

void Segment::CreateSegment() {

 char select;

 int n = 0; // Entries in the array

// Objects and pointers

 Segment obj _ ss;

 Segment *ptr _ ss;

 Line obj _ ll;

 Rectangle obj _ rr;

 Ellipse obj _ ee;

 cout << “\n opening a segment...\n”;

 cout << “Select primitive or end segment: “

 << “\n l = line”

 << “\n r = rectangle”

 << “\n e = ellipse”

 << “\n x = end segment”

 << “\n SELECT: “;

 do {

 select = getche();

 switch(select) {

 case (‘l’):

 ptr _ ss = &obj _ ll;

 ptr _ ar[n] = ptr _ ss;

 n++;

 break;

 case (‘r’):

 ptr _ ss = &obj _ rr;

 ptr _ ar[n] = ptr _ ss;

 n++;

 break;

 case (‘e’):

 ptr _ ss = &obj _ ee;

 ptr _ ar[n] = ptr _ ss;

 n++;

Box 8. continued

continued on following page

��0

Class Patterns and templates in Software Design

 break;

 case (‘x’):

 break;

 default:

 cout << “\nInvalid selection - program terminated\n”;

 exit(0);

 }

 }

 while(select != ‘x’);

 seg _ size = n;

 cout << “\n closing a segment...”;

}

void Segment::DrawSegment() {

 cout << “\n displaying a segment...”;

 for(int x = 0; x < seg _ size; x++)

 ptr _ ar[x]->Draw();

 cout << “\n end of segment display ...”;

 return;

}

//****************************

// main()

//****************************

main() {

 Segment obj _ s;

 Line obj _ l;

 Rectangle obj _ r;

 Ellipse obj _ e;

// Creating and drawing a segment

 cout << “\n\nCalling CreateSegment() method”;

 obj _ s.CreateSegment();

 obj _ s.DrawSegment();

// Drawing individual objects

 obj _ l.Draw();

 obj _ r.Draw();

 obj _ e.Draw();

 return 0;

}

Box 8. continued

 ���

Class Patterns and templates in Software Design

in the array. This count is used in dereferencing
the pointer array.

Alternatively, the pointer array can be imple-
mented without keeping a pointer counter by
inserting a NULL pointer to mark the end of
the array. This NULL pointer then serves as a
marker during dereferencing. In either case, the
corresponding methods in the leaf classes are
accessed by means of the pointers in the array.
Method selection must be implemented by dy-
namic binding. In C++ the polymorphic method
must be virtual in the composite class. The pattern
is shown in Figure 16.

A Simplified Implementation

We can simplify the concept of primitive and
composite objects, as well as their implementation
in code, by allowing a composite that consists of a
single primitive object. For example, if in Figure
15 we permit a segment that consists of a single
primitive, then the client needs never to access
the primitives directly. This makes the interface
less complicated. In many cases this option should
be examined at design time.

recurSIve compoSItIon

In previous sections we considered the case of a
composite class that contains simple or composite
objects. We also looked at the alternative of a
composite object that consists of a single primitive
as a way of simplifying the interface. However,
we have not yet considered the possibility of a
composite object containing another composite
(Gamma et al., 1995). Based on the class structure
shown in Figure 15 we can construct an object
diagram in which a Segment can contain another
Segment as shown in Figure 17. Note that in this
case we have preserved the distinction between
primitives and composites.

Implementation considerations

In the previous example recursive composition is
based on a nested reference to the CreateSegment()
method of the Segment class. However, recursion
is often accompanied by a new set of problems;
this case is no exception. The first consideration
is to access the CreateSegment() method. Three
possibilities are immediately evident:

Composite

Client

Composite *ptr_array[]
array_element_count

CreateComposite()
DeleteComposite()
CompositeMethod()
LeafMethod()

Leaf�

LeafMethod()

Leaf�

LeafMethod()

Figure 16. Pattern for an object factory class

���

Class Patterns and templates in Software Design

1. Since CreateSegment() is called from within
the class, it can be referenced without in-
stantiating a specific object.

2. We can access the CreateSegment() method
by means of a this pointer. In fact, this is
a different syntax but has the same result
as the previous case. In both instances the
current object is used.

3. We can create a new object and use it to
access the CreateSegment() method.

Which method is suitable depends on the prob-
lem to be solved. Figure 18 shows a class diagram

for recursively accessing the CreateSegment()
method using the original object.

The program SAMP-09.CPP (Box 9) shows
the implementation of the class diagram in Fig-
ure 18.

Several points in the code merit comment. In
the first place notice that recursion occurs on the
same object originally referenced at call time.
This is accomplished by means of the C++ this
pointer, in the following statement:

this->CreateSegment();

Figure 17. Object diagram for recursive composition

aSegment

aLine

aLine

aRectangle

aRectangle

aSegment

aLine

anEllipse

Figure 18. Class diagram for recursive composition

Segment

Client

Segment ptr_ar[]
segment_size

CreateSegment()
DeleteSegment()
DrawSegment()
Draw()

Line

Draw()

Rectangle

Draw()

Ellipse

Draw()

 ���

Class Patterns and templates in Software Design

//***

// C++ program to illustrate recursive composition

// Filename: SAMP-09.CPP

//***

#include <iostream.h>

#include <stdlib.h>

#include <conio.h>

//****************************

// classes

//****************************

class Segment {

private:

 Segment *ptr _ ar[100];

 int seg _ size; // Entries in array

public:

 void CreateSegment();

 void DrawSegment();

 void DeleteSegment();

 void virtual Draw() { return; };

};

class Rectangle : public Segment {

public:

 void Draw() { cout << “\ndrawing a rectangle”; }

};

class Ellipse : public Segment {

public:

 void Draw() { cout << “\ndrawing an ellipse”; }

};

class Line : public Segment {

public:

 void Draw() { cout << “\ndrawing a line”; }

};

// Global variable for controlling recursive implementation

// of the CreateSegment() method

 int n;

 int instance = 0;

Box 9.

continued on following page

���

Class Patterns and templates in Software Design

// Implementation of methods in Segment class

void Segment::CreateSegment() {

 char select;

// Entries in the array

// Objects and pointers

 Segment obj _ ss; // An object

 Segment *ptr _ ss; // Pointer to object

 Line obj _ ll; // Object list

 Rectangle obj _ rr;

 Ellipse obj _ ee;

 if(instance == 0)

 n = 0;

 cout << “\n opening a segment...\n”;

 cout << “Select primitive or end segment: “

 << “\n l = line”

 << “\n r = rectangle”

 << “\n e = ellipse”

 << “\n n = nested segment”

 << “\n x = end segment”

 << “\n SELECT: “;

 do {

 select = getche();

 switch(select) {

 case (‘l’):

 ptr _ ss = &obj _ ll; // Pointer to object initialized

 ptr _ ar[n] = ptr _ ss; // and stored in array

 n++;

 break;

 case (‘r’):

 ptr _ ss = &obj _ rr;

 ptr _ ar[n] = ptr _ ss;

 n++;

 break;

 case (‘e’):

 ptr _ ss = &obj _ ee;

 ptr _ ar[n] = ptr _ ss;

 n++;

 break;

 case (‘n’):

Box 9. continued

continued on following page

 ���

Class Patterns and templates in Software Design

 cout << “\n nested segment...”;

 instance = 1;

 this->CreateSegment();

 cout << “\n nested segment closed ...”;

 cout << “\n SELECT: “;

 continue;

 case (‘x’):

 break;

 default:

 cout << “\nInvalid selection - program terminated\n”;

 exit(0);

 }

 }

 while(select != ‘x’);

 seg _ size = n;

 cout << “\n closing a segment...”;

 instance = 0; // Reset instance control

}

void Segment::DrawSegment() {

 cout << “\n displaying a segment...”;

 for(int x = 0; x < seg _ size; x++)

 ptr _ ar[x]->Draw();

 cout << “\n end of segment display ...”;

 return;

}

//****************************

// main()

//****************************

main() {

 Segment obj _ s;

// Creating and drawing a segment with possible nested

// segments

 cout << “\n\nCalling CreateSegment() method”;

 obj _ s.CreateSegment();

 obj _ s.DrawSegment();

 return 0;

}

Box 9. continued

���

Class Patterns and templates in Software Design

Figure 19. Pattern for recursive composition

Composite

Client

Composite *ptr_array[]
array_element_count

CreateComposite()
DeleteComposite()
CompositeMethod()
LeafMethod()

Leaf�

LeafMethod()

Leaf�

LeafMethod()

The CreateSegment() method could have been
accessed without the this pointer since it is allowed,
within the same class, to access methods directly.
When CreateSegment() is accessed recursively,
all the local variables are automatically reinitial-
ized. Since the program requires a count of the
number of pointers in the pointer array, we made
the iteration counter (variable n) a global variable
and created a switch variable named instance.
This variable is set to 1 when CreateSegment()
is called recursively, determining that counter
variable n is not cleared on entry to the method.
The result is that n holds the number of pointers
inserted in the pointer array, whether they were
entered directly or recursively.

a recursion pattern

The pattern for recursive composition is similar
to the one in Figure 16, except that in recursion
there is an arrow pointing to the same composite
class. This is shown in Figure 19.

concLuSIon

Software design is one of the most laborious and
time-consuming phases of program develop-

ment. In object-oriented systems design reuse is
based on classes and object structures that solve
a particular design problem and on the assump-
tion that these class structures can be applied to
other similar problems. The most recent approach
to design reuse is based on class associations and
relationships called patterns or object models. In
this sense a programming problem is at the origin
of every pattern.

We have described the use of design patterns
and template classes as reusable components
in program design. The discussion has been
complemented with class diagrams and examples
implemented in code. The chapter introduces the
notion of a class template as a structure that de-
scribes functionality and object relations within
a single class, while patterns refer to structures
of communicating and interacting classes.

referenceS

Alexander, C., Ishikawa, S., Silverstein, M.,
Jacobson, M., Fiksdahl-King, I., & Angel, S.
(1977). A pattern language. New York: Oxford
University Press.

Beck, K., & Johnson, R. (1994, July). Patterns
generate architectures. Paper presented at

 ���

Class Patterns and templates in Software Design

the European Conference on Object-Oriented
Programming, Bologna, Italy (pp. 139-149).
Springer-Verlag.

Birrer, A., & Eggenschwiler, T. (1993, July).
Frameworks in the financial engineering do-
main: An experience report. Paper presented at
the European Conference on Object-Oriented
Programming, Kaiserslautern, Germany (pp.
21-35). Springer-Verlag.

Calder, P. R., & Linton, M. A. (1992, October).
The object-oriented implementation of a document
editor. Paper presented at the Object-Oriented
Programming Systems, Languages, and Applica-
tions Conference Proceedings, Vancouver, British
Columbia, Canada (pp. 1-15). ACM Press.

Coplien, J. O. (1992). Advanced C++ program-
ming styles and idioms. Reading, MA: Addison-
Wesley.

Deutsch, L. P. (1989). Design reuse and frame-
works in the Smalltalk-80 system. Software reus-
ability, Volume II: Applications and experience
(pp 57-71). Reading, MA: Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1995). Design patterns: Elements of reusable
object-oriented software. Reading, MA: Ad-
dison-Wesley.

Krasner, G. E., & Pope, S. T. (1988, August/Sep-
tember). A cookbook for using the model-view
controller user interface paradigm in Smalltalk
80. Journal of Object-Oriented Programming,
1(3)26-49.

Vlissides, J. M., & Linton, M. A. (1990, July).
Unidraw: A framework for building domain-
specific graphical editors. ACM Transactions on
Information Systems, 8(3), 237-269.

key termS

Concealer Pattern: A class pattern designed
to hide an inheritance structure so that its ex-
istence and operation becomes transparent to
client code.

Chain Reaction Pattern: A class pattern that
focuses on the property of classes that instanti-
ate objects of other classes higher in the class
hierarchy, thus starting a chain reaction in the
production of objects.

Class Template: A structure of interactive
objects that implements a particular functionality
within a single class.

Design Pattern: A structure of interactive
classes and communicating objects that provide
a solution to a software design problem.

Interface Pattern: A pattern that provides
access to other classes that implement a desired
functionality.

Mixer Pattern: A class that inherits from two
or more classes, thus providing a unified interface
to the methods and objects in these classes.

Object Chaining: A chain of objects that
successively examines an operand pass to them
and makes some decision based on the result of
this examination.

Object Classifier: A template for a class with
constructors that create objects with different
numbers and types of parameters.

Object Factory: A composite class that creates
both simple and composite objects.

Unifier Pattern: A class pattern designed to
present a unified and friendly interface to a set of
classes that perform different operations.

This work was previously published in Handbook of Research on Modern Systems Analysis and Design Technologies and
Applications, edited by M. Syed; and S. Syed, pp. 388-432, copyright 2009 by Information Science Reference (an imprint of
IGI Global).

���

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.4
Motivation in

Component-Based Software
Development

G. Chroust
J. Kepler University Linz, Austria

IntroductIon

Information systems are designed for the people,
by the people. The design of software systems with
the help of software systems is another aspect of
human-computer interfaces. New methods and
their (non-)acceptance play an important role.
Motivational factors of systems developers con-
siderably influence the type and quality of the
systems they develop (Arbaoui, Lonchamp &
Montangero, 1999; Kumar & Bjoern-Andersen,
1990). To some extent, the quality of systems
is a result of their developers’ willingness to
accept new and (supposedly) better technology
(Jones, 1995). A typical example is component-
based development methodology (Bachmann et
al., 2000; Cheesman & Daniels, 2001). Despite
considerable publication effort and public lip
service, component-based software develop-
ment (CBD) appears to be getting a slower start
than anticipated and hoped for. One key reason
stems from the psychological and motivational
attitudes of software developers (Campell, 2001;
Lynex & Layzell, 1997). We therefore analyze
the attitudes that potentially hamper the adoption
of the component-based software development
approach. Maslow’s Hierarchy of Need (Boeree,

1998; Maslow, 1943) is used for structuring the
motives.

Background

the human Side of Software
engineering

Kunda and Brooks (1999) state that “software
systems do not exist in isolation ... human, social
and organizational considerations affect software
processes and the introduction of software technol-
ogy. The key to successful software development
is still the individual software engineer” (Eason et
al., 1974; Kraft, 1977; Weinberg, 1988). Different
software engineers may account for a variance of
productivity of up to 300% (Glass, 2001). On the
other hand, any other single factor is not able to
provide an improvement of more than 30%. The
influence of an individual’s motivation, ability,
productivity, and creativity has the biggest influ-
ence by far on the quality of software development,
irrespective of the level of technological or meth-
odological support. Therefore, it is worthwhile
investigating for what reasons many software
engineers do not fullheartedly accept component-
based methods (Lynex & Layzell, 1997).

 ���

Motivation in Component-Based Software Development

Software development in general introduced
a new type of engineers who show marked dif-
ferences when compared to (classical) engineers
(Badoo & Hall, 2001; Campell, 2001; Eason et
al., 1974; Kraft, 1977; Kunda & Brooks, 1999;
Lynex & Layzell, 1997). The phenomenon is not
fully understood yet but seems to have to do with
the peculiarities of software (Brooks, 1986), the
type of processes and environments needed to
develop software (Kraft, 1977), and especially to
the proximity of software development to other
mental processes (Balzert, 1996).

maslow’s hierarchy of needs

Maslow’s theory (Boeree, 1998; Huitt, 2002;
Maslow, 1943; McConnell, 2000) provides a prac-
tical classification of human needs by defining a
five-level Hierarchy of Needs (Figure 1).

The five levels are as follows:

• Basic Physiological Needs (Survival): At this
level, the individual is fighting for survival
against an adverse environment, trying to
avert hunger, thirst, cold, and inconvenient
and detracting physical work environ-
ments.

• Security (Physical, Economic ...): On this
level, the individual is concerned with the
stability of his or her future and the safety
of the environment. Worries include job
security, loss of knowledge, loss of income,
health, and so forth.

• Social Environment: This category includes
the need to have friends, belong to a group,
and to give and receive love.

• Recognition: Individuals strive to receive
appropriate recognition and appreciation
at work and to be recognized as having a
valuable opinion.

• Self-Fulfillment: This level is considered the
highest stage attainable in the development
of a person, drawing satisfaction from the
realization of one’s own contribution to a goal
and one’s fullfillment of their full potential
as a human being.

reuse and component-Based
Software development (cBd)

An old dream in software development is to avoid
unnecessary duplication of work by consistently
and systematically reusing existing artifacts.
Reuse promises higher productivity, shorter
time-to-market, and higher quality (Allen, 2001;
Cheesman & Daniels, 2001). Initially, ready-made
pieces of software were made available; these
delivered a defined functionality in the form of
a black box (i.e., without divulging the internal
structure to the buyer/user). They were called
COTS (commercials off the shelf) (Voas, 1998).
Later, an improved and more restricted concept
was employed: software components (Bachmann
et al., 2000; Cheesman & Daniels, 2001; Wood-
man et al., 2001). Software components have to

Figure 1. Maslow's hierachy of needs

��0

Motivation in Component-Based Software Development

fulfill additional requirements, restrictions, and
conventions beyond the properties of COTS. To a
user of a software component, only its interfaces
and functionality are known, together with the
assurance that the component obeys a specific
component model. This component model defines
how the component can be integrated with other
components, the conventions about the calling
procedure, and so forth. The internal structure,
code, procedures, and so forth are not divulged—it
is a black box.

Systematic, institutionalized CBD needs a
change in the attitude of software engineers, differ-
ent work organization, and a different organization
of the whole enterprise (Allen, 2001).

component-Based development and
Software engineers’ needs

The acceptance of a new technology often meets
with strong opposition caused by psychological
motives, which can be traced to Maslow’s Hier-
archy of Needs.

Basic physiological needs

This level does not have any strong relevance;
software engineering is a desk-bound, safe,
non-endangering activity. We have to recognize,
however, that very often software engineers have
to struggle with adverse infrastructure (floor
space, noise, etc.) (deMarco, 1985).

Security

The desire for security is threatened by numer-
ous factors. The fears can be categorized into
four groups:

Losing the Job or Position

• Job Redundancy: CBD promises consider-
ably higher productivity and less total effort
as a result of removing the redundancy

of reimplementing already existing func-
tions. This carries the thread of making an
individual redundant, especially since the
development of components very often is
outsourced to some distant organization
(e.g., India).

• Implementing vs. Composing: deRemer
(1976) stressed the difference between
implementing a module/component (pro-
gramming in the small) and building
(composing) a system out of components
(programming in the large). He emphasized
the need for a different view and for new
approaches and tools. Programming in the
large needs a systems view, making much
of long-learned patterns of work obsolete,
even counter-productive.

• Changed Job Profile: The necessity of in-
tegrating existing components requires a
different mindset than one implementing
some program from scratch (Vitharana,
2003). Does the software engineer have the
ability or qualifications to fulfill the new
profile of an integrator?

• Loss of Knowledge and “Guru” Status: In
traditional development, considerable do-
main know-how and low-level development
know-how rests in the heads of seasoned
developers having developed software for
many years. The use of components en-
capsulates and hides both implementation
details and domain know-how. In addition,
system development methods change. Much
of the accumulated experience and know-
how previously valuable to the employing
institution becomes irrelevant.

• De-Skilling: In addition, certain de-skilling
takes place at the lower level of software
development (Kraft, 1977). The need for
increased skills with respect to performing
high-level composition activities often is not
recognized and appreciated by the individu-
als.

 ���

Motivation in Component-Based Software Development

Loss of Low-Level Flexibility

• Pre-Conceived Expectations: Components
often do not provide exactly what the original
requirements specified. A developer then is
challenged to find a compromise between
the user requirements and the available
components—a job profile dramatically
different from developing bespoke software
(Vitharana, 2003). Engineers also have to
live with good enough quality (Bach, 1997;
ISO/IEC, 2004), as provided by the com-
ponents and often are not able to achieve
best quality. This is often difficult to accept
emotionally.

• Revision of Requirements: Mismatches
between stated requirements and available
components make it necessary to revise
and adapt requirements (Vitharana, 2003).
Requirements are no longer set in stone,
in contrast to the assumptions of classical
development methods (e.g., the waterfall
model).

• Uncertainty About Functionality of Compo-
nents: By definition, the internal structure of
a component is not revealed (Bachmann et
al., 2000). Consequently, the developer has to
rely on the description and claims provided
by the component provider (Crnkovic &
Larsson, 2002; Vitharana, 2003).

Lack of Confidence

• Distrust in Component Quality: Quality
problems experienced in the past have cre-
ated a climate of distrust with respect to
other developers’ software products. This
feeling of distrust becomes stronger with
respect to components, because their in-
ternals are not disclosed (Heineman. 2000;
Vitharana, 2003). This situation becomes
worse for so-called software of unknown
provenance (SOUP) (Schoitsch, 2003). The
current interest in open source programs is

an indicator of a movement in the opposite
direction.

• Questions About Usability: Besides the
issue of quality, problems with portability
and interoperability of components, as often
experienced with COTS, also reduce the
confidence in using components (Vecellio
& Thomas, 2001).

• Loss of Control of System: Engineers usu-
ally like to understand fully the behavior of
the designed system (the why) and exercise
control over the system’s behavior (the how).
In CBD, due to the black-box character of
the components, understanding and control
can be achieved only to a limited extent,
leaving a vague feeling of uncertainty.

Effort for Reuse vs. New Development

• Uncertainty Concerning the Outcome of the
Selection Process: Successful CBD depends
to a considerable extent on the probability
and effectiveness of finding a component
with (more or less) predefined properties
(Vitharana, 2003). Occasionally, this search
will not be successful, causing a delay in the
development schedule and some lost effort
spent in the search.

• Effort Estimates: In general, software en-
gineers underestimate the effort needed to
build a system from scratch and overestimate
the cost and effort of adapting a system. The
reasons seem to be the initially necessary
effort to achieve a certain familiarity with
the whole system before making even small
adaptations, the learning curve (Boehm &
Basili, 2000), the difficulty, and often also
the unwillingness of becoming familiar
with somebody else’s thoughts and concepts
(not-invented-here syndrome).

Social environment

• Reluctance to Utilize Outside Intellectual
Property: Our society extends the notion

���

Motivation in Component-Based Software Development

of ownership to immaterial products like
ideas and intellectual achievements. They
are protected by copyright, trademark, and
patent legislation. Plagiarism is objected to
and usually not sanctioned (Kock, 1999;
Sonntag & Chroust, 2004). Reusing someone
else’s ideas is often deemed inappropriate.

• Immorality of Copying: In school, copying
as a form of reuse and teamwork is usually
discouraged. This might later cause some
reluctance to actively share knowledge and
to make use of someone else’s achievements
(Disterer, 2000).

• Adopting a New Technology: The adoption
of a new technology seems to follow an
exponential law (Jones, 1995). It starts with
a few early adopters, and others follow pri-
marily because of personal communication.
The tendency of software developers to be
introverts (Riemenschneider, Hardgrave, &
Davis, 2002) might delay such a dissemina-
tion process.

• Change of Work Organization: CBD needs
a different work organization (Allen, 2001;
Chroust, 1996; Cusumano, 1991; Wasmund,
1995) resulting in rearranged areas of re-
sponsibility, power distribution, and status,
potentially upsetting an established social
climate and well-established conventions.

recognition

A strong motivator for an individual is recognition
by the relevant social or professional reference
group, usually a peer group (Glass, 1983).

• Gluing vs. Doing: On the technical level, rec-
ognition usually is connected to a particular
technical achievement. Gluing together ex-
isting components will achieve recognition
only for spectacular new systems—and these
are rare. Similarly, an original composer will
gain recognition; whereas a person simply
arranging music into potpourris usually
goes unrecognized.

• Shift of Influence and Power: Successful
CBD needs a change in organization (Al-
len, 2001; Kunda & Brooks, 1999), making
persons gain or lose influence, power, and
(job) prestige, a threat to the established
pecking order.

• The CBD Water Carrier: Organizations
heavily involved in CBD often separate the
component development from component
deployment (Cusumano, 1991). Component
development to a large extent is based on
making existing modules reusable “com-
ponents as you go” and “components by
opportunity” (Allen, 2001) and not on cre-
ating new ones from scratch “components
in advance”. Jobs in the reuse unit (similar
to maintenance units) (Basili, 1990) might
be considered to require less know-how
and thus receive lower prestige, despite the
fact that these jobs often require greater
know-how and experience than designing
components from scratch.

• Contempt for the Work of Others: The
inherent individuality of software develop-
ment, together with a multitude of different
solutions to the same problem (i.e., there is
always a better way), and the low quality
of many software products have tempted
many software developers into contempt
for anyone else’s methods and work (not-
invented-here syndrome).

• Rewarding Searching Over Writing: As long
as the amount of code produced (lines of
code) is a major yard stick for both project
size and programmer productivity searching,
finding and incorporating a component will
be less attractive than writing it anew.

• Accounting for Lost Search Effort: There
is no guarantee that even after an extensive
(and time-consuming) search an appropriate
component can be found (Vitharana, 2003).
In this case, management must accept these
occasional losses so as not to discourage
searching for components (Fichman &
Kemerer, 2001).

 ���

Motivation in Component-Based Software Development

Self-Fulfillment

• Not Invented Here: The ability to design
wonderful systems is a strong motivator
for software engineers. This feeling goes
beyond recognition of peers—one knows it
oneself. This makes it difficult for develop-
ers to accept other people’s work (Campell,
2001; Disterer, 2000) in the form of compo-
nents.

• No More Gold Plating: The feeling of self-
fulfillment often cannot live with the knowl-
edge that a system still should or must be
improved, leading to endless effort in gold
plating a system before delivery (or even
thereafter). Externally acquired components
cannot be modified (i.e., gold plated) because
of the inaccessibility of their code.

• No Creative Challenge: Gluing together
components provided by somebody else
does not fulfill many engineers’ attempt
for novelty and, thus, is not considered to
be a creative challenge. The highly creative
process of finding the best-fitting compo-
nent, restructuring the system, and perhaps
modifying the requirements for using exist-
ing components often is not appreciated.

• No More Lone Artists: Software engineers
aspire to become a Beethoven or a Michel-
angelo and not the directors of a museum
arranging a high-class exhibition. Someone
remarked that many system features are not
needed by the users but are just a monument
of their designer’s intellectual capability. As-
sembling components utilizes only someone
else’s achievement.

• Lack of Freedom: The limited choice of
available components, the limitations of
a component model, the need to obey pre-
defined interfaces, and so forth restrict the
freedom of development and often are seen
as a limit to creativity.

future trendS

The fact that the software industry needs a large
step forward with respect to productivity, qual-
ity, and time-to-market will increase the reuse
of software artifacts and, as a consequence, will
encourage the use of component-based develop-
ment methods. Understanding the basic state
of emotion of software developers will support
efforts to overcome developers’ reluctance to ac-
cept this methodology by emphasizing challenges
and opportunities provided by the new methods,
re-evaluating the importance and visibility of
certain tasks, changing job profiles, and changing
the reward and recognition structure.

The consequence might be that software de-
signers wholeheartedly accept component-based
methodologies not only as an economic necessity
but also as a means of achieving the status of a great
designer, as postulated by Brooks (1986). In turn,
this could lead to a new level of professionalism
in software development and would allow com-
ponent-based development methods to be utilized
fully in the field of software engineering.

concLuSIon

Soft factors like motivation and psychological
aspects often play a strong role even in a technical,
seemingly rational field like software engineer-
ing. We have discussed and identified key soft
factors that often account for the slow uptake of
component-based software development methods
and relate them to the framework of Maslow’s
Hierarchy of Needs. The users of software compo-
nents were the focus of this discussion. There are
some indications that for providers of components,
a different emotional situation exists (Chroust &
Hoyer, 2004).

Recognition of the different levels of resistance
and their psychological background will, among

���

Motivation in Component-Based Software Development

other aspects, allow approaching the problems in
a psychologically appropriate form. The need of
the software industry to come to terms with its
problems of quality, cost, and timeliness makes
this a necessity.

referenceS

Abran, A., Moore, J., Bourque, P., Dupuis, R., &
Tripp, L.L. (Eds.). (2004). Guide to the software
engineering body of knowledge: 2004 version
tech. rep. DTR 19759. International Organization
for Standardization, Geneva, Switzerland.

Allen, P. (2001). Realizing e-business with com-
ponents. Chicago: Addison-Wesley.

Arbaoui, S., Lonchamp, J., & Montangero, C.
(1999). The human dimension of the software
process. In J.-C. Derniame, D. Ali Kaba, & D.G.
Wastell (Eds.), Software process: Principles,
methodology, and technology (pp. 165-200). New
York: Springer.

Bach, J. (1997). Good enough quality: Beyond the
buzzword. IEEE Computer, 30(8), 96-98.

Bachmann, F., et al. (2000). Volume II: Technical
concepts of component-based software engineer-
ing (technical report). CMU/SEI-2999-TR-008,
ESC-TR-2000-007.

Badoo, N., & Hall, T. (2001). Motivators of soft-
ware process improvement: An analysis of prac-
titioners’ views (technical report). Hertfordshire,
UK: University of Hertfordshire.

Balzert, H. (1996). Lehrbuch der Software-
Technik, Software Entwicklung. Heidelberg,
Germany: Verlag.

Basili, V.R. (1990). Viewing maintenance as re-use
oriented software development. IEEE Software,
7(1), 19-25.

Boehm, W., et al. (2000). Software cost estimation
with COCOMO II. NJ: Prentice Hall.

Boeree, C.G. (1998). Abraham Maslow, biography.
Retrieved November, 2001, from http://www.ship.
edu/˜cgboeree/maslow.html

Brooks, F. (1986). No silver bullet—Essence and
accidents of software engineering. Information
Processing 86, IFIP Congress, 1069-1076.

Campell, J. (2001). Course on reuse: Impedi-
ments to reuse. Retrieved from http://www.
cs.qub.ac.uk/˜J.Campbell/myweb/misd/ node8.
html#section008 40000000000000000

Cheesman, J., & Daniels, J. (2001). UML compo-
nents. Amsterdam, The Netherlands: Longman,
Addison-Wesley.

Chroust, G. (1996). Software 2001—Ein weg in
die Wiederverwendungswelt. In F. Lehner (Ed.),
Softwarewartung und reengineering—Erfahrun-
gen und entwicklungen (pp. 31-49). Germany:
Deutscher Universitätsverlag.

Chroust, G., & Hoyer, C. (2004). Motivational
issues in creating reusable software artifacts. In
R. Trappl (Ed.), Cybernetics and systems 2004
(pp. 417-422). Vienna: Austrian Soc. for Cyber-
netic Studies.

Crnkovic, I., & Larsson, S. (Eds.). (2002). Build-
ing reliable component-based software systems.
Boston: Artech House Publshing.

Cusumano, M. (1991). Factory concepts and prac-
tices in software development. IEEE Annals of
the History of Computing, 13(1), 3-31.

deRemer, F.K.H. (1976). Programming-in-the-
large versus programming in-the-small. IEEE
Tr. on Software Eng., (292), 80-86.

Disterer, G. (2000). Individuelle und Soziale Bar-
rieren Beim Aufbau von Wissenssammlungen.
Wirtschaftsinformatik, 42(6), 539-546.

 ���

Motivation in Component-Based Software Development

Eason, K., Domodaran, L., & Stewart, T. (1974).
Interface problems in man-computer interaction.
In E. Mumford, & H. Sackman (Eds.), Human
choice and computers (pp. 91-105). North Holland
Publshing Company.

Fichman, R.G., & Kemerer, C. (2001). Incentive
compatibility and systematic software reuse.
Journal of Systems and Software, 57(1), 54.

Glass, R. (1983). Software runaways. NJ: Prentice
Hall.

Glass, R. (2001). Frequently forgotten funda-
mental facts about software engineering. IEEE
Software, 18(3), 112-110.

Halaris, J., & Spiros, T. (1996). Reuse concepts
and a reuse support repository. Proceedings of the
IEEE Symposium and Workshop on Engineering
of Computer Based Systems, Germany.

Heineman, G.T., et al. (2000). Component-based
software engineering and the issue of trust. Pro-
ceedings of the 22nd International Conference on
Software Engineering. Limerick, Holland.

ISO/IEC. (2004). ISO 25000: Software and
systems engineering: Software product quality
requirements and evaluation (SQuaRE)—Guide
to SQuaRE [technical report]. International
Organization for Standardization. Geneva,
Switzerland.

Jones, C. (1995). Why is technology transfer so
hard? IEEE Computer, 28(6), 86-87.

Kock, N. (1999). A case of academic plagiarism.
Comm. ACM, Vol. 42(7), 94-104.

Kraft, P. (1977). Programmers and managers.
Heidelberg, Germandy: Springer.

Kumar, K., & Bjoern-Andersen, N. (1990). A
cross-cultural comparison of IS designer values.
Comm ACM, 33(5), 528-538.

Kunda, D., & Brooks, L. (1999). Human, social
and organisational influences on component-

based software engineering. ICSE’99 Workshop
on Component-Based Software Engineering, Los
Angelos. Retrieved July, 2004, from http://www.
sei.cmu.edu/cbs/icse99/papers/19/19.htm

Lynex, A., & Layzell, P. (1997). Understanding
resistance to software reuse. Proceedings of the
8th International Workshop on Software Technol-
ogy and Engineering Practice, London.

Maslow, A. (1943). A theory of human motivation.
Psychological Review, 50, 370-396.

McConnell, S. (2000). Quantifying soft factors.
IEEE Software, 17(6), 9-11.

Riemenschneider, C., Hardgrave, B.C., & Davis, F.
(2002). Explaining software developer acceptance
of methodologies: A comparison of five theoretical
models. IEEE Trans. on Software Engineering,
28(12), 1135.

Schoitsch, E. (2003). Dependable embedded sys-
tems—Vision und roadmap. In G. Fiedler, & D.
Donhoffer (Eds.), Mikroelektronik 2003, Wien (p.
33). Vienna, Austria: ÖVE Schriftenreihe.

Sonntag, M., & Chroust, G. (2004). Legal protec-
tion of component metadata and APIs. In R. Trappl
(Ed.), Cybernetics and systems 2004. Vienna,
Austria: Austrian Soc. for Cybernetic Studies.

Thomas, S., Hurley, S., & Barnes, D. (1996).
Looking for the human factors in software
quality management. Proceedings of the 1996
International Conference on Software Engineer-
ing: Education and Practice (SE:EP ’96). Otago,
New Zealand.

Vecellio, G., & Thomas, W.M. (2001). Issues in the
assurance of component based software. Retrieved
July, 2001, from http://www.mitre.org/pubs/edge
perspectives/ march 01/vecellio.html

Vitharana, P. (2003). Risks and challenges of
component-based software development. Comm.
ACM, 46(8), 67-72.

���

Motivation in Component-Based Software Development

Voas, J. (1998). Certifying off-the-shelf software
components. IEEE Computer, 11(6), 53-59.

Wasmund, M. (1995). The spin-off illusion: Re-
use is not a by-product. Proceedings of the 1995
Symposium on Software Reusability, Seattle,
Washington.

Weinberg, G. (1988). Understanding the profes-
sional programmer. New York: Dorset House.

Woodman, M., Benedictsson, O., Lefever, B., &
Stallinger, F. (2001). Issues of CBD product quality
and process quality. Proceedings of the 4th ICSE
Workshop: Component Certification and System
Prediction, 23rd International Conference on Soft-
ware Engineering (ICSE). Toronto, Canada.

key termS

Commercial Off the Shelf (COTS): Software
products that an organization acquires from a third
party with no access to the source code and for
which there are multiple customers using identical
copies of the component.

Component-Based Development (CBD):
In contrast to classical development (waterfall-
process and similar process models), CBD is
concerned with the rapid assembly of systems from
components (Bachmann et al., 2000) where:

• components and frameworks have certified
properties; and

• these certified properties provide the basis
for predicting the properties of systems built
from components.

Component Model: A component model
specifies the standards and conventions imposed
on developers of components. This includes
admissible ways of describing the functionality

and other attributes of a component, admissible
communication between components (protocols),
and so forth.

Maslow’s Hierarchy of Needs: Maslow’s
Hierarchy of Needs (Boeree, 1998; Maslow,
1943; McConnell, 2000) is used as a structur-
ing means for the various factors. It defines five
levels of need:

• self-fulfillment
• recognition
• social environment (community)
• basic physiological needs (survival)
• security (physical, economic ...)

In general, the needs of a lower level must be
largely fulfilled before needs of a higher level
arise.

Soft Factors: This concept comprises an
ill-defined group of factors that are related to
people, organizations, and environments like
motivation, morale, organizational culture, power,
politics, feelings, perceptions of environment,
and so forth.

Software Component: A (software) compo-
nent is (Bachmann et al., 2000):

• an opaque implementation of functional-
ity

• subject to third-party composition
• in conformance with a component model

Software Engineering: (1) The application of
a systematic, disciplined, quantifiable approach
to development, operation, and maintenance of
software; that is, the application of engineering
to software and (2) the study of approaches as in
(1) (Abran, Moore, Bourque, Dupuis & Tripp,
2004).

This work was previously published in Encyclopedia of Human Computer Interaction, edited by C. Ghaoui, pp. 414-421,
copyright 2006 by Information Science Reference (an imprint of IGI Global).

 597

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.5
Multimodal Modeling, Analysis,
and Validation of Open Source

Software Development
Processes*

Walt Scacchi
University of California, Irvine, USA

Chris Jensen
University of California, Irvine, USA

John Noll
Santa Clara University, USA

Margaret Elliott
University of California, Irvine, USA

AbstrAct

Understanding the context, structure, activities,
and content of software development processes
found in practice has been and remains a chal-
lenging problem. In the world of free/open source
software development (F/OSSD), discovering
and understanding what processes are used in
particular projects is important in determining
how they are similar to or different from those
advocated by the software engineering commu-
nity. Prior studies have revealed that development
processes in F/OSSD projects are different in a
number of ways. In this article, we describe how
a variety of modeling perspectives and techniques

are used to elicit, analyze, and validate software
development processes found in F/OSSD projects,
with examples drawn from studies of the software
requirements process found in the NetBeans.org
project.

IntroductIon

In the world of globally dispersed, free/open source
software development (F/OSSD), discovering and
understanding what processes are used in particu-
lar projects is important in determining how they
are similar to or different from those advocated
by the software engineering community. For

598

Multimodal Modeling, Analysis, and Validation of Open Source Software Development Processes

example, in our studies of software requirements
engineering processes in F/OSSD projects across
domains like Internet infrastructure, astrophysics,
networked computer games, and software design
systems (Scacchi, 2002, 2004, 2005), we generally
find there are no explicit software requirements
specifications or documents. However, we readily
find numerous examples of sustained, successful,
and apparently high-quality F/OSS systems being
deployed on a worldwide basis. Thus, the process
of software requirements engineering in F/OSSD
projects must be different than the standard model
of requirements elicitation, specification, model-
ing, analysis, communication, and management
(Nuseibeh & Easterbrook, 2000). But if the process
is different, how is it different, or more directly,
how can we best observe and discover the context,
structure, activities, and content software require-
ments processes in F/OSSD projects? This is the
question addressed here.

Our approach to answering this question uses
multimodal modeling of the observed processes,
artifacts, and other evidence composed as an
ethnographic hypermedia that provides a set
of informal and formal models of the software
development processes we observe, codify, and
document. Why? First, our research question
spans two realms of activity in software engineer-
ing, namely, software development and software
process modeling. So we will need to address
multiple perspectives or viewpoints, yet provide
a traceable basis of evidence and analysis that
supports model validation. Second, given there
are already thousands of self-declared F/OSSD
projects affiliated with OSS portals like Source-
Forge.net, Freshmeat.net, and Savannah.gnu.org,
then our answer will be constrained and limited
in scope to the particular F/OSSD projects ex-
amined. Producing a more generalized model of
the F/OSS development process studied requires
multiple, comparative project case studies, so
our approach should be compatible with such a
goal (Scacchi, 2002). Last, we want an approach
to process modeling that is open to independent

analysis, validation, communication, and evolu-
tion, yet be traceable to the source data materials
that serve as evidence of the discovered process in
the F/OSSD projects examined (cf. Kitchenham,
Dyba, & Jorgensen, 2004).

Accordingly, to reveal how we use our pro-
posed multimodal approach to model require-
ments processes in F/OSSD projects, we first
review related research to provide the foundational
basis for our approach. Second, we describe and
provide examples of the modeling modes we use
to elicit and analyze the processes under study.
Last, we examine what each modeling mode is
good for, and what kind of analysis and reason-
ing it supports.

relAted reseArch And
ApproAch

There is growing recognition that software
requirements engineering can effectively incor-
porate multiple viewpoints (Finkelstein, Gabbay,
Hunter, & Nuseibeh, 1994; Leite & Freeman, 1991;
Nuseibeh & Easterbrook, 2000) and ethnographic
techniques (Nuseibeh & Easterbrook, 2000; Viller
& Sommerville, 2000) for eliciting, analyzing, and
validating functional and nonfunctional software
system product requirements. However, it appears
that many in the software engineering community
treat the process of requirements engineering
as transparent and prescriptive, though perhaps
difficult to practice successfully. However, we do
not know how large distributed F/OSSD projects
perform their development processes (cf. Curtis,
Krasner, & Iscoe, 1998).

Initial studies of requirements development
across multiple types of F/OSSD projects (Scac-
chi, 2002, 2004) find that OSS product require-
ments are continuously emerging (Gans, Jarke,
Kethers, & Lakemeyer, 2003; Gasser, Scacchi,
Penne, & Sandusky, 2003; Truex, Baskerville,
& Klein, 1999) and asserted after they have been
implemented, rather than relatively stable and

 599

Multimodal Modeling, Analysis, and Validation of Open Source Software Development Processes

elicited before being implemented. Similarly,
these findings reveal requirements practice cen-
ters about reading and writing many types of
communications and development artifacts as
“informalisms” (Scacchi, 2002), as well as ad-
dressing new kinds of nonfunctional requirements
like project community development, freedom of
expression and choice, and ease of information
space navigation. Elsewhere, there is widespread
recognition that F/OSSD projects differ from their
traditional software engineering counterparts in
that F/OSSD projects do not in general operate
under the constraints of budget, schedule, and
project management constraints. In addition, OSS
developers are also end users or administrators of
the software products they develop, rather than
conventionally separated as developers vs. users.
Consequently, it appears that F/OSSD projects
create different types of software requirements
using a different kind of requirements engineering
process, than compared to what the software en-
gineering community has addressed. Thus, there
is a fundamental need to discover and understand
the process of requirements development in dif-
ferent types of F/OSSD projects.

We need an appropriate mix of concepts,
techniques, and tools to discover and understand
F/OSSD processes. We and others have found
that process ethnographies must be empirically
grounded, evidence-based, and subject to compar-
ative, multiperspective analysis (Curtis et al., 1998;
Finkelstein et al., 1994; Glaser & Strauss, 1967;
Kitchenham et al., 2004; Nuseibeh & Easterbrook,
2000; Scacchi, 2002; Seaman, 1999). However,
we also recognize that our effort to discover and
understand F/OSSD processes should reveal the
experience of software development newcomers
who want to join and figure out how things get
done in the project (Scacchi, 2005).

As participant observers in such a project, we
find that it is common practice for newcomers
to navigate and browse the project’s Web site,
development artifacts, and computer-mediated
communication systems (e.g., discussion forums,

online chat, project Wikis), as well as to download
and try out the current software product release.
Such traversal and engagement with multiple types
of hyperlinked information provide a basis for
making modest contributions (e.g., bug reports)
before more substantial contributions (code patch-
es, new modules) are offered, with the eventual
possibility of proposing, changing, or sustaining
the OSS system’s architecture. These interactive
experiences reflect a progressive validation of a
participant’s understanding of current F/OSSD
process and product requirements (Bolchini &
Paolini, 2004; Narayanan & Hegarty, 2002). Thus,
we seek a process discovery and modeling scheme
that elicits, analyzes, and validates multimode,
hypertext descriptions of a F/OSSD project’s
requirements process. Furthermore, the process
descriptions we construct should span informal
through formal process models, and accommodate
graphic, textual, and computationally enactable
process media. Finally, our results should be in
a form open to independent analysis, validation,
extension, and redistribution by the project’s
participants.

MultIMode process ModelIng,
AnAlysIs, And VAlIdAtIon
usIng ethnogrAphIc
hyperMedIA

An ethnographic hypermedia (Dicks & Mason,
1998) is a hypertext that supports comparative,
cross-linked analysis of multiple types of qualita-
tive ethnographic data (cf. Seaman, 1999). They
are a kind of semantic hypertext used in coding,
modeling, documenting, and explaining patterns
of social interaction data and analysis arising
in contemporary anthropological, sociological,
and distributed cognition studies. The media
can include discourse records, indigenous texts,
interview transcripts, graphic or photographic
images, audio/video recordings, and other related
information artifacts. Ideally, they also preserve

600

Multimodal Modeling, Analysis, and Validation of Open Source Software Development Processes

the form and some of the context in which the
data appear, which is important for subsequent
(re)analysis, documentation, explanation, presen-
tation, and validation.

Ethnographic studies of software development
processes within Web-based F/OSSD projects are
the focus here. Ethnographic studies that observe
and explain social action through online partici-
pant observation and data collection have come
to be called “virtual ethnography” (Hine, 2000).
Virtual ethnography techniques have been used to
observe the work practices, compare the artifacts
produced, and discover the processes of F/OSSD
projects found on and across the Web (Elliott &
Scacchi, 2003, 2005; Jensen & Scacchi, 2005a, b;
Oza, Nistor, Hu, Jensen, & Scacchi, 2004; Scac-
chi, 2002, 2004, 2005). In particular, an important
source of data that is examined in such studies of
F/OSSD projects is the interrelated web of online
documents and artifacts that embody and char-
acterize the medium and continuously emerging
outcomes of F/OSSD work. These documents and
artifacts constitute a particular narrative/textual
genre ecology (Spinuzzi & Zachry, 2000) that
situate the work practices and characterize the
problem solving media found within F/OSSD
projects.

We have employed ethnographic hypermedia
in our virtual ethnographic studies of F/OSSD
projects. What does this mean, and what chal-
lenges or opportunities for requirements elicita-
tion, analysis, and validation have emerged along
the way? These questions are addressed below
through examples drawn from a case study of the
NetBeans.org OSSD project (Jensen & Scacchi,
2005a, b), which is one of the largest F/OSSD proj-
ects we have studied. The NetBeans.org project
is a corporate sponsored OSSD project (Jensen
& Scacchi, 2005a) focused on the development
of an interactive development environment (IDE)
for constructing application systems using Java
enterprise beans technology. It is similar in size
and scope to the Eclipse project founded by IBM,
which is also developing a Java-based IDE.

As noted, the F/OSSD projects we study are
found on the Web. Web sites for these projects
consist of a network of hyperlinked documents
or artifacts. Samples of sites we have studied
include NetBeans.org, Mozilla.org, Apache.org,
and GNUenterprise.org, among others (Elliott &
Scacchi, 2003, 2004; Jensen & Scacchi, 2005a,
b; Scacchi, 2002, 2004). A team of two to five
researchers examines a project site (via browsing,
searching, downloading, and cross-linking) over
a period of 4-6 weeks initially, then periodically
thereafter. The artifacts we examine include Web
pages, e-mail discussion lists, bug reports, project
to-do lists, source code files and directories, site
maps, and more. These artifacts are an important
part of the data we collect, examine, study, code,
and analyze in order to identify F/OSSD work
practices and development processes that arise
in a given project.

We create a hypermedia of these artifacts in
ways that allow us to locate the originating sources
of data within the focal project’s Web site. This
allows us to maintain links to the source data ma-
terials that we observe as evidence of the process
at hand, as well as to allow us to detect when these
data sources have been updated or removed. (We
also archive a local copy of all such data.) However,
we create annotated and assembled artifacts that
embed hyperlinks into these documents as part of
our ethnographic hypermedia. As a result, multiple
kinds of ethnographic records are created includ-
ing annotated artifacts, rich hypermedia pictures,
and ethnographic narratives. Juxtaposed about
these records are other kinds of models including
a process metamodel, attributed directed graph
model, process domain ontology, and a formal,
computationally enactable process model. Each
is described next, and each is hyperlinked into
an overall ethnographic hypermedia that provides
cross-cutting evidence for the observed OSS
requirements processes. This in turn provide us
with an approach to mapping complex situations
in various forms, which is consistent with recent

 601

Multimodal Modeling, Analysis, and Validation of Open Source Software Development Processes

advances in grounded theory approaches to eth-
nographic study (Clarke 2003).

Annotated Artifacts

Annotated artifacts represent original software
development artifacts like (publicly available)
online chat transcripts that record the dialogue,
discussions, and debate that emerge between
OSS developers. These artifacts record basic
design rationale in an online conversation form.
The textual content of these artifacts can be
tagged, analyzed, hyperlinked, and categorized
manually or automatically (Rao, 2003). However,
these conversational contents also reveal much
about how OSS developers interact at a distance
to articulate, debate, and refine the continuously
emerging requirements for the software system
they are developing. For example, Elliott and
Scacchi (2003, 2005) provide conversational tran-
scripts among developers engaged in a debate over
what the most important properties of software
development tools and components to use when
building free software. They provide annotations
that identify and bracket how ideological beliefs,
social values, and community building norms
constrain and ultimately determine the technical
choices for what tools to use and what components
to reuse when developing OSS. The following is an
example of an excerpt of an online chat transcript
found in a F/OSSD project where the developer
(here identified anonymously as “ByronC”) who
is an outsider to the project lurking on the chat
discussion and who advocates a strong belief
for avoiding the use of nonfree software when
developing F/OSS, as indicated by the (boldface)
annotations we added.

<ByronC> Hello (Outsider Critique-1

<ByronC> Several images on the Web site

seem to be made with nonfree Adobe

software, I hope I’m wrong: it is quite

shocking. Does anybody know more on the

subject?

<ByronC> We should avoid using nonfree

software at all costs, am I wrong? (Ex-

treme belief in free software (BIFS)-1)

<ByronC> Anyone awake in here? Outsider

Critique-1)

Basic ethnographic data like this draws our
attention to look for practices within F/OSSD
efforts to see if such beliefs do in fact constrain
the choice of software tools used within F/OSSD
processes.

navigational rich pictures

Rich pictures (Monk & Howard, 1998) provide
an informal graphical scheme for identifying and
modeling stakeholders, their concerns and beliefs,
objects and patterns of interaction. We extend
this scheme to form navigational rich pictures
constructed as a Web-compatible hypertext im-
age map that denotes the overall context as the
composition and relationships observed among the
stakeholder roles, activities, tools, and document
types (resources) found in a F/OSSD project. In
the example figures that follow, we display the
stakeholders/roles using human-like icons, their
concerns or beliefs as clouds associated to the
icons, and the objects and patterns or interac-
tion as hyperlinked entities. Figure 1 displays
such a rich picture constructed for NetBeans.org.
Furthermore, associated with each hyperlinked
entity is a use case (Cockburn, 2001) that we have
constructed to denote an observable activity per-
formed by an actor-role using a tool that consumes
or produces a document/object type. An example
use case is shown in Figure 2. Each other type
of data also is hyperlinked to either a descriptive
annotation or to a Web site/page where further
information on the object type can be found.

directed resource Flow graph

A directed resource flow graph denotes a recur-
ring workflow pattern that has been discovered

602

Multimodal Modeling, Analysis, and Validation of Open Source Software Development Processes

Figure 1. A rich picture image map of the requirements and release process in the NetBeans.org F/OSSD
project

Figure 2. A hyperlink selection within a rich hypermedia presentation that reveals a corresponding use
case

 603

Multimodal Modeling, Analysis, and Validation of Open Source Software Development Processes

in an F/OSSD project. These workflows order
the dependencies among the activities that ac-
tor-roles perform on a recurring basis to the ob-
jects/resources within their project work. These
resources appear as or within Web pages on an
F/OSSD project’s Web site. For example, in the
NetBeans.org project, we found that software
product requirements are intertwined with soft-
ware build and release management. Thus, the
“requirements and release process” entails iden-
tifying and programming new/updated system
functions or features in the course of compiling,
integrating, testing, and progressively releasing
a stable composition of source code files as an
executable software build version for evaluation
or use by other NetBeans.org developers (Elliott
& Scacchi, 2003, 2005; Oza et al., 2004). An
example flow graph for this appears in Figure
3. The code files, executable software, updated

directories, and associated e-mail postings an-
nouncing the completion and posting the results
of the testing are among the types of resources
that are involved. Last, the rendering of the flow
graph can serve as an image map to the online
(i.e., on the NetBeans.org Web site) data sources
from where they are observed.

process domain ontology

A process ontology represents the underlying
process metamodel (Mi & Scacchi, 1996; Noll
& Scacchi, 2001) that defines the semantics and
syntax of the process modeling constructs we use
to model discovered processes. It provides the base
object classes for constructing the requirements
process (domain) taxonomies of the object classes
for all of the resource and relation types found in
the rich picture and directed resource flow graph.

Figure 3. An attributed directed graph of the resource flow for the NetBeans.org requirement and release
process. Boxes denote tasks/actions, ellipses denote resources/objects, dashed lines denote resource
flows, and solid lines and labels denote agent/stakeholder roles performing tasks that transform input
resources into output resources.

604

Multimodal Modeling, Analysis, and Validation of Open Source Software Development Processes

However, each discovered process is specific to
an F/OSSD project, and knowledge about this
domain is also needed to help contextualize the
possible meanings of the processes being modeled.
This means that a process domain entails objects,
resources or relations that may or may not be have
been previously observed and modeled, so that it
may be necessary to extend to process modeling
constructs to accommodate new types of objects,
resources, and relations, as well as the attributes
and (instance) values that characterize them, and
attached methods that operationalize them.

We use an ontology modeling and editing tool,
Protégé-2000 (Noy, Sintek, Decker, Crubezy,
Fergerson, & Musen, 2001), to maintain and up-
date our domain ontology for OSS requirements
processes. Using Protégé-2000, we can also visu-

alize the structure of dependencies and relations
(Grinter, 2003) among the objects or resources in
a semantic Web manner. An example view can
be seen in Figure 4. Furthermore, we can create
translators that can transform syntactic form of
the modeling representations into XML forms or
SQL schema definitions, which enables further
process modeling and tool integration options (cf.
Jensen & Scacchi, 2005b).

Formal process Model and Its
enactment

A formal process model denotes a syntactically
precise and semantically typed specification of the
resource objects, flow dependencies, actor-roles,
and associated tools that specifies an enactable

Figure 4. A view of the process domain ontology for the NetBeans.org software requirements and release
process

 605

Multimodal Modeling, Analysis, and Validation of Open Source Software Development Processes

(via interactive process-guided user navigation)
hypertext representation we call an organizational
process hypertext (Noll & Scacchi, 2001). This
semantic hypertext, and its supporting run-time
environment, enables the ability to walkthrough
or simulate enactment of the modeled F/OSSD
process as a process-guided, navigational tra-
versal across a set of process linked Web pages.
The semantic hypertext is automatically rendered
through compilation of the process models that
are output from the ontology editor in a process
modeling language called PML (Noll & Scacchi,
2001). A PML-based model specification can be
automatically checked for inconsistencies can be
detected at compile-time or run-time. An example

of an excerpt from such a model is shown in Figure
5. The compiled version of the PML produced a
nonlinear sequence of process-linked Web pages,
each one of which corresponds to one step in the
modeled process. An example showing the result
of enacting a process (action) step specified at the
bottom of Figure 5 appears in Figure 6.

constructing an ethnographic
hypermedia narrative for process
Validation

An ethnographic narrative denotes a final ethno-
graphic hypermedia view. This is an analytical
research narrative that is structured as a docu-

...

sequence Test {

 action Execute automatic test scripts {

 requires { Test scripts, release binaries }

 provides { Test results }

 tool { Automated test suite (xtest, others) }

 agent { Sun ONE Studio QA team }

 script { /* Executed off-site */ } }

action Execute manual test scripts {

 requires { Release binaries }

 provides { Test results }

 tool { NetBeans IDE }

 agent { users, developers, Sun ONE Studio QA team, Sun ONE Studio

developers }

 script { /* Executed off-site */ } }

iteration Update Issuezilla {

 action Report issues to Issuezilla {

 requires { Test results }

 provides { Issuezilla entry }

 tool { Web browser }

 agent { users, developers, Sun ONE Studio QA team, Sun ONE Studio

developers }

 script {

Figure 5. An excerpt of the formal model of the Netbeans.org requirements and release process coded
in PML

606

Multimodal Modeling, Analysis, and Validation of Open Source Software Development Processes

ment that is (ideally) suitable for dissemination
and publication in Web-based and printed forms.
It is a composite model derived from selections
of the preceding representations in the form of
a narrative with embedded hyperlinked objects,
and hyperlinks to related materials. It embodies
and explains the work practices, development pro-
cesses, resource types and relations, and overall
project context as a narrative, hyperlinked ethno-
graphic account that discovered at play within a
given F/OSSD project, such as we documented for
the NetBeans requirements and release process
(Oza et al., 2004). In printed form, the narratives
we have produced so far are somewhere between
one-fourth to one-fifteenth the number of pages
compared to the overall set of project-specific data
(documents) at the first two levels of hyperlink
connectivity; said differently, if the ethnographic
report is 30 or so printed pages (i.e., suitable for

journal publication), the underlying ethnographic
hypermedia will correspond to a hypermedia
equivalent to 120-450 printed pages.

The narrative is in a form intended for external
review and validation by those not involved in the
collection, modeling, and analysis activities, such
as members of the project under study (NetBeans.
org; see Figure 7). These external reviewers can
read through the narrative during validation to
see if there are gaps or inconsistencies, or to pose
questions to the narrative’s authors. When such
shortfalls are detected or reported, then the task
is to determine if the problem arises from either
a gap in the modeling effort, or in its narrative
rendering. Finally, the narrative and its hyperme-
dia components are envisioned as open and living
documents, so that feedback from the community
may serve to keep them consistent with current
practice, or to detect and report inconsistencies

Figure 6. A screenshot displaying the result of the PML-based reenactment of one step (“Action Report
issues to Issuezilla”) in the NetBeans.org requirements and release process

 607

Multimodal Modeling, Analysis, and Validation of Open Source Software Development Processes

that are in need of attention, update, or remedia-
tion, much like the software and artifacts found
in the F/OSSD projects they describe.

dIscussIon

We have learned a number of things based on ap-
plying and evaluating our approach to modeling
development processes, such as those for software
requirements, in different F/OSSD projects. First,
no single mode of process description adequately
subsumes the others, so there is no best process
description scheme. Instead, different informal

and formal descriptions respectively account
for the shortcomings in the other, as do textual,
graphic, and computationally enactable process
representations. Second, incremental and progres-
sive elicitation, analysis, and validation occur in
the course of developing multimode requirements
process models. Third, multimode process models
are well-suited for discovery and understanding
of complex software processes found in F/OSSD
projects. However, it may not be a suitable ap-
proach for other software projects that do not
organize, discuss, and perform software devel-
opment activities in an online, persistent, open,
free, and publicly accessible manner. Fourth,

Figure 7. Getting captured and analyzed process models out for validation and possible
evolution by NetBeans.org project participants

608

Multimodal Modeling, Analysis, and Validation of Open Source Software Development Processes

multimode process modeling has the potential
to be applicable to the discovery and modeling
of software product requirements, although the
motivation for investing such effort may not be
clear or easily justified. Process discovery is a
different kind of problem than product develop-
ment, so different kinds of approaches are likely
to be most effective.

Next, we observed that the software product
requirements in F/OSSD projects are continually
emerging and evolving. Thus, it seems likely that
the requirements process in such projects is also
continuous. Thus, supporting the evolution of
multimode models of OSS requirements processes
will require either automated techniques for pro-
cess discovery and multimode update propagation
techniques, or else the participation of the project
community to treat these models as open source
software process models, that can be continuously
elicited, analyzed, and validated along with other
F/OSSD project assets, as suggested in Figure 7,
which are concepts we are currently investigating.
However, it seems fair to note that ethnographic
accounts are situated in time, and are not intended
for evolution.

Last, each of the methods we used for model-
ing processes found in F/OSSD projects has been
previously applied and shown to be useful by
other researchers. Our effort brings these diverse
approaches together in order to demonstrate and
compare their individual and collective value.
Thus, we find the multimode approach to model-
ing, analyzing, and validating F/OSSD processes
provides a new threshold for research and prac-
tice that in turn give rise to new insights and
findings that none of the individual approaches
can realize on their own. Finally, we believe the
multimode approach can be readily adopted,
taught, and put into practices to support not only
F/OSSD projects, but any software development
project that is distributed and supported across
the Web/Internet.

conclusIon

Ethnographic hypermedia are an important type of
semantic hypertext that are well-suited to support
the navigation, elicitation, modeling, analysis, and
report writing found in ethnographic studies of F/
OSSD processes. We have described our approach
to developing and using ethnographic hypermedia
to support the modeling, analysis, and validation
of software development processes in F/OSSD
projects like NetBeans.org, where multiple modes
of informal to formal representations are involved.
We find that this hypermedia is well-suited for
supporting qualitative research methods that as-
sociated different type of project data, together
with comparative analysis of process descriptions
rendered in graphic, textual, and computationally
enactable descriptions. We provided examples
of the various kinds of hypertext-based process
descriptions and linkages that we constructed in
moving from abstract, informal representations of
the data through a series of ever more formalized
process models resulting from our studies.

Based on our efforts and results reported here,
it appears that free/open source software develop-
ment projects can benefit from the discovery, mod-
eling, and validation of the development processes
they practice, and that ethnographic hypermedia
based representations of these processes provides
an innovative scheme for capturing, representing,
and evolving these representations in a manner
that can be maintained and evolved in an open
source way.

AcknowledgMent

The research described in this report is supported
by grants #0083075, #0205679, #0205724, and
#0350754 from the U.S. National Science Founda-
tion. No endorsement implied. Mark Ackerman at
University of Michigan, Ann Arbor; Les Gasser
at University of Illinois, Urbana-Champaign; and

 609

Multimodal Modeling, Analysis, and Validation of Open Source Software Development Processes

others at ISR are collaborators on the research
described in this article.

reFerences

Bolchini, D., & Paolini, P. (2004). Goal-driven
requirements analysis for hypermedia-intensive
Web applications. Requirements Engineering,
9, 85-103.

Clarke, A.E. (2003). Situational analysis: Ground-
ed theory mapping after the postmodern turn.
Symbolic Interaction, 26(4), 553-576.

Cockburn, A. (2001). Writing effective use cases.
New York: Addison-Wesley.

Curtis, B., Krasner, H., & Iscoe, N. (1998). A field
study of the software design process for large
systems. Communications of the ACM, 31(11),
1268-1287.

Dicks, B., & Mason, B. (1998). Hypermedia and
ethnography: Reflections on the construction of a
research approach. Sociological Research Online,
3(3). Retrieved June 9, 2006, from http://www.
socresonline.org.uk

Elliott, M., & Scacchi, W. (2003, November).
Free software developers as an occupational
community: Resolving conflicts and fostering
collaboration. In Proceedings of the ACM Inter-
national Conference on Supporting Group Work
(pp. 21-30), Sanibel Island, Florida.

Elliott, M., & Scacchi, W. (2005). Free software
development: Cooperation and conflict in a virtual
organizational culture. In S. Koch (Ed.), Free/open
source software development (pp. 152-172). Her-
shey, PA: Idea Group Publishing.

Finkelstein, A.C.W., Gabbay, D., Hunter, A., &
Nuseibeh, B. (1994). Inconsistency handling in
multi-perspective specifications. IEEE Transac-
tions on Software Engineering, 20(8), 569-578.

Gans, G., Jarke, M., Kethers, S., & Lakemeyer,
G. (2003). Continuous requirements management
for organisation networks: A (dis)trust-based ap-
proach. Requirements Engineering, 8, 4-22.

Gasser, L., Scacchi, W., Penne, B., & Sandusky,
R. (2003, December). Understanding continu-
ous design in OSS projects. In Proceedings of
the 16th International Conference on Software
& Systems Engineering and their Applications,
Paris, France.

Glaser, B., & Strauss, A. (1967). The discovery
of grounded theory: Strategies for qualitative
research. Chicago: Aldine Publishing Co.

Grinter, R.E. (2003). Recomposition: Coordinat-
ing a web of software dependencies. Computer
Supported Cooperative Work, 12(3), 297-327.

Hine, C. (2000). Virtual ethnography. Newbury
Park, CA: Sage Publications.

Jensen, C., & Scacchi, W. (2005a, January).
Collaboration, leadership, control, and conflict
management in the NetBeans.org community.
In Proceedings of the 38th Hawaii International
Conference on Systems Science, Waikola Vil-
lage, Hawaii.

Jensen, C., & Scacchi, W. (2005b, July-Septem-
ber). Process modeling across the Web information
infrastructure. Software Process--Improvement
and Practice, 10(3), 255-272.

Kitchenham, B.A., Dyba, T., & Jorgensen, M.
(2004). Evidence-based software engineering. In
Proceedings of the 26th International Conference
on Software Engineering (pp. 273-281), Edin-
burgh, Scotland. IEEE Computer Society.

Leite, J.C.S.P., & Freeman, P.A. (1991). Require-
ments validation through viewpoint resolution.
IEEE Transactions on Software Engineering,
17(12), 1253-1269.

Mi, P., & Scacchi, W. (1996). A meta-model for
formulating knowledge-based models of software

610

Multimodal Modeling, Analysis, and Validation of Open Source Software Development Processes

development. Decision Support Systems, 17(4),
313-330.

Monk, A., & Howard, S. (1998, March-April).
The rich picture: A tool for reasoning about work
context. Interactions, 5(2), 21-30.

Narayanan, N.H., & Hegarty, M. (2002). Mul-
timedia design for communication of dynamic
information. International Journal on Human-
Computer Studies, 57, 279-315.

Noll, J., & Scacchi, W. (2001). Specifying process-
oriented hypertext for organizational computing.
Journal of Network & Computer Applications,
24(1), 39-61.

Noy, N.F., Sintek, M., Decker, S., Crubezy, M.,
Fergerson, R.W., & Musen, M.A. (2001, March-
April). Creating semantic Web contents with
Protégé-2000. IEEE Intelligent Systems, 16(2),
60-71.

Nuseibeh, B., & Easterbrook, S. (2000). Require-
ments engineering: A roadmap. In A. Finkelstein
(Ed.), The future of software engineering. ACM
and IEEE Computer Society Press.

Oza, M., Nistor, E., Hu, S. Jensen, C., & Scacchi,
W. (2004, February). A first look at the Netbeans
requirements and release process. Retrieved June
9, 2006, from http://www.ics.uci.edu/cjensen/pa-
pers/FirstLookNetBeans/

Rao, R. (2003, November). From unstructured data
to actionable intelligence. IT Pro, pp. 29-35.

Scacchi, W. (2002, February). Understanding
the requirements for developing open source

software systems. IEE Proceedings on Software,
149(1), 24-39.

Scacchi, W. (2004, January). Free/open source
software development practices in the computer
game community. IEEE Software, 21(1), 59-67.

Scacchi, W. (2005). Socio-technical interaction
networks in free/open source software develop-
ment processes. In S.T. Acuña & N. Juristo (Eds.),
Peopleware and the software process (pp. 1-27).
World Scientific Press.

Seaman, C.B. (1999). Qualitative methods in
empirical studies of software engineering. IEEE
Transactions on Software Engineering, 25(4),
557-572.

Spinuzzi, C., & Zachry, M. (2000, August).
Genre ecologies: An open system approach to
understanding and constructing documentation.
ACM Journal of Computer Documentation, 24(3),
169-181.

Truex, D., Baskerville, R., & Klein, H. (1999).
Growing systems in an emergent organization.
Communications of the ACM, 42(8), 117-123.

Viller, S., & Sommerville, I. (2000). Ethnographi-
cally informed analysis for software engineers.
International Journal Human-Computer Studies,
53, 169-196.

endnote

* Previous version appeared in Proc. First In-
tern. Conf. Open Source Software, Genova,
Italy, 1-8, July 2005.

This work was previously published in International Journal of Information Technology and Web Engineering, Vol. 1, Issue 3,
edited by E. Damiani; G. Succi, pp.49-63, copyright 2006 by IGI Publishing (an imprint of IGI Global).

 611

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.6
Conceptual Model
Driven Software

Development (CMDSD) as
a Catalyst Methodology for

Building Sound Semantic Web
Frameworks

Thomas Biskup
Carl von Ossietzky University, Oldenburg, Germany

Nils Heyer
Carl von Ossietzky University, Oldenburg, Germany

Jorge Marx Gómez
Carl von Ossietzky University, Oldenburg, Germany

AbstrAct

This Chapter introduces Hyperservices as a uni-
fied application model for Semantic Web frame-
works, and proposes Conceptual Model-Driven
Software Development as a means of easy adop-
tion to them. Hyperservices are based on agent
societies, provided with structured information
by the Semantic Web, and using Web services
as a collaboration and communication interface.
Afterwards, the WASP model is proposed as a

framework for implementing Hyperservices, also
adding personalization rules to modify the agents’
perception as well as the HIVE Architecture
as Semantic Information Server infrastructure
within the WASP framework. For easier adoption
of these new models, Conceptual Model-Driven
Software Development is proposed. It separates
the conceptual aspects from the technical details
by automatically generating executable code from
models while the implementation details are hid-
den to the end user, the service developer.

612

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

oVerVIew

The Semantic Web and its effects are a mainstream
catalyst for current Web development. Its influ-
ence is felt across many areas of research and
business development: Agent systems, knowledge
management frameworks, ontology definitions,
and other areas are all refined by new ideas from
Semantic Web research (and vice versa). Since
many complex topics are now combined with the
goal of building the “Next Generation Internet”, it
becomes more and more important to build sound
and flexible frameworks to abstract the implemen-
tation details of the underlying technologies.

As underlying technologies are still in a state
of flux as far as their implementation details are
concerned, it seems to be very important to find a
simple yet appropriate meta-model for the overall
architecture which can be used to follow a kind
of model-driven approach: Model the required
system in a meta-level and then derive the actual
implementation by transforming the model into
executable code (or even directly executing the
model). This approach allows both the early adop-
tion of Semantic Web technologies and a continu-
ing evolution of the implementation details.

Research shows that the underlying methodol-
ogy for defining Semantic Web-oriented frame-
works can be defined very well. This chapter will
explain the main streams which will be integrated
towards the Semantic Web and more importantly
show, based on a thorough requirements analysis,
how Semantic Web-oriented systems might be
structured in a simple meta-model, allowing more
detailed specification as research progresses. A
new software development methodology, named
Conceptual Model-Driven Software Development
or CMDSD for short, which is currently under de-
velopment in our research team, is used to provide
a notion of the appropriate meta-models which
will allow the early adoption of Semantic Web
technologies in standard industrial projects.

The following steps in this chapter will lead to
an early-stage meta-model which might be used

to connect Semantic Web frameworks in an easy
and non-intrusive way with standard projects:

• The main research streams and technologies
making up the Semantic Web are identified.
Their interrelations and resulting require-
ments for frameworks and systems are
shown.

• An in-depth requirements analysis con-
cerning the architecture of Semantic Web
systems and the must-have features of such
features provides the groundwork for the
definition of the cornerstones of future
Semantic Web systems. It will be shown
that the basic cornerstones are limited in
scope, thus making it possible to define a
very simple high-level meta-model for a
model-driven strategy.

• An approach to build multi-platform Se-
mantic Web frameworks based on the core
technologies of Agents, Ontologies, Web
Services, and Personalization frameworks
is explained. This approach is generic
enough to encompass most currently-exist-
ing frameworks and lends itself towards the
integration of emerging standards. A new
type of service, a Hyperservice, is derived
from integrating these core technologies
into a new type of service infrastructure.

• An overview of Model-Driven Architec-
ture (MDA) and Model-Driven Software
Development (MDSD) will be given. It
provides the infrastructure for our exten-
sion of CMDSD (Conceptual Model-Driven
Software Development) which strives to
close the gap between technology expertise
and conceptual requirements by building
meta-models focused on the conceptual
task and defining a transformation path to
build complex systems from simple meta-
models.

 613

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

eMergIng seMAntIc web
technologIes reVIewed

First we will give an overview of existing Se-
mantic Web research and describe the current
underlying problems which need to be solved in
the new future to let the Semantic Web become
a living reality: The main task will be to narrow
or close the gap between the reality of the Web
(a disjoined and tangled mass of loosely-coupled
information resources) and the vision for the
Web: a tightly-integrated and openly-structured
information network with machine-readable
data that allows autonomous agencies to create
new applications empowered by this wealth of
information. Currently problems already start
in the early stages of developing systems for the
Semantic Web: Existing models and theories are
relatively complex (compared to established Web
standards like XML and HTML), frameworks still
have a very dynamic state, and interfaces between
frameworks are bound to change more often than
not (if they exist at all at this point of time). We
propose a framework to allow researchers and
developers to choose the level of detail, the type of
technologies, and the amount of computing power
they want to utilize for their proposed solutions.
We will use the building blocks of this framework
as the grounding for a flexible yet very simple
meta-model that ignores technical complexity and
favors the easy integration of existing technolo-
gies. We focus for our framework on a flexible
abstraction layer, pattern-oriented architecture,
and open interfaces to build on the successful
foundations of the Web: ease of use, flexibility,
and almost unlimited expression power. Agents
are the central paradigm for software development
using this architecture.

the evolution of the web

The Semantic Web is pushed by the World Wide
Web Consortium (W3C) as the foundation for
a true information society (Berners-Lee, 1998;

Berners-Lee, Hendler, & Lassila, 2001). The ef-
forts of the W3C are supported by a wide range
of multi-national research efforts combining
theoretical and practical experiences from infor-
mation technology.

Nonetheless progress is slow, and even if re-
search would yield results at much greater speed,
the results still need to be implemented. Current
research hints at much more expressive and thus
also more powerful means to represent data and
information, but the price is added complexity
required to build the representations. We therefore
focus on trying to provide simple models which
completely hide the underlying complexity of
Semantic Web technologies. The World Wide Web
was successful because people basically overnight
were enabled to share information, with simple
technology. This allowed for the enormous growth
in information resources which we now face. We
strive to reproduce this pattern to guarantee the
further growth of the Web (Berners-Lee, 2000)
by providing an early example for a simple meta-
model (with ample extension points) at the end
of this chapter.

the web of systems

The World Wide Web in its current form is the
largest information system ever built by humans.
At the same time, it probably is also one of the
least structured information systems ever built.
There are billions of Web pages (not counting other
resources like images, videos, sounds, CGI inter-
faces to large databases, and more), and almost
none of them are structured in a standardized way.
The “Deep Web” is even larger (Bergman, n.d.).
Most pages are built with HTML and coupled in
a very loose manner; links lead into oblivion as
often as they do not. Most existing links do not
provide much semantic information (e.g., what is
the meaning of a specific link except “someone
thought that two information resources should
be connected in some way”). Most information
is presented in a way that allows humans to use

614

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

it, although access to this information usually is a
problem because it becomes harder and harder to
find the few tidbits of information in the existing
mess of data. Studies by search engine companies
show that current problems are to be found at a
more basic level: Even the simple requirements of
HTML are rarely correctly fulfilled and semantic
information provision is not a topic high on the
list of most interest groups present on the World
Wide Web (Web Authoring Statistics, n.d.).

Thus we argue that we need to find ways to
evolve from the current World Wide Web (a Web
of Systems, so named because there are many in-
dividual systems that usually are only connected
by the simplest means, namely hyperlinks) to
something more.

It would be foolish and dangerous to try too
much at once. At the same time, it would be as
foolish and dangerous to create artificial bounda-
ries and introduce building blocks that limit our
power of expressiveness. Thus we propose to
search for architectures and frameworks that sup-
port gradual evolution without limiting the final
goal. We find practical examples that support the
viability of this approach: Modular programming
has spawned object-oriented programming to be
able to control complexity with more natural con-
cepts. For certain problem areas, agent-oriented
systems have been discovered to be an immensely
powerful and very natural concept for defining
solutions (Ciancarini & Wooldridge, 2001). Now
the industry momentum offers a huge chance to
solve one of the basic problems of agent societies:
Communication by Web services promises to do
away with the artificial system boundaries cur-
rently inhibiting large-scale distributed autono-
mous agent systems. And finally, model-driven
approaches (either MDA or MDSD) (Stahl &
Völter, 2005) seem to be highly appropriate to
serve as the glue between the evolving and vary-
ing technologies.

the web of services

Web Services currently are the preferred integra-
tion technology for business software companies.
Web Services (Christensen, Curbera, Meredith,
& Weerawarana, 2001; Gottschalk, Graham,
Kreger, & Snell, 2002) in theory offer a stan-
dard means to communicate between disparate
systems and applications with absolute disregard
for programming languages, computer hardware,
and system-specific communication protocols.
Based on XML (eXtensible Mark-up Language)
(Biskup & Marx Gómez, 2005), this new and
exciting standard promises a new way of defining
interfaces, without sticking to implementation
details and basic technical questions. Together
with HTTP (Hypertext Transfer Protocol) (Gour-
ley & Totty, 2002) and SOAP (Simple Object
Access Protocol) (Mitra, 2001) as protocols, we
face an enormous opportunity to bring together
previously-separated building blocks for the next
generation Internet. XML is the unifying data
representation standard that could be used to
basically encode any kind of information. HTTP
and SOAP are simple yet flexible protocols that
allow a system-independent communication be-
tween heterogeneous systems. More generally,
the basic notion of application-level protocols
is very important to be able to conceptualize a
working architecture for a true Web of Services.
While it currently is very difficult to connect dif-
ferent Web-based systems, future interfaces could
greatly benefit from these standards (e.g., when
trying to combine a flight information system and
a hotel booking system).

While theoretically already very strong in
practice, many Web Services standards are not yet
available. The specifications currently evolve at a
much faster pace than the implementations, and
many of the core technologies (e.g., distributed
transactions and security) are still in a state of con-
tinuing change. These movements will stabilize
eventually, but in the meantime the permanent
flux of changes creates investment risks which

 615

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

cause many commercial endeavors to use as little
as possible of the new technologies. In turn, this
causes specifications to be created with a certain
lack of practical experience, which in turn shows
in the quality of early specification versions and
again hampers adoption.

If models can be provided that collect the
basic ideas of the standard and completely hide
the implementation details, companies could start
today with integrating the existing standards.
A model-driven approach seems to be the most
appropriate way for this task: The conceptual
tasks could be modeled on a meta-level by using
a simple and abstracted modeling technology, and
some kind of transformation engine would take
these models and either directly execute them
or transform them into executable code. In this
way systems could be easily upgraded to new
versions of specific Web Service technologies,
as the meta-models will probably only change in
minor ways or not at all.

A Web of Services thus could become a tangi-
ble possibility. This could be the next important
step for Web technologies—because Web services
possess many powerful features ideally suited for
industrial use and commercial success stories.
This also could build the momentum to ensure
the wide-spread use of, in our point of view, a
very important technology. Current developments
support this theory; most new API versions and
programming systems supply some sort of Web
Services integration (from ancient languages
like COBOL to the most recent developments
like .NET).

the web of semantics

All afore-mentioned efforts target one underly-
ing and ever present goal: the Semantic Web, an
information network of machine-readable data
that allows autonomous agencies to gather data,
turn it into information, reason about it, and come
to conclusions. This information network will be
traversed by intelligent agents to fuel new and

exciting services (Joy, 2000; McIlraith, Son, &
Zeng, 2001; Metcalfe, 2000). Humans will never
be able to fully utilize the mass of data collected
in the World Wide Web; thus we need to find new
ways to turn all the data into something more
than a loosely connected set of HTML pages.
The basic building blocks for the Semantic Web
are made up by:

• Semi-structured data: XML has been ac-
cepted as the means of choice to represent
platform-independent data in a semi-struc-
tured way that allows for an open-ended
way of describing data (Bray, Paoli, Maler,
Sperberg-McQueen, & Paoli, 2000). Based
on plain text (but powered by Unicode), XML
enriches pure data with metadata to allow
machines to use the data more effectively
and in ways not initially coded into the data
format.

• Machine-readable data: The current pro-
posal for this building block relies on XML
as a means of expression and has been named
RDF (Resource Description Framework)
(Brickley & Guha, 2000; Lassila, 2000).
It should be noted that RDF has various
means of representation, but XML seems
to be the most natural for the World Wide
Web and the most widely used right now.
RDF allows describing resources, proper-
ties of resources, and relations between
resources. RDF can be extended to create
more complicated languages and at the same
time provides powerful foundations for
reasoning (being based on first-order logic).
Interestingly, RDF takes a very pragmatic
approach to provide a viable solution for
information representation: Right away, it
allows for inconsistence, incorrectness, and
incompleteness in the represented informa-
tion and takes it as given that data can lead
to situations where agents will not be able
to come to a decisive or correct conclusion.
This pragmatism adheres to the concepts

616

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

that established the current Web, ease of
use with an allowance for mistakes.

• Ontologies as a means to describe the rela-
tions between objects and to define standard
hierarchies as descriptions of “the world”: A
lot of research is concerned with the question
of what should be in an ontology language
in order to once more find the best way of
combining computing and expression power
with ease of use. Ontology languages like
SHOE (Heflin, Hendler, & Luke, 1999),
DAML (Hendler & McGuiness, 2000), and
DAML+OIL (DAML+OIL, 2000) hint at
the power of future metadata structures.

So far major concerns in the World Wide Web
community were to standardize the encoding of
data and information. Retrieval, automated rea-
soning about information, connection of services,
and basically all other means of exploiting this
information pool were only moderately successful.
The Web spawned a variety of search engines and
meta-search engines, but these, together with shop
systems and Web directories, cover the efficient
means of access to the World Wide Web for hu-
mans. There were some experiments with agents
and agent societies (Brickley & Guha, 2000), but
so far these attempts failed to become wide-spread
successes due to the lack of a unified information
infrastructure and lack of standardized interfaces;
CGI (the Common Gateway Interface) is hardly
sufficient to build even semi-complex applications
in an abstract and elegant way. Other experiments
(De Bruijn, Fensel, Keller, & Lara, 2005; Harper
& Bechhofer, 2005) hint at different exciting
possibilities to enhance the knowledge acquisi-
tion process for users, but still lack the unified
foundation required to build a whole generation
of such service enhancements. The need for such
a foundation is proven by some extensive first-
generation systems (Lin, Harding, & Teoh, 2005)),
which show the basic building blocks that will be
required again and again, and thus are the primary
target for standardization attempts.

To cope with this situation we propose a new
model of regarding future applications building
on the foundations mentioned so far, a unit of
abstraction we have named Hyperservices.

proposing hyperservices as a
Unified Application Model

We believe that the next important step will be to
find a unifying, language- and system-indepen-
dent architecture that allows for a convergence in
current research areas surrounding the Semantic
Web. When we talk about Web-based applica-
tions, we mean “based on Web technologies”.
Web technologies have been widely accepted and
have managed to bring together disparate system
structures. While this goal in the first moment
might be very ambitious, we will present a very
simple (one might think trivial) way of allowing
all these technologies to be integrated into current
run-time environments. Ample extension points
will be provided, and we refrain from requiring
any specific implementation technologies.

Looking at the components currently avail-
able, a unified application model based on agent
societies seems to be in reach: The Semantic Web
allows us to reason about information by structur-
ing information appropriately. This provides the
basis for “intelligent” agents (with “intelligence”
on a pragmatic hands-on level). Web services
introduce the interface for collaboration among
systems. Agents are the natural extension to
achieve autonomous systems (Benjamins, 2003).
Currently we face a multitude of ontology lan-
guages (Benjamins, Fensel, & Asunción, 1998)
and many models and theories to map information
to efficient data models and retrieval algorithms,
but these means will only see wide-spread use
if they become easy to communicate to future
users (e.g., programmers), based on standard
architectures and easy to integrate into exist-
ing systems. Integration still is one of the main
problems faced by current computer science
(from the business perspective), but the Web

 617

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

can only remain successful if it manages to stay
commercially interesting (whether by drawing
enough people to it to supply Internet Providers
with customers, or by introducing truly success-
ful e-business models is not that important). Thus
the integration of these new models into existing
structures will be the most important task from
a business point of view.

Topics under current discussion (e.g., agent
societies and the Semantic Web) will not be able
to replace classic information systems (e.g., tax
accounting, enterprise resource planning, and
logistics). But if built in the right way, they will
be able to enrich classic systems by providing
added value. They will open up a new venue of
information systems, built around the necessity
to decide between precision and speed. The sheer
size of the Web and its constant flux will make
it impossible to store nearly enough data in local
systems to allow for efficient information systems
(in the classic sense). Thus it seems much more
likely that future information systems will be
build around the idea of semi-autonomous agents
wandering across the Web, collecting information,
reasoning about it, and yielding results, either
continuously or until specified resource limits
(e.g., time, bandwidth, or a financial budget) have
been exhausted (Hendler, 2001).

the wAsp Model

We propose a unified framework that is founded
on four building blocks which, in our point of
view, will be absolute necessities to populate the
future Web with more powerful applications:

• Web Services as a means of providing a
unified communication interfaces between
applications and agencies (Christensen et
al., 2001; Dale, 2002; UDDI, 2001);

• Agents as a natural and central means to
represent typical tasks and solutions for a
distributed and constantly changing infor-
mation environment;

• Semantic Web technologies as a means to
provide data and information in a consistent
manner that allows retrieval and reasoning;
and

• Personalization technologies to customize
processes to the needs of the individual
user, an absolute necessary concerning the
current (and future) size of the World Wide
Web, lest it becomes impossible to separate
useless from useful information.

(The initials of these core technologies also pro-
vide the acronym for our framework: WASP)

Agents will be the central building block of
this architecture, because they implement the ac-
tual business logic. Web Services are the natural
means of communication and collaboration for
agents working under the described model; the
Semantic Web is the environment (world) for these
agents, and the personalization rules basically can
be used to make up or modify the beliefs of the
agents. Thus the described components integrate
very nicely and in a very natural manner into the
underlying agent paradigm.

The WASP framework will account for a
variety of necessities explained in the next sec-
tions. In contrast to existing major endeavors
in this area (Finin, Labrou, & Mayfield, 1997;
Object Management Group, n.d.; O’Brien &
Nicol, 1998), we plan to provide an architecture
that focuses on:

• proactive information agents that collect
information and provide results by using
inference mechanism to reason about the
existing information;

• high-level technical support for the ap-
plication developer (e.g., communication,
distribution, data storage);

• tight integration of Web technologies (RDF,
Web Services, DAML, SOAP, etc.);

• independence from specific kinds of imple-
mentations (e.g., no specific communication
language will be enforced); and

618

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

• focus on agents relying on the Semantic
Web as the dominant information source.

Thus the following central paradigms will be
of greatest importance:

Open Interfaces

Since it is impossible to enforce one true operating
system, one true programming language, or one
true CPU architecture for the network underlying
the World Wide Web, it is of paramount importance
to provide a powerful means of communication
between the interacting agencies. SOAP and
HTTP (as the underlying protocols), together with
Web Services (as a means of interface specifica-
tion), seem to be natural choices. The framework
will provide a layer of abstraction to be able to
disconnect from these particular technologies,
should, for example, other protocols become
more important.

Service Agencies

Agents seem to be a very natural way for describ-
ing typical scenarios of Web usage. They are the
machine representation of human beings who
right now have to do most of the work manually.
Thus the WASP framework will provide means
to define a variety of agents: mobile, autonomous,
reactive, and so forth. To enhance the usefulness
of the framework, it is set up to allow agents to
be self-describing, thus automatically turning
agents into services that can be used by others
and integrated via standard interfaces. This allows
for wide-spread service dissemination and easy
integration with other systems.

It will be especially important to integrate
current agent research into this framework layer;
efforts like DAML (DARPA Agent Mark-up
Language) allow for powerful modeling means
to devise agents and agencies.

Data and Information Gathering

The framework must provide for means to accumulate
data, compare it, and reason about it. Data might be
persistent (to allow for agents with increasing reasoning
power) or transient (to model short-effect tasks), and
data should be interchangeable between different
agents. It must be possible to integrate ontologies to
allow for a solidified view of the “world” (in regards
to the agent or agents).

Personalization Integration

It must be easy to integrate personalization
technologies. At the most basic level, it should
be possible to specify user preferences and dis-
likes, and to integrate them in the reasoning and
retrieval process to improve the quality of the
returned information.

the hIVe: semantic web brokering
Simplified for WASP Agents

Web servers have been the technical foundation
for the success of the World Wide Web. Appli-
cations servers have been a successful model in
abstracting from the everyday chores of building
complex applications and thus form the basis for
modern large-scale business applications. Thus it
seems natural to evolve to Semantic Information
Servers that provide a corresponding environment
for Semantic Web agents specialized on utilizing
the Semantic Web resources to provide informa-
tion services to the end user.

Application servers offer persistence, transac-
tions, distributed processing, and scalability if the
software complies with a predefined component
model (e.g., Java 2 Enterprise Edition / J2EE).
This allows developers to focus on the actual task
at hand, for example, implementing the business
logic for a complex transaction portal. In our view,
a similar model is required for Semantic Web
applications based on agent societies. Different
layers of abstractions will allow concentrating on

 619

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

functional requirements and help to abstract from
the details of the implementation. In the same
way that a J2EE application server takes away
the details of persistence from the developer, a
Semantic Information Server can abstract from
the details of, for example, storing semantic
information, retrieving it, and reasoning about
it. This holds true for other areas as well (e.g.,
information recovery from the Web, resource
management for agents, and communication
between members of local and remote agencies).
Within the WASP framework, we intend to call
the Semantic Information Servers a HIVE (not
an acronym but rather a play of words continuing
the WASP idea).

These ideas result in the infrastructure diagram
in Figure 1.

Important semantic web research
Areas

In this section we intend to describe a few of the
more important current research topics needing to
be solved to further the development of Semantic
Web services:

• Ontology integration and translation is a ma-
jor problem for interconnecting distributed
services and systems (Gruber, 1993; Heflin

& Hendler, 2000; Heflin et al., 1999): How
can differing ontologies for related topics
be mapped on each other?

• Web Service orchestration, interopera-
tion, and transaction handling needs to be
standardized (UDDI, 2001; Web Services
Choreography Requirements, 2003; Web
Services Transaction, 2002).

• Standards to allow for personalization need
to find wide acceptance (PICS, n.d.; Stahl &
Völter, 2005; for discussions on currently-
available, yet still rarely-used standards).

remaining challenges

Besides the technical questions which currently
enjoy most attention, a multitude of additional
topics needs to be investigated before distributed
agent systems and the Semantic Web become truly
viable. A few of them are:

• Modeling challenges: In which way can
Semantic Web systems be modeled so that
a broad user base will be able to understand
and utilize these technologies? We make an
early attempt to answer this question in the
last major part of this chapter.

• Cost challenges: Who is going to pay for
the resources being used in distributed agent
networks? It is safe to assume that such agent
services will be a lot more cost-intensive than
the “simple Web information platforms of
today” (e.g., Web servers).

• Pricing challenges: Already now there is
a tendency to commercialize high-quality
services. How will future information sys-
tems be rated in terms of usage fees if the
component services of some complex service
(e.g., the logistics service, the currency con-
version service, and the mapping service for
a complex online order service) each incur
fees, but the user of the complex service
might not necessarily add to the income of
the complex service provider (e.g., because

Figure 1. HIVE architecture

620

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

the user decides against buying something
after getting the shipment information)?

• Business challenges: What are viable busi-
ness models for Semantic Web agencies and
services?

• Quality challenges: How will services be
able to guarantee a certain level of quality if
they rely on the data collected in the Semantic
Web, an information storage that will be as
inaccurate as the currently-available World
Wide Web (mostly because everyone will
be able to put up whatever he or she deems
correct and appropriate)?

• Trust challenges: How can I be sure that
not only the quality of results gained by
Semantic Web analysis is sufficient for me
but also correct at all?

• Workflow challenges: How can complex
workflows (like booking a complete holiday
trip) be orchestrated when dynamic service
directories, user preferences, potentially
faulty information, and other factors need
to be considered?

• Performance challenges: How must ser-
vices be constructed to be able to retrieve
useful data in a timely manner from the
Semantic Web, a Web that is infinitely
more complex to search compared to cur-
rent search engines and technologies due to
the far more involved complexity created
by allowing inferences, conclusions, and
reasoning about information?

• Security challenges: How can personal
and private information be protected from
prying eyes? What new security challenges
arise from the architectural decisions made
for the WASP framework?

• Legal challenges: Who will be held re-
sponsible for incorrect, imprecise, or faulty
information derived from or modified by
Semantic Web content?

• Architectural challenges: What are the
best-of-breed software infrastructures/ ap-
plication architectures to allow for a rapid

dissemination of the technologies involved?
How can user and developer acceptance be
increased?

requIreMents AnAlysIs
concernIng seMAntIc web
ArchItectures

As explained in our example Semantic Web
architecture, different technology layers usually
will be found in a Semantic Web-based system.
In this section, we will continue the example by
analyzing the essential requirements to be fulfilled
both by our similar architectures in order to be
Semantic Web-ready. We will start at the bottom-
most layer (the database tier) and work upwards
from there. Differences compared to standard
enterprise architectures will be explained in the
individual sections.

requirements for the hIVe data
store

The HIVE Data Store will store and evaluate data
gained by analyzing Semantic Web resources.
To provide a useful and extensible model, the
following functional and technical requirements
must be taken into account:

• The HIVE Data Store should be independent
from the specific type of storage (DBMS,
RDF store, flat file, some kind of network
service). Thus it will be possible to choose
the best type of storage for a given situation.
Additionally this is a basic requirement to
be able to exchange data store implementa-
tions as technology and research continue
to evolve.

• The HIVE Data Store must not assume that
data is correct, complete, or unambiguous.
The Internet by design is a place where data
is provided in a spontaneous and improvised
manner. Thus the Data Store must be able

 621

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

to cope with such data. This is also a major
difference from classical enterprise systems,
where usually the utmost care is taken to
insert only verified, correct, and unambigu-
ous data into databases.

• The HIVE Data Store must provide inference
support. The true value of the Semantic Web
can be used only by analyzing the gathered
data and drawing conclusions. Thus infer-
ence support is paramount. Nonetheless
there must not be any assumptions about the
specific inference approaches being used,
again to allow flexibility and configurabil-
ity.

• The HIVE Data Store must be able to ac-
cess data from a variety of sources. This
is absolutely necessary due to the size and
varied nature of the underlying information
sources. The Internet itself is just too large
to be kept on one server or a whole farm of
servers; while in most cases an application
will not need to access all the information
available on the whole of the Internet, for
some of the more exciting Semantic Web
applications it will be a necessity to be at
least potentially able to access all available
information.

• The HIVE Data Store must be able to in-
tegrate ontologies into its repository. On-
tologies are the basic mechanism to define
the meaning of concepts modeled in, for
example, RDF structures. An important
add-on functionality will be the ability to
compare ontologies and map them onto
each other to be able to integrate differing
ontologies designed for the same problem
area.

• The HIVE Data Store must include a facil-
ity to manage the credibility of sensitive
information. Mission-critical data must
only be accepted from sources that are able
to authenticate themselves and prove their
credibility (e.g., with certificates or similar
mechanisms).

• The HIVE Data Store should be able to
organize itself physically, to manage its
resources, and to restructure information
based on dynamic changes of the environ-
ment. This is an optional but highly recom-
mended functionality, as it is to be expected
that the Data Store of a widely-used system
will grow with leaps and bounds. To remain
efficient and to conserve resources, the Data
Store itself has to take responsibility for
this.

• The HIVE Data Store must explicitly consid-
er data retention periods, along with models
and algorithms for purging; otherwise, the
data cached there will rapidly become stale
and will overload the database.

• The HIVE Data Store must provide a man-
agement facility so that external users can
examine the state of the server, the data, and
the rules accumulated in the store. Addition-
ally, typical functionality must be provided
to configure the data sources and control
resource allocation of the store. It should be
noted that the management facility might
have a very different outlook depending on
the underlying storage mechanism being
used for the specific server.

To be able to incorporate these widely varying
requirements, an abstraction layer will be required
through which all HIVE Data Store access opera-
tions will be routed. This will add functionality
as required (e.g., by defining a HIVE Data Store
proxy that collects requests, runs through a cach-
ing layer to increase performance, and then del-
egates unanswered requests to the actual physical
or distributed Data Store).

requirements for the hIVe Agent
server

The HIVE Application Server is responsible for
running the various agents that implement the
business logic side of the framework and access

622

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

all other components to achieve their goals. The
following functional and technical requirements
need to be taken into account:

• The HIVE Agent Server must provide a run-
time environment for varying agents that
share a common interface, as defined by the
WASP framework. There must be support
for both mobile and static agents to allow
for a wide range of application scenarios.

• The HIVE Agent Server must provide a se-
curity layer that controls resource access for
all agents operating on the server. This is an
absolute necessity for servers incorporating
mobile agents and allowing mobile agents
to migrate from one server to another.

• The HIVE Agent Server must provide access
to the HIVE Data Store in an abstracted and
generalized manner. Agents must not be
required to know about the details of data
storage or inference.

• The HIVE Agent Server must provide access
to the “outside world” so that the sensors
of the agents involved can operate. The
HIVE Agent Server may modify perceived
data based on personalization and security
rules.

• The HIVE Agent Server must allow for
communication using a variety of agent
communication languages (ACLs) to be able
to integrate a variety of agent systems. This
probably will include the necessity to provide
translation services between different agent
communication languages in order to allow
communication between agents of different
breeds.

• The HIVE Agent Server must provide a
management facility so that external us-
ers can examine the state of the server and
the agents running on it. The management
facility must include all kinds of standard
management functionality to allocate re-
sources, control permission, direct agents
and so on.

• The WASP Agent Interface must be struc-
tured so that existing agent frameworks can
be easily integrated into the system while
there also must be enough room to develop
new concepts and architectures. Addition-
ally, the interface must be extensible, so that
incremental extensions may be made both
forward and backward compatibly, allow-
ing upgrades to clients or servers in either
order.

Interestingly, the requirements concerning the
actual agents are very small; when examining, for
example, the proposed scope of software agents
in Gilbert, Aparicio, Atkinson, Brady, Ciccarino,
Grosof, et al. (1995), the only functional require-
ments that must be provided by the HIVE Agent
Server is mobility. Everything related to the intel-
ligence aspects of agents can be modeled in the
HIVE Data Store and the agent implementation.
All other aspects are determined by the actual
agent implementation.

requirements for the hIVe
personalization layer

The HIVE Personalization layer modifies both
the perceived external environment (e.g., the
Internet and other servers) and the perceived
internal environment (especially the information
gathered in the HIVE Data Stores). To provide a
meaningful level of personalization, the following
functionalities are of utmost importance:

• The HIVE Personalization Layer must pro-
vide permission-based personalization so
that the perceived environment adjusts based
upon the permissions of each individual
agent. Permissions will have to be modeled
on per-server-, per-agent- and per-user- base
in order to be fully effective.

• The HIVE Personalization Layer must be
able to handle agent-specific inference rules

 623

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

in order to modify and control the inference
process based on agent preferences.

• The HIVE Personalization Layer must be
able to handle user-specific inference rules
in order to modify and control the inference
process based on agent preferences.

requIreMents For the hIVe
coMMunIcAtIon lAyer

The HIVE Communication Layer connects the
HIVE Agents with external systems (e.g., the
Internet, other servers, and so on).

The argumentation in the sections above shows
that the HIVE Communication Layer also should
serve another important purpose: The various
components of the WASP Framework need to be
connected in a system-independent and flexible
way; by using the HIVE Communication Layer
not only for inter-system but also for intra-system
communication, several powerful synergy effects
can be utilized:

• Communication uses but one protocol layer.
This makes it much simpler to distribute
agents, objects, and servers since no separate
protocols are required for communication
and information exchange. The implementa-

tion of the HIVE server itself is simplified,
too.

• Intra-system services (e.g., resource manage-
ment, process supervision, and more) can,
if wanted, be modeled as agents to use the
infrastructure provided by the WASP frame-
work to implement the WASP framework
itself. This is analogous to database systems
that store database meta-information in their
own database structures or compilers used
to compile themselves, and serve as a good
proof of concept for the simplicity and valid-
ity of the architecture, once implemented.

• The communication layer must integrate
mechanisms to transparently handle both
scalability of the system as a whole and to
increase the fault tolerance when concerned
with individual requests.

To be able to fulfill these expectations, a
number of functional requirements must be
considered:

• The HIVE Communication Layer must be
implemented with a system-independent
protocol and communication API. It must
be possible to exchange atomic and complex
information objects. Web Services and the
associated communication protocols (e.g.,
SOAP) will serve nicely as a basis for the
HIVE Communication Layer.

• The HIVE Communication Layer must be
able to communicate with external systems
through a standard protocol. Otherwise
communication would be too limited for a
reasonable system trying to support Seman-
tic Web applications.

• The HIVE Communication Layer must
provide some means to execute a lookup for
external services and resources. Services
like UDDI (Heflin & Hendler, 2000) and
maybe also LDAP are typical candidates
to be integrated. Although this might seem
like a rather minor and trivial point at first

Figure 2. Scope of intelligent agents (Adapted
from Gilbert, et al., 1995)

624

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

(especially given the fact that more or less
established technologies like LDAP and
UDDI already exist), it must be stressed
that the integration of a powerful lookup
service for other services and resources is
of major importance, especially so when
considering the stress on “fault tolerance”
and “scalability”.

Scalability is rather easy to achieve in some
respects if a lookup mechanism exists: Requests
for services, on one hand, can be dispatched to
service endpoints based on a variety of load-bal-
ancing strategies and algorithms; only imagination
limits the possible scenarios ranging from simple
round-robin algorithms to elaborate agent-based
schemes where agents monitor the CPU load on
connected systems and use that information to con-
trol the dispatching of further incoming requests.
Hardware-based load-balancing mechanisms
can also be easily integrated as the endpoint of a
service, and can represent a façade for a server
cluster with a hardware load balancer handling
the incoming requests. Naturally these techniques
can also be combined.

To be able to effectively handle faults, several
approaches can be implemented; the important
concern is whether service faults on the actual
service level (e.g., complete service failures due
to unavailable servers, etc.) or on the logical
level (e.g., service errors, etc.) are examined. The
communication layer can easily enhance the fault
tolerance of a Hyperservice-based system on the
service level: A simple protocol handler extension
can be integrated in order to allow the resubmis-
sion of service requests if a service endpoint fails
to respond. This behavior can be enhanced by
integrating a regular availability check into the
service/resource registry to be able to filter out
or deactivate temporarily-unavailable endpoints
and thus reduce the overall network load. Errors
on the logical level cannot be handled in a trans-
parent level in the HIVE communication layer
without extensive semantic descriptions of the

services themselves. Since the idea of the HIVE
architecture is to provide a simple and extensible
architecture. For now, no logic fault handling at
all will be integrated into the communication
layer. Future research will have to show whether
such extensions can be integrated in a simple yet
effective manner.

Finally it is important to note that, as the in-
ternal HIVE services also can and should make
use of the service and resource registries, the
HIVE system itself transparently benefits from
the integration of the features concerning fault
handling and scalability as described above.

• The HIVE Communication Layer must
be system- and programming language-
independent. Again, Web Services and the
associated protocols nicely fit this require-
ment.

• The HIVE Communication Layer must use
standardized protocols to be able to connect
to as many systems as possible.

common requirements

Finally there are some common requirements that
are shared by all frameworks like, for example,
compositionality, reusability and extensibility,
that must be taken into account. Of special im-
portance for the WASP framework is language
independence (even if the reference implemen-
tation might use a specific language like Java
or C#), in order to be able to connect as many
systems as possible. Since these requirements
are not unique or special to the presented topic,
we will not elaborate them any further within the
bounds of this chapter.

the requirements Analysis in
review

In order to make the Semantic Web as accessible
as possible, a highly-abstracted framework with
open interfaces and simple overall concepts is

 625

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

very important, especially since the underly-
ing technologies mentioned above individually
already require a high level of expertise to be
able to use them effectively. We have shown that
such an infrastructure framework is defined by
a manageable amount of requirements, and that
available standards (ready or just evolving) already
cover a lot of ground. The next challenge is to
provide a means of integration that is simple yet
powerful and extensible at the same time. This
will be the focus of the rest of this chapter.

Model-drIVen soFtwAre
deVelopMent For the
seMAntIc web

In this final section, we will try to give an answer on
how to increase the acceptance of Semantic Web
technologies by leveraging recent developments
in the area of model-driven software development
(MDSD). So far we have talked about how to
simplify the development of Semantic Web-based
systems, and this is the classical perspective of
most approaches available today.

Now we would like to concentrate on a new
way of approaching software development. Model-
Driven Architecture (MDA) and Model-Driven
Software Development (MDSD) both strive to
simplify software development by automatically
generating executable code from models (Stahl &
Völter, 2005). These approaches seem to be well-
suited for Semantic Web development consider-
ing the implied semantic definitions of models,
agents, and ontologies, for example, provided by
DAML. Nonetheless, one inherent weakness is
left unconsidered by these approaches: Both MDA
and MDSD require a sound understanding of the
underlying technological and theoretical founda-
tions, combined with a good amount of experience
about how to model systems in the best way. This
does not really help in transferring the conceptual
knowledge that software customers possess into
software systems as the developers still concen-

trate on building sound technological models and
keep all the minute details under control.

We thus propose the next step in model-driven
technologies, which we have named “Concep-
tual Model-Driven Software Development
(CMDSD)”.

the notion of conceptual Model-
driven software development
(cMdsd)

The basic idea of our methodology of Conceptual
Model-Driven Software Development (CMDSD)
is to model systems through intuitive models on
the conceptual level. These models must not be
based on one global theory (like MDA with the
Meta-Object Facility (MOF)), but rather utilize
the most pragmatic theoretical foundation pos-
sible for the problem at hand. Additionally, the
model should abstract as much as possible from
the technological details of the system and focus
on the conceptual facets which are possible.
Models are aggregated into more complex mod-
els while great care is taken to provide a simple
transformation from the individual model to the
run-time system representation of the model.
This allows software developers and architects
to work together with customers and concentrate
on the business side of the system; a simple and
effective transformation from business problem
to system representation is assumed. Existing
design patterns support this notion.

Of greatest importance is the way in which
CMDSD-based models are made available to
the conceptual experts at hand: We require that
models use a language (in the formal meaning)
that comes as close as possible to the tools and
ways used by the target audience to express their
concepts. Thus the way of modeling will differ
between areas of expertise. While this might feel
like a disadvantage at first because software engi-
neers will have to learn many differing modeling
languages, we regard this as an advantage for a
simple reason: The rules for transforming/execut-

626

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

ing these models need only be understood by a very
small number of persons, namely those persons
who build the actual transformers or interpreters.
In contrast the user base for the concepts modeled
typically will be very large in comparison. Thus
it seems more reasonable to build models which
are intuitive for the end user base and not the
(intermediate) developers. Additionally it benefits
the developers by forcing them to concentrate on
the conceptual aspects of development and to hide
the technical details.

One might argue that this is just a step back to
the “model wars” in the years from 1990 to 2000
before the advent of UML. We argue that UML
and similar OMG approaches did not really solve
those problems as far as the actual specification of
conceptual tasks goes. UML provides very effec-
tive models in order to specify technical details,
but those technical details, most of the time, are
of no interest at all to the conceptual experts
who require a solution for their non-technical
problems. The gap between available means to
specify technical aspects and the lack of means
to formally specify the purely conceptual parts
of a problem leads to a high number of failing
software projects (failing software projects are
those that fail to meet their goals in time, money,
or quality).

Current studies concerning success and fail-
ure of software projects seem to prove this point
(Standish Group, n.d.): More than 75% of all
failed software projects failed due to problems
with requirements analysis and errors in the re-
sulting specifications. We thus argue that more
problem-oriented models are a must-have in order
to facilitate the communication between technical
and non-technical experts which work together
on a complex project.

Additionally, our CMDSD methodology re-
quires Rapid Prototyping (Reilly, 1996) as a means
to be easily able to verify specifications.

using cMdsd to build semantic
web servers

How does all this help with Semantic Web de-
velopment? Many of the underlying technologies
for the Semantic Web are highly complicated and
very involved. Rare is the architect or developer
who understands agent technologies, Web service
specifications (in their ever-growing numbers),
and the details of building efficient application
servers all at once. If architects and develop-
ers trained in more than one of these topics are
already rare, how can we then assume that the
end users for Semantic Web technologies (e.g.,
the people building Websites today) will be able
to grasp the varying concepts and details of
implementation?

As explained in the sections above, one of
the research directions currently being actively
investigated is the research in semantically-rich
descriptions for Web services. Now imagine a
development system that can understand existing
semantic descriptions of services, load them, and
generate definition and aggregation interfaces for
such services. Suddenly developers and customers
can work together in a semantically-rich environ-
ment to model the business side of systems and,
by using a framework like the WASP framework,
can mostly ignore the technological side as the
underlying framework handles configuration and
assembly.

While we still need to work on the actual
implementation of a server that can handle arbi-
trary agent frameworks and expose them as Web
Services, a specialized server for one type of
agent system is within reach. Additionally, many
projects will be able to be handled today by using
but one technology, as the integration of differing
agent systems requires quite a bit of research in
the future. The next section will show how such a
system can be integrated into existing application
and Web servers with CMDSD methods.

 627

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

A cMdsd-based Approach for Agent
and service Integration

First of all, we specify the most important require-
ments that must be fulfilled in order to make it
simple to use Semantic Web technologies. Please
note that these definitions are flexible and based
on our point of view; different focuses will yield
different definitions. We intend to base our initial
CMDSD-based model on the following require-
ments:

1. The model must be formulated in such a
way that current Web developers will feel
immediately comfortable using its syntax.

2. The model must hide the complexities of
both the underlying technology and the
integration questions popping up as soon
as actual integration into an application or
Web server comes to mind.

3. The model must allow for flexible data
structures to both be sent to the agents and
be received from the agents.

4. It must be possible to modify the data in
both directions.

5. Standards should be used to implement the
model transformation/executions.

To fulfill these requirements, we make the fol-
lowing decisions:

1. The model will be formulated in “an XML-
like syntax similar to HTML” (see below).
This will allow current Web developers to
easily grasp the concepts. As a side effect,
the model definitions for now will be in-
cluded in the definitions for HTML pages.
The special tags defined to describe WASP
models will be shown below.

2. The model for now will only fulfill the most
basic requirements of a basic IO system.
Complex logic will be hidden in the under-
lying agents and processes. The model is
thus only concerned with retrieving data

from some source and sending (other) data
to a sink (which provides the results as a
response).

3. Technically we will assume that some kind
of extension of the underlying server that
analyzes the HTML code before it is sent to
the client, extracts the WASP-specific defi-
nitions, processes them, and re-integrates
the results of those definitions. Possible
technical solutions could be Apache Plug-Ins
(Bloom, 2002), Java Servlet Filters or Java
Servlets (Bell, Loton, Allamaraju, Dalton,
Brown, Harbourne-Thomas, et al., 2002) or
ISAPI extensions for the Microsoft Internet
Information Server (Genusa, Addison, &
Clark, 1999).

4. XML will be used to represent data (Bray
et al., 2000).

5. Simple transformations will be handled by
XSL transformations (Cagle, Cornig, &
Diamond, 2001). Complex data transforma-
tions will require specialized agents or Web
services.

6. Services and agents will be represented by
URNs (Uniform Resource Names) (URI
Planning Interest Group, n.d.) in the models.
The interpretation of those models will, for
now, be server-specific, although future
systems should strive to standardize URNs
in the same way as XML namespaces.

Based on these requirements and definitions,
we now will provide a simple example for a
Hyperservice call. Note that in the HTML snip-
pet in Figure 3, all WASP- (and model-) specific
elements use the “wasp:” namespace.

The interpretation of the given code snippet is
intuitive if you are even slightly versed in HTML;
and now about the meaning of XSLT:

• The tag “<wasp:hyper service=”urn:wasp:
service:GetStockQuotes”>” defines a hyper-
service call. The service itself is identified by
the given URN. The specifics of connecting

628

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

to the service are completely hidden from
the user (e.g., the Web page author) and must
be configured in the server environment. A
definition of the interface of that service also
exists separately and is fulfilled implicitly
by the next two lines of code (see below).

• Two parameters are defined:
o The parameter “verbosity” is set to the

value “detailed” which (intuitively)
means that a detailed list of stock quotes
is requested.

o The parameter “stockMarketLocation”
is defined dynamically (as indicated by
the attribute “uses” instead of “value”
as in the previous example); “uses”
implies that the parameter value is taken
from the request parameters. This al-
lows defining parameters dynamically
by, for example, building dynamic
URLs or submitting parameters with
a form.

• The result of the service request is trans-
formed using XSLT as defined in the
enclosing tag “<wasp:transform xslt=”/xslt/
CreateRowsFromStockQuotes.xslt”>”. This
special tag applies an XSL transformation to
the body of the tag (which in turn is produced
by dynamically executing the service call
explained above). Again an implicit knowl-
edge about the result structure is assumed.
Given a meaningful XSL transformation,

the stock quote list (in XML format) will
be transformed into a user-friendly and
nicely formatted HTML representation of
the data.

In order to allow for more complex structures,
we will allow extended parameter definitions so
that the results of calls can be, in turn, reused as
parameters for other calls. Assuming the existence
of a service to transform stock quote lists from
XML format to HTML, we could rewrite the code
above in the way Figure 4 shows.

In this revised example, the parameter named
“list” is derived by calling the above-mentioned
stock quote service and using the result of that ser-
vice as the input for the second service. In a certain
way, we pipe inputs and outputs in a comparable
way to UNIX shell commands. The true power
of these rather simple models becomes obvious
when chaining several services (Figure 5).

In this example, three input parameters are
processed: For a given user (“userID”), a destina-
tion (“destination”), and an indicated price limit
(“maxPrice”), first the list of preferred airports
is determined by calling one service, and then
the available flights are searched by calling a
second service, and combining both dynamic
parameters and results from user interaction. In
this way complex scenarios can be based on a
very simple model.

Figure 3.

 629

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

Also the level of abstraction is very high: As-
sume, for example, that all XML data structures
are connected to an ontology. If service A requires
input conforming to ontology oA and receives its
input from a service B which in turn is only able
to produce results conforming to ontology oB the
runtime environment can (transparently for the
model builder!) search for a transformation rule
oA → oB and apply it, all this without requiring
any in-depth knowledge of the “end user” (the

HTML modeler/designer). Additionally, it will be
possible to optimize the system by changing the
configuration and not the model; the interpreter
for the model will automatically take into account
the new settings. Finally a change of technologies
also is transparent for the “end user” (e.g., the page
designer) as the special tags introduced above are
independent of the implementation.

The final aspect of flexibility to be introduced
within the context of this chapter is a way to an

Figure 4.

Figure 5.

630

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

actual service lookup. To allow for this, we now
also allow the service URN to be provided dy-
namically (Figure 6).

Another simple extension of the model focuses
on the “hyperlinked” nature of the Web: By not
only accepting special URNs but generic URIs,
it easily becomes possible to link separate sys-
tems into a more complex system. The following
example illustrates this by using external URIs
for some services from the previous example
(Figure 7).

Again most of the underlying complexity is
moved to the run-time environment which has to
determine the actual service descriptions, match
it against the expected interfaces, call the remote
service with an appropriate protocol, accept the
results, and so forth. Even details like session-
based authentication might be handled transpar-

ently for the page designer by the underlying
framework.

The formal semantics of the model are beyond
the scope of this chapter but should be intuitive
enough to derive for the interested reader.

Implementing the proposed cMdsd
Model

The most basic component required to implement
the model proposed in the previous sections is the
actual tag parser component. If, for example, a
J2EE application server were used as the run-time
environment, it would be a natural fit to imple-
ment the special WASP tags as a Tag Library
(Brown, 2003) because tag libraries integrate in a
very natural way into the run-time environment.
The more complicated components concern the
actual integration of services and agents. A way

Figure 6.

 631

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

needs to be found to describe service descriptions
from agent specifications/implementations. An
efficient system needs to be implemented to allow
for ontology comparisons and transformations.
Finally, a performance analysis of the imple-
mentation is a necessity in order to estimate how
well the implementation scales under real-world
conditions. Current research projects work on
answering these questions.

suMMAry And conclusIon

In this chapter, we have shown how viable
Semantic Web Frameworks can be developed
with currently-existing technologies. We have
underlined the importance of providing ways

to allow for an easy adoption of Semantic Web
technologies lest all efforts are moot due to not
being accepted by the public. We have defined
our notion of Hyperservices and presented the
WASP architecture which facilitates the creation
of extendable Semantic Web systems. We have
analyzed the requirements for general Semantic
Web frameworks and used the results thus gained
in order to describe a conceptual model for our
WASP framework. In order to facilitate these
endeavors we have described our “Conceptual
Model-Driven Software Development (CMDSD)”
approach and given examples to illustrate how
easy a model for accessing Hyperservices can
be defined.

By providing such a foundation, we have dis-
connected undergoing research in the Semantic

Figure 7.

632

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

Web area from the need to start making these
technologies available for a wider audience.

bAckground InForMAtIon

This chapter is based on published and well-
accepted papers by the authors as well as their
continuing research in the areas of Semantic Web,
Agent Systems, and Conceptual Model-Driven
Software Development, among them Biskup,
Marx Gómez, and Rautenstrauch (2005), Biskup
and Marx Gómez (2004a, 2004b), and Biskup and
Marx Gómez (2005).

reFerences

Bell, J., Loton, T., Allamaraju, S., Dalton, S.,
Brown, S., Harbourne-Thomas, A. et al. (2002).
Professional Java Servlets 2.3. Birmingham, UK:
Wrox Press Ltd.

Benjamins, R. (2003). Agents and the semantic
Web: A business perspective. Paper presented
at Agent Technology Conference (ATC, 2003),
Barcelona, Spain.

Benjamins, V. R., Fensel, D., & Asunción, G. P.
(1998). Knowledge management through ontolo-
gies. In Proceedings of the second international
conference on practical aspects of knowledge
management (PAKM-98) (pp. 5.1-5.12).

Bergman, M. K. (n.d.). The deep Web: Surfacing
hidden value. Retrieved February 12, 2006, from
http://citeseer.ist.psu.edu/bergman00deep.html

Berners-Lee, T. (1998). Semantic Web Roadmap.
Retrieved February 12, 2006, from http://www.
w3c.org/DesignIssues/Semantic.html

Berners-Lee, T. (2000). Weaving the Web. London:
TEXERE Publishing ltd.

Berners-Lee, T., Hendler, J., & Lassila, O.
(2001). The semantic Web. Scientific Ameri-
can, May 2001 issue. Retrieved February

20, 2006, from http://www.sciam.com/ar-
ticle.cfm?articleID=00048144-10D2-1C70-
84A9809EC588EF21

Biskup, T., & Marx Gómez, J. (2004a). Building
blocks of a semantic Web framework—Require-
ments analysis and architectural implications. In
Proceedings of 3rd International Workshop on Web
Semantics—WebS’04, in conjunction with the 14th
International Conference on Database and Expert
Systems Applications DEXA 2004—Zaragoza,
Spain (pp. 214-218).

Biskup, T., & Marx Gómez, J. (2004b). Com-
ponent requirements for a universal semantic
Web framework. Semantic Web and Information
Systems, AIS SIGSEMIS Bulletin, 1(3) (October
Issue), 25-28.

Biskup, T., & Marx Gómez, J. (2005). Building
a semantic Web framework with reusable and
configurable core technologies. Paper presented
at IRMA 2005, San Diego, CA.

Biskup, T., Marx Gómez, J., & Rautenstrauch, C.
(2005). The WASP framework—Bridging the gap
between the Web of systems, the Web of services,
and the Web of semantics with agent technology.
International Journal of Intelligent Information
Technologies (IJIIT) 1(2), 68-82.

Bloom, R. B. (2002). Apache Server 2.0. The
complete reference. Berkeley, CA: Osborne
McGraw-Hill.

Bray, T., Paoli, J., Maler, E., Sperberg-McQueen,
C. M., & Paoli, J. (Ed.). (2000). Extensible Markup
Language (XML) 1.0. W3C Recommendation.
Retrieved February 12, 2006, from http://www.
w3c.org/TR/REC-xml

Brickley, D., & Guha, R. V. (Ed.). (2000). Resource
Description Framework (RDF) Schema Speci-
fication 1.0. W3C Candidate Recommendation.
Retrieved February 12, 2006, from http://www.
w3c.org/TR/RDF-schema

 633

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

Brown, S. (2003). Professional JSP tag libraries.
Birmingham, UK: Wrox Press Ltd.

Cagle, K., Cornig, M., & Diamond, J. (2001).
Professional XSL. Birmingham, UK: Wrox
Press Ltd.

Christensen, E., Curbera, F., Meredith, G., &
Weerawarana, S. (2001). Web Services Descrip-
tion Language (WSDL) 1.1. W3C Note. Retrieved
February 12, 2006, from http://www.w3c.org/
TR/wsdl

Ciancarini, P., & Wooldridge, M. J. (Ed.). (2001).
First International Workshop on Agent-Oriented
Software Engineering. Lecture Notes in Computer
Science, Vol. 1957. Berlin, Germany: Springer.

Dale, J. (2002). Exposing Web services. Paper
presented at Agentcities.NET iD2, Lisbon, Por-
tugal.

DAML+OIL (2000). Retrieved February 12, 2006,
from http://www.daml.org/language/

De Bruijn, J., Fensel, D., Keller, U., & Lara, R.
(2005). Using the Web service modelling ontology
to enable semantic e-business. Communications
of the ACM, 48(12), 43-47.

Finin, T., Labrou, Y., & Mayfield, J. (1997). KQML
as an agent communication language. In J. M.
Bradshaw (Ed.), Software agents (pp. 291-316).
Cambridge, MA: AAAI/MIT Press.

Genusa, S., Addison, B., & Clark, A. (1999).
Special edition using ISAPI. Indianapolis, IN:
Que Publishing.

Gilbert, D., Aparicio, M., Atkinson, B., Brady,
S., Ciccarino, J., Grosof, B., et al. (1995). IBM
intelligent agent strategy. IBM Corporation.

Gottschalk, K., Graham, S., Kreger, H., & Snell, J.
(2002). Introduction to Web services architecture.
IBM Systems Journal, 41(2).

Gourley, D., & Totty, B. (2002). HTTP: The de-
finitive guide. O’Reilly.

Gruber, T. R. (1993). A translation approach to
portable ontologies. Knowledge Acquisition, 5(2),
199-220.

Harper, S., & Bechhofer, S. (2005). Semantic
triage for increased Web accessibility. IBM Sys-
tems Journal, 44(3), 637-648.

Heflin, J., & Hendler, J. (2000). Dynamic ontolo-
gies on the Web. In Proceedings of the Seventeenth
National Conference on Artificial Intelligence
(AAAI-2000), (pp. 443-449) Menlo Park, CA.
Cambridge, MA: AAAI/MIT Press.

Heflin, J., Hendler, J., & Luke, S. (1999). SHOE:
A knowledge representation language for Inter-
net applications (Tech. Rep. No. CS-TR-4078 /
UMIACS TR-99-71). College Park, Maryland:
University of Maryland, Department of Computer
Science.

Hendler, J. (2001). Agents and the semantic Web.
IEEE Intelligent Systems, 16(2), 67-73.

Hendler, J., & McGuiness, D. L. (2000). The
DARPA agent markup language. IEEE Intelligent
Systems, 15(6).

Joy, B. (2000). Shift from protocols to agents.
IEEE Internet Computing, 4(1), 63-64.

Lassila, O. (2000). The resource description frame-
work. IEEE Intelligent Systems, 15(6), 67-9.

Lin, H. K., Harding, J. A., & Teoh, P. C. (2005). An
inter-enterprise semantic Web system to support
information autonomy and conflict moderation.
In Proceedings of IMechE 2005: Vol. 219, Part
B (pp. 903-911).

McIlraith, S. A., Son, T. C., & Zeng, H. (2001).
Semantic Web services. IEEE Intelligent Systems,
16(2), 46-53.

Metcalfe, B. (2000). The next-generation Internet.
IEEE Internet Computing, 4(1), 58-59.

Mitra, N. (Ed.) (2001). SOAP Version 1.2, Part
0: Primer, Part 1: Messaging Framework, Part

634

Conceptual Model Driven Software Development (CMDSD) as a Catalyst Methodology

2: Adjuncts. W3C Working Draft. Retrieved
February 12, 2006, from http://www.w3c.org/TR/
soap-part0, http://www.w3c.org/TR/soap-part1,
http://www.w3c.org/TR/soap-part2

Object Management Group (n.d.). Retrieved Feb-
ruary 12, 2006, from http://www.omg.org

O’Brien, P. D., & Nicol, R. C. (1998). FIPA—To-
wards a standard for software agents. BT Technol-
ogy Journal, 16(3), 51.

Platform for Internet Content Selection (PICS)
(n.d.). Retrieved February 12, 2006, from http://
www.w3.org/PICS

Reilly, J. P. (1996). Rapid prototyping: Moving
to business-centric development. Coriolis Group
(Sd). Boston/London: International Thomson
Computer Press

Stahl, T., & Völter, M. (2005). Modellgetriebene
Softwareentwicklung. Techniken, Engineering,
Management. Heidelberg, Germany: dpunkt.
verlag.

The Standish Group (n.d.). Chaos Chronicles
Version 3. Retrieved February 12, 2006, from
http://www.standishgroup.com/chaos/index.php

UDDI Technical White Paper (2001). Retrieved
February 12, 2006, from http://www.uddi.org

URI Planning Interest Group, W3C/IETF (n.d.).
URIs, URLs, and URNs: Clarifications and Rec-
ommendations 1.0. Retrieved February 12, 2006,
from http://www.w3.org/TR/uri-clarification/

Web Authoring Statistics (n.d.). Retrieved Febru-
ary 12, 2006, from http://code.google.com/web-
stats/index.html

Web Services Choreography Requirements 1.0
(2003). W3C Working Draft. Retrieved February
12, 2006, from http://www.w3.org/TR/ws-chor-
reqs

Web Services Transaction (WS-Transaction)
(2002). Retrieved February 12, 2006, from http://
www-106.ibm.com/developerworks/library/ws-
transpec/

This work was previously published in Architecture of Reliable Web Applications Software, edited byM. Radaideh; and H. Al-
Ameed, pp. 194-221, copyright 2007 by IGI Publishing (an imprint of IGI Global).

 635

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.7
Formal Modeling and

Specification of Design
Patterns Using RTPA

Yingxu Wang
University of Calgary, Canada

Jian Huang
University of Calgary, Canada

AbstrAct

Software patterns are recognized as an ideal
documentation of expert knowledge in software
design and development. However, its formal
model and semantics have not been generalized
and matured. The traditional UML specifications
and related formalization efforts cannot capture
the essence of generic patterns precisely, under-
standably, and essentially. A generic mathematical
model of patterns is presented in this article using
real-time process algebra (RTPA). The formal
model of patterns are more readable and highly
generic, which can be used as the meta model to
denote any design patterns deductively, and can be
translated into code in programming languages by
supporting tools. This work reveals that a pattern
is a highly complicated and dynamic structure

for software design encapsulation, because of its
complex and flexible internal associations between
multiple abstract classes and instantiations. The
generic model of patterns is not only applicable to
existing patterns’ description and comprehension,
but also useful for future patterns’ identification
and formalization.

IntroductIon

Design patterns are a powerful tool for captur-
ing software design notions and best practices,
which provide common solutions to core problems
in software development. Design patterns are a
promising technique that extends reusability of
software from code to design notions. A repre-
sentative work of design patterns is initiated by

636

Formal Modeling and Specification of Design Patterns Using RTPA

Gamma and his colleagues in Design Patterns:
Elements of Reusable Object-Oriented Software in
1994 (Gamma, Helm, Johnson, & Vlissides, 1995).
Design patterns may speed up the development
process by providing tested and proven develop-
ment paradigms. Reusing design patterns helps
to prevent subtle issues in large-scale software
development and improves code readability for
architects and programmers. Design patterns can
contribute to the definition, design, and documen-
tation of class libraries and frameworks, offering
elegant and reusable solutions to design problems,
and consequently increasing productivity and
development quality (Gamma et al., 1995; Wang,
2007a). Each design pattern lets some aspects of
the system structure vary independently of other
aspects, thereby making the system more robust
to a particular kind of change.

Design patterns are used to be modeled and
specified in natural language narratives, object-
oriented programming languages, and UML
diagrams. The traditional means are either inher-
ently ambiguous or inadequate (Lano, Goldsack,
& Bicarregui, 1996; Vu & Wang, 2004; Wang
& Huang, 2005). The major problems in cur-
rent methodologies for pattern specification are
identified as follows:

• The lack of a unified and generic architec-
ture of patterns as a multilayered complex
entity with a set of abstract and concrete
classes and their interrelations: Patterns
have been classified in three categories
known as the creational, structural, and
behavioral patterns (Gamma et al., 1995).
However, the theories for the nature of pat-
terns and their generic architecture are yet
to be sought.

• The lack of abstraction: Almost all pat-
terns are described as a specific and concrete
case in natural language, UML diagrams,
or some formal notations. However, no
generic mathematical model of patterns is
rigorously established, which may form a

deductive basis for deriving concrete and
application-specific patterns.

• The lack of uniqueness: In the conventional
pattern framework, there are different pat-
terns that may be implemented by similar
code; Reversely, the same pattern may be
implemented in various ways.

• The use of unstructured semantic means
to denote highly complicated design
knowledge in patterns: The informal de-
scriptions of patterns puzzle users and cause
substantial confusions. Even the creators of
patterns demonstrate inconsistent over the
semantics of certain patterns.

The authors perceive that the above funda-
mental problems can be alleviated by introducing
formal semantics for design patterns and their
generic mathematical models (Wang, 2002, 2003,
2006a-c, 2007a-c). This approach allows for un-
ambiguous specifications, enables reasoning about
the relationships between abstract and concrete
patterns, and promotes a coherent framework for
the rapidly growing body of software patterns in
software engineering (Beck, Coplien, Crocker, &
Dominick, 1996; Bosch, 1996; Wang, 2002, 2006a,
2007a). This article presents a generic model of
design patterns and a formal specification method
for design patterns using Real-Time Process Al-
gebra (RTPA) (Wang, 2002, 2003, 2007a). The
approach proposed in this article aimed at the
following objectives:

• It is generic: The same pattern model can be
adopted to specify any existing and future
pattern, particularly user defined patterns.
To some extent, the general pattern model
is the pattern of patterns.

• It is formalized: The mathematical seman-
tics and formal notation system are based
on RTPA (Wang, 2002, 2003, 2007a).

• It is expressive: Only 34 notations are used
to denote class association relationship and
specify patterns from three facets known

 637

Formal Modeling and Specification of Design Patterns Using RTPA

as the architecture, static behaviors, and
dynamic behaviors of patterns.

• It is structured: Patterns are described from
high-level to detailed-level via stepwise re-
finement using a coherent set of notations.

In this article, existing pattern specification
techniques are reviewed in the following section.
The RTPA methodology for pattern specification
is introduced. A generic model of design patterns
is rigorously modeled. Based on the mathematical
semantics and general model, case studies on de-
riving specific pattern specifications are presented
using three well known patterns such as the State,
Strategy, and the MasterSlave patterns.

ApproAches to soFtwAre
pAttern descrIptIon

A number of pattern modeling methodologies
have been proposed, such as the layout object
model (Bosch, 1996), the constraint diagrams
(Lauder & Kent, 1998), the language for pattern
uniform specification (Eden, Gil, Hirshfield &
Yehudai, 2005), meta-models (Pagel & Winter,
1996; Sunye, Guennee, & Jezequel, 2000), object
calculus (Lano et al., 1996), pattern visualization
techniques (Lauder et al., 1998), and the design
pattern modeling language (Mapelsden, Hosk-
ing, & Grundy et al., 1992). This section briefly
reviews three major pattern specification methods
and comparatively analyzes their strengths and
weaknesses.

the layout object Model

The layout object model (LayOM) (Bosch, 1996)
is an extension of object-oriented languages con-
taining components that are not supported by the
conventional object models such as layers, catego-
ries, and states. It supports the representation of
design patterns in object-oriented programming
languages.

In LayOM, layers are used to encapsulate
objects and intercept messages that are sent to
and by the objects. The layers are organized into
classes and each layered class represents a concept,
such as a relation with another object or a design
pattern. A state in LayOM is a dimension of the
abstract object state that is an externally visible
abstraction of the internal, concrete state of ob-
jects. A category is defined as a client category
that describes the discriminating characteristics of
a subset of possible clients. Relations in LayOM
are denoted by structural, behavioral, and ap-
plication-domain relations.

For example, the adapter design pattern can
be described in LayOM, as shown in Figure 1,
which converts the interface of a class into an-
other interface that is expected by its clients. The
adapter layer can be used to class adaptation by
defining a new adapter class consisting only of
two layers.

In LayOM, a one-to-one mapping between
the design and implementation of a pattern is
provided. Another advantage of it is that there is
no requirement for defining a method for every
method that needs to be adapted. However, a

class Adapter
layers

adapt: Adapter (accept mess1 as newMessA,
accept mess2 and mess3 as newMessB);

inh: Inherit (Adaptee);
end;

Figure 1. The adapter pattern described in LayOM (Bosch, 1996)

638

Formal Modeling and Specification of Design Patterns Using RTPA

disadvantage of the adapter technique is that the
arguments of the message will be passed as is,
which is not flexible to cover semantic analyses.
Another drawback is the implementation over-
head, because messages sent to or from an object
need to pass all the defined layers.

the constraint diagrams

The constraint diagram (CD) (Lauder & Kent,
1998) denotes a pattern by three separate models
known as the role, type, and class. A role model
in CD is the most abstract and depicts layer that
describes the essential spirit of a pattern without
specific details. A type model in CD refines to
the role model with abstract states and operation
interfaces forming a domain-specific refinement
of the pattern. A class in CD model implements
the type model, thus deploying the underlying
pattern in terms of concrete classes.

An abstract factory pattern deployed as a
constraint model is shown in Figure 2. The core
of the pattern is represented as a role mode, fur-
ther refined by a type model, and implemented
by a class model. However, a graphical model

is not enough for a precise and unambiguous
specification. There is still a need to describe
additional constraints about the objects in the
model. Otherwise, ambiguities cannot be avoided
in the model (OMG, 1997).

lepus: language for patterns
Uniform Specification

Language for patterns uniform specification
(LePUS) is a declarative language based on logic
introduced in 1997 (Eden et al., 2005). It models
class relationships and semantics, and facilitates
reasoning with higher order sets. LePUS permits
concise description of complex software artifacts.
In LePUS, a program is represented primarily as
a set of ground entities and relationships among
them. Various interactions and associations that
occur between participants of design patterns are
abstracted classes and functions. A uniform set of
classes of a dimension d is denoted by the class of
dimension d+1. Total relations are functions that
describe the relations between two sets of entities.
Bijective and regular correlations between sets of
functions, classes, and hierarchies may also be

Figure 2. The constrain diagram of an abstract factory pattern (Lauder & Kent, 1998)
ConcreteFactory1 ConcreteFactory2

<<pattern>>
AbstractFactory

CreateProductA():ConcreteProductA1
CreateProductB():ConcreteProductB1

CreateProductA():ConcreteProductA2
CreateProductB():ConcreteProductB2

<<type>> AbstractFactory

CreateProductA():AbstractProductA
CreateProductB():AbstractProductB

<<type>>
AbstractProductA

<<type>>
AbstractProductB

ConcreteProductA1 ConcreteProductA2

ConcreteProductB1 ConcreteProductB2

<<refine>>

<<refine>>

<<refine>>

<<refine>>

<<implements>>

<<implements>>

<<implements>>

 639

Formal Modeling and Specification of Design Patterns Using RTPA

modeled. A specification of the strategy pattern
in LePUS is shown in Figure 3.

The advantage of LePUS is its higher order
logic means. However, it is difficult to directly map
a LePUS specification of patterns into executable
programs. In addition, patterns specified in LePUS
are application specific rather than generic.

other Approaches

Meta-models for design pattern instantiations
and validations are proposed in Pagel and Winter
(1996) and Sunye et al. (2000) without support-
ing for code generation. In Florijn, Meijers, and
Wionsen (1997), the fragment-based technique
allows the representation and composition of de-
sign patterns. A design pattern proof techniques
is proposed in Lano et al. (1996) using the object
calculus as a semantic framework. The design
pattern modeling language (DPML) is proposed
in Mapelsden et al. (1992) as a visual language
for modeling patterns and their instances.

A common weakness of the methods proposed
so far is that they concentrate only on specific pat-
tern descriptions. The essence of pattern structures
and the generic pattern theory are overlooked.
Therefore, there is still a need to seek a more
powerful means and methodology that help us-
ers to utilize pattern theories and models freely
in pattern-based system design.

the rtpA Methodology
For pAttern ModelIng And
specIFIcAtIon

In the preceding section, it can be seen that ex-
isting methods for pattern specifications were
inadequate and inefficient in generic pattern
specifications. This section adopts RTPA to
formally specify design patterns, which is a set
of new mathematical notations for formally de-
scribing system architectures, static and dynamic
behaviors (Wang, 2002, 2006b).

RTPA is a mathematic-based software engi-
neering notation system and a formal method for
addressing problems in software system specifi-
cation, refinement, and implementation. RTPA
provides an expressive means for the formal and
explicit description of software patterns in order
to enhance the readability of pattern architecture,
semantics, and behaviors. In RTPA, a software
system is perceived and described mathematically
as a set of coherent processes. RTPA encompasses
17 meta processes and 17 algebraic process com-
bination rules known as the process relations.
Detailed description of RTPA may be referred
to Wang (2002, 2003, 2007a).

Figure 3. The LePUS Specification of the strategy pattern (Eden et al., 2005)

,

, 2 .

(,)
(,)
(,)

(,)

F

context client C
operations F
Algorithm Configure Contexts
Strategies H
clan operation context
clan Algorithm Strategies
tribe Configure Context client
Invocation operation Configure Context
In

−>

∃ ∈
∈

− ∈
∈

∧
∧

− ∧
− ∧

(,)
1 (,)
(,)

(, ,)
(,)

H

H

vocation Algorithm context
Argument Algorithm context
Creation Configure Context Strategies
Assigment Context Configure Context Strategies
Reference to Single context Strategies

+−>

−>

−>

−>

<−>

∧
− ∧

− ∧
− ∧

− −

640

Formal Modeling and Specification of Design Patterns Using RTPA

the generic Model of classes
in rtpA

A unified notion of classes can be formally de-
scribed by RTPA as given in “Wang (2007a).”
The fundamental types of classes are the Abstract
Classes (ACs) and the Concrete Classes (CCs).
The former is a class that serves as a general
and conceptual model to be inherited but not be
instantiated. The latter is an ordinary class derived
from an AC that can be instantiated.

A generic AC specified in RTPA is shown in
Figure 4. The architecture part is used to specify
the architectural attributes of the abstract class,
which include internal variables shared by the
hierarchy of classes. The static behavior part of
an AC is used to define the method signatures
of the AC class, where detailed implementation
will be left to be done in derived concrete classes.
It is noteworthy that an AC has no dynamic be-
havior in the specification because ACs cannot
be instantiated.

Similarly, a generic CC can be formally
specified in RTPA, as shown in Figure 5. The
CC implements the dynamic behaviors that can
be instantiated and executed in a derived object.
Possible events that drive a method in a CC can be
classified into message, time, and interrupt. More
formal treatment of classes and their relational
operations may be referred to RTPA (Wang,
2002, 2003, 2007a) and concept algebra (Wang,
2006a, 2007c).

the generic Model of patterns in
rtpA

A pattern is a highly reusable and coherent set of
complex classes that are encapsulated to provide
certain functions. According to “Gamma et al.
(1995),” patterns can be classified into the cre-
ational, structural, and behavioral ones. Using
RTPA notations and methodology, a pattern is
denoted by three parallel components known as
the architecture, static, and dynamic behaviors, as
shown in Figure 6. The architecture of a pattern
specifies how many classes and components are
used to compose the pattern and what relationships
are among those components. The static behaviors
of a pattern define what kinds of components are
used to compose this pattern and what rules all
components should abide. The dynamic behav-
iors of a pattern describe how those components
interact and collaborate to realize functionality
at run-time.

In Figure 6, the architecture of the generic
pattern can be refined by a set of component logic
models (CLMs), which describes the structures of a
class, particularly its attributes (Wang, 2002). The
static behaviors of the generic pattern are refined
by a set of processes that are corresponding to
each of the methods within the class. The process
behaviors are denoted by RTPA meta-processes

Figure 4. Abstract class specification in RTPA

AbstractClassST ClassIDAC
 || Architecture
 || StaticBehaviors
 || DynamicBehaviors

ClassIDAC.Architecture ClassIDS::
1

n

i
R<Attribute(i) : ST>

ClassIDAC.StaticBehaviors
1

m

j
R (MethodS(j) ({I}; {O}))

ClassIDAC.DynamicBehaviors ∅

Figure 5. Concrete class specification in RTPA

ConcreteClassST ClassIDCC
 || Architecture
 || StaticBehaviors
 || DynamicBehaviors

ClassIDCC.Architecture ClassIDS::
1

n

i
R<Attribute(i) : ST>

ClassIDCC.StaticBehaviors
1

m

j
R(MethodS(j) ({I}; {O}))

ClassIDCC.DynamicBehaviors

1

m

j
R<@event(j) ↳ ClassIDCC.MethodS(j) ({I}; {O})>

 641

Formal Modeling and Specification of Design Patterns Using RTPA

and their combinations using process relations
for manipulating internal attributes or interacting
with external components of the generic pattern.
The dynamic behaviors of the generic pattern
are refined by event-driven processes deployed
by the system.

The generic pattern model may be treated as
a super metapattern in object-oriented system
design and programming, which models any
specific software pattern at four levels known

as the interface, implementation, instantiations,
and associations. According to the generic model
of patterns, the features of patterns lie in the
hierarchical architectures as described by Pat-
ternST.ArchitectureST, as shown in Figure 6. It
is noteworthy that a class is usually modeled as a
two-level structure with only the class interface
and implementations in literature (Taibi, & Ngo,
2003; Vu & Wang, 2004). However, the four-level
hierarchical model introduced here reveals the na-
ture of how classes may be used to form complex
patterns via instantiations and associations.

The interface of a pattern, PatternST.Architec-
tureST.InterfaceST, isolates users of the pattern
from its internal implementation. Users may
only access the pattern via its interface. This
mechanism enables the implementation of the
pattern independent of its users. Whenever the
internal implementation needs to be changed, it
is transparent to the users of the pattern as long
as the interface keeps the same (Wang & Huang,
2005). The interface of a pattern specifies the com-
munication protocol among pattern components.
Although instances could extend their behaviors
beside those interface defined in this part their
communication should abide those definition. The
interface is the only access point of a component
inside a pattern.

Because a pattern is a highly reusable con-
struct of a software entity, the implementation of
a pattern, PatternST.ArchitectureST.Implemen-
tationST, is kept at a generic abstract class until
the pattern is invoked by a specific application or
instantiation. In other words, because a pattern
is a generic model of reusable functions, specific
behaviors in an execution instance are dependent
on run-time information provided by users of
the pattern.

The forth component in the generic pattern
hierarchy is the internal associations, which is
used to model the interrelationships among other
three-level abstractions of classes and interfaces
within the pattern. The associations of the pattern
define relationships among all components in the

Figure 6. The generic mathematical model of
design patterns (Wang, 2007a)

PatternST
{
 Architecture : ST
 || StaticBehaviors : ST
 || DynamicBehaviors: ST
}

PatternST.ArchitectureST
{
 <Interfaces>
 || <Implementations>
 || <Instantiations>
 || <Associations>
}

PatternST.ArchitectureST.InterfacesST
 PatternIDST::
 {

1

n

i
R
=

<Attributes(i) : RT>

 ||
1

m

j
R

=
<AbstractClass(j) : AC>

 }

PatternST.ArchitectureST.ImplementationST

 {
1

q

k
R

=

<ConcreteClass(k) : CC> }

PatternST.ArchitectureST.InstantiationsST

 {
1

r

v
R

=
<Instatiatin(v) : CC> }

PatternST.ArchitectureST.AssociationST
 {

1

m

j
R

=
(Interface(j)AC : SC // SC is a system class

 |
1

p

m
R

=
<Interface(j) AC.Mm : Interface(j’)AC)

 ||
1

q

k
R

=
<Implementation(k)CC : AC(j)>

 ||
1

r

v
R

=
 <Instantiation(v)CC : CC(k)>

}

642

Formal Modeling and Specification of Design Patterns Using RTPA

pattern. Component collaborations are the soul of
patterns that capture component collaborations.
The flexibility, reusability, and differences of
patterns are embodied by the associations (Wang
& Huang, 2005). A comprehensive set of pattern
association rules may be referred to Concept
Algebra (Wang, 2006b, 2007c).

The generic model of patterns or the meta
pattern model describes software patterns in a
coherent, concise, and unambiguous way. External
relationship among patterns could be deduced
by this formula as well, when a super pattern is
considered beyond all the component patterns. The
method developed in this section helps readers
avoid the drawbacks of conventional patterns, in
order to develop more efficient, reusable, flexible,
and predicable software systems.

cAse studIes on ForMAl
specIFIcAtIons oF
pAtterns In rtpA

This section applies the RTPA pattern specifica-
tion methodology in three case studies. The State
and Strategy patterns are used to demonstrate
that differences between these two patterns can
be clearly distinguished by RTPA specifications,
while other methods rendering vague message
to users. The MasterSlave pattern (Buschmann,
1995) is used to demonstrate the expressive power
of RTPA specifications. All cases studies show
that not only conventional design patterns, but

also newly discovered patterns can be precisely
specified by RTPA.

Formal Specification of the State
pattern

The State pattern allows an object to alter its
behavior when its internal state changes. The
structure of this pattern proposed in Gamma et
al. (1995) is shown in Figure 7.

A formal model of the state pattern can be
derived on the basis of the generic pattern model
developed in Figure 6. Corresponding to Figure
7, the RTPA specification of the State pattern is
given in Figure 8.

Formal Specification of the
strategy pattern

The Strategy pattern defines a family of algo-
rithms, encapsulates them in a coherent structure,
and makes them interchangeable (Gamma et al.,
1995). This pattern lets the algorithm vary inde-
pendently from clients that use it. The structure
of the Strategy pattern is shown in Figure 9.

A formal model of the Strategy pattern can be
derived on the basis of the generic pattern model
developed in Figure 6. Corresponding to Figure
9, the RTPA specification of the strategy pattern
is shown in Figure 10.

Contrasting the State and Strategy patterns in
UML, it is noteworthy that both patterns share
almost identical structures. In other words, UML

context state State

state -> Handle()

Request()

 Handle() Handle()

concretestateA concretestateb

 Handle()

Figure 7. The UML structure of the State pattern

 643

Formal Modeling and Specification of Design Patterns Using RTPA

class diagrams, as shown in Figures 7 and 9,
may not be able to discriminate the differences
between these two patterns. This results in the
main confusions, ambiguities, and difficulties in
pattern comprehension and applications using
UML-based methodologies.

However, the specifications in RTPA, as shown
in Figures 8 and 10, can clearly capture the dif-
ferences in the sections of class associations by

Figure 8. The RTPA specification of the State
pattern

StatePatternST
{
 Architecture: ST
 || StaticBehaviors: ST
 || DynamicBehaviors: ST
}

StatePatternST.ArchitectureST
{
 <Interfaces>
 || <Implementations>
 || <Instantiations>
 || <Associations>
}

StatePatternST.ArchitectureST.InterfacesST StateST::
{

1

n

i
R
=

<Attributes(i) : RT>

 || <AbstractState : AC>
}

StatePatternST.ArchitectureST.ImplementationsST
{
 ConcreteContextCC : CC

 ||
1

m

j
R

=
<ConcreteState(j)CC : AbstractStateAC>

}

StatePatternST.ArchitectureST.InstantiationsST
{
 ContextCC : CC

 ||
1

q

k
R

=
<State(k)CC : ConcreteState(k)CC>

}

StatePatternST.ArchitectureST.AssociationsST
{
 // Inheritance

1

n

i
R
=

ConcreteState(i)CC : AbstractStateAC

 // Composition

 ||
1

r

v
R

=

(ConcreteContextCC.Mv : ConcreteStateCC(v) |
 ConcreteContextCC(v)
 || ConcreteStateCC(v))
 // Delegation

 ||
1

n

i
R
=

(ConcreteContextCC(i) ↳ ConcreteStateCC(i))
}

Figure 9. The UML structure of the Strategy
pattern

context strategy

ContextInterface()

concretestateA

Strategy

Algorithminterface()

Algorithminterface()

concretestateb

Algorithminterface()

concretestatec

Algorithminterface()

Figure 10. The RTPA specification of the Strategy
pattern

StrategyPatternST
{
 Architecture: ST
 || StaticBehaviors: ST
 || DynamicBehaviors: ST
}

StrategyPatternST.ArchitectureST
{
 <Interfaces>
 || <Implementations>
 || <Instantiations>
 || <Associations>
}

StrategyPatternST.ArchitectureST.InterfacesST StrategyST
::
{

1

n

i
R
=

<Attributes(i) : RT>

 || <AbstractStrategy : AC>
}

StrategyPatternST.ArchitectureST.ImplementationsST
{
 ConcreteContextCC : CC

 ||
1

m

j
R

=
(ConcreteStrategy(j)CC : AbstractStrategyAC)

}

StrategyPatternST.ArchitectureST.InstantiationsST
{
 ContextCC : CC

 ||
1

q

k
R

=
<Strategy(k)CC : ConcreteStrategy(k)CC>

}

StrategyPatternST.ArchitectureST.AssociationsST
{
 // Inheritance

1

n

i
R
=

ConcreteStrategy(i)CC : AbstractStrategyAC

 // Composition
 || (ConcreteContextCC.M : ConcreteStrategyCC |
 ConcreteContextCC
 || ConcreteStrategyCC)
 // Delegation
 || ConcreteContextCC ↳ ConcreteStrategyCC
}

644

Formal Modeling and Specification of Design Patterns Using RTPA

different composition approaches. The RTPA
models show that in the former, all concrete state
classes are instantiated by concrete classes simul-
taneously, where the concrete state objects have
the same lifecycle as those of the concrete context
objects; while in the latter, only one concrete
strategy object alive within any point of time in
the concrete context object lifecycle. This is the
essential difference between those two patterns,
which cannot be expressed explicitly by UML
syntaxes and semantics.

Formal Specification of the
Masterslave pattern

It is observed that traditional methods for pattern
modeling are focused on existing and specific
patterns proposed in “Gamma et al. (1995).”
However, most practical patterns in software
engineering are user-defined rather than pre-
specified. Therefore, a generic pattern model is
needed to support users to deductively model new
patterns in practice.

A system pattern, MasterSlave (Buschmann,
1995) as shown in Figure 11, is presented in this
subsection in order to demonstrate the applica-
tion of the generic pattern model and the expres-
sive power of RTPA for modeling patterns. The
MasterSlave pattern handles the computation of
replicated services of a software system to achieve
fault tolerance and robustness. Replication of
services and the delegation of the same task to

several independent slave servers is a common
strategy to handle fault-tolerant requirements in
safety-critical software systems.

The MasterSlave pattern consists of two kinds
of components: the master and the slaves. Clients
of the pattern interact with the master component
directly. However, the master component does
not implement services by itself. It delegates the
services to a number of slave components, where
at least two identical slave components exist in
the system with the same set of functionality. The
slave components are completely independent of
each other, and they may use different strategies
for providing the designated service. The master
component delegates a requested service to all
slave components and chooses one of the most
suitable responses as the result for the client.

A formal model of the MasterSlave pattern can
be derived on the basis of the generic pattern model
developed in Figure 6. Corresponding to Figure
11, the RTPA specification of the MasterSlave
pattern is given in Figure 12. The derived pattern
precisely describes the architecture and associa-
tions between member classes of the MasterSlave
pattern. Several strategies may be available for
the master component to select results provided
by the slaves, such as the result first returned,
the majority result returned by all slaves, or the
average result of all slaves.

conclusIon

This article has reviewed existing pattern speci-
fication methods and problems yet to be solved.
A generic mathematical model of patterns has
been presented using Real-Time Process Algebra
(RTPA). Based on it any design patterns, either
system-specified or user-defined, can be derived.
With the RTPA support tool, a pattern specified
in RTPA can be automatically translated into
code in programming languages (Tan, Wang, &
Ngolah, 2006).

Figure 11. The UML structure of the MasterSlave
pattern

Client Master

Service1()
Service2()

Slave1

Service1()
Service2()

Slave2

Service1()
Service2()

 645

Formal Modeling and Specification of Design Patterns Using RTPA

This work has revealed that a software pat-
tern is a highly reusable design encapsulation
that encompasses complex and flexible internal
associations between a coherent set of abstract
classes and instantiations. The generic model of
patterns has provided a pattern of patterns. It is

not only applicable to existing patterns’ model-
ing and comprehension, but also useful for future
patterns’ identification and formalization.

AcknowledgMent

The authors would like to acknowledge the Natu-
ral Science and Engineering Council of Canada
(NSERC) for its partial support to this work. We
would like to thank the anonymous reviewers for
their valuable comments and suggestions.

reFerences

Beck, K., Coplien, J. O., Crocker, R., & Domi-
nick, L. (1996, March). Industrial experience with
design patterns. In Proceedings of the 19th Intel.
Conf. on Software Engineering, (pp. 103-114).
Berlin: IEEE CS Press.

Bosch, J. (1996). Relations as object model com-
ponents. Journal of Programming Languages,
4(1), 39-61.

Buschmann, F. (1995). The MasterSlave Pattern,
pattern languages of program design. Addison-
Wesley.

Eden, A. H., Gil, J., Hirshfeld, Y., & Yehudai,
A. (2005). Towards a mathematical foundation
for design patterns (Tech. Rep.). Dept. of Com-
puter Science, Concordia University, Montreal,
Canada.

Florijn, G., Meijers, M., & Wionsen, P. V. (1997).
Tool support for object-oriented patterns. In
Proceedings of the 11th European Conference on
Object-Oriented Programming (ECOOP’97)(pp.
472-495), Jyvaskyla, Finland.

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1995). Design patterns: Elements of reusable
object oriented software. Reading, MA: Addi-
son-Wesley.

Figure 12. The RTPA specification of the Mas-
terSlave pattern

MasterSlavePatternST
{
 Architecture : ST
 || StaticBehaviors : ST
 || DynamicBehaviors : ST
}

MasterSlavePatternST.ArchitectureST
{
 <Interfaces>
 || <Implementations>
 || <Instantiations>
 || <Associations>
}

MasterSlavePatternST.ArchitectureST.InterfacesST
MasterST ::
{

1

n

i
R
=

<Attributes(i) : RT>

 || <AbstractMasterComponent : AC>
}

MasterSlavePatternST.ArchitectureST.ImplementationsST
{
 <ConcreteMasterComponentCC : CC>

||
1

m

j
R

=
<ConcreteSlaveComponent(j)CC : CC>

}

MasterSlavePatternST.ArchitectureST.InstantiationsST
{
 ConcreteMasterInstanceCC: AbstractMasterComponentAC

 ||
1

q

k
R

=
<ConcreteSlaveInstance(k)CC :

 ConcreteSlaveComponent(jN)CC>
}

MasterSlavePatternST.ArchitectureST.AssociationsST
{
 // Inheritance
 ConcreteMasterComponentCC :
 AbstractMasterComponentAC
 // Delegation
 || (ConcreteMasterComponentCC ↳

1

m

j
R

=
ConcreteSlaveComponent(j)CC)

 // Aggregation

 || (
1

q

k
R

=
ConcreteMasterComponentCC.M :

 ConcreteSlaveComponentCC (k) |
 ConcreteMasterComponentCC
 ∯ ConcreteSlaveComponentCC)
}

646

Formal Modeling and Specification of Design Patterns Using RTPA

Lano, K., Goldsack, S., & Bicarregui, J. (1996).
Formalizing design patterns. In Proceedings of
the 1st BCS-FACS Northern Formal Methods
Workshop (p. 1).

Lauder, A., & Kent, S. (1998). Precise visual
specification of design patterns. In Proceedings
of the 12th European Conference on Object-Ori-
ented Programming (ECOOP’98), (LNCS, 1445,
pp. 114-134). Springer-Verlag.

Mapelsden, D., Hosking, J., & Grundy, J. (1992).
Design pattern modeling and instantiation using
DPML, (Tech. Rep.). Department of Computer
Science, University of Auckland.

OMG. (1997). Object Constraint Language
Specification 1.1.

Pagel, B. U., & Winter, M. (1996). Towards pattern-
based tools. In Proceedings of the EuropLop’96,
(pp. 3.1-3.11).

Sunye, G., Guennec, A. L., & Jezequel, J. M.
(2000). Design patterns application in UML. In
Proceedings of the 14th European Conference on
Object-Oriented Programming (ECOOP’00)(pp.
44-62), Sophia Antipolis, France.

Taibi, T., & Ngo, D. C. L. (2003). Formal speci-
fication of design patterns–a balanced approach.
Journal of Object Technology, 2(4), 127-140.

Tan, X., Wang, Y., & Ngolah, C. F. (2006, May).
Design and implementation of an automatic RTPA
code generator. In Proceedings of the 2006 Ca-
nadian Conference on Electrical and Computer
Engineering (CCECE’06), (pp. 1605-1608). Ot-
tawa, Canada: IEEE CS Press.

Vu, N. C., & Wang, Y. (2004, May). Specification
of design patterns using real-time process algebra
(RTPA). In Proceedings of the 2004 Canadian
Conference on Electrical and Computer Engi-
neering (CCECE’04), (pp. 1545-1548). Niagara,
Falls, Ontario: IEEE CS Press.

Wang, Y. (2002, October). The real-time process
algebra (RTPA). Annals of Software Engineering:
An International Journal, 14, 235-274.

Wang, Y. (2003). Using process algebra to describe
human and software behaviors. Brain and Mind:
A Transdisciplinary Journal of Neuroscience and
Neurophilosophy, 4(2), 199-213.

Wang, Y. (2006a, July). On concept algebra and
knowledge representation. In Proceedings of the
5th IEEE International Conference on Cognitive
Informatics (ICCI’06), (pp. 320-331). Beijing,
China: IEEE CS Press.

Wang, Y. (2006b). On the informatics laws and
deductive semantics of software. IEEE Transac-
tions on Systems, Man, and Cybernetics (C),
36(2), 167-171.

Wang, Y. (2006c, July). Cognitive informatics
and contemporary mathematics for knowledge
representation and manipulation, Invited Plenary
Talk. In Proceedings of the 1st International
Conference on Rough Set and Knowledge Tech-
nology (RSKT’06), (pp. 69-78). Lecture Notes in
Artificial Intelligence, LNAI 4062. Chongqing,
China: Springer-Verlag.

Wang, Y. (2007a, July). Software engineering
foundations: A software science perspective. CRC
Book Series in Software Engineering (Vol. II).
USA: CRC Press.

Wang, Y. (2007b, January). The theoretical frame-
work of cognitive informatics. The International
Journal of Cognitive Informatics and Natural
Intelligence (IJCiNi), 1(1), 1-27. Hershey, PA:
IGI Publishing.

Wang, Y. (2007c). Keynote speech, on theoretical
foundations of software engineering and deno-
tational mathematics. In Proceedings of the 5th
Asian Workshop on Foundations of Software,
Xiamen, China, (pp. 99-102).

 647

Formal Modeling and Specification of Design Patterns Using RTPA

Wang, Y., & Huang, J. (2005, May). Formal
models of object-oriented patterns using RTPA.
In Proceedings of the 2005 Canadian Confer-
ence on Electrical and Computer Engineering
(CCECE’05), Saskatoon, Canada, (pp. 1822-
1825). IEEE CS Press.

This work was previously published in International Journal of Cognitive Informatics and Natural Intelligence, Vol. 2, Issue
1, edited by Y. Wang, pp. 100-111, copyright 2008 by IGI Publishing (an imprint of IGI Global).

648

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.8
Building an LMS with Ubiquitous

Software
Michael Rees

Bond University, Australia

Charles Herring
G-Netech Pty Ltd, Australia

AbstrAct

Teaching institutions around the world are us-
ing large, unwieldy, and expensive learning
management system (LMS) packages that are
beginning to have profound effects on their whole
organizations. Such LMS packages in turn go to
great lengths to interoperate with the desktop
information productivity software that almost all
institutions use, Microsoft Office System. Since
a very large part of the instructional content is
generated in Office, it seems sensible to investigate
whether straightforward extensions of the Office
System could become an LMS in their own right.
This chapter describes research and development
that integrated Microsoft Office System, Share-
Point Windows Services, and SharePoint Portal
server (SPS) as the heart of an off-the-shelf LMS.
Already designed to work closely with Office,
SPS features are compared against the list of
features expected of an ideal LMS. Where gaps

in the LMS features were discovered in SPS, a
number of small extensions of standard Office
applications were proposed to fill these gaps and
create a credible LMS. These Microsoft tools and
custom extensions were put to use in teaching and
administration during a 2-semester (8-month)
trial at Bond University. The SPS installation was
hosted in partnership with G-Netech Pty Ltd. This
Bond University/G-Netech SharePoint Alliance
project (BUGSA or SharePoint Alliance) was able
to call upon combined research, development, and
teaching expertise provided by the partners. The
outcomes of the short trial support the concept of
the Office System as a viable LMS.

IntroductIon

When one surveys the choice of learning manage-
ment system (LMS) software, one finds a very
lop-sided situation. What were the two leading
examples of a LMS deployed across the higher edu-

 649

Building an LMS with Ubiquitous Software

cation institutions of the world, WebCT (WebCT,
2006) and Blackboard (Blackboard Academic
Suite, 2006), have now merged into one company
although for the time being the two products are
still differentiated. Together these products ac-
count for 70-80% of the total market. Significant
in the context of this chapter is that with a decade
of development both products are available in en-
terprise versions comprising collections of major
components, which include content management
systems, portals, and communication tools. Such
all-encompassing feature sets inevitably lead to
high costs and significant training needs.

Despite such dominance, there is a long tail
of alternative software for the primary LMS
function. At the tail’s end are the local in-house
systems that each institution has developed with
their own technical and teaching staff. Of late,
there has been a significant effort by a group
of 80 institutions worldwide to work together
on producing a common learning environment
called Sakai (2006). The Sakai Project uses an
interesting variant of the open source development
model called the community source model, which
involves some financial inputs. What remains are
open source systems with their growing group
of users and several less significant commercial
LMS packages that typically target the smaller
institutions.

From their own product descriptions, the sup-
plier companies extol the fact that an integrated
LMS is an enterprise level system. Such systems
by implication therefore require very significant
support in terms of technical design, administra-
tion, and staff training in addition to content design
and creation teams for the support of the teaching
staff. It is not surprising that the founder of the
WebCT LMS, Goldberg (2004), in his keynote
presentation at AusWeb 2004 indicated that, in
his experience for many institutions the LMS, has
become the most important information system
on a university campus after the payroll system!
By implication, however, this entails a large
cost in software acquisition, technical support,

ongoing maintenance, and integration with other
institutional information systems.

It is the authors’ contention that an important
avenue of LMS development has largely been
ignored, that of adapting existing off-the-shelf
content management and interactive communica-
tion systems intended for use by organisations in
general across all industry and government sec-
tors. One major example of this class of systems
is the Microsoft SharePoint technologies (2006)
aimed at generic Web portal and information
repository use. As will be described in detail in
this chapter, a very great advantage of Share-
Point is its tight integration with the ubiquitous
Microsoft Office applications. These are the
main information content creation tools used by
educators across the world and are licensed by
very many institutions.

In the pages that follow, a case is made for
adopting SharePoint as the foundation of an LMS.
Examples and case studies show how this can be
achieved. Some new developments that are hap-
pening now, and planned changes to Microsoft
Office over the next months, are discussed. This
shows that future trends will lend credence to the
use of off-the-shelf software to compete with the
highly specific and less flexible LMS packages
currently in use. Leveraging existing software in
this way helps in reducing software acquisition
costs and training needs.

bAckground

The authors have worked together for a number
of years in a research centre environment where
software development of new leading-edge
solutions was the norm. Often these software
packages were built from scratch unnecessarily,
and the authors soon became proponents of the
intelligent deployment of straightforward off-
the-shelf software that can often be extended to
provide support for new solutions. This comment
applies to apparently mundane applications such

650

Building an LMS with Ubiquitous Software

as Microsoft Word, Excel, and PowerPoint. These
applications can often be tailored for significant
specific needs by writing embedded extensions
in Visual Basic for Applications that manipulate
the inherent document object models.

During their years of research collaboration,
the authors have also been using and gaining
experience with the often-ignored Microsoft
Office System SharePoint technology (Microsoft
SharePoint, 2006). Various research and develop-
ment projects used SharePoint for a wide range of
different purposes (Herring & Rees, 2001). The
uses range from innovative collaboration envi-
ronments based solely on the Windows desktop
and Windows Explorer (Herring, Rees, Loch, &
Rhodes, 1998) to distributed software engineer-
ing support (Herring et al., 2001) and research
into military command and control systems
(Barros, Herring, Hildebrandt, & Rees, 2000) as
a replacement for a very complex, purpose-built
collaboration system.

In October 2003, the release of Microsoft
Office System 2003 significantly enhanced the
SharePoint technology. The existing portal server
became SharePoint Portal server 2003 (SPS) and
a significant reduction in licence costs made this
software more accessible. SPS is designed so that
it can scale across a large enterprise. At the same
time, the underlying server technology has the
capability to be effective for situations where only
tens of users are involved. SPS needs Windows
Server 2003 as the operating system together with
the SQL Server 2000 database.

The underlying heart of SPS uses a free soft-
ware enhancement for Windows Server 2003 and
the IIS Web server called Windows SharePoint
Services (WSS) that provides an extensive set of
features to provide highly interactive collabora-
tive Web sites. An added bonus allows WSS to
be used stand-alone without SPS and may even
utilise the free Microsoft SQL Server Desktop
Environment (MSDE) for effective, small-scale
deployments. As will be discussed in detail in a
later section WSS Web sites provide substantial

overlap with the requirements of an LMS as
defined below.

From the authors’ experience, it appears that
SharePoint is viewed as a tool only suitable for
the corporate environment where teams are en-
gaged in typical commercial activities such as
production, sales, and marketing. The authors
attempt to show that SharePoint technologies
are much more flexible than that, and can find a
role as the foundation of an LMS system. This is
particularly true of the primary role of delivering
educational materials in an effective manner for
teaching and learning.

With the imminent launch of Office System
2003, the Brisbane office of Microsoft Australia
launched the Spotlight on Office 2003 software
competition to showcase powerful new uses of the
software. The authors teamed up with G-Netech
Pty Ltd to enter the “Education Services” software
into the competition. The Education Services
system consisted of a managed Sharepoint Portal
Server and custom applications developed by G-
Netech Pty Ltd staff with some Bond University
student involvement. This university developed
subject-specific Windows Sharepoint Services
sites and used them as part of the trial. Deployed
during May through September 2003, just prior
to the Office System 2003 launch in October that
year, Education Services was selected as one of
three finalists in the competition, and also won
a prestigious Asia-Pacific Solution Developer
Award.

Following on the education services case study
Bond University approached G-Netech to initiate
a further trial of SharePoint with participants from
several faculties at the university. This became the
SharePoint Alliance (SPA) case study that lasted
for two semesters, a period of 8 months at Bond
where there are three full 14-week semesters in
each calendar year. The SPA case study added
further experiences and examples to the authors’
expertise and lends additional credence to the
SharePoint LMS role.

 651

Building an LMS with Ubiquitous Software

Over recent months, Microsoft has begun
to realize that SharePoint can even play other
supporting roles with enterprise LMS systems
such as Blackboard. The discussion concludes
with comments on these plans and the type of
resources that are likely to emerge. In addition,
the next major version of SharePoint will play
an even more important central role in the new
Office 2007 System expected early in that year.
Some early indications of the additional benefits
are presented.

This article first compares the features that
SharePoint technologies provide out of the box
with the features of an LMS and shows the sig-
nificant overlap. Next, the basis of the SharePoint
Alliance (SPA) Trial conducted at Bond University
is discussed. One of the authors taught a sample
university subject using SPA and the experiences
and outcomes are described in some detail. The
paper ends with a discussion of the SPA Trial
results with suggestions for improvements if the
approach is adopted.

leArnIng MAnAgeMent systeM
chArActerIstIcs

Bond University is Australia’s first private uni-
versity established in 1989. Bond has about 3,000
students across four broadly defined faculties and
prides itself on high quality, small-class teaching.

Any adoption of an LMS is intended to act as an
out-of-class supplement to the face-to-face teach-
ing that all students receive in class. Even in this
supporting role, the list of characteristics that must
be present in an LMS turns out to be the same as
for distance learning except that the emphases on
different LMS components are different.

At Bond, only a very small number of subjects
are offered in a distance-learning mode. To date
mainly static Web sites are used to support classes
in a somewhat ad hoc manner. The LMS is intended
to replace this teaching support with a consistent,
interactive collection of educational materials ac-
cessible online in 24x7 mode. Indeed at this time
of writing Bond is starting the implementation of
BlackBoard as the campus-wide LMS. However,
there are positive signs that the early SharePoint
experiences described here will carry forward
into a joint use of BlackBoard. This is described
further in the Future Trends section below.

Establishing a succinct set of characteristics
that a LMS should possess is not straightforward
when taking into consideration the wide range of
teaching styles. Kennedy (2005), in surveying
students’ reaction to the open source Moodle
(2006), gives a compact set of features outlined
in Table 1 split across three broad support cat-
egories: tools for communication, students and
course contents. The lists are comprehensive but
are biased towards technical descriptions such as
drop box and wiki, for example.

1. Communication Tools 2. Student Tools 3. Course Tools

1.1 E-mail 2.1 My notes 3.1 Staff information

1.2 Student list 2.2 Student drop box 3.2 Assessment

1.3 Discussion board 2.3 Change your information 3.3 External links

1.4 Virtual classroom 2.4 Student calendar 3.4 Announcements

1.5 Student pages 2.5 Student manual 3.5 Course map

1.6 Group homepages 2.6 Student homepage 3.6 Study material

2.7 Wiki 3.7 Search

Table 1. Kennedy’s learning management system features

652

Building an LMS with Ubiquitous Software

When Bond University began the process
to choose an LMS a conventional Web-based
teaching and learning working group was es-
tablished (one of the authors was a member).
The chapter authors put forward the education
services enhancement to SharePoint before this
group as a contender for the LMS. As part of this
process group members were asked to draw up
an ideal list of LMS features. Table 2 shows the
feature list drawn up by the authors augmented
with comments indicating whether WSS and/or
SPS can support each feature. This second table
incorporates the three tool sets from Table 1 into
a single list.

It is interesting to contrast this list to one given
in Wikipedia (Virtual Learning Environment,
2006), only discovered after Table 2 was first
drawn up. Note that virtual learning environment
(VLE) is the preferred term (changed recently

from Managed Learning Environment) but with
a note of several other equivalent terms, LMS is
one of them. Only feature 9, assessment support,
is missing from the SharePoint capabilities and to
a lesser extent feature 8, full support of class lists.
However, it is recognized that assessment support
and centralized grade books play significant roles
in teaching and learning. Class list management
too is one of the larger administrative tasks for
teaching staff, and any support of this activity is
to be welcomed.

sharepoint AllIAnce trIAl

A small steering group of staff formed the Bond
University-G-Netech SharePoint Alliance (SPA)
trial to take place over two teaching semesters
(semesters 2 and 3) between May and December

Table 2. Learning management system feature list

Feature WSS Support SPS Support

1 Structured access to and search of repository of
learning materials with upload capability

Full support via document
libraries per class

Institution-wide reposi-
tories

2 Cross-site searching for learning object names and
content

Full support per class site Institution-wide search

3 Fine-grained secure access based on user roles (staff,
tutor, student, class representative, and so on) down
to individuals

Full support Full support

4 Subject events (schedules) for class times, assess-
ment deadlines, reminders, and so on

Full support per class Some support; extension
required

5 Notices: announcements, news, task lists, surveys Full support per class Full support across
institution

6 Discussion groups: inter-class communications,
frequently asked questions

Full support Full support at institution
level

7 Notifications of Web site changes: additions, modifi-
cations, deletions

Full support via e-mail
alerts

Full support at institution
level

8 Class lists and group membership (tutorial, work-
shop, presentation)

Some support via users and
contacts lists

Full support via active
directory

9 Assessment submission and marks reporting Very limited support Simple workflow for
document submission
only

10 Template based creation of subject Web sites and
Web site components

Full support Full support

11 Real-time class communication; instant messaging,
audio, and video

Some support via MS in-
stant messenger integration

As per WSS

 653

Building an LMS with Ubiquitous Software

2004 (Bond University operates three full teaching
semesters each year so that a 6-semester university
Bachelors degree can be completed in two calen-
dar years). With staff and equipment resources
not being available from within Bond University
itself it was decided to outsource the hosting of
the SPA trial to a local IT company, G-Netech
Pty Ltd. Four faculties, business, law, humanities
and information technology, contributed equally
to the very modest costs of the SPA trial.

Eventually staff in business, information
technology, and humanities used SPA for teach-
ing or coordinating student work. During the trial
period, the university was being audited by the
Australian Universities Quality Audit organiza-
tion and some material pertinent to this adminis-
trative task was also entered into the SPA portal.
A number of staff used additional SPA sites for
planning and preparation of information content
of various kinds.

Bond University contracted with G-Netech
Pty Ltd to provide a managed server at a cost of
USD 750/month to host the SharePoint Portal.
The server used was a standard Dell dual-proces-
sor, one gigabyte RAM, 73-gigabyte RAID disk
system as typically used for hosting. Setup and
installation of all required software took less than
one man day of labour. Microsoft provides uni-
versities with heavily discounted prices that make
this enterprise level system extremely attractive
to deploy. At the time of the SPA trial, the annual
cost for an SPS license was about USD 3,750.
From a systems administration perspective, once
the portal is initially set up, the administration of
the information structure and content creation can
be delegated to a group of end users. Using the
role-based security of SharePoint the senior user
group can in turn delegate further, thus spreading
the administrative load and providing administra-
tive control at the appropriate positions within the
information and teaching hierarchy.

A sample portal home page is shown in Figure
1. This demonstrates some of the top-level fea-
tures available to all users. A single sign-on for

each user assigns roles that control the visibility
of content and dictate access permissions. Major
portal content areas are shown across the heading
section and are easily customised. Depending on
the roles assigned to them, users can perform a
defined set of actions, or possibly none of the ac-
tions, listed in the left column. Figure 1 shows the
actions available to an administrator. The main
content in the central column shows the modules
known as Web parts selected by the page author.
In this case, the enterprise-wide news service is
displayed together with the events Web part. News
items can be targeted at specific individual or sets
of roles so that list of news items each user sees
is highly customised.

Two other major features appear at the top right
of Figure 1. The enterprise search feature allows
a number of search scopes to be defined ranging
from portal areas, the whole portal, and specified
external sources that are constantly indexed by
the portal search mechanism. The second feature
is “My Site,” which is an individual, editable Web
site that can be allocated to each user including
all students. This Web site makes available a
comprehensive set of portal Web parts for each
user. A sample My Site is shown in shown in
Figure 2.

The My Site user is given a powerful individual
Web site that can be used to collect a wide variety
of information related to the portal such as links,
news items, tasks, and e-mail from an exchange
server, and public and private documents. Dif-
ferent collections of information can be made
available in the public and private views of the
Web site. New pages, each containing several Web
parts, can be added to the site and cross linked.
Searching is also possible across the user’s own
My Site. At a single stroke, the My Site features
satisfy the student tools section of Table 1.

Using the spotlight on office work mentioned
above the first author was able to build subject Web
sites very quickly for the SPA trial. A screenshot
of the home page of the sample site is shown in
Figure 3. Note that by default all WSS sites are

654

Building an LMS with Ubiquitous Software

split into three columns. Other layouts such as the
more typical two columns are possible.

Several of the important LMS features from
Table 2 are shown in Figure 3. On the left appears
the main content navigation showing document
libraries (repositories) for various types of subject
study materials, subject calendar, outstanding
tasks, class list, discussion forums, and surveys.
The main page content appears in the central col-
umn, which shows the important announcements
with automatic expiry dates and the upcoming
events in the subject calendar–vital information
for the students. On the right is shown a series of
useful hyperlinks to both internal and external
teaching resources and some hints. The search

box in the top right is standard on all pages in a
WSS site. Searching for keywords in titles and
document contents plays a vital role in improving
the user experience of any LMS.

Thus, the portal and Web site contents in Fig-
ure 1, Figure 2, and Figure 3 exhibit all the LMS
features of Table 2 except for nine. The instant
messaging requirement of feature 11 relies on the
use of Windows Messenger or MSN Messenger
symbols appear to the right of user names the
user can click to contact that user with Windows
or MSN Messenger.

Nevertheless it can be seen that the SharePoint
technologies otherwise provide the bulk of the
features one would expect to find in a full-featured

Figure 1. SharePoint portal home page

Figure 2. Sample My Site

 655

Building an LMS with Ubiquitous Software

LMS. It was on this basis that some staff at Bond
decided to instigate a trial of SharePoint with a
view to determine its suitability primarily for
teaching delivery, but also for the related teaching
preparation and administration processes.

web sIte And portAl
coMponents

According to the Wikipedia definition, “portlets
are reusable Web components that display relevant
information to portal users.” SPS supports the
portlet concept but refers to them as “Web parts.”
SPS and WSS are delivered with a standard set
of about 20 useful Web parts such as documents
and links lists, calendars, announcements, tasks,
discussion boards, surveys, and so on. Every new
list that a Web site owner creates becomes a new
Web part. Once created the Web parts can be ar-
ranged in columns making up a page by simple
dragging and dropping into position.

Web part glue facilities are also incorporated
so that Web parts can be linked together with the

output of one Web part being input to another.
Simple glue can be applied without programming.
More powerful Web parts can be coded to work
with the Web part object model available to the
standard application program development tools
such as Visual Studio.

The two SharePoint technologies acting to-
gether provide the dual architecture that is typi-
cal of enterprise portal software that is used to
implement an LMS:

• The outer or community level where in-
stitutional information is located plus an
information set potentially customized for
each individual user.

• The inner Web sites where educators locate
information and interact with tools specific
to a teaching class, educational activity
such as content preparation and planning,
or administrative processes.

In the case of Blackboard, for example, these func-
tions are embodied in two separate major modules
that are almost separate products in their own

Figure 3. Sample Windows SharePoint services site for a subject

656

Building an LMS with Ubiquitous Software

right. In the case of SharePoint, the community
level is a single product, SharePoint Portal server
2003, and the inner Web sites sit above the IIS
Web server and constitute an additional software
layer for which is a standard component of the
Windows operating system.

SharePoint Portal server provides a number of
important features at the university community
level controlled by an administrator with portal
responsibilities:

• The overall portal information structure
is made visible via institutional areas and
regions, and a single sign-on gives access
according to each user’s role.

• Each page at the top portal level varies dy-
namically according to individual user role
so users see a view personalized for them.

• Users are provided with their own Web site
called “My Site”; users can copy and link
to resources and learning objects and create
and upload their own Web part content.

• Cross-portal news and announcements tar-
geted at particular user audiences defined
by the institution.

• Information islands located in individual
Web sites are aggregated to provide a cross-
portal search with users only able to access
information specific to their role.

One of the authors acted as the portal administra-
tor for the SPA trial, but with less than 200 portal
users the news feature was used only a little, and
searching was allowed across the whole portal
content. Other features such as single sign-on,
My Site and portal user roles were exercised
much more fully.

As previously mentioned software developers
can build custom Web parts to provide virtually
any functionality both in terms of integration
within the SharePoint system or to interface to
external systems. An example customized Web
part was developed by one of the authors to permit
a consolidated event calendar view for each user.

The motivation for this was to give students the
ability to see all of their lectures, labs, and any other
appointments on a single event list in one view
within their My Site pages. This demonstrated the
flexibility of extending the system to provide new
learning management specific features.

Another example of extending the Office Sys-
tem was the development of an “Office research
pane” within Word that provided the ability for
a user to query the Bond University Library
catalogue directly. Figure 4 shows how a query
to the library information system appears within
the Word research pane. Students can easily fol-
low the hyperlinks associated with the library
resources and insert references into their Word
documents with one click.

One of the new applications in the Office Sys-
tem suite is InfoPath. InfoPath is an XML-based
“smart” forms creation and deployment applica-
tion. InfoPath is integrated with SharePoint form
libraries into which the form templates are placed.

Figure 4. Bond University Library catalogue
search in the word research pane

 657

Building an LMS with Ubiquitous Software

Clicking on an InfoPath form opens a Web page in
which the user can enter the data required by the
form. A submit button uploads the form contents
to the Form library. From here, users can view
and manipulate data originating from InfoPath
forms. An InfoPath assessment and submission
form was developed to demonstrate this capabil-
ity and to allow students to submit details of an
assignment and attach the assessment document
set to the form.

Finally, a Word “smart document” was de-
veloped that showed how it is possible to build,
submit, and mark assessments. The assessment
is created as a Word document with specially
marked smart sections where students enter their
answers. On completion, the students upload
their documents to an assessment document li-
brary, a drop box. There the assessor opens these
smart documents in Word. Figure 5 shows the
document opened in Word with the smart tags
displayed, normally these tags would be hidden
during actual assessment. The smart code assists
the marker by reading correct answers from a
database and displaying them in a form in the
Word task pane (not shown) with fields for the
assessor to allocate marks for each answer section
and enter comments. A submit button merges the
marks and comments into the students’ original

documents which are placed in another document
library from where the students can download
them. This solution required a specific test (on
Cascading Style Sheets) to be created with correct
answers and marks allocation. Custom code was
then added to create the task pane functionality.
As a result of this experience the authors realise
that a wizard approach is needed to make such
assessments generic. However, it is pleasing to
see how little code is required.

Of course, the survey Web part built into
WSS can be used very easily to build quizzes
and online tests. The surveys can be exposed at
the correct times and each student limited to one
attempt. Once completed the collected survey
responses (quiz answers) can be hidden from
other students (or exposed if need be). However,
there is no built-in assessment process. The asses-
sor must view each response and allocate marks
manually. Nevertheless, the survey Web part does
contain a useful graphical summary of responses
that can be used to assess student opinion in an
automatic way.

From the initial analysis and from experience
it is clear that SPS and WSS are weak in terms
of support for class assessment. A set of specific
assessment Web parts need to be written to march
the features of other LMS packages. However, the

Figure 5. Assessment document in word using smart tags

658

Building an LMS with Ubiquitous Software

two extensions described above help to fill the
gap in SharePoint assessment support.

sAMple subject on spA

At Bond, where the primary teaching delivery is
face-to-face in small classes, the need for high-cost
multimedia-based interactive educational material
is substantially reduced. The instructors provide
the teaching interaction, do the demonstrations,
act the roles, encourage student group activity,
and so on. Of course study materials and external
electronic resources still need to be available on
the subject Web site.

The first author created four subject Web sites
during the trial, two in each semester. The features
used were substantially those shown in Table 2:

• Document libraries for subject description,
lecture slides, lecture notes, tutorial and
workshop handouts, assessment sheets,
marks, data files, and all other documents
used in the subject. Students mostly receive
printed copies of these materials

• Lists for class members, class calendar, and
upcoming tasks

• Several additional Web part pages that
contain additional subject content.

• At least two discussion groups, the unmoder-
ated general discussion group and a moder-
ated FAQ group for more formal queries

• A number of surveys to elicit student opin-
ion and for simple supervised online test
submission

• Hyperlink lists to internal and external
educational resources

For instructors, document library and list creation
is as simple as clicking on the “create” link at the
top of the subject home page and selecting from
the list of options that includes a custom list cre-
ation mechanism. Each document library and list
is a new Web part and can be placed in any Web

part page. Document libraries also become Web
folders so that Windows Explorer can be used to
drag and drop documents between folders on the
instructor’s local machine and the subject sites.
All Office applications can open and save directly
to Web folders, while most Windows applications
exhibit this behaviour as well. Little or no staff
training is needed as this is a simple extension
of the normal document management activities
on any Windows machine.

Creating announcements, new class events,
tasks, links, and other list contents is a simple
matter of filling in a form for each item. Micro-
soft Excel is fully integrated with SharePoint
and can be used to download or upload any list.
Teaching and learning content creation could not
be simpler.

Of course, many of the same benefits apply to
student access to the teaching Web sites. Their
ability to change lists and document libraries on
the subject site is appropriately restricted, but
on their own My Site they have access to much
the same functionality. In common with most of
the popular LMS software no student training is
needed apart from the occasional demonstration
in class to overcome the usual initial reticence to
alter information on a Web site.

In the opinion of the instructor, probably the
most useful feature of SharePoint is the e-mail
alert capability. For any list or document library,
the user can nominate to be informed by e-mail
of changes in content. The e-mail can be sent im-
mediately, or most usefully, in a daily or weekly
summary consolidated from all nominated lists.
Hyperlinks in the e-mail take the user directly
to the list items in question so that the new in-
formation can be viewed directly without having
to navigate from the home page of the site. The
benefits to students, too, should be obvious, and
in several surveys students nominated this feature
as the most beneficial. However, despite constant
urgings not all students by any means expended
the effort (only 3 clicks per list) to switch on e-
mail alerts. In fact, the surveys show that only

 659

Building an LMS with Ubiquitous Software

just over 50% of the students used e-mail alerts
during the subject.

The end of semester surveys yielded detailed
results that show strong student support for Share-
Point as a beneficial learning tool. Only a few
representative samples are presented here. From
a class of 19 students there were 15 responses to
the online survey. One important question asked
students to give an indication of how often they
accessed SPA and Figure 6 shows the distribution.
Assuming a 5-day studying week the results indi-
cate the site was accessed 1-2 times each day.

Again, from a survey students were asked
to rate from 1 (low) to 10 (high) how well SPA
supported various class activities, the results
were: communicating with the lecturer 7.9, com-
municating with classmates 6.7, during practical
assignments 7.7 and overall 6.8. Staff-student
communication came top with a somewhat
surprising practical assignment support a close
second. This latter result is probably due to the
general discussion group where students often
help each other (usually in the early hours of the
morning just before an assignment deadline),
and a FAQ discussion group where the instruc-
tor answers questions about problems with the
practical assignments.

When asked about the good features of the
SharePoint sites the top three, in order, were e-
mail alerts, document libraries, and class calendar.
The three least useful features in order were My

Site, Web page layout, and login problems. It was
disappointing to see the apparently very useful
My Site not being used to any great extent. A
possible explanation is the short time limit of the
SPA trial, and the students knowing that the My
Site information they gathered was only likely
to be temporary. In addition the mechanism for
downloading their carefully gathered site content
at the end of the subject was not spelt out in detail
by the instructor. This is a lesson that all instruc-
tors using LMS packages that offer individual
student sites will do well to remember.

The login problems stemmed from the need to
allocate students additional user accounts for the
SPA trial—our technical services group were not
able to allow the on-campus authentication system
to be accessed from the external G-Netech host-
ing site. The problems with the Web site layout
are more puzzling since the site templates have
been carefully designed. A possible explanation is
that once a document in a library or an additional
Web part page is opened the connection with the
Web site can be lost unless the content creator is
careful and consistent.

The built-in SharePoint page access log
analysis can be a useful educational tool for the
instructor. A part of the access log for a subject
Web site over the semester is shown in Figure 7.
A student with a very low access count compared
to other students might need some additional
help, especially one with a negligible value in the

Figure 6. Distribution of site accesses per week

660

Building an LMS with Ubiquitous Software

Figure 7. Subject Web site page access log

User Total Hits Recent Month
gnetech\jostensj 355 84
gnetech\jwatson 123 2
gnetech\jwinberg 223 73
gnetech\kkha 482 402
gnetech\mdavidse 976 383
gnetech\mrees 1038 341
gnetech\omisje 423 140
gnetech\wlee 557 257

last month of the subject! With Bond semesters
consisting of 70 weekdays and taking the aver-
age value of 500 page accesses over the semester
gives a figure of seven page accesses per day. If
the student figures shown in Figure 6 are accurate
this means between 3 and 7 pages are viewed on
each visit to the subject site.

Note that the instructor in this example, mrees,
has the highest access count, which is to be ex-
pected. A detailed statistical analysis has not been
performed but a simple inspection of eventual
overall grades against site access counts shows
the students with the highest grades always have
very high page access counts.

Probably the primary use of the log data is to
determine which pages are the most popular so
that the most valuable resources can be identi-
fied. Other interesting data gathered shows the
students’ choice of operating system and Web
browser on their own machines. Being informa-
tion technology students, the range of different
browsers is wider than normal. Fortunately, an-
other major benefit of SharePoint is its ability to
work with all popular browsers.

Future trends

The usefulness of SharePoint technologies to sup-
port LMS features is likely to lead to increased
deployments in higher education institutions.

The cost of the SharePoint Portal server and SQL
Server is likely to be an obstacle for smaller instal-
lations in the first instance. A more likely scenario
is the use of Windows SharePoint Services to
begin a small-scale LMS deployment where no
SPS or SQL Server licences are needed. A typi-
cal example of such a situation is the University
of Vermont Business School (2006). Here WSS
was used successfully by both staff and students
as part of a much larger trial of a collection of
Microsoft software including Office.

In October 2005, Blackboard and Microsoft
(2005) issued a press statement indicating that
they had started a project to link up the Black-
board Community Portal with SharePoint Portal
server. Very soon after this announcement came
the news that the Blackboard Learning for Mi-
crosoft .NET (2005) had been released which
would indicate that the SharePoint/Blackboard
integration when running on Windows would be
made more straightforward.

The integration work is still progressing
and looks likely to join the Web parts model in
SharePoint with the Blackboard building block
architecture. An obvious mechanism to use is
the Web services for Remote Portlets protocol
proposed by the OASIS Technical Committee
(OASIS WSRP, 2006). The first author eagerly
awaits the outcomes of this project as it will be
an intelligent marriage of SharePoint and Black-
board, and will allow the author’s expertise to

 661

Building an LMS with Ubiquitous Software

be leveraged into the future. Bond University
eventually decided to implement Blackboard 7.0
from May 2006.

Probably the most exciting development will
be the introduction of a major new design for
SharePoint in the forthcoming release of Office
2007 due in early 2007. Not only will SharePoint
become the heart of the Office System with even
tighter Office integration, it will be partnered by
the new Groove Server, which will bring full-
featured shared workspaces to Office users. The
many additions will make SharePoint even more
attractive as an LMS, blogs, RSS feeds, and wiki
pages being just a few of the examples.

conclusIon

Over the SPA trial, six coordinating teaching
staff created nine teaching sites that were used
throughout one full semester. About 15 other staff
members, administrative and teaching, were al-
located SPA accounts, and they experimented with
SharePoint for short periods. Apart from student
teaching, SPA was used for course planning and
preparing educational content as well as some
administrative tasks such as the quality audit.

The majority of the teaching staff reported
their satisfaction with SharePoint although they
were not able to carry out student surveys. It
should be remembered that the use of SharePoint
as an LMS reported here is very specifically as a
supplement to face-to-face teaching, which is the
main delivery paradigm. At Bond SharePoint was
trialled against existing static Web sites. Share-
Point proved to be more collaborative, interactive,
and easy to populate with content. To this extent,
the SPA trial was successful.

Surprisingly considering the corporate origins
of SharePoint the administrative experiment with
the quality audit was not a success. The intention
was to present documents about the audit on a
Web site, and then to survey all staff to determine
that they had accessed the documents. The need

to allocate new accounts for up to 400 staff was
not a barrier. Despite the ease of creating the sur-
vey itself, the inability to incorporate the survey
Web part into another page satisfactorily was
the eventual stumbling block. Web part features
became the limiting factor.

There is considerably less doubt of the use-
fulness of SharePoint as a collaborative intranet
for designing courses by teams of teaching staff
(Dain, 2003). SharePoint is also valuable for
forging a community of practice and expertise as
described in McFerrin, Tewson, and Wallis (2003).
Such a collaborative environment encourages the
sharing of ideas and exemplars.

It should not be forgotten that the major defect
in SharePoint as regards its use as an LMS lies in
the lack of a centralized grade book and compel-
ling features for online testing, the submission of
assessment and marking. The authors did show that
a relatively small development effort is needed to
start to add customized assessment features us-
ing InfoPath forms and Word smart documents.
Further development of more powerful assessment
Web parts would further improve SharePoint’s
standing as a complete LMS.

AcknowledgMent

The authors would like to thank the other mem-
bers of the SPA Management Group, Jay Forder
(law) and Peter Stewart (vice-chancellors office),
for their help and support during the trial period.
Thanks are also due to the deans of the faculties
of business, humanities, law and information
technology for funding the trial. Robert Banner-
man of Microsoft initiated the Spotlight on Office
competition and was very supportive of our effort.
Significant programming support for the Bond
University Research Pane was provided by Ole
Rynning, a Bond Masters student in information
technology, and the authors are appreciative of
his work.

662

Building an LMS with Ubiquitous Software

reFerences

Barros, A., Herring, C., Hildebrandt, J., & Rees,
M. (2000). Generating command and control
systems in an hour: The Microsoft way. Paper
presented at the 5th International Command and
Control Research and Technology Symposium,
Canberra, Australia.

Blackboard Academic Suite. (2006). Retrieved 26
March 2006, from http://www.blackboard.com/

Blackboard and Microsoft Cooperate to Integrate
Administrative and Academic Collaboration
Products. (2005). Retrieved 31 March 2006, from
http://www.blackboard.com/company/press/re-
lease.aspx?id=769016)

Blackboard Learning System for Microsoft .NET
Framework Unveiled. (2005). Retrieved 31 March
2006, from http://www.blackboard.com/company/
press/release.aspx?id=633054

Dain, M. (2003). Instant Intranets with Microsoft
Sharepoint team services. World Conference on
Educational Multimedia, Hypermedia, and Tele-
communications 2003 (Vol. 1, pp. 631-634).

Goldberg, M. (2004). Keynote Address. The
10th Australian World Wide Web Conference.
Retrieved March 27, 2006, from http://ausWeb.
scu.edu.au/aw04/papers/edited/goldberg/

Herring, C., & Rees, M. (2001). Internet-based
collaborative software development using Mi-
crosoft tools. Paper presented at the 5th World
Multiconference on Systemics, Cybernetics and
Informatics, Orlando, Florida.

Herring, C., Rees, M., Loch, A., & Rhodes, B.
(1998, 20-21 September). Microsoft first contact:
The Borg Experiment. Paper presented at the Oz-
Group’98 Australian Workshop on Computer Sup-
port for Collaboration, University of Queensland,
Brisbane, Australia.

Kennedy, D. (2005). Challenges in evaluating
Hong Kong students’ perceptions of Moodle.

Paper presented at ASCILITE 2005, Brisbane,
Australia, (pp. 327-336).

McFerrin, K., Tewson, V., & Wallis, D. (2003).
Professional development for in-service and
pre-service teachers. Paper presented at the
World Conference on E-Learning in Corp., Govt.,
Health., & Higher Ed.

Microsoft SharePoint Products and Technolo-
gies. (2006). Retrieved 27 March 2006, from
http://www.microsoft.com/sharepoint/

Moodle Course Management System. (2006). Re-
trieved 29 March 2006, from http://moodle.org/.

OASIS Web Services for Remote Portlets (WSRP)
Technical Committee. (2006). Retrieved 31 March
2006, from http://www.oasis-open.org/commit-
tees/tc_home.php?wg_abbrev=wsrp

Sakai: Collaboration and Learning Environment
for Education (2006). Retrieved 27 March 2006,
from http://www.sakaiproject.org/

University of Vermont Gives Business Students
Real-World Technology Experience. (2006).
Retrieved 31 March 2006, from http://members.
microsoft.com/CustomerEvidence/Search/Evi-
denceDetails.aspx?EvidenceID=4515&Langua
geID=1

Virtual Learning Environment. (2005). Retrieved
26 April 2005, 2005, from http://en.wikipedia.
org/wiki/Virtual_learning_environment

WebCT. (2006). A BlackBoard Company. Re-
trieved March 26, 2006, from http://www.webct.
com/

key terMs

FAQ: Frequently asked questions.

LMS: Learning management system.

SPA: SharePoint alliance trial.

 663

Building an LMS with Ubiquitous Software

SPS: SharePoint portal server.

Web Part: Portlets supported by Share-
Point.

WSS: Windows SharePoint services.

This work was previously published in Handbook of Research on Instructional Systems and Technology, edited by T. Kidd and
H. Song, pp. 326-342, copyright 2008 by Information Science Reference (an imprint of IGI Global).

664

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.9
Development of Machine

Learning Software for High
Frequency Trading in Financial

Markets
Andrei Hryshko

University of Queensland, Australia

Tom Downs
University of Queensland, Australia

AbstrAct

Foreign exchange trading has emerged in recent
times as a significant activity in many countries.
As with most forms of trading, the activity is in-
fluenced by many random parameters, so that the
creation of a system that effectively emulates the
trading process will be very helpful. This chapter
presents a novel trading system using Machine
Learning methods of Genetic Algorithms and
Reinforcement Learning. The system emulates
trader behavior on the Foreign Exchange market
and finds the most profitable trading strategy.

IntroductIon

In spite of many years of debate between econo-
mists and financiers, the question of whether
financial markets are predictable remains open.
Numerous tests with financial data have been
conducted by researchers but these have tended
to support both sides of the issue. In our view,
the best evidence of predictability of financial
markets would be the development of a strategy
or an algorithm which is capable of consistently
gaining a profit from the financial market. In this
chapter we demonstrate that machine learning
techniques are capable of performing this task.

 665

Development of Machine Learning Software for High Frequency Trading in Financial Markets

The use of machine learning and optimization
methods in finance has become a fairly common
practice amongst financiers and researchers.
With the continuous deregulation and increas-
ing volatility of financial markets, competition
in the financial industry is getting stronger and
new techniques are being developed to provide
efficient trading for financial institutions and
the public.

At the present time, millions of people trade in
financial markets and even more wish to become
involved. The main problems they face are how
to trade and how to develop a profitable strategy.
Usually it takes several years to become a suc-
cessful trader and sometimes success remains
elusive.

Trading usually takes place through a broker
who provides software for the trader to buy and
sell assets on a financial market. This software
provides information to the trader such as cur-
rent and past share prices, exchange rate, market
indicators, etc. Based on this data, a trader can
decide when to sell and when to buy a particular

stock or currency. Choosing these actions in order
to maximize profit is a difficult task, not just for
beginners, but also for experienced traders. The
market is constantly changing so that different
rules and concepts apply in different situations.
It is not uncommon that a trader’s strategy that
works well at a given time performs poorly two
hours later. Hence the trader has to determine
the times at which a strategy should be changed
and to identify the changes that should be made.
Another problem for the trader is that different
strategies are successful for different financial
markets. Thus, a strategy should be tailored to a
particular situation in a particular market.

To deal with these problems, the issue of mar-
ket information analysis needs to be addressed,
not only theoretically but also practically. In this
chapter, we describe our investigations into this
issue and how they can be used to develop a soft-
ware system capable of operating in the manner
of a human trader.

Some related studies have previously been
carried out, but the question of how to combine

Figure 1. EUR/USD prices and volumes for October, 2004

666

Development of Machine Learning Software for High Frequency Trading in Financial Markets

theoretical investigations with practical trading
requires further attention. Existing methods (at
least those in the open literature) are examined
and are considered not capable of generating
significant profits and therefore cannot be applied
to online trading.

the ForeIgn exchAnge
MArket

The Foreign Exchange (FX) Market is an interbank
market that was created in 1971 when international
trade began using floating rather than fixed ex-
change rates. The FX Market was an integration
of deregulated domestic stock markets in leading
countries. Since the time of its creation, currency
rates have been determined based on supply and
demand with regard to each currency (Carew &
Slatyer, 1989). Figure 1 displays a sequence of
four-hour prices and volumes for the Euro/US
dollar market during October 2004.

Each element of the upper curve has the struc-
ture shown at the upper left of the figure. In this
structure, points A and D indicate the lowest and
highest rates achieved in a four-hour period, and
points B and C indicate the opening and closing
prices, respectively, for the four-hour period. The
histogram-like plot along the bottom of the figure
indicates the volume of transactions over each
four-hour period.

It is our view that the FX market is a good
basis for testing the efficiency of the prediction
system because:

1. Historical data on exchange rates of curren-
cies is readily available.

2. The FX market is easily accessible. It is open
to individual investors and doesn’t require
large deposits.

3. The FX market provides freedom to open
and close positions of any size at any time
at the current market rate.

4. The FX market is open 24 hours a day, five
days a week. This means that at each moment
of time every time zone (London, New York,
Tokyo, Hong Kong, Sydney) has dealers who
can quote prices for currencies.

5. A trader can define a period of time for his
position on the FX market. This means that
his position is kept open until that time has
elapsed.

stAtIstIcAl ApproAch to
technIcAl AnAlysIs

There are two basic approaches to market analysis:
fundamental analysis and technical analysis.

Fundamental analysis focuses on the economic
forces of supply and demand and determines
whether prices move higher, lower or stay almost
the same. It examines all relevant factors affect-
ing the price in order to determine the intrinsic
value of the market. Intrinsic value means worth
based on the law of supply and demand. Techni-
cal analysis is the practice of trying to forecast
market prices by examining trading patterns and
comparing the shape of current charts to those
from the past.

Both of these approaches to market forecast-
ing try to solve the same problem, that is, to de-
termine in what direction prices will move. The
difference between fundamental and technical
analyses is that the first one explores the causes
of movements on the market and the second one
explores the effect of these movements.

Fundamental analysis is generally concerned
with longer-term trends than technical analysis.
So given that most traders on the FX market are
intra-day traders they use just technical analysis
and do not take into consideration the fundamental
method. The main instrument employed by tech-
nical analysts is the set of available indicators,
which helps traders to discover trends, reversals
of trends and other fluctuations.

 667

Development of Machine Learning Software for High Frequency Trading in Financial Markets

An indicator makes use of a set of mathemati-
cal formulae that may, for instance, be derived
from past prices or from other market data such
as trade volumes. Different indicators play dif-
ferent roles in the analysis. Some indicators work
better when the market has a strong trend, and
some when the market is neutral. The Machine
Learning system described here makes use of ten
commonly used indicators.

The simplest indicator we use is the Moving
Average (MA) that shows the average value of
prices during a defined period of time. The n-day
MA is calculated using the simple formula:

1 ... nP PMA
n

+ +
=

where Pi is the price i-1 days previously.
Buy and sell signals are generated according

to the behavior of moving averages in the short
and longer term. A buy signal is produced when
the short average crosses above the longer one.
When the short average moves below, a sell signal
is generated. This technique is called the double
crossover method.

The 10 commonly used indicators that we
have employed in this work are detailed in Ap-
pendix 1.

Methodology

genetic Algorithms

Genetic Algorithms (GA) were introduced by
Holland (1975) as a general model of adaptive
processes and have been widely applied as an
optimization technique. They were inspired by
natural genetic processes and employ a popula-
tion of “chromosomes” (represented by binary
strings) that are analogous to the DNA of a natu-
ral organism. Unlike traditional optimization
methods that require well-defined mathematical
representations of the objective, GA can solve
optimization problems that are far less well de-

scribed mathematically. This makes them very
useful for trading models, which cannot easily
be expressed in terms of mathematical formulas
and functions.

In the original GA formulation, a population
of possible solutions is encoded as a set of bit
strings (known as parameter strings), each of
the same fixed length. The fitness of each string
in the population is estimated and the basic GA
operators are then applied as described below.
This provides a second generation population
whose average fitness is greater than that of the
initial population. The GA operators are now ap-
plied to the second generation population and the
process is repeated, generation after generation,
until some stopping criterion is met. The string
with maximum fitness in the final population is
then selected as the solution.

In applying a GA to FX trading, each string
represents a possible solution for the trader
— adopt a short, long or neutral position.

Decisions made by the trader are based upon
the values of a set of market indicators. These
values can be incorporated into the GA bit strings
as binary variables. For instance, in the case of the
double-crossover method mentioned in the previ-
ous section, the indicator generates a sell signal
when the short average moves below the longer
one. The indicator corresponding to this signal is
called “MASell” and it takes on the binary value
1 when the condition for the sell signal is met. It
has the value 0 otherwise.

An example of a rule employing this and two
other indicators (described in the Appendix) is
shown in Table 1. This rule instructs the trader
to adopt a short position (i.e., sell) and is encoded
as a bit string in the table. The rule states “IF
MASell = 1 OR (MomentumSell =1 AND Sto-
chasticBuy = 0) THEN adopt a short position.”
Thus the connectives in the table are the Boolean
operators AND and OR which have binary values
1 and 0 respectively.

Note that the instruction to sell in this rule
is encoded as a zero at the right-hand end of the

668

Development of Machine Learning Software for High Frequency Trading in Financial Markets

bit string. Rules that instruct the trader to adopt
a long position (i.e., to buy) have a “1” in this
position.

Rules for adopting a short or long position are
called entry rules because they instruct the trader
to participate actively in the market. There are
also exit rules under which the trader returns to
a neutral position. An example is shown in Table
2. Note that there is no explicit binary value for
the instruction to exit. No such value is necessary
because the exit action is always the same — that
is, to return to a neutral position.

The rule in Table 2 rule states “IF RSIBuy = 1
OR (MomentumSell = 1 OR (Larry WilliamsSell
= 1 AND Price OscillatorSell = 0) THEN adopt
a neutral position.”

The rules and their binary strings are obvi-
ously significantly longer than these, when a large
number of indicators have to be coded.

The rules in Tables 1 and 2 together can be
considered as a strategy. This strategy states
that if the trader enters under the rule in Table
1, the rule for exiting is the one in Table 2. Our
objective is to use machine learning methods to
determine the best possible strategy for given
market conditions.

In a typical implementation, a population of
150 rules of each type (entry and exit) is generated
randomly. Then out of these 300 rules we randomly
combine 150 pairs consisting of one entry rule and
one exit rule. This therefore gives us 150 trading
strategies. These strategies are ranked according
to their profitability and are then stochastically

chosen to participate in the creation of a new
population. Those strategies with greater profit-
ability (or fitness) are more likely to be selected
to participate. The process of generating a new
population employs rules that are analogous to
processes involved in natural reproduction. The
exchange of genetic material is reflected in the
crossover operation which combines a pair of rules
to form two “children” by swapping sub-strings.
A form of mutation is also occasionally applied
in order to broaden the mix of bit strings. This
is implemented by simply inverting bit values. A
low probability is used for this so that bit values
are only infrequently inverted.

Crossover and mutation are applied only to
rules of the same type (entry or exit). If rules
derived in this way are unique (differing from
all other rules in the population), they are used
to replace low-ranked rules. This is done in such
a way that the number of rules in the population
remains constant. The process is continued until
a stopping criterion is met upon which the best
pair of rules (the best strategy) is chosen to be the
output of the genetic algorithm. The best strategy
is the one that gives maximum profitability.

reinforcement learning

Another Machine Learning framework that is
helpful in the implementation of a financial mar-
ket model is reinforcement learning. The general
reinforcement learning problem addresses the
following: an agent must explore its environment

MASell Connective MomSel Connective StochBuy Sell

1 0 1 1 0 0

Table 1. A sell rule and its associated bit string

RSI
Buy Connect Mom

Sell Connect LW
Sell Connect PO

Sell

1 0 1 0 1 1 0

Table 2. An example of an exit

 669

Development of Machine Learning Software for High Frequency Trading in Financial Markets

and make decisions in different situations based
on incomplete knowledge about this environment.
The only feedback that the agent receives from
the environment is a scalar reinforcement signal
which is positive if its actions are beneficial and
negative otherwise. The objective of the agent is to
choose its actions so as to increase the long-term
sum of the reinforcement signals (Kaelbling &
Littman, 1996). Besides the reinforcement signal
the agent also receives information on the current
state of the environment (in the form of a vector of
observations). On the FX market a trader (machine
or human) has insufficient knowledge about the
environment to choose the times at which buy and
sell decisions should be made in order to maximize
profit. The only information available is the gain
(positive or negative) generated by trading deci-
sions and this provides the reinforcement signal
that drives our system.

Figure 2 illustrates the principles of reinforce-
ment learning (RL). At time t the agent receives
inputs xt (a vector of observations) and rt (a rein-
forcement signal) and based on these it chooses
an action, at . The action at changes the state of
the environment from st to st +1. The process then
repeats.

For our software implementation, we have
developed an RL-engine based on the Q-learn-
ing algorithm proposed by Watkins (1989) for
partially observable Markov decision processes.
The Q-learning algorithm, which can be used
online, was developed for the optimization of a
strategy based upon experience gained from the
unknown environment.

In general, the Q-learning algorithm works
as follows. The value Q(s, a) is defined to be the
expected discounted sum of future reinforcement
signals when action a is taken in state s and an
optimal policy is then followed. The state s belongs
to S, the discrete set of states of the environment
and the action a belongs to the set A of possible
agent actions. Once we have the Q(s, a) values,
the optimal action from any state is the one with
the highest Q-value. This means that we obtain

the policy by executing the action with the highest
Q-value. At the first step we initialize Q0 (s0 , a0)
by arbitrary numbers and improved estimates of
the Q-values are then obtained from incoming
signals using the following procedure:

1. From the current state st , select an action
at . This takes us to the next state st +1 and
provides the reinforcement signal rt +1.

2. Update Qt(st , at) based on this experience:

()1 1 1(,) : (,) max (,) (,)t t t t t t t t t t t ta
Q s a Q s a r Q s a Q s aα γ+ + += + + −

 (1)

 where α (0 < α ≤ 1) is a learning-rate pa-
rameter and 0 < ãð < 1 is the discount factor
used to place more emphasis on reinforce-
ment signals that are received earlier.

3. Go to 1.

Note that we have to store each value Q(s,a)
for all s∈S and a∈A. They are stored in a table

Action at

 AGENT
Action at

Reinforcement
 signal rt

 Vector of
observations xt

Reinforcement
 signal rt+1

ENVIRONMENT
 st s t+1

t:=t+1

One circle of
Information

 Start

Finish

Vector of
observations

xt+1

Figure 2. Reinforcement learning cycle

670

Development of Machine Learning Software for High Frequency Trading in Financial Markets

called a Q-table. An illustration of Q-learning
algorithm is given in Appendix 2.

The objective of the agent is to find the optimal
policy π(s)∈A for each state of the environment to
maximize the long-run total reward. The Q-learn-
ing algorithm uses optimal Q-values Q*(st , at) for
states s and actions a. The optimal Q-value func-
tion satisfies Bellman’s optimality equation:

1

1 1 1'
*(,) : (, ,) (, ,) max *(, ')

t

t t t t t t t t tas
Q s a P s a s R s a s Q s aγ

+

+ + +
 = + ∑

 (2)

where P(st , at , st +1) is the probability of a transition
from state st to st +1 with action at is taken.

R(st , at , st +1) is an immediate reward obtained
from taking action at when the environment state
changes st to st +1.

γ(0 ≤ γ ≤ 1) is a discount factor to weight
future rewards.

Given the optimal Q-values Q*(s,a) it is pos-
sible to choose the best action:

** arg max((,))
a

a Q s a=

A major advantage of using Q-learning is that
there is no need to know the transitive probabilities
P(st , at , st +1). The algorithm can find the Q*(s,a)
in a recursive manner. The Q-values are adjusted
according to equation (1).

If equation (1) is repeatedly applied for each
pair (st ,at) and the learning rate α is gradually
reduced toward 0 over time, then Q(s,a) converges
with probability 1 to Q*(s,a).

A hybrId trAdIng systeM

Our hybrid system involves a combination of the
two techniques of machine learning described in
the previous section.

combining the two techniques

It is important to realize that, because of the
vast number of combinations of indicator values

and connectives, the GA is unable to search the
whole space of strategies to find the optimum.
To see this, note that if we have m indicators
per rule and N indicators in total, the number of
possible rules is P(N, m)*2m -1 , where P(N, m) is
the number of permutations of N objects taken
m at a time. In our system, the ten indicators we
use are applied to both buying and selling, giving
a total of 20 indicators in all. Our average rule
length is eight indicators, so the above formula
gives the approximate number of possible rules
as 6.5×1011.

To illustrate our procedure a little further, sup-
pose that the strategy given by Table 1 has been
selected by the GA as the most profitable one.
(Note that this could only occur in a market where
prices are falling.) Because of the combinatorial
complexity, the GA will, with very high probabil-
ity, have only considered one set of instantiations
for the indicators and connectives making up this
rule (i.e., the ones in Tables 1 and 2). And this is
where reinforcement learning comes in.

The fact that the GA identified this strategy as
a profitable one shows that the indicators used in
the strategy are capable of making useful market
predictions. Because of this, it is worthwhile to
consider the other possible instantiations of the
rule values in the strategy, and this is the role of
the Q-learning algorithm. Figure 3 shows the
basic structure of the system. Once we have the
set of the most useful indicators, they can be
used to represent states of the environment and
in this way we can take into account all possible
combinations of the indicators.

Consider the theoretical situation where the GA
module has identified the two indicators RSIBuy
and CCISell as useful predictors. They provide the
following set of states of the environment

1

2

3

4

s RSIBuy 1, CCISell 1
s RSIBuy 1, CCISell 0
s RSIBuy 0 , CCISell 1
s RSIBuy 0, CCISell 0

= = =
 = = =
 = = =
 = = =

 671

Development of Machine Learning Software for High Frequency Trading in Financial Markets

At each moment of time the trader has to
make a decision whether take a short, long or
neutral position. Thus, the set of actions is {buy,
neutral, sell}.

This set of indicators and actions gives a Q-
table of the form in Table 3. The entries in this table
contain Q-values that are calculated and updated
using the method explained in the Reinforcement
Learning section. A detailed example is given in
Appendix 2.

Since a trader on the FX Market tries to maxi-
mize profit, the reinforcement signal rt is set to
the difference between portfolio values at times
t “1 and t. For instance, if at time t “1 the trader
took a long position, and then it was found that the
portfolio at time t has a lower value than at time
t “1, the reinforcement signal would be negative.
This provides the basic mechanism for adopting
long and short positions. But the third position,

the neutral position, must also be properly dealt
with. This requires the allocation of a threshold
to avoid spurious shifts from the neutral position
caused by minor market fluctuations. The major
effect of this is to avoid the cost of insignificant
transactions.

related Methods

Previous work with similar objectives includes
Dunis, Gavridis, Harris, Leong and Nacaskul
(1998) who used a genetic algorithm (GA) to op-
timize indicator parameters. Their trading model
was based on two indicator — viz. the Momentum
Oscillator and the Relative Strength Index (both
are described in the Appendix). Their data cov-
ered only a relatively brief trading period. Many
experiments were carried out and their best results
were 7.1% of the annualized return for the period
20/3/1996 – 20/5/1996. This is approximately equal
to the interest rate at that time and so the gains
were not particularly impressive.

Yao and Tan (2000) used Neural Networks to
perform technical forecasting on the FX. The only
technical indicators they used were moving aver-
ages of different orders and these were employed
as inputs to the neural network. The best results

RL
Module

Trader’s
Decision

Indicators of the
most profitable

strategy

Strategy 1

Strategy 2

Strategy N

GA
Strategies

Indicators
Values

GA
Module

Nx

x

x

x

x

x

5

4

3

2

1

Q-Learning

Table

Figure 3. The hybrid system

RSIBuy=1
CCISell=1

RSIBuy=1
CCISell=0

RSIBuy=0
CCISell=1

RSIBuy=0
CCISell=0

Buy

Neutral

Sell

Table 3. Q-learning table consisting of 3 actions
and 2N states where N — number of indicators

672

Development of Machine Learning Software for High Frequency Trading in Financial Markets

achieved were 8.4% annualised return trading
the USD/CHF exchange rate.

Dempster, Payne, Romahi and Thompson
(2001) used a method based on an ensemble of
indicators. They compared genetic algorithms and
reinforcement learning to a simple linear program
characterizing a Markov decision process and a
heuristic. The best result achieved for trading over
a 15-minute interval was around a 5% return.

Dempster and Romahi (2002) introduced
a hybrid evolutionary reinforcement learning
approach to constrain inputs to the RL system.
The GA here aims to choose an optimal subset of
indicators and then feeds them to the RL module.
The annualised return gained from the implemen-
tation of this approach varied from 5% to 15% at
a 15-minute trading frequency.

Moody and Saffell (2001) proposed the use
of recurrent reinforcement learning to optimize
risk-adjusted investment returns. Their system is
based on price series returns rather than techni-
cal indicators. The recurrent RL trading system
achieves an annualised 15% return on the USD/
GBP exchange rate and they concluded that the
recurrent RL system is superior to Q-Learning.

Note that although these results appear excel-
lent, one must be careful in extrapolating them
to real trading. Note also that Q-learning on its
own is very susceptible to over-fitting but, as will

become clear below, it can perform very well in
a hybrid system.

the soFtwAre

The human trader makes use of online data to
take a short, neutral or long position. Usually
traders start with a set of concepts based upon
indicators and then turn those concepts into a
set of rules. The rule creating process requires
a subjective choice to be made of which indica-
tors to rely on and further subjectivity is needed
in order to define rules for interpretation of the
indicator signals. The trader then has to program
the rules to create software for technical analysis.
This is a difficult task, even for experienced trad-
ers. The market is changing all the time so that
different rules and concepts work in different
situations. Hence a trader has to determine the
times at which the program should be changed,
and obviously program modifications cannot be
made online. Another problem for the trader is
that different indicators are successful on different
financial markets. For example, indicators that
are profitable on one set of exchange rates could
lead to catastrophic losses on another. Therefore
a trader’s strategy must be tailored to a particular
situation. A software system that is able to adapt

Figure 4. Software for trading on the FX market

 673

Development of Machine Learning Software for High Frequency Trading in Financial Markets

automatically to changing conditions avoids most
of these problems and therefore has the potential to
outperform a human in online trading. Our hybrid
approach provides such an automated adaptive
system and Figure 4 provides a snapshot of our
system in operation.

When a trader uses our system, the software
automatically connects to the broker’s server,
downloads data from the server and analyses the
situation in the market. When using the “online
trading” mode the trader does not require any
knowledge of the state of the market “ the soft-
ware system automatically sells and buys assets
and follows the market whilst updating system
parameters. In the “off-line trading” mode, the
trader can himself (or herself) place orders to sell
or buy based upon analysis and advice provided
by the system. When the software connects to the
server at the first time, initial learning based on
historical data occurs and then one of the modes
can be selected.

The engine of the software consists of a genetic
algorithm module and a reinforcement learning
module based on Q-learning as described above.
This system draws upon available information to
determine the optimum strategy for the trader.
Unlike the human trader, it is capable of working
online and around the clock so its parameters are
updated continuously over time to achieve the
highest returns. Our system makes its decisions
and predicts the future market using a combina-
tion of different market models. It recognizes the
state of the market by simultaneously examining
signals from each market indicator (rather than
examining indicator signals one–by-one).

The fitness evaluation, crossover and muta-
tion mechanisms are repeated until the fitness
function cannot be improved any longer or a
maximum number of iterations is reached. The
fitness function is considered maximized if the
average performance of the most profitable ten
pairs of rules does not change more than 3% over
several iterations. When the GA module is finished

we feed the indicators from the most profitable
strategy to the RL module.

Our method of choosing the indicators to
feed to the RL module is an improvement on the
one in Dempster & Romahi (2002) where the
RL algorithm is itself employed to determine
which of the indicators have the greatest fitness.
This is computationally much more demanding
than our method in which the fitness function is
simply calculated in terms of the Sharpe ratio
(Sharpe, 1966).

MAIn results

The data employed for testing our system is the
intra-day Foreign Exchange (FX) rate EUR/USD.
This currency pair is highly liquid since it is
traded by a large number of market participants
in all time zones. The data we employ relate to
the period from 02 June 2002 to 31 December
2002 with a five-minute frequency ‘off-line
trading’ mode and were obtained from the CQG
Data Factory (www.cqg.com). They consist of
43,700 intra-day records with each daily record
containing seven data fields. Figure 5 illustrates
a sample of this data.

The first row of entries in the table in Figure 5
indicates that in the five-minute period commenc-
ing 1600 on 02 June 2002 the rate was 1 EURO =
0.9238 USD and at 1605 it was 1 EURO = 0.9331
USD. The highest and lowest rates in this period
were 0.9335 USD and 0.9222 USD respectively.
There were 41 trades between 1600 and 1605. A
typical plot of the EUR/USD exchange rate that
would provide a data entry identical to the first
row of Figure 5 is shown in Figure 6.

Using historical data our system learns to
implement online trading. New training data
is provided every five minutes and using this,
the system learns to take a position - buy, sell
or neutral.

Note that the software is able to work in any
financial market where generally accepted market

674

Development of Machine Learning Software for High Frequency Trading in Financial Markets

rules are applicable. Transaction cost here is 2
pips per trade where a pip is the minimum unit of
currency movement in the FX market. The initial
trading capital was 10,000 Euros. Following train-
ing on 2.5 months of data the system achieved
a profitability of about 6% on 3.5 months of test
data. The annualised return achieved was therefore
about 20%, which is clearly superior to the results
quoted above for other approaches.

concludIng reMArks

A hybrid GA-RL system has been described that
is aimed at optimizing trading strategies in the
FX market. The system was trained and tested
on historical data and was shown to be capable of
achieving moderate gains over the tested period.
Based on this system, real-time software has been
designed that is capable of replacing a human
trader. There are still some important features
that are to be designed in future versions of the

system. Some of these include stop-losses, differ-
ent contract sizes, and the possibility of trading
through different brokers simultaneously.

reFerences

Carew, E., & Slatyer, W. (1989). Forex: The
techniques of foreign exchange. Sydney: Allen
and Unwin.

Dempster, M., & Romahi, Y. (2002). Intraday FX
trading: An evolutionary reinforcement learning
approach. In H. Yin et al. (Eds.), Intelligent Data
Engineering and Automated Learning: Proceed-
ings of the IDEAL 2002 International Conference
(pp. 347-358). Berlin: Springer Verlag.

Dempster, M., Payne, T., Romahi, Y., & Thomp-
son, G. (2001). Computational learning techniques
for intraday FX trading using popular technical
indicators. IEEE Transactions on Neural Net-
works, 4(12), 744-754.

 Date Time Open High Low Close #Ticks

 20020602 1600 9328 9335 9322 9331 41
 20020602 1605 9324 9334 9320 9330 30
 20020602 1610 9326 9334 9320 9333 32
 20020602 1615 9323 9334 9320 9330 46

Figure 5. Samples of 5 minute EUR/USD data extracted from 2 June 2002

 0.9335

 0.9322

16-00 16-05

0.9328

0.9331

Figure 6. Illustration of the first row of Figure 5

 675

Development of Machine Learning Software for High Frequency Trading in Financial Markets

Dunis, C., Gavridis, M., Harris, A., Leong, S.,
& Nacaskul, P. (1998). An application of genetic
algorithms to high frequency trading models: A
case study. In C. Dunis & B. Zhou (Eds.), Non-
linear modelling of high frequency financial time
series (pp. 247-278). New York: Wiley.

Holland, J. (1975). Adaptation in natural and
artificial systems. Ann Arbor: University of
Michigan.

Kaelbling, L., & Littman, M. (1996). Reinforce-
ment learning: A survey. Journal of Artificial
Intelligence Research, 4, 237-285.

Moody, J., & Saffell, M. (2001). Learning to trade
via direct reinforcement. IEEE Transactions on
Neural Networks, 4(12), 875-889.

Murphy, J. (1999). Technical analysis of the finan-
cial markets: A comprehensive guide to trading
methods and applications. Englewood Cliffs, NJ:
Prentice Hall.

Sharpe, W. (1966). Mutual fund performance.
Journal of Business, 39, 119-138.

Watkins, C. (1989). Learning with delayed re-
wards. PhD thesis. Cambridge University, UK.

Watkins, C., & Dayan, P. (1992). Technical note.
Q-learning. Machine Learning, 8, 279-292.

Yao, J., & Tan, C. (2000). A case study on using
neural networks to perform technical forecasting
of Forex. Neurocomputing, 34, 79-98.

676

Development of Machine Learning Software for High Frequency Trading in Financial Markets

AppendIx 1: the IndIcAtors

Besides the Moving Average (MA) indicator described in the Statistical Approach to Technical Analysis
section, our system employs nine other indicators as described below. Here we add a little technical
detail to the description of the MA indicator before detailing the other nine. All ten indicators provide
the two signals: buy and sell. We consider standard indicator parameters that are usually used in the
calculation by traders as advised in Murphy (1999).

Moving Average (MA)
The nine-day and 40-day moving averages can be written

 9

9
0

1() ()
9 i

MA n C n i
=

= −∑

40

40
0

1() ()
40 i

MA n C n i
=

= −∑

where C(n) is the latest closing price.
MABuy(n) = 1 if (MA9 (n-1) < MA4 0 (n-1)) AND (MA9 (n) > MA4 0 (n)).
MASell(n) = 1 if (MA9 (n-1) > MA4 0 (n-1)) AND (MA9 (n) < MA4 0 (n)).

Moving Average Convergence/Divergence (MACD)
The MACD is one of the most popular indicators. Two lines are used in its calculation. The MACD line
is the difference between two exponentially smoothed moving averages of closing prices and responds
very quickly to trend movements. The signal line is the exponentially smoothed average of the MACD
line and it responds more slowly to trend movements. To calculate the MACD we need to compute 12
and 26 period Exponential Moving Averages (EMA).

12 12
2 2() () (1) (1)

12 1 12 1
EMA n C n EMA n= + − −

+ +

26 26
2 2() () (1) (1)

26 1 26 1
EMA n C n EMA n= + − −

+ +

12 26() () ()MACD n EMA n EMA n= −

12 26(1) (1) (1)EMA EMA C= =

The Signal Line is given by the nine-day exponentially smoothed average of the MACD line.

)1()
19

21()(
19

2)(−
+

−+
+

= nSignalLinenMACDnSignalLine)1()1(MACDSignalLine =

Signals:
MACDBuy = 1 if (MACD(n-1) < SignalLine(n-1)) AND (MACD(n) > SignalLine(n))
MACDSell = 1 if (MACD(n-1) > SignalLine(n-1)) AND (MACD(n) < SignalLine(n))

 677

Development of Machine Learning Software for High Frequency Trading in Financial Markets

The Stochastic (Slow Stochastic)
This is based on the observation that as prices go up, closing prices tend to be closer to the upper end
of the price range and vice versa when trend goes down the closing price tends to be near the lower end
of the range. The Stochastic consists of two lines: the %K line and the %D line.

() 14()% () 100*
14() 14()

C n L nK n
H n L n

−
=

−

where
L14(n) – the lowest low for the last 14 periods
L14(n) = min (Low(n), Low(n -1), …, Low(n - 13))
H14(n) – the highest high for the same 14 periods
H14(n) = max (High(n), High(n - 1), …, High(n - 13))
where Low and High are respective components of price bar in Figure 5.
%D is a three-period moving average of the %K

2

0

1% () % ()
3 i

D n K n i
=

= −∑

%Dslow is a three-period moving average of the %D

∑
=

−=
2

0
)(%

3
1)(%

i
inDnDslow

Signals:
StochasticBuy(n) = 1 if (%D(n) < 20) AND (%Dslow(n) < 20) AND (%D(n - 1) < %Dslow(n - 1)) AND
(%D(n) > %Dslow(n)).
StochasticSell(n) = 1 if (%D(n) > 80) AND (%Dslow(n) > 80) AND (%D(n - 1) > %Dslow(n - 1)) AND
(%D(n) < %Dslow(n)).

Relative Strength Index (RSI)
This is considered to be a very powerful and popular indicator among traders. It is used to identify
overbought and oversold market conditions.

)(1
100100)(

nRS
nRSI

+
−=

[]
[] 14/)(13*))1((

14/)(13*))1((
)(

nLossCurrentnLossAverage
nGainCurrentnGainAverage

nRS
+−
+−

=

where
Current Gain(n) = max (C(n) – C(n - 1), 0)
Current Gain(n) = max (C(n - 1) – C(n), 0)

∑
=

−−−−=
13

0
)0),1()(max(

14
1)(

i
inCinCnGainAverage

∑
=

−−−−=
13

0
)0),()1(max(

14
1)(

i
inCinCnLossAverage

678

Development of Machine Learning Software for High Frequency Trading in Financial Markets

Signals:
RSIBuy(n) = 1 if (RSI(n - 1) < 30) AND (RSI(n) > 30))
RSISell(n) = 1 if (RSI(n - 1) > 70) AND (RSI(n) < 70))

Commodity Channel Index (CCI)
This was designed to identify cyclical turns in exchange rates movements.
Most traders use CCI as an overbought/oversold oscillator. CCI is based upon the comparison the cur-
rent price with a moving average over a selected time frame.

3
)()()()(nLownHighnCnriceTypicalP ++

=

)(
20
1)(

19

0
inriceTypicalPnSMATP

i
−= ∑

=

20

))()((
)(

19

0
∑

=

−−
= i

inriceTypicalPnSMATPabs
nionMeanDeviat

)(*015.0
)()(

)(
nionMeanDeviat

nSMATPnriceTypicalP
nCCI

−
=

Signals:
CCIBuy(n) = 1 if (CCI(n - 1) < 100) AND (CCI(n) > 100))
CCISell(n) = 1 if (CCI(n - 1) > -100) AND (CCI (n) < -100))

Momentum Oscillator
Momentum measures velocity of price changes as opposed to the actual price level.

)10()()(−−= nCnCnMomentum

Signals:
MomentumBuy(n) = 1 if (Momentum(n - 1) < 0) AND (Momentum(n) > 0)
MomentumSell(n) = 1 if (Momentum(n - 1) > 0) AND (Momentum(n) < 0)

Price Oscillator
This is based upon the difference between two moving averages. The moving averages can be expo-
nential, weighted or simple. Here, we consider the exponential moving average. Averages are calculated
based on closing prices.

)(
)()(

)(
20

2010

nEMA
nEMAnEMA

nPO
−

=

where EMAk is calculated using the same principle as for MACD calculation.
Signals:
POBuy(n) = 1 if (PO(n - 1) < 0) AND (PO(n) > 0)
POSell(n) = 1 if (PO(n - 1) > 0) AND (PO(n) < 0)

 679

Development of Machine Learning Software for High Frequency Trading in Financial Markets

Larry Williams
This is an indicator that works similarly to the Stochastic Indicator and is especially popular for iden-
tifying overbought and oversold markets.

)(14)(14
)()(14*100)(
nLnH

nCnHnLW
−
−

−=

L14(n) = min (Low(n), Low(n - 1), …, Low(n - 13)
H14(n) = max (High(n), High(n - 1), …, High(n - 13)).

Signals:
LWBuy(n) = 1 if (LW(n - 1) < -80) AND (LW(n) > -80)
LWSell(n) = 1 if (LW(n - 1) > -20) AND (LW(n) < -20)

Bollinger Bands
This is based on two trading bands placed around a moving average. Upper and lower bands are three
standard deviations above and below the moving average.

)(*3)(Pr)(nStDevniceAveragenUpperBand +=

)(*3)(Pr)(nStDevniceAveragenLowerBand −=

∑
=

−=
19

0
)(

20
1)(

i
inCnriceAverageP

()

20

)20()(
)(

19

0

2∑
=

−−
= i

riceAveragePinC
nStDev

BBandBuy(n) = 1 if (C(n - 1) < LowerBand(n - 1)) AND (C(n) > LowerBand(n))
BBandSell(n) = 1 if (C(n - 1) > UpperBand(n - 1)) AND (C(n) < UpperLowerBand(n))

On Balance Volume
OBV can be used either to confirm the price trend or notify about a price trend reversal.

)(*
))1()((

)1()()1()(nV
nCnCabs

nCnCnOBVnOBV
−−

−−
+−=

where V(n) is #Ticks component of the price bar in Figure 5.
The direction of OBV is more important than the amplitude. The OBV line should follow in the same

direction as the price trend otherwise there is a notification about a possible reversal.

OBVBuy(n) = 1 if (OBV(n - 3) > OBV(n - 2)) AND (OBV(n - 2) < OBV(n - 1)) AND (OBV(n - 1) <
OBV(n)) AND (C(n - 3) > C(n - 2)) AND (C(n - 2) > C(n - 1)) AND (C(n - 1) > C(n))
OBVSell(n) = 1 if (OBV(n - 3) < OBV(n - 2)) AND (OBV(n - 2) > OBV(n - 1)) AND (OBV(n - 1) > OBV(n))
AND (C(n - 3) < C(n - 2)) AND (C(n - 2) < C(n - 1)) AND (C(n - 1) < C(n))

680

Development of Machine Learning Software for High Frequency Trading in Financial Markets

AppendIx 2: IllustrAtIon oF q-leArnIng

In Figure 7 we consider a real but simplified situation where a trader has two indicators for a financial
market and has to make a decision based on the indicator signals. In this simplified situation, we assume
that each indicator can advise either to buy or sell only. That is, we ignore the possibility of indicators
advising that a neutral position be adopted. Since we have two indicators that can have two values
each, we have in total four states of the environment. In any state of the environment a trader can make
two decisions - either to buy a security or to sell it. Thus, writing the set of actions available in state i
as A(state i), we have A(state i) = {buy, sell}for i = 1,2,3,4. After taking an action the trader makes a
transition from one state of the environment to another according to a set of probabilities determined
by the market situation.

The state of the environment is determined by the values of the indicators and, whatever the state,
the trader must decide whether to buy or sell. To understand the meaning of Figure 7, consider the ar-
row at the upper-left of the figure. The rectangle attached to this arrow contains the following: “Sell,
R.S. = 20, Pr = 12%.” What this means is that this particular transition from state 1 to state 2 will take
place if the trader, in state 1, decides to sell and that this decision will result in a transition to state 2
with a 12% probability, upon which the trader will receive a reinforcement signal of 20. Note that the
decision to sell while in state 1 could also result in a transition to state 4, with probability 88%. Note
also that the probabilities of these two transitions add to 100%, indicating that there is zero probability
of a decision to sell when in state 1 causing a transition to state 3.

The values of the reinforcement signals and the transition probabilities in Figure 7 have been cho-
sen arbitrarily for the purposes of this illustration. In practice, these values would change due to the
non-static nature of the market, but we keep them fixed here so that the key features of Q-learning can
be clearly understood. If we did not do this, the origin of some of the numbers in the example would
become unclear unless we included frequent updates to Figure 7.

Suppose that the initial values of Q0 (s, a) = 0 for all s, a, discount rate γ = 0.85 and learning rate α =
0.15. Also assume that the following sequence has taken place: (state 1, sell) → (state 3, buy) → (state
2, sell) → (state 3, sell) → (state 4, buy) → (state 3, buy)→ (state 2, buy) → (state 1, buy) → (state 2,
sell) → (state 3, …) → … For this state-action sequence, equation (1) gives the following sequence of
Q-value updates:

1) (state 1, sell, 20, state 3)

[]
{ }[] 320*15.0000,0max85.02015.00

),1(),3(max85.02015.0),1(),1(0001

=+=−++

=−++= sellstateQastateQsellstateQsellstateQ
a

2) (state 3, buy, 70, state 2)

[]
{ }[] 5.1070*15.0000,0max85.07015.00

),3(),2(max85.07015.0),3(),3(1112

=+=−++

=−++= buystateQastateQbuystateQbuystateQ
a

3) (state 2, sell, -30, state 3)

 681

Development of Machine Learning Software for High Frequency Trading in Financial Markets

[]
{ }[] 16.3)5.10*85.030(*15.0000,5.10max85.03015.00

),2(),3(max85.03015.0),2(),2(2223

−=+−+=−+−+

=−+−+= buystateQastateQsellstateQsellstateQ
a

4) (state 3, sell, 10, state 4)

[]
{ }[] 5.110*15.0000,0max85.01015.00

),3(),4(max85.01015.0),3(),3(3334

=+=−++

=−++= sellstateQastateQsellstateQsellstateQ
a

So after the first four steps of the state-action sequence the Q-table looks like: (see Table 4)

Now consider the remaining values in the sequence:
(state 4, buy) → (state 3, buy) → (state 2, buy) → (state 1, buy) → (state 2, sell) → (state 3, …) → …

5) (state 4, buy, 30, state 3)

[]
{ }[] 84.5)5.10*85.030(*15.0005.1,5.10max85.03015.00

),4(),3(max85.03015.0),3(),4(4445

=++=−++

=−++= buystateQastateQbuystateQbuystateQ
a

6) (state 3, buy, 70, state 2)

[]
{ }[] 43.19)5.100*85.070(15.05.105.1016.3,0max85.07015.05.10

),3(),2(max85.07015.0),3(),3(5556

=−++=−−++

=−++= buystateQastateQbuystateQbuystateQ
a

7) (state 2, buy, 50, state 1)

 []
{ }[] 88.7)3*85.050(*15.0000,3max85.05015.00

),2(),1(max85.05015.0),2(),2(6667

=++=−++

=−++= buystateQastateQbuystateQbuystateQ
a

8) (state 1, buy, -20, state 2)

 []
{ }[] 55.0)388.7*85.020(*15.03316.3,88.7max85.02015.03

),1(),2(max85.02015.0),1(),1(7778

=−+−+=−−+−+

=−+−+= buystateQastateQbuystateQbuystateQ
a

Table 4. Q-learning table after 4 steps

Q4(s, a) Buy Sell

state 1 3 0

state 2 0 -3.16

state 3 10.5 1.5

state 4 0 0

682

Development of Machine Learning Software for High Frequency Trading in Financial Markets

 1 State
Indicator1 = ’sell’
Indicator2 = ’sell’

 4 State
Indicator1= ’buy’
Indicator2= ’buy’

 2 State
Indicator1 = ’sell’
Indicator2= ’buy’

 3 State
Indicator1= ’buy’
Indicator2 = ’sell’

 Buy, R. S. =
-20, Pr=60%

Buy, R. S. =
-20, Pr=25%

Sell, R. S. =
20, Pr=88%

Sell, R. S. =
20, Pr=12%

Sell, R. S. =
-30, Pr=75%

Sell, R. S. =
-30, Pr=25%

Buy, R. S. =
50, Pr=68%

Buy, R. S. =
50, Pr=32%

 Buy, R. S. =
70, Pr=85%

 Buy, R. S. =
70, Pr=15%

Sell, R. S. =
10, Pr=53%

Buy, R. S. =
-20, Pr=15%

Sell, R. S. =
10, Pr=47%

 Buy, R. S. =
30, Pr=86%

 Buy, R. S. =
30, Pr=14%

Sell, R. S. =
-20, Pr=100%

Figure 7. Example of Q-Learning

9) (state 2, sell, -30, state 3)

[]
{ }[]

71.4
)16.343.19*85.030(*15.016.3)16.3(5.1,43.19max85.03015.016.3

),2(),3(max85.03015.0),2(),2(8889

−=
++−+−=−−+−+−

=−+−+= sellstateQastateQsellstateQsellstateQ
a

After nine steps of the state-action sequence the Q-table looks like (see Table 5).

 683

Development of Machine Learning Software for High Frequency Trading in Financial Markets

Table 5. Q-learning table after 9 steps

Q9(s, a) Buy Sell

state 1 0.55 0

state 2 7.88 -4.71

state 3 19.43 1.5

state 4 5.84 0

And the optimal policy after nine steps is given by equation

),(maxarg)(* 9 asQs
a

=π .

Thus, at every state of the environment the trader will be able to determine the appropriate action. It
can be shown (Watkins & Dayan, 1992) that the Q-table converges with probability 1 to the optimal
set of Q-values.

This work was previously published in Business Applications and Computational Intelligence, edited by K. Voges; N. Pope,
pp. 406-430, copyright 2006 by IGI Publishing (an imprint of IGI Global).

684

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.10
Architecture of an Information
System for Personal Financial

Planning
Oliver Braun

Saarland University, Germany

Günter Schmidt
Saarland University, Germany

AbstrAct

We present a reliable application architecture and
a corresponding system architecture of a system
for personal financial planning. The application
architecture is related to the business require-
ments, and the system architecture is related to
information technology. We will present an analy-
sis model as part of the application architecture,
showing the granularity of an industry model. An
intrinsic part of the proposed system architecture
is the usage of Web technologies.

IntroductIon

The architecture of an information system influ-
ences just about everything in the process of
developing an information system. The system
architecture gives the rules and regulations by

which the information system has to be con-
structed. The architecture’s key role is to define
the set of constraints placed on the design and
implementation teams when they transform
the requirements and analysis models into the
executable system. These constraints contain all
the significant design decisions and the rationale
behind them.

The mission and concern of this chapter is to
present a reliable application architecture and a
corresponding system architecture of a system
for personal financial planning. The application
architecture is related to the business require-
ments, and the system architecture is related to
information technology. We base the discussion
of the business requirements on the application
architecture, LISA, where four views on models
are defined in Schmidt (1999):

 685

Architecture of an Information System for Personal Financial Planning

1. The granularity of the model differing be-
tween industry model, enterprise model,
and detailed model

2. The elements of the model differing between
data, function, and coordination

3. The life cycle of modelling differing between
analysis, design, and implementation

4. The purpose of modelling differing between
problem description and problem solution

We will present an analysis model as part of
the application architecture showing the granu-
larity of an industry model. It contains data,
function, and coordination models related to the
purpose of modelling. The language we use to
develop the analysis model is the Unified Mod-
eling Language (UML). An intrinsic part of the
proposed system architecture is the usage of Web
technologies, as the global Internet and the World
Wide Web are the primary enabling technologies
for delivering customized decision support. We
refer to the reference model as a combination of
the analysis model and the system architecture.
We believe that combining analysis model and
system architecture could enhance the usability
of the reference model.

We understand personal financial planning
as the process of meeting life goals through the
management of finances (Certified Financial
Planner’s (CFP) Board of Standards, 2005). Our
reference model fulfils two kinds of purposes:
First, the analysis model is a conceptual model
that can serve financial planners as a decision
support tool for the analysis of requirements.
Second, system developers can map the analysis
model to the system architecture at the design
stage of system development. Furthermore, the
reference model serves as a capture of existing
knowledge in the field of IT-supported personal
financial planning. The model also addresses
interoperability assessments by the concept of
platform-independent usage of personal financial
planning tools.

stAte oF the Art

personal Financial planning

The field of personal financial planning is well
supplied with a lot of textbooks, among them:
Böckhoff and Stracke (2003), Keown (2003),
Nissenbaum, Raasch, and Ratner (2004), Schmidt
(2006), and Woerheide (2002), to name just a few.
Most books can be used as guides to handle per-
sonal financial problems, for example, maximise
wealth, achieve various financial goals, determine
emergency savings, maximise retirement plan
contributions, and so forth. There are also pa-
pers in journals ranging from the popular press
to academic journals. Braun and Kramer (2004)
give a review on software for personal financial
planning in German-speaking countries.

We will start our discussion with some defi-
nitions related to the world of personal financial
planning. Certified Financial Planner’s (CFP)
Board of Standards defines personal financial
planning as follows:

Definition 1: Financial planning is the process
of meeting your life goals through the proper
management of your finances. Life goals can
include buying a home, saving for your child’s
education, or planning for retirement. Financial
planning provides direction and meaning to your
financial decisions. It allows you to understand
how each financial decision you make affects
other areas of your finances. For example, buying
a particular investment product might help you
pay off your mortgage faster, or it might delay
your retirement significantly. By viewing each
financial decision as part of a whole, you can
consider its short and long-term effects on your
life goals. You can also adapt more easily to life
changes and feel more secure that your goals are
on track. (Certified Financial Planner’s (CFP)
Board of Standards, 2005)

686

Architecture of an Information System for Personal Financial Planning

The draft ISO/DIS 22 222-1 of the Techni-
cal Committee ISO/TC 222, Personal Financial
Planning, of the International Organization for
Standardization, defines personal financial plan-
ning as follows:

Definition 2: Personal financial planning is an
interactive process designed to enable a con-
sumer/client to achieve their personal financial
goals. (ISO/TC 222, 2004)

In the same draft, Personal Financial Planner,
consumer, client, and financial goals are defined
as follows:

Definition 3: A Personal Financial Planner is
an individual practitioner who provides financial
planning services to clients and meets all com-
petence, ethics, and experience requirements
contained in this standard. A consumer is an indi-
vidual or a group of individuals, such as a family,
who have shared financial interests. A client of a
Personal Financial Planner is an individual who
has accepted the terms of engagement by enter-
ing into a contract of services. A financial goal
is a quantifiable outcome aimed to be achieved
at some future point in time or over a period of
time. (ISO/TC 222, 2004)

Certified Financial Planner’s (CFP) Board of
Standards and the Technical Committee ISO/TC
222, Personal Financial Planning, of the Interna-
tional Organization for Standardization define the
personal financial planning process as follows:

Definition 4: The personal financial planning
process shall include, but is not limited to, six
steps that can be repeated throughout the client
and financial planner relationship. The client can
decide to end the process before having passed all
the steps. The process involves gathering relevant
financial information, setting life goals, examin-
ing your current financial status, and coming
up with a strategy or plan for how you can meet

your goals given your current situation and future
plans. The financial planning process consists of
the following six steps:

1. Establishing and defining the client-plan-
ner relationship: The financial planner
should clearly explain or document the
services to be provided to the client, and
define both his and his client’s responsibili-
ties. The planner should explain fully how
he will be paid and by whom. The client and
the planner should agree on how long the
professional relationship should last and on
how decisions will be made.

2. Gathering client data and determining
goals and expectations: The financial
planner should ask for information about
the client’s financial situation. The client
and the planner should mutually define the
client’s personal and financial goals, under-
stand the client’s time frame for results, and
discuss, if relevant, how the client feel about
risk. The financial planner should gather all
the necessary documents before giving the
advice that the client needs.

3. Analyzing and evaluating the client’s fi-
nancial status: The financial planner should
analyze the client’s information to assess
the client’s current situation and determine
what the client must do to meet his goals.
Depending on what services the client has
asked for, this could include analyzing the
client’s assets, liabilities, and cash flow,
current insurance coverage, investments,
or tax strategies.

4. Developing and presenting financial
planning recommendations and/or al-
ternatives: The financial planner should
offer financial planning recommendations
that address the client’s goals, based on the
information which the client provides. The
planner should go over the recommendations
with the client to help the client understand
them so that the client can make informed

 687

Architecture of an Information System for Personal Financial Planning

decisions. The planner should also listen to
the client’s concerns and revise the recom-
mendations as appropriate.

5. Implementing the financial planning rec-
ommendations: The client and the planner
should agree on how the recommendations
will be carried out. The planner may carry
out the recommendations or serve as the
client’s “coach,” coordinating the whole
process with the client and other profession-
als such as attorneys or stockbrokers.

6. Monitoring the financial planning rec-
ommendations: The client and the planner
should agree on who will monitor the client’s
progress towards his goals. If the planner is
in charge of the process, he should report to
the client periodically to review his situation
and adjust the recommendations, if needed,
as the client’s life changes.

systems, Models, Architectures

Models are simplifications of reality. Models
exist at various levels of abstraction. A level
of abstraction indicates how far removed from
the reality a model is. High levels of abstraction
represent the most simplified models. Low levels
of abstraction have close correspondence with
the system that they are modelling. An exact 1:1
correspondence is no longer a model, but rather a
transformation of one system to another. Systems
are defined as follows:

Definition 5: A system is a collection of con-
nected units organized to accomplish a purpose.
A system can be described by one or more models,
possibly from different viewpoints. The complete
model describes the whole system. (Rumbaugh,
Jacobson, & Booch, 2005, p. 635)

The personal financial planning process can be
supported by financial Decision Support Systems
(DSS). In general, a Decision Support System can
be described as follows:

Definition 6: A Decision Support System (DSS)
is an interactive, flexible, and adaptable computer-
based information system, specially developed
for supporting the solution of a non-structured
management problem for improved decision-
making. It utilises data, provides an easy-to-use
interface, and allows for the decision-maker’s
own insights. (Turban, 1995)

Continuous interaction between system and
decision-makers is important (Briggs, Nunamak-
er, & Sprague, 1997). Interactive decision-making
has been accepted as the most appropriate way to
obtain the correct preferences of decision-makers
(Mathieu & Gibson, 1993; Mukherjee, 1994). If
this interaction is to be supported by a Web-based
system, then there is a need to manage the related
techniques (or models), to support the data needs,
and to develop an interface between the users and
the system. Advances in Web technologies and
the emergence of the e-business have strongly
influenced the design and implementation of fi-
nancial DSS. As a result, improvement in global
accessibility in terms of integration and share of
information means that obtaining data from the
Internet has become more convenient. Growing
demand in fast and accurate information sharing
increases the need in Web-based financial DSS
(Chou, 1998; Dong, Deng, & Wang, 2002; Dong,
Du, Wang, Chen, & Deng, 2004; Fan, Stallaert,
& Whinston, 1999, 2000; Hirschey, Richardson,
& Scholz, 2000; Li, 1998; Mehdi & Mohammad,
1998).

The application of DSS to some specific fi-
nancial planning problems is described in several
articles. In Schmidt and Lahl (1991), a DSS based
on expert system technology is discussed. The
focus of the system is portfolio selection. Sama-
ras, Matsatsinis, and Zopounidis (2005) focus on
portfolio selection. They propose a DSS which
includes three techniques of investment analysis:
Fundamental Analysis, Technical Analysis, and
Market Psychology. Dong, Du, Wang, Chen, and
Deng (2004) also focus on portfolio selection,

688

Architecture of an Information System for Personal Financial Planning

and report on the implementation of a Web-based
DSS for Chinese financial markets. Zahedi and
Palma-dos-Reis (1999) describe a personalised
intelligent financial DSS. Zopounidis, Doumpos,
and Matsatsinis (1997) give a survey on the use of
knowledge-based DSS in financial management.
The basic characteristic of such systems is the
integration of expert systems technology with
models and methods used in the decision support
framework. They survey some systems applied
to financial analysis, portfolio management, loan
analysis, credit granting, assessment of credit
risk, and assessment of corporate performance
and viability. These systems provide the follow-
ing features:

• They support all stages of the decision-
making process, that is, structuring the
problem, selecting alternative solutions, and
implementing the decision.

• They respond to the needs and the cognitive
style of different decision-makers based on
individual preferences.

• They incorporate a knowledge base to help
the decision-maker to understand the results
of the mathematical models.

• They ensure objectiveness and complete-
ness of the results by comparing expert
estimations and results from mathematical
models.

• Time and costs of the decision-making
process is significantly reduced, while the
quality of the decisions is increased.

Special emphasis on Web-based decision
support is given in Bhargava, Power, and Sun (in
press). Even though the above efforts in developing
DSS have been successful to solve some specific
financial planning problems, these do not lead
to a general framework for solving any financial
planning problem. There is no DSS which covers
the whole process of financial planning. Models
can be defined as follows:

Definition 7: A model is a semantically-complete
description of a system. (Rumbaugh, Jacobson,
& Booch, 2005, p. 461)

According to that definition, a model is an ab-
straction of a system from a particular viewpoint. It
describes the system or entity at the chosen level of
precision and viewpoint. Different models provide
more or less independent viewpoints that can be
manipulated separately. A model may comprise
a containment hierarchy of packages in which
the top-level package corresponds to the entire
system. The contents of a model are the transitive
closures of its containment (ownership) relation-
ships from top-level packages to model elements.
A model may also include relevant parts of the
system’s environment, represented, for example,
by actors and their interfaces. In particular, the
relationship of the environment to the system
elements may be modelled. The primary aim of
modelling is the reduction of complexity of the
real world in order to simplify the construction
process of information systems (Frank, 1999, p.
605). Mišić and Zhao (1999) define reference
models as follows:

Definition 8: A reference model describes a stan-
dard decomposition of a known problem domain
into a collection of interrelated parts, or compo-
nents, that cooperatively solve the problem. It also
describes the manner in which the components
interact in order to provide the required functions.
A reference model is a conceptual framework for
describing system architectures, thus providing
a high-level specification for a class of systems.
(Mišić & Zhao, 1999)

Reference modelling can be divided into two
groups (Fettke & Loos, 2003): Investigation of
methodological aspects (e.g., Lang, Taumann,
& Bodendorf, 1996; Marshall, 1999; Remme,
1997; Schütte, 1998), and construction of concrete
reference models (e.g., Becker & Schütte, 2004;
Fowler, 1997; Hay, 1996; Scheer, 1994). To the

 689

Architecture of an Information System for Personal Financial Planning

best of our knowledge, there is no reference model
for personal financial planning. Our reference
model for personal financial planning consists
of an analysis model for the system analysis of
a personal financial planning system and of cor-
responding system architecture of an information
system for personal financial planning.

Analysis Model

Surveys of reference models at the analysis stage
of system development (i.e., conceptual models)
are given in various papers, for example, Scholz-
Reiter (1990), Marent (1995), Mertens, Holzer,
and Ludwig (1996), Fettke and Loos (2003), and
Mišić and Zhao (1999). For the construction
of models, languages are needed. We will use
the Unified Modeling Language (UML) for our
analysis model.

Definition 9: The Unified Modeling Language
(UML) is a general-purpose modelling language
that is used to specify, visualize, construct, and
document the artefacts of a software system.
(Rumbaugh, Jacobson, & Booch, 2005, p. 3)

UML was developed by the Rational Software

Corporation to unify the best features of earlier
methods and notations. The UML models can be
categorised into three groups:

• State models (that describe the static data
structures)

• Behaviour models (that describe object
collaborations)

• State change models (that describe the al-
lowed states for the system over time)

UML also contains a few architectural con-
structs that allow modularising the system for
iterative and incremental development. We will
use UML 2.0 (Rumbaugh, Jacobson, & Booch,
2005) for our analysis model.

System Architecture

In general, architecture can be defined as fol-
lows:

Definition 10: An architecture is the organi-
zational structure of a system, including its
decomposition into parts, their connectivity, in-
teraction mechanisms, and the guiding principles
that inform the design of a system. (Rumbaugh,
Jacobson, & Booch, 2005, p. 170)

Definition 11: The term system architecture
denotes the description of the structure of a com-
puter-based information system. The structures
in question comprise software components, the
externally-visible properties of those components,
and the relationships among them. (Bass, Cle-
ments, & Kazman, 1998)

IBM (Youngs, Redmond-Pyle, Spaas, &
Kahan, 1999) has put forth an Architecture De-
scription Standard (ADS), which defines two
major aspects: functional and operational. The
IBM ADS leverages UML to help express these
two aspects of the architecture. This standard
is intended to support harvesting and reuse of
reference architectures.

For a comprehensive overview of architectures,
languages, methods, and techniques for analysing,
modelling, and constructing information systems
in organisations, we refer to the Handbook on
Architectures of Information Systems (Bernus,
Mertins, & Schmidt, 2005)

The reference architecture we use to derive
our system architecture is a service-oriented
architecture (SOA) proposed by the World Wide
Web Consortium (W3C) (Booth, Haas, McCabe,
Newcomer, Champion, Ferris, et al., 2005) for
building Web-based information systems. Ac-
cording to the Gartner group, by 2007, service-
oriented architectures will be the dominant strat-
egy (more than 65%) of developing information
systems. The architecture we propose supports

690

Architecture of an Information System for Personal Financial Planning

modular deployment of both device-specific user
interfaces through multi-channel delivery of ser-
vices and new or adapted operational processes
and strategies. Service-oriented architectures
refer to an application software topology which
separates business logic from user interaction
logic represented in one or multiple software
components (services), exposed to access via
well-defined formal interfaces. Each service
provides its functionality to the rest of the system
as a well-defined interface described in a formal
mark-up language, and the communication be-
tween services is both platform- and language-in-
dependent. Thus, modularity and re-usability are
ensured, enabling several different configurations
and achieving multiple business goals. The first
service-oriented architecture relates to the use of
DCOM or Object Request Brokers (ORBs) based
on the CORBA specification.

A service is a function that is well-defined,
self-contained, and does not depend on the context
or state of other services. Services are what you
connect together using Web Services. A service
is the endpoint of a connection. Also, a service
has some type of underlying computer system
that supports the connection that is offered. The
combination of services, both internal and external
to an organisation, makes up a service-oriented
architecture. The technology of Web services is
the most likely connection technology of service-
oriented architectures. Web services essentially
use XML to create a robust connection.

Web Services technology is currently the
most promising methodology of developing
Web information systems. Web Services allow
companies to reduce the cost of doing e-busi-
ness, to deploy solutions faster, and to open up
new opportunities. The key to reach these goals
is a common program-to-program communi-
cation model, built on existing and emerging
standards such as HTTP, Extensible Markup
Language (XML - see also Wüstner, Buxmann,
& Braun, 2005), Simple Object Access Protocol
(SOAP), Web Services Description Language

(WSDL) and Universal Description, Discovery
and Integration (UDDI). However, the real
Business-to-Business interoperability between
different organisations requires more than the
aforementioned standards. It requires long-lived,
secure, transactional conversations between Web
Services of different organisations. To this end,
a number of standards are underway (e.g., Web
Services Conversation Language (WSCL), and
the Business Process Execution Language for
Web Services (BPEL4WS)). With respect to the
description of services’ supported and required
characteristics, the WS-Policy Framework is under
development by IBM, Microsoft, SAP, and other
leading companies in the area. On the other hand,
no other standard languages and technologies
have been proposed for composing services and
modelling transactional behaviour of complex
service compositions. Such proposals include the
Unified Transaction Modeling Language (UTML)
and the SWORD toolkit.

requirements for a reference Model
for personal Financial planning

Our reference model for personal financial plan-
ning should fulfil the following requirements
concerning the input, data processing, and out-
put: The input has to be collected in a complete
(that is, adequate to the purpose) way. The input
data have to be collected from the client and/or
from institutions that are involved in this pro-
cess. Such institutions may be Saving Banks,
Mortgage Banks, Life Insurance Companies,
Car Insurance Companies, Providers of Stock
Market Quotations, Pension Funds, and so forth.
This stage is time-consuming, and the quality of
the financial plan is dependent on the complete-
ness and correctness of the collected input data.
Data processing (i.e., data evaluation and data
analysis) have the task to process the input data
in a correct, individual, and networked way.
Correct means that the results have to be precise
and error-free according to accepted methods

 691

Architecture of an Information System for Personal Financial Planning

of financial planning. Individual means that the
concrete situation with all its facets has to be
centred in the planning, and that it is forbidden to
make generalisations. Networked means: All of
its data’s effects and interdependencies have been
considered and structured into a financial plan.
The output has to be coherent and clear.

Analysis Model

The main task of an analysis model for personal
financial planning is to help financial planners
to consult individuals to properly manage their
personal finances. Proper personal financial plan-
ning is so important because many individuals
lack a working knowledge of financial concepts
and do not have the tools they need to make
decisions most advantageous to their economic
well-being. For example, the Federal Reserve
Board’s Division of Consumer and Community
Affairs (2002) stated that “financial literacy de-
ficiencies can affect an individual’s or family’s
day-to-day money management and ability to
save for long-term goals such as buying a home,
seeking higher education, or financial retirement.
Ineffective money management can also result in
behaviours that make consumers vulnerable to
severe financial crises”.

Furthermore, the analysis model should fulfil
the following requirements:

• Maintainability (the analysis model should
be understandable and alterable)

• Adaptability (the analysis model should be
adaptable to specific user requirements)

• Efficiency (the analysis model should solve
the personal financial planning problem as
fast and with the least effort possible)

• Standards-oriented (the analysis model
should be oriented at ISO / DIN /CFP- board
standards; it should fulfil, for example, the
CFP financial planning practice standards
(Certified Financial Planner’s (CFP) Board
of Standards, 2005)

System Architecture

An architecturally-significant requirement is a
system requirement that has a profound impact
on the development of the rest of the system.
Architecture gives the rules and regulations by
which the software has to be constructed. The
architect has the sole responsibility for defining
and communicating the system’s architecture.
The architecture’s key role is to define the set of
constraints placed on the design and implementa-
tion teams when they transform the requirements
and analysis models into the executable system.
These constraints contain all the significant design
decisions and the rationale behind them. Defining
an architecture is an activity of identifying what
is architecturally-significant and expressing it in
the proper context and viewpoint.

The system architecture for an IT-based per-
sonal financial planning system should fulfil the
following requirements:

• Maintainability (the architecture should
be understandable and alterable)

• Adaptability (the architecture should be
adaptable to specific user requirements)

• Efficiency (the architecture should deliver a
framework that allows a Personal Financial
Planner to solve personal financial planning
problems as fast and with the least effort
possible, for example, by automatic data
gathering)

• Standard-oriented (the architecture should
be oriented at well-established standards, for
example, service-oriented architectures)

• Reliability and robustness (the architecture
should support a reliable and robust IT-sys-
tem)

• Portability (the architecture should support
a platform-independent usage of the personal
financial planning system)

In the following sections, we describe a refer-
ence model for personal financial planning which

692

Architecture of an Information System for Personal Financial Planning

meets the requirements specified in this section.
The whole reference model is elaborated in more
detail by Braun (2006b).

ArchItecture oF A relIAble
web ApplIcAtIon For
personAl FInAncIAl plAnnIng

Our architecture for personal financial planning
consists of two parts (see Figure 1):

1. Analysis model as part of the application ar-
chitecture, which can help financial planners
to do personal financial planning; and

2. System architecture, which can help system
developers to develop logical models at the
design stage of system development.

Our reference model for personal financial
planning has two purposes: First, the analysis
model can help financial planners to do personal

financial planning in a systematic way. Second, at
the design stage of system development, system
developers can take the analysis model produced
during system analysis and apply the system
architecture to it. An intrinsic part of our refer-
ence model at the architecture level is the usage
of Web technologies, as Web technologies have
already and will strongly influence the design and
implementation of financial information systems
in general.

Design starts with the analysis model and
the software architecture document as the major
inputs (q.a. here and in the following Conallen,
2002). Design is where the abstraction of the busi-
ness takes its first step into the reality of software.
At design level, the analysis model is refined such
that it can be implemented with the components
that obey the rules of the architecture. As with
analysis, design activities revolve around the
class and interaction diagrams. Classes become
more defined, with fully qualified properties. As
this happens, the level of abstraction of the class

system

Analysis model 1 Analysis model n Analysis model N

Design model 1 Design model k Design model K

System architecture

Implementation 1 Implementation m Implementation M

Figure 1. Analysis model and system architecture

 693

Architecture of an Information System for Personal Financial Planning

shifts from analysis to design. Additional classes,
mostly helper and implementation classes, are of-
ten added during design. In the end, the resulting
design model is something that can be mapped
directly into code. This is the link between the
abstractions of the business and the realities of
software.

Analysis and design activities help transform
the requirements of the system into a design that
can be realized in software. Analysis begins
with the use case model, the use cases and their
scenarios, and the functional requirements of
the system that are not included in the use cases.
The analysis model is made up of classes and
collaborations of classes that exhibit the dynamic
behaviours detailed in the use cases and require-
ments.

The analysis model and the design model are
often the same artifact. As the model evolves,
its elements change levels of abstraction from
analysis to detailed design. Analysis-level classes
represent objects in the business domain. Analysis
focuses on the functional requirements of the
system, ignoring the architectural constraints of
the system. Use case analysis comprises those
activities that take the use cases and functional
requirements to produce an analysis model of
the system. Analysis focuses on the functional
requirements of the system, so the fact that some
or all of the system will be implemented with
Web technologies is beside the point. Unless the
functional requirements state the use of a specific
technology, references to architectural elements
should be avoided. The analysis model is made
up of classes and collaborations of classes that
exhibit the dynamic behaviours detailed in the use
cases and the requirements. The model represents
the structure of the proposed system at a level of
abstraction beyond the physical implementation of
the system. The classes typically represent objects
in the business domain, or problem space. The level
of abstraction is such that the analysis model could
be applied equally to any architecture. Important
processes and objects in the problem space are

identified, named, and categorised during analysis.
Analysis focuses on the functional requirements of
the system, ignoring the architectural constraints
of the system. The emphasis is on ensuring that
all functional requirements, as expressed by
the use cases and other documents, are realised
somewhere in the system. Ideally, each use case
is linked to the classes and packages that realise
them. This link is important in establishing the
traceability between requirements and use cases
and the classes that will realise them. The analysis
model is an input for the design model and can
be evolved into the design model.

systeM ArchItecture

Architecture influences just about everything
in the process of developing software. Archi-
tecture gives the rules and regulations by which
the software has to be constructed. Figure 2
shows the general architecture of our prototype
FiXplan (IT-based Personal Financial Planning),
and the data flow between the User Interfaces,
the Application Layer, and the Sources (Braun
& Schmidt, 2005).

Basically, the system contains the following
components:

• Clients: Used by Personal Financial Plan-
ners or clients to access our main financial
planning system and our Web Services; User
Interfaces may be Web browsers such as the
Internet Explorer or Mozilla, or applications
such as Microsoft Excel.

• Server: As described in detail in the analysis
model; the Web Services Toolbox provides
useful tools for personal financial plan-
ning.

• Sources: Used as a repository for the tools
of the personal finance framework.

The three-tier architecture of FiXplan supports
modular deployment of both device-specific user

694

Architecture of an Information System for Personal Financial Planning

interfaces through multi-channel delivery of ser-
vices and new or adapted operational processes
and strategies. All connectivity interfaces are
based on standard specifications.

Reliable Messaging

One of the first attempts to deliver guaranteed
and assured delivery for Web Services was Reli-
able HTTP (HTTPR) from IBM. HTTPR aimed
to provide reliable message delivery for Web
Services, providing a “send and forget” facility
through a guaranteed messaging model. It pro-
vided guaranteed delivery because it automatically
retried requests if a link or a server was down.
However, "OASIS WS-Reliability and WS-Reli-
ableMessaging proposed by IBM, BEA, TIBCO,
and Microsoft (submitted to the W3C) are the
new competing protocols for reliable messaging"
(Watters, 2005, p.24).

At the client side, the Web browser and PHP-
scripts handle the user interface and the presen-
tation logic. At the server side, the Web server
gets all http requests from the Web user and
propagates the requests to the application server,
which implements the business logic of all the
services for personal financial planning. At the

database server side, transactional or historical
data of the day-to-day operations are stored in
the system database by RDBMS. The applica-
tion server sends the query to the database server
and gets the result set. It prepares the response
after a series of processes and returns to the Web
server to be propagated back to the client side.
A registered user can log in and pick an existing
session or create a new session of his preference,
such as a level of user protection, access rights,
and level of complexity. Based on the three-tier
structure, FiXplan can run on both Internet and
intranet environments. The user can, for example,
use a Web browser to access a Web server through
HTML language and HTTP protocol. The kernel
of the system is placed on the web server. FiXplan
uses a collection of Web Services. These services
communicate with each other. The communication
can involve either simple data passing, or it could
involve two or more services coordinating some
activity. Some means of connecting services to
each other is needed.

Figure 3 illustrates a basic service-oriented
architecture. It shows a service consumer below,
sending a service request message to a service
provider above. The service provider returns a
response message to the service consumer. The

Figure 2. General three-tier architecture of FiXplan

External
Web Sites

HTML/HTTP

SOAP/HTTP

SourcesServerClients

FiXplan

WEB BROWSER

EXCEL
Web

Services
Toolbox

Financial
Applications

HTML/HTTP

SOAP/HTTP

SQL

Database
Server

SOAP/HTTPWEB BROWSER

Visual
Basic

Java
Server
Pages

FiXplan
Main

System

Java
Classes

PHP
Classes

 695

Architecture of an Information System for Personal Financial Planning

request and subsequent response connections
are defined in some way that is understandable
to both the service consumer and the service
provider. A service provider can also be a service
consumer.

All the messages shown in the above figure are
sent using SOAP. SOAP generally uses HTTP, but
other means of connection such as Simple Mail
Transfer Protocol (SMTP) may be used. HTTP is
the familiar connection we all use for the Internet.
In fact, it is the pervasiveness of HTTP connec-
tions that will help drive the adoption of Web
services. SOAP can be used to exchange complete
documents or to call a remote procedure. SOAP
provides the envelope for sending Web Services
messages over the intranet/Internet. The envelope
contains two parts: an optional header providing
information on authentication, encoding of data,
or how a recipient of a SOAP message should
process the message; and the body that contains
the message. These messages can be defined us-
ing the WSDL specification. WSDL uses XML
to define messages. XML has a tagged message
format. Both the service provider and service
consumer use these tags. In fact, the service
provider could send the data shown at the bottom
of this figure in any order. The service consumer
uses the tags and not the order of the data to get
the data values.

FiXplan is both Web Service Provider and Web
Service Consumer, as shown in Figure 4.

In this example, a browser (e.g., INTERNET
EXPLORER) requests a static Web page with a
form from a Web server (e.g., TOMCAT). After
submitting the form, the Web page containing
the desired results will be dynamically generated
using Java Server Pages (JSP). In order to build
up the Web page from JSP, the JSP calls a special
Java method in a proxy class. As a result of this
call, a SOAP message is sent to the correspond-
ing Web service of the JAVA WEB SERVICES
TOOLBOX. The Web service extracts the input
data (in our example accNr1, accNr2) needed to
compute the output data (in our example balance)
from the received SOAP message. Because of the
fact that our Web services are written in Java,
looking for an answer means calling one of the
methods of our JAVA CLASSES.

The design allows the Web service to be a
consumer of another Web service: One of the Java
classes called by the Web service to calculate the
output data (in our example balance) is a proxy
class which sends SOAP messages to external
Web services (in our example a BANK GIRO
SERVICES) and receives the results from these
Web services (in our example balance1 and bal-
ance2). In our example, this Java class computes
also the sum of balance1 and balance2.

The output data of the Java method (in our
example balance) is packed in a new SOAP mes-
sage and sent back. On the client side, the searched
result is extracted from the SOAP message and
given to the JSP by the proxy class. Finally, the
JSP code includes the result in the Web page
which is sent back to the browser.

If you have an Excel client, you have an Excel
sheet instead of a Web page. When you want to
calculate a result, you call a Visual Basic function
which corresponds to the JSP in the example above.
The Visual Basic function uses a Microsoft object
which does the same as the proxy class: sending
a SOAP message to the server and receiving the
answer. The result is given to the Visual Basic
function which writes it in the Excel sheet.

Figure 3. Basic service oriented architecture

Service
Consumer

Service
Provider

XML service response
based on WSDL
(sent using SOAP)

XML service request
based on WSDL

(sent using SOAP)

696

Architecture of an Information System for Personal Financial Planning

AnAlysIs Model As pArt oF
the ApplIcAtIon ArchItecture

The analysis model of our reference model for
personal financial planning consists of the fol-
lowing parts: Use Cases build the dynamic view
of the system, and class diagrams build the struc-
tural view of the system. Both are combined in
the behavioural view of the system with activity
diagrams and sequence diagrams.

dynamic View on the system:
use cases

Use cases, use case models, and use case diagrams
are defined as follows:

Definition 12: A use case is the specification of
sequences of actions, including variant sequences
and error sequences, that a system, subsystem,
or class can perform by interacting with outside
objects to provide a service of value. A use case is
a coherent unit of functionality provided by a clas-
sifier (a system, subsystem, or class) as manifested
by sequences of messages exchanged among the
system and one or more outside users (represented

as actors), together with actions performed by the
system. The purpose of a use case is to define
a piece of behaviour of a classifier (including a
subsystem or the entire system), without revealing
the internal structure of the classifier. A use case
model is a model that describes the functional re-
quirements of a system or other classifier in terms
of use cases. A use case diagram is a diagram
that shows the relationships among actors and use
cases within a system. (Rumbaugh, Jacobson, &
Booch, 2005, pp. 668-677)

structural View on the system:
class diagrams

The hierarchy of the dynamic view of the system
(use cases) may provide a start but usually falls
short when defining the structural view of the
system (classes). The reason is that it is likely
that certain objects participate in many use cases
and logically cannot be assigned to a single use
case package. At the highest level, the packages
are often the same, but at the lower levels of the
hierarchy, there are often better ways to divide
the packages. Analysis identifies a preliminary
mapping of required behaviour onto structural

Server

FiXplan

Java
Web Services

Toolbox

FiXplan
Main

System

Java
Classes

PHP
Classes

WS Consumer
WS Provider

accNr1
accNr2

balance

Sources

SOAP/HTTPS
Bank Giro
Service

Bank Giro
Service
GetSaldo.jws

WS Provider

balance1

accNr1

SOAP/HTTPS
Bank Giro
Service

Bank Giro
Service
GetSaldo.jws

WS Provider

balance2

accNr2

SOAP/HTTP

Clients

balance

accNr1
accNr2EXCEL-CLIENT

balance.xls

WS Consumer

INTERNET-
EXPLORER

fixplan.itm.uni-sb.de:8080/BalanceWSClient

fixplan.itm.uni-sb.de:8080/
MillionaireWSClient

HTML

SOAP/HTTP

accNr1
accNr2

accNr1
accNr2

balance

balance

WS Consumer

Figure 4. Service provider and service consumer

 697

Architecture of an Information System for Personal Financial Planning

elements, or classes, in the system. At the analysis
level, it is convenient to categorise all discovered
objects into one of three stereotyped classes:
«boundary», «control», and «entity», as suggested
by Jacobson, Christerson, Jonsson, and Overgaard
(1992); see Figure 5.

Definition 13: Boundary classes connect users
of the system to the system. Control classes map
to the processes that deliver the functionality of
the system. Entity classes represent the persistent
things of the system, such as the database. (Jacob-
son, Christerson, Jonsson, & Overgaard, 1992)

Entities are shared and have a life cycle out-
side any one use of the system, whereas control
instances typically are created, executed, and
destroyed with each invocation. Entity proper-
ties are mostly attributes, although operations
that organise an entity’s properties can also often
be found on them. Controllers do not specify
attributes. Initially, their operations are based
on verb phrases in the use case specification
and tend to represent functionality that the user
might invoke. In general, class diagrams can be
defined as follows:

Definition 14: A class diagram is a graphic
representation of the static view that shows a
collection of declarative (static) model elements,
such as classes, types, and their contents and
relationships. (Rumbaugh, Jacobson & Booch,
2005, p. 217)

use case realisation: sequence
and Activity diagrams

Construction of behavioural diagrams that form
the model’s use case realisations help to discover
and elaborate the analysis classes. A use case
realisation is an expression of a use case’s flow
of events in terms of objects in the system. In
UML, this event flow is expressed with sequence
diagrams.

Definition 15: A sequence diagram is a diagram
that shows object interactions arranged in time
sequence. In particular, it shows the objects par-
ticipating in an interaction and the sequences of
messages exchanged. (Rumbaugh, Jacobson &
Booch, 2005, p. 585)

A sequence diagram can realise a use case,
describing the context in which the invocation
of the use case executes. The sequence diagram
describes the objects that are created, executed,
and destroyed in order to execute the functional-
ity described in the use case. It does not include
object relationships. Sequence diagrams provide a
critical link of traceability between the scenarios
of the use cases and the structure of the classes.
These diagrams can express the flow in a use
case scenario in terms of the classes that will
implement them.

An additional diagram that is useful for map-
ping analysis classes into the use case model is
the activity diagram.

Definition 16: An activity diagram is a diagram
that shows the decomposition of an activity into

Figure 5. Structural elements
Stereotype <<boundary>> <<control>> <<entity>>

Icon

698

Architecture of an Information System for Personal Financial Planning

its constituents. (Rumbaugh, Jacobson, & Booch,
2005, p. 157)

Activities are executions of behaviour. Activi-
ties are behavioural specifications that describe
the sequential and concurrent steps of a computa-
tional procedure. Activities map well to controller
classes, where each controller executes one or
more activities. We create one activity diagram
per use case.

example Models

The basic analysis use case model (see Figure 6)
is oriented to the Certified Financial Planner’s
(CFP) Board of Standards and ISO/TC 222 defi-
nition of the personal financial planning process
(see Definition 4).

In the following, we will describe the subsys-
tem Core Personal Financial Planning in detail.
Core Personal Financial Planning includes three
use cases, determining the client’s financial sta-

tus, determining a feasible to-be concept, and
determining planning steps, that are elaborated
in more detail in the following sections.

Determining the Client’s Financial
Status

Determining the client’s financial status means
answering the question “How is the current
situation defined?” We will pick the following
scenarios as the main success scenarios.

Determining the client’s financial status
includes:

1. Data gathering: The Financial Planner asks
the client for information about the client’s
financial situation. This includes informa-
tion about assets, liabilities, income, and
expenses.

2. Data evaluation: The Financial Planner uses
two financial statements: balance sheet and
income statement.

Figure 6. Basic use case model

Client

personal Financial planning

Financial Planner

Establishing and defining
the client-planner

relationship

Determining the
client’s financial status

Determining a
feasible To -be concept

Determining
planning steps

Implementing the
financial planning
recommendations

Monitoring the
financial planning
recommendations

<<subsystem >>
core personal Financial planning

 699

Architecture of an Information System for Personal Financial Planning

3. Data analysis: The Financial Planner
analyses the results from balance sheet and
income statement.

He can investigate, for example, the state of
the provisions and pension plan, risk manage-
ment, tax charges, return on investments, and
other financial ratios.

In the following, the scenario is described in
more detail:

• Data gathering—assets and liabilities:
The first category of assets is cash, which
refers to money in accounts such as checking
accounts, savings accounts, money market
accounts, money market mutual funds, and
certificates of deposit with a maturity of
less than one year. The second category of
assets is fixed assets, fixed-principal assets,
fixed-return assets, or debt instruments. This
category includes investments that represent
a loan made by the client to someone else.
Fixed-return assets are primarily corporate
and government bonds, but may also be
mortgages held, mutual funds that invest
primarily in bonds, fixed annuities, and any
other monies owed to the client. The third
category of assets is equity investments.
Examples of equity investments are com-
mon stock, mutual funds that hold mostly
common stock, variable annuities, and
partnerships. The fourth category of assets
is the value of pensions and other retirement
accounts. The last category of assets is usu-
ally personal or tangible assets, also known
as real assets. This category includes assets
bought primarily for comforts, like home,
car, furniture, clothing, jewellery, and any
other personal articles with a resale value.
Liabilities are debts that a client currently
owes. Liabilities may be charge account
balances, personal loans, auto loans, home
mortgages, alimony, child support, and life
insurance policy loans. In general, assets are

gathered at their market value, and debts are
gathered at the amount a client would owe
if he were to pay the debt off today.

• Data gathering—income and expenses:
Income includes wages and salaries, income
from investments such as bonds, stocks,
certificates of deposit, and rental property,
and distributions from retirement accounts.
Expenses may be costs for housing, food,
and transportation. Expenses can be grouped
by similarity; for example, one can choose
insurance premiums as a general category,
and then include life insurance, auto insur-
ance, health insurance, homeowner’s or
renter’s insurance, disability insurance, and
any other insurance premiums one pays in
this general category. The acquisition of
personal assets (buying a car) is also treated
as an expense.

• Data evaluation—balance sheet: A bal-
ance sheet has three sections. The first
section is a statement of assets (things that
one owns). The second section is a statement
of liabilities (a list of one’s debts). The third
section is called net worth. It represents the
difference between one’s assets and one’s
liabilities. Businesses regularly construct
balance sheets following a rigorous set of
accounting rules. Personal balance sheets
are constructed much less formally, al-
though they should follow some of the same
general rules incorporated into business
balance sheets. The assets on a personal
balance sheet may be placed in any order.
The most common practice is to list assets
in descending order of liquidity. Liquidity
refers to an asset’s ability to be converted to
cash quickly with little or no loss in value.
Liabilities are normally listed in order of
increasing maturity. The net worth on a
balance sheet is the difference between the
total value of assets owned and the total
amount of liabilities owed. Net worth is the
measure of a person’s financial wealth.

700

Architecture of an Information System for Personal Financial Planning

• Data evaluation—income statement:
Where the personal financial balance sheet
is like a snapshot of your net worth at a par-
ticular point in time, an income statement
is a statement of income and expenses over
a period of time. The time frame is usually
the past year. The first section of an income
statement is the income. The second section
is a statement of expenses. Expenses are
usually listed in order of magnitude, with
the basic necessities being listed first. The
third section is a summary that represents
the contribution to savings. Contribution to
savings is the difference between the total
of income and the total of expenses. A posi-
tive contribution to savings would normally
show up in the purchase of investments, a
reduction in debt, or some combination of
the two. A negative contribution to savings
shows up in the liquidation of assets, an
increase in debt, or some combination of
the two.

• Data analysis: The net worth number is
significant in and of itself, since the larger
the net worth, the better off a person is
financially; however, the balance sheet and
the income statement contain even more
useful information that a financial planner
should consider. The traditional approach
for analysing financial statements is the use
of financial ratios. Financial ratios combine
numbers from the financial statements to
measure a specific aspect of the personal
financial situation of a client. Financial ratios
are used:

1. To measure changes in the quality of
the financial situation over time

2. To measure the absolute quality of the
current financial situation

3. As guidelines for how to improve the
financial situation

 We will group the ratios into the following
eight categories: liquidity, solvency, savings,

asset allocation, inflation protection, tax
burden, housing expenses, and insolvency/
credit (DeVaney, Greninger, & Achacoso,
1994; Greninger, Hampton, & Kitt, 1994).

 For example, the Solvency Ratio is defined
as:

 Solvency Ratio = Total Assets / Total Li-
abilities

 and the Savings Rate is defined as:

 Savings Rate = Contribution to Savings /
Income

Determining a Feasible to-be Concept

The use case scenario is as follows.
Determining a feasible to-be concept in-

cludes:

1. Data gathering and feasibility check: The
financial planner asks for information about
the client’s future financial situation. This
includes information about the client’s future
incomes and expenses and the client’s as-
sumption on the performance of his assets.
Future incomes and expenses are determined
by life-cycle scenarios.

 The financial planner asks the client for his
requirements on a feasible to-be concept.

 A to-be concept is feasible if and only if all
requirements are fulfilled at every point in
time.

2. Data evaluation: The financial planner uses
two financial statements: (planned) balance
sheets and (planned) income statements.

3. Data analysis: The financial planner
analyses the results from balance sheets
and income statements. He can investigate,
for example, the state of the foresight and
pension plan, risk management, tax charges,
return on investments, and other financial
ratios.

 701

Architecture of an Information System for Personal Financial Planning

Data evaluation and data analysis have to be
done in a very similar way as in determining the
client’s financial status. In this section, we will
concentrate our discussion at the first step: Data
gathering.

Future incomes and expenses are determined
by financial goals. Financial goals are not just
monetary goals, although such goals are obvi-
ous and appropriate. Goals can be short-term,
intermediate-term, and long-term.

Short-term goals refer to the next twelve
months. What does a client want his personal
balance sheet to look like in twelve months? What
would he like to do during the coming year: Where
would he like to spend his vacation? How much
would he like to spend on the vacation? What as-
sets, such as a new computer or a new car, would
he like to acquire?

Intermediate goals are usually more financial
in nature and less specific in terms of activities
and acquisitions. As one thinks further into the
future, one cares more about having the financial
ability to do things and less about the details of
what one will do. Most intermediate goals would
likely include more than just wealth targets. For
example, a client may target a date for buying
his first home. Intermediate goals often address
where one wants to be in 5 or 20 years.

For most people, long-term goals include their
date of retirement and their accumulated wealth
at retirement. What sort of personal balance sheet
does a client want to have at retirement?

The goals of a system for personal financial
planning consist in helping a personal financial
planner to handle the financial situation of a cli-
ent in a way that the client can maximise his/her
quality of life by using money the best way for
him/herself. Goals are about the management,
protection, and ultimate use of wealth.

There is a strong propensity to associate wealth
or standard of living with quality of life. Wealth
is normally defined as assets owned less any out-
standing debts. Standard of living is measured in
terms of annual income. For some people, wealth

or standard of living may be the correct measure
of their quality of life. For many, that is not the
case. First, many people give away substantial
amounts of wealth during their lifetimes (places
of worship, charities, non-profit organisations
such as alma maters). People give gifts because
they derive pleasure from it or because they have
a sense of obligation. Second, many people hold
jobs noted for low pay (religious professions such
as priests) and earn low pay compared with what
their level of educational training could earn
them in other professions. A lot of people pass up
lucrative corporate incomes in order to be self-
employed. Some people seek jobs with no pay.
Full-time, stay-at-home parents are examples of
people who accept unpaid jobs based on the ben-
efits they perceive from managing the household.
Obviously, many people regularly make choices
that are not wealth- or income-maximising, and
these choices are perfectly rational and important
to their lives. Proper financial planning seeks only
to help people make the most of their wealth and
income given the non-pecuniary choices they
make in their lives, not just maximise their wealth
and income.

Life-cycle scenarios (Braun, 2006a) are, for
example, applying for a personal loan, purchas-
ing a car, purchasing and financing a home, auto
insurance, homeowner insurance, health and
disability insurance, life insurance, retirement
planning, and estate planning.

Requirements to a feasible to-be concept as
introduced in Braun (2006a) are primarily require-
ments to balance sheets such as the composition of
the entire portfolio, a cash reserve, and so forth.
According to the financial goals of a company, a
client may have the following two main require-
ments to a feasible to-be concept: assurance of
liquidity (i.e., to always have enough money to
cover his consumer spending) and prevention of
personal insolvency (i.e., to avoid the inability
to pay).

Assurance of liquidity (liquidity management)
means that one has to prepare for anticipated cash

702

Architecture of an Information System for Personal Financial Planning

shortages in any future month by ensuring that
enough liquid assets to cover the deficiency are
available. Some of the more liquid assets include
a checking account, a savings account, a money
market deposit account, and money market funds.
The more funds are maintained in these types of
assets, the more liquidity a person will have to
cover cash shortages. Even if one has not sufficient
liquid assets, one can cover a cash deficiency by
obtaining short-term financing (such as using a
credit card). If adequate liquidity is maintained,
one will not need to borrow every time one needs
money. In this way, a person can avoid major
financial problems and therefore be more likely
to achieve financial goals.

Prevention of personal insolvency can be car-
ried out by purchasing insurance. Property and
casualty insurance insure assets (such as car and
home), health insurance covers health expenses,
and disability insurance provides financial sup-
port in case of disability. Life insurance provides
the family members or other named beneficiaries
with financial support if they lose their bread-
winner. Thus, insurance protects against events
that could reduce income or wealth. Retirement
planning ensures that one will have sufficient
funds for the old-age period. Key retirement
planning decisions involve choosing a retirement
plan, determining how much to contribute, and
allocating the contributions.

If the feasibility check fails, personal financial
planners can apply their knowledge and experi-
ence to balance the financial situation. They can
take actions which adjust to the financial structure
by changing requirements to a feasible to-be
concept, by changing future expenses (such as
expenses for a car), or by alternative financing
expenses (for example, by enhancement of rev-
enues). These actions may be necessary to ensure
that the main financial goals are fulfilled.

Measures to Take

Financial goals of a client determine the planning
steps as gathered in the section “Determining a
Feasible To-Be Concept” and activities to achieve
a feasible to-be concept.

UML Diagrams

In this section, we will elaborate the use case, De-
termining the client’s financial status: Data evalu-
ation, as an example of the UML diagram.

The class diagram in Figure 7 shows a first-
pass analysis model for the use case, Determining
the client’s financial status: Data evaluation. The
most important elements are the class names, the
types, and the relationships.

This basic class diagram can be elaborated
with the operations and attributes as described in

Figure 7. Basic use case analysis model elements

dAtA eVAluAtIon

buIld bAlAnce sheet

buIld IncoMe stAteMent

IncoMe

expense

Asset

lIAbIlIty

 703

Architecture of an Information System for Personal Financial Planning

Figure 8. Elaborated analysis model elements

Figure 9. Basic sequence diagram

+dataEvaluation ()
+selectBalanceSheet ()
+selectIncomeStatement()

dAtA eVAluAtIon

+getAssets()
+getLiabilities()
+computeNetWorth()

buIld bAlAnce sheet

+getIncome()
+getExpenses ()
+computeSavingsContributions ()

buIld IncoMe stAteMent

+updateValue ()

+name
-value

Asset

+updateValue ()

+name
-value

lIAbIlIty

+updateValue ()

+name
-value

IncoMe

+updateValue ()

+name
-value

expense

Financial Planner System

Select "Data evaluation "
The Financial Planner begins by
selecting „Data evaluation“ .

The system responds with the possibility
to construct a balance sheet or an
income statement .

Display "Balance sheet " and " Income statement"

The Financial Planner selects „Balance
sheet“.

Select "Balance sheet "

The system responds with a detailed
balance sheet , divided into the three
parts : assets, liabilities, and net worth.

Display detailed balance sheet

Financial Planner :DATA EVALUATION

dataEvaluation()
The Financial Planner begins by
selecting „Data evaluation“ .

The system responds with the possibility
to construct a balance sheet or an
income statement.

The Financial Planner selects „Balance
sheet“.

selectBalanceSheet ()

The system responds with a detailed
balance sheet, divided into the three
parts: assets, liabilities, and net worth.

:BUILD BALANCE SHEET :ASSET :LIABILITY

getLiabilities()

getAssets()

getAssets()

getLiabilities()

Financial Planner :DATA EVALUATION

dataEvaluation()
The Financial Planner begins by
selecting „Data evaluation“ .

The system responds with the possibility
to construct a balance sheet or an
income statement.

The Financial Planner selects „Balance
sheet“.

selectBalanceSheet ()

The system responds with a detailed
balance sheet, divided into the three
parts: assets, liabilities, and net worth.

:BUILD BALANCE SHEET :ASSET :LIABILITY

getLiabilities()

getAssets()

getAssets()

getLiabilities()

Figure 10. Sequence diagram elaborated with analysis objects

704

Architecture of an Information System for Personal Financial Planning

the use case specification to an elaborated class
diagram (Figure 8).

Figure 9 shows a simple sequence diagram
that indicates a basic flow of the use case, Deter-
mining the client’s financial status: Data evalu-
ation. Messages corresponding to operations on
the classes are drawn to correspond to the main
narrative text alongside the scenario.

Figure 10 shows the same use case scenario,
Determining the client’s financial status: Data
evaluation, as depicted in the sequence diagram
in Figure 9, with System expressed in terms of
the analysis classes in Figure 7.

Figure 11 shows the basic activity diagram for
the use case, Determining the client’s financial
status: Data evaluation, elaborated with classes
from Figure 7.

conclusIon And Future
trends

We gave an architecture for a reliable personal
financial planning system consisting of an sys-

tem architecture and a corresponding analysis
model (conceptual model) as part of the applica-
tion architecture. An intrinsic part of our system
architecture is the usage of Web technologies.
Our model for personal financial planning fulfills
two kinds of purposes: First, the analysis model
is a conceptual model that can help financial
planners to do their job. Second, at the design
stage of system development, system developers
can take the analysis model and apply the sys-
tem architecture to them. The model combines
business concepts of personal financial planning
with technical concepts from information tech-
nology. We evaluated the model by building an
IT system FiXplan (IT-based personal financial
planning) based on the model. We showed that
our model fulfills maintainability, adaptability,
efficiency, reliability, and portability require-
ments. Furthermore, it is based on ISO and CFP
Board standards.

Further research is needed to enlarge the model
with respect to an automatisation of the to-be
concept feasibility check. Here, classical math-
ematical programming models as well as fuzzy

Figure 11. Basic activity diagram
 SystemFinancial Planner

Display "Balance Sheet" and " Income Statement"Select "Data Evaluation"

Select "Balance sheet"

Select "Income Statement"

Display detailed balance sheet

Display detailed income statement

Finish "Data evaluation "

 705

Architecture of an Information System for Personal Financial Planning

models may deliver a solution to that problem.
While in the case of classical models the vague data
is replaced by average data, fuzzy models offer
the opportunity to model subjective imaginations
of the client or the personal financial planner as
precisely as they will be able to describe it. Thus
the risk of applying a wrong model of the reality,
and selecting wrong solutions which do not reflect
the real problem, could be reduced.

reFerences

Bass, L., Clements, P., & Kazman, R. (1998).
Software architecture in practice. The SEI series
in software engineering. Reading, MA: Addison
Wesley.

Becker, J., & Schütte, R. (2004). Handelsinfor-
mationssysteme. Frankfurt am Main: Redline
Wirtschaft.

Bernus, P., Mertins, K., & Schmidt, G. (2005).
Handbook on architectures of information sys-
tems. Berlin: Springer.

Bhargava, H. K., Power, D. J., & Sun, D. (in
press). Progress in Web-based decision support
technologies. Decision Support Systems. (Cor-
rected Proof), 2005.

Böckhoff, M., & Stracke, G. (2003). Der Fi-
nanzplaner. Heidelberg: Sauer. 2 Auflage.

Booth, D., Haas, H., McCabe, F., Newcomer, E.,
Champion, M., Ferris, C. et al. (Eds.). Web services
architecture, W3C. Retrieved August 5, 2005,
from http://www.w3.org/TR/ws-arch/

Braun, O. (2006a). Lebensereignis- und Präferen-
zorientierte Persönliche Finanzplanung—Ein
Referenzmodell für das Personal Financial Plan-
ning. In G. Schmidt (Ed.), Neue Entwicklungen
im Financial Planning, Hochschulschriften des
Instituts für wirtschaftsinformatik. Hochschule
Liechtenstein.

Braun, O. (2006b). Web-basierte Informations-
systeme in betriebswirtschaftlichen Anwendungs-
umgebungen am Beispiel IT-gestützter Persönli-
cher Finanzplanung. Habilitationsschrift. Saar-
land University, Saarbrücken, in preparation.

Braun, O., & Kramer, S. (2004). Vergleichende
Untersuchung von Tools zur Privaten Finanzpla-
nung. In S. Geberl, S. Weinmann, & D. F. Wiesner
(Eds.), Impulse aus der Wirtschaftsinformatik (pp.
119-133). Heidelberg: Physica.

Braun, O., & Schmidt, G. (2005). A service ori-
ented architecture for personal financial planning.
In M. Khosrow-Pour (Ed.), In Proceedings of the
2005 IRMA International Conference, Manag-
ing Modern Organizations with Information
Technology (pp. 1032-1034). Hershey, PA: Idea
Group Publishing.

Briggs, R. O., Nunamaker, J. F., & Sprague, R.
H. (1997). 1001 Unanswered research questions
in GSS. Journal of Management Information
Systems, 14, 3-21.

Certified Financial Planner’s (CFP) Board of
Standards, Inc. (2005). Retrieved August 14, 2005,
from http://www.cfp.net

Chou, S. C. T. (1998). Migrating to the Web: A
Web financial information system server. Deci-
sion Support Systems, 23, 29-40.

Conallen, J. (2002). Building Web applications
with UML (2nd ed.). Boston: Pearson Education.

DeVaney, S., Greninger, S. A., & Achacoso, J. A.
(1994). The Usefulness of financial ratios as pre-
dictors of household insolvency: Two perspectives.
Financial Counseling and Planning, 5, 5-24.

Dong, J. C., Deng, S. Y., & Wang, Y. (2002).
Portfolio selection based on the Internet. Systems
Engineering: Theory and Practice, 12, 73-80.

Dong, J. C., Du, H. S., Wang, S., Chen, K., &
Deng, X. (2004). A framework of Web-based
decision support systems for portfolio selection

706

Architecture of an Information System for Personal Financial Planning

with OLAP and PVM. Decision Support Systems,
37, 367-376.

Fan, M., Stallaert, J., & Whinston, A. B. (1999).
Implementing a financial market using Java and
Web-based distributed computing. IEEE Com-
puter, 32, 64-70.

Fan, M., Stallaert, J., & Whinston, A. B. (2000).
The Internet and the future of financial markets.
Communications of the ACM, 43, 82-88.

Federal Reserve Board Division of Consumer and
Community Affairs (2002). Financial literacy:
An overview of practice, research, and policy.
Retrieved on October 24, 2006 from http://www.
federalreserve.gov/pubs/bulletin/2002/1102lead.
pdf

Fettke, P., & Loos, P. (2003). Multiperspective
evaluation of reference models—towards a
framework. In M. A. Jeusfeld & Ó. Pastor (Eds.),
ER 2003 Workshops (LNCS 2814, pp. 80-91).
Heidelberg: Springer.

Fowler, M. (1997). Analysis patterns: Reusable ob-
ject models. Menlo Park, CA: Addison-Wesley.

Frank, U. (1999). Conceptual modelling as the core
of the information systems discipline—Perspec-
tives and epistemological challenges. In W. D.
Haseman & D. L. Nazareth (Eds.), Proceedings
of the 5th Americas Conference on Information
Systems (AMCIS 1999) (pp. 695-697). Milwau-
kee, WI.

Greninger, S. A., Hampton, V. L., & Kitt, K. A.
(1994). Ratios and benchmarks for measuring the
financial well-being of families and individuals.
Financial Counselling and Planning, 5, 5-24.

Hay, D. C. (1996). Data model patterns—con-
ventions of thought. New York: Dorset House
Publishing.

Hirschey, M., Richardson, V. J., & Scholz, S.
(2000). Stock price effects of Internet buy-sell
recommendations: The motley fool case. The
Financial Review, 35, 147-174.

International Organization for Standardization
(ISO/TC 222). (2004). ISO/DIS 22 222-1 of the
Technical Committee ISO/TC 222, Personal
financial planning.

Jacobson, I., Christerson, M., Jonsson, P., &
Overgaard, G. (1992). Object-oriented software
engineering: A use case driven approach. Boston:
Addison-Wesley.

Keown, A. J. (2003). Personal finance: Turn-
ing money into wealth. Upper Saddle River, NJ:
Prentice Hall.

Lang, K., Taumann, W., & Bodendorf, F. (1996).
Business process reengineering with reusable ref-
erence process building blocks. In B. Scholz-Reiter
& E. Stickel (Eds.), Business process modelling
(pp. 264-290). Berlin: Springer

Li, Z. M. (1998). Internet/Intranet technology
and its development. Transaction of Computer
and Communication, 8, 73-78.

Marent, C. (1995). Branchenspezifische Ref-
erenzmodelle für betriebswirtschaftliche IV-
Anwendungsbereiche. Wirtschaftsinformatik,
37(3), 303-313.

Marshall, C. (1999). Enterprise modeling with
UML: Designing successful software through
business analysis. Reading, MA: Addison-Wes-
ley.

Mathieu, R. G., & Gibson, J. E. (1993). A meth-
odology for large scale R&D planning based on
cluster analysis. IEEE Transactions on Engineer-
ing Management, 30, 283-291.

Mehdi, R. Z., & Mohammad, R. S. (1998). A Web-
based information system for stock selection and
evaluation. In Proceedings of the International
Workshop on Advance Issues of E-Commerce and
Web-Based Information Systems, p. 81,Washing-
ton D.C.: IEEE Computer Society.

Mertens, P., Holzer, J., & Ludwig, P. (1996). In-
dividual- and Standardsoftware: tertium datur?

 707

Architecture of an Information System for Personal Financial Planning

Betriebswirtschaftliche Anwendungsarchitek-
turen mit branchen- und betriebstypischen Zus-
chnitt (FORWISS-Rep. FR-1996-004). Erlangen,
München, Passau.

Mišić, V. B., & Zhao, J. L. (1999, May). Reference
models for electronic commerce. In Proceedings
of the 9th Hong Kong Computer Society Database
Conference —Database and Electronic Com-
merce, Hong Kong (pp. 199-209).

Mukherjee, K. (1994). Application of an interac-
tive method for MOLIP in project selection deci-
sion: A case from Indian coal mining industry.
International Journal of Production Economics,
36, 203-211.

Nissenbaum, M., Raasch, B. J., & Ratner, C.
(2004). Ernst & Young’s personal financial plan-
ning guide (5th ed.). John Wiley & Sons.

Remme, M. (1997). Konstruktion von Geschäft-
sprozessen—Ein modellgestützter Ansatz durch
Montage generischer Prozesspartikel. Wies-
baden: Gabler.

Rumbaugh, J., Jacobson, I., & Booch, G. (2005).
The unified modelling language reference manual
(2nd ed.). Boston: Addison-Wesley.

Samaras, G. D., Matsatsinis, N. F., & Zopounidis,
C. (2005). Towards an intelligent decision support
system for portfolio management. Foundations of
Computing and Decision Sciences, 2, 141-162.

Scheer, A. W. (1994). Business process engineer-
ing—reference models for industrial companies
(2nd ed.). Berlin: Springer.

Schmidt, G. (1999). Informationsmanagement.
Heidelberg: Springer.

Schmidt, G. (2006). Persönliche Finanzplanung
- Modelle und Methoden des Financial Planning.
Heidelberg: Springer.

Schmidt, G., & Lahl, B. (1991). Integration von Ex-
pertensystem- und konventioneller Software am
Beispiel der Aktienportfoliozusammenstellung.
Wirtschaftsinformatik, 33, 123-130.

Scholz-Reiter, B. (1990). CIM—Informations—
und Kommunikationssysteme. München, Wien:
Oldenbourg.

Schütte, R. (1998). Grundsätze ordnungsmäßiger
Referenzmodellierung—Konstruktion konfigu-
rations- und anpassungsorientierter Modelle.
Reihe neue betriebswirtschaftliche Forschung.
Wiesbaden.

Turban, E. (1995). Decision support and expert
systems (4th ed.). Englewood Cliffs, NJ: Prentice-
Hall.

Watters, P. A. (2005). Web services in finance.
Berlin: Springer.

Woerheide, W. (2002). Core concepts of personal
finance. New York: John Wiley and Sons.

Wüstner, E., Buxmann, P., & Braun, O. (2005).
The extensible markup language and its use in
the field of EDI. In P. Bernus, K. Mertins, & G.
Schmidt (Eds.), Handbook on architectures of
information systems (2nd ed., pp. 391-419). Hei-
delberg: Springer.

Youngs, R., Redmond-Pyle, D., Spaas, P., &
Kahan, E. (1999). A standard for architecture
description. IBM Systems Journal 38. Retrieved
on October 16, 2006 from http://www.research.
ibm.com/journal/sj/381/youngs.html

Zahedi, F., & Palma-dos-Reis, A. (1999). Design-
ing personalized intelligent financial decision
support systems. Decision Support Systems, 26,
31-47.

Zopounidis, C., Doumpos, M., & Matsatsinis, N.
F. (1997). On the use of knowledge-based deci-
sion support systems in financial management: A
survey. Decision Support Systems, 20, 259-277.

This work was previously published in Architecture of Reliable Web Applications Software, edited by M. Radaideh; H. Al-Ameed,
pp. 83-111 , copyright 2007 by IGI Publishing (an imprint of IGI Global).

708

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.11
Educational Theory Into
Practice Software (ETIPS)

Sara Dexter
University of Virginia, USA

AbstrAct

The ETIPS software is a Web-based learning en-
vironment that delivers cases that allow educators
to practice instructional decision making. Here I
recount its development but mainly emphasize the
two key concepts that were central to our design
process. The first was the Conceptual Assessment
Framework, an evidentiary reasoning and design
perspective that helped us to focus on which key
attributes to build into the software and cases. The
second concept is described as extreme program-
ming, which is an iterative approach to software
programming based upon user stories and rapid
prototyping. The story of developing the ETIPS
cases illustrates the need to know very clearly
what the point is of the educational experience
you are creating and to design software where
form follows function.

IntroductIon

In this chapter, I recount the important aspects of
the creation of the ETIPS software and its cases
but mainly emphasize the two key concepts that
were central to our design process. The first was
the Conceptual Assessment Framework, developed
by Mislevy, Steinberg, Almond, Haertel, and
Penuel (2001); this framework helped us to focus on
which key attributes to build into the software and
cases. The second concept is described as extreme
programming (Beck & Fowler, 2000), which is an
iterative approach to software programming based
upon user stories and rapid prototyping.

The story of developing the ETIPS cases
illustrates the need to know very clearly what
the point is of the educational experience you
are creating and to design software where form
follows function. The first generation of ETIPS

 709

Educational Theory Into Practice Software (ETIPS)

cases was created with existing case-authoring
software; halfway through this four-year project
our team realized that this software constrained
the sort of learning experience we wanted the
cases to provide. During the project’s third year
we began to create from scratch software for a
second generation of cases and an interface that
brought to fruition our case-based pedagogical
approach. We used the Conceptual Assessment
Framework (Mislevy et al., 2001) to guide the
development and refinement of each user story
for the software; this helped us to connect form
to function in the second generation of software
and to recognize how our case-based pedagogy
could be used with other topic areas as well. Thus,
a side benefit of using these conceptual approaches
was that we increased our product’s sustainability
through broader user bases, potential co-authoring
partnerships, and licensing.

educAtIonAl purpose
oF the cAses

The purpose of the ETIPS project was to create
teacher education cases that were learning exer-
cises about educational technology integration and
implementation. The primary audience for our
cases was pre-service teacher education classes
on either educational technology or pedagogical
methods. Key premises upon which we based
the software for our second generation of cases
were that teaching is decision making—and
decision making is a process that can be taught
and requires practice in order to learn—and that
instructional decisions are guided by schemas,
or mental models.

The cases allowed students studying to be
teachers to practice making instructional decisions
about educational technology use in classrooms
and schools using the Educational Technology
Integration and Implementation Principles as a
schema, or the basis of a schema, for those deci-

sions. By providing instructors nine virtual yet
realistic schools among which to choose to set
these decision-making exercises in it allowed
them to give their students multiple practice op-
portunities to see how these principles can guide
instructional decision making about technology
integration and implementation in a variety of
school contexts.

The six principles summarize what research
suggests are the conditions that should be present
in order for educational technology integration
and implementation to be effective (Dexter, 2002).
The first three educational technology principles
focus on integration, meaning teachers’ instruc-
tional decision-making process when considering
the use of educational technology resources in
their classrooms. Discussion of these principles
develops the premise that a teacher must act as
an instructional designer and plan for the use of
the technology to support student learning.

• Principle 1: Learning outcomes drive the
selection of technology.

• Principle 2: Technology use provides added
value to teaching and learning.

• Principle 3: Technology assists in the as-
sessment of the learning outcomes.

The last three educational technology prin-
ciples focus on the implementation of technology
at the school level—that is, how a school setting
can create a supportive context that provides
teachers with the necessary access to technology,
technical and instructional support, and a posi-
tive climate for professional collaboration about
educational technology tools.

• Principle 4: Ready access to supported,
managed hardware/software resources is
provided.

• Principle 5: Professional development is
targeted at successful technology integra-
tion.

710

Educational Theory Into Practice Software (ETIPS)

• Principle 6: Professional community en-
hances technology integration and imple-
mentation.

unIque FeAtures oF the etIps
cAse Method

ETIPS stands for Educational Theory into Practice
Software. It is a Web-based learning environ-
ment in which students complete cases that are
set in a K-12 school and focus on an educational
theory. Unlike text-based cases, which are read
in a linear fashion and emphasize the multiplic-
ity of perspectives inherent in an event that is
often told in chronological fashion, cases in
ETIPS present learners with a scenario in which
they need to make an instructional decision, and
require them to select which information they
think they will need to make that decision. The
case is an opportunity to practice reasoning with
a guiding theory that relates to the case topic and
to develop an understanding of how the different
school contexts in which the cases are set might

influence how that theory is applied in practice.
This case approach emphasizes learners’

metacognition—their thinking about their think-
ing—through a software feature called a PlanMap.
The PlanMap asks students to check off what
information they think they will need to make
the decision posed in the scenario (see Figure 1);
if they return to their PlanMap during the case,
they will see that these choices are noted with
a checkmark (see Figure 2). As students look
at information in the case—and their choices
are not limited to only what they checked while
planning their search—the software records
what they access and uses a different icon to
record it on their PlanMap; in addition, experts’
recommendations of which key items should be
considered are indicated with yellow highlight-
ing. Thus, the PlanMap provides feedback to the
learners on their planned and actual progress as
well as an in-progress check of their approach as
compared to experts’.

Figure 1. The PlanMap page view initially explains
to students the purpose of the PlanMap, and asks
them to click in the box next to each category of
case information they think will be necessary to
access in order to complete the case

Categories of the
available menu items in
the school’s Web site

Menu items you will
be able to select to
view in the school’s
Web site

PlanMap
Directions

Figure 2. This close up of a PlanMap from a case
in progress shows how checkmarks indicate items
the user planned to visit; green arrows indicate
what case information the user has viewed so
far, and yellow highlighting shows which pieces
of information experts deem as key for making a
decision such as the case requires

Yellow highlighted text shows
information experts consider as
key when making such a
decision.

A checkmark indicates that the
user planned to go to that item. A
green arrow indicates that have
been to that item during their
search through case information.

 711

Educational Theory Into Practice Software (ETIPS)

Another formative assessment tool in ETIPS is
automated essay scoring, which students can use
to get feedback on their decision; this feedback
is in the form of a predicted score of their short
answer responses against a rubric before they
submit it to their instructor for a final grade (see
Figure 3). The automated essay scoring engine

software compares the student’s response to other
essays, which were scored by humans against
the same rubric, predicts which score a student
is most likely to receive, and presents it and the
scoring criteria to them. In addition, if students
have not yet been to the case information items
that experts consider to be key, it suggests they
review that information.

etIps project teAM MeMbers

The ETIPS project was funded by a grant from
the US Department of Education through its
Preparing Tomorrow’s Teachers to Use Tech-
nology (PT3) initiative. A majority of the grants
were made to colleges of education; consortiums
were encouraged, and awardees were required
to include a project evaluator to collect data for
performance feedback. The initial ETIPS team
represented a strategic alliance among the project
lead, which was a college of education at a major
research university, a software development lab
based at a similar type of institution, and a non-
profit organization with extensive experience
developing software and delivering professional

Figure 3. On the submit answer page, students
can chose to save their work as a draft, use the
automated essay scoring feature, or submit their
response to their instructor as a final answer

Enter your
responses in the
text boxes

Chose button that
matches your desired
option:
• receive automated
feedback, save your
draft,
•submit final answer

Figure 4. The automated essay scoring engine shows the student their predicted score for that answer,
the rubric criteria, and suggests any of the case’s information items they should also take into consid-
eration

712

Educational Theory Into Practice Software (ETIPS)

development. Toward the end of the second year
of the project, when the project director decided
to create from scratch the software that was the
basis for the second generation of cases, the
software development lab agreed to bow out of
the partnership.

At the lead university the team included the
half-time project director, who had educational
technology and teacher education expertise, a
full-time project coordinator and two half-time
graduate assistants who wrote case content and
supported our test-bed of faculty members and
their students, and a half-time project evaluator.
At the non-profit organization there were two
part-time collaborators who brought extensive
assessment experience to the project as well as
a software programming company with whom
they had successfully worked and that we hired
on an hourly basis.

project chAllenges

The major challenge that the project faced was
articulating clearly the pedagogical purpose of
the case-based learning experience we wanted to
provide to learners. Because at the outset of the
project we began to create cases using the software
developed previously by the university-based
software development lab in our consortium we
initially assumed the learning experience func-
tions inherent in that software. While aspects of
the resulting learning experience worked well
for this audience and these topics, other aspects
were not well suited to practicing instructional
decision making.

The first generation of cases was based upon
the case approach pioneered by the IMMEX
Software Development Lab at UCLA (Stevens,
1991). The IMMEX approach posed a problem
to the learner and presented him or her with a
menu-driven approach to selecting information
necessary in order to solve it. The problem had a
right answer, which—after having looked through

sufficient case information—the user would select
from a multiple-choice format. IMMEX software
allowed case designers to elect to limit how much
information the users could select through a points
system. This rewarded learners who understood
the correct problem solving approach and could
recognize what information to seek out and how
to interpret it because they could use the least
number of points to determine the correct answer
choice. The software tracked their information
choices and graphically portrayed the sequence
of their choices and the time spent at each using
IMMEX’s proprietary SearchPath Map. The
SearchPath Map was designed to show learners’
strategic responses to solving the problem. Each
labeled icon on a SearchPath Map represents
one menu item; the lines connecting the icons
illustrate the path a student took in trying to
solve the challenge presented in the case. Lines
lead from the upper left-hand corner of an icon
to the middle of the icon of the next menu item
that was accessed. In this way, the SearchPath
Map also illustrates the order in which students
visited menu items.

The map on the left represents that the stu-
dent explored many menu items and thus made
a rather complete search of the problem space.
The performance of the student at right shows
only two general areas of the problem space were
explored, indicating they do not have a firm grasp
of the concepts underlying the problem that was
presented

The IMMEX developers applied neural net-
work analysis to determine the most common
problem-solving approaches used by students who
selected correct and incorrect answers, and to infer
the likely student misconceptions that would lead
to their taking such paths (Stevens, Johnson, &
Soller, 2005; Stevens, Wand, & Lopo, 1996).

At the outset of the ETIPS project it appeared
that the major change to IMMEX that would be
required to create cases about technology integra-
tion and implementation for pre-service teachers
would be to allow for short answer responses.

 713

Educational Theory Into Practice Software (ETIPS)

Adding a text box for responses was easy, but
soon our test-bed faculty members wanted online
modules for scoring essays, recording the scores,
and then reporting them to students. We also saw
that the instructional decision making exercise at
the core of the ETIPS cases did not have a right
or wrong answer and that scoring was a key
point of the analysis of IMMEX cases. Further,
students’ searches through case information did
not result in predictable, categorizable sequences
that the SearchPath maps could help illustrate.
Consequently, our test-bed instructors reported
that they often did not use the maps with students,
which reduced the case experience’s potential for
helping students become aware of their schema
for their instructional decision making about
technology integration.

User performances and faculty feedback made
clear to the project leadership team which aspects
of the emerging vision of the ETIPS case-based
pedagogy were not compatible with the IMMEX
software’s features, and so we redirected a sig-
nificant portion of the project’s budget away from
this partner and to the programming company
associated with the non-profit organization. This
mid-course redesign was thus a challenge to the
project’s budget, timeline, and consortium partner
relationships.

In retrospect, the initial design of the ETIPS
cases in the IMMEX software served as a fast
way to create a prototype and proof of concept
for an online case-based pedagogy that was fo-
cused on student reasoning and decision making.
The downside to this rapid start-up was that by
using an existing software to author the cases it
let us skip over what we now would argue is an
essential step of creating educational games or
simulations: articulating what you want to learn
about the student’s knowledge and skills, and
determining what tasks in the game or simulation
will elicit that information.

The data we collected through the evaluation
component of the project reinforced the project

director’s impressions that there were disconti-
nuities between our users’ intended and actual
experiences with the cases. The evaluation process
enabled us to attend in a rigorous way to our test-
bed faculty members’ experiences with the cases
as an instructional resource and whether or not
their students learned what we wanted them to
learn about the case’s use.

At the time project leaders decided to create
our own ETIPS software some project leadership
team members had been reading about assess-
ment design, namely the Conceptual Assessment
Framework developed by Robert Mislevy and his
colleagues. Applying this framework forced us to
articulate what we wanted the cases to help the
user learn, and what task we would create in order
to elicit that knowledge and skills, and then how
to interpret and report their performance data.
Through this process we determined how our
software could be thought of as a general case-
based pedagogy where the virtual schools could
serve as the settings for cases on a variety of top-
ics. We then began to think of ETIPS as standing
for Educational Theory into Practice Software
and that the Educational Technology Integration
and Implementation Principles, for which the
acronym was originally coined, would be just
one topic about which we would offer cases. We
enlisted two other organizations, chosen because
of their large member bases and project leaders’
connections to them, as co-authors of cases about
urban teaching and digital equity.

At the outset of designing the software that
would anchor the second generation of cases,
the software programming company the project
leaders hired (Green River; see http://greenriver.
org), asked us to read Extreme Programming (Beck
& Fowler, 2000) and to take that approach to our
development work together. From the project
leadership team’s perspective as a client, this is
a user-centered design process that is articulated
through descriptions of desired functionalities
called user stories that are then checked out

714

Educational Theory Into Practice Software (ETIPS)

through usability testing and revised accordingly.
Thus it was congruent with our on-going evalu-
ation process.

Table 1 recounts the timeline of the key steps
during the development of the ETIPS software that
anchored the second generation of the cases.

The overall budget allocated for the software
development, as well as the domain name and
hosting costs, over this two-year process was ap-
proximately $450,000. The personnel costs for the
project director and coordinator and graduate stu-

dents at the lead institution and the team members
at the non-profit organization were approximately
$640,000. Additional costs were incurred for
travel to project meetings and for dissemination
and co-authoring work that was undertaken. All
the personnel costs given are for the entire life
of the grant; during the first two years this went
mostly for case topic conceptualization and case
authoring work and in the latter two years it was
for test-bed member implementation support, co-
authoring, and dissemination efforts. The portion

Timeline Key steps

2003 Project Year Two

April Software development planning meeting with Green River

May Consultations with Mislevy on Conceptual Assessment Framework
Test-bed faculty meeting at end of Year 1 of generation 1 cases’ use

June Programming commences

July Review of key elements in ETIPS engine with project leadership team

August Alpha testing with students and faculty, usability expert’s review

September Programming meeting and beta testing with one test-bed faculty member’s students

October

Planning for more responsive feedback to students on their case performance
User interface planning for incorporating cases on multiple topics
Co-authoring of cases on new topics begins with selected organizations
Graphic re-design of interfaces for public part of site, post log-in, and cases

November Programmer’s meeting to develop PlanMap feature
Systematic data collection on students’ reaction to automated essay scoring

December Begin discussion with publisher about bundling cases with book

2004 Project Year Three

January New Web site interfaces deployed
PlanMap deployed

March Usability testing of new interfaces with faculty and students

May Section 508 compliance review

July Revise navigation scheme per users’ and 508 report input

September Implement revisions
Design better feedback on answer to students per results from student data

October Begin controlled experiments with students to determine impact of a student’s use of
the automated essay scorer on his or her essay’s quality

2005 Project Year Four

February Begin controlled experiments with students to determine impact of a student’s use of
the PlanMap on his or her essay’s quality

June Improve performance of automated essay scorer

Table 1. Timeline for key development steps of ETIPS

 715

Educational Theory Into Practice Software (ETIPS)

of the budget allocated for the evaluation work
was approximately $210,000. In addition, the
direct cost for the training and travel to project
meetings for the test-bed faculty members’ was
approximately $80,000.

lessons to pAss Along to
others

Games and simulations produced for educational
purposes in effect serve as a sort of formative,
and perhaps summative, assessment. That is, they
allow the user to practice doing something that
is based upon some key premises that guide the
operational rules of the game or simulation. It is
likely that through his or her performance the
software indicates, among other things, how well
the user understands those key premises. From
the outset, the ETIPS project leaders knew we
wanted the cases to be an opportunity to practice
instructional decision making while keeping an
educational technology integration and imple-
mentation principle in mind. But when designing
the specifics of the software—especially what
feedback we could give to the learner during
the case—Mislevy et al.’s (2001) Conceptual
Assessment Framework helped us to work more
efficiently, as well as with confidence since this
framework draws upon contemporary learning
and assessment theory.

The National Academy of Sciences report
How People Learn: Brain, Mind, Experience and
School, (Bransford, 1999) suggested that effective
learning environments, among other things, are
assessment-centered in the sense of providing
multiple opportunities to make students’ thinking
visible so they can receive feedback and be given
chances to revise and to learn about their own
learning. The companion National Academy of
Sciences report, Knowing What Students Know: The
Science and Design of Educational Assessment (Pel-
legrino, Chudowsky, & Glaser, 2001), addresses
principles of assessment design for learning

situations aligned with the findings reported in
How People Learn. According to Pellegrino et al.
(2001), central to assessment is reasoning from
evidence generated through a process consist-
ing of three points: “a model of how students
represent knowledge and develop competence
in the subject domain, tasks or situations that
allow one to observe students’ performance, and
an interpretation method for drawing inferences
from the performance evidence thus obtained” (p.
2). Mislevy et al. (2001) incorporate these same
three points into their Conceptual Assessment
Framework by specifying it consists of a student
model, task model, and an evidence model.

Almond, Steinberg, and Mislevy (2002) write
that the student model is “the knowledge, skills,
and abilities…to measure for each participant”
(p. 35); the task model includes “the presenta-
tion material to be presented to the user…[and]
a description of the work products that will be
returned as a result of user interaction with the
task” (p.24); and the evidence model acts as a
bridge between the student and task models in
that it describes how to analyze the evidence
called for by the task model and so as to assess
the student’s understanding.

In writing about assessment designers, Mislevy
et al. (2001) and Pellegrino et al. (2001) assert that
networks, new media, and new methodologies
have much to offer us in the way of support and
enhancement of assessment but that technology
has the potential to lure designers into creating
complex tasks where substantial amounts of data
are collected without any plan for analyzing how it
can combine as an assessment of learner progress.
To guard against this, Mislevy and colleagues
(2001; Almond et al., 2002) promote using eviden-
tiary reasoning and a design perspective during
the development of instruction and assessment
materials so that the focus remains on construct
definition, forms of evidence in keeping with the
construct, and the creation of tasks that would
produce such evidence.

716

Educational Theory Into Practice Software (ETIPS)

Extreme programming is an approach to pro-
gramming developed by Beck and Fowler (2000)
that describes how a team of software program-
mers works together with the client to efficiently
create reliable code. Its creators describe it more
as a set of values and disciplined approach than a
strict set of steps. From our programmer’s use of
it and the project director’s and other team lead-
ers’ experience designing ETIPS, this strategic
approach was excellent for letting the design of a
case-based pedagogy emerge. This included the
focus on developing an overall metaphor to illu-
minate what you are creating and then expressing
distinct aspects of functionality in user stories
that are coded, reviewed by the client and users,
and then revised as needed.

Extreme programming demands a lot of com-
munication between the client and the program-
mers, often on a quick-turnaround basis. Further,
to the degree the design process is driven by user
testing, this requires advance planning for data
collection, analysis, and reporting so that the
code revisions can occur on a timeline that meets
deadlines. Our team used a wiki to record our
user stories and record notes from project meet-
ings. The project director and programmers used
a trouble ticket system to record the priority of
the various user stories, recorded one per ticket,
and their timelines and related communication.
Working with the project evaluator, the project
director and coordinator arranged for data col-
lection from faculty and student users as needed.
We also consulted experts on the usability of
our site, including our compliance with disabled
users’ needs as specified Section 508 of the Re-
habilitation Act.

Considering the Conceptual Assessment
Framework during the design phase and following
the approach advocated in Extreme Programming
to bring that design into code can help creators
of games and simulations work efficiently toward
the educational purpose of their work. More
importantly, it will encourage the development

of assessment-centered learning environments,
which we know will aid learning.

whAt Is next For our teAM

At the time of this writing the project has about
six months of funding left and so in addition
to refining all features and user interfaces and
support materials, we are focused on creating a
revenue stream that will ensure the sustainability
of our work. Over the last year we explored vari-
ous models for generating income from the use
of the cases. We have decided upon three related
strategies.

The first is to consider the functionality of the
software and the case-based pedagogy it supports
as a separate product that can be marketed to
developers of educational cases on various topic
areas. Developers would pay to license the ETIPS
engine, and any income could help to improve
the software. This strategy involved setting up
working arrangements with a company that is
focused on marketing the ETIPS engine as well
as other educational software.

A second strategy is that we will work with
the membership networks and organizations that
inspired the cases that we authored on additional
topics. They, in turn, may promote the use of these
cases to their members, who may then purchase
access to the cases.

The third, and most promising, strategy per-
tains to just the ETIPS cases on technology integra-
tion and implementation. The project director and
a long-time test-bed faculty member are writing a
series of books on technology integration in sec-
ondary science, mathematics, social studies, and
English language arts. The educational technology
integration and implementation principles serve as
an organizational framework for the books; in the
chapters about each of the six principles the online
ETIPS cases are presented as homework exercises
that learners complete to practice applying the

 717

Educational Theory Into Practice Software (ETIPS)

main idea from that chapter. With this strategy
the student who purchase the book is then very
likely to purchase access to the cases, through an
e-commerce functionality we have added. This
model of students assuming responsibility for
the costs of the educational materials associated
with a class is familiar to students and faculty
alike, and also allows our development team to
leverage the publishing company’s expertise in
marketing, selling, and distributing the books,
and their inherent relationship to some of the
ETIPS cases.

reFerences

Almond, R. G., Steinberg, L. S., & Mislevy, R.
J. (2002). Enhancing the design and delivery of
assessment systems: A four-process architecture.
Journal of Technology, Learning, and Assessment,
5. Retrieved from http://www.jtla.org

Beck, K., & Fowler, M. (2000). Extreme program-
ming explained. Boston: Addison-Wesley.

Bransford, J. D., Brown, A. L., & Cocking, R. R.
(1999). How people learn: Brain, mind, experi-
ence, and school. Committee on Developments in
the Science of Learning with additional material
from the Committee on Learning Research and
Educational Practice, National Research Council.

Washington, D.C.: National Academy Press.
Retrieved May 24, 2002, from http://www.nap.
edu/html/howpeople1/

Dexter, S. (2002). eTIPS-Educational technology
integration and implementation principles. In P.
Rodgers (Ed.), Designing instruction for technol-
ogy-enhanced learning (pp.56-70). Hershey, PA:
Idea Group Publishing.

Mislevy, R. J., Steinberg, L. S., Almond, R. G.,
Haertel, G. D., & Penuel, W. B. (2001). Leverage
points for improving educational assessment
(Tech. Rep. No. 534). Retrieved from http://cse.
ucla.edu/CRESST/Summary/534.htm

Pellegrino, J., Chudowsky, N., & Glaser, R. (2001).
Knowing what students know. Washington, DC:
National Academy Press.

Stevens, R. H. (1991). Search path mapping: A
versatile approach for visualizing problem-solving
behavior. Academic Medicine, 66(9), S72-S75.

Stevens, R., Johnson, D., & Soller, A., (2005).
Probabilities and predictions: Modeling the de-
velopment of scientific problem solving skills.
Cell biology education, 4(1), 42-57.

Stevens, R., Wang, P., & Lopo, A. (1996). Artifi-
cial neural networks can distinguish novice and
expert strategies during complex problem-solving.
JAMIA, 3(2), 131-138.

This work was previously published in Games and Simulations in Online Learning: Research and Development Frameworks,
edited by D. Gibson, pp. 223-238, copyright 2007 by Information Science Publishing (an imprint of IGI Global).

718

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.12
Engineering Reusable

Learning Objects
Ed Morris

RMIT University, Australia

AbstrAct

We adapt the object-oriented software engineering
design methodology for software objects to engi-
neering reusable learning objects. Our approach
extends design principles for reusable learning
objects. The resulting learning object class is
a template from which individualised learning
objects can be dynamically created for, or by,
students. The properties of these classes refine
learning object definitions and design guidelines.
We adapt software object levels of cohesion to
learning object classes. We demonstrate reus-
ability increases when learning object lessons
are built from learning objects, like maintainable
software systems are built from software objects.
We identify facilities for learning management
systems to support object-oriented learning object
lessons that are less predetermined in sequencing
activities for each student. Our overall approach
to the design of learning object lessons is inde-

pendent of, and complementary to, instructional
design theory underlying the learning object
design process, and metadata standards adopted
by the IEEE for learning object packaging.

perspectIVe

We approach the shared aim to design reusable e-
learning objects by adapting software engineering
methodology, where it enhances the reusability
of software objects. Our work (Morris, 2005)
contributes software engineering techniques to
the design and evaluation of learning objects with
enhanced reusability.

We also provide a different perspective on the
continuing pedagogical debate over granularity
and context for optimal e-learning object reus-
ability (Littlejohn, 2003) as we focus on the user
interface and internal structure of a learning object
to enhance its reusability.

 719

Engineering Reusable Learning Objects

objectIVes

The objectives of this chapter are:

1. To explain how object-oriented software
engineering design methodology can be
applied to the design of a learning object to
enhance its reusability. See the “Designing
Learning Objects as Software Objects” sub-
section and the “Example Learning Object
Classes” section.

2. To show how object-oriented software engi-
neering extends and refines Boyle’s (2002)
design principles for authoring dynamic
reusable learning objects by enabling indi-
vidual learning objects to be dynamically
created for or by students from a template
learning object, which we call a learning
object class. See the “Designing Learning
Objects as Software Objects” subsection
and the “Example Learning Object Classes”
section.

3. To contribute toward a learning object lesson
design methodology that will facilitate the
design and implementation of larger scale
lessons, courses, and educational programs.
See the “Developing Learning Object Les-
sons as Software Systems” subsection and
the “Object-Oriented Design Principles for
Learning Objects” section.

4. To explain how the properties of a learning
object class refine existing learning object
definitions and design guidelines. See the
“Criteria That Define Object-Oriented
Learning Objects” subsection.

5. To show how reusability is further enhanced
by standardising the interface of a learning
object class to provide its learning activities
as services that can be invoked by other
learning objects. See the “Developing Learn-
ing Object Lessons as Software Systems”
subsection and the “Example Learning
Object Classes” section.

6. To explain how software object levels of
cohesion can be applied to the design of a
learning object class, such that the higher
the level of cohesion, the more it is reusable.
See the “Object-Oriented Design Principles
for Learning Objects” section.

7. To identify facilities required in a learning
management system to support learning
object lessons that are less predetermined
in their sequencing of activities for each stu-
dent. See the “Support for Object-Oriented
Learning Objects” section.

8. To explain how our object-oriented software
engineering approach to the design of learn-
ing object lessons is independent of, and
complementary to, (a) instructional design
theory underlying the learning object design
process, and (b) metadata standards adopted
by the IEEE for learning object packaging.
See the “Support for Object-Oriented Learn-
ing Objects” section.

IntroductIon

Early research and development of online learning
materials did not focus on their reusability. For
example, our previous research focussed on the
cost effectiveness (Zuluaga, Morris, & Fernandez,
2002) and educational effectiveness (Morris &
Zuluaga, 2003) of our online learning approach.
This involved both online course development
and online course delivery phases. We also ad-
dressed the deployment, management, and scal-
ability of our online courses over a network of
learning management system servers (Zuluaga
& Morris, 2003).

Most of our early online courses (1999-2002)
were developed for 100% online delivery, utilis-
ing mostly textual learning materials, plus (on
average) four short multimedia supplements such
as Java applets, Flash animations, voice overs,
and video clips. During online delivery of such

720

Engineering Reusable Learning Objects

a course we relied more on students interacting
with staff via e-mail or chat than on building
interactivity into the online course material
during its development. We assumed these early
generation online course materials would soon be
replaced as multimedia and learning management
systems matured and standardised. So we were not
so much concerned with upgrading the original
online materials over the years, repurposing them
for new educational programs, or repackaging
them for different media in the future. Nor were
we particularly concerned with standardising the
packaging of online course materials so that they
could be reassembled with online materials from
other institutions.

However, during this early period of research
and development (R&D) it became increasingly
clear that e-learning materials need to satisfy all
the ‘bilities’: interoperability among different
systems connected by the Internet, accessibility
anytime from another location, reusability by
other developers to save time and money, discover-
ability in repositories using metadata, extensibility
of existing courses due to their modular construc-
tion, affordability due to reduced development
costs, and manageability by allowing easy changes
and updates to small chunks (Computer Education
Management Association, 2001).

The concept of a unit of e-learning material
or ‘learning object’ is central to these objectives.
A range of definitions of learning object or ‘in-
structional object’ exist (Wiley, 2001). One that
captures a common theme defines learning objects
as “small but pedagogically complete segments
of instructional content that can be assembled
as needed to create larger units of instruction,
such as lessons, modules and courses. Learning
objects should be stand-alone, and be built upon
a single learning objective, or a single concept”
(Hamel & Ryan-Jones, 2002).

Boyle (2002) proposed learning object design
principles synthesised from pedagogy and soft-
ware engineering for authoring dynamic reusable
learning objects. From pedagogy, a learning object

should have a single learning objective. From soft-
ware engineering, a learning object should do one
thing and only one thing (strong cohesion). And a
learning object should have minimal bindings to
other learning objects (weak coupling).

contents

In the second section of this chapter, we expand
the above synthesis by applying object-oriented
software engineering design methodology to the
design of learning objects. We introduce the ‘ab-
straction’ of a learning object to enable a designer
to produce a ‘learning object class’. A learning
object class is a template from which similar but
individualised learning objects can be dynami-
cally created during a lesson. (Object-oriented
software engineering refers to similar ‘objects’
being ‘instantiated’ (created) from a ‘class’, which
encapsulates their shared attributes and activities.)
We introduce ‘inheritance’ so that a designer
can evolve a ‘child’ learning object class from
its ‘parent’ learning object class, extending and
modifying its attributes and activities as desired.
The instructional designer can use inheritance
to reuse learning object classes or repurpose a
lesson by extending and coupling inherently co-
hesive learning object classes. The instructional
designer can use instantiation during a lesson to
enable student interaction to determine the actual
sequence of possible events in a lesson.

In the third section we illustrate the application
of object-oriented software engineering design
methodology to the design of two learning object
classes. Broadly speaking, one is for the program-
ming discipline, and the other is for psychology.
The first is based on the Java programming
language while-loop learning object of Boyle
et al. (2003). The second is based on a conflict
resolution learning object that explains Maddux’s
five styles of conflict resolution (Rathsack, 2001).
These two learning object classes from different
disciplines demonstrate the general applicability
of our approach.

 721

Engineering Reusable Learning Objects

In the fourth section, we adapt to learning
objects a scale for grading the cohesion of soft-
ware objects. We show how to classify a learning
object’s level of cohesion and explain how each of
the lower levels further reduces learning object
reusability. This informs the design of learning
objects, as we illustrate with the examples from
the third section.

Finally, in the fifth section, we identify facili-
ties required in a learning management system to
support object-oriented learning object lessons.
We point out that our object-oriented software
engineering approach to the design of learning ob-
ject lessons is independent of, and complementary
to, the instructional design theory underlying the
learning object design process, and the metadata
standards adopted by the IEEE (LTSC, 2003) for
learning object packaging.

ApplIcAtIon oF
object-orIented soFtwAre
engIneerIng to leArnIng
objects

Software engineering is concerned with the de-
sign and implementation of large scale, complex
information processing systems that are robust,
maintainable, modularly reusable, scalable, and
extensible (Pfleeger, 2001). These properties over-
lap the ‘bilities’ required of learning objects. This
observation underlies the application of software
engineering design principles to the design of
learning objects. Boyle introduced this approach
with reference to coupling and cohesion principles
for the design of learning objects (Boyle, 2002).
We extend this approach by applying object-ori-
ented software engineering design methodology
to the design of learning objects. Object-oriented
software engineering has evolved into a domi-
nant ‘branch’ in the software engineering design
methodology ‘tree’.

In the “Designing Learning Objects as Soft-
ware Objects” subsection we show how learning

objects can be designed with essentially the same
techniques used to design software objects. In
the “Developing Learning Object Lessons as
Software Systems” subsection we explain how
flexible learning object lessons can be built from
reusable learning objects in the same way that
maintainable software systems are built from
software objects with well-designed interfaces.
Our application of object-oriented software engi-
neering to the design of object-oriented learning
object lessons leads us in the “Criteria That Define
Object-Oriented Learning Objects” subsection
to synthesise criteria that define a truly object-
oriented learning object.

designing learning objects As
software objects

Object orientation is an approach to software
development that organises both the problem
and the solution as a collection of discrete ‘ob-
jects’ (Pfleeger, 2001). Each software object can
be based on a physical or abstract object in the
problem space. In the software system solution,
the software objects collaborate to answer a user’s
requests.

• Problem: Model an employee-employer rela-
tionship. This could be a fundamental require-
ment of a software application to manage staff.
Solution: We consider an employee software
object below; the reader can similarly con-
sider an employer software object later.

In the object-oriented approach to software de-
sign the nouns in the problem statement generally
identify the software objects and their attributes.
The ‘has-a’ relationship governs a software object
and each of its attributes.

Let us say that an employee software object (at
least) has a name, a social security (tax) number,
and regular pay.

Other attributes of a software object can be
discovered by asking “if I am an employee, what

722

Engineering Reusable Learning Objects

should I know?” For instance the problem could in-
dicate that an employment history is required.

In general the verbs in the problem statement
identify the activities (behaviours, actions, re-
sponsibilities, operations) required of a software
object.

An employee software object at the very least
works and gets paid; the latter possibly comprising
two activities: receivePay and showPay.

Other activities of a software object can be
discovered by asking “if I am an employee, what
should I be able to do?” For instance the problem
could indicate that reportWork is also required.

The state of a software object at any time is
given by the values of its attributes, as determined
by the software object’s activities. For instance
showPay should show a higher pay value after
receivePay provides a pay rise.

By analogy with a software object, we consider
a learning object to have attributes and activi-
ties to deliver a single learning objective. Just as
the users of a software system (solution) cause
interactions between software objects to solve
a problem, the students of a ‘lesson’ can cause
interactions between learning objects to achieve
the lesson’s learning outcomes.

Adapting the above example of the object-
oriented approach to software design, consider
the overall learning outcome: understand the
employee-employer relationship. A learning
objective could be to know the responsibilities
of employees in an employment hierarchy. We
develop an employee learning object below in
the same way that we developed an employee
software object above.

Importantly, the attributes and activities of
a learning object can be identified in the same
manner as they were identified for a software
object.

For the employee learning object we identify
the exact same attributes and activities in the same
manner as they were identified for the employee
software object above.

By comparison with a software object, the
activities of a learning object provide a form of
explanation, rather than a computation.

For instance the receivePay activity in the
employee learning object could explain that pay
is in return for work.

In the object-oriented approach to software
design a software object is an instance of a software
object class. The process of abstraction enables
software objects with shared attributes and ac-
tivities to be defined as a single software object
class. A software object class acts as a template
from which individualised software objects are
instantiated (created), as determined by the user’s
interactions with the software system.

As a user interacts with a software system
that simulates the employee–employer relation-
ship, let us say that employees, bob, ted, carol,
and alice are instantiated. Each of these software
objects has a distinct name, social security (tax)
number, and pay. If bob’s showPay activity is
invoked, the pay value need not be that same as
the other employees. If we define an extra work
attribute and appropriate activities in the em-
ployee software object class, all these employee
software objects could collaborate to perform
their collective work.

Analogously, learning objects can be created
as customised instances of a learning object class.
A learning object class is not only a container of
learning materials for a single learning objective
(attributes), but also a container of operations
defined on the materials (activities) that a student
interacts with to attain the intended learning
outcomes.

During a lesson, a student could create em-
ployees, bob, ted, carol, and alice. Each learning
object has at least the distinct attributes identified
above. These learning objects could collaborate
to explain their work.

In general, a student initiates a lesson by in-
teracting with a learning management interface
that instantiates a learning object to service the

 723

Engineering Reusable Learning Objects

student’s initial request. During the learning
object lesson, other learning objects are likely to
be instantiated from one or more learning object
classes. The student interacts with these col-
laborating learning objects to attain their desired
learning experience.

In the object-oriented approach to software
design, abstraction promotes generality, and
instantiation provides flexibility and individual-
ity. We assert that the design of learning objects
can similarly benefit from essentially the same
approach.

The unified modeling language (UML) is a
standard for diagrammatically depicting relation-
ships between classes (software object classes), via
class diagrams, and between software objects, via
object diagrams (Priestley, 1996). Figure 1 shows
the Employee software object class in UML and
four (4) instance Employee software objects. The
attributes and activities of the Employee class are
also shown.

Figure 1 could equally show the Employee
learning object class in UML and its four (4)
instance Employee learning objects.

Access to the attributes and activities encap-
sulated by a software object is determined by its
software object class. In general, attributes of one
software object cannot be directly manipulated
by another software object. Instead, the software
object encapsulating the attribute in question per-

forms the relevant activity in response to a request
from another software object. For instance, an
employee software object’s pay cannot be directly
accessed by other software objects; they can only
request an employee software object to showPay or
receivePay. Not all activities of a software object
need be accessible to other software objects. The
public activities supplied by a software object
class define an interface that protects the private
attributes and activities of its software objects. In
effect, software objects request each others’ ‘ser-
vices’ via the public interface activities supplied
by their software object classes. This allows the
internals of a software object class to be modified
by a programmer without affecting collaborating
software objects, provided its interface remains
unchanged; for example receivePay could incor-
porate a bonus without upsetting any software
object that requests showPay.

Encapsulation can be equally applied to learn-
ing object classes. We assert that encapsulation
enhances manageability by facilitating updates
without requiring changes to collaborating learn-
ing object classes. Other ‘bilities’ such as reus-
ability and affordability also benefit.

A software object class can be extended into
a more specialised software object class without
changing the original (parent) class. The ‘child’
software object class inherits the parent’s at-
tributes and activities while encapsulating extra

Figure 1. Class Employee and four instance objects

724

Engineering Reusable Learning Objects

attributes and activities. The ‘is-a’ relationship
governs a child as a specialised extension of its
parent. The child can selectively modify its in-
herited characteristics too (called polymorphism).
For example an Employee software object class
could define employment history in terms of career
achievements. A junior employee could reimple-
ment its history in terms of final school courses
and grades. Inheritance enhances reusability and
adaptability of software object classes.

An Employee software object class can be
extended to an AirlineEmployee software object
class on the one hand, and a HospitalEmployee
software object class on the other hand. An
AirlineEmployee could add to its inheritance a
knowledge of the travelIndustry and airline-
Policies. A HospitalEmployee could add to its
inheritance a knowledge of healthCareIssues and
hospitalPolicies. A Nurse software object class
could further extend the HospitalEmployee with
knowledge of patientCare and the activities to
takeBloodPressure and giveInjection.

Figure 2 depicts the above inheritance hierar-
chy in a UML class diagram.

Figure 2 could equally depict an Employee
learning object class inheritance hierarchy in a
UML class diagram. We assert that inheritance
can enhance reusability and extensibility of learn-
ing object classes.

developing learning object lessons
as software systems

Software systems can be large and complex. Their
design can comprise hundreds of software object
classes and thousands of interactions of many
kinds. Their implementation can amount to mil-
lions of lines of code. The software development
life cycle (comprising requirements elicitation,
analysis, specification, design, implementation,
testing, and maintenance) can involve numerous
teams of professionals of various kinds over many
human years.

On the other hand, most learning objects are
designed and implemented by one or two indi-
viduals, or a small team, over weeks or months,
rather than years (Boyle et al., 2003; MIT OCW,
2005). No more than a handful of learning objects
comprise a typical lesson. So there is at least an
order of magnitude difference in the current scale
of software systems design and learning object
lesson design. However, software systems were
originally far smaller. As the underlying hardware
improved exponentially, it was still the advent
of software engineering design methodologies
that facilitated production of larger scale reliable
software (Pfleeger, 2001). Hopefully, this chapter
is a contribution toward a learning object lesson
design methodology that will facilitate the de-
sign and implementation of larger scale lessons,
courses, and educational programs.

An interface in object-oriented software engi-
neering terms is the boundary around an object
that defines which of its attributes and activities are
accessible to other objects. An object’s attributes
remain private by default, but a public ‘accessor’

Figure 2. Class Employee and its ‘child’ classes

 725

Engineering Reusable Learning Objects

activity can be defined in an object to return an
attribute to any other object that requests it. An
object may also define a public ‘mutator’ activity
to enable an attribute to be altered at the request
of other objects. Each interaction between two
objects is in the form of a request and an answer.
Data can be transferred in both directions—in
and out. Such interactions in software systems are
generally driven by the user(s). In general, objects
are dynamically created to provide services in
response to user requests.

This software object interaction model is also
entirely applicable to a learning object lesson. An
instructional designer can define the interface of
a learning object class to provide certain learning
activities as services. During a lesson, learning
objects instantiated from several learning object
classes can interact to provide a (student) user
responsive learning experience.

The Java language also provides a special
interface type that can be used to group a number
of classes by insisting each class implements all
activities specified by the interface. The grouped
classes can be considered to have the same ‘look
and feel’. We think the Java interface type sug-
gests a mechanism for combining learning object
classes into learning object lessons. If a learning
object class, L, implements interface I along with
other learning object classes, all these learning
object classes share a single look and feel. So a
(student) user should experience an interactively
integrated lesson. If the learning object class, L,
also implements another interface, say J, then L
can integrate with other learning object classes
that implement interface J. This facilitates reuse
of learning object class L in a new learning object
lesson. Multiple interface types can act as ‘wrap-
pers’ or ‘skins’ to provide different contexts for
the one learning object class (and its learning
objects) in different learning object lessons. This
should aid the ‘bilities’, in particular, reusability
and extensibility.

Criteria That Define Object-Oriented
learning objects

Our above application of object-oriented software
engineering design methodology to the design of
learning object classes and learning object les-
sons leads us to synthesise the criteria that define
a truly object-oriented learning object class. Our
criteria (as follows) refine the learning object
definition work of Wiley (2001) and others, and
extend learning object design guidelines (Hamel
& Ryan-Jones, 2002).

• Each learning object class has attributes and
activities that meet a single well-defined
learning objective and implement measur-
able learning outcomes in accordance with
an instructional theory.

• Each learning object class and its attributes
are identified by the nouns in its learning
objective and learning outcomes. The verbs
identify its activities.

• Each learning object class encapsulates
learning activities that are stand-alone and
achievable in a single sitting.

• Each learning object class’s attributes and
activities contribute packaging metadata
(LTSC, 2003), to enhance the ‘bilities’ (see
the “Determining Learning Object Cohe-
sion” subsection).

• Each learning object class in general ex-
tends (specialises) its parent learning object
class’s attributes and activities. Inheritance
enhances the ‘bilities’.

• Each learning object class in general imple-
ments a Java-like interface type (see the
“Developing Learning Object Lessons as
Software Systems” subsection), which can
also be implemented by other learning object
classes. A single interface for multiple learn-
ing object classes provides the ‘look and feel’
for a learning object lesson. Implementing

726

Engineering Reusable Learning Objects

multiple interfaces enables a learning object
class to integrate into a different learning
object lesson with other learning object
classes. Learning object class interfaces
enhance the ‘bilities’.

Each learning object lesson involves student
interaction to create learning objects on demand
and to drive interactions between these learning
objects to achieve the lesson’s learning outcomes.
The overall learning activity is necessarily inter-
active and in general involves (self-)assessment
against the learning objectives.

exAMple leArnIng object
clAsses

In this section we demonstrate our adaptation (see
previous) of object-oriented software engineer-
ing design methodology to the design of learning
object classes. The first example is based on the
learning object developed by Boyle et al. (2003)
for students to learn how while loops work in the
Java programming language. The second example
is based on a conflict resolution learning object
that explains Maddux’s five styles of conflict
resolution (Rathsack, 2001).

We assert that our two learning object classes
for different disciplines (programming and psy-
chology) demonstrate the general applicability
of our object-oriented software engineering ap-
proach to the design of learning object classes.
Although we write each learning object class in
Java, the design is our focus, and is language
independent. In the “Cohesion of Example
Learning Objects” subsection, we demonstrate
the advantages of our design over the originals,
as measured by the design principles of coupling
and cohesion (elaborated in the “Learning Object
Levels of Cohesion” subsection).

while loop

The Java programming language while-loop
learning object of Boyle et al. (2003) starts by
showing the student how a program hammers a nail
into wood: while (nail is not flush) hit the nail. Next,
the Java code to move a car over a given distance is
displayed, explained, and the student can animate
the loop. The student can also step through the
code, statement by statement. A second example
shows a submarine submerging to a given depth.
The code is displayed, explained, animated, and
the student can step through. Then the student is
asked to build the code from a given set of Java
statements to move a horse a specified distance.
Finally, the student is asked to spot errors in the
code to move a lorry a given distance.

Our object-oriented software engineering
design for a while-loop learning object class is
shown (see Figure 3) as an incomplete class in Java.
Class While has one attribute—the loop in ques-
tion, represented as a string of characters. When
an object of class While is instantiated, the loop
can be initialised to an input string, or the default
generic loop. Class While defines the following
activities as operations on this loop—display,
explain, animate, step_thru, build, and debug.

Figure 3. Class While

 727

Engineering Reusable Learning Objects

The student interacts with a Java program that
instantiates requisite While objects. For example,
if the student follows the sequence intended in
Boyle’s learning object, the hammer object would
be instantiated first. Its code would be displayed,
explained, and animated. Next, the submarine
object would be instantiated, its code displayed,
explained, animated, and stepped through if de-
sired. Next, the horse object would be instantiated,
and the student would build its code. Finally, the
lorry object would be instantiated, and the student
would debug its code.

Note that another student, perhaps more
advanced, could interact with class While to
instantiate While objects (learning objects) in
another sequence, bypassing some learning ob-
jects as desired.

Conflict Resolution

Rathsack’s conflict resolution learning object ex-
plains Maddux’s five styles for managing conflict.
The learning object begins by stating that people
can disagree, that this can be an opportunity for
growth and learning, or it can be detrimental as
conflict arises. The ability to manage conflict is
important to succeed in one’s career and life. The
learning object then introduces Maddux’s matrix
depicting five styles for managing conflict: avoid-
ing, accommodating, winning/losing, collaborat-

ing, and compromising. Each style is explained.
Then the learning object explains that the matrix
y-dimension shows increasing assertiveness and
the x-dimension shows increasing cooperation,
starting from zero at bottom left. This explains the
location of each style in the matrix: winning/losing
at top left, collaborating at top right, accommodat-
ing at bottom right, avoiding at bottom left, and
compromise in the centre. The learning object
then presents five conflict scenarios and asks the
student to identify the style in use. Finally, the
learning object explains that Maddux believes no
one style is always best for all situations.

Our object-oriented software engineering
design for a conflict resolution learning object
class is shown (see Figure 4) as an incomplete
class in Java. class Conflict has one attribute—the
conflict style in question, represented as a string
of characters. When an object of class Conflict
is instantiated, the style is initialised to an input
string. Class Conflict defines the following op-
erations on this style—display, explain, animate,
and identify.

The student interacts with a Java program
that instantiates requisite Conflict objects. For
example, if the student follows the sequence
intended in Rathsack’s learning object, the ‘avoid-
ing’ object would be instantiated first. This style
would be displayed on the matrix (in relation to
the other four styles), explained, and animated on
the matrix (in terms of the x and y dimensions).
Next, the ‘accommodating’ object would be in-
stantiated. Similarly, this style would be displayed
on the matrix (in relation to the other four styles),
explained, and animated on the matrix (in terms
of the x and y dimensions). Next, the remaining
three Conflict style objects would be instantiated.
Finally, the Java program that instantiates Conflict
objects would ask the student to identify the style
in use in a conflict scenario. The Conflict objects
could cooperate to randomise this test.

Note that another student, perhaps more
advanced, could interact with class Conflict to
instantiate Conflict objects (learning objects)

Figure 4. Class Conflict

728

Engineering Reusable Learning Objects

in another sequence, bypassing some learning
objects if desired.

object-orIented
desIgn prIncIples
For leArnIng objects

In a software system, coupling measures how
cleanly objects are partitioned. And cohesion
measures how closely activities in an object are
related. Coupling and cohesion are interdependent
measures—the less cohesive an object, the more
likely it is coupled with other objects. The more
coupled an object is with other objects, the harder it
is to alter or upgrade the object in isolation, which
lowers maintainability. A strongly coupled object
is less reusable without significant maintenance
(Pfleeger, 2001).

In our terminology, the ‘objects’ referred to
above are software object classes, not individually
instantiated software objects. Following Boyle
(2002), we assert the above applies as much to
learning object classes in a learning object les-
son as to software object classes in a software
system. Weak coupling between learning object
classes in a learning object lesson promotes the
‘bilities’ in that the maintainability of software
object classes is essentially the manageability
of learning object classes. The more cohesive
each learning object class is, the less coupling is
required when learning object classes are reused
in a new learning object lesson.

Stevens and Myers devised a table (Yourdon
& Constantine, 1978) to classify the level of cohe-
sion of a software module—in our terminology, a
software object class. (Although their work pre-
dated object-oriented software engineering design
methodology, it is readily accommodated.) In the
“Learning Object Levels of Cohesion” subsection
we adapt their seven-level scale to learning object
classes. In the “Determining Learning Object
Cohesion” subsection, we show how to classify
the level of cohesion of a learning object class.

We explain how each of the lower levels further
reduces learning object class reusability. We assert
that awareness of cohesion levels can improve the
design of learning object classes, as we illustrate
in the “Cohesion of Example Learning Objects”
subsection with the examples from the “Example
Learning Object Classes” section.

learning object levels of cohesion

In Table 1 we adapt a seven-level scale of cohesion
for software object classes (Yourdon & Constan-
tine, 1978) to learning object classes. We describe
a learning object class at each level and provide
an example. The strongest level of cohesion is
called functional, and the weakest cohesion is
called coincidental. Each level in Table 1 is less
cohesive that the level above it.

The reusability issue for each level below
functional cohesion is explained in Table 2. Note
that the issue at a given level is often in addition
to reusability issues at higher levels.

determining learning object
cohesion

The description or name of a learning object class
may suffice to determine its level of cohesion, as
shown in Table 3.

We note that the presence of any of the above
key words could be a valuable indicator for
metadata tagging purposes, but further research
is required to evaluate reliability.

In Figure 5, we adapt a decision tree (Page-
Jones, 1998) that enables the level of cohesion
of a learning object class to be more accurately
determined by asking and answering a few ques-
tions, starting at top left.

If all the activities in a learning object class
share more than one level of cohesion, the learn-
ing object class has the highest (strongest) of
the shared levels of cohesion—according to
the ‘chains in parallel’ rule. If the activities in
a learning object class exhibit various levels of

 729

Engineering Reusable Learning Objects

Cohesion level Description Example

F u n c t i o n a l

(strongest)

Each activity in a learning ob-

ject class contributes to a single

learning objective related task or

learning outcome.

Learn to calculate net employee salary. This could be one of many tasks

an accountant learns. It comprises: getting the gross salary, subtracting

legal deductions, computing taxes. Every step contributes to the single

purpose outcome of this learning object class.

Sequential

The outcome (output) of each

activity in a learning object class

is the input to the next activity in

the learning object class.

Learn to paint a picture. This learning object class could comprise:

sketching, painting outlines, coloring shapes, adding texture, signing,

and dating. Each activity uses the result of the previous activity on the

canvas. The picture may be complete, but learning to paint could still

be a life-long objective, so the learning object class is not functionally

complete.

Communicational

The activities in a learning object

class share the same attributes, or

inputs and outputs.

Learn to summarise, say, a chapter of a book. This learning object

class could comprise: reading the chapter, highlighting headings in

the chapter, listi;ng key words in the chapter, writing sentences that

connect key words in the chapter. Each activity uses the chapter, but

not necessarily the result of the previous activity.

Procedural

Control flows from one activity

to the next in the learning object

class, i.e., the activities are related

solely by their order of execution,

which is arbitrary. Data passing

in and out of the learning object

class are unrelated.

Learn to dissect, say, a fish or mouse. This learning object class could

comprise: cleaning the bench, arranging implements, preparing the

specimen, starting experimental notes, using scalpel, recording obser-

vations. Each activity leads to the next, but it does not necessarily use

the result of any previous activity.

Temporal

The activities in a learning object

class are related in time only, i.e.,

the activities are executed at about

the same time.

Learn to study. This learning object class could comprise: turning off

the radio and TV, collecting pen, paper, and textbook, working at one’s

desk, ignoring phone calls and other distractions, making notes, etc.

All these activities occur during study time, but they need not occur

in this exact order.

C o i n c i d e n t a l

(weakest)

The activities in a learning object

class are unrelated by any of the

above.

Learn to tidy up a room. This learning object class could comprise:

disposing of litter, hanging clothes, finishing a snack, making the bed,

vacuuming, etc. Not all these activities need be done (together). The

activities are not logically related, nor connected by flow of execution

or data.

Table 1. Learning object class cohesion levels

730

Engineering Reusable Learning Objects

Table 2. Learning object class cohesion levels and reusability

Cohesion level Reusability issue

Sequential
Not as reusable as a functional learning object class because the sequencing of its activities

cannot be easily altered.

Communicational

Either the input or output coupling is generally broader than for the above levels of cohesion.

Reuse often needs a subset of this coupling, hence redundant coupling; or a cut down version

of the learning object class is created, which still duplicates functionality. A communicational

learning object class can often be split into functional learning object classes.

Procedural

Intermediate or partial results are often passed into or out of a procedural learning object class,

reducing reusability. It is tempting to combine distinct activities for ‘efficiency’ or ‘convenience’

further reducing reusability.

Temporal

Activities in a temporal learning object class tend to be related to activities in other learning object

classes, increasing coupling. Activities in a temporal learning object class are often combined

because they can occur together. But this compromises reusability in another situation where the

activities can occur at different times.

Logical

Broad input coupling is required for a logical learning object class to select which activity to

perform. The activities are typically combined because they share common parts. Reusability

suffers.

Coincidental

A combination of inputs often determines the selected activity. As a result it can be hard to un-

derstand a coincidental learning object class unless its internal detail is examined. This reduces

reusability.

Table 3. Determining learning object class cohesion by its name or description

Cohesion Level Name or Description

Functional Simple verb-object phrase.

Sequential Commas often required.

Communicational The word ‘and’ is often present.

Procedural The word ‘or’ is often present, or words synonymous with repetition, e.g., ‘while’, ‘until’.

Temporal Time related words apparent, e.g., ‘start’, ‘end’, ‘before’, ‘after’.

Logical An ‘umbrella’ word is present, e.g., ‘all’, ‘every’, ‘total’.

Coincidental Description or name is meaningless, e.g., ‘miscellaneous’, ‘X’, ‘Z-process’.

 731

Engineering Reusable Learning Objects

cohesion, the learning object class has the lowest
(weakest) level of cohesion—according to the
‘chains in series’ rule.

cohesion of example learning
objects

In this section we use Figure 5 to establish the
cohesion of the learning object examples in the
“Example Learning Object Classes” section.
Similar analysis of other learning objects could
establish their levels of cohesion, and hence their
reusability.

When we address the first question (top left
of Figure 5) for Boyle et al.’s Java while-loop
learning object, the answer at first appears to be
‘yes’—the While learning object appears func-
tionally cohesive in that each activity contributes
to understanding how while loops work, which
is the learning object’s learning objective. But
on closer examination, the activities performed
by the While learning object do not contribute
to one and only one learning objective related
task. The learning object performs two pairs of
similar analysis activities in sequence (hammer
and submarine, horse and lorry), followed by one

synthesis activity. Data are not passed between the
activities, so the sequence is program controlled
(i.e., chosen by the instructional designer). So
the learning object exhibits procedural cohesion
at best. If we similarly address our object-ori-
ented software engineering design for a while
loop learning object class, shown in Figure 3,
a learning object can be instantiated for each
of hammer, submarine, horse, and lorry. The
sequence is determined by the student (via input
data), so at least the learning object class exhibits
communicational cohesion, which is better than
procedural cohesion.

The situation is similar for Rathsack’s con-
flict resolution learning object and our Conflict
learning object class shown in Figure 4. When
we address the first question (top left of Figure 5)
for Rathsack’s learning object, the answer at first
appears to be ‘yes’—the learning object appears
functionally cohesive in that each activity con-
tributes to understanding Maddux’s five styles for
managing conflict, which is the learning object’s
learning objective. But after closer examination,
the activities performed by the Conflict learn-
ing object do not contribute to one and only one
learning objective related task. The learning object

Figure 5. Cohesion decision tree

Yes Yes

No
No

Yes

Yes

No

No

Data

Control
flow

Neither

Is each activity in the
learning object class

contributing to a
single learning

objective related task
or learning outcome?

What relates
the activities of

the learning
object class?

Is sequence
important?

Is sequence
important?

Are the
activities in
the same
category?

Functional

Sequential

Communicational

Procedural

Temporal

Logical

Coincidental

732

Engineering Reusable Learning Objects

performs five similar activities in sequence, one
for each style. Data are not passed between the
activities, so the sequence is program controlled
(i.e., chosen by the instructional designer). So the
learning object exhibits procedural cohesion at
best. If we similarly address our object-oriented
software engineering design for a Conflict learn-
ing object class, shown in Figure 4, a learning
object can be instantiated for each of the five
styles. The sequence is determined by the student
(via input data), so at least the learning object
class exhibits communicational cohesion, which
is better than procedural cohesion.

Since each object-oriented software engineer-
ing designed learning object class exhibits stronger
cohesion than the original learning object, our
learning object class is likely to require weaker
coupling with other learning object classes in a
new learning object lesson, thereby enhancing
its reusability.

support For object-orIented
leArnIng objects

We henceforward refer to our above described
object-oriented software engineering approach
to designing learning objects and learning object
lessons as ‘object-oriented learning’. We claim
benefits of object-oriented learning include the
following, in addition to enhancing the ‘bilities’.
Dynamic instantiation of a learning object from
its learning object class in response to a student’s
input/choice enables a learning object lesson to
not only be more highly interactive but also far
less predetermined in its sequence of activities for
each student. Also the instructional designer need
not build lessons as a predetermined sequence
of learning object classes, as the student can be
given more choices.

Below we investigate supports available for our
object-oriented learning approach. We outline how
object-oriented learning can be accommodated in
a learning object development project from initial

application of an instructional design theory to final
implementation in a learning management system
(e.g., Blackboard, WebCT, Moodle).

object-oriented learning and
Instructional design theory

It is reasonable that the design of learning objects
and learning object lessons should be informed
by an instructional design theory (Wiley, 2001).
After these pedagogical choices are made, an
instructional designer can apply our object-ori-
ented learning approach, where the focus is on
structuring the functionality provided by learn-
ing object classes. We assert that object-oriented
learning is independent of, and complementary
to, instructional design theory. Further research
and development is needed to confirm this.

In fact we are presently using object-oriented
learning to design a substantial learning object les-
son, which is composed of several learning object
classes. We intend to use UML during the design
process in order to report on its usefulness as a
tool for communicating the design of a learning
object lesson. But the focus of our study will be
on evaluating the effectiveness of our object-ori-
ented learning approach on learning object class
‘bilities’. We also expect to demonstrate most of
the objectives of this chapter.

object-oriented learning and
learning Management systems

• Learning management systems like Black-
board, WebCT, and Moodle currently
facilitate the development of e-learning
courses, their collection in a repository, and
their delivery to online students at anytime
over any distance. Learning management
systems are also starting to support stan-
dardised metadata tagging of learning ob-
jects to better facilitate the combination of
learning objects into lessons, courses, and
educational programs. Our object-oriented

 733

Engineering Reusable Learning Objects

learning approach contributes to learning
object metadata tagging as explained in the
“Determining Learning Object Cohesion”
subsection. We contend that our approach
is automatically accommodated within the
pedagogically neutral standards adopted by
the IEEE (LTSC, 2003) for learning object
packaging.

• Learning management systems will also
need to provide the ‘programming language’
that enables instructional designers using ob-
ject-oriented learning and students to realise
the full potential of the dynamics inherent
in the design of learning object classes. Our
use of Java in the “Example Learning Object
Classes” section was not only to illustrate
the application of object-oriented software
engineering to the design of learning objects.
Java can also be the programming language
used in a learning management system to
implement student-centered combination
of learning object classes and the dynamic
instantiation of their learning objects.
However, the power of a general program-
ming language environment such as Java
is not necessary for this purpose. Indeed,
further research is desirable to produce a
complete yet simple programming tool for
instructional designers to use across learning
management systems. One avenue to explore
is the programmability introduced into the
computer aided instruction systems of the
past (Gibbons & Richards, 2001). Fortu-
nately, today’s graphic user interfaces, more
powerful computers, and faster connectivity
will make the experience far more friendly
for both today’s instructional designers and
students.

conclusIon

We have applied object-oriented software en-
gineering design methodology to the design of

learning objects. Our object-oriented learning
approach extends and refines Boyle’s (2002) design
principles for authoring dynamic reusable learning
objects as follows. The attributes and activities of
a prospective learning object are first ‘abstracted’
into a learning object class. This facilitates dy-
namic instantiation of an individualised learning
object for, or by, a student during a lesson; as
we illustrated in the “Example Learning Object
Classes” section with two example learning object
classes for different disciplines. We introduced the
unified modeling language to illustrate the learn-
ing object class design process (Figures 1 and 2).
We showed how inheritance and polymorphism
further enhance learning object class reusability
in new lessons.

We explained how our object-oriented learning
approach can benefit the design of lessons compris-
ing several learning object classes. We identified
a Java-like interface type as a useful mechanism
to assist reuse and repurposing of learning object
classes into new learning object lessons. This
application of object-oriented software engineer-
ing design methodology led us to synthesise the
criteria that define a truly object-oriented learning
object class. Our criteria refine the learning object
definition work of Wiley (2001) and others, and
extend learning object design guidelines (Hamel
& Ryan-Jones, 2002).

We adapted to learning object classes a scale
for grading the cohesion of software modules
(Yourdon & Constantine, 1978). We showed in the
“Object-Oriented Design Principles for Learning
Objects” section how to classify the level of cohe-
sion of a learning object class, and described how
each of the lower levels further reduces reusabil-
ity. To illustrate we outlined two object-oriented
software engineering designed learning object
classes that exhibit stronger cohesion than the
original learning objects. These learning object
classes are likely to require weaker coupling with
other learning object classes in a new learning
object lesson, thereby enhancing reusability. Our
adaption of cohesion levels to learning objects

734

Engineering Reusable Learning Objects

further extends and refines Boyle’s design prin-
ciples for authoring dynamic reusable learning
objects (Boyle, 2002).

We explained in the “Support for Object-Ori-
ented learning objects” section how our object-
oriented learning approach is independent of, and
complementary to, (a) the instructional design
theory underlying the learning object design
process, and (b) the metadata standards adopted
by the IEEE (LTSC, 2003) for learning object
packaging. Pedagogical decisions can be made
by the instructional designer before applying
our approach to structuring the functionality of
learning object classes. Our object-oriented learn-
ing approach is pedagogy neutral in this respect.
Our approach also contributes to learning object
metadata tagging by identifying attributes and
activities for each learning object class.

We assert that our object-oriented learning
approach expands and informs the options avail-
able to instructional designers for structuring
and interfacing learning object. We believe our
approach assists the systematic development of
more complex, authentic lessons, composed of
student-centered, dynamically created learning
objects. We expect further contributions toward
an object-oriented learning methodology will
facilitate the design and implementation of larger
scale lessons, courses and educational programs,
composed of learning objects that increasingly
exhibit the ‘bilities’.

reFerences

Boyle, T. (2002). Design principles for author-
ing dynamic, reusable learning objects. In A.
Williamson, C. Gunn, A. Young & T. Clear
(Eds), Winds of change in the sea of learning:
Proceedings of the 19th Annual Conference of the
Australasian Society for Computers in Learning
in Tertiary Education (pp. 57-64). Auckland,
New Zealand: UNITEC Institute of Technology.
Retrieved February 19, 2007, from http://www.

ascilite.org.au/conferences/auckland02/proceed-
ings/papers/028.pdf

Boyle, T., Chalk, P., Fisher, K, Jones, R., Bradley,
C., Haynes, R., et al. (2003). Example learning
objects. Retrieved February 19, 2007, from http://
www.londonmet.ac.uk/ltri/learningobjects/ex-
amples.htm

Computer Education Management Association
(2001). Learning architecture learning objects
overview. Retrieved February 19, 2007, from
http://learnativity.com/lalo.html

Gibbons, A., & Richards, R. (2001). The nature
and origin of instructional objects. In D. Wiley
(Ed.), The instructional use of learning objects.
Retrieved February 19, 2007, from http://www.
reusability.org/read/

Hamel, C. J., & Ryan-Jones, D (2002, November).
Designing instruction with learning objects. Inter-
national Journal of Educational Technology, 3(1).
Retrieved February 19, 2007, from http://www.
ed.uiuc.edu/ijet/v3n1/hamel/index.html

Littlejohn, A. (Ed.). (2003) Reusing online re-
sources: A sustainable approach to e-learning.
London: Kogan Page.

LTSC—IEEE Learning Technology Standards
Committee. (2003). Standard for learning object
metadata (LOM P1484.12). Retrieved February 19,
2007, from http://ltsc.ieee.org/wg12/index.html

Morris, E. (2005). Object oriented learning
objects. Australasian Journal of Educational
Technology, 21(1), 40-59. Retrieved February 19,
2007, from http://www.ascilite.org.au/ajet/ajet21/
morris.html

Morris, E. J. S., & Zuluaga, C. P. (2003). Educa-
tional effectiveness of 100% online I.T. courses.
In G. Crisp & D. Thiele (Eds.), Interact : Integrate
: Impact: Proceedings of the 20th Annual Confer-
ence of the Australasian Society for Computers in
Learning in Tertiary Education (pp. 353-363). Ad-
elaide, Australia: Adelaide University. Retrieved

 735

Engineering Reusable Learning Objects

February 19, 2007, from http://www.adelaide.edu.
au/ascilite2003/program/conf_prog_index.htm

MIT OCW. (2005). MIT OpenCourseWare pro-
cess. Retrieved February 19, 2007, from http://ocw.
mit.edu/OcwWeb/Global/AboutOCW/publica-
tion.htm

Page-Jones, M. (1998). The practical guide to
structured systems design (2nd ed.). Retrieved
February 19, 2007, from Wayland Systems Inc.,
http://www.waysys.com/ws_content_bl_pgssd_
ch06.html

Pfleeger, S. L. (2001). Software engineering theory
and practice (2nd ed.). Upper Saddle River, NJ:
Prentice Hall.

Priestley, M. (1996). Practical object-oriented
design with UML. Maidenhead, Berkshire, UK:
McGraw-Hill International.

Rathsack, R. (2001). Conf lict resolution
styles. Retrieved February 19, 2007, from
http://www.wisc-online.com/objects/index.
asp?objID=PHR300

Wiley, D. (2001). Connecting learning objects
to instructional design theory: A definition, a
metaphor, and a taxonomy. In D. Wiley (Ed.), The
instructional use of learning objects. Retrieved
February 19, 2007, from http://www.reusability.
org/read/

Yourdon, E., & Constantine, L. (1978). Struc-
tured design: Fundamentals of a discipline of
computer program and systems design (Yourdon
Press Computing Series). Englewood Cliffs, NJ:
Prentice Hall.

Zuluaga, C. P., & Morris, E. J. S. (2003). A learn-
ing management model for mixed mode delivery
using multiple channels (Internet, Intranet, CD-
ROM, Satellite TV). In G. Crisp & D. Thiele
(Eds.), Interact : Integrate : Impact: Proceedings
of the 20th Annual Conference of the Australasian
Society for Computers in Learning in Tertiary
Education (pp. 562-568). Adelaide, Australia:
Adelaide University. Retrieved February 19, 2007,
from http://www.adelaide.edu.au/ascilite2003/
program/conf_prog_index.htm

Zuluaga, C. P., Morris, E. J. S., & Fernandez, G.
(2002). Cost-effective development and delivery
of 100% online I.T. courses. In A. Williamson,
C. Gunn, A. Young & T. Clear (Eds.), Winds of
change in the sea of learning: Proceedings of the
19th Annual Conference of the Australasian Society
for Computers in Learning in Tertiary Education
(pp. 759-766). Auckland, New Zealand: UNITEC
Institute of Technology. Retrieved February 19,
2007, from http://www.ascilite.org.au/confer-
ences/auckland02/proceedings/papers/109.pdf

This work was previously published in Learning Objects for Instruction: Design and Evaluation, edited by P. Northrup, pp.
70-93, copyright 2007 by Information Science Publishing (an imprint of IGI Global).

736

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.13
Covert End User Development:

A Study of Success

Elaine H. Ferneley
University of Salford, UK

AbstrAct

End User Development (EUD) of system appli-
cations is typically undertaken by end users for
their own, or closely aligned colleagues, business
needs. EUD studies have focused on activity that
is small scale, is undertaken with management
consent and will ultimately be brought into align-
ment with the organisation’s software development
strategy. However, due to the increase pace of
today’s organisations EUD activity increasing
takes place without the full knowledge or consent
of management, such developments can be defined
as covert rather than subversive, they emerge in
response to the dynamic environments in which
today’s organisations operate. This paper reports
on a covert EUD project where a wide group of
internal and external stakeholders worked col-
laboratively to drive an organisation’s software
development strategy. The research highlights
the future inevitability of external stakeholders
engaging in end user development as, with the
emergence of wiki and blog-like environments,
the boundaries of organisations’ technological
artifacts become increasingly hard to define.

IntroductIon

In today’s environment of rapid business change
facilitated by users with increased technical capa-
bilities, there is a tacit understanding that end user
development (EUD) activity is inevitable—devel-
opment tools are more accessible, and end users
are now technologically mature and expected to
be proactive in their use of technology to enable
enactment of their employment roles (Jawahar &
Elango, 2001; Nelson & Todd, 1999). As the end
user takes control of the development effort and
develops systems with little or no input from infor-
mation technology (IT) specialists so the ultimate
level of end user involvement has arrived—the
end user is no longer simply consulted, they have
assumed the roles of the designer, developer and
tester, they are the IT specialist for their software
requirement (Cheney, Mann, & Amoroso, 1986;
McGill, 2004).

To date, studies have focused on EUD that
management is fully aware of and endorses, the
assumption is that EUD activity is small scale
and that it will ultimately be brought into the
organisation’s software development strategy.

 737

Covert End User Development

However, due to the increased pace of today’s
organisations, EUD activity increasingly takes
place without the full knowledge or consent of
management. Such developments can be defined as
covert rather than subversive, and it can be argued
that they emerge in response to the dynamic envi-
ronments in which today’s organisations operate
(Nelson & Todd, 1999; Ouellette, 1999; McLean,
Kapperlman, & Thompson., 1993).

This paper reports on a field study on the effects
of covert EUD activity in a publishing company.
The paper aims to enhance our understanding
of covert EUD activity using an interpretive ap-
proach. We draw on the literature on the social
construction of technology (SCOT) and apply
this to covert EUD activity identifying a technol-
ogy “path” (MacKenzie & Wajcman, 1985). The
“path” may be born from an individual vision, but
the multifaceted nature of technology requires
disparate actors to contribute to technology suc-
cess. Whilst the paper does not purport to offer
definitive solutions, the experiences reported
suggest valuable lessons for organisations faced
with the challenge of managing the dichotomous
relationship of encouraging worker proactivity
manifested in EUD whilst controlling maverick
EUD activity.

lIterAture reVIew

Authors have begun to recognise the futility of
attempting to align business strategy and tech-
nological infrastructures and have acknowledged
that technological “drift” is inevitable, (Ciborra
et al., 2000; Sauer & Burn, 1997; Ciborra, 1994;
Orlikowski, 1996). This process of “drift” is
largely assumed to be an overt process, man-
agement being aware that it is happening and
either attempting realignment (usually futilely)
or allowing the technology to develop a certain
momentum of its own (for examples see Kanellis
& Paul, 2005; Hanseth & Braa, 1998; Rolland &
Monteiro, 2002). What is less frequently consid-

ered is the notion of, and rationale for, covert IT
implementations that result in “drift,” and the
literature that does exist is primarily concerned
with covert activity with the intention of sabotage
(for examples see Gordon, 1996; Conti, 2005;
Verton, 2001; Graham, 2004).

Such covert activity, whether for altruistic
or subversive purposes, necessitates a degree of
improvisation—using current resources to create
new forms and order from tools and materials at
hand, such an approach has been defined by an-
thropologists as “bricolage” (Levi-Strauss, 1966).
When considering information systems bricolage,
“materials at hand” are usually considered to be
information technology hardware and software
artefacts. However, it has also been suggested
that the use of networking with preexisting pro-
fessional and personal contacts is also a form of
“network bricolage” (Mintzberg, 1994; Moorman
& Miner, 1998; Baker, Miner, & Eesley, 2003).

reseArch desIgn

To examine covert EUD activity within an
organisation from multiple stakeholder perspec-
tives requires an understanding of the social
and contextual relationships that influence the
organisation; there can be no single explanation
of success. Our epistemological assumptions are
that no individual account of social reality can be
proven correct. Therefore, the research method
employed has been interpretivist, with the aim be-
ing to understand the perspectives of the various
stakeholders and the historical and socially situ-
ated contexts in which they reside (Hirschheim,
Klein, & Lyytinen, 1996). The opportunity to
gain access to a covert end user developer group
emerged during the course of a wider longitudinal
study that was undertaken by the author and a
postgraduate student that examined the effect on
various stakeholders of implementing IT solutions
in small- to medium-sized enterprises (SMEs).
The postgraduate student was employed by one

738

Covert End User Development

of the studied SMEs (PublishCo) and became
one of the covert EUDs, simultaneously explor-
ing the dynamics and rationale for EUD whilst
repeatedly intervening and stimulating change.
Therefore, the research employed participatory
action research: “…members of the organisation
we study are actively engaged in the quest for in-
formation and ideas to guide their future actions”
(Whyte, Greenwood, & Lazes, 1991). The research
largely complied with the major characteristics
of information systems action research as identi-
fied by Baskerville (1999) and Baskerville and
Wood-Harper (1996). However, there is one area
in which the researchers did not fully conform
to the established principles for action research:
informed consent. Whilst formal consent from
PublishCo’s management to study the effects of
the introduction of IT into the organisation was
gained, as the research evolved into a more spe-
cific study on covert EUD the researchers were
faced with a moral dilemma—whether to inform
management of the covert activity or whether
to abuse management confidence and collude
rather than confess. During the rest of this paper
we will discuss how this dilemma was accom-

modated, and it is up to the reader to decide if
we acted morally.

Field study: publishco

PublishCo is a small publishing house established
in 1895, and it is involved in the publication of niche
specialist magazines for the pet owning, breeding,
and exhibiting community. Circulation is global,
although the customer base at the start of the
fieldwork was largely European. Over the course
of 4 years data has been collected from multiple
levels and perspectives across the organisation,
from technology suppliers and from customers.
The findings are the results from 4 years of field
diaries, over 200 hours of transcribed interviews
and numerous hours of observation.

This paper reports on the covert develop-
ment of a Web-based portal that has resulted in
system integration across the company, and has
contributed to increasing PublishCo’s revenue by
approximately 60%, improved the efficiency of the
company’s processes, built better customer rela-
tions, and simultaneously improved the working
lives and morale of its employees. A summary of

Stakeholder
Groups

Predevelopment System Development System Implementation

Internal
End User
Developer

Characteristics
Entrepreneurial
Personal or financial reward
Role/influences
Participative approach
Enrolling management
Revision of organisation and IS, based
on previous external experience,
current education, etc.
Quote
“Web publishing is the way forward for all
niche magazines” (Emp1). “We’ve only
got a single web page with our contact
details… it’s too dated” (Emp2)

Characteristics
Risk taking.
Role/influences
External stakeholders—developer
/software vendor, customers,
competitors
Access to technology—beta-software,
packages
External promotional events and
training
Quote”There was so much to
implement and limited resources so
illegal software was the only solution”
(Emp3)

Characteristics
Efficiency gains
Technical rationalisation (networking,
desktop, etc.)
Role / influences
Recognition of need to manage &
integrate technology
Upgrade to reflect changing use
Quote
‘as functionality was released

customers started using it straight
away, it was obvious immediately
that the decision to move online
was the right one … we’re always
adding new things, it changes
almost weekly (Emp2)

Table 1. Emerging characteristics, roles and influences for stakeholders in covert end user development

(continued on following page)

 739

Covert End User Development

the various stakeholders’ roles and perspectives
is presented in Table 1.

IMplIcAtIons oF coVert end
user deVelopMent

Within the limitations of this field study, by con-
sidering the rationale and world views of these
disparate groups who have all embraced EUD as

a means of moving down a technology “path,”
a model for harnessing end user development
activity emerges. The internal covert developers
viewed the technology as emancipatory. They saw
the technology as an opportunity to change the
organisation’s business model and introduce a new
revenue stream, thereby potentially increasing
sales turnover and hence commission. However,
in the portal development the technical artefacts
themselves became the technology path driver,

Management

May not be aware EUDs occurring

Characteristics
Willingness to listen to strategic
technologist
Role/influences
Trust change agent—internal or
external
Change-friendly climate
Encourage autonomous “can do”
employees
Quote
“We were really wary of the developing
a comprehensive website, especially
as the dotcom catastrophe was just
happening” (Man2)

Characteristics
Radical change (large or small scale)
Business-led development
Role/influences
Acceptance of new direction
Commit to technology education
Technology as +ve lever for social
change within the organisation
Quote
“We can not envisage our customers
using a website, their largely older,
we don’t expect them to be interested
in an online site … we regard
the development as a necessary
commercial distraction” (Man1)

Characteristics
Financial commitment
Technology management
Role / influences
Availability of financial support for
ongoing implementation
Ensure legality of EUD systems
Vision alignment with business,
organization and technology strategies
Quote
‘the web site has made a significant
difference to our business, the
discussion forums keep all of us
abreast of what’s going on in [the field]
and we’re [management] now actively
contributing to those discussions’
(Man2)

External IT
Agencies

Characteristics
Long term commitment to organisation
End user focussed
Role/influences
Long term financial gain
Participative approach
Quote”We needed to develop
a reference site, so PublishCo
implementation was an ideal
opportunity” (Salesman3)

Characteristics
Exploratory, risky development (large
or small scale)
Role/Influences
Technology & training provider
Quote
“At the time we didn’t see the effect
that using lots of different tools would
have, we wanted a reference site and
believed using those tools was a means
to an end” (Salesman3)

Characteristics
Educator
Roles / Influences
Training
Emerging technology vision
Quote
‘we expected to use the site as a sales
example but the end users have been
using all sorts of free resources to
cobble together a site that’s not as
professional looking as we’d hoped
for’ (Salesman2

External End
Users/
Customers

Characteristics
Innovators
Role/influences
Stimulate technology vision
Quote
“Online dog breeding forums were
starting to emerge but really very few
dog breeders were talking on them”
(Customer2)

Characteristics
Reviewers
Testers
Role/influences
External influences

Characteristics
Explorers
Role / influences
Technology ‘path’ leaders
Quote
‘the portal effectively gave a voice to
the community’ (Customer5)

Table 1. continued

740

Covert End User Development

and as the end user developers gained enthusi-
asm and technical knowledge they introduced
more, disparate functionality into the portal,
and the technology developed a momentum of
its own. These disparate elements now define
the portal—its quirky, eclectic style clearly dif-
ferentiates it from the competition and have made
it the market leader. The IT consultants also as-
sumed the role of covert developers. The usual
assumption is that IT consultants view technical
implementations as a source of income, yet in
the presented study the implementation also
provided them with a learning opportunity. They
were prepared to work with internal, budding
developers to provide them with the requisite
skills to ensure the systems could evolve with the
business. However, they also actively deceived
management by presenting illusionary demon-
strations and condoned or instigated the use of
illegal software. Management’s interpretation
of the emerging technology was as a distraction
and cost overhead. The end users and consultants
perceived that they had limited understanding of
the presentations and conversations that took place

regarding technology, and subsequent interviews
confirmed that members of management had
sought advice from family members, personal
friends, or peer networks rather than question
their employees or contracted IT consultants.
However, it emerged that they were aware that
some covert development was occurring and
chose to allow it to remain underground rather
than stifle the proactivity that their employees
were demonstrating. Customers’ interpretation
of the technologies has been as communication
enabler. The portal facilitates communication in
many directions: customer to customer, customer
to journalist, customer to management, customer
to advertiser. Indeed, it could be argued that the
customer has become the final technology path
driver: Functionality is added or removed from
the portal dependent on customer use, editorial is
driven by their discussion forum conversations,
whilst the content of the online directories is cre-
ated and uploaded by the customers themselves. As
the portal develops so it is interpreted in different
ways, including a sales forum (extensive online
directories), an organisational tool (calendar of

Technology
‘Path’

Stakeholders: Developers Management End
Users Suppliers Consultants
Designers Customers ….

Artefacts: Design Tools Software
Hardware, Regulations,
Procedures, Knowledge ….

Technology Analyse Design Implement
Development: Test Evaluate Launch
 Maintain ….

Figure 1. Technology path

 741

Covert End User Development

events), and a dating agency (putting readers with
similar requirements in touch for the purposes of
pursuing their niche interest).

Reflecting on the findings of the field study,
our inquiry illustrates that (a) covert EUD may
be driven by a wider stakeholder group than the
end user developers themselves, and (b) although
EUD activity is traditionally seen as a microlevel
activity, the challenge is to harness the developing
technical artefacts to achieve maximum business
benefit without jeopardizing the stability of the
organisation as a whole. We discuss these impli-
cations in turn.

The traditional view of EUD is that the activ-
ity is small scale and undertaken to satisfy end
users’ own needs. Yet as end users become more
technically sophisticated and as technology itself
becomes more homogeneous, user friendly and re-
configurable, so a wider set of stakeholder groups
are gaining common or easily transferable techni-
cal know-how. This allows traditionally disparate
stakeholder groups from both inside and outside
organisations to act collectively in covert activ-
ity; in the field study, transferred technological
know-how enabled the internal end users and the
technology vendors to work together to covertly
developed information systems solutions. Indeed,
whilst the ultimate level of end user involvement
has traditionally been seen as the end user taking
ownership of the system and becoming the devel-
oper himself (Cheney et al., 1986), it is feasible for
external stakeholder groups to effectively become
the end user developer. In the field study, as the
customer stakeholder group has gained technical
know-how, it has become able to drive the portal’s
ever changing design, and it provides the content
in the form of uploaded reviews, customer profiles,
and commentary via discussion forums. Indeed,
the portal could be viewed as an emerging wiki
or blog-like environment owned by PublishCo
(Leuf & Cunningham, 2001).

reFerences

Baker, T., Miner, A. S., & Eesley, D. T. (2003).
Improvising firms: Bricolage, account giving and
improvisational competencies in the founding
process. Research Policy, 32, 255-276.

Baskerville, R. (1999). Investigating information
systems with action research. Communications of
the Association for Information Systems, 2.

Baskerville, R., & Wood-Harper, A. T. (1996). A
critical perspective on action research as a method
for information systems research. Journal of
Information Technology, 11, 235-246.

Cheney, P. H., Mann, R. I., & Amoroso, D. L.
(1986). Organizational factors affecting the suc-
cess of end user computing. Journal of Manage-
ment Information Systems, 3, 65-80.

Ciborra, C., Braa, K., Cordella, A., Dahlbom, B.,
Failla, A., Hanseth, O., Hepso, V., Ljungberg, J.,
Monteiro, E., & Simon, K. A. (2000). From control
to drift. Oxford: Oxford University Press.

Conti, G. (2005). Why computer scientists should
attend hacker conferences. Communications of the
Association for Information Systems, 48, 23-24.

Dosi, G. (1982). Technological paradigms and
technological trajectories. Research Policy, 11,
147-162.

Gordon, S. (1996). In The 6th International Virus
Bulletin ConferenceBrighton, UK.

Graham, P. (2004). Hackers and painters: Big
ideas from the computer age. O’Reilly.

Hanseth, O., & Braa, K. (1998). In R. Hirschheim,
M. Newmann, & J. I. DeGross (Eds.), Proceedings
of the 19th International Conferenceon Informa-
tion Systems (pp. 188-196). Helsinki, Finland.

Hirschheim, R., Klein, H. K., & Lyytinen, K.
(1996). Exploring the intellectual structures of
information systems development: A social action

742

Covert End User Development

theory analysis. Accounting, Management and
Information Technologies, 6, 1-64.

Jawahar, I. M., & Elango, B. (2001). The effect
of attitudes, goal setting and self efficacy on end
user performance. Journal of End User Comput-
ing, 13, 40-45.

Kanellis, P., & Paul, R. J. (2005). User behaving
badly: Phenomena and paradoxes from an inves-
tigation into information systems misfit. Journal
of Organizational and End User Computing, 17,
64-91.

Kemp, R., Schot, J., & Hoogma, R. (1988). Re-
gime shifts to sustainability through process of
niche formation: the approach of strategic niche
management. Technology Analysis & Strategic
Management, 10, 175-195.

Leuf, B., & Cunningham, W. (2001). The wiki
way: Quick collaboration on the Web. Addison
Wesley Longman.

Levi-Strauss, C. (1966). The savage mind. Oxford:
Oxford University Press.

MacKenzie, D., & Wajcman, J. (1985). The social
shaping of technology. Open University Press.

McGill, T. (2004). The effect of end user develop-
ment on end user success. Journal of Organiza-
tional and End User Computing, 16, 41.

McLean, E. R., Kapperlman, L. A., & Thompson,
J. P. (1993). Converging end user and corporate
computing. Communications of the Association
for Information Systems, 36, 76-91.

Mintzberg, H. (1994). The rise and fall of strategic
planning. New York: Free Press.

Moorman, C., & Miner, A. S. (1998). Organiza-
tional improvisation and organizational memory.
Academy of Management Review, 23, 698-723.

Nelson, R. R., & Todd, P. (1999). Strategies for
managing EUC on the Web. Journal of End User
Computing, 11, 24-31.

Orlikowski, W. J. (1996). Improvising organiza-
tional transformation over time: A situated change
perspective. Information Systems Research, 7,
63-92.

Ouellette, T. (July 26, 1999). Giving users the keys
to their Web accounts. Computerworld, 66-67.

Rolland, K. H., & Monteiro, E. (2002). Balanc-
ing the local and the global in infrastructural
information systems. The Information Society,
18, 87-100.

Sauer, C., & Burn, M. J. (1997). The Pathology of
Alignment. In C. Sauer & P. Yetton (Eds.), Steps
to the Future. San Francisco: Jossey Bass.

Verton, D. (2001). Hacker conferences highlight
security threats. PC World.

Webopedia (2005). Retrieved September 14, 2006,
from www.webopedia.com

Whyte, W. F., Greenwood, D. J., & Lazes, P.
(1991). In W. F. Whyte (Ed.), Participatory action
research (pp. 19-55). Newbury Park, CA: Sage.

endnotes

1 Alternative terms in the literature are “re-
gimes” (Kemp et al, 1998), or “trajectories”
(Dosi, 1982)

2 A Wiki is a collaborative Web site comprised
of the perpetual collective work of many
authors that anyone is allowed to edit, delete,
or modify. A blog is similar in structure but
does not allow visitors to change the original
posted material, only to add comments to
the original content (Webopedia, 2005).

This work was previously published in Journal of Organizational and End User Computing, Vol. 19, Issue 1, edited by M.
Mahmood, pp. 62-71, copyright 2007 by Idea Group Publishing (an imprint of IGI Global).

 743

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.14
A Social Ontology for

Integrating Security and
Software Engineering

E. Yu
University of Toronto, Canada

L. Liu
Tsinghua University, China

J. Mylopoulos
University of Toronto, Canada

AbstrAct

As software becomes more and more entrenched
in everyday life in today’s society, security looms
large as an unsolved problem. Despite advances
in security mechanisms and technologies, most
software systems in the world remain precarious
and vulnerable. There is now widespread recogni-
tion that security cannot be achieved by technol-
ogy alone. All software systems are ultimately
embedded in some human social environment.
The effectiveness of the system depends very
much on the forces in that environment. Yet there
are few systematic techniques for treating the
social context of security together with technical
system design in an integral way. In this chapter,
we argue that a social ontology at the core of a

requirements engineering process can be the basis
for integrating security into a requirements driven
software engineering process. We describe the i*
agent-oriented modelling framework and show
how it can be used to model and reason about
security concerns and responses. A smart card
example is used to illustrate. Future directions
for a social paradigm for security and software
engineering are discussed.

IntroductIon

It is now widely acknowledged that security can-
not be achieved by technological means alone. As
more and more of our everyday activities rely on
software, we are increasingly vulnerable to lapses

744

A Social Ontology for Integrating Security and Software Engineering

in security and deliberate attacks. Despite ongoing
advances in security mechanisms and technolo-
gies, new attack schemes and exploits continue
to emerge and proliferate.

Security is ultimately about relationships
among social actors — stakeholders, system users,
potential attackers — and the software that are
instruments of their actions. Nevertheless, there
are few systematic methods and techniques for
analyzing and designing social relationships as
technical systems alternatives are explored.

Currently, most of the research on secure
software engineering methods focuses on the
technology level. Yet, to be effective, software
security must be treated as originating from high-
level business goals that are taken seriously by
stakeholders and decision makers making strategic
choices about the direction of an organisation.
Security interacts with other high-level business
goals such as quality of service, costs, time-to-
market, evolvability and responsiveness, reputa-
tion and competitiveness, and the viability of
business models. What is needed is a systematic
linkage between the analysis of technical systems
design alternatives and an understanding of their
implications at the organisational, social level.
From an analysis of the goals and relationships
among stakeholders, one seeks technical systems
solutions that meet stakeholder goals.

In this chapter, we describe the i* agent-ori-
ented modelling framework and how it can be used
to treat security as an integral part of software
system requirements engineering. The world is
viewed as a network of social actors depending
on each other for goals to be achieved, tasks to be
performed, and resources to be furnished. Each
actor reasons strategically about alternate means
for achieving goals, often through relationships
with other actors. Security is treated as a high-level
goal held by (some) stakeholders that need to be
addressed from the earliest stages of system con-
ception. Actors make tradeoffs among competing
goals such as functionality, cost, time-to-market,
quality of service, as well as security.

The framework offers a set of security re-
quirements analysis facilities to help users, ad-
ministrators, and designers better understand the
various threats and vulnerabilities they face, the
countermeasures they can take, and how these can
be combined to achieve the desired security results
within the broader picture of system design and
the business environment. The security analysis
process is integrated into the main requirements
process, so that security is taken into account
from the earliest moment. The technology of
smart cards and the environment surrounding its
usage provides a good example to illustrate the
social ontology of i*.

In the next section, we review the current chal-
lenges in achieving security in software systems,
motivating the need for a social ontology. Given
that a social modelling and analysis approach
is needed, what characteristics should it have?
We consider this in the following section. The
two subsequent sections describe the ontology
of the i* strategic actors modelling framework
and outline a process for analyzing the security
issues surrounding a smart card application. The
last section reviews several areas of related work
and discusses how a social ontology framework
can be complementary to these approaches.

bAckground

Despite ongoing advances in security technolo-
gies and software quality, new vulnerabilities
continue to emerge. It is clear that there can be
no perfect security. Security inevitability involves
tradeoffs (Schneier, 2003). In practice, therefore,
all one can hope for is “good enough” security
(Sandhu, 2003).

But how does one determine what is good
enough? Who decides what is good enough?
These questions suggest that software and infor-
mation security cannot be addressed by technical
specialists alone. Decisions about security are
made ultimately by stakeholders — people who

 745

A Social Ontology for Integrating Security and Software Engineering

are affected by the outcomes — users, investors,
the general public, etc. — because the tradeoffs
are about how their lives would be affected. In
electronic commerce, consumers decide whether
to purchase from a vendor based on the trust-
worthiness of the vendor’s business and secu-
rity practices. Businesses decide how much and
where to invest on security to reduce exposure
to a tolerable level. In healthcare, computerized
information management can streamline many
processes. But e-health will become a reality only
if patients and the general public are satisfied that
their medical records are protected and secure.
Healthcare providers will participate only if li-
ability concerns can be adequately addressed.

Tradeoffs are being made by participants
regarding competing interests and priorities.
Customers and businesses make judgments
about what is adequate security for each type of
business, in relation to the benefits derived from
online transactions. Patients want their personal
and medical information to be kept private, but
do not want privacy mechanisms to interfere with
the quality of care. In national defense, secrecy is
paramount, but can also lead to communication
breakdown. In each case, security needs to be
interpreted within the context of the social setting,
by each stakeholder from his/her viewpoint.

Current approaches to security do not allow
these kinds of tradeoffs to be conveyed to system
developers to guide design. For example, UML
extensions for addressing security (see Chapter
I for a review) do not lend themselves well to the
modelling of social actors and their concerns about
alternate security arrangements, and how they
reason about tradeoffs. Access control models
can specify policies, but cannot support reason-
ing about which policies are good for whom and
what alternate policies might be more workable.
They cannot explain why certain policies meet
with resistance and non-compliance.

Each of the common approaches in security
modelling and analysis focuses on selective aspects
of security, which are important in their own right,

but cannot provide the guidance needed to achieve
“good enough” overall security. Most approaches
focus on technical aspects, neglecting the social
context, which is crucial for achieving effective
security in practice. The technical focus is well
served by mechanistic ontology (i.e., concepts that
are suitable for describing and reasoning about
automated machinery — objects, operations,
state transitions, etc.). The importance of social
context in security suggests that a different set
of concepts is needed. From the previous discus-
sion, we propose that the following questions are
important for guiding system development in the
face of security challenges:

• Who are the players who have an interest
in the intended system and its surround-
ing context? Who would be affected by a
change?

• What are their strategic interests? What are
their business and personal objectives? What
do they want from the system and the other
players?

• What are the different ways in which they
can achieve what they want?

• How do their interests complement or in-
terfere with each other? How can players
achieve what they want despite competing
or conflicting interests?

• What opportunities exist for one player
to advance its interests at the expense of
others? What vulnerabilities exist in the
way that each actor envisions achieving its
objectives?

• How can one player avoid or prevent its
interests from being compromised by oth-
ers?

These are the kind of questions that can di-
rectly engage stakeholders, helping them uncover
issues and concerns. Stakeholders need the help
of technical specialists to think through these
questions, because most strategic objectives are
accomplished through technological systems.

746

A Social Ontology for Integrating Security and Software Engineering

Stakeholders typically do not know enough
about technology possibilities or their implica-
tions. Technologists do not know enough about
stakeholder interests to make choices for them. In
order that stakeholder interests can be clarified,
deliberated upon, and conveyed effectively to
system developers, a suitable modelling method
is needed to enable stakeholders and technologists
to jointly explore these questions. The answers to
these questions will have direct impact on system
development, as they set requirements and guide
technical design decisions.

We argue therefore that a social ontology is
needed to enable security concerns to become a
driving force in software system development. In
the next section, we explore the requirements for
such a social ontology.

ApproAch

If a treatment of security requires attention to
the social context of software systems, can the
social analysis be given full weight in a software
engineering methodology that is typically domi-
nated by a mechanistic worldview? How can the
social modelling be reconciled and integrated
with mainstream software modelling?

It turns out that a social paradigm for software
system analysis is motivated not only by security
concerns, but is consistent with a general shift in
the context of software and information systems.
The analysis of computers and information sys-
tems used to be machine-centric when hardware
was the precious resource. The machine was at the
centre, defining the human procedures and struc-
tures needed to support its proper functioning.
Today, hardware and software are commoditized
and distributed everywhere. Human practices
and imagination determine how hardware and
software are put to use, not the other way round.
Pervasive networking, wired and wireless, has
also contributed to blurring the notion of “system.”
Computational resources can be dynamically

harnessed in ad hoc configurations (e.g., through
Web services protocols in service-oriented archi-
tectures) to provide end-to-end services for a few
moments, then dissolved and reconfigured for
another ad hoc engagement. Even computational
entities, in today’s networked environment, are
better viewed as participants in social networks
than as fixed components in a system with pre-
defined structure and boundary. Increasingly, the
computational services that we desire will not be
offered as a single pre-constructed system, but by
a conglomeration of interacting services operated
by different organisations, possibly drawing on
content owned by yet other providers.

The questions raised in the previous section
arise naturally from today’s open networked
environments, even if one were not focusing on
security concerns. The relevance of a social ontol-
ogy is therefore not unique to security. Competing
interests and negative forces that interfere with
one’s objectives are ever present in every organisa-
tion and social setting. They are accentuated in an
open network environment. In security scenarios,
the negative forces are further accentuated as they
materialize into full-fledged social structures, in-
volving malicious actors collaborating with other
actors, engaging in deliberate attacks, possibly
violating conventions, rules, and laws. Security
can therefore be seen as covering the more severe
forms of a general phenomenon. Competing and
conflicting interests are inherent in social worlds.
Negative forces do not come only from well identi-
fied malicious external agents, but can be present
legitimately within one’s organisation, among
one’s associates, and even among the multiple
roles that one person may play. It may not be
possible to clearly separate security analysis from
the analysis of “normal” business. We conclude,
therefore, that a social ontology would serve well
for “normal” business analysis, recognizing the
increasingly “social” nature of software systems
and their environments. A social ontology offers
a smooth integration of the treatment of normal
and security scenarios, as the latter merely refer

 747

A Social Ontology for Integrating Security and Software Engineering

to one end of a continuum covering positive and
negative forces from various actors.

Given this understanding, the social ontology
should not be preoccupied with those concepts
conventionally associated with security. For
example, the concepts of asset, threat, attack,
counter-measure are key concepts for security
management. In the social ontology we aim to
construct, we do not necessarily adopt these as
primitive concepts. Instead, the social ontology
should aim to be as general as possible, so that the
concepts may be equally applicable to positive as
well as negative scenarios. The general ontology
is then applied to security. Special constructs
unique to security would be introduced only if the
expressiveness of the general constructs is found
to be inadequate. The principle of Occam’s razor
should be applied to minimize the complexity
of the ontology. If desired, shorthand notations
for common recurring patterns can be defined
in terms of the primitives. The premises behind
a social ontology are further discussed in Yu
(2001a, 2001b).

bAsIc concepts oF the i*
strAtegIc ModellIng
FrAMework

The i* framework (Yu, 1993, 1997) proposes an
agent oriented approach to requirements engineer-
ing centering on the intentional characteristics of
the agent. Agents attribute intentional properties
such as goals, beliefs, abilities, commitments to
each other and reason about strategic relationships.
Dependencies give rise to opportunities as well
as vulnerabilities. Networks of dependencies are
analyzed using a qualitative reasoning approach.
Agents consider alternative configurations of
dependencies to assess their strategic positioning
in a social context. The name i* (pronounced eye-
star) refers to the concept of multiple, distributed
“intentionality.”

The framework is used in contexts in which
there are multiple parties (or autonomous units)
with strategic interests, which may be reinforc-
ing or conflicting in relation to each other. The i*
framework has been applied to business process
modelling (Yu, 1993), business redesign (van
der Raadt, Gordijn, & Yu, 2005; Yu et al., 2001),
requirements engineering (Yu, 1997), architecture
modelling (Gross & Yu, 2001), COTS selection
(Franch & Maiden, 2003), as well as to informa-
tion systems security.

There are three main categories of concepts:
actors, intentional elements, and intentional links.
The framework includes a strategic dependency
(SD) model — for describing the network of rela-
tionships among actors, and a strategic rationale
(SR) model — for describing and supporting the
reasoning that each actor has about its relation-
ships with other actors.

Actor

In i*, an actor () is used to refer generically to
any unit to which intentional dependencies can
be ascribed. An actor is an active entity that car-
ries out actions to achieve its goals by exercising
means-ends knowledge. It is an encapsulation of
intentionally, rationality and autonomy. Graphi-
cally, an actor is represented as a circle, and may
optionally have a dotted boundary, with intentional
elements inside.

Intentional elements: goal, softgoal,
task, resource and belief

The intentional elements in i* are goal, task,
softgoal, resource and belief. A goal () is a
condition or state of affairs in the world that
the stakeholders would like to achieve. A goal
can be achieved in different ways, prompting
alternatives to be considered. A goal can be a
business goal or a system goal. Business goals
are about the business or state of the affairs the

748

A Social Ontology for Integrating Security and Software Engineering

individual or organisation wishes to achieve
in the world. System goals are about what the
target system should achieve, which, generally,
describe the functional requirements of the target
system. In the i* graphical representation, goals
are represented as a rounded rectangle with the
goal name inside.

A softgoal () is typically a quality (or non-
functional) attribute on one of the other intentional
elements. A softgoal is similar to a (hard) goal
except that the criteria for whether a softgoal is
achieved are not clear-cut and a priori. It is up
to the developer to judge whether a particular
state of affairs in fact sufficiently achieves the
stated softgoal. Non-functional requirements,
such as performance, security, accuracy, reus-
ability, interoperability, time to market and cost
are often crucial for the success of a system. In
i*, non-functional requirements are represented
as softgoals and addressed as early as possible in
the software lifecycle. They should be properly
modelled and addressed in design reasoning before
a commitment is made to a specific design choice.
In the i* graphical representation, a softgoal is
shown as an irregular curvilinear shape.

Tasks () are used to represent the specific
procedures to be performed by agents, which
specifies a particular way of doing something. It
may be decomposed into a combination of sub-
goals, subtasks, resources, and softgoals. These
sub-components specify a particular course of
action while still allowing some freedom. Tasks
are used to incrementally specify and refine
solutions in the target system. They are used to
achieve goals or to “operationalize” softgoals.
These solutions provide operations, processes,
data representations, structuring, constraints, and
agents in the target system to meet the needs stated
in the goals and softgoals. Tasks are represented
graphically as a hexagon.

A resource () is a physical or informational
entity, which may serve some purpose. From
the viewpoint of intentional analysis, the main

concern with a resource is whether it is available.
Resources are shown graphically as rectangles.

The belief () construct is used to represent
domain characteristics, design assumptions and
relevant environmental conditions. It allows do-
main characteristics to be considered and properly
reflected in the decision making process, hence
facilitating later review, justification, and change
of the system, as well as enhancing traceability.
Beliefs are shown as ellipses in i* graphical
notation.

strategic dependency Model

A strategic dependency (SD) model consists of a
set of nodes and links. Each node represents an
actor, and each link between two actors indicates
that one actor depends on the other for something
in order that the former may attain some goal. We
call the depending actor the depender, and the
actor who is depended upon the dependee. The
object around which the dependency relationship
centers is called the dependum. By depending
on another actor for a dependum, an actor (the
depender) is able to achieve goals that it was not
able to without the dependency, or not as easily or
as well. At the same time, the depender becomes
vulnerable. If the dependee fails to deliver the
dependum, the depender would be adversely
affected in its ability to achieve its goals. A de-
pendency link () is used to describe such
an inter-actor relationship. Dependency types are
used to differentiate the kinds of freedom allowed
in a relationship.

In a goal dependency, an actor depends on
another to make a condition in the world come
true. Because only an end state or outcome is
specified, the dependee is given the freedom to
choose how to achieve it.

In a task dependency, an actor depends on an-
other to perform an activity. The depender’s goal
for having the activity performed is not given. The
activity description specifies a particular course

 749

A Social Ontology for Integrating Security and Software Engineering

of action. A task dependency specifies standard
procedures, indicates the steps to be taken by
the dependee.

In a resource dependency, an actor depends
on another for the availability of an entity. The
depender takes the availability of the resource to
be unproblematic.

The fourth type of dependency, softgoal de-
pendency, is a variant of the goal dependency. It
is different in that there are no a priori, cut-and-
dry criteria for what constitutes meeting the goal.
The meaning of a softgoal is elaborated in terms
of the methods that are chosen in the course of
pursuing the goal. The dependee contributes to
the identification of alternatives, but the deci-
sion is taken by the depender. The notion of the
softgoal allows the model to deal with many of
the usually informal concepts. For example, a
service provider’s dependency on his customer
for continued business can be achieved in dif-
ferent ways. The desired style of continued busi-
ness is ultimately decided by the depender. The
customer’s softgoal dependency on the service
provider for “keep personal information con-
fidential” indicates that there is not a clear-cut
criterion for the achievement of confidentiality.
The four types of dependencies reflect different

levels of freedom that is allowed in the relation-
ship between depender and dependee.

Figure 1 shows a SD model for a generic
smart card-based payment system involving six
actors. This example is adapted from Yu and Liu
(2001). A Card Holder depends on a Card Issuer
to be allocated a smart card. The Terminal Owner
depends on Card Holder to present the card for
each transaction. The Card Issuer in turn depends
on the Card Manufacturer and Software Manu-
facturer to provide cards, devices, and software.
The Data Owner is the one who has control of the
data within the card. He depends on the Terminal
Owner to submit transaction information to the
central database. In each case, the dependency
means that the depender actor depends on the
dependee actor for something in order to achieve
some (internal) goal.

The goal dependency New Account Be Created
from the Card Issuer to the Data Owner means
that it is up to the Data Owner to decide how to
create a new account. The Card Issuer does not
care how a new account is created; what mat-
ters is that, for each card, an account should be
created. The Card Issuer depends on the Card
Holder to apply for a card via a task dependency
by specifying standard application procedures.

Figure 1. Strategic dependency model of a generic smart card system

750

A Social Ontology for Integrating Security and Software Engineering

If the Card Issuer were to indicate the steps for
the Data Owner to create a new account, then the
Data Owner would be related to the Card Issuer
by a task dependency instead.

The Card Issuer’s dependencies on the Card
Manufacturer for cards and devices, the manufac-
turer’s dependencies on Card Issuer for payment
are modelled as resource dependencies. Here the
depender takes the availability of the resource to
be unproblematic.

The Card Holder’s softgoal dependency on
the Card Issuer for Keep Personal Information
Confidential indicates that there is not a clear-cut
criterion for the achievement of confidentiality. In
the Manufacturer’s softgoal dependency on Card
Issuer, Continued Business could be achieved
in different ways. The desired style of continued
business is ultimately decided by the depender.

The strategic dependency model of Figure
1 is not meant to be a complete and accurate
description of any particular smart card system.
It is intended only for illustrating the modelling
features of i*.

In conventional software systems modelling,
the focus is on information flows and exchanges
— what messages actors or system components
send to each other. With the social ontology of i*,
the focus is on intentional relationships — what
are the actors’ expectations and constraints on
each other. Since actors are intentional, strategic,
and have autonomy, they reflect on their relation-
ships with other actors. If these relationships are
unsatisfactory, they will seek alternative ways of
associating with others.

Security concerns arise naturally from this
perspective. A social ontology therefore provides
a way to integrate security into software system
engineering from the earliest stages of conception,
and at a high level of abstraction.

Intentional links

Dependencies are intentional relationships
between actors. Within each actor, we model

intentional relationships in terms of means-ends,
decomposition, contribution, and correlation
links.

• Means-ends links () are used to describe
how goals can be achieved. Each task con-
nected to a goal by a means-ends link is one
possible way of achieving the goal.

• Decomposition links () define the sub-
elements of a task, which can include sub-
tasks, sub-goals, resources, and softgoals.
The softgoals indicate the desired qualities
that are considered to be part of the task.
The sub-tasks may in turn have decomposi-
tion links that lead to further sub-elements.
Sub-goals indicate the possibility of alternate
means of achievement, with means-ends
links leading to tasks.

• A contribution link (→) describes the
qualitative impact that one element has on
another. A contribution can be negative or
positive. The extent of contribution is judged
to be partial or sufficient based on Simon's
concept of satisficing (Simon, 1996), as in
the NFR framework (Chung, Nixon, Yu, &
Mylopoulos, 2000). Accordingly, contribu-
tion link types include: help (positive and
partial), make (positive and sufficient), hurt
(negative and partial), break (negative and
sufficient), some+ (positive of unknown
extent), some- (negative of unknown extent).
Correlation links (dashed arrows) are used
to express contributions from one element to
other elements that are not explicitly sought,
but are side effects.

strategic rationale Model

The strategic rationale (SR) model provides a
detailed level of modelling by looking “inside”
actors to model internal intentional relationships.
Intentional elements (goals, tasks, resources,
and softgoals) appear in SR models not only as
external dependencies, but also as internal ele-

 751

A Social Ontology for Integrating Security and Software Engineering

ments arranged into a predominantly hierarchical
structure of means-ends, task-decompositions and
contribution relationships.

The SR model in Figure 2 elaborates on the
rationale of a Card Manufacturer. The Card
Manufacturer’s business objective Manufacture
Card Hardware is modeled as a “hard” functional
goal (top right corner). Quality requirements
such as Security and Low Cost are represented as
softgoals. The different means for accomplishing
the goal are modeled as tasks. The task Provide
Total Card Solution can be further decomposed
into three sub-components (connected with
task-decomposition links): sub-goal of Get Paid,
sub-task Develop Card Solution, and sub-task
Manufacture Card & Devices. To perform the task
Manufacture Card & Devices, the availability of
Materials need to be taken into consideration,
which is modeled as a resource.

In the model, task node Provide Simple Card
Solution (such as the Millicent solution), and
Provide Total Card Solution (such as the Mondex
solution) are connected to the goal with means-

ends links. This goal will be satisfied if any of
these tasks is satisfied. Provide Total Card Solution
will help the Security of the system (represented
with a Help contribution link to Security), while
Provide Simple Card Solution is considered to have
no significant impact on security if it is applied to
cards with small monetary value. The Simple Card
Solution is good for the goal of Low Cost whereas
the Total Card Solution is bad. This is supported
by the belief that “Total Card Solution, such as
Mondex, is expensive.” Beliefs are usually used
to represent such domain properties, or design
assumption or environmental condition, so that
traceability of evidence of design decision could
be explicitly maintained with the model.

During system analysis and design, softgoals
such as Low Cost and Security [card] are system-
atically refined until they can be operational-
ized and implemented. Unlike functional goals,
nonfunctional qualities represented as softgoals
frequently interact or interfere with each other, so
the graph of contributions is usually not a strict
tree structure (Chung et al., 2000).

Figure 2. Strategic rationale model of card manufacturer

752

A Social Ontology for Integrating Security and Software Engineering

Agents, roles, and positions

To model complex relationships among social
actors, we further define the concepts of agents,
roles, and positions, each of which is an actor, but
in a more specialized sense.

A role () is an abstract actor embodying
expectations and responsibilities. It is an abstract
characterization of the behavior of a social actor
within some specialized context or domain of
endeavor. An agent () is a concrete actor with
physical manifestations, human or machine, with
specific capabilities and functionalities. A set of
roles packaged together to be assigned to an agent
is called a position. A position () is intermediate
in abstraction between a role and an agent, which
often has an organisational flavor. Positions can
COVER roles. Agents can OCCUPY positions. An
agent can PLAY one or more roles directly. The
INS construct is used to represent the instance-
and-class relation. The ISA construct is used to
express conceptual generalization/specialization.
Initially, human actors representing stakeholders
in the domain are identified together with existing
machine actors. As the analysis proceeds, more
actors are identified, including new system agents,
when certain design choices have been made, and
new functional entities are added.

Figure 3 shows some actors in the domain. At
the top, six generic abstract roles are identified,
including the Card Holder, the Terminal Owner, the

Data Owner, the Card Issuer, the Card Manufac-
turer, and the Software Manufacturer. These actors
are modeled as roles since they represent abstrac-
tions of responsibilities and functional units of the
business model. Then concrete agents in smart
card systems are identified. For instance, actors
in a Digital Stored Value Card system include
Customer, Merchant, Subcontractor Company,
and their instances. These agents can play one or
more roles in different smart card systems. Here,
Financial Institution is modeled as a position that
bridges the multiple abstract roles it covers, and
the real world agents occupying it. Initially, hu-
man/organisational actors are identified together
with existing machine actors. As the requirements
analysis proceeds, more actors could be added
in, including new system agents such as security
monitoring system, counter-forgery system, etc.,
when certain design choices have been made, and
new functional entities are added.

An agent is an actor with concrete, physical
manifestations, such as a human individual. An
agent has dependencies that apply regardless of
what role he/she/it happens to be playing. For ex-
ample, in Figure 3, if Jerry, a Card Holder desires
a good credit record, he wants the credit record
to go towards his personal self, not to the posi-
tions and abstract roles that Jerry might occupy
or play. We use the term agent instead of person
for generality, so that it can be used to refer to
human as well as artificial (hardware, software,

Figure 3. Actor hierarchy (roles, positions, and agents) in a smart card system

 753

A Social Ontology for Integrating Security and Software Engineering

or organisational) agents. Customer and Merchant
are represented as agent classes and groups. De-
pendencies are associated with a role when these
dependencies apply regardless of who plays the
role. For example, we consider Card Holder an
abstract role that agents can play. The objective
of obtaining possession of the card, and deciding
when and whether to use it, are associated with
the role, no matter who plays the role.

The INS construct represents the instance-and-
class relation. For example, Mr. Lee’s Convenience
Store is an instance of Merchant, and Jerry is an
instance of Customer. The ISA construct expresses
conceptual generalization/ specialization. For
example, a Subcontractor Company is a kind of
Technical Company. These constructs are used
to simplify the presentation of strategic models
with roles, positions, and agents. There can be
dependencies from an agent to the role it plays.
For example, a Merchant who plays the role of
Terminal owner may depend on that role to attract
more customers. Otherwise, he may choose not
to play that role.

Roles, positions, and agents can each have
subparts. In general, aggregate actors are not
compositional with respect to intentional prop-
erties. Each actor, regardless of whether it has
parts, or is part of a larger whole, is taken to be
intentional. Each actor has inherent freedom and
is therefore ultimately unpredictable. There can
be intentional dependencies between the whole
and its parts (e.g., a dependency by the whole on
its parts to maintain unity).

doMAIn requIreMents
AnAlysIs wIth i*

We now illustrate how the social ontology of i* al-
lows security issues to be identified and addressed
early in the requirements process. We continue
with the example of smart card systems design.
Security in smart card systems is a challenging
task due to the fact that different aspects of the

system are not under a single trust boundary. Re-
sponsibilities are split among multiple parties. The
processor, I/O, data, programs, and network may
be controlled by different, and potentially hostile,
parties. By discussing the security ramifications of
different ways of splitting responsibilities, we aim
to show how the proposed modelling framework
can help produce a proper understanding of the
security systems that employ smart cards. Figure
4 shows the basic steps to take during the process
of domain requirements analysis with i*, before we
consider security. The process can be organised
into the following iterative steps.

Actor Identification

In step (1), the question “who is involved in the
system?” will be answered. According to the defi-
nition given above, we know that all intentional
units may be represented as actors. For example,
in any smart card based systems, there are many
parties involved. An actor hierarchy composed
of roles, positions, and agents such as the ones
in Figure 3 is created.

Goal/Task Identification

In the step (2) of the requirements analysis process,
the question “what does the actor want to achieve?”

Figure 4. Requirements elicitation process with
i*

(1) Actor Identification

(2) Goal/Task Identification

(4) Dependency Identification

(3(5

754

A Social Ontology for Integrating Security and Software Engineering

will be answered. As shown in the strategic ra-
tionale (SR) model of Figure 2, answers to this
question can be represented as goals capturing
the high-level objectives of agents. During system
analysis and design, softgoals such as low cost and
security are systematically refined until they can
be operationalized and implemented. Using the
SR model, we can reason about each alternative’s
contributions to high-level non-functional qual-
ity requirements including security, and possible
tradeoffs.

The refinements of goals, tasks and softgoals
(step (3) in Figure 4) are considered to have reached
an adequate level once all the necessary design
decisions can be made based on the existing in-
formation in the model. The SR model in Figure
3 was created by running through steps (1), (2),
(3) in Figure 4 iteratively.

Strategic Dependency Identification

In the step (4) of the requirements analysis pro-
cess, the question “how do the actors relate to
each other?” will be answered. Figure 1 shows
the SD model for a generic smart card-based
payment system. By analyzing the dependency
network in a Strategic Dependency model, we can
reason about opportunities and vulnerabilities.
A Strategic Dependency model can be obtained
by hiding the internal rationales of actors in a
Strategic Rationale model. Thus, the goal, task,
resource, softgoal dependencies in a Strategic
Dependency model can be seen as originating
from SR models.

The kinds of analysis shown above answers
questions such as “who is involved in the system?
What do they want? How can their expectations
be fulfilled? And what are the inter-dependencies
between them?” These answers initially provide
a sketch of the social setting of the future system,
and eventually result in a fairly elaborate behav-
ioral model where certain design choices have
already been made. However, another set of very
important questions has yet to be answered (i.e.,

what if things go wrong)? What if some party
involved in the smart card system does not be-
have as expected? How bad can things get? What
prevention tactics can be considered?” These are
exactly the questions we want to answer in the
security requirements analysis.

securIty requIreMents
AnAlysIs wIth i*

We now extend the process to include attacker
analysis, vulnerability analysis, and countermea-
sure analysis. The dashed lines and boxes on the
right hand side of Figure 5 indicate a series of
analysis steps to deal with security. These steps
are integrated into the basic domain requirements
engineering process, such that threats from poten-
tial attackers are anticipated and countermeasures
for system protection are sought and equipped
wherever necessary. Each of the security related
analysis steps (step [1] to [7]) will be discussed
in detail in the following subsections.

Attacker Analysis

The attacker analysis steps aim to identify poten-
tial system abusers and their malicious intents.
The basic premise here is that all the actors are
assumed “guilty until proven innocent.” In other
words, given the result of the basic i* requirements
modelling process, we now consider any one of
the actors (roles, positions, or agents) identified
so far can be a potential attacker to the system
or to other actors. For example, we want to ask,
“In what ways can a terminal owner attack the
system? How will he benefit from inappropriate
manipulation of the card reader, or transaction
data?”

In this analysis, each actor is considered in turn
as an attacker. This attacker inherits the intentions,
capabilities, and social relationships of the cor-
responding legitimate actor (i.e., the internal goal
hierarchy and external dependency relationships

 755

A Social Ontology for Integrating Security and Software Engineering

in the model). This may serve as a starting point
of a forward direction security analysis (step [1]
in Figure 5). A backward analysis starting from
identifying possible malicious intents and valu-
able business assets can also be done.

Proceeding to step [2] of the process, for each
attacker identified, we combine the capabilities
and interests of the attacker with those of the
legitimate actor. For simplicity, we assume that
an attacker may be modeled as a role or an agent.
To perform the attacker analysis, we consider that
each role may be played by an attacker agent,
each position may be occupied by an attacker
agent, and that each agent may play an attacker
role (Figure 6). The analysis would then reveal
the commandeering of legitimate resources and
capabilities for illicit use. The intents and strate-
gies of the attackers are explicitly represented
and reasoned about in the models.

This approach treats all attackers as insider
attackers, as attacks are via associations with
normal actors. We set a system boundary, then
exhaustively search for possible attackers. Ran-
dom attackers such as Internet hackers/crackers,
or attackers breaking into a building can also be
dealt with by being represented as sharing the
same territory with their victim. By conducting

analysis on the infrastructure of the Internet,
we may identify attackers by treating Internet
resources as resources in the i* model. By conduct-
ing building security analysis, break-in attackers,
or attackers sharing the same workspace can be
identified. Alternatively, we could adopt an op-
posite assumption, i.e., assume there is a trusted
perimeter for each agent, all the potential threat
sources within this trusted perimeter are ignored,
measures will only be taken to deal with threats
from outside of the perimeter.

As shown in the Strategic Rationale model in
Figure 7, the motives of Attacker in the smart card

Figure 5. Security requirements elicitation process with i*

Figure 5

(4)Dependency Identification

(3)

(5)
Vulnerability Analysis[3]

(2)Goal/Task Identification

Attacker Identification [1]

[6]

Malicious Intent Identification [2]

Attacking Measure Identification[4]

Countermeasure Identification[5]

(1)Actor Identification

[7]

Figure 6. Modelling attackers in strategic actors
model

⇒

⇒

⇒

756

A Social Ontology for Integrating Security and Software Engineering

system may be modeled as intentional elements
in an i* model. An attacker may be motivated by
financial incentives (softgoal Be Profitable), or
by non-financial ones (e.g., Desire for Notoriety).
These malicious intents may lead to various attack
strategies, such as Financial Theft, Impersonation
Attack, Gain Unauthorized Access, Attack on
Privacy, and Publicity Attack.

dependency Vulnerability Analysis

Dependency vulnerability analysis aims at iden-
tifying the vulnerable points in the dependency
network (step [3] in Figure 5). A dependency
relationship makes the depender inherently vul-
nerable. Potential attackers may exploit these
vulnerabilities to actually attack the system,
so that their malicious intents can be served. i*
dependency modelling allows a more specific
vulnerability analysis because the potential failure
of each dependency can be traced to a depender
and to its dependers. The questions we want to
answer here are “which dependency relationships
are vulnerable to attack?”, “What are the chain
effects if one dependency link is compromised?”
The analysis of dependency vulnerabilities does
not end with the identification of potential vul-
nerable points. We need to trace upstream in the
dependency network, and see whether the attacked
dependency relationship impacts other actors in
the network.

Figure 8 is a simplified version of the SD
model of Figure 4, showing only the softgoal
dependencies. We assume that each of the actors
in the SD model can be a potential attacker. And
as an attacker, an actor will fail to deliver the
expected dependencies directed to it, of whom
it is the dependee.

For instance, the Card Holder depends on the
Terminal Owner to Read/Write Card Correctly. To
analyze the vulnerability arising from this depen-
dency, we consider the case where the terminal
owner is not trustworthy. And we try to identify
the potential attacks by answering question of “In
what possible ways could the attacker break this
dependency relationship?” To do this, we elaborate
on the agent Attacker Playing Terminal Owner.
Starting from attacker’s potential motivations,
we refine the high-level goals of the attackers
(and possible attack routes) based on analysis of
the SD and SR models of the normal operations
of the smart card (e.g., what resources an actor
accesses, what types of interactions exist, etc.). In
this way, we may identify a number of potential
attacks that are sufficient to make this dependency
not viable (Break).

Proceeding to step [4], we now focus on how an
attacker may attack the vulnerable points identi-
fied above by exploring the attacker’s capacities.
We model potential attacks (including fraud) as
negative contributions from the attackers (from
their specific methods of attack) toward the de-

Figure 7. Motives of attacker in a smart card system

 757

A Social Ontology for Integrating Security and Software Engineering

Figure 8. Dependencies (in other words, vulnerable points) in a smart card system

Figure 9. Attacks directed to vulnerable dependencies in a smart card system

pendee-side dependency link. A Break contribu-
tion indicates that the attack is sufficient to make
the softgoal unviable. For clarity of analysis, we
place the attack-related intentional elements into
agents called “Attacker Playing Role X.” Details of
the attack methods (e.g., Steal Card Information,

Send Falsified Records) can be elaborated by
further means-ends and decomposition analysis.
Thus, the steps and methods of the attack can be
modeled and analyzed. Other internal details of
the Terminal Owner are not relevant and are thus
not included in the model. Negative contribution

758

A Social Ontology for Integrating Security and Software Engineering

links are used to show attacks on more specific
vulnerabilities of the depender (e.g., refinements
of Transact with Card).

The dependencies that could be broken are
highlighted with a small square in Figure 9. When
a dependency is compromised, the effect could
propagate through the dependency network up-
stream along the dependency links. For example,
if the Terminal Owner is not Quickly Be Paid, he
may stop accepting card as a payment option.

countermeasure Analysis

During countermeasure analysis, system design-
ers make decisions on how to mitigate vulnerabili-
ties and set up defenses against potential attackers.
This type of analysis covers general types of
attacks, and formulates solutions by selectively
applying, combining, or instantiating prototypical
solutions to address the specific needs of various
stakeholders. The general types of attacks and
the prototypical solutions can be retrieved from
a taxonomy or knowledge repository.

Necessary factors for the success of an attack
are attacker’s motivations, vulnerabilities of the
system, and attacker’s capabilities to carry out the
attack. Thus, to counteract a hypothetical attack,
we seek measures that will sufficiently negate
these factors. Based on the above analysis, we al-
ready understand the attackers’ possible malicious
intents and system vulnerabilities. As shown in

Figure 5, countermeasure analysis is an iterative
process. Adding protective measures may bring
new vulnerabilities to the system, so a new round
of vulnerability analysis and countermeasure
analysis will be triggered (step [6]).

With the knowledge of some potential at-
tacks and frauds, the depender may first look for
trustworthy partners, or change their methods of
operation, or add control mechanisms (counter-
measures) to protect their interests. A counter-
measure may prevent the attack from happening
by either making it technically impossible, or by
eliminating the attacker’s intent of attack.

Figure 10 shows a SR model with defensive
actions as well as attacks. Protection mechanisms
are adopted to counteract specific attacks. In some
cases, the protections are sufficient to defeat a
strong attack (defense Break link (dotted arrow)
pointing to an attack Break link). In other cases,
countermeasures are only partially effective in
defending against their respective attacks (through
the Hurt or Some- contribution types).

qualitative goal-reasoning
Mechanism

A qualitative goal-reasoning process is used to
propagates a series of labels through the models.
A label (or satisficing status) on a node is used to
indicate whether that intentional element (goal,
task, resource, or softgoal) is viable or not (e.g.,

Figure 10. Resistance models defeating hypothetical attacks

 759

A Social Ontology for Integrating Security and Software Engineering

whether a softgoal is sufficiently met). Labels can
have values such as Satisfied “ ,” Denied “
,” Weakly Satisfied “ ” and Weakly Denied
“ ,” Undecided “ ,” etc. (Liu et al., 2003). Leaf
nodes (those with no incoming contributions) are
given labels by the analyst based on judgment of
their independent viability. These values are then
propagated “upwards” through the contribution
network (following the direction of the contribu-
tion links, and from dependee to depender). The
viability of the overall system appears in the high
level nodes of the various stakeholders. The pro-
cess is an interactive one, requiring the analyst
to make judgments whenever the outcome is
inconclusive given the combination of potentially
conflicting contributions.

To begin, the analyst labels all the attack leaf
nodes as Satisficed since they are all judged to
be possible (Figure 11). Similarly, all the defense
leaf nodes are judged to be viable, thus labelled
Satisfied. The values are then propagated along
contribution links. Before adding defense nodes,
the Card Holder’s dependency on the Terminal
Owner for Read Write Card Correctly softgoal
was labelled as Denied, because of the potentially
strong attacks from Terminal Owner. However, as
countermeasures are added, the influences of the
attacks will be correspondingly weakened.

Regarding Read Write Card Correctly, three
possible attacks are identified. One of them Steal

Card Info is counteracted by three defense mea-
sures, though each one is partial (Hurt). Another
attack Remember Account Number & Password
has a defense of unknown strength (Some-). The
third attack has no defensive measure. The softgoal
dependency Read Write Card Correctly is thus
judged to be weakly unviable (). On the other
side, as the Data Owner’s protection mechanism
could sufficiently defeat the four possible attacks,
the Transmit Complete and Correct Data softgoal
dependency is thus judged to be viable (). Po-
tential attacks lead to the erosion of viability of
the smart card system. Incorporating sufficient
countermeasures restores viability.

A prototype knowledge-based tool is being
constructed to support this framework for analyz-
ing information systems security.

trust Analysis based on system
Configuration

In the models previously given, the various par-
ticipants in a smart card system were modelled as
abstract roles and analyzed generally. However, in
real world smart card systems, various concrete
physical or organisational parties play or occupy
these roles. These are shown in Table 1. Thus,
to actually understand their trust and security
situations, we have to apply the generic model
to the real world configurations. We consider

Figure 11. Countermeasure effectiveness evaluation model

760

A Social Ontology for Integrating Security and Software Engineering

two representative kinds of smart card based
systems. One is the Digital Stored Value Card,
the other is the Prepaid Phone Card (Schneier &
Shostack, 1998).

Digital Stored Value Card System

These are payment cards intended to be substi-
tutes for cash. Both Mondex and VisaCash are
examples of this type of system. The Customer
is the Card Holder. The Merchant is the Terminal
Owner. The Financial Institution that supports
the system is both the Data Owner and the Card
Issuer. The Smart Card Technology Company,
such as Mondex, is both the Card Manufacturer
and the Software Manufacturer.

In such a configuration, the previously sepa-
rated roles of Data Owner and Card Issuer are
Played by the same physical agent, namely, Fi-
nancial Institution. Similarly, Card Manufacturer
and Software Manufacturer are combined into
one physical agent — the Smart Card Technology

Company. Figure 12 describes the threat model
of a digital stored value card. Here the Software
Manufacturer’s attack on Card Manufacturer can
be ignored since they belong to the same agent
— the Smart Card Technology Company. Also
the attack from Data Owner to Card Issuer can
be ignored since they both played by the Finan-
cial Institution. These two attacking-defending
relationships are highlighted in Figure 11 with
little squares.

Prepaid Phone Card System

These are special-use stored value cards. The
Customer is the Card Holder. The Phone Company
plays all the four roles of Terminal Owner, Data
Owner, Manufacturer, and Card Issuer. Figure 13
shows the threat model of a prepaid card system.
Under such a system configuration, more attack-
defense pairs disappear. Only four possible attacks
need to be considered now. Three of them are
from the phone company, which includes violat-

Generic Smart
Card Model

Card
Holder

Terminal
Owner

Card
Issuer

Data
Owner

Card
Manufacturer

Software
Manufacturer

Digital Stored
Value card Customer Merchant Financial Institution Technology Company

Digital Check
Card Customer Merchant Financial

Institution Customer Technology Company

Prepaid Phone
Card Customer Phone Company

Account-based
Phone Card Customer Phone Company Customer Technology Company

Key store card User Technology Company

Employee
Access Token Employee Employer

Web browsing
card Customer Financial Institution Technology Company

Table 1. Actors (roles, positions, and agents) in various smart card system configurations

 761

A Social Ontology for Integrating Security and Software Engineering

ing privacy, to issue unusable card, to read write
card incorrectly. The other attack is from the Card
Holder, who might use an illegitimate card.

Note that each time new roles are created, the
possibility of new attacks arises. These models
reflect Schneier’s observation that the fewer splits
we make, the more trustworthy the target system
is likely to be (Schneier & Shostack, 1998).

relAted work

This section is complementary to the review
presented in Chapter I. Each approach to secu-
rity and software engineering has an ontology,
whether explicitly defined or implied. We expect
that a social ontology can be complementary and
beneficial to various approaches to integrating

Figure 12. A threat model of digital stored value card system

Figure 13. A threat model of prepaid phone card system

762

A Social Ontology for Integrating Security and Software Engineering

security and software engineering. We begin with
work from the security community, followed by
software engineering approaches that have paid
special attention to security.

security Models

Formal models have been an important part of
computer security since mainframe computing
(Samarati & Vimercati, 2001). Security policies
originate from laws, regulations, or organisational
practices, and are typically written in natural
language. Security models using mathematical
formalisms can provide a precise formulation
of the policies for implementation. More impor-
tantly, formally specified policy models can be
mathematically verified to guarantee security
properties. As mathematical abstractions, they
provide unambiguous specifications that are in-
dependent of implementation mechanisms. Some
concepts in security models include: subject,
object, action, clearance level, user, group, role,
task, principal, owner, etc.

Since security models are idealized abstrac-
tions, their application in real life requires a se-
ries of translations, involving interpretation and
decision making at each stage. Organisational
structures must be analyzed so as to select the
appropriate models, or a combination of mod-
els. Policies need to be interpreted and codified
properly to achieve the desired results. Real world
entities and relationships are mapped to the model
abstractions. Finally, the security model is mapped
to security implementation mechanisms. The lev-
els of abstractions used in security requirements,
design, and implementation therefore mirror those
in software system development and provide a
basis for integration.

The social ontology outlined in this chapter
can facilitate and augment an integrated security
development process by enriching the reasoning
support needed to arrive at decisions at each stage
in the process. The ontology in existing security
models are intended for the automated enforce-

ment of specified security rules (e.g., to decide
whether to give access). They do not support
reasoning about why particular models or poli-
cies are appropriate for the target environment,
especially when there are conflicting objectives
and interpretations. Furthermore, many of the
simplifying assumptions that formal models
rely on do not hold in real life (Denning, 1999).
The social ontology of strategic actors provides
a framework for reasoning about the use of such
models from a pragmatic, broader perspective.

In the development of new security models,
there is a trend towards ontologies that are more
closely aligned with the ontology of organisational
work. For example, role based access control
(RBAC) (Ferraiolo, Sandhu, Gavrila, Kuhn, &
Chandramouli, 2001; Sandhu, Coyne, Feinstein,
& Youman, 1996) allows privileges to be organ-
ised according to organisational roles such as
loan officer or branch manager. These trends are
consistent with the proposed social ontology ap-
proach, though RBAC models, like other access
control models, are meant for enforcement, not
strategic organisational reasoning.

security Management Frameworks

While formal computer security models focus on
policies built into the automated system, the over-
all security of information and software systems
depends very much on organisational practices.
Security practices have existed long before the
computer age. Many of the principles continue to
apply and have been adapted to software systems.
Standards have been defined to promote best
practices (e.g., ISO 17799, 1999).

OCTAVE (Alberts & Dorofee, 2002),
CRAMM, and FRAP (Peltier, 2001), are oriented
toward decision making from a business perspec-
tive, leading to management, operational, and
technical requirements and procedures. Although
few frameworks have explicit information models,
they do have implicit ontologies revolving around
key concepts such as asset, attack, threat, vulner-

 763

A Social Ontology for Integrating Security and Software Engineering

ability, countermeasure, and risk.
The main focus of these frameworks is on

prescriptive guidelines. Tables and charts are
used to enumerate and cross-list vulnerabilities
and threats. Potential countermeasures are sug-
gested. Risks are computed from potential losses
arising from estimated likelihood of threats.
Since quantitative estimates are hard to come
by, most assessments rely on ratings such as low,
medium, high.

While formal computer security models at-
tempt to guarantee security (requiring simplify-
ing assumptions that may depart from reality),
security management frameworks acknowledge
that security breaches will occur, and suggest
countermeasures to reduce risk. This pragmatic
stance is very much in the spirit of the social
ontology proposed in this chapter. Security
management frameworks can be augmented by
the modelling of strategic actor relationships and
reasoning about how their goals may be achieved
or hindered.

Another drawback of checklists and guidelines
is that they tend to be too generic. Experience and
expert judgment are needed to properly apply them
to specific systems and organisational settings.
Such judgments are hard to trace or maintain over
time as the systems evolve.

The explicit modelling of strategic relation-
ships can provide a more specific analysis of
sources of vulnerabilities and failures, thus also
allowing countermeasures to be targeted appro-
priately. Using the strategic dependencies and
rationales, one can trace the impact of threats
along the paths to determine which business
goals are affected. The impact on goals other
than security can also be determined through
the model since they appear in the same model.
One can see how security goals might compete
with or are synergistic with non-security goals,
thus leading to decisions that take the overall set
of goals into account. Using an agent-oriented
ontology, one can determine which actors are
most affected by which security threats, and

are therefore likely to be most motivated to take
measures. Tradeoffs are done from the viewpoint
of each stakeholder. This approach provides a
good basis for an ontology of security, which
can mediate between business reasoning from
an organisational perspective and system design
reasoning from a technical perspective.

Some preliminary work have been done to
integrate the i* modelling ontology with risk-based
security management approaches (Gaunard &
Dubois, 2003; Mayer, Rifaut, & Dubois, 2005).
Further extensions could incorporate economic
theories and reasoning (e.g., Anderson, 2001;
Camp & Lewis, 2004). The ontology of i* can
provide the structure representation of social re-
lationships on which to do economic reasoning.

software systems design
Frameworks

Having considered work originating from the
security side, we now turn to contributions from
the software engineering and system development
perspective.

Extensions to UML (see Chapter I for in-
formation of such approaches).The ontology
of UML, consisting of objects and classes, ac-
tivities, states, interactions, and so forth, with
its security-oriented extensions, are useful for
specifying the technical design of security fea-
tures and functionalities, but does not support
the reasoning that lead up to those requirements
and designs. As indicated in the second section of
this chapter, technical design notations are use-
ful for recording the results of decisions, but do
not offer support for arriving at those decisions.
The social ontology proposed in this chapter can
therefore complement UML-based approaches,
such as the one presented in Chapter IX, by sup-
porting the early-stage requirements modelling
and reasoning that can then be propagated to
the technical design stage, resulting in design
choices expressed in UML-like design notations.
Stakeholder deliberations and tradeoffs therefore

764

A Social Ontology for Integrating Security and Software Engineering

are effectively conveyed to technical designers.
Conversely, the effect of technical choices can
be propagated upstream to enable stakeholders
to appreciate the consequences as they appear in
the stakeholders’ world.

Extensions to information systems model-
ling and design. In the information systems
area, Pernul (1992) proposes secure data schemas
(extension of entity-relationship diagrams) and
secure function schemas (extension of data flow
diagrams). In Herrmann and Pernul (1999) and
Röhm and Pernul (1999), these models are ex-
tended to include a business process schema, with
tasks, data/material, humans, legal bindings and
information flow, and an organisational schema
with role models and organisation diagrams to
describe which activities are done where and by
whom. Other information systems security ap-
proaches include the automated secure system
development method (Booysen & Eloff, 1995)
and the logical controls specification approach
(Baskerville, 1993; Siponen & Baskerville,
2001).

These approaches illustrate the extension of
conventional information systems ontologies to
incorporate security-specific ontologies. Different
concepts are added to each level of modelling (e.g.,
database schemas, process or function schemas,
workflow schemas, and organisation diagrams).
As with UML extensions, these approaches tend
to emphasize the notation needed to express se-
curity features in the requirements specification
or design descriptions and how those features
can be analyzed. However, the notations (and the
implied ontology) do not provide support for the
deliberations that lead up to the security require-
ments and design. A social ontology that supports
explicit reasoning about relationships among
strategic actors, as outlined in this chapter, can
be a helpful extension to these approaches.

Responsibility modelling. A number of
approaches center around the notion of respon-
sibility. In Strens and Dobson (1994), when an
agent delegates an obligation, the agent becomes

a responsibility principal, and the receiver of the
delegation process is a responsibility holder. An
obligation is a high-level mission that the agent
can fulfill by carrying out activities. Agents
cannot transfer their responsibilities, only their
obligations. Three kinds of requirements are
derived from responsibilities: need-to-do, need-
to-know and need-for-audit. The need-to-know
requirements relate to security policies — which
subjects (e.g., users) should be allowed to access
which objects (e.g., files, etc.) so that they are able
to fulfill their responsibilities.

Backhouse and Dhillon (1996) also adopt a
responsibilities analysis approach, incorporat-
ing speech acts theory. The model for automated
profile specification (MAPS) approach (Pottas
& Solms, 1995) uses responsibilities and role
models to generate information security profiles
(such as access control) from job descriptions and
organisational policies.

This group of work has a more explicit ontology
of social organisation. The emphasis is on the map-
pings between organisational actors and the tasks
or activities they have to perform. While actors or
agents have responsibilities, they are not viewed
as having strategic interests, and do not seek
alternate configurations of social relationships
that favor those interests. The focus of attention
is on functional behaviors and responsibilities.
Security is treated as additional functions to be
incorporated, and there are no attempts to deal with
interactions and tradeoffs between security and
other non-functional objectives such as usability
or maintainability. The social ontology of i* can
therefore be quite complementary to these ap-
proaches. Other socio-organisational approaches
are reviewed in Dhillon and Backhouse (2001).

requirements engineering
Approaches to security

While security needs to be integrated into all
stages of software engineering, there is gen-
eral agreement that integration starting from the

 765

A Social Ontology for Integrating Security and Software Engineering

earliest stages is essential. It is well known that
mistakes early in the software process can have
far reaching consequences in subsequent stages
that are difficult and costly to remedy. Fred Brooks
(1995) had noted that the requirements stage is
the most difficult, and suggested that software
engineering should focus more on “building
the right system,” and not just on “building the
system right.”

In requirements engineering research, a large
part of the effort has been devoted to verifying
that the requirements statements are precise, un-
ambiguous, consistent, and complete. Recently,
more attention has been given to the challenge
of understanding the environment and context of
the intended system so that the requirements will
truly reflect what stakeholders want.

Goal-oriented requirements engineering.
Traditional requirements languages for software
specification focus on structure and behavior, with
ontologies that center around entities, activities,
states, constraints, and their variants. A goal-ori-
ented ontology allows systems to be placed within
the intentional setting of the usage environment.
Typically, goal-oriented requirements engineering
frameworks employ AND/OR tree structures (or
variants) to analyze and explore alternate system
definitions that will contribute to stakeholder
goals in different ways. Security can be readily
integrated into such a framework since attacks and
threats interfere with the normal achievement of
stakeholder goals. Security controls and counter-
measures can be derived from defensive goals to
counteract malicious actions and intents.

The NFR framework: Security as softgoal.
The NFR framework (Chung, 1993; Chung et al.,
2000) is distinctive from most of the above cited
approaches to security in that it does not start
with vulnerabilities and risks, nor from security
features and functions. It starts by treating security
as one among many non-functional requirements.
As with many other non-functional requirements
such as usability, performance, or information
accuracy, security is viewed as a goal whose

operational meaning needs to be interpreted ac-
cording to the needs of the specific application
setting. This interpretation is done by a series
of refinements in a goal graph until the point
(called operationalization) where subgoals are
sufficiently concrete as to be accomplishable by
implementable actions and mechanisms, such as
access control mechanisms or protocols. At each
stage in the refinement, subgoals are judged to be
contributing qualitatively to the parent goals in
different ways. Because the nature and extent of
the contribution requires judgement from expe-
rience and possibly domain expertise, the term
softgoal is used, drawing on Simon’s notion of
satisficing (Simon, 1996).

The NFR framework thus offers a systematic
approach for achieving “good enough” security
— a practical objective in real life (Sandhu, 2003;
Schneier, 2003) that have been hard to achieve in
conventional mathematical formalisms. A formal
treatment of the satisficing semantics of softgoals
is offered in Chung et al. (2000).

The NFR framework is also distinctive in
that it allows security goals to be analyzed and
understood at the same time as other potentially
competing requirements, for example, usability,
performance, maintainability, and evolvability. In
the past, it has been difficult to deal with these
non-functional requirements early in the develop-
ment life cycle. Typically functional requirements
dominate the design process. Experienced and
expert designers take non-functional require-
ment into account intuitively and implicitly, but
without support from systematic frameworks,
languages, or tools. The softgoal graph approach
acknowledges that security needs to compete
with other goals during requirements analysis
and during design. Different aspects of security
may also compete with each other. The NFR
goal-oriented approach supports reasoning about
tradeoffs among these competing goals and how
they can be achieved.

Beyond clarifying requirements, the NFR
softgoals are used to drive subsequent stages in

766

A Social Ontology for Integrating Security and Software Engineering

system design and implementation, thus offering
a deep integration of security into the software
engineering process.

A related body of work is in quality attributes
of software architecture, for example, the ATAM
approach (Kazman, Klein, & Clements, 2000)
for architectural evaluation. Many of the basic
elements are similar to the NFR framework. The
classification of quality attributes and mechanisms
(for security and other attributes), however, are
viewed from an evaluation viewpoint. The tax-
onomy structure of quality attribute is not seen
as goals to be elaborated based on tradeoffs
encountered in the particular system. Quality
attributes are concretized in terms of metrics,
which are different for each quality, so trade-offs
are difficult across different metrics.

The KAOS framework: Goals, obstacles,
and anti-goals. KAOS (Dardenne, van Lam-
sweerde, & Fickas, 1993; van Lamsweerde, 2001,
2004; van Lamsweerde, Brohez, Landtsheer, &
Janssens, 2003) is a goal-oriented requirements
engineering framework that focuses on systematic
derivation of requirements from goals. It includes
an outer layer of informally specified goals, and
an inner layer of formalized goal representation
and operations using temporal logic. It is therefore
especially suitable for real-time and safety criti-
cal systems. Refinement patterns are developed
making use of temporal logic relationships.

The KAOS ontology includes obstacles, which
impede goal achievement. The methodology
provides techniques for identifying and resolv-
ing obstacles. To incorporate security analysis,
attackers present obstacles to security goals. New
security requirements are derived from attack
generation and resolution.

Tree structures have been used in the security
community for analyzing the structure of threats
(Schneier, 1999), and in the safety community for
the analysis of faults and hazards (Helmer et al.,
2002). Experiences from these approaches can be
incorporated into goal-oriented frameworks.

Agent-oriented requirements
engineering

The agent-oriented approach adopts goal-oriented
concepts and techniques, but treats goals as origi-
nating from different actors. The i* modelling
framework views actors as having strategic inter-
ests. Each actor aims to further its own interests
in exploring alternative conceptions of the future
system and how the system will affect its rela-
tionships to other actors. This may be contrasted
with other frameworks which may include some
notion of actor which are non-intentional (e.g., in
use case diagrams in UML) or non-strategic (e.g.,
in KAOS, where agents are passive recipients of
responsibility assignments at the end of a goal
refinement process).

i* adopts the notion of softgoal from the NFR
framework, but makes further distinctions with
goal, task, and resource. Softgoals are opera-
tionalized into tasks, which may in turn contain
decompositions that include softgoals.

Security issues are traced to antagonistic goals
and dependencies among attackers and defenders.
As in the NFR framework, security is treated as
much as possible within the same notational and
reasoning framework as for other non-functional
requirements (as softgoals), but extended to in-
clude functional elements (as goals, tasks, and
resources). Security is therefore not treated in
isolation, but interacts with other concerns at all
steps throughout the process. The illustration of
i* in this chapter is based on the example in Yu
and Liu (2000, 2001). Further illustrations are in
Liu et al. (2002), Yu and Cysneiros (2001), Liu et
al. (2003), Liu and Yu (2003, 2004).

The i* approach has been adopted and extended
in a number of directions. The Tropos framework
(Bresciani, Perini, Giorgini, Giunchiglia, & Mylo-
poulos, 2004; Castro, Kolp, & Mylopoulos, 2002)
further develops the i* approach into a full-fledged
software engineering methodology, using the
agent-oriented social ontology originating from

 767

A Social Ontology for Integrating Security and Software Engineering

requirements modelling to drive architectural
design, detailed design, and eventual implementa-
tion on agent-based software platforms. Formal
Tropos incorporates formalization techniques
similar to KAOS, so that automated tools such as
model checking can be applied to verify security
properties (Liu et al., 2003).

A number of extensions to i* have been
developed to address specific needs of security
modelling and analysis. Mouratidis et al. (2003a,
2003b, 2004, 2005, also Chapter VIII) introduced
the concepts of security reference diagram and
security constraints. Common security concepts
such as secure entities, secure dependencies, and
secure capabilities are reinterpreted within the i*
ontology. The security constraint concept attaches
a security-related strategic dependency to the
dependency that it applies to. An intuitive benefit
of this concept is that the association between the
two is indicated without having to refer to the
internal rationale structures of actors. An attack
scenarios representation structure that aims to
support the analysis of specific attacking and pro-
tecting situations at a more detailed design stage
is developed. New language structures developed
include secure capability, and attacking link.

Giorgini et al. (2003, 2005; also Chapter VIII)
introduced four new primitive relationships related
to security requirements: trust, delegation, offer
and owner relation. These new primitives offer
an explicit treatment of security concepts such
as permission, ownership, and authority, which
allows a more detailed analysis.

In Crook, Ince, and Nuseibeh (2005), the prob-
lem of modelling access policies is addressed by
extending the Tropos approach (Liu et al., 2003),
to ensure that security goals can be achieved and
that operational requirements are consistent with
access policies.

Misuse/Abuse Cases

Misuse and abuse cases techniques (Alexander,
2001; Sindre & Opdahl, 2000, 2001; see also

Review in Chapter I) are complementary to goal-
oriented techniques as they offer different ways
of structuring requirements knowledge (Rolland,
Grosz, & Kla, 1999). Use cases are action-oriented
and include sequence and conditionals. Goal re-
finements are (mostly) hierarchical covering mul-
tiple levels of abstraction. In addressing security
requirements, the development of misuse/abuse
cases can be assisted by using goal analysis. Con-
versely, goal analysis can be made concrete by
considering positive and negative use cases and
scenarios. Note that use cases are better suited to
later stages in requirements analysis since they
assume that the system boundary is already de-
fined. Unlike the strategic actors in i*, actors in
use cases are non-intentional and serve to delineate
the boundary of the automated system.

conclusIon

In this chapter, we have argued that a social ontol-
ogy can provide the basis for integrating security
and software engineering. We presented the social
ontology of i* and illustrated how it can be used to
include security goals when designing a smart card
system. We have outlined how a social ontology
is complementary to a number of techniques in
security engineering and in software engineer-
ing, thus building common ground between the
two areas.

AcknowledgMent

The authors (1 & 3) gratefully acknowledge
financial support from the Natural Sciences
and Engineering Research Council of Canada,
Bell University Laboratories, and author (2) the
National Key Research and Development Plan
(973, no.2002CB312004) and NSF China (no.
60503030).

768

A Social Ontology for Integrating Security and Software Engineering

reFerences

Alberts, C., & Dorofee, A. (2002, July). Managing
information security risks: The OCTAVE (SM)
approach. Boston: Addison Wesley.

Alexander, I. (2002, September). Modelling the
interplay of conflicting goals with use and mis-
use cases. Proceedings of the 8th International
Workshop on Requirements Engineering: Foun-
dation for Software Quality (REFSQ-02), Essen,
Germany (pp. 9-10).

Alexander, I. (2003, January). Misuse cases: Use
cases with hostile intent. IEEE Software, 20(1),
58-66.

Anderson, R. (2001). Security engineering: A
guide to building dependable distributed systems.
New York: Wiley.

Backhouse, J., & Dhillon, G. (1996). Structures
of responsibilities and security of information
systems. European Journal of Information Sys-
tems, 5(1), 2-10.

Baskerville, R. (1993). Information systems secu-
rity design methods: Implications for information
systems development. Computing Surveys, 25(4),
375-414.

Boehm, B. W. (1988). A spiral model of software
development and enhancement. IEEE Computer,
21(5), 61-72.

Booysen, H. A. S., & Eloff, J. H. P. (1995). A
methodology for the development of secure ap-
plication systems. Proceeding of the 11th IFIP
TC11 International Conference on Information
Security.

Bresciani, P., Perini, A., Giorgini, P., Giunchiglia,
F., & Mylopoulos, J. (2004) Tropos: An agent-
oriented software development methodology.
Autonomous Agents and Multi-Agent Systems,
8(3), 203-236.

Brooks, F. (1995, August). The mythical man-

month: Essays on software engineering, 20th
Anniversary Edition (1st ed.). Boston: Addison-
Wesley.

Castro, J., Kolp, M., & Mylopoulos, J. (2002).
Towards requirements driven information systems
engineering: The Tropos project. Information
Systems, 27(6), 365-389.

Chung, L. (1993). Dealing with security require-
ments during the development of information
systems. In C. Rolland, F. Bodart, & C. Cauvet
(Eds.), Proceedings of the 5th International Confer-
ence Advanced Information Systems Engineering,
CAiSE ’93 (pp. 234-251). Springer.

Chung L., Nixon, B. A., Yu, E., & Mylopoulos, J.
(2000). Non-functional requirements in software
engineering. Kluwer Academic Publishers.

CRAMM – CCTA (Central Computer and Tele-
communications Agency, UK). Risk analysis and
management method. Retrieved from http://www.
cramm.com/cramm.htm

Crook, R., Ince, D., & Nuseibeh, B. (2005, August
29-September 2). On Modelling access policies:
Relating roles to their organisational context.
Proceedings of the 13th IEEE International Re-
quirements Engineering Conference (RE’05),
Paris (pp. 157-166).

Dardenne, A., van Lamsweerde, A., & Fickas, S.
(1993). Goal-directed requirements acquisition.
Science of Computer Programming, 20(1-2),
3-50.

Denning, D. E. (1998). The limits of formal secu-
rity models. National Computer Systems Security
Award Acceptance Speech. Retrieved October 18,
1999, from www.cs.georgetown.edu/~denning/
infosec/award.html

Dhillon, G., & Backhouse, J. (2001) Current
directions in IS security research: Toward socio-
organizational perspectives. Information Systems
Journal, 11(2), 127-154.

 769

A Social Ontology for Integrating Security and Software Engineering

Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, R.,
& Chandramouli, R. (2001, August). Proposed
NIST standard for role-based access control.
ACM Transactions on Information and Systems
Security, 4(3), 224-74.

Franch, X., & Maiden, N. A. M. (2003, Febru-
ary 10-13). Modelling component dependencies
to inform their selection. COTS-Based Software
Systems, 2nd International Conference, (ICCBSS
2003) (pp. 81-91). Lecture Notes in Computer
Science 2580. Ottawa, Canada: Springer.

Gaunard, P., & Dubois, E. (2003, May 26-28).
Bridging the gap between risk analysis and
security policies: Security and privacy in the
age of uncertainty. IFIP TC11 18th International
Conference on Information Security (SEC2003)
(pp. 409-412). Athens, Greece. Kluwer.

Giorgini, P., Massacci, F., & Mylopoulos, J.
(2003, October 13-16). Requirement engineering
meets security: A case study on modelling secure
electronic transactions by VISA and Mastercard.
The 22nd International Conference on Conceptual
Modelling (ER’03) (LNCS 2813, pp. 263-276).
Chicago: Springer.

Giorgini, P., Massacci, F., Mylopoulos, J., & Zan-
none, N. (2005). Modelling social and individual
trust in requirements engineering methodologies.
Proceedings of the 3rd International Conference
on Trust Management (iTrust 2005). LNCS 3477.
Heidelberg: Springer-Verlag.

Gross, D., & Yu, E. (2001, August 27-31). Evolving
system architecture to meet changing business
goals: An agent and goal-oriented approach. The
5th IEEE International Symposium on Require-
ments Engineering (RE 2001) (pp. 316-317).
Toronto, Canada.

Helmer, G., Wong, J., Slagell, M., Honavar, V.,
Miller, L., & Lutz, R. (2002). A software fault
tree approach to requirements analysis of an in-
trusion detection system. In P. Loucopoulos & J.
Mylopoulos (Ed.), Special Issue on Requirements

Engineering for Information Security. Require-
ments Engineering (Vol. 7, No. 4, pp. 177-220).

Herrmann, G., & Pernul, G. (1999). Viewing busi-
ness-process security from different perspectives.
International Journal of Electronic Commerce,
3(3), 89-103.

ISO 17799. (1999). Information security manage-
ment — Part 1: Code of practice for information
security. London: British Standards Institution.

Kazman, R., Klein, M., & Clements, P. (2000).
ATAM: Method for architectural evaluation
(CMU/SEI-2000-TR-004). Pittsburgh, PA: Soft-
ware Engineering Institute, Carnegie Mellon
University.

Liu, L., & Yu, E. (2003). Designing information
systems in social context: A goal and scenario
modelling approach. Information Systems, 29(2),
187-203.

Liu, L., & Yu, E. (2004). Intentional modelling
to support identity management. In P. Atzeni et
al. (Eds.), Proceedings of the 23rd International
Conference on Conceptual Modelling (ER 2004)
(pp. 555-566). LNCS 3288. Berlin, Heidelberg:
Springer-Verlag.

Liu, L., Yu, E., & Mylopoulos, J. (2002, October
16). Analyzing security requirements as relation-
ships among strategic actors. The 2nd Symposium
on Requirements Engineering for Information
Security (SREIS'02). Raleigh, NC.

Liu, L., Yu, E., & Mylopoulos, J. (2003, Septem-
ber). Security and privacy requirements analysis
within a social setting. Proceedings of Interna-
tional Conference on Requirements Engineering
(RE’03) (pp. 151-161). Monterey, CA.

Lodderstedt, T., Basin, D. A., J, & Doser, R.
(2002). SecureUML: A UML-based modelling
language for model-driven security. Proceedings
of UML '02: Proceedings of the 5th International
Conference on The Unified Modelling Language,
Dresden, Germany (pp. 426-441).

770

A Social Ontology for Integrating Security and Software Engineering

Mayer, N., Rifaut, A., & Dubois, E. (2005). To-
wards a risk-based security requirements engi-
neering framework. Workshop on Requirements
Engineering For Software Quality (REFSQ’05), at
the Conference for Advanced Information Systems
Engineering (CAiSE), Porto, Portugal.

McDermott, J., & Fox, C. (1999). Using abuse
case models for security requirements analysis.
Proceedings 15th IEEE Annual Computer Security
Applications Conference, Scottsdale, USA (pp.
55-67).

Mouratidis, H., Giorgini, P., & Manson, G.
A. (2003a). Integrating security and systems
engineering: Towards the modelling of secure
information systems. Proceedings of the 15th
Conference on Advanced Information Systems
Engineering (CAiSE 03) (Vol . LNCS 2681, pp.
63-78). Klagenfurt, Austria: Springer.

Mouratidis, H., Giorgini, P., & Manson, G. (2004,
April 13-17). Using security attack scenarios to
analyse security during information systems
design. Proceedings of the 6th International
Conference on Enterprise Information Systems,
Porto, Portugal.

Mouratidis, H., Giorgini, P., & Schumacher, M.
(2003b). Security patterns for agent systems. Pro-
ceedings of the 8th European Conference on Pat-
tern Languages of Programs, Irsee, Germany.

Mouratidis, H., Kolp, M., Faulkner, S., & Giorgini.
P. (2005, July). A secure architectural description
language for agent systems. Proceedings of the 4th
International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS05).
Utrecht, The Netherlands: ACM Press.

Peltier, T. R. (2001, January). Information se-
curity risk analysis. Boca Raton, FL: Auerbach
Publications.

Pernul, G. (1992, November 23-25). Security
constraint processing in multilevel secure AMAC
schemata. The 2nd European Symposium on Re-

search in Computer Security (ESORICS 1992)
(pp. 349-370). Toulouse, France. Lecture Notes
in Computer Science 648. Springer.

Pottas, D., & Solms, S. H. (1995). Aligning in-
formation security profiles with organizational
policies. Proceedings of the IFIP TC11 11th Inter-
national Conference on Information Security.

Röhm, A. W., & Pernul, G. (1999). COPS: A model
and infrastructure for secure and fair electronic
markets. Proceedings of the 32nd Annual Hawaii
International Conference on Systems Sciences.

Rolland, C., Grosz, G., & Kla, R. (1999, June).
Experience with goal-scenario coupling in
requirements engineering. Proceedings of the
IEEE International Symposium on Requirements
Engineering, Limerick, Ireland.

Samarati, P., & Vimercati, S. (2001). Access
control: Policies, models, and mechanisms. In
R. Focardi & R. Gorrieri (Eds.), Foundations of
security analysis and design: Tutorial lectures
(pp. 137-196). LNCS 2171.

Sandhu, R. (2003, January/February). Good
enough security: Towards a business driven dis-
cipline. IEEE Internet Computing, 7(1), 66-68.

Sandhu, R. S., Coyne, E. J., Feinstein, H. L., &
Youman, C. E. (1996, February). Role-based
access control models. IEEE Computer, 29(2),
38-47.

Schneier, B. (1999). Attack trees modelling se-
curity threats. Dr. Dobb’s Journal, December.
Retrieved from http://www.counterpane.com/at-
tacktrees-ddj-ft.html

Schneier, B. (2003). Beyond fear: Thinking
sensibly about security in an uncertain world.
New York: Copernicus Books, an imprint of
Springer-Verlag.

Schneier, B., & Shostack, A. (1998). Breaking up is
hard to do: Modelling security threats for smart-
cards. First USENIX Symposium on Smart-Cards,

 771

A Social Ontology for Integrating Security and Software Engineering

USENIX Press. Retrieved from http://www.
counterpane.com/smart-card-threats.html

Simon, H. (1996). The sciences of the artificial
(3rd ed.). MIT Press.

Sindre, G., & Opdahl, A. L. (2000). Eliciting se-
curity requirements by misuse cases. Proceedings
of the 37th Conference on Techniques of Object-
Oriented Languages and Systems (pp. 120-131).
TOOLS Pacific 2000.

Sindre, G., & Opdahl, A. L. (2001, June 4-5). Tem-
plates for misuse case description. Proceedings of
the 7th International Workshop on Requirements
Engineering, Foundation for Software Quality
(REFSQ2001), Switzerland.

Siponen, M. T., & Baskerville, R. (2001). A new
paradigm for adding security into IS development
methods. In J. Eloff, L. Labuschagne, R. von
Solms, & G. Dhillon (Eds.), Advances in infor-
mation security management & small systems
security (pp. 99-111). Boston: Kluwer Academic
Publishers.

Strens, M. R., & Dobson, J. E. (1994). Responsi-
bility modelling as a technique for requirements
definition. IEEE, 3(1), 20-26.

van der Raadt, B., Gordijn, J., & Yu, E. (2005).
Exploring Web services from a business value
perspective. To appear in Proceedings of the 13th
International Requirements Engineering Confer-
ence (RE’05), Paris (pp. 53-62).

van Lamsweerde, A. (2001, August 27-31). Goal-
oriented requirements engineering: A guided
tour. The 5th IEEE International Symposium on
Requirements Engineering (RE 2001) (p. 249).
Toronto, Canada.

van Lamsweerde, A. (2004, May). Elaborating
security requirements by construction of inten-
tional anti-models. Proceedings of ICSE’04, 26th
International Conference on Software Engineer-
ing (pp. 148-157). Edinburgh: ACM-IEEE.

van Lamsweerde, A., Brohez, S., Landtsheer, R.,
& Janssens, D. (2003, September). From system
goals to intruder anti-goals: Attack generation and
resolution for security requirements engineering.
Proceedings of the RE’03 Workshop on Require-
ments for High Assurance Systems (RHAS’03)
(pp. 49-56). Monterey, CA.

Yu, E. (1993, January). Modelling organizations
for information systems requirements engineer-
ing. Proceedings of the 1st IEEE International
Symposium on Requirements Engineering (pp.
34-41). San Diego, CA.

Yu, E. (1997, January 6-8). Towards modelling and
reasoning support for early-phase requirements
engineering. Proceedings of the 3rd IEEE Interna-
tional Symposium on Requirements Engineering
(RE'97) (pp. 226-235). Washington, DC.

Yu, E. (2001a, April). Agent orientation as a
modelling paradigm. Wirtschaftsinformatik,
43(2), 123-132.

Yu, E. (2001b). Agent-oriented modelling: Soft-
ware versus the world. Agent-Oriented Software
Engineering AOSE-2001 Workshop Proceedings
(LNCS 222, pp. 206-225). Springer Verlag.

Yu, E., & Cysneiros, L. (2002, October 16).
Designing for privacy and other competing re-
quirements. The 2nd Symposium on Requirements
Engineering for Information Security (SREIS’02).
Raleigh, NC.

Yu, E., & Liu, L. (2000, June 3-4). Modelling trust
in the i* strategic actors framework. Proceedings
of the 3rd Workshop on Deception, Fraud and
Trust in Agent Societies, Barcelona, Catalonia,
Spain (at Agents2000).

Yu, E., & Liu, L. (2001). Modelling trust for system
design using the i* strategic actors framework. In
R. Falcone, M. Singh, & Y. H. Tan (Eds.), Trust
in cyber-societies--integrating the human and
artificial perspectives (pp. 175-194). LNAI-2246.
Springer.

772

A Social Ontology for Integrating Security and Software Engineering

Yu, E., Liu, L., & Li, Y. (2001, November 27-30).
Modelling strategic actor relationships to support
intellectual property management. The 20th Inter-

national Conference on Conceptual Modelling
(ER-2001) (LNCS 2224, pp. 164-178). Yokohama,
Japan: Spring Verlag.

This work was previously published in Integrating Security and Software Engineering: Advances and Future Visions, edited by
H. Mouratidis and P. Giorgini, pp. 70-106, copyright 2007 by Information Science Publishing (an imprint of IGI Global).

 773

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.15
Social Structure Based Design
Patterns for Agent-Oriented

Software Engineering
Manuel Kolp

Université catholique de Louvain, Belgium

Stéphane Faulkner
University of Namur, Belgium

Yves Wautelet
Université catholique de Louvain, Belgium

AbstrAct

Multi-agent systems (MAS) architectures are
gaining popularity over traditional ones for
building open, distributed, and evolving software
required by today’s corporate IT applications such
as e-business systems, Web services, or enterprise
knowledge bases. Since the fundamental concepts
of multi-agent systems are social and intentional
rather than object, functional, or implementation-
oriented, the design of MAS architectures can be
eased by using social patterns. They are detailed
agent-oriented design idioms to describe MAS
architectures composed of autonomous agents

that interact and coordinate to achieve their
intentions, like actors in human organizations.
This article presents social patterns and focuses
on a framework aimed to gain insight into these
patterns. The framework can be integrated into
agent-oriented software engineering methodolo-
gies used to build MAS. We consider the Broker
social pattern to illustrate the framework. An
overview of the mapping from system architec-
tural design (through organizational architectural
styles), to system detailed design (through social
patterns), is presented with a data integration case
study. The automation of creating design patterns
is also discussed.

774

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

IntroductIon

This section introduces and motivates the research.
In Section 1.1, we describe the advantages of us-
ing multi-agent systems over traditional systems.
Section 1.2 presents the importance of patterns
for designing information systems. We formulate
our research proposal in Section 1.3. The section
1.4 introduces elements for work validation. The
context of the research and an overview of the state
of the art are given in Section 1.5. Finally, Section
1.6 presents the organization of the article.

Advantages of Multi-Agent
systems

The meteoric rise of Internet and World Wide Web
technologies has created new application areas
for enterprise software, including e-business,
Web services, ubiquitous computing, knowledge
management and peer-to-peer networks. These
areas demand software that is robust, can operate
within a wide range of environments, and evolve
over time to cope with changing requirements.
Moreover, such software has to be highly custom-
izable to meet the needs of a wide range of users,
and sufficiently secure to protect personal data
and other assets on behalf of its stakeholders.

Not surprisingly, researchers are looking for
new software designs that can cope with such
requirements. One promising source for designing
such business software is the area of multi-agent
systems. Multi-agent system architectures appear
to be more flexible, modular, and robust than
traditional architectures including object-oriented
ones. They tend to be open and dynamic in the
sense they exist in a changing organizational and
operational environment where new components
can be added, modified or removed at any time.

Multi-agent systems are based on the concept of
agent which is defined as “a software component
situated in some environment that is capable of
flexible autonomous action in order to meet its

design objective” (Aridor & Lange, 1998). An
agent exhibits the following characteristics:

• Autonomy: an agent has its own internal
thread of execution, typically oriented to the
achievement of a specific task, and it decides
for itself what actions it should perform at
what time.

• Situateness: agents perform their actions in
the context of being situated in a particular
environment. This environment may be a
computational one (e.g., a Web site) or a
physical one (e.g., a manufacturing pipeline).
The agent can sense and affect some portion
of that environment.

• Flexibility: in order to accomplish its design
objectives in a dynamic and unpredictable
environment, the agent may need to act to
ensure that its goals are achieved (by realiz-
ing alternative plan). This property is enabled
by the fact that the agent is autonomous in
its problem solving.

An agent can be useful as a stand-alone entity
that delegates particular tasks on behalf of a user
(e.g., a personal digital assistant and e-mail filter
(Bauer, Muller & Odell, 2001), or a goal-driven
office delivery mobile device (Castro, Kolp & My-
lopoulos, 2002)). However, in the overwhelming
majority of cases, agents exist in an environment
that contains other agents. Such environment is
a multi-agent system (MAS).

In MAS, the global behavior derives from the
interaction among the constituent agents: they
cooperate, coordinate or negotiate with one an-
other. A multi-agent system is then conceived as
a society of autonomous, collaborative, and goal-
driven software components (agents), much like a
social organization. Each role an agent can play
has a well defined set of responsibilities (goals)
achieved by means of an agent’s own abilities, as
well as its interaction capabilities.

 775

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

This sociality of an MAS is well suited to
tackling the complexity of today’s organization
software systems for a number of reasons:

• It permits a better match between sys-
tem architectures and its organizational
operational environment for example a
public organization, a corporation, a non-
profit association, a local community, and
so forth.

• The autonomy of an agent (i.e., the ability
an agent has to decide what actions it should
take at what time (Aridor & Lange, 1998))
reflects the social and decentralized nature
of modern enterprise systems (Bauer et al.,
2001) that are operated by different stake-
holders (Parunak, 1997).

• The flexible way in which agents operate
to accomplish its goals is suited to the
dynamic and unpredictable situations in
which business software is now expected
to run (see Zambonelli, Jennings, Omicini
& Wooldridge, 2000; Zambonelli, Jennings
& Wooldridge, 2000).

MAS architectures become rapidly compli-
cated due to the ever-increasing complexity of
these new business domains and their human or
organizational actors. As the expectations of the
stakeholders change every, the complexity of the
systems and the communication technologies of
organizations continually increases in today's
dynamic environments. Developers are expected
to produce architectures that must handle more
difficult and intricate requirements that were not
taken into account 10 years ago, making thus ar-
chitectural design a central engineering issue in
modern enterprise information system life-cycle
(Aridor & Lange, 1998).

patterns for designing systems

An important technique that helps to manage this
complexity when constructing and documenting

such architectures is the reuse of development ex-
perience and know how. Over the past few years,
design patterns have significantly contributed to
the reuse of design expertise, improvement ap-
plication documentation and more flexible and
adaptable designs (Bosch, 1998; Buschmann,
Meunier, Rohnert, Sommerlad & Stal, 1996;
Gamma, Helm, Johnson & Vlissides, 1995). The
idea behind a pattern is to record the essence of
a solution to a design problem so as to facilitate
its reuse when similar problems are encountered
(Cockburn, 1996; Pree 1994; Riehle & Züllig-
hoven, 1996).

Considerable work has been done in software
engineering on defining design patterns (Gamma
et al., 1995; Buschmann et al., 1996; Bosch, 1998).
Unfortunately, they focus on object-oriented (Fer-
nandez & Pan, 2001) rather than agent-oriented
systems. In the area of multi-agent systems, little
emphasis has been put on social and intentional
aspects. Moreover, the proposals of agent patterns
that could address those aspects (see e.g., Aridor
& Lange, 1998; Deugo, Oppacher, Kuester &
Otte, 1999; Hayden, Carrick & Yang, 1999) are
not aimed at the design level, but rather at the
implementation of lower-level issues like agent
communication, information gathering, or con-
nection setup. For instance, the Foundation for
Intelligent Physical Agents (FIPA, 2007) identified
and defined a set of agent’s interaction protocols
that are only restricted to communication. This
research fills this gap by propping a series of social
patterns for the detailed design phase of Tropos
so that pattern-oriented development can be fully
integrated at higher level development stages.

A Framework for MAs detailed
design

Since there is a fundamental mismatch between
the concepts used by the object-oriented para-
digm (and other traditional mainstream software
engineering approaches) and the agent-oriented
approach (Jennings & Wooldridge, 2001), there

776

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

is a need to develop high level patterns that are
specifically tailored to the development of (multi-
)agent systems using agent-oriented primitives.

Research objective is to take the principles of
a social organization-based approach that contrib-
utes to reduce the distance between the system
and the real world together with the important role
of design patterns to help to reuse design experi-
ence. This research proposes a design framework
and develops a catalogue of social patterns for
making MAS design more efficient. Research
contributions include:

• A framework composed of a set of comple-
mentary dimension for designing MAS. The
concepts and notions used for each dimen-
sion are introduced and illustrated;

• A catalogue of social patterns to help the
designer’s tasks so that development time
is reduced. Each social pattern in the cata-
logue will be designed in detail through this
framework; and

• A tool for designing MAS. It allows the
designer to: (i) design the components of
a MAS-to-be constructed in a graphical
way, (ii) reuse the catalogue of patterns to
construct the MAS, and (iii) generate the
code for automating the programmer task.

The research also brings secondary contribu-
tions:

• A set of predefined predicates integrated
into an extended version of formal Tropos
for formalizing each pattern; and

• The illustration of concepts introduced in
our framework through a case study.

Validation

The social patterns for developing a business
data integration application have been applied
to multiple case studies. The reusability of these

patterns and the code generation help to reduce
the development tasks of the application on both
designer and programmer sides.

Furthermore, an empirical experience to evalu-
ate the benefits of pattern-oriented development
should be to achieve similar case studies with
and without the use of patterns and to evaluate
the results on the basis of software metrics. To
focus on the contribution of the design-patterns
we point to structural complexity evaluation.
Indeed, structural complexity focuses on MAS
architecture and agent relationships, features that
should be enriched using patterns.

Due to the lack of literature concerning agent-
oriented software metrics evaluating structural
complexity, we point to the use of existing ob-
ject-oriented ones. As a preliminary tests suite,
we claim for the use of the metrics proposed by
Chidamber and Kemerer (1994). Those include:

• The depth of inheritance tree (DIT). This
metric measures the maximum level of the
inheritance hierarchy of a class. The root of
the inheritance tree inherits from no class
and has a DIT count of zero. Chidamber
and Kemerer suggest that DIT can be used
to indicate the complexity of the design,
potential for reuse;

• The number of children (NOC). This metric
counts the number of immediate subclasses
belonging to a class. NOC was intended to
indicate the level of reuse in a system and
a possible indicator of the level of testing
required;

• The lack of cohesion in methods (LCOM).
This metric is intended to measure the lack
of cohesion in the methods of a class. It is
based on the principle that different attri-
butes occurring in different methods of a
class causes that class to be less cohesive
than one where the same attribute is used
in few methods of the class. It is viewed that
a lack of cohesiveness as undesirable as it

 777

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

is against encapsulation. Lack of cohesion
could imply that the class should probably
be split into two or more subclasses;

• The weighted methods per class (WMC).
The sum of the complexities of the methods
in a class;

• The coupling between objects (CBO). The
number of other classes whose methods or
instance attribute(s) are used by methods of
this class;

• The response for a class (RFC). The sum
of the number of methods in the class and
the number of methods called by each of
these methods, where each called method
is counted once.

context of the research and
limitations

Design patterns are generally used during the
detailed design phase of software methodologies.
Agent-oriented methodologies such as Tropos
(Castro et al., 2002), GAIA (Woodridge, Jen-
nings & Kinny, 2000), MASE (Wood, DeLoach
& Sparkman, 2001) and MESSAGE (Caire et
al., 2002) span the following steps of software
engineering:

• Early requirements, concerned with the
understanding of a problem by studying an
organizational setting; the output is an or-
ganizational model which includes relevant
actors, their goals and their interdependen-
cies.

• Late requirements, where the system-to-be
is described within its operational environ-
ment, along with relevant functions and
qualities.

• Architectural design, where the system ar-
chitecture is defined in terms of subsystems,
interconnected through data, control, and
dependencies.

• Detailed design, where the behavior of
each architectural components is defined
in detail.

The catalogue of social patterns proposed in
(Kolp, Giorgini, & Mylopoulos, 2002) constitutes
a contribution to the definition of agent-oriented
design patterns. This article focuses on these
patterns, conceptualizes a framework to explore
them and facilitate the building of MAS during
detailed design as well as the generation of code
for agent implementation. It models and intro-
spects the patterns along different complementary
dimensions.

As pointed out, the patterns proposed into
this article take place at Tropos’ detailed design
step. The process described hereafter is part of a
broader methodology called I-Tropos (Wautelet,
Kolp & Achbany, 2006) based on Tropos, driven by
i* diagrams and organized following an iterative
software development life cycle. This methodol-
ogy is conceived to bring agent-oriented devel-
opment to be adopted into real life development
of huge enterprise information systems. Due to
lack of space we only present the detailed design
discipline in the form of a workflow, more details
can be found in (Kolp, Faulkner & Wautelet,
2007). Figure 1 describes the workflow of the
detailed design discipline using the software
process engineering metamodel (SPEM) notation
(see OMG, 2005). The software architect selects
the most appropriate social patterns for the com-
ponents under development from the catalogue
overviewed in the article. New goals are included
to the strategic dependency model (social dimen-
sion) according to the semantics of the pattern.
The agent designer identifies services provided
by each agent to achieve the goal dependencies.
Each service belongs to an agent and is represented
with an NFR goal analysis to refine the strategic
rationale diagram (intentional dimension). The
structure of each agent and its components such

778

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

as plans, events, and beliefs are then specified
with an agent UML class diagram (structural
dimension). Agents communicate through events
exchanged in the system and modeled in a tempo-
ral manner with extended agent UML sequence
diagrams (communicational dimension). The syn-
chronization and the relationships between plans
and events are designed through agent oriented
activity diagrams (dynamic dimension).

We nevertheless point out some important
limitations of our research:

• We only consider the design of cooperative
MASs. Indeed, MAS may be either coopera-

tive or competitive. In a cooperative MAS,
the agents cooperate together in order to
achieve common goals. Inversely, a com-
petitive MAS is composed of agents that
pursue personal goals and defend their own
interests. The design of competitive MAS
is left for future developments;

• The patterns need to gain experience with
their use. In this article, we have applied
them on a case study. By doing so, we have
explored the applicability of patterns and
shown how our framework can help the
design of MAS. However, it should be tested
on more case studies;

Figure 1. The detailed design workflow

 779

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

• The dissertation only considers an MAS
composed of more than one pattern as an
“addition” of them. However, the combina-
tion of multiple patterns in an MAS is more
complicated than that, and the emergence of
conflicts remains possible. This issue needs
further investigation.

paper organization

The article is organized as follows. In section 2,
we describe the patterns. Section 3 proposes the
framework and illustrates its different modeling
dimensions through the broker pattern. A data
integrator case study that illustrates the mapping
from organizational styles (architectural design
phase) to social patterns (detailed design phase),
is presented in section 4. The automation of social
patterns is overviewed in section 5, while section
6 overviews related work on software patterns.
Finally, section 7 points to some conclusions.

socIAl pAtterns

Social patterns can be classified in two categories.
The pair patterns describe direct interactions
between negotiating agents. The mediation pat-
terns feature intermediate agents that help other
agents to reach agreement about an exchange of
services.

In the following, we briefly model patterns
using i* (Do, Kolp, Hang Hoang, & Pirotte,
2003) and AUML (Bauer et al., 2001) sequence
diagrams respectively to represent the social and
communicational dimensions of each pattern. In
i*, agents are drawn as circles and their intentional
dependencies as ovals. An agent (the depender)
depends upon another agent (the dependee) for an
intention to be fulfilled (the dependum). Depen-
dencies have the form depender → dependum →
dependee. Note that i* also allows to model other
kind of dependencies such as resource, task or stra-
tegic ones respectively represented as rectangles,

Figure 2. Social and communicational diagrams for the booking pattern

provide

resource

handle
cancelation

request

Client ServiceProvider

propose
service

accept service
proposed

Client ServiceProvider

realize
accepted
service

Figure 3. Social and communicational diagrams for the bidding pattern

780

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

hexagons and clouds as we will see in Figure 13.
AUML extends classical sequence diagrams for
agent oriented modeling. For instance, the dia-
mond symbol indicates alternative events.

The broker, as well as the subscription and
call-for-proposal patterns that are both part of
the broker pattern, will be modeled in detail to
explain the framework in section 3.

pair patterns

The booking pattern (Figure 2) involves a client
and a number of service providers. The client
issues a request to book some resource from a
service provider. The provider can accept the
request, deny it, or propose to place the client
on a waiting list, until the requested resource
becomes available when some other client cancels
a reservation.

 The subscription pattern involves a yellow-
page agent and a number of service providers.
The providers advertise their services by sub-
scribing to the yellow pages. A provider that no
longer wishes to be advertised can request to be
unsubscribed.

The call-for-proposals pattern involves an
initiator and a number of participants. The initia-
tor issues a call for proposals for a service to all
participants and then accepts proposals that offer

the service for a specified cost. The initiator selects
one participant to supply the service.

The bidding (Figure 3) pattern involves a
client and a number of service providers. The cli-
ent organizes and leads the bidding process, and
receives proposals. At each iteration, the client
publishes the current bid; it can accept an offer,
raise the bid, or cancel the process.

Mediation patterns

In the monitor pattern (Figure 4), subscribers
register for receiving, from a monitor agent, no-
tifications of changes of state in some subjects of
their interest. The monitor accepts subscriptions,
requests information from the subjects of interest,
and alerts subscribers accordingly.

In the broker pattern, the broker agent is an
arbiter and intermediary that requests services
from providers to satisfy the request of clients.

In the matchmaker pattern (Figure 5), a
matchmaker agent locates a provider for a given
service requested by a client, and then lets the
client interact directly with the provider, unlike
brokers, who handle all interactions between
clients and providers.

In the mediator pattern (Figure 6), a mediator
agent coordinates the cooperation of service pro-
vider agents to satisfy the request of a client agent.

 Figure 4. Social and communicational diagrams for the monitor pattern

Forward
Subscribed

Change

Notify Change

Subscriber Monitor

Subject

 781

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

Figure 5. Social and communicational diagrams for the matchmaker pattern

Subscribe
Service

Client

Unsubscribe
Service

Locate Service
Provider

MatchMaker Service
Provider

Figure 6. Social and communicational diagrams for the mediator pattern

Figure 7. Social and communicational diagrams for the wrapper pattern

Decompose
request

Client

Mediator

Service
Provider

 Intergrate
answers

send
(sub)answer

send
(sub)request

Client

Source

Wrapper

Answer wrapper
Request

Translate Client
Request into

Source Language

Translate Source
Answer into Client

Language

782

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

While a matchmaker simply matches providers
with clients, a mediator encapsulates interactions
and maintains models of the capabilities of clients
and providers over time.

 In the embassy pattern, an embassy agent
routes a service requested by an external agent to
a local agent. If the request is granted, the external
agent can submit messages to the embassy for
translation in accordance with a standard ontol-
ogy. Translated messages are forwarded to the
requested local agent and the result of the query
is passed back out through the embassy to the
external agent.

The wrapper pattern (Figure 7) incorporates a
legacy system into a multi-agent system. A wrap-
per agent interfaces system agents with the legacy
system by acting as a translator. This ensures that
communication protocols are respected and the
legacy system remains decoupled from the rest
of the agent system.

A socIAl pAtterns
FrAMework

This section describes a conceptual framework
based on five complementary modeling dimen-
sions, to investigate social patterns. The frame-
work has been applied in the context of the Tropos
development methodology (Castro et al., 2002).
Each dimension reflects a particular aspect of a
MAS architecture, as follows.:

• The social dimension identifies the relevant
agents in the system and their intentional
interdependencies.

• The intentional dimension identifies and
formalizes services provided by agents to
realize the intentions identified by the social
dimension, independently of the plans that
implement those services. This dimension
answers the question: “What does each
service do?”

• The structural dimension operationalizes the
services identified by the intentional dimen-
sion in terms of agent-oriented concepts like
beliefs, events, plans, and their relationships.
This dimension answers the question: “How
is each service operationalized?”

• The communicational dimension models
the temporal exchange of events between
agents.

• The dynamic dimension models the syn-
chronization mechanisms between events
and plans.

The social and the intentional dimensions
are specific to MAS. The last three dimensions
(structural, communicational, and dynamic) of
the architecture are also relevant for traditional
(non-agent) systems, but we have adapted and
extended them with agent-oriented concepts.
They are for instance the modeling dimensions
used in object-oriented visual modeling languages
such as UML.

The rest of this section details the five di-
mensions of the framework and illustrates them
through the broker pattern (Yu, 1995).

This pattern involves an arbiter intermediary
that requests services from providers to satisfy
the request of clients. It is designed through the
framework as follows.

social dimension

The social dimension specifies a number of agents
and their intentional interdependencies using the
i* model (Do et al., 2003). Figure 8 shows a social
diagram for the broker pattern.

The broker pattern can be considered as a
combination of (1) a subscription pattern (shown
enclosed within dashed boundary (a)), that allows
service providers to subscribe their services to
the broker agent and where the broker agent plays
the role of a yellow-page agent, (2) one of the
other pair patterns—booking, call-for-proposals,

 783

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

or bidding—whereby the broker agent requests
and receives services from service providers
(in Figure 13, it is a call-for-proposals pattern,
shown enclosed within dotted boundary (b)), and
(3) interaction between the broker and the client:
the broker agent depends on the client for sending
a service request and the client depends on the
broker agent to forward the service.

To formalize intentional interdependencies, we
use formal Tropos (Fuxman, Pistore, Mylopoulos,
& Traverso, 2001), a first-order temporal-logic
language that provides a textual notation for i*
models and allows to describe dynamic con-
straints. A forward service dependency can be
defined in formal Tropos as follows:

Dependum Forward Service
Mode: Achieve
Depender: Client cl
Dependee: Broker br
Fulfillment:
(∀ sr: ServiceRequest, st: ServiceType)
request(cl, br, sr) ∧ provide(br, st) ∧ ofType(sr,

st)
→ ◊ received(cl, br, st)
 [Broker br successfully provides its service

to client cl if all requests sr from cl to br,

that are of a type st that br can handle, are
eventually satisfied]

Intentional dimension

While the social dimension focuses on interdepen-
dencies between agents, the intentional dimension
aims at modeling agent rationale. It is concerned
with the identification of services provided by
agents and made available to achieve the intentions
identified in the social dimension. Each service
belongs to one agent. Service definitions can be
formalized by its fulfillment condition.

Table 1 lists several services of the broker pat-
tern with an informal definition. With the FindBro-
ker service, a client finds a broker that can handle
a given service request. The request is then sent to
the broker through the SendServiceRequest
service. The broker can query its belief knowledge
with the QuerySPAvailability service and answer
the client through the SendServiceRequestDeci-
sion service. If the answer is negative, the client
records it with its RecordBRRefusal service. If the
answer is positive, the broker records the request
(RecordClientServiceRequest service) and then
broadcasts a call (CallForProposals service) to
potential service providers. The client records

Client Broker

subscribe
service

Service
Provider

unsubscribe
service

propose
service

accept service
proposed

provide
service

request
service

forward
service

(a)

(b)

Figure 8. Social diagram for the broker pattern

784

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

acceptance by the broker with the RecordBRAc-
ceptance service.

The call-for-proposals pattern could be used
here, but this presentation omits it for brevity.

The broker then selects one of the service
providers among those that offer the requested ser-
vice. If the selected provider successfully returns
the requested service, it informs the broker, which
records the information and forwards it to the client
(RecordAndSendSPInformDone service).

Services can be formalized in formal Tropos
as illustrated below for the FindBroker service.

Service FindBroker (sr: ServiceRequest)
Mode: Achieve
Agent: Client cl
Fulfillment:
(∃ br : Broker, st: ServiceType)
provide(br, st) ∧ ofType (sr, st)
→ ◊ known(cl, br)
[FindBroker is fulfilled when client cl has found

(known predicate) Broker br that is able
to perform (provide predicate) the service
requested.]

structural dimension

While the intentional dimension answers the ques-
tion “What does each service do?”, the structural
dimension answers the question “How is each
service operationalized?” Services are operation-
alized as plans, that is, sequences of actions.

The knowledge that an agent has (about itself
or its environment) is stored in its beliefs. An agent
can act in response to the events that it handles
through its plans. A plan, in turn, is used by the
agent to read or modify its beliefs, and send events
to other agents or post events to itself.

The structural dimension is modeled using
a UML style class diagram extended for MAS
engineering.

The required agent concepts extending the
class diagram model are defined in the follow-
ing.

Structural Concepts

Figure 9 depicts the concepts and their relation-
ships needed to build the structural dimension.

Service Name Informal Definition Agent

FindBroker Find a broker that can provide a service Client

SendServiceRequest Send a service request to a broker Client

QuerySPAvailability Query the knowledge for information about the availability of the
requested service Broker

SendService
RequestDecision Send an answer to the client Broker

RecordBRRefusal Record a negative answer from a broker Client

RecordBRAcceptance Record a positive answer from a broker Client

RecordClient
ServiceRequest Record a service request received from a Client Broker

CallForProposals Send a call for proposals to service providers Broker

RecordAndSend
SPInformDone Record a service received from a service provider Broker

Table 1. Some services of the broker pattern

 785

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

Each concept defines a common template for
classes of concrete MAS (for example, agent in
Figure 9 is a template for the broker agent class
of Figure 10).

A belief describes a piece of the knowledge
that an agent has about itself and its environment.
Beliefs are represented as tuples composed of a
key and value fields.

Events describe stimuli, emitted by agents
or automatically generated, in response to which
the agents must take action. As shown in Figure
9, the structure of an event is composed of three
parts: declaration of the attributes of the event,
declaration of the methods to create the event,
declaration of the beliefs and the condition used
for an automatic event. The third part only appears
for automatic events. Events can be described
along three dimensions:

• External or internal event: external events
are sent to other agents while internal events

are posted by an agent to itself. This property
is captured by the scope attribute.

• Normal or BDI event: an agent has a num-
ber of alternative plans to respond to a BDI
(belief-desire-event) event and only one plan
in response to a normal event. Whenever an
event occurs, the agent initiates a plan to
handle it. If the plan execution fails and if
the event is a normal event, then the event
is said to have failed. If the event is a BDI
event, a set of plans can be selected for ex-
ecution and these are attempted in turn. If
all selected plans fail, the event is also said
to have failed. The event type is captured
by the type attribute.

• Automatic or nonautomatic event: an auto-
matic event is automatically created when
certain belief states arise. The create when
statement specifies the logical condition
which must arise for the event to be auto-
matically created. The states of the beliefs

Figure 9. Structural diagram template

786

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

that are defined by use belief are monitored
to determine when to automatically create
events.

A plan describes a sequence of actions that an
agent can take when an event occurs. As shown
by Figure 9, plans are structured in three parts:
the event part, the belief part, and the method
part. The Event part declares events that the plan
handles (i.e., events that trigger the execution
of the plan) and events that the plan produces.
The latter can be either posted (i.e., sent by an
agent only to itself) or sent (i.e., sent to other
agents). The belief part declares beliefs that the
plan reads and those that it modifies. The
method part describes the plan itself, that is, the
actions performed when the plan is executed.

The agent concept defines the behavior of an
agent, as composed of five parts: the declaration

of its attributes, of the events that it can post or
send explicitly (i.e., without using its plans), of
the plans that it uses to respond to events, of the
beliefs that make up its knowledge, and of its
methods.

The beliefs of an agent can be of type private,
agent, or global. A private access is restricted to
the agent to which the belief belongs. Agent ac-
cess is shared with other agents of the same class,
while global access is unrestricted.

Structural Model for the Broker
Pattern

Figure 10 depicts the broker pattern components.
For brevity, each construct described earlier is
illustrated only through one component. Each
component can be considered as an instantiation
of the (corresponding) template in Figure 9.

Figure 10. Structural diagram—some components of the broker pattern

 787

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

Broker is one of the three agents compos-
ing the broker pattern. It has plans such as Que-
rySPAvailability, SendServiceRequestDeci-

sion, and so forth. When there is no ambiguity,
by convention, the plan name is the same as the
as the name of the service that it operationalizes.
The private belief SPProvidedService stores
the service type that each service provider can
provide. This belief is declared as private since
the broker is the only agent that can manipulate
it. The ServiceType belief stores the informa-
tion about types of service provided by service
providers and is declared as global since its must
be known both by the service provider and the
broker agent.

The constructor method allows a name to be
given to a broker agent when created. This method
may call other methods, for example loadBR(), to
initialize agent beliefs.

SendServiceRequestDecision is one of the
plans that the broker uses to answer the client:
the BRRefusalSent event is sent when the answer
is negative, BRAcceptanceSent when the broker
has found service provider(s) that may provide the
requested service. In the latter case, the plan also
posts the BRAcceptancePosted event to invoke the
process of recording the service request and the
’call for proposals’ process between the broker and
services providers. The SendServiceRequestDe-
cision plan is executed when the Availability-
Queried event (containing the information about
the availability of the service provider to realize
the client’s request) occurs.

SPProvidedService is one of the broker’s
beliefs used to store the services provided by the
service providers. The service provider code sP-
Code and the service type code serviceTypeCode
form the belief key. The corresponding quantity
attribute is declared as value field.

BRAcceptanceSent is an event that is sent
to inform the client that its request is accepted.

At a lower level, each plan could also be mod-
eled by an activity diagram for further detail if
necessary.

communication dimension

Agents interact with each other by exchanging
events. The communicational dimension models,
in a temporal manner, events exchanged in the
system. We adopt the sequence diagram model
proposed in AUML (Bauer et al., 2001) and extend
it: agent_name/role:pattern_name expresses the
role (role) of the agent (agent_name) in the pat-
tern; the arrows are labeled with the name of the
exchanged events.

Figure 11 shows a sequence diagram for the
broker pattern. The client (customer1) sends a
service request (ServiceRequestSent) contain-
ing the characteristics of the service it wishes to
obtain from the broker. The broker may alterna-
tively answer with a denial (BRRefusalSent) or
an acceptance (BRAcceptanceSent).

In the case of an acceptance, the broker sends
a call for proposal to the registered service provid-
ers (CallForProposalSent). The call for proposal
(CFP) pattern is then applied to model the interac-
tion between the broker and the service providers.
The service provider either fails or achieves the
requested service. The broker then informs the
client about this result by sending an InformFail-
ureServiceRequestSent or a ServiceForwarded,
respectively.

The communication dimension of the subscrip-
tion pattern (SB) is given at the top-right and the
communication dimension of the call-for- pro-
posals pattern (CFP) is given at the bottom-right
part of Figure 11. The communication specific
for the broker pattern is given in the left part of
the figure.

dynamic dimension

As described earlier, a plan can be invoked by
an event that it handles and it can create new
events. Relationships between plans and events
can become complex rapidly. To cope with this
problem, we propose to model the synchronization
and the relationships between plans and events

788

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

Figure 11. Communication diagram—broker

Figure 12. Dynamic diagram—broker

 789

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

with activity diagrams extended for agent-oriented
systems. These diagrams specify the events that
are created in parallel, the conditions under which
events are created, which plans handle which
events, and so on.

An internal event is represented by a dashed
arrow and an external event by a solid arrow. As
mentioned earlier, a BDI event may be handled by
alternative plans. They are enclosed in a round-
corner box. Synchronization and branching are
represented as usual.

We omit the dynamic dimension of the sub-
scription and the CFP patterns, and only present
in Figure 12 the activity diagram specific to the
broker pattern. It models the flow of control from
the emission of a service request sent by the
client to the reception by the same client of the
realized service result sent by the broker. Three
swimlanes, one for each agent of the broker pat-
tern, compose the diagram. In this pattern, the
FindBroker service described in Section 3.2.2, is
either operationalized by the FindBR or the Find-
BRWithMM plans (the client finds a broker based on
its own knowledge or via a matchmaker).

FroM orgAnIzAtIonAl
ArchItecturAl styles
to socIAl desIgn pAtterns

A key aspect to conduct MAS architectural design
is the specification and use of organizational styles
(Castro et al., 2002; Do, Faulkner, & Kolp, 2003;
Kolp et al., 2002) that are socially-based architec-
tural designs inspired from models and concepts
from organization theory (e.g., Mintzberg, 1992;
Scott, 1998; Yoshino & Srinivasa Rangan, 1995)
and strategic alliances (e.g., Dussauge & Garrette,
1999; Morabito, Sack & Bhate, 1999; Segil, 1996)
that analyze the structure and design of real-world
human organization. These are for instance the
structure-in-fives, the matrix, the joint-venture,
the hierarchical contracting, and so forth.

As described in (Castro et al., 2002; Zambo-
nelli et al., 2000), in MAS architectural design,
organizational styles are used to give information
about the system architecture to be: every time an
organizational style is applied, it allows to easily
point up, to the designer, the required organiza-
tional actors and roles. Then the next step needs to
detail and relate such (organizational) actors and
roles to more specific agents in order to proceed
with the agent behavior characterization. Namely,
each actor in an organization-based architecture is
much closer to the real world system actor behav-
ior that we consequently aim to have in software
agents. As a consequence, once the organizational
architectural reflection has figured out the MAS
global structure in terms of actors, roles, and their
intentional relationships, a deepener analysis is
required to detail the agent behaviors and their
interdependencies necessary to accomplish their
roles in the software organization. To effectively
deal with such a purpose, developers can be guided
by social patterns proposed in this article.

Social patterns offer a microscopic view of
the MAS at the detailed design phase to express
in deeper detail organizational styles during the
architectural design. To explain the necessary
relationship between styles and patterns we con-
sider an original data integrator case study and
overview how a MAS designed from some style
at the architectural level is decomposed into social
patterns at the detailed design level.

The data integrator allows users to obtain
information that come from different heteroge-
neous and distributed sources. Sources range
from text file systems agent knowledge bases.
Information from each source that may be of
interest is extracted, translated and filtered as
appropriate, merged with relevant information
from other sources to provide the answer to the
users’ queries (Widom, 1995).

Figure 13 shows an MAS architecture in i* for
the data integrator that applies the joint-venture
style (Castro et al., 2002; Do et al., 2003) at the

790

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

architectural design level. In a few words, the joint
venture organizational style is a meta-structure
that defines an organizational system that involves
agreement between two or more independent
partners to obtain the benefits of larger scale,
shared investment and lower maintenance costs.
A specific joint management actor coordinates
tasks and manages the sharing of resources be-
tween partner actors. Each partner can manage
and control itself on a local dimension and may
interact directly with other partners to exchange
resources, such as data and knowledge. However,
the strategic operation and coordination of such a
system, and its actors on a global dimension, are
the only responsibility of the joint management
actor in which the original actors possess equity
participations.

Joint-venture’s roles at the architectural design
level are expressed in the detailed design level in
terms of patterns, namely the broker, the match-
maker, the monitor, the mediator, and the wrap-
per. The joint management private interface is

Figure 13. A joint-venture MAS architecture expressed in terms of social patterns—A data integration
example

Mediator

Items to be
Found

Broker

Multi-Criteria
Analyzer

Wrapper

Moniter

Matchmaker

Provide
Information

Needs

Subscription
Change

Multi-Criteria
Query

Locate
Wrapper

Advertize
Change

Provide
Results

Translate
Query &
Changes

Reformulate
Query

Rank
Result

assumed by a mediator, the joint-venture partners
are the wrapper, the monitor, the multi-criteria
analyzer and the matchmaker. The public interface
is assumed by the broker.

The system works as follows. When a user
wishes to send a request, she contacts the broker
agent which is an intermediary to select one or
many mediator(s) that can satisfy the user in-
formation needs. Then, the selected mediator(s)
decomposes the user’s query into one or more
subqueries to the sources, synthesizes the source
answers and return the answers to the broker.

If the mediator identifies a recurrent user in-
formation request, the information that may be
of interest is extracted from each source, merged
with relevant information from other sources, and
stored as knowledge by the mediator. This stored
information constitutes a materialized view that
the mediator will have to maintain up-to-date.

A wrapper and a monitor agent are connected
to each information source. The wrapper is re-
sponsible for translating the subquery issued by

 791

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

the mediator into the native format of the source
and translating the source response in the data
model used by the mediator.

The monitor is responsible for detecting
changes of interest (e.g., change which affects
a materialized view) in the information source
and reporting them to the mediator. Changes are
then translated by the wrapper and sent to the
mediator.

It may be also necessary for the mediator to
obtain the information concerning the localization
of a source and its connected wrapper that are able
to provide current or future relevant information.
This kind of information is provided by the match-
maker agent which then lets the mediator interacts
directly with the correspondent wrapper.

Finally, the multi-criteria analyzer can refor-
mulate a subquery (sent by a mediator to a wrap-
per) through a set of criteria in order to express
the user preferences in a more detailed way, and
refine the possible domain of results.

AutoMAtIon

The main motivation behind design patterns is the
possibility of reusing them during system detailed
design and implementation. Numerous CASE
tools such as Rational Rose (IBM Rational Rose,
2007) and Together (Borland Together, 2007) in-
clude code generators for object-oriented design
patterns. Programmers identify and parameterize,
during system detailed design, the patterns that
they use in their applications. The code skeleton
for the patterns is then automatically generated
and programming is thus made easier.

For agent-oriented programming, sKwyrL
(Do et al., 2003), for instance, proposes a code
generator to automate the use of social patterns
introduced in section 2. Figure 13 shows the main
window of the tool. It has been developed in Java
and produces code for JACK (JACK Intelligent
Agents, 2006), an agent-oriented development
environment built on top of Java. JACK extends

Figure 14. JACK code generation

International Journal of Intelligent Information Technologies, 4(2), 1-23, April-June 2008 1�

Copyright © 2008, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global
is prohibited.

which the broker has to realizes the requested
service). When receiving the customer’s request,
the broker interacts with the media shops to
obtain the DVDs. The interactions between the
broker and the media shops are shown on the
bottom-right corner of this figure. The top half
of the figure shows the items that are provided
by each media shop.

relateD work
As already said, a lot of work has been devoted
to software patterns these last 15years. Patterns
for software development are one of software
engineering problem-solving discipline that has
its roots in a design movement in contemporary
architecture and the documentation of best
practices and lessons learned in all vocations.
The goal of patterns is to create a body of
literature to help software developers resolve
recurring problems encountered throughout all
of software development. Patterns help create
a shared language for communicating insight

and experience about these problems and their
solutions.

Ward Cunningham and Kent Beck de-
veloped a small set of five patterns (Beck &
Cunningham, 1987), for guiding Smalltalk pro-
grammers to design user interface. Jim Coplien
introduced a catalog of for C++ patterns, called
idioms (Coplien, 1991). Software patterns then
became popular with the wide acceptance of the
Gang of Four or GoF (Erich Gamma, Richard
Helm, Ralph Johnson, and John Vlissides) book
(Gamma et al., 1995).

However, the patterns in the GoF book are
only one kind of pattern—the object-oriented
design patterns. There are many other kinds
of patterns. For example, Martin Fowler’s
“Analysis Patterns” (Fowler, 1997) describe
the models of business processes that occur
repeatedly in the analysis phase of software
development; organizational patterns (Coplien
& Schmidt, 1995) are about software-develop-
ment organizations and about people who work

Figure 14. JACK code generation

792

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

Java with specific capabilities to implement agent
behaviors. On a conceptual point of view, the
relationship of JACK to Java is analogous to that
between C++ and C. On a technical point of view,
JACK source code is first compiled into regular
Java code before being executed.

In sKwyrL’s code generator, the programmer
first chooses which social pattern to use, then the
roles for each agent in the selected pattern (e.g.,
the E _ Broker agent plays the broker role for
the Broker pattern but can also play the initiator
role for the CallForProposals pattern and the yel-
low page role for the subscription pattern in the
same application). The process is repeated until all
relevant patterns have been identified. The code
generator then produces the generic code for the
patterns (.agent, .event, .plan, .bel JACK files).

The programmer has to add the particular
JACK code for each generated files and implement
the graphical interface if necessary.

Figure 15 shows an example of the (e-busi-
ness) broker for the data integrator presented in
section 4. It was developed with JACK and the
code skeleton was generated with SKwyRL’s code

generator using the broker pattern explained in
the article. The bottom half of the figure shows
the interface between the customer and the bro-
ker. The customer sends a service request to the
broker asking for buying or sending DVDs. He
chooses which DVDs to sell or buy, selects the
corresponding DVD titles, the quantity and the
deadline (the time-out before which the broker has
to realizes the requested service). When receiving
the customer’s request, the broker interacts with
the media shops to obtain the DVDs. The interac-
tions between the broker and the media shops are
shown on the bottom-right corner of this figure.
The top half of the figure shows the items that
are provided by each media shop.

relAted work

As already said, a lot of work has been devoted
to software patterns these last 15years. Patterns
for software development are one of software
engineering problem-solving discipline that has
its roots in a design movement in contemporary

Figure 15. An e-business broker

 793

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

architecture and the documentation of best prac-
tices and lessons learned in all vocations. The goal
of patterns is to create a body of literature to help
software developers resolve recurring problems
encountered throughout all of software develop-
ment. Patterns help create a shared language for
communicating insight and experience about
these problems and their solutions.

Ward Cunningham and Kent Beck developed
a small set of five patterns (Beck & Cunningham,
1987), for guiding Smalltalk programmers to
design user interface. Jim Coplien introduced a
catalog of for C++ patterns, called idioms (Coplien,
1991). Software patterns then became popular with
the wide acceptance of the Gang of Four or GoF
(Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides) book (Gamma et al., 1995).

However, the patterns in the GoF book are only
one kind of pattern—the object-oriented design
patterns. There are many other kinds of patterns.
For example, Martin Fowler’s “Analysis Patterns”
(Fowler, 1997) describe the models of business
processes that occur repeatedly in the analysis
phase of software development; organizational
patterns (Coplien & Schmidt, 1995) are about
software-development organizations and about
people who work in such organizations. Process
patterns (Ambler, 1998) relate to the strategies
that software professionals employ to solve
problems that recur across organizations. Frank
Buschmann, Regine Meunier, Hans Rohnert, Peter
Sommerlad, and Michael Stal, helped popularize
these kinds of patterns (organizational and process
patterns) (Buschmann et al., 1996).

Contrary to pattern, that represents a “best
practice,” an anti-pattern represents a “lesson
learned.” There are two kinds of “anti-patterns:”
those that describe a bad solution to a problem
which resulted in a bad situation and those that
describe how to get out of a bad situation and
how to proceed from there to a good solution.
Anti-pattern is initially proposed by Andrew
Koenig. Anti-patterns extend the field of soft-
ware patterns research into exciting new areas

and issues, including: refactoring, reengineering,
system extension, and system migration (Brown,
Malveau, Hays, et al., 1998; Love, 1997; Opdyke,
1992; Webster, 1995).

Recent popularity of autonomous agents and
agent-oriented software engineering has led to
the discovery of agent patterns (Aridor & Lange,
1998;, Deugo et al., 1999; Do et al., 2003; Hayden et
al., 1999; Mouratidis, Giorgini & Manson, 2003),
that capture good solutions to common problems
in agent design in many aspect such as security,
architecture, organization, and so forth. However,
as pointed out earlier, little focus has been put on
social and intentional considerations and these
agent patterns rather aim at the implementation
level. The framework presented in the chapter
should add more detail to the design process of
agent oriented software engineering (Do et al.,
2003, Do et al., 2003).

conclusIon

Nowadays, software engineering for new enter-
prise application domains such as e-business,
knowledge management, peer-to-peer computing,
or Web services is forced to build up open systems
able to cope with distributed, heterogeneous, and
dynamic information issues. Most of these soft-
ware systems exist in a changing organizational
and operational environment where new compo-
nents can be added, modified or removed at any
time. For these reasons and more, multi-agent
systems (MAS) architectures are gaining popu-
larity in that they do allow dynamic and evolving
structures which can change at run-time.

An important technique that helps to manage
the complexity of such architectures is the reuse
of development experience and know-how. Like
any architect, software architects use patterns to
guide system development. Over the years, pat-
terns have become an attractive approach to reus-
ing architectural design knowledge in software
engineering. Patterns describe a problem com-

794

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

monly found in software designs and prescribe
a flexible solution for the problem, so as to ease
the reuse of that solution.

As explored in this article, MAS architectures
can be considered social structures composed of
autonomous and proactive agents that interact
and cooperate with each other to achieve com-
mon or private goals. Since the fundamental
concepts of multi-agent systems are intentional
and social, rather than implementation-oriented,
social abstractions could provide inspiration and
insights to define patterns for designing MAS
architectures.

This article has focused on social patterns.
With real-world social behaviors as a metaphor,
social patterns are agent-oriented design patterns
that describe MAS as composed of autonomous
agents that interact and coordinate to achieve their
intentions, like actors in human organizations.

The article has described such patterns, a de-
sign framework to introspect them and formalize
their “code of ethics,” answering the question:
what can one expect from a broker, mediator,
embassy, and so forth. It aims to be used during
the detail design phase of any agent-oriented
methodology detailing the patterns following
different point of views.

reFerences

Ambler, S. (1998). Process patterns: Building
large-scale systems using object technology.
Cambridge: Cambridge University Press.

Aridor, Y. & Lange, D. B. (1998). Agent design
patterns: Elements of agent application design. In
Proc. of the 2nd Int. Conf. on Autonomous Agents,
Agents’98, (pp.108-115). Minneapolis, USA

Bauer, B., Muller, J. P., & Odell, J. (2001). Agent
UML: A formalism for specifying multiagent
interaction. In Proc. of the 1st Int. Workshop on
Agent-Oriented Software Engineering, AOSE’00,
(pp.91-103). Limerick, Ireland,

Beck, K., & Cunningham, W. (1987). Using
pattern languages for object-oriented programs.
workshop on the Specification and Design for
Object-Oriented Programming (OOPSLA’87).

Borland Together. (2007). Retrieved August 16,
2007 from Available at: http://www.borland.
com/downloads/download_together.html

Bosch, J. (1998). Design patterns as language
constructs. Journal of Object-Oriented Program-
ming, 11(2), 18-32.

Brown, W. J., Malveau R. C., Hays, W., McCor-
mick Iii, H., & Mowbray, T. J. (1998). AntiPatterns:
refactoring software, architectures, and projects
in crisis. John Wiley & Sons.

Buschmann, F., Meunier, R., Rohnert, H., Som-
merlad, P., & Stal, M. (1996). Pattern-oriented
software architecture—a system of patterns. John
Wiley & Sons.

Caire J. & al. (2002). Agent-oriented analysis
using MESSAGE/UML. In Proceedings of the
2nd Int. Workshop on Agent-Oriented Software
Engineering, LNCS 2222, (pp. 119-135).

Castro, J., Kolp, M., & Mylopoulos, J. (2002). To-
wards requirements-driven information systems
engineering: The tropos project. Information
Systems, 27(6), 365-389.

Chidamber, & S.R, Kemerer, C.F. (1994). A
metrics suite for object-oriented design. IEEE
Transactions on Software Engineering, 20(6),
476-493.

Cockburn, A. (1996). The interaction of social
issues and software architecture. Communication
of the ACM, 39(10), 40-49.

Coplien, J. & Schmidt D. (1995). Pattern languages
of program design. Addison-Wesley.

Coplien, O. (1991). Advanced C++ program-
ming styles and idioms. Addison-Wesley Inter-
national.

 795

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

Deugo, D., Oppacher, F., Kuester, J., & Otte,
I. V. (1999). Patterns as a means for intelligent
software engineering. In Proceedings of the Int.
Conf. on Artificial Intelligence, IC-AI’99, Las
Vegas, Nevada, USA, (pp. 605-611).

Do, T. T., Faulkner, S., & Kolp, M. (2003). Or-
ganizational multi-agent architectures for information
systems. In Proceedings of the 5th International
Conference on Enterprise Information Systems,
ICEIS 2003, (pp. 89-96).

Do, T. T., Kolp, M., Hang Hoang T. T., & Pirotte,
A. (2003). A framework for design patterns for Tropos.
In Proceedings of the 17th Brazilian Symposium
on Software Engineering, SBES 2003.

Dussauge, P., & Garrette, B. (1999). Coopera-
tive strategy: Competing successfully through
strategic Alliances. Wiley and Sons.

Fernandez, E. B., & Pan, R. (2001). A pattern
language for security models. In Proceedings
of the 8th Conference on Pattern Language of
Programs, PLoP 2001.

FIPA. (2007). The foundation for intelligent physi-
cal agent (FIPA). http://www.fipa.org/

Fowler, M. (1997). Analysis patterns: Reusable
object models. Addison-Wesley.

Fuxman, A., Pistore, M., Mylopoulos, J., &
Traverso, P. (2001). Model checking early re-
quirements specifications in Tropos. In Proc. of
the 5th IEEE Int. Symposium on Requirements
Engineering, RE’01, (pp. 174-181).

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1995). Design patterns: Elements of reusable
object-oriented software. Addison-Wesley.

Hayden, S., Carrick, C., & Yang, Q. (1999). Ar-
chitectural design patterns for multiagent coor-
dination. In Proceedings of the 3rd Int. Conf. on
Agent Systems, Agents’99, Seattle, USA.

IBM Rational Rose. (2007). Retrieved August
16, 2007 from http://www-306.ibm.com/soft-
ware/rational

JACK Intelligent Agents. (2006). Retrieved Au-
gust 16, 2007 from http://www.agent-software.
com

Jennings, N. R. & Wooldridge, M. (2001). Agent-
oriented software engineering. In Handbook of
Agent Technology, AAAI/ MIT Press.

Kolp, M., Faulkner, S., & Wautelet, Y. (2007).
Social-centric design of multi-agent architectures.
In P. Giorgini, N. Maiden, J. Mylopoulos, E. Yu
(Eds.), Social modeling for requirements engi-
neering, in the Cooperative Information Systems
series. MIT Press.

Kolp, M., Giorgini, P., & Mylopoulos, J. (2002).
Information systems development through social
structures. In Proceedings of the 14th Int. Confer-
ence on Software Engineering and Knowledge
Engineering, SEKE’02, Vol. 27, (pp. 183-190).

Love, T. (1997). Object lessons. Cambridge Uni-
versity Press.

Mintzberg, H. (1992). Structure in fives: Designing
effective organizations. Prentice-Hall.

Morabito, J., Sack, I., & Bhate, A. (1999). Orga-
nization modeling: Innovative architectures for
the 21st century. Prentice Hall.

Mouratidis H., Giorgini P., & Manson G. (2003).
Modeling secure multiagent systems. In Proceed-
ings of the 2nd International Joint Conference on
Autonomous Agents and Multiagent Systems, ACM
press, (pp. 859-866).

OMG. (2005). The software process engineering
Mmtamodel Specification. Version 1.1.

Opdyke, W. F. (1992). Refactoring object-oriented
frameworks. PhD Thesis, University of Illinois
at Urbana-Champaign.

796

Social Structure Based Design Patterns for Agent-Oriented Software Engineering

Parunak, V. (1997). Go to the ant: Engineering
principles from natural agent systems. Annals of
Operations Research, 75, 69-101.

Pree, W. (1994). Design patterns for object oriented
development. Addison Wesley.

Riehle, D. & Züllighoven, H. (1996). Understand-
ing and using patterns in software development.
Theory and Practice of Object Systems, 2(1),
3-13.

Scott, W.R. (1998). Organizations: Rational,
natural, and open systems. Prentice Hall.

Segil, L. (1996). Intelligent business alliances:
How to profit using today’s most important stra-
tegic tool. Times Business.

Wautelet, Y., Kolp, M. & Achbany Y. (2006).
I-Tropos: An Iterative SPEM-Centric Software
Project Management Process. Technical Report
IAG Working paper 06/01, IAG/ISYS Informa-
tion Systems Research Unit, Catholic Univer-
sity of Louvain, Belgium. http://www.iag.ucl.
ac.be/wp/

Webster, B. F. (1995). Pitfalls of object oriented de-
velopment. John Wiley & Sons Inc.

Widom, J. (1995). Research problems in data
warehousing. In Proceedings of the Fourth Int.
Conf. on Information and Knowledge Manage-
ment, ACM Press, (pp. 25-30).

Wood, M., DeLoach, S. A., & Sparkman C. (2001).
Multi-agent system engineering. International
Journal of Software Engineering and Knowledge
Engineering, 11(3), 231-258.

Woodridge, M., Jennings, N. R., & Kinny, D.
(2000). The gaia methodology for agent-oriented
analysis and design. Autonomous Agents and
Multi-Agent Systems, 3(3), 285-312.

Yoshino, M.Y., & Srinivasa Rangan, U. (1995).
Strategic alliances: An entrepreneurial ap-
proach to globalization. Harvard Business School
Press.

Yu, E. (1995). Modeling strategic relationships for
process reengineering. PhD thesis, University of
Toronto, Department of Computer Science.

Zambonelli, F., Jennings, N.R., Omicini, A., &
Wooldridge, M. (2000). Agent-oriented software
engineering for internet applications. In coordina-
tion of internet agents: Models, technologies and
applications (pp. 326-346). Springer Verlag.

Zambonelli, F., Jennings, N.R., & Wooldridge,
M. (2000). Organizational abstractions for the
analysis and design of multi-agent systems. In
Proceedings of the 1st International Workshop
on Agent-Oriented Software Engineering, (pp.
243-252).

This work was previously published in International Journal of Intelligent Information Technologies, Vol. 4, Issue 2, edited by
V. Sugumaran, pp. 1-23, copyright 2008 by IGI Publishing (an imprint of IGI Global).

 797

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.16
Women in the Free/Libre Open
Source Software Development

Yuwei Lin
Vrije Universiteit Amsterdam, The Netherlands

IntroductIon

Free/libre open source software (FLOSS) has
become a prominent phenomenon in the ICT
field and the wider public domain for the past
years. However, according to a FLOSS survey
on FLOSS developers in 2002, “women do not
play a role in the [FLOSS] development; only
1.1% of the FLOSS sample is female.” (Ghosh,
Glott, Krieger, & Robles, 2002). In the main-
stream research on FLOSS communities, many
researchers also overlook different processes of
community-building and diverse experiences
of members, and presume a stereotyped male-
dominated “hacker community” (e.g., Levy, 1984;
Raymond, 2001; Himanen, 2001; Thomas, 2002).
Moreover, issues around gender inequality are
often ignored and/or muted in the pile of FLOSS
studies. Female programmers often are rejected
ex/implicitly from the software labour market
(Levesque & Wilson 2004). The requirements
of female users are not respected and consulted
either (European Commission, 2001). This feature

is opposite to the FLOSS ideal world where users
should be equally treated and embraced (op. cit.).
While many researchers endeavour to understand
the FLOSS development, few found a gender-
biased situation problematic. In short, women
are almost invisible in current FLOSS-related
literature. Most policies targeting at advocating
FLOSS are also gender blind.

Thus, this essay highlights the need for in-
creased action to address imbalances between
women’s and men’s access to and participation
in the FLOSS development in cultural (e.g.,
chauvinistic and/or gender-biased languages in
discussions on mailing lists or in documenta-
tions), economic (e.g., unequal salary levels for
women and men), political (e.g., male-dominated
advocacy environment) and technical (e.g., un-
balanced students gender in technical tutorials)
spheres. On the other hand, it also emphasises
the powerful potential of FLOSS as a vehicle for
advancing gender equality in software expertise.
FLOSS helps transport knowledge and experience
of software engineering through distributing

798

Women in the Free/Libre Open Source Software Development

source code together with the binary code almost
without any limit. Many FLOSS licences such as
the General Public Licence (GPL) also facilitates
the flow of information and knowledge. In other
words, if appropriately harnessed, FLOSS stands
to meaningfully contribute to and mutually rein-
force the advancement of effective, more expedited
solutions to bridging the gender digital divide.

In the end, this article points out that while
women in more advanced countries have a better
chance of upgrading their ICT skills and knowl-
edge through participating in the FLOSS develop-
ment, the opportunity is less available for women
in the developing world. It is worth noting that
although the gender issues raised in this article
are widespread, they should not be considered as
universally indifferent. Regional specificities in
gender agenda in software engineering should be
addressed distinctly (UNDP/UNIFEM, 2004).

towArd A FeMInIst AnAlytIcs1
on the gender Issues In the
Floss deVelopMent

To a degree, the gender problems in the FLOSS
development can be seen as an extension of the
ongoing gender issues in new-tech service in-
dustries and/or software industry (e.g., Mitter &
Rowbotham, 1995). These long-term problems
mainly include low-level work content, unequal
payment, emotional distress from discrimina-
tion and prejudice, physical ache from the long
working hour in front of the computer, division
of labour within the home (child-rearing), essen-
tialist notions of women’s roles, sexism, informal
networks, prejudice, lack of role models and
support, and “glass ceilings.” Generally speak-
ing, women within the software industry have to
work harder than men in order to get the same
respect and conquer the glass-ceiling problem in
this patriarchy world (DeBare, 1996).

Although FLOSS has dramatically changed
the way software is produced, distributed, sup-

ported, and used, and has a visible social impact
enabling a richer digital inclusion, most of the
gender problems existing in the software industry
have been duplicated in the FLOSS field.

A FLOSS social world (Lin, 2004) is differ-
ent from what Turkle (1984) argues: “computer
systems [mainly proprietary] represent a closed,
controllable microworld—which appeals to more
men than women” (Turkle, 1984). It requires a
holistic perspective to capture the complexity
and dynamics within and across the social world.
While the heterogeneity and the contingency in
this social world are not yet fully explored, analysis
from a feminist perspective is almost absent. Little
attention has been paid to the internal differences
and to the private arena linked with the FLOSS
innovation system. However, this methodological
lack has not stopped us from observing the gender
problems within the field. Instead, by means of
the FLOSS development, some gender problems
in ICT become even more apparent.

Additionally, in a world of volunteers, we
clearly see that men and a competitive worldview
are more present in all forms of media. Many
women participating in the FLOSS develop-
ment are invisible: their labour in fields such as
NGOs that help implement and promote FLOSS,
documentation translation, book editing, teaching
and tutoring (e.g., E-Riders2) are less visible than
male-dominated coding work. Indeed, FLOSS
advocates have not adequately addressed this
critique of gender equality. They tend to treat the
FLOSS community as a monolithic culture—to
pay more attention to differences between and
among groups than to differences within them.
They are so eager uniting the voices on freedom of
information that they give little or no recognition
to the fact that FLOSS groups, “like the societies
in which they exist (though to a greater or lesser
extent), are themselves gendered, with substantial
differences of power and advantage between men
and women” (Okin, 1999).

 799

Women in the Free/Libre Open Source Software Development

A number of key dilemmas that hinder wom-
en’s participation in the FLOSS development can
be summarised:

1. A Lack of “Mentors” and Role Models:
It is true that there is a very low percentage
of female participants in the FLOSS social
world. However, we should not overlook the
importance and possible future of outstand-
ing female figures in the FLOSS field. It is
difficult to make the majority of male peers
respect these female figures. I am not sug-
gesting that men all look down on women, but
it is more difficult for women to be assertive
in front of male-dominated audience. The
whole way the world is constructed means
there are just men at every level, which
makes it really hard for women to get their
feet in the door. A way of overcoming this
is to establish more female figures in the
world. While few in the computer world
actually know that Ms. Ada Byron is the
first programmer in the world, how could
we expect people to recognise women’s
ability?

2. Discriminated Languages Online and/or
Offline (e.g., Phrases in Documentaries):
Many female FLOSS developers have com-
plained the highly unfriendly atmosphere
within the social world, online (e.g., mailing
lists, IRC) and/or offline (e.g., documenta-
tion). For instance, referred to prospective
readers, existed FLOSS documentation usu-
ally use single sex term, he, rather than she
or they. This kind of gender-biased words
subtly exclude women from participating in
the FLOSS development. While the online
languages are in a direct way full of men’s
jargon, reading the documentation offline
does not make a female developer/user feel
more included in the field. If women need
to be encouraged to participate in FLOSS-
related discussions, a sexist or discriminative
surrounding is definitely not attractive.

3. A Lack of Women-Centred View in the
FLOSS Development: The consequence of
the lack of female FLOSS developers is that
there is a greater amount of female-unfriend-
ly software in the FLOSS system. Some
scholars in science and technology studies
(STS) have pointed out that technologies
are gendered both in their design and use
(e.g., Edwards, 1993; Wajcman, 2004).The
social relations of gender within and across
the FLOSS social world are reflected in and
shaped by the design of FLOSS. And such
a lack of women’s perspective on software
design and use restricts women’s participa-
tion in the FLOSS development and, in turn,
forms the stereotyped fact that women are
almost absent in the FLOSS development be-
cause they are less adequate in programming
or less likely to be advanced computer users.
This absence of female developers would
also be a loss of the FLOSS development,
and result in inequalities in an ICT-based
society as a threat to social cohesion and
social order.

4. A Male-Dominated Competitive World-
view:

 “[The FLOSS market] is literally a war for
the best and brightest. If we don’t get there,
somebody else will” (Andrew Clark, director
of strategy and market intelligence for the
venture capital group at IBM—interviewed
with C|Net.com on February 14, 2005).

 As Arun and Arun (2001) point out, “The
project-based, competitive nature of soft-
ware development reproduces a masculine
culture, which further interacts with the dif-
ferent career patterns of women and social
norms and tends to disadvantage women.”
While languages in a similar tone with
Clark’s words above repeatedly turn up in the
mass media such as advertisements from big
computer companies, the male-led competi-
tive worldview is continuously represented
and reinforced in the society. Since there

800

Women in the Free/Libre Open Source Software Development

are fairly clear disparities of power between
the sexes within the FLOSS social world,
a gender-imbalanced world is ensued. The
more powerful male members are those who
are generally in a position to determine and
articulate the group’s beliefs, practices, and
interests. Although not all proposals associ-
ated with FLOSS are potentially antifeminist
under such conditions, but they somehow
duplicate and forward the view that might
limit the capacities of women and girls to
freely choose lives that they would like to
live. It is very alarming that a large amount
of perspectives and purposes regarding
the FLOSS development is determined by
white men. This imbalance might give a
distorted world view; it is much better to
have views from all people from different
social worlds.

5. No Sympathy from Women Peers: There
are many more spoken or unspoken problems
for women to take part in the FLOSS devel-
opment (e.g., Henson, 2002; Spertus, 1991).
However, facing these gender inequalities,
many women remain remote and feel no
need of tackling these problems. While
some women-centred online groups have
networked together to address the gender
issue in the FLOSS movement, many female
programmers still do not share the same view
on an ongoing and enlarging gap between
men and women software developers. While
gender issue in FLOSS is not addressed in
most of the literature and also not recognised
by female peers, it is difficult to network
women to tackle the coherent patriarchal
hegemony in the computer world.

how cAn Floss eMpower
woMen?

Like many other ICTs, FLOSS carries the pow-
erful potential as a vehicle for advancing social

equality. It opens up an opportunity for women
to learn how to communicate and interact with
software designers and speak out what kind of
software they want (e.g., file bug report, join the
user group and online forum etc.), to have access
to source code and fork the software (e.g., to have
a female-friendly version of the software), if they
are interested and competent.

There are three main ends in current “women
movement in the FLOSS community”: (1) pro-
viding women-friendly software and services;
(2) creating a women-friendly environment for
developing and using FLOSS; and (3) fostering
a gender-balanced ICT innovation system for
both competition and collaboration. These three
points have close connections with one another.
In order to create software that engage and build
on women’s ideas and visions, we need to cre-
ate a more women-friendly environment for the
purpose of attracting more women to participate
in the FLOSS development. Encompassing such
a women-centred view of design, which usually
resembles a more sympathetic and inclusive way
of doing, will possibly foster a gender-balanced
ICT innovation system that is not only friendly
to women but also to various minorities in our
society. This system, unlike the current one based
on a highly competition-oriented approach, will
draw on aptitudes and competences of diverse
actors in the FLOSS social world so as to develop
a holistic environment which is based on a col-
laboration-oriented approach.

Networking is important in democratising
the access and dissemination of knowledge and
establishing a base for a citizenship defined by
gender equity. In order to encourage women’s
participation and also to explain the operation of
FLOSS to women, some female developers/users
have started to network and form online groups
such as, LinuxChix3, KDE Women4, Gnurias5,
GenderChangers6 , and Debian-women7. They act
to dispel the unfriendly wording in documents
and in online peer groups, to report this kind of
sexist bug reports to other developers, to give

 801

Women in the Free/Libre Open Source Software Development

online tutorials. These networking and gather-
ing, online or offline, would serve as a base for
gender inclusion.

conclusIon And Future
reseArch

The essay aims to identify the current challenges
of gender politics and help formulate strategies
and recommendations in order to advance and
to empower women in FLOSS. It is anticipated
that through conceptualising and documenting
the current gender issues in the FLOSS develop-
ment, it will help enlarge the knowledge base for
gender-sensitive policies on ICTs, and propose a
women-centred policy towards developing and
implementing FLOSS. While FLOSS denotes
a new milestone for software development and
knowledge making in a broad sense that might
alter the social relations of gender, “in this tech-
noscientific advanced era, feminist politics make
wider differences in women-machine relationship
than the technologies themselves” (Wajcman,
2004). As such, a gender-sensitive agenda for
developing FLOSS is urgently needed.

In terms of future research, in order to get a
comprehensive overview of the current gender
digital divide in the FLOSS social world, more
research, both qualitative and quantitative, needs
to be conducted. The former would allow us to
understand women’s experiences and needs better
through ethnographical observation, interviews,
and focus groups, while the latter would give a full-
er picture of general gender problems. Research-
ers across disciplines are encouraged to analyse
FLOSS activities more critically with regard to
gender, and to develop conceptual frameworks
and methodologies for better understanding and
analysing the relationship between FLOSS and
gender. Additionally, in encouraging the FLOSS
development, governments and organisations
should pay extra attention to gender-related issues

as well, and take initiatives to include women in
the FLOSS development. Holding training work-
shops for female developers might be a feasible
way of bridging the gender digital divide in the
FLOSS social world. Other efforts such as design
of products and Web sites for women and girls,
supporting networks for female professions in
FLOSS shall be encouraged.

However, in speaking of implementing and
developing FLOSS, most of the cases are cen-
tralised or situated in more developed countries.
One should bear in mind that there are many
undocumented activities that have happened in
the developing world. When strengthening the
advantages of FLOSS, we should not overlook
many problems emerging from implementing
FLOSS in developing countries, such as a lack of
sufficient training and support. The digital divide
shall be considered as a symptom of inequality, not
the cause of it. There is a need of understanding
what local people really need: water, food, jobs,
decent healthcare and sanitation, or software
and ICT infrastructure. The gender issue of ICT
might be more complex than we thought as well.
Female participants very often suffer from hybrid
discriminations, both from the male-dominated
FLOSS world and the socio-cultural patriarchy
in the society. Although virtual groups such
Linuxchix Brazil8 and Linuxchix Africa9 have
started providing women with help on solving
problems in implementing Linux, more efforts
need to be spent on documenting, analysing and
deconstructing the patriarchal hegemony embed-
ded in the whole ICT infrastructure. As such, like
many other fields concerned with gendering, this
essay is a mere beginning of a feminist accounts
about the FLOSS development—an analytic stage
on which “we need to place the details contrib-
uted by ethnographic research, cultural critiques,
sociological surveys, legal scholarship on men
and women in their many specific conditions and
subjectivities” (Sassen, 1999, p. 2).

802

Women in the Free/Libre Open Source Software Development

reFerences

Arun, S., & Arun, T. G. (2001). Gender at work
within the software industry: An Indian perspec-
tive. Journal of Women and Minorities in science
and engineering, 7(3), 42-58.

DeBare, I. (1996, January 21). Women in com-
puting: Logged on or left out? [Special report].
Sacramento Bee.

Edwards, P. (1993). Gender and the cultural
construction of computing. Adapted from “From
‘impact’ to social process: Case studies of com-
puters in politics, society, and culture (Chapter
IV-A),” in Handbook of Science and Technology
Studies. Beverly Hills, CA: Sage Press.

European Commission. (2001). Public report on
the consultation meeting on European perspec-
tives for open source software. Retrieved from
ftp://ftp.cordis.lu/pub/ist/docs/ka4/tesss-OSS-
report.pdf

Ghosh, R. A., Glott, R., Krieger, B., & Robles,
G. (2002). Free/Libre and open source software:
Survey and study (Deliverable D18: Final Report,
Part IV: Survey of Developers). International
Institute of Infonomics, University of Maastricht
and Berlecon Research GmbH. Retrieved origi-
nal version of this document from http://www.
infonomics.nl/FLOSS/report/

Henson, V. (2002). How to encourage women
in Linux. Retrieved from http://www.tldp.org/
HOWTO/Encourage-Women-Linux-HOWTO/
index.html

Himanen, P. (2001). The hacker ethic and the
spirit of the information age. London: Secker &
Warburg.

Levesque M., & Wilson, G. (2004). Women in
software: Open source, cold shoulder. Software
Development. Retrieved February 20, 2005, from
http://www.sdmagazine.com/documents/s=9411/
sdm0411b/sdm0411b.html?temp=TgtgS9YUY8

Levy, S. (1984). Hackers: Heroes of the com-
puter revolution. Garden City, NY: Anchor
Press/Doubleday.

Lin, Y. W. (2004). Hacking practices and software
development: A social worlds analysis of ICT in-
novation and the role of open source software.
PhD thesis, Department of Sociology, University
of York, UK.

Mitter S., & Rowbotham, S. (1995). Women
encounter technology: Changing patterns of em-
ployment in the third world. London: Routledge
and the United Nations University.

Okin, S. M. (1999) Is multiculturalism bad for
women? Retrieved from http://www.boston re-
view.net/BR22.5/okin.html

Raymond, E. S. (2001). How to become a hacker.
Retrieved June 23, 2005, from http://www.catb.
org/~esr/faqs/hacker-howto.html

Sassen, S. (1999). Blind spots: Towards a feminist
analytics of today’s global economy. Retrieved
from http://www.uwm.edu/Dept/IGS/presenta-
tion/sassen.pdf

Spertus, E. (1991). Why are there so few female
computer scientists? (MIT Artificial Intelligence
Laboratory Technical Report 1315). Retrieved
February 20, 2005, from http://www.mills.edu/
ACAD_INFO/MCS/SPERTUS/Gender/pap/pap.
html

Thomas, D. (2002). Hacker culture. Minneapolis,
MN: University of Minnesota Press.

Turkle, S. (1984). The second self: Computers
and the human spirit. New York: Simon and
Schuster.

UNDP Bratislava Regional Center and UNIFEM
Central and Eastern Europe. (2004). Bridging
the gender digital divide: A report on gender
and information communication technologies
(ICT) in Central and Eastern Europe and the

 803

Women in the Free/Libre Open Source Software Development

commonwealth of independent states (CIS).
UNDP/UNIFEM.

Wajcman, J. (2004). TechnoFeminism. Cambridge,
UK: Polity Press.

key terMs

Debian GNU/Linux and Debian-Women:
Created by the Debian Project, is a widely used
free software distribution developed through
the collaboration of volunteers from around the
world. Since its inception, the released system,
The Debian Women project, founded in May
2004, seeks to balance and diversify the Debian
Project by actively engaging with interested
women and encouraging them to become more
involved with Debian.

Ethnography: Refers to the qualitative de-
scription of human social phenomena, based on
months or years of fieldwork. Ethnography may
be “holistic,” describing a society as a whole, or
it may focus on specific problems or situations
within a larger social scene.

FLOSS: Free/libre open source software
(FLOSS), generically indicates non-proprietary
software that allows users to have freedom to
run, copy, distribute, study, change and improve
the software.

Focus Group: A focus group is a form of
qualitative research in which a group of people
are asked about their attitude towards a product,
concept, advertisement, idea, or packaging. Ques-
tions are asked in an interactive group setting
where participants are free to talk with other
group members.

GPL: General Public License (GPL) is a free
software licence that guarantees the freedom of
users to share and change free software. It has
been the most popular free software license since
its creation in 1991 by Richard Stallman.

Hegemony: Is the dominance of one group over
other groups, with or without the threat of force,
to the extent that, for instance, the dominant party
can dictate the terms of trade to its advantage; or
more broadly, that cultural perspectives become
skewed to favor the dominant group.

KDE(K Desktop Environment): A free
desktop environment and development platform
built with Trolltech’s Qt toolkit. It runs on most
Unix and Unix-like systems, such as Linux,
BSD, and Solaris.

endnotes

1 By “feminism” I mean the belief that women
should not be disadvantaged by their sex,
that the moral equality of men and women
should be endorsed, and that all forms of
oppression should be demolished.

2 http://www.eriders.org
3 http://www.linuxchix.org/
4 http://women.kde.org/
5 http://www.gnurias.org.br/
6 http://www.genderchangers.org/
7 http://women.alioth.debian.org/
8 http://www.linuxchix.org.br
9 http://www.africalinuxchix.org

This work was previously published in Encyclopedia of Gender and Information Technology, edited by E. Trauth, pp. 1286-
1291, copyright 2006 by Idea Group Reference (an imprint of IGI Global).

804

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.17
Managing Intellectual Capital

and Intellectual Property within
Software Development

Communities of Practice
Andy Williamson

Wairua Consulting Limited, New Zealand

David M. Kennedy
Hong Kong Institute of Education, Hong Kong

Ruth DeSouza
Wairua Consulting Limited, New Zealand

Carmel McNaught
Chinese University of Hong Kong, Hong Kong

IntroductIon

In this article, we will develop a framework for
educational software development teams that
recognizes the conflicts and tensions that exist
between the different professional groups and will
assist software teams to recognize the intellectual
capital created by individuals and teams. We will
do so by recognizing the inherent relationship
between the tangible elements of intellectual
property and the intangible organizational assets

that form the basis of intellectual capital and by
discussing how knowledge generated by a project
team can become an explicit asset.

bAckground

Universities are increasingly becoming developers
of complex software-based applications. In-house
development ranges from teaching aids and online
learning resources to large information systems

 805

Managing Intellectual Capital and Intellectual Property within Software Development Communities

products that could ultimately become successful
commercial ventures. Increased product complex-
ity is easily recognized, yet research shows that
the organizational aspects of a software develop-
ment project are more likely to affect performance
and outcomes than technical issues (Xia & Lee,
2004). Successful development and deployment
of today’s complex educational systems and envi-
ronments comes with an imperative for an array
of different and unique skill sets for the various
stages of each project. One can view a software
development team as a microcosm of the wider
community of practice of software development
professionals who work in information and knowl-
edge management in higher education. As Wenger
(1998) observes, such communities of practice
are not random but constructed around required
skills and through a process of negotiation based
on mutuality and accountability.

Workforce mobility has increased: academic
staff members regularly and easily move between
institutions; development and design staff have
many opportunities for contract-based work,
move to other academic institutions or into the
private sector. The ideas that lie behind a suc-
cessful process or product are increasingly drawn
from a wider pool of talent and, as people move
around, these ideas are being taken with them
and disseminated through informal and new work
practices into a wider community of practice.
How then does a team, formed to design and
develop a technology-rich educational or systems
environment, manage and control issues of intel-
lectual capital and intellectual property such that
all of those who contribute throughout the life of
a project are acknowledged and rewarded fairly
and appropriately for that contribution, even after
they have left the project?

team Formation and relationships

Additional complexity leads to specialization
(Jacobson, Booch & Rumbaugh, 1998). New
ways of working bring with them a shift in power,

where the academic expert will often lack the
technical skills, time or resources to turn ideas
into reality. Instead, they must rely on a team of
experts from other disciplines to interpret their
ideas, evolve them, and deliver the finished prod-
uct. As complexity increases, communication
between team members becomes paramount;
specialist educational designers are required to
translate pedagogy into functional specifications
that can be understood by software developers
and graphic designers. Modern software teams
are project-based, where resources come and go
as required.

Software development communities of prac-
tice exist within a larger organizational context.
Roles and responsibilities will vary and are nego-
tiated depending on the toolset and architecture
used, the size of the project, and the culture of
the organization (Phillips, 1997; Williamson et
al., 2003). Project team members can be full- or
part-time employees (academic or non-academic)
or contractors retained specifically for the project.
As such, these roles exhibit complex relation-
ships and interfaces between each other and the
project. In Figure 1, a range of typical roles and
relationships found in a tertiary education software
development project are shown.

During the various stages of the development
process, various players move into prominent
roles. One way to illustrate this shifting set of
work responsibilities is to list the main players at
each stage of the process. We will do this using
the classic instructional systems design (ISD)
model (Dick & Carey, 1990) as it is so well known.
(There are many other models, many of which
are discussed in Bannan-Ritland, 2003.) The key
players at each stage of the ISD model are listed
in Table 1. In reality, each team parcels out the
work depending on the skill set of individuals
in the team.

It is important to be aware of the different
communities of practice that exist in this field and
ensure that the role of individual team members
is able to be promoted appropriately. Professional

806

Managing Intellectual Capital and Intellectual Property within Software Development Communities

recognition can come through either publication, a
portfolio of work or through the finished product,
and the importance of a successful project to the
career development of individuals should not be
underestimated. It is important to ensure that
academic dissemination of successful projects
through publication recognizes the contribution
made by all team members, including the non-
academic members. Many myths persist in relation
to acknowledging the veracity of contribution with
regard to educational software, and these often

have the potential to leave team members feeling
their effort and ideas have gone unrecognized and,
at worst, feeling they have been exploited (Wil-
liamson et al., 2003). In the second half of this
article, we will develop a framework that ensures
appropriate outlets for reward and recognition of
individual contributions within academic soft-
ware development teams. Before doing this, we
will define what is meant by intellectual capital
and intellectual property.

Figure 1. Intra-project relationships in software development teams (Williamson et al., 2003, p. 345)

stage of the Isd model key players
Needs assessment Subject matter expert
Analysis Subject matter expert, Educational designer
Design Subject matter expert, Educational designer, Project manager
Development Project manager, Graphic designer, Programmer, Interface designer,

Editor
Formative evaluation Student and peer evaluators, Subject matter expert, Educational designer
Revision Project manager, Graphic designer, Programmer, Interface designer,

Editor
Implementation Subject matter expert, IT support
Summative evaluation External evaluator
Maintenance IT support, Subject matter expert (Interface designer)

Table 1. Key players at each stage of the ISD model

 807

Managing Intellectual Capital and Intellectual Property within Software Development Communities

Defining Intellectual Capital and
Intellectual property

Florida (2002) argues that the principal factors
for successful software development are talent,
knowledge, and intellectual capital (IC). The
connection of new ideas and existing knowl-
edge within an organizational context leads to
the creation of IC. Stewart (1999) defines IC as
the sum of everything everybody in a company,
organization, or team knows and which provides
some advantage over their competitors. Davidson
and Voss (2001) agree, describing individual IC as
“the sum of individual imagination, intelligence
and ideas” (p. 60). They then extend this defini-
tion to encapsulate a model for organizational IC
that is based on the talent of individuals (human
capital), the knowledge that is captured within
systems and processes (structural capital), and
the characteristics of relationships with customers
and suppliers (customer/supplier capital). Organi-
zational IC comes from the “interplay of all three
(structural capital augments the value of human
capital, leading to an increase in customer/sup-
plier capital)” (p. 61). In terms of this discussion
as it relates to the appropriate recognition and
acknowledgement of individual contributions
within software development teams, human capi-
tal is our primary focus. Human capital is “what
walks out of the door at the end of the day” (p.
68); it is a vital intangible.

If IC is the intangible but invaluable contribu-
tion of human talent to a project, then Intellectual
Property (IP) is a formal measurable subset. It is
the tangible product that results from the idea.
The UK Patent Office (United Kingdom Patent
Office, n.d.) defines four formal types of IP:

• patents for inventions
• trademarks for brands
• designs for product appearance
• copyright for material (including software

and multimedia).

This definition is then extended to cover a
much broader and often more intangible group-
ing that extends to trade secrets, plant varieties,
geographical indications, and performers rights.
While many see copyright as a way of protecting
IP, it is only a subset. Copyright provides recogni-
tion of their invention to the creators of software
or multimedia products in order for them to be
able to obtain economic rewards for their efforts
(Macmillan, 2000). Historically, comparisons
have been drawn between software develop-
ment and the traditional arts, such comparisons
reinforcing an argument that IP law is focused on
the protection of software such that others are not
able to modify the source product (White, 1997).
It is important to note that copyright extends only
to a tangible product, it does not lend protection
to the more intangible areas of IC such as ideas
and individual contribution. Since copyright has
a primarily commercial imperative, it is a lim-
ited and perhaps inappropriate mechanism for
acknowledging contribution. This is of greater
importance in higher educational settings since
copyright of educational materials can reside
with the institution (particularly with off-campus
courses), rather than the individual, and very
few educational software products developed
for specific content domains in higher education
are ever commercialized (Alexander, McKenzie
& Geissinger, 1998).

the relationship between Ic and Ip

A relationship exists between the tangible ele-
ments of intellectual property and the three forms
of intellectual capital (the intangible organiza-
tional assets) discussed in the preceding section.
These are shown in Figure 2.

Ic/Ip Management Framework

Having addressed the complexity of educational
software development teams and defined IC and
IP within an educational software context, we will

808

Managing Intellectual Capital and Intellectual Property within Software Development Communities

now develop a framework that can be used to en-
sure proper recognition and reward for individual
and collective ideas in such a setting.

Given the critical value of IC in software
development (Florida, 2002), it is important that
the processes used within educational software
development are strengthened and formalized
through the adoption of a strong project man-
agement framework. Project management is a
key role in any project involving information
and communication technologies and interactive
multimedia software, and it requires specific skills
and attributes. These include both the hard skills
of contract negotiation, budgeting, scheduling,
project definition, and scoping as well as the
soft skills of human relations, team building, and

facilitation (Burdman, 2000; Schwalbe, 2000).
Successful teams work well together because they
have clear roles and relationships and because the
terms of engagement within the team and with
external parties are well defined, understood, and
agreed by all. This provides a solid platform for
the explicit incorporation of IC and IP policies
into project documentation so that such issues
can be considered early on, preferably during the
project scoping phase.

A process and framework are required to recog-
nize knowledge as it is created so that it becomes
explicit. Without doing so, knowledge remains
tacit and cannot be rewarded or acknowledged,
that is, credited to the appropriate team members
in the future. Extending this concept, knowledge

in the form of

residing in captured in described as

part of

people's
talent

relationships
between
people

knowledge
about

systems &
processes

organisational Intellectual capital (Ic)Intangible
assets

Intellectual property (Ip)
tangible
assets

patents trademarksdesigns

Instantiated as

copyright

supply
capital

structural
capital

human
capital

Figure 2. Intellectual capital and intellectual property (Williamson et al., 2002, p. 342)

 809

Managing Intellectual Capital and Intellectual Property within Software Development Communities

that is explicit within the team can remain tacit
beyond team boundaries if no process is in place to
ensure appropriate recognition of contribution. It
is, therefore, necessary for teams to negotiate clear,
up-front delineation of roles, responsibility, and
ownership of both tangible and intangible outputs
from the project. This does not prejudge what that

ownership might be, merely that the agreement
takes place before the project commences. It is
important to consider how IC/IP generated during
the project’s life will be disseminated, in what
form, and by whom. Such a clear articulation of
roles and responsibilities has the benefit of help-
ing to make the process of dissemination more

Figure 3. IP/IC management framework

810

Managing Intellectual Capital and Intellectual Property within Software Development Communities

visible. By doing so, it is hopefully the case that
team members will recognize the significance of
the different sources of acknowledgment. This in
turn will result in up-front agreement on potential
opportunities for dissemination of original ideas
among the team.

A seldom discussed aspect of the manner in
which ideas might be disseminated (and credit ob-
tained) is the potential synergy between individual
team members. For example, among academic
staff involved in the project, there is a possibility
for cross-disciplinary publications.

This framework, shown in Figure 3, maps
out two axes: the horizontal axis representing
formal ownership of the tangible IP, the vertical
axis representing a continuum of recognition for
the IC generated during a project, ranging from
no acknowledgment of individual effort and
contribution to a full public acknowledgment.
Intermediate steps include recognition at the team
and institutional level.

enacting the Ic/Ip Framework

Our discussion so far has shown that, regardless
of the nature of the IP ownership, academics and
professionals working in software development
teams need appropriate recognition for their
contributions, but certain factors can prevent
this from happening. The challenge, therefore,
is to identify a set of project attributes that can
be used to inform project management practices
such that institutions are cognizant of the need
for appropriate recognition. In the following
section, we identify seven key attributes of, or
processes within, a successful project. The model
is developed from a review of the authors’ own
experiences of software development teams where
problems had occurred. This review led to the
identification of which weaknesses in the process
had resulted in these problems (Williamson et al.,
2003). By ensuring that these seven attributes are
recognized and actively negotiated by newly form-
ing teams and enacted throughout the life of the

team, this model can assist projects in identifying
and filling gaps in the structure of development
teams, hence future risk can be mitigated.

In essence, the IC embedded in the members
of the project team is articulated in terms of the
various IP contributions made by these team
members. However, if the focus is exclusively on
the tangible products of the process (e.g., software
and papers) through only considering the IP, then
the worth of ideas (IC) can be underplayed, and
their potential may not be realized. We are sug-
gesting that explicit application of these seven
guidelines can ensure more successful project
outcomes and positive professional outcomes for
all members of the team.

The nature of an effective community of prac-
tice for software development teams is discussed
in terms of Figure 3. The two major axes and the
four examples in Figure 3 are used to frame the
seven attributes.

Intellectual property: Individual Af-
firmation to Institutional Affirmation

Have an IP Acknowledgement Strategy

Highly successful projects exhibit a strong team
dynamic which arises when the expertise and
knowledge of individual team members can
be communicated and shared with others. Part
of this process involves ensuring that ideas are
fairly acknowledged within and outside the team,
whether by portfolio (graphic artists), publication
(academics), or product (project managers and
programmers).

Have an IP Review Strategy

It does not matter for the purposes of academic
critical review whether the subject of study is a
written paper, a software product, or a portfolio.
Contribution from individual team members
needs to be acknowledged through an inclusive
authorship policy which is regularly revisited in

 811

Managing Intellectual Capital and Intellectual Property within Software Development Communities

team meetings. This process can strengthen col-
legiality and reinforce mutual valuing between
team members.

Have a Strategy to Separate IP from IC

The IP might be owned by an organization or
institution, but the IC remains with the individuals
in the team. Formal acknowledgment of where
the ownership of IP lies is important and needs
to be negotiated ahead of the commencement of
the project. In many higher education institutions,
this has become standard practice and involves
retaining a competitive advantage and protect-
ing the resources produced by employees of the
organization. There are risks associated with
key project contributors leaving (for example,
a lead programmer) and either taking intellec-
tual property with them or holding a software
development team or institution to ransom by
withholding access to code or other resources. In
some organizations, the IC also remains with the
organization via means of a nondisclosure agree-
ment. Communities of practice might consider
using a confidentiality agreement as part of a
contract or offer of employment in order to keep
this issue open and transparent.

Longevity Strategy: Ideas Remain

When a person leaves a team, they cede their
IC to the project team or institution, and that
contribution should continue to be recognized
and acknowledged in project documentation,
appropriate publications, and authorship in any
finished product. In some projects, this may also
involve ceding formal IP to the project (e.g., in
the case of commercialization).

Intellectual capital:
no Formal Acknowledgment
to public Acknowledgment

Recognize the Emergent Nature of the
Software Development Process and Its
Impact on IC/IP for all Team Members

As software becomes more complex, it becomes
less and less likely that the original academic
imperative that led to the idea for the product
will be instantiated in a form initially envisaged
by the academic or the organizational unit that
initiated the project. The development process
and the end result will be strongly influenced by a
wide range of individual and group contributions
to the process and the product.

Ideas are Perishable

Software has a shelf-life, hence the IC that led to
that product is also of limited use. The idea will
become superseded and outdated as new ideas
and new technologies emerge. For example, there
are any number of commercial or free customiz-
able online survey instruments (such as Survey
Monkey, http://www.surveymonkey.com) that
now exist. Learning Evaluation Online (LEO) was
an early system that explored how customizable
educational surveys could be developed online
using an entirely Web-based interface (Kennedy
& Ip, 1998). At the time this was an innovative
approach, but it has since been superseded by
more robust software. Thus, the IC for LEO has
long since expired. The idea behind LEO has been
taken up by others and reproduced using different
software code. The code is the instantiation of the
idea and is the only part of the project subject to
IP rights.

812

Managing Intellectual Capital and Intellectual Property within Software Development Communities

Public Acknowledgment of IP/IC
Requires the Source Material to be in
the Public Domain

Acknowledgment of unpublished work or work not
publicly available is not sufficient to acknowledge
IC and IP issues in a publication. In the case of
academics where affirmation and professional
career progress is at least partially a result of
publication in accredited arenas such as books and
journals, this is clearly not sustainable. Graphic
artists, on the other hand, have their portfolios of
work with iterations of visual designs that they
take with them to the next project or job; and
programmers have compilations of code: for these
professionals, the publication is less important or
substantive in career development. A key issue for
an institution is providing the process by which
academic publications can be developed without

compromising the IP of the individual or trade
advantages in the marketplace.

In summary, the implications for the four
scenarios in Figure 3 are shown in Table 2.

the Future: ApplIcAtIon oF
the seVen AttrIbutes oF the
Ic/Ip FrAMework

In order to see how these attributes can be enacted
in practice, the example of a major Australian
multimedia project, An@tomedia, will be used.
An@tomedia was designed to support problem-
based learning (PBL) of anatomy in the Faculty of
Medicine at the University of Melbourne (http://
www.anatomedia.com). A number of academic
evaluations on the role of An@tomedia in this PBL
learning environment have been published (e.g.,

scenario Implications for Ip and Ic

1 IC and IP is owned by institution; institu-

tion takes credit with no contribution of

individual creativity and effort.

This is a very poor scenario for developing the IC of an institution. Without affirmation,

individuals will seek employment elsewhere and take their IC with them.

2 IP and IC are owned by the institution;

individual contributions are well

documented and publicized.

This is the scenario in a number of institutions worldwide, particularly those involved

in distance education. This scenario is problematic when commercial aspects enter the

situation as in the case of patents.

3 Institution makes no claim (software

is given away or open source); no

ack nowledg ment of i nd iv idu a l

contributions.

This is often the result of small student projects (although many institutions claim the

IP of all undergraduate student work, not postgraduate) undertaken during a course

of study). Most software of this type has a very limited life although there are some

exceptions (Gunn, 1995).

4 Institution makes no claim (either

left to the individual or open source

community); individual contributions

are well documented and publicized.

This applies to postgraduate work in universities. In many institutions, postgraduate

(especially doctoral) students own their IP, and it is up to the student and supervisor

to disseminate the details of the project. This aspect is changing as universities try

to gain a competitive advantage, and many postgraduate students working in a large

research department would do well to consider how the results of their studies might be

retained, negotiating with the university in the early phases of the project. For example,

some student projects (see moodle.org and moodle.com) have become very high profile

products (Dougiamas & Taylor, 2003).

Table 2. Implications for IP and IC

 813

Managing Intellectual Capital and Intellectual Property within Software Development Communities

Attribute enactment

1 Have an IP acknowledgment

strategy

The acknowledgment of IP was never an issue within the project group. Individual contributions

were always acknowledged by the core development team, becoming part of the documentation

of the project. The extensive documentation ensured that no one was left off the credits on

the An@tomedia Web site.

2 Have an IP review strategy The existence of “prior art” was established in the early phases of the project. While the final

product did not resemble the initial designs, it was always clear in the project meetings that

the team was involved in the instantiation of the educational vision of the project leader (one

of the core SMEs).

3 Have a strategy to separate IP

from IC

The strategy to separate IP from IC was undertaken by the four principal authors as An@

atomedia was moved from an interesting project to a commercial product. The documentation

resulting from meetings included discussions of commercialization of An@atomedia and the

associated need to separate IP from IC. The strategy adopted involved consultations with the

university‘s legal advisors and the project team. The IP for the sale and commercial rights to

An@tomedia were ceded to the four key authors by the other team members; however, the

IC remained with members of the project team to use as they required.

4 Longevity strategy: Ideas remain The credits list contains a list of all members who contributed to the project over a period of

many years, including those individuals who either retired (in one case) or moved to other

institutions (a number of people). It is possible for all members of the project team to include

evidence of contributions to An@atomedia by reference to either the Web site or the CD-

Roms (the form in which An@tomedia is published and sold).

5 Recognize the emergent nature of

the software development process

and its impact on IC/IP for all team

members

The development of An@tomedia occurred over a considerable period of time. The genesis

of some the clinical approaches adopted in the project were developed by the project leader

and occurred well before An@tomedia commenced (Eizenberg, 1988, 1991). The use of

technology followed as a consequence of the need to develop more effective and engaging

approaches to the teaching of anatomy (Driver & Eizenberg, 1995). As the final design of

the software emerged, it was always clear in meetings and associated documentation that

other members of the project team were involved in the instantiation of prior concepts and

developments in new and innovative ways, but the underlying concept derived from the earlier

work in paper-based media.

6 Ideas are perishable An@atomedia received a number of awards for innovation and excellence after the first

release (see http://www.anatomedia.com/credits.shtml). However, as people come and go

from the project, the initial ideas will be superseded or altered to reflect teaching evaluations,

changes in the medical curriculum, and improvements in technology. Solutions developed in

1999 or 2000 may not be suitable in 2005. What was once a good idea may not be appropriate

in the future, but the three major methods of affirmation remain—publication, portfolio, and

vitae for all contributions.

7 Public acknowledgment of IP/IC

requires the source material to be

in the public domain

The An@atomedia Web site provides definitive acknowledgment of the specific contributions

of individuals, including the evaluators, programmers, educational consultants, photographers,

medical consultants, project managers, dissectors, illustrators, interface and graphic designers,

and research assistants, to name a few.

Table 3. Example of the application of the seven attributes of the IP/IP framework

814

Managing Intellectual Capital and Intellectual Property within Software Development Communities

Kennedy, Eizenberg & Kennedy, 2000; Kennedy,
Kennedy & Eizenberg, 2001).

The software has been successfully commer-
cialized by the four subject matter experts (core
SMEs or core authors) after other members of
the development team ceded any personal com-
mercial claims to the group by means of a legal
document to that effect.

Affirmation and acknowledgment involving
publishing for academic members (Kennedy et
al., 2000; Kennedy et al., 2001), contributions
to portfolios for non-academic members, and
public acknowledgments in the An@tomedia
Web site for every person who contributed in any
significant way to the project were not affected
by this written agreement. The public affirma-
tion (particularly important for non-academic
members of the project team) is illustrated by the
observation made by a reviewer of An@tomedia in
The Lancet (Marušić, 2004) where she mentions
the extensive list of credits for all the members of
the team (over 60) involved with the project. This
process was accomplished quite simply because
matters of IP had been previously discussed in
the course of project meetings, and the “prior art”
that existed and underpinned the educational ap-
proach was well known to all project members.
Table 3 summarizes the way in which the seven
attributes worked in this project.

conclusIon

While formalized tools exist for capturing IP
generated during a project, most software devel-
opment teams lack formal explicit processes for
ensuring that the IC generated is accurately and
adequately apportioned. This article has raised is-
sues relating to how software development project
teams are recognized for their contribution and
a simple framework for measuring recognition
of contribution has been presented. Seven key
project attributes or processes have been identified
to assist project teams develop an awareness of

how project roles and structures can be negotiated
so that tacit ideas and knowledge generated can
become explicit. Such a model must recognize that
the requirements for, and process of, recognition
will differ within different multiskilled teams.
The application of the framework to one major
multimedia project has been discussed.

reFerences

Alexander, S., McKenzie, J., & Geissinger, H.
(1998). An evaluation of information technology
projects in university learning. Canberra: Aus-
tralian Government Publishing Services, Depart-
ment of Employment, Education and Training
and Youth Affairs.

Bannan-Ritland, B. (n.d.). The role of design in
research: The integrative learning design frame-
work. Educational Researcher, 32(1), 21-24.

Burdman, J. (2000). Collaborative Web develop-
ment: Strategies and best practices for Web teams.
Reading, MA: Addison-Wesley.

Davidson, C., & Voss, P. (2001). Knowledge man-
agement: An introduction to creating competitive
advantage from intellectual material. Auckland,
NZ: Tandem.

Dick, W., & Carey, L. (1990). The systematic
design of instruction. Glenview, IL: Foresman/
Little.

Dougiamas, M., & Taylor, P. (2003) Moodle: Using
learning communities to create an open source
course management system. In D. Lassner & C.
McNaught (Eds), ED-MEDIA 2003, Proceedings
of the 15t h Annual World Conference on Educa-
tional Multimedia, Hypermedia and Telecom-
munications (pp. 171-178). Honolulu, Hawaii.
Norfolk VA: Association for the Advancement
of Computers in Education.

Driver, C., & Eizenberg, N. (1995). Constructing
and deconstructing the human body: Applying

 815

Managing Intellectual Capital and Intellectual Property within Software Development Communities

interactive multimedia in the learning of anatomy.
In J. M. Pearce, A. Ellis, C. McNaught, & G. Hart
(Eds.), Learning with technology: ASCILITE 95.
Proceedings of the 12t h Annual Conference of the
Australian Society for Computers in Learning in
Tertiary Education (pp. 586-587). The University
of Melbourne: The Science Multimedia Teaching
Unit.

Eizenberg, N. (1988). Approaches to learning
anatomy: Developing a program for pre-clinical
medical students. In P. Ramsden (Ed.), Improv-
ing learning: New perspectives (pp. 178-198).
London: Kogan Page.

Eizenberg, N. (1991). Action research in medical
education: Improving teaching via investigating
learning. In O. Zuber-Skerrit (Ed.), Action re-
search for change and development (pp. 179-206).
Avebury: Aldershot.

Florida, R. L. (2002). The rise of the creative
class: And how it’s transforming work, leisure,
community and everyday life. New York: Basic
Books.

Gunn, C. (1995). Useability and beyond: Evaluat-
ing educational effectiveness of computer-based
learning. In G. Gibbs (Ed.), Improving student
learning through assessment and evaluation (pp.
168-190). Oxford, UK: Oxford Centre for Staff
Development.

Jacobson, I., Booch, G., & Rumbaugh, J. (1998).
The unified software development process. Read-
ing, MA: Addison-Wesley Longman.

Kennedy, D. M., Eizenberg, N., & Kennedy,
G. (2000). An evaluation of the use of multiple
perspectives in the design of computer-facilitated
learning. Australian Journal of Educational
Technology, 16(1), 13-25. Retrieved May 5, 2005,
from http://www.ascilite.org.au/ajet/ajet16/ken-
nedy.html

Kennedy, D. M., & Ip, A. (1998). Learning Evalu-
ation Online (LEO): A customizable Web-based

evaluation tool. In C. Alvegard (Ed.), Computer
aided learning and instruction in science and
engineering. CALISCE’98 proceedings (pp.
255-262). Goteborg: Chalmers University of
Technology.

Kennedy, G. E., Kennedy, D. M., & Eizenberg,
N. (2001). Integrating computer-facilitated
learning resources into problem-based learning
curricula. Interactive Multimedia Electronic
Journal of Computer-Enhanced Learning, 3(1).
Retrieved May 5, 2005, from http://imej.wfu.
edu/articles/2001/1/02/index.asp

Macmillan, F. (2000). Intellectual property issues.
In C. McNaught, P. Phillips, D. Rossiter, & J. Winn
(Eds.), Developing a framework for a usable and
useful inventory of computer-facilitated learning
and support materials in Australian universities.
Evaluations and Investigations Program report
99/11 (pp. 189-205). Canberra: Higher Education
Division Department of Employment, Education,
Training and Youth Affairs.

Marušić, A. (2004). Media reviews: Interactive
anatomy. The Lancet, 363(9404), 254.

Phillips, R. A. (1997). A developer’s handbook
to interactive multimedia: A practical guide for
educational applications. London: Kogan Page.

Schwalbe, K. (2000). Information technology
project management. Cambridge, MA: Course
Technology.

Stewart, T. (1999). Intellectual capital: The new
wealth of organizations. New York: Currency.

United Kingdom Patent Office. (n.d.). What is
intellectual property or IP? Retrieved May 5,
2005, from http://www.intellectual-property.gov.
uk/std/faq/question 1.htm

Wenger, E. (1998). Communities of practice:
Learning, meaning and identity. Cambridge, UK:
Cambridge University Press.

816

Managing Intellectual Capital and Intellectual Property within Software Development Communities

White, J. A. D. (1997). Misuse or fair use: That
is the software copyright question. Berkeley
Technology Law Journal, 12(2). Retrieved May
5, 2005, from http://www.law.berkeley.edu/jour-
nals/btlj/articles/vol12/White/html/reader.html

Williamson, A., Kennedy, D. M., McNaught,
C., & DeSouza, R. (2003). Issues of intellectual
capital and intellectual property in educational
software development teams. Australian Jour-
nal of Educational Technology, 19(3), 339-355.
Retrieved May 5, 2005, from http://www.ascilite.
org.au/ajet/ajet19/williamson.html

Xia, W., & Lee, G. (2004). Grasping the complex-
ity of IS development projects. Communications
of the ACM, 47(5), 69-74.

key terMs

Educational Software Development Teams:
Software development teams in university settings
are multifaceted and multiskilled, requiring the
skills of project managers, subject matter experts,
educational designers, programmers, graphic
designers, interface designers, IT support staff,
editors, and evaluators. In many cases, one person
can assume more than one role.

Intangible Assets: Higher education insti-
tutions are traditionally based upon ideas, one
form of intangible assets. However, the modern
university frequently seeks to differentiate itself
from its competition. In this article, intangible
assets include an investment or outcome enjoyed
by the institution in knowledge-based resources
and processes. Typically, these intangible assets
are termed soft assets because they are not either
infrastructure or equipment. Some examples
are training programs, improvements to orga-
nizational communication flows, or new quality
assurance systems.

Intellectual Capital (IC): IC is the sum of
the individual imagination that, when aggregated,
becomes everything everybody in an organization
or team knows and which provides them with some
advantage over their competitors. Organizational
IC comes from the interplay of structural capital,
which augments the value of human capital, lead-
ing to an increase in customer/supplier capital.

Intellectual Property (IP): IP is a formal
measurable subset if IC; the tangible product
that results from the idea and is represented and
recognized through patents, trademarks, designs,
and copyright (which includes software and mul-
timedia). IP can also be extended to cover a much
broader and often more intangible grouping that
extends to trade secrets, plant varieties, geographi-
cal indications, and performers’ rights.

Prior Art: In this article, the concept of “prior
art” is used in a similar manner to that adopted by
the patent office. However, higher education has a
long tradition of valuing ideas, not just economic
value (as in patent laws). The “prior art” in this
instance refers to the intangible ideas (instanti-
ated in the earlier publications) prior to the com-
mencement of a project, such as the An@tomedia
project. It was the basis of these earlier ideas that
formed the nucleus of the design philosophy and
influenced the manner in which the developers
reached agreement on design decisions.

Project Framework: Negotiation of a model
within the project to ensure that the contributions
of all individuals (and their IC) are able to be ap-
propriately recognized.

Recognition: Different professional groups
look for and require different forms of recogni-
tion for their professional development. Where
academic staff focus on publication, designers
need to develop a portfolio of work, and software
developers receive kudos and build a reputation
based on a product that has been developed and
the code therein.

This work was previously published in Encyclopedia of Communities of Practice in Information and Knowledge Management,
edited by E. Coakes; S. Clarke, pp. 364-374, copyright 2006 by Idea Group Reference (an imprint of IGI Global).

 817

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.18
Developing Knowledge

Management Systems from
a Knowledge-Based and
Multi-Agent Approach

Aurora Vizcaíno
Alarcos Research Group, University of Castilla-la Mancha, Spain

Juan Pablo Soto
Alarcos Research Group, University of Castilla-la Mancha, Spain

Javier Portillo-Rodríguez

Alarcos Research Group, University of Castilla-la Mancha, Spain

Mario Piattini
Alarcos Research Group, University of Castilla-la Mancha, Spain

AbstrAct

Developing knowledge management systems is a
complicated task since it is necessary to take into
account how the knowledge is generated, how it
can be distributed in order to reuse it, and other
aspects related to the knowledge flows. On the
other hand, many technical aspects should also be
considered such as what knowledge representation
or retrieval technique is going to be used. To find
a balance between both aspects is important if we

want to develop a successful system. However,
developers often focus on technical aspects,
giving less importance to knowledge issues. In
order to avoid this, we have developed a model
to help computer science engineers to develop
these kinds of systems. In our proposal we first
define a knowledge life cycle model that, accord-
ing to literature and our experience, ponders all
the stages that a knowledge management system
should give support to. Later, we describe the
technology (software agents) that we recommend

818

Developing Knowledge Management Systems from a Knowledge-Based and Multi-Agent Approach

to support the activities of each stage. The article
explains why we consider that software agents are
suitable for this end and how they can work in
order to reach their goals. Moreover, a prototype
that uses these agents is also described.

IntroductIon

In the last decades, knowledge management
(KM) has captured enterprises’ attention as one
of the most promising ways to reach success in
this information era (Malone, 2002). A shorter
life cycle of products, globalization, and strategic
alliances between companies demand a deeper
and more systematic organizational knowledge
management. Consequently, one way to assess an
organization’s performance is to determine how
well it manages its critical knowledge.

In order to assist organizations to manage
their knowledge, systems have been designed.
These are called knowledge management systems
(KMS), defined by Alavi and Leidner (2001) as
IT-based systems developed to support/enhance
the processes of knowledge creation, storage/re-
trieval, transfer, and application.

However, developing KMS is a difficult task;
since knowledge per se is intensively domain de-
pendent whereas KMS often are context specific
applications. Thus, reusability is a complex issue.
On the other hand, the lack of sophisticated meth-
odologies or theories for the extraction of reusable
knowledge and reusable knowledge patterns has
proven to be extremely costly, time consuming,
and error prone (Gkotsis, Evangelou, Karacapi-
lidis & Tzagarakis, 2006). Moreover, there are
several approaches towards KMS developing.
For instance, the process/task based approach
focuses on the use of knowledge by participants
in a project, or the infrastructure/generic system
based approach focuses on building a base sys-
tem to capture and distribute knowledge for use
throughout the organization (Jennex, 2005). On
the other hand, before developing this kind of

system it is advisable to study and understand how
the transfer of knowledge is carried out by people
in real life. However, when developing KMS,
developers often focus on the technology without
taking into account the fundamental knowledge
problems that KMS are likely to support (Hahn
& Subramani, 2000).

Different techniques have been used to
implement KMS. One of them, which is proving
to be quite useful, is that of intelligent agents
(van Elst, Dignum & Abecker, 2003). Software
agent technology can monitor and coordinate
events or meetings and disseminate information
(Wooldridge & Jennings, 1995). Furthermore,
agents are proactive in the sense that they can
take the initiative and achieve their own goals.
The autonomous behavior of the agents is critical
to the goal of this research since it can reduce the
amount of work that employees have to perform
when using a KM system. Another important issue
is that agents can learn from their own experi-
ence. Consequently, agent systems are expected to
become more efficient with time since the agents
learn from their previous mistakes and successes
(Maes, 1994).

Because of these advantages, different agent-
based architectures have been proposed to support
activities related to KM (Gandon, 2000). Some
architectures have even been designed to help in
the development of KMS. However, most of them
focus on a particular domain and can only be used
under specific circumstances. What is more, they
do not take into account the cycles of knowledge in
order to use knowledge management in the system
itself. For these reasons, in this article we propose
a generic model for developing KMS. Therefore,
in the next section we describe the model and the
software agents that we propose to support it. In
the following section, we explain how the agents
are structured and how they have been modeled
using the INGENIAS methodology. Later, the
next section describes a prototype that we are
implementing by using the agents proposed in
the model. The following section summarizes

 819

Developing Knowledge Management Systems from a Knowledge-Based and Multi-Agent Approach

related works carried out with agents. Finally,
conclusions and future work are outlined in the
last section.

A MultI-Agent Model to
deVelop knowledge
MAnAgeMent systeMs

A successful KMS should perform the functions
of knowledge creation, storage/retrieval, transfer,
and application (Jennex & Olfman, 2006). Taking
this fact into account and after reviewing several
knowledge life cycles and models (see Table 1)
and seeing what stages most authors considered,
we decided to define a knowledge life cycle that
indicates what process a KMS should support (see
Figure 1). This is a focus different to the previous
one based on describing the knowledge cycle in
human beings and/or in companies.

The stages of our proposal are acquisition,
storage, use, transfer, and evaluation. The first

three stages are considered in most knowledge
life cycles (see Table 1). We have added transfer
(also considered in several cycles) and evolu-
tion. Transfer is added because a KMS should
disseminate knowledge to those people that can
need it. Evolution is added because knowledge
should always be updated otherwise it would
not be used.

Model Stage1 Stage2 Stage3 Stage4 Stage5 Stage6 Stage7

Nonaka and
Takeuchi (Non-
aka & Takeychi,
1995)

Socialization Externalization Combination Internalization

Wiig (Wiig,
1997) Creation Storing/

gathering Use Leverage Sharing

Davenport
and Prusak (Dav-
enport & Prusak,
1998)

Generation Codify/
Coordinate Transfer Roles and

Skills

Tiwana (Tiwana,
2000) Acquire Sharing Use

Alavi and
Leidner (Alavi &
Leidner, 2001)

Creation Storage/
Retrieval Transfer Application

Rus and
Lindvall (Rus &
Lindvall, 2002)

Creation/
Acquisition

Organization/
Storage Distribution Application

Nissen (Daven-
port, 1998) Creation Organization Formalize Distribute Application Evolve

Ward and
Aurum (Ward &
Aurum, 2004)

Creation Distribution Organization Adaptation Identification distribution Application

Dickinson (Dick-
inson, 2000) Identification Acquisition Development Distribution Use Preservation

Table 1. Knowledge life cycle

Figure 1. Knowledge life cycle model proposed

Formalizing/
storage

use

transfer

Acquisition

evolution

820

Developing Knowledge Management Systems from a Knowledge-Based and Multi-Agent Approach

In the following paragraphs each stage of the
model is described. At the same time and with the
goal of illustrating that it is possible to support
each stage by using current technology, we are
going to explain how a software agent could be
implemented for a KMS.

a. Knowledge acquisition is a key component
of a KMS architecture. This stage includes
the elicitation, collection, and analysis of
knowledge (Rhem, 2006). During this
process, it is vital to determine where in
the organization the knowledge exists and
how to capture it. The definition of the
knowledge to be acquired can be assisted
by classifying types of knowledge and
knowledge sources (Dickinson, 2000). To
support this stage we propose to use an agent
called a Captor Agent. The Captor Agent is
responsible for collecting the information
(data, models, experience, etc.) from the
different knowledge sources. It executes
a proactive monitoring process to identify
the information and experiences generated
during the interaction between the user
and the system or groupware tools (e-mail,
consulted Web pages, chats, etc.). In order
to accomplish this, the Captor Agent can use
different techniques to acquire knowledge
since there are several tools and techniques
that consolidate and transform corporate
data into information (Houari & Homayoun
Far, 2004). They contain:
• Front-end system (i.e., decision support

system [DSS], executive information
system [EIS], and online analytical
processing [OLAP]).

• Back-end system: data warehouse,
data mart, and data mining (Giannella,
Bhargava et al., 2004).

Agents can also apply classical techniques used
by experts to acquire knowledge such as structured

interviews, questionnaires, goal trees, decision
networks, repertory grids, or conceptual maps
(Rhem, 2006). More sophisticated techniques
such as WebParser (Camacho, Aler & Cuadrado,
2004) to obtain information from the Web, docu-
ment classification (Novak, Wurst, Fleschmann &
Strauss, 2003), mailing list management (Moreale
& Watt, 2003), or data mining and neuronal nets
can be also used.

Once the knowledge has been obtained, the
Captor Agent can classify it by using ontologies
according to its type and the knowledge source
from it was obtained (see Figure 2). This on-
tology is based on Rodriguez’s ontologies for
representing knowledge topics and knowledge
sources (Rodríguez, Martínez, Favela, Vizcaíno
& Piattini, 2004).

The ontology has four knowledge source cat-
egories: Documentation, which can be subdivided
into documentation related to the organization’s
philosophy, documentation which describes
the product/s which the company works with,
documentation that describes the process that the
company carries out, and other types of documen-
tation that an organization has but that cannot
be classified into any of the previous subgroups.
Another important source where the Captor Agent
finds information is the Web, which can also be
divided into other subcategories such as portals,
communities of practice, and so forth. The main
knowledge source in a company is, without any
doubt, people. Depending on the type of company,
people may be classified as clients, employees, and
so forth. The last knowledge source that the Cap-
tor Agent can use is e-mail that can be classified
as internal mail (mail sent between employees),
and external mail (e-mails sent to other people
outside the organization).

One advantage of this approach is that the
Captor Agent can work in any domain since by
changing these ontologies the Captor knows
what key knowledge should be found and where
it might be.

 821

Developing Knowledge Management Systems from a Knowledge-Based and Multi-Agent Approach

b. Knowledge formalizing/storing is the stage
that groups all the activities that focus on
organizing, structuring, representing, and
codifying the knowledge with the purpose
of facilitating its use (Davenport & Prusak,
1998). To help carry out these tasks we pro-
pose a Constructor Agent. This agent is in
charge of giving an appropriate electronic
format to the experiences obtained so that
they can be stored in a knowledge base to aid
retrieval. Storing knowledge helps to reduce
dependency on key employees because at
least some of their expert knowledge has
been retained or made explicit. In addition,
when knowledge is stored, it is made avail-
able to all employees, providing them with a
reference as to how processes must be per-
formed, and how they have been performed

in the past. Moreover, the Constructor Agent
compares the new information with old
knowledge that has been stored previously
and decides whether to delete it and add new
knowledge or to combine both of them. In
this way, the combination process of the
SECI (Nonaka, 1994) model is carried out,
producing new knowledge resulting in the
merging of explicit knowledge plus new
explicit knowledge.

Different techniques exist to store knowledge
and frequently the technique used is narrowly
related to the retrieval method used. Therefore,
if a case-based reasoning is going to be used, the
knowledge will be stored as “cases.” Other tech-
niques are knowledge objects, frames, predicate
logic, or fuzzy logic. In the case of using ontolo-

Is-in
Has

Has

K Concept

K Source Location

Physical Support

Format

Documentation Web People Email

Internal

External

Suppliers

Clients

Other experts

Employees
Knowledge

Portals

Communities
of Practice

Web pages

Organizational
Documentation

Product
Documentation

Process
Documentation

Other kinds of
Documentation

KSource - TypeKSource - Category

Figure 2. Knowledge source ontology

822

Developing Knowledge Management Systems from a Knowledge-Based and Multi-Agent Approach

gies to classify the knowledge, methodologies to
represent the knowledge can be used. Examples
of these methodologies are Ontolingua (Gruber,
1993) or Representation Formalism for Software
Engineering Ontologies (REFSENO) (Tautz &
Von Wangenheim, 1998).

c. Knowledge Use is one of the main stages,
since knowledge is helpful when it is used
and/or reused. The main enemy of knowl-
edge reuse is ignorance. Employers often
complain because employees do not consult
knowledge sources and do not take advan-
tage of the knowledge capital that the com-
pany has. KMS should offer the possibility
of searching for information; they can even
give recommendations or suggestions with
the goal of helping users to perform their
tasks by reusing lessons already learnt, as
well as previous experiences. In our model
the agent in charge of this activity is the
Searcher Agent, which searches in the
knowledge base for the needed knowledge.
Different techniques are currently used
to search for knowledge. Many of them
are based on the use of the position and
frequency of keywords (Mohammadian &
Jentzsch, 2004) or on information retrieval
techniques (Frakes & Baeza-Yates, 1992;
Liang & Huang, 2000). Other authors such
as Sung Kim (2004) mix several techniques,
data mining, and case-based reasoning to
develop a recommender system.

d. Knowledge Transfer is the most investi-
gated stage in knowledge management
(Peachey, Hall & Cegielski, 2005). This
stage is in charge of transferring tacit and
explicit knowledge. Tacit knowledge can be
transferred if it has been previously stored
in shared means, for example, repositories,
organizational memories, databases, and so
forth. The transfer stage can be carried out
by using mechanisms to inform people about

the new knowledge that has been added. For
this stage we propose a Disseminator Agent,
which must detect the group of people or
communities who generate and use similar
information; for example, in the software
domain, the people who maintain the same
product or those who use the same pro-
gramming language. Therefore, this agent
fosters the idea of a community of practice
in which each person shares knowledge and
learns thanks to the knowledge of the other
community members (Wenger, 1998). An
appropriate knowledge management linked
to communities of practice helps to improve
the organization’s performance (Lesser &
Storck, 2001). Disseminated information
may be of different types; it may be infor-
mation linked to the company’s philosophy
or specific information about a determined
process. Finally, the Disseminator Agent
needs to know exactly what kind of work
each member of the organization is in charge
of and the knowledge flows linked to their
jobs. In order to do this, the disseminator
agent contacts with a new type of agent
called the personal agent which is in charge
of determining the users’ profiles (it will
be described in next section). Comparing
this stage with the SECI model we can say
that the disseminator agent fosters the so-
cialization process since it puts people who
demand similar knowledge in touch and once
in contact they can share their experience,
thus increasing their tacit knowledge.

e. Knowledge Evolution. This stage is respon-
sible for monitoring the knowledge that
evolves daily. To carry out this activity we
propose a Maintenance Agent. The main
purpose of this agent is to keep the knowl-
edge stored in the knowledge base updated.
Therefore, information that is not often used
is considered by the Maintenance Agent as
information to be possibly eliminated.

 823

Developing Knowledge Management Systems from a Knowledge-Based and Multi-Agent Approach

MultI-Agents AgencIes

Once the model and the agents that we propose
to give support to the different stages have been
described, we are going to explain how the agents
are structured into two agencies. Therefore, we
group all the agents closely in charge of managing
knowledge and supporting the different stages
of the model proposed in one agency. Auxiliary
agents are in another agency (see Figure 3).

Therefore, the Knowledge Agency is in charge
of giving support to the KM process. It consists
of the Constructor Agent, the Captor Agent, the

Searcher Agent, the Disseminator Agent, and the
Maintenance Agent.

On the other hand, the User Agency is formed
of the Personal Agent and the Interface Agent.
The Personal Agent monitors users’ tasks to
obtain their preferences and needs. In order to
implement the Personal Agent, user modeling
techniques can be used. User modeling implies
obtaining certain knowledge about the user. This
knowledge describes what the user “likes” or what
the user “knows” (Chin, 1986).

The Interface Agent is the mediator between
the users and the agents. Thus, when an agent

user Agency

knowledge Agency

shAred ontology

Interface personal

Formalizing/
storage

use

transfer

Acquisition

evolution

Knowledge
life cycle
process

Captor Searcher

DisseminatorMaintenance

Constructor

Figure 3. Agents distribution

824

Developing Knowledge Management Systems from a Knowledge-Based and Multi-Agent Approach

wants to communicate a message to the user, the
agent sends the message to the Interface Agent
which shows it to the user.

Another component is the Shared Ontology
which provides a conceptualization of the knowl-
edge domain. The Shared Ontology is used for the
consistent communication of the agencies.

In order to carry out the analysis and de-
sign of the agents involved we have followed a
methodology called INGENIAS (Pavón & Gó-
mez-Sanz, 2003) which provides metamodels to
define multi-agent systems, and support tools to
generate them. Using metamodels facilitates the
development of systems enormously, since they
are oriented towards visual representations of
concrete aspects of the system.

Below, we are going to show the different
agent meta-model diagrams which describe the
roles and tasks of each agent.

Figure 4 shows that the goal of the Captor Agent
is to obtain information that should be stored. Its
role is “filter” since it must decide what informa-
tion should be transformed into knowledge, the
purpose being to use this in future projects. In
the following lines, we describe each of the tasks
carried out by this agent.

• IdentifyIS: This task consists of identify-
ing available knowledge sources in the
system.

• CaptureInfo: The agent must also capture
information.

• SendToConstructor: Once the suitability of
storing the information has been analyzed,
the Captor sends it to the Constructor Agent
(described in Figure 5) whose roles are
sculptor and treasurer since it is in charge
of giving an appropriate electronic format to
the information (sculptor) and of storing it
in the knowledge base (treasurer). The tasks
developed by Constructor Agent are:

• CompareInfo: The agent is in charge of
comparing the new information with the
previously stored knowledge.

• CombineInfo: The agent is also in charge
of combining the new information with
the previously stored knowledge.

• ClassifyInformation: Another task is
to classify the information received by
the Captor Agent (for instance: models,
structures, files, diagrams, etc.).

• SendToDisseminator: This is a critical
task which consists of sending knowledge
to the Disseminator Agent.

• SaveKnowledge: One of the most impor-
tant tasks is to store the new knowledge
into the knowledge base.

The Disseminator Agent, whose role is Post-
OfficeEmplee, as it behaves the “postman” of

IdentifyIS

CaptureInfo

SendToConstructor ObtainInformation

Filter

<<WFPlays>>

<<GTPursues>>

<<WFResponsable>>

<<WFResponsable>>

<<WFResponsable>>

Captor Agent

Figure 4. Captor agent diagram

 825

Developing Knowledge Management Systems from a Knowledge-Based and Multi-Agent Approach

the architecture, (see Figure 6) is composed of
the next tasks:

• SaveInfoTemp: The Disseminator Agent
stores temporally the new knowledge re-
ceived by the Constructor Agent.

• EvaluateProfiles: Once identified one user
profile, the Disseminator Agent evaluates it
in order to determine user’s needs.

• LookForActivePersonalAgents: Personal
Agents can be distributed into different
nodes, so it must identify all active Personal
Agents available in the system.

<<WFPlays>>

<<GTPursues>>

Constructor Agent

<<WFPlays>>

<<WFResponsable>>

<<WFResponsable>>

<<WFResponsable>>

<<WFResponsable>>

<<WFResponsable>>

SendToDiseminator

CompareInfo

CombineInfo

ClassifyInformation

SaveKnowledge

Sculptor Treasure

ConvertInfor

Figure 5. Constructor agent diagram

<<WFPlays>>

<<GTPursues>>

<<WFResponsable>>

SaveInfoTemp

DistributeInfo

<<WFResponsable>>

<<WFResponsable>>

<<WFResponsable>>

<<WFResponsable>>

Diseminator Agent

EvaluateInfo

LookForActive

EvaluateProfile

SendInformation

Figure 6. Disseminator agent diagram

826

Developing Knowledge Management Systems from a Knowledge-Based and Multi-Agent Approach

• SendInformation: This is a critical task
which consists of distributing the informa-
tion to those people that can need it (really,
the information is sent to their interface
agents).

• EvaluateInfo: This task is focused on
evaluating received information to be able
to relate it with different user’s profiles.

Another agent that supports the knowledge
life cycle is the Searcher Agent. The goal of this
agent is to foster the internalization process of
the SECI model, since the employees have the

opportunity of acquiring new knowledge by us-
ing the information that this agent suggests. The
Searcher Agent diagram (Figure 7) is composed
of the next tasks:

• LookForInfo: This agent is in charge of
searching the information required by the
users.

• ClassifyInfo: This agent also classifies the
information found in the knowledge base.

• SendInfoToI: Finally, the agent sends the
knowledge found in the knowledgebase to
an Interface Agent.

<<WFPlays>>

<<GTPursues>>

LookForKnowledge<<WFResponsable>>

<<WFResponsable>>

<<WFResponsable>>

Finder

LookForInfo

ClassifyInfo

SendInfoTo

Searcher Agent

Figure 7. Searcher agent diagram

<<WFPlays>>

<<GTPursues>>

CleanKnowledgeBase

<<WFResponsable>>

ClearSweepings

Cleaner

MaintaineceAgent

Figure 8. Maintenance agent diagram

 827

Developing Knowledge Management Systems from a Knowledge-Based and Multi-Agent Approach

The last type of agent of the Knowledge Agency
is the Maintenance Agent (Figure 8). The main
purpose of this agent is to keep the knowledge
stored in the knowledge base updated. There-
fore, its task dealt mainly with deleting obsolete
information.

Now, the two types of agents of the User agency
are described. Figure 9 shows the Personal Agent
diagram whose role is called “spy” since the agent
must monitor users’ activities in order to obtain
their profiles. Therefore, its goals are monitoring
users’ tasks and recommending information.

In order to attain these goals it should carry
out the following tasks:

• Modeling the users’ profiles: By observing
the users’ preferences, activities, informa-
tion consulted, and so forth.

• CreateManageLocalKnowledgeBase:
Creating and managing a “local knowledge
base” where the relevant information for the
user can be stored.

• Recommending knowledge or knowledge
sources: This agent tries to guess what
knowledge would be relevant for the user.
To accomplish this, this agent communi-
cates with the Searcher Agent and with the
Interface agent.

On the other hand, the Interface Agent is an
intermediary between the users and the rest of
agents. Figure 10 shows that its main tasks are
creating GUI and showing information to the
users

These tasks are defined in order to attain the
goal of showing important information to the

<<WFPlays>>

<<GTPursues>>

<<WFResponsable>>
ModelProfile

PersonalAgent

<<GTPursues>>

<<WFResponsable>>

<<WFResponsable>>

CreateManageLocalKB

Recommend

Spy

MonitoringUserInfo

Recommender

Figure 9. Personal agent diagram

Figure 10. Interface agent diagram

(WFPlays)

(WFResponsable)

CreateGUI

(GTPursues)

(WFResponsable)
GatherShowInformation

InterfaceAgent

828

Developing Knowledge Management Systems from a Knowledge-Based and Multi-Agent Approach

user, named in the diagram ShowInformation,
so we have to create an user interface and put
the received information from others agents in a
nice way to the user.

A prototype systeM

In order to test our model we are developing a
KMS to be used in software maintenance com-
panies. So far, the prototype recommends what
information sources maintainers should consult
to solve a particular problem. Before construct-
ing the prototype, the knowledge flows that take
place in software maintenance companies were
studied (Rodríguez, Martínez, Vizcaíno, Favela
& Piattini, 2005). To illustrate how the prototype
works let us describe a scenario.

scenario

A software maintenance engineer selects the
project to be work on. Then, the employee starts
to work on an activity (for instance a maintenance
request). At the same time, the Personal Agent
is monitoring the engineer’s movements and is
logging in what project and activity the engineer
is working on. So, the Personal Agent sends the
Searcher Agent a message asking for knowledge
related to the activity that the employee is carry-
ing out. Depending on the activity, the Searcher
Agent can use two retrieval techniques, position
and frequency of keywords in the case of needing
to give information about a topic, or case-based
reasoning in the case of having to propose a
solution to a problem. When the Searcher Agent
finds suitable information, the agent sends it
to the Interface Agent, which is in charge of
communicating to the employee that certain
information exists which can be useful for the
employee’s work. The employee will decide if to
consult this information. Figure 11 despites the
diagram of this part.

Once the employee finishes the work, the
Captor Agent checks whether a new case can be
constructed (in case the employee had found a
solution to a problem) or whether a new knowledge
source has been used. In both cases the Captor
sends the new knowledge to the Constructor Agent
which is in charge of storing this in the knowledge
base or adding new concepts to the knowledge
source ontology according to the circumstance
that have taken place.

The collaboration between the Captor and the
Constructor Agent is depicts in Figure 12, which is
an interaction model diagram that the INGENIAS
methodology utilizes. These diagrams are very
useful to see, at first glance, as agents interact.

some Implementation Aspects

The platform that we are using to develop the
architecture is java agent development framework
(JADE) since it is FIPA compliant and is currently
one of the most widely used. Moreover, JADE
has been successfully used in the development
of other systems in the domain of knowledge
management (Bergenti, Poggi & Rimassa, 2000;
Gandon, 2000).

relAted work

Traditional KM systems have received certain
criticism, since employees are often overloaded
with extra work as they have to introduce infor-
mation into the KMS and worry about updating
this information. One proposal to avoid this extra
burden was to add software agents to perform this
task in place of the employees. Later, intelligent
agent technology was also applied to other dif-
ferent activities, bringing several benefits to the
knowledge management process.

The benefits of applying agent technology
to knowledge management include distributed
system architecture, easy interaction, resource

 829

Developing Knowledge Management Systems from a Knowledge-Based and Multi-Agent Approach

LookForInfo

IdentifyCurrentAct

<<WFUses>><<WFConsumes>>

ProjectSelected

ToMonitorUserInfo

<<WFConnects>>

<<WFContainsTask>>
<<WFDecomposesWF>>

<<WFDecomposesWF>>

RetrievalTechnique2

SearchInfoAboutActiv

<<WFUses>>

Knowledge

<<WFConnects>>

GatherAndShowInfo

<<WFUses>> <<WFProduces>>

InterfaceAgentGUI InformUser

RetrievalTechnique1

Icon Information:

ApplicationEvent Plan/WorkFlow InternalApplication Resource Interaction Task

Figure 11. Scenario diagram

ConvertInfo

CaptorAgent ConstructorAgent

Cooperation

<<Pursues>>

<<Colaborates>><<Initiates>>

Figure 12. Cooperation between captor and constructor agent

830

Developing Knowledge Management Systems from a Knowledge-Based and Multi-Agent Approach

management, reactivity to changes, interoperation
between heterogeneous systems, and intelligent
decision making. The set of knowledge manage-
ment tasks or applications in which an agent can
assist is very wide, for instance:

• To manage organizational memory, an ex-
ample being the CoMMA project, (Gandon,
2000) (Corporate Memory Management
through Agents), which combines emergent
technologies, allowing users to exploit an
organizational memory.

• To support cooperative activities. For in-
stance Wang, Reidar, and Chunnian (1999)
propose a multi-agent architecture to provide
support to cooperative activities.

• To recommend. For instance Sung Kim
(2004) describes a system to customize
recommendations.

• To find experts. Some systems are used to
help people find experts who can assist them
in their daily work.

• To share knowledge. For instance Mercer
and Greenberg (2001) propose a multi-agent
system for knowledge sharing in a system
designed to advise good programming
practice.

• To manage mailing lists, or document clas-
sification (Moreale & Watt, 2003).

These and other existing systems were often
developed without considering how knowledge
flows and what stages may foster these flows.
Because of this, they often support only one
knowledge task, without taking into account that
knowledge management implies giving support
to different process and activities. On the other
hand, KM systems often focus on the technology,
without taking into account fundamental problems
that these kinds of systems are likely to support
(Hahn & Subramani, 2000).

conclusIon

The main contributions of this article are the design
of knowledge cycle for developing KMS where
the main functions that this kind of systems must
support are described. Moreover, a multi-agent
architecture is outlined to help KMS developers to
implement these kinds of systems. The advantages
of these contributions are:

• The model provides support to different
activities: knowledge creation, storage/re-
trieval, transfer, and application. All are
activities which, according to the authors
who specialize in evaluating KMS, should
support this kind of system.

• The architecture is based on a KM life cycle
that we have proposed for this end. Therefore,
we try to avoid the lack of other architectures
that are focused on the technology and forget
the knowledge aspects.

• The architecture makes use of intelligent
agents. This is a technique that have proved
to be very convenient in knowledge man-
agement activities since it avoids one of the
problems of some KMS such as overloading
the employees with extra work instead of
helping them during their daily work. Agents
can carry out many tasks on behalf of us-
ers. Moreover, they act when they consider
that it is necessary to do so without needing
users’ instructions. Another advantage of
using agents is that they can collaborate with
other agents already implemented to carry
out concrete knowledge tasks; for instance,
obtaining information from the Internet or
from e-mail. Thus, the development of KMS
would be easier since only the basic agents
of our model would have to be implemented
and these could collaborate with other agents
that have already been tested.

 831

Developing Knowledge Management Systems from a Knowledge-Based and Multi-Agent Approach

On the other hand, we are modeling the agents
in a systematic way by using INGENIAS method-
ology whose metamodels help future developers
to understand how the different agents work.

As future work we aim to compare the imple-
mentation of a KMS based on our proposal with
developments using other architectures. Without
any doubt this evaluation will help us to improve
our proposal. On the other hand, we are also work-
ing on extending the model documentation with a
more wide and detailed description of the possible
techniques that could be used to implement each
type of agent according to the main needs that
organizations usually demand.

From a technological point of view, we are
also studying JADEx in order to see how easy it
would be to migrate to this new platform.

AcknowledgMent

An earlier version of this article was presented
at the 40th Hawaii International Conference on
System Sciences (HICSS-2007), 03-06 January
2007, Waikoloa, Big Island, Hawaii.

This work is partially supported by the
ENIGMAS (PIB-05-058), and MECENAS
(PBI06-0024) project, Junta de Comunidades de
Castilla-La Mancha, Consejería de Educación y
Ciencia, both in Spain. This is also supported by
the ESFINGE project (TIN2006-15175-C05-05)
Ministerio de Educación y Ciencia (Dirección
General de Investigación)/Fondos Europeos de
Desarrollo Regional (FEDER) in Spain.

reFerences

Alavi, M., & Leidner, D. E. (2001). Knowledge
management and knowledge management sys-
tems: Conceptual foundations and research issues.
MIS Quarterly, 25(1), 107-136.

Bergenti, F., Poggi, A., & Rimassa, G. (2000).
Agent architecture and interaction protocols

for corporate memory management systems.
Paper presented at the ECAI‘2000, Workshop
on Knowledge Management and Organizational
Memories.

Camacho, D., Aler, R., & Cuadrado, J. (2004).
Rule-based parsing for Web data extraction. In
M. Mohammadian (Ed.), Intelligent Agents for
data mining and information retrieval (pp. 65-87).
Hershey, PA: Idea Group Publishing.

Chin, D. (1986). User modelling in UC: The
UNIX consultant. Human factors in computing
systems.

Davenport , P. (1998). Working knowledge.

Davenport, T. H., & Prusak, L. (1998). Working
knowledge: How organizations manage what they
know. Boston: Harvard Business School Press.

Dickinson, A. (2000). Enhancing knowledge
management in enterprises (ENKE) IST project,
IST-2000-29482. Retrieved April 27, 2007, from
http://www.ist-enke.com

Frakes, W. B., & Baeza-Yates, R. (1992). Infor-
mation retrieval data structures and algorithms.
Englewood Cliffs, NJ: Prentice Hall.

Gandon, F. (2000). A multi-agent architecture for
distributed corporate memories. Paper presented
at the Third International Symposium From Agent
Theory to Agent Implementation in European
Meeting on Cybenertics and Systems Research.

Giannella, C., Bhargava, R. & K. H. (2004). Multi-
agent systems and distributed data mining. Paper
presented at the Cooperative Information Agents
VIII: 8th International Workshop (CIA‘04), Erfurt,
Germany. Springer-Verlag.

Gkotsis, G., Evangelou, C., Karacapilidis, N., &
Tzagarakis, M. (2006). Building collaborative
knowledge-based systems: A Web engineering
approach. Paper presented at the WWW/Internet,
Iadis International Conference, Murcia.

832

Developing Knowledge Management Systems from a Knowledge-Based and Multi-Agent Approach

Gruber, T. R. (1993). A translation approach to
portable ontology specification. Knowledge Ac-
quisition, 5(2), 199-220.

Hahn, J., & Subramani, M. (2000). A framework of
knowledge management systems: Issues and chal-
lenges for theory and practice. Paper presented at
the 21st International Conference in Informatin
Systems (ICIS’00) (pp 302-312), Brisbane.

Houari, N., & Homayoun Far, B. (2004). Applica-
tion of intelligent agent technology for knowledge
management integration. Paper presented at the
Third IEEE International Conference on Cogni-
tive Informatics (ICCI’04).

Jennex, M. E. (2005). The issue of system use in
knowledge management systems. Paper presented
at the 38th Hawaii International Conference on
System Sciences.

Jennex, M. E., & Olfman, L. (2006). A model
of knowledge management success. Journal of
Knowledge Management, 2(3), 51-68.

Lesser, E. L., & Storck, J. (2001). Communities
of practice and organizational performance. IBM
Systems Journal, 40(4), 831-841.

Liang, T. P., & Huang, J. S. (2000). A frame-
work for applying intelligent agents to support
electronic trading. Decision Support Systems,
28(4), 305-317.

Maes, P. (1994). Agents that reduce work and
information overload. Communications of the
ACM, 37(7), 31-40.

Malone, D. (2002). Knowledge management: A
model for organizational learning. International
Journal of Accounting Information Systems, 3,
111-123.

Mercer, S., & Greenberg, S. (2001). A multi-
agent architecture for knowledge sharing. Paper
presented at the Sixteenth European Meeting on
Cybernetic and Systems Research, Viena.

Mohammadian, M., & Jentzsch, R. (2004). Com-
putational intelligence techniques driven intelli-
gent agents for Web data mining and information
retrieval. In M. Mohammadian (Ed.), Intelligent
agents for data mining and information retrieval.
Hershey, PA: Idea Group Publishing.

Moreale, E., & Watt, S. (2003). An agent-based
approach to mailing list knowledge management.
Agent-mediated knowledge management.

Nonaka, I. (1994). A dynamic theory of organiza-
tional knowledge creation. Organization Science,
5(1), 14-37.

Nonaka, I., & Takeychi, H. (1995). The knowledge-
creation company: How Hapanese companies
create the dynamics of innovation. New York:
Oxford University Press.

Novak, J., Wurst, M., Fleschmann, M., & Strauss,
W. (2003). Discovering, visualizing and shar-
ing knowledge through personalized learning
knowledge maps. Agent-mediated knowledge
management. Standford.

Pavón, J., & Gómez-Sanz, J. J. (2003). Agent
oriented software engineering with INGENIAS.
Paper presented at the Multi-Agent Systems and
Applications III: CEEMAS 2003 (LNAI), Prage,
Czech Republic. Springer.

Peachey, T., Hall, D., & Cegielski, C. (2005).
Knowledge management and the leading informa-
tion systems journals: An analysis of trends and
gaps in published research. International Journal
of Knowledge Management, 1(3), 55-69.

Rhem, A. J. (2006). UML for developing knowl-
edge management systems. New York: Auerbach
Publications.

Rodríguez, O., Martínez, A. I., Favela, J., Viz-
caíno, A., & Piattini, M. (2004). Understanding
and supporting knowledge flows in a community
of software developers. Paper presented at the
10th International Workshop on Groupware

 833

Developing Knowledge Management Systems from a Knowledge-Based and Multi-Agent Approach

(CRIWG 2004) LNCS 3198, San Carlos, Costa
Rica. Springer.

Rodríguez, O. M., Martínez, A. I., Vizcaíno,
A., Favela, J., & Piattini, M. (2005). Identifying
knowledge flows in communities of practice. In
E. Coakes & S. A. Clarke (Eds.), Encyclopedia
of communities of practice in information and
knowledge management. Hershey, PA: Idea Group
Publishing.

Rus, I., & Lindvall, M. (2002, May/June). Knowl-
edge management in software engineering. IEEE
Software, 26-38.

Sung Kim, J. (2004). Customized recommenda-
tion mechanism based on Web data mining and
case-based reasoning. In M. Mohammadian (Ed.),
Intelligent agents for data mining and informa-
tion retrieval..

Tautz, C., & Von Wangenheim, C. G. (1998, Oc-
tober 20). REFSENO: A representation formalism
for software engineering ontologies (Fraunhofer
IESE-Report Nº 015.98/E, version 1.1).

Tiwana, A. (2000). The knowledge management
toolkit: Practical techniques for building a knowl-
edge management system. Prentice Hall.

van Elst, L., Dignum, V., & Abecker, A. (2003).
Agent-mediated knowledge management. Agent-
mediated knowledge management. Standford.

Wang, A., Reidar, C., & Chunnian, L. (1999). A
multi-agent architecture for cooperative software
engineering. Paper presented at the Eleventh Inter-
national Conference on Software Engineering and
Knowledge Engineering (SEKE‘99), Germany.

Ward, J., & Aurum, A. (2004). Knowledge man-
agement in software engineering: De-scribing the
process. Paper presented at the 15th Australian
Software Engineering Conference (ASWEC
2004), Melbourne, Australia. EEE Computer
Society Press.

Wenger, E. (1998). Communities of practice:
Learning, meaning, and identity. Cambridge,
U.K.: Cambridge University Press.

Wiig, K. M. (1997). Knowledge management:
Where did it come from and where will it go?
Expert Systems with Applications, 13, 1-14.

Wooldridge, M., & Jennings, N. R. (1995). Intel-
ligent agents: Theory and practice. The Knowledge
Engineering Review, 10(2), 115-152.

This work was previously published in International Journal of Knowledge Management, Vol. 3, Issue 4, edited by M. Jennex,
pp. 67-83, copyright 2007 by IGI Publishing (an imprint of IGI Global).

834

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.19
Human-Centered Design
of a Semantically Enabled
Knowledge Management
System for Agile Software

Engineering

Christian Höcht
Technical University of Kaiserslautern, Germany

Jörg Rech
Fraunhofer Institute for Experimental Software Engineering (IESE), Germany

AbstrAct

Developing human-engineered systems is con-
sidered as a challenge that addresses a wide area
of expertise; computer scientists as well as social
scientists. These experts have to work together
closely in teams in order to build intelligent sys-
tems to support agile software development.
The methodology developed in the RISE project
enables and supports the design of human-cen-
tered knowledge-sharing platforms, such as Wi-
kis based on standards in the field of education
science. The project “RISE” (Reuse In Software
Engineering) is part of the research program

“Software Engineering 2006” funded by the Ger-
man Federal Ministry for Education and Research
(BMBF). The goal was to improve the reuse of
artifacts in software engineering, and brought
together researchers from education science
(The Department of Educational Sciences and
Professional Development at the Technical Uni-
versity of Kaiserslautern) and computer science
(Fraunhofer Institute for Experimental Software
Engineering (IESE) and the German Research
Center for Artificial Intelligence (DFKI)) with
industrial partners (Empolis GmbH and brainbot
technologies AG). This chapter gives an overview
about the human-centered design of Wiki-based

 835

Human-Centered Design of a Semantically Enabled Knowledge Management System

knowledge and learning management systems in
software engineering projects, and raises several
requirements one should keep in mind when
building human-centered systems to support
knowledge and learning management.

IntroductIon

The development of complex software systems is
based on company- and domain- specific knowl-
edge that has to be constantly cultivated among
the employees, because the resulting quality of
manufactured software systems depends on what
degree the needed knowledge is actually available
(Decker, Ras, Rech, Klein, Reuschling, Höcht,
& Kilian, 2005). It is not only that the technical
platform should release software engineers as
much as possible from time-consuming retrieval-
processes. At the same time the platform acquires
valuable pieces of information from users, who
publish their problems and experiences during

work. Out of this process, company-based knowl-
edge may be built and refined.

However, it is just because of the various
possibilities of searching and browsing through
artifacts that users feel overwhelmed by the flood
of information. Therefore, the increasing amount
of information itself is not the problem, but an
unfiltered and unrated access to it. In fact, the
main goal is to ensure that software engineers can
deal with their daily tasks without burdening them
with additional work. A systematic selection and
presentation of content helps to avoid the feeling
of being swamped with artifacts and so keeps,
and even improves, the employees’ motivation.
For example, on the one hand, it is a good idea to
offer plugins that provide visual representations
of concepts, but on the other hand, offering totally
unrestricted overviews is often too complex to be
processed by the users (Tonkin, 2005).

Ballstaedt (1997) mentions four main types of
artifacts considering textual content. As Wikis
mainly consist of text, this typology is helpful to

Figure 1. Different types of content

Description Example
Challenges in Knowledge Management related to Soft-

ware Engineering

e x p o s i t o r y

text

Expository text describes facts,

explains the context, and thus pro-

vides conceptual knowledge.

d i c t i onar y

entry

Information related to software products, solutions,

or methods might expire very quickly, and would thus

require much effort to maintain it.

narrative text Narrative text reports actions

or plots and events. It informs

about specific situations, motives,

decisions, acts, and their conse-

quences.

blog entry Narrative text might be rather helpful for some em-

ployees, but probably just a waste of time for others,

because the individual usefulness of a specific nar-

rative text is hard to evaluate.

instructional

text

Instructional text provides pro-

cedural knowledge and enables

people to do or not to do some-

thing.

help on In-

s t a l l a t i o n

or mainte-

nance

Providing useful instructional text assumes that the

author respects different levels of knowledge and

writes adequate content, keeping a specific target

group in mind.

additional di-

dactic text

Additional text that supports spe-

cific learning activities.

advance or-

ganizer

Additional didactic content requires deeper knowledge

about reading and learning strategies and depends on

rather static content like printed material.

836

Human-Centered Design of a Semantically Enabled Knowledge Management System

distinguish between different textual instances,
as seen in Figure 1.

From the pedagogical point of view, artifacts
in a knowledge management (KM) system are
considered as not more than a faint representation
of knowledge. In order to communicate knowl-
edge to others, its complexity has to be reduced.
This can be done, on the one hand, by picking
out only those aspects that are necessary to deal
with the artifact. The main idea of that principle
is that these selected aspects allow one to indicate
the underlying complexity. This can be done by
letting the users assign adequate metadata to
the given concept. Several methods to support
the users by means of an intelligent application
are discussed later in the chapter. But it has to
be critically remarked that the validity of this
assumption depends on the type of knowledge
that has to be communicated and the given types
of content.

This approach itself, which concentrates on
essential aspects concerning a concept, does not
yet allow other users to adopt the given artifact.
It is rather necessary to restructure the chosen

aspects in a different way. This method considers
the previous knowledge as well as the interests of
the targeted users, provided by semantics based
on metadata, concept structures, and user profiles.
These requirements can be addressed by means
of a semantically enabled Wiki that, for example,
arranges artifacts in a flexible way depending on
the users’ needs (e.g., artifacts written/read by
the user and given interests or tasks of the user).
Besides that, searching the whole system for
certain artifacts should present results in a nested
or context-based way (e.g., the artifact describing
“Pair Programming” should be arranged under
the parent concept “Extreme Programming”).
This solution is based on underlying ontologies,
as discussed later in the chapter. After the whole
process of selecting certain aspects and restructur-
ing them, users may be provided with complete,
self-contained and motivating knowledge.

Based on the principles of a human-centered
design process according to ISO 13407, expected
users take an active part in the development pro-
cess in order to get a clear idea of what might be
specific requirements (ISO 13407, 1999). The early

Figure 2. Human-centered design processes for interactive systems (Source: ISO 13407, 1999)

evaluate designs
against

requirements

specify user and
organisational
requirements

produce design
solution

understand and
specify the

context of use

system meets
requirements

plan the human
centered
process

 837

Human-Centered Design of a Semantically Enabled Knowledge Management System

phase of the German research project, “RISE,”
therefore was dominated by context-analyses
within the participating companies. Qualita-
tive-centered studies delivered deep insight into
organizational aspects and users’ special needs.
Two focus groups dealt with the drawbacks and
opportunities of using conventional Wiki systems
that were formerly introduced by the associated
companies. Not only the focus groups, but also
further analyses of existing artifacts allowed the
allocation of functions among the technical system
and respectively, the users themselves.

For example, the analysis of individually built
file structures showed that an automatically en-
abled structuring of existing artifacts might be
critical because people tend to use structures in
different ways (hierarchical, time-based, prior-
ity-based, people-based, etc.) and with different
granularity. This includes accessing existing ar-
tifacts as well as creating new ones. Teevan et al.
discovered in a comparable study, for example, that
people even use hierarchical organized structures
if they do not maintain their individual structures
hierarchically (Teevan, Alvarado, Ackerman, &

Karger, 2004). This example shows, rather clearly,
how important it is to allocate functions between
users and intelligent systems. But it also gets clear
that definite answers could not be found until final
tests of the application.

As depicted in Figure 3, we elaborate in the
next section on the background regarding this
chapter. This includes information on agile soft-
ware engineering and software reuse based on
the experience factory approach. Thereafter, in
“Human-Centered Design in Software Develop-
ing SMEs,” we describe the relevant objectives
of the RISE project, as well as our contribution
to human-centered design of Wikis in software
engineering. Finally, we describe our evaluation
method and results from the project evaluation.

bAckground

Centering the user during the software develop-
ment process is especially important in engineer-
ing knowledge and learning management (KLM)
as well as social software systems (e.g., Web 2.0)

Figure 3. Outline and structure of the following chapter

o
bj

ec
tiv

es
o

bj
ec

tiv
es

b
ac

kg
ro

un
d

b
ac

kg
ro

un
d

c
on

tr
ib

ut
io

ns
c

on
tr

ib
ut

io
ns

human-centered wIkIshuman-centered wIkIs

human-centered
design

Agile software
engineering

knowledge
comprehension

user-
friendly

knowledge
structure

didactical
templates

context of
use

user
requirements

producing
design solutions

experience
Factory

evaluation
Method

838

Human-Centered Design of a Semantically Enabled Knowledge Management System

where users freely publish and consume informa-
tion. Their efficient as well as effective interaction
with the technical system gets more and more
crucial for the overall success of the software
product. The integration of users and users groups
into the software systems is steadily increasing.
This is also true in development methods such
as extreme programming (i.e., an agile method),
where the team members and the customer of a
software system are deeply integrated to develop
the envisioned software system. This section gives
an overview about agile software engineering,
as well as existing knowledge management ap-
proaches (i.e., the experience factory) that build the
basis for collaborative human-centered software
development.

software engineering and reuse

Software engineering (SE) as a field in com-
puter science is concerned with the systematic
development of high-quality software systems.
During the planning, definition, development,
and maintenance of software systems, the people
involved generate and require any information
and knowledge to support them in their work or
to back up their decisions.

This reuse of existing knowledge and experi-
ence is one of the fundamental parts in many sci-

ences. Engineers often use existing components
and apply established processes to construct
complex systems. Without the reuse of well-proven
components, methods, or tools we had to rebuild
and relearn them again and again.

In the last thirty years, the fields software reuse
and experience management (EM) are increas-
ingly gaining importance. The roots of EM lie in
experimental software engineering (“Experience
Factory”), in artificial intelligence (“Case-Based
Reasoning”) and in knowledge management. EM
is comprised of the dimensions methodology,
technical realization, organization, and manage-
ment. It includes technologies, methods, and tools
for identifying, collecting, documenting, packag-
ing, storing, generalizing, reusing, adapting, and
evaluating experience knowledge, as well as for
development, improvement, and execution of all
knowledge-related processes.

The Experience Factory (EF) is an infrastruc-
ture designed to support experience management
(i.e., the reuse of products, processes, and experi-
ences from projects) in software organizations
(Basili, Caldiera, & Rombach, 1994). It supports
the collection, pre-processing, and dissemination
of experiences of organizational learning, and
represents the physical or at least logical separa-
tion of the project and experience organization,
as shown in Figure 4. This separation is meant

Figure 4. The Experience Factory

experience Factory

package
experience

project organization

support
project

generalize experience

tailor experience

plan
project tailored knowledge

consulting

Formalize experience

Analyze
project

project & context
characteristics

execute
project

decision support,
suggestions

experience
base

data, Models and
lessons learned

 839

Human-Centered Design of a Semantically Enabled Knowledge Management System

to relieve the project teams from the burden to
find, adapt, and reuse knowledge from previous
projects, as well as to support them to collect,
analyze, and package valuable new experiences
that might be reused in later projects.

For example, if we begin a project (“Plan
project”), we might use the experience factory
to search for reusable knowledge in the form of
architectures, design patterns, or process models
based upon our project context. In the execution
phase (“Execute project”), the EF is used to retrieve
knowledge “on demand” (e.g., to support decisions
or reuse source code) and at the projects end, it is
analyzed (i.e., a post-mortem analysis) in order to
extract reusable knowledge, for example, in form
of project data, architectures, quality models, or
other experiences that might be useful in other
projects.

Traditional, Process-Oriented Software
Development and Reuse

Since its beginning, several research directions de-
veloped and matured in field SE. Figure 5 shows the

software development reference model integrating
important phases in a software lifecycle.

• Project engineering is concerned with the

acquisition, definition, management, moni-
toring, and controlling of software develop-
ment projects, as well as the management of
risks emerging during project execution.

• Methods from requirements engineering
are developed to support the formal and
unambiguous elicitation of software require-
ments from the customers, to improve the
usability of the systems, and to establish a
binding and unambiguous definition of the
resulting systems during and after software
project definition.

• The research for software design and archi-
tecture advances techniques for the develop-
ment, management, and analysis of (formal)
descriptions of abstract representations of
the software system, as well as required
tools and notations (e.g., UML).

• Techniques to support the professional
programming of software are advanced to

Figure 5. Software development reference model
Maintenance Project n

Experience Factory

Development Project n
Development Project 1

Quality Assurance & Management

Distribution &
Implementation

experience base
• Experiences about Processes,

Products, Technologies, …
• Reusable models, processes,

products, plans, …

Project Database n
project database 1

• Software Documentation
• Measured Data

Ve
rif

ic
at

io
n

&
Va

lid
at

io
n

Requirement
Analysis

Design

Programming

P
ro

je
ct

 P
la

nn
in

g

Maintenance Project 1

Re-engineering

Evolution &
Maintenance

Support

Project Monitoring & Management

Testing

840

Human-Centered Design of a Semantically Enabled Knowledge Management System

develop highly maintainable, efficient, and
effective source code.

• Verification and validation is concerned
with the planning, development, and execu-
tion of (automated) tests and inspections
(formal and informal) in order to discover
defects or estimate the quality of parts of
the software.

Research for implementation and distribution
is responsible for the development of methods for
the introduction at the customer’s site, support
during operation, and integration in existing IT
infrastructure. After delivery to the customer,
software systems typically switch into one of the
following phases:

• In the software evolution phase, the focus
of research lies on methods in order to add
new and perfect existing functions of the
system.

• Similarly, in the parallel phase, software
maintenance techniques are developed for
the adaptation to environmental changes,
prevention of foreseeable problems, and
correction of noticed defects.

• If the environment changes dramatically or
further enhancements are impossible, the
system either dies or enters a reengineer-

ing phase. Here, techniques for software
understanding and reverse engineering of
software design are used to port or migrate
a system to a new technology (e.g., from Ada
to Java or from a monolithic to a client/server
architecture) and obtain a maintainable
system.

Agile Software Development and
Reuse

Beside the traditional or process-oriented soft-
ware development another trend arose during the
last years. Agile software development methods
impose as little overhead as possible in order to
develop software as fast as possible and with
continuous feedback from the customers. Agile
methods have in common that small releases
of the software system are developed in short
iteration in order to give the customer a run-
ning system with a subset of the functionality
needed. Therefore, the development phase is split
into several activities that are followed by small
maintenance phases. In contrast to traditional,
process-oriented SE where all requirements and
use cases are elicited, the agile methods focuses
on few essential requirements and incrementally
develops a functional system in several short
development iterations.

Figure 6. Agile software development (here the XP-Process)

S pike
P rototyping

R elease
P lanning

Develop.
Iteration

Acceptance
Test

User S tories

Architectural
S pike

S pike

Small
R eleases

Pair
P rogramming

(S QA)

Next Iteration

Unit Testing /
Test F irst (S QA)

Test F irst
(S QA)

 841

Human-Centered Design of a Semantically Enabled Knowledge Management System

Today, Extreme Programming (XP) (Beck,
2003) is the best-known agile software devel-
opment approach. Figure 6 shows the general
process model of XP that is closely connected
to refactoring and basically its cradle (Beck &
Fowler, 1999).

These agile methods (and especially extreme
programming (XP)) are based upon twelve prin-
ciples (Beck, 2003). We mention four of these
principles, as they are relevant to our work. The
planning game is the collective planning of releas-
es and iterations in the agile development process
and necessary to quickly determine the scope of
the next release. Knowledge about the existence
of existing code elements or subsystems relevant
to the project can be used to plan the scope of the
next release. Small releases are used to develop
a large system by first putting a simple system
into production and then releasing new versions
in short cycles. The more an engineer can reuse,
the faster his work is done and the quicker the
customer gets feedback. Simple design means
that systems are built as simply as possible, and
complexity in the software system is removed, if
at all possible. The more libraries are used and
identified (via code retrieval), the less function-
ality has to be implemented in the real system.
Refactoring, or the restructuring of the system
without changing its behaviour, is necessary to
remove qualitative defects that are introduced
by quick and often unsystematic development.
Decision support during refactoring helps the
software engineer to improve the system.

Traditional software reuse initiatives and ap-
proaches that were developed for process-driven
software development are inadequate for highly
dynamic and agile processes where software
cannot be developed for reuse and reuse cannot
be planned in advance. Teams and organizations
developing with agile methods need automated
tools and techniques that support their work
without consuming much time. Therefore, agile
software reuse is a fairly new area where mini-
mally invasive techniques are researched to sup-

port software engineers (Cinneide, Kushmerick,
& Veale, 2004).

Typically, people in SME do not exactly know
what additional knowledge and learning objects
they need to support their work. The individual re-
quirements of an employee in an SME will grow as
they are working with a KLM system. Therefore,
the agile approach to develop a software system;
that is, incrementally developing the system with
intense interaction with the user, is very important.
The traditional approach of developing the system
based on a final set of elicited requirements will
probably result in an out-dated KLM system that
does not fit the users needs.

huMAn-centered desIgn In
soFtwAre deVelopIng sMes

Software engineering, in general, aims at engi-
neering-like development, maintenance, adjust-
ment, and advancement of complex software sys-
tems. One characteristic of software engineering
compared with classical engineering lies in the
prevalent immateriality and the complexity and
abstractness of software resulting from it. For this
reason Broy and Rombach (2002), for example,
point out the difficulty to gain vital working
experiences, and point at deficits in the field of
further training. Although many companies ap-
ply (agile) methods of software engineering, the
transfer of the underlying complex knowledge is
still a crucial problem.

challenges in software development

The development of complex software systems
requires specific knowledge about technologies,
tools, processes, standards, and so forth. The
quality of the outcome depends strongly on how
successful existing knowledge and expertise
of the employees can be provided and actually
applied.

842

Human-Centered Design of a Semantically Enabled Knowledge Management System

Considering that challenging situation, the
German research project, “RISE” (http://www.
rise-it.info), aims at a holistic support of software
engineering tasks. Software engineers should be
enabled to deal with their tasks and thus act more
professionally. Furthermore, the transfer of exist-
ing knowledge within software-related companies
has to be optimized. This should be accomplished
by systematic reuse of experiences, methods, and
models in different application contexts.

The project “RISE” is part of the research
program “Software Engineering 2006,” funded by
the German Federal Ministry for Education and
Research (BMBF). Project partners are Dept. of
Educational Sciences and Professional Develop-
ment at the Technical University of Kaiserslautern,
Empolis Arvato GmbH, brainbot technologies AG,
Fraunhofer Institute for Experimental Software
Engineering (IESE), and the German Research
Center for Artificial Intelligence (DFKI).

The vision of “RISE” is to develop a usable
knowledge-management application for software
developers that makes fun and requires minimum
effort. Software developers are gently supported
during teamwork and their reuse of working
experiences and knowledge. Consequently, the
organization itself should profit from improved
productivity increases.

Based on the already stated special problems
and situations, research also focuses on how high
the impact of an intranet-based platform could
be, in order to ensure the individual capacity
to do successful work through reuse of experi-
ences, methods, and models. Thus RISE tries to
find answers to the question, what are the main
requirements for a knowledge-management plat-
form from the view of employees? In order
to keep complex knowledge manageable so that
it can be used individually and updated during
work.

It has to be clarified in what respect a technical
platform may allow an individually focused view
of the information needed (knowledge manage-
ment) and might facilitate (usability) use of it.

The participating companies already used
Wiki systems as our project started. They pro-
vided initial data for the empirical study in the
early project phase. In our case, we had to deal
with technically and functionally rather different
Wiki systems, which can all be summarized under
the wide term “social software.” Such Web-based
content-management systems allow users not
only to access content, but also to add their own
pieces of information or to edit already available
artifacts with as little effort as possible.

The underlying rationale is based on a strongly
decentralized way of editing content. Early results
of the evaluation, however, showed that a sophis-
ticated methodology is required to successfully
implement semantic based “social software” at the
intranets of software-firms, in order to ensure a
broad acceptance. In summary, we observed that
our industrial partners had the following problems
with KLM systems:

• The organizations used Wiki systems that
few people used due to missing structure,
participation, and documentation guide-
lines.

• The people stored their information in their
own data repositories, network drives, group
directories, and so forth, with individual
structures. This made the discovery and
goal-oriented retrieval of important knowl-
edge nearly impossible.

• The organizations used several other tools
such as content management systems (CMS),
e-mail, versioning systems, and chat tools
(i.e., ICQ) that comprised valuable informa-
tion, all unconnected and without a common
structure or template support.

As observed, acceptance might decrease
rapidly if the application system no longer rep-
resents a source of information that is usable,
as described within the international standard
ISO 9241-11: “extend to which a product can be
used by specified users to achieve specified goals

 843

Human-Centered Design of a Semantically Enabled Knowledge Management System

with effectiveness, efficiency and satisfaction in
a specified context of use” (ISO 9241-11, 1998).
So, if the systems fail to be usable, neither con-
tents are published or edited nor even read in the
worst case. The communication amongst software
engineers will not be intensified, as intended, but
stagnates to a total deadlock.

understanding context-of-use and
Defining User Requirements

It seems to be obvious that employees are re-
sponsible for an individual development of a
vital knowledge basis. Not only that, this re-
quires special abilities, resources, and strategies.
Moreover, employees increasingly have to gather
information and subsequently learn new things
besides their working day, which is dominated
by different peaks.

One kind of peak is, of course, caused by
strict deadlines that temporarily raise the work-
ing load to a maximum. Besides those hard and
rather ordinary kinds of peaks, there exists even
a more elementary one: the problem-orientation
that many software engineers cling to. One main
hypothesis of the project “RISE” is that this kind
of peak not only may provoke benefits, but also
causes huge problems that eagerly demand a
solution. The term “problem-orientation” refers
to the assumption that software development pre-
dominantly is a rather trivial process: developers
are provided with certain requirements and try to
consider them while realizing software systems.
But from time to time, that trivial process gets
disturbed by rather tricky problems developers
get stuck in.

Those more or less hard problems represent
a kind of peak that has fatal consequences for
knowledge management in software companies:
developers that run into that peak are highly
motivated to solve the problem and often try to
solve it on their own. Probably, they spend hours
and hours with their problem and do not bother
about existing and proved solutions, concepts,

or methods. In that case, reuse might not exceed
accidental or sporadic access to available knowl-
edge. Considering that the knowledge collected by
means of a content management system, it seems
to be almost impossible to build a shared reposi-
tory. The result would be a collection of various
problems (hopefully including a solution) that
might resemble each other more or less. The so
called “Experience Factory” approach has to be
mentioned, which is considered as one answer to
that challenge: “the Experience Factory approach
was initially designed for software organizations
and takes into account the software discipline’s
experimental, evolutionary and nonrepetitive
characteristics“ (Basili, Lindvall, & Costa, 2001,
p. 1).

In addition to that, existing knowledge does
not only grow rapidly, but can be accessed ever
more easily. However, the technical feasibil-
ity itself does not actually pay off: employees
might be overwhelmed by the huge amount of
information they can access which suggests to
them, despite (and just because of) various and
omnipresent search possibilities, the feeling of
just being swamped with artifacts.

Basili et al. (2001) see that problem too, and
demand that the company has to unload its experts:
“Experts in the organization have useful experi-
ence, but sharing experience consumes experts’
time. The organization needs to systematically
elicit and store experts’ experience and make it
available in order to unload the experts” (Basili
et al., 2001, p. 2).

One-sided approaches to knowledge manage-
ment often focus on gathering as much information
as possible from experienced employees in order
to preserve it. From an educational point of view,
however, it neither seems to be reasonable nor pos-
sible to store that potentially relevant knowledge
with its unreduced complexity if knowledge has to
enable the individual capacity to act professionally
as a software developer (Renzl, 2004, p. 36).

In fact, it is rather important to support the
individual capacity to act professionally of each

844

Human-Centered Design of a Semantically Enabled Knowledge Management System

developer systematically. It is assumed that this
individual ability will get more important in
future. Employees will be faced with even more
complex working conditions. Customized ap-
proaches to knowledge management for different
kinds of enterprises should start just from the
special abilities and needs of the employees, and
thus help to prepare for that situation.

It is assumed that, by means of an adequate
selection and presentation of content, the feeling
of being swamped with artifacts can be reduced,
and the software developers’ motivation can be
ensured or even be raised. This form of knowledge
management centers the affected subjects. Thus,
employees with huge expertise are no longer
considered like a means to an end but, in fact, the
technical knowledge management system.

• First, this application system acts as a flex-

ible and customizable view (like a window)
on the information needed during working-
time. This system strongly relieves software
engineers from time-consuming retrieval
activities.

• Second, the system supports the collection
and storage of vital working experience,
which has to be subsequently formed and
refined.

These are the two main factors of the RISE
methodology, which were optimized during
project time.

producing design solutions and
evaluating them Against
requirements

The survey that was dominated by qualitative
social research methods revealed valuable insights
about requirements of users and organizations.
Two focus groups were dedicated to explore us-
age problems with the knowledge management
platforms already introduced.

Especially, the collection of user requirements,
related to Wikis as experience management sys-
tems for software engineering, important problem
areas could be identified.

The gathered qualitative data is characterized
by a very high validity, which means (given the
background of user-centered design) that a com-
mon understanding of user requirements was
developed and involved users agreed to high
extent which user requirements should be real-
ized in favor.

In order to classify the collected data, the
Munich knowledge-management model has been
used with its four categories: knowledge-repre-
sentation, knowledge-usage, knowledge-com-
munication, and knowledge-creation (Reinmann-
Rothmeier, 2001):

• Knowledge-representation: Some em-
ployees tend to write down a minimum of
information. It was observed that some of
them document just as little as possible, so
that they will be able to find out later what
was meant by the given artifact. The main
disadvantage of that behavior is that the
saved data becomes hard or even almost im-
possible to understand for other employees
accessing that content because they do not
have the necessary knowledge to »decode«
and to classify it. However, it seems to be
a kind of game those developers are play-
ing when doing some documentation: they
rather puzzle together pieces of information
than writing down supposedly redundant or
superfluous information.

• Knowledge-usage: Crucial information
about projects, products, or customers are
distributed across various databases. This
means that useful knowledge is hard to find
and thus hard to be transferred in other
contexts like new projects for example.

• Knowledge-communication: Employees
who browse or search through Wiki con-

 845

Human-Centered Design of a Semantically Enabled Knowledge Management System

tent in order to find some special piece of
information have to spend a lot of time.
Moreover, editing content in most Wikis is
rather uncomfortable: for example, adding
a chart, a table or even a picture to Wiki
pages requires special handling if it is even
possible. As a consequence, information is
being transferred by mail under pressure of
time and not added to the Wiki site.

• Knowledge-creation: With increasing
activity in a Wiki, it becomes harder for
authors to integrate their piece of information
into the existing structure. So, it becomes
more and more likely that no new content is
being added and already saved content gets
orphaned.

Basically, using metadata is a good idea to keep
heterogeneous and complex structures describ-
able and thus technically manageable. But the
problem is that users often fail to provide useful
metadata, or simply do not bother about complex
sets of metadata.

One very important hypothesis of the RISE
project is that software-development teams that
use a Wiki collaboratively to build knowledge
repositories are actually about to create a kind
of semantic structure, which users may not
necessarily be aware of. This more or less refined
structure, called “Wikitology,” can be considered
as a weakly formalized ontology. This has three
main advantages:

• The maintenance of metadata is not con-
sidered as extra activity.

• Ontologies may always grow behind the
content.

• Maintenance of ontologies is an expensive
and time-consuming process. But, based on
our assumptions, this work can be automated
more efficiently, and thus releases employees
from that job.

Another crucial approach of the RISE project
is the use of tags as a very minimalistic but rather
effective way of providing metadata. Any tags
may be assigned individually to WIKI pages. So,
each user is able to create his own view on any
artifact by using his own depiction. Since in our
approach all users are able to see the tags provided
by the others, it is, of course, very probable that
team members manage to create a shared set of
tags as well.

Furthermore, templates for special types of
content (bug report, use case, user story, etc.) help
to provide a minimum of required information.
Readers as “consumers” of the artifact can be
satisfied, too. For example, the given structure
helps them to browse faster through the content
in order to find only some piece of information
being of interest. Finally, this results in a higher
acceptance of the system, which might also
motivate employees to add their content to the
repository.

Additionally, a blog component is added to
the system. The blog contains not only news. In
fact, the blog can be considered as a human-based
filter on the Wiki content. For example, users
might link to certain Wiki pages and provide
some extra information along with the link. So,
other users get useful assistance with the evalu-
ation of artifacts.

eVAluAtIon oF seMAntIcAlly
enAbled kM systeMs

The objective of the evaluation of a KM system,
such as the Riki, is to show its effectiveness in a
specific application context. The tailored instances
of the system at different organizations are evalu-
ated to identify the usefulness to the users, the
examined applicability, the evolvability, as well
as economic factors. The evaluation was split
into two phases. The first phase, called baseline

846

Human-Centered Design of a Semantically Enabled Knowledge Management System

evaluation, at the start of the project was used
to elicit the context and current state of knowl-
edge transfer. From the information we gathered
in this phase, we designed and developed the
Riki system considering people, processes, and
available technologies. The second phase, called
delta evaluation, at the end of the project helped
to evaluate the change on the socio-technical
knowledge management system. In both phases,
we used the following three techniques to elicit
valuable information from the organizations and
potential end users:

• Goal-oriented, questionnaire-based inter-
views were used to query the previously
listed questions with three to ten persons in
two to four sessions. The collected answers
were summarized and validated by the par-
ticipants via e-mail.

• Group discussions were done at every com-
pany to collect any additional information,
opinions, ideas, and so forth, that were not
covered by the interviews. The discussion
was started with a specific topic (e.g., Why
did the old Wiki not work for you as a KM
system?), and every person could state what
they expected from an improved knowledge-
management infrastructure.

• Artifact analyses were conducted to identify
knowledge sources, the type of knowledge
within, as well as how employees structure
their documents and knowledge in exist-
ing storage systems (e.g., the hierarchy of
directories in personal file systems or in
pre-existing WIKI systems).

These evaluation techniques helped to cover
the following three topics:

• Technology: Elicitation of the existence
and characteristics of the technical infra-
structure, existing KM systems, and other
software systems that might be integrated

into or used as the KM system (i.e., the Riki
system). Furthermore, these technological
systems potentially have valuable informa-
tion that can be utilized in a KM system.

• Methodology: Elicitation of the applied
methodology for production (e.g., software
development) and knowledge management
(esp. knowledge transfer processes). This
gives further information about how the
KM system should be integrated into the
social system of the organization and where,
when, and by whom knowledge is produced
or consumed.

• Knowledge: Elicitation of the existing
knowledge components available in the
organization, as well as their characteristics
and interrelation (e.g., for the development
of an ontology). Furthermore, the typical
structure of documents that might be di-
dactically enriched.

A more detailed description, as well as some
results of the two evaluation phases, is described
in the following sections. They address persons
who want to evaluate a KM system, such as the
RIKI in an organization.

baseline evaluation

The baseline evaluation is concerned with the
determination of the organizational context a
social-technical knowledge management should
be embedded in. The core goal of the baseline
evaluation is to measure and analyze the current
status of the implicitly or explicitly performed KM
processes, the used knowledge carrying or KM
systems, as well as the knowledge culture itself.
Baseline evaluations are typically applied only
once to get a consistent view of the KM in the
organization before larger changes. This section
describes the basic process for the evaluation of a
KM system as well as a summary of our baseline
evaluation.

 847

Human-Centered Design of a Semantically Enabled Knowledge Management System

Baseline Evaluation Process

The baseline evaluation process (and similarly the
delta evaluation) is structured into the three sub-
phases: problem-determination, context-determi-
nation and knowledge-determination. As depicted
in Figure 7, the steps in these subphases define a
process that results in several documents (e.g., a
problem description) usable for the specification
of a socio-technical KM system integrated into
the surrounding organizational context:

• Problem-determination: The problem

determination serves to identify existing
knowledge sources (e.g., in case of our part-
ner, “empolis,” a Wiki system named MASE)

as well as emerged problems and challenges
with it. Step 0a is used to determine existing
information systems and technical knowl-
edge sources using a systematic analysis
method. By means of a group discussion
in step 0b, the exchange of knowledge via
existing technical (KM) systems in a typical
project team is illuminated.

• Context-determination: This subphase
is concerned with the determination of the
context the socio-technical KM system is
embedded in. The context determination
produces information about the production
processes, roles, documents, or sites that
might be used in the KM system. The three
steps in this subphase are concerned with

Figure 7. Plan for baseline and delta evaluation

848

Human-Centered Design of a Semantically Enabled Knowledge Management System

the development processes that are to be
supported by the KM initiative. Step 1a uses
a group discussion technique to determine
existing documents, templates, and other
potentially reusable elements. To elicit or
update the development process in use, we
applied an interview with several product
and project managers in step 1b.

• Knowledge-determination: The knowl-
edge determination subphase targets the core
information that should be made reusable
via the KM system. The content, context,
and structure of reusable elements is deter-
mined in step 2a using an interview. Based
on this information, the knowledge transfer
processes and the knowledge culture itself is
analyzed in step 2b using a group discussion
with several members of project teams.

Finally, step 3 is used to identify the technical

infrastructure of tools and systems that are not
used for knowledge management, but might be
integrated and connected with the new or improved
KM system (i.e., a new or improved Riki).

Results from the Baseline Evaluation

In the context of the RISE project, we applied step
0a to step 3 of the evaluation plan, as depicted in
Figure 7. For the execution of the baseline evalu-
ation one period, we required a time span of ap-
proximately 3 months, taking into account that not
all employees are continuously available. Based on
different vacation planning, holidays in summer,
autumn, and Christmas, as well as other projects,
one should take into account the time-consuming
characteristics of such an evaluation.

During the group discussion concerning the
usage of existing KM systems (cf. Figure 7, 0b)
as well as the knowledge culture and transfer (cf.
Figure 7, 2b), we determined the following status
in the organization:

• The organization used a Wiki (“MoinMoin”)

that few people used, and contained partially
documented concepts, ideas, comments,
and larger documentations about planned as
well as already developed software systems.
Other information in the WIKI included
customer information, dates, ToDo-lists,
addresses, and absent lists.

• Important information about the software
system itself is documented in the source
code (in this case, Python and ePyDoc). To
extract this information, one has to check
out the whole software system from the
versioning system and search for relevant
information on file level.

• Important information about changes to the
software system is documented in the used
versioning system (in this case: Subversion).
Changes at the software system are sent to
all interested users by e-mail. To extract this
information without the e-mails, one has to
analyze every check-in into the system and
appropriate comments.

• Internal information sources (i.e., reposito-
ries) with other project-relevant information
are change tracking system, project fold-
ers, universal and private network drives,
e-mails, and chat tools (e.g., ICQ), with
information in files such as plain text or MS
Word documents. Furthermore, task cards
at a physical blackboard.

• External information sources are distributed
over the whole Internet, but the employees
had a focus on MSDN and Google if they
required further information.

Positive characteristics: What goes well?

• The cooperation between two people closely
working together, but who were distributed
physically over two cities, worked very well
using the old Wiki.

• The local teams worked on one floor and

 849

Human-Centered Design of a Semantically Enabled Knowledge Management System

had only short distances to their colleagues.
The face-to-face communication was very
good (i.e., everybody was in “shouting”
distance).

Negative characteristics: What runs badly?

• The Wiki was not used anymore at the be-
ginning of the evaluation and the feedback
indicated that most people were not pleased
with the structure of the knowledge base.

• Neither the old Wiki nor the documentation
language for Python (ePyDoc) permitted the
integration of pictures or graphics.

• The search for information in the Wiki and
file system is term based (i.e., no stemming
or Boolean operators). This was perceived
as insufficient and demotivating by the
users. Furthermore, the search within the
Wiki was impeded by the use of camel case
(e.g., “MyProjectDescription”) in the page
names.

• The discovery of relevant information is per-
ceived as complicated as they are distributed
over multiple repositories that all use differ-
ent (or nonexistent) search mechanisms.

• Access to the Wiki from a text editor (e.g.,
emacs under Linux/Unix) or a shell (i.e.,
command line interface) is impossible
and/or uncomfortable. Nevertheless, some
developers are biased or required to use
these, and are not willing to install or use
other operating systems (or Web browsers
such as Internet Explorer™).

• Neither were the authors (resp. other observ-
ers) informed about changes done to the
content in the Wiki, nor were they informed
about changes to the navigational or divi-
sional structures (i.e., chapters and sections)
of the content.

• It was not clear where to store information
as they could be spread or duplicated in
multiple repositories, for example, in the

versioning system, change tracking system,
or the code itself.

In summary, the knowledge transfer and
management processes, as they were lived in the
organization previously to the introduction of the
Riki system, were determined by the baseline
evaluation as follows:

• Storage of information is limited to few
people in the organization and the docu-
mented information is only partially com-
plete, consistent, or valid.

• Reuse of content is minimal, as the informa-
tion is distributed over several sources with
different search interfaces and techniques.
Furthermore, the content of the documents
have inconsistent structures, incomplete
descriptions, or are simply outdated.

• Workflow for reuse of content and getting an
overview is slow and typically demotivat-
ing, as multiple sources have to be searched
manually and documents belonging together
are not grouped or linked.

• Sharing knowledge is cumbersome, there
are no templates, guidelines, or checklists
to validate if the recorded information has
some quality and might be easily reused by
the colleagues.

• Confidence in the knowledge transfer system
and motivation to share is low, as only few
people are creating shareable documents and
they are mostly not accurate or up-to-date.
Nevertheless, the people would like to share
their knowledge in a more persistent way.

• Face-to-face communication is strong,
especially as most employees have short
distances to their colleagues, are roughly of
the same age, and see no need to hide their
information (i.e., egghead’s syndrome).

delta evaluation

850

Human-Centered Design of a Semantically Enabled Knowledge Management System

The core goal of a delta evaluation is to measure
and analyse the changes a KM system has inflicted
on the affected organization. Delta evaluations
can be applied multiple times during the lifecycle
of a KM system (e.g., every year) to evaluate the
effect on the organization.

Delta Evaluation Types

Since KM systems are usually used only irregu-
larly in the beginning and not yet a firm part of
the working process, the delta evaluation phase
can be applied in three different types:

1. Applicability: The first type serves to ex-
amine how frequently the system is used,
if it integrates into the socio-technical in-
frastructure, and if it helps the users during
their daily work. In order to keep the effort
of the evaluation down to a minimum, a
lightweight evaluation is planned by reusing
existing plans and other technology assess-
ment or acceptance models.

2. Usefulness: In the second type, the results
and experiences from the first type serve
to sharpen requirements and improvement
goals. The system has already demonstrated
that it is applicable in the organization, and
represents an integral component of the
regular work routine. By means of structured
evaluation processes, a formal evaluation
plan is constructed to examine, in particular,
the aspects usefulness, and ease-of-use for
developers as well as management staff.

3. Economy: Finally, the third type serves to
examine the economical aspects of the KM
system. The system is already integrated
into the regular work routine, and users
share and reuse the knowledge within. An
adaptive evaluation, reaction, and risk plan
are developed to continuously monitor and
improve the system. The focus of this type
is the evaluation of the system and a forecast

of the usefulness regarding the return on
investment (ROI) and total cost of owner-
ship (TCO).

To identify existing or potential problems, the
entire system is continuously monitored during
start-up phase. Logfiles help to drill-down into
specific problems if the users observe a problem
while using the system.

Results of the Delta Evaluation

In the context of the RISE project, we could only
apply the first subphase and evaluate the applica-
bility of the Riki system. Due to the short amount
of time the system was used (two months) we
could only get little insight into the usefulness
of the system for the users in their daily routine.
During the group discussion concerning the usage
of the Riki (cf. Figure 7, 0b) as well as knowledge
culture and transfer (cf. Figure 7, 2b), we noted
the following characteristics the users liked very
much about the Riki:

• Metadata elements that can be placed by
every user (such as keywords in form of
tags) can be very helpful in indexing the
content of a Riki, and the users reacted very
positively that they were able to index every
page with their own metadata.

• The usage of metadata enabled the users
to build up and use their own individual
ontology (in form of individual tags) that
is not bound to compromises or constraints
from universal ontologies that might have
been constructed in advance. Furthermore,
metadata from the universal ontology (i.e.,
specified beforehand or as defined by other
users) was partially used in their own ontol-
ogy.

• Searching the information stored in the
Riki is more accepted by the users when the
metadata might be integrated into the search
process. In the Riki, the results are clustered

 851

Human-Centered Design of a Semantically Enabled Knowledge Management System

by this metadata and the metadata might be
used to refine the search query. The search
technology exploits co-occurring metadata
from multiple users and applies “collabora-
tive filtering” techniques (i.e., “metadata x
you search for is also called y”).

• Annotated pages that were listed in search
results reminded the users that they already
read them or were highly valuable and should
be read again. Similar to the Memex concept
by Vannevar Bush (Bush, 1945) (cf. http://
en.wikipedia.org/wiki/Vannevar_Bush),
the metadata might even be used to record
a reading sequence for oneself.

• The integrated view of the Riki system,
including various artefacts as well as re-
positories, enables the user to send links that
are not subject to change as, for example,
mounted devices in the Windows file sys-
tem.

In comparison to the status, as determined
by the baseline evaluation, the usage of the Riki
system had the following subjective effect on the
organization:

• More storage of information into the Riki
than before as barriers (technological and
social) are reduced.

• More reuse of content from the Riki as us-
ers are more likely to share and search for
content.

• Faster workflow for reuse of content and
an improved overview due to the integra-
tive view over multiple systems (e.g., file
system, e-mail, etc.) in a central integrated
repository.

• Less barriers for sharing knowledge, as it
is easier and faster to enter information, but
this typically results in a low quality of the
content. Most users embrace the Wiki idea
and record even preliminary information that
is revised by oneself or others over time.

• Higher confidence in the system and in-

creased motivation as content is easier to
find and more people are participating in
the sharing process.

• Consistent face-to-face communication
even as more information is reused from
the technical system.

Further and more quantitative results about the
usefulness and economical aspects, especially of
the more SE specific features of a Riki such as
ontology-based templates for requirements, will
be elicited in later evaluations.

conclusIon

Although the importance of usability is broadly
and increasingly accepted, user-centered de-
sign processes can hardly be found in software
companies in general. Small- and medium-sized
companies often fail to apply user-centered design
methods due to poorly established role models.
Even if user-requirements are (more or less) speci-
fied, the problem that remains is to guarantee that
they are strictly followed during production.

The whole research process during the project
“RISE” was strongly dominated by qualitative
evaluation activities. They have been preferred
because they helped to specify the context of use
as well as user and organizational requirements.
In general, empirical data, gathered by means of
qualitative research methods, is characterized by
its high validity. Unfortunately, it is rather difficult
to extract requirements out of this data or to check
to what extent those “implicit” requirements have
been considered during the development process
of the software system.

Strictly following the model of a user-centered
design of an interactive software system, that
problem could not be bypassed. It is rather neces-
sary to provide prototypes, as soon as possible,
that contain as much functionality as necessary
in order to check current implementation states
against more or less “implicit” requirements.

852

Human-Centered Design of a Semantically Enabled Knowledge Management System

In terms of a rather comprehensive meaning
of usability, it was not only about developing user
interfaces and improving them. In fact, usability
engineering is considered as a vital concept in
software development. So, it is not only about
describing, designing, or producing design
solutions for user interfaces. It is rather about
understanding and facilitating human-engineered
socio-technical systems.

AcknowledgMent

Our work is part of the project RISE (Reuse in
Software Engineering), funded by the German
Ministry of education and science (BMBF) grant
number 01ISC13D.

reFerences

Ballstaedt, S. (1997). Wissensvermittlung. Wein-
heim: Beltz, Psychologie-Verl.-Union.

Basili, V. R., Caldiera, G., & Rombach, H. D.
(1994). Experience factory. In J. J. Marciniak (Ed.),
Encyclopedia of software engineering (Vol. 1) (pp.
469-476). New York: John Wiley & Sons.

Basili, V., Lindvall; M., & Costa, P. (2001). Imple-
menting the experience factory concepts as a set
of experience bases. Retrieved May 12, 2006,
from http://www.cebase.org:444/fc-md/ems_--
_total_project/papers/SEKE01/seketalk18.pdf

Beck, K. (2003). Extreme programming explained.
Boston: Addison-Wesley.

Beck, K., & Fowler, M. (1999). Bad smells in
code. In G. Booch, I. Jacobson, & J. Rumbaugh
(Eds.), Refactoring: Improving the design of ex-
isting code (1st ed.) (pp. 75-88). Addison-Wesley
Object Technology Series.

Broy, M., & Rombach, D. (2002). Software

engineering. Wurzeln, Stand und Perspektiven.
Informatik Spektrum, 25(6), 438-451.

Bush, V. (1945). As we may think. The Atlantic
Online, 176, 101-108, (Reprinted in 1996: ACM
Interactions, 3(2), 35-46).

Cinneide, M. O., Kushmerick, N., & Veale, T.
(2004). Automated support for agile software
reuse. ERCIM News, F (pp. 22-23)

Decker, B., Ras, E., Rech, J., Klein, B., Reuschling,
C., Höcht, C., & Kilian, L. (2005). A framework
for agile reuse in software engineering using
Wiki technology. Wissensmanagement, 2005,
411-414.

ISO 9241-11 (1998). Ergonomic requirements for
office work with visual display terminals (VDTs).
Part 11: Guidance on usability.

ISO 13407 (1999). Human-centred design pro-
cesses for interactive systems.

Reinmann-Rothmeier, G. (2001). Wissen managen
(Nr. 131). München: Inst. für Pädag. Psychologie
und Empirische Pädag., Lehrstuhl Prof. Dr. Heinz
Mandl.

Renzl, B (2004). Zentrale Aspekte des Wissens-
begriffs – Kernelemente der Organisation von
Wissen. In B. Wyssusek, M. Schwartz, & D.
Ahrens (Eds.), Wissensmanagement komplex.
Berlin: Schmidt.

Teevan, J., Alvarado, C., Ackerman, M. S., &
Karger, D. R. (2004). The perfect search engine
is not enough: A study of orienteering behavior
in directed search. CHI 2004 Paper. Retrieved
May 12, 2006, from http://haystack.lcs.mit.edu/
papers/chi2004-perfectse.pdf

Tonkin, E. (2005). Making the case for a Wiki.
Retrieved May 12, 2006, from http://www.ariadne.
ac.uk/issue42/tonkin/intro.html

 853

Human-Centered Design of a Semantically Enabled Knowledge Management System

AppendIx I: Internet sessIon: hcI And wIkI

http://c2.com/cgi/wiki?WikiEngines
http://en.wikipedia.org/wiki/Wiki

WIKI systems are a way to share knowledge and collaborate in a distributed environment with other
people from different cultures and with different goals. They are used in different contexts by different
groups of people, and are typically developed by software programmers with a very technology-centered
view and without knowledge about usage scenarios or real-use cases.

Interaction

Survey the information presented at the Web sites on WIKIs and HCI methods and theory. Prepare a
brief presentation on the core concepts and history of WIKIs with a focus on their HCI. Alternatively,
analyze if the current WIKI systems are built human centered or technology centered. What would
you change?

854

Human-Centered Design of a Semantically Enabled Knowledge Management System

AppendIx II: useFul urls

Website of the RISE project:
http://www.rise-it.info

More information about WIKI systems on Wikipedia:
http://en.wikipedia.org/wiki/Wiki and http://en.wikipedia.org/wiki/List_of_wikis

A wikibook about WIKI systems:
http://en.wikibooks.org/wiki/Wiki_Science

More information about semantic WIKIs on Wikipedia:
http://en.wikipedia.org/wiki/Semantic_Wiki

More information about the topic “Social Software” on Wikipedia:
http://en.wikipedia.org/wiki/Social_software
A collection of arguments why WIKIs work:
 http://c2.com/cgi/wiki?WhyWikiWorks and http://en.wikipedia.org/wiki/Wikipedia:Our_Replies_to_
Our_Critics

The International Symposium on WIKIs (WikiSym):
http://www.wikisym.org/

Multilingual online journal for qualitative research:
http://www.qualitative-research.net/fqs/fqs-eng.htm

 855

Human-Centered Design of a Semantically Enabled Knowledge Management System

AppendIx III: Further reAdIngs

Beyer, H., & Holtzblatt, K. (1998). Contextual design. San Francisco.: Morgan Kaufmann Publ.

Cooper, A. (1995). About face. Foster City, CA: IDG Books Worldwide.

Fensel, D. (2004). Ontologies: A silver bullet for knowledge management and electronic commerce.
Berlin: Springer.

Lauesen, S. (2005). User interface design. Harlow: Pearson/Addison-Wesley.

Leuf, B., & Cunningham, W. (2006). The Wiki way. Boston: Addison-Wesley.

Nielsen, J. (2004). Usability engineering. San Diego, CA: Kaufmann.

Shneiderman, B., & Plaisant, C. (2005). Designing the user interface. Boston: Pearson.

Shneiderman, B. (2002). Leonardo’s laptop. Cambridge, MA: MIT Press.

Staab, S. (2004). Handbook on ontologies. Berlin: Springer.

Possible Titles for Papers/Essays

• Pedagogics in Knowledge Management: Socio-Technical Methods and Tools in a Phase of Convergence
• Knowledge Management Systems and Human Computer Interaction

This work was previously published in Open Source for Knowledge and Learning Management: Strategies Beyond Tools, edited
by M. Lytras and A. Naeve, pp. 122-149, copyright 2007 by IGI Publishing (an imprint of IGI Global).

856

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.20
Riki:

A System for Knowledge Transfer and
Reuse in Software Engineering Projects

Jörg Rech
Fraunhofer Institute for Experimental Software Engineering (IESE), Germany

Eric Ras
Fraunhofer Institute for Experimental Software Engineering (IESE), Germany

Björn Decker
Fraunhofer Institute for Experimental Software Engineering (IESE), Germany

AbstrAct

Many software organizations have a reputation for
producing expensive, low-quality software sys-
tems. This results from the inherent complexity of
software itself as well as the chaotic organization
of developers building these systems. Therefore,
we set a stage for software development based on
social software for knowledge and learning man-
agement to support reuse in software engineering
as well as knowledge sharing in and between
projects. In the RISE (Reuse in Software Engi-
neering) project, we worked with several German
SMEs to develop a system for the reuse of soft-
ware engineering products such as requirement
documents. The methodology and technology
developed in the RISE project makes it possible to
share knowledge in the form of software artifacts,

experiences, or best practices based on pedagogic
approaches. This chapter gives an overview of
the reuse of knowledge and so-called Learning
Components in software engineering projects
and raises several requirements one should keep
in mind when building such systems to support
knowledge transfer and reuse.

IntroductIon

The software industry develops complex systems
that often have a reputation of being expensive
and of low quality. One approach for coping with
the increasing complexity of these systems is
software reuse—the sharing of knowledge about
software products, processes, people, and projects
in an organization.

 857

Riki

But the poor and often nonexistent documen-
tation of this knowledge inhibits easy recording,
collection, management, comprehension, and
transfer. The knowledge, for example, in the
form of requirement descriptions, architectural
information, design decisions, or debugging
experiences, needs a systematic, minimally in-
vasive, methodological, and technological basis
to strengthen its reuse and transfer in software
organizations.

Knowledge management (KM) and learning
management (LM) seem to have the potential for
building this basis if they are used in synergy.
However, the relationships between these two
promising fields have not been fully understood
and harnessed yet. On the one hand, learning as
the comprehension of knowledge is considered to
be a fundamental part of KM, as employees must
internalize shared knowledge before they can
use it to perform a specific task. So far, research
within KM has addressed learning mostly as part
of knowledge sharing processes, and focused on
specific forms of informal learning (e.g., learn-
ing in a community of practice) or on providing
access to learning resources or experts. On the
other hand, LM includes techniques to preprocess

and formalize knowledge, and might also benefit
from other KM approaches. Especially, those ap-
proaches that support technical and organizational
aspects in an organization can be used in addition
to professional e-learning systems.

In this intersection between KM and LM,
the Wiki technology (cf. http://en.wikipedia.org/
wiki/Wiki) promises to be a lightweight basis to
capture, organize, and distribute knowledge that
is produced and used in organizations. Wikis are
Web-based knowledge repositories where every
user can freely submit or retrieve knowledge.

The RISE (Reuse In Software Engineering)
project was started to support software engineers
via the reuse of didactically enriched software
artifacts from all software development phases
in SMEs (small and medium enterprises). As the
basis for knowledge transfer, we have developed
a reuse-oriented Wiki (Riki) with fast and liberal
access to deposit, mature, and reuse experiences
made in software projects. Our Riki was extended
by search technologies using case-based reason-
ing technology and ontologies to provide a formal
and consistent framework for the description of
knowledge and experiences. Ontologies and tem-
plates enrich the Riki content with semantics that

Figure 1. Outline and structure of the following chapter

b
ac

kg
ro

un
d

b
ac

kg
ro

un
d

wikis

pr
ob

le
m

s
&

o
bj

ec
tiv

es
pr

ob
le

m
s

&
o

bj
ec

tiv
es

c
on

tr
ib

ut
io

ns
c

on
tr

ib
ut

io
ns

rIse: reuse In software engineeringrIse: reuse In software engineering

software
engineering

knowledge
Management

learning
Management

ontologies &
semantics

wikitologylearning
space rIkI patterns

software
reuse

neglected
learning p.

knowledge
retrieval

ontology-
based search

quality of
knowledge

Inference
support

didactical
Frameworks

858

Riki

enable us to didactically augment the knowledge
within the Riki with additional information and
documented experiences.

The RISE system sketches our approach for
software reuse and tackles several problems of
traditional KM and LM in learning software
organizations. We use semiautomatic indexing of
pages to improve retrieval and enable the semi-
automatic creation and evolution of ontologies
from Wikis (i.e., Wikitologies). The cooperative
adaptation of knowledge to community needs and
the didactic augmentation of content and interface
are targeted to improve the usability of lightweight
KM applications in agile environments.

In this chapter, we give an overview of the
methodology and technology developed in the
RISE project to build the reuse-oriented Wiki
framework named Riki. As depicted in Figure 1,
we describe in the Background the relevant back-
ground about knowledge and learning manage-
ment, as well as software engineering and Wikis.
This is followed by Problems and Challenges
containing the targeted problems and objectives
examined in the RISE project.

Our main contribution for knowledge transfer
and reuse in software engineering is summarized
in Semantic-Based Reuse in SE: The RISE Ap-
proach, which contains both the methodology in
RIME: The RISE Methodology for Knowledge
Transfer and Reuse and the technology in Riki:
The Reuse-Oriented Wiki. Furthermore, several
best practices, Wiki patterns, and lessons learned
gathered during the project are listed in RISE in
Retrospective. Finally, we finish this chapter with
our conclusions.

bAckground

This section is concerned with the background
and related work in knowledge management with
Wikis, problem-based and experiential e-learning
in Wiki systems, and reuse for software devel-

opment artifacts. It gives an overview of related
Wikis for SE, for example TRAC, Snip Snap,
and MASE.

software engineering and reusable
knowledge

The discipline of software engineering (SE) was
born in 1968 at the NATO conference in Garmisch-
Partenkirchen, Germany (Naur & Randell, 1968;
Simons, Parmee, & Coward, 2003). At the same
conference, the methodical reuse of software
components was motivated by Dough McIllroy
(McIllroy, 1968) to improve the quality of large
software systems by reusing small, high-qual-
ity components. The main concern of software
engineering is the efficient and effective develop-
ment of high-qualitative and very large software
systems. The objective is to support software
engineers to develop better software faster with
tools and methods.

Software Reuse

The reuse of existing knowledge and experience
is a fundamental practice in many sciences.
Engineers often use existing components and
apply established processes to construct com-
plex systems. Without the reuse of well-proven
components, methods, or tools, engineers have to
rebuild and relearn these components, methods,
or tools again and again.

Today, reuse-oriented software engineering
covers the process of development and evolution
of software systems by reusing existing software
artifacts. The goal is to develop complex software
systems in shorter periods of time or with higher
quality by reusing proven, verified, and tested
components from internal or external sources.
Trough systematic reuse of these components and
feedback about their application, their internal
quality (e.g., reliability) is continuously improved.
But reuse of components is only appropriate if the

 859

Riki

cost of retrieving and adapting the component is
either less costly or results in higher quality than
a redeveloped component.

Since the 1980s, the systematic reuse and
management of experiences, knowledge, products,
and processes was refined and named Experience
Factory (EF) (Basili, Caldiera, & Rombach, 1994).
This field, also known as Experience Management
(Jedlitschka, Althoff, Decker, Hartkopf, Nick, &
Rech, 2002), or Learning Software Organization
(LSO) (Ruhe & Bomarius, 1999), researches
methods and techniques for the management,
elicitation, and adaptation of reusable artifacts
from SE projects. The Component Factory (CF)
as a specialization of the EF is concerned with
the reuse of software artifacts (Basili, Caldiera,
& Cantone, 1992) and builds the framework in
which further analysis and retrieval techniques
are embedded.

In the beginning, only the reuse of source
code was the focus of reuse-oriented software
engineering. Today, the comprehensive reuse of
all software artifacts and experiences from the
software development process is increasing in
popularity (Basili & Rombach, 1991). Besides
source code artifacts such as requirements, design
document, test cases, process models, quality
models, and best practices (e.g., design patterns)
are used to support the development and evolution
of software systems. These artifacts are collected
during development or reengineering processes
and typically stored in special artifact-specific
repositories.

Software Engineering Experience and
Knowledge

The terms knowledge, information, and experi-
ence are defined in multiple, more or less formal,
and often contradictory ways. Models that define
these terms and the processes that transit from
one to another differentiate between tacit and
implicit knowledge (Nonaka & Takeuchi, 1995)
or between data, information, knowledge, abil-

ity, capability, and competence (North, 2002).
There are positions such as by Stenmark (Sten-
mark, 2001) that consider the usage of the term
“knowledge,” for information stored in a computer,
inappropriate. In this model, tacit knowledge
can, in fact, exist only in the heads of people,
and explicit knowledge is actually information.
However, the terminology used in the theory and
practice of knowledge-based systems (KBS) and
knowledge-discovery in databases (KDD) consid-
ers knowledge to be information stored together
with its context, and we follow this convention
throughout this paper.

Types of Knowledge

More specifically, we base our view of knowl-
edge on the model of the architecture of human
knowledge developed by Anderson. He classified
knowledge not according to its content, but accord-
ing to its state in the person’s long-term memory.
Two types of knowledge were defined (Anderson,
1993; Gagné, Briggs, & Wager, 1988):

• Declarative knowledge consists of ‘know-
ing about’—e.g., facts, impressions, lists,
objects and procedures, and ‘knowing that’
certain principles hold. Declarative knowl-
edge is based on concepts that are connected
by a set of relations forming a network that
models the memory of a person. For in-
stance, declarative knowledge items in the
domain of software engineering might be:
a definition of ‘test case,’ a listing of defect
types, a detailed explanation of key testing
principles.

• Procedural knowledge consists of ‘know-
ing how’ to do something, that is, skills
to construct, connect and use declarative
knowledge. It contains the discrete steps or
actions to be taken, and the available alterna-
tives to perform a given task. For instance,
procedural knowledge items in the domain
of software engineering might be: a method

860

Riki

for deriving test cases from requirements,
a method for classifying defects choosing
the right reading technique to perform an
inspection.

Both declarative and procedural knowledge
can be abstract or concrete. The knowledge can
be connected to more or less concrete information
that can be described technically, for example,
by semantic networks. Nevertheless, knowledge
about situations experienced or about evaluat-
ing facts or determining circumstances in given
situations cannot be classified as declarative or
procedural knowledge. Therefore, a third form
of knowledge has extended the spectrum of
knowledge in cognitive science (Enns, 1993)
when Tennyson and Rasch (Tennyson & Rasch,
1988) defined contextual knowledge as another
type of knowledge:

• Contextual knowledge consists of ‘know-
ing when, where and why’ to use or apply
declarative or procedural knowledge. Con-
textual knowledge is created by reflecting
on the usage of declarative and procedural
knowledge in practice in different contexts.
Contextual knowledge enables the individ-
ual to be aware of commonalities between
situations, and of the appropriateness or
applicability of principles or procedures in
a new context.

In summary, three types of knowledge have
been presented. Documented and stored experi-
ences consist mainly of contextual knowledge.
They originate, in most cases, from expert
memories, and lack declarative basis background
knowledge and detailed procedural knowledge,
resulting in them being ineligible for learning
purposes.

Furthermore, we identified the following gen-
eral artifacts that are based on the six knowledge
types from knowledge management (Mason,
2005):

• Know-how: Recorded information about
how to do something. This can range from
general guidelines about how to design
a system to more specific and personal
experiences about using a tool or software
library.

• Know-who: Recorded information about a
person (i.e., developer or maintainer). This
can range from who designed a specific
subsystem to who has knowledge about a
customer.

• Know-why: Recorded rationales why some-
thing was done or decided. For example, why
a design technique was applied or a defect
had not been removed from the system.

• Know-what: Recorded information about
the status of something (e.g., the current
situation). This includes information about
the current status of a project or system that
was elicited from the project manager.

• Know-where: Recorded information about
the location of something (esp. knowl-
edge). This includes where an algorithm is
implemented in the source code as well as
information about where to find the project
plan or a process description.

• Know-when: Recorded information about
the situation (e.g., time or version) when
something happens or a process is applied.
This can range from when defects are intro-
duced into the system to when the quality
assurance process should be applied.

• Know-if: Recorded information about the
consequences of an action. This can range
from what happens if a defect is removed
to the effects of applying a specific quality
assurance technique.

• Know-that: Recorded information about
the facts of something. This can range from
information about the characteristics of a
quality defect to a model of the development
process.

 861

Riki

The interconnections between these knowl-
edge types are depicted in Figure 2. The organi-
zational elements at the bottom of the picture are
classes of information that are typically existent
in (software) organizations. In a KM system,
knowledge, or more specifically the know-how,
know-who, and so forth, about the organization,
products, projects, people, processes, customers,
as well as further knowledge (e.g., about a technol-
ogy such as Java or EJB) is stored. We refer to this
group as the OP4C model (Organization, People,
Processes, Projects, Products, and Customers).

Software Engineering Artifacts

Software engineering is concerned with the plan-
ning, management, design, development, and
implementation of large-scale, complex software
systems. During these processes, several docu-
ments, architectures, ideas, and experiences are
created or made. In software reuse, the umbrella
term artifact is used to describe explicit knowledge
objects that are considered for reuse, such as:

• Methods and techniques from phases such
as project planning, requirements analysis,
or programming that describe the know-
how.

• Patterns about the analysis and structure of
software systems (i.e., analysis and design
patterns) or the management of processes
(i.e., process patterns). In general, these
represent knowledge that was created by
the aggregation of single experiences,
either by human expert judgement or by
methodological approaches (Basili, Costa,
Lindvall, Mendonca, Seaman, Tesoriero, et
al., 2002).

• Products used in software projects such as
project plans, product descriptions, demon-
stration installations, or presentation slides,
as well as products produced and consumed
in these projects, such as requirement docu-
mentations, architectures, software libraries,
or source code.

• Models about the software quality (i.e., qual-
ity models) or the execution of processes (i.e.,
process or lifecycle models) that were used
in projects and adapted to the organization
and the individual needs of the project and
its team.

• Defects found in a software system or
in a project that reduce its functional-
ity, maintainability, or other aspects like
performance. Associated information of
this artifact is, for example, their location,

Figure 2. Types and characteristics of knowledge

k
no

w
le

dg
e

ty
pe

s
k

no
w

le
dg

e
ty

pe
s

k
no

w
le

dg
e

c
la

ss
es

k
no

w
le

dg
e

c
la

ss
es

knowledgeknowledge

contextual
knowledge

declarative
knowledge

know-
whereknow-what know-whenknow-who know-whyknow-that

procedural
knowledge

know-howknow-if
-

People Projects Processes Products CustomersOrganization

862

Riki

characteristics, and reactive or preventive
measures. If a specific type of defect is
recorded over and over again, it might be
summarized in a so-called antipattern.

• Descriptions of the organization, people,
projects, processes, products, and customers
(O4PC) as well as technologies (e.g., EJB
and JBoss), development rules, interface
style guides, corporate quality assurance
guidelines, or the corporate identity style.

knowledge Management and
learning Management

Knowledge as the fourth factor of production is
one of the most important assets for any kind of
organization, and for all areas of science. Unfor-
tunately, today few experts who have acquired
valuable experience through their day-to-day
work share this knowledge with other people in
the organization. For example, experiences about
how to solve complex problems in software devel-
opment, such as installation or optimization issues,
are typically not shared with colleagues.

Knowledge Management

Knowledge management is concerned with meth-
ods and technologies to enable an organization
to record, inspect, adapt, and share knowledge
cooperatively on a large scale. Recording, elicita-
tion, and adaptation of knowledge are the most
critical tasks in knowledge management with
respect to further reuse of knowledge. The lower
the quality of the knowledge is that is recorded
(e.g., due to missing context information), the
more complex it gets to understand and apply the
knowledge in a new context. The participation
of colleagues such as managers, employees, or
external experts helps to record knowledge from
multiple points of view.

In the domain of software engineering,
software development can be considered as a
human-based, knowledge-intensive activity.

Together with sound methods, techniques, and
tools, the success of a software project and the
software quality itself strongly depends on the
knowledge and experience brought to the project
by its developers. This fact led to the development
and use of experience-based information systems
(EbIS) for capturing, storing, and transferring
experience (Nick, 2005). Experience manage-
ment (EM) can be seen as a subfield of KM that
aims at supporting the management and transfer
of relevant experiences (Bergmann, 2002; Tautz,
2001). The software system used for managing,
storing, retrieving, and disseminating these expe-
riences is called an experience-based information
system (EbIS) (Jedlitschka & Nick, 2003), which
is based on the experience factory concept. An-
other type of system that is not based on the EF
concept is lessons learned systems (LLS) (Weber,
Aha, & Becerra-Fernandez, 2001). Amongst the
definitions for lessons learned, the most complete
definition, is:

A lesson learned is knowledge or understanding
gained by experience. The experience may be
positive, as in a successful test or mission, or
negative, as in a mishap or failure. Successes
are also considered sources of lessons learned. A
lesson must be significant in that it has a real or
assumed impact on operations; valid in that it is
factually and technically correct; and applicable
in that it identifies a specific design, process, or
decision that reduces or eliminates the potential
for failures and mishaps, or reinforces a positive
result. (Secchi, Ciaschi, & Spence, 1999)

Learning Management

KM and learning management (LM) both serve
the same purpose: facilitating learning and com-
petence development of individuals, in projects,
and in organizations. However, they follow two
different perspectives. KM is related to an orga-
nizational perspective, because it addresses the
lack of sharing knowledge among members of the

 863

Riki

organizations by encouraging individuals to make
their knowledge explicit by creating knowledge
elements, which can be stored in knowledge bases
for later reuse or for participating in communities
of practice. In contrast, e-learning emphasizes
an individual perspective, as it focuses on the
individual acquisition of new knowledge and the
socio-technical means to support this internal-
ization process. In the following two sections,
expectations on learning content and related
specifications and standards that address these
expectations are presented.

Expectations on Today’s Learning Content

Especially in industrial training settings, learn-
ing objectives mostly correspond to concrete,
well-defined job-related skills, specific tasks to
be done, or problems to be solved. Hence, the
delivered learning material and learning approach
must suit the current situation that the learner
finds himself in. The situation changes over time
while the learner is performing his work. Never-
theless, conventional learning systems leave no
space for dynamic selection and sequencing of
learning material. In addition, the expectations
on e-learning content are high (cf. SCORM 2004
2nd Edition Overview page 1-22, http://www.
adlnet.org/scorm/index.cfm):

• Accessibility: “the ability to locate and
access instructional components from one
remote location and deliver them to many
other locations”.

• Adaptability: “the ability to tailor in-
struction to individual and organizational
needs”.

• Affordability: “the ability to increase
efficiency and productivity by reducing
the time and costs involved in delivering
instruction”.

• Durability: “the ability to withstand tech-
nology evolution and changes without costly
redesign, reconfiguration or recoding”.

• Interoperability: “the ability to take in-
structional components developed in one
location with one set of tools or platform
and use them in another location with a
different set of tools or platform”.

• Reusability: “the flexibility to incorporate
instructional components in multiple ap-
plications and contexts”.

It is impossible to improve all aspects together.
For example, in order to support high adaptability
of learning content, more effort has to be spent
on realizing adaptation mechanisms and prepar-
ing learning content so that it can be adapted to
specific learning situations. This will decrease
the reusability of the content and its interoper-
ability with other learning management systems.
Therefore, tradeoffs have to be made by focusing
on the most important aspects for a given purpose.
Semantic-Based Reuse in SE: the RISE Approach
will elaborate on which aspects Riki will focus
on. The requirement for content that fulfills these
aims leads to the concept of cutting learning
material into so-called learning objects with as-
sociated metadata. Since then, many standards
and specifications have been developed to offer
a strong fundament for learning content with the
previously listed characteristics.

E-Learning Standards and Specifications

Numerous initiatives like AICC (the Aviation
Industry CBT Committee), ADL (Advanced
Distributed Learning), IEEE LTSC (the Learning
Technology Standards Committee of the IEEE)
and IMS Global Learning Consortium have made
efforts to establish standards. For several years,
a number of initiatives have agreed to cooperate
in the field of standards. Among the many avail-
able standards and specifications, the ones most
relevant for Riki are described in the following.

The LTSC has developed the Learning Object
Metadata Standard (LOM). This standard will
specify the syntax and semantics of learning

864

Riki

object metadata, defined as the attributes required
to fully/adequately describe a learning object.
Learning objects are defined here as “any entity,
digital or non-digital, which can be used, re-used
or referenced during technology supported learn-
ing.” A huge amount of specifications is being
developed by the IMS consortium. Several of
these specifications have been incorporated and,
in some cases, been adapted by ADL to define the
SCORM reference model. SCORM describes that
technical framework by providing a harmonized
set of guidelines, specifications, and standards
based on the work of several distinct e-learning
specifications and standards bodies. These specifi-
cations have one aspect in common: by separating
the content from the structure and layout, they
enable the author to develop different variants
of learning material very efficiently, while rely-
ing on the same set of learning objects. SCORM
sequencing and navigation provides techniques
to sequence learning objects by means of learn-
ing activity trees, and the IMS Learning Design
specification allows expressing more sophisti-
cated pedagogical concepts by means of a more
extensive role concept. However, they prescribe
structures for expressing more or less generic
instructional designs, and do not provide possi-
bilities for adapting instructional design during
run-time. Nevertheless, despite their limitations,
Riki will especially make use of specific concepts
within SCORM (such as sharable content object,
organization, manifest, learning activity tree,
etc.) and parts of sequencing and navigation. Es-
pecially the contextualization of knowledge and
experience (i.e., embedding the information in a
context) plays a crucial role in Riki. Part of the
context description could be done, for example,
according to the IMS Learner Information Pack-
age specification in order to describe the content
owner, or other content related roles. The Dublin
Core Metadata Initiative (DCMI) has developed
the Dublin Core Metadata Element Set outside of
the e-learning domain. DC defines a very simple
set of metadata attributes that can be used for

describing general resources. Since the content
of a Riki should be annotated as unintrusively as
possible, DC will be a starting point for describ-
ing RISE content.

wikis and semantics in software
engineering

The Semantic Web initiative is concerned with
the enrichment of information on the Internet
through the use of exchangeable and machine-
readable metadata. To structure the knowledge
in a “mini”-Internet, as represented by a KM
system such as a Wiki, we also planned to enrich
the knowledge encoded on the Wiki pages with
additional metadata. In the remainder of this
section, we describe Wikis in general, followed
by two overviews of Wikis for SE organizations
and Wikis with integrated metadata support,
which form the basis of our Riki system (i.e.,
semantic Wikis).

Wikis facilitate communication through a ba-
sic set of features, which allows the project team
to coordinate their work in a flexible way. From
the authors’ point of view, these basic features
are: one place publishing, meaning that there is
only one version of a document available that is
regarded as the current version; simple and safe
collaboration, which refers to versioning and
locking mechanisms that most Wikis provide;
easy linking, meaning that documents within a
Wiki can be linked by their title using a simple
markup; description on demand, which means
that links can be defined to pages that have not
been created yet, but might be filled with content
in the future. Furthermore, the simple mechanism
of URL allows easy reference and thus, traceability
of Wiki content into other software documents like
code. For a further discussion on Wiki features,
refer to Cunningham (2005).

Besides those technical aspects, Wikis foster
a mindset of a fit-for-use, evolutional approach to
requirements documentation and management.
The approach of Wikis—in particular, Wikipedia

 865

Riki

as the most prominent representative (Wikipedia,
2006)—demands that an initially created docu-
ment is adequate for its intended usage (fit-for-use).
This initial version is then extended, based on the
demand of the people using this document.

Software Engineering-Oriented Wikis

Wikis were initially used in a software engineering
setting, namely the Portland Pattern Repository
(Leuf & Cunningham, 2001). Furthermore, they
are often used to support software development,
in particular in the area of open source software.
The Wikis of the Apache Foundation are a promi-
nent example of this application scenario. Some
examples of Wikis offer specific functionality for
software engineering:

• Trac (Alrubaie, 2006) is a Wiki, written in
python, that integrates an issue tracker, al-
lowing it to relate Wiki pages to issues, and
vice versa. Furthermore, the python code
of a project can be integrated as read-only
documents.

• MASE (Maurer, 2002) is an extension to
the JSP Wiki that offers plugins for agile
software development, in particular for itera-
tion planning and integration of automated
measurement results.

• SnipSnap (John, Jugel, & Schmidt, 2005) is
implemented in Java and allows read-only
integration of code documentation. Further-
more, it offers support for the integration of
Wiki entries into the integrated development
environment eclipse.

• Subwiki (SubWiki, 2005) is a Wiki imple-
mentation that uses the versioning system
subversion as a data repository. Since sub-
version allows attaching metadata to files,
the resulting Wiki is supposed to have the
same features. However, this project has not
released a stable version yet.

• EclipseWiki (EclipseWiki, 2005) is a plugin
for the eclipse software development plat-

form. It uses the workspace of a project as
(local) data storage. By using a versioning
system, the Wiki files can be shared and
edited by a project team.

• WikiDoc (Oezbek, 2005) is a conceptual
work that supports adding java code docu-
mentation via a Wiki interface. This allows
nonprogrammers to participate in the cre-
ation of code documentation.

All those examples show that Wikis are in-
creasingly being used as a platform for software
development. However, “regular” Wikis (see
(WikiEngines, 2005) for an overview of most of
the Wikis currently available and WikiMatrix,
(2006) for a configurable overview), as well as
software engineering-oriented Wikis, build upon
the fact that the relations between documents and
further metadata are maintained by the users
of those Wikis. This lack of explicit semantic
information is addressed by an extension to the
regular Wiki functionality that is developed in
the RISE project. These so-called semantic Wikis
are elaborated in the next section.

Semantic Wikis

In this section, we present further examples of
semantic Wikis. Most of these examples are
taken from the overviews presented in Dahl and
Eisenbach (2005) and Semantic Wikis (2005).
Those examples show that a) even “regular” Wikis
offer some support for structuring their content
and b) that semantic, RDF-based Wikis can be
implemented. Most of those examples are gen-
eral purpose Wikis that do not focus on software
engineering in particular. A general overview of
semantic Wikis can be found in Völkel, Schaffert,
Kiesel, Oren, and Decker (2005):

• The most common way to categorize within
Wikis is the usage of the backlink function
of a Wiki (Aumüller, 2005). Basically, a page
is created that represents a certain category.

866

Riki

Pages belonging to this category have a ref-
erence to this page. The backlink function
lists all of these references. However, this
approach has one major drawback: pages that
are used to navigate to the category entry
(and thus do not semantically belong to this
category) are also included in the backlink
list.

• Some Wikis offer additional support for
structuring content. For example, TikiWiki,
(TikiWiki, 2005) allows assigning pages to
structures (table of contents) and categories
(taxonomy style classification). XWiki
(2005) offers forms (templates) that contain
metadata that are instantiated in documents
derived from this form.

• From the area of SE-specific Wikis, TRAC
offers a labeling feature for pages (smart tags)
that could be used for a facetted presenta-
tion of the pages annotated with those tags.
SnipSnap allows determining the template
of a document and offers RDF export.

• Platypus (Platypus, 2005) and SHAWN
(Aumüller, 2005) allow adding RDF annota-
tions for each page. Pages within Platypus
represent a concept. While viewing a page,
the RDF triples are displayed that have the
current page as object (in particular, pages
that reference this page) and as subject (in
particular, metadata about a page). SHAWN
also offers navigation support based on the
ontology information added to a page. Wiki.
Ont is still in a preliminary version.

• Rhizome (Rhizome, 2005; Souzis, 2001) and
RDF-Wiki (Palmer, 2005) are Wikis that
provide their content in RDF, thus allowing
to reason about their context.

Only the Wikis mentioned in the last two bul-
lets can be seen as “real” semantic Wikis, since
they allow relating their content to an RDF-based
ontology. However, all of them—at least in their
current state—do not integrate their ontology
into the Wiki, for example, they neither provide

metadata templates to be filled in based on an
ontology nor do they check whether metadata
entered is consistent with an ontology. There-
fore, when related to the Semantic Web layer
cake (Berners-Lee, 2005), all of these semantic
Wikis implement the RDF and RDFS layer. The
vocabulary layer of these applications is not do-
main specific and thus, does not allow inferring
about domain specific relations.

Ontology Development

The development of ontologies to classify and
structure knowledge—often called knowledge
engineering—is a rather mature field that has its
origins in artificial intelligence. Several meth-
odologies, approaches, and standards have been
developed that focus on ontology development in
general, or resulted in an ontology for software
engineering knowledge. This work is implicitly
included in the RODent method presented later,
and developers of Riki-specific ontologies might
find these works helpful as a source of inspiration
for their own ontology development. Furthermore,
by adhering to the following standards, the tools
and framework based on (some of) these stan-
dards can be employed for reasoning-specific
tasks in RISE:

• Ontology development: CommonKADS
(Schreiber, Wielinga, Hoog, Akkermans, &
Velde, 1994) is a methodology for develop-
ing knowledge-based systems and contains
guidelines for developing ontologies.

• Ontology description standards: The lan-
guage set of RDF (Manola & Miller, 2004),
RDF-Schema (Brickley & Guha, 2004)
and OWL (Smith, Welty, & McGuinness,
2004) defines language constructs that can
be used to define ontology in a way suitable
for machine reasoning.

• General ontology standards: Ontology
standards make use of those ontology de-
scription standards. In RISE, we referred to

 867

Riki

the Super Upper Merged Ontology (Legrand,
Tyrväinen, & Saarikoski, 2003; SUMO On-
tology), describing general relations (such
as part-of) and the Dublin Core metadata
to have a general set of document metadata
(such as author, creation date) (2005).

• Software-engineering-specific ontolo-
gies: These ontologies define a general set
of concepts and their relations in the field
of software engineering. This allows the
entries within Riki to be annotated with
domain-specific meaning. Examples of such
ontologies are the software engineering body
of knowledge (Software Engineering Body
of Knowledge, Iron Man Version, 2004)
and the classification of the Association for
Computing Machinery (2005).

This background section illuminated the back-
ground of our work and gave a short overview of
the application field of software engineering and
software reuse, as well as the Wiki technology
that was used in the RISE project. These fields
represent the context in which several problems

were encountered that are described in the fol-
lowing section.

probleMs And chAllenges

After the description of the background of soft-
ware engineering and the application of tech-
niques from knowledge management and learning
management, we look at the specific problems
addressed within the RISE project. As depicted
in Figure 3, we identified several problems of
knowledge and learning management in software
engineering.

problems of knowledge transfer
and reuse in software engineering

As motivated in Software Engineering and Re-
usable Knowledge, the development of software
is a highly knowledge-intensive activity that
produces many reusable documents, ideas, and
experiences. The productivity as well as the qual-
ity of the products developed heavily depends on

Figure 3. Problem overview

pr
ob

le
m

s
cl

as
se

s
pr

ob
le

m
s

cl
as

se
s

pr
ob

le
m

s
&

o
bj

ec
tiv

es
pr

ob
le

m
s

&
o

bj
ec

tiv
es

c
ha

lle
ng

es
c

ha
lle

ng
es

navigation and
retrieval

quality of
content

knowledge
transfer

Improve
retrieval

Improve
utilization

loss of
knowledge

replication of
knowledge

Improve
quality

learning

Flux of
knowledge

reusability of
knowledge

Maintainability
of knowledge

knowledge
retrieval

knowledge
Filtering understanding

lack of
Awareness

Integrate
kM and lM

Improve
understandability

Increase
Awareness

Improve
Maintainability

868

Riki

the efficient and effective storage and retrieval of
knowledge in a socio-technical system. A knowl-
edge management system should at least reduce
or prevent the occurrence of the following basic
problems in KM:

• Loss of knowledge: Key personnel with
valuable or even critical knowledge about
products, processes, or customers leave the
organization and leave a knowledge gap.
In a software organization, this might be a
senior software developer who is the only
person with critical information about the
inner structure or function of a software
system.

• Replication of knowledge: Products,
intellectual property, or experiences are
developed over and over again in slightly
different versions. In a software organiza-
tion, an algorithm might be developed twice
because one project does not always know
what other projects are doing. This might
also apply to defects that are introduced
to different parts of the software system
and removed by different testers doing the
same work (i.e., solving the same problem)
twice.

• Flux of knowledge: The knowledge about
new technologies, projects, processes,
products, people, or standards is continu-
ously subject to change. In order not to fall
behind the innovations, competitors who
are using these gaps have to be discovered
and handled. For example, software or-
ganizations have to cope with many new
open source projects, competitive systems,
development standards, or frameworks that
are developed or changed every year.

In the following sections, we have grouped
specific problems into classes regarding quality
aspects, the integration of KM and LM, the learn-
ing processes, as well as retrieval and reasoning
about the content.

Problems Related to the Quality of
Content

A knowledge base (KB) serves as an asynchro-
nous communication medium or intermediary
between people such as managers, developers,
or even customers. The whole process is one of
mediated communication (i.e., people are leaving
messages to other people). Furthermore, there is
the danger that relevant content from the outside
is not considered, especially from outside the
knowledge base (i.e., on the Intranet), from the
Internet, and from the social system at large
(i.e., the people). Until today, there are several
problems related to the quality of the content in
a knowledge base that still represent a barrier in
knowledge management:

• Problem of reusability of knowledge:
The quality of the reported and recorded
knowledge and experience highly depends
on the individual skills of the contributor, for
example, the ability to structure the content,
to formulate the artifacts with accuracy, and
to describe it properly according to the needs
of the target audience. Without assistance,
this leads to quality discrepancies and gaps
in the knowledge base. To be included in
the knowledge base, the new content must
meet minimal quality requirements, such as
described in a correct, complete, consistent,
concise, and nonambiguous way, including
information on the context of the specific
content.

• Problem of maintainability of the knowl-
edge base: A regular evaluation of all content
and removal of outdated entries is required.
Storing several contradictory solutions for
a sole problem, originating from different
persons at different points in time, is a source
of confusion and mistrust. The capacity to
retrieve previous related experiences ex-
ists in most KB approaches, but it requires
time and effort to review them. The risk of

 869

Riki

applying outdated content is high if con-
tent does not have an attached expiry date,
and on many occasions, these repositories
become a sort of graveyards: some content
is added, but nothing is ever thrown away.
With the continually growing size of KBs,
it is difficult to keep an overview in order
to connect related packages and avoid in-
consistencies.

While the use of Wiki systems, as applied
in our project, facilitate and improve several of
the previously mentioned problems due to the
increased flexibility, agility, and simplicity, they
also bring along their own new problems, such as
the motivation to contribute or the sustainability
of the Wiki system. Furthermore, the flexible and
easy creation of links between Wiki pages (i.e.,
knowledge elements) leads to high cross-link-
ing and hence, to the deterioration and loss of
structure.

Problems Related to the Navigation
and Retrieval

A long running KM system that is accepted by
the users and continuously increases the amount
of knowledge stored within it typically amasses
a plethora of knowledge that is unstructured, not
connected, or outdated. The retrieval of a specific
knowledge component, either by navigation or
search mechanisms, typically leads to an infor-
mation flood. In order to enable and improve the
elicitation, organization, retrieval, and usage of
knowledge in software organizations, several
problems have to be addressed:

• Problem of knowledge retrieval: Software
development in general has to cope with the
overwhelming amount of new processes,
technologies, and tools that periodically
appears. As a consequence, the fast retrieval
of up-to-date information about new tech-
nologies, corporate software systems, or

available experts becomes more and more
important. Furthermore, there are many
knowledge components that become out-
dated within a few years (e.g., information
about Java frameworks).

• Problem of knowledge filtering: Searching
for crucial information in a large knowledge
base, especially if it is focused on a single
topic such as software engineering, leads
to a flood of results. The more similar the
components are in a knowledge base, the
more precise a search or navigational struc-
ture has to be in order to find the relevant
information.

Problems Related to Learning

KM systems focus mainly on organizational
learning, that is, where learning leads to collect-
ing knowledge for the organization in order to be
used by its employees or for the modifications of
the software organization’s processes, internal
standards, objectives, or strategies. However,
Rus and Lindvall stated that individual learning
is considered to be a fundamental part of KM
because employees must internalize (learn) shared
knowledge before they can use it to perform spe-
cific tasks (2002). KM systems make the assump-
tion that the problem of continuous competence
development can be partially solved by using
intelligent retrieval mechanisms and benefitting
from innovative presentations of retrieval results.
As a result, knowledge-based systems (KBSs)
focus mainly on knowledge acquisition, storage,
and retrieval, and less on the learning processes
themselves, the integration with the work process,
and the personal learning needs of the software
developers. More specific problems related to
experiential learning (i.e., learning from experi-
ence) are listed below:

• Problem of understanding and applying
of documented experience: Experience is
often documented by domain experts. A

870

Riki

problem that occurs when expert knowledge
is used for teaching novices is that there is a
quantitative difference between expert and
novice knowledge bases, and also a qualita-
tive difference, for example, the way in which
knowledge is organized (Ericsson, Krampe,
& Tesch-Romer, 1993). Novices lack SE
background knowledge and are not able to
connect the experience to their knowledge
base. Hence, they often misinterpret other
people’s documented experience. The or-
ganization of knowledge at the experienced
provider’s level and at the consumer’s level
makes the transfer of knowledge between
different levels of expertise extremely dif-
ficult. Expert knowledge is somehow “rou-
tine.” This makes it challenging for experts
to document experiences appropriately and
to make them reusable for others. A more
detailed summary of problems related to
learning from documented experience can
be found in Ras and Weibelzahl (2004).

• Problem of overview and lack of aware-
ness: Systemic thinking is the conceptual
cornerstone of the “Fifth Discipline” (Senge,
1990). It addresses the problem that we tend
to focus on the parts rather than seeing the
whole, and fail to see organizations as a
dynamic process. Unfortunately, learning
by documented experience is limited to a
very focused view of SE, and does not re-
late the experience to the whole SE context
and related domains. Another problem is
that systems do not point explicitly to other
available SE methods, techniques, and tools
that could be useful for the work at hand,
which leads to a lack of awareness.

objectives, challenges and
research Issues

Most of the previously mentioned problems were
tackled by several researchers in projects around
the world, but a solution to them is still far in

the future. We tried to improve the situation by
using the open Wiki technology and integrated
aspects of LM and KM to support reuse in soft-
ware engineering. This system, which we call
reuse-oriented Wiki (Riki), has to support the
comprehensive reuse of the artifacts as described
in Background, and has to help the users to col-
lect, record, retrieve, reuse, and learn from them.
Furthermore, the administrative staff needs to
be supported in the packaging, formalization,
aggregation, and generalization of artifacts in
this knowledge base.

The overall goal of the RISE project was to
integrate lightweight experience management
with agile software development. RISE pursued
the following specific objectives:

• Improvement of the retrieval of knowledge
and orientation in a body of knowledge
to optimize the amount of knowledge and
accelerate the time to access relevant knowl-
edge.

• Improvement of the quality of transferred
knowledge by assisting software engineers
in creating optimized artifacts (i.e., with
optimized content and structure) based
on didactical principles and by delivering
didactically augmented experiences. These
artifacts should easily be adopted and in-
ternalized by users of different expertise
levels to support them in their daily work
and performance.

• Improvement of utilization and usability
of the KM systems to allow the user the
goal-oriented search for suitable solutions to
his problem in minimal time, and to support
him in the adaptation of the solution to his
specific problems.

• Integration of knowledge management
and experience management with e-learn-
ing and work itself in order to improve the
reuse of documented experience and to bring
learning to the work place.

 871

Riki

• Improving the understandability of docu-
mented expert experience by explicitly offer-
ing additional SE learning components, and
by explicitly stimulating learning activities
through didactical principles.

• Increasing the awareness of available but
unknown SE topics in order to increase the
software quality based on the application of
new software development approaches that
have not been applied before.

• Improve the maintenance of knowledge
in KM systems, and especially Wikis, in
order to optimize the amount of potentially
relevant knowledge.

seMAntIc-bAsed reuse In se:
the rIse ApproAch

As we have argued, neither the technology nor
the methodology currently available is sufficient
to challenge the problems listed in Problems
and Challenges. After introducing the basic
concepts of Riki, we describe the methodology
and technology that was developed and used in
the RISE project.

basic concepts in rIse

In general, we use the model defined by Tautz:
“knowledge is the range of learned informa-
tion or understanding of a human or intelligent
information system, experience is considered
to be knowledge or practical wisdom gained
through human senses, from directly observing,
encountering, or undergoing things during the
participation in events or in a particular activity”
(Tautz, 2001).

Representation of Knowledge in Wiki
Systems

After describing Wiki systems and the types
of knowledge that might be stored in those

systems (see Wikis and Semantics in Software
Engineering), we shed some light on the storage
of knowledge artifacts in a Wiki system. We use
the following concepts:

• Knowledge elements: are the most basic
containers for knowledge and cannot be fur-
ther divided without destroying the ability
to understand them using other knowledge
elements.

• Knowledge components: are complete
and self-sufficient (i.e., independent of
other knowledge elements) descriptions of
knowledge (e.g., a SE artifact). A knowledge
component consists of one or more knowl-
edge elements.

• Learning elements: are the most basic
learning resources. They are the electronic
representation of media, such as images,
text, sound, or any other piece of data that
could serve as a learning resource when
aggregated with other learning elements to
form a learning component (Note: Learning
elements can be compared with assets of the
SCORM content aggregation model).

• Learning components: are units of in-
struction that contain at least one learning
element. A learning component represents
the lowest granularity of a learning resource
that can be reused by the system for learning
purposes. The difference between a learning
component and a learning element is that a
learning component is related to a learning
activity and a learning objective. In addition,
it can be referenced as a learning resource
by the system (e.g., by using hyperlinks).
Another difference is that a learning com-
ponent could possess contractually specified
interfaces and explicit context dependencies
when these are used within a so-called learn-
ing space (Note: Learning components are
similar to sharable content objects of the
SCORM content aggregation model).

872

Riki

• Learning space: consists of a hyperspace
that contains at least one or more learning
components that are presented, for example,
by linked Wiki pages. A learning space fol-
lows a specific global learning goal, and is
created based on context information of the
current situation (e.g., learner needs, work-
ing tasks the learner is currently performing,
or attributes of software artifacts). The goal
of a learning space is to provide a learning
environment for self-directed situated learn-
ing (see Learning Space Analysis for more
details).

As depicted in Figure 4, knowledge elements
are the typical content of a Wiki page, while a
short knowledge component might equally fit.
Furthermore, a knowledge element might have to
be split into multiple Wiki pages if the content is
too large or structured, as a training course.

Classes of Knowledge in a Riki System

The entrance of a Riki system consists of the six
general classes of knowledge: projects, products,
processes, people, customers, and (further) knowl-
edge. Around these classes, several knowledge
leaves are developed, based on the knowledge
types from Software Engineering Experience
and Knowledge (i.e., know-how, know-where,
etc.). Therefore, a specific project page (e.g., about
the RISE project) includes information about the
requirements and designs of the changes planned
for the products involved in the RISE project, but
the product page (e.g., about the Riki) will include
all requirements relevant for this specific product.
However, a single knowledge leaf is not always
purely classifiable as a single knowledge type
(e.g., know-how), but might include other types of
knowledge (e.g., source code developed in a project
might include know-where, (i.e., location) as well
as know-when, (i.e., version) knowledge.

Figure 4. Knowledge in Wiki systems

Logical V iew

Elements

Components

Phys ical V iew

-consists of1

-part of*

-consists of1

-part of*

1*
1

*

1

*

Wiki page
cluster

Wiki page
(single)

Wiki page
section

Wiki page
paragraph

1

*

1

*

Learning
Component

Knowledge
Component

Knowledge
Element

Learning
Element

 873

Riki

As depicted in Figure 5, the artifacts from Types
of Knowledge might be grouped around several
core artifacts, such as projects or products, and
represent connection points usable for further in-
ference. For example, in the configuration shown,
one could easily infer employees who have worked
in a project that was initiated by a specific customer
and therefore might have valuable knowledge for
further acquisition activities.

The more often these or similar artifacts are
generated, the more probable it is that they might
be reused in a new project.

rIMe: the rIse Methodology for
knowledge transfer and reuse

In this section, we describe three parts of RIME,
including the design and development methodol-

Figure 5. Knowledge component classes in an SE organization based upon O4PKC

projects

organ-
ization

products

processes

knowledge

people

customers

correspon-
dence

customer

experience

project

knowledge

people

department
s & groups

source
code

requiremen
ts & designs

product

defects

test
cases demos

docu-
mentation

experience

resources

processes

productsproducts

customer

correspon-
dence

contracts
experience

know-
ledge

people

department
& groups

source
code

requiremen
ts & designs

correspon -
dence &

eMail

resources
& Methods

experience

project

people

Methods

people

project

patterns

Models

courses

peoplecontact
persons

contact
Information

Figure 6. The RIME components (ontology, learning space, and Riki system development)

o
nt

ol
og

y
M

et
ho

do
lo

gy

o
nt

ol
og

y
M

et
ho

do
lo

gy
le

ar
ni

ng
 s

pa
ce

M
et

ho
do

lo
gy

le
ar

ni
ng

 s
pa

ce
M

et
ho

do
lo

gy
r

Ik
I s

ys
te

m

d
ev

el
op

m
en

t

r
Ik

I s
ys

te
m

d

ev
el

op
m

en
t

learning space
Analysis

Input

learning space
development

context
evaluation

system
design

system
Implementation

usage
preparation

learning space
design

construction

874

Riki

ogy for Riki systems, ontologies in a Riki, and
learning spaces in a Riki. As depicted in Figure
6, all three are based on a detailed context evalua-
tion in software organizations whose results were
used for deriving the requirements for a Riki in
the context to be addressed.

The RISE methodology represents a concept
for the structuring, implementation, and operation
of the Riki system.

Riki System Development

To develop a KM system such as Riki, we first
analyzed and evaluated the context in two SMEs,
which both develop search technologies systems.
From the information we gathered in these context
evaluations, we designed and developed the Riki
system, considering the people, processes, and
available technologies. Finally we developed,
tailored, and implemented these systems in the
organizations.

Context Evaluation: Analyzing the Existing
Socio-Technical Infrastructure

The goal of our context evaluation step was to
elicit the existing socio-technical infrastructure
of the companies. Therefore, we developed a
catalog of questions to elicit information about
concrete topics that we wanted to know about
(e.g., what technical systems are in use). In order
to answer the following questions, and therefore
elicit knowledge about the context the RISE
system will be embedded in, we conducted an
interview using a refined questionnaire based on
the know questions from Software Engineering
Expereince and Knowledge. The basic topics of
the questions were:

• Where and what are technical systems with
potentially valuable knowledge?

• Who are the experts for specific topics, such
as products or technologies?

• How is knowledge transferred from tools
to persons? What technical systems for
knowledge transfer are available?

• How is knowledge transferred from per-
son to person (interpersonal)? What social
knowledge transfer techniques are used?

• How is knowledge collected from persons
to tools?

• How is knowledge collected or transformed
from tools to tools?

• Who needs and who produces new knowl-
edge?

• What processes and tools are used to develop
the software? Where can knowledge be col-
lected and injected?

• When is knowledge collected, transferred,
reused, needed, or produced?

• Why is knowledge currently being collected,
transferred, or reused?

• What knowledge is (seemed to be) valuable
for collection, transfer, or reuse? Which ar-
tifacts (as in Types of Knowledge) are used
and should be reused?

Beside the use of questionnaires to query the
employees of the companies, and elicit knowledge
about the context a social-technical system has to
be embedded in, we also conducted open group
discussions and analyzed the existing artifacts and
storage system ourselves. Overall, we used the
following techniques to gather the knowledge:

• Goal-oriented, questionnaire-based inter-
views were used to put the previously listed
questions to three to ten persons in two to
four sessions. The collected answers were
summarized and validated by the partici-
pants via e-mail.

• Group discussions were done at every com-
pany to collect any additional information,
opinions, ideas, and so forth, that were not
covered by the interviews. The discussion
was started with a specific topic (e.g., why

 875

Riki

had the old Wiki not worked for you as a KM
system?) ,and every person could state what
they expected from an improved knowledge
management infrastructure.

• Artifact analyses were conducted to identify
knowledge sources, the type of knowledge
within, as well as how people structure their
documents and knowledge in existing stor-
age systems (e.g., the hierarchy of directories
in personal file systems or in pre-existing
Wiki systems).

Using the information extracted with these
techniques, we derived and created tailored ver-
sions for each company of:

• Ontology with metadata for all pages in
the KM system (i.e., the Riki) and relations
between them. This metadata is used for
inference, search and presentation purposes.
The ontology is based upon information
from the existing artifacts of the company,
the knowledge lifecycle, and standards of
knowledge description such as LOM.

• Templates for every artifact type with a
special focus on requirement documents.
These help to record new knowledge of that
type and are used in inference, for example,
to find similar documents of the same type.
The templates represent the inner structure
of artifacts and esp. Knowledge Elements on
a Wiki page. Information to define the tem-
plates came from the identified knowledge
artifacts, the knowledge lifecycle (i.e., how
would a user read the document in a specific
activity of the process?), and industrial best
practices such as the Volere requirement
template (Robertson & Robertson, 2005a)
or the ReadySET requirements-engineering
template.

• Navigational structures within the KM
system (Riki) were created to support the
goal-oriented and artifact-centric access to

the knowledge. The structures are based
upon information from the existing struc-
tures used by the employees of the company
and the processes, products, and groups of
the company.

• Riki software system with plugins to sup-
port the users with additional information
from inference via the currently viewed
knowledge as well as connectors to the
technical infrastructure. The system design
is based upon information from available
software systems in the organization, es-
tablished knowledge transfer techniques,
and usability aspects.

System Design: Tailoring a Riki for a Learning
Software Organization

After we elicited the information about the context
our socio-technical system should be embedded
in, we started the design of the system. Beside
the information about the context, we needed
further information about the technical features
and the extensibility of the available systems. The
following information was found to be useful for
the design of the system:

• Survey of systems (e.g., open source), ex-
tensible without too much work, and flexible
enough to realize the planned systems.

• Selection of an appropriate system that
fulfills the optimal set of requirements by
the specific customer based on the use cases
and scenarios as defined by the customer’s
business or development processes.

• Design of plugins and portlets that give
specific views on related articles, similar
pages (of the same document type) as well
as the plugin interface. In general, every
know question from Software Engineering
Experience and Knowledge represents one
plugin that shows information related to
the currently viewed knowledge element,

876

Riki

for example, the persons who have further
knowledge (i.e., know-who) or methods for
post-processing (know-how).

• Design of templates and interface masks
for every specific knowledge type [e.g.,
templates and masks for use cases (require-
ments)].

Furthermore, based on the features already
existent in Wikis and extensions planned for the
Riki, as well as on the features of the search and
inference technology, we shaped the ontology
and vice versa.

System Implementation: Introducing a Riki
into a Software Organization

Based upon the information from the design,
the system and required plugins are built using
the chosen Wiki systems. During operation, the
experiences acquired from the daily work (e.g.,
projects) are seized and didactically augmented
to support users in current or future projects.

The operation and maintenance of the Riki
system, its underlying ontology, and the knowl-
edge stored within it is currently being done by
the software organizations themselves.

RODent: Riki Ontology Development

This section explains the RODent method for
the design and development of Riki ontologies.
In parallel with systems building, we need to
develop an ontology to be used by the Riki. In
general, an ontology is defined as “an explicit
and formal specification of a conceptualization”
(Gruber, 1995).

In RISE, we instantiate this definition: An
ontology is a set of templates, their metadata,and
the relations among those templates. The role of
the resulting ontology is to structure and relate
the information captured inside the Riki. There-
fore, the ontology can be seen as a link between
the implementation of a Riki and the content of
a Riki. The guiding idea is Wikitology, that is,
that the Wiki is the physical representation of

Figure 7. Overview of RODent

Identify
Templates

Relate Templates

Add Meta-Data
to Templates

Input

Literature
(i.p. Standards)

ConstructionInput

Determine
Relation

Requirements
and Default
Relations

Usage
Preparation

Identify Views and
Consistency

Checks

Technology
Deployment

Improvement Needed!

Control
Flow

Pro-
duct

Steplegend

Context Analysis

Sequence of Tasks

Improvement Needed!

Regular Sequence of Tasks Regular Sequence of Tasks

Chal-
lenges

Used
Docs and
Structures

Tem-
plates

 877

Riki

the ontology with pages as concepts and links as
relations (Decker, Ras, Rech, Klein, Reuschling,
Höcht, et al., 2005; Decker, Rech, Althoff, Klotz,
Leopold, & Voss, 2005).

Besides the ontology itself, the result of this
method is an initial set of document templates
and content to seed a Riki. In the following
sections, an overview of RODent is presented,
using requirements engineering as an example
application.

Outline of RODent

As depicted in Figure 7, RODent is divided into
two groups of subtasks: ontology construction,
where the concepts and their relations are identi-
fied, and usage preparation, where the usage of
the ontology is defined. A more detailed descrip-
tion of the following tasks is presented in the
subsequent sections:

• Input to RODent comes from two sources:
The first source is the result of the context
analysis, with the prioritized challenges
of the organization and the currently used
structures and documents defining the “asIs”
status of the organization. The second source
is an analysis of domain-specific literature
relevant for the domain where the ontology
should be built (in the example, from the area
of requirements engineering). This literature
will provide an initial set of templates.

• Construction as the first group of tasks
uses this input as follows: First, the actual
templates used in Riki are identified. Second,
those templates are related with each other
and “equipped” with metadata.

• Usage Preparation as the second group is
about setting up a Riki to use the ontology
defined in the subsequent phase. The task
“Determine Relation Requirements and
Default Relation” is a link between those
phases since it refines ontology relations,
but also covers aspects of ontology usage

in the Riki. “Identify views and consistency
checks” takes care of using the ontology for
navigational and editing support as well as to
define inconsistencies within the knowledge
captured in Riki. In “Technology Deploy-
ment,” it is defined where the ontology, the
views, and consistency checks are put in the
Riki.

The application of RODent—provided that no
increments or iterations occur—is depicted from
left to right in Figure 7.

The challenges, as well as the feedback when
developing and using the systems, guide the ex-
ecution of the method:

• In the first execution of the method, one has
to concentrate on solving the most relevant
challenges most of the people using the Riki
are interested in. In particular, one should
try to identify multipliers, that is, people in
the organization who have a special stake
in the Riki usage and support their daily
work. For example, if inconsistent and out-
dated documentation is a challenge, then
the resulting ontology should support the
documentation author.

• During development and usage of the sys-
tems, increments and iterations are likely
to occur. Since those terms are sometimes
used with interchangeable meaning, we
define their meaning within RODent and
their impact on ontology development: Incre-
ments are additions to the current ontology
without the need to change further parts.
Iterations also include a change within the
existing ontology.

Within the RISE project, we encountered
several increments (e.g., adding an architectural
description) and some iterations (e.g., rearranging
use cases), but no severe change of the ontology
occurred. This experience supports the demand-
oriented approach that is the basis of RODent.

878

Riki

However, this stability of the resulting ontology
might be a result of the comprehensive context
analysis and literature survey.

The following sections describe the task of
RODent in detail and provide an example of the
usage of this method for requirements engineer-
ing.

Identify Templates

The main objective of this task is to identify the
templates capturing knowledge inside a Riki, and
to create prototypes of the templates needed. As
outlined in the method’s overview, this task has
the following two inputs:

• The result of the context analysis, with its
overview of the currently used documents
and the challenges of the organization.

• The literature survey identifying standards
and other useful information to be used in
template development.

During identification and development of those
templates, we found the following guidelines to
be helpful:

• Split and link self-contained documents:
Resources found in the literature (e,g., stan-
dards) are normally part of a self-contained
document written in a linear way. Since Riki
is a hypertext-system, one needs split and
link coherent information chunks found in
those documents. Potential candidates are
the different sections within these docu-
ments. For example, in the Volere Require-
ment Specification Template (Robertson
& Robertson, 2005b), we identified the
different user descriptions based on this
approach.

• Refactor documents covering multiple as-
pects: The resulting templates should cover
one aspect of information. Given a readable
font, this guideline boils down to the follow-

ing operational rules: (1) When a template is
completed, it should not be shorter than one
and not longer than five screens. (2) Each
(main) section of the template should fit on
one screen. Adherence to this guideline is
the basis for the reuse of knowledge, since
it allows referring to specific information.

When all templates concerning the current
challenges are addressed in the first execution of
RODent, further templates demanding too much
additional effort should be left out. To find out
about those templates, one should ask the user
whether the information is relevant and whether
the template would be completed.

As a preparation to the following steps, “Relate
Templates” and “Add Metadata to Templates,” the
templates should be arranged into main categories
according to their purpose. In RISE, we found the
following categories helpful:

• Context templates like project and
homepage of employees (people) based on
O4PKC.

• Navigation templates like overviews about
certain types of documents for specific
reader groups.

• Core templates that define the structure of
SE artifacts (cf. 0) directly related to soft-
ware engineering activities (in the example,
requirements engineering documents).

Finally, in order to test the templates, one
should try to map some of the available information
in the organization to the developed templates.
This test might indicate hints that some of the
information required by the templates is not
available within the organization.

Add Metadata to Templates

After the templates and their contents are identi-
fied, they are annotated with metadata to support
filtering and finding of relevant documents. To test

 879

Riki

which set of metadata is suitable, one should test
it with a template. To identify relevant metadata,
the following sources should be considered:

• General standards: Domain-independent,
standardized metadata-sets like Dublin Core
and Learning Object Standards (e.g., LOM)
provide general-purpose metadata. This
allows other applications that rely on these
standards to reuse the content of a Riki.

• Template-specific metadata: Some tem-
plates derived from existing standards and
documents might already contain a set of
specific metadata to classify their content.
Furthermore, similar templates that are on
different sections of the outline of the docu-
ment are candidates for identifing metadata.
One example is the description of stakehold-
ers and users in the Volere Requirement
Template (Robertson & Robertson, 2005b),
which has a similar structure.

• Method-specific metadata: Some metadata
might not be directly related to a template,
but to the underlying method. Using this
metadata allows providing method-specific
support in the form of know-how documents.
An example from RISE is the TORE method
(Paech & Kohler, 2003), which classifies
requirements engineering documents (e.g.,
as description of the current state “As Is”
and the system to be developed “to Be”).

For adding metadata in general, remember
the following guidelines: Automatically deriv-
able metadata (like the author’s name) can be
added without further consideration. Manually
entered metadata should only be considered if it
is of direct benefit to the person who will enter it.
In our experience, it is no sufficient benefit that
the author is able to find this document based on
the metadata entered: This search will be per-
formed in later stages of the project. Therefore,
improving the searchability of the document does
not provide any direct benefit. An example of

metadata with direct use is the use case classifi-
cation, which can be used to generate overviews.
Whether this direct use is actually taking place
should be checked in the task “Identify view and
consistency checks.”

Relate Templates

The tasks before focused on identifying and cre-
ating single documents that have a high internal
coherence. In this task, these templates are linked
in order to define their semantical relations,
which are later used by a Riki to identify relevant
documents.

In the work, several general types of relations
are identified that form the foundation for defining
the relations within RISE:

• Inheritance/Subclass: This relation denotes
that one subconcept (template) inherits the
properties (in RODent, the metadata) of a
super-concept (a generalized template).

• Instantiation: This relation denotes that an
object (in Riki: a document) belongs to a
certain class (in Riki: a template) and thus,
inherits the properties of this class.

• Part-of/composition: This relation denotes
that an object derived from a concept is sup-
posed to be part of another object.

• Temporal: This relation denotes that there
is a relation within time between one con-
cept to another concept. For example, it is a
temporal relation that one object is created
before another one.

Within RODent, those general relations are
refined further according to their interrelations be-
tween templates and their documents. The actual
use of these relations for reasoning is described
in the task “identify views and relations”:

• Hierarchy among documents of the same
templates (part-of type): Instances of tem-
plates might have a hierarchical relation. For

880

Riki

example, one use case might have several
subuse cases. It might be necessary to distin-
guish between different types of hierarchies
for documents derived from one template:
However, in RISE, we found one hierarchy
to be sufficient.

• Used in (part-of type): This relation de-
scribes a “strong” relation between docu-
ments of different templates: If the content of
a document is needed to understand another
document. For example, the description of
an Actor is part of the description of a use
case. Without knowing the description of
the Actor, the use case is not sufficiently
understandable.

• Refined in (temporal): Refined in defines
a temporal relation between documents.
For example, a user story (a prose text of a
certain requirement) is refined in a use case
(a more structured representation).

• Of Interest (part-of type): This relation
is used for weak relations between docu-
ments of different templates, that is, where
information relevant to one document can
be found in another one.

• Context definition (inheritance type, rela-
tion between context documents and other
documents): This relation is used when ad-
ditional context of a document is defined in
another document. For example, the project
context (like size, programming language) of
a use case is defined in the project homepage.
Simplified, when such a relation is estab-
lished, the referencing document “inherits”
the metadata of the document (in this case,
the metadata about the project).

• IsA (inheritance type, between templates
and documents): The IsA relation is reserved
for denoting the relation between a template
and an instance of this template.

Determine Relation Requirements and Default
Relations

In the previous task, (relevant) potential relations
between documents have been identified. In this
task, those relations are annotated to define re-
quirements concerning the relation itself. These
relation requirements are used in the subsequent
task to derive views and consistency checks. In
addition to these additional relation requirements,
a default relation between documents derived
from a certain template is defined.

The additional requirements define the nature
of a relation between templates and thus, the nature
of the link between documents derived from those
templates that have this relation. In other words,
they define the nature of a link between the source
document (i.e., where the link is defined) and
the target document (where the links points to).
In RISE, the following additional requirements
concerning relations were identified:

• “Required,” “recommended,” “optional,”
and “not allowed” denotes the degree to
which a link is supposed to be established
between documents.

• “Unique” and “multiple” denotes the car-
dinality of the relation, that is, the source
document can have only one relation to a
target document, or it may have multiple
relations.

Based on this overview of relations between
these templates, the default relation —that is,
the one used most often—is determined. For
example, the default relation between use cases
and actors is Used In. As long as no other relation
is stated, a Riki assumes that the link between
those documents is the default relation. Therefore,
a Riki must state less explicit information about

 881

Riki

the type of the link. In addition, a user not aware
of the additional Riki features can use a Riki like
any other Wiki system.

Identify Views and Consistency Checks

In the previous steps, the templates, their metadata,
and relations were defined. In the task “Identify
views and consistency checks,” the actual use
of these results is determined. In particular, the
definition of views and consistency checks is
based on the general types of relations and the
additional requirements presented in the previous
two tasks. For metadata, relation type and addi-
tional potential requirement views and consistency
checks are presented in Table 1.

Technology Deployment

The task “technology deployment” covers how
the templates, metadata, and their relations are
implemented within Riki. The task itself is subdi-

vided into two sequentially performed subtasks: 1)
Deployment of templates, metadata, and ontology
upon distinct Wikis (if any) and 2) the deployment
of ontology concepts on native Wiki syntax, that
is, how parts of the metadata and relations are
expressed by using naming conventions.

The deployment on different Wikis is trivial
if only one Wiki is used. However, based on the
experience from RISE, it is sensible to use, at least
in larger organizations, one Wiki for each group
(in particular, projects) and one main Wiki for the
whole organization. This separation between dif-
ferent Wikis has several advantages independent
of whether or not Riki is used: First, it reduces
the complexity of access right administration by
dividing it into several sub-Wikis. Second, the pos-
sibility of name collision is lowered. An example
of such a naming collision would be if two projects
using the same Wiki have a meeting on the same
day. If both want to use “meeting<date>” as the
name for the document containing the meeting
minutes, a name collision occurs. Furthermore,

Table 1. Ontology elements

ontology element /
structure Views consistency check

Metadata Present metadata annotations n/a

Inheritance n/a Is there a cyclic relation among
subclasses?

Instantiation (IsA) Show all documents
belonging to a template

Does a template have documents?
Does each document belong to a
template?

Part-of Show documents that are the
target of a part-of relation

Are there cyclic relations among
documents derived from templates
that have a part-of relation (i.e., is the
“higher” document part-of of a “lower”
document”)?

Temporal relationship Show timeline of creation of
documents

Does the document derived from the
source template have an earlier editing
date than the target document?

Quality of relation
(i.e., required and not
allowed)

Show documents derived
from templates that are the
target of the required relation.

Are all required or not allowed relations
satisfied?

Cardinality of
relations

n/a Are cardinality constraints violated?

882

Riki

if there is no syntactical collision (i.e., the same
name), a semantic collision might happen: Mem-
bers of one project might link to the entry of the
other project because they cannot differentiate be-
tween the two documents (e.g., “meeting<date>”
and “<date>meeting”). Second, it is more likely
that the group responsible for a Wiki accepts it as
“their” Wiki. The separation into several Wikis
also has an advantage for Riki: Since each group
owns “their” Wiki, contextual information about
this group can be derived. An example is project
Wikis, where context information about the project
could be derived from the metadata defined on
the project homepage.

The deployment on native Wiki syntax is par-
tially based on the deployment on several Wikis.
By using the interwiki feature, the context of a
document can be derived even if referred from
a different Wiki. Another example for deploy-
ment of parts of the ontology into native Wiki
concepts is the instantiation (IsA) relation. Within
Riki, we had the following naming convention to
denote this relation without the need to explicitly
create a link: The instances of a template have
the name of the template as prefix. For instance,
documents of the type “Actor” are named “Ac-
tor_<NameOfActor>.”

When an ontology developed using RODent is
finished, it should contain the relevant information
to execute the software engineering activities it is
intended for. How it is actually used and gradually
enriched with experience and further information
on how to perform software engineering tasks is
covered by the learning spaces described in the
following section. These are an unintrusive ap-
proach for providing the procedural knowledge
needed to perform a certain task.

Riki Learning Space Development

In many publications about learning objects, ter-
minological issues are discussed, because there is
a lack of solid theoretical foundation in the field
of e-learning (Self, 1992), especially concerning

learning objects. It seems that the main reason
why learning objects have been invented is reuse
and the desire for more flexible, adaptive learning
systems. Current development efforts with learn-
ing objects are mainly concerned with metadata
and content packaging aspects. Current object
metadata says little about how to combine learning
objects with others, and this will limit the success
of the numerous repositories of learning objects
that are being developed. Nevertheless, a model
such as the SCORM Sequencing and Navigation
is a first step towards a more systematic way for
defining the sequencing of learning content and
navigating through it.

Sometimes, learning objects are put into re-
lation to object-oriented programming objects.
The term “object” is somehow misleading. Some
authors toss around theoretical connections to
object-oriented theory that stem from computer
science. One reason why many of us attempt to
connect learning objects to code objects is that
there is a grammatical affinity between “object”
as used in “learning object” and object-oriented
programming theory. It is not wrong to refer to
concepts from object-oriented theory in order to
increase our understanding of learning objects
and our belief in successful reuse. Friesen states
that there is not only a conceptual confusion in
the literature between software objects and learn-
ing objects, it also seems that object-orientated
programming objects and learning objects do not
fit together at all (Friesen, 2001).

Therefore, we will use the term learning
component instead of learning object. They
should be considered as components instead of
objects because their characteristics are similar to
software components. A software component is
a “unit of composition with contractually speci-
fied interfaces and explicit context dependencies
only. A software component can be deployed
independently and is subject to composition of
third parties” (Szyperski & Pfister, 1997). Compo-
nent-based software development is based on the
principles of “separation of concerns” in order to

 883

Riki

Figure 8. Development Dimension of Learning Space Engineering

system

Composition

Genericity

Abstraction

Instructional
designer

Component
Embodiment

learning
component
Framework

conceptual
Models (core)

Resolving
Variations

learning and
working
context

conceptual
Model *

Metamodel

Learning Space
Development

decision
Model

learning component

uMl:: class

«interface» 1* 1

*

-+ parent

0..1

-contain0..**

-creates

*

realization

learning component

uMl:: class

«interface» 1* 1

*

-+ parent

0..1

-contain0..**

-creates

*

realization

23 - creates

+

Instructional design

uMl:: class

learning
activity

0..**

*

*

1

learning
space

presentation in
learning and

working
environment

Instructional design

uMl:: class

learning
activity

0..**

*

*

Instructional design

uMl:: class

learning
activity

0..**

*

*

Instructional design

uMl:: class

learning
activity

0..**

*

*

Figure 9. Details of an embodied learning space

wiki page 3

<link lo2>

lc 3.1

lc 3.2

lc 3.4

lc 3.4 le 14 le 15

le 38
learning

space

learning
component

learning
element

lo1

lo3

lo5

lo2

lo6

lo4

lc 3.3

lo3

lA

lA

lA

lA

3.1

3.2

3.3

3.4

learning
Activity treelearning

objectives

Component
Embodiment

learning
goal

navigation
links

<link lo5>

decrease the complexity of system design and its
latter embodiment with components. Therefore,
a set of formal description models for compo-
nents, their interfaces, and context dependencies
are defined in a metamodel in order to develop
components from an abstract, generic, and coarse-

grained view of a conceptual component model
into concrete, specific, and fine-grained learning
material. This material is composed of learning
components that can be integrated into a learning
space (see Figure 9).

884

Riki

In order to develop learning spaces (see Rep-
resentation of Knowledge in Wiki Systems for
the definition of concepts used in these sections),
the following three phases can be identified (see
numbering in Figure 8):

• During the learning space analysis phase,
the results of the context evaluation are ana-
lyzed. The main goals are to find out what
types of content are available and useful for
developing appropriate learning spaces, how
learning needs can be identified based on
analyzing the produced software artifacts,
and in which way learning spaces can be
connected to the working environment.

• During the learning space design phase,
the analysis results are used to describe the
learning space from a conceptual point of
view. This means that appropriate learning
methods, learning goals, and a content clas-
sification have to be chosen. Based on this
information, the metamodels of the learning
components and the instructional design are
adapted to the current learning context.

• During the learning space development
phase, the physical learning space is created
to be explored by the learner by transform-
ing, in a first step, the metamodels into a
framework with “empty” placeholders for
learning components and learning elements
(see Representation of Knowledge in Wiki
Systems for the definition of these concepts).
The automatic embodiment replaces the
placeholders within the framework with
concrete learning components and elements,
that is, Wiki pages with appropriate links
and navigation structures are created during
run-time.

The subsequent sections explain the three
phases, which have to be performed for setting
up a learning space, in more detail. Each phase
is described with a few main questions that cover

the goal of that phase and end with a concrete
example.

Learning Space Analysis

This phase can be motivated around the following
four questions:

• What is the most relevant domain for im-
proving task performance and competence
development, and which target group do we
address?

• What type of knowledge that is suitable
for learning is available or created by the
software engineers during work?

• Where are the triggers for learning space
creation and how can a learning space be
related to the working context?

• Which software artifacts could be used to
identify (e.g., automatically) competence
and skill gaps to be solved by a learning
space/learning arrangement?

In general, learning spaces can have two
different purposes. First, a learning space can
improve short-term task performance, that is, by
providing solutions in order to solve problems
more efficiently, or by offering different methods
or tools that enhance a specific well-known task.
The domain under consideration is very narrow.
Second, long-term competence development
involves an analysis of a much broader domain
software engineers are working in. Here, we would
like to find our competence gaps that cover per-
haps more than one software development phase,
such as general software engineering principles
or completely new technologies or development
approaches.

Usually, a software project covers the whole
development cycle from requirements elicitation to
programming, testing, and delivery of the software
to the customer. The aim of the Riki methodol-
ogy is not only to address the whole development

 885

Riki

process, but to focus on very specific tasks first
and to extend the scope of the Riki later. This has
the advantage that early successes on important
and difficult tasks, in terms of better task per-
formance and competence development, can be
used to extend the system’s scope. This step is
called domain scoping, and will also influence the
development of the domain ontology. We found
out that, especially during the requirements and
programming phase, suitable tasks can be found
to get the system started. The information that
is necessary to choose such tasks was gathered
through personal interviews, by analyzing content
available in knowledge repositories, and by look-
ing at artifacts produced, such as code or software
documentation. In addition, a rough process model
and a role model are derived in order to relate the
learning space to the well-known processes and
roles. It is essential to ask software engineers
what kind of problems bother them the most, and
which tools, methods, and techniques they apply
to create software artifacts.

During the context evaluation, available
content was already analyzed and software engi-

neering challenges were identified. In this phase,
we check especially if this knowledge could be
used for learning components and learning ele-
ments. The content is classified according to the
knowledge dimensions and types (see Table 2 for
details). Furthermore, metadata and granularity
(i.e., size) are investigated in order to make first
decisions about metadata extensions, respectively
adaptations, to the metamodel of learning content.
The idea is not to change existing policies and
rules for content authoring. Learning spaces, and
hence the learning components, should be adapted
to the existing situation and content within the
organization.

Another important issue is to find out which
situations trigger a learning need. The genera-
tion of a leaning space is demand-driven, that is,
learning spaces are created based on a trigger. We
distinguish between two types of triggers. The
human-based trigger is created by the software
engineer himself, for example, by searching for
specific information, documented experience, or
solutions. These search results could be embedded
in a learning space. The system-based trigger is

Table 2. Overview of educational goals and associated learning element types

Knowledge
Type

Knowledge
Dimension The Cognitive Process Dimension (Learning Objectives) Learning Element

Types

1.
Remember

2.
Understand

3.
Apply

4.
Analyze

5.
Evaluate

6.
Create

• Definition
• Description
• Example
• Counterexp.
• Analogy
• History
• Overview
• Summary
• Scenario
• Procedure
• Explanation
• Theorem
• Rule
• Law
• Principle
• Model
• Practice item
• Checklist
• Strategy
• Reference
• Learning Space

Map
• …

Know-What
Know-who

A.
Factual
Knowledge

LA 1

Know-That B.
Conceptual
Knowledge

LA2 LA4

Know-how C.
Procedural
Knowledge

LA3
Overall

Learning
Goal

LA5

Know-if
Know-when
Know-where
Know-why

D.
Meta-Cognitive
Knowledge

LA6

886

Riki

related to an internal system event, for example,
the technical software development environment
analyzes a code artifact and finds a defect, which
leads to a learning space where the engineer could
learn how to remove this defect. Human triggers
can be found by interviewing the engineers. Sys-
tem triggers have to be defined by Riki experts.
Those triggers strongly depend on the capability of
analyzing produced software artifacts such as code
or other formally described documents. Based on
those findings, appropriate learning spaces could
be created in order to improve the quality of those
artifacts or their development process.

The last aspect in this phase is to relate learn-
ing spaces directly to the working context. Since
the learning space should be delivered as close
to the work place as possible, connection points
have to be found. In the domain where Riki can
be implemented, those points are usually located
within the technical development environment
(e.g., Eclipse IDE) or within the knowledge man-
agement environment.

Learning Space Design

After finding out what domains are the most
promising for learning (i.e., both long-term as
well as short-term learning), and what kind
of artifacts could be used to identify skill and
competence gaps, this phase defines learning
goals and appropriate methods to be applied for
the learning space development in the last phase.
This phase can be motivated around the following
four questions:

• What kind of learning goals could be defined
and how are they related to the knowledge
dimensions/types and learning content?

• What are appropriate learning methods for
the identified learning needs, triggers, and
competence levels?

• How is the domain ontology used or adapted
to meet the domain context and requirements
for creating learning spaces?

• How is the instructional designer supported
in adapting the core metamodels to the re-
quirements for creating learning spaces?

Our learning spaces follow the constructiv-
ist learning theory and are related to the current
working situation as closely as possible. Before
we provide answers to these questions, we would
like to say some words about learning theories
and learning approaches that are suitable for the
software engineering context.

First, following the constructivist learning
theory, learning can be seen as a self-directed
process where the focus lies on opening up infor-
mation and on constructing individual knowledge,
for example, (Bruner, 1973). Constructive learn-
ing theories criticize former learning methods
for ignoring almost completely the transfer of
lessons learned to new situations in practice, that
is, knowledge remained in a latent condition and
was not applicable.

Second, situated learning approaches devel-
oped mainly at the end of the 1980s emphasize that
a human’s tasks always depend on the situation
they are performed in, that is, they are influenced
by the characteristics and relationships of the con-
text (Brown, Collins, & Duguid, 1989). Because
of the relation between cognition and context,
knowledge and the cognitive activities meant
to create, adapt, and restructure the knowledge
cannot be seen as isolated psychological prod-
ucts: they all depend on the situation in which
they take place. Learning involves interpreting
individual situations in the world based on one’s
own subjective experience structures. Learn-
ers have an active role and derive most of the
knowledge from real situations by themselves,
and this knowledge is afterwards integrated into
their own knowledge structures. Learning and
applying the lessons taught should happen in a
situated context, that is, during the development
of software artifacts.

Third, research in cognitive psychology
has shown that students learn better when in-

 887

Riki

volved in solving problems. Collins’ Cognitive
Apprenticeship (Collins, Brown, & Newman,
1989), Schank’s Goal Based Scenarios (Schank,
Bermann, & Macperson, 1999), and the 4 Com-
ponent Instructional Design (4C/ID) Model of
Merriënboer (Merriënboer, 1997) are just three
of the instructional models that address prob-
lem-based learning. Merrill proposed the First
Principles of Instruction: Learning is facilitated
when previous experience is activated, when the
lessons learned are demonstrated to the learners
instead of just being presented to them, when the
learners are required to apply their knowledge or
skill to solve a problem, and when the learners
are motivated to integrate the new knowledge or
skill into their daily work (Merrill, 2000).

In fact, instructional design could be handled
in two obvious places: embedded within a learn-
ing component or as a separate object (e.g., by
using specifications such as SCORM Sequencing
and Navigation or IMS Learning Design). Riki
handles the pedagogical rules of instructional
design outside of the learning components in a
metamodel for instructional design. By applying
those didactical rules to this metadata, adequate
learning spaces can be created that fit the current
situation of the user.

Based on the identified triggers, appropriate
learning methods are chosen. In the domain of
software engineering, problem-based learning
methods, as listed previously, and experiential
learning (i.e., compared to experience-based
learning, experiential learning integrates elements
of reflection, support, and transfer) methods are a
good starting set for creating learning spaces. The
utilization of a knowledge management system is
usually problem-driven, that is, a problem arising
during the completion of a software engineering
task motivates the software developer to search
for suitable information or even complete solu-
tions in the repository. When reusing an experi-
ence, a developer is usually engaged in active
problem solving while reading, understanding,
abstracting, or instantiating the experience, and

trying to apply the gathered knowledge to the real
problem situation. Ideally, software engineers
could learn effectively from experiences when
all four phases of Kolb’s Experiential Learning
Circle (Kolb, 1984) are passed: making a con-
crete experience, observing and reflecting about
the occurrence, forming abstract concepts, and
testing these concepts in new situations. When a
software engineer documents an experience for
later reuse (i.e., this is usually done by creating
abstractions), he or she profits from being involved
in the situation that leads to the experience, and
his or her own observation and reflection about
the happening. When a software engineer other
than the experience’s provider wants to reuse
this documented experience, he or she will lack
specific knowledge about the event that led to the
experience, and the knowledge that results from
observation and reflection. Hence, the learning
space should focus on the delivery of appropriate
content, in addition to the experience, in order to
support knowledge construction as described in
Kolb’s learning cycle.

In addition to the triggers, the role and the
competence level of the software developer
plays a crucial role in how learning methods are
implemented in a learning space. We follow a
self-directed learning approach with a specific
amount of guidance based on the capabilities of
the learners, that is, learners proceed through
the learning space at their own pace, and decide
by themselves which learning components they
want to access in which order. Nevertheless, when
learning spaces are created, a certain amount
of guidance and suitable content is provided to
learners, depending on their competence level.
Riki distinguishes between three competence
levels: novice (knowledge dimension: declara-
tive knowledge), practitioner (declarative and
procedural knowledge), and expert (all kinds of
knowledge).

Content for learning has been identified in the
first phase, and domain-related basic software-
engineering content that is not available has to

888

Riki

be added to the repository. This content is now
classified according to learning element types. A
basic set, as listed in Table 2, is used to categorize
the learning content. The set is a mixture of dif-
ferent instructional designs as well as software
engineering specific types. This set could be ex-
tended if necessary. Learning elements could not
be related directly to the cognitive processes cat-
egories, respectively learning objectives, because
many learning elements could be used in different
cognitive processes such as “Example.”

We refer to Bloom’s taxonomy of educa-
tional goals (Bloom, Engelhart, Furst, Hill, &
Krathwohl, 1956), which is widely accepted and
applied in various topic areas including software
engineering (Dupuis, Bourque, & Abran, 2003). In
addition, we refer especially to the revision of the
original taxonomy by Anderson and Krathwohl
(2001), which is briefly explained next. The new
taxonomy can be explained by two dimensions:
the knowledge and the cognitive processes dimen-
sion. Our work is based on a similar knowledge
dimension as the one in this taxonomy. Regard-
ing the cognitive process dimension, Anderson
and Krathwohl distinguish between six different
categories:

• Remembering is to promote the retention
of the presented material, that is, the learner
is able to retrieve relevant knowledge from
long-term memory. The associated cognitive
processes are recognizing and recalling.

• Understanding is the first level to promote
transfer, that is, the learner is able to con-
struct meaning from instructional messages.
He/she builds a connection between the
“new” knowledge to be gained and prior
knowledge. Conceptual knowledge provides
the basis for understanding. The associated
cognitive processes are interpreting, exem-
plifying, classifying, summarizing, inferring,
comparing, and explaining.

• Applying also promotes transfer and means
carrying out or using a procedure in a given

situation to perform exercises or solve prob-
lems. An exercise can be done by using a
well-known procedure that the learner has
developed a fairly routinized approach to.
A problem is a task for which the learner
must locate a procedure to solve the problem.
Applying is closely related to procedural
knowledge. The associated cognitive pro-
cesses are executing and implementing.

• Analyzing also promotes transfer, and
means breaking material into its constitu-
ent parts and determining how the parts are
related to one another, as well as to an overall
structure or purpose. Analyzing could be
considered as an extension of Understanding
and a prelude to Evaluating and Creating.
The associated cognitive processes are dif-
ferentiating, organizing, and attributing.

• Evaluating also promotes transfer and
means making judgments based on crite-
ria and/or standards. The criteria used are
mostly quality, effectiveness, efficiency,
and consistency. The associated cognitive
processes are checking and critiquing.

• Creating also promotes transfer and is
putting elements together to form a coher-
ent whole or to make a product. Learners
are involved in making a new product by
mentally reorganizing some elements or
parts into a pattern or structure not clearly
presented before. The associated cognitive
processes are generating, planning, and
producing.

Riki addresses all the categories of these
dimensions, with the focus being on the first
three categories, because these are important
for reaching the upper levels and can be taught
directly, while the fourth to sixth levels require
a longer term and deeper understanding of a
subject matter.

Common instructional design theories often
speak of the following elements in the design of
instruction: generalities, examples, explanations,

 889

Riki

practice items, test items, overviews, advance
organizers, and analogies, among others (Yacci,
1999). Table 2 shows the educational goals and
the related learning component types that were
selected as a first set for a Riki in the domain of
software engineering.

Although a lot of effort has been put into the
definition of standards, and although the LOM
standard seems to be widely accepted by now,
“key issues related to global content classification
such as a common schema, ontology, granularity,
taxonomy and semantics of learning objects which
are critical to the design and implementation of
learning objects remain unsolved” (Mohan &
Daniel, 2004). Hence, one of the key issues of
this phase is to adapt the domain ontology in
order to describe the semantics of learning com-
ponents/elements and their relations, and to find
a common vocabulary for describing learning
components/elements.

The resulting ontology created by RODent cov-
ers the domain that was identified in the analysis
phase. Learning spaces tie into this ontology. After
defining the types of learning components, each
learning component/element has to be related to
the concepts of this ontology. This means that
the ontology concepts are used for describing the
learning components/elements with metadata.
Riki will use LOM as metadata description. The
suggested LOM vocabularies are adapted to the
types of Table 2 (right column) in order to specify
the value range of the LOM attributes.

The most complex task in this phase is the
adaptation of both metamodels to the working and
learning context where the Riki should be imple-
mented. There exists one learning component core
metamodel for defining the learning component
and its composition of learning elements on a
conceptual level, and one core metamodel for
instructional design applied to this domain. The
adapted metamodels are used to produce a learning
space framework (i.e., a concrete implementation
framework to create learning spaces). The types
and relations between learning components (i.e.,

according to the relations defined by RODent) are
explicitly modeled in the metamodels. The concep-
tual model covers aspects, such as the specification
of metadata (i.e., by using LOM), containment
rules that specify the parent-child relationships
between learning components/elements within a
containment tree (e.g., for modeling the location
of learning components), specialization rules
that define the types of learning components and
their specialization (e.g., definitions-, examples-,
table of content-, overview-, and summary-com-
ponents). Furthermore, this model could contain
elements that specify the kind of interaction
between the system and the user, and adaptation
rules for adapting the learning components to
learner types or context aspects. These rules are
very similar to the contracts used as specifica-
tions for interfaces. Beside the conceptual core
model for instructional design that is based on
learning objectives with related learning activi-
ties (see Table 2 right section), a decision model
exists that enables the instructional designer to
adapt the model. The decision model contains
so-called variation points, their resolution space,
and their effects on the conceptual model. The
variation points mark variable parts of the model
that are resolved by questions. The instructional
designer uses these questions in order to change
the conceptual model in a systematic way. The
questions refer to the categorization of learning
components (i.e., the instructional designer adapts
the categories or the specialization structure),
instructional design strategies (i.e., the instruc-
tional designer adapts the containment rules, for
example, to an experiential learning strategy),
or the questions consider adaptation aspects (i.e.,
the instructional designer changes the variable
parts of the logical learning component such as
their composition of learning elements, see Table
2, middle section). The answers to the questions
include solution packages, so that the instructional
designer gets support on how to adapt the model.
One possibility for defining such solution packages
is to use design patterns. They are very useful

890

Riki

for describing instructional design strategies in
a comprehensive manner. A design pattern can
be understood as a transformation process from
one conceptual model state to a new state. Each
transformation step relates to specific parts of the
model and tells the instructional designer how to
change those parts.

Based on these models, frameworks can be
derived that can be used for creating learning
spaces. The next section describes how a peda-
gogical agent creates learning spaces.

Learning Space Development

After the selecting of learning goals and appro-
priate methods as well as the generation of the
metamodels, this section explains how a learning
space could be created based on a framework
from the metamodels.

This last phase can be motivated around the
following four questions:

• How can a framework be built from the
adapted metamodels in order to develop
learning spaces?

• How can this framework be embodied with
learning components and elements?

• How can the learning space be presented
by means of Wiki pages?

• How can sequencing of learning activities
and navigation through a learning space be
realized?

Before we answer those questions, a small
excursus about pedagogical agents is given. A
learning space is created automatically by a so-
called pedagogical information agent. Information
agents are a special kind of intelligent software
agents (Wooldridge & Jennings, 1995). Software
agent technology itself originates from distributed
artificial intelligence. Software agents have access
to multiple, heterogeneous, and geographically
distributed information sources. Klusch provides
an overview of information agents and describes

their main tasks as performing proactive searches,
as well as maintaining and communicating rel-
evant information on behalf of their users or other
agents. This includes skills such as retrieving, ana-
lyzing, manipulating, and fusing heterogeneous
information, as well as visualizing and guiding
the user through the available individual space
(Klusch, 2001).

The pedagogical agent is a special type of
information agent: it puts its emphasis especially
on the mediation of information by taking into
account learner profiles’ learning preferences,
such as preferred learning styles, presentation
modes, and so forth, and creates their learning
space based on the metamodel. The difference, as
compared to instructional tutoring systems (ITS),
lies in the fact that agents react proactively and
take into account the current environment the
learner is working in, instead of simply analyzing
the current status of the learner’s knowledge as
ITS do. In our approach, a task agent observes
specific software engineering tasks that are suit-
able for monitoring. For example, the activity
of programming in an integrated development
environment, such as the Eclipse IDE, can be
monitored. Once a trigger condition, as speci-
fied in the design phase, has been observed, the
task agent sends a notification message to the
pedagogical information agent that has registered
interest in the occurrence of particular triggers
during the monitored task.

For each instructional design metamodel, a
framework is derived that is consistent with the
metamodel for learning components, which was
developed in the previous phase. An instructional
design refines a learning goal into several objec-
tives (see values in the cells of Table 2). Each
learning objective refers to a cognitive process
(e.g., remember the task of refactoring). As il-
lustrated in Figure 9, arrows between the learning
objectives show how the learning objectives should
be sequenced in a learning space. The difference
between a learning goal and a learning objective
is that usually, learning goals are broad, often im-

 891

Riki

precise statements of what learners will be able to
do when they have completed the learning space.
Learning objectives are more specific, have a finer
granularity, and are measurable by performing
assessments (i.e., through tests, questionnaires).
The learning objective network is transformed
into the learning component framework. The
next step is the embodiment of this framework
by learning components and elements.

Before the embodiment can take place, each
learning object is refined in a learning activity
tree (i.e., similar to the SCORM activity tree
that could be derived from the SCORM content
packages). The tree serves as a help structure for
navigation. Each activity tree consists of learning
activities that enable the learner to reach the related
learning objective (e.g., reading, thinking about a
question posed, removing a real code defect). In
contrast to the learning objective network, this
structure can only be created during run-time,
that is, after a notification message has been sent
to the pedagogical agent. This structure depends
on the following factors: the learning objective,
the addressed domain and topic, the available
content, and the context. A default structure for
each learning objective/topic category pair is
defined in the instructional design metamodel.
The two latter factors influence the adaptation
of these structures during run-time, for example,
learning activities have to be abandoned if suit-
able content is not available, or if the context
allows transferring learning activities directly
into the working environment instead of keeping
it within the learning space environment. The
embodiment creates learning components from
learning elements by using the domain ontology.
Afterwards, each learning activity of the activ-
ity tree is extended with a reference to learning
components created.

The learning components are presented to the
learner by means of Wiki pages. Wiki pages are
used within Riki because of their advantages of
relating pages; other technologies could also be
used instead of Wiki pages. Each learning objec-

tive represents one Wiki page, respectively one
learning activity tree. They are shown by sections
and paragraphs using the Wiki syntax. The differ-
ence to a standard Wiki page is that only parts of
the Wiki page can be changed by the learner. These
parts usually consist of specific knowledge, such
as project, customer, people, or product knowl-
edge (see Figure 2 for the knowledge types), or
assessment parts (e.g., answering questions etc.).
General learning content cannot be changed (e.g.,
the definition of “Software Quality” or explana-
tion of “Polymorphism”). Only one Wiki page
is generated by the agent at a time. The activity
tree sometimes offers alternative navigation op-
tions to proceed to the next learning objective,
respectively to another Wiki page (see link of
LO3 Figure 9). When such a link is chosen, the
agent creates the corresponding Wiki page by first
resolving the references to learning components
and second, by generating navigation options by
means of links within the Wiki page or external
navigation portlets on the Web site.

By default, sequencing of learning activities
on a Wiki page is done hierarchically (see top of
Figure 9). Beside the navigation options between
learning objectives, additional navigation options
could also be offered within the same Wiki page,
that is, between learning components. Within
the SCORM Sequencing and Navigation model,
navigation requests are processed based on a
kind of learner model, that is, data about, for ex-
ample, answered multiple-choice questions that
are stored. This data influences which navigation
options are available, or whether they are not. In
the Riki context, assessments play a minor role.
Only data from the software development task
and changing learner preferences will be used
to adapt the navigation options.

In summary, a learning space consists of sev-
eral Wiki pages with links forming a hypermedia
network. Agent technology allows us to adapt the
learning space dynamically during run-time, for
example, while the user is browsing through the
space and working on his task. Important triggers

892

Riki

are forwarded by the task agent to the pedagogical
information agent, who adapts the content select-
ing, sequencing, and navigation of the learning
space. Observing certain tasks performed by a
software engineer and the demand-driven creation
of learning spaces ensures close integration of the
learning process and the working task, and enables
the provision of a situated learning environment
for the user where he/she can construct his/her
individual knowledge.

riki: the reuse-oriented wiki

In RISE, we developed a platform and a method-
ology for the management of experiences in SE
organizations, which is integrated smoothly into
the infrastructure. In this section, we will elabo-
rate the architecture and technology of a plugin-
based, reuse-oriented Wiki (Riki). This technical
system sets the stage for the knowledge-based
development of software systems strengthened
via the support of social relationships, as well as
competence development, and knowledge sharing
in and between projects. As depicted in Figure
10, three domains or spaces are connected to the
core system.

The social-technical system of RISE into which
the Riki is embedded consists of the social space
on the left side, the technical space symbolized
in the middle, and the logical space on the right.
The social space encompasses all users of the Riki
from the target group(s). They are all accessible
via the personal pages and references such as (co-)
author or inspector (i.e., know-who entries). In the
technical space, all hard- and software systems
are collected. The Riki is statically or dynamically
(i.e., online) integrated into the existing infra-
structure and previously collected information.
The integration of information includes internal
sources such as software configuration manage-
ment (SCM) systems, defect management systems
(DMS), project management systems (PMS), as
well as project files and e-mail messages. For
example, SCM systems can be used to extract
information about persons who have changed
the source code over the different configurations.
If a newbie (at least for this part of the system)
needs more information about this subsystem,
the newbie can directly access these persons and
knowledge about it. Furthermore, information
from external sources, such as technology specific
mailing groups or search engines such as Google,
are dynamically integrated.

Figure 10. Infrastructure around a Riki system

User

Knowledge
Base

Project eMailsProject Files

RIKI

SCM

DMS

PMS
User

User

User

User

Wikitology
Analyzer

External
Information

External Sources

Inference
Engine

Metadata
Extractor

 893

Riki

The Riki Architecture

The general plugin concept of the RISE system
is a service that is invoked via the Web service
interface. The Web service approach was chosen
to provide the added functionality independent of
the actual implementation. The result of the Web
service request is delivered text or simple html.
The result is then integrated into the GUI via a
content plugin, the templating mechanism of the
Wiki, or as a pop-up window.

The RISE system has three different types
of plugins that are differentiated based on their
integration: Plugins that change the workflow
of the underlying Wiki, plugins whose results
are integrated into a single point on the GUI,
and plugins whose results are integrated into the
content.

This integration is supported by plugin inter-
faces that are already provided by some Wikis:
First, Wikis might offer a plugin interface to add
dynamic content to pages. The RISE system uses

this interface by implementing a general plugin
to request Web services and to present the result.
Second, Wikis might provide an XML-RPC in-
terface to read and write content of a page. The
RISE system uses this interface to standardize
the access to Wiki content independent of the
actual Wiki used.

The basic knowledge flow of the Riki is shown
in Figure 11. It depicts the elicitation subsystem,
where information from the community of users
(or experts) is injected into the system as a first
pool of knowledge in the knowledge base. This
knowledge as well as the created ontology and
approach for creating learning space are used
in the augmentation subsystem to construct the
learning spaces and augmented knowledge (e.g.,
a knowledge component about a project with con-
text-specific information such as similar projects)
that are presented to the user. The integration
subsystem provides additional knowledge and
information from the existing infrastructure.

Figure 11. Basic architecture of the Riki system (KC: Knowledge Component, LC: Learning Component,
KE: Knowledge Element, LE: Learning Element, Onto: Ontology, Temp: Template)

Knowledge Augmentation

Knowledge Elicitation

Knowledge Base
(O4PKC)

User

KC

KC

LC

KC
KC

KC

LC

LC

LC
KE

KC

Infrastructure Integration

SCM

DMS

PMS

eMail

Community

Onto. Temp.

LE

894

Riki

rIse In retrospectIVe

In this section, we will raise requirements and
lessons learned from the development and ap-
plication of a Riki in the context of two SMEs
that one should keep in mind when building such
a system.

lessons learned and Implications
for developing a riki

During the RISE project, while building two
KM systems for SMEs in the software industry,
we developed the Riki technology and RIME
methodology. From the development and evalu-
ation, we extracted several lessons learned that
are stated in the following:

• The KM system should be tailored to the
characteristics and needs of the organiza-
tion, its projects, and the target group(s).
The process where knowledge is generated,
how it is recorded, and who reuses it should
be considered. In a medium to large orga-
nization (i.e., more than 100 persons), the
knowledge should be far more general and
self-sufficient than in a small organization
(e.g., with five persons). The larger the or-
ganization, the more probable it is that the
knowledge is used by persons with a totally
different context, from another culture, or
without the opportunity to ask the author.

• The KM system should be integrated into
the existing tool landscape and socio-tech-
nical infrastructure of the organization. It
should represent either integrated relevant
information from other systems as a single
point of consistent knowledge (SPOCK)
or offer links to these other systems. Yet,
another system that is used to store informa-
tion will only be used at the start and then
vanish over time as nobody cares to store
information in multiple systems.

• The knowledge within the knowledge base
should be goal-oriented. The author should
have a clear organizational, project-specific,
or personal goal in mind and identify the
problem, potential solutions, and side ef-
fects. A simple observational experience that
does not inform the reader about a specific
problem or solution is of low interest and
use in a KM system.

• The knowledge within the knowledge base
should allow individual structuring by the
users. Everybody structures his knowledge
individually based on his personal world-
view (in German, weltbild), which needs
to be mapped to the general ontology as
implemented in the KM system. This can
be realized either by giving all the rights to
insert personal links or by mapping between
personal, project-specific, departmental,
organizational, or community-specific on-
tologies.

• The knowledge in a knowledge base should
be versioned and managed using authorized
groups. For example, knowledge about mar-
keting processes should only be modifiable
by marketing personnel, while knowledge
about the interface of two departments (e.g.,
travel application) should be modifiable by
all those involved.

• The plugin-based design and development of
a KM system allows defining development
tasks for separate subgroups of the project.
This enables the independent implemen-
tation of functionality and improves the
further extension of the system. In contrast
to a monolithic system architecture, this
furthermore allows the independent testing
of plugins, thereby reducing development
risks.

• By abstracting from the actual implementa-
tion and by implementing plugins indepen-
dently from other plugins, this architecture
allows using different configurations of

 895

Riki

plugins for tailored KM systems. This is
particularly important when functionality
is provided by different partners that should
work independently even after the project.

patterns and Anti-patterns in
knowledge Management

In the 1990s, a new concept was transferred from
architecture to computer science, which helped
to represent typical and reoccurring patterns of
good and bad software architectures. These design
patterns (Gamma, Richard, Johnson, & Vlissides,
1994) and anti-patterns (Brown, Malveau, Mc-
Cormick, & Mowbray, 1998) were the beginning
of the description of many patterns in diverse
software phases and products. Today, we have
thousands of patterns (Rising, 2000) for topics
such as agile software projects (Andrea, Meszaros,
& Smith, 2002) or pedagogies (http://www.peda-
gogicalpatterns.org/) (Abreu, 1997; Fincher &
Utting, 2002). Many other patterns are stored in
pattern repositories such as the Portland pattern
repository (PPR, 2005) or the Hillside pattern
library (HPL, 2005), and are being continuously
expanded via conferences such as PLOP (Pattern
Languages of Programming; see http://hillside.
net/conferences/).

While there are similar concepts such as
barriers (Riege, 2005; Sun & Scott, 2005) and
incentives (Ravindran & Sarkar, 2000) in KM
and software reuse (Judicibus, 1996), the identi-
fication of patterns seems to be underdeveloped
and informal.

We will use the concept of patterns and antipat-
terns to describe the experience and knowledge we
acquired during RISE and several other projects,
such as indiGo (Rech, Decker, althoff, Voss, Klotz,
& Leopold, 2005), V(I)SEK (Feldmann & Pizka,
2003), or ESERNET (Jedlitschka & Ciolkowski,
2004). In software engineering, design patterns
are defined as follows:

• Design pattern: A design pattern is a gen-
eral, proven, and beneficial solution to a
common, reoccurring problem in software
design. Built upon similar experiences, they
represent “best-practices” about how to
structure or build a software architecture.
An example is the façade pattern that recom-
mends encapsulating a complex subsystem
and only allows the connection via a single
interface (or “façade”) class. This enables
the easy exchange and modification of the
subsystem.

By transferring the concept of patterns to
knowledge management, we therefore define
knowledge and knowledge management patterns
as follows:

• Knowledge pattern: A knowledge pattern
is a general, proven, and beneficial solu-
tion to a common, reoccurring problem in
knowledge design, that is, the structuring
and composition of the knowledge (e.g., on
or via Wiki pages) or the ontology defin-
ing metadata and potential relationships
between knowledge components.

• Knowledge management pattern: A
knowledge management pattern is a general,
proven, and beneficial solution to a com-
mon, reoccurring problem in knowledge
management, that is, the implementation,
interconnection, or interface of technical
knowledge management systems (e.g., a
Wiki system), as well as social methods
or systems to foster knowledge elicitation,
exchange, or comprehension.

Furthermore, we cluster the patterns into six
groups ranging from KM system (Wiki) patterns
via content patterns to KM maintenance patterns.
We describe several patterns and anti-patterns
from three of these groups. In the following, the

896

Riki

name Knowledge Blob Anti-Pattern

problem The description of an experience or knowledge component get’s larger and larger
over time and subsumes more and more information.
The search for an arbitrary knowledge component will often include the knowledge
blob. The knowledge blob can be used for different problems, has multiple solutions
or contact data.

solution/countermeasures • compact knowledge: Summarize and rewrite the knowledge in a shorter
form on one page.

• extract elements: Apply divide & conquer to create several mutually
exclusive pages with parts of the original page.

• extract commonalities: Find elements on other pages with overlapping
knowledge and extract this overlapping element from both (or all) pages to a
new page.

causes/consequences The KM system makes it easy to find and change (extend) a knowledge
component; the users are not sensitized to create individual experiences; or there is
no maintenance of the knowledge in the KM system.

name Redundant Information Anti-Pattern

problem The description of an experience or knowledge component is too long and has
information that is either not relevant to the topic, already stored elsewhere, or
outdated.
The reader has to read more to get little relevant information, which might lead to
an abandoned system. Furthermore, the description is longer than one page in
the KM system and requires that the user scrolls (and has to interrupt his learning
mode).

solution/countermeasures • compact knowledge: Summarize and rewrite the knowledge in a shorter
form on one page

• offer templates: Find all knowledge components of a specific type and offer a
distinct template for every type.

causes/consequences The writer does not really know what to describe in order to produce a simple, short
and comprehensive knowledge component.

name Unnecessary Breakdown Anti-Pattern

problem Multiple pages are used to describe one topic that is not reusable for other
knowledge descriptions, and all have to be read to understand the knowledge.
The reader has to read several pages in order to understand the knowledge; he/she
interrupts his/her learning mode and might interrupt the learning activity altogether.
Furthermore, a search on the knowledge base might return only a page within this
knowledge chain.

solution/countermeasures • compact knowledge: Summarize and rewrite the knowledge in a shorter
form on one page.

• See Explicit Start Pattern

causes/consequences The writer does not really know what to describe in order to produce a simple, short
and comprehensive knowledge component.

Table 3. Knowledge Content Patterns and Anti-Patterns

 897

Riki

name Duplicated Knowledge Anti-Pattern

problem Multiple versions of the same information reside in different locations in the
knowledge base.
The change of one piece of information causes changes to be made on several
pages of different knowledge components. If not all replications are changed as well,
multiple, slightly different versions might exist in the knowledge base.

solution/countermeasures • compact knowledge: Summarize and rewrite the knowledge in a shorter form
on one page

• extract commonalities: Find elements on other pages with overlapping
knowledge and extract this overlapping element from both (or all) pages to a
new page.

causes/consequences Writers are not aware of or do not care about similar knowledge. Furthermore,
either the knowledge base is not cleaned up from time to time, or similar knowledge
components are not aggregated.

name Dead Knowledge Antipattern

problem Knowledge is considered useless, is not reused anymore by the users, and wastes
space in the knowledge base or computational power (e.g., in search algorithms).

solution/countermeasures • Fuse knowledge: Find a similar and “nondead” knowledge component and
integrate the remaining useful information (i.e., combine, compact, or rewrite
their descriptions).

• Forget knowledge: Remove the knowledge from the knowledge base (maybe
after an inspection by possibly interested parties).

causes/consequences The knowledge is outdated, too specific, or too general.

name Undead Knowledge Antipattern

problem Knowledge is not used anymore by the system and undiscoverable by the users.
While it might be useful to the users it, cannot be reused anymore and wastes
space or computational power (e.g., in search algorithms).

solution/countermeasures • reintegrate knowledge: Reintegrate the component in the search index or an
applicable navigational structure.

• Fuse knowledge: Find a similar and “non-dead” knowledge component and
fuse them together (i.e., combine, compact, or rewrite their descriptions).

• Forget knowledge: Remove the knowledge from the knowledge base (maybe
after an inspection by possibly interested parties).

causes/consequences The knowledge is not linked anymore and does not show up in any navigational
structures or search results.

Table 4. Knowledge Maintenance Patterns and Anti-Patterns

format to describe these patterns consists of the
pattern name, the description of the problem,
the solutions or countermeasures, and causes or
consequences. While patterns typically state and
emphasize a single solution to multiple problems,
antipatterns typically state and emphasize a single
problem to multiple solutions.

Knowledge Content Patterns and
Anti-Patterns

These patterns and anti-patterns apply to the
content of knowledge components or elements
and are typically used from the viewpoint of the
reader or writer.

See Table 3.

898

Riki

Knowledge Maintenance Patterns and
Anti-Patterns

These patterns and anti-patterns apply to the
maintenance of knowledge components or ele-
ments and are typically used by the knowledge
maintainer or gardener.

See Table 4.

conclusIon

We have shown that reuse in software engineering
needs support in order to work in agile software
organizations. Poor documentation and man-
agement of knowledge, experiences, decisions,
or architectural information accompanies the
development of software with agile methods in
distributed software organizations. The Wiki
technology promises a lightweight solution to
capture, organize, and distribute knowledge
that emerges and is needed fast in agile software
organizations.

The RISE framework sketches our approach
for agile reuse and tackles several problems in
traditional KM and agile software organizations.
Semi-automatic indexing of pages improves the
retrieval and enables the semi-automatic creation
and evolution of ontologies from Wikis (i.e.,
Wikitologies). The cooperative adaptation of
knowledge to community needs, and the didactic
augmentation of the content and interface are
targeted to improve the usability of lightweight
KM applications in agile environments.

As a basis, we are using Wikis as repositories
with fast and liberal access to deposit, mature, and
reuse experiences made in agile projects. Our next
step is the design and implementation of additional
functionality to Wikis with a first version targeted
for 2006. In the context of our project, we pursue
the following research questions:

• Are free structures of knowledge and
hierarchies more accepted by the users

than fixed structures? A long-term goal
would be the development of dynamic or
individual structures based on personal
arrangement of documents.

• Does the extraction of information from
existing sources (e.g., versioning, defect
tracking, etc.) improve the integration
and interrelation of knowledge? This will
improve the access to experts and knowledge
carriers and will facilitate the build-up of
goal-oriented face-to-face communica-
tion.

• Does the didactical augmentation of
knowledge improve the understandabil-
ity and applicability of the knowledge,
compared to conventional, non-enriched
knowledge descriptions? A long-term goal
is to improve the mechanism for creating
learning spaces by considering different
instructional designs tailored to software
engineers.

• Is Wiki-based management of knowledge
better accepted by the users than classi-
cal knowledge management applications
in agile processes? Classical knowledge
management applications need a well-de-
fined process to be integrated. Wikis—in
particular, if enhanced by ontologies—might
provide a solution for agile and hence, less-
structured processes.

By using a plugin-based architecture, the
Riki system represents a flexible and expand-
able infrastructure to support reuse in software
organizations of different shapes and sizes. The
main variability mechanism in this infrastructure
is realized by using the plugins as independent
services. Currently, this includes only functional
aspects of the developed system, but we plan to
adapt this idea to knowledge inside the Riki system
to improve the reusability of knowledge across
software development organizations. By bundling
content and functionality, additional complexity
is introduced concerning the variability mecha-

 899

Riki

nisms needed to establish this product line. This
interrelation between content and functionality is
subject of the research area of knowledge product
lines. The RISE project will provide a first step
into this research area.

Future trends

This section discusses future and emerging trends
and provides insights about the future of knowl-
edge transfer and reuse in software engineering.
A system for knowledge reuse and transfer, such
as the Riki, might not only be used in software
engineering but also in other domains.

• OSS reuse—from code to content: Cur-
rently, most of the reuse within OSS is
focused on software code. However, with
Wikipedia and WikiCommons, there is a
growing amount of content (such as music,
videos, or research results) available under an
open-source-style license. This content will
help to overcome the initial seeding problem
observed in current reuse systems.

• Bi-directional openness: Through open
standards and APIs (Web 2.0, Semantic
Web), future reuse systems can rely on
content and functionality already available
to the public. For example, code search en-
gines like Koders.com or Krugle.com can
be integrated in reuse systems to provide
reusable (code) artifacts from outside the
organization.

• Proactive suggesting instead of searching:
Future reuse systems will make even more
use of the context of a user than depicted
in Riki. Based on the metadata and their
underlying ontologies, inference is done to
support the user in generating more high-
quality knowledge. In particular, showing
similar and relevant content reduces redun-
dancy because people are aware of available
content and do not create the content from

scratch. Hence, the content is subject to
continuous evolution.

• Amount of guidance during learning: Riki
provides a first significant step towards the
integration of e-learning and knowledge
management. Nevertheless, several prob-
lems remain to be solved and addressed.
Riki intends for users to learn at their own
pace, and decide which content is suitable.
Self-directed learning requires that the sys-
tem provides a certain amount of guidance
and support during learning. For example,
experts need a different kind and amount
of guidance than novice people.

• Support for situated learning: These ap-
proaches, developed mainly at the end of
the 1980s, emphasize that a human’s tasks
always depend on the situation they are
performed in, that is, they are influenced
by the characteristics and relationships of
the context (Brown et al., 1989). Because of
the relation between cognition and context,
knowledge and the cognitive activities meant
to create, adapt, and restructure the knowl-
edge cannot be seen as isolated psychological
products; they all depend on the situation in
which they take place. This means that the
Riki has to gather more context informa-
tion in order to tailor the learning space for
situated learning.

Further barriers to integrating learning man-
agement and knowledge management were identi-
fied during the LOKMOL2005 workshop (Ras,
Memmel, & Weibelzahl, 2005). Examples are the
lack of interactivity, lack of dynamic adaptation
of content, or adequate presentation of content.

To cope with these problems, we see the need
for further research and development in the fol-
lowing directions:

• Ontology usage and development: The
content of reuse systems needs to be indexed
according to currently available ontologies

900

Riki

such as SWEBOK, Dublin Core, and FOAF,
in order to make it available to inference
support. This indexing should be done
automatically wherever possible. Based on
the experience gained during this indexing,
the need for further software ontologies can
be derived (e.g., an ontology of software
engineering artifacts).

• Integrated context models: Besides in-
dexing content according to ontologies,
models for describing content information
are another issue to be addressed further
in the future. Based on context informa-
tion, knowledge, and learning space can be
tailored to the current situation. Different
approaches in software engineering exist for
describing domains and context. However,
they mostly focus on one context dimen-
sion (e.g., organizational context, group
context, activity context, project context,
product context, individual or process con-
text). Context models have to be developed
that integrate the different dimensions in
order to tailor the content delivery (e.g., by
learning space) to the current situation and
needs of the software engineer. Standards
such as AttentionXML will play a bigger
role in context description in the future (see
http://developers.technorati.com/wiki/at-
tentionxml).

• Integrated user models: In order to pro-
vide user tailored content, we need to know
about the users’ activities, their competence
profiles, their learning and working prefer-
ences, their roles, and their relationships to
other people and teams. The first challenge
is to integrate this information in a stan-
dardized user model, and the second one is
to investigate how this information can be
gathered automatically during daily work.

AcknowledgMent

Our work is part of the project RISE (Reuse in
Software Engineering), funded by the German
Ministry of Education and Science (BMBF) grant
number 01ISC13D. We thank our colleagues
Bertin Klein, Christian Höcht, Lars Kilian,
Volker Haas, and Ralph Trapphöner as well as
Prof. Klaus-Dieter Althoff, Dr. Markus Nick,
Ludger van Elst, Heiko Maus, and Dr. Ingeborg
Schüssler for their ideas during the first phases
of the project.

reFerences

Abreu, F. B. E. (1997). Pedagogical patterns:
Picking up the design patterns approach. Object
Expert, 2(3), 37, 41.

Alrubaie, M. (2006). A tagging system for Trac.
Retrieved 24/11/2006 from http://trac-hacks.
org/wiki/TagsPlugin

Anderson, J. R. (1993). Rules of the mind. Hills-
dale, NJ: L. Erlbaum Associates.

Anderson, L. W., & Krathwohl, D. R. (2001). A
taxonomy for learning, teaching, and assessing: A
revision of Bloom’s taxonomy of educational ob-
jectives (Complete ed.). New York: Longman.

Andrea, J., Meszaros, G., & Smith, S. (2002).
Catalog of XP project ‘smells’. Paper presented
at the 3rd International Conference on XP and
Agile Processes in Software Engineering (XP
2002), Alghero, Sardinia, Italy.

Aumüller, D. (2005). SHAWN: Structure helps
a Wiki navigate. Retrieved 29.9.05, 2005, from
http://the.navigable.info/2005/aumueller05shawn.
pdf

 901

Riki

Basili, V. R., Caldiera, G., & Cantone, G. (1992). A
reference architecture for the component factory.
ACM Transactions on Software Engineering and
Methodology, 1(1), 53-80.

Basili, V. R., Caldiera, G., & Rombach, H. D.
(1994). Experience factory. In J. J. Marciniak (Ed.),
Encyclopedia of software engineering (vol. 1, pp.
469-476). New York: John Wiley & Sons.

Basili, V. R., Costa, P., Lindvall, M., Mendonca,
M., Seaman, C., Tesoriero, R., et al. (2002). An
experience management system for a software en-
gineering research organization. Paper presented
at the Proceedings of the 26th Annual NASA God-
dard Software Engineering Workshop, 2001.

Basili, V. R., & Rombach, H. D. (1991). Support
for comprehensive reuse. Software Engineering
Journal, 6(5), 303-316.

Bergmann, R. (2002). Experience management:
Foundations, development methodology, and
Internet-based applications. Spring New York
ISBN 3540441913

Berners-Lee, T. (2000)Semantic Web layer cake.
Retrieved 29.09.05, 2005, from http://www.
w3.org/2000/Talks/1206-xml2k-tbl/slide10-
0.html

Bloom, B. S. e., Engelhart, M. D., Furst, E. J.,
Hill, W. H., & Krathwohl, D. R. (1956). Taxonomy
of educational objectives; The classification of
educational goals (1st ed.). New York: Longmans
Green.

Brickley, D., & Guha, R. V. (2004). RDF vo-
cabulary description language 1.0: RDF Schema.
Retrieved 24/11/2006 from http://www.w3.org/
TR/2004/REC-rdf-schema-20040210/

Brown, J. S., Collins, A., & Duguid, P. (1989).
Situated cognition and the culture of learning
(No. 481). Champaign, IL: University of Illinois
at Urbana-Champaign.

Brown, W. J., Malveau, R. C., McCormick, H. W.,
& Mowbray, T. J. (1998). AntiPatterns: refactoring
software, architectures, and projects in crisis.
New York: John Wiley & Sons Inc.

Bruner, J. S. (1973). Beyond the information given:
Studies in the psychology of knowing (1st ed.).
New York: Norton.

Collins, A., Brown, J. S., & Newman, S. E. (1989).
Cognitive apprenticeship: Teaching the crafts of
reading, writing and mathematics. In L. B. Resnick
(Ed.), Knowing, learning and instruction: Essays
in honor of Robert Glaser (pp. 453-494): Hillsdale,
NJ: Lawrence Erlbaum Associates.

Consortium, R. P. (2005). RISE homepage. Re-
trieved from http://www.rise-it.info

Cunningham, W. (2005). Wiki design principles.
Retrieved from http://c2.com/cgi/wiki?WikiDes
ignPrinciples

Dahl, I., & Eisenbach, M. (2005). Anwendung:
Semantic Wikis. Unpublished Seminal Thesis,
Karlsruhe.

Decker, B., Ras, E., Rech, J., Klein, B., Reuschling,
C., Höcht, C., et al. (2005). A framework for agile
reuse in software engineering using Wiki Technol-
ogy. Paper presented at the KMDAP Workshop
2005: Knowledge Management for Distributed
Agile Processes, Kaiserslautern, Germany.

Decker, B., Rech, J., Althoff, K.-D., Klotz, A.,
Leopold, E., & Voss, A. (2005). eParticipative
process learning - Process-oriented experience
management and conflict solving. Data & Knowl-
edge Engineering, 52(1), 5-31.

Dupuis, R., Bourque, P., & Abran, A. (2003).
Swebok guide: An overview of trial usages in the
field of education. In Proceedings—Frontiers in
Education Conference (vol. 3).

EclipseWiki. (2005). EclipseWiki Web site. Re-
trieved 6 Oct., 2005, from http://eclipsewiki.
sourceforge.net/

902

Riki

Enns, C. Z. (1993). Integrating separate and con-
nected knowing: The experiential learning model.
Teaching of Psychology, 20(1), 7-13.

Ericsson, K. A., Krampe, R. T., & Tesch-Romer,
C. (1993). The role of deliberate practice in the
acquisition of expert performance. Psychological
Review, 100(3), 363-406.

Feldmann, R. L., & Pizka, M. (2003, 6 Aug. 2002).
An on-line software engineering repository for
Germany’s SME—An experience report. Paper
presented at the 4th International Workshop,
Advances in Learning Software Organizations
(LSO 2002), Chicago.

Fincher, S., & Utting, I. (2002). Pedagogical pat-
terns: Their place in the genre. SIGCSE Bulletin,
34 (3), 199-202.

Friesen, N. (2001). What are learning objects?
Interactive Learning Environments, 9(3), 323-
230.

Gagné, R. M., Briggs, L. J., & Wager, W. W. (1988).
Principles of instructional design (3rd ed.). Fort
Worth: Holt Rinehart and Winston.

Gamma, E., Richard, H., Johnson, R., & Vlis-
sides, J. (1994). Design patterns: Elements of
reusable object-oriented software (3rd ed. vol.
5): Addison-Wesley.

Gruber, T. R. (1995). Toward principles for the
design of ontologies used for knowledge sharing.
International Journal of Human Computer Stud-
ies, 43(5-6), 907-928.

HPL. (2005). Hillside Pattern Library. Retrieved
10, Oct., 2005, from http://hillside.net/patterns/

Jedlitschka, A., Althoff, K.-D., Decker, B.,
Hartkopf, S., Nick, M., & Rech, J. (2002). The
Fraunhofer IESE experience management system.
KI, 16(1), 70-73.

Jedlitschka, A., & Ciolkowski, M. (2004, 19-20
Aug. 2004). Towards evidence in software en-
gineering. Paper presented at the International

Symposium on Empirical Software Engineering,
Redondo Beach, CA.

Jedlitschka, A., & Nick, M. (2003). Software en-
gineering knowledge repositories. Lecture Notes
in Computer Science, 2765.

John, M., Jugel, M., & Schmidt, S. (2005). Soft-
ware development documentation —A solution
for an unsolved problem? Paper presented at the
International Conference on Agility, Otaniemi,
Finland.

Judicibus, D. D. (1996, 8-9 Jan. 1996). Reuse: A
cultural change. Paper presented at the Proceed-
ings of the International Workshop on Systematic
Reuse: Issues in Initiating and Improving a Reuse
Program, Liverpool, UK.

Klusch, M. (2001). Information agent technology
for the Internet: A survey. Data & Knowledge
Engineering Archive, 36(3), 337-372.

Kolb, D. A. (1984). Experiential learning: Experi-
ence as the source of learning and development.
Englewood Cliffs, NJ: Prentice-Hall.

Legrand, S., Tyrväinen, P., & Saarikoski, H. (
2003). Bridging the word disambiguation gap with
the help of OWL and Semantic Web ontologies. Pa-
per presented at the EROLAN 2003, the Semantic
Web and Language Technology, Budapest.

Leuf, B., & Cunningham, W. (2001). The Wiki
way. Quick collaboration on the Web. Boston:
Addison-Wesley.

Manola, F., & Miller, E. (2004). RDF primer.
Retrieved 24/11/2006 from http://www.w3.org/
TR/2004/REC-rdf-primer-20040210/

Mason, J. (2005). From e-learning to e-knowledge.
In M. Rao (Ed.), Knowledge management tools
and techniques (paperback ed., pp. 320-328).
London: Elsevier.

Maurer, F. (2002). Supporting distributed extreme
programming. Paper presented at the XP Agile
Universe.

 903

Riki

McIllroy, M. D. (1968, 7th to 11th October 1968).
Mass-produced software components. Paper
presented at the NATO Conference on Software
Engineering, Garmisch, Germany.

Merriënboer, J. J. G. v. (1997). Training complex
cognitive skills: A four-component instructional
design model for technical training. Englewood
Cliffs, NJ: Educational Technology Publica-
tions.

Merrill, M. D. (2000). First principles of instruc-
tion. Paper presented at the International confer-
ence of the Association for Educational Commu-
nications and Technology (AECT), Denver.

Mohan, P., & Daniel, B. (2004). The learning
objects’ approach: Challenges and opportu-
nities. Paper presented at the E-Learn 2004,
World Conference on E-Learning in Corporate,
Government, Healthcare & Higher Education,
Washington DC.

Naur, P., & Randell, B. (1968). Software engineer-
ing: Report of a conference. Garmisch, Germany:
sponsored by the NATO Science Committee.

Nick, M. (2005). Experience maintenance through
closed-loop feedback. Unpublished PhD thesis,
Technical University of Kaiserslautern, Kaiser-
slautern.

Nonaka, I., & Takeuchi, H. (1995). The knowl-
edge-creating company. New York: Oxford
University Press.

North, K. (2002). Wissensorientierte Unterneh-
mensführung: Wertschöpfung Durch Wissen (3.,
Aktualisierte Und Erw. Aufl. ed.). Wiesbaden:
Gabler.

Oezbek, C. (2005). WikiDoc homepage. Retrieved
September 28, 2005, from http://www.inf.fu-ber-
lin.de/~oezbek/

Paech, B., & Kohler, K. (2003). Task-driven re-
quirements in object-oriented development. In J.

H. J. C. D. Sampaio do Prado Leite (Ed.), Perspec-
tives on Software Requirements (pp. 45-67)

Palmer, S. B. (2005). RDFWiki homepage. Re-
trieved September 29, 2005, from http://infomesh.
net/2001/05/sw/#rdfwik

Platypus. (2005). Platypus Wiki Web site. Re-
trieved October 6, 2005, from http://platypuswiki.
sourceforge.net/

PPR. (2005). Portland pattern repository. Re-
trieved October 10, 2005, from http://c2.com/
ppr/, http://en.wikipedia.org/wiki/Portland_Pat-
tern_Repository

Ras, E., Memmel, M., & Weibelzahl, S. (2005).
Integration of e-learning and knowledge man-
agement - Barriers, solutions and future issues.
Paper presented at the Professional Knowledge
Management (WM2005).

Ras, E., & Weibelzahl, S. (2004). Embedding
experiences in micro-didactical arrangements.
Paper presented at the 6th International Workshop
on Advances in Learning Software Organisations,
Banff, Canada.

Ravindran, S., & Sarkar, S. (2000, May 21-24).
Incentives and mechanisms for intra-organiza-
tional knowledge sharing. In Proceedings of 2000
Information Resources Management Association
International Conference, Anchorage, AK (p.
858). Hershey, PA: Idea Group Publishing.

Rech, J., Decker, B., Althoff, K.-D., Voss, A.,
Klotz, A., & Leopold, E. (2005). Distributed
participative knowledge management: The indiGo
system. In R. A. Ajami & M. M. Bear (Eds.),
Global entrepreneurship and knowledge man-
agement: Local innovations and value creation.
Binghamton, NY: Haworth Press.

Rhizome. (2005). Rhizome Web site. Retrieved
October 6, 2005, from http://rx4rdf.liminalzone.
org/

904

Riki

Riege, A. (2005). Three-dozen knowledge-shar-
ing barriers managers must consider. Journal of
Knowledge Management, 9(3), p 18-35efs.

Rising, L. (2000). The pattern almanac 2000.
Boston: Addison-Wesley.

Robbins, J. (2005). Readyset requirements
specification template. Retrieved 24/11/2006 from
http://readyset.tigris.org/

Robertson, J., & Robertson, S. (2005a). Volere
requirements specification template, Version 10.1.
Retrieved October 10, 2005, from http://www.
volere.co.uk/template.htm

Robertson, S., & Robertson, J. (2005b). Volere
requirements specification template. Retrieved
November 24, 2006 from http://www.volere.
co.uk/

Ruhe, G., & Bomarius, F. (1999, June 16-19, 1999).
Proceedings of learning software organizations
(LSO): Methodology and applications. Paper
presented at the 11th International Conference on
Software Engineering and Knowledge Engineer-
ing, SEKE’99, Kaiserslautern, Germany.

Rus, I., & Lindvall, M. (2002). Knowledge man-
agement—Knowledge management in software
engineering—Guest Editors’ Introduction. IEEE
Software, 19(3), 26-38.

Schank, R. C., Bermann, T. R., & Macperson,
K. A. (1999). Learning by doing. In R. R. C.
(Ed.), Instructional design theories and models:
A new paradigm of instructional theory (vol. II,
pp. 161-181). Mahwah: NJ: Lawrence Erlbaum
Associates.

Schreiber, G., Wielinga, B., Hoog, R. d., Ak-
kermans, H., & Velde, W. V. d. (1994). Com-
monKADS: A comprehensive methodology for
KBS development IEEE Expert: Intelligent Sys-
tems and Their Applications, 9(6), 28-37

Secchi, P., Ciaschi, R., & Spence, D. (1999). A
concept for an ESA lessons learned system (No.

Tech. Rep. WPP-167). Noordwijk: The Nether-
lands: ESTEC.

Self, J. (1992). Computational mathematics: The
missing link in intelligent tutoring systems re-
search? Directions in Intelligent Tutoring Systems,
(91), 36-56.

Semantic Wikis. (2005). Semantic Wiki overview.
Retrieved October 6, 2005, from http://c2.com/
cgi/wiki?SemanticWikiWikiWeb

Senge, P. M. (1990). The fifth discipline: The art
and practice of the learning organization (1st
ed.). New York: Doubleday/Currency.

Simons, C. L., Parmee, I. C., & Coward, P. D.
(2003). 35 years on: To what extent has software
engineering design achieved its goals? in IEEE
Proceedings Software, 150(6), 337-350.

Smith, M. K., Welty, C., & McGuinness, D. L.
(2004). OWL Web ontology language guide.
Retrieved November 24, 2006, from http://www.
w3.org/TR/2004/ REC-owl-guide-20040210/

Software Engineering Body of Knowledge, Iron
Man Version. (2004). Retrieved November 24,
2006, from http://www.swebok.org/ironman/pdf/
Swebok_ Ironman_June_23_%202004.pdf

Souzis, A. (2001). Rhizome position paper.
Retrieved September 29, 2005, from Adam
Souzis.

Stenmark, D. (2001). The relationship between
information and knowledge. Paper presented at
the IRIS-24, Ulvik, Norway.

SubWiki. (2005). SubWiki Web site. Retrieved
October 6, 2005, from http://subwiki.tigris.org/

SUMO Ontology. from http://ontology.teknowl-
edge.com/

Sun, P. Y. T., & Scott, J. L. (2005). An investiga-
tion of barriers to knowledge transfer. Journal of
Knowledge Management, 9(2), 75-90.

 905

Riki

Szyperski, C., & Pfister, C. (1997). Workshop on
component-oriented programming, summary.
Paper presented at the ECOOP96.

Tautz, C. (2001). Customizing software engineer-
ing experience management systems to organiza-
tional needs. Unpublished PhD thesis, University
of Kaiserslautern, Kaiserslautern.

Tennyson, R. D., & Rasch, M. (1988). Linking
cognitive learning theory to instructional prescrip-
tions. Instructional Science, 17, 369-385.

TikiWiki. (2005). TikiWiki Web site. Retrieved
October 6, 2005, from http://www.tikiwiki.org

Volere. (2005). Requirements tools. Retrieved
from http://www.volere.co.uk/tools.htm

Völkel, M., Schaffert, S., Kiesel, M., Oren, E.,
& Decker, B. (2005). Semantic Wiki state of the
art paper. Retrieved from November 24, 2006,
from http://wiki.ontoworld.org/index.php/Seman-
tic_Wiki_State_of_The_Art_Paper

Weber, R., Aha, D. W., & Becerra-Fernandez, I.
(2001). Intelligent lessons learned systems. Expert
Systems with Applications, 20(1) 94-100.

WikiEngines. (2005). WikiEngines Compilation.
Retrieved October 6, 2005, from http://www.
c2.com/cgi/wiki?WikiEngines

WikiMatrix. (2006). WikiMatrix—Overview of
Wikis. November 24, 2006, from http://wikima-
trix.org

Wikipedia. (2006). Your first article. Re-
trieved from http://en.wikipedia.org/w/in-
d e x .p h p? t i t l e =Wi k ip e d i a :Yo u r_ f i r s t _
article&oldid=41631731

Wooldridge, M., & Jennings, N. R. (1995). Intel-
ligent agents: Theory and practice. Knowledge
Engineering Review, 10(2), 115-152.

XWiki. (2005). XWiki Web site. Retrieved October
6, 2005, from http://www.xwiki.org/xwiki/bin/
view/Main/WebHome

Yacci, M. (1999). The knowledge warehouse:
Reusing knowledge components. Performance
Improvement Quarterly, 12(3), 132-140.

906

Riki

AppendIx I: Internet sessIon: knowledge And soFtwAre reuse

http://www.sei.cmu.edu/productlines/index.html
Software product lines are a way to describe commonalities and variabilities in a software system that
are used in different contexts by different groups of people such as embedded software systems on
mobile phones (each with different hardware characteristics and software features).

Interaction

Survey the information presented at the websites on product-line software engineering (PLSE) and
software reuse methods and theory. Prepare a brief presentation on the core concepts and history of
software reuse with a focus on PLSE. Alternatively, transfer the ideas behind PLSE to knowledge or
learning management and assume that “software = knowledge” or “software = course”. How would a
“knowledge product line” or “course product line” look like? Are there commonalities or variabilites
in KM/LM systems or the knowledge/courses itself?

 907

Riki

AppendIx II: useFul urls

RISE: Web site of the RISE project:
http://www.rise-it.info

SWEBOK: The software engineering body of knowledge, with more information on SE and software
reuse (see page 4-4):
http://www.swebok.org/

ICSR-09: The Ninth Biannual International Conference on Software Reuse on June 12-15, 2006 in
Torino, Italy:
http://softeng.polito.it/ICSR9/

Lombard-Hill’s bibliography: The largest bibliography on literature about software reuse:
http://www.lombardhill.com/biblio1.html

The TOA bibliography: A similar large bibliography:
http://www.toa.com/pub/reusebib.htm

Sverker Janson: Internet survey on Software Agents and Agent-based Systems:
http://www.sics.se/isl/abc/survey.html

A collection of arguments why Wikis work:
http://c2.com/cgi/wiki?WhyWikiWorks and http://en.wikipedia.org/wiki/Wikipedia:Our_Replies_to_
Our_Critics

An overview of Wikis with a comparison feature:
http://www.wikimatrix.org

Different types of knowledge that might be taken into consideration when building a KM system (e.g.,
for knowledge flow descriptions or templates in a KM system):
http://www.knowledge-sharing.com/TypesOfKnowledge.htm

Pattern in general: Descriptions of patterns with links to patterns in architecture:
http://en.wikipedia.org/wiki/Patterns

Software patterns: Starting page with information about patterns in software engineering:
http://en.wikipedia.org/wiki/Design_pattern_%28computer_science%29

Pedagogical patterns for seminars and teaching:
http://www.pedagogicalpatterns.org/

The Hillside Pattern Library:
http://hillside.net/

908

Riki

The Portland pattern repository:
http://c2.com/ppr/ and, http://en.wikipedia.org/wiki/Portland_Pattern_Repository

Classification and references for patterns based on the book “The pattern Almanac:”
http://www.smallmemory.com/almanac/

Hillside Pattern bibliography:
http://hillside.net/patterns/papersbibliographys.htm

Quality overview: The paper “Construction of a systemic quality model for evaluating a software prod-
uct” gives a nice overview about several software quality models:
http://www.lisi.usb.ve/publicaciones/SQJ%2011%203%202003%20Ortega%20Perez%20and%20Rojas.
pdf

ISO 9126: Part 1 of the Software Quality standard with a focus on Quality models:
http://www.iso.org/iso/en/CatalogueDetailPage.CatalogueDetail?CSNUMBER=22749

Dromey’s quality model in the paper “A Model for Software Product Quality:”
http://www.sqi.gu.edu.au/docs/sqi/technical/Model_For_S_W_Prod_Qual.pdf

 909

Riki

AppendIx III: Further reAdIngs

Biggerstaff, T. J., & Perlis, A. J. (1989). Software reusability: Volume I, Concepts and models. ACM
Press.

Biggerstaff, T. J., & Perlis, A. J. (1989). Software reusability: Volume II, Applications and experience.
ACM Press.

Cunningham, W. & Leuf, B. (2001). The Wiki way. Collaboration and sharing on the Internet. Ad-
dison-Wesley.

Fensel, D. (2000). Ontologies: Silver bullet for knowledge management and electronic commerce.
Berlin: Springer-Verlag.

Fowler, M. (1999). Refactoring: Improving the design of existing code (1st ed.). Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1997). Design patterns: Elements of reusable object-
oriented software. Addison-Wesley.

Jacobson, I., Griss, M., & Jonsson, P. (1997). Software reuse: Architecture, process and organization
for business success. ACM Press.

Karlsson, E. (1995). Software reuse: A holistic approach. John Wiley & Sons Ltd.

Mili, H., Mili, A., Yacoub, S., & Addy, E. (2002). Reuse-based software engineering. John Wiley &
Sons Inc.

Kerievsky, J. (2005). Refactoring to patterns. Boston: Addison-Wesley.

Rising, L. (2000). The pattern almanac. Boston.

Roock, S., & Lippert, M. (2005). Refactoring in large software projects. John Wiley & Sons.

Sametinger, J. (1997). Software engineering with reusable components. Springer-Verlag.

Schaefer, W., Prieto-Diaz, R., & Matsumoto, M. (1994). Software reusability. Ellis Horwood.

Staab, S. & Studer, R. (Eds.). (2004). Handbook on ontologies. In International Handbooks on Infor-
mation Systems. Springer.

Possible Titles for Papers/Essays

• Commonalities and Variabilities of Software Reuse and Knowledge Management
• Software Patterns for Knowledge and Knowledge Management
• Knowledge Management in Learning Software Organizations: Methods and Tools
• An Effective Knowledge Management System
• Knowledge Management in Software Engineering: Problems and Research Directions

This work was previously published in Open Source for Knowledge and Learning Management: Strategies Beyond Tools, edited
by M. Lytras and A. Naeve, pp. 52-121, copyright 2007 by IGI Publishing (an imprint of IGI Global).

910

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.21
Constructivist Learning During

Software Development
Václav Rajlich

Wayne State University, USA

Shaochun Xu
Laurentian University, Canada

AbstrAct

This article explores the non-monotonic nature
of the programmer learning that takes place dur-
ing incremental program development. It uses
a constructivist learning model that consists of
four fundamental cognitive activities: absorption
that adds new facts to the knowledge, denial that
rejects facts that do not fit in, reorganization that
reorganizes the knowledge, and expulsion that
rejects obsolete knowledge. A case study of an
incremental program development illustrates the
application of the model and demonstrates that
it can explain the learning process with episodes
of both increase and decrease in the knowledge.
Implications for the documentation systems are
discussed in the conclusions.

IntroductIon

One of the puzzling issues of software engineer-
ing is the nature of the knowledge that is needed
in order to develop and evolve a program. The
program itself is a repository of knowledge about
the program domain and may contain knowledge
that is not available elsewhere, as documented by
Kozaczynski and Wilde (1992). It also contains
knowledge of all design decisions that were made
during the program development and consequent
program evolution (Rugaber, Ornburn, & LeB-
lanc, 1990). When evolving or maintaining the
program, it is necessary to recover this knowl-
edge; otherwise, maintenance or evolution will be
impossible. It is also necessary to communicate
this knowledge to all new programmers who are
joining an existing software project. The loss of
the programming knowledge can be a serious

 911

Constructivist Learning During Software Development

problem and was identified as a leading cause of
the code decay (Rajlich & Bennett, 2000).

Although the knowledge is embedded in the
program, it cannot be easily recovered since it is
encoded in programming structures and delocal-
ized into different components of the program.
Moreover, the consequences of the decisions,
rather than the decisions themselves, appear in the
code. In many ways, the recovery of knowledge
from the code is similar to solving a puzzle and
is laborious and error prone.

One of the most basic questions that concerns
the nature of the programmer knowledge is the
issue of its monotonicity. According to a naïve
view, the knowledge steadily increases, as the new
facts emerge and are absorbed by the program-
ming team; many current documentation systems
are geared towards that (Ye, 2006). However, in
this article we show that there are also episodes
of the knowledge retraction, and the documenta-
tion systems should provide an adequate support
for that also.

Our approach in the article is based on cog-
nitive informatics (CI). CI is a multidisciplinary
study of cognition and information sciences,
which investigates human information processing
mechanisms and processes and their applications
in computing (Wang & Kinsner, 2006); studying
the knowledge and cognitive process involved
in software development is one of the goals of
cognitive informatics.

In order to understand the nature of program-
ming knowledge and its acquisition, we adopted
and further developed a constructivist model of
programmer learning that is based on four basic
cognitive activities: absorption, denial, reorga-
nization, and expulsion of the knowledge. We
validated this model in a case study of the pair
programming that is a part of eXtreme Program-
ming (Martin, 2002). In pair programming, two
programmers work side-by-side at one machine as
they collaborate in program design, implementa-
tion, and testing. The programming pair has to
communicate and share the knowledge, and this

gives an opportunity to analyze unobtrusively
their dialog for the indications of the programmer
knowledge and learning.

The first section of this article describes our
theory of constructivist learning. The second sec-
tion describes the case study. The third section
contains the discussion of the results of the case
study and the fourth section has an overview of
the related literature. The fifth section contains
general conclusions and future work.

theory oF constructIVIst
leArnIng

The constructivist learning model is based on the
work of Piaget (Piaget, 1954). The original aim
of Piaget was to explain learning in children, but
the constructivist theory extends to adult learn-
ing and to epistemology (von Glasersfeld, 1995).
The theory assumes that the learners actively and
incrementally construct their knowledge. They
start from some preliminary knowledge, and they
extend it by adding new facts to it; they may go
through stages in which they may accept ideas
that they will later discard as wrong. The two
main activities are assimilation and accommoda-
tion, where assimilation describes how learners
deal with new knowledge, and accommodation
describes how learners reorganize their existing
knowledge.

We modified this theory by dividing assimila-
tion into two separate activities. Absorption means
that the learners add new facts to their knowledge.
However, if the new facts do not fit in, the learners
may reject them; we call this second activity a
denial. We also divided accommodation into two
separate activities. Reorganization means that the
learners reorganize their knowledge to aid future
absorption of new facts. Expulsion is the process
where part of the knowledge becomes obsolete or
provably incorrect and the learners reject it. Of
course, there are also mixed activities: learners
may absorb a modified fact, rather than make an

912

Constructivist Learning During Software Development

outright denial; learners may reorganize their
knowledge while absorbing new facts, and so forth.
Table 1 lists the four basic learning activities.

In order for learning to occur, the learners
must possess preliminary knowledge. Preliminary
knowledge makes learning possible; the more the
learners know, the more they can learn. Some-
times this preliminary knowledge turned out to
be inaccurate or even completely wrong, and the
learners employed the four cognitive activities
to build more accurate knowledge. The theory is
particularly suitable to the situations where learn-
ers must discover the facts of the knowledge on
their own, without a teacher, which is a common
situation in software engineering.

The assertion of this theory is the follow-
ing: When the process of learning is recorded
and divided into episodes, every episode can be
classified in terms of the categories of the con-
structivist learning model. The model would be
falsified (Popper, 2003) if there were episodes
that laid outside of our classification scheme, or
if independent observers frequently arrived at
different conclusions about the same observed
episode, indicating that the classifications are
arbitrary.

Each episode deals with specific concepts
that are part of the knowledge. In the context of
program development, the concepts can be clas-

sified as either domain concepts or programming
concepts. Domain concepts belong to a specific
domain that the program addresses (Biggerstaff,
Mitbander, & Webster, 1994), while program-
ming concepts belong to the knowledge of pro-
gramming, such as the programming language,
program development process, design decisions,
and so forth. Design decisions involve program
architecture, selection of the program classes,
methods, or attributes, and so forth (Ran &
Kuusela, 1996).

The leaning process can be explained in terms
of analogy with incremental program develop-
ment. The knowledge that is constructed by the
programmers is analogous to the program they

Activity Symbol Characterization of the activity
Absorption a The learners add new facts to their knowledge.

Denial d The learners reject the new facts that do not fit in.

Reorganization r The learners reorganize their knowledge to aid future
absorption.

Expulsion e A part of the knowledge becomes obsolete and the
learners reject it.

Table 1. Learning activities

Programming
Activities

Cognitive
Activities

Incremental change Absorption
Rejection of change request Denial
Refactoring Reorganization
Retraction Expulsion

Table 2. Analogy between programming activities
and cognitive activities

 913

Constructivist Learning During Software Development

incrementally develop, and the activities of their
learning are analogous to the activities of incre-
mental development. The analogy is summarized
in Table 2 where analogous terms are in the same
row. The case study of the next section examines
an application of this model.

the cAse study

For our case study, we utilized the eXtreme Pro-
gramming process (Beck, 2000), where pair pro-
gramming is one of the recommended practices.
Pair programming offers a unique opportunity to
study the parallel construction of both the program
and the programmer knowledge. In pair program-
ming, the programmers communicate with each
other about the evolving program. By recording
and analyzing their dialog, we study how both
the knowledge and program grow.

The program developed during this case study
records bowling scores (Martin, 2002). The pro-

gramming was done by two experts who have
been working in the industry for more than 25
years (Martin, 2002).

The programming pair started the process
with the preliminary knowledge of the domain
(bowling rules), represented by the concept map

pin

frame

ball

spare strike

throw

scorer current score

game

score team

Figure 1. Domain concepts

TestCase

TestThrow

testThrow()

TestFrame

TestFrame()
testScoreNoThrow()
testAddOneThrow()

Throw Score

Frame

getScore()
add()

Figure 2. UML diagram of the first version

Figure 3. Design decisions for the first version

Throw

TestThrow

throw

Score

TestFrame

getScore

testScoreNoThrow

add

frame

score

testScoreOneThrow

Frame

914

Constructivist Learning During Software Development

Equipped with this knowledge, the program-
mers implemented a sequence of the program
versions and recorded their dialog. The UML
class diagram (Fowler, 1999) of the first version
is in Figure 2. The design decisions that led to this
diagram were extracted from the recorded dialog
and appear in Figure 3. The rectangles represent
design decisions, while arrows represent the order
in which the design decisions were made. Dark
rectangles represent domain concepts that serve
as the basis of some of the design decisions. Please

Throw

TestThrow

throw

Frame

Score

TestFrame

getScore

testScoreNoThrow

testScoreOneThrow

add

frame

score
Game

game

TestGame

score

add

itsScore

testFourThrowsNoMark

ScoreForFrame

itsCurrentThrows

testSimpleSpare
setUp testSimpleFrameAfterSpare getCurrentFrame

itsCurrentFrame

firstThrow

adjustCurrentFrame

testSimpleStrike

Pins pins

spare
Spare

strike

testEndOfArray testHeartBreak testTenthFrameSpare

Ball

firstThrow

secordThrow

firstThrowInFrame

testPerfectGame testSimpleGame

testTwoThrowsNoMark

ball

Strike

Figure 4. Design decisions after episode 87

in Figure 1 (Novak, 1998), where concepts are
represented by rectangles and the arrows repre-
sent the dependencies. The dependencies stand
for the order in which the concepts have to be
explained to somebody who is not familiar with
the domain; a concept can be explained only if
all previous concepts on which it is dependent
have been explained and understood. Preliminary
programming knowledge includes knowledge of
the programming language, algorithms, eXtreme
Programming practices, and so forth.

 915

Constructivist Learning During Software Development

note that the order of the design decisions does not
correspond to the order of the dependencies in the
UML diagram. If the two orders were identical,
that would mean that all design decisions were
done in bottom-up order.

The development continued through several
steps; see the progress of the learning in Figure 4
that shows the situation toward the end of the dia-
log. Programmers realized that the class “Frame”
and the related classes do not contribute toward
the functionality of the program and deleted them.
The resulting UML class diagram of the program
is in Figure 5.

We divided this dialog into 94 small episodes,
and then three independent observers classified
each episode as one of the four cognitive activi-
ties, using the characterization of the activities in
Table 1. Out of 94 episodes, only 5 episodes were
classified differently by each of the observers;
in 30 episodes there was a partial disagreement
where one observer differed from the other two;
in these cases we discussed the cases and chose
the majority opinion as the final classification.
While acknowledging these differences, we found
the classification in general was acceptable and
reliable. The sample dialog and its resulting clas-
sification are shown in Table 3.

the result oF the cAse study

In the case study, we observed that the knowl-
edge required by even a small program is quite
extensive, as demonstrated in Figure 4. It should
be remembered that these figures are only the “tip
of the iceberg,” as there is a large preliminary
knowledge of the domain and programming that
these figures do not capture. Yet all that knowledge
is necessary to evolve the program.

During the incremental program develop-
ment, the most common cognitive activity was
absorption (about 71.3%) as shown in Table 4,

TestGame

g : Game

TestGame()
testTwoThrowsNoMark()
testFourThrowsNoMark()
testSimpleSpare()
setUp()
testSimpleFrameAfterSpare()
testSimpleStrike()
testPerfectGame()
testEndOfArray()
testSampleGame()
testHeartBreak()
testTenthFrameSpare()

Scorer

ball : int
itsThrows : []int
itsCurrentThrow : int

addThrow()
scoreForFrame()
strike()
spare()
nextTwoBalls()
nextBall()
twoBallsInFrame()

Game

itsCurrentFrame : int
firstThrowInFrame : boolean
itsScorer : Scorer

score()
add()
adjustCurrentFrame()
handleSecondThrow()
advanceFrame()
adjustFrameForStrike()

Figure 5. Final program

916

Constructivist Learning During Software Development

No Programmers’ actions Activity Concepts
updated

35

K: Why the magic number 21?
M: That’s the maximum possible number of throws in a game.
K: scoreForFrame needs to be refactored to be more
communicative.

r

36

K: But before we consider refactoring, let me ask another
question: Is Game the best place for this method? In my mind,
Game is violating Bertrand Meyer’s SRP (Single Responsibility
Principle). It is accepting throws and it knows how to score for
each frame. What would you think about a Scorer object?

a Game,
Scorer

37

M: But there are side-effects in the score+= expression. They
don’t matter here because it doesn’t matter which order the two
addend expressions are evaluated in.
K: I suppose we could do an experiment to verify that there
aren’t any side-effects, but that function isn’t going to work
with spares and strikes. Should we keep trying to make it more
readable or should we push further on its functionality?

d

38

M: The experiment would only have meaning on certain
compilers. Other compilers might use different evaluation
orders. Let’s get rid of the order dependency and then push on
with more test cases.

r

39
M: Next test case. Let’s try a spare.
K: Let’s refactor the test and put the creation of the game in a
setUp function.

r

40
M: That’s better now. Let’s write the spare test case. I think the
increment of ball in the frameScore==10 case shouldn’t be
there. Here’s a test case that proves my point.

a Spare

41
M: See, that fails. Now if we just take out that pesky extra
increment. It still fails.... Could it be that the score method is
wrong?

d Score

42 M: I’ll test that by changing the test case to use scoreForFrame
(2). a

43 M: That passes. The score method must be messed up. a

44
M: That’s wrong. The score method is just returning the sum of
the pins, not the proper score. What we need score to do is call
scoreForFrame with the current frame.

a Score

45 K: We don’t know what the current frame is. Let’s add that
message to each of our current tests, one at a time. a

46 M: OK, that works. But it’s stupid. Let’s do the next test case. a
47 M: Let’s try the next. This one fails. Now let’s make it pass. a

48

K: I think the algorithm is trivial. Just divide the number of
throws by two, since there are two throws per frame. Unless
we have a strike ... but we don’t have strikes yet, so let’s ignore
them here too. What if we don’t calculate it each time? What if
we adjust a currentFrame member variable after each throw?

a Frame

Table 3. Fragment of the dialog and the classification

 917

Constructivist Learning During Software Development

and it dominated the programming process from
the beginning to the end. This coincides with the
intuition that the knowledge increases during the
program implementation.

While absorption was the driving force of
the learning, there was one large episode of
knowledge expulsion in the last part of the dialog.
Class “Frame” of Figure 4 and six related design
decisions out of the total of 39 were retracted as a

part of code “cleaning,” resulting in a substantial
knowledge change. This episode illustrates the
non-monotonic nature of constructivist learning.
The changing number of concepts are presented
in Figure 6.

There were also episodes of reorganization,
which amounts to 17% of all episodes. The rejec-
tion of concepts “Score Card” and “Team” in the
first part of the dialog are examples of denial.

Figure 6. Changing numbers of the concepts and their dependencies

Activities beginning middle end total percentage
Absorption 27 18 22 67 71.3%
Denial 1 4 0 5 5.3%
Reorganization 0 7 9 16 17%
Expulsion 2 1 3 6 6.4%
Total 30 30 34 94 100%

Table 4. The distribution of the cognitive activities in the case study

0

5

10

15

20

25

30

35

40

45

50

1 11 21 31 41 51 61 71 81 91

episode number

nu
m

be
r o

f c
on

ce
pt

s

918

Constructivist Learning During Software Development

We observed that the absorption occurred
mostly at the beginning and middle of the dialog,
while the expulsion happened most often in the
last part. Reorganization appeared mostly in the
middle and last parts, and denial appeared only
in the first and middle parts of the dialog.

Programmers discussed nine domain concepts
in three episodes before the coding started, but
during the rest of the development almost all the
domain concepts were revisited, and their com-
prehension was updated. The domain concept
“Frame” was updated as many as nine times,
with each update resulting in more accurate
knowledge. Many design decisions were also
updated, but less frequently than domain concepts.
As a result of the case study, we conclude that
the constructivist learning model explains the
learning that takes place in incremental software
development and that the learning is significantly
non-monotonic.

relAted work

CI is a multidisciplinary research area that is at the
intersection of cognitive science, neural psychol-
ogy, philosophy, software engineering, and other
disciplines (Wang, 2002). Wang (2004) previously
investigated the relationship between software
engineering and cognitive informatics.

There have been numerous publications on
constructivist learning, including the classical
work of Piaget (Piaget, 1954). von Glasersfeld
(1995) described constructivism as a theory of
knowledge and defined radical constructivism
as a theory of learning. Novak (1998) addressed
theories of learning, knowledge, and instruction
and used concept maps as tools to describe the
knowledge. The knowledge graphs of this article
follow Novak’s approach.

Other notable learning theories include Vy-
gotsky (1978), who proposed the social cognition
learning that emphasizes social interaction in
the development of cognition. Although social

interaction is an important element during soft-
ware engineering processes, we believe that our
emphasis must be on the individual program-
mers and their autonomous construction of their
knowledge, and hence we found this theory less
applicable.

Observational learning theory states that learn-
ing occurs through the simple processes of observ-
ing someone else’s activity (Biederman, Stepaniuk,
Davey, Raven, & Ahn, 1999). However, software
engineering processes involve more complicated
processes than simple observation; therefore, obser-
vational learning is not suitable here. Behaviorism
focuses on the objectively observable behaviors at
the expense of mental activities; therefore, we do
not use it for explanation of software engineering
activities.

Brain-based learning is based on the structure
and function of the brain and emphasizes the
fact that the brain can perform several activi-
ties at once, like tasting and smelling. Learning
involves both focused attention and peripheral
perception and both conscious and unconscious
processes (Jensen, 2000). Because brain-based
learning deals with the functions of the brain
rather than the cognitive activity of learners, we
did not use it.

Control theory claims that behavior is not
caused by a response to an outside stimulus, but
inspired by what a person wants most, such as
survival, love, and freedom (Glasser, 1998). Again
we did not find that view useful for the study of
software engineering learning.

We concluded that although these theories
contain valuable insights, they are not directly
applicable to our purposes. The most promis-
ing theories we found include the constructivist
learning, which we adopted as part of our model
of constructivist learning.

Incremental software development has been
described in numerous publications, for example
Beck (2000), Martin (2002), and Williams,
Kessler, Cuningham, and Jeffries (2000). Beck
(2000) introduced a new approach to software

 919

Constructivist Learning During Software Development

development, called eXtreme Programming that
is based on practices of incremental development,
continuous testing, pair programming, and several
other practices.

Several researchers have studied knowledge
contained in a program. According to Brooks
(1983), a programmer understands a program
through construction of a mental model that
consists of successive knowledge domains.
Fischer, McCall, Ostwald, Reeves, and Shipman
(1994) proposed a support for the incremental
development based on a specific knowledge
model, where seeding, evolution, and reseeding
are the three stages of knowledge capture and
transformation. Henninger (1997) recognized that
software development is a process involving vari-
ous knowledge resources, which keep changing
during the process. Robillard (1999) identified two
types of knowledge: topical and episodic. Topical
knowledge refers to the meaning of words, and
episodic knowledge consists of people’s experi-
ence with knowledge.

In our previous work, Rajlich (2002) presented
the program comprehension as a learning pro-
cess. In a case study of an incremental software
development, Rajlich and Xu (2003) described
an analogy between incremental software de-
velopment and constructivist learning. A study
of program debugging was based on Bloom’s
taxonomy (Bloom, 1956; Xu & Rajlich, 2004).
Xu and Rajlich (2005) developed a dialog-based
protocol, a novel empirical research method
that is based on the analysis of the dialogs in a
programming pair, and give an insight into the
programmer cognitive activities. This approach
may reduce Hawthorne and placebo effects that
are present in other empirical techniques.

Many existing software documentation tools
do not pay sufficient attention to the changes in
knowledge and essentially assume that the knowl-
edge is unchanged (Forward & Lethbridge, 2002).
Among them, JavaDoc extracts documentation
statically from Java source files and produces
formatted HTML output (Gosling, Joy, & Guy,

1996), Doc++ (Wunderling & Zцckler, n.d.) is
useful for creating hierarchical documentations
of class libraries; Doxygen (2004) is used for
documentation of Java, C, and C++ programs.
Donald Knuth’s Literate Programming (Knuth,
1984) places both source code and documenta-
tion into the same file. None of these systems
directly supports non-monotonicity in the con-
struction of the knowledge. PAS (Rostkowycz,
Rajlich, & Marcus,2004) is a hypertext-based
documentation system suitable for incremental
redocumentation

conclusIon And Future work

In this article, we introduced a model of construc-
tivist learning and used it to explain programmer
learning during a software engineering process.
The model is based on the four cognitive activities:
absorption that adds new facts to the knowledge,
denial that rejects facts that do not fit in, reor-
ganization that reorganizes the knowledge, and
expulsion that rejects obsolete knowledge.

We validated the model in a case study of
pair programming during incremental program
development. The data of this article are based
on the analysis of the dialog in a programming
pair. From the data we concluded that the clas-
sification of programmers’ actions according to
the constructivist model of learning reflects well
the process of learning.

We noted that the knowledge required for
incremental software development is large and
changes rapidly. We plan to investigate nature of
this knowledge in more detail and see whether
there are any particular substructures of this
knowledge that require greater programmer at-
tention.

We observed episodes of both knowledge in-
crease and decrease and hence the growth of the
knowledge in non-monotone. This fact is impor-
tant for the program documentation systems.

920

Constructivist Learning During Software Development

Future work includes additional studies of
pairs of programmers during the development
of larger programs, in order to further assess the
insights provided by the constructivist learning,
and to analyze the differences between novices
and experts. We also plan to develop specialized
documentation tools that will support the non-
monotonic nature of the knowledge growth during
the program development.

AcknowledgMent

The authors would like to acknowledge Jay
Rajnovich for his help with writing this article
and Claudia Iacob for being one of the observers
who classified the episodes. We also thank the
anonymous reviewers for their comments that
significantly improved this article. This research
was supported in part by grants from the National
Science Foundation (CCF-0438970), the National
Institute for Health (NHGRI 1R01HG003491),
and by 2005 and 2006 IBM Faculty Awards. Any
opinions, findings, conclusions, or recommenda-
tions expressed in this material are those of the
authors and do not necessarily reflect the views
of the NSF, NIH, or IBM.

reFerences

Beck, K. (2000). Extreme programming ex-
plained. MA: Addison-Wesley.

Biederman, G. B., Stepaniuk, S., Davey, V. A.,
Raven, K., & Ahn, D. (1999). Observational
learning in children with Down syndrome and
developmental delays: The effect of presentation
speed in videotaped modeling. Down Syndrome
Research and Practice, 6(1), 12-18.

Biggerstaff, T. J., Mitbander, B. G., & Webster,
D. E. (1994). Program understanding and the
concept assignment problem. Communication of
the ACM, 37(5), 72-82.

Bloom, B. S. (Ed.). (1956). Taxonomy of educa-
tional objectives: The classification of educational
goals: Handbook, I, Cognitive domain. New York,
Toronto: Longmans, Green.

Brooks, R. (1983). Towards a theory of the
comprehension of computer programs. Interna-
tional Journal of Man-Machine Studies, 18(6),
543-554.

Doxygen. (2004). Doxygen Web site. Retrieved
January 7, 2005, from http://www.stack.nl/
~dimitri/doxygen/

Fischer, G., Mccall, R., Ostwald, J., Reeves, B., &
Shipman, F. (1994). Seeding, evolutionary growth
and reseeding: Supporting the incremental devel-
opment of design environments. Paper presented at
the Conference on Computer-Human Interaction
(Chi’94), Boston, MA.

Forward, A., & Lethbridge, T. (2002). The rel-
evance of software documentation, tools and
techniqies: A survey. Paper presented at the
ACM Symposium on Document Engineering,
Mclean, VA.

Fowler, M. (1999). Refactoring: Improving the
design of existing code. MA: Addison-Wesley.

Glasser, W. (1998). The quality school. Peren-
nial.

Gosling, J., Joy, B., & Guy, S. (1996). Java lan-
guage specification. MA: Addison-Wesley.

Henninger, S. (1997). Tools supporting the cre-
ation and evolution of software development
knowledge. Paper presented at the International
Conference on Automated Software Engineering
(ASE’97), Incline Village, NV.

Jensen, E. (2000). Brain-based learning: The
new science of teaching and training (revision
ed.). Brain Store Inc.

Knuth, D. (1984). Literate programming. The
Computer Journal, 27(2), 97-111.

 921

Constructivist Learning During Software Development

Kozaczynski, W., & Wilde, N. (1992). On the
re-engineering of transaction systems. Journal
of software maintenance, 4, 143-162.

Martin, R. C. (2002). Agile software develop-
ment, principles, patterns, and practices. MA:
Addison Wesley.

Novak, J. D. (1998). Learning, creating, and us-
ing knowledge. Mahwah, NJ: Lawrence Erlbaum
Associates.

Piaget, J. (1954). The construction of reality in
the child. New York: Basic Books.

Popper, K. (2003). The logic of scientific discovery.
Taylor & Francis Books Ltd.

Rajlich, V. (2002). Program comprehension as
a learning process. Paper presented at the First
IEEE International Conference on Cognitive
Informatics, Calgary, Alberta.

Rajlich, V., & Bennett, K. H. (2000). A staged
model for the software lifecycle. Computer,
33(7), 66-71.

Rajlich, V., & Xu, S. (2003). Analogy of incre-
mental program development and constructivist
learning. Paper presented at the Second IEEE
International Conference on Cognitive Informat-
ics, London, UK.

Ran, A., & Kuusela, J. (1996). Design decision
trees. Paper presented at the Eighth International
Workshop on Software Specification and Design,
Paderborn, Germany.

Robillard, P. N. (1999). The role of knowledge in
software development. Communications of the
ACM, 42(1), 87-92.

Rostkowycz, A. J., Rajlich, V., & Marcus, A.
(2004). Case study on the long-term effects of
software redocumentation. Paper presented at the
20th IEEE International Conference on Software
Maintenance, Chicago, IL.

Rugaber, S., Ornburn, S. B., & LeBlanc, R. J.
(1990). Recognizing design decisions in programs.
IEEE Software, 7(1), 46-54.

von Glasersfeld, E. (1995). Radical constructiv-
ism. London: The Falmer Press.

Vygotsky, L. S. (1978). Mind in society. Cam-
bridge, MA: Harvard University Press.

Wang, Y. (2002, August), On Cognitive Informat-
ics, Keynote Speech. In Proceedings of First IEEE
International Conference on Cognitive Informat-
ics (ICCI'02), (pp.34-42). Calgary, AB., Canada.
IEEE CS Press.

Wang, Y. (2004, August). On cognitive infor-
matics foundations of software engineering. In
Proceedings 3rd IEEE International Conference
on Cognitive Informatics (ICCI'04) (pp. 22-31).
Canada: IEEE CS Press.

Wang, Y., & Kinsner, W. (2006). Recent advances
in cognitive informatics. IEEE Transactions on
Systems, Man, and Cybernetics (C), 36(2), 121-
123.

Williams, L., Kessler, R., Cuningham, W., & Jef-
fries, R. (2000). Strengthening the case for pair-
programming. IEEE Software, 17(4), 19-25.

Wunderling, R., & Zцckler, M. (n.d.). Docpp.
Retrieved from http://www.zib.de/visual/soft-
ware/doc++/

Xu, S., & Rajlich, V. (2004). Cognitive process
during program debugging. Paper presented
at the Third IEEE International Conference on
Cognitive Informatics, Victoria, BC.

Xu, S., & Rajlich, V. (2005). Dialog-based proto-
col: An empirical research method for cognitive
activity in software engineering. Paper presented
at the Fourth ACN/IEEE International Sympo-
sium on Empirical Software Engineering, Noosa
Heads, Queensland.

922

Constructivist Learning During Software Development

Ye, Y. (2006). Supporting software development
as knowledge-intensive and collaborative activity.
Paper presented at the 2006 International Work-

shop on Interdisciplinary Software Engineering
Research, Shanghai, China.

This work was previously published in the International Journal of Cognitive Informatics and Natural Intelligence, edited by
Y. Wang, Volume 1, Issue 3, pp. 78-101, copyright 2007 by IGI Publishing (an imprint of IGI Global).

 923

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.22
Designing for Service-Oriented

Computing
Bill Vassiliadis

Hellenic Open University, Greece

executIVe suMMAry

This case describes major management and
technology issues which arise when designing
advanced service-oriented architectures in distrib-
uted networked environments used for e-learning.
The organization at hand uses a mixed funding
model and is preparing for a large expansion of its
services and capacity. This case takes place after
the initiation of a project and during the design
phase where significant decisions have to be taken
about what is feasible, what are the risks and how
they can be dealt with and finally, what is to be
developed and how. The need to address diverse
goals set by business, technology and education
right from the start of the project requires new
methodologies for documenting development
plans, feasibility studies, risk, and human resource
management policies. The project manager needs
to go beyond traditional project management
methods in order to cope with the needs of this
use case and most importantly, to manage the risk
that arises from many directions.

orgAnIsAtIonAl bAckground

This case is set in the higher education industry
involving an Open University which utilizes a
mixed business model: its operation is funded by
both public and private funds. This institution is
supporting a diverse population of students which
undertake undergraduate or postgraduate studies.
Moreover, it provides postgraduate curricula to
graduates who wish to extend or upgrade their
studies to subjects related to their profession. The
University’s curricula correspond to various cer-
tificates, Bachelor or Master’s degrees. A Bachelor
degree is comprised of several research directions.
Courses, organized in modules, are designed ac-
cording to the distance learning methodology:
students study using text books, participate in 5
tutorials for each module taking place in 8 towns,
communicate with the corresponding tutor by
telephone, fax, e-mail and letters, prepare 4 – 6
assignments for each module and finally, take a
final examination 10 months later. A student be-
longs to one student group, called class. A class

924

Designing for Service-Oriented Computing

is based on a major city in which class sessions
take place. A tutor is allocated for each class of
a maximum capacity of 32 students who inhabit
in a specific geographical region.

The organization’s educational services are
targeted to a very specific audience:

• students: students are the main clients of the
organization. They pay fees for attending
courses.

• other Academic Institutions collaborating
with the University: academic institutions
are possible collaborators in the development
and provision of MSc Curricula.

The academic personnel of the institution
involve a small number of about 30 permanent
personnel (Professors, Associated Professors and
Assistant Professors) as well as a large number of
tutors (about 1000). Each one of the permanent
personnel undertakes, besides tutoring, the coor-
dination of all classes and the overall academic
responsibility for a specific course. Tutors cooper-
ate with the University on an annual basis.

This organization is supported by a mixed
funded scheme: it allows admission of students
without an entry examination but although it is a
state University, students pay fees for the cost of
their studies. Fees cover the cost of the instruc-
tive material and all the expenses related to the
studies. The number of annual registrations in
each bachelor degree programme is about 500.
To date, over 1800 students are registered for
various stages of each course. Future plans of the

administration foresee a significant increase in the
number of new registrations will reach up to 1500
per year. The total number of students attending
at all the educational programmes totals to 16000.
Table 1 summarizes these figures.

The institution is relative new, with only five
years of existence. It monopolizes the open and
distance education of the country since it is the
first and only higher education institute of its kind
with bachelor and MSc. degrees recognized by
the state. This fact has given the administration
of the University the possibility to expand both
its range of services and its capacity without
serious competition in the domestic market. The
following graph depicts in approximation, the
annual increase of the organization’s budget for
the last 5 years.

It is worth noting that the unique services
offered has created a large and ever-increasing
client base. As the University is annually increas-
ing its capacity, more and more applications are
made for filling new student positions. Figure 2
presents this annual increase in capacity and the
corresponding applications for registration for
the last five years.

Since the organization is an Open University,
new technologies are used for delivering educa-
tion: electronic material, video lectures, electronic
forums and e-mail. Advanced services include
high-end communication and collaboration tools
for online delivery of content and lectures in real
time. It is reported that these tools have several
drawbacks and they will be probably replaced
in the near future. Asynchronous services are

Administrative
Staff

Permanent Academic
Staff

Non-permanent
Academic Staff Students (clients)

100 30 1000 16000+

Table 1. Organization’s staff and clients

 925

Designing for Service-Oriented Computing

Figure 1. Annual budget increase

Figure 2. Applications vs. admission of students (clients) for the last five years

Fiscal year

Budget (millions of $)

 2000 2001 2002 2003 2004 2005

35

30

25

20

15

10

5

0

Academic
year

Clients (in thousands)

 2000 2001 2002 2003 2004 2005

70

60

50

40

30

20

10

0

Applications

Admitted

926

Designing for Service-Oriented Computing

provided through Web sites, forums and e-mail.
Frequent meetings between tutors and students
take place for presentations, discussing problems
or for providing additional information. Since
this University covers the whole country, a small
number of centres are used in major cities provid-
ing support such as lecture rooms and in the near
future, video-conferencing facilities. It must be
noted that a firm policy of the organization is to
keep the tutor/student ratio steadily at 1:30, regard-
less of the increase in user capacity. This allows the
continuing monitoring of student’s performance
and the establishment of tight relations between
the learners and the academic staff.

The organization’s culture is characterized by
a spirit of innovation both technologically and
administratively. Although some initial orga-
nizational problems prohibited rapid expansion
in the first 4 years of its operation, rapid growth
has taken place in the beginning of the fifth year
while ambitious plans have been set for the next
5 years: a 50% expansion with regard to current
numbers.

The population of students, the actual users of
the organization’s services, is extremely diverse.
A typical student is rather of a mature age, part
time student. Many students are already profes-
sionals and have different cultural backgrounds
and career goals. They are highly geographically
dispersed all around the country.

settIng the stAge

In order to support the rapid expansion within the
next five years, the organization has decided to use
new technologies as a spearhead for increasing
quality of service and reducing organizational
complexity. The main effort was focused on the
main product: e-learning service provision. The
effort of upgrading services was of a high risk
because the client population was very sensitive
to changes in the way learning was delivered.
On the other hand, repeated evaluations of cur-

rent procedures had shown several deficiencies
in service delivery and most of all inability to
support the ever-increasing client population. In
short, services were suffering from the following
drawbacks:

• low participation. The participation of stu-
dents to e-learning sessions and the use of
collaboration tools were extremely low. The
main reason was that users were not moti-
vated enough. Although basic functionality
such as video-conferencing and collabora-
tive support were provided, procedures and
tools seemed to lack the interactivity and the
efficiency needed for broad acceptance.

• interactivity: The lack of interactivity in
current services was largely reducing the
interest of users.

• efficiency. Since students had significant
time constraints (most of them were em-
ployed), services should have been tailored
as mush as possible. This means that an up-
graded version of the system should provide
the means to cut down the costs of learning
through adaptation, along with effective task
assignment, execution duration control and
monitoring.

• cost reduction. The inclusion of new tools or
services to the existing system was deemed
to be a too costly process. Costs increase
when management of the integration of
internal and external resources is needed:
aspects such as security, heterogeneity and
copyright were not dealt with by current
approaches.

• ever-increasing number of clients. The
number of clients (actually students) that
need to be supported by distance learning
applications was quite large. Their number
is estimated to increase by 50% within the
next five years. Normally, this would not be
a problem if static Web applications were
used for delivering content. A simple Web
server would be adequate. Nevertheless, in

 927

Designing for Service-Oriented Computing

the case of more complex services, there was
a problem on how to cope with tens or even
hundreds of processes running at the same
time by remote users. Furthermore, accord-
ing to the organisation’s rules, there could be
no strict rules on when students may access
a service or not. Access to services is quite
random in terms of number of users, time of
access and duration of use. The University’s
policy to improve the quality and capacity
of the e-learning services (number of user
supported), required a solution that could
handle possibly thousands of users at the
same time.

Existing tools used were quite cost-effective
to support, relying mainly on Web-based technol-
ogy. They included:

• asynchronous collaboration tool, which was
being used for simple collaboration/ sharing
of knowledge and resources and virtual class
management.

• Web sites and forums, used for asynchronous
delivery of educational material and for off-
line collaboration.

• tools and Web browsers were used to access
and manipulate information objects:
o Internet Explorer/Mozilla for Web

browsing,
o Word for creating documents,
o PowerPoint for creating, organizing

and illustrating presentations,
o WordPad for plain text editing.

Besides the obvious drawbacks of using such
simple technology for supporting an extremely

Figure 3. Example of a distributed business model: headquarters (black square) and satellite centers
(white squares) of the organization are geographically dispersed

928

Designing for Service-Oriented Computing

demanding and diverse client population, another
disadvantage relating to the philosophy of the
organisation was soon discovered: its business
model was distributed and current technological
solutions were based on a client-server model.
The University has its headquarters in a major
city of the country while clients are supported
by 8 satellite centers based on 8 other cities
(Figure 3). This network was already supported
by a high speed network backbone guarantying
fast delivery of heavy loads. Although electronic
services were geographically independent, other
services were provided on-site. The latter included
mainly facilities for regular face to face sessions,
a significant aspect of the University’s educational
policy. Thus, several of the provided services
were geographically-sensitive, but the supporting
technology was not.

Such a business model was recognized as an
advantage but only in the case were distributed
computing would be used as its enabler. Ad-
ministration as well as user services should be
supported by a networked model mapped to the
nodes of the existing, underlying business model.
Classic practices used so far were minimizing ROI
(Return on Investment) and kept quality and user
satisfaction at low levels.

The above-mentioned situations required
a mixed economic/technological/pedagogical
solution that would not address all problems at
once, but rather deal with the most important
ones. This decision was made after considering
several similar cases of organisations that tried to
introduce state of the art technologies, although
not all of them were based on a high risk/high
gain model. Most such efforts involved small scale,
single institute adoption of state of the art tools
from which the organization’s experts have drawn
some useful conclusions (Haywood, Anderson,
Coyle, Day, Haywood & Macleod, 2000; Jeffer-
ies, Thornton, Alltree & Jones, 2004; Saunders &
Klemming, 2003). Cross-institution (Van Weert
& Pilot, 2003) or nation-wide (Demb, Erickson

& Hawkins-Wilding, 2004) efforts were also
considered since one of the University’s future
and most bold goals was to become a nationwide
service provider of e-learning services to the
commercial sector also.

Before any decision was taken about how to
proceed, feelings about changes were mixed. On
one hand, most thought that using advanced IT
for facilitating better service provision was a must
but the economy and benefits of such a solution
were under question. The benefits of introducing
advanced e-learning services, even in an orga-
nization that already uses IT as a backbone, still
remains in theory. Services that are considered
the most promising are also the most costly: per-
sonalization, real-time communication and other
advanced functionalities lead to significant costs.
So the business problem faced in this situation was
focused on how to improve e-learning services
by keeping costs to a minimum and maximize
ROI in such a diverse and difficult sector as the
educational one (Bender, 2003).

cAse descrIptIon: goAls

Before undertaking any large effort to upgrade
the current system, it was decided that it would
be wiser to test some high risk/high gain tech-
nological/educational solutions to a specific cur-
riculum. Three main directions where considered
as most important for project execution: economy,
pedagogy and technology. Funding was provided
by the participation of the University to a large
international project with very ambitious goals:
to design and develop new educational services
using distributed technologies. Although this en-
tailed a high risk, possible benefits were also high.
Furthermore, the fact that funding was coming
from external sources, did reduced somewhat the
economic risk of the University itself.

The pedagogical goal of the project was to
improve learning through real time cooperation/

 929

Designing for Service-Oriented Computing

working among individuals, sharing and reuse of
information in highly distributed and dynamic
environments. The pedagogical goals outlined
had highly demanding technical requirements,
many of which were also the concerns of dis-
tributed systems research (Duffy & Jonassen,
1992). Group working implies shared interac-
tive resources, necessitating both concurrency
control and awareness of others activities. Active
learning requires interactive resources, many of
which will only be engaging if they are suitably
responsive – a quality of service (QoS) issue that
depends on many components of a distributed
system – the low-level infrastructure (hardware,
OS, network), the middleware and the interface
software. Concurrency control and interactive
responsiveness can make conflicting demands on
a system. Real world input, such as live student
interaction makes a network connection manda-
tory, and this again raises QoS issues such as
fault detection, masking and tolerance for the
learning environment. Accessibility, as in any-
time/anywhere, requires availability, which may
be supported through replication of resources,
but this creates further tensions with responsive-
ness and concurrency control due to the need to
maintain state across replicas. Accessibility also
means adapting to available capabilities. For
example: can the same learning environment be
delivered through low-bandwidth mobile devices
and high-bandwidth multimedia workstations?
Accessibility also means supporting special
needs of the individual, such as disabilities. More
generally, the individual user should be recog-
nized and catered for, and this personalization
requires semantic tagging and profiling that can
be difficult to formulate, both conceptually and
in terms of machine representation. Standards
efforts have been particularly slow in addressing
this problem. Finally, contextualization required
a move from the traditional view of an online
learning environment as a stable long-lived entity
(e.g., during the lifetime of a teaching module)

– to another where the environment may evolve
and change much more frequently, perhaps even
several times a year – a dynamicity that is alien
to current e-learning products.

The overall goal of the project was set to be
the improvement of the efficiency of current e-
learning practices by promoting a collaborative/
social learning model based on services rather
on tools. Furthermore, to use the new services
as reinforcements to the foundations laid by the
linear structured text books and the online and
off-line lectures. As mentioned in a previous
section, the goal was not to solve all identified
problems, but rather to integrate a new learning
methodology that would work as a supplement to
existing practices. The aim was to increase:

• student motivation to participate in online
sessions,

• student confidence and satisfaction,
• efficiency of the learning process.

In order to reach the main goal, the following
subgoals had to be accomplished:

sub-goal 1

• provide added value services in the form of
highly interactive multi-cooperation ses-
sions and advanced virtual communities
support.

• provide advanced, media rich services in
the form of multi-step, cooperative working
sessions for the a specific course.

• facilitate social learning and collaboration
through knowledge sharing and reuse be-
tween groups and individuals.

sub-goal 2

• support thousands of users while preserving
adequate Quality of Service.

930

Designing for Service-Oriented Computing

• provide the services to a diverse and very
large student population.

• provide a single access point with a homo-
geneous interface.

• preserve quality of service (fault tolerance,
response time) at any time.

sub-goal 3

• evaluate the didactical approach and the
technology infrastructure by contacting a
real, large scale experiment in the selected
course.

• provide/configure metrics for measuring
performance in terms of scalability, quality
of service and security.

• test the infrastructure in a real situation.
• assess the results and provide feedback.

Supporting computationally expensive ser-
vices for thousands of users with minimum costs
and maximized ROI was the biggest challenge. A
novel, and thus high risk technology was selected
for delivering the services: grid computing.

grId coMputIng: stAte oF the
Art

Grid computing is a new paradigm that enables
the virtualization, management and provision

of heterogeneous and geographically dispersed
computing resources (Berman, Fox & Hey, 2003).
A resource may be CPU power, storage, infor-
mation/knowledge or even services. The vision
of the grid is to provide computing resources in
the form of commodities just like as the electric
grid provides electricity to consumers. Providing
computing as a commodity means that the end-
user just plugs into a provision and gets all the
resources needed under payment, transparently
and with adequate quality of service. Transpar-
ency is essential because users should not be
worried about how to find and manage comput-
ing resources, they just consume them. Quality
of service involves not only high availability but
increased security as well.

In order for this vision to become a reality,
the distributed computing research community
defined a set of functions that a grid should per-
form: resource scheduling, data virtualization,
provisioning, and resource management (Li &
Baker, 2005). The enabling software of the grid,
actually in the form of middleware, should be
able to operate on a variety of operating systems
and network configurations.

In the past ten years, the grid has matured
from a purely scientific instrument that pro-
cessed vast amount of data to a collaboration
enabler (De Roure, Jennings & Shadbol, 2005).
Besides standard distributed computing technolo-
gies (virtualization, grouping of resources), the

Characteristic /
Functionality Other Technologies grid

Transparency WWW: simple collaboration Enables advanced collaboration
Sharing P2P: files resources

Virtualization Virtualization tech: single
system multiple systems

Grouping of
computational
resources

Cluster computing:
homogeneous systems with
geographical proximity

heterogeneous and
geographically dispersed
systems

Table 2. Grid characteristics/functionalities vs. other technologies

 931

Designing for Service-Oriented Computing

grid now incorporates semantics (De Roure et
al., 2005), Peer to Peer (Talia & Trunfio, 2003)
and Web Services’ (Cannataro & Talia, 2004)
characteristics/functionalities. The use of these
functionalities in the grid however is slightly
different as described in Table 2.

The grid was originally applied in e-science but
the framework it engendered to realize effective
sharing of distributed heterogeneous resources is
now being applied to many other areas, especially
enterprise computing, e-commerce and recently
higher education (Maldonado, 2004). The first
application is extremely interesting since the grid
has been proposed as a Virtual Organization (VO)
enabler (Foster, Kesselman & Tuecke, 2001). In

this model, grid technology is used for coordina-
tion, sharing and reuse of services, knowledge and
data across the geographically dispersed nodes of
the VO. VO nodes are mapped onto the physical
grid nodes (computers or clusters of computers)
and predefined workflows are used for service
execution and data management (Figure 4). The
next generation of grid solutions will increasingly
adopt the service-oriented model for exploiting
commodity technologies. Its goal is to enable
as well as facilitate the transformation of Infor-
mation into Knowledge, by humans as well as
– progressively – by software agents, providing
the electronic underpinning for a global society in
business, government, research, science, educa-

Figure 4. An organization’s central and regional centers mapped to a central (SN) and secondary (N)
VO nodes, mapped to a grid

Physical Grid

 Node

 VO level

Grid level

 Node

 Node

 Node

 Node

 Node

 Node

 Node

SN

N

N

N

N

N

Organization level

932

Designing for Service-Oriented Computing

tion and entertainment. The most important ben-
efit of this technology is its ability to meet major
bursts of CPU demand using existing resources.
By decoupling the services from the underlying
h/w, resources are automatically allocated/de-
allocated as loads are increased/decreased. This
increases ROI on h/w since idle computers are
used instead of buying new ones.

technology selectIon

The grid computing paradigm is relatively new
although it uses ideas and technologies from other,
more mature disciplines. It has been recognized as
a high risk technology that may provide significant
benefits in special kinds of applications and es-
pecially in distributed coordination/cooperation.
Although its potential has been recognized by the
research and commercial community, the lack
of grid-specific standards has been viewed as a
serious uncertainty factor, prohibiting currently
its wider adoption. Thus, projects that use grid
technology bear a significant technological risk
but also have a lot of potential.

The use of grid technology was chosen because
the services anticipated were computationally
expensive since a large number of users would be
engaged in processes including massive calcula-
tions (e.g., online experiments). Furthermore, the
grid had already shown significant advantages in
collaboration and knowledge sharing for large
teams. The organization’s policy to adopt new
technologies in order to minimize costs and
maximize return on investment in all levels
played a significant role in taking this decision.
Improvements were anticipated in many levels,
from administration to the delivery of education.
In the latter case, new e-learning services were
supposed to be designed in a way that:

• fully utilizes existing resources,
• could be expanded in order to support a large

number of users while minimizing costs,

• would be flexible and able to respond to the
rapidly evolving market,

• increases the power of core resources without
creating the need for investing in additional
hardware or hosting infrastructures,

• supports the University’s dynamic policy
for expansion.

• In this context, grid technology would play
a significant role towards the direction of a
compact, scalable and cost-efficient infra-
structure for e-learning services. The use of
grid technology was also necessary in order
to fulfil real business needs:

• to combine resources on-demand for service
provision,

• to intelligently allocate finite resources to
the appropriate applications,

• to free expensive supercomputing resources
for only the most high-end processing needs
while still supporting the wide range of com-
pute-intensive applications run by research
groups throughout the University,

• to increase ROI on existing resources,
• to be able to support the ever-increasing

number of users,
• to provide cross-domain functionality.

A grid infrastructure would permit transparent
access to services and resources wherever they
are located. Furthermore, special grid functions
valuable for the efficient provision of services such
as resource reservation, storage of large volumes
of data and minimization of data transferred by
using a super-node grid structure would be made
available. In conclusion, the business value of
using grid technology for this project stemmed
from the possibility to leverage existing h/w and
s/w investments and resources, reducing opera-
tional costs and creating a scalable and flexible
infrastructure. It has been argued by some of the
technical staff that acquiring CPU power and
increasing storage capacity by using clusters of
computers was both a cheap and efficient solu-
tion for supporting large numbers of users. This

 933

Designing for Service-Oriented Computing

was partially true, but the real problem was not
purely technological (e.g., about CPU power)
but business as well. If contemporary technol-
ogy would be used then cost would be increased
since the management and monitoring of differ-
ent resources, would be difficult and expensive.
Furthermore, expanding usually means buying
and dedicating new hardware and software to
new services, possible fragmented resources
while ROI would not be maximized. It was also
recognized that return of value would stem from
educational, organizational and external benefits.
Educational benefits would include more efficient
learning models overcoming limitations problems
of current computing infrastructure, provision of
ubiquitous e-learning services. Exploiting poten-
tials from the provision of consulting services to
other academic institutions in the country con-
cerning new e-learning models, and grid-enabled
learning were also identified. Organizational
benefits were supposed to include improvements in
organizational efficiency (better information flow,
savings in staff time, and improvements in service
provision), a possibly, enhanced public profile of
the institution and high return on investment: sup-
port more students, with less effort and reduced
costs. Other secondary factors such as strategic
partnering with external organizations (e.g., other
higher education institutions, commercial, or
community organizations), and the opening of
new markets by providing new services through
the collaboration with other academic organiza-
tions were identified.

cAse descrIptIon: desIgn And
InItIAl steps

Before the design phase of the project was initial-
ized, a strategic decision was taken concerning
the identification of the project’s stakeholders: the
actors involved and/or affected by its implementa-
tion. It was decided to include:

• Students: students of the University. They
indirectly provide the requirements for de-
signing a new learning model. This means
that their requirements should be assessed
though their behaviour throughout the learn-
ing process.

• Teaching Staff: academic personnel in-
cluding professors and tutors. They would
provide input on the design and adoption
of new learning models and evaluate the
project’s efficiency.

• Technical and support staff: including
network and server administrators, special
technical staff for supporting e-learning
service provision.

• Laboratories: laboratories include labora-
tory staff, equipment, e-learning modules,
services, knowledge.

• Academic Institutions collaborating with
the University.

• Government: a potentially successful de-
ployment of grid service architecture in the
University would boost the adoption of new
learning models and grid services in other
higher education institutions. This would
be made possible through the cooperation
of the local Ministry of Education. Experts
of the Ministry would evaluate the new
methods and decide if the return of invest-
ment for its adoption in a wider scale would
be feasible.

The actual role of the University was to produce
specific requirements, test and evaluate solutions
developed by the other partners. A proactive ap-
proach was adopted for the management of risk
in the larger project. Project risks, especially the
ones related to technological innovation, but also
those related to budget, schedule and coordination
were considerable but the Consortium was com-
prised of selected partners with strong research
and development experience. The University’s
subproject purpose, referred in this communica-

934

Designing for Service-Oriented Computing

Figure 5. The context of the case study

Business

Pedagogy

Technology

Case
Study

Figure 6. General approach to project completion

Feasibility Analysis

Design

Data preparation

Services setup

Training

Service running

Evaluation

Feedback to partners

Phase A

Phase B

Phase C

Phase D

Phase E Exploitation

 935

Designing for Service-Oriented Computing

tion as case study, was to develop and gain insight
into the processes involved from formulating
pedagogic requirements to the implementing
environments that meet these requirements. The
case study and the University’s goals were con-
verging, since they were both aimed at a mixed
pedagogic/economic/technological solution for
advanced service provision (Figure 5).

The case study was anticipated to include
five main phases, each of them decomposed in
smaller tasks: design, development, deployment,
evaluation, and exploitation (Figure 6). The first
phase would check the feasibility of reaching the
goals with the available funds and technology
and define detailed requirements. During the
development, phase data preparation, services
setup and configuration would take place. Fur-
thermore, tasks such as introduction, motivation
and training of staff for operating the service
were anticipated. Case study enactment would
involve the actual running of the new services in
real conditions for a short period of time. These

services would be then evaluated by different user
groups and conclusions would be communicated
to the consortium.

FeAsIbIlIty AnAlysIs

Although the project is its initial phase, the
project team is able to pinpoint the milestones
for the upcoming phases. Phases are not neces-
sarily sequential; two phases may be executed
in parallel at a given moment. The first phase is
relatively easy to decompose into smaller phases
and set exact milestones, while for the others it
is harder since one phase depends on the results
of the previous ones. Assumptions however are
possible (and useful) to make (Table 3).

As described previously, in the first phase
requirements are defined. A feasibility study that
takes into account technological, pedagogical,
organisational and economical considerations
would be of great help to define concrete and

Phase Milestones

A: Design

• Feasibility study completed
• Requirements are identified
• Resources (human/financial) needed are committed
• Initial plan for the first year has been agreed upon

B:
Development

• Services are designed according to user requirements
• The architecture of the infrastructure (e.g., exact technologies used) is

defined
• First prototype is made available
• Second prototype is made available

C:
Deployment

• Software (first prototype) is installed
• Initial feedback is given to the developer team

D: Evaluation
• Evaluation methodology and plan has been agreed upon
• Evaluation group formed
• Feedback is provided to the developer team

E:
Exploitation

• Demonstrators are made available
• Licences (e.g., patents) are acquired

Table 3. Milestones per project phase

936

Designing for Service-Oriented Computing

realistic objectives (Bates, 2000; Boucher, 1998).
Subsequently, a detailed initial plan for the first
period (e.g., the first year) can be drafted. Since
this plan is based on the feasibility study, it is
(theoretically) based on solid ground and it is
as close to reality as possible. This study should
consider the economic viability of the project.
As mentioned previously, major cost savings of
ICT introduction still remains in theory while it
seems that its greatest pedagogical advantages
are the most costly. Other, usually overlooked,
costs may include courseware development costs,
incremental capital and recurrent equipment costs,
costs associated with provision of appropriate
resources, infrastructure costs, maintenance, user
support costs, costs of adoption, access costs,
security costs, replacement costs and institutional
overheads. This has lead Rumble (1999) to suggest
that the cost of utilising advanced ICT services
is nearly the same with face to face teaching.
This assumption holds for complete distance
learning solutions where traditional methods are
completely replaced by ICT but in this blended
learning situation it remains to be seen if this is
the case.

The project team should be extremely careful
in determining the resources needed and technolo-
gies used. Since grid technologies and Service-
Orientation are relatively new fields, changes in
frameworks or standards may have a significant
impact on the project. For this reason, a technol-
ogy-watch team should be formed in order to
monitor changes and inform the partners.

The milestones of the subsequent phases (B-
E) can only be generally defined. They include
the design and development of services and
infrastructure, the availability of prototypes and
demonstrators and finally, the evaluation results
(performed by a specially selected user group).

Management structure

A local project team was put together coordinated
by an experienced project leader with background

in both technology and pedagogy. Achieving a
consensus between these two disciplines was
important since the failure of addressing the re-
quirements of one was automatically transformed
to the failure of the other. The project leader was
responsible for managing three sub-teams: the
technological, the educational, and the evaluation
team. Each of these teams would be managed by a
corresponding leader and would have a relatively
small number of members (3-4). As depicted in
the team chart (Figure 7), there are many dif-
ferent roles that cover managerial, assessment,
technological and educational criteria. Many of
the actors involved, would work in the project for
a specific, short period of time engaged in special
duties (e.g., assessment).

The Project Manager would be responsible
for the overall management of the case study.
The project manager would coordinate the staff
working in the project and would be responsible
for the completion of individual tasks within the
appropriate timeline. Project manager’s respon-
sibilities also included the final quality check of
the work produced by the team. The Technical
Manager would be responsible for the technical
development of the project. This included the
provision of technical requirements and guid-
ance to experts during the installation, enactment
and evaluation of the services. The Educational
Manager had the responsibility to put together
the requirements analysis, design, and integration
of new e-learning models. Furthermore to design
and support a concrete e-learning use case that
would have an actual educational value for the
University. Finally, the Assessment Manager was
responsible for assessing the services during the
installation and enactment phase. For this purpose,
three tutors would be cooperating along with a
number of students for assessing the final output
of the project. Since assessment was going to take
place at the final stages of the project, the names
of the above mentioned actors were not made
available from the beginning. The project team
should cooperate smoothly with the much larger

 937

Designing for Service-Oriented Computing

international team responsible for designing and
producing the solutions.

The project manager and the members of the
local project team interact with other members of
the international consortium. This consortium is
also organised so as to cope with a range of legal,
contractual, ethical, financial and administrative
tasks that may occur during the project life-cycle.
The management structure of the consortium is
divided into four bodies: project management
(project manager, Project Coordination Board,
Executive Board and Scientific Advisory Board),
financial management (financial manager), Op-
erations/Technical management and Quality
management. Each of these bodies is comprised
of separate roles and/or special boards with dis-
tinct authorities. These authorities are defined
in a consortium agreement which is agreed
upon and signed by each participant organisa-
tion before the start of the project. There are a
lot of different configurations in these kinds of
managerial structures; structure flexibility and

the competence of the leading persons are the
keys to successful management.

current chAllenges FAcIng
the orgAnIzAtIon

The project manager has a draft of a general imple-
mentation plan which defines major deliverables
and deadlines. The project manager knows that
this plan must be detailed and refined in the near
future. For the time being, he is concentrated in
the first phase of the project. One of the most
important phases of project elicitation is feasi-
bility and requirements analysis. The feasibility
study to be contacted for the case study has the
purpose of instigating cross-project understand-
ing of requirements engineering, identifying and
agreeing on common representations and mod-
elling techniques for requirements engineering.
The value of this analysis is very important since
the adoption of a new technology like the grid in

Figure 7. The structure of the local project team

Project Manager

Technical
Manager

Educational
Manager

Assessment
Manager

International
Consortium

liaison

Members

938

Designing for Service-Oriented Computing

such a difficult application domain as distance
learning, is of high risk. The existence of a gap
between technologists, educationists and final
users is natural to exist but it should not exceed
a certain threshold; otherwise the final solutions
would fail to perform successfully in real situa-
tions (Xenos, Pierrakeas & Pintelas, 2002).

The University’s project team needs to initiate
an intense specification process to clarify, on the
one hand, for the user groups the specific options in
a given learning setting and on the other, to enable
technologists to efficient communicate their views
about emerging features and services useful for
learning. This analysis process is demanding in
time and resources since there are different views
and a broad spectrum of ambitions and contexts
inside the consortium.

The basic idea for the requirement analysis
is to analyze the case study with a well experi-
enced tool that provides sophisticated semantics
for describing Service-Oriented architectures
(SOA). The project leader needs to choose a
general framework as a starting point for the
requirements specification that also takes into
account economic, technological and educational
parameters. Furthermore, it should be oriented to
the application of innovative technological solu-
tions to traditional contexts.

A challenge that needs to be addressed in the
first phase of the project is the methodology that
should be followed for putting together the fea-
sibility analysis plan. From his experience, there
is no formal template or methodology for SOA
cases. Most methodologies are either too technical
or business/product oriented. But this project will
produce services not products and furthermore,
these services will be developed by a third party
using an innovative, high risk technology. Services
are different from tools; they have to be composed
on the fly depending on needs (Rust & Kannan,
2003). They promote the so called “user-centered”
approach for the design and development of soft-
ware. Software as a service (SaS) has emerged as
a response to a fundamental shift in enterprise

business culture that started at the late 1990s
(Foster & Tuecke, 2005). Traditional monolithic
architectures are giving way to Service-Oriented
Computing, which permits the utilization of large
systems comprised of self-containing building
blocks: services. Services may be made public,
searched, reused, and combined to form complex
business processes while in the same time retain-
ing a significant level of flexibility. Since services
are a relatively new concept, then the design of
a SOA is in itself a challenge (Singh & Huhns,
2005). Again are the questions of what method
is appropriate for system design and will classic
approaches do the job?

The context also complicates things. Distance
learning does not fall into any of the classic prod-
uct categories, maybe it resembles e-commerce
in some aspects, but there are differences: an
online user does not behave as an e-learner does
(De Bra, Brusilovsky, & Houben, 1999). How is
it possible to identify and take into account busi-
ness, technology and pedagogy requirements at
the same time?

Anyway, before deciding on the methodology,
the project team made some assumptions about
the project, hoping that they would be the cor-
rect ones. First, that the design envisaged for the
project could be developed in time and it would
work within the context of the mission and goals
that were set by the consortium and that the
characteristics of the envisioned system would
be among its high priorities. Secondly, that the
organization’s educational policy and legislative
requirements would not prevent or circumvent
key aspects of the system and those tools and
technologies used so far can be integrated in the
new infrastructure. Other assumptions should also
be made on conceptual, legislative, stakeholder-
related, and technological matters.

The administration of the institution also
puts pressure on the project manager to consider
the economic goals of the project, which closely
relate to exploitation potential. A plan is needed
to identify exploitation results and opportunities

 939

Designing for Service-Oriented Computing

during and after the completion of the project. Fur-
thermore, the project manager needs to consider
the quality aspects of both the procedure and the
deliverables. The project manager is responsible
for producing an output that is efficient and work-
able. In cooperation with the assessment manager,
an expert in software quality and assessment, he is
planning on putting together an initial evaluation
plan to assess both methodology and services.
This plan will be used as a guide to insure that
quality is maintained at high levels. Priorities for
evaluation must also be divided into categories
and related to goals. Several indicators must be
identified that can supply a measure of the success
of the project in achieving the targets set in each
of the above mentioned categories.

Expansion, a strategic business objective of
the institution is one of the drivers of the project.
It would seem thus, that this IT-focused project
strengthens the strategic alignment between
business and IT: the alignment of business and
IT strategy in order for the organisation to stay
competitive and gain profit from the use of ad-
vanced technology (Boar, 1994). In this case, the
added value expected is (1) to provide more quality
services to existing clients and (2) the ability to
serve more clients efficiently. So the benefits are
only connected to client services and not directly
to organisational structure, internal infrastructure
or processes; these will probably remain stable
due to the academic nature of the organisation.
One way to ensure strategic alignment is through
assessments that is, setting performance goals
for the processes affected. This should be dealt
with both in the feasibility analysis of the design
phase (phase A) and in the evaluation phase;
software developed should be evaluated in the
light of its impact on business strategy. For this
reason cross-discipline metrics need to be defined
during the design phase, metrics that measure the
impact and relationships between IT and business
strategy. These metrics should be evaluated at
specific milestones and, if needed, corrective
actions should be taken.

A set of assessment criteria must also be clearly
identified for several categories of e-learning
provision that the deployment of new services
will affect. These criteria should then be de-com-
posed, where possible, into smaller metrics that
can be quantifiable — that is, a number can be
assigned to them. All this “atomic” measurements,
combined together using mathematical equations,
will finally provide some kind of performance
indicator. These criteria should try to establish
whether the services create new possibilities com-
pared to present tools and methodology, support
the transition from classic educational models to
advanced, student-centric methods and finally if
they are cost-effective. It is apparent that different
complexities (or levels) for these criteria exist and
they need to be identified.

The case study’s project management should
also be based on a concrete project plan that antici-
pates risks stemming from the collaboration with
many partners in a multi-cultural, international
environment. Specifications are greatly affected
by the technological solutions at hand, so strong
cooperation with other partners need to exist in
order to exchange information on what or what
cannot be done. A risk that has been identified by
all partners is the possibility that a different visions
exists for different institutions in the consortium.
Although the goals of each partner participating
in the project may be different in an atomic level,
the general goals should be the same and most
importantly, well understood. The project man-
ager and its colleagues at the institute are a little
bit concerned about this but at the beginning of
the project there is little thinks they can do. But
they have in mind to follow a formal methodology
in order to anticipate future misunderstandings
or risks relating to these differences in vision,
anticipations and business/technology culture
between partners.

The formation of the project team is also a
challenge. Its basic structure should include ex-
perienced sub-team leaders with proven abilities
to cope with high risk research and development.

940

Designing for Service-Oriented Computing

Although the four main members of the team
(the managers) will work in the project from the
beginning to its completion, other members will
participate only in certain phases of the project.
The project manager is concerned about the dy-
namicity of its team so he needs to put together a
flexible human resource management plan.

After a discussion with the assessment
manager, the project manager also decides to
anticipate risk by developing a risk assessment
and contingency plan that will monitor all ongo-
ing management activities. The initial version of
this plan should identify only high level, major
risks and propose measures to overcome them.
The challenge here is to correctly describe the
impact of each potential problem on the project.
The relevant coordinators and managers will
review and apply risk management strategies.
Risks will be re-evaluated at the regular consor-
tium meetings. The project manager’s opinion
is that, in general, the strategy for reducing the
risks related to project management is to reduce
their probability of occurrence, rather than their
impact. This necessitates a proactive style of
management, with strong emphasis on planning,
control, and corrective action.

reFerences

Bates, A. W. (2000). Managing technological
change. San Francisco: Jossey-Bass.

Bender, T. (2003). Discussion-based online teach-
ing to enhance student learning: Theory, practice
and assessment. Vancouver: Stylus Publishing.

Berman, F., Fox C. G., & Hey, A. (2003). Grid
computing: Making the global infrastructure a
reality. New York: Wiley Press.

Boar, B. H. (1994). Practical steps for aligning
information technology with business strategy.
New York: John Wiley & Sons.

Boucher, A. (1998). Information technology-based
teaching and learning in higher education: A view
of the economic issues. Journal of Information
Technology for Teacher Education, 7(1), 87-111.

Cannataro, M., & Talia, D. (2004). Semantic and
knowledge grids: Building the next-generation
grid. IEEE Intelligent Systems, 19(1), 56-63.

De Bra, P., Brusilovsky, P., & Houben, G. J.
(1999). Adaptive hypermedia: From systems
to framework. ACM Computing Surveys, 31(4),
Article No. 12.

Demb, A., Erickson, D., & Hawkins-Wilding, S.
(2004). The laptop alternative: Student reactions
and strategic implications. Computers & Educa-
tion, 43(4), 383-401.

De Roure, D., Jennings, N. R., & Shadbolt, N. R.
(2005). The semantic grid: Past, present, and fu-
ture. Proceedings of the IEEE, 93(3), 669-681.

Duffy, T. M., & Jonassen, D. H. (1992). Con-
structivism and the technology of instruction: A
conversation. Hillsdale, NJ: Lawrence Erlbaum
Associates.

Foster, I., Kesselman, C., & Tuecke, S. (2001).
The anatomy of the grid: Enabling scalable
virtual organizations. International Journal of
High Performance Computing Applications,
15(3), 200-222.

Foster, I., & Tuecke, S. (2005). The different faces
of IT as a service. ACM Queue, 3(6), 27-34.

Haywood, J., Anderson, C., Coyle, H., Day, K.,
Haywood, D., & Macleod, H. (2000). Learning
technology in Scottish higher education – A survey
of the views of senior managers, academic staff
and experts. ALT-J, 8(2), 5-17.

Jefferies, A., Thornton, M., Alltree, J., & Jones,
I. (2004). Introducing Web-based learning: An
investigation into its impact on university lectur-
ers and their pedagogy. Journal of Information
Technology Impact, 4(2), 91-98.

 941

Designing for Service-Oriented Computing

Li, M., & Baker, M. (2005). The grid: Core tech-
nologies. Chichester: Wiley and Sons.

Maldonado, M. F. (2004). Grid computing in
higher education: Trends, values and offerings
(IBM White Paper). Retrieved August 7, 2006,
from http://www.ibm.com/grid/pdf/grid_comput-
ing_in_higher_ed.pdf

Rumble, G. (1999). Costs of networked learn-
ing: What have we learned. In Proceedings of
the Conference on Flexible Learning on the
Information Superhighway, Sheffield, England.
Retrieved August 7, 2006, from http://www.shu.
ac.uk/flish/rumblep.htm

Rust, R. T., & Kannan, P. K. (2003). E-service:
A new paradigm for business in the electronic
environment. Communications of the ACM,
46(6), 36-42.

Saunders, G., & Klemming, F. (2003). Integrating
technology into a traditional learning environ-

ment. Active Learning in Higher Education,
4(1), 74-86.

Singh, P. M., & Huhns, M. N. (2005). Service
oriented computing, semantics, processes, agents.
Chichester: John Wiley and Sons.

Talia, D., & Trunfio, P. (2003). Toward a synergy
between P2P and grids. IEEE Internet Comput-
ing, 7(4), 94-96.

Van Weert, T. J., & Pilot, A. (2003). Task-based
team learning with ICT, design and development
of new learning. Education and Information
Technologies, 8(2), 195–214.

Xenos, M., Pierrakeas, C., & Pintelas, P. (2002).
Survey on student dropout rates and dropout
causes concerning the students in the course
of informatics of the Hellenic Open University.
Computers & Education, 39(4), 361-377.

This work was previously published in the Journal of Cases on Information Technology, edited by M. Khosrow-Pour, Volume
9, Issue 1, pp. 36-53, copyright 2007 by IGI Publishing (an imprint of IGI Global).

942

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.23
A Model-Driven Development
Framework for Non-Functional

Aspects in Service Oriented
Architecture

Hiroshi Wada
University of Massachusetts – Boston, USA

Junichi Suzuki
University of Massachusetts – Boston, USA

Katsuya Oba
OGIS International, Inc., USA

AbstrAct

Service oriented architecture (SOA) is an emerg-
ing style of software architectures to reuse and
integrate existing systems for designing new
applications. Each application is designed in an
implementation independent manner using two
major abstract concepts: services and connections
between services. In SOA, non-functional aspects
(e.g., security and fault tolerance) of services
and connections should be described separately
from their functional aspects (i.e., business logic)
because different applications use services and

connections in different non-functional contexts.
This paper proposes a model-driven development
(MDD) framework for non-functional aspects in
SOA. The proposed MDD framework consists of
(1) a Unified Modeling Language (UML) profile
to model non-functional aspects in SOA, and
(2) an MDD tool that transforms a UML model
defined with the proposed profile to application
code. Empirical evaluation results show that the
proposed MDD framework improves the reus-
ability and maintainability of service-oriented
applications by hiding low-level implementation
technologies in SOA.

 943

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

IntroductIon

A key challenge in large-scale distributed sys-
tems is to reuse and integrate existing systems to
build new applications in a cost effective manner
(Vinoski, 2003; Zhang, 2004). Service Oriented
Architecture (SOA) addresses this challenge by
improving the reusability and maintainability
of distributed systems (Arsanjani, Zhang, Ellis,
Allam, & Channabasavaiah, 2007; Bichler &
Lin, 2006; Endrei, Ang, Arsanjani, Chua, Comte,
Krogdahl, Luo, & Newling, 2004; Foster, 2005;
Lewis, Morris, Brien, Smith, & Wrage, 2005;
Papazoglou, 2003). It is an emerging style of
software architectures to design applications in
an implementation independent manner using two
major abstract concepts: services and connections
between services. Each service encapsulates the
function of a subsystem in an existing system.
Each connection defines how services are con-
nected with each other and how messages are
exchanged through the connection. SOA hides the
implementation details of services and connec-
tions (e.g., programming languages and remoting
middleware) from application developers. They
can reuse and combine services to build their ap-
plications without knowing the implementation
details of services and connections.

In order to make this vision of SOA a real-
ity, this article focuses on a research issue of
increasing the reusability of services and con-
nections and addresses this issue by separating
non-functional aspects (e.g., security and fault
tolerance) of services and connections from their
functional aspects. The separation of functional
and non-functional aspects can improve the re-
usability of services and connections because it
allows different applications to use services and
connections in different non-functional contexts.
For example, an application may unicast mes-
sages to a service and another may manycast
messages to multiple replicas of the service to
improve fault tolerance. Also, an application may

send signed and encrypted messages to a service,
when the messages travel to the service through
third-party intermediaries, in order to prevent
the intermediaries from maliciously sniffing or
altering the messages. Another application may
send plain messages to the service via unsecured
connection when the service is hosted in-house.
The separation of functional and non-functional
aspects can also improve the ease of understanding
application design and enable the two different
aspects to evolve independently. This results in
higher maintainability of applications.

This article describes a model-driven devel-
opment (MDD) framework for non-functional
aspects in SOA. The MDD framework consists of
(1) a Unified Modeling Language (UML) profile
to model non-functional aspects in SOA, and (2)
an MDD tool that accepts a UML model defined
with the proposed profile and transforms it to ap-
plication code (e.g., program code and deployment
descriptors). The proposed UML profile allows
application developers to graphically describe
and maintain non-functional aspects in SOA as
UML diagrams (composite structure diagrams
and class diagrams). Using the proposed UML
profile, non-functional aspects can be modeled
without depending on any particular implementa-
tion technologies. The proposed MDD tool, called
Ark, transforms implementation independent
UML models into implementation specific ap-
plication code.

This article describes design details of the
proposed UML profile and demonstrates how
Ark transforms an input UML model to applica-
tion code that runs with certain implementation
technologies such as Enterprise Service Buses
(ESBs) (Chappell, 2004), secure file transfer pro-
tocols and grid computing platforms. Empirical
evaluation results show that the proposed MDD
framework improves the reusability and maintain-
ability of service-oriented applications by hiding
implementation technologies in UML models.

944

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

contrIbutIons

This article offers the following three contributions
to the design space of service-oriented applications.

• Modeling support for non-functional as-
pects in SOA: This work is the first attempt
to investigate a UML profile to consistently
model a wide range of non-functional aspects
in SOA, although there exist several UML
profiles for specific aspects (e.g., functional
aspects and service discovery) in SOA. (See
the Related Work section for more details.)
The proposed UML profile covers the follow-
ing four areas of non-functional aspects.
1. Service deployment semantics:

Service redundancy.
2. Message transmission semantics:

Messaging synchrony, message de-
livery assurance, message queuing,
multicast, manycast, anycast, message
routing, message prioritization, mes-
saging timeout, message logging, and
message retention.

3. Message processing semantics: Mes-
sage conversion, message split, mes-
sage aggregation, message validation,
and message filtering.

4. Security semantics: Transport-level
encryption, message-level encryption
(entire/partial message encryption),
message signature, message access
control, and service access control.

• Modeling support for regulatory compli-
ance: As regulatory compliance has been
becoming an important factor in software
development and maintenance, regulatory
mandates (e.g., the Sarbanes-Oxley Act and
HIPPA) dramatically increase the number
of non-functional aspects that application
developers need to consider (O’Grady, 2004).
This work is the first attempt to investigate
a visual modeling language to describe non-

functional aspects derived from regulatory
mandates. The proposed UML profile allows
application developers (or compliance man-
agement staffs) to graphically specify and
verify how their applications meet regulatory
mandates. Currently, the proposed UML
profile addresses data retention, data/pro-
cess validation (e.g., consistency validation
among an order, invoice, and payment) and
security (e.g., access control and data integ-
rity).

• MDD support for service-oriented ap-
plications: Non-functional requirements
change during application lifecycle more
often than functional aspects (Bieberstein,
Bose, Fiammante, Jones, & Shah, 2005). It
can be expensive to manage frequent changes
in non-functional requirements. This results
in escalating maintenance cost, in turn total
cost of owning. When a non-functional
requirement (e.g., security policy) changes
in an application, the proposed MDD frame-
work allows application developers to make
the change in a UML model specifying the
application’s non-functional aspects and
keep its functional part intact. The proposed
MDD tool (Ark) generates non-functional
code from the updated UML model and
combines the generated code with existing
functional code. Ark makes application’s
functional aspects reusable across the
changes in non-functional requirements,
thereby improving the productivity of ap-
plication development and maintenance.

bAckground And A MotIVAtIng
exAMple

UML is a modeling language to describe applica-
tion designs as graphical diagrams. It specifies
the syntax (or notation) and semantics of every
model element that appears in diagrams (e.g.,

 945

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

class, interface and association). The syntax and
semantics are defined in the UML metamodel
(Object Management Group, 2004), which is the
grammar specification for standard (default) model
elements in UML.

In addition to standard model elements, UML
provides extension mechanisms (e.g., stereotypes
and tagged-values) to specialize them to precisely
describe domain or application specific concepts
(Fuentes & Vallecillo, 2004). A stereotype is ap-
plied to a standard model element and specializes
its semantics to a particular domain or applica-
tion. Each stereotyped model element can have
data fields, called tagged-values, specific to the
stereotype. Each tagged-value consists of a name
and value. A particular set of stereotypes and
tagged-values is called a UML profile.

For example, a UML profile for Enterprise Java
Beans (EJB) (Java Community Process, 2001)
defines the stereotype <<EJBEntityBean>>, which
extends Class in the UML metamodel. This means
the stereotype can be applied to classes. Thus, a
UML class stereotyped with <<EJBEntityBean>>
indicates that the class is designed as an EJB
entity bean. The stereotype <<EJBEntityBean>>

has a tagged-value, called EJBPersisitenceType,
to specify who provides persistence to an entity
bean. The tagged-value can have a value Bean
or Container. Bean indicates an individual entity
bean is responsible for its own persistence, and
Container indicates an EJB container takes care
of persistence.

Figure 1 shows an overview of an example
purchasing system across buyers, retailers, sup-

Buyer

《service》
Buyer

《service》
Supervisor

Retailer

《service》
Retailer

《service》
Accountant

Supplier

《service》
Supplier

InventoryMgr

《service》
InventoryManager

《service》
Warehouse

Figure 1. The structural architecture of an example purchasing system

Figure 2. An example UML model

timeout = 00:05:00.00
synchrony = Sync
messageReliability::deliveryAssurance = ExactlyOnce
encryptionAlgorithm =

“http://www.w3.org/2001/04/xmlenc#aes256-cbc”
msgTransmissionLogRetained = true
retentionPeriod = “01/01/2008”

《service》
Retailer

《service》
Supplier

request

《message》
OrderMsg

《messageExchange》
Order

knisecruos
reply

《message》
InvoiceMsg

《connector》
OrderConn

《logger》
Logging

1 * 1*

signatureMethod =
“http://www.w3.org/2000/09/xmldsig#dsa-sha1”

timeout = 00:05:00.00
synchrony = Sync
messageReliability::deliveryAssurance = ExactlyOnce
encryptionAlgorithm =

“http://www.w3.org/2001/04/xmlenc#aes256-cbc”
msgTransmissionLogRetained = true
retentionPeriod = “01/01/2008”

《service》
Retailer

《service》
Supplier

request

《message》
OrderMsg

《messageExchange》
Order

knisecruos
reply

《message》
InvoiceMsg

《connector》
OrderConn

《logger》
Logging

1 * 1*

signatureMethod =
“http://www.w3.org/2000/09/xmldsig#dsa-sha1”

《service》
Retailer

《service》
Supplier

request

《message 》
OrderMsg

《messageExchange》
Order

knisecruos
reply

《message》
InvoiceMsg

《connector》
OrderConn

《 logger》
Logging

1 * 1*

signatureMethod =
“http://www.w3.org/2000/09/xmldsig#dsa-sha1”

946

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

pliers, and inventory managers. All example
models in this article focus on and define several
particular parts of this system. In this example
system, a Buyer purchases a product from a Sup-
plier via Retailer. A Supervisor authorizes
each order that a Buyer places. An Accoun-
tant performs accounting tasks for a Retailer.
An InventoryManager manages a Retailer’s
inventory.

Figure 2 shows an example model built with
the proposed UML profile. This model focuses
on an interaction between a Retailer and Sup-
plier in Figure 1, and defines an order processing
scenario in which a Retailer places an order and
a Supplier issues an invoice. In this example,
two services (Retailer and Supplier) exchange
messages. Each service is represented by a class
stereotyped with <<service>>. These services
exchange two types of messages (OrderMsg and
InvoiceMsg), each of which is stereotyped with
<<message>>. Each message can have multiple
tagged-values to specify additional message trans-
mission/processing semantics. In this example, the
tagged-value signatureMethod specifies that an
OrderMsg carries a digital signature created with
DSA (Digital Signature Algorithm). Each pair of
a request and reply messages is represented by a
class stereotyped with <<messageExchange>>.

<<connector>> represents a connection that
transmits messages between services. In this
example, messages are delivered through a con-
nector called OrderConn. Every message exchange
is bound with a connector in order to specify
which connector is used to deliver messages. A
connector has a provided interface (represented
as a “ball” notation) and a required interface
(represented as a “socket” notation) to transmit
messages between services. Services use the
provided and required interfaces to send and re-
ceive messages, respectively. The two interfaces
are intended to show how services use (connect
with) a connector.

Each connector can have multiple filters inside.
They are used to define message transmission/pro-

cessing semantics in a connector. This example
uses a Logger in the OrderConn connector. Logger
logs messages that transmitted through the filter
(OrderMsg and InvoiceMsg in this example).

Also, each connector can have multiple tagged-
values to specify additional message transmission/
processing semantics. In this example, OrderConn
specifies the timeout of message transmissions
(five minutes), the synchrony of message trans-
missions (synchronous), the assurance level of
message delivery (exactly once) and the message
encryption algorithm (Advanced Encryption
Standard). Also, through the use of tagged-values
msgTransmissionLogRetained and retention-
Period, OrderConn specifies to retain the logs of
message transmissions until a certain date.

As shown above, the proposed UML profile
provides a visual and intuitive abstraction to model
the architectures and non-functional aspects of
service-oriented applications.

desIgn oF the proposed uMl
proFIle

The proposed UML profile provides key model
elements to specify service-oriented applications:
service, message exchange, message, connector,
and filter, each of which is defined as stereotypes
(Table 1). Figure 3 shows how the proposed pro-
file defines these stereotypes by extending the
UML metamodel. Each stereotype is defined as
a metaclass stereotyped with <<stereotype>>1.
Except Connector, four stereotypes inherit the
Class metaclass in the Kernel package of the UML
metamodel. Thus, they are applied to classes in
user-defined models (see Figure 2). A Service can
be a source or sink of each request/reply message.
The source and sink are identified with source
and sink, roles on two associations between a Mes-
sageExchange and Services (Figure 2). Each Mes-
sageExchange may have multiple reply messages
per request message (Figure 3). Using multiplicity
on two associations between a MessageExchange

 947

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

and Services, MessageExchange can indicate
one-to-one (unicast) and one-to-many (multicast
or manycast) message exchanges. For example,
Figure 2 shows a one-to-one message exchange
between a Retailer and a Supplier.

Connector is a stereotype extending the Class
metaclass in the InternalStructures package of
the UML metamodel (Figure 3). This metaclass
defines a composite class, a special type of class,

which can contain other model elements (e.g., inner
classes)2 and have Ports to specify how internal
model elements interact with external elements.
In the proposed UML profile, a Connector can
contain Filters to specify the semantics of mes-
sage transmission and message processing. The
Ports connected with a Connector identify the
Messages it receives and sends out, using as-
sociation roles input and output. For example,

Stereotype Description
<<service>> Represents a service.
< < m e s s a g e E x -
change>>

Represents a pair of a request and reply messages. Specifies which
services send and receive the messages.

<<message>> Represents a (request or reply) message.

<<connector>>
Represents a connection between services (i.e., message source and
destination). Defines the semantics of message transmission and pro-
cessing. Specifies which messages (message exchange) to transmit.

<<filter>> Customizes the semantics of message transmission and message pro-
cessing in a connector.

Table 1. Key model elements (stereotypes) in the proposed UML profile

《stereotype》
Connector

0..*1

1
0..*

UML 2.0 metamodel

Proposed UML profile

InternalStructues::
StructuredClassifier

1..*

Ports::
EncapsulatedClassifierPorts::Port

0..1*

InternalStructures::
Property

0..1*

part

1..*
0..*1

0..*1..*

source

sink 1

0..*《stereotype》
MessageExchange

《stereotype》
Service

11
request reply1 0..*《stereotype》

Filter

Kernel::Class

InternalStructures::
Class

《stereotype》
Message

Figure 3. Definition of stereotypes

948

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

Figure 2 shows the OrderConn connector , which
contains a filter (a Logger). This filter receives,
records message’s log, and sends out OrderMsg or
InvoiceMsg messages.

connector

Connector has 10 tagged-values (Figure 4). time-
out is a mandatory tagged-value to specify the
timeout period (in millisecond) in which a con-
nector needs to deliver each message. If a message
is not delivered to its destination (sink) within the
timeout period, a connector discards the message.
In Figure 2, the timeout period of the connector
OrderConn is specified as five minutes.

synchrony is a mandatory tagged-value to
specify the synchrony semantics of message
transmissions between a message source and
destination. Synchronous, asynchronous and
oneway non-blocking semantics are defined as an
enumeration in Synchrony (Figure 4), and each
connector chooses one of them. In Figure 2, a
Retailer and a Supplier exchange OrderMsg and
InvoiceMsg messages synchronously.

priority is a mandatory tagged-value to
specify the priority of each message that a
connector delivers. The range of priority is from
0 to 255 (0 is the lowest and 255 is the highest),
and the default value is 0 (Figure 4).

inOrder is a mandatory tagged-value to specify
whether the order of messages that a service (mes-
sage destination) receives is same as the order of
messages that the other service (message source)
sends out. The default value of inOrder is false.

deliveryAssurance is an optional tagged-
value to specify the assurance level of message
delivery. Three different semantics are defined
as an enumeration in DeliveryAssurance (Figure
4), and each Connector chooses one of them at a
time. AtLeastOnce means that a connector retries
delivering a message until its destination receives
the message. (A message retransmission is trig-
gered with the timeout tagged-value.) However,
the message may be delivered to its destination
more than once. AtMostOnce means that a connec-
tor discards a message if the message has already
been delivered to its destination; however, there
is no guarantee of message delivery. Exactly-
Once satisfies the requirements of the above both
semantics. It guarantees that a connector delivers
a message to its destination without duplications.
When inOrder is true, ExactlyOnce is implicitly
(automatically) set to deliveryAssurance because
duplicated or missing messages violate the in-
Order semantics.

Figure 5 shows an example model using in-
Order and deliveryAssurance. This example
illustrates an extension to an order processing

Figure 4. Tagged-values of connector

0..1

《enumeration》
Synchrony

Sync
Async
Oneway

1synchrony

《enumeration》
DeliveryAssurance

AtMostOnce
AtLeastOnce
ExactlyOnce

0..1

deliveryAssurance

QueueParameters

size: Integer
persistent: Boolean
flushTime [0..*]: Time
flushInterval [0..1]: Time
flushWhenFull: Boolean

0..1

queueParameters
0..1

discardPolicy

《enumeration》
SelectingPoilcy

FIFO
LIFO
PriorityBased
DeadlineFirst

orderingPolicy

《stereotype》Connector
timeout: Time
priority: Integer = 0
inOrder: Boolean = false
encryptionAlgorithm[0..1]: String
messageIntegrity: Boolean = false
msgTransmissionLogRetained: Boolean = false
retentionPeriod[0..1]: Date

 949

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

application in Figure 2. In this example, a Buyer
transmits an OrderMsg to a Supplier via Retailer
(see also Figure 1). After a Retailer forwards an
OrderMsg from a Buyer to a Supplier, the Buyer
can cancel the order by transmitting a Cancel-
lationMsg to the Retailer, and in turn, to the
Supplier. In this example, the order of message
transmissions is important between Retailer
and Supplier because an order must be deliv-
ered to a Supplier before a corresponding order
cancellation. Therefore, the inOrder semantics
is assigned to the OrderConn connector. This
semantics implicitly assigns ExactlyOnce to the
deliveryAssuarance semantics in the OrderConn
connector.

encryptionAlgorithm is an optional tagged-
value used for transport-level encryption in a
connector. This tagged-value defines an algorithm
to secure a connection upon which request and re-
sponse messages are transmitted. (See Figure 2 for
an example.) The encryption algorithm is specified
as a URI defined in the XML Encryption specifi-
cation (World Wide Web Consortium, 2002). For
example Triple DES is represented with http://

www.w3.org/2001/04/xmlenc#tripledes-cbc,
and AES-256 (Advanced Encryption Standard)
is represented with http://www.w3.org/2001/04/
xmlenc#aes256-cbc.

queueParameters is an optional tagged-value
to deploy a message queue between services (i.e.,
message source and destination) and specify the
semantics of message queuing between them.
size specifies the maximum number of queued
messages. flushWhenFull specifies whether queued
messages are flushed from a queue to their desti-
nations when the queue overflows. When flush-
WhenFull is false, the overflowing queue discards
a message according to discardPolicy (Figure
4); discarding the oldest message (First-In-First-
Out), the newest message (Last-In-First-Out), the
lowest priority message or the closest deadline
message. These four policies are defined as an
enumeration in SelectionPolicy (Figure 4).
flushTime and flushInterval specify when and
how often a queue flushes messages, respectively.
orderingPolicy specifies how to order messages
in a queue: FIFO, LIFO, highest-priority-first
or earliest-deadline-first. persistent specifies

Figure 5. An example of inorder and delivery assurance

《service》
Buyer

request
《message》
OrderMsg

source sink

reply
《message》

ConfirmationMsg

timeout = 00:05:00.00
synchrony = Sync
inOrder = true

《connector》
BuyerConn

《messageExchange》
OrderCancellation

《service》
Retailer

sinksource

request
《message》

CancellationMsg

orderID: Integer

orderID: Integer

《connector》
OrderConn

《service》
Supplier

timeout = 00:05:00.00
synchrony = Sync
messageReliability::deliveryAssurance

= ExactlyOnce

《messageExchange》
Order

source

source

sink

sink

1

*

1

*

1

*

1

*

1
*

1
*

1
*

1
*

950

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

whether a queue stores messages in a storage (e.g.,
a file or database) so that the queue can recover
them when it crashes unexpectedly.

Figure 6 shows an example using queuePa-
rameters. It illustrates an inventory management
application for retailers (see also Figure 1). Each

Retailer transmits an OrderMsg to an Inventory-
Manager when it has no or few products in stock.
The InventoryManager receives OrderMsgs from
multiple Retailers every two hours in a batch
manner. The OrderConn connector implements
a synchronous queue that stores and forwards

Figure 6. An example of queue

Figure 7. An example model for regulatory compliance

《message》
ShippingMsg

request1

*

1

*

source

sink

《service》
Retailer

《connector》OrderConn

《service》
InventoryManager

《messageExchange》
Order

sink

source

1

*

1

*

《service》
Warehouse

《message》
OrderMsg

《messageExchange》
Shipping

request

synchrony = Sync
timeout = 00:10:00.00
queueParameters::size = 10000
queueParameters::persisitent = true
queueParameters::flushInterval = 02:00:00.00
queueParameters::flushWhenFull = true

itemID: Integer
amount : Integer

1sink
*

《service》
Supplier

《connector》
InventoryConn

《message》
PurchasingMsg

*

1

《messageExchange》
Purchasing

request
source

reply

《message》
OrderConfirmationMsg
orderID: Integer
estimatedTime : Date

timeout = 00:05:00.00
synchrony = Sync
deliveryAssurance = ExactlyOnce

requestsource
sink

《messageExchange》
AuthReqExchange

source
sink

《connector》
RetailerConn

《service》
Supervisor《service》

Retailer

《service》
Buyer

request

reply

《digester》

《accessControlledMessage》
OrderMsg

orderID : Integer
numOfItem : Integer
authSignature : String

synchrony = Sync
timeout = 00:05:00.00
messageIntegrity = true

《MessageRetention》{retentionPeriod = “year = 2, month = 6”}
AuditablePurchasing

《accessControlledMessage》
InvoiceMsg

1

*

1

*

1

*

1

*

numOfItem: Integer

securityTokens = {X509v3}
revisionHistoryRetained = true

securityTokens
= {X509v3}

《messageExchange》
OrderReqExchange OrderMsg.numOfItem ==

Invoice.numOfItem

 951

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

OrderMsgs. The InventoryManager schedules
which warehouses deliver which products to
which retail stores (every two hours), and based
on the shipping schedule, sends ShippingMsgs to
Warehouses. If a warehouse has a small inventory
of a particular product, the InventoryManager
orders the product by sending a PurchasingMsg
to a Supplier.

msgTransmissionLogRetained is a mandatory
tagged-value to specify whether to retain logs
on message transmissions (see Figure 2 for an
example). Regulatory mandates require applica-
tions to retain the logs and make them auditable
for the third party organizations in the future.
A connector with this tagged-value records (1)
which messages are transmitted, (2) message
source and destination (services), and (3) when
the messages are transmitted. If msgTransmis-
sionLogRetained is true, retentionPeriod must
be specified to define the period to retain each
message transmission log. The default value of
msgTransmissionLogRetained is false. If it is
false, retentionPeriod is ignored.

messageIntegrity is a mandatory tagged-
value to specify whether to ensure the message
integrity. The default value of messageInteg-
rity is false. A connector with this tagged-value
checks whether messages are changed during
their transmission.

Figure 7 illustrates an order processing ap-
plication in which a Buyer places an order and a
Retailer receives it via authorization by a Su-
pervisor. By assigning a signature to the auth-
Signature data field of an OrderMsg, Supervisor
authorizes the message (order). Services are con-
nected through a connector with the messageIn-
tegrity semantics. This semantics ensures that
OrderMsg messages are not altered during their
transmission, and eliminates the possibility of
malicious alteration.

A p a c k a g e s t e r e o t y p e d w i t h
<<messageRetention>> specifies that contained
connectors have the msgTransmissionLogRe-
tained semantics implicitly if the connectors omit

it (Figure 7). Each connector follows the reten-
tionPeriod specified in the package. When a con-
nector specifies msgTransmissionLogRetained
and retentionPeriod explicitly, they override the
retentionPeriod specified in a package. Also, a
package stereotyped with <<messageRetention>>
enforces contained services and messages to log
their message transmissions. Connectors, servic-
es, and messages retain their logs independently,
and the third party organizations can discover
fraud activities by checking the inconsistencies
between their logs.

Application developers can specify constraints
using the Object Constraint Language (OCL).
Constraints are used to ensure the consistency
among application data and check whether ser-
vices work correctly. For example, in Figure 7,
OrderReqExchange has a constraint that ensures
the number of items in an order (OrderMsg) and
a corresponding invoice (InvoiceMsg) are always
equal. When this constraint is violated, fraud
activities could be committed.

Filter

This article describes eight of the filters that the
proposed UML profile defines. Filters are defined
as stereotypes extending the Filter stereotype
(Figure 8). New filters can be defined as its sub-
classes. This section shows six filters to specify
message transmission semantics and two filters
to specify message processing semantics.

The stereotypes Multicast, Manycast, Any-
cast, Router, Logger, and Digester are used to
define the message transmission semantics in a
connector. A Multicast filter receives a request
message from its source and transmits it to multiple
destinations (services) simultaneously (one-to-
many message exchange). A group of destinations
can contain different types of services. When the
Multicast filter receives reply messages from the
destinations, it sends them back to the source of
the request message. Multicast is used to improve
the efficiency of message transmissions.

952

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

Figure 9 shows an example that models an
application for wholesale price notification using
Multicast. A Retailer subscribes for the price
changes of a particular supply, and a Supplier
notifies (or publishes) any price changes to the
Retailer. A Retailer transmits a Subscription
message to a Supplier in a synchronous and
exactly-once manner. A Supplier multicasts a
PriceNotificationMsg message, which contains a
supply’s GTIN (Global Trade Item Number)3 and
price, to multiple Retailers in asynchronous and
at-most-once semantics.

Manycast is used to improve fault tolerance
by forwarding a request message to a group of
replicated destinations (i.e., to the same type of ser-
vices). The tagged-value groupSize specifies how
many services are deployed as a group. standby
specifies the operation of replicated services: hot
standby, warm standby, or cold standby. In hot
standby, all services in a group remain active to
receive request messages. A Manycast filter sends
a message to all services in a group. Manycast
returns only one reply message to the source of
a request message, out of multiple replies from

Figure 8. Tagged-values of filters

Figure 9. An example of multicast

《stereotype》
Validator《stereotype》

Router

《stereotype》
MessageRemover

《stereotype》
Logger 《stereotype》

Anycast

《stereotype》
Manycast

groupSize : Integer
standby : Standby
backtracking: Backtracking
quorum : Integer
timeout : Time

selection : Selection
retry : Integer
timeout : Time

《enum》Selection
Random, RoundRobin, Priority

《enum》Backtracking
FCFB, Voting

《enum》Standby
Hot, Warm, Cold

《stereotype》
Filter

《stereotype》
Digester

priority : Integer

digestAlgorithm: String

schemata: Message[1..*]

《stereotype》
Multicast

timeout = 00:02:00.00
synchrony = Sync
deliveryAssurance = ExactlyOnce

timeout = 00:02:00.00
synchrony = Async
deliveryAssurance = AtMostOnce

《connector》SubConn

《 service》
Supplier

《service》
Retailer 《messageExchange》

SubscriptionExchange

《messageExchange》
StockInfoExchange

source

source sink

sink

《message》
PriceNotificationMsg

《message》
SubscriptionMsg

request

request

1*
1*

* *
1 *

GTIN: String
price: Integer

《connector》NotifConn

《multicast》
Multicaster

 953

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

services. backtracking defines two policies to
decide which reply message to be returned. When
FCFB (first-come-first-backtracked) is selected, a
Manycast filter returns the first reply that it re-
ceives from destination services. When Voting
is selected, the Manycast filter performs a voting
process. It counts the number of reply messages
and inspects their contents. If the number of replies
that have the same content reaches quorum, the
Manycast filter returns one of the replies. If the
number does not reach quorum within timeout,
the Manycast filter returns the reply that generates
the highest voting count.

In warm standby, all services in a group remain
active to receive request messages. A Manycast
filter sends a message to all services in a group,
but only one service returns a reply. In this case,
backtracking is not used. In cold standby, only
one service in a group is active, and a Manycast
filter sends a message to the service. If the ser-
vice does not respond within timeout, the filter
activates another service in the group and sends
a message to the service. In cold standby, back-
tracking is not used.

In an example model shown in Figure 10, a
supplier sends an inquiry to a cluster of transaction
record servers to obtain a transaction record

containing a set of orders. A manycast filter,
Replicator, is used in the connection Record-
Conn. The filter intercepts each Inquiry (request)
message and sends it to three replicated instances
of TransactionRecServer, which is maintained
with the hot standby policy. Replicator returns
a TransactionRecordMsg (reply message) to a
Supplier on FCFB basis.

Anycast is a variation of the hot standby policy
in Manycast. It forwards a request message to only
one destination in a group of replicated services.
This filter is used to balance workload placed on
services. selection defines how to choose a desti-
nation from multiple services; randomly, on round
robin or on destination’s priority basis (the service
with the highest priority in a group is selected). If
an Anycast filter fails to deliver a request message
within timeout, it retries to forward the request
message. retry specifies the maximum number
of retries. If the Anycast filter fails the maximum
number of retries, it returns an error message to
the source of the request message.

Figure 11 shows an example model describ-
ing a content delivery system, for example, for
delivering contents among supplier’s online
catalogs of their supplies. (For simplicity, tagged-
values of the connector RedirectionConn and

Figure 10. An example of manycast

《service》
Supplier

《manycast》
Replicator

《connector》RecordConn

reply

sinksource

* 3

groupSize = 3
Standby = Hot
backtracking = FCFB
timeout = 00:05:00.00

redundancy = 3
securityTokens = {
X509v3, Kerberosv5ST}
backupParameters::

generation = 5
backupParameters::

full = “0/0/0 10:00pm Sat”
backupParameters::

inc = “0/0/0 2:00am Week”

《messageExchange》
RecordExchange

《accessControlledService》
TransactionRecServer

《message》
TransactionRecordMsg

request

《message》
InquiryMsg

encryptionAlgorithm =
http://www.w3.org/2001/04/xmlenc#tripledes-cbc

*1

timeout = 00:05:00
synchrony= Sync

TransactionRecord
orderId: Integer
scannedContract: String

《EncryptedProperty》
records

1..*1

signatureMethod =
http://www.w3.org/ 2000/09/xmldsig#dsa-sha1

954

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

CacheUpdateConn are omitted, but both have the
synchronous semantics and their timeout is five
minutes.) A user agent (UserAgent) sends a request
(ContentReqMsg) to a content server (OriginServ-
er) through a connector (ContentDeliveryConn).
To balance workload, the content server redirects
the request to a surrogate server (SurrogateServ-
er). This model has a cluster of surrogate servers
which consists of 10 replica servers. An Anycast
filter in the connector RedirectionConn selects
one of servers on their priority basis and redirects
a request to it. (tagged-values of the Anycast filter
is described on the upper left corner.) If a surrogate
server does not have data to process a request, it
sends a request (CacheReqMsg) to a content server
to obtain cache data (CacheMsg). After process-
ing a request, a surrogate server returns content
(ContentMsg) to a user agent.

Router routes an incoming message to one
or more destinations with certain criteria. Since
UML does not provide a means to define rules, the
proposed profile has no facility to specify routing
rules at design time. Supporting tools transform a
Router to a skeleton source code (e.g., in Java) or
a rule description (e.g., in XPath) that performs

message routing. Developers are expected to
complete the skeleton code/description.

Logger records the transmission of each mes-
sage whose priority value is higher than priority.
When priority is omitted, all message transmis-
sions are recorded.

Digester records digest values of all messages.
This filter can be used to check whether a message
is altered after its transmission. The digest algo-
rithm is specified as a URI defined in the XML
Encryption specification (The World Wide Web
Consortium, 2002a). For example, http://www.
w3.org/2000/09/xmldsig#sha1 specifies SHA-1.

In addition to the stereotypes for message
transmission semantics, the proposed UML
profile provides two other stereotypes to define
the message processing semantics in each con-
nector: Validator and MessageRemover (Figure
8). Validator and MessageRemover validate
incoming messages against the message schema
specified in its tagged-value schemaURI and a
given criteria (e.g., rules specifying valid data
ranges) respectively, and transmit only vali-
dated messages. Since UML does not provide a
means to define rules, the proposed profile has

Figure 11. An example of anycast

《service》
OriginServer

《service》
SurrogateServer

《connector》
RedirectionConn

《anycast》
Redirector

《 connector》
CacheUpdateConn

《 logger》
CacheLogger

《messageExchange》
RequestRedirection

《messageExchange》
CacheUpdate

《message》
CacheMsg

requestreply

11

**

sink source

knisecruos
11

**

redundancy= 10

《message》
ContentReqMsg

request

《service》
UserAgent

《 connector》
ContentDeliveryConn

《messageExchange》
ContentDelivery

《messageExchange》
ContentRequest

《message》
ContentMsg

source
1

sink
1

requestselection = Priority
retry = 2
timeout = 00:02:00.00

《Anycast》Redirector’s
tagged-values

synchrony = Async
timeout = 00:05:00.00

《message》
CacheReqMsg

1
sink

source 1

**

*

*

 955

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

no facility to specify message filtering rules for
MessageRemover at design time. Supporting
tools transform a Validator and MessageRemover
to a skeleton source code (e.g., in Java) or a rule
description (e.g., in XPath) that performs message
filtering. Developers are expected to complete the
skeleton code/description. When a connector is
encrypted with encryptionParameter, Valida-
tor and MessageRemover in the connector cannot
validate messages (all messages are transmitted
to their destinations.)

service

Service has six tagged-values (Figure 12). time-
out is an optional tagged-value to specify the
timeout period (in millisecond) of each message
that a service issues. If a message is not delivered
to its destination within this time period, a con-
nector discards the message.

priority is an optional tagged-value to specify
the priority of each message that a service is-
sues. Anycast filter uses priority to select its
destinations. Also, it is used to order messages
in a message queue when a connector has queue-
Parameters.

Each service is expected to have data fields
corresponding to the priority and timeout
tagged-values. Usually, class instances cannot
read and write tagged-values because tagged-val-
ues are defined in a metamodel (see Figure 3) and

used in a model. The data fields allow different
class instances to have different tagged-values,
and tagged-values specified in a model behave as
default values of corresponding data fields.

redundancy is an optional tagged-value to
specify the number of runtime instances of a
service. This tagged-value must be specified
when a service is accessed by Manycast or Any-
cast filters. In Figure 10, three instances of
TransactionRecServer are used for fault tolerance
with the manycast filter Replicator.

Same as a connector, a service with msgTrans-
missionLogRetained and retentionPeriod re-
cords information on its message transmissions. A
package stereotyped with <<messageRetention>>
specifies that enclosed services have the ms-
gTransmissionLogRetained semantics implicitly
if the services omit it (Figure 7). When a service
specifies msgTransmissionLogRetained and
retentionPeriod explicitly, they can overrides
package’s ones.

backupParameters is an optional tagged-value
to specify service’s backup policy. full, diff, and
inc specify the time when full, differential, and
incremental backups is performed respectively.
The class Calendar can specify a specific time
in point and a repetition time. For example, when
year is omitted (value zero means omission), the
backup is performed every year (the date and
time to perform a backup is specified by other
data fields in Calendar). Full backup stores all

Figure 12. Tagged-value of service

《stereotype》Service
priority[0..1] : Integer
timeout[0..1] : Time
redundancy : Integer = 1
msgTransmissionLogRetained: boolean = false
retentionPeriod [0..1] : Date

《stereotype》
AccessControlledService

securityTokens [1..*] : String
Date

xor

full

inc

diff

backupParameters 0..1

BackupParameters
generation: Integer
encryptionAlgorithm[0..1]: String
securityTokens [0..*] : String

year: Integer
month: Integer
day: Integer
dayOfWeek: Integer
time: Time

0..*

0..*

1..*

956

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

data in a service, differential backup stores all
data which have been modified since the last full
backup, and incremental backup stores all data
which have been modified since the last full or
incremental backup. Differential backup requires
much amount of storage and longer time to per-
form than incremental backup, but it can restore
data faster. Also, data redundancy in differential
backup reduces the risk of data loss. Differential
and incremental backups must be used with full
backup, and full backup must be performed at
least once before differential or incremental
backups are performed. One backup policy can
have either differential or incremental backup at
a time (xor). If diff and inc are omitted, only
full backup is performed. generation specifies
the number of full backups retained in a storage.
encryptionAlgorithm specifies an algorithm
to secure backup data. encryptionAlgorithm
specifies an algorithm to secure backup data.
securityTokens specifies security tokens for the
purpose of authentication (see below). In Figure 10,
the service TransactionRecServer has a backup
policy. The backup policy specifies the generation
(five), the time when full and incremental backup
are performed (10:00pm on every Saturday and
2:00am on week days respectively).

AccessControlledService is a stereotype
extending the stereotype Service (Figure
12). It is a special type of service that enforces
an access control policy. The tagged-value se-
curityTokens is mandatory to specify security
tokens (or certificates). The security tokens are
used to authenticate entities (e.g., services) that
access a message. This tagged-value can contain
multiple values in order of precedence. The values
use the names defined in the WS-SecurityPolicy
specification (Organization for the Advancement
of Structured Information Standards, 2005). In
Figure 10, TransactionRecServers control ac-
cesses from Suppliers using X.509 certificates
or Kerberos tickets. Since UML does not provide
a good means to describe policies (or rules), the
proposed UML profile does not define how to

specify access control policies. <<accessControll
edService>> is used only for indicating a service
implements a certain access policy. A supporting
tool transforms an AccessControlledService
to a skeleton program code or an access control
description in accordance with an implementation
technology that an application designer chooses.
Application developers are required to complete
implementing access control policies.

In addition to the general type of service, the
proposed UML profile provides three special types
of services, MessageConverter, MessageSplit-
ter, MessageAggregator, to define the message
processing semantics. They inherit the Service
stereotype.

MessageConverter converts an incoming
message with a given rule. Similar to Router,
supporting tools transform a MessageConverter
to a skeleton source code or rule description (e.g.,
in XSLT) that performs message conversions,
and developers complete the skeleton code/de-
scription.

MessageSplitter divides an incoming mes-
sage into multiple fragments with a certain rule.
Similar to MessageConverter, supporting tools
transform a MessageSplitter to a skeleton code or
rule description that performs message split, and
developers complete the skeleton. In an example
model shown in Figure 13, a Retailer sends an
order message (OrderMsg) to a MessageSplitter,
and the splitter divides the message into two frag-
ments (PurchasingMsg and AccountingMsg), and
sends them to different destinations (Supplier
and Accountant). The destinations directly returns
reply messages (PurchasingConf and Accounting-
Conf) to the Retailer. The connector OrderConn
encrypts all messages with Triple DES. Also, the
message OrderMsg retains routing information,
which includes source of a message. (i.e., it is au-
ditable which customer sends which message.)

MessageAggregator combines multiple in-
coming messages. Figure 14 shows an example
extending the model in Figure 2. In addition to
OrderMsg, Retailer sends a message AuthReqMsg

 957

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

to ask the service Supervisor to authorize the
order. Aggregator synchronizes and combines
OrderMsg and AuthMsg (an authorization message
from Supervisors), and it sends new message
AuthedOrderMsg to Supplier. The connector

OrderConn retains logs on message exchanges
between Buyer, Supervisor, and Aggregator. It
makes logs on order and authorization process
auditable. Also, OrderConn ensure the integrity
of messages.

Figure 13. An example of messagesplitter

Figure 14. An example of messageaggregator

request

《message》
OrderMsg

source sink

《connector》
OrderServiceConn

《messageExchange》
AccountingOrder

《service》
Accountant

《service》
Supplier

sink

sink

source

source

request

《message》
PurchacingMsg

request

《message》
AccountingMsg

reply

《message》
PurchacingConfMsg

reply

《message》
AccountingConfMsg

reply

reply

timeout = 00:05:00.00
synchrony= Async

《service》
Retailer

1 * 1*

1
*

1*

1
*

1*

timeout = 00:05:00.00
synchrony= Sync
encryptionAlgorithm =
“http://www.w3.org/2001/04/
xmlenc#tripledes-cbc”

routingHistoryRetained = true
retentionPeriod = …

《messageExchange》
Order

《messageSplitter》
Splitter

《messageExchange》
RetailOrder

《connector》
OrderConn

《service》
Retailer

《connector》
OrderConn

request

《message》
OrderMsg

source sink

《messageExchange》
AuthReq

《messageExchange》
Order

request

《message》
AuthReqMsg

《messageExchange》
Auth

request
《message》

AuthMsg

request

《message》
AuthedOrderMsg

《messageExchange》
AuthedOrder

《connector》
AuthedOrderConn

timeout = 00:05:00.00
synchrony = Sync
deliveryAssurance = ExactlyOnce
msgTransmissionLogRetained = true
retentionPeriod = …
messageIntegrity = true

source

source

sourcesink

sink

sink

《service》
Supplier

《logger》
Logging

《messageAggregator》
Aggregator

1
*

1
*

1

*

1

1 1 *

1

*

1

*

timeout = 00:05:00.00
synchrony = Sync
deliveryAssurance = ExactlyOnce

signatureMethod = …

《service》
Supervisor

958

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

Message

Message has seven tagged-values (Figure 15).
schemaURI is a mandatory tagged-value to
identify the schema of a message. The default
value of schemaURI is message’s qualified
name (a combination of a package name and
message’s name).

priority and timeout are optional tagged-val-
ues to specify the priority and timeout period of
messages. Connector has timeout, and Service
also has those two tagged-values. The precedence
is that Message’s tagged-values override Ser-
vice’s ones, and Service’s tagged-values override
Connector’s ones. Same as Service, each message
is expected to have data fields corresponding to
the priority and timeout tagged-values, and
different message instance can have different
priority and timeout.

signatureMethod is used an optional tagged-
value to ensure the integrity of a message. It
specifies an algorithm for generating the message’s
digital signature. The algorithm is represented
with a URI defined in the XML Signature specifi-
cation (The World Wide Web Consortium, 2002b).
For example, DSA (Digital Signature Algorithm)
is represented with http://www.w3.org/2000/09/
xmldsig#dsa-sha1. In Figure 10, each Inquiry

and TransactionRecord message is signed with
DSA. When signatureMethod is specified, each
message is expected to maintain its signature in
a data field called signature.

Same as a connector, a message with routin-
gHistoryRetained and retentionPeriod records
information on its message transmissions. A
package stereotyped with <<messageRetention>>
specifies that enclosed messages have the routin-
gHistoryRetained semantics implicitly if the ser-
vices omit it (Figure 7). When a message specifies
routingHistoryRetained and retentionPeriod
explicitly, they can overrides package ones.

revisionHistoryRetained is an optional
tagged-value to specify whether to retain
message’s revision history (Figure 7). It makes
the revision history to auditable in the future. A
message with this semantics records 1) which data
fields are revised, 2) how they revised (i.e., newly
created, replaced, or deleted), 3) when they re-
vised, and 4) who revised them. The tagged-value
retentionPeriod is used to specify the period to
retain the history. A package stereotyped with
<<messageRetention>> specifies that enclosed
messages have the revisionHistoryRetained
semantics implicitly

The stereotype EncryptedProperty is used
for message-level (end-to-end) encryption. It is

Figure 15. Tagged-values of message

《stereotype》Message

schemaURI : String
priority : Integer = 0
timeout[0..1] : Time
signatureMethod[0..1] : String
routingHistoryRetained: Boolean = false
retantionPeriod[0..1] : Date
revisionHistoryRetained: Boolean = false

Kernel::Class Kernel::Property
0..*

《stereotype》
EncryptedProperty

encryptionAlgorithm : String

UML 2.0 metamodel

Proposed UML Profile

《stereotype》
AccessControlledMessage

securityTokens [1..*] : String

 959

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

defined as a stereotype extending Property in the
UML metamodel (Figure 15). This stereotype is
attached to data fields to be encrypted in a mes-
sage. EncryptedProperty has a tagged-value,
encryptionAlgorithm, to specify an algorithm
used to encrypt a message. The semantics of
this tagged-value is same as that of encryp-
tionAlgorithm in Connector. An encryption
algorithm is specified as a URI that the XML
Encryption specification defines (World Wide
Web Consortium, 2002a). Different data fields
in a message can be encrypted with different
encryption algorithms. In Figure 10, orders in
TransactionRecordMsg are encrypted with Triple
DES, which is represented with http://www.
w3.org/2001/04/xmlenc#tripledes-cbc.

AccessControlledMessage is a stereotype
extending Message (Figure 15). Similar to Ac-
cessControlledService it is a special type of
message that enforces an access control policy. It
removes the possibility of unauthorized accesses
(i.e., altering messages by unauthorized users)
and accidental altering (i.e. altering messages
mistakenly by authorized users). The tagged-value
securityTokens must be specified in AccessCon-
trolledMessage for the purpose of authentication.
Since UML does not provide a good means to
describe policies (or rules), the proposed UML
profile does not define how to specify access con-
trol policies. AccessControlledMessage is used to
indicate a message implements a certain access
policy. A supporting tool transforms an Access-
ControlledMessage to a skeleton program code or
an access control description in accordance with
an implementation technology that an applica-
tion developer chooses. Application developers
are required to complete implementing access
control policies.

ApplIcAtIon deVelopMent
wIth the proposed Mdd
FrAMework

This section describes a model-driven develop-
ment (MDD) tool, called Ark, which accepts a
UML model designed with the proposed UML
profile and transforms the model into a skeleton
of application code (program code and deploy-
ment descriptor). Currently, Ark implements
transformations between the proposed UML
profile and three middleware technologies: Mule
ESB4, ServiceMix ESB5 and GridFTP6 (Figure
16). UML models in this work are maintained
with the metameta model of the Eclipse Modeling
Framework (EMF; http://www.eclipse.org/emf/).
The proposed UML profile is defined as an exten-
sion to the UML metamodel. Each application
designer gives his/her UML model to Ark, and
instructs Ark which transformation to use for
generating skeleton application code.

Figure 17 shows the development process
using Ark. (This figure assumes that generated
application code uses Mule ESB.) Application
designers define application models using the
proposed UML profile (e.g., an example model
in Figures 2). Ark Transformer, one of the com-
ponents in Ark, takes the application models in
the format of XML Metadata Interchange (XMI)
and transforms the input models into application
code compliant with Mule ESB.

Ark has been tested with MagicDraw7, a vi-
sual UML modeling tool that can serialize UML
models to XMI (Figure 18). Ark Transformer is
implemented based on openArchitectureWare8,
a model transformation engine. Each input UML
model (XMI file) is validated against the UML
standard metamodel and the proposed profile’s
metamodel (see Figure 3), and transformed to ap-
plication code for Mule ESB (Java programs and
deployment descriptors in XML). A transforma-
tion rule between UML models and application

960

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

App.
codeApp.
code

UML Profile for SOAUML Profile for SOA

UML Models
w/ UML Profile for SOA

meta-model

model

UML Metamodel

Ark

App.
code

Ecore (EMF)meta-meta-
model

The proposed MDD framework

App.
codeApp.
code

UML Profile for SOAUML Profile for SOA

UML Models
w/ UML Profile for SOA

meta-model

model

UML Metamodel

ArkArk

App.
code

Ecore (EMF)meta-meta-
model

The proposed MDD framework

Figure 16. The Architecture of Ark

Figure 17. Application development with Ark

Application Model
with UML

The Proposed
UML Profile

uses

1. define

Application
Designers

Ark
Transformer

Application Code
for MuleESB

- Source code
- Deployment

Descriptor

Ark Library
for MuleESB

3. implement

Application
Developers

uses

2. Transform

XMI

Transformation
Rules

Figure 18. A UML model in magicdraw

 961

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

code is implemented as a set of transformation
templates, which define how to transform UML
model elements to program elements in applica-
tion code.

transformation rules for esb
Applications

Figure 19 shows some of the Java classes and
deployment descriptors that Ark generates from
the UML model in Figure 7 when Mule ESB is
selected as middleware to operate applications.
Table 2 shows the transformation between model
elements in the proposed UML profile and pro-
gram elements in Mule ESB. Ark transforms a
UML class stereotyped with <<message>> to a
Java class that has the same class name and the
same data fields. The Java class implements the
interface Serializable. This is required to imple-
ment messages exchanged with Mule ESB.

A UML class stereotyped with <<service>>
is transformed to a Java class that has the same
class name and the same data fields. Ark inserts
several operations to the Java class, depending
on whether its association role is source or sink
against a message exchange. The operations are
used to send and receive messages: _sendX()
to send messages where X references the name

of a message exchange, and receiveX() to
receive messages. For example, in Figure 19,
Supervisor has _sendOrderReqExchange() and
receiveAuthReqExchange() to send and receive
OrderMsg messages to Supplier and from Re-
tailer respectively. _ sendX() is supposed to
be invoked by methods in the same service class.
(This is why its visibility is private.) receiveX()
is called by source services that have messages
to deliver. A fragment of a deployment descriptor
in Figure 19 specifies the URL of Supervisor.
<endpoint-identifier> specifies a name of
an end point (name) and its URL (value), e.g.,
when a service is deployed to be accessed via
HTTP, value is http://.... <mule-descriptor>
specifies the implementation (implementation)
of a service (name), and <inbound-router>
specifies the URL of a service by referencing an
end point.

A template fragment of this transformation
rule is shown below. <<service.name>> in the
template represents the name of a UML class
stereotyped with <<service>>. (Note that the
variables and keywords in a transformation rule
are embraced with << and >>.) <<messageEx-
change.name>> references the name of an UML
class stereotyped with <<messageExchange>>.
<<requestMessage.name>> and <<replyMessage.

Buyer

- _sendAuthReqExchange(
OrderMsg) : void

Supervisor

+ receiveAuthReqExchange(
OrderMsg) : void

- _sendOrderReqExchange(
OrderMsg): InvoiceMsg

OrderMsg

Retailer

+ receiveOrderReqExchange(
OrderMsg) : InvoiceMsg

InvoiceMsg
+ numOfItem: int

+ orderID: int
+ numOfItem: int
+ authSignature: String

…
MuleClient client = new MuleClient()
UMOMessage req = new MuleMessage(arg);
int timeout = 300000; // five minutes
UMOMessage result = Client.send(url, message, timeout)
…

Code Fragment of
_sendAuthReqExchange()

…
<endpoint-identifiers>
<endpoint-identifier

name="Supervisor_in_AuthReqExchange“
value=“http://..."/>

</endpoint-identifiers>
<model name="ReguratoryCompliance">
<mule-descriptor

name="Supervisor“
implementation="Supervisor">

<inbound-router>
<endpoint

address="Supervisor_in_AuthReqExchange"/>
</inbound-router>
</mule-descriptor>

</model>
…

Fragment of a
deployment descriptor
(retated to Suervisor)

Figure 19. Generated code for mule ESB

962

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

name>> represent the names a request and reply
messages, respectively. Ark replaces each vari-
able in a transformation template with the name
of a UML model element (e.g., class name), and
generates Java code. When a service transmits
multiple pairs of request and reply messages, Ark
generates corresponding sets of _ sendX() and

receiveX(). <<sinkID>> represents the logical
name of a destination service. Each pair of a logical
service name and its access point is specified in a
deployment descriptor. For example, if a service
is deployed to be accessed via HTTP, its access
point starts with http://.

Model Element in
the Proposed UML Profile Program Element in Mule ESB

<<service>>
<<accessControlledService>> A Java class with the same name.

securityTokens A security filter implemented in Ark library
<<message>> A Java class implementing Serializable interface
signatureMethod A security filter implemented in Ark library
<<encryptedProperty>> A property in a corresponding Java class
encryptionAlgorithm A message transformer implemented in Ark library
<<messageExchange>> Methods to send/receive messages
sink (Service’s role) Service’s operations sending messages.
source (Service’s role) Service’s operations receiving messages.
<<connector>> A set of entities in a deployment descriptor
timeout An operation’s parameter to specify message’s timeout period
synchrony Different types of Mule ESB’s operation used to send a message.
deliveryAssurance A filter implemented in Ark library
queueParameters JMS parameters specified in a deployment descriptor
encryptionAlgorithm A message transformer implemented in Ark library
msgTransmissionLogRetained A message transformer implemented in Ark library
routingHistoryRetained A message transformer implemented in Ark library
messageIntegrity A message transformer implemented in Ark library
<<messageAggregator>> A class implementing AbstractEventAggregator in Mule ESB
<<messageConverter>> A class implementing DefaultTransformer in Mule ESB
<<messageSplitter>> A class implementing AbstractMessageSplitter in Mule ESB
<<logger>>
<<messageFilter>>
<<router>>
<<validator>>

Filters provided by Mule ESB

<<multicast>> A filter implemented in Ark library
<<manycast>> A filter implemented in Ark library
<<anycast>> A filter implemented in Ark library

Table 2. Transformation between the proposed UML profile and mule ESB

 963

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

public class <<service.name>> {

 private void

 _ send<<messageExchange.name>>(

 <<requestMessage.name>> request){

 MuleClient muleClient =

 new MuleClient();

 String endpointName =

 <<sinkID>>;

 UMOEndpoint url =

 MuleManager.

 getInstance().

 lookupEndpoint(

 endpointName);

 int timeout =

 <<connector.timeout>>000;

 <<IF connector.synchrony

 == Sync>>

 UMOMessage result =

 muleClient.send(

 url, message, timeout);

 <<ELSEIF connector.synchrony

 == Oneway>>

 // generating code for

 //an oneway call

 <<ELSE>>

 // generating code for

 //an asynchronous call

 <<ENDIF>>

 }

 public void

 receive<<messageExchange.name>>(

 <<replyMessage.name>>reply){

 }

}

U M L c l a s s e s s t e r e o t y p e d w i t h
<<messageExchange>> and <<connector>> are not
transformed to particular Java classes. The mes-
sage transmission/processing semantics specified
in a UML model is implemented in Java classes
of message sender and destination. For example,
in Figure 7, a Buyer sends an OrderMsg message

to a Supervisor synchronously. Therefore, Ark
generates a Java code to send the message syn-
chronously using Mule ESB’s API9, and embeds
the code in _sendAuthReqExchange() of Buyer.
<<connector.synchrony>> in the above transfor-
mation template references the synchrony of a
connector, and Ark interprets it to generate Java
code to send messages to a destination service.

(<<IF>>, <<ELSEIF>> and <<ENDIF>> are the reserved
keywords for branching statements.) Ark also
generates Java code to handle timeout using Mule
ESB’s API (<<connector.timeout>> references the
timeout period specified in a UML model.), and
embeds the code in _sendAuthReqExchange() of
Buyer (see also Figure 19).

As Figure 7 shows, a connector has the mes-
sageIntegrity semantics. To support this seman-
tics, Ark provides a pair of message transformers
to generate and verify a message’s hash value.
(These transformers are implemented as a part of
Ark Library; see Figure 19.) In Mule ESB, each
service can have an arbitrary number of message
transformers as the classes implementing the in-
terface org.mule.transformer.UMOTransformer.

Message transformers are invoked (or hooked)
when a service sends/receives a message. At a
message source, a transformer (edu.umb.cs.Mes-
sageIntegrityGenerator) generates a message’s
hash value and embeds it into the message’s header.
At a message sink, a transformer (edu.umb.cs.Me
ssageIntegrityVerifier) verifies the message’s
integrity using the hash value. Ark Library also
implements the msgTrasmissionLogRetained and
routingHistoryRetained semantics as message
transformers edu.cs.umb.TransmissionLogger
and edu.cs.umb.RoutingHistoryLogger).

When a UML model specifies a connector as
a message queue, Ark generates application code
that uses Java Message Service (JMS) because
Mule ESB supports message queues through the
use of JMS. For example, in Figure 6, OrderConn
is specified as a message queue. Ark generates a
corresponding deployment descriptor to configure

964

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

and establish JMS connector that exchanges
OrderMsg and OrderConfirmationMsg between
Retailer and InventoryManager.

When a UML model uses the MessageSplit-
ter or MessageAggregator filter (e.g., Figures
14 and 15), Ark generates application code that
uses corresponding class in Ark Library. Cor-
responding to MessageSplitter, Ark generates
a class implementing the interface org.mule.

routing.outbound.AbstractMessageSplitter.
In Mule ESB, the implementation class can be
attached to arbitrary services in order to split
an outgoing message into fragments and route
them to different services. When Ark transforms
a UML model in Figure 14, the implementation
class is attached to a Retailer for intercepting an
OrderMsg message from the Retailer and spliting
it to a PurchasingMsg and AccountingMsg.

Similarly, corresponding to MessageAg-
gregator, Ark generates a class implementing
the interface org.mule.routing.outbound.Ab-
stractEventAggregator. The implementation
class can be attached to arbitrary services to
aggregate an incoming message into a single

message. In order to transform a UML model
in Figure 15, Ark attaches the implementation
class to a Supplier to aggregate a OrderMsg and
a AuthMsg to a AuthedOrderMsg and pass the ag-
gregated message to the Supplier.

The Logger, MessageFilter, Router,
and Validator filters are transformed to and
implemented with corresponding classes built in
Mule ESB. Those classes are attached to services
to perform message loging, filtering, routing, and
validation functionalities as specified in an input
UML model.

transformation rules for secure
and broadband File transfer
Applications

When an application designer chooses GridFTP
to operate his/her application, the application
is deployed on Mule ESB and configured to
use GridFTP as a message transport. Figure 20
shows some of the Java classes and deployment
descriptors that Ark generates from a UML model
in Figure 10.

Figure 20. Generated code for mule esb and gridFTP

TransactionRecordMsg

Supplier

<security-filter className=“edu.cs.umb.securityfilter.Signature”>
<properties>
<property name=“element” value=“Inquiry”>
<property name=“algorithm“

value=" http://www.w3.org/2000/09/xmldsig#dsa-sha1 "/>
</properties>

</security-filter>

<security-filter className=“edu.cs.umb.securityfilter.SecurityToken”>
<properties><property name=“algorithm" value="X509v3"/></properties>

</security-filter>
…
<transformer name=“Encrypt" className=“edu.cs.umb.MessageEncryptor">
<properties><property name=“algorithm“ value=“TripleDES"/></properties>

</transformer>
…
<connector name="gridftpConnector“ className="edu.cs.umb.GridFTPConnector">
<properties><property name="specification" value="4.0.1"/></properties>

</connector>

InquiryMsg TransactionRecServer

- _sendRecordExchange(
Inquiry): TransactionRecord

+ receiveRecordExchange(
Inquiry): TransactionRecord

<transformer
name=“Encrypt"
className=“edu.cs.umb.MessageEncryptor">
<properties>
<property

name=“element”
value=“TransactionRecord.records”>

<property
name=“algorithm“
value=“…xmlenc#tripledes-cdc”/>

</properties>
</transformer>

TransactionRecordMsg

Supplier

<security-filter className=“edu.cs.umb.securityfilter.Signature”>
<properties>
<property name=“element” value=“Inquiry”>
<property name=“algorithm“

value=" http://www.w3.org/2000/09/xmldsig#dsa-sha1 "/>
</properties>

</security-filter>

<security-filter className=“edu.cs.umb.securityfilter.SecurityToken”>
<properties><property name=“algorithm" value="X509v3"/></properties>

</security-filter>
…
<transformer name=“Encrypt" className=“edu.cs.umb.MessageEncryptor">
<properties><property name=“algorithm“ value=“TripleDES"/></properties>

</transformer>
…
<connector name="gridftpConnector“ className="edu.cs.umb.GridFTPConnector">
<properties><property name="specification" value="4.0.1"/></properties>

</connector>

InquiryMsg TransactionRecServer

- _sendRecordExchange(
Inquiry): TransactionRecord

+ receiveRecordExchange(
Inquiry): TransactionRecord

<transformer
name=“Encrypt"
className=“edu.cs.umb.MessageEncryptor">
<properties>
<property

name=“element”
value=“TransactionRecord.records”>

<property
name=“algorithm“
value=“…xmlenc#tripledes-cdc”/>

</properties>
</transformer>

 965

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

As Figure 10 shows, the data field records
is encrypted in TransactionRecordMsg. Since
Mule ESB does not support message-level en-
cryption, Ark Library provides a pair of message
transformers to encrypt and decrypt data fields
in messages (edu.cs.umb.MessageEncryptor and
edu.cs.umb.MessageDecryptor). Ark generates
a deployment descriptor to configure services
so that they use those encryption/decryption
transformers when they send/receive messages.
Figure 20 shows a fragment of generated de-
ployment descriptor for TransactionRecServer.
It configures TransactionRecServer to use a
message encryption transformer (edu.cs.umb.

MessageEncryption) to encrypt the data field
records in TransactionRecordMsg using Triple
DES.

As Figure 10 shows, each InquiryMsg and
TransactionRecordMsg message is signed with
DSA, and TransactionRecServer performs au-
thentication with X.509 or Kerberos. Since Mule
ESB does not support DSA signatures and X.509/
Kerberos security tokens, Ark Library provides a
set of security filters to write/read signatures and
security tokens by implementing the interface org.
mule.umo.security.UMOEndpointSecurityFilter.
Similar to message transformers, security filters
are invoked when a service sends/receives a mes-
sage. Ark generates a deployment descriptor that
configures services to use the security filters Ark
provides. Figure 20 shows a fragment of generated
deployment descriptor for Supplier. It configures
Supplier to include a DSA signature and an X.509
security token in each Inquiry message using two
filters (edu.cs.umb.securityfilter.Signature and

edu.cs.umb.securityfilter.SecurityToken).

In Figure 10, a TransactionRecordMsg is
expected to contain a huge amount of data (e.g.,
scanned contract). When this example applica-
tion uses GridFTP as a message transport to
improve its throughput, Ark generates a deploy-
ment descriptor that configures Supplier and
TransactionRecordServer to use GridFTP to
transmit InquiryMsg and TransactionRecordMsg

messages (Figure 20). Although Mule ESB does
not support GridFTP, it provides a plug-in mecha-
nism to implement arbitrary message transports.
Ark Library implements a plug-in for GridFTP
(edu.cs.umb.GridFTPConnector) so that services
can use it in Mule ESB.

extensibility of the proposed Mdd
Framework

The proposed MDD framework (i.e., the pro-
posed UML profile and Ark) is designed and
implemented extensible. For example, application
developers can change the default transformation
rules that Ark provides. They can also integrate
arbitrary implementation technologies with Ark in
addition to currently-supposed three middleware
(e.g., other ESBs and databases). These exten-
sions can be made by changing the default set of
transformation templates.

Moreover, the proposed MDD framework al-
lows application developers to introduce arbitrary
non-functional aspects that it does not support
currently. Since the proposed UML profile is
built on the UML standard metamodel with the
standard extension mechanism (i.e., stereotypes
and tagged-values), application developers can add
new stereotypes and tagged-values representing
their own non-functional aspects. This extension
can be made by defining a set of transformation
rules for new stereotypes and tagged-values.
These newly-defined stereotypes/tagged-values
and transformation rules have no effects on ex-
isting UML models and Ark itself (e.g., existing
transformation rules, Ark Transformer and Ark
Library).

Another type of extensibility of the proposed
MDD framework is the ability to support arbi-
trary UML modeling tools. As described earlier,
MagicDraw has been used as the default UML
modeling tool; however, Ark can accept UML
models from any modeling tools that serialize
them in XMI. Choices of modeling tools have no
effects on existing models and Ark.

966

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

eVAluAtIon

This section evaluates how the proposed MDD
framework (i.e., the proposed UML profile and
Ark) improves the reusability and maintainability
of service-oriented applications. Given its two
properties, the proposed MDD framework allows
UML models (i.e., non-functional models built
with the proposed profile) to be reusable across
different implementation technologies. The first
property is that the proposed UML profile allows
application developers to model non-functional
aspects in their applications in an implementa-
tion independent manner by abstracting away
low-level details of implementation technologies
(e.g., ESBs). As the second property, Ark can map
a single UML model to different implementation
technologies by switching transformation rules,
even if those technologies are very different with
each other. For example, Ark currently supports
very different ESBs as implementation tech-
nologies: Mule ESB and ServiceMix ESB; their
APIs and deployment descriptor schemata have
no compatibility. The following code fragments
are Java classes that Ark generates from the Su-
pervisor class in Figure 7 to Mule ESB and
ServiceMix ESB. In Mule ESB, a service can be
implemented as a simple Java class.

public class Supervisor {

public void

receiveAuthReqExchange(

 OrderMsg reply){

 //…

 }

private void

_ sendOrderReqExchange(

OrderMsg request){

MuleClient muleClient =

 new MuleClient();

String endpointName = …

UMOEndpoint url = …

Int timeout = …

FutureMessageResult result =

 muleClient.sendAsync(

 url, request, timeout);

}}

On the other hand, in ServiceMix ESB, a
service is implemented as a class that extends
the ComponentSupport class and implements the
MessageExchangeListener interface. Messages
are received through the onMessageExchange
method.

public class Supervisor

extends ComponentSupport

implements MessageExchangeLis

 tener {

public void

onMessageExchange(

 MessageExchange exchange)

 throws MessagingException {

 if (exchange.getRole() ==

 Role.CONSUMER) {

 ServiceEndpoint ep =

 exchange.getEndpoint();

 if (ep.getServiceName()

 .getLocalPart()

 .equals(RETAILER)) {

receiveAuthReqExchange(exchange}}}

private void

receiveAuthReqExchange(

 MessageExchange exchange)

 throws MessagingException {

 // ...

 }

 private void

_ sendOrderReqExchange(

OrderMsg orderMsg){

InOut inout =

 createInOutExchange(

 SUPPLIER, null, null);

 NormalizedMessage msg =

 inout.createMessage();

 967

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

Model Elements in the
Proposed UML Profile

Program Elements and their
LOC in Mule ESB

Program Elements and their
LOC in ServiceMix ESB

<<service>>
<<accessControlledServi
ce>>

A Java class (8)
An endpoint identifier in DD (1)
A service entry in DD (7)

A Java class (9)
A service entry in DD (6)

securityTokens An in-bound filter in DD (3) An in-bound filter in DD (3)
<<message>> A Java class (2) A Java class (2)

signatureMethod In-bound and out-bound filters
in DD (6)

In-bound and out-bound filters in
DD (6)

<<encryptedProperty>> An attribute in a Java class (1) An attribute in a Java class (1)

encryptionAlgorithm In-bound and out-bound filters
in DD (6)

In-bound and out-bound filters in
DD (10)

<<messageExchange>> In-bound and out-bound routers
in DD (6) A routing conf. in DD (14)

sink (Service’s role) A method to send in Java (10) A method to send in Java (10)
source (Service’s role) A method to receive in Java (2) A method to receive in Java (12)
<<connector>> No code generated (0) No code generated (0)
synchrony Java code in Mule ESB API (1) Java code in ServiceMIX API (1)
deliveryAssurance A configuration entry in DD (3) A configuration entry in DD (6)

queueParameters
A configuration entry in DD
(14)
A JMS configuration file (20)

A configuration entry in DD (6)
JNDI configuration in DD (7)
A JMS configuration File (20)

encryptionAlgorithm In-bound and out-bound filters
in DD (6)

In-bound and out-bound filters in
DD (10)

msgTransmissionLogRet
ained

In-bound and out-bound filters
in DD (6)

In-bound and out-bound filters in
DD (6)

routingHistoryRetained In-bound and out-bound filters
in DD (6)

In-bound and out-bound filters in
DD (6)

messageIntegrity In-bound and out-bound filters
in DD (6)

In-bound and out-bound filters in
DD (6)

<<messageAggregator>> A Java class (4)
An In-bound filter in DD (3)

A Java class (4)
An endpoint conf. in DD (2)

<<messageConverter>> A Java class (4)
An out-bound filter in DD (3)

A Java class (4)
An endpoint conf. in DD (2)

<<messageSplitter>> A Java class (4)
An out-bound filter in DD (3)

A Java class (4)
An endpoint conf. in DD (2)

<<logger>> An out-bound filter in DD (3) An out-bound filter in DD (3)
<<messageFilter>> An out-bound filter in DD (3) A filter conf. in DD (7)
<<router>> An out-bound filter in DD (3) A routing conf. in DD (7)
<<validator>> An out-bound filter in DD (3) An out-bound filter in DD (3)
<<multicast>> An out-bound filter in DD (3) A routing conf. in DD (7)
<<manycast>> An out-bound filter in DD (3) A routing conf. in DD (7)
<<anycast>> An out-bound filter in DD (3) A routing conf. in DD (7)

Table 3. Generated program elements and their LOC

968

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

 // ...

 inout.setInMessage(msg);

 sendSync(inout);

}}

By making UML models (i.e., non-functional
models) reusable across different implementation
technologies, the proposed MDD framework
allows application developers to reuse or repur-
pose services without knowing the details of
implementation technologies.

Table 3 shows the program elements (Java
code and/or deployment descriptors: DD) that
Ark generates for Mule ESB and ServiceMix
ESB from a single UML model element. Table
3 also shows the lines of code (LOC) of each
generated program element. (LOC is shown in
parentheses.) As this figure illustrates, a single
model element represents multiple program
elements in the proposed MDD framework. For
example, queueParamters represents 34 LOC
in Mule ESB and 33 LOC in ServiceMix ESB.
This contributes to improve the maintainability
of service-oriented applications by freeing ap-
plication developers from manually and carefully
dealing with many lower-level program elements
in a consistent manner.

relAted work

This article is a set of extensions to the authors’
prior work (Wada, Suzuki, & Oba, 2006a, 2006b,
2006c). As one of the extensions, this work inves-
tigates new non-functional aspects for regulatory
compliance, which were beyond of the scope of
the prior work. Another extension is that Ark
currently supports a wider range of implementa-
tion technologies. As a result, the proposed MDD
framework now allows application developers to
model SOA’s non-functional aspects through hid-
ing the implementation differences across two of
the most major ESBs (Mule ESB and ServiceMix

ESB). Given these extensions, this article fully
discusses the updated details in the design and
implementation of the proposed MDD framework.
Moreover, unlike the prior work, this work empiri-
cally evaluates how the proposed MDD framework
contributes to the reusability and maintainability
of service-oriented applications.

There are several UML profiles proposed
for SOA. Marcos, Castro, and Vela (2003) and
Amsden, Gardner, Griffin, and Iyengar (2005)
propose UML profiles to specify functional as-
pects in SOA. Both profiles are designed based
on the XML schema of Web Service Description
Language (WSDL). Each profile provides a set of
stereotypes and tagged-values that correspond to
the elements in WSDL, such as Service, Port,
Messages and Binding10. Since WSDL is
designed to define only functional aspects of web
services, non-functional aspects are beyond of the
scope of Marcos et al. (2003) and Amsden et al.
(2005). Ermagan and Krüger (2007) propose and
Object Management Group (2006b) standardizes
UML profiles for functional aspects in SOA. Un-
like the above profiles, the proposed profile focuses
on specifying non-functional aspects in SOA.

Amir and Zeid (2005) propose a UML profile
to describe both functional and non-functional
aspects in SOA. This profile is generic enough to
specify a wide range of non-functional aspects.
For example, the stereotypes for non-functional
aspects include <<policy>> and <<permission>>.
However, their semantics tend to be ambigu-
ous. This profile does not precisely define what
non-functional aspects developers can (or are
supposed to) specify and how to represent them
with tagged values in accordance with given
stereotypes. Ortiz and Hernández (2006) also
propose a generic UML profile to describe various
non-functional aspects (called extra-functional
properties). Arbitrary non-functional aspects can
be defined as stereotypes extending the <<Extra-
Functional Property>> stereotype. However, it
is ambiguous how to define particular non-func-

 969

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

tional aspects with user-defined stereotypes and
tagged-values. The World Wide Web Consortium
(2006) standardizes the WS-Policy specification,
a generic XML format to specify arbitrary non-
functional aspects of web services. No explicit
principles and guidelines are available on how
to define particular non-functional aspects with
XML document elements. Unlike the above three
schemes, the proposed UML profile carefully
and precisely defines a variety of stereotypes
and tagged-values for non-functional aspects in
SOA so that the proposed MDD tool (Ark) can
interpret and transform models to code in an
unambiguous manner.

Vokäc (2005) proposes a UML profile for data
integration in SOA. It provides data structures to
specify messages. Application developers can use
the data structures for building dictionaries that
maintain message data used in existing systems
and new applications. This profile separates
data integration as a non-functional aspect from
functional aspects, and enables specifying data
integration in an implementation independent
manner. This UML profile and the proposed profile
focus on different issues in SOA. Data integration
is beyond of the scope of the proposed profile, and
Vokäc (2005) does not consider non-functional
aspects in message transmission, message pro-
cessing, security and service deployment.

Heckel, Lohmann, and Thöne (2003) propose
a UML profile for dynamic service discovery in
SOA. This profile provides a set of stereotypes
(e.g., <<uses>>, <<requires>> and <<satisfies>>) to
specify relationships among service interfaces,
service implementations and functional require-
ments. For examples, a relationship can specify
that a service uses other services, and another
relationship can specify that a service requires
other services that satisfy certain functional re-
quirements. These relationships are intended to
aid dynamic discovery of services. Rather than
service discovery, the proposed UML profile
focuses on non-functional semantics in message

transmission, message processing, security, and
service deployment.

Object Management Group (2007) standardizes
a UML profile for Data Distribution Service
(DDS). DDS is a standard specification for
publish/subscribe middleware, and it supports
several non-functional aspects in real-time mes-
saging. OMG’s UML profile for DDS allows
UML models to specify these non-functional
aspects. In contrast, the proposed profile is not
limited to real-time messaging, but supports a
wider range of non-functional aspects. Moreover,
OMG’s profile is designed to be mapped into
only DDS implementations. In contrast, the
proposed profile is designed in an implementation
independent manner; it can be mapped to arbitrary
implementation technologies.

Gardner (2003), List and Korherr (2005),
Johnston (2004) and Object Management Group
(2005a) define UML profiles to specify service
orchestration and map it to Business Process
Execution Language (BPEL) (Organization for
the Advancement of Structured Information
Standards, 2003). These profiles provide a limited
support of non-functional aspects in message
transmission, such as messaging synchrony.
The proposed profile does not focus on service
orchestration, but a comprehensive support of
non-functional aspects in message transmis-
sion, message processing, security and service
deployment.

Lodderstedt, Basin, and Doser (2002) propose
a UML profile, called SecureUML, to define role-
based access control for network applications.
SecureUML provides stereotypes to assign roles
(<<security.role>>) and access control permis-
sions (<<security.constraint>>) to applications
(e.g., UML interfaces and classes). SecureUML
uses Object Constraint Language (OCL) to define
access control. Jürjens (2002) propose another
UML profile, called UMLsec, to define data en-
cryption (<<data security>>) and secure network
links (<<encrypted>>). Wang and Lee (2005) and

970

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

Nakamura, Tatsubori, Imamura, and Ono (2005)
also propose UML profiles to define security as-
pects. In addition to security aspects, Soler, Villar-
roel, Trujillo, Medina, and Piattini (2006) propose
a UML profile extending the Common Warehouse
Metamodel (Object Management Group, 2003) in
order to define regulatory audit policies in data
warehouses. For example, the profile provides
stereotypes to specify whether a data warehouse
retains logs to access data sources. Gönczy and
Varró (2006) propose a formal definition of reliable
messaging mechanisms as a metamodel. These
profiles/metamodels are parallel to the proposed
UML profile in terms of the ability to describe
security aspects, audit policies, and reliable
messaging in network applications. However, the
proposed UML profile covers not only security,
auditing or reliable messaging aspects but also
many other non-functional aspects in SOA (e.g.,
message queuing, message validation/filtering,
and message.

Zhu and Gorton (2007) and Zou and Pavlovski
(2006) propose UML profiles to visually define
non-functional requirements such as desirable
response time and throughput. However, they do
not consider model transformation to map non-
functional requirements to certain implementation
technologies. In contrast, the proposed profile
is designed to consider model transformation,
although non-functional requirements are beyond
of the scope of the proposed profile.

There are several specifications and research
efforts to investigate implementation techniques
for non-functional aspects in SOA (Baligand
& Monfort, 2004; Mukhi, Konuru, & Curbera,
2004; Organization for the Advancement of
Structured Information Standards, 2003, 2004a,
2004b; Wang, Chen, Wang, Fung, & Uczekaj,
2004). Each specification and technique provides
a means to implement non-functional require-
ments in, for example, performance, reliability,
and security and to enforce services to follow the
requirements. Rather than investigating specific

implementations of non-functional aspects in
SOA, the proposed MDD framework is intended
to provide a means for application developers to
model and maintain non-functional aspects in
an implementation independent manner so that
they can be mapped on different specifications
or implementation technologies.

conclusIon

This article proposes a model-driven development
(MDD) framework for non-functional aspects
in SOA. The proposed MDD framework con-
sists of (1) a UML profile to graphically specify
and maintain SOA non-functional aspects in an
implementation independent manner and (2) an
MDD tool that accepts a UML model defined
with the proposed profile and transforms it to
application code (program code and deployment
descriptors). This article presents design details
of the proposed UML profile and describes
how the proposed MDD tool uses the profile to
develop service-oriented applications that can
run with different implementation technologies
such as Mule ESB, ServiceMix and GridFTP.
Empirical evaluation results show that the pro-
posed MDD framework contributes to improve
the reusability and maintainability of service-
oriented applications by hiding the details of
implementation technologies.

Several extensions to the proposed MDD
framework are planned as future work. As de-
scribed in the Related Work section, there are
several other UML profiles for SOA. The proposed
profile will be co-used or integrated with some of
them (e.g., Oba, Hashimoto, Fujikura, & Mune-
hira, 2005; Object Management Group, 2005b)
in order to investigate a more comprehensive
development framework for SOA.

Another extension is to integrate the pro-
posed UML profile with a modeling language
for business processes such as Business Process

 971

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

Modeling Notation (Object Management Group,
2006a). The proposed profile is designed to specify
applications from a structural point of view; it does
not consider a viewpoint of processes or work-
flows. Therefore, as the size of a model (applica-
tion) increases, it becomes harder to understand
how messages are exchanged among services
and define non-functional aspects along with
message flows. For example, in order to specify
secure messaging for a certain business process
(e.g., order processing process), it can be time-
consuming and error-prone to find all the services
associated with the process and define a security
aspect for the connections among those services.
The integration with a business process model-
ing language can make non-functional modeling
more intuitive by providing both structural and
process viewpoints.

The proposed MDD framework will be evalu-
ated in several different application domains11.
One of them is service-oriented system integration
in a natural gas utility company. The proposed
UML profile and Ark are planned to be used in
a system integration project, and their design and
implementation will be enhanced through the proj-
ect experience. Another application domain is eco-
informatics. The proposed framework has been
used to design and maintain ecological observation
systems (Wada & Suzuki, 2006d). Ecological
observation systems monitor ecosystems, record
various observation data (e.g., a niche of a par-
ticular species and weather in the niche), and help
ecologists understand and predict the observation
of ecosystems. Currently, ecological observation
systems are often implemented monolithic; their
extensibility and customizability are limited.
SOA is expected to overcome this issue by de-
composing an observation system into multiple
services, implementing the system as a combi-
nation of services, and extending/customizing it
through a recombination of services (Bermudez,
Bogden, Bridger, Creager, Forrest, & Graybeal,
2006). The proposed MDD framework has been

used to separate functional and non-functional
aspects in an ecological observation system and
model/implement non-functional aspects in the
system. Through this practice, the proposed
MDD framework will be enhanced to improve
its generality.

AcknowledgMent

This work is supported in part by OGIS Inter-
national, Inc.

reFerences

Allcock, W., Bresnahan, J., Kettimuthu, R., Link,
M., Dumitrescu, C., Raicu, I., & Foster, I. (2005).
The Globus striped GridFTP framework and
server. ACM Super Computing.

Amir, R., & Zeid, A. (2004). A UML profile for
service oriented architectures. ACM Object-Ori-
ented Programming, Systems, Languages, and
Applications Poster session.

Amsden, J., Gardner, T., Griffin C., & Iyengar,
S. (2005). UML 2.0 profile for software services.
IBM developerWorks.

Arsanjani A., Zhang L., Ellis M., Allam A., &
Channabasavaiah K. (2007) S3: A service-ori-
ented reference architecture. IT Professional,
9(3).

Baligand, F., & Monfort, V. (2004). A concrete
solution for web services adaptability using
policies and aspects. Proceedings of UNITN/
Springer International Conference on Service
Oriented Computing.

Bermudez, L., Bogden, P., Bridger, E., Creager,
G., Forrest, D., & Graybeal, J. (2006). Toward an
ocean observing system of systems. MTS/IEEE
Oceans.

972

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

Bichler, M., & Lin, K. (2006). Service-oriented
computing. IEEE Computer, 39(6).

Bieberstein N., Bose S., Fiammante M., Jones K.,
& Shah R. (2005). Service-oriented architecture
(SOA) compass: Business value, planning, and
enterprise roadmap. IBM Press.

Chappell, D. (2004). Enterprise service bus.
O’Reilly.

Endrei, M., Ang, J., Arsanjani, A., Chua, S.,
Comte, P., Krogdahl, P., et al., (2004). Patterns:
Service-oriented architecture and Web services.
IBM Red Books.

Ermagan, V., & Krüger, H. (2007). A UML2
profile for service modeling. Proceedings of
ACM/IEEE International Conference on Model
Driven Engineering Languages and Systems.

Foster, I. (2005). Service-oriented computing.
Science, 308(5723).

Fuentes, L., & Vallecillo, A. (2004). An introduc-
tion to UML profiles. The European Journal for
the Informatics Professional, 5(2).

Gardner, T. (2003). UML modeling of automated
business processes with a mapping to BPEL4WS.
Proceedings of European Conference on Object-
Oriented Programming Workshop on Object
Orientation and Web Services.

Gönczy, L., & Varró, D. (2006). Modeling of
reliable messaging in service oriented architecture.
Proceedings of Telcert International Workshop
on Web Services Modeling and Testing.

Heckel, R., Lohmann, M., & Thöne, S. (2003).
Towards a UML profile for service-oriented
architectures. Proceedings of Workshop on
Model Driven Architecture: Foundations and
Applications.

Java Community Process. (2001). UML profile
for Enterprise Java Beans.

Johnston, S. (2004). UML 1.4 profile for software
services with a mapping to BPEL 1.0. IBM de-
veloperWorks.

Jürjens, J. (2002). UMLsec: Extending UML
for secure systems development. Proceedings of
ACM/IEEE International Conference on Unified
Modeling Language.

Lewis, G., Morris, E., Brien, L., Smith, D., &
Wrage, L. (2005). Smart: The service-oriented
migration and reuse technique. Technical report,
Software Engineering Institute, Carnegie Mellon
University.

List, B., & Korherr, B. (2005). A UML 2 profile
for business process modelling. Proceedings of
ACM International Conference on Conceptual
Modeling Workshop on Best Practices of UML
at the International Conference on Conceptual
Modeling.

Lodderstedt, T., Basin, D., & Doser, J. (2002). Se-
cureUML: A UML-based modeling language for
model-driven security. Proceedings of ACM/IEEE
International Conference on Unified Modeling
Language.

Marcos, E., Castro, V., & Vela, B. (2003). Repre-
senting Web services with UML: A case study.
Proceedings of UNITN/Springer International
Conference on Service Oriented Computing.

Mukhi, N., Konuru, R., & Curbera, F. (2004).
Cooperative middleware specialization for ser-
vice oriented architectures. Proceedings of ACM
International World Wide Web Conference.

Nakamura, Y., Tatsubori, M., Imamura, T., &
Ono, K. (2005). Model-driven security based on
a Web services security architecture. Proceedings
of IEEE International Conference on Services
Computing.

Oba, K., Hashimoto, M., Fujikura, S., & Mune-
hira, T. (2005). The status quo and challenges of
service-oriented architecture based application

 973

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

design. Proceedings of IPSJ Workshop on Soft-
ware Engineering.

Object Management Group. (2003). Common
warehouse metamodel, version 1.1.

Object Management Group. (2004). UML 2.0
super structure specification.

Object Management Group. (2005a). Business
process definition metamodel.

Object Management Group. (2005b). UML profile
for modeling quality of service and fault tolerance
characteristics and mechanisms.

Object Management Group. (2006a). Business
process modeling notation, version 1.0.

Object Management Group. (2006b). UML
profile and metamodel for services, request for
proposal.

Object Management Group. (2006c) UML
profile for data distribution service, request for
proposal.

Object Management Group. (2007) Data
Distribution Service for Real-time Systems,
version 1.2.

O’Grady, S. (2004). SOA meets compliance:
compliance oriented architecture. White paper,
RedMonk.

Organization for the Advancement of Structured
Information Standards. (2003). Web services
business process execution language.

Organization for the Advancement of Structured
Information Standards. (2004a). Web service
reliability 1.1.

Organization for the Advancement of Structured
Information Standards. (2004b). Web service
reliable messaging.

Organization for the Advancement of Structured
Information Standards. (2005). Web services
security policy language.

Ortiz, G., & Hernández, J. (2006). Toward UML
profiles for Web services and their extra-functional
properties. Proceedings of IEEE International
Conference on Web Services.

Papazoglou, M. (2003). Service-oriented
computing: concepts, characteristics and
directions. Proceedings of IEEE International
Conference on Web Information Systems Engi-
neering.

Roberts, D., & Johnson, R. (1997). Evolving
frameworks: A pattern language for developing
object-oriented frameworks. Pattern Languages
of Program Design 3, Chapter 26. Addison
Wesley.

Soler, E., Villarroel, R., Trujillo, J., Medina, E.,
& Piattini, M. (2006). Representing security and
audit rules for data warehouses at the logical level
by using the common warehouse metamodel.
Proceedings of IEEE International Conference
on Availability, Reliability and Security.

Vinoski, S. (2003). Integration with Web services.
IEEE Internet Computing, 7(6).

Vokäc, M. (2005). Using a domain-specific
language and custom tools to model a multi-tier
service-oriented application: Experiences and
challenges. Proceedings of ACM/IEEE Interna-
tional Conference on Model Driven Engineering
Languages and Systems.

Wada, H. & Suzuki, J. (2006). Designing ecologi-
cal observation systems using service oriented
architecture. Elsevier/ISEI International Confer-
ence on Ecological Informatics, poster paper.

Wada, H., Suzuki, J., & Oba K. (2006a). A model-
driven development framework for non-functional
aspects in service oriented grids. Proceedings of
IEEE International Conference on Autonomic and
Autonomous Systems.

Wada, H., Suzuki, J., & Oba K. (2006b). Model-
ing non-functional aspects in service oriented

974

A Model-Driven Development Framework for Non-Functional Aspects in Service Oriented Architecture

architecture. Proceedings of IEEE International
Conference on Services Computing..

Wada, H., Suzuki, J., & Oba K. (2006c). A service-
oriented design framework for secure network
applications. Proceedings of IEEE International
Conference on Computer Software and Applica-
tions Conference.

Wang, G., Chen, A., Wang, C., Fung, C., & Uc-
zekaj, S. (2004). Integrated quality of service
(QoS) management in service-oriented enterprise
architectures. Proceedings of IEEE Enterprise
Distributed Object Computing Conference.

Wang, L., & Lee, L. (2005). UML-based modeling
of Web services security. IEEE European Confer-
ence on Web Services, poster paper.

World Wide Web Consortium. (2002a). XML
encryption syntax and processing.

World Wide Web Consortium. (2002b). XML
signature syntax and processing.

World Wide Web Consortium. (2006). Web
services policy framework.

Zhang, Z., & Yang, H. (2004). Incubating services
in legacy systems for architectural migration.
Proceedings of IPSJ/IEEE Asia-Pacific Software
Engineering Conference.

Zhu, L., & Gorton, I. (2007). UML profiles for
design decisions and non-functional require-
ments. Proceedings of ACM/IEEE International
Conference on Software Engineering Workshop
on Sharing and Reusing Architectural Knowledge
- Architecture, Rationale, and Design Intent.

Zou, J., & Pavlovski, C. (2006). Modeling architec-
tural non functional requirements: From use case

to control case. Proceedings of IEEE International
Conference on e-Business Engineering.

endnotes

1 According to the UML specification, the
first letter of a stereotype’s name is capital-
ized when the stereotype is defined (Figure
3). However, it is not capitalized when the
stereotype is used in UML models (Figure
2).

2 Precisely, a composite class can contain any
classifiers, defined in the UML metamod-
el.

3 http://www.gtin.info/
4 http://mule.mulesource.org/
5 http://servicemix.apache.org/
6 An extension to FTP for transmitting files of

large size (Allcock, Bresnahan, Kettimuthu,
Link, Dumitrescu, Raicu, & Foster, 2005)

7 http://www.magicdraw.com/
8 http://www.openarchitectureware.org/
9 Mule ESB provides three different APIs to

send messages in synchronous, asynchro-
nous and oneway (non-blocking) manners.

10 In WSDL, a Service defines an inter-
face of a web service. A Port specifies an
operation in a Service, and Messages
defines parameters for a Port. A Binding
specifies communication protocols used by
Ports.

11 A software engineering discipline suggests
investigating at least three applications
on a framework in order to examine the
framework’s generality and reusability.
(Roberts & Johnson, 1997)

This work was previously published in the International Journal of Web Services Research, edited by L.J. Zhang, Volume 5,
Issue 4, pp. 1-31, copyright 2008 by IGI Publishing (an imprint of IGI Global).

 975

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.24
An Incremental

Functionality-Oriented Free
Software Development

Methodology
Oswaldo Terán

ENDITEL; Centro de Micro Electrónica y Sistemas Distribuidos and Centro de Simulación y Mod-
elos, Universidad de los Andes, Venezuela

Johanna Alvarez
CENDITEL, Venezuela

Blanca Abraham
CEMISID Universidad de los Andes, Venezuela

Jose Aguilar
CENDITEL; Centro de Micro Electrónica y Sistemas Distribuidos, Universidad de los Andes, Venezuela

AbstrAct

This chapter presents a methodology used as refer-
ence model for a free software factory that is part
of the National Centre for Free Technologies in
Venezuela. This centre is oriented at promoting
free software development for serving mostly
the public sector in order to promote endogenous
development and technologic autonomy. Under
this strategy, strengthening the software small
and medium size enterprises and cooperatives, by

allowing them to participate in different projects
(improving their know-how) and providing them
with a methodology for increasing their capabili-
ties and software quality, is necessary and urgent.
This methodology plans the development process
incrementally, based on a prioritisation of the
software functionalities development in accor-
dance to the functionalities risks, development
urgency, and dependencies. It combines aspects
of the two styles of free software development,

976

An Incremental Functionality-Oriented Free Software Development Methodology

namely cathedral and bazaar. The development
process is centralised, in essence collaborative,
and continuously allows source code release.

IntroductIon

The Free Software Factory (FSF) of CENDITEL
(Venezuelan national centre for promoting free
technologies) has been conceived and created as
part of the efforts of the Venezuelan State aim-
ing at increasing endogenous development and
technological sovereignty. In particular, it intends
to strengthen the national software sector, espe-
cially the small and medium software enterprises
(including the cooperatives), by allowing them
to access the technology and participate in the
software market, on one hand, and to increase
their capabilities and software quality, on the
other hand.

Two styles exist for developing free software:
the cathedral style and the bazaar style. In the
cathedral mode, software is developed from a
unified a priori project that prescribes all the
functions and the features to be incorporated in
the final product. Programmers’ work is centrally
coordinated and supervised in order to assure the
integration of various components. On the other
hand, in the bazaar style, software emerges from
an unstructured evolutionary process. Starting
from a minimal code, groups of programmers
add features and introduce modifications and
patches to the code. There is no central allocation
of different tasks; developers are free to develop
a given program in directions they favor.

This chapter presents an attempt at building a
free software development methodology having
many characteristics of the cathedral style but
keeping certain principle of the bazaar mode.
The methodology has been developed at a public
organisation which responds to public sector free
software necessities and requirements that must
be satisfied in a limited time period. Because of
this, it is necessary to adopt the cathedral mode of

work while taking key advantages of the bazaar
style. For instance, it is allowed that developers
from outside the organisation contributes with
software coding, testing, and so forth; these exter-
nal developers do not follow a centrally controlled
process; and the software code is made public as
soon as it is tested.

This methodology assumes an organisational
structure oriented towards specific processes.
The processes dedicated to software develop-
ment are:

Process # 1: Free Software Project Manage-
ment
Process # 2: Specific Project Administra-
tion
Process # 3: Free Software Application De-
velopment

Actions to be carried out in these processes are
classified in steps and activities. In particular, steps
and activities in the third process are implemented
by the following six phases. This methodology
has taken ideas from diverse software develop-
ment methodologies, methods, and models such
as the extreme programming method (Beck,
2004), the rational unified process (Kruchten,
2000; Pollice, 2001; Probasco, 2000), the watch
method (Montilva, 2004; Montilva, Hamzan, &
Ghatrawi, 2000), and the model of processes for
software development (MoProSoft) (Oktaba et
al., 2005). Due to the fact that these models and
methods, except extreme programming, have
been proposed proprietary software development,
it has been necessary to adapt the hints, ideas, or
procedures taken from them to the free software
development needs.

The methodology to be proposed has been
validated at the FSF of the Foundation for Science
and Technology of the Mérida State in Venezuela
(FUNDACITE-Mérida). This factory has permit-
ted us to understand better, empirically, the real
needs of a free software development process and
has also been a source of interesting ideas. The

•

•

•

 977

An Incremental Functionality-Oriented Free Software Development Methodology

proposed structure will allow planning and control
activities which are required in the management
and administration of software projects. In addi-
tion, the free software application development
process is iterative and incremental, in terms of
the software application functionalities. On the
other hand, the design of the application is based
on component architecture, which allows software
reuse. Each process will be explained in detail
in the main body of this chapter. For facilitating
each process, some free software tools will be
suggested.

Free soFtwAre deVelopMent
Methodology

process # 1: Free software project
Management (FspM)

This process is responsible for managing all
projects being carried out by the organisation,
that is, both internal projects (projects for the
organisation) and external projects (projects for
other organisations) are managed. Specifically,
in this process, a “service offer” for the project
to be developed is generated. This offer must
include a conceptualisation, a description, and
a (general) development plan for the project, as
well as the definition of the free software license.
Figure 1 shows the steps as a workflow for the
FSMP process. Subsequently, these steps will
be described.

a. Conceptualisation
Description: Specific user needs and/or
problems must be identified in order to define
the scope of the project. In case of a high
complexity of the project, for instance, the
scope of the problem goes beyond a software
need and involves organisational issues,
methodologies such as technologic prospec-
tive and strategic planning, and/or tools such
as fish bone (a technique commonly used in

operation research and in quality control) are
recommended. In this case, the study would
suggest a set of solutions and organisational
changes, of which software needs would be
only part of the whole answer.
People Responsible: According to free soft-
ware philosophy, all people associated with
the project (project manager, project admin-
istrator, developers, users, and so forth) must
be involved from the very early stages of it,
even when new actors can be incorporated
to any phase of the project.
Techniques: Prospective analysis, strategic
planning, or any other useful technique.
Products: (1) Client/user’s needs and/or prob-
lems; (2) scope of the project.

b. Project Description
The main point in this phase is to achieve a
detailed description of the project. Each actor
must analyse the client’s need and problem,

Figure 1. Free software project management
process

978

An Incremental Functionality-Oriented Free Software Development Methodology

as well as the project’s scope, in order to con-
tribute to the description of the project.
People Responsible: Clients, users, project
manager, project administrator, developers,
assessors and other people interested in the
project participation.
Products: Project description document.

c. Free Software License Definition
Description: In this step, the free software
license to be adopted for the development is
defined. It might be the case that a license
from the market satisfies the client require-
ments and then is chosen or, in case that there
is not an existent license matching the user’s
requirements, a new license is defined.
People Responsible: Clients, users, project
manager, project administrator, assessors.
Products: Project license.

d. Software Main Functionalities Prioritisa-
tion
Description: In this step, the goal is to describe
and classify the software functionalities in
accordance with the implementation urgency
required by the client.
People Responsible: Clients.
Products: Functionalities prioritised.

e. Risk Prioritisation
Description: To identify, prioritise, and
associate the risks to software application
functionalities. The risks are prioritised in
accordance to their impact on the application
development.
People Responsible: Clients, users, project
manager, project administrator, developers,
assessors, and other people interested in the
project.
Products: Risks prioritised.

f. Software Development Plan
Description: To build the development plan,
the implementation order of the functional-
ities of the application must be established,
in accordance to the functionality priorities
defined by the client, and the risks prioritised
associated to the functionalities. This must

allow determining the number of cycles or
iterations required for the development of
the application. A cycle is responsible for
developing a certain number of functionalities
(taken into account their priority order). A
development plan can be modified after an
iteration, as a result of work reorganisation,
in line with the dynamic of the project.
People Responsible: Project manager, project
administrator, and developers.
Products: Development plan.

g. Generation of the Service Offer
Description: The service offer is completed in
this step. It specifies all important issues of the
project, such as the goal, scope, and descrip-
tion of the project; the development plan; the
due dates for deliverables; the work team; the
project cost; and the operation platform.
People Responsible: Project manager, cli-
ents.
Techniques and Tools: Service offer forms.

Note: In accordance to the chosen software
license, the products achieved in this process
must be published in a collaborative develop-
ment platform. This will facilitate the interested
people access to the software products and their
documentation.

process #2: Administration of
Specific Projects (ASP)

The administration of specific projects leads the
developer team of a software application (it is
assumed that a software application development
corresponds to a software project). In this sense,
each software project must have at least one
project administrator. The project administrator
is responsible for organising and planning the
activities corresponding to each iteration defined
in the development plan. Additionally, the project
administrator must assure the software quality,
manage the system configuration, and the col-
laborative technical platform, as well as supervise

 979

An Incremental Functionality-Oriented Free Software Development Methodology

and control the project development and the ad-
ministration of subcontracts. Figure 2 shows the
main steps as a workflow for the ASP process.
Subsequently, these steps will be described.

a. Administration of the Development Col-
laborative Platform
Description: The processes related to the ASP
phase are facilitated by using a collaborative
platform. A software developing team has its
own necessities; accordingly it is important to
select the correct tool for collaborative soft-
ware management considering such necessi-
ties. In this phase, the collaborative platform is
set up. The collaborative platform permits any
interested person to collaborate with and share
ideas, source code, documentation, testing,
and so forth. This is a very important aspect
of the free software development. However,

as part of the administration of this platform,
the project administrator must approve and
then publish the software versions and the
associated documentation in accordance with
the free software license assumed.
People Responsible: Project administrator.
Tools: GFORCE, and so forth.
Products: Collaborative development
server.

b. Standard for Software Codification
Description: This step establishes the
standards for code generation and for the
documentation to be used during the software
development. These standards allow a quick
and simple reading of the code, facilitating
the work of the whole group, including the
client, the user, and other actors.
People Responsible: Project administrator.
Products: Coding and documentation stan-
dards.

c. Iterative Planning
Description: The activities of the iteration to
be carried out in accordance with the func-
tionalities to be developed are planned. After
an iteration is performed, the next iteration is
planned and takes into account functionalities
that could not be implemented and problems
found during the previous iteration.
People Responsible: Project administrator.
Techniques: Gantt, Pert/CPM
Tools: Planner, GFORCE, XPTracker, Source-
Forge, and so forth.
Products: Plan for the iteration to be devel-
oped.

Note: Products accomplished in this process
must be placed at the collaborative platform
in accordance with the adopted free software
license.

Figure 2. Process for the Administration of Spe-
cific Projects

980

An Incremental Functionality-Oriented Free Software Development Methodology

process #3: Free software
Application development

The software application is constructed by the
sequence of iterations or cycles in an incremental
and iterative way, allowing that users and clients
can check the advances of the work and give
feedback useful for improving the development
and testing processes. The methodology presents
a general reference framework or structure for the
activities to be planned at each iteration of this
process (see Figure 3). In each cycle, one activ-
ity receives the main attention while the others
are secondary. The whole set of functionalities
is developed during the cycles.

Any person can access and execute the source
code stored in the collaborative platform. In
this way, everyone can contribute to the project.
Experiences show that the more people use and
test the software, the more quickly the errors and
bugs will be found and solved.

It is important to mention that during the
software application construction, not only must
the code be published but also all associated
documentation. In this manner, new programmers
and collaborators can be easily incorporated. As
mentioned earlier, the code and associated docu-

mentation publication depends on the software
license established. Next, in Figure 3, the devel-
opment phases carried out during this process
will be presented.

a. Application Domain Analysis
Description: This phase is considered one of
the most important in the software develop-
ment process, since the domain environment
and context where the application will operate
are analysed and understood. Such analysis
is carried out in the first iteration but can be
upgraded in the subsequent iterations. The
activities workflow for this phase is shown
in Figure 4. Following this figure, the main
activities will be described.

° Domain Description
 Description: Establishes and validates

the application domain and its organi-
sational scope.

 People Responsible: System analyst
internal to the developer organisation,
users, clients, programming team. In
this chapter, the phrase “internal to
the organization” means a person who
works for the organization that develops
the software, as opposed to “external

Figure 3. Free software development process

 981

An Incremental Functionality-Oriented Free Software Development Methodology

to the organization,” which means a
person who is not actually working for
the developer organization.

 Techniques: Domain engineering, in-
terviews, revision of documents, and
bibliography.

 Products: Domain application defini-
tion.

° Construction of the Processes and
Subprocesses Diagram

 Description: This activity must identify
processes and subprocesses related
to the application domain, as well as
events associated to all these, in order
to generate the domain processes and
subprocesses diagram. Finally, this
diagram must be validated.

 People Responsible: System analyst
(internal to the organisation), users,
clients.

 Techniques: The processes diagram
given by UML.

 Tools: Umbrello, ArgoUML, ca-
seUML.

 Products: Domain processes and sub-
process diagram.

° Construction of the Diagram of Activi-
ties for Each Subprocess

 Description: Generates and validates
the activities diagram for each subpro-
cess.

 People Responsible: System analyst
(internal to the organisation), users,
clients.

 Techniques: Activities diagram offered
by UML.

 Tools: Umbrello, ArgoUML, ca-
seUML.

 Products: Subprocess activity dia-
grams.

° Identification and Description of the
Domain Rules

 Description: Domain rules regulating
the application domain must be identi-
fied and studied.

 People Responsible: System analyst
(internal to the organisation), users,
clients.

 Techniques: the activities diagram of-
fered by UML.

 Tools: Umbrello, ArgoUML, ca-
seUML.

Products: Subprocess activity diagrams.
b. Requirements Specification

Description: In this phase, the functionalities
to be developed in the planned iteration are
specified, and the nonfunctional requirements
are defined or upgraded. Generally, the non-
functional requirements are defined in the
early iterations. The requirement specification
document will be upgraded from iteration to
iteration. It is important to notice that in this
phase the user or the client can modify, change,
include, or eliminate requirements and risks,
which, in turn, might entail updates of the
development plan. The activities workflow

Figure 4. Steps for the application domain analy-
sis phase

982

An Incremental Functionality-Oriented Free Software Development Methodology

for this phase is shown in Figure 5. Following
this figure, the main activities for this phase
will be described.

° Description of Requirements Related
to the Actual Iteration

 Description: A detailed description
of the functional requirements for the
present iteration is generated, and the
nonfunctional requirements are defined
or upgraded. These will allow gener-
ating and validating the requirements
definition document. It is important
to mention that only the definition
of such requirements related to the
present iteration are validated, since
those requirements related to previous
iterations were validated during the
corresponding iterations.

 People Responsible: System analyst
(internal to the organisation), users,
clients.

° Specification of Requirements Related
to the Actual Iteration:

 Description: To create or upgrade the
requirements specification document,
including the use cases describing the
functional requirements associated

with the actual iteration. In this method-
ology, it is understood that the require-
ments specification is made in terms of
diagrams and textual descriptions of
the use cases. Only the specification
of those requirements associated to
the present or actual iteration must be
verified and validated in this step.

 People Responsible: System analyst
(internal and/or external to the organi-
sation), users, clients.

 Techniques: the use cases diagram
offered by UML.

 Tools: Umbrello, ArgoUML, ca-
seUML.

c. Analysis and Design
Description: In this phase, the specification
of requirements is translated into a design
specification, based on a set of architectonic
views, which represent the system architec-
ture. In this phase also, the user interfaces
and databases are designed. The application
architecture, like the requirements, is enriched
or upgraded as the subsequent iterations are
carried out, since each iteration add func-
tionalities to the software application been
developed. All this gives flexibility to the
design, permitting that change in the client’s
viewpoint about desired functionalities be
taken into account without great difficulties.
The activities workflow for this phase is shown
in Figure 6. Afterwards, the main activities
are going to be described.

° Design or Upgrade of the Nonfunc-
tional User Interface Prototype

 Description: Create or update the
nonfunctional user interface prototype.
This design includes the hierarchic dia-
gram of windows, taking into account
the user requirements. This design must
be validated.

 People Responsible: System analyst
(internal or external to the developer
organisation), programmers, users,
clients.

Figure 5. Steps for the requirements specifica-
tion

 983

An Incremental Functionality-Oriented Free Software Development Methodology

 Tools: UX, DIA.
 Products: Design of the nonfunctional

user interface prototype.
° Design or Upgrade of the Relational

Database:
 Description: The database design

document is generated or upgraded.
This document must contain the dia-
gram entity/relation and the relational
scheme, for the actual iteration. For
these diagrams, the entities of the data-
base and their attributes, as well as the
primary and the foreign keys, must be
defined. The entities of the database are
identified by using the use cases for the
present iteration. Finally, the database
administrative procedures (i.e., backup,
security, recovery, etc.) must be defined,
and the database design document must
be validated.

 People Responsible: System analyst
(internal and external to the organisa-
tion), programmers.

 Techniques: Normalisation formulas.
 Products: Entity relation diagrams.
° Design of the Functionalities Cor-

responding to the Present Iteration
 Description: The architectonic views

must be generated or upgraded. It is
constituted by the logic, the implemen-
tation, the behaviour, and the concep-

tual views. The logic view is defined
by the class diagrams of the software
application. It is created or upgraded by:
(a) deriving from the use cases (associ-
ated to the actual iteration) the objects
of the application, (b) generating the
sequence diagrams for the “methods”
or functions involved in the realisation
of the use cases for the actual iteration.
The implementation view is generated
or upgraded from the components dia-
grams. The behaviour view is created or
upgraded from the interaction relations
among the components. The conceptual
view is defined or upgraded from the
use case diagrams corresponding to
the actual iteration.

 People Responsible: System analyst
(internal or external to the organisa-
tion).

 Techniques: Class, components, and
interaction diagrams

 Tools: Umbrello, ArgoUML, ca-
seUML.

 Products: Architectonic view of the
software application.

d. Construction
Description: For the actual iteration or cycle,
the user interface, the database, and the
functionalities of the application are con-
structed or upgraded in this phase. For that,

Figure 6. Steps for the analysis and design phase

984

An Incremental Functionality-Oriented Free Software Development Methodology

the software application source code for the
actual version is developed. The activities
workflow for this phase is shown in Figure 7.
Afterwards, the main activities of this phase
will be described.

° Collecting Reusable Free Software:
 Description: Reusable free software

components, abstract data type, classes,
functions, and whole systems, useful for
the software application, are searched
for and collected.

 People Responsible: Programmers
(internal and/or external to the organi-
sation). This is the first activity where
external programmers participate in
the software development.

 Tools: Some are available at Web
sites such as www.fsl.funmrd,gov.ve,
freshmeat.net, sourceforge.net, and so
forth.

° Construction or Upgrading of the User
Interface U/S

 Description: The reusable user inter-
face components corresponding to the
design of the interface associated to
the actual iteration are adapted and,
when required, those of the previous
iterations are upgraded.

 People Responsible: Programmers
(internal and/or external to the organi-
sation).

° Construction or Upgrading of the
Database

 Description: Build or upgrade the
database using information from the
database design document for the actual
iteration. Additionally, components of
the user interface must be integrated
along the database.

 People Responsible: Programmers
(internal and/or external to the organi-
sation).

 Techniques and Tools: Web sites like
www.fsl.funmrd,gov.ve, freshmeat.net,
sourceforge.net, and so forth.

° Adaptation, Construction, or Upgrad-
ing of the Components Required for
the Functionalities of the Actual
Iteration

 Description: For the components, ab-
stract data types, classes, and functions
requited for the functionalities of the
actual iteration: (a) adapt those reusable
already collected, (b) construct those
that could not be found, (c) update those
useful from previous iterations.

Figure 7. Steps for the construction phase

 985

An Incremental Functionality-Oriented Free Software Development Methodology

 People Responsible: Programmers
(internal and/or external to the organi-
sation).

 Tools: Some are available at Web
sites such as www.fsl.funmrd,gov.ve,
freshmeat.net, sourceforge.net, and so
forth.

e. Testing
Description: In this phase, the unitary, inte-
gration, functional, and nonfunctional tests,
for the components corresponding to the
functionalities associated to the actual itera-
tion, are designed or upgraded, and applied.
The nonfunctional tests are applied only in
the last version of the software application,
which is obtained in the last iteration. The in-
stallation tests are also designed in this phase,
but are applied in the implantation phase. It is
important to say that code modified by devel-
opers external to the developer organisation
must also be appropriately tested. Only after
these tests are successfully completed can the
project administrator publish the code. Figure
8 shows the workflow for this phase. Since
this figure sufficiently explains each step, in
the text following the figure, only the people
responsible, techniques, tools, and products
for a test design/upgrade or for a test applica-
tion will be specified.

° Test design/upgrade:
 People Responsible: Tester (internal

and/or external to the organisation).
 Techniques: White and black box

tests.
 Products: Test plans.
° Test application:
 People Responsible: Tester (internal

and/or external to the organisation).
 Tools: Test, Check, Junit, Cppunit.
 Products: Test reports.

f. Implantation
In this phase, the actual iteration version is
released to the client so that the client can
validate this version while other function-

alities are developed in the next iterations.
The migration strategies towards the new
application are defined, the user is trained for
using the delivered version, the actual version
is installed, the installation test is applied,
and the software application manuals are
generated or upgraded, and verified. Finally,
the actual version of the software application
is integrated along with the organisation
activities. Figure 9 shows the workflow for
this phase. Given that the figure sufficiently
explains each step of this phase, a detailed
description for each step will not be given.
However, it is important to mention that: (a)
the people responsible for these steps are

Figure 8. Steps for the testing phase

986

An Incremental Functionality-Oriented Free Software Development Methodology

programmers and testers (both internal to
the developer organisation) and (b) the main
products of this phase are the system manuals,
the training material, and the installation test
reports for each installed version.

study cAse

The presented methodology has been shaped and
updated recently and has been implanted partially
only in two projects. The implantation process will
continue during the present year (2007) in order
to apply the whole methodology to all projects.
The two projects involved in the implantation
process until now are:

1. The Dis-centralised Administrative Sys-
tem.

2. The Automation of the FSF. This means
the automation of the free software project
management, administration of specific
projects, and software application develop-
ment processes.

The Dis-centralised Administrative System

had already been started and was entering the
test phase at the moment the methodology be-
gan implantation. Because of this, until now, the
methodology has been applied in this project
only for part of the software application develop-
ment process, more specifically, for the unitary
tests of the test step. On the other hand, since

Figure 9. Steps for the installation phase

 987

An Incremental Functionality-Oriented Free Software Development Methodology

the automation of the FSF is still in course, the
methodology has been applied up to the point
the project has reached at present. However, the
methodology has been applied from the begin-
ning of the project. The following processes of
the methodology have been implanted: the free
software project management, administration of
specific projects, and some aspects of the software
application development process. Next, details
about the application of the methodology to both
of these projects will be presented.

case 1: Automation of the Free
software Factory

Process # 1: Free Software Project
Management

a. Conceptualization
Results of carrying out this step are sum-
marised in a set of filled templates, which
are stored in the GForge server (see Alvarez,
2007, sections 1 and 2). These templates show
needs and problems, and scope of the project
of implementation of the FSF. Those problems
and needs include:

° Lack of a database of digitalised tem-
plates for documenting the development
processes.

° The dynamics of the demand requires
urgent development.

° Need of a knowledge base for learned
lessons.

The scope of the project delimitates the system
to be developed in terms of which processes
and which steps will be covered.

b. Project Description
This gives an overview of how the automation
of the FSF project is being carried out.

c. Free Software License Definition
There is not any licence defined for this proj-
ect. All material developed in this project will
be available from the GForge server.

d. Software Main Functionalities Prioritisa-
tion.
All functionalities to be covered by the auto-
mation system of the factory were defined and
prioritised. Results of this phase are presented
in Alvarez (2007, section 3). Among these
functionalities, we have:

° Digitalise the functionalities and the
risks prioritisation templates.

° Select analysis and design tools.
° Choose testing tools.
° Automate the project plan template.
° Integrate templates and design tools.
° Integrate design and programming

phases (generation of automatic
code)

° Develop a knowledge base.
These functionalities received a weight, as
the methodology states.

e. Risk Prioritisation
At this step, the more important development
risks were defined (see Alvarez, 2006, sec-
tion 4 for more details). Among these risks,
we have:

° Scarcity of free automation tools and
FSF’s development team’s lack of
knowledge and capacities for building,
design, and test tools for free software
development.

° Few people dedicated at testing and
short experience in testing.

° Low experience in following method-
ologies.

As above, a weight is associated to these
risks.

f. Development Priorities Definition
A prioritisation of the functionalities was
performed (Alvarez, 2006, section 5), by
following this formula:
Total functionality F1 weight = (∑VRi para
F1) * PR + VF1 * PF , where,

° the VRi are the risks for the functional-
ity F1;

988

An Incremental Functionality-Oriented Free Software Development Methodology

° VF1 is the weight for the functionality
F1;

° PR and PF are the relative weights-of-
the-factors, in this case, between the
total sum of risk weights, factor 1, and
the functionality weight, factor 2.

Following this procedure, one of the most
important functionalities resulted to be auto-
mated design and testing facilities. Tools for
these tasks were selected from those available
on the Internet.

g. Software Development Plan
This plan presents the development schedule,
indicating the functionalities to be developed
at each iteration; there were seven defined
iterations after considering the functional-
ity dependencies, size of the development
team, and the functionalities development
prioritisation (for more details, see Alvarez,
2007, section 5).

h. Generation of the Service Offer
The service offer indicates (Alvarez, 2007,
section 6), for instance:

° The offer proposal: to develop a system
to automate the free software develop-
ment processes.

° The project scope: to automate in some
degree, by integrating and digitalising
(and in some cases completely automat-
ing, when the complexity of these tasks
allows it) tools for implementing the
FSF.

° The release schedule (to the client).

Process #2: Administration of
Specific Projects

a. Administration of the Collaborative Plat-
form.
GForce was installed as the collaborative
Platform.

b. Standards for software codification.
The codification standard is being defined
at present.

c. Iterative planning.
This step is performed by using a GForce
scheduling facility (Alvarez, 2007, section
7).

Process #3: Software Application
Development

The software application development process
consists basically on programming on top of
GForge, in order to adapt it and add functionalities,
to permit carrying out the software development
activities required by the FSF processes. Some of
the adaptations already implemented are:

Digitalisation of templates, among which we
have: client’s needs and problems; scope of the
project; service offer; test plan; test reports.
Automation of the project plan.

case 2: dis-centralised
Administrative system

Process #3: Software Application
Development

As mentioned previously, for this project, the
methodology has been implanted to perform the
unitary test plan (Alvarez, 2007, section 8).

conclusIon

The presented methodology pretends strengthen-
ing the software national sector, especially the
small and medium software enterprises (including
the cooperatives), by allowing them to access the
technology and participate in the software market
through a collaborative development of software
for the public administration (main goal of the
FSF), on one hand, and to increase their capabili-
ties and software quality, on the other hand.

•

•

 989

An Incremental Functionality-Oriented Free Software Development Methodology

In this sense, the development process presents
certain specific characteristics and numerous
advantages (as it is stated in the methodology).
As said before, a fundamental aspect is the col-
laborative development by iteration: a particular
development group may enter or leave to collabo-
rate at any iteration in accordance to the group
interests. Additionally, the software developments
and upgrades coming from any involved group
are open to the community via a collaborative
platform. Consequently, the development groups
get benefits from a methodological framework,
which establishes the ways and moments for
participation, forms to recovery versions of the
development, development rules and tools, and so
forth. All these practices on the bases of the de-
velopment framework allow any small or medium
enterprise to share/communicate with partners
in the free software development community, in
accordance with the free software development
philosophy. The proposed methodology has been
partially validated at the FSF of the Foundation
for Science and Technology of the Mérida State
in Venezuela (FUNDACITE-Mérida). In addition,
this factory has permitted to understand better,
empirically, the real needs of a free software
development process and has also been a source
of ideas.

AcknowledgMent

This chapter has been developed inside the project:
“Process Improvement for Promoting Iberoameri-
can Software Small and Medium Enterprises
Competitiveness – COMPETISOFT” (506AC287)
financed by CYTED (Programa Iberoamericano
de Ciencia y Tecnología para el Desarrollo)

reFerences

Alvarez, J. (2007). Resumen del avance de la
aplicación de la metodología desarrollada para

la Fábrica de Software Libre (Tech. Rep. No.
001-2007). Fundacite, Merida: Fábrica de Soft-
ware Libre. Retrieved December 17, 2007, from
http://www.funmrd.gov.ve/drupal/files/technic-
alReportJohanna.pdf

Alvarez, J., Aguilar, J., & Teran, O., et al. (2006).
Metodología para el Desarrollo de Software
Libre: Buscando el Compromiso entre Funcio-
nalidad y Riesgos (Tech. Rep. No. 001-2006).
Fundacite, Merida, Venezuela: Fábrica de Soft-
ware Libre.

Beck, K. (2004). Extreme programming ex-
plained: Embrace change (2nd ed.). Addison-
Wesley Professional.

Corredor IIMI. (2006). Evaluación de MoProSoft
como alternativa metodológica de organización
de empresas de desarrollo y mantenimiento de
software. Tesis de Pregrado, Escuela de Ingeniería
de Sistemas-Universidad de Los Andes, Mérida,
Venezuela.

Kruchten, P. (2000). The rational unified process:
An introduction (2nd ed.). Addison-Wesley.

Montilva, J. (2004). Desarrollo de Aplicaciones
Empresariales: El Método WATCH. Mérida,
Venezuela: Jonás Montilva.

Montilva, J., Hamzan, K., & Ghatrawi, M. (2000,
July). The watch model for developing business
software in small and midsize organizatios. In
Proceedings of the IV World Multiconference
on Systemics, Cybernetics and Informatics
(SCI’2000), Orlando, FL.

Oktaba, H., Alquiara, C., Su, A., Martinez, A.,
Quintarilla, A., Ruvalcaba, M. (2005). Modelo de
Procesos para la Industria de Software (MoPro-
Soft, Versión 1.3). México. Retrieved December
16, 2007, from http://www.software.net.mx

Pollice, G. (2001). Using the rational unified
process for small projects: Expanding upon
eXtreme programming (White Paper TP 183).
Rational Software.

990

An Incremental Functionality-Oriented Free Software Development Methodology

Probasco, L. (2000). The ten essentials of RUP:
The essence of an effective development process
(White Paper TP177). Rational Software.

This work was previously published in Software Process Improvement for Small and Medium Enterprises: Techniques and
Case Studies, edited by H. Oktaba & M. Piattini, pp. 242-257, copyright 2008 by Information Science Reference (an imprint
of IGI Global).

 991

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.25
Agile Outsourcing to India:

Structure and Management

Boris Roussev
University of the Virgin Islands, USA

Ram Akella
University of California, USA

AbstrAct

The combination of low labor costs, technological
sophistication, project management skills, and
successful software establishment makes India
a particularly attractive location for software
production outsourcing. Furthermore, in most
situations, information and communication
technologies render virtual presence practically
equivalent to physical presence, thus enabling
effective communication and cooperation in
a distributed mode. This chapter introduces a
project structure creating agile conditions for
large outsourcing software projects. The agility
advantage is achieved by scaling down a large
project into a number of small-sized projects
working in agile settings. We divide the work into
R&D activities, located onsite, and production
activities, located offsite. The proposed approach
makes Agile applicable to the stressed condition
of outsourcing environments without compro-

mising the quality and the pace of the software
development effort. Creating a context congenial
to agile methods hinges on maintaining a good
balance between the functions and sizes of onsite
and offsite teams, on redefining the developers’
roles, and on reorganizing the information flow
between the different development activities to
compensate for the lack of customer onsite, team
co-location, and tacit project knowledge.

IntroductIon

We live in a digital world, where any activity not
requiring a “physical presence” can be outsourced
to any place that is connected. Even the term
“physical presence” comes with a qualification.
Information and communication technologies
(ICTs) enable cooperation in a distributed mode.
Technologies, such as groupware and video-con-
ferencing, are increasingly becoming feasible for

992

Agile Outsourcing to India

organizations to use in international projects. In
addition, these technologies are changing the way
we perceive presence and absence. The largely
digital nature of software development allows
changing its geography of provision. Advances in
ICT have been essential for loosening the spatial
constraints on software development.

The combination of low labor costs, techno-
logical sophistication, project management skills,
and successful software establishment makes
India a particularly attractive location for soft-
ware production outsourcing. From 1996-1997
to 2003-2004, the export software sales of the
Indian IT industry had an average annual growth
rate of 38.7% to reach a total of US$12.2 billion
in 2003-2004 (Nasscom, 2004).

Even though India has had a qualified labor
pool and the enabling technologies, along with
the great pressure exerted on firms in developed
nations to lower costs, the Indian software industry
still operates in the low value-added segments,
typically in applications development, testing, and
maintenance, while the high-end work, such as
developing the IT strategy, building the software
architecture, designing the system, integrating the
project with enterprise packages, and designing
custom components are all discharged by firms
in developed countries (Dossani & Kenney,
2003).

Agile methods (Beck, 1999) are popular soft-
ware development processes designed to be used
on small- to mid-sized software projects. The Agile
movement started in the mid-1990s. The first major
project to apply an agile method was the Chrysler
Comprehensive Compensation system, a payroll
system developed in 1996. This method, called
extreme programming, was described in Beck
(1999) and became the foundation for the Agile
Alliance Manifesto (Agile Alliance, 2001).

Agile methods are based on the notion that
object-oriented software development is not a
rigidly defined process, but an empirical one that
may or may not be repeated with the same success
under changed circumstances.

Agile methods are based in four critical val-
ues—simplicity, communication, feedback, and
courage—informing a set of key practices (Pol-
lice, 2004), which will be considered later on.
Boehm and Turner (2004) define agile methods
as “very light-weight processes that employ short
iterative cycles; actively involve users to estab-
lish, prioritize, and verify requirements; and rely
on tacit knowledge within a team as opposed to
documentation.”

Many of the agile practices are incompatible
with the context of outsourcing, for example, cus-
tomer onsite, team co-location, short lifecycle, and
embracing change. But above all, agile methods
can be applied only to small-sized projects.

In the past, there have been several attempts to
reproduce the conditions for agility in large-sized
projects. To the best of our knowledge, no such
attempt has been made for outsourcing projects.
Pollice (2001), Evans (2004), and Boehm and
Turner (2004) propose to scale up agile methods
by balancing agility and discipline. Pollice and
Evans, for instance, look out for common grounds
between Agile and RUP (Jacobson, Booch, &
Rumbaugh, 1999), while Boehm and Turner
try to get the best of both agile and plan-driven
(waterfall) worlds. In contrast, Kruchten (2004)
proposes to scale down large projects to meet the
Agile “sweet spot,” based on experience reported
in Brownsword and Clements (1996) and Toth,
Kruchten, and Paine (1994).

In this chapter we show how to reengineer
large-sized (and small-sized) outsourcing projects
to benefit from the “sweet spot” of Agile, while
avoiding its “bitter spot.” The proposed approach
makes Agile applicable to the stressed condition of
outsourcing environments, without compromising
the quality of the software development effort.
Creating a context congenial to agile methods
hinges on maintaining a good balance between
the functions and sizes of onsite and offsite
teams, on redefining the developers’ roles, and
on reorganizing the information flow between
the different development activities.

 993

Agile Outsourcing to India

The rest of the chapter is structured as follows.
First, we examine the state of the Indian software
industry and show the problems experienced
by Indian software suppliers. Next, we present
the structure of the Agile outsourcing project,
customized to the needs of the Indian outsourc-
ing context. We then elaborate the inception and
architectural activities, giving enough detail of
how large-sized projects can be decomposed to
a number of relatively independent agile projects
and showing how the resulting builds are inte-
grated. A discussion of many of the issues likely
to be faced by Indian suppliers when applying the
proposed approach follows, and the final section
concludes and outlines plans for future work.

outsourcIng to IndIA

brief history

The genesis of outsourcing to Indian software
firms can be traced back to the 1970s. By the late
1990s, India had become a leading supplier of con-
tract software programming due to its combination
of skilled, low-cost labor and project management
skills (D’Costa, 2003). Indian software firms such
as HCL, Infosys, and Wipro have become globally
competitive. Further, their interaction with the
global economy has contributed to the develop-
ment of executive and managerial talent capable
of securing overseas contracts, managing the
interface with foreign customers, and migrating
software development activities across national
and firm boundaries.

Multinationals in developed countries and
domestic firms quickly understood that there was
a significant opportunity to undertake labor-cost
arbitrage offshoring to India and moved, begin-
ning in the 1990s, to establish Indian operations.
Because the economics were so compelling, Indi-
ans living in the U.S. and the UK soon followed
suit by establishing outsourcing firms in the U.S.

and the UK, respectively, which discharged the
work to India.

drivers

The foremost reason for outsourcing is the po-
tential cost savings, with quality commensurate
or even better than that currently provided by
the developed nation software developers. In-
dia-based outsourcers estimate that, in general,
savings on a given activity would have to be at
least 40% to make the relocation worthwhile
(Dossani & Kenney, 2003). We group the rest
of the drivers for outsourcing into technological
and economic.

During the last decade, the cost of data
transmission has dropped by more than 50%.
The lowered telecom costs make it feasible to
undertake even communication-intensive tasks
outside of the U.S.

Another technological enabler is the ongoing
revolution in the world of documents. Today’s
industrial-strength scanners digitize documents
at the rate of 400 pages per minute. The digitized
documents can be viewed anywhere in the world
on a computer with a high-speed connection.

The last technological development we would
like to consider is the widespread use of standard
software platforms in corporate information
systems, for example, database systems and ERP
systems. Standard software platforms facilitate
outsourcing since domain knowledge becomes
uniform and transferable across industries, or
branches thereof. This means that employees ought
to acquire only standard, portable skills, thus
lessening risks for both suppliers and clients.

Technology is necessary, but not sufficient to
convince companies that they should outsource
software development to India. Clients need as-
surance that the process would not be to their
detriment and would bring in good return on
investment. India has a very successful soft-
ware establishment, with a proven track record

994

Agile Outsourcing to India

in satisfying international customers in the area
of application programming and maintenance.
This creates the necessary comfort levels in the
clients. The comfort-building process is assisted
by the visible presence of large multinationals
like IBM, Dell, Microsoft, General Electric, and
British Airways, who have established Indian
operations over the past years.

Another very significant factor driving soft-
ware development outsourcing is the profitability
crisis in the developed countries. With revenues
largely stagnant for the last four years, firms are
under intense pressure to cut costs while retain-
ing quality.

Analysis of the Indian It sector

In their analysis, Akella and Dossani (2004) divide
the Indian software export into two functional
areas: services and products. The authors conclude
that, in countries like India, the ability to develop
global (but not local) products is more difficult
relative to producing services. They observe that,
in the Indian software export, services dominate
products, and also that services in particular are

supplied mostly to non-IT firms in the core, non-
critical components of their activities.

A second division is between serving clients
from the IT sector and clients outside the IT sec-
tor. The ratio between the two sectors offers an
insight into the maturity of a software industry:
the greater the numbers and the greater the relative
weight for the non-IT sector, the more mature the
software industry is.

Akella and Dossani classify the Indian soft-
ware industry output into the following nearly
exhaustive list of categories: 1) Web-based sup-
port; 2) data processing and management; 3)
embedded software; 4) maintenance and legacy
systems; and 5) application software development
and maintenance. The complexities of the activi-
ties involved in all five categories fare low in the
complexity pyramid of labor, as shown in Figure
1. Moreover, all five categories predominantly
serve clients from the IT sector.

Both IT and non-IT client activities can be
divided into core and non-core on the one hand,
and critical and non-critical on the other hand.
Core activities are manufacturing and engineering
services that differentiate a firm from its competi-

Figure 1. Activities and pyramid of labor

 995

Agile Outsourcing to India

tors, and they are key to its continued growth.
Non-core activities are the firm’s non-competitive
services, such as payroll and human resources.
The boundary between core and non-core is not
clearly cut. Within both core and non-core activi-
ties, there are activities crucial to their functioning,
termed critical activities.

From Indian suppliers’ point of view, non-core
and non-critical activities are the easiest to obtain
because they tend to be the most standardized
across industries, and clients are most willing
to outsource them because they do not involve
knowledge transfer. Indian suppliers commonly
work on applications at the next more difficult
level—core, non-critical activities, and rarely
on core, critical activities (Akella & Dosssani,
2004).

strengths of Indian software Firms

The substantial share of services provided to
non-IT clients suggests that Indian firms have
expanded their project management capabilities
and started to acquire domain knowledge. This
could explain the trend of moving away from
consultants to direct supplying of end users.

The resource of skilled and motivated people is
the most important component of any project. The
level of experience and educational qualification
of staff at Indian software firms is commensurate
to that of most developed countries. The major
Indian corporations, for example, are overwhelm-
ingly qualified for ISO 9001, a European standard
on quality assurance, and most of them have
SEI/CMM certification with a high average score
of 4.2 (out of 5) (Nasscom, 2004). SEI/CMM is
the Carnegie Mellon University-based Software
Engineering Institute’s Capability Maturity Model
(Paulk, Curtis, Chrissis, & Weber, 1993).

Availability of skilled workers is comple-
mented by a rising supply of CS/EE graduates,
which was expected to reach about 99,000 new
graduates in 2004-2005 (Nasscom, 2004). Fur-
thermore, Akella and Dossani’s study implies

that Indian suppliers have the skills to manage
projects remotely.

It has been observed that the ratio of onsite/off-
site workers increases with firm size. This trend
reflects the growing capabilities of larger Indian
firms to provide more sophisticated consulting
services. The approach proposed in this work
relies on an increased onsite presence.

outsourcing software development
Activities

What Can Be Outsourced?

When the software development process is
considered in its totality, it appears to resist
relocation because software production requires
face-to-face interactivity with clients (and among
co-developers), for example, user requirements
elicitation and testing. The development workflow
has to be parsed into activities requiring different
levels of interactivity, and the less client-com-
munication-intensive activities can be potentially
outsourced.

The software complexity chain is frequently
described as a series of processes, each of which
is less complex than the earlier one. The initial
processes are less labor intensive than the later
ones. The complexity of a process is roughly
inverse-proportional to its labor intensity. The
pyramid model in Figure 1 gradates the processes
in terms of labor, complexity, risk, and commu-
nication intensity.

Theoretically, outsourcing is possible for all
the levels of the complexity pyramid, but there are
important differences of how outsourcing for each
level is likely to be implemented. The processes
at or closer to the pyramid’s apex, such as domain
knowledge acquisition, architecture design, and
technology determination, are objectively more
difficult to outsource.

Moving up the complexity pyramid entails
establishing an intimate client-supplier rapport
and acquiring knowledge about the client’s core

996

Agile Outsourcing to India

and critical activities. The higher the pyramid level
is, the more communication-intensive the activi-
ties become, and the bigger the demand grows
for domain, architectural, and design knowledge.
Adopting agile methods can help Indian suppliers
move up the “value chain” because agile methods
address the issues enumerated above.

Developing domain expertise, however, is
difficult and risky because the firm becomes
dependent on a single industry sector or process.
And yet, specialization offers the potential of
finding a niche outside the ferocious competition
in highly commoditized sectors.

Smaller software firms are at a disadvantage
because they lack domain skills and acquir-
ing domain knowledge may be risky. The step
transforming the business proposition from
simple labor cost arbitrage to significant value
addition involves acquiring deep-enough domain
expertise.

Interactivity

Interactivity always comes across as a stumbling
block for outsourcing. Interactivity has two di-
mensions—interaction among co-developers and
interaction with clients. Requirements elicitation
and acceptance testing are the activities requiring
the most active involvement on the part of the cli-
ent, which makes them impossible to offshore.

The greater the need of co-developers to
interact across a set of different activities of the
software process, the higher the risk threshold
of outsourcing a subset of the activities is. Out-
sourcing the entire set of activities might be
considered as a way of retaining interactivity at
the new location. But, if some activities cannot
be outsourced because that would disrupt the
interaction with the client, then outsourcing the
others might need rethinking.

Savings from Concentrating Activities in
One Location

Often, a number of teams distributed across
multiple time zones and reporting to different
companies work on a large common project. There
might be different reasons for having multiple
teams with an inefficient spatial posture cooperat-
ing on a project. Most commonly, as companies
expand, they outgrow the local labor pools and
must establish teams in other regions. It might
be too expensive to consolidate these teams in a
single location in a developed country, especially
for multinationals (e.g., a company with teams
in France, Switzerland, Canada, and the Silicon
Valley).

The advantages of concentration by relocating
to India stem from the larger team size, which
relates to economies of scale, such as retaining
interactivity at the new location, standardized
management practices, and tacit knowledge dis-
semination. Furthermore, a larger team is likely
to have experts with precious domain knowledge
in different industry sectors or technologies. In
addition, an outsourcing supplier could pool many
clients’ businesses. A big firm in India can offer
guarantees of quality that smaller domestic soft-
ware firms could not match, owing to the larger
labor pool and the division of labor.

For foreign equity participation companies
(FEPs)—Indian firms whose foreign equity fund-
ing is 100%—the software development process
can be reengineered during the act of outsourc-
ing, and inefficient and ineffective practices can
be easily abandoned. Very often such practices
are legacies of earlier methodologies, such as
waterfall lifecycle, iteration planning, and proj-
ect controlling, that were not eliminated as the
development process evolved. As Arthur (1994)
has observed, all too often processes evolve in a
path-dependent manner, which may not be the
most efficient configuration. These inefficien-
cies can be addressed during the transfer without

 997

Agile Outsourcing to India

disrupting work patterns, since the developers at
the new location would not have the outsourcing
company culture.

Rethinking of Earlier Cost-Benefit
Decisions

The lower cost of more highly skilled personnel
calls for rethinking of established cost-benefit de-
cisions. The much lower cost of software engineers
in India compared to the U.S. makes it possible
to increase the density of software inspections or
to dispel managers’ doubts about the feasibility
of pair programming. Other activities that are
candidates for reconsideration are regression
and integration testing, iteration planning, and
metrics for tracking project progress. In all of the
above-mentioned practices, lower labor costs can
change the break-even point, and thus create new
sources of revenue.

There may also be diseconomies of scale.
There are quite naturally risks associated with
centralizing the development process at one loca-
tion. The most significant of these is the danger of
losing touch with the national environment(s). In
this respect, the effectiveness of the communica-
tion process between supplier and outsourcer is
critical.

problems experienced by Indian
suppliers

The following issues are likely to have an impact
on outsourcing. The major challenge faced by
Indian software firms is shortage of domain ex-
pertise in some function areas. According to the
Outsourcing Institute (2004), domain knowledge
and expertise are needed in subject areas that are
new to India, such as finance, insurance, health-
care, and logistics. However, Indian software firms
have acquired sufficient expertise in accounting
and banking, which have already been success-
fully outsourced to India. Maintaining a seamless

relationship between the outsourcing supplier and
the outsourcing organization back in the developed
country is always a challenge.

The problems experienced by Indian suppliers
can be “objective” or “subjective.” For instance, it
is objectively difficult to communicate effectively
with a remote client. The lack of expertise in
project scheduling is, on the other hand, subjec-
tive, particular because it is not universally true.
More often than not, a lot more could be done to
alleviate the subjective problems rather than the
objective ones.

Outsourcing problems fall into three catego-
ries: 1) communication—relationship with remote
clients; 2) technical know-how—domain exper-
tise, experience in building software architectures,
design experience, and inadequate quality thereof;
and 3) management—project coordination and
project scheduling.

In order to compete successfully on the global
market for software products and long-lasting
assets (reusable domain solutions), Indian soft-
ware firms need to resolve the communication,
technical know-how, and management issues
listed above.

the AgIle outsourcIng
project

In this section, we present an agile method of
software development geared toward the context
of outsourcing.

core Agile practices

Agile methods are iterative and incremental. In
an iterative process, the activities that were per-
formed earlier in the process are revisited later.
Revisiting activities provides developers in areas
such as requirements engineering and software
architecture with the opportunity to fix mistakes
they have made. The iterative model implies more

998

Agile Outsourcing to India

interactions among the various management and
technical groups. It is a means of carrying out
exploratory studies early on in a project when the
team develops the requirements and discovers a
suitable architecture.

Some important agile practices are the fol-
lowing (Beck, 1999):

• Embracing Change: Respond to change
quickly to create more value for the cus-
tomer.

• Fast Cycle: Deliver small releases frequent-
ly, implement highest priority functions
first, speed up requirements elicitation, and
integrate daily.

• Simple Design: Strive for a lean design,
restructure (refactor) the design to improve
communication and flexibility or to remove
duplication, while at the same time preserve
the design’s behavior.

• Pair Programming: To quote from Beck,
“If code reviews are good, we’ll review code
all the time.” With pair programming, two
programmers collaborate side by side at one
machine. This quality control practice also
helps disseminate tacit knowledge among
the team members.

• Test-Driven Development: Quality control
technique, where a developer first writes a
test, and then writes the code to pass that
test.

• Tacit Knowledge: Preference for project
knowledge in team members’ heads rather
than in documents.

• Customer Onsite: Continuous access to a
customer to resolve ambiguities, set priori-
ties, establish scope and boundary condi-
tions, and provide test scenarios.

• Co-Location: Developers and onsite cus-
tomer work together in a common room to
enhance tacit project knowledge and deepen
members’ expertise.

• Retrospection: A post-iteration review
of the work done and work planned. This

reflective activity facilitates learning and
helps improve the estimates for the rest of
the project.

The enumerated practices (or disciplines) vary
with the method. The disciplines can be divided
into three broad categories: 1) communication,
such as pair-programming and tacit knowledge;
2) management, such as planning game, scrums
(short daily planning sessions, in which the whole
team takes part), short cycle, and frequent deliv-
ery; and 3) technical, such as test-driven design,
simple design, and refactoring. These categories
correspond to the three groups of problems
experienced by Indian suppliers, as previously
discussed.

The fast cycle of agile methods gives business
stakeholders multiple and timely feedback oppor-
tunities, which makes agile methods explorative
(aid in architecture discovery and requirements
verification) and adaptive to change. There is a
broad consensus that agile methods outperform
other software development methods for small
projects in dynamic environments, such as in
e-commerce.

What we see as a problem with all agile meth-
ods (e.g., extreme programming) is that they do
not provide guidelines for building high-quality
software, which is a natural consequence of their
informal nature.

The feasibility-impact grid in Figure 2 shows
how the core agile practices can alleviate the
Indian suppliers’ concerns.

structuring the Agile outsourcing
project

The main question we address below is how to
reproduce the conditions ideal for agility in an
outsourcing project.

Even a quick look at the core agile practices
above would reveal that some of them are incom-
patible, while others are not entirely consistent
with the context of outsourcing, for example,

 999

Agile Outsourcing to India

customer onsite, co-location, short lifecycle, and
embracing change. Above all, agile methods can
be applied only to small projects.

Kruchten (2004) proposes to scale down large
projects to meet the Agile “sweet spot.” The author
describes the organization of a large project as an
evolving structure, starting out as one, co-located
team, which over time is transformed to a team
of teams (with a tree-like structure).

Kruchten suggests organizing the iterative
process into four typical RUP phases, as shown
in Figure 3. Each phase shifts the focus of the
development effort onto a different activity. A
phase consists of one or more iterations, where
iterations can be thought of as mini waterfalls.

The structure of the agile outsourcing project
is based in Kruchten’s approach. However, in an
agile outsourcing project, the primary goal is not
to slice a big project into multiple agile subproj-
ects (which might be required anyway), but to
outsource the project to one or more agile teams,
which are co-located at a remote site and share
common culture and educational background.

The structure of the development process is il-
lustrated in Figure 4. The phases of the lifecycle are
separated between “research and development”
(R&D) activities and “production” activities, as
suggested in Royce (2002). R&D is carried out
onsite—close to the client—while production
takes place offsite (the supplier’s site). Elaboration

Figure 2. Impact of agile practices on Indian suppliers’ concerns

1000

Agile Outsourcing to India

is split between R&D and production. The two
new phases are called architectural elaboration
and production elaboration.

A team comprising requirements engineers
and architects starts the development process.
Initially, this team focuses on the business case,
vision, and requirements. The team works closely
with the client in a typical agile setting. The team’s
objective, however, is not to deliver executable
code (a must in agile methods), but to set up an
architectural prototype, including prioritized
system-level use cases.

When the team has got enough clarity on key
architectural choices, it can set about building
and testing an architectural prototype.

Towards the end of the architectural elabo-
ration phase, when the architecture stabilizes,
additional teams are created offsite. Each new
team is seeded preferably with two members
of the architecture team. For large projects, the
early architectural prototype is used to slice the
project into smaller, considerably independent
agile projects. Each agile project “owns” part of
the system architecture.

The “seed developers” transfer domain ex-
pertise from the client to the supplier’s site. The
“seed developers” take on several roles. They
lead the teams, serve as local architects, act as
customer surrogates, communicate with the initial
architecture team, and if necessary, communicate
directly with the client. This organization cre-

ates near-perfect conditions for agility in each
offsite team.

Each agile offsite team works on a subsystem
and develops its detailed subsystem use case
model—hence the second elaboration phase,
named “production elaboration” in Figure 4.

For small projects, one offsite production team
will suffice to develop the complete code. For large
projects, however, several production teams might
be necessary to do the job. In addition, one or more
infrastructure teams must be set up to develop
common elements such as middleware, services,
and any reusable assets. The customers for the
infrastructure teams are all other teams. Thus,
no matter how many teams are spawned offsite,
they all work in agile conditions, even though
predominantly with customer surrogates.

It is important to use a common software
tool to reduce the risk of miscommunication, to
track and communicate project requirements, to
identify replicated modules, to map test cases to
requirements, and to successfully integrate the
outputs from the agile teams’ builds.

The context diagrams in Figure 5 model the
environments in which the different offsite teams
operate. Note the dual nature of “seed developers.”
On the one hand, a “seed developer” imperson-
ates a customer, and on the other hand, he/she is
part of the team.

The interactions of offsite teams with the real
customer are supposed to be infrequent, and to

Figure 3. Typical RUP phases of the iterative process

Construction Transition

...iter. #i iter.#i+1

Elaboration

...
Inception

iter. 1 time

 1001

Agile Outsourcing to India

be mediated by the “seed developers” and the
architecture team. For large projects, somebody
needs to put together the builds delivered by the
production and infrastructure teams, and to test
the assembled system. This job is assigned to the
Integration & Test Team, or integration team for
short. The testing engages the client so that the
client’s feedback situates the project and steers
the future effort.

The problem with the integration team is that
it gets input from the offsite teams, but receives
feedback from the client. Normally, the input and
the feedback are coming from the same place—the
customer. To account for this anomaly, we split
the integration team into two teams, one located
onsite and the other offsite (see Figure 4). Both
integration teams derive directly from the ini-
tial architecture team. This guarantees that the

developers in charge of integration and testing
thoroughly understand the client’s needs.

A sore issue stemming from the proposed orga-
nization is that of fault propagation. For example,
a defect committed by one of the production or
infrastructure teams can propagate through the
integration process before the client detects it.
Owing to the late stage of its detection, isolating
and removing such a defect is expensive.

We have provisioned for two floodgates pre-
venting fault propagation: 1) the “seed developers”
in each offsite team; and 2) the test engineers
in the integration team. Since they all come
from the primary architecture team, it is very
likely that they would be able to detect many of
defects, which are normally revealed with help
from customers.

Figure 4. Team structure of agile outsourcing

...

Inception

...iter. #2 iter. #3iter. 1

Construction Transition
Architectural
Elaboration

Architecture Team

ProductionR&D

Infrastructure
Team

Production
Team interact

integrate

interact

integrate

Timeiter. #i iter.#i+1

OffsiteOnsite

Production
Elaboration

seeds

seeds

transforms into

<<non-agile>>
Integration &

Test Team

<<non-agile>>
Integration &

Test Team

forks off

1002

Agile Outsourcing to India

Figure 5. Context diagrams for offsite teams

Figure 6. Nested iterations

Customer (real)

Agile
Production

Team
Seed Developer

<<customer surrogate>>

Architecture Team
<<customer surrogate>>

(a) Production team.

Customer (real)

Agile
Infrastructure

Team

Seed Developer
<<customer surrogate>>

Architecture Team
<<customer surrogate>>

Production Team
<<customer surrogate>>

(b) Infrastructure team.

Agile team iteration:
week to a month

Integration (project) iteration:
1 month to 6 months

 1003

Agile Outsourcing to India

The only two teams operating in non-agile,
but still iterative and incremental mode, are the
onsite and offsite integration teams.

The iterations (heart beats) of both the agile
and integration teams can be best illustrated with
the dual beat structure shown in Figure 6. Strik-
ing a balance between the lengths of the agile and
integration iterations is the underlying objective
of the management team.

The management team, composed of all local
team managers, is led by the managers of the in-
tegration teams. We do not show the management
team as a separate box in Figure 4 because man-
agement is thinly distributed across all teams.

Since all offsite teams reside in the same
country, and most probably in the same city, say
Bangalore, there are no cultural differences to
overcome, and communications among produc-
tion, infrastructure, and integration teams are
not as ineffective as they are with geographically
distributed teams. The management team is in a
favorable position because good communication
is a prerequisite for effective coordination.

ActIVItIes And workFlow

In this section, we give more detail about the
activities in an agile outsourcing project, as well
as their workflow and information artifacts. We
focus on inception, architectural elaboration, and
production elaboration because they are critical to
creating the agile contexts for the offsite teams.

Inception phase

During inception, the emphasis is on the user re-
quirements. A user requirement is a specification
of what the system must do. As user requirements
are elicited, they are organized into use cases.
Very briefly, use cases are dialogical descriptions
of system usage. By coalescing related transac-
tions and scenarios into identifiable chunks, use

case models focus on the dynamic behavior of a
system at a macro level.

Use case descriptions can smoothly scale to
large and small systems alike. They promote
refinement and traceability from system-level
usage goals down to low-level (subsystem, com-
ponent, and instance) usage goals. Use cases are
sufficiently flexible to be used in highly iterative
and incremental development environments, as
the one proposed in this work.

If a system consists of several subsystems,
use case analysis can be applied recursively to
the subsystems as well. This defines clearly the
requirements and responsibilities of each sub-
system. Subsystem-level use cases are derived
from the system-level use cases and the system
architecture (the architectural decomposition of
the system into subsystems).

A system is decomposed into subsystems of
related use cases, for example, use cases linked
by <<include>> and <<extend>> dependency
relationships or use cases sharing common actors.
The <<include>> relationship is used to extract
out a coherent part of a use case, typically for the
purpose of reuse. It can also be used to decompose
a system-level use case into part use cases to be
realized by different subsystems.

The following technique is helpful in mapping
a system-level use case to two or more subsystem
use cases. The high-level use case is decomposed
into a partially ordered set of activities on an
activity diagram, where the different subsystems
are modeled as swim lanes. Concurrent activities
can be mapped to different swim lanes. Each such
activity forms a subsystem use case. The actors
of the subsystem use cases may be the original
actors or other subsystems.

Architectural elaboration

The onsite team carries out the architectural
elaboration. The goals of the architecture team
are to partition the system into multiple semantic

1004

Agile Outsourcing to India

domains centered around different subject mat-
ters, to define the architectural decomposition of
the system into subsystems, and to map system-
level use cases to subsystem use cases.

The architecture team defines the model or-
ganization of the system being developed, and
thus determines the allocation of jobs to teams.
Appropriate model organization would allow
teams to work effectively on a common project.
The two main issues in model organization are
how to allow different teams to reuse parts of the
projects they do not “own” and how to efficiently
implement a build process.

A UML package is a container for modeling
elements, and as an organizational unit, it is a
natural choice for a configuration item (CI) (a piece
of ownership) in a configuration management
(CM) tool. A package defines a namespace for the
modeling elements it contains. Since UML offers
no guidelines as to what constitutes a package,
the question is what modeling elements should
go into one package versus another.

Domain Modeling

A domain is a subject area with a shared vocabu-
lary (Mellor & Balcer, 2002), for example, user in-
terface (UI) or payment transaction management.
Each domain contains many classes organized
around a single subject matter. Most domains
require specialized expertise, such as experience
and knowledge in UI design or in payment trans-
action management. It makes sense to allocate the
modeling of a domain to a developer with domain
knowledge in that particular subject area.

Since a domain model captures precisely the
conceptual entities of a single subject matter, it
can be said that domain models are logical models.
Logical models are in sharp contrast to subsystem
models, which are pieces of the physical system.
Typically, a physical subsystem is constructed
from instances of several logical models. For ex-
ample, a collaboration realizing a system-level use

case would involve instances from a UI domain,
a business logic domain, a transaction manage-
ment domain, a persistent storage domain, and a
security domain.

At first, it might seem that domains add yet
another concern to a software development
initiative, but it is all about economic numbers.
Constructing domain models reduces production
cost by simplifying the development process and
by improving product quality.

The underlying philosophy is that a domain-
specific model captures precious domain knowl-
edge (e.g., persistence). Domain modeling lever-
ages scarce domain knowledge normally limited to
very few team members and shields the rest of the
team from the domain implementation detail. For
example, to make an object persistent, a developer
needs only to mark its class or one of its attributes
as persistent, and a persistent software entity is
automatically generated at compile time. The
result is a simplified development process, where
only a few developers need detailed knowledge
about domain technicalities.

Henderson-Sellers (1996) and Bettin (2004)
observe that software quality degrades faster
when software is treated as capital cost (i.e., main-
tenance only delays the inevitable obsolescence).
Treating software as capital cost is incompatible
with incrementally building software assets1 and
strategic software2 assets reused across a large
number of enterprise applications, software assets
whose value appreciates rather than depreciates.
Since domain modeling leverages domain-spe-
cific knowledge captured in the form of domain
models, strategic software assets are built at no
extra cost. Domain models do not degenerate into
liabilities3 over time because they are aligned
with the business process architecture of the
enterprise and they have the potential to achieve
mass customization4 (Bettin, 2004).

Domains, unlike objects, are not elemental,
but just like objects they are cohesive. The classes
and components in a domain are tightly coupled

 1005

Agile Outsourcing to India

and interdependent, and yet the domain is autono-
mous—its classes and components are decoupled
from entities lying outside the domain boundary.
Once constructed, domain models have greater
longevity than an application because they evolve
independently of other domain models out of
which the application is built; that is, they become
corporate assets and the biggest units of reuse.

Companies want to be able to adapt their
software systems to the constantly changing
business environment with minimum effort. It
is easy to cope with the intra-domain effect of a
change because the domain model naturally fits to
the domain’s subject matter, and the effect of the
change is expressed in the language of the domain
(i.e., in familiar domain concepts). The latter taken
to the extreme is called end user programming.
This scenario works only if no changes are made
to the modeling notation. Changing the modeling
notation leads to domain engineering and software
product line engineering (SEI, 2004).

Domain modeling also alleviates the problem
with the inter-domain effect of a change. The
semantic autonomy of each domain implies that
a domain can be replaced by another one using
different conceptual entities or different imple-
mentation without affecting the application.

Domain modeling is a pragmatic approach that
avoids heavy up-front investment and long-term
design degradation (Bettin, 2004). It provides
an incremental path of building sustainable do-
main-specific assets. Software products built out
of domain models are not liabilities designed as
one-off systems.5

Partitioning the project into domains promotes
the development of domain models, with external-
ized interface definitions serving the goal of active
dependency management. This is especially true
for a domain model that has been developed by
domain experts over several years. The market
for such software assets has not matured yet, but

it is projected to grow up (Booch, 2004; Mellor
et al., 2004).

Structured Classes, Subsystems, and
Components

In UML2.0, developers represent the contain-
ment hierarchy of a system through structured
classes. A structured class may contain internal
structured classes and instances, each of which
may be further decomposed into structured classes
and instances, ad infinitum.

The concept of a structured class is based
on decomposition and encapsulation. The parts
contained in the structured class define the de-
composition aspect. Of course, the structured class
is more than a simple container for the parts. A
structured class has parts connected with connec-
tors, publishes services via provided interfaces,
provides runtime connections via ports, and
imposes demands on other structured classes
(servers) via required interfaces.

Components are structured classes constitut-
ing the primary replaceable units of software. In
addition, components have an <<artifact>> sec-
tion used mainly to specify a unit of deployment,
such as a .dll file (dynamic library).

In UML 2.0, a subsystem is defined as a
subordinate system within a larger system. The
subsystems define the large-scale physical archi-
tecture of the system. Subsystems are special-
ized components (i.e., structured classes) used
to decompose a system into parts. A subsystem
has one compartment for its specification and one
compartment for its realization. Either or both of
these compartments could be empty or omitted.
Developers can use ports and interfaces to show
how subsystems relate to other subsystems. The
components and objects within a subsystem
cooperate to realize a common set of use cases.
Ports and interfaces aid in encapsulating the
subsystem’s internal structure.

1006

Agile Outsourcing to India

Model Organization

Use Case-Based Model Organization for
Small-Sized Systems

For small-sized systems, the package structure
can be organized by use cases. The system model
is divided into packages of related use cases.
This model organization is straightforward and
allows tracing requirements easily to model
elements. The downside of the use-case-based
model organization is that it does not scale up
well and encumbers reuse. Developers are forced
to reinvent similar classes in different use case
collaborations.

A quick remedy is to add a framework pack-
age for common elements such as usage points
(services) and extension points (classes to subclass
in use case packages). Regardless of this remedy,
the use-case-based model organization still works
well only for small-sized systems. Identifying
commonalities in large systems leads to an ex-
plosive context and inter-team communication
growth.

Domain-Based Model Organization—
Large-Sized Systems

We propose to derive the package structure and
contents for large-sized systems from the re-
quirements model, the architecture model, and
the domain model. The top-level packages of the
domain-based system model are:

• System use cases and actors package
• Domains package
• Infrastructure package
• Subsystems package
• Builds package

The system use cases package contains sys-
tem-level use cases and their actors. The domain
package has one sub-package for each domain.

The infrastructure domain is a special type of
domain. Infrastructure domains contain services
and extension points for system communication
and infrastructure, and they are dependent on the
selected implementation technology (e.g., RMI/
J2EE or CORBA). The infrastructure package
contains one sub-package for each infrastruc-
ture domain. An infrastructure domain evolves
into a self-contained subsystem package, which
is assigned to an infrastructure team. Several
production teams may use the classes and compo-
nents, realizing the services of the infrastructure
package.

Each subsystem package contains the classes
and components of a subsystem, the largest-scale
pieces of system functionality. If any of the
subsystem packages is large enough, it can be
recursively divided into sub-packages until the
size of the leaf packages becomes manageable.
A leaf package is a unit of ownership, such as a
CI in a CM tool. A subsystem package normally
refers to classes of several domain packages.

The builds package is divided into sub-pack-
ages, one per prototype to allow for easy manage-
ment of incremental builds. This package also
includes the system test model, such as test cases,
test procedures, and test scripts, along with the
drivers, stubs, and collaborations realizing the
test model.

The domain-based model organization scales
up well to large-sized projects for three main
reasons. First, subsystem package decomposition
can be applied recursively, resulting in subsystems
realizing subsystem use cases. Second, classes
from different domains may be reused in differ-
ent deployment settings of the designed system,
and third, domain models are assets that can be
reused across projects.

The following are the major problems teams
may experience with the domain-based model or-
ganization. Developers tend to blur the distinction
between domain models and subsystem models.
There is an overhead associated with maintaining

 1007

Agile Outsourcing to India

two separate types of models: domain models
(logical) and subsystem models (physical).

If reuse is not a primary objective or if the
system being designed is a small-sized one, a
use-case-based model organization might work
better because of the lower added overhead as-
sociated with model organization.

production elaboration

All strategic decisions for the overall organiza-
tion structure of the system have been made in
the architectural elaboration phase. Production
elaboration drills down inside the subsystems to
specify the semantic objects whose collaborations
deliver the system’s structure and behavior.

The demarcation line between architectural
and production elaborations is the divide between
logical and physical models, and between system-
level use cases and subsystem use cases.

In production elaboration, the subsystem use
cases are detailed and mapped to collaborations of
components and objects. The following technique
can assist in elaborating a system-level scenario.
The developer starts out with the high-level se-
quence diagram for the scenario, and then adds
lifelines for the instances of the identified classes.
In this way, the developer can trace the elaborated
scenario back to the original one and verify the
design. Communication diagrams are extensively
used to represent the stabilized semantic object
structure. The measure of goodness at this level
is benchmarked by whether the architectural
design can realize the usage scenarios defined at
the system level.

The described approach scales up well to many
levels of subsystem decomposition. As mentioned
earlier, the seed developers and production teams
serve as customer surrogates.

Packages Team
System use cases
package

Architecture team

Domains package Reused i f a l ready
developed or assigned to
the architecture team

Infrastructure domain
packages

Infrastructure teams

Subsystem packages Production teams
Builds package integration and test

teams

Next we show how packages are assigned to
teams, for example, the architecture team is in
charge of developing the system use cases, and
therefore “owns” the systm use cases package.

dIscussIon

challenges to Agile outsourcing
projects

Managers of agile outsourcing projects ought to
be aware of the following challenges looming
ahead.

The architecture team is the key to project
success. It is of paramount importance that this
team be a good mix of requirements analysts
and architects. According to Akella and Dossani
(2004), the total percent of technical staff in Indian
software firms is about 85% and of MBAs about
4.9%. In contrast, in Silicon Valley, 28% of the
Indian IT engineers have MBA degrees, which is
a significant comparative advantage. According
to the same study, Indian suppliers are mostly
“pure-IT” firms, that is, they have limited domain
knowledge outside the IT sector, and the aver-
age percentage share of architecture/technology
consulting amounts to about 2.9%.

1008

Agile Outsourcing to India

In this context, we see the formation of a bal-
anced architecture team as a major challenge to
agile outsourcing projects, for members of this
team elicit requirements, build the primary system
architecture, and subsequently take the roles of
surrogate customers, local managers, integration
and test engineers, and communicate with the
customer throughout the entire lifecycle.

Inter-team dependencies reduce teams’ abili-
ties (especially affected is the infrastructure team)
to test code and deliver builds. Production teams
should provide early on the infrastructure team(s)
with stubs, so that the work of the infrastructure
team(s) proceeds smoothly.

In large projects, it is difficult to balance teams’
workloads. Adaptive scheduling algorithms in grid
computing have proven superior to static schedul-
ing algorithms (Blumofe & Leiserson, 1999; Rous-
sev & Wu, 2001). We propose employee stealing
as an adaptive technique for load balancing. An
overloaded team (thief) picks up a victim team
at random and tries to steal a developer from the
victim. If the victim is under-loaded, the steal-
ing succeeds. Otherwise, a new attempt to steal
a developer is made.

The random choice of a victim team and a
developer makes the technique dynamic and
adaptive. The geographical proximity of the offsite
teams and the agile method applied are essential
prerequisites for employee stealing because they
facilitate fast learning.

Employee stealing is a knowledge dissemina-
tion technique, which can be viewed as a gen-
eralization of pair programming and developer
rotation in extreme programming. Employee
stealing may be applied as a routine practice,
even with balanced projects, in order to improve
inter-team communication and coordination, to
arbitrate in problems straddling two teams, and
to preclude loss of common goal.

With multiple teams, there is always the
danger of replicating functionality across teams.
The proximity and common culture of the offsite
teams work against the chances of duplicating

functionality. The participation of the members
of the architecture and later integration teams in
design reviews and software inspections helps de-
tect replication early. Employee stealing is another
effective mechanism to curb duplication.

why Agility is the right path for
Indian suppliers

In his book Good to Great, Collins (2001) char-
acterizes how self-discipline and entrepreneurial
agility contribute to greatness at the corporate
level (see Figure 7). Boehm and Turner (2004,
p. 156) observe similarity between the patterns
of creativity at corporate management and in
software development, and apply Collins’ method
for performing self-assessment to software orga-
nizations.

Small Indian firms are mostly startup organiza-
tions, and agility improves their chances of sur-
vival. Both foreign equity participation companies
and major Indian companies aim at the North-East
quadrant in Figure 7, and therefore agility will be
instrumental in attaining their goals.

The rapid growth of Indian outsourcing sup-
pliers has created a dynamic labor market with a
large demand for lead developers for new projects.
The average turnover level exceeds 15%. Suffice
it to mention that in some cases contracts have
placed a liability on the supplier for certain levels
of turnover in an attempt to protect the interests
of the client. Agile outsourcing could break the
impact of high turnover. Several core agile prac-
tices (e.g., preference for tacit knowledge, pair
programming, and retrospection), along with
employee stealing, allow new team members to
be brought quickly up to speed.

Agile outsourcing could aid the transfer of
domain knowledge to Indian suppliers. With
more domain knowledge and the pressing need
to communicate directly with customers, agile
outsourcing would help organizations move
farther away from consultants to directly supply
end users.

 1009

Agile Outsourcing to India

The increased revenue per employee, aris-
ing from moving up the “value chain,” could be
partly offset by the increase in the onsite/offsite
developers ratio. The small agile team size would
allow small and medium enterprises to catch up
with foreign equity participation companies and
major Indian companies. As a result, small and
medium companies could directly participate in
complete service and product development.

executable domain Models

Below we discuss briefly executable domain mod-
els, which are believed to become mainstream in
the near future (Booch, 2004; Mellor et al., 2004).
Executable models are at the heart of the latest
OMG initiative—the Model-Driven Architecture
(OMG, 2004).

When working on a model or part of it, a de-
veloper must be able to answer the question, “Is
this model correct?” Agile methods, through the
“prove with code principle” and fast cycle, answer
this question almost instantaneously, hence the

shorter development times and the better customer
satisfaction.

In our view, a problem with agile methods is
the level at which the software artifacts are tested.
When a system is designed in UML, it has to be
tested in UML and not in the underlying source
language. While, at times, it is necessary to drill
down to the lowest level of detail (e.g., to stress-
test the build), the majority of testing ought to be
at model level, where the precious business logic
and knowledge are captured.

In order for a model to be testable, it has to
be executable, which means that the modeling
language must have executable semantics. Execut-
able UML (xUML) is a UML profile with precise
action semantics (AS, 2001) that allows system
developers to build executable system models, and
then to map these models using code generators
to source code for a target platform (Mellor &
Balcer, 2002).

Executable domain models are expected to
play an increasing role in software production.
Executable domain models fit naturally with

Figure 7. Good-to-great matrix of creative discipline

1010

Agile Outsourcing to India

the domain-based model organization of agile
outsourcing projects.

conclusIon

In the late 1990s and early 2000s, agile methods
took the imagination of software developers by
storm. This fact clearly indicates that heavyweight
methods have not been embraced wholeheartedly
by developers and managers alike, and are found
either impractical or costly (or both) in many
environments. Driven by low labor costs for com-
mensurate quality in India, and also by stagnant
revenues in developed countries, firms have been
increasingly outsourcing software production
to India. In this chapter, we introduced a novel
project structure creating agile conditions for
large outsourcing software projects. The proposed
structure is tailored to the needs of the Indian
outsourcing suppliers. Several assumptions make
agile outsourcing Indian-unique. First, we assume
that there are large pools of qualified developers
residing in one geographical area and even in one
city. Second, the outsourcing country has grown
a sustainable software industry that is supported
by advanced information and telecommunication
technologies, and led by talented managers, al-
lowing it to secure large software projects.

We showed how to slice a large software
project into multiple agile projects. We proposed
to separate the development activities to R&D
activities, carried out onsite, close to the client,
and production activities, carried out offsite in
India. The onsite, architecture team starts work
on the project. In cooperation with the client,
the architecture team develops the high-level
use case model of the system and completes an
architectural prototype with the strategic decisions
for the overall system structure. The agile offsite
teams are seeded with members of the architecture
team and start functioning toward the end of the

architectural elaboration. The “seed developers”
transfer domain expertise to the supplier’s site and
act as customer surrogates to help reproduce agile
conditions offsite. Outsourcing the entire set of
production activities retains interactivity at the
offsite location.

The domain-based package structure of the
system model is organized by domains, subsystem
use cases, and builds. This model organization
scales up well to large-sized projects, because the
subsystem packages can be recursively divided
into smaller ones. The domain packages facilitate
reuse of components and classes from different
subject matters. The domain models could become
software assets reused across projects.

To balance the teams’ workloads and avoid
replicating functionality by different teams,
we proposed a new adaptive technique called
employee stealing. Employee stealing is instru-
mental in disseminating tacit knowledge about
the project and in lifting up the developers’
expertise. It also improves the inter-team com-
munication and coordination, and precludes the
loss of common goal.

We plan on combining aspects of domain
engineering and executable domain models in
xUML with agile outsourcing to raise the level
of abstraction and reuse, and to automate the
repetitive tasks in the software process. We are
especially interested in employing techniques
preventing architectural degradation in large
systems and in building “software factories” that
produce families of sustainable software assets us-
ing highly automated processes. We would like to
support the emerging “supply chains” for software
development, which enables mass customization.
To fully support domain-driven design, we ought
to differentiate clearly between building a product
platform and designing an application. Gearing
executable domain models to the proposed agile
outsourcing methodology will result in making
agile outsourcing even more agile.

 1011

Agile Outsourcing to India

reFerences

Agile Alliance. (2001). Agile Alliance manifesto.
Retrieved from www.aanpo.org

Akella, R., & Dossani, R. (2004). Private com-
munication.

Arthur, B.W. (1994). Increasing returns and path
dependence in the economy. Ann Arbor: Univer-
sity of Michigan Press.

AS. (2001). UML actions semantics. Retrieved
from www.omg.org

Beck, K. (1999). Extreme programming explained:
Embrace change. Boston: Addison-Wesley.

Bettin, J. (2004). Model-driven software develop-
ment: An emerging paradigm for industrialized
software asset development. Retrieved from
http://www.softmetaware.com

Blumofe, R.D., & Leiserson, C.E. (1999). Schedul-
ing multithreaded computations by work stealing.
Journal of ACM, 46(5), 720-748.

Boehm, B., & Turner, T. (2004). Balancing agility
with discipline. Boston: Addison-Wesley.

Booch, G. (2004). MDA: A motivated manifesto?
Software Development, (August). Retrieved from
http://www.sdmagazine.com

Brownsword, L., & Clements, P. (1996). A case
study in successful product line development.
Technical Report CMU/SEI-96-TR-035, Software
Engineering Institute.

Collins, J. (2001). Good to great. New York:
HarperCollins.

D’Costa, A.P. (2003). Uneven and combined devel-
opment: Understanding India’s software exports.
World Development, 31(1), 211-226.

Dossani, R., & Kenney, M. (2003). Went for
cost, stayed for quality?: Moving the back office
to India. Asia-Pacific Research Center, Stanford

University. Retrieved from http://APARC.stan-
ford.edu

Evans, G. (2004). Agile RUP: Taming the Rationa

Unified Process. In B. Roussev (Ed.), Manage-
ment of object-oriented software development.
Hershey, PA: Idea Group Inc.

Henderson-Sellers, B. (1996). Object-oriented
metrics, measures of complexity. Englewood
Cliffs, NJ: Prentice-Hall.

Jacobson, I. (1987). Object-oriented development
in an industrial environment. ACM SIGPLAN
Notices, 22(12), 183-191.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999).
The Unified software development process. Bos-
ton: Addison-Wesley.

Kruchten, P. (2004). Scaling down large projects
to meet the Agile “Sweet Spot.” The Rational
Edge, (August).

Mellor, S.J., Kendall, S., Uhl, A., & Weise, D.
(2004). MDA distilled. Boston: Addison-Wes-
ley.

Mellor, S.J., & Balcer, M.J. (2002). Executable
UML: A foundation for Model-Driven Architec-
ture. Boston: Addison-Wesley.

Nasscom. (2004). Indian software and services
exports. Retrieved from www.nasscom.org

OMG. (2004). OMG Model-Driven Architecture.
Retrieved from http://www.omg.org/mda/

Outsourcing Institute. (2004). Retrieved from
http://www.outsourcing.com

Paulk, M.C., Curtis, B., Chrissis, M.B., & Weber,
C.V. (1993). Capability maturity model, version
1.1. IEEE Software, 10(4), 18-27. Software Engi-
neering Institute. (2004). Retrieved from www.
sei.cmu.edu

Pollice, G. (2001). RUP and XP, part I: Finding
common ground, and part II: Valuing differences.
The Rational Edge.

1012

Agile Outsourcing to India

Pollice, G. (2004). RUP and eXtreme Program-
ming: Complementing processes. In B. Roussev
(Ed.), Management of object-oriented software
development. Hershey, PA: Idea Group Inc.

Roussev, B., & Wu, J. (2001). Task scheduling on
NOWs using lottery-based workstealing. Annual
Review of Scalable Computing, 3, World Scientific,
Singapore University Press.

Royce, W. (2002). The case for results-based soft-
ware management. The Rational Edge, (June).

SEI. (2004). Carnegie Mellon Software Engineer-
ing Institute, Product Line Practice. Retrieved
from www.sei.cmu.edu/productlines/

Toth, K., Kruchten, P., & Paine, T. (1993).
Modernizing air traffic control through modern
software methods. Proceedings of the 38th An-
nual Air Traffic Control Association Conference,
Nashville, TN.

endnotes

1 In domain modeling, a software asset
is anything from models, components,
frameworks, generators, to languages and
techniques.

2 Strategic assets are the software assets at
the heart of a business—assets that grow
into an active human- and machine-usable
knowledge base about a business and its
process.

3 A software liability is software that is cost
burden—that is., software that costs more
than it is delivering to the business (Bettin,
2004).

4 Mass customization meets the requirements
of heterogeneous markets by producing
goods and services to match individual
customer’s needs with near mass production
efficiency.

5 One-off systems have a very short lifespan
and are too expensive for most practical
purposes.

This work was previously published in Management of the Object-Oriented Development Process, edited by B. Roussev & L.
Liu, pp. 109-140, copyright 2006 by IGI Publishing (an imprint of IGI Global).

 1013

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.26
Decision Rule for Investment in

Frameworks of Reuse
Roy Gelbard

Bar-Ilan University, Israel

AbstrAct

Reuse helps to decrease development time, code
errors, and code units. Therefore, it serves to
improve quality and productivity frameworks in
software development. The question is not HOW
to make the code reusable, but WHICH amount of
software components would be most beneficial,
that is, cost-effective in terms of reuse, and WHAT
method should be used to decide whether to make
a component reusable or not. If we had unlimited
time and resources, we could write any code unit
in a reusable way. In other words, its reusability
would be 100%. However, in real life, resources
are limited and there are clear deadlines to be
met. Given these constraints, decisions regarding
reusability are not always straightforward. The
current research focuses on decision-making rules
for investing in reuse frameworks. It attempts to
determine the parameters, which should be taken
into account in decisions relating to degrees of
reusability. Two new models are presented for
decision-making relating to reusability: (i) a

restricted model and (ii) a non-restricted model.
Decisions made by using these models are then
analyzed and discussed.

IntroductIon

Reuse helps decrease development time, code
errors, and code units, thereby improving qual-
ity and productivity frameworks in software
development. Reuse is based on the premise that
educing a solution from the statement of a problem
involves more effort (labor, computation, etc.) than
inducing a solution from a similar problem for
which such efforts have already been expended.
Therefore, reuse challenges are structural, orga-
nizational, and managerial, as well as technical.

Economic considerations and cost-benefit
analyses in general, must be at the center of any
discussion of software reuse; hence, the cost-ben-
efit issue is not HOW to make the code reusable,
but WHICH amount of software components
would be most beneficial, that is, cost-effective

1014

Decision Rule for Investment in Frameworks of Reuse

for reuse, and WHAT method should be used
when deciding whether to make a component
reusable or not.

If we had unlimited time and resources, we
could write any code unit in a reusable way. In
other words, its reusability would be 100% (reus-
ability refers to the degree to which a code unit
can be reused). However, in real life, resources are
limited and there are clear deadlines to be met.
Given these constraints, reusability decisions are
not always straightforward.

A review of the relevant literature shows that
there are a variety of models used for calculat-
ing-evaluating reuse effectiveness, but none
apparently focus on the issue of the degree to
which a code is reusable. Thus, the real question
is how to make reusability pragmatic and efficient,
that is, a decision rule for investment in reuse
frameworks. The current study focuses on the
parameters, which should be taken into account
when making reusability degree decisions. Two
new models are presented here for reusability
decision-making:

• A non-restricted model, which does not take
into account time, resources, or investment
restrictions.

• A restricted model, which takes the above-
mentioned restrictions into account.

The models are compared, using the same data,
to test whether they lead to the same conclusions or
whether a contingency approach is preferable.

bAckground

Notwithstanding differences between reuse ap-
proaches, it is useful to think of software reuse
research in terms of attempts to minimize the
average cost of a reuse occurrence (Mili, Mili,
& Mili, 1995).

[Search + (1-p) * (ApproxSearch +q * Adapta-
tion old + (1-q)* Development new)]

Where:

• Search (ApproxSearch) is the average cost
of formulating a search statement of a library
of reusable components and either finding
one that matches the requirements exactly
(appreciatively), or being convinced that
none exists.

• Adaptation old is the average cost of adapt-
ing a component returned by approximate
retrieval.

• Development new is the average cost of
developing a component that has no match,
exact or approximate, in the library.

For reuse to be cost-effective, the above must
be smaller than:

p *Development exact +(1-p)* q * Development
approx +(1-p)* (1-q)́ Development new)

Where:

• Development exact and development new
represent the average cost of developing cus-
tom-tailored versions of components in the
library that could be used as is, or adapted,
respectively. Note that all these averages are
time averages, and not averages of individual
components, that is, a reusable component
is counted as many times as it is used.

Developing reusable software aims at maxi-
mizing P (probability of finding an exact match)
and Q (probability of finding an approximate
match), that is, maximizing the coverage of the
application domain and minimizing adaptation for
a set of common mismatches, that is, packaging
components in such a way that the most common
old mismatches are handled easily. Increasing P

 1015

Decision Rule for Investment in Frameworks of Reuse

and Q does not necessarily mean putting more
components in the library; it could also mean
adding components that are more frequently
needed, because adding components not only
has its direct expenses (adaptation costs), but also
increases search costs.

There are two main approaches to code ad-
aptation: (1) identifying components that are
generally useful and (2) covering the same set of
needs with fewer components, which involves two
paradigms: (i) abstraction and (ii) composition.
Composition supports the creation of a virtu-
ally unlimited number of aggregates from the
same set of components, and reduces the risk of
combinatorial explosion that would result from
enumerating all the possible configurations. In
general, the higher the level of abstraction at
which composition takes place, the wider the
range of systems (and behaviours) that can be
obtained. The combination of abstraction and
composition provides a powerful paradigm for
constructing systems from reusable components
(Mili et al., 1995).

Frakes and Terry describe a wide range of
metrics and adaptation models for software reuse.
Six types of metrics and models are reviewed:
cost-benefit models, maturity assessment models,
amount of reuse metrics, failure modes models,
reusability assessment models, and reuse library
metrics (Frakes & Terry, 1996).

Other studies (Henninger, 1999; Otso, 1995;
Virtanen, 2000; Ye, Fischer, & Reeves, 2000; Ye
& Fischer, 2002), present additional metrics and
methods, evaluate and make comparisons, but as
is typical in an emerging discipline such as sys-
tematic software reuse, many of these metrics and
models still lack formal validation. Despite this,
they are used and are found useful in industrial
practice (Ferri et al., 1997; Chaki, Clarke, Groce,
Jha, & Veith, 2004).

Empirical work (Mens & Tourwé, 2004;
Paulson, Succi, & Eberlein, 2004; Tomer, Goldin,
Kuflik, Kimchi, & Schach, 2004; Virtanen, 2001;
Ye, 2002) has analyzed existing reuse metrics

and their industrial applicability. These metrics
are then applied to a collection of public domain
software products and projects categories to assess
the level of correlation between them and other
well-known software metrics such as complexity,
volume, lines of code, and so forth.

Current research is focused on decision-mak-
ing rules for investment in reuse frameworks. The
well-known “simple model” and “development
cost model” deal with these decisions, but do
not take into account restrictions and constraints
such as time, budget, resources, or other kinds
of investment, such as delivery time, that may
impact on the decision to reuse.

AnAlyzIng new reuse Models

Assume a software development project contains
3 code components: A, B, and C, and we need to
determine two things: Which of these components
should be reusable? What criteria should be taken
into account?

There are eight combinations—choice alterna-
tives for these 3 components, as shown in Table 1
(+ represents “make reusable,” - represents “don’t
make reusable”).

A. the non-restricted Model

The model contains the following parameters:

• Ci—cost of creating component i from
scratch (without making it reusable).

• Ri—cost of making component i reusable
(extra costs – not included in Ci).

• ICi—cost of implementing reusable com-
ponent i into code.

• NRi—number of reuses of component i.
 (C, R, and NR are in man-hours).

Savings resulting from making component i
reusable are represented as follows:

1016

Decision Rule for Investment in Frameworks of Reuse

SAVi = NRi *(Ci – ICi) – (Ci + Ri)

Therefore: If SAVi > 0, it is worthwhile to
make component i reusable.

Suppose a company that employs two kinds
of programmers: M and N. Programmers of
type M are permanent employees of the firm.
Programmers of type N are highly qualified
consultants who are employed by the company
for specific projects. The company is going to
write/create/develop a new project, and has to
make a decision regarding which components
should be reusable.

The following are additional parameters:

• Cim—hours needed for programmer M to
create component i from scratch.

• Rim—hours needed for programmer M to
make component i reusable.

• ICim—hours needed for programmer M
to implement reusable component i into
code.

• Sm—costs of programmer M, per 1 hour.

Hence:

Ci= Min(Cim*Sm, Cin*Sn)
Ici= Min(ICim*Sm, ICin*Sn)
Ri= Min(Rim*Sm, Rin*Sn)

Hence:

SAVi = NRi *(Min(Cim*Sm, Cin*Sn)
– Min(ICim*Sm, ICin*Sn)) – (Min(Cim*Sm,
Cin*Sn) + Min(Rim*Sm, Rin*Sn))

b. the restricted Model

The non-restricted model has the following
limitations:

• It requires absolute values
• It is quite difficult to measure parameters

such as: Ci, Ri, and Ici
• It does not take into account the most

typical situation where time and budget are
restricted as well as in-house investment in
reuse, that is, time and resources for reusable
code developing.

In order to avoid these limitations, the restricted
model is based upon the following parameters:

Alternative Component A Component B Component C
1 - - -
2 + - -
3 - + -
4 + + -
5 - - +
6 + - +
7 - + +
8 + + +

Table 1. Choice alternatives

 1017

Decision Rule for Investment in Frameworks of Reuse

• I—maximal investment that can be allo-
cated for writing a reusable code.

• T—maximal calendar time that can be al-
located for writing a reusable code.

• Ii—percent of “I” needed to make compo-
nent i reusable.

• Ti—percent of “T” needed to make com-
ponent i reusable.

• Ci—relative complexity of creating com-
ponent i from scratch.

• Fi—frequency (%) of future projects that
are likely to reuse component i.

• Pi—relative profit of making component i
reusable.

• RI—remainder of “I”, after some reusable
components have been written.

• RT—remainder of “T,” after some reusable
components have been written.

Assume that: Pi = Ci * Fi.

Hence: component i is the next component to be
made reusable if:

Pi = Max(P1, P2, ..., Pn-1, Pn)
Ii <= RI
Ti <= RT

c. Illustrative example:
non-restricted Model

The following example (Example 1) demonstrates
the decision made by the non-restricted model.
Assume we want to develop 10 projects, each one
containing components A, B, and C according
to Table 2.

Hence: NRa = 10, NRb = 1, NRc = 4

Table 3 presents illustrative assumptions
concerning Cim and Cin (hours needed for
programmer type M and N to create component
i from scratch).

Moreover, assume programmers’ costs to be:
Sm = 20, Sn = 40

Hence:

Project 1 2 3 4 5 6 7 8 9 10
Component A + + + + + + + + + +
Component B +
Component C + + + +

Table 2. Example 1, number of components for future reuse

Table 3. Example 1, Ci illustrative assumptions

Programmer type Component A Component B Component C
Type M 300 20 150
Type N 200 10 100

1018

Decision Rule for Investment in Frameworks of Reuse

Ca = Min(300*20, 200*40) = 6,000
Cb = Min(20*20, 10*40) = 400
Cc = Min(150*20, 100*40) = 3,000

Table 4 presents illustrative assumptions
concerning Rim and Rin (hours needed for
programmers type M and N to make component
i reusable).

Hence:

Ra = Min(650*20, 300*40) = 12,000
Rb = Min(15*20, 7*40) = 280
Rc = Min(150*20, 80*40) = 3,000

Table 5 presents illustrative assumptions
concerning ICim and ICin (hours needed for
programmers type M /N to implement reusable
component i into code).

Hence:

ICa = Min(60*20, 15*40) = 600
ICb = Min(5*20, 3*40) = 100
ICc = Min(50*20, 10*40) = 400

Hence:

SAVa = 10 *(6,000 – 600) – (6,000 + 12,000) =
36000 > 0
SAVb = 1 *(400 – 100) – (400 + 280) = -380 <
0
SAVc = 4 *(3000– 400) – (3,000+ 3,000) = 4400
> 0

In light of the mentioned, the reuse decision
according to the non-restricted model is to make
components A and C reusable (i.e., alternative
6).

d. Illustrative example:
restricted Model

The following example (Example 2) demonstrates
the decision made by the restricted model, based
on the previous example (Example 1). Assume
the following:

1. I—10,000.
2. T—150. The available remaining time to

make the existing code reusable.

Programmer type Component A Component B Component C
Type M 650 15 150
Type N 300 7 80

Table 4. Example 1, Ri illustrative assumptions

Programmer type Component A Component B Component C
Type M 60 5 50
Type N 15 3 10

Table 5. Example 1, ICi illustrative assumptions

 1019

Decision Rule for Investment in Frameworks of Reuse

3. Ci—assume component B is the easiest
one to develop, and requires 10 hours. As-
sume component A requires 300 hours and
component C requires 150 hours. Hence,
complexities are: CA=30, CB=1, CC =15.

4. Fi—component A will be reused by 100% of
future projects, B by 10%, and C by 40%.

5. IA = 12,000/10,000 = 120%, IB = 280/10,000
= 2.8%, IC = 3000/10,000 = 30%.

6. TA = 300/150 = 200%, TB = 7/150 = 4.7%,
TC= 150/150 = 100%.

Hence Example 2 parameters are shown in
Table 6.

Taking time and investment restrictions into
account, the reuse decision, according to the
restricted model is to make only component C
reusable (i.e., alternative 5).

conclusIon And Future
trends

The current study presented two new reuse de-
cision making models: a restricted model and a
non restricted model, which mainly differ in the
way they take into account real-life constraints-
restrictions such as time, budget, and resources
repetition.

The models produced different results from the
same data. The decision made by the restricted

model pinpointed fewer software components for
reuse. It is worth mentioning that different groups
of software components were not the issue, but
rather different subgroups of the same group, that
is, software components selected by the restricted
model were subgroups of components selected by
the non-restricted model.

Moreover, the parameters of the restricted
model relate to relative value arguments, by con-
trast to the parameters of non-restricted model,
which relate to absolute values. While absolute
values are difficult to measure, relative values are
simpler to define. There are a variety of formal
methods by which relative values may be defined,
methods that are used in other areas of software
engineering, such as cost estimation, effort esti-
mation, priority decision, and others.

The reusability decision made by the restricted
model may be biased by the following param-
eters: time, resources, component complexity,
and number-percent of future projects in which
the component would be reused. Further research
should be conducted, focusing on decision robust-
ness in light of the mentioned parameters and
their possible spectrum.

AcknowledgMent

I would like to thank Tami Shapiro for her con-
tribution to this work.

Component Ci Fi(%) Pi Ii(%) Ti(100%)
A 30 100 30 120 200
B 1 10 0.1 2.8 4.7
C 15 40 0.6 30 100

Table 6. Parameters used by Example 2

1020

Decision Rule for Investment in Frameworks of Reuse

reFerences

Chaki, S., Clarke, E. M., Groce, A., Jha, S., &
Veith, H. (2004). Modular verification of software
components. IEEE Transactions on Software
Engineering, 30(6), 388-402.

Desouza, K. C., Awazu, Y., & Tiwana, A. (2006).
Four dynamics for bringing use back into soft-
ware reuse. Communications of the ACM, 49(1),
96-100.

Ferri, R. N., Pratiwadi, R. N., Rivera, L. M., Sha-
kir, M., Snyder, J. J., Thomas, D. W. et al. (1997).
Software reuse: Metrics for an industrial project.
In Proceedings of the 4th International Symposium
of Software Metrics (pp.165-173).

Fischer, G., & Ye, Y. (2001). Personalizing deliv-
ered information in a software reuse environment.
In Proceedings of the 8th International Confer-
ence on User Modeling (p. 178).

Frakes, W., & Terry, C. (1996). Software reuse:
Metrics and models. ACM Computing Surveys,
28(2), 415-435.

Henninger, S. (1999). An evolutionary approach to
constructing effective software reuse repositories.
ACM Transactions on Software Engineering and
Methodology, 6(2), 111-140.

Kirk, D., Roper, M., & Wood, M. (2006). Identify-
ing and addressing problems in object-oriented
framework reuse. Empirical Software Engineer-
ing, 12(3), 243-274.

Mens, T., & Tourwé, T. (2004). A survey of soft-
ware refactoring. IEEE Transactions on Software
Engineering, 30(2), 126-139.

Mili, H., Mili, F., & Mili, A. (1995). Reusing
software: Issues and research directions. IEEE
Transactions on Software Engineering, 21(6),
528–562.

Otso, K. J. (1995). A systematic process for reus-
able software component selection (Tech. Rep.).
University of Maryland.

Paulson, J. W., Succi, G., & Eberlein, A. (2004).
An Empirical study of open-source and closed-
source software products. IEEE Transactions on
Software Engineering, 30(4), 246-256.

Reifer, D. J. (1997). Practical software reuse.
Wiley.

Spinellis, D. (2007). Cracking software reuse.
IEEE Software, 24(1), 12-13.

Tomer, A., Goldin, L., Kuflik, T., Kimchi, E., &
Schach, S. R. (2004). Evaluating software reuse
alternatives: A model and its application to an
industrial case study. IEEE Transactions on
Software Engineering, 30(9), 601-612.

Virtanen, P. (2000). Component reuse metrics—
Assessing human aspects. In Proceedings of the
ESCOM-SCOPE (pp. 171-179).

Virtanen, P. (2001). Empirical study evaluating
component reuse metrics. In Proceedings of the
ESCOM (pp. 125-136).

William, B., Frakes, W. B. & Kang, K. (2005).
Software reuse research: Status and future. IEEE
Transactions on Software Engineering, 31(7),
529-536.

Ye, Y. (2002). An empirical user study of an
active reuse repository system. In Proceedings
of the 7th International Conference on Software
Reuse (pp. 281-292).

Ye, Y., & Fischer, G. (2002). Supporting reuse by
delivering task-relevant and personalized informa-
tion. In Proceedings of the International Confer-
ence on Software Engineering (pp. 513-523).

Ye, Y., Fischer, G., & Reeves, B. (2000). Integrat-
ing active information delivery and reuse reposi-
tory systems. In Proceedings of ACM-SIGSOFT

 1021

Decision Rule for Investment in Frameworks of Reuse

8th International Symposium on Foundations of
Software Engineering (pp. 60-68).

key terMs

Decision Rule: Either a formal or heuristic
rule used to determine the final outcome of the
decision problem.

Non-Restricted Reuse-Costing Model is a
reuse-costing model that does not take into ac-
count real-life constraints and restrictions, such
as time, budget, resources, or any other kind of
investment.

Reuse: Using an item more than once. This
includes conventional reuse where the item is used

again for the same function and new-life reuse
where it is used for a new function (wikipedia).

Reuse-Costing Model: A formal model,
which takes into account the expenditure to pro-
duce a reusable software product.

Restricted Reuse-Costing Model: A reuse-
costing model that takes into account real-life
constraints and restrictions such as time, budget,
resources, or any other kind of investment.

Software Reuse: Also called code reuse, is
the use of existing software components (e.g.,
routines, functions, classes, objects, up to the
entire module) to build new software.

This work was previously published in Handbook of Research on Modern Systems Analysis and Design Technologies and
Applications, edited by M. Syed & S. Syed, pp. 140-147, copyright 2009 by Information Science Reference (an imprint of IGI
Global).

1022

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.27
Integrated Product Life Cycle
Management for Software:

CMMI1, SPICE, and ISO/IEC 20000

Dirk Malzahn
OrgaTech GmbH, Germany

AbstrAct

This chapter describes how models for software
development and service delivery can be integrat-
ed into a common approach to reach an integrated
product life cycle for software. The models covered
by this chapter are the capability maturity model
integration (CMMI), SPICE (software process
improvement and capability determination, ISO
15504) and ISO 20000 (service management).
Whilst the CMMI constellation approach delivers
an integration perspective defined in three models
(development, acquisition and services), SPICE
and ISO 20000 need additional alignment to be
usable in an integrated approach.

IntroductIon

The focus of the market for IT solutions has
changed. Whilst many companies and organiza-
tions followed the latest “hype” several years

ago, they now trust in reliable and sustainable
solutions.

To ensure this, standardization of quality
evaluation becomes more and more important.
For supplier selection, make-or-buy decisions
and outsourcing strategies, a powerful set of
procedures, that can help to assess the capability
of internal and external software processes, is
required. These procedures have to be based on
best practices and must be widely accepted.

On this basis, standards offer the best possi-
bilities: they are usually defined by a wide group
of experts, which all contribute their experiences
and best practices. Standards are either sponsored
by an industry or by national bodies—therefore
making these standards de facto mandatory for
an industry, nation, or combination of both en-
forces the acceptance. If a significant group uses
a standard, market dynamics have an additional
impact. Official certificates, levels, and so forth
can be and are used for marketing activities.

 1023

Integrated Product Life Cycle Management for Software

In the field of software related standards,
lots of different standards have been defined for
special topics, but one standard is still missing: a
standard that covers a software product from the
very beginning—the first idea—up to the very
end—the retirement of the software.

On the one hand powerful standards, for
example the capability maturity model integra-
tion (CMMI) or SPICE (ISO 15504), have been
defined for software development. On the other
hand, standards for service delivery, for example
ITIL or ISO 20000, have been well established;
but there is still a wall between the worlds of
software development and service delivery. Even
though some standards – like SPICE – take a look
over the wall, an integrated approach has not been
delivered yet.

The need for this integration is obvious. A
customer is not interested in having some qual-
ity for development and some other quality for
service delivery—the customer needs one qual-
ity approach that covers the full life cycle of a
software product.

bAckground

the wall between software
development and service delivery

When IT systems are planned, the focus of the
planning is mostly restricted to software devel-
opment. Topics like operation environment or
data management are discussed, but the strategy
usually ends with the delivery of the software
product.

On the other hand, service-delivering orga-
nizations mostly just provide “services” and are
not really interested in the software development
process.

This behavior leads to multiple difficulties
and inefficiencies:

• Software developers and service people do
not understand each other. They work in dif-
ferent worlds and have their own “language”
and processes.

• The efficiency and effectiveness of service
delivery highly depends on the architec-
ture of and assumptions for the software,
therefore the service organization has to be
integrated early into the software develop-
ment.

• Service level agreements can be optimized,
when both sides reach a common under-
standing. The development of service level
agreements is often based on the “what we
need” position of both sides and not on the
“what will be best for the customer” posi-
tion.

• Problem Management is not transparent
to the customer. The customer is not inter-
ested whether he has a service problem or
a software problem—the customer wants a
quick and reliable solution. If the software
side does not understand the service side,
problems often become ping-pong balls.

• Software usually lives longer than the origi-
nal developer intends. Systems often have to
be enhanced just to fulfil the requirements
of a new service platform. If this is not taken
into account when the software is developed,
the effort for updating software may become
enormous. Sometimes software has to be
retired, just because it is not executable on
the new platform!

• New approaches like service oriented archi-
tectures (SOA) demand the high integration
of software and service elements. Future
trends will rather lead to small combined
software/service environments than to big
software solutions operated by massive
computer environments.

Just to ensure that I am not misunderstood:
software developing and service delivering orga-

1024

Integrated Product Life Cycle Management for Software

nizations will still deliver and operate solutions
with high quality—but the will not do it in the
most efficient and effective way. Organizations
and companies aiming for the delivery of sustain-
able and reliable solutions have to ensure, that the
solutions are not only developed in the best way
but will meet the requirements of the future ef-
ficiently, effectively and still with high quality.

standards for software development
and service delivery

Regarding software development, two standard
are widely accepted all over the world: the Capa-
bility Maturity Model Integration, published by
the Software Engineering Institute (SEI) at the
Carnegie Mellon University, and SPICE (Software
Process Improvement and Capability Determina-
tion), which is published as ISO standard 15504.
Both standards define a process framework based
on best practices and provide an assessment model
to evaluate process capability.

A process reference model (PRM) and a
process assessment model (PAM) usually char-
acterize a process framework. The PRM defines
processes that have shown evidence to support
high quality for the defined domain – in our case
software development. The PAM builds the basis
for collecting evidence that the PRM is adhered
to and to evaluate the capability of the processes
defined in the PRM.

In the world of service delivery, ITIL (IT In-
frastructure Library) is the most acknowledged
standard. To make ITIL assessable, the ISO 20000
standard was developed.

But as it was said before, none of these stan-
dards cover the complete software life cycle.
This gap is seen by the SEI and discussed by
relevant contributors to the ISO standards. In
this article two approaches for this integration
are discussed—one based on the CMMI and
the other based on the connection of SPICE and
ISO 20000.

cMMI IntegrAtIon perspectIVe

CMMI is one of the best-established process
frameworks for software development. Starting
with the publication of Watts Humphreys book
“Managing the Software Process” in 1989, the
CMM and its successor—the CMMI—nearly
became a synonym for process improvement in
the software world.

Nevertheless, until 2006, the CMMI was re-
stricted on software and systems development.
Since then a new initiative has been started to
further develop the CMMI in the direction of
acquisition and service processes. If one is talk-
ing about “CMMI” mostly the CMMI-DEV (for
Development) is meant. This is the classical CMMI
stream that covers service development. Other
ideas concerning the usage and benefits of the
CMMI for organizations that only acquire soft-
ware, lead to the CMMI-ACQ (for Acquisition),
which was published in November 2007. In 2006
and 2007 a CMMI for Services (CMM-SVC) has
been developed to close the gap between software
development and service delivery. The CMMI-
SVC awaits publication in 2008.

cMMI basics

Independent from the different CMMIs each of
these models follows the same structure as shown
in Figure 1.

In each CMMI a set of process areas is defined.
For each process area the purpose is described,
some introductory notes are given and other
process areas which have a relation to this proc-
ess area are listed. To satisfy the process area,
goals must be fulfilled. Each process area has
specific goals which are unique for this process
area. Additional generic goals are defined, which
are common for all process areas. For each goal a
set of practices is defined, which are considered
important for reaching the goal. For each practice

 1025

Integrated Product Life Cycle Management for Software

subpractices, typical work products and elabora-
tions are defined.

From an evaluation perspective, only the goals
are required. To reach a so-called “level” an or-
ganization has to fulfil the goals of the processes
for this level. Nevertheless it is expected, that the
defined practices are also fulfilled.

process capability vs. organization
Maturity

Talking about the CMMI always means talking
about “level”. But before the different levels can
be explored, the different representations have to
be discussed. CMMI knows two different repre-
sentations, staged and continuous. In the staged
representation each process area is assigned to a
specified maturity level. To reach a maturity level,
all specific goals of the assigned processes and a
subset of generic goals have to be fulfilled.

In the continuous representation, each process
area is evaluated separately by fulfilling generic
goals for this process area. Based on the set of

generic goals that are fulfilled, the capability of
the process area is measured.

In both representations, the generic goals
have high importance. In total 5 generic goals
are defined:

• GG1: The process supports and enables
achievement of the specific goals of the
process area by transforming identifiable
input work products to produce identifiable
output work products2.

• GG2: The process is institutionalized as a
managed process.

• GG3: The process is institutionalized as a
defined process.

• GG4: The process is institutionalized as a
quantitatively managed process.

• GG5: The process is institutionalized as an
optimizing process.

In the staged representation 5 levels are de-
fined. The lowest level is level 1, which means that
the processes of the organization are still over-

Figure 1. CMMI structure

1026

Integrated Product Life Cycle Management for Software

whelmingly chaotic. Goals for process maturity
start with the definition of maturity level 2. For
this level the specific goals of the assigned process
areas and generic goal 2 have to be satisfied. For
maturity level 3 the specific goals of the process
areas assigned to level 2, the specific goals of the
process areas assigned to level 3 and the generic
goals 2 and 3 have to be satisfied. For level 4 and
5 specific goals of other process areas are added,
but even for these higher levels, only generic goal
2 and 3 have to be satisfied.

In the continuous representation, 6 levels are
defined, starting with level 0 and ending with
level 5. Remembering, that a capability level is
evaluated for each process area, the level is given
by the fulfilment of the generic goals. On level 0
no generic goal is satisfied. On level 1, GG1 has
to be satisfied, on level 2 GG1 and GG2 have to
be satisfied and so on.

As this article is focused on the integration
of activities and not mainly on evaluation issues,
we will restrict the following chapters to the
parts specific to certain process areas. For more

information on the generic parts and evaluation
procedures the CMMI itself should be used (Soft-
ware Engineering Institute, 2006a).

the constellation Approach

As said before, there is not the “one” CMMI.
The idea of the current CMMI version is to have
different constellations which share some process
areas that are common for all constellations and
have additional process areas that are unique for
the constellation.

Currently, three constellations are published
or planned to be published in 2007:

• CMMI-DEV: For development (June 2006)
(Software Engineering Institute, 2006-1)

• CMMI-ACQ: For acquisition (November
2007) (Software Engineering Institute,
2007)

• CMMI-SCV: For services (2008, initial
draft September 2006) (Software Engineer-
ing Institute, 2006b)

Figure 2. CMMI constellation approach

 1027

Integrated Product Life Cycle Management for Software

These constellations only differ in the number
and content of process areas. All other contents of
the CMMI, for example generic elements, level
definitions, typographical conventions, build
the model’s foundation and are identical for all
constellations.

In a first overview the constellation approach
can be structured as shown in Figure 2.

The purposes of all process areas are explained
in the next chapter.

shared process Areas

Causal Analysis and Resolution

The purpose of causal analysis and resolution
(CAR) is to identify causes of defects and other
problems and take action to prevent them from
occurring in the future.

Configuration Management

The purpose of configuration management (CM)
is to establish and maintain the integrity of work
products using configuration identification, con-
figuration control, configuration status account-
ing, and configuration audits.

Decision Analysis and Resolution

The purpose of decision analysis and resolution
(DAR) is to analyze possible decisions using a
formal evaluation process that evaluates identified
alternatives against established criteria.

The IPPD Addition (Integrated Product
and Process Development)

Before describing the next process area, a new
term has to be defined: the “IPPD addition”. In
CMMI, “additions” are used to include material
that may be of interest to particular users. The

IPPD group of additions covers an IPPD approach
that includes practices that help organizations
achieve the timely collaboration of relevant
stakeholders throughout the life of the product
to satisfy customers’ needs, expectations, and
requirements (Department of Defense, 1996).
If you apply the CMMI, you are free to add the
IPPD addition or not.

Integrated Project Management + IPPD

The purpose of integrated project management
(IPM) is to establish and manage the project and
the involvement of the relevant stakeholders ac-
cording to an integrated and defined process that
is tailored from the organization’s set of standard
processes.

IPPD Addition: For IPPD, integrated project
management +IPPD also cover the establishment
of a shared vision for the project and the estab-
lishment of integrated teams that will carry out
objectives of the project.

Measurement and Analysis

The purpose of measurement and analysis (MA) is
to develop and sustain a measurement capability
that is used to support management information
needs.

Organizational Innovation and
Deployment

The purpose of organizational innovation and
deployment (OID) is to select and deploy in-
cremental and innovative improvements that
measurably improve the organization’s processes
and technologies. The improvements support the
organization’s quality and process-performance
objectives as derived from the organization’s
business objectives.

1028

Integrated Product Life Cycle Management for Software

Organizational Process Definition +
IPPD

The purpose of organizational process definition
(OPD) is to establish and maintain a usable set of
organizational process assets and work environ-
ment standards.

IPPD Addition: For IPPD, organizational pro-
cess definition +IPPD also cover the establishment
of organizational rules and guidelines that enable
conducting work using integrated teams.

Organizational Process Focus

The purpose of organizational process focus
(OPF) is to plan, implement, and deploy orga-
nizational process improvements based on a
thorough understanding of the current strengths
and weaknesses of the organization’s processes
and process assets.

Organizational Process Performance

The purpose of organizational process perfor-
mance (OPP) is to establish and maintain a quan-
titative understanding of the performance of the
organization’s set of standard processes in support
of quality and process-performance objectives,
and to provide the process-performance data,
baselines, and models to quantitatively manage
the organization’s projects.

Organizational Training

The purpose of organizational training (OT) is
to develop the skills and knowledge of people
so they can perform their roles effectively and
efficiently.

Project Monitoring and Control

The purpose of project monitoring and control
(PMC) is to provide an understanding of the

project’s progress so that appropriate corrective
actions can be taken when the project’s perfor-
mance deviates significantly from the plan.

Project Planning

The purpose of project planning (PP) is to es-
tablish and maintain plans that define project
activities.

Process and Product Quality Assurance

The purpose of process and product quality as-
surance (PPQA) is to provide staff and manage-
ment with objective insight into processes and
associated work products.

Quantitative Project Management

The purpose of quantitative project management
(QPM) is to quantitatively manage the project’s
defined process to achieve the project’s established
quality and process-performance objectives.

Requirements Management

The purpose of requirements management
(REQM) is to manage the requirements of the
project’s products and product components
and to identify inconsistencies between those
requirements and the project’s plans and work
products.

Risk Management

The purpose of risk management (RSKM) is to
identify potential problems before they occur so
that risk-handling activities can be planned and
invoked as needed across the life of the product
or project to mitigate adverse impacts on achiev-
ing objectives.

 1029

Integrated Product Life Cycle Management for Software

Acquisition process Areas

Solicitation and Supplier Agreement
Development

The purpose of solicitation and supplier agreement
development (SSAM) is to prepare a solicitation
package and to select one or more suppliers for
delivering the product or service and establish
and maintain the supplier agreement.

Acquisitions Management

The purpose of agreement management (AM)
is to ensure that the supplier and the acquirer
perform according to the terms of the supplier
agreement

Acquisition Requirements Development

The purpose of the acquisition requirements
development (ARD) is to produce and analyze
customer and contractual requirements.

Acquisition Technical Management

The purpose of the acquisition technical manage-
ment (ATM) is to evaluate the supplier’s technical
solution and to manage selected interfaces of that
solution.

Acquisition Validation

The purpose of the acquisition validation (AVAL)
is to demonstrate that an acquired product or
service fulfils its intended use when placed in its
intended environment.

Acquisition Verification

The purpose of acquisition verification (AVER) is
to ensure that selected work products meet their
specified requirements.

development process Areas

Product Integration

The purpose of product integration (PI) is to as-
semble the product from the product components,
ensure that the product, as integrated, functions
properly, and deliver the product.

Requirements Development

The purpose of requirements development (RD)
is to produce and analyze customer, product, and
product component requirements.

Supplier Agreement Management

The purpose of supplier agreement management
(SAM) is to manage the acquisition of products
from suppliers.

Technical Solution

The purpose of technical solution (TS) is to design,
develop, and implement solutions to require-
ments. Solutions, designs, and implementations
encompass products, product components, and
product-related lifecycle processes either singly
or in combination as appropriate.

Validation

The purpose of validation (VAL) is to demonstrate
that a product or product component fulfils its
intended use when placed in its intended envi-
ronment.

Verification

The purpose of verification (VER) is to ensure
that selected work products meet their specified
requirements.

1030

Integrated Product Life Cycle Management for Software

service process Areas

As mentioned before, the CMMI-SVC has not been
published yet. Nevertheless, it is available as initial
draft (Software Engineering Institute, 2006b) and
was already widely discussed on several confer-
ences (Hollenbach & Buteau, 2006).

Capacity and Availability Management

The purpose of capacity and availability man-
agement (CAM) is to plan and monitor the ef-
fective provision of resources to support service
requirements.

Incident and Request Management

The purpose of the incident and request manage-
ment (IRM) process area is to ensure the timely
resolution of requests for service and incidents
that occur during service delivery.

Organizational Service Management*

The purpose of the organizational service man-
agement (OSM) process area is to establish and
maintain standard services that ensure the satis-
faction of the organization’s customer base.

Problem Management

The purpose of the problem management (PRM)
process area is to prevent incidents from recurring
by identifying and addressing underlying causes
of incidents.

Service Continuity*

The purpose of the service continuity (SCON) is
to establish and maintain contingency plans for
continuity of agreed services during and following
any significant disruption of normal operations.

Service Delivery

The purpose of the service delivery (SD) process
area is to deliver services in accordance with
service agreements.

Service System Development*

The purpose of the service system development
(SSD) process area is to analyze, design, develop,
integrate, and test service systems to satisfy exist-
ing or anticipated service agreements.

Service Transition

The purpose of the service transition (ST) proc-
ess area is to deploy new or significantly changed
service systems while managing their effect on
ongoing service delivery.

Supplier Agreement Management

The purpose of supplier agreement management
(SAM) is to manage the acquisition of products
from suppliers.

The process areas marked with an asterisk
(*) are additions (like IPPD in the CMMI for
Development) and therefore optional.

cMMI process categories

In order to develop a better understanding for
the dependencies between the process areas, the
CMMI-DEV defines 4 categories which are ap-
plied to the other constellations below, and collect
process areas with a similar focus. Therefore,
3 categories are identical for all constellations.
These are

• Process management
• Project management
• Support

 1031

Integrated Product Life Cycle Management for Software

 Process Management Project Man-
agement Support

Acquisition /
Engineering /
Service Establish-
ment and Delivery

Shared process
areas

Organizational Innova-
tion and Deployment,

Organizational Process
Definition +IPPD,

Organizational Process
Focus,

Organizational Process
Performance,

Organizational Training

Project Monitor-
ing and Control,

Project Planning,

Quantitative
Project Manage-
ment,

Risk Manage-
ment

Causal Analysis
and Resolution,

Configuration
Management,

Decision Analysis
and Resolution,

Measurement and
Analysis,

Process and
Product Quality
Assurance

Requirements Man-
agement

Table 1. Shared process areas

 Process Management Project Management Support

Acquisition /
Engineering /
Service Establishment
and Delivery

CMMI-ACQ

 Solicitation and Supplier
Agreement Development,

Agreement Management,

Acquisition Requirements
Development,

Acquisition Technical
Management,

Acquisition Validation,

Acquisition Verification

Table 2. CMMI-ACQ process areas

1032

Integrated Product Life Cycle Management for Software

The fourth category is focussed on the field of
application of the constellation and is labelled

• Acquisition (in CMMI-ACQ)
• Engineering (in CMMI-DEV)
• Service Establishment and Delivery (in

CMMI-SVC)

Based on this categorization the complete
set of CMMI process areas can be categorized
as follows.

For shared process areas see Table 1; for
CMMI-ACQ see Table 2; for CMMI-DEV see
Table 3; for CMMI-SVC see Table 4.

 Process Management Project Management Support

Acquisition /
Engineering /
Service Establishment and
Delivery

CMMI-
DEV

 Supplier Agreement
Management

 Product Integration,

Requirements Development,

Technical Solution,

Validation,

Verification

Table 3. CMMI-DEV process areas

 Process Man-
agement

Project Manage-
ment Support

Acquisition /
Engineering /
Service Establishment and
Delivery

CMMI-SVC

Organizational
Service Manage-
ment

Supplier Agreement
Management,

Capacity and Avail-
ability Management

Problem Manage-
ment

Incident and Request Man-
agement,

Service Continuity,

Service Delivery,

Service System Develop-
ment,

Service Transition

Table 4. CMMI-SVC process areas

 1033

Integrated Product Life Cycle Management for Software

constellation based Maturity levels

As described before, each process area is assigned
to a defined maturity level. Whilst on level 4 and
5 only shared process areas are assigned, the

assignment on level 2 and 3 is dependent on the
constellation (see Table 5).

The shared processes assigned to level 4 are

• Organizational process performance
• Quantitative project management

 M atur ity L e ve l 2 M atur ity L e ve l 3

Sh are d p r o ce s s
are as

Requirements Management,

Pro jec t Planning,

Pro jec t M onitor ing and Co ntro l,

Meas urement and A naly s is ,

Proc es s and Produc t Q uality A s s uranc e,

Conf iguration Management

Dec is ion A naly s is and Res olution,

In tegrated Pro jec t M anagement + IPPD,

Organiz ational Proc es s De f in ition + IPPD,

Organiz ational Proc es s Foc us ,

Organiz ational Tra in ing,

Pro jec t M anagement

C M M I-AC Q

Solic ita tion and S upplier A greement
Dev elopment,

A greement M anagement,

A c quis ition Requirements Dev elopment

A c quis ition Tec hnic a l Management

A c quis ition V alidation,

A c quis ition V er if ic ation

C M M I-DEV

Supplier A greement M anagement Produc t In tegration,

Requirements De v elopment,

Tec hnic a l Solution,

V alidation,

V er if ic ation

C M M I-S V C

Supplier A greement M anagement,

Inc ident and Reques t M anagement

Capac ity and A v ailab ility Management,

Serv ic e Continu ity

Serv ic e Deliv ery ,

Serv ic e Sy s tem Dev elopment,

Serv ic e Trans ition,

Organiz ational Serv ic e Management,

Problem M anagement

Table 5. Maturity level 2 and 3 for CMMI constellations

1034

Integrated Product Life Cycle Management for Software

The shared processes assigned to level 5 are

• Causal Analysis and Resolution
• Organizational Innovation and Deploy-

ment

A cMMI based, Integrated product
life cycle

Even though the CMMI provides 3 different
constellations, these constellations can be used to
define 2 different integrated product life cycles:

• Organizations which provide service deliv-
ery for acquired software products should
use the process areas of the CMMI-ACQ in
combination with the process areas of the
CMMI-SVC.

• Organizations which develop software and
provide service delivery should use the pro-
cess areas of the CMMI-DEV in combination
with the process areas of the CMMI-SVC.

Even the combination of all three constellations
is thinkable, when a service delivering organiza-
tion partially acquires and partially develops the
software.

spIce / Iso 20000 IntegrAtIon
perspectIVe

Besides the CMMI world, another possibility for
an integrated product life cycle is the combina-
tion of two ISO standards: the ISO 15504—better
known as SPICE—and the ISO 20000.

spIce basics

The ISO 15504 (SPICE) is structured in 5 parts.
Part 1 defines the basic concept and the vocabulary.
In part 2 rules for performing an assessment are
defined, and in part 3 guidance for the assess-

ment is given. Part 4 gives additional guidance on
the use for process improvement and capability
determination.

The interesting part under the integration per-
spective is part 5. This part defines an exemplar
process assessment model.

Whilst the capability determination is widely
similar to the approach of the CMMI continuous
representation, the process model is different
from the CMMI.

SPICE defines 3 categories. These categories
are structured in groups and each group has several
processes (ISO/IEC, 2006). The categories with
their groups are:

• Primary life cycle processes
◦ Acquisition process group (ACQ)
◦ Supply process group (SPL)
◦ Engineering process group (ENG)
◦ Operation process group (OPE)

• Organizational life cycle processes
◦ Management process group (MAN)
◦ Process improvement process group

(PIM)
◦ Resource and infrastructure process

group (RIN)
◦ Reuse process group (REU)

• Supporting life cycle processes
◦ Supporting process group (SUP)

Comparing the SPICE categories with the
CMMI constellations, strong connections can
be identified between the process groups of the
primary life cycle processes and the CMMI
constellations. The acquisition process group and
supply process group have the same focus as the
CMMI-ACQ as well as the engineering process
group and the CMMI-DEV. Only the CMMI-SVC
does not have a counterpart in SPICE. The opera-
tion processes group and some processes of the
supporting process group address service related
topics, but a common approach is not delivered.

 1035

Integrated Product Life Cycle Management for Software

To better understand the content of the SPICE
process groups each group with its processes
should be further described—as defined in SPICE
(ISO/IEC, 2006):

Primary Life Cycle Processes

The primary life cycle processes consist of pro-
cesses that serve primary parties during the life
cycle of software. A primary party is one that
initiates or performs the development, opera-
tion, or maintenance of software products. These
primary parties are the acquirer, the supplier, the
developer, the operator, and the maintainer of
software products.

• The acquisition process group (ACQ) con-
sists of processes performed by the customer,
in order to acquire a product and/or a service.
The processes of this group are:
◦ ACQ.1: Acquisition preparation
◦ ACQ.2: Supplier selection
◦ ACQ.3: Contract agreement
◦ ACQ.4: Supplier monitoring
◦ ACQ.5: Customer acceptance

• The supply process group (SPL) consists of
processes performed by the supplier in order
to propose and deliver a product and/or a
service. The processes of this group are:
◦ SPL.1: Supplier tendering
◦ SPL.2: Product release
◦ SPL.3: Product acceptance support

• The engineering process group (ENG)
consists of processes that directly elicit
and manage the customer’s requirements,
specify, implement, and/or maintain the
software product and it’s relation to the
system. The processes of this group are:
◦ ENG.1: Requirements elicitation
◦ ENG.2: System requirements analy-

sis
◦ ENG.3: System architectural design
◦ ENG.4: Software requirements analy-

sis

◦ ENG.5: Software design
◦ ENG.6: Software construction
◦ ENG.7: Software integration
◦ ENG.8: Software testing
◦ ENG.9: System integration
◦ ENG.10: System testing
◦ ENG.11: Software installation
◦ ENG.12: Software and system main-

tenance
• The operation process group (OPE) consists

of processes performed in order to provide
for the correct operation and use of the soft-
ware product and/or service. The processes
of this group are:
◦ OPE.1: Operational use
◦ OPE.2: Customer support

Organizational Life Cycle Processes

The organizational life cycle processes consist of
processes employed by an organization to establish
and implement an underlying structure made up of
associated life cycle processes and personnel and
continuously improve the structure and processes.
They are typically employed outside the realm of
specific projects and contracts; however, lessons
from such projects and contracts contribute to the
improvement of the organization.

• The management process group (MAN)
consists of processes that contain practices
that may be used by anyone who manages any
type of project or process within a software
life cycle. The processes of this group are:
◦ MAN.1: Organizational alignment
◦ MAN.2: Organizational manage-

ment
◦ MAN.3: Project management
◦ MAN.4: Quality management
◦ MAN.5: Risk management
◦ MAN.6: Measurement

• The process improvement process group
(PIM) consists of processes performed in or-
der to define, deploy, assess and improve the

1036

Integrated Product Life Cycle Management for Software

processes performed in the organizational
unit. The processes of this group are:
◦ PIM.1: Process establishment
◦ PIM.2: Process assessment
◦ PIM.3: Process improvement

• The resource and infrastructure process
group (RIN) consists of processes per-
formed in order to provide adequate human
resources and necessary infrastructure as
required by any other process performed
by the organizational unit. The processes
of this group are:
◦ RIN.1: Human resource manage-

ment
◦ RIN.2: Training
◦ RIN.3: Knowledge management
◦ RIN.4: Infrastructure

• The reuse process group (REU) consists
of processes performed in order to sys-
tematically exploit reuse opportunities in
the organization’s reuse programmes. The
processes of this group are:

◦ REU.1: Asset management
◦ REU.2: Reuse program management
◦ REU.3: Domain engineering

Supporting Life Cycle Processes

The supporting life cycle processes consist of
processes that support another process as an in-
tegral part with a distinct purpose and contribute
to the success and quality of the software project.
A supporting process is employed and executed,
as needed, by another process. The processes of
this group are:

◦ SUP.1: Quality assurance
◦ SUP.2: Verification
◦ SUP.3: Validation
◦ SUP.4: Joint review
◦ SUP.5: Audit
◦ SUP.6: Product evaluation
◦ SUP.7: Documentation
◦ SUP.8: Configuration management
◦ SUP.9: Problem resolution management
◦ SUP.10: Change request management

Each SPICE process has a well-defined struc-
ture. After the process ID (e.g., SUP.10) and the
process name (e.g., change request management),
the purpose of the process is described. Then the

Table 6. CMMI and SPICE process structure

CMM I S P ICE

A c rony m P roc es s ID

P roc es s Nam e P roc es s Nam e

P urpos e S tatem ent P roc es s P urpos e

S pec ific G oals P roc es s O utc om es

S pec ific P rac t ic es B as e P rac t ic es

G eneric G oals P roc es s A ttributes

Ty pic al W ork P roduc ts W ork P roduc ts

 1037

Integrated Product Life Cycle Management for Software

process outcomes are defined. These process
outcomes—plus process attributes—have to be
achieved to reach a capability level in SPICE.
Afterwards base practices for each process are
defined and work products of the process are
listed.

Comparing the structure of a CMMI process
area and a SPICE process, there are lots of simi-
larities (see Table 6).

All in all, SPICE has 48 processes that mainly
cover software development and have only small
focus on service delivery. For this part, the ISO
20000 seems more applicable.

Iso 20000 basics

ISO 20000—Service Management covers the
classical service delivery processes. Regarding
the scope of ISO 20000, this standard represents
“an industry consensus on quality standards for
IT service management processes. These service

management processes deliver the best possible
service to meet a customer’s business needs within
agreed resource levels” (ISO/IEC, 2005b).

ISO 20000 defines 13 processes in 5 process
groups.

Regarding each process group,

• The objective of the service delivery process
group is to define, agree, record and man-
age levels of service, and consists of the
processes
◦ Capacity management
◦ Service continuity and availability

management
◦ Service level management
◦ Service reporting
◦ Information security management
◦ Budgeting and accounting for IT ser-

vices
• The objective of the relationship process

group is to describe the related aspects of

Figure 3. ISO 20000 processes

1038

Integrated Product Life Cycle Management for Software

supplier management and business rela-
tionship management, and consists of the
processes
◦ Business relationship management
◦ Supplier management

• The objectives of the resolution process
group are to restore agreed service and
minimize disruption to the business, and
consists of the processes
◦ Incident management
◦ Problem management

• The objective of the control process group
is to define and control the components of
service and infrastructure, and consists of
the processes
◦ Configuration management
◦ Change management

• The objective of the release process group
is to deliver, distribute and track changes,
and consists of the process
◦ Release management

Those who know ITIL may have found lots of
similarities in the process names and structure
of ISO 20000. The ISO 20000 is well aligned
with ITIL. Whilst ITIL is a collection of best
practices, ISO 20000 defines specifications to
support a service provider in delivering high
quality services. The other way round, ITIL best
practices help to achieve the quality of service
management as defined by ISO 20000. It has
to be recognized that ISO 20000 and ITIL are
developed in strong connection, often impacted
by the same persons.

Interfaces between spIce
and Iso 20000

Trying to integrate SPICE and ISO 20000 it has
to be taken into account, that both standards cover
similar or identical elements in some processes. If
an integrated product life cycle should be defined,
these interfaces have to be harmonized.

First of all, the operational process group of
SPICE has to be analyzed. This process group
consists of two processes, operational use (OPE.1)
and customer support (OPE.2).

The operational use process has the purpose
to ensure the correct and efficient operation of the
product for the duration of its intended usage and in
its installed environment. Topics like operational
risks, operational testing, criteria for operational
use and the monitoring of the operational use are
covered by this process.

The customer support process has the purpose
of establishing and maintaining an acceptable level
of service. Topics of this process are establishing
of product support, performance monitoring and
customer satisfaction.

Even though these processes address service
aspects, they only deliver a high level overview.
Nevertheless these topics address similar elements
as the ISO 20000 processes service level manage-
ment and business relationship management.

Other service delivery related processes can
be found in the group of the supporting life cycle
processes. The processes in focus are:

• SUP.8: Configuration management
• SUP.9: Problem resolution management
• SUP.10: Change request management

With configuration management the integrity
of work products is established and maintained
and these work products are made available
to parties concerned. The problem resolution
management process focuses on identification,
analysis, management and controlling of discov-
ered problems, while change request management
ensures that change requests are managed, tracked
and controlled.

Some other useful information for service
delivery can be found in the process related to
supplier management (acquisition / supply pro-
cess groups).

 1039

Integrated Product Life Cycle Management for Software

Integration of spIce and Iso 20000

To reach a fully integrated product life cycle, two
requirements have to be satisfied:

• A set of processes has to be defined, which
covers all stages of the life cycle—a so called
process reference model (PRM)

• A model to evaluate the process capability
has to be defined and must be applicable to
all processes—a so called process assess-
ment model (PAM)

Both requirements are satisfied by the CMMI
constellations: the PAM is defined in the model
foundation which is mandatory for all constel-
lations and the PRM is given by the defined
process areas.

For the SPICE and ISO 20000 integration,
this is not that easy. On the one hand SPICE and

ISO 20000 address identical topics in different
processes, on the other hand, only SPICE has an
assessment model. A way to solve this problem
was defined in early 2007 (Malzahn, 2007) and
should be described in the following chapters.

A combined prM for spIce
and Iso 20000

As described before, double definitions in SPICE
and ISO 20000 have to be eliminated and all
processes need to have an identical structure.
Therefore in a first step, the ISO 20000 processes
have to be restructured into the SPICE process
structure. In a second step, processes with a similar
focus must be aligned.

For the first step, the ISO 20000 process
groups and processes become process groups and
processes of the combined model. For each ISO
20000 process the defined objective becomes the

P rimary L ife C ycle Proces s es

A cqu is ition P rocess G roup

S upp ly P rocess G roup
+ S upp lie r M anagem ent
+ R e lease M anagem ent

E ng ineering P rocess G roup

O rg an . L ife C ycle Processe s

M anagem ent P rocess G roup

P roc . Im p. P rocess G roup

R es + In fr. P rocess G roup

R euse P rocess G roup

O rg an . L ife C ycle Processe s

M anagem ent P rocess G roup

P roc . Im p. P rocess G roup

R es + In fr. P rocess G roup

R euse P rocess G roup

S e rvice L ife C ycle P rocesse s

S erv ice D e livery
P rocess G roup

+ B usiness R e la tionsh ip M an.
+ in tegra ted O P E P rocess G roup

S u p p orting Life C ycle Processe s
+ com bined C onfigura tion M anagem ent
+ com bined C hange M anagem ent
+ com bined P rob lem M anagem ent
+ Incident m anagem ent

Integrated P roduct Life C ycle

Figure 4. Integrated Product Life Cycle based on SPICE and ISO 20000

1040

Integrated Product Life Cycle Management for Software

process purpose. For the rest of the text it has to be
decided, which text passage becomes an outcome,
a base practice, or a work product.

In the second step, all processes with a similar
focus have to be aligned. Concerning SPICE and
ISO 20000 it is proposed to

• Integrate the SPICE OPE process group
into the service level management, service
reporting and business relationship manage-
ment processes of ISO 20000,

• Combine configuration management
• Combine problem resolution management

and problem management,
• Combine change request management and

change management.

Other possibilities for further alignment are
e.g., given by the combination of the ISO 20000
release management process and the SPICE
product release process, and by integrating the
relationship processes into the acquisition / sup-
ply process group.

After this integration and combination, the
process groups may be restructured as follows:

• The ISO 20000 control processes become
part of the support process group,

• The ISO 20000 release management process
becomes part of the Supply process group,

• ISO 20000 problem management and inci-
dent management become part of the support
process group,

• Business relationship management may
become part of the service delivery process
group.

In the very end, a combined PRM for SPICE
and ISO 20000 may consist of the SPICE process
categories and a new service life cycle category
with the following amendments:

A combined pAM for Iso 20000
and spIce

The definition of a process assessment model for
the integration of SPICE and ISO 20000 is easy
to define—it is the approach defined for SPICE.
Regarding ISO 20000, no measurement frame-
work is defined. The requirements concerning
measurement are given in part one of the ISO
20000 as follows:

“The service provider shall apply suitable
methods for monitoring and, where applicable,
measurement of the service management pro-
cesses” (ISO/IEC, 2005a). Therefore no inconsis-
tencies in the measurement and rating can occur.
The SPICE definitions are applicable because
each ISO 20000 process was restructured in the
PRM and therefore all contextual and structural
requirements are satisfied.

coMpArIson oF both
ApproAches

Regarding both approaches—the CMMI con-
stellations and the integration of SPICE and
ISO 20000—there are pros and cons for each
approach:

• The CMMI constellations are highly inte-
grated by using the same model foundation,
but CMMI-SVC will not see the light of day
before 2008

• SPICE and ISO 20000 require additional
effort to be integrated, but both are ISO
standards and therefore widely accepted—
especially if legal matters have to be taken
into account.

Other impacts may be the region or industry of
the organization. The CMMI is very strong in the
United States; SPICE is heavily used in Europe.

 1041

Integrated Product Life Cycle Management for Software

Most defence industry companies are interested
in CMMI, whilst major parts of the automotive
industry prefer SPICE.

Future trends

This article covers two possible integration ap-
proaches. Nowadays more and more approaches
see the light of day. Especially the integration of
ITIL and CMMI or SPICE is widely discussed
(Barafort, Di Renzo, Lejeune, Prime & Simon,
2005; Foegen & Graumann, 2007). Neverthe-
less ITIL is a best practice collection and not a
measurement framework and therefore we still
see some problems in the ITIL integration.

Hopefully the CMMI-SVC proves that it is a
powerful tool for this intended integration and
maybe at some point in time the ISO will find a
way to publish an assessment model that covers
the complete product life cycle for software.

Another promising approach will be the Enter-
prise SPICE initiative. The goal of this initiative
is to “integrate and harmonize existing standards
[…] to provide a single process reference model and
process assessment model that addresses broad
enterprise processes. Enterprise SPICE will pro-
vide an efficient and effective mechanism for as-
sessing and improving processes deployed across
an enterprise” (SPICE User Group, 2007).

using Integrated Models

Defining an integration approach is only a short
part on the way to software development and
service delivery integration. Even though it
builds the indispensable basis, integration only
works, if it is accepted by organizations, teams,
and people. To reach this, some simple rules of
the thumb should be followed:

• Integrate the working level of development
and service delivery at least in the review
of an integrated model – preferably in the

development. If the working level under-
stands the need for integration and is part
of the integration process, the integrated
model is better accepted.

• Provide translation between the develop-
ment, service delivery and integration ap-
proach. Only if software development and
service delivery people reach a common
understanding, an integrated approach can
be established.

• Provide training on the approach. Training
must not be focused on “we combine stan-
dard A with standard B” but on “we define
an approach for the complete life cycle”.
There is no longer “their work” and “our
work” but a common responsibility from
first idea to retirement.

If and only if the need for integration is under-
stood and accepted by people on working level,
integration can be established – otherwise there
will still be two worlds with all their differences
and borders.

conclusIon

The decision, which approach may deliver the best
benefit, must be taken by the organization itself.
But one thing is inevitable: if the capability of
the processes of an organization is not evaluated
against accepted standards and for the complete
life cycle, the organization keeps the back door
open for chaotic elements in their process suite
and therefore has an open door for abusing strate-
gies, processes, and procedures.

reFerences

Barafort, B., Di Renzo, B., Lejeune, V., Prime,
S., & Simon, J. M. (2005). ITIL based service
management measurement and ISO/IEC 15504
process assessment: A win-win opportunity.

1042

Integrated Product Life Cycle Management for Software

In Proceedings of the SPICE 2005 Conference,
Klagenfurt, Austria.

Department of Defence (1996). Guide to integrat-
ed product and process development (Version 1.0).
Washington, DC: Office of the Under Secretary
of Defense (Acquisition and Technology).

Foegen, M., & Graumann, S. (2007, June). CITIL:
ITIL integrated into CMMI. In Proceedings of
the 12th annual European SEPG Conference,
Amsterdam, Netherlands.

Hollenbach, R., & Buteau, B. (2006, November).
CMMI for services, introducing the CMMI for
service constellation. In Proceedings of the CMMI
Technology Conference, Denver CO.

Humphrey, W. (1989). Managing the software
process. Boston, MA: Addison-Wesley.

ISO/IEC (2005a). ISO/IEC 20000-1Information
technology—Service management—Part 1:
specification, ISO/IEC.

ISO/IEC (2005b). ISO/IEC 20000-2- Information
technology – Service management – Part 2: Code
of practice, ISO/IEC.

ISO/IEC (2006). ISO/IEC 15504-5 -Information
technology—Process assessment—Part 5: An
exemplar process assessment Model, ISO/IEC.

Malzahn, D. (2007, May). A service extension
for SPICE? In Proceedings of the SPICE 2007
Conference. Seoul, South Korea.

Software Engineering Institute (2007). CMMI for
acquisition, Version 1.2. Pittsburgh, PA.

Software Engineering Institute (2006a). CMMI
for development, Version 1.2. Pittsburgh, PA.

Software Engineering Institute (2006b): CMMI
for services (Initial Draft). Pittsburgh, PA.

SPICE User Group (2007). Enterprise SPICE
introduction. Retrieved May 15, 2008, from
http://www.enterprisespice.com/web/Introduc-
tion.html

endnotes

1 CMMI is a registered trademark of the
Software Engineering Institute, Carnegie
Melon University.

2 This explains why the continuous represen-
tation only requires to satisfy generic goals.
GG1 specifies, that the specific goals have
to be achieved.

This work was previously published in Information Technology Governance and Service Management: Frameworks and Adap-
tations, edited by A. Cater-Steel, pp. 423-442, copyright 2009 by Information Science Reference (an imprint of IGI Global).

 1043

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.28
BROOD:

Business Rules-Driven Object
Oriented Design

Pericles Loucopoulos
Loughborough University, UK

Wan M. N. Wan Kadir
Universiti Teknologi Malaysia, Malaysia

AbstrAct

A critical success factor for information systems
is their ability to evolve as their environment
changes. There is compelling evidence that the
management of change in business policy can
have a profound effect on an information system’s
ability to evolve effectively and efficiently. For
this to be successful, there is a need to represent
business rules from the early requirements stage,
expressed in user-understandable terms, to down-
stream system design components and maintain
these throughout the lifecycle of the system. Any
user-oriented changes could then be traced and if
necessary propagated from requirements to design
specifications and evaluated by both end-users
and developers about their impact on the system.
The BROOD approach, discussed in this article,
aims to provide seamless traceability between

requirements and system designs through the
modelling of business rules and the successive
transformations, using UML as the modelling
framework.

IntroductIon

The ubiquitous nature of information systems
and the increasing dependency of organizations,
government and society on such systems highlight
the importance of ensuring robustness in their
operation. At the same time rapid changes in the
environment of information systems places an
increasing emphasis on the ability of these systems
to evolve according to emerging requirements. A
large proportion of a total systems’ lifecycle cost
is devoted to introducing new requirements, and
removing or changing existing system functional-

1044

BROOD

ity (Grubb & Takang, 2003). Software evolution
therefore is considered as a key challenge in the
development and maintenance of information
systems (Erlikh, 2000).

In recent years there has been an increasing
interest of the IS community in business rules,
which has resulted in dedicated rule-centric
modeling frameworks and methodologies (Ross
& Lam, 1999; Zaniolo et al., 1997), international
initiatives for the investigation of business rules’
role in the context of knowledge management
(Hay & Healy, 1997), conferences, workshops and
tutorials (Mens, Wuyts, Bontridder, & Grijseels,
1998), and rule-centric rule management tools and
application development support environments
(e.g., Blaze Advisor Builder, BRS RuleTrack,
Business Rule Studio, Haley Technologies, ILOG
Rules, Platinum Aion, Usoft Developer and Visual
Rule Studio). Whilst these efforts make significant
contributions in their own right, a key challenge
remains unanswered namely the linking of busi-
ness rules specifications to software designs.

The aim of the BROOD (business rules-driven
object oriented design) approach is to address the
issue of software evolution from both require-
ments and design perspectives. This confluence
should provide a seamless and traceable facility
that arguably should bring about a more effec-
tive way of dealing with software evolution, by
aligning changes of the information system to
changes in its environment. BROOD adopts as its
methodological paradigm that of object orientation
with UML as its underlying graphical language.
It augments UML by explicitly considering busi-
ness rules as an integral part of an object-oriented
development effort. To this end BROOD aims:

i. To explicitly model business rules in a man-
ner understandable to end-user stakehold-
ers.

ii. To map these to formal descriptions ame-
nable to automation and analysis.

iii. To provide guidelines on the deployment of

business rules in the development process.
iv. To provide guidelines on the evolution of

requirements and related design specifica-
tions.

The article is organized as follows. Section
2 discusses the background to business rules
modeling. Section 3 introduces the motivation
for BROOD. Section 4 introduces the BROOD
metamodel as the foundation for modeling busi-
ness rules. Section 5 discusses the manner in which
business rules are linked to design components via
the concept of ‘rule phrase.’ The BROOD process
is detailed in section 6. The BROOD approach is
supported by an automated tool and this is briefly
discussed in Section 7. The article concludes with
an overview of BROOD, observations on its use
on a large application and comparisons with
traditional approaches.

The language details for business rules
definition are given in appendix A. The BROOD
approach is demonstrated through an industrial
application which is described in appendix B.
This application had originally been developed
using a traditional approach. Therefore, it proved
useful not only as a means of providing a practical
grounding on BROOD but also on comparing and
contrasting the use of BROOD with a traditional
development effort.

busIness rules ModellIng

The motivation of BROOD is to provide a develop-
ment environment whereby the business analysis
and system design domains are supported by
business rules modeling with the specific aim to
facilitating more effective software evolution.

The term “business rule” has been used by
different authors in different ways. For example,
in (Rosca, Greenspan, Feblowitz, & Wild, 1997),
business rules are:

 1045

BROOD

statements of goals, policies, or constraints on an
enterprise’s way of doing business.

In (Herbst, 1996a), they are defined as:

statements about how the business is done, i.e.
about guidelines and restrictions with respect to
states and processes in an organization.

Krammer considers them as “programmatic
implementations of the policies and practices of
a business organization” (Krammer, 1997) whilst
Halle states that:

depending on whom you ask, business rules
may encompass some or all relationship verbs,
mathematical calculations, inference rules, step-
by-step instructions, database constraints, busi-
ness goals and policies, and business definitions.
(Halle, 1994).

In general, business rules in the information
systems field may be viewed in terms of two
perspectives: (a) business rules as applied to con-
ceptual modeling and (b) business rules as applied
to evolvable software systems development.

business rules in conceptual
Modeling

1. Business rules as part of requirements gath-
ering and systems analysis have not been
ignored by structured analysis, information
engineering or object-oriented analysis ap-
proaches (Moriarty, 1993) which, to varying
degrees, subsume or represent business rules
as part of notation schemes used to specify ap-
plication requirements (Gottesdiener, 1997)
Ross (1997) comments that traditional IS
methodologies have addressed rules poorly,
and only relatively late in the system develop-
ment lifecycle. (Hay & Healy, 1997) mention
that rules dealing with information structure

may be represented by any of several flavors of
entity—relationship or object class diagrams,
and responses to events may be shown via
essential data flow diagrams (McMenamin
& Palmer, 1984) or as entity life history
diagrams (Robinson & Berrisford, 1994).

From a conceptual perspective there are ap-
proaches that consider business rules as an integral
part of the modeling and analysis of systems’ re-
quirements. An early effort in this direction was
the RUBRIC project (Loucopoulos & Layzell, 1986;
van Assche, Layzell, Loucopoulos, & Speltinex,
1988) parts of which were integrated into the infor-
mation engineering (Martin, 1989) method.

In BROCOM (Herbst, 1996b, 1997), the rule
language is a type of structured English, and
therefore it is highly expressive. Moreover, rules
are organized according to a rich meta-model,
and can be retrieved based on a number of differ-
ent criteria. As far as methodological guidance
is concerned, Herbst proposes the development
of various models which are helpful during the
analysis phase, but the process of creating and
using them is not clearly defined. The transition
from analysis to design and implementation has
not been addressed by this approach.

The DSS approach (Rosca, Greenspan, & Wild,
2002; Rosca et al., 1995) focuses on the analysis
phase of IS development by supporting the ratio-
nale behind the establishment of rules. DSS adopts
the ECA (event-condition-action) paradigm for
structuring rule expressions and also links these
expressions to the entities of an underlying enter-
prise model. The absence of a formal rule language
confines the use of DSS on modeling tasks.

The Business Rules Group (BRG), formerly
known as the GUIDE Business Rule Project
(Hay & Healy, 1997), investigated an appropriate
formalization for the analysis and expression of
business rules (Hay & Healy, 2000). This approach
identifies terms and facts in natural language rule
statements, and consequently, it offers a high level

1046

BROOD

of expressiveness. The meta-model it provides for
describing the relations between these terms and
facts is very detailed. Therefore, rule models are
(a) highly manageable and (b) formal and fully
consistent with the information models of a specific
organization.

The IDEA method (Zaniolo et al., 1997) focuses
on the maintenance of formality and consistency

with underlying business models. The method
offers guidance for every activity being involved
in the development of a rule-centric information
system. The IDEA method is directed towards the
use of specific active and deductive databases, and
of the corresponding rule languages. As a result
of this, (a) IDEA rules are rather difficult to be
expressed or even understood by business people;

 BR Approach
 Criteria BRG BRO-

COM BRS

Concepts
Business Rule Definition IS IS Business
Business Rule Taxonomy

- Structural Rules High (10) Low (0) Medium
(1)

- Behavioural Rules Medium
(8)

High
(>30)

Medium
(8)

- Derivation Medium
(2) Low (0) Medium

(2)
Bus. Rule Management Ele-
ments

Medium
(5)

Medium
(9)

High
(>30)

Modelling Language
Understandability Medium Medium High
Expressiveness (business rules) Medium High High
Unambiguity Medium High Medium
Formality Medium Medium High
Evolvability Medium Medium High

Process
Lifecycle coverage A A A + D
Process description N/A High High
Coherence N/A High High
Support for evolution No Yes Yes

Pragmatics
Communicability Medium High High
Usability Medium High High
Resources availability Low Medium High
Openness High Medium High

Table 1. Comparative evaluation of business rule in conceptual modeling

Lifecycle coverage: A-Analysis, D-Design, I-Implementation, M-Maintenance

 1047

BROOD

and (b) the choice of technologies to be employed
for the development of an information system is
rather limited.

The BRS approach (Ross, 1997) is formal, in
accordance with the underlying data models of an
organization, offers sufficient methodological guid-
ance, and allows management of rule expressions
based on a very detailed meta-model. It is also one
of the few methods that adopts a graphical notation
for expressing rules. Regarding the development
process, BRS introduces a business rule meth-
odology called BRS ProteusTM methodology that
defines a number of steps for both business and
system modeling (Ross, & Lam, 2003). BRS also
provides the BRS RuleTrackTM, an automated tool
for recording and organizing business rules.

The object constraint language (OCL) of UML
(Eriksson & Penker, 2000) is tightly bound with the
widely accepted UML but lacks methodological
guidance for the collection of rules. Rule structures
are implied by the allocation of rules to classes,
attributes, associations and operations.

A comparative evaluation of the treatment of
business rules for conceptual modeling by three
widely used approaches is shown in Table 1.

business rules in evolvable
software evolution

The majority of approaches in this category aim
to improve the understanding and evolution of
a software system by logically and physically
separating business rule components from other
software components.

The adaptive object model (AOM), which is
also known as the dynamic object model (Riehle,
Tilman, & Johnson, 2000), is “a system that rep-
resents classes, attributes, and relationships as
metadata” (Yoder, Balaguer, & Johnson, 2001).
Unlike traditional object-oriented design, AOM
is based on objects rather than classes. It provides
descriptions (metadata) of objects that exist in the
system. In other words, AOM provides a meta-

architecture that allows users to manipulate the
concrete architectural components of the model
such as business objects and business rules. These
components are stored as an object model in a
database instead of in code. The code is only used
to interpret the stored objects. Thus, a user only
needs to change the metadata instead of changing
the code to reflect domain changes.

The coordination contract method aims to
separate coordination from computation aspects
(or core components) of a software system (An-
drade, Fiadeiro, Gouveia, & Koutsoukos, 2002).
It is motivated by the fact that there should be two
different kinds of entities in a rapidly changing
business environment—core business entities
which are relatively stable and volatile business
products which keep changing for the business to
remain competitive (Andrade & Fiadeiro, 2000).
Volatile business products are implemented as
contracts. A contract aims to externalize the
interactions between objects (core entities) by
explicitly define them in the conceptual model. It
extends the concept of association class by adding
a coordination role similar to other components
in architecture-based software evolution such as
architectural connectors (Oreizy, Medvidovic, &
Taylor, 1998), glue (Schneider, 1999), actor (Astley
& Agha, 1998) or change absorbers (Evans &
Dickman, 1999).

Business Rule Beans (BRBeans), formerly
known as accessible business rules (Rouvel-
lou, Degenaro, Rasmus et al., 1999; Rouvellou,
Degenaro, Rasmus et al., 2000), is a framework
that provides guidelines and infrastructures for
the externalization of business rules in a distrib-
uted business application (IBM, 2003). Business
rules are externally developed, implemented and
managed to minimize the impact of their changes
on other components such as core business, ap-
plication, and user interface objects. They are
implemented as server objects, which are fired by
embedded trigger points in application objects. A
rule management facility is provided to help us-

1048

BROOD

ers to understand the existing rules and to locate
the rules when changes are required. BRBeans is
implemented as a part of WebSphere Application
Server by IBM “to support business applications
that externalize their business rules” (Kovari,
Diaz, Fernandes et al., 2003).

A comparative evaluation of the treatment
of business rules evolvable software systems
development by the three approaches is shown
in Table 2.

MotIVAtIon For the brood
ApproAch

According to Lehman’s laws (Lehman & Belady,
1985), a software system that is used in a real-world
environment inevitably must change or become
progressively less useful in that environment.
Lehman’s laws also state that the software struc-
ture tends to become more complex due to the
implemented changes and its size must continue
to grow to accommodate new user requirements.
Therefore, there is a need to introduce a method

Table 2. Comparative evaluation of business rules in evolvable software systems

 BR Approach
 Criteria

Adaptive
Object Model

(AOM)

Coordi-
nation

Contract

Business
Rule Beans
(BRBeans)

Concepts
Business Rule Definition Implicit Implicit Explicit

Business Rule Taxonomy
primitive,
composite,
workflow

ECA

derivation,
constraint, in-
variant, script,

classifier
Business Rule Management Ele-
ments Nil Nil Yes

Modelling Language
Understandability High Medium Medium
Expressiveness (business rules) Low Medium Medium
Formality Low High Medium
Evolvability High High High

Process

Lifecycle coverage (Evolutionary) D + I + T
+ M

A + D + I + T
+ M

Process description Low Medium High
Coherence Medium Medium Medium
Support for evolution Low Medium High

Pragmatics
Communicability High Medium Medium
Usability Low Medium Medium
Resources availability Medium Medium High
Openness Medium Medium Low

 1049

BROOD

that facilitates the management of the increasingly
complex and larger size software system due to
its evolution.

The position put forward in this article is
that developers need to identify the sources of
changes for software evolution in the system’s
environment and that some of the most volatile
of these components tend to be business rules. In
section 0 many contemporary approaches were
reviewed all of which aim to externalize business
rules from software components.

At the conceptual modeling level, there are
approaches that separate syntax and semantics
for modeling business rules. This effort localizes
the changes to business rule components, and also
increases the understanding and maintainability
of business rules specification. This category of
approaches provides a great deal of help in dealing
with the concepts related to business rules, but they
provide relatively little description on the design
and implementation aspect of business rules.

At the implementation level, approaches cre-
ate separate software components that implement
business rules. As a result, the business rule
changes will only localize to such components,
and reduce the impact of changes to the overall
software structure. This group of approaches
provides very good facilities for developing
evolvable software components but is less helpful
in representing business rules at the conceptual
business level.

The BROOD approach addresses both busi-
ness modeling and the linking of business model
components to software architecture components.
By focusing on the conceptual level, BROOD
attempts to externalizing changes from software
components. This user-oriented view enhances
understandability and maintainability since it
encourages the direct involvement of business
stakeholders in the maintenance of their busi-
ness rules.

By introducing a linking component between
the conceptual model of business rules and
software design, BROOD attempts to increase

business rule traceability. Traceability is highly
desirable since one can keep ‘forward’ and
‘backward’ tracks of changes between business
and software.

BROOD considers both product and process
perspectives of the development and evolution
of a software system. The product is defined us-
ing the BROOD metamodel, which specifies the
structure for business rule specification, software
design, and their linking elements. The process
refers to a set of systematic and well-defined
steps that should be followed during software
development and evolution. The BROOD process
emphasizes several important activities in a soft-
ware lifecycle that contribute to a more resilient
software system.

the brood MetAModel

The initial concept of the metamodel was intro-
duced in (Wan Kadir & Loucopoulos, 2003; Wan
Kadir & Loucopoulos, 2004). The metamodel is
complemented by a language definition based on
the context-free grammar EBNF, which is included
in appendix A. The language definition defines
the allowable sentence patterns for business rule
statements and describes the linking elements
between business rules and the related software
design elements.

At the outset, three main desirable characteris-
tics were set for developing an appropriate business
rule metamodel, which would be consistent with
the aims of BROOD:

•	 It should have an exhaustive and mutually
exclusive typology to capture different types
of business rules.

•	 It should have the structured forms of ex-
pressions for linking the business rules to
software design.

•	 It should include rule management elements
to improve business rule traceability in a
business domain.

1050

BROOD

These three characteristics form the basis for
the development of the business rule metamodel,
which is shown in Figure 1. This figure shows the
business rules metamodel together with parts of
the UML metamodel that deal with static (classes)
and dynamic (actions and events) aspects. The
key requirement of BROOD for tracing changes
from business to software through the use of
business rules is achieved by integrating these
three metamodels.

business rules typology

The metamodel classifies business rules into three
main types, which are constraint, action assertion,
and derivation.

Constraints

Constraint rules specify the static characteristics
of business entities, their attributes, and their
relationships. They can be further divided into

Figure 1. The BROOD business rule metamodel

Business Rule

Constraint

Attribute constraintrelationship constraint

Action AssertionDerivation

Inferencecomputation

rule template

UMLModelElement

rule set

owner
1..* administrator

0..*

0..*
user
representation

0..1

rule phrase

business rule statement

entity
Attributeterm

cardinality list reloperator

0..1

0..1

1..*

business process

0..*

0..*

1
structure

0..1

role

event

condition

Action
2

0..*

0..*

1..*

Value

Algorithm

1 pattern

0..*

0..*

0..*

0..11

1

0..1

0..1

0..11..*

1

1..*

0..*
instance

Fact
0..*

0..*

1

0..*

1

name : String
ModelElement

kind:ParameterKind
defaultValue:Expression

parameter

visibility:VisibilityKind

Feature
isRoot : Boolean
isLeaf : Boolean

GeneralizableElement

Classifier

multiplicity:Multiplicity
aggregation:AggregationKind

AssociationendAssociation

isQuery:Boolean

operation
initialValue:Expression

Attribute

1 2..*

* +association

1 +participant

 +typedParameter
+type

1

 +parameter
+feature

* +typedFeature

{ordered}

{ordered}

+type
1

+owner
0..1

0..1

class

visibility:VisibilityKind

Generalization

1
 +parent

1
+specialization

 1 +child 1 +generalization

+powertype
0..1

 * +powertypeRange

name : String

ModelElement

stateMachine
expression : BooleanExpression

guard

transition

event

state

Action
0..1 +entry 0..1 +exit

+doActivity
0..1

0..1 +guard

+transition *

+deferrableEvent
0..*

+incoming
0..*

+outgoing
0..*

0..*

0..1

0..1

0..1

0..10..1
1

0..1
+trigger

+source
1

+target
1

*

0..1

0..1

Business
Rules

Metamodel

UML
Static & Dynamic
Metamodel Parts

 1051

BROOD

attribute and relationship constraints. The for-
mer specifies the uniqueness, optionality (null),
and value check of an entity attribute. The latter
asserts the relationship types as well as the car-
dinality and roles of each entity participating in
a particular relationship.

Examples of attribute constraints from the
MediNet application expressed according to the
BROOD syntax (see attribute constraint
definition in appendix A) are the following:

Patient must have a unique patient registration
number.

Patient may have a passport number.
Bill must have a unique bill number.
The amount of Bill must be less than the maximum

bill amount set by the paymaster.
An employee level of a Panel Patient must be in

{employer, executive, production opera-
tor}.

Examples of relationship constraints for Me-
diNET (see relationship constraint
definition in appendix A) are:

Clinic item is a/an item type of bill item.
Bill must have zero or more bill item.
HCP Service Invoice is a/an Invoice.

Actions

Action assertion concerns a behavioral aspect of
the business. Action assertion specifies the action
that should be activated on the occurrence of a
certain event and possibly on the satisfaction of
certain conditions. An event can be either a simple
or a complex event where the latter is constructed
by one or more simple events using the logical
connectives AND/OR. A condition may be a
simple or complex condition. A simple condi-
tion is a Boolean expression which compares a
value of an entity attribute with any literal value
or the value of another entity attribute using a
relational operator. It can also be an inspection

of the existence of a value of an entity attribute
in a list of values.

An action is performed by a system in response
to the occurrence of an event and the satisfaction
of the relevant condition. The execution of action
may change the state of the system. An action
may be a simple action or a sequence of simple
actions. Simple actions can be further catego-
rized into three different types, trigger actions,
object manipulation actions, and user actions.
Trigger action invokes an operation, a process,
a procedure, or another rule under certain cir-
cumstances. Object manipulation action sets the
value of the attribute or create/delete an instance
of an entity. User action is a manual task that is
done by system users. During implementation,
user action is often implemented as a message
displayed to the user.

Examples of action assertion for MediNET
(see action assertion definition in ap-
pendix A) are:

When new invoice created then calculate invoice
end date.

When patient consultation completed then re-
moved the patient from consultation queue
and create bill for the patient.

When invoice entry updated if stock of drug
smaller than re-order threshold then reorder
the drug.

Derivation

A derivation rule derives a new fact based on
existing facts. It can be of one of two types, com-
putation, which uses a mathematical calculation
or algorithm to derive a new arithmetic value, or
inference, which uses logical deduction or induc-
tion to derive a new fact. Typically, an inference
rule may be used to represent permission such as
user policy for data security. An example of a com-
putation derivation rule such as “The amount HCP
MediNET usage invoice is computed as the amount of
transaction fees, which are calculated as the transaction

1052

BROOD

fee multiply by the total number of transactions, plus
the monthly fee” would be expressed as:

let a = transaction_fee;
let b = number_of_treated_patient;
transaction_fees = a * b;

invoice_amount = transaction_fees + month-
ly_fee;

Examples of inference rules are given be-
low:

Types Templates

Attribute
Constraint

<entity> must have | may have [a unique] <attributeTerm>.
<attributeTerm1> must be | may be <relationalOperator> <value> | <at-
tributeTerm2>.
<attributeTerm> must be in <list>.

Relation-
ship Con-

straint

[<cardinality>] <entity1> is a/an <role> of [<cardinality>]<entity2>.
[<cardinality>] <entity1> is associated with [<cardinality>]<entity2>.
<entity1> must have | may have [<cardinality>] <entity2>.
<entity1> is a/an <entity2>.

Action
Assertion

When <event> [if <condition>] then <action>.
The templates of <event> :

<attributeTerm> is updated
<entity> is deleted | is created
<operation>|<rule> is triggered
the current date/time is <dateTime>
<number> <timeUnit> time interval from <dateTime> is reached
<number> <timeUnit> after <dateTime>
<userEvent>

The templates of <condition> :
<attributeTerm1> <relationalOperator> <value | attributeTerm2>
<attributeTerm> [not] in <list>

The templates of <action> :
trigger <process> | <operation> | <rule>
set <attributeTerm> to <value>
create | delete <entity>
<userAction>

Computa-
tion <attributeTerm> is computed as <algorithm>

Derivation

if <condition> then <fact>.
The templates of <fact> :

<entity> | <attributeTerm> is [not] a <value>
<entity> may [not] <action>

Table 3. Business rule templates

 1053

BROOD

If the paymaster’s last quarter transaction is more
than RM12,000.00 and the paymaster has
no past due invoices then the paymaster is
a preferred customer.

If the user type is equal to HR Officer and the
user company is equal to patient paymaster
then the user may view the patient’s medical
certificate.

the rule template

Rule templates are the formal sentence patterns
by which business rules can be expressed. They
are provided as a guideline to capture and specify
business rules as well as a way to structure the
business rule statements. Each rule template
consists of one or more well-defined rule phrases,
which are discussed in section 0.

By using the available templates, an inex-
perienced user may easily produce a consistent
business rule statement. Rule templates help users
to avoid tedious and repeated editing when creat-
ing many similar rules; and ensure uniformity by
restricting the type of rules that can be written by
business users. The use of templates also allows
the precise linking of business rules to software
design elements. The templates can be directly
derived from the rules definition in Appendix A.
Business rules templates are shown in Table 3.

the rule Management elements

Management elements are also included in the
BROOD metamodel for facilitating the organi-
zation and management of business rules. These
elements include the rule set, business process,
and owner.

Rule set is used to group business rules into
a set of closely interrelated rules. Each business
rule model must have a single rule set, which
is considered as the root rule set. This rule set
must have at least one rule statement or another
rule set.

One of the popular ways to identify a rule
set is through its related business process. For
example, the rules ‘The bill amount is calculated as
the sum of amounts of all bill items’ and ‘If a patient is
a panel patient and his paymaster pays the bill in full,
the balance is set to 0 and the bill status is set to paid’
can be grouped in a rule set which is related to
‘bill preparation’ process. By properly organizing
rules, the complexity of managing a large set of
rules can be reduced.

Each business rule model must have an owner.
An owner may also be defined for a rule set. The
owner of a parent rule set is assumed to be the
owner of its child rule set if the child does not
define its owner. It is important to define the owner
information in a business rule model to determine
the access rights and responsibility to a business
rules repository, especially for software systems
with multiple user groups that possess different
business rules. An owner may be an organiza-
tional unit, an individual user, a user group or
role that is responsible for the management of the
respective business rules. During business rule
implementation, each rule set, business process,
and owner is given a unique identifier.

the rule phrAse

A rule phrase in BROOD links a user-oriented
business rule definition to a software design
component. There are alternative ways in which
this may be achieved. For example, using a rule
object or rule engine, or making use of OCL. The
use of rule object or rule engine increases the se-
mantic distance between analysis and design and
imposes implementation considerations. The use
of constraints expressed using OCL may provide
a link between business rule specifications and
software design but OCL is still hard to under-
stand by business users although OMG claims
that no mathematical background is required in
using OCL.

1054

BROOD

Rule phrases are considered as the building
blocks for rule statements. They can be maintained
independently during implementation, in other
words, they are not deleted when a business rule
is deleted. However, the modification and deleting
of a rule phrase is not recommended since a care-
ful effort is needed in reviewing its aggregated
business rules. In addition to playing a role as the
building blocks for business rule statements, rule
phrases are also important in linking business
rules to software design elements.

The mappings between rule phrase types and
UML model elements are summarized in Table 4.
Most of the rule phrases are directly linked to class
diagram model elements. Entity and attribute term
are directly connected to the respective class and
attribute in the class diagram. Cardinality and role
are correspondingly linked to multiplicity and role
of an association end of a relationship. Algorithm
is linked to operation specification.

Rule phrases for event, condition, and action,
which are the building blocks for action assertion
rules, are naturally linked to statechart diagram.
Event, condition, and action are respectively
linked to event, guard, and action of a state transi-
tion in a statechart diagram. Consequently, event
and action may be linked to a class operation, and
guard may be linked to an operation specification,
in a class diagram. List and relational operator
contain enumerated values whilst value contains a
literal value. However, value and list can be linked
to an operation that return a single and multiple
values respectively.

the brood process

The BROOD process is described using the
process model based on the syntax and seman-
tics of the OMG software process engineering

Table 4. Association between rule phrases and design elements

Rule Phrase
Type Software Design Elements

Entity Class
Attribute Term Attribute
Operation Term Operation
Attribute Con-
straints

Attribute.isUnique, Attribute.
notNull

Cardinality AssociationEnd.multiplicity
Role AssociationEnd.role
Event Transition.event Class.operation

Condition Transition.guard, Operation.speci-
fication

Action Transition.action Class.operation
Algorithm Operation.specification
Value - (literal value), Operation.
List - (enumeration), Operation
Relational Opera-
tor - (enumeration)

 1055

BROOD

isDeliverable : Boolean

workproduct

work : WorkDefinition

processperformer

processrole
governedProcesses : Process

lifecyclephase

Iteration

Activity

performer : ProcessPerformer
parentWork : WorkDefinition

workdefinition

step

performerwork

0..*
{ordered}

assistant
0..*

activity
0..*

parentWork

0..*

subWork 0..*

step 1..*
activity 1

workProduct 0..*

responsibleRole 0..1

Figure 2. An excerpt from OMG software process engineering metamodel (OMG, 2002)

Figure 3. The flow of activities in the BROOD process

Analyze BR
Statements

Analyze a Class

Analyze a Package

Architectural Analysis

Develop BR
Specification

Design a Class

Design a Package

Architectural Design

Analyze
BR Change Request

Implement
BR Change

Examine BR Change

Soft. Architect
Component
EngineerBusiness User

Perform BR
Modification Change

simple change

complex change

Functional Analyst

Validate BR
Specification

Validate BR
Specification

BR Specification

BR Specification

A
N

 A
 L

 Y
 S

 I
S

D
 E

 S
 I

G
 N

E
V

O
 L

 U
 T

 I
O

 N

BR Specification

Analysis Model

Design Model
{completed}

Analysis Model

Design Model
{changed}

1056

BROOD

metamodel (SPEM). SPEM was developed by
the Object Management Group to provide a
metamodel and notations for specifying software
processes and their components (OMG, 2002).
SPEM extends the unified modeling language
(UML) (OMG, 2001) metamodel with process
specific stereotypes. A part of SPEM that shows
most of the important components of a process
structure is shown in Figure 2.

In SPEM, a work product is an artifact pro-
duced, consumed, or modified by a process. It may
be a piece of information, a document, model,
or source code. It is either used as an input by
workers to perform an activity, or a result or an
output of such activities. A work product is called a
deliverable if it is needed to be formally delivered
by a process. The examples of work products in
BROOD are class diagram, statechart diagram,
and business rule specification. Each work product
is associated with a process role that is formally
responsible for its production.

A process role defines the responsibilities of
an individual, or a group of individuals working
together as a team. Each process role performs
or assists with specific activities.

The core activities of the BROOD process
are situated in the analysis, design, and evolu-
tion phases. Analysis phase produces analysis
model that contains two main work products: the
initial business rule specification and preliminary
software design models. Both work products are
refined and linked during the design phase to pro-
duce a more traceable and consequently evolvable
software system. The flow of activities in each
BROOD phase is shown in Figure 3.

the Analysis phase

As shown in Figure 4, the analysis phase starts
with an architectural analysis activity that consid-
ers the work products from requirements phase
such as use-case model, business model, initial
architecture descriptions, and supplementary
requirements. A software architect performs

architectural analysis by identifying the analysis
packages based on the functional requirements
and knowledge of the application domain. Each
package realizes a set of closely related use cases
and business processes to minimize the coupling
between packages, which in turn localizes busi-
ness changes. This activity identifies analysis
classes and outlines their name, responsibilities,
attributes, and relationships. In order to extract
more information about the behavior of the classes,
collaboration or interaction diagrams can be
developed based on the process flows (scenario)
in the use case models. The main work products
produced by this activity are analysis class dia-
grams and packages in their outline version.

Considering the MediNet application, ar-
chitectural analysis resulted in three packages
business processes i.e. registration, billing, and
invoicing. The registration package groups all
classes related to patient registration such as Pa-
tient, Paymaster, HCProvider, Clinic, User, and
RegLocation. Billing package contains classes
related to billing and drugs inventory such as Bill,
BillPayment, Bill _ Item, TransType, TransItem,
and ExpenseItem. Invoicing package includes
classes related to invoicing and invoice payment

Figure 4. Packages for the MediNet application

reg billing

invoicing

 1057

BROOD

for example Invoice, InvoiceItem, Payment, and
PaymentAllocation.

The outline of analysis class diagrams and
packages are further refined by class analysis
and package analysis activities, respectively.
A component engineer identifies more detailed
information about responsibilities and attributes
of each class. Different types of relationships
between classes such as association, aggregation,
and inheritance are also identified. The possible
states and their transitions can be identified to

understand the behavior of objects from certain
classes. These steps are repeated until a complete
analysis class diagram, statechart diagram and
package are achieved.

The activity of business rule modeling consid-
ers the informal statements captured during initial
requirements and identifies the types for each
business rule statement based on the BROOD ty-
pology. Business rule statements are transformed
into more structured business rule specifications
according to the templates’ definition.

Table 5. Business rule statements for the MediNET application

Business
Process Business Rule Example Rule Type

Registra-
tion

A patient must have a unique registration number. Att. Constraint
A patient may have more than one paymaster. Rel. Constraint
If a patient has an outstanding balance, then the patient should be
banned from consultation registration Action Assertion

When consultation registration is successfully completed, then put
the patient into the consultation queue. Action Assertion

If a patient’s condition is critical then the patient is an emergency
patient. Inference

Billing

The amount of a panel patient’s bill must not exceed the maximum
bill amount set by the paymaster. Att. Constraint

Each bill item is associated with an item from the clinic transaction
items Rel. Constraint

When consultation is completed then create bill. Action Assertion
If the bill is a panel patient’s bill then create panel transaction item. Action Assertion
The amount of a bill is computed as the sum of all amounts of bill
items. Computation

The amount of bill item is computed as the unit amount multiply by
the quantity. Computation

A bill can be modified only if the user role is Chief Clinic Assistant. Inference

Invoicing

One invoice must have zero or more payments. Rel. Constraint
When a payment is not received within 30 days from the invoice
date, then the first reminder will be sent. Action Assertion

The amount of HCP MediNET usage invoice is computed as the
sum of monthly subscription fee plus transaction fees. Computation

A paymaster (panel company) is under probation if the paymaster
has an invoice with category 1 past due and the current balance is
more than RM 5,000.00.

Inference

1058

BROOD

Table 5 shows a set of structured rules for the
MediNet application. This template provides the
means of managing rules as they get discovered
and analyzed and acts as a ‘repository’ of rules
for their entire lifecycle.

the design phase

The design phase involves the identification
of application-specific and application-general
subsystems. The application-specific subsystems
are related to packages that group a set of closely
related services in an application domain. The
application-general subsystems are related to
implementation technology decisions such as
the introduction of user interface and database
connectivity layers. The MediNet subsystems
definition is shown in Figure 5.

The class design activity elaborates further
the static and dynamic information of classes
that were defined during the analysis phase. Ad-
ditional information on the operations, attributes,
and relationships can be added to each class. The
specification of operations and attributes is made
using the syntax of the chosen programming lan-
guage. If necessary, the methods that specify the
algorithm for the implementation of operations
are specified.

The class design activity for the MediNet
application resulted in detailed specification of
for the three packages of registration, billing
and invoicing. The class association diagram of
Figure 6 shows the class details for invoicing.
In order to reduce diagrammatic complexity all
parameters and return values are hidden in the
class operations.

Figure 5. Software architecture for the MediNet application

reg billing invoicing

db

«uses»

«subsystem»
mypeople

«subsystem»
myclinic

«subsystem»
myMedinet

«uses»

core

«uses»

 1059

BROOD

The calculation of invoice amount is different
for different types of invoice. The amount for
healthcare service invoice is calculated as the total
of its item amounts after applying additional com-
putation rules such as bill limit, invoice limit and
discount. MediNET uses the open item invoicing
method that allows an invoice issuer to track each

unpaid invoice as an individual item for aging
purposes. Panel patient bills are considered as the
items for HCP MediNET usage and HCP service
usage invoices. For HCP MediNET usage invoice,
the number of bills issued by a particular HCP
is counted as the number of transactions, which
is later used in the invoice amount calculation.

createInvoice()
addItem()
closeInvoice()
receivePayment()
allocatePayment()
calculateAmount()
archive()

invoiceNo : int
issuerID : String
amount : double
currentBalance : double
description : String
status : String
fromDate : Date
endDate : Date

Invoice

itemNo : int
invoiceNo : int
hcpID : String
billNo : int
description : String
insertDate : Date

InvoiceItem

paymentNo : int
receiverID : String
payerID : String
type : String
referenceNo : String
paymentDate : Date
amount : double
balance : double

payment

1
*

paymentNo : int
invoiceNo : int
issuerID : String
amount : Double
allocateStaffID : String
allocateDate : Date
receiverID : String

paymentAllocation

1

0..*

1

0..*

payer 1

0..*

0..1 1

issuer1

0..*

calculateAmount()
hcpID : String
hcpMedinetusageInvoice

1..*

0..1

calculateAmount()
paymasterID : String
hcserviceInvoice

calculateAmount()
paymasterID : String
pMMedinetusageInvoice

receiver

1

0..*

bill

payer 1

0..*
{OR}

1

0..*

receiver 1

0..*

receiver1

0..*

paymaster

hcprovider
1

*

Figure 6. Class association diagram for invoicing for the MediNet application

1060

BROOD

In terms of payment, MediNET allows balance
forward invoicing method in addition to open
item method.

Within the design process classes are further
elaborated in terms of the events and conditions
that trigger their transition from one state to an-
other. These are shown as statechart diagrams.
For example, a statechart diagram for the HCSer-
viceInvoice object is shown in Figure 7.

Within the BROOD design phase, rule phrase
specifications are developed. Each rule phrase
definition is stored in the repository called rule
phrase entries. The possible values for rule phrase
may be a set of enumerated values or the values of
the linked software design element. A component
engineer may define certain attributes for each
business rule specification such as rule priority,
owner, and business process. Each business rule

Figure 7. The STD HCServiceInvoice object for the MediNet application

Active

createInvoice(issuerID)/ initializeInvoice

Published
publish()[receiver.webCustomer = false] / print

Paid

archive()

receivePayment(amount)[
currentBalance = 0] / updateSuccessors

Cat1PastDue

Cat2PastDue

Cat3PastDue

after: 30 days[
currentBalance > 0] / issueFirstReminder

after: 60 days[
currentBalance > 0] / issueSecondReminder

after: 90 days[
currentBalance > 0] / blockReceiver

publish()[receiver.webCustomer = true]

receivePayment(amount)[
currentBalance = 0]

receivePayment(amount)[
currentBalance = 0] / updateSuccessors

receivePayment(amount)[
currentBalance = 0] / updateSuccessors

Rejected

when: invoice rectified/ publish

rejectInvoice(info)
Closed

after: endDate/ close

 1061

BROOD

statement can also be arranged in an appropriate
rule set to assist the future management of the
business rules.

For the MediNet application, the rules shown
in Table 5 are specified according to rule phrases
syntax as shown in Table 6.

The first rule in Table 6 shows the rule phrase
derived from the attribute constraint rule, infor-
mally defined in the analysis phase as “A patient
must have a unique registration number.” The rule
phrases ‘a patient’ and ‘registration

number’ are respectively linked to Patient class
and patRegNo attribute. The keywords ‘must
have’ and ‘a unique’ are not statically linked
to any design element. Instead, they are used to
dynamically toggle the optionality and uniqueness
values of patRegNo attribute during the creation
or modification of the business rule statement. In
other words, they are used to enable the automated
change propagation to software design.

The second rule in Table 6 shows a relationship
constraint., The rule phrases ‘clinic item’

Table 6. Rule phrases and linked software design elements for the MediNet application

B Rule Category Business Rule Phrases Software Design Elements

Attribute Constraint

<entity> = ‘a patient’ Patient (class)
 ‘must have’ - (patRegNo.optionality)
 ‘a unique’ - (patRegNo.uniqueness)
<attributeTerm> = ‘registration number’ Patient.patRegNo (attribute)

Relationship Constraint

<cardinality> = ‘one and only one’ - (AssociationEnd.multiplicity)
<entity> = ‘transaction item’ TransItem (class)
<role> = ‘item type’ - (AssociationEnd.name)
<entity> = ‘bill item’ Bill_Item (class)

Action Assertion

<event> = ’30 day after the creation
date of the invoice’ - (Trans1.event.spec)

<condition> = ‘current balance of the
invoice is greater than 0’ - (Trans1.guard.body)

<action> = ‘trigger issue the first
reminder’

- (Trans1.action.initialiseInvoice().
spec)

Computation

<attributeTerm> = ‘the amount of HCP
MediNET Usage invoice’ HCPMediNETUsageInvoice.amount

<algorithm> = ‘the sum of monthly
subscription fee plus transaction fee’

HCPMediNETUsageInvoice. calcu-
lateAmount().specification

Inference

<attributeTerm> = ‘a paymaster status’ Paymaster.status
<value> = ‘under probation’ - (literal value)
<condition> = ‘the paymaster has an

invoice with category 1 past due’
AND ‘the current balance is greater
than RM 5,000.00’

Paymaster.getStatus().specification

1062

BROOD

and ‘bill item’ are respectively linked to
TransItem class and Bill _ Item class. The rule
phrases ‘one and only one’ and ‘clinic
item’ play a similar role to keywords as in the
attribute constraint rule, that is their purpose is to
propagate business changes to design elements.
The former specifies the multiplicity of an asso-
ciation end whilst the latter specifies the role of
an association end.

In the action assertion rule “When a payment is
not received within 30 days from the invoice date, then
the first reminder will be sent,” the rule phrases that
represent the event, condition, and action are not
directly linked to any design element but they are
respectively used to generate the specifications
of the transition’s event, guard, and action in the
HCP service usage invoice STD. Since event,
condition, and action rule phrases are themselves
composed by other rule phrases, they may be in-

directly linked to the related design components
via these rule phrases.

The computation and inference rules are
linked to the operation specification —the com-
putation rule is linked to the specification of
calculateAmount() operation in HCPMediNETUs-
ageInvoice class and the inference rule is linked
to getStatus() operation from Paymaster class.
During the development of an inference rule, a
new operation is often needed to be added in its
associated class to perform the derivation and
return the inferred value.

the evolution phase

In general, business rule changes may be classified
into simple and complex changes. A simple change
is concerned with the modification, addition, or
deletion of business rules that do not need to in-

Table 7. Simple change scenarios for the MediNet application

Change Scenarios Changed Business Rules
1. HCP allows patients to make ‘more

than one payment for their bills’
instead of the previously set ‘single
payment for each bill’.

One patient bill is associated with zero or more payments.

2. HCP makes small changes on the con-
ditions to issue the reminder and block
paymaster.

WHEN 15 days from the invoice date IF a payment is not re-
ceived THEN issue the first reminder.
WHEN 30 days from the invoice date IF the payment is not
received THEN issue the second reminder.
WHEN 45 days from the invoice date IF the payment is not re-
ceived THEN block the paymaster.

3. The MediNET supplier offers a more
attractive usage charge to HCPs. They
are charged based on the number of
treated patients regardless the number
of patient visits.

The amount of HCP usage invoice IS CALCULATED AS if (opt
new package) then the transaction fee multiply by the number of
registered patients, else, the transaction fee multiply by the num-
ber of treated patients, plus the monthly fee.

4. HCP introduces 5% discount to its
internet customer.

If the paymaster is an internet customer, then give 5% discount to
their invoices.

5. The HCP decides that each expense
item must belong to one of the pre-de-
fined types.

Zero or more expense item is associated with one and only one
transaction item.

 1063

BROOD

troduce new rule phrases or design elements. A
complex change involves the addition or deletion
of rule phrases or design elements.

Ordinarily, simple business rules changes
could be performed by business users. The
examples of five change scenarios that require
simple business changes in MediNET system are
shown in Table 7.

The implementation of a complex business rule
change requires more effort than that of simple
change. It involves the introduction of new rule
phrases or design elements, which is needed to

be performed by an individual with the knowl-
edge of software design. In addition to technical
skills, it often requires creative skills in making
a design decision. Three examples of complex
rules changes are shown in Table 8.

The first scenario initiates the modification of
two existing business rule statements, the calcula-
tion of bill and the calculation of invoice amount.
These business rule changes consequently lead
to a minor change in software design, that is the
introduction of hasMaxBill attribute in the Pay-
master class.

Table 8. Complex change scenarios for the MediNet application

Change Scenarios Changed Business Rules

1. HCP introduces new package for
paymaster. In this package, the
paymaster may limit the maximum
amount of each patient bill to RM
20.00, and the excessive cost is
absorbed by HCP. However, the
paymaster must pay a monthly fee
of RM5.00 for each patient.

The amount of a bill is computed as
let amount = the sum of all amounts of bill items
if (patient is a panel patient) AND (paymaster has maximum bill
amount) AND (amount > RM 20.00)

amount = 20

The amount of HCP service invoice is computed as
let amount = the total of the invoice items
if (paymaster has maximum bill amount)

amount = amount + 5 * the number of paymaster’s patients

2. Paymaster wishes to provide differ-
ent healthcare benefit coverage for
different groups of its payees.

If (the patient is a panel patient) AND (the patient is an executive
staff) then the patient is entitled to any type of treatments and medi-
cal procedures.
If (the patient is a panel patient) AND (the patient is a production
staff) then the patient is entitled for an outpatient treatment.

3. HCP would like to introduce a 5%
discount on the invoices to pre-
ferred paymasters as a way to ex-
press gratitude to the loyal, poten-
tial, and good paying paymasters.

If (a paymaster has been a paymaster panel for more than 5
years) then (the customer is a ‘loyal’ customer).
If (a paymaster has an average of at least RM24000.00 for
the invoices over the last five years) then (the paymaster is
considered as a ‘potential’ customer).
If (a paymaster never has a past due invoice for the last two
years) then (the paymaster is considered as a good paying
paymaster).
When (the invoice in created) if (the paymaster is a loyal, potential
and good paying customer) then (set the discount of the invoice to
5%)

1064

BROOD

In the second scenario, the paymaster decided
to introduce different healthcare benefit coverage
to different levels of their payees. For example,
executive staff is entitled to any medical treat-
ment and medical procedures whilst production
staff is only paid for outpatient treatments. It
is obvious that simply implementing this new
requirement into the existing Paymaster or Pan-
elPatient class may increase the complexity of
these classes. Therefore, additional classes that
are responsible to manage the healthcare benefit
coverage are required to be added to the existing
software design. The possible candidates for these
classes include BenefitCoverage, SelectedClinic,
MedicalProcedure, and Entitlement.

The third scenario requires the intervention
of a software developer. This scenario requires a
number of new inference rules to be added to define
a loyal, potential, and good paying customer. In
addition to these business rules, an action asser-
tion rule that initializes the value of the invoice
discount during invoice creation should also be
added. The introduction of the new inference rules
consequently requires isLoyal(), isPotential(),
and isGoodPaying() operations to be added to
the Paymaster class. Similarly, the newly intro-
duced action assertion rule requires component
engineers to modify the action component of the
transition from the initial state to ‘Active’ state
in the STD for HCServiceInvoice object.

the brood support tool

The BROOD process introduces several additional
activities to the traditional object-oriented soft-
ware design process. These additional activities
include the documentation of business rules and
their linking to software design components. To
assist a developer with these BROOD-specific
activities, a tool has been developed that sup-
ports the activities of business rule specification
and management, software design editing, and
business rule change propagation.

The BROOD tool was developed on top of the
generic modeling environment (GME) (Ledeczi
et al., 2001; VU, 2003), which is a configurable
modeling environment.

The metamodel and templates, which are
discussed in section 0, were used to implement
the BROOD tool environment.

GME was used to visually edit the software de-
sign models, business rule specification, and rule
phrase entries. Three main modules (known as
interpreters in GME) were developed to simplify
the rule phrase management, business rule com-
position, and business rule modification. These
modules also perform the automated propagation
of business rule changes to the respective software
design elements, since a manual undertaking of
such propagation would be impractical for most
applications.

The BROOD tool has been designed to be used
by both software developers and business users.
A user-friendly interface is provided to ease the
management and traceability of business rules
by non-IT users. An overview of the BROOD
support tool is shown in Figure 8.

The metamodel, the graphical model editor,
the rule phrase management, the business rules
composition and the business rules modification
functions are part of the core component and user
application layer in the BROOD tool architecture.
The rule phrase entries, business rule specifica-
tion, and software design models are stored in
the storage layer.

The BROOD tool maintains the consistencies
between business rule and the linked software
design each time a business rule is created or
modified. It provides full automated support in
performing simple changes and partial support
for complex changes since these require creative
skills of software engineers in making a design
decision.

There are four main types of model that can be
managed using the BROOD tool: rule phrase en-
tries, business rule, class diagram, and statechart
diagram. Users may select the type of model to

 1065

BROOD

Figure 8. Overview of the BROOD tool

Figure 9: Overview of the BROOD Tool

broolink tools

Fact Constraint

BRManager BRLinker Change_Effect_Eva. About

BRules

Registration

Billing

Computation
Action Assertion

Constraint

Invoicing

Fact

Inference

Mandatory
Guideline

Module Explorer Current Module : Registration

Action Assertion Computation Inference

Customer

can place

< Back Next > Save Cancel

relationship

term

Orderterm

Application
Software

Software
Engineer

Software
User

+ i s P a n e l ()
+ i s A l l e r g ic ()
+ g e t P a t ie n t L i s t ()
+ f in d P a t ie n t ()
+ g e t R e g N o ()
+ P a t ie n t ()

« b u s in e s s O b j e c t »
p a t i e n t

- r e g N o : S tr in g
- n a m e : S t r in g
- N R I C : S t r in g
- D O B : D a t e
- s e x : c h a r
- b l o o d T y p e : S t r in g
- a l le r g y : B o o le a n
- m o th e r M a d d e n : S t r i n g
- h o m e A d d r e s s : S t r in g
- h o m e P h o n e : S t r in g
- n a t io n a l i ty : S t r i n g
- p a s s p o r t N o : S t r i n g
- r e g D a t e : D a t e
- is P a n e l : B o o le a n
- p a n e lC o d e : S tr in g
- d e p a r t m e n t : S t r in g
- s p o u s e R e g N o : S t r in g
- s p o u s e R e la t io n : S t r in g + is B lo c k e d ()

+ g e t P a n e lL i s t()
+ g e t P a n e lC o m p a n y ()

« b u s in e s s O b je c t »
p a n e lc o m p a n y

- p a n e l C o d e : S t r i n g
- n a m e : S t r in g
- a d d r e s s : S tr in g
- p h o n e : S t r in g
- e m a i l : S t r in g
- fa x : S tr in g
- te le x : S t r i n g
- c o n t a c tP e r s o n : S tr in g
- m a x B i l l : d o u b le
- m a x I n v o ic e : d o u b le
- d is c o u n t : d o u b le = 0
- s t a tu s : c h a r
- r e m a r k s : S t r i n g
- r e g D a t e : D a te
- p a y m e n tM e t h o d : S t r i n g
- in v o ic e V ie w S e tt in g : c h a r = A

e m p l o y e e

*

e m p lo y e r

0 . . 1

+ g e t S t a f f ()

« b u s in e s s O b j e c t »
c l in i c s t a f f

- u s e r I D : S t r in g
- p a s s w o r d : S t r i n g
- n a m e : S tr in g
- d e s c r ip t io n : S tr in g
- c l in ic C o d e : S t r in g

« b u s in e s s O b je c t»
c l i n i c

- c l in ic C o d e : S t r in g
- n a m e : S tr in g
- a d d r e s s : S t r in g
- p h o n e : S t r i n g
- f a x : S t r in g
- c o n t a c t P e r s o n : S t r in g
- e m a i l : S t r in g

0 . .*

1 . .*

0 .. * 1

+ a d d ()
+ r e m o v e ()
+ g e t P a t ie n t L is t ()

r e g q u e u e
- i t e m : R e g Q u e u e I t e m []
- c l in i c C o d e : S t r in g

0 . . *

1

« b u s in e s s O b j e c t »
e x p e n s e s I t e m

- t r a n s D a t e : D a te
- a m o u n t : d o u b le
- d e s c r ip ti o n : S t r i n g
- c l in ic C o d e : S t r i n g
- u p d a te D a t e T im e : D a t e
- u p d a te S t a ff I D : S t r in g

0 . .*1

+ g e t S h e l f R e f ()

« b u s in e s s O b je c t »
r e g l o c a t io n

- c l in i c C o d e : S t r in g
- P a tR e g N o : S t r in g
- s h e l fR e f : S tr in g

*

1

*

1

+ R e g Q u e u e I t e m ()

r e g q u e u e I t e m
- p a t ie n t : P a t ie n t
- a r r iv a lD a te T im e : D a te

0 . . *

1

1

1

Software
Design Model

simple change

use

generate

software development,
complex change

manage
compose/

modify

propagate
changes

B Rules
Specification

Rule Phrase
Entries

user Application & core components layer

storage layer

broolink tools

Fact Constraint

BRManager BRLinker Change_Effect_Eva. About

BRules

Registration

Billing

Computation
Action Assertion

Constraint

Invoicing

Fact

Inference

Mandatory
Guideline

Module Explorer Current Module : Registration

Action Assertion Computation Inference

Customer

can place

< Back Next > Save Cancel

relationship

term

Orderterm

Application
Software

broolink tools

Fact Constraint

BRManager BRLinker Change_Effect_Eva. About

BRules

Registration

Billing

Computation
Action Assertion

Constraint

Invoicing

Fact

Inference

Mandatory
Guideline

Module Explorer Current Module : Registration

Action Assertion Computation Inference

Customer

can place

< Back Next > Save Cancel

relationship

term

Orderterm

Application
Software

Software
Engineer
Software
Engineer

Software
User

Software
User

+ i s P a n e l ()
+ i s A l l e r g ic ()
+ g e t P a t ie n t L i s t ()
+ f in d P a t ie n t ()
+ g e t R e g N o ()
+ P a t ie n t ()

« b u s in e s s O b j e c t »
p a t i e n t

- r e g N o : S tr in g
- n a m e : S t r in g
- N R I C : S t r in g
- D O B : D a t e
- s e x : c h a r
- b l o o d T y p e : S t r in g
- a l le r g y : B o o le a n
- m o th e r M a d d e n : S t r i n g
- h o m e A d d r e s s : S t r in g
- h o m e P h o n e : S t r in g
- n a t io n a l i ty : S t r i n g
- p a s s p o r t N o : S t r i n g
- r e g D a t e : D a t e
- is P a n e l : B o o le a n
- p a n e lC o d e : S tr in g
- d e p a r t m e n t : S t r in g
- s p o u s e R e g N o : S t r in g
- s p o u s e R e la t io n : S t r in g + is B lo c k e d ()

+ g e t P a n e lL i s t()
+ g e t P a n e lC o m p a n y ()

« b u s in e s s O b je c t »
p a n e lc o m p a n y

- p a n e l C o d e : S t r i n g
- n a m e : S t r in g
- a d d r e s s : S tr in g
- p h o n e : S t r in g
- e m a i l : S t r in g
- fa x : S tr in g
- te le x : S t r i n g
- c o n t a c tP e r s o n : S tr in g
- m a x B i l l : d o u b le
- m a x I n v o ic e : d o u b le
- d is c o u n t : d o u b le = 0
- s t a tu s : c h a r
- r e m a r k s : S t r i n g
- r e g D a t e : D a te
- p a y m e n tM e t h o d : S t r i n g
- in v o ic e V ie w S e tt in g : c h a r = A

e m p l o y e e

*

e m p lo y e r

0 . . 1

+ g e t S t a f f ()

« b u s in e s s O b j e c t »
c l in i c s t a f f

- u s e r I D : S t r in g
- p a s s w o r d : S t r i n g
- n a m e : S tr in g
- d e s c r ip t io n : S tr in g
- c l in ic C o d e : S t r in g

« b u s in e s s O b je c t»
c l i n i c

- c l in ic C o d e : S t r in g
- n a m e : S tr in g
- a d d r e s s : S t r in g
- p h o n e : S t r i n g
- f a x : S t r in g
- c o n t a c t P e r s o n : S t r in g
- e m a i l : S t r in g

0 . .*

1 . .*

0 .. * 1

+ a d d ()
+ r e m o v e ()
+ g e t P a t ie n t L is t ()

r e g q u e u e
- i t e m : R e g Q u e u e I t e m []
- c l in i c C o d e : S t r in g

0 . . *

1

« b u s in e s s O b j e c t »
e x p e n s e s I t e m

- t r a n s D a t e : D a te
- a m o u n t : d o u b le
- d e s c r ip ti o n : S t r i n g
- c l in ic C o d e : S t r i n g
- u p d a te D a t e T im e : D a t e
- u p d a te S t a ff I D : S t r in g

0 . .*1

+ g e t S h e l f R e f ()

« b u s in e s s O b je c t »
r e g l o c a t io n

- c l in i c C o d e : S t r in g
- P a tR e g N o : S t r in g
- s h e l fR e f : S tr in g

*

1

*

1

+ R e g Q u e u e I t e m ()

r e g q u e u e I t e m
- p a t ie n t : P a t ie n t
- a r r iv a lD a te T im e : D a te

0 . . *

1

1

1

Software
Design Model

+ i s P a n e l ()
+ i s A l l e r g ic ()
+ g e t P a t ie n t L i s t ()
+ f in d P a t ie n t ()
+ g e t R e g N o ()
+ P a t ie n t ()

« b u s in e s s O b j e c t »
p a t i e n t

- r e g N o : S tr in g
- n a m e : S t r in g
- N R I C : S t r in g
- D O B : D a t e
- s e x : c h a r
- b l o o d T y p e : S t r in g
- a l le r g y : B o o le a n
- m o th e r M a d d e n : S t r i n g
- h o m e A d d r e s s : S t r in g
- h o m e P h o n e : S t r in g
- n a t io n a l i ty : S t r i n g
- p a s s p o r t N o : S t r i n g
- r e g D a t e : D a t e
- is P a n e l : B o o le a n
- p a n e lC o d e : S tr in g
- d e p a r t m e n t : S t r in g
- s p o u s e R e g N o : S t r in g
- s p o u s e R e la t io n : S t r in g + is B lo c k e d ()

+ g e t P a n e lL i s t()
+ g e t P a n e lC o m p a n y ()

« b u s in e s s O b je c t »
p a n e lc o m p a n y

- p a n e l C o d e : S t r i n g
- n a m e : S t r in g
- a d d r e s s : S tr in g
- p h o n e : S t r in g
- e m a i l : S t r in g
- fa x : S tr in g
- te le x : S t r i n g
- c o n t a c tP e r s o n : S tr in g
- m a x B i l l : d o u b le
- m a x I n v o ic e : d o u b le
- d is c o u n t : d o u b le = 0
- s t a tu s : c h a r
- r e m a r k s : S t r i n g
- r e g D a t e : D a te
- p a y m e n tM e t h o d : S t r i n g
- in v o ic e V ie w S e tt in g : c h a r = A

e m p l o y e e

*

e m p lo y e r

0 . . 1

+ g e t S t a f f ()

« b u s in e s s O b j e c t »
c l in i c s t a f f

- u s e r I D : S t r in g
- p a s s w o r d : S t r i n g
- n a m e : S tr in g
- d e s c r ip t io n : S tr in g
- c l in ic C o d e : S t r in g

« b u s in e s s O b je c t»
c l i n i c

- c l in ic C o d e : S t r in g
- n a m e : S tr in g
- a d d r e s s : S t r in g
- p h o n e : S t r i n g
- f a x : S t r in g
- c o n t a c t P e r s o n : S t r in g
- e m a i l : S t r in g

0 . .*

1 . .*

0 .. * 1

+ a d d ()
+ r e m o v e ()
+ g e t P a t ie n t L is t ()

r e g q u e u e
- i t e m : R e g Q u e u e I t e m []
- c l in i c C o d e : S t r in g

0 . . *

1

« b u s in e s s O b j e c t »
e x p e n s e s I t e m

- t r a n s D a t e : D a te
- a m o u n t : d o u b le
- d e s c r ip ti o n : S t r i n g
- c l in ic C o d e : S t r i n g
- u p d a te D a t e T im e : D a t e
- u p d a te S t a ff I D : S t r in g

0 . .*1

+ g e t S h e l f R e f ()

« b u s in e s s O b je c t »
r e g l o c a t io n

- c l in i c C o d e : S t r in g
- P a tR e g N o : S t r in g
- s h e l fR e f : S tr in g

*

1

*

1

+ R e g Q u e u e I t e m ()

r e g q u e u e I t e m
- p a t ie n t : P a t ie n t
- a r r iv a lD a te T im e : D a te

0 . . *

1

1

1

Software
Design Model

simple change

use

generate

software development,
complex change

manage
compose/

modify

propagate
changes

B Rules
Specification

B Rules
Specification

Rule Phrase
Entries

Rule Phrase
Entries

user Application & core components layer

storage layer

Figure 9. Example of the BROOD model editor

Model
Browser

Interpreters

Attribute
Browser

Title bar

Menu bar

Tool bar

Mode bar

Model
Editing

Windows

Part
Browser

1066

BROOD

be created from a set of choices. An example of
the BROOD model editor is shown in Figure 9.
The model editor provides a convenient way to
create a model and also to connect it or parts of
it to other models.

While graphical model editing is convenient
for visual models such as those of class and stat-
echart diagrams, it is less helpful for business
rules specification.

The graphical model editor can be used for
some simple business rules definition such as car-
dinality, relational operator, list, and optionality
but for more complex rules the BROOD tool offers
a dedicated rule editor, the add business rule (ABR)
module. This module performs two main tasks:
business rule composition and software design
updating. In business rule composition mode,
rule phrases are used to construct a business rule
statement. In software design updating mode the
module updates the software design model that
corresponds to the composed rule.

The BROOD tool also helps with the imple-
mentation of business rule changes. The modify
business rule (MBR) module was developed to
assist tool users in performing this task, an ex-
ample of which is shown in Figure 9.

A full description of the tool is beyond the
scope of this article. It should be stressed how-
ever, that the tool plays an important part in the
effective application of the BROOD approach by
simplifying a sometimes tedious, error-prone,
and time-consuming task of linking and propa-
gating business rule changes to software design
components.

dIscussIon

The main aim of BROOD has been to facilitate
the process of software evolution through: (a)
externalization of business rules and their explicit
modeling and (b) the linking of each modeled
business rule with a corresponding software com-
ponent. This approach provides full traceability

between end-user concepts and software designs.
By combining BROOD to design traceability
in source code (Alves-Foss, Conte de Leon, &
Oman, 2002), it is possible to achieve effective
traceability in a software system.

The BROOD metamodel offers a complete
foundation and infrastructure for the development
of a software system that is resilient to business
rule changes.

With regard to business rule typology, BROOD
introduces three main business rule types: con-
straints, action assertion, and derivations. These
types are further divided into an adequate number
of sub-types and templates. In contrast to BRG,
BROCOM, and BRS approaches, BROOD at-
tempts to remove the redundancy by reducing
the unnecessary business rule types. At the same
time, it improves the incompleteness of business
rule types in AOM, coordination contract, and
BRBeans approaches. In terms of business rule
management elements, BROOD provides the
concept of ruleset to organize the groups and
hierarchy of the closely related business rules.

In terms of its modeling language, BROOD
offers a high level of expressiveness. The keywords
in the language definition and a sufficient number
of sentence templates should provide adequate rep-
resentation constructs. In general, achieving total
expressiveness of the modeling language business
rules is relatively hard to achieve due to the large
number of ways of expressing business rules in
a natural language. The usability of BROOD in
this context will be proved in due course once the
approach has been applied on different domains
and applications. BROOD was found to have a
high level of un-ambiguity by the introduction of
the appropriate typology and templates. BROOD
provides a mutually exclusive set of business rule
types and removes the superfluous templates in
order to avoid conflict and redundancy in repre-
senting the meaning of business rules.

In practical terms, BROOD can be applied
using the UML-based SPEM metamodel, which
provides a set of concepts and notations to de-

 1067

BROOD

scribe various software process components such
as lifecycle phases, activities, process roles, and
work products. The use of business rule templates
and UML improves the usability of the BROOD
approach. The templates allow users to create
a business rule statement by simply composing
the existing rule phrases whilst UML provides
abstractions for users to naturally design a soft-
ware system. Moreover, the detailed process de-
scription is provided to guide users especially in
performing complex tasks such linking business
rules to software design and handling different
types of changes.

The utility of BROOD was demonstrated in
this paper through the use of the MediNet indus-

trial application. This application had originally
been developed using a standard object-oriented
approach. It was therefore possible (and indeed
desirable) to use the case study not only as a way
of demonstrating BROOD but also for comparing
and contrasting BROOD to a traditional develop-
ment approach.

By considering UML for software design,
BROOD maintains the well-known object-ori-
ented design quality attributes such as modular-
ity, high cohesion, low coupling, efficiency, and
portability. BROOD however provides additional
quality attributes such as requirements trace-
ability, software evolvability, and approach
usability.

Figure 10. Example of the BROOD business rules modifier

1068

BROOD

The traditional approach deployed for Me-
diNet did not provide explicit traceability of
business policy defined during the requirements
specification phase. Instead, it provides a so-
called ‘seamless transition’ from the use case
models that document the user requirements to
the analysis and design models. This resulted in
business rules being embedded in both require-
ments specification and software design models.
In contrast, with BROOD there was a natural
transformation of the MediNET requirements
into the structured business rules specification
and in turn this specification was directly related
to software design components.

Concerning software evolution, the imple-
mentation of changes using the traditional ap-
proach required the use of expertise with specific
knowledge of the MediNET software design.
Since software engineers do not normally initiate
business changes, they had to repeat all phases
in MediNET development lifecycle especially
requirements and analysis phases. Locating the re-
lated software design components was hard since
there was no explicit link between the MediNET
design models and its user requirements.

In relation to approach usability, the traditional
approach was easier to apply during development
since it did not have to deal with additional steps
that were added to explicitly specify, document,
and link business rules specification to software
design. These steps were found to increase the
complexity and duration of software development
process. However, the availability of the business
rule typology and templates, which provide the
guidelines for the analysis of business rule state-
ments and the identification of rule phrases, were
found useful in minimizing these problems. The
business rule templates have improved the Me-
diNET system understandability and increased
the involvement of business users in the Medi-
NET development. During evolution, BROOD
was found easier to be used than the traditional
approach. Using BROOD, business users could
perform the simple business rule changes as

demonstrated in the MediNET application. Rapid
change implementation is important especially
in business critical applications with intolerable
downtime. The detailed process description fa-
cilitated the implementation of complex changes
in MediNET.

In summary, BROOD contributes to three
critical areas namely business rules specification,
object-oriented design, and software evolution
process. The proposed business rule specification
extends the state-of-the-art approaches to busi-
ness rule representation by reducing redundancy
and avoiding conflict among business rule types
in its typology. The structures of rule templates
have been defined so as to make them suitable for
linking to software designs in support of future
software evolution. A specification is aligned
to changing user requirements via the linking
of business rules to software designs through a
detailed transformation of business rule into the
specification of related software design compo-
nents. Thus, the externalization of frequently
changing aspects of a system into detailed business
rules and the maintenance of associations between
these and corresponding software components
should provide a strong framework for effective
software evolution.

AcknowledgMent

The authors would like to thank the human
resource department of Universiti Teknologi
Malaysia (UTM) for partially sponsoring this
research, and Penawar Medical Group, Malaysia
for the permission to use its MediNET healthcare
information system requirements specification as
the case study. The authors wish to also express
their gratitude to the three anonymous reviewers
and to the editor of the special issue, Professor
Dinesh Batra, whose insightful and detailed
comments have contributed to the production of
a much improved version of this article.

 1069

BROOD

reFerences

Alves-Foss, J., Conte de Leon, D., & Oman, P.
(2002). Experiments in the use of xml to enhance
traceability between object-oriented design speci-
fications and source code. Paper presented at the
35th Annual Hawaii International Conference on
System Sciences.

Andrade, L., & Fiadeiro, J. (2000, October 15-
19). Evolution by contract. Paper presented at the
ACM Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications
2000, Workshop on Best-practice in Business
Rules Design and Implementation, Minneapolis,
Minnesota USA.

Andrade, L., Fiadeiro, J., Gouveia, J., & Kout-
soukos, G. (2002). Separating computation,
coordination and configuration. Journal of Soft-
ware Maintenance and Evolution: Research and
Practice, 14(5), 353-359.

Astley, M., & Agha, G. A. (1998, 20-21 April).
Modular construction and composition of distrib-
uted software architectures. Paper presented at
the Int. Symposium on Software Engineering, for
Parallel and Distributed Systems, Kyoto, Japan.

Eriksson, H.-E., & Penker, M. (2000). Business
modelling with uml: OMG Group, Wiley Computer
Publishing, John Wiley & Sons, Inc.

Erlikh, L. (2000). Leveraging legacy system dol-
lars for e-business. IEEE IT Professional, 2(3),
17 - 23.

Evans, H., & Dickman, P. (1999, October). Zones,
contracts and absorbing change: An approach
to software evolution. Paper presented at the
Conference on Object-Oriented Programming,
Systems, Languages and Applications (OOPSLA
‘99), Denver, Colorado, USA.

Gottesdiener, E. (1997). Business rules show
power, promise. Application Development Trends,
4(3, March 1997).

Grubb, P., & Takang, A. A. (2003). Software
maintenance: Concepts and practice. Singapore:
World Scientific Publishing.

Halle, B. V. (1994). Back to business rule basics.
Database Programming and Design(October
1994), 15-18.

Hay, D., & Healy, K. A. (1997). Business rules:
What are they really? GUIDE (The IBM User
Group). Retrieved from http://www.Business-
RulesGroup.org/):.

Hay, D., & Healy, K. A. (2000). Defining business
rules ~ what are they really? (No. Rev 1.3): the
Business Rules Group.

Herbst, H. (1996a). Business rule oriented con-
ceptual modelling. Verlag: Physica .

Herbst, H. (1996b). Business rules in system
analysis: A meta-model and repository system.
Information Systems, 21(2), 147-166.

Herbst, H. (1997). Business rule-oriented concep-
tual modeling. Germany: Physica-Verlag.

IBM (Cartographer). (2003). Ibm websphere ap-
plication server enterprise

Kovari, P., Diaz, D. C., Fernandes, F. C. H., Has-
san, D., Kawamura, K., Leigh, D., et al. (2003).
Websphere application server enterprise v5 and
programming model extensions: Websphere
handbook series (First Edition ed.): International
Business Machines Corporation.

Krammer, M. I. (1997). Business rules: Automat-
ing business policies and practicies. Distributed
Computing Monitor(May 1997).

Ledeczi, A., Maroti, M., Bakay, A., Karsai, G.,
Garrett, J., Thomason, C., et al. (2001, 17 May). The
generic modeling environment. Paper presented
at the Workshop on Intelligent Signal Processing,
Budapest, Hungary.

1070

BROOD

Lehman, M. M., & Belady, L. A. (1985). Program
evolution: Processes of software change. London:
Academic Press, Inc.

Loucopoulos, P., & Layzell, P. J. (1986, 1987).
Rubric: A rule based approach for the develop-
ment of information systems. Paper presented at
the 1st European workshop on fault diagnosis,
reliability and related knowledge based ap-
proaches, Rhodes.

Martin, J. (1989). Information engineering:
Prentice-Hall.

McMenamin, S. M., & Palmer, J. F. (1984). Es-
sential systems analysis. Englewood Cliffs, NJ:
Yourdon Press.

Mens, K., Wuyts, R., Bontridder, D., & Grijseels,
A. (1998). Tools and environments for business
rules. Paper presented at the ECOOP’98, Brus-
sels, Belgium.

Moriaty, T. (1993). The next paradigm. Database
Programming and Design.

OMG (Cartographer). (2001). Omg unified model-
ing language specification

OMG (Cartographer). (2002). Software process
engineering metamodel specification

Oreizy, P., Medvidovic, N., & Taylor, R. N.
(1998, April 19-25). Architecture-based runtime
software evolution. Paper presented at the Inter-
national Conference on Software Engineering
1998 (ICSE’98), Kyoto, Japan.

Riehle, D., Tilman, M., & Johnson, R. (2000).
Dynamic object model (No. WUCS-00-29): Dept.
of Computer Science, Washington University.

Robinson, K., & Berrisford, G. (1994). Object-
oriented ssadm. Englewood Cliffs, NJ: Prentice
Hall.

Rosca, D., Greenspan, S., Feblowitz, M., & Wild,
C. (1997, January 1997). A decision support meth-
odology in support of the business rules lifecycle.

Paper presented at the International Symposium
on Requirements Engineering (ISRE’97), An-
napolis, MD.

Rosca, D., Greenspan, S., & Wild, C. (2002).
Enterprise modeling and decision-support for
automating the business rules lifecycle. Automated
Software Engineering, 9(4), 361 - 404.

Rosca, D., Greenspan, S., Wild, C., Reuben-
stein, H., Maly, K., & Feblowitz, M. (1995,
November 1995). Application of a decision sup-
port mechanism to the business rules lifecycle.
Paper presented at the 10th Knowledge-Based
Software Engineering Conference (KBSE95),
Boston, MA.

Ross, R. G. (1997). The business rule book: Clas-
sifying, defining and modelling rules: Data Base
Newsletter.

Ross, R. G., & Lam, G. S. W. (1999). Ruletrack:
The brs meta-model for rule management: Busi-
ness Rule Solutions, Inc.

Ross, R. G., & Lam, G. S. W. (2003). The brs
proteustm methodology (Fourth ed.): Business
Rule Solutions.

Rouvellou, I., Degenaro, I., Rasmus, K., Eh-
nebuske, D., & McKee, B. (1999, November 1-5).
Externalizing business rules from enterprise ap-
plications: An experience report. Paper presented
at the Conference on Object-Oriented Program-
ming, Systems, Languages, and Applications,
Denver, Colorado.

Rouvellou, I., Degenaro, L., Rasmus, K., Eh-
nebuske, D., & McKee, B. (2000, June). Extend-
ing business objects with business rules. Paper
presented at the 33rd International Conference on
Technology of Object-Oriented Languages and
Systems (TOOLS Europe 2000), Mont Saint-
Michel/ St-Malo, France.

Schneider, J. (1999). Components, scripts, and
glue : A conceptual framework for software
composition. Bern:University of Bern.

 1071

BROOD

van Assche, F., Layzell, P. J., Loucopoulos, P.,
& Speltinex, G. (1988). Rubric: A rule-based
representation of information system constructs.
Paper presented at the ESPRIT Conference, Brus-
sels, Belgium.

VU (Cartographer). (2003). Gme 3 user’s
manual

Wan Kadir, W. M. N., & Loucopoulos, P. (2003,
23-26 June). Relating evolving business rules
to software design. Paper presented at the In-
ternational Conference on Software Engineer-
ing Research and Practice (SERP), Las Vegas,
Nevada, USA.

Wan Kadir, W. M. N., & Loucopoulos, P. (2004).
Relating evolving business rules to software

design. Journal of Systems Architecture, 50(7),
367-382.

Yoder, J. W., Balaguer, F., & Johnson, R. (2001,
October 14-18). Adaptive object models for imple-
menting business rules. Paper presented at the
Third Workshop on Best-Practices for Business
Rules Design and Implementation, Conference
on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA 2001),
Tampa Bay, Florida, USA.

Zaniolo, C., Ceri, S., Faloutsos, C., Snodgrass,
R., Subrahmanian, V. S., & Zicari, R. (1997). Ad-
vanced database systems: Morgan Kaufmann.

1072

BROOD

AppendIx A. specIFIcAtIon oF brood

part I: the brood Metamodel

Business Rule Organisation and
Typology

business_rule_model = rule_set, owner;
rule_set = (rule_set | rule_statement), {rule_set | rule_statement}, [owner], [business_pro-

cess];
business_rule = (constraint | action_assertion | derivation), name, [is_mandatory], [priority], [is_propa-

gatable];
contraint
constraint = att_constraint | rel_constraint;
Attribute Constraint
att_constraint = en t i t y, (‘mus t have ’ | ‘m ay have ’) , [‘ a un i que ’] , a t t _ te r m

| a t t _ te r m, (‘mus t be ’ | ‘may be ’) , r e l a t i ona l _ op, (va lue | a t t _ te r m)
| att_term, ‘must be in’, list;

att_term = attribute, ‘of’, entity;
Relationship Constraint
rel_constraint = ([card ina l i t y] , ent i t y, ‘ i s a /an’, ro le, ‘o f ’, [card ina l i t y] , ent i t y

| [c a r d i n a l i t y] , e n t i t y , ‘ i s a s s o c i a t e d w i t h ’ , [c a r d i n a l i t y] , e n t i t y
| e n t i t y , (‘ m u s t h a v e ’ | ‘ m a y h a v e ’) , [c a r d i n a l i t y] , e n t i t y
| e n t i t y , ‘ i s a / a n ’ e n t i t y) ,
{Association};

Action Assertion

action_assertion = ‘WHEN’, event, [‘IF’, condition], ‘THEN’, action, {StatechartDiagram, Transi-
tion};

Event
event = simple_event | complex_event;
simple_event = (change_event | time_event | user_event), {Class, Operation};
change_event = a t t _ t e r m (‘ i s u p d a t e d ’ |) |

e n t i t y (‘ i s d e l e t e d ’ | ‘ i s c r e a t e d ’)
(operation | business_rule), ‘is triggered’;

time_event = d a t e _ t i m e |
n , t i m e _ u n i t , ‘ t i m e i n t e r v a l f r o m ’ , d a t e _ t i m e , ‘ i s r e a c h e d ’ |
number, time_unit, ‘after’, date_time;

user_event = string;
complex_event = simple_event, {(‘Or’ | ‘And’), simple_event {(‘Or’ | ‘And’), simple_event}
Condition
condition = simple_condition | complex_condition;

 1073

BROOD

simple_condition = [‘Not’], attribute_term, relational_op, (value | attribute_term) | attribute_term,
(‘in’ | ‘not in’), list;

complex_condition = simple_condition, (‘Or’ | ‘And’), simple_condition, {(‘Or’ | ‘And’), simple_condi-
tion};

Action
action = simple_action | action_sequence;
simple_action = t r i gge r_ ac t i on | ob jec t _ man ipu la t i on _ ac t i on | use r_ ac t i on ,

{Class, Operation};
trigger_action = ‘trigger’, (process | operation | business_rule);
object_manipulation_action = ‘ s e t ’ , a t t _ t e r m , ‘ t o ’ , v a l u e |

(‘create’ | ‘delete’), object;
action_sequence = simple_action, {simple_action};

Derivation

derivation = computation | inference;
Computation
computation = attribute_term, ‘is computed as’, algorithm, {Class, Operation};
algorithm = string;
(* i.e. any specification language for specifying the algorithm e.g., OCL, pseudo-code, etc. *)
Inference
inference = ‘If’, condition, ‘then’, fact;
fact = (a t t r i b u t e _ t e r m | e n t i t y) , r e l a t i o n a l _ o p , [‘ a ’] , v a l u e) |

entity, (‘may’ | ‘may not’), action, {Class, Operation};

Rule Phrases / Linking Elements / Low-Level Definitions
(* Some low level non-terminal symbol such as <real>, <integer> and <str ing>

are not defined. **** *)
entity = phrase, Class;
attribute = phrase, Class, Attribute;
operation = phrase, {Class, Operation};
cardinality = phrase, maxCard, minCard;
eventPhrase = phrase, event, {Class, Operation};
actionPhrase = phrase, action, {Class, Operation};
role = string;
list = string,{string};
phrase = string;
value = string | integer | real | date | time;
number = real | integer;
time_unit = ‘second’ | ‘minute’ | ‘hour’ | ‘day’ | ‘month’ | ‘year’;
relational_op = ‘equal’ | ‘not equal’ | ‘less than’ | ‘less than or equal’ | ‘greater than’ | ‘greater than or

equal’;

1074

BROOD

name = string;
priority = ‘high’ | ‘medium’ | ‘low’;
is_mandatory = boolean;
is_propagatable = boolean;
boolean = ‘true’ or ‘false’;

part II: the brood process

The following specification is based on OMG Software Process Engineering Metamodel.

Process: Business Rule-based
Object-Oriented Design (BROOD)

Phase: Analysis
Activity: Analyze business rule statements
ProcessRole: Functional Analyst
ActivityParameters {kind: input}
WorkProduct: use-case Model {state: revised}
WorkProduct: business rule statements {state: revised}
ActivityParameters {kind: output}
WorkProduct: Business Rule Specification {state: initial draft}
Steps
Step: Identify business rule type
Step: rewrite business rules according to sentence templates
Step: Resolve rule conflicts and redundancy

Activity: Architectural Analysis
ProcessRole: software Architect
ActivityParameters {kind: input}
WorkProduct: use-case Model {state: revised}
WorkProduct: business Model {state: completed}
WorkProduct: Architecture description {state: initial draft}
WorkProduct: supplementary requirements {state: revised}
ActivityParameters {kind: output}
WorkProduct: Analysis class diagram {state: outline}
WorkProduct: Analysis package {state: outline}
WorkProduct: Architecture description {state: revised draft}
Steps
Step: Identify analysis packages
Step: Identify analysis classes
Step: describe analysis object interactions

Activity: Analyze a class
ProcessRole: component engineer

 1075

BROOD

ActivityParameters {kind: input}
WorkProduct: Analysis class diagram {state: outlined}
ActivityParameters {kind: output}
WorkProduct: Analysis class diagram {state: completed}
Steps
Step: Identify class responsibilities
Step: Identify class attributes
Step: Identify class relationships

Activity: Analyze a package
ProcessRole: component engineer
ActivityParameters {kind: input}
WorkProduct: Analysis package {state: outlined}
WorkProduct: Architecture description {state: revised draft}
ActivityParameters {kind: output}
WorkProduct: Analysis package {state: completed}
Steps
Step: Analyze the cohesiveness of each package
Step: Analyze the dependencies between packages
Phase: design
Activity: Architectural design
ProcessRole: software Architect
ActivityParameters {kind: input}
WorkProduct: use-case Model {state: revised}
WorkProduct: Analysis Model {state: completed}
WorkProduct: Architecture description {state: revised draft}
WorkProduct: supplementary requirements {state: revised}
ActivityParameters {kind: output}
WorkProduct: design class diagram {state: outline}
WorkProduct: design package {state: outline}
WorkProduct: Architecture description {state: revised}
Steps
Step: Identify subsystems and their interfaces
Step: Identify architectural significant classes
Step: Identify generic design mechanisms

Activity: design a class
ProcessRole: component engineer
ActivityParameters {kind: input}
WorkProduct: design class diagram {state: outlined}
ActivityParameters {kind: output}
WorkProduct: design class diagram {state: completed}

1076

BROOD

WorkProduct: design statechart diagram {state: completed}
Steps
Step: Identify operations
Step: Identify attributes
Step: Identify relationships
Step: describe method
Step: describe state
Step: link statechart diagram element to class diagram

Activity: design a sub-system
ProcessRole: component engineer
ActivityParameters {kind: input}
WorkProduct: sub-system {state: outlined}
WorkProduct: Architecture description {state: revised}
ActivityParameters {kind: output}
WorkProduct: sub-system {state: completed}
Steps
Step: design sub-system dependencies
Step: design sub-system interfaces

Activity: Develop Business Rule Specifications
ProcessRole: component engineer
ActivityParameters {kind: input}
WorkProduct: Business Rule Specifications {state: initial draft}
ActivityParameters {kind: output}
WorkProduct: Business Rule Specifications {state: revised draft}
Steps
Step: Define rule phrases
Step: link rule phrase to design elements
Step: Form structured rule statements
Step: populate rule attributes
Step: organize rule set

Activity: Validate Business Rule Specifications
ProcessRole: Functional Analyst / business user
ActivityParameters {kind: input}
WorkProduct: Business Rule Specifications {state: revised draft}
ActivityParameters {kind: output}
WorkProduct: Business Rule Specifications {state: completed}
Steps
Step: Ensure correctness of business rule specifications
Step: Ensure understandability of business rule specifications

Phase: evolution

 1077

BROOD

Activity: examine business rule change request
ProcessRole: business user / Functional Analyst
ActivityParameters {kind: input}
WorkProduct: business rule change request {state: initial}
WorkProduct: Business Rule Specifications {state: completed}
ActivityParameters {kind: output}
WorkProduct: business rule change request {state: revised}
Steps
Step: determine the type of business rule change
Step: revise business rule change request (for complex change)

Activity: Perform Business Rule Modification Change
ProcessRole: business user / Functional Analyst
ActivityParameters {kind: input}
WorkProduct: design Model {state: completed}
ActivityParameters {kind: output}
WorkProduct: design Model {state: changed}
Steps
Step: Locate the relevant business rule specification
Step: Perform change on business rule specification
Step: propagate change to software design

Activity: Analyze business rule change request
ProcessRole: software Architect
ActivityParameters {kind: input}
WorkProduct: business rule change request {state: revised}
WorkProduct: design Model {state: completed}
ActivityParameters {kind: output}
WorkProduct: business rule change plan {}
Steps
Step: Identify the effect of changes
Step: produce the detailed change plan

Activity: Implement business rule change
ProcessRole: component engineer
ActivityParameters {kind: input}
WorkProduct: business rule change plan {}
ActivityParameters {kind: output}
WorkProduct: design Model {state: changed}
Steps
Step: review the change plan
Step: perform the changes

1078

BROOD

ApendIx b. the MedInet
ApplIcAtIon

MediNET is a suite of internet applications that addresses the administrative and back-end processing
requirements of the healthcare business community. It acts as a secondary layer to the existing admin-
istrative and information systems. MediNET allows various components of the healthcare industry to
exchange business data instantaneously and automate their routine administrative tasks. Therefore,
facilitated businesses are able to reduce their administrative burdens, become more efficient and make
better informed business decisions. In contrast to the traditional applications, MediNET does not require
its users to maintain separately installed software. It allows its users to leverage the power of technology
without having to bear massive development, acquisition, infrastructure or maintenance costs.

MediNET users only need to pay as and when they use the application. In general, MediNET users
can be divided into three categories: paymasters, healthcare providers (HCPs), and supplier. Paymasters
are those who pay for medical or healthcare services, for examples employers, insurers and managed
care organizations. They use MediNET to maintain the basic parts of the patient records such as per-
forming their payee registration and defining the healthcare benefit coverage of their payees. HCPs are
the professionals who dispense medical treatment, for examples general practitioners (GPs), hospitals
and dentists. HCPs use MediNET to manage patient records, patient billing and paymaster invoicing.

The current implementation of MediNET is only limited to employers as the paymasters and GPs as
the HCPs. The supplier is the company who owns, provides and maintains the MediNET application.
It rents MediNET to HCPs and paymasters as and when the applications are needed and charges them
based on the number of performed transactions.

MediNET was chosen as a case study due to the various frequently changing business rules introduced
by its different users. For example, HCPs provide different packages to the paymasters that constrain the
way they perform the patient billing and paymasters invoicing. Paymasters may also want to introduce
different healthcare benefit coverage to different staff levels that control the eligibility of the staff’s
treatments. The business rules related to the packages and benefit coverage are frequently changed by
the HCPs and paymasters. Other common changes to business rules include the introduction of invoice
discounts, the rule to block non-paying paymasters, and the conditions to issue reminder for past due
invoices. These frequent changes indicate the need for an approach to simplify the implementation of
changes in MediNET software system.

This work was previously published in the Journal of Database Management, edited by K. Siau, Volume 19, Issue 1, pp. 41-73,
copyright 2008 by IGI Publishing (an imprint of IGI Global).

 1079

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.29
Bug Fixing Practices within

Free/Libre Open Source
Software Development Teams1

Kevin Crowston
Syracuse University, USA

Barbara Scozzi
Politecnico di Bari, Italy

AbstrAct

Free/Libre open source software (FLOSS, e.g.,
Linux or Apache) is primarily developed by
distributed teams. Developers contribute from
around the world and coordinate their activity
almost exclusively by means of email and bulletin
boards, yet some how profit from the advantages
and evade the challenges of distributed software
development. In this article we investigate the
structure and the coordination practices adopted
by development teams during the bug-fixing
process, which is considered one of main areas
of FLOSS project success. In particular, based
on a codification of the messages recorded in the
bug tracking system of four projects, we identify
the accomplished tasks, the adopted coordination
mechanisms, and the role undertaken by both
the FLOSS development team and the FLOSS

community. We conclude with suggestions for
further research.

IntroductIon

In this article, we investigate the coordination
practices for software bug fixing in Free/Libre
open source software (FLOSS) development
teams. Key to our interest is that most FLOSS
software is developed by distributed teams, that
is, geographically dispersed groups of individuals
working together over time towards a common
goal (Ahuja et al., 1997, p. 165; Weisband, 2002).
FLOSS developers contribute from around the
world, meet face to face infrequently, if at all, and
coordinate their activity primarily by means of
computer mediated communications (Raymond,
1998; Wayner, 2000). As a result, distributed teams

1080

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

employ processes that span traditional boundar-
ies of place and ownership. Since such teams are
increasingly commonly used in a diversity of
settings, it is important to understand how team
members can effectively coordinate their work.

The research literature on distributed work and
on software development specifically emphasizes
the difficulties of distributed software develop-
ment, but the case of FLOSS development presents
an intriguing counter-example, at least in part:
a number of projects have been outstandingly
successful. What is perhaps most surprising is
that FLOSS development teams seem not to use
many traditional coordination mechanisms such
as formal planning, system level design, schedules
and defined development processes (Mockus et
al., 2002, p. 310). As well, many (though by no
means all) programmers contribute to projects
as volunteers, without working for a common
organization and/or being paid.

The contribution of this article is to document
the process of coordination in effective FLOSS
teams for a particularly important process, namely
bug fixing. These practices are analyzed by adopt-
ing a process theory, that is, we investigate which
tasks are accomplished, how and by whom they are
assigned, coordinated, and performed. In particu-
lar, we selected four FLOSS projects, inductively
coded the steps involved in fixing various bugs
as recorded in the projects’ bug tracking systems
and applied coordination theory to identify tasks
and coordination mechanisms carried out within
the bug-fixing process.

Studying coordination of FLOSS processes
is important for several reasons. First, FLOSS
development is an important phenomenon deserv-
ing of study for itself. FLOSS is an increasingly
important commercial issue involving all kind
of software firms. Million of users depend on
systems such as Linux and the Internet (heavily
dependent on FLOSS software tools) but as Scac-
chi notes “little is known about how people in these
communities coordinate software development
across different settings, or about what software

processes, work practices, and organizational
contexts are necessary to their success” (Scac-
chi, 2002, p. 1; Scacchi, 2005). Understanding
the reasons that some projects are effective while
others are not is a further motivation for study-
ing the FLOSS development processes. Second,
studying how distributed software developers
coordinate their efforts to ensure, at least in some
cases, high-performance outcomes has both theo-
retical and managerial implications. It can help
understanding coordination practices adopted in
social collectives that are not governed, at least
apparently, by a formal organizational structure
and are characterized by many other discontinui-
ties that is, lack of coherence in some aspects of
the work setting: organization, function, member-
ship, language, culture, etc. (Watson-Manheim
et al., 2002). As to the managerial implications,
distributed teams of all sorts are increasingly used
in many organizations. The study could be useful
to managers that are considering the adoption of
this organizational form not only in the field of
software development.

The remainder of the article is organized as
follows. In Section 2 we discuss the theoretical
background of the study. In Section 3 we stress
the relevance of process theory so explaining why
we adopted such a theoretical approach. We then
describe coordination theory and use it to describe
the bug-fixing process as carried out in traditional
organizations. The research methodology adopted
to study the bug-fixing process is described in
Section 4. In Section 5 and 6 we describe and
discuss the study’s results. Finally, in Section 7
we draw some conclusions and propose future
research directions.

bAckground

In this section we provide an overview of the
literature on software development in distributed
environment and the FLOSS phenomenon.

 1081

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

distributed software development

Distributed teams offer numerous potential
benefits, such as the possibility to perform dif-
ferent projects all over the world without paying
the costs associated with travel or relocation, or
ease of reconfiguring teams to quickly respond
to changing business needs (DeSanctis & Jack-
son, 1994; Drucker, 1988) or to exploit available
competences and distributed expertise (Grinter
et al., 1999; Orlikowski, 2002). Distributed teams
seem particularly attractive for software devel-
opment, because software, as an information
product, can be easily transferred via the same
systems used to support the teams (Nejmeh,
1994; Scacchi, 1991). Furthermore, while many
developed countries face a shortage of talented
software developers, some developing countries
have a pool of skilled professionals available, at
lower cost (Metiu & Kogut, 2001, p. 4; Taylor,
1998). As well, the need to have local developers
in each country for marketing and localization
have made distributed teams a business need for
many global software corporations (Herbsleb &
Grinter, 1999b, p. 85).

While distributed teams have many potential
benefits, distributed workers face many real
challenges. The specific challenges vary from
team to team, as there is a great diversity in their
composition and in the setting of distributed work.
As mentioned, distributed work is characterized
by numerous discontinuities that generate diffi-
culties for members in making sense of the task
and of communications from others, or produce
unintended information filtering (de Souza, 1993).
These interpretative difficulties make it hard for
team members to develop a shared mental model
of the developing project (Curtis et al., 1990, p.
52). A lack of common knowledge about the sta-
tus, authority and competencies of participants
brought together for the first time can be an
obstacle to the creation of a social structure and

the development of team norms (Bandow, 1997,
p. 88) and conventions (Weisband, 2002), thus
frustrating the potential benefits of increased
flexibility.

Numerous studies have investigated social
aspects of software development teams (e.g.,
Curtis et al., 1988; Humphrey, 2000; Sawyer &
Guinan, 1998; Walz et al., 1993). These studies
conclude that large system development requires
knowledge from many domains, which is thinly
spread among different developers (Curtis et al.,
1988). As a result, large projects require a high
degree of knowledge integration and the coor-
dinated efforts of multiple developers (Brooks,
1975). However, coordination is difficult to
achieve as software projects are non-routine, hard
to decompose perfectly and face requirements
that are often changing and conflicting, making
development activities uncertain.

Unfortunately, the problems of software devel-
opment seem to be exacerbated when development
teams work in a distributed environment with a
reduced possibility for informal communication
(Bélanger, 1998; Carmel & Agarwal, 2001; Herbs-
leb & Grinter, 1999a). In response to the problems
created by discontinuities, studies of distributed
teams stress the need for a significant amount of
time spent in “community building” (Butler et
al., 2002). In particular, members of distributed
teams need to learn how to communicate, interact
and socialize using CMC. Successful distributed
cross-functional teams share knowledge and infor-
mation and create new practices to meet the task-
oriented and social needs of the members (Robey
et al., 2000). Research has shown the importance
of formal and informal adopted coordination
mechanisms, information sharing for coordination
and communications, and conflict management
for project’s performance and quality (Walz et
al., 1993). However, the processes of coordination
suitable for distributed teams are still open topics
for research (e.g., Orlikowski, 2002).

1082

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

the Floss phenomenon:
A literature overview

The growing literature on FLOSS has addressed
a variety of questions. Some researchers have
examined the implications of free software from
economic and policy perspectives (e.g., Di Bona et
al., 1999; Kogut & Metiu, 2001; Lerner & Tirole,
2001) as well as social perspective (e.g., Bessen,
2002; Franck & Jungwirth, 2002; Hann et al.,
2002; Hertel et al., 2003; Markus et al., 2000).
Other studies examine factors for the success of
FLOSS projects (Hallen et al., 1999; Leibovitch,
1999; Pfaff, 1998; Prasad, n.d.; Valloppillil, 1998;
Valloppillil & Cohen, 1998, Crowston and Scozzi,
2003). Among them, an open research question
deals with the analysis of how the contributions of
multiple developers can be brought into a single
working product (Herbsleb & Grinter, 1999b).
To answer such a question, a few authors have
investigated the processes of FLOSS development
(e.g., Jensen & Scacchi, 2005; Stewart & Ammeter,
2002). The most well-known model developed
to describe FLOSS organization structure is the
bazaar metaphor proposed by Raymond (1998).
As in a bazaar, FLOSS developers autonomously
decide the schedule and contribution modes for
software development, making a central coordina-
tion action superfluous. While still popular, the
bazaar metaphor has been broadly criticized (e.g.,
Cubranic, 1999). According to its detractors, the
bazaar metaphor disregards some aspects of the
FLOSS development process, such as the impor-
tance of the project leader control, the existence
of de-facto hierarchies, the danger of information
overloads and burnout, the possibility of conflicts
that cause a loss of interest in a project or forking,
and the only apparent openness of these com-
munities (Bezroukov, 1999a, 1999b).

Nevertheless, many features of the bazaar
model do seem to apply. First, many teams are
largely self-organizing, often without formally
appointed leaders or formal indications of rank

or role. Individual developers may play different
roles in different projects or move from role to
role as their involvement with a project changes.
For example, a common route is for an active
user to become a co-developer by contributing a
bug fix or code for a new feature, and for active
and able co-developers to be invited to become
members of the core. Second, coordination of
project development happens largely (though
not exclusively) in a distributed mode. Members
of a few of the largest and most well-established
projects do have the opportunity to meet face-
to-face at conferences (e.g., Apache developers
at ApacheCon), but such an opportunity is rare
for most project members. Third, non-member
involvement plays an important role in the success
of the teams. Non-core developers contribute bug
fixes, new features or documentation, provide
support for new users and fill a variety of other
roles in the teams. Furthermore, even though the
core group provides a form of leadership for a
project, they do not exercise hierarchical control.
A recent study documented that self-assignment
is a typical coordination mechanism in FLOSS
projects and direct assignment are nearly non-
existent (Crowston et al., 2005). In comparison to
traditional organizations then, more people can
share power and be involved in FLOSS project
activities. However, how these diverse contribu-
tions can be harnessed to create a coherent product
is still an important question for research. Our
article addresses this question by examining in
detail a particular case, namely, coordination of
bug-fixing processes.

conceptuAl deVelopMent

In this section, we describe the theoretical per-
spectives we adopted to examine the coordina-
tion of bug fixing, namely, a process-oriented
perspective and the coordination theory. We also
introduce the topic of coordination and discuss

 1083

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

the literature on coordination in software devel-
opment and the (small) literature on coordination
in FLOSS teams.

processes as theories

Most theories in organizational and information
system research are variance theories, compris-
ing constructs or variables and propositions or
hypotheses linking them. By adopting a statisti-
cal approach, such theories predict the levels of
dependent or outcome variables from the levels
of independent or predictor variables, where the
predictors are seen as necessary and sufficient for
the outcomes. In other words, the logical struc-
ture of such theories is that if concept a implies
concept b, then more of a means more (or less) of
b. For example, the hypothesis that the adoption
of ICT makes organization more centralized,
examined as a variance theory, is that the level
of organization centralization increases with the
number of new ICTs adopted.

An alternative to a variance theory is a process
theory (Markus & Robey, 1988). Rather than
relating levels of variables, process theories ex-
plain how outcomes of interest develop through
a sequence of events. In that case, antecedents
are considered as necessary but not sufficient
for the outcomes (Mohr, 1982). For example, a
process model of ICT and centralization might
posit several steps each of which must occur for
the organization to become centralized, such
as development and implementation of an ICT
system and use of the system to control decision
premises and program jobs, resulting in centraliza-
tion of decision making as an outcome (Pfeffer,
1978). However, if any of the intervening steps
does not happen, a different outcome may occur.
For example, if the system is used to provide
information directly to lower-level workers, de-
cision making may become decentralized rather
centralized (Zuboff, 1988). Of course, theories

may contain some aspects of both variance and
process theories (e.g., a variance theory with
a set of contingencies), but for this discussion,
we describe the pure case. Typically, process
theories are of some transient process leading to
exceptional outcomes, for example, events leading
up to an organizational change or to acceptance
of a system. However, we will focus instead on
what might be called “everyday” processes: those
performed regularly to create an organization’s
products or services. For example, Sabherwal
and Robey (1995) described and compared the
processes of information systems development
for 50 projects to develop five clusters of similar
processes.

Kaplan (1991, p. 593) states that process
theories can be “valuable aids in understanding
issues pertaining to designing and implementing
information systems, assessing their impacts,
and anticipating and managing the processes of
change associated with them”. The main advan-
tage of process theories is that they can deal with
more complex causal relationships than variance
theories. Also they embody a fuller description of
the steps by which inputs and outputs are related,
rather than noting the relationship between the
levels of input and output variables. Specifically,
representing a process as a sequence of activi-
ties provides insight into the linkage between
individual work and processes, since individuals
perform the various activities that comprise the
process. As individuals change what they do, they
change how they perform these activities and thus
their participation in the process. Conversely,
process changes demand different performances
from individuals. ICT use might simply make
individuals more efficient or effective at the ac-
tivities they have always performed. However,
an interesting class of impacts involves changing
which individuals perform which activities and
how activities are coordinated. Such an analysis
is the aim of this article.

1084

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

coordination of processes

In this subsection, we introduce the topic of
coordination and present the fundamentals of
coordination theory. Studying coordination means
analyzing how dependences that emerge among
the components of a system are managed. That
stands for any kind of system, for example, so-
cial, economics, organic, or information system.
Hence, the coordination of the components of
a system is a phenomenon with a universal rel-
evance (Boulding, 1956). The above definition of
coordination is consistent with the large body of
literature developed in the field of organization
theory (e.g., Galbraith, 1973; Lawrence & Lorsch,
1967; Mintzberg, 1979; Pfeffer & Salancik, 1978;
Thompson, 1967) that emphasizes the importance
of interdependence.

For example, according to Thompson (1967),
organizational action consists of the coordination
of the interdependences and the reduction of the
costs associated to their management. Two com-
ponents/systems are said to be interdependent if
the action carried out by one of them affect the
other one’s output or performance (McCann &
Ferry, 1979; Mohr, 1971; Victor & Blackburn,
1987). For space reason, it is not possible to
present all the contributions on coordination in
the literature, but because of its relevance, we
here briefly report on Thompson’s seminal work.
Thompson (1967) identified three main kinds of
interdependence, namely pooled, sequential and
reciprocal interdependence. Pooled interdepend-
ence occurs among organization units that have
the same goal but do not directly collaborate to
achieve it. Sequential dependence emerges among
serial systems. A reciprocal dependence occurs
when the output of a system is the input for a
second system and vice versa. The three kinds
of interdependence require coordination mecha-
nisms whose cost increases going from the first to
the last one. The coordination by standardization,
that is, routine and rules, is sufficient to manage

pooled-dependant systems. Coordination by plan
implies the definition of operational schemes
and plans. It can be used to manage pooled and
sequential dependences. Finally, coordination by
mutual adjustment is suitable for the management
of reciprocal dependences.

The interest devoted by scholars and prac-
titioners to the study of coordination problems
has recently increased due to the augmented
complexity of products, production processes
and to the rapid advancement in science and
technology. To address these issues scholars
have developed coordination theory, a systemic
approach to the study of coordination (Malone &
Crowston, 1994). Coordination theory synthesizes
the contributions proposed in different disciplines
to develop a systemic approach to the study of
coordination. Studies on coordination have been
developed based on two level of analysis, a micro
and a macro level. In particular, most organization
studies adopt a macro perspective, so considering
dependencies emerging among organizational
units. Other studies adopt a micro perspective, so
considering dependencies emerging among single
activities/actors. Coordination theory adopts the
latter perspective and, in particular, focuses on
the analysis of dependencies among activities
(rather that actors). Hence, it is particularly useful
to the description and analysis of organizational
processes, which can be defined as a set of inter-
dependent activities aimed to the achievement
of a goal (Crowston, 1997; Crowston & Osborn,
2003). In particular, this approach has the ad-
vantage of making it easier to model the effects
of reassignments of activities to different actors,
which is common in process redesign efforts.
We adopted this perspective because the study
focuses on analyzing coordination mechanisms
within processes.

Consistent with the definition proposed above,
Malone and Crowston (1994) analyzed group
action in terms of actors performing interdepen-
dent tasks. These tasks might require or create

 1085

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

resources of various types. For example, in the
case of software development, actors include the
customers and various employees of the software
company. Tasks include translating aspects of a
customer’s problem into system requirements and
code, or bug reports into bug fixes. Finally, re-
sources include information about the customer’s
problem and analysts’ time and effort. In this
view, actors in organizations face coordination
problems arising from dependencies that constrain
how tasks can be performed.

It should be noted that in developing this
framework, Malone and Crowston (1994) describe
coordination mechanisms as relying on other
necessary group functions, such as decision mak-
ing, communications, and development of shared
understandings and collective sensemaking (Brit-
ton et al., 2000; Crowston & Kammerer, 1998).
To develop a complete model of a process would
involve modeling all of these aspects: coordina-
tion, decision making, and communications. In
this article though, we will focus on the coordina-
tion aspects, bracketing the other phenomenon.

Coordination theory classifies dependencies as
occurring between a task and a resource, among
multiple tasks and a resource, and among a task
and multiple resources. Dependencies between
a task and a resource are due to the fact that a
task uses or creates a resource. Shared use of
resources can in turn lead to dependencies be-
tween the tasks that use or create the resource.
These dependencies come in three kinds. First,
the flow dependence resembles the Thompson’s
sequential dependency. Second, the fit dependence
occurs when two activities collaborate in the
creation of an output (though in the case where
the output is identical, this might better be called
synergy, since the benefit is that duplicate work
can be avoided). Finally, the share dependency
emerges among activities that share the use of
a resource. Dependencies between a task and
multiple resources are due to the fact that a task
uses, creates or produces multiple resources or a

task uses a resource and create another resource.
For example, in the case of software development,
a design document might be created by a design
task and used by programming tasks, creating a fit
dependency, while two development tasks might
both require a programmer (a share dependency)
and create outputs that must work together (a fit
dependency).

The key point in this analysis is that dependen-
cies can create problems that require additional
work to manage (or provide the opportunity to
avoid duplicate work). To overcome the coordi-
nation problems created by dependences, actors
must perform additional work, which Malone and
Crowston (1994) called coordination mechanisms.
For example, if particular expertise is necessary
to perform a particular task (a task-actor depen-
dency), then an actor with that expertise must be
identified and the task assigned to him or her.
There are often several coordination mechanisms
that can be used to manage a dependency. For
example, mechanisms to manage the dependency
between an activity and an actor include (among
others): (1) having a manager pick a subordinate to
perform the task; (2) assigning the task to the first
available actor; and (3) having a labour market in
which actors bid on jobs. To manage a usability
subdependency, the resource might be tailored
to the needs of the consumer (meaning that the
consumer has to provide that information to the
producer) or a producer might follow a standard so
the consumer knows what to expect. Mechanisms
may be useful in a wide variety of organizational
settings. Conversely, organizations with similar
goals achieved using more or less the same set of
activities will have to manage the same depen-
dencies, but may choose different coordination
mechanisms, thus resulting in different processes.
Of course, the mechanisms are themselves activi-
ties that must be performed by some actors, and
so adding coordination mechanisms to a process
may create additional dependences that must
themselves be managed.

1086

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

coordination in software
development

Coordination has long been a key issue in software
development (e.g., Brooks, 1975; Conway, 1968;
Curtis et al., 1988; Faraj & Sproull, 2000; Kraut
& Streeter, 1995; Parnas, 1972). For example,
Conway (1968) observed that the structure of a
software system mirrors the structure of the or-
ganization that develops it. Both Conway (1968)
and Parnas (1972) studied coordination as a crucial
part of software development. Curtis et al. (1988)
found that in large-scale software project, coor-
dination and communication are among the most
crucial and hard-to-manage problems. To address
such problems, software development researchers
have proposed different coordination mechanisms
such a planning, defining and following a process,
managing requirements and design specifications,
measuring process characteristics, organizing
regular meetings to track progress, implementing
workflow systems, among the others.

Herbsleb and Grinter (1999b), in a study of
geographically-distributed software develop-
ment within a large firm, showed that some of
the previously mentioned coordination mecha-
nisms—namely integration plans, component-
interface specifications, software processes and
documentation—failed to support coordination if
not properly managed. The mechanisms needed
to be modified or augmented (allowing for the
filling in of details, handling exceptions, cop-
ing with unforeseen events and recovering from
errors) to allow the work to proceed. They also
showed that the primary barriers to coordination
breakdowns were the lack of unplanned contact,
knowing whom to contact about what, cost of
initiating a contact, ability to communicate ef-
fectively and lack of trust or willingness to com-
municate openly.

Kraut and Streeter (1995), in studying the
coordination practices that influence the sharing
of information and success of software develop-
ment, identified the following coordination tech-

niques: formal-impersonal procedures (projects
documents and memos, project milestones and
delivery schedules, modification request and
error-tracking procedures, data dictionaries),
formal-interpersonal procedures (status-review
meetings, design-review meetings, code inspec-
tions), informal-interpersonal (group meetings
and co-location of requirements and development
staff, electronic communication such as e-mail
and electronics bulletin boards, and interpersonal
network). Their results showed the value of both
informal and formal interpersonal communication
for sharing information and achieving coordina-
tion in software development. Note though that this
analysis focuses more the media for exchanging
information rather than particular dependencies or
coordination mechanisms that might be executed
via these media. That is, once you have called a
group meeting, what should you talk about?

coordination in Floss
development

A few studies have examined the work practices
and coordination modes adopted by FLOSS teams
in more detail, which is the focus of this article
(Iannacci, 2005; Scacchi, 2002; Weber, 2004).
Cubranic (1999) observed that the main media used
for coordination in FLOSS development teams
were mailing lists. Such a low-tech approach is
adopted to facilitate the participation of would-
be contributors, who may not have access to or
experience with more sophisticated technology.
The geographical distribution of contributors and
the variability in time of contributors precluded
the use of other systems (e.g., systems that support
synchronous communication or prescriptive coor-
dination technology, such as workflow systems).
Mailing lists supported low-level coordination
needs. Also, Cubranic (1999) found no evidence
of the use of higher-level coordination, such as
group decision making, knowledge management,
task scheduling and progress tracking. As they are
the main coordination mechanisms, the volume

 1087

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

of information within mailing lists can be huge.
Mailing lists are therefore often unique repositor-
ies of source information on design choices and
evolution of the system. However, dealing with
this volume of information in large open source
software projects can require a large amount of
manual and mental effort from developers, who
have to rely on their memory to compensate for
the lack of adequate tools and automation.

In a well-known case study of two important
FLOSS projects, namely Apache and Mozilla,
Mockus et al. (2002) distinguished explicit (e.g.,
interface specification processes, plans, etc.) and
implicit coordination mechanisms adopted for
software development. They argued that, because
of its software structure, the Apache development
team had primarily adopted implicit coordination
mechanisms. The basic server was kept small.
Core developers worked on what interested them
and their opinion was fundamental when add-
ing new functionality. The functionality beyond
the basic server was added by means of various
ancillary projects, developed by a larger com-
munity that interacted with Apache only through
defined interfaces. Such interfaces coordinate
the effort of the Apache developers: as they had
to be designed based on what Apache provided,
the effort of the Apache core group was limited.
As a result, coordination relied on the knowledge
of who had expertise in a given area and general
communication on who is doing what and when.
On the other hand, in the Mozilla project, be-
cause of the interdependence among modules,
considerable effort is spent in coordination. In
this case, more formal and explicit coordination
mechanisms were adopted (e.g., module owners
were appointed who had to approve all changes
in their module).

Jensen & Scacchi (2005) modelled the soft-
ware-release process in three projects, namely
Mozilla, Apache and NetBeans. They identified
tasks, their dependencies and the actors perform-
ing them. However, they did not analyze the
coordination issues in depth and did not focus

specifically on the bug-fixing process, which is
the aim of this article. Rather, their final goal
was to study the relationships among the three
communities that form a Web Information In-
frastructure.

Iannacci (2005) adopted an organizational
perspective to study coordination processes within
a single large-scale and well-known FLOSS devel-
opment project, Linux. He identified three main
(traditional) coordination mechanisms, namely
standardization, loose coupling and partisan
mutual adjustment. Standardization is a coordina-
tion mechanism to manage pooled dependencies
emerging among different contributors. It implies
the definition of well-defined procedures, such
as in the case of patch submission or bug-fixing
procedures. Loose coupling is used to manage
sequential dependencies among the different
subgroups of contributors. It is the coordination
mechanisms used to, for example, incorporating
new patches. Finally, partisan mutual adjustment is
a mechanism used to manage what Iannacci (2005)
called networked interdependencies, an extension
of the reciprocal dependencies as proposed by
Thompson (1967). Networked interdependencies
are those emerging among contributors to specific
part of the software. Partisan mutual adjustment
produces a sort of structuring process so creating
an informal (sub-)organization. However, these
findings are based on a single exceptional case, the
Linux project, making it unclear how much can be
generalized to smaller projects. Indeed, most of
the existing studies are of large and well-known
projects and focused on the development process.
To our knowledge, no studies have analyzed the
bug-fixing process in depth within small FLOSS
development teams.

A coordination theory Application:
the bug-Fixing process

To ground our discussion of coordination theory,
we will briefly introduce the bug-fixing process,
which consists of the tasks needed to correct

1088

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

software bugs. We decided to focus on the bug-
fixing process for three reasons. First, bug fixing
provides “a microcosm of coordination problems”
(Crowston, 1997). Second, a quick response to
bugs has been mentioned as a particular strength
of the FLOSS process: as Raymond (1998) puts
it, “given enough eyeballs, all bugs are shallow”.
Finally, it is a process that involves the entire de-
veloper community and thus poses particular coor-
dination problems. While there have been several
studies of FLOSS bug fixing, few have analyzed
coordination issues within bug-fixing process by
adopting a process view. For example, Sandusky
et al. (2004) analyzed the bug-fixing process.
They focus their attention on the identification of
the relationships existing among bug reports, but
they do not examine in details the process itself.
In contrast to the prior work, our article provides
empirical evidence about coordination practices
within FLOSS teams. Specifically, we describe
the way the work of bug fixing is coordinated in
these teams, how these practices differ from those
of conventional software development and thus
suggest what might be learned from FLOSS and
applied in other settings.

We base our description on the work of
Crowston (1997), who described the bug-fixing
process observed at a commercial software com-
pany. Such a process is below defined as traditional
because 1) it is carried out within a traditional
kind of organization (i.e., the boundary are well
defined, the environment is not distributed, the
organization structure is defined) and 2) refers to
the production of commercial rather than FLOSS
software. The process is started by a customer who
finds a problem when using a software system. The
problem is reported (sometimes automatically or
by the customer) to the company’s response center.
In the attempt to solve the problem, personnel in
the center look in a database of known bugs. If a
match is found, the fix is returned to the customer;
otherwise, after identifying the affected product,
the bug report is forwarded to an engineer in the
marketing center. The assigned engineer tries

to reproduce the problem and identify the cause
(possibly requesting additional information from
the reporter to do so). If the bug is real, the bug
report is forwarded to the manager responsible
for the module affected by the bug. The manager
then assigns the bug to the software engineer
responsible for that module. The software engi-
neering diagnoses the problem (if she finds that
the problem is in a different module, the report is
forwarded to the right engineer) and designs a fix.
The proposed fix is shared with other engineers
responsible for modules that might be affected.
When the feedback from those engineers is posi-
tive, the proposed design is transformed into lines
of code. If changes in other module are needed,
the software engineer also asks the responsible
engineers for changes. The proposed fix is then
tested, the eventual changed modules are sent
to the integration manager. After approving, the
integration manager recompiles the system, tests
the entire system and releases the new software
in the form of a patch. To summarize then, in the
traditional bug-fixing process, the following tasks
have been identified (Crowston, 1997):

Report, Try to solve the problem, Search database
for solution, Forward to the marketing manager,
Try to solve the problem/Diagnose the problem,
Forward to the Software Engineering Group, As-
sign the bug, Diagnose the problem, Design the
fix, Verify affected modules and ask for approval,
Write the code for the fix, Test it, Integrate changes,
Recompile the module and link it to the system.

After describing the above process, Crowston
(1997) went on to analyze the coordination
mechanisms employed. A number of the tasks
listed can be seen as coordination mechanisms.
For example, the search for duplicate bugs as well
as the numerous forward and verify tasks manage
some dependency. Searching for duplicate outputs
is the coordination mechanism to manage a de-
pendency between two tasks that might have the
same output. In this case, the tasks are to respond

 1089

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

to bug reports from customers. These tasks can be
performed by diagnosing and repairing the bug,
but if the solution to the bug report can be found
in the database, then the effort taken to solve it
a second time can be avoided. Thus, searching
the database for a solution is a way to manage a
potential dependency between the two bug-fixing
tasks. Forwarding and verifying tasks are coordi-
nation mechanisms used to manage dependency
between a task and the actor appropriate to perform
that task. These steps are needed because many
actors are involved in the process and each of
them carry out a very specialized task, requiring
additional work to find an appropriate person to
perform each task.

reseArch Methodology

To address our research question, how are bug
fixes coordinated in FLOSS projects, we carried
out a multiple case study of different FLOSS
projects, using the theoretical approach developed
in the previous section. In this section, we discuss
sample selection and data sources, data collection
and data analysis, deferring a discussion of our
findings to the following section.

sample section

In this sub-section we describe the basis for select-
ing projects for analysis. Projects to be studied
were selected from those hosted on SourceForge,
(http://sourceforge.net/), a Web-based system
that currently supports the development of more
than 100,000 FLOSS projects (although only a
small proportion of these are actually active). We
chose to examine projects from a single source
to control for differences in available tools and
project visibility. Because the process of manually
reading, rereading, coding and recoding messages
is extremely labor-intensive, we had to focus
our attention on a small number of projects. We
selected projects to study in-depth by employing

a theoretical sampling strategy based on several
practical and theoretical dimensions.

First, we chose projects for which data we need
for our analysis are publicly available, meaning
a large number of bug reports. (Not all projects
use or allow public access to the bug-tracking
system.) Second, we chose teams with more than
8 developers (i.e., those with write access to the
source code control system), since smaller proj-
ects seemed less likely to experience significant
coordination problems. The threshold of eight
members was chosen based on our expectation that
coordinating tasks within a team would become
more complicated as the number of members
increases. We assumed that each member of the
team could manage 4 or 5 relationship, but with
eight members, we expected some difficulty in
coordination to arise. Only 140 projects of Source-
Forge met the first two requirements in 2002 when
we drew our sample. Third, projects were chosen
so as to provide some comparison in the target
audience and addressed topic, as discussed below.
Finally, because we wanted to link coordination
practices to project effectiveness, we tried to select
more and less effective development teams. To
this aim we used the definitions of effectiveness
proposed by Crowston et al. (2006a), who sug-
gest that a project is effective if it is active, the
resulting software is downloaded and used and
the team continues in operation. We selected 4
FLOSS projects to satisfy the mentioned criteria.
Specifically, from the 140 large active projects, we
selected two desktop chat clients that are aimed
at end users (KICQ and Gaim) and two projects
aimed primarily at developers (DynAPI, an
HTML library and phpMyAdmin, a web-based
database administration tool). A brief description
of the projects is reported in Table 1, including
the project goal, age at the time of the study, vol-
ume of communication and team membership. A
consequence of the requirement of a significant
number of bug reports is that all four projects are
relatively advanced, making them representative
of mature FLOSS projects. Based on the definition

1090

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

proposed by Crowston et al. (2006a), Kicq, Gaim
and phpMyAdmin were chosen as examples of
effective projects because they were active, the
resulting software was being downloaded and the
group had been active for a while. DynAPI was

chosen as an example of a less effective project
because the number of downloads and program-
ming activity had rapidly decreased in the months
leading up to the study.

K
IC

Q
D

yn
A

PI
G

ai
m

ph
pM

yA
dm

in
G

oa
l

IC
Q

 c
lie

nt
 fo

r t
he

K

D
E

pr
oj

ec
t (

a
ch

at
 c

lie
nt

)

D
yn

am
ic

 H
TM

L
lib

ra
ry

M
ul

ti-
pl

at
fo

rm
 A

IM

cl
ie

nt
 (a

 c
ha

t c
lie

nt
)

W
eb

-b
as

ed

da
ta

ba
se

 a
dm

in
is

tra
-

tio
n

R
eg

is
tr

at
io

n
da

te
19

99
-1

1-
19

20
00

-0
5-

15
19

99
-1

1-
13

20
01

-0
3-

18
D

ev
el

op
m

en
t S

ta
tu

s
4

B
et

a,
 5

 P
ro

du
c-

tio
n

St
ab

le
5

Pr
od

uc
tio

n

St
ab

le
5

Pr
od

uc
tio

n

St
ab

le
5

Pr
od

uc
tio

n

St
ab

le
L

ic
en

se
G

PL
LG

PL
, G

PL
G

PL
G

PL
In

te
nd

ed

A
ud

ie
nc

e
D

ev
el

op
er

s,
En

d
U

se
rs

/D
es

kt
op

D
ev

el
op

er
s

A
dv

an
ce

d
En

d
U

s-
er

s,
D

ev
el

op
er

s,
En

d
U

se
rs

/D
es

kt
op

D
ev

el
op

er
s,

En
d

U
s-

er
s/

D
es

kt
op

, S
ys

te
m

A

dm
in

is
tra

to
rs

To
pi

c
IC

Q
, K

 D
es

kt
op

En

vi
ro

nm
en

t
(K

D
E)

D
yn

am
ic

 C
on

te
nt

A
O

L
In

st
an

t M
es

-
se

ng
er

, I
C

Q
, I

nt
er

ne
t

R
el

ay
 C

ha
t,

M
SN

M

es
se

ng
er

Fr
on

t-E
nd

s,
D

yn
am

-
ic

 C
on

te
nt

, S
ys

te
m

s
A

dm
in

is
tra

tio
n

O
pe

n
bu

gs
/

To
ta

l #
 o

f b
ug

s
26

 /8
8

45
/2

20

26
9

/1
49

9
29

 /6
39

O
pe

n
Su

pp
or

t
R

eq
ue

st
s/

To
ta

l #
 o

f
re

qu
es

ts
12

/1
8

20
/1

07
3/

12
5

O
pe

n
Pa

tc
he

s/
 T

ot
al

 #

of
 P

at
ch

es
1/

8
14

/1
44

75
/5

56
7/

13
1

O
pe

n
Fe

at
ur

es

re
qu

es
ts

/T
ot

al
 #

 o
f

re
qu

es
ts

9/
9

5/
12

21
4/

44
7

21
4/

44
7

M
ai

lin
g

lis
ts

81
3

m
es

sa
ge

s i
n

3
m

ai
lin

g
lis

ts
95

95
 in

 5
 m

ai
lin

g
lis

ts
30

4
in

 1
 m

ai
lin

g
lis

t
(d

ev
el

op
er

s)
54

56
 in

 5
 m

ai
lin

g
lis

ts

of
 te

am

m
em

be
rs

9
11

9
9

Te
am

 m
em

be
r

ro
le

s
(#

 in
 r

ol
e)

A
dm

in
/p

ro
je

ct

m
an

ag
er

 (2
);

pa
ck

ag
er

 (1
);

de
ve

lo
pe

rs
 (3

);
ad

vi
so

r/
m

en
to

r/
co

ns
ul

ta
nt

(1
);

no
t

sp
ec

ifi
ed

 (2
)

A
dm

in
/p

ro
je

ct
 m

an
-

ag
er

 (1
);

de

ve
lo

pe
rs

 (4
);

ad
m

in
 (3

);
no

t
sp

ec
ifi

ed
 (3

)

Pr
oj

ec
t m

an
ag

er
 (1

);
ad

m
in

/
de

ve
lo

pe
r (

1)
; s

up
-

po
rt

m
an

ag
er

 (1
);

w
eb

 d
es

ig
ne

r (
1)

;
de

ve
lo

pe
rs

 (3
) n

ot

sp
ec

ifi
ed

 (2
)

Pr
oj

ec
t m

an
ag

er
/

ad
m

in
 (1

);
ad

m
in

/
de

ve
lo

pe
r (

2)
; d

ev
el

-
op

er
s (

6)

Table 1. Four examined projects

 1091

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

data collection

In this sub-section we describe how data were
selected and collected. As mentioned above, all of
these projects are hosted on SourceForge, making
certain kinds of data about them easily accessible
for analysis. However, analysis of these data poses
some ethical concerns that we had to address in
gaining human subjects approval for our study.
On the one hand, the interactions recorded are
all public and developers have no expectations of
privacy for their statements (indeed, the expec-
tation is the opposite, that their comments will
be widely broadcast). Consent is generally not
required for studies of public behaviour. On the
other hand, the data were not made available for
research purposes but rather to support the work of
the teams. We have gone ahead with our research
after concluding that our analysis does not pose
any likelihood of additional harm to the poster
above the availability of the post to the group and
in the archive available on the Internet.

We collected several kinds of data about each
of the cases. First, we obtained data indicative of
the effectiveness of each project, such as its level
of activity, number of downloads and development
status. Unfortunately, no documentation on the or-
ganization structure, task assignment procedures
and coordination practices adopted was available
on the projects’ web sites (further supporting the
position that these teams do not employ formal
coordination methods). To get at the bug-fixing
process, we considered alternative sources of data.
Interviewing the developers might have provided
information about their perceptions of the process,
but would have required finding their identities,
which was considered problematic given privacy
concerns. Furthermore, reliance on self-reported
data raises concerns about reliability of the data,
the response rate and the likelihood that differ-
ent developers would have different perceptions.
While these issues are quite interesting to study
(e.g., to understand how a team develops shared
mental models of a project, for example, Crowston

& Kammerer, 1998), they seemed like distractions
from our main research question. Because of these
concerns, we elected to use objective data about
the bug-fixing process. Hence, the main source
of data about the bug-fixing process was obtained
from the archives of the bug tracking system,
which is the tool used to support the bug-fixing
process (Herbsleb et al., 2001, p. 13). These data are
particularly useful because they are unobtrusive
measures of the team’s behaviors (Webb & Weick,
1979) and thus provide an objective description of
the work that is actually undertaken, rather than
perceptions of the work.

In the bug tracking system, each bug has a
request ID, a summary (what the bug is about),

Figure 1. Example bug report and followup mes-
sages

1092

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

a category (the kind of bug, e.g., system, inter-
face), the name of the team member (or user) who
submitted it, and the name of the team member
it was assigned to. An example bug report in
shown in Figure 1 (the example is fictitious). As
well, individuals can post messages regarding
the bug, such as further symptoms, requests for
more information, etc. From this system, we
extracted data about who submitted the bugs,
who fixed them and the sequence of messages
involved in the fix. By examining the name of
the message senders, we can identify the project
and community members who are involved in
the bug-fixing process. Demographic information
for the projects and developers and data from the
bug tracking system were collected in the period
17–24 November 2002. We examined 31 closed
bugs for Kicq, 95 closed bugs for DynAPI, 51 bugs
for Gaim and 51 for PhPMyAdmin. The detailed
text of the bug reports is not reported because of
space restriction but is available on request.

data Analysis

In this section we present our data analysis ap-
proach. For each of the bug reports, we carefully
examined the text of the exchanged messages to
identify the task carried out by each sender. We
first applied the framework developed by Check-
land & Scholes (1990), who suggested identifying
the owners, customers and environment of the
process, the actors who perform it, the transfor-
mation of inputs into outputs, the environment
and the worldview that makes the process mean-
ingful. We then followed the method described
by Crowston & Osborn (2003), who suggested
expanding the analysis of the transformation by
identifying in more detail the activities carried out
in the transformation. We identified the activities
by inductively coding the text of the messages in
the bug tracking systems of the four projects. We
started by developing a coding scheme based on

prior work on bug fixing (Crowston, 1997), which
provided a template of expected activities needed
for task assignment (those listed above). The
coding system was then evolved through exami-
nation of the applicability of codes to particular
examples. For example the message:

I’ve been getting this same error every FIRST time
I load the dynapi in NS (win32). After reloading,
it will work… loading/init problem?

represents a report submitted by another user
(someone other than the person who initially
identified and submitted the bug). This message
was coded as “report similar problems”. Table 2
shows the list of task types that were developed
for the coding. The lowest level elementary task
types were successively grouped into 6 main
types of tasks, namely Submit, Assign, Analyze,
Fix, Test & Post, and Close. A complete example
of the coded version of a bug report (the one from
Figure 1) is shown in Figure 2.

Once we had identified the process tasks, we
studied in depth the bug-fixing process as carried
out in the four cases. Specifically, we compared
the sequence of tasks across different bugs to
assess which sequences were most common and
the role of coordination mechanisms in these
sequences. We also examined which actors per-
formed which tasks as well as looked for ways to
more succinctly present the pattern of tasks, for
example, by presenting them as Markov processes.
Because of the shortness and relative simplicity
of our task sequences, we could exactly match
task sequences, rather than having to statistically
assess the closeness of matches to be able to form
clusters (Sabherwal & Robey, 1995). Therefore,
we were able to analyze the sequences by simple
tabulation and counting, though more sophisti-
cated techniques would be useful for larger scale
data analysis. In the next Section we present the
results of our analysis.

 1093

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

1.0.0 Submit (S)
1.1.0 Submit bug (code errors)
 1.1.1 Submit symptoms
 1.1.2 Provide code back trace (BT)
 1.2.0 Submit problems
 1.2.1 Submit incompatibility problems (NC)
2.0.0. Assign (As)
2.1.0 Bug self-assignment (A*)
2.2.0 Bug assignment (A)
3.0.0 Analyze (An)
3.1.0 Contribute to bug identification
 3.1.1Report similar problems (R)
 3.1.2 Share opinions about the bug (T)
3.2.0 Verify impossibility to fix the bug
 3.2.1 Verify bug already fixed (AF)
 3.2.2.Verify bug irreproducibility (NR)
 3.2.3 Verify need for a not yet supported function (NS)
 3.2.4 Verify identified bug as intentionally introduced (NCP)
3.3.0 Ask for more details
 3.3.1 Ask for Code version/command line (V)
 3.3.2 Ask for code back trace/examples (RBT/E)
3.4.0 Identify bug causes (G)
 3.4.1 Identify and explain error (EE)
 3.4.2 Identify and explain bug causes different from code
(PNC)
4.0.0 Fix (F)
4.1.0 Propose temporary solutions (AC)
4.2.0 Provide problem solution (SP)
4.3.0 Provide debugging code (F)
5.0.0 Test & Post (TP)
5.1.0 Test/approve bug solution
 5.1.1 Verify application correctness (W)
5.2.0 Post patches (PP)
5.3.0 Identify further problems with proposed patch (FNW)
6.0.0 Close
6.1.0 Close fixed bug/problem
6.2.0 Closed not fixed bug/problems
 6.2.1 Close irreproducible bug (CNR) and close it
 6.2.2 Close bug that asks for not yet supported function
(CNS)
 6.2.3 Close bug identified as intentionally introduced
(CNCP)

Table 2. Coded tasks in the bug-fixing process

1094

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

FIndIngs

In this section we present the findings from our
analysis of the bug-fixing process in the four
projects and the coordination mechanisms em-
ployed. Data about the percentage of submitted,
assigned and fixed bugs both by team members and
individuals external to the team for each project
are reported in Table 3. Table 4 summarizes our
findings regarding the nature of the bugs fixing
process in the four projects.

We now present our overall analysis of the
bug-fixing process. Each instance of a bug-fixing
process starts (by definition) with a bug submission
(S) and finishes with bug closing (C). Submitters
may submit problems/symptoms associated with
bugs (Ss), incompatibility problems (NC) or/and
also provide information about code back trace
(BT). After submission, the team’s project man-
agers or administrators may assign the bug to
someone to be fixed ((A); (A*) if they self-assign
the bug). Other members of the community may
report similar problems they encountered (R),
discuss bug causes (T), identify bug causes (G)

and/or verify the impossibility of fixing the bug.
Participants often ask for more information to
better understand the bug’s causes (An). In most
cases, but not always, after some discussion, a
team member spontaneously decides to fix (F)
the bug. Bug fixing may be followed by a test
and the submission of a patch (TP). Testing is a
coordination mechanism that manages usability
between producing and using a patch, by ensur-
ing that the patch is usable. However, as later
explained, in the examined projects this type of
activity is not often found. The bug is then closed
(C). Bugs may also be closed because they cannot
be fixed, for example, if they are not reproduc-
ible (CNR), involve functions not supported yet
(CNS) and/or are intentionally introduced to add
new functionality in the future (CNCP). Notice
that the closing activity is usually attributed to a
particular user.

For our analysis, we consider Submission,
Analysis, Fix and Close to be operative activities,
while Assignment, Test and Posting are coordi-
nation mechanisms. As already discussed, As-
signment is the coordination mechanisms used

Bug ID Summary Assigned to Submitter

0000000 crash with
alfa chat gills kkhub

Task Person Comments
(S) kkhub
(V) cenis asks what version kkhub is running

(R) cobvnl reports the same problem as kkhub. submits informa-
tion about the operating systems and the libraries

(V) cenis asks again what version both users are running
(W) kkhub reports the most recent version of cicq works
(TP&C) cobvnl reports version information and close the bug
(C) bug closed

Figure 2. Coded version of bug report in Figure 1

 1095

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

to manage the dependency between a task and
the actor appropriate to perform it. Posting is
the mechanisms used to manage the dependency
between a task and its customers (it makes the fix
available to the persons that need it).

The tasks identified above are linked by
sequential dependencies as shown in Figure 3.
These dependencies were identified by consider-
ing the logical connection between tasks based
on the flow of resources. For example, a patch

Kicq Dy-
nAPI Gaim phpMyAd-

min
Bugs submitted by team members 9.7% 21% 0% 21.6%
Bugs submitted by members external to the team 90.3% 78.9% 100% 78.4%
Bug assigned/self-assigned
of which: 9.7% 0% 2% 1%

Assigned to team members 0% - 100% 100%
Self assigned 66% 0%
Assigned to members external to the team 33% - - 0%
Bug fixed 51,6% 42,1% 51% 80%
Fixed by team members 81,3% 50% 84% 90,2%
Bug fixed by members external to the team 18,7% 50% 16% 9.8%

Kicq DynAPI Gaim phpMyAdmin
Min task sequence 3 2 2 2
Max task sequence 8 12 9 13

Uncommon tasks (count) Bug assign-
ment (3)

Bug as-
signment
(0)

Bug assign-
ment (0)

Bug assign-
ment (1)

Community members 18 53 23 20
Team members’
participation 2 of 9 6 of 11 3 of 9 4 of 10

Most active team
members
Role/ name

Project mgr:
denis;
Developer:
davidvh

Admin:
rainwater;
Ext
member:
dcpascal

Admin-devel-
oper:
warmenhoven;
Developer:
robflynn

Admin-devel-
oper: loic1;
Admin-devel-
oper lem9.

Max posting by single com-
munity member 2 6 4 3

Not fixable bug closed 8 5 5 -

Table 3. The bug-fixing process: Main results

Table 4. Observed characteristics of the bug-fixing processes in the four projects

1096

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

can not be tested before it is created. Because the
dependencies can be satisfied in different orders,
different sequences of the activities are possible.
The tasks and their sequence change from bug to
bug. Figure 3 shows the most frequent sequences
observed, as identified by tabulating and counting
the sequences.

Table 5 shows the portion of processes that
follow each possible paths, based on the collected
ways the bug-fixing process is observed to be
performed within the FLOSS teams. For example,
row 1 of Table 5 is read as follows. In the Dynapi
project, submission always occurs as the first task
(as it does for all of the groups, by definition),
while the second task is S in 26% of cases, An
in 39% of cases, F in 19% of cases, TP in 1% of
cases and C in 15% of cases, and so on.

In Table 6, we describe the occurrences per
task for the four projects and the average number
of tasks to fix bugs. A χ2 test shows a significant
difference in the distribution of task types across
projects (p<0.001). On all projects, submit is the
task that always appears first, while analyze is the

most common second task and fix, third. The first
three most frequent task sequences are reported
in Table 7. As noted above, given the limited
number of examined sequences, the sequences
were manually identified. Finally, in Table 8 we
show which tasks are carried out by which roles.
Please notice that differences in percentage shown
in Table 3 and Table 8 are due to the fact that re-
sults reported in Table 8 are calculated based on
the total number of tasks carried out per bug. For
example, in Table 3 the considered submissions
are those carried out only as first task. In Table
8 all submissions tasks (i.e., also those carried
out as second, third etc. task) are considered. As
reported in Table 2, submissions tasks can be
more than one per bug because submissions can
occur also in the form of a submit sub-task. The
same stands for the fixing tasks. In Table 3 only
the final fixing tasks are considered.

A detailed description of the process as
performed in the four cases is provided below
considering both the sequence of tasks and the
participation in the bug-fixing process.

Figure 3. Task dependencies in the bug-fixing process

1 submit
2 assign

3 analyze

4 fix

5 test&post

6 close

 1097

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Table 5. Portion of processes for each possible path

i task i-1 task i Kicq Dynapi Gaim PhPmyadmin
2 S S 42% 26% 4% 2%
 As 6% - 2% 2%
 An 39% 39% 61% 41%
 F 13% 19% 24% 45%
 TP - 1% 2% 8%
 C - 15% 8% 2%
3 S An 38% 36% 50% 100%
 F 62% 40% 50% -
 TP - 8% - -
 C - 16% - -
 As An - - 100%

F 50% - 100% -
 TP 50% - - -
 An S 8% - - 5%
 An 25% 41% 58% 52%
 F 8% 11% 3% 29%
 TP - - 3% -
 C 58% 49% 35% 14%
 F An - 11% - 13%
 F 50% 22% 8% 4%
 TP - 6% - 4%
 C 50% 61% 92% 78%
 TP An - - - 50%
 F - 100% 100% -%
 TP - - - -50%
 C - - - -
 C An - 7% - -

C - 93% - -
4 S S - - - -
 An 100% - - -
 F - - - 100%
 TP - - - -
 C - - - -
 An S - 4% 5% -
 An 13% 48% 53% 50%
 F 25% 11% 21% 11%
 TP - 4% - 6%
 C 63% 33% 21% 33%
 F S - - - -

As 8% - - -
 An 11% 20%
 F 33% 16% - 14%

1098

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Table 5. continued

i task i-1 task i Kicq Dynapi Gaim PhPmyadmin
 TP - 5% - 29%
 C 58% 68% 80% 57%
 TP S - - - -
 An - - - -
 F - 33% - 33%
 TP - - - 33%
 C - 67% 100% 33%
 C C - - 100% -
5 S AN - - 100% -
 F - - - -
 TP - 100% - -

As F 100% - - -
 An S - - - -
 An 50% 27% 73% 67%
 F - 13% 18% 11%
 TP - - - 11%
 C 50% 60% 9% 11%
 F An 17% 14% - 20%
 F -- - 25% -
 TP - - 25% -
 C 83% 86% 50% 80%
 TP An - - - -
 F - - - 50%
 TP - 100% - -
 C - - - 50%
6 An S - 11% -
 As 50% - - 14%
 An - 20% 22% 43%
 F - - 11% 29%

TP - 20% - -
 C 50% 60% 56% 14%
 F S - - - -
 An - - - -
 F - - - -
 TP - - - 33%
 C 100% 100% - 67%
 TP An - - - -
 F - 100% - -
 TP - - - -
 C - - - 100%
7 S AN - - 50% -
 © - - 50% -

 1099

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Table 5. continued

i task i-1 task i Kicq Dynapi Gaim PhPmyadmin
 As F 100% - - 100%
 An S - - - 33%

An - 33%
 F - 100% 100% -
 TP - - - -
 C - - - 33%
 F An - 100% - -
 F - - - -
 TP - - - -
 C - - 100% 100%
 TP F - 100% - 100%
8 S An - - - 100%
 F - - - -

An An - 100% - -
F - 100% 100%

 F An - 50% - -
TP - - - 50%

 C 100% 50% 100% 50%
9 An An - 50% - 100%
 C - 50% - -
 F AN - - - 100%
 C - - 100% -

TP TP - - - 100%
10 An An - 100% - 50%
 F - - - 50%

TP - - - 100%
11 An An - 100% 50%
 F - - - 50%
 F C - - - 100%
12 An An - - - 100%
 C - 100% - -
 F C - - - 100%
13 An C - 100% - 100%

 Task

Project (bugs)
(S) (Ag) (An) (F) (TP) (C)

Avr.
tasks

per bug
KICQ (31) 44 4 24 23 0 31 4.4
Dynapi (95) 121 0 94 54 9 95 3.8
Gaim (51) 71 1 77 28 4 51 4.2

Phpmyadmin (51) 54 2 66 45 15 51 4.6

Table 6. Task occurrences and average number of tasks per projects

1100

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

kicq

The minimal sequence is composed of three
tasks, the longest by eight. Bug fixing is usually
the second task in the sequence, meaning that it
is most common for bugs to be fixed immediately
after they are submitted, which is different from
the overall picture in which analysis was most
common. Bug assignment is a quite rare task,
as only three bugs are formally assigned. Eight
bugs were closed because they were considered
to be not fixable.

There are 18 identified users, but many (anony-
mous) users submitted bugs and contributed to
analysis and fixing. Team members are not very
active in bug fixing, except for one of the two
project managers (denis), who is involved in
all the tasks and, in particular, in bug analysis
and fixing. Out of 23 fixed bugs, 16 are fixed by
denis. Apart from a developer (davidvh), the other
project members seem not take part in the bug-

fixing process at all. However, it is noteworthy
that the bug tracking system register three bugs
as submitted and assigned to the administrator
(bill), although he does not otherwise take part
in the process. Most of the community members
have posted just one bug, and only two of them
posted 2 bugs each.

dynapi

The minimal sequence is composed of two tasks,
the longest by 12. Again, bug assignment is not
explicitly carried out; apparently community or
team members decide autonomously to take part
to the bug-fixing process. However, the system
reports that six bugs (out of 95) are assigned to an
administrator and the rest to a member external
to the team. Five bugs are closed because they are
said to be not fixable. Bug fixing is usually the
second or the third task in the sequence.

First task Second task Third task Fourth Task Occurrences

Kicq
S
S
S

An
F
An

C
C
F

-
-
C

13
11
2

DynAPI
S
S
S

An
F
C

C
C
-

-
-
-

34
24
17

Gaim
S
S
S

An
F
An

C
C
F

-
-
C

21
13
6

phpMyAdmin
S
S
S

F
An
An

C
C
F

-
-
C

19
8
7

All projects
S
S
S

An
F
C

C
C
-

-
-
-

76
67
22

Table 7. Most frequent task sequences

 1101

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Team members are not very active except for
an administrator (rainwater), who is involved in
all the tasks and, in particular, in bug analysis and
fixing. The other five team members (two with-
out a specific role, one administrator/developer,
one developer and one administrator) are mostly

involved in bug fixing. The community members
involved in the process are 47 persons plus some
anonymous posts. Most of them submitted just one
bug, but some submitted more (e.g., one submit-
ted six bugs). Community members are mostly
involved in bug submission but some also carry out

task ROLES/PROJECT
Kick

 devel pm % of total tasks
S 4 9%
As 4 100%
An 18 75%
F 1 15 70%
TP
 Dynapi
 devel admin admin/develop no role % of total tasks
S 9 6 1 10 21%
As
An 27 3 32%
F 18 1 2 35%
TP 2 1 33%
 Gaim

 admin/deve-
lop

deve-
lop supp. mang. % of total tasks

S 0%
As 1 100%
An 33 11 1 58%
F 17 6 82%
TP 100%
 Phpmyadmin

 admin/deve-
lop pm % of total tasks

S 11 1 22%
As 2 100%
An 49 74%
F 40 89%
TP 10 93%

Table 8. Tasks carried out by different roles

1102

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

other tasks. In particular, one of them (dcpascal)
is very active in all the process tasks. Out of 57
fixed bugs, 20 are fixed by a team member (the
project manager).

gaim

The minimal sequence is composed of two tasks,
the longest by nine. Bug assignment is not explic-
itly carried out, as community or team members
decide autonomously to take part to the bug-fixing
process. However, the system reports that 24 bugs
(out of 51) are assigned to an administrator (and
the rest to member external to the team). Five
bugs are directly closed because they are said to
be not fixable.

Team members are not very active in bug
fixing except for the administer/developer (war-
menhoven) and a developer (robflynn), who are
involved in many tasks and, in particular, in
bug analysis and fixing. Apart from them, just
another member of the project team, a developer
(lschiere), is also involved in the bug fixing. The
community members involved in the process are
21 persons plus some anonymous users. Most
of them posted just one bug (2 of them posted
five bugs, one 4 bugs). Some of them are also
involved in bug analysis and fixing. Out of 29
fixed bugs, 23 are fixed by a team member (the
project manager).

phpmyadmin

The minimal sequence is composed of two tasks,
the longest by thirteen. Bug assignment is a quite
rare task, as only one bug is formally assigned.
The assignment is carried out by an administrator/
developer (lem9) and directed to a team member
(loic1). However, the system reports that all 51
are assigned, of which 40 to team members. Bug
fixing is usually the second or the third task.

Team members are not very active in the proc-
ess, except for two administer/developers (loic1
and lem9), who are involved in all the tasks and,

in particular, in bug analysis and fixing (but also
submission). Apart from them, two team members
take part to the process, a project manager/ad-
minster (swix) and a developer (robbat2), that
are involved (not heavily) in bug submission and
analysis. The community is composed of 16 mem-
bers plus some anonymous users. Most of them
have just posted one bug (two of them posted 3
bugs), but some are also involved in bug analysis
and fixing. Out of 49 fixed bugs, 44 are fixed by
team member (administrator/developers).

dIscussIon

In this section, we discuss the implications of our
findings for understanding the coordination of bug
fixing in FLOSS teams. Our findings provide some
interesting insights on the bug-fixing process for
FLOSS development in these teams. First, pro-
cess sequences are on average quite short (four
tasks) and they seem to be quite similar: submit,
(analyze), fix and close. As shown in Table 3,
formal task assignments are quite uncommon:
only few bugs are formally assigned. Coordina-
tion seems rather to spontaneously emerge. From
bug description and initial analysis, those who
have the competencies autonomously decide to
fix the bug and simply go ahead and do so. That
activity is facilitated by the supplied bug report
and analysis, which is often undertaken by several
contributors. Apart from the procedure to submit
bugs (we analyzed only bugs submitted through
the bug tracking system), we do not observe any
other formal process: roles are not predefined,
delivery dates are not assigned nor are formal-
interpersonal, formal-impersonal or informal-
interpersonal procedures adopted. The lack of
assignment is one of main aspects differentiating
the process as it occurs in FLOSS development
team from the traditional commercial bug-fixing
process described above.

Testing is also quite an uncommon task in
the data. Most of the proposed fixes are directly

 1103

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

posted, though presumably after personal testing
that is not documented. If no one describes the
emergence of new problems with these fixes,
they are automatically posted and the relevant
bug closed without a formal test process. It is
important also to note that many of the posted
problems do not represent real bugs (i.e., they
have been already fixed, are not reproducible,
have been intentionally produced, are associated
to functions not yet supported or are associated
to related programs), so they are directly closed
with that explanation.

Another striking finding is that the bug-fixing
process is apparently carried out without any ex-
plicit discussion about where knowledge is located
in the team, contrary to the findings of Faraj and
Sproull (2000), who stress the importance of ex-
pertise coordination for team effectiveness (they
distinguish expertise coordination from what
they call administrative coordination, which is
the focus of this article). They define expertise
coordination as the management of knowledge
and skill dependencies. To manage knowledge it
is necessary to know where it is located within
development team, where it is needed and how
to access it. However, in our observations, the
knowledge needs seem to emerge by “(informal
and asynchronous) electronic meetings”.

The bug tracking system represents a sort of
organizational memory, storing bug reports and
solutions found to submitted problems (which
not always are real bugs). However, as discussed
in Cubranic (1999), the large number of emails
stored makes it difficult for contributors to easily
identify the solutions to their own problems, so
making different users repeat the same (already
fixed or addressed) submission more times. In
those cases (i.e., for bugs closed without being
fixed or the attended patches posted), it is usually
the team members that act as “memory”.

A further difference is that in these projects,
the process is performed by few team members
(usually not more that two or three) working
with a member of the larger community. Team

members (usually project managers, adminis-
trators or developers) are most involved in bug
fixing, testing and posting. Surprisingly, only
a few members of the team are involved in the
process. The other participants are active users
who submit bugs or contribute to their analysis.
We also noted striking differences in the level of
contribution to the process. The most active users
in the projects carried out most of the tasks while
most others contributed only once or twice. Most
community members submit only one bug; only
two or three members of the involved community
are involved in fixing tasks and can be referred to
as co-developers. As expected, the most widely
dispersed type of action was submitting a bug,
while diagnosis and bug-fixing activities were
concentrated among a few individuals.

As we have few members of the team and
few members of the community (co-developers)
mostly involved in bug fixing and many users/
members of the community (active users) mostly
involved in bug submission, the organizational
models proposed in the literature (Cox, 1998)
seem to be valid for the bug-fixing process. It
would be interesting to further investigate if
those, among the active users also involved in
bug fixing also contribute to software coding, for
example, by analysis of contributions of source
code independent of bug fixes.

As an apparently less effective project, we
expected to find that DynAPI had a smaller ac-
tive user base than the other projects. However,
as noted above, our data shows the opposite.
However, our estimation of the effectiveness of
the projects is based on activity levels. It appears
that DynAPI somehow does not benefit from
its larger community in increased activity. One
striking difference is the proportion of bugs fixed
by the team members, shown in Table 3, which
is much lower in DynAPI than in the other proj-
ects. This finding suggests that the contribution
of core members may be particularly important
in the effectiveness of the team. The case stud-
ies presented here are not sufficient to test this

1104

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

hypothesis, so it is one that should be followed
up in future studies.

conclusIon

In this article, we investigated the coordination
practices adopted within four FLOSS develop-
ment teams. In particular, we analyzed the bug-
fixing process, which is considered central to the
effectiveness of the FLOSS process. The article
provided some interesting results. The task se-
quences we observed were mostly sequential and
composed of few steps, namely submit, fix and
close. Second, our data supports the observation
that FLOSS processes seem to lack traditional
coordination mechanisms such as task assignment.
Third, effort is not equally distributed among pro-
cess actors. A few contribute heavily to all tasks,
while the majority just submit one or two bugs.
As a result, the organization structure reflected
in the process resembles the one proposed in the
literature for the FLOSS development process.
Few actors (core developers), usually team project
managers or administrators, are mostly involved
in bug fixing. Most of the involved actors are ac-
tive users instead of developers, who just submit
bug reports. In between are few actors, external
to the team, who submit bugs and contribute to
fixing them. Finally, while we did not find obvi-
ous associations between coordination practices
and project effectiveness, we did notice a link to
participation: our least effective team also had the
lowest level of participation from core developers,
suggesting their importance, even given the more
widely distributed participation possible.

The article contributes to fill a gap in the lit-
erature by providing a picture of the coordination
practices adopted within FLOSS development
team. Besides, the article proposes an innova-
tive research methodology (for the analysis of
coordination practices of FLOSS development

teams) based on the collection of process data by
electronic archives, the codification of message
texts, and the analysis of codified information
supported by the coordination theory.

Based on the analysis of the tasks carried
out and the attendant coordination mechanisms,
we argue that the bazaar metaphor proposed by
(Raymond, 1998) to describe the FLOSS orga-
nization structure is still valid for the bug-fixing
process. As in a bazaar, the actors involved in
the process autonomously decide the schedule
and contribution modes for bug fixing, making
a central coordination actor superfluous.

As with all research, the current article has
some limitations that limit the scope of our current
conclusions and suggests directions for further
research. First, although the selected projects are
quite different in terms of target audience and
topic, other characteristics (not examined because
they are not explicitly present on the project web
sites) could be shared among projects so affecting
the obtained results. In the future, we would like
to deepen our knowledge about the coordination
practices adopted by the four projects by directly
interviewing some of the involved actors. Second,
due to the limited number of examined bugs, the
process sequences have been manually examined.
In the future, we intend to enlarge the number of
examined bugs and adopt automatic techniques
(e.g., the optimal matching technique) to analyze
and classify the task sequences. In particular, we
plan to further explore the hypothesis about the
importance of core group members by examining
a larger number of projects (e.g., to examine the
change in the population over time). Finally, in the
article we only examined administrative coordi-
nation. In the future, we intend to examine also
expertise coordination in more detail. A particular
interesting consideration here is the development
of shared mental models that might support the
coordination of the teams’ processes.

 1105

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

reFerences

Ahuja, M. K., Carley, K., & Galletta, D. F. (1997).
Individual performance in distributed design
groups: An empirical study. Paper presented at
the SIGCPR Conference, San Francisco.

Alho, K., & Sulonen, R. (1998). Supporting
virtual software projects on the Web. Paper
presented at the Workshop on Coordinating
Distributed Software Development Projects, 7th
International Workshop on Enabling Technolo-
gies: Infrastructure for Collaborative Enterprises
(WETICE ’98).

Anthes, G. H. (2000, June 26). Software Develop-
ment goes Global. Computerworld Magazine.

Bandow, D. (1997). Geographically distributed
work groups and IT: A case study of working
relationships and IS professionals. In Proceedings
of the SIGCPR Conference (pp. 87–92).

Bélanger, F. (1998). Telecommuters and Work
Groups: A Communication Network Analysis.
In Proceedings of the International Conference
on Information Systems (ICIS) (pp. 365–369).
Helsinki, Finland.

Bessen, J. (2002). Open Source Software: Free
Provision of Complex Public Goods: Research
on Innovation.

Bezroukov, N. (1999a). A second look at the Ca-
thedral and the Bazaar. First Monday, 4(12).

Bezroukov, N. (1999b). Open source software
development as a special type of academic re-
search (critique of vulgar raymondism). First
Monday, 4(10).

Boulding, K. E. (1956). General systems theory—
The skeleton of a science. Management Science,
2(April), 197–208.

Britton, L. C., Wright, M., & Ball, D. F. (2000).
The use of co-ordination theory to improve service

quality in executive search. Service Industries
Journal, 20(4), 85–102.

Brooks, F. P., Jr. (1975). The Mythical Man-month:
Essays on Software Engineering. Reading, MA:
Addison-Wesley.

Butler, B., Sproull, L., Kiesler, S., & Kraut, R.
(2002). Community effort in online groups: Who
does the work and why? In S. Weisband & L. At-
water (Eds.), Leadership at a Distance. Mahwah,
NJ: Lawrence Erlbaum.

Carmel, E. (1999). Global Software Teams. Upper
Saddle River, NJ: Prentice-Hall.

Carmel, E., & Agarwal, R. (2001). Tactical ap-
proaches for alleviating distance in global soft-
ware development. IEEE Software(March/April),
22–29.

Checkland, P. B., & Scholes, J. (1990). Soft Systems
Methodology in Action. Chichester: Wiley.

Conway, M. E. (1968). How do committees invent.
Datamation, 14(4), 28–31.

Cox, A. (1998). Cathedrals, Bazaars and the Town
Council. Retrieved 22 March, 2004, from http://
slashdot.org/features/98/10/13/1423253.shtml

Crowston, K. (1997). A coordination theory ap-
proach to organizational process design. Orga-
nization Science, 8(2), 157–175.

Crowston, K., & Howison, J. (2006). Hierarchy
and centralization in free and open source software
team communications. Knowledge, Technology
& Policy, 18(4), 65–85.

Crowston, K., Howison, J., & Annabi, H. (2006a).
Information systems success in Free and Open
Source Software development: Theory and
measures. Software Process—Improvement and
Practice, 11(2), 123–148.

Crowston, K., & Kammerer, E. (1998). Coordi-
nation and collective mind in software require-

1106

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

ments development. IBM Systems Journal, 37(2),
227–245.

Crowston, K., & Osborn, C. S. (2003). A coor-
dination theory approach to process description
and redesign. In T. W. Malone, K. Crowston &
G. Herman (Eds.), Organizing Business Knowl-
edge: The MIT Process Handbook. Cambridge,
MA: MIT Press.

Crowston K., Scozzi B., (2003). Open Source
Software projects as virtual organizations: com-
petency rallying for software development. IEE
Proceedings Software, 149(1), 3-17.

Crowston, K., Wei, K., Li, Q., Eseryel, U. Y., &
Howison, J. (2005). Coordination of Free/Libre
Open Source Software development. Paper
presented at the International Conference on
Information Systems (ICIS 2005), Las Vegas,
NV, USA.

Crowston, K., Wei, K., Li, Q., & Howison, J.
(2006b). Core and periphery in Free/Libre and
Open Source software team communications.
Paper presented at the Hawai’i International Con-
ference on System System (HICSS-39), Kaua’i,
Hawai’i.

Cubranic, D. (1999). Open-source software de-
velopment. Paper presented at the 2nd Workshop
on Software Engineering over the Internet, Los
Angeles.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A field
study of the software design process for large
systems. Communications of the ACM, 31(11),
1268–1287.

Curtis, B., Walz, D., & Elam, J. J. (1990). Study-
ing the process of software design teams. In
Proceedings of the 5th International Software
Process Workshop On Experience With Software
Process Models (pp. 52–53). Kennebunkport,
Maine, United States.

Cutosksy, M. R., Tenenbaum, J. M., & Glicksman,
J. (1996). Madefast: Collaborative engineering

over the Internet. Communications of the ACM,
39(9), 78–87.

de Souza, P. S. (1993). Asynchronous Organiza-
tions for Multi-Algorithm Problems. Unpublished
Doctoral Thesis, Carnegie-Mellon University.

DeSanctis, G., & Jackson, B. M. (1994). Coordi-
nation of information technology management:
Team-based structures and computer-based com-
munication systems. Journal of Management
Information Systems, 10(4), 85.

Di Bona, C., Ockman, S., & Stone, M. (Eds.).
(1999). Open Sources: Voices from the Open
Source Revolution. Sebastopol, CA: O’Reilly &
Associates.

Drucker, P. (1988). The coming of the new orga-
nization. Harvard Business Review, 3-15.

Faraj, S., & Sproull, L. (2000). Coordinating
Expertise in Software Development Teams. Man-
agement Science, 46(12), 1554–1568.

Finholt, T., Sproull, L., & Kiesler, S. (1990).
Communication and Performance in Ad Hoc
Task Groups. In J. Galegher, R. F. Kraut & C.
Egido (Eds.), Intellectual Teamwork. Hillsdale,
NJ: Lawrence Erlbaum and Associates.

Franck, E., & Jungwirth, C. (2002). Reconciling
investors and donators: The governance struc-
ture of open source (Working Paper No. No. 8):
Lehrstuhl für Unternehmensführung und -politik,
Universität Zürich.

Gacek, C., & Arief, B. (2004). The many meanings
of Open Source. IEEE Software, 21(1), 34–40.

Galbraith, J. R. (1973). Designing Complex Orga-
nizations. Reading, MA: Addison-Wesley.

Grabowski, M., & Roberts, K. H. (1999). Risk
mitigation in virtual organizations. Organization
Science, 10(6), 704–721.

Grinter, R. E., Herbsleb, J. D., & Perry, D. E.
(1999). The Geography of Coordination: Dealing

 1107

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

with Distance in R&D Work. In Proceedings
of the GROUP ‘99 Conference (pp. 306–315).
Phoenix, Arizona, US.

Hallen, J., Hammarqvist, A., Juhlin, F., &
Chrigstrom, A. (1999). Linux in the workplace.
IEEE Software, 16(1), 52–57.

Hann, I.-H., Roberts, J., Slaughter, S., & Fielding,
R. (2002). Economic incentives for participating
in open source software projects. In Proceedings
of the Twenty-Third International Conference on
Information Systems (pp. 365–372).

Herbsleb, J. D., & Grinter, R. E. (1999a). Archi-
tectures, coordination, and distance: Conway’s
law and beyond. IEEE Software(September/Oc-
tober), 63–70.

Herbsleb, J. D., & Grinter, R. E. (1999b). Split-
ting the organization and integrating the code:
Conway’s law revisited. Paper presented at the
Proceedings of the International Conference on
Software Engineering (ICSE ‘99), Los Angeles,
CA.

Herbsleb, J. D., Mockus, A., Finholt, T. A., &
Grinter, R. E. (2001). An empirical study of global
software development: Distance and speed. Paper
presented at the Proceedings of the International
Conference on Software Engineering (ICSE 2001),
Toronto, Canada.

Hertel, G., Niedner, S., & Herrmann, S. (2003).
Motivation of Software Developers in Open
Source Projects: An Internet-based Survey of
Contributors to the Linux Kernel. Research Policy,
32(7), 1159–1177.

Humphrey, W. S. (2000). Introduction to Team
Software Process: Addison-Wesley.

Iannacci, F. (2005). Coordination processes in OSS
development: The Linux case study. Retrieved
21 September, 2006, from http://opensource.mit.
edu/papers/iannacci3.pdf

Jarvenpaa, S. L., & Leidner, D. E. (1999). Com-
munication and trust in global virtual teams.
Organization Science, 10(6), 791–815.

Jensen, C., & Scacchi, W. (2005). Collaboration,
Leadership, Control, and Conflict Negotiation in
the Netbeans.org Open Source Software Develop-
ment Community. In Proceedings of the Hawai’i
International Conference on System Science
(HICSS 2005). Big Island, Hawai’i.

Kaplan, B. (1991). Models of change and infor-
mation systems research. In H.-E. Nissen, H. K.
Klein & R. Hirschheim (Eds.), Information Sys-
tems Research: Contemporary Approaches and
Emergent Traditions (pp. 593–611). Amsterdam:
Elsevier Science Publishers.

Kogut, B., & Metiu, A. (2001). Open-source
software development and distributed innova-
tion. Oxford Review of Economic Policy, 17(2),
248–264.

Kraut, R. E., Steinfield, C., Chan, A. P., Butler,
B., & Hoag, A. (1999). Coordination and virtu-
alization: The role of electronic networks and
personal relationships. Organization Science,
10(6), 722–740.

Kraut, R. E., & Streeter, L. A. (1995). Coordina-
tion in software development. Communications
of the ACM, 38(3), 69–81.

Krishnamurthy, S. (2002). Cave or Community?
An Empirical Examination of 100 Mature Open
Source Projects. First Monday, 7(6).

Lawrence, P., & Lorsch, J. (1967). Organization
and Environment. Boston, MA: Division of Re-
search, Harvard Business School.

Leibovitch, E. (1999). The business case for Linux.
IEEE Software, 16(1), 40–44.

Lerner, J., & Tirole, J. (2001). The open source
movement: Key research questions. European
Economic Review, 45, 819–826.

1108

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Madanmohan, T. R., & Navelkar, S. (2002).
Roles and Knowledge Management in Online
Technology Communities: An Ethnography Study
(Working paper No. 192): IIMB.

Malone, T. W., & Crowston, K. (1994). The in-
terdisciplinary study of coordination. Computing
Surveys, 26(1), 87–119.

Markus, M. L., Manville, B., & Agres, E. C. (2000).
What makes a virtual organization work? Sloan
Management Review, 42(1), 13–26.

Markus, M. L., & Robey, D. (1988). Information
technology and organizational change: Causal
structure in theory and research. Management
Science, 34(5), 583–598.

Massey, A. P., Hung, Y.-T. C., Montoya-Weiss,
M., & Ramesh, V. (2001). When culture and style
aren’t about clothes: Perceptions of task-technol-
ogy “fit” in global virtual teams. In Proceedings
of GROUP ’01. Boulder, CO, USA.

McCann, J. E., & Ferry, D. L. (1979). An approach
for assessing and managing inter-unit interde-
pendence. Academy of Management Review,
4(1), 113–119.

Metiu, A., & Kogut, B. (2001). Distributed
Knowledge and the Global Organization of
Software Development (Working paper). Phila-
delphia, PA: The Wharton School, University of
Pennsylvania.

Mintzberg, H. (1979). The Structuring of Organi-
zations. Englewood Cliffs, NJ: Prentice-Hall.

Mockus, A., Fielding, R. T., & Herbsleb, J. D.
(2002). Two case studies Of Open Source Software
development: Apache And Mozilla. ACM Transac-
tions on Software Engineering and Methodology,
11(3), 309–346.

Mohr, L. B. (1971). Organizational technology
and organizational structure. 16, 444–459.

Mohr, L. B. (1982). Explaining Organizational
Behavior: The Limits and Possibilities of Theory
and Research. San Francisco: Jossey-Bass.

Moon, J. Y., & Sproull, L. (2000). Essence of
distributed work: The case of Linux kernel. First
Monday, 5(11).

Nejmeh, B. A. (1994). Internet: A strategic tool
for the software enterprise. Communications of
the ACM, 37(11), 23–27.

O’Leary, M., Orlikowski, W. J., & Yates, J. (2002).
Distributed work over the centuries: Trust and
control in the Hudson’s Bay Company, 1670–1826.
In P. Hinds & S. Kiesler (Eds.), Distributed Work
(pp. 27–54). Cambridge, MA: MIT Press.

Orlikowski, W. J. (2002). Knowing in practice: En-
acting a collective capability in distributed orga-
nizing. Organization Science, 13(3), 249–273.

Parnas, D. L. (1972). On the criteria to be used in
decomposing systems into modules. Communica-
tions of the ACM, 15(2), 1053–1058.

Pfaff, B. (1998). Society and open source: Why
open source software is better for society than
proprietary closed source software. from http://
www.msu.edu/user/pfaffben/writings/anp/oss-
is-better.html

Pfeffer, J. (1978). Organizational Design. Arling-
ton Heights, IL: Harlan Davidson.

Pfeffer, J., & Salancik, G. R. (1978). The External
Control of Organizations: A Resource Depen-
dency Perspective. New York: Harper & Row.

Prasad, G. C. (n.d.). A hard look at Linux’s claimed
strengths…. from http://www.osopinion.com/
Opinions/GaneshCPrasad/GaneshCPrasad2-
2.html

Raymond, E. S. (1998). The cathedral and the
bazaar. First Monday, 3(3).

 1109

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

Robey, D., Khoo, H. M., & Powers, C. (2000).
Situated-learning in cross-functional vir-
tual teams. IEEE Transactions on Professional
Communication(Feb/Mar), 51–66.

Sabherwal, R., & Robey, D. (1995). Reconcil-
ing variance and process strategies for studying
information system development. Information
Systems Research, 6(4), 303–327.

Sandusky, R. J., Gasser, L., & Ripoche, G. (2004).
Bug Report Networks: Varieties, Strategies, and
Impacts in an OSS Development Community.
Paper presented at the Proceedings of the ICSE
Workshop on Mining Software Repositories,
Edinburgh, Scotland, UK.

Sawyer, S., & Guinan, P. J. (1998). Software
development: Processes and performance. IBM
Systems Journal, 37(4), 552–568.

Scacchi, W. (1991). The software infrastructure
for a distributed software factory. Software En-
gineering Journal, 6(5), 355–369.

Scacchi, W. (2002). Understanding the require-
ments for developing Open Source Software sys-
tems. IEE Proceedings Software, 149(1), 24–39.

Scacchi, W. (2005). Socio-technical interaction
networks in Free/Open Source Software devel-
opment processes. In S. T. Acuña & N. Juristo
(Eds.), Software Process Modeling (pp. 1–27).
New York: Springer.

Stewart, K. J., & Ammeter, T. (2002). An ex-
ploratory study of factors influencing the level of
vitality and popularity of open source projects.
In Proceedings of the Twenty-Third Interna-
tional Conference on Information Systems (pp.
853–857).

Taylor, P. (1998, December 2). New IT mantra
attracts a host of devotees. Financial Times, Sur-
vey—Indian Information Technology, p. 1.

Thompson, J. D. (1967). Organizations in Action:
Social Science Bases of Administrative Theory.
New York: McGraw-Hill.

Torvalds, L. (1999). The Linux edge. Communica-
tions of the ACM, 42(4), 38–39.

Valloppillil, V. (1998). Halloween I: Open Source
Software. from http://www.opensource.org/hal-
loween/halloween1.html

Valloppillil, V., & Cohen, J. (1998). Halloween II:
Linux OS Competitive Analysis. from http://www.
opensource.org/halloween/halloween2.html

Victor, B., & Blackburn, R. S. (1987). Interdepen-
dence: An alternative conceptualization. Academy
of Management Review, 12(3), 486–498.

Walz, D. B., Elam, J. J., & Curtis, B. (1993). Inside
a software design team: knowledge acquisition,
sharing, and integration. Communications of the
ACM, 36(10), 63–77.

Watson-Manheim, M. B., Chudoba, K. M., &
Crowston, K. (2002). Discontinuities and conti-
nuities: A new way to understand virtual work.
Information, Technology and People, 15(3),
191–209.

Wayner, P. (2000). Free For All. New York:
HarperCollins.

Webb, E., & Weick, K. E. (1979). Unobtrusive mea-
sures in organizational theory: A reminder. Ad-
ministrative Science Quarterly, 24(4), 650–659.

Weber, S. (2004). The Success of Open Source.
Cambridge, MA: Harvard.

Weisband, S. (2002). Maintaining awareness in
distributed team collaboration: Implications for
leadership and performance. In P. Hinds & S.
Kiesler (Eds.), Distributed Work (pp. 311–333).
Cambridge, MA: MIT Press.

Zuboff, S. (1988). In the Age of the Smart Machine.
New York: Basic Books.

1110

Bug Fixing Practices within Free/Libre Open Source Software Development Teams

endnote

1 This research was partially supported by
US NSF Grants 03-41475, 04–14468 and
05-27457. An earlier version of this article
was presented at the First International

Workshop on Computer Supported Activity
Coordination (CSAC 2004). The authors
thank previous anonymous reviewers of the
article for their comments that have helped
to improve the article.

This work was previously published in the Journal of Database Management, edited by K. Siau, Volume 19, Issue 2, pp. 1-30,
copyright 2008 by IGI Publishing (an imprint of IGI Global).

 1111

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 2.30
Evaluating Performance of

Software Architecture Models
with the Palladio Component

Model
Heiko Koziolek

Universität Oldenburg, Germany

Steffen Becker
University of Karlsruhe, Germany

Ralf Reussner
University of Karlsruhe, Germany

Jens Happe
Universität Oldenburg, Germany

AbstrAct

Techniques from model-driven software develop-
ment are useful to analyse the performance of a
software architecture during early development
stages. Design models of software models can
be transformed into analytical or simulation
models, which enable analyzing the response
times, throughput, and resource utilization of a
system before starting the implementation. This
chapter provides an overview of the Palladio

Component Model (PCM), a special modeling
language targeted at model-driven performance
predictions. The PCM is accompanied by several
model transformations, which derive stochastic
process algebra, queuing network models, or
Java source code from a software design model.
Software architects can use the results of the
analytical models to evaluate the feasibility of
performance requirements, identify performance
bottlenecks, and support architectural design
decisions quantitatively. The chapter provides

1112

Evaluating Performance of Software Architecture Models with the Palladio Component Model

a case study with a component-based software
architecture to illustrate the performance predic-
tion process.

IntroductIon

To ensure the quality of a software model, develop-
ers need not only to check its functional properties,
but also assure that extra-functional requirements
of the system can be fulfilled in an implementation
of the model. Extra-functional properties include
performance, reliability, availability, security,
safety, maintainability, portability, etc. Like
functional correctness, these properties need to
be addressed already during early development
stages at the model level to avoid possible later
costs for redesign and reimplementation.

Performance (i.e., response time, throughput,
and resource utilization) is an extra-functional
property critical for many business information
systems. Web-based information systems rely on
fast response times and must be capable of serv-
ing thousands of users in a short time span due
to the competitive nature of internet businesses.
Furthermore, the responsiveness of software used
within companies is important to ensure efficient
business processes.

Performance problems in large distributed
systems can sometimes not be solved by adding
more servers with improved hardware (“kill it
with iron”). Large software architectures often
do not scale linearly with the available resources,
but instead include performance bottlenecks that
limit the impact of additional hardware.

Therefore, it is necessary to design a software
architecture carefully and analyse performance is-
sues as early as possible. However, in the software
industry, performance investigations of software
systems are often deferred until an implementation
of the system has been build and measurements
can be conducted (“fix it later”). To avoid this
approach, which might lead to expensive rede-
signs, software architects can use performance

models for early, pre-implementation performance
analysis of their architectures.

This chapter provides an overview of the
Palladio Component Model (PCM), a domain
specific modelling language for component-based
software architectures, which is specifically tuned
to enable early life-cycle performance predictions.
Different developer roles can use the PCM to
model the software design and its targeted resource
environment. The models can be fed into perfor-
mance analysis tools to derive the performance of
different usage scenarios. Software architects can
use this information to revise their architectures
and quantitatively support their design decisions
at the architectural level.

The chapter is structured as follows: Section 2
provides background and describes related work in
the area of model-driven performance prediction.
Section 3 introduces different developer roles and
a process model for model-driven performance
predictions. Section 4 gives an overview of the
PCM with several artificial model examples,
before Section 5 briefly surveys different model
transformations to analysis models and source
code. Section 6 describes the performance pre-
diction for an example component-based soft-
ware architecture and discusses the value of the
results for a software architect. For researchers
interested working in the area of model-driven
performance prediction, Section 7 highlights
some directions for future research. Section 8
concludes the chapter.

bAckground And relAted
work

Model-driven performance predictions aim at
improving the quality of software architectures
during early development stages (Smith et al.,
(2002)). Software architects use models of such
prediction approaches to evaluate the response
time, throughput, or resource utilization to be
expected after implementing their envisioned

 1113

Evaluating Performance of Software Architecture Models with the Palladio Component Model

design. The prediction model’s evaluation results
enable analysing different architectural designs
and validate performance-related requirements
(such as maximum response times or minimum
throughput) of software systems. The advantage of
using prediction models instead of testing imple-
mentations is the lowered risk to find performance
problems in already implemented systems, which
require cost-intensive redesigns.

Researchers have put much effort into creat-
ing accurate performance prediction models for
the last 30 years. Queuing networks, stochastic
process algebras, and stochastic Petri nets are
the most prominent prediction models from the
research community. However, practitioners
seldom apply these models due to their complex-
ity and high learning curve. Therefore, focus of
the research community has shifted to create
more developer-friendly models and use model
transformations to bridge the semantic gap to the
above mentioned analytical models.

From the more than 20 approaches in this
direction during the last decade (Balsamo et al.,
(2004)), most use annotated UML models as a
design model and ad-hoc transformations to create
(layered) queuing networks as analytical models.
Tools encapsulate the transformation to the ana-
lytical models and their solution algorithms to limit
the necessary additional skills for designers. For
these approaches, the Object Management Group
(OMG) has published multiple UML profiles (SPT
profile cf. OMG, (2005); QoS/FT profile; MARTE
profile) to add performance-related annotations
to UML models. However, these profiles remain
under revision, are still immature, and are still
not known to have been used in practise in a
broader scope.

Component-based software engineering
(CBSE) adds a new dimension to model-driven
performance prediction approaches. CBSE
originally targeted at improved reusability, more
flexibility, cost-saving, and shorter time-to-mar-
ket of software systems (Szyperski et al. (2002)).
Besides these advantages, CBSE might also ease

prediction of extra-functional properties. Software
developers may test components for reuse more
thoroughly and provide them with more detailed
specifications. These specifications may contain
performance-related information.

Hence, several research approaches have
tackled the challenge of specifying the perfor-
mance of a software component (cf. survey by
Becker et al., (2006)). This is a difficult task,
as the performance of a component depends on
environmental factors, which can and should not
be known by component developers in advance.
These factors include:

• Execution environment: The platform
a component is deployed on including
component container, application server,
virtual machine, operating system, software
resources, hardware resources

• Usage profile: User inputs to component
services and the overall number of user
requests directed at the components

• Required services: Execution times of ad-
ditionally required, external services, which
add up to the execution of the component
itself

Component developer can only fix the com-
ponent’s implementation, but have to provide a
performance specification, which is parameteri-
sable for the execution environment, the usage
profile, and the performance of required services.
The following paragraph summarises some of the
approaches into this direction.

Sitaraman et. al (2001) model the perfor-
mance of components with an extension to the
O-calculus, but do not include calls to required
services. Hissam et. al (2002) aim at providing
methods to certify component for their perfor-
mance properties. Bertolino et. al (2003) use the
UML SPT profile to model component-based
systems including dependencies to the execution
environment, but neglecting influences by the
usage profile. Hamlet et al. (2003) investigate

1114

Evaluating Performance of Software Architecture Models with the Palladio Component Model

the influence of the usage profile on component
performance. Wu et al. (2004) model components
with an XML-based language and transform this
notation into layered queueing networks. The AP-
PEAR method by Eskenazi et al. (2004) aims at
predicting performance for changes on already
built systems, and thus does neglect the influence
of the execution environment. Bondarev et al.
(2005) target components in embedded systems
with the ROBOCOP component model. Grassi
et al. (2005) develop an intermediate modelling
language for component-based systems called
KLAPER, which shall bridge the gap between
different design and analytical models.

The Palladio Component Model (Becker et al.,
(2007)) described in this chapter is in line with
these research approaches and tries to reflect all
influences on component performance. Unlike
some of the above listed approaches, the PCM
does not use annotated UML as design model,
but defines its own metamodel. This reduces the
model to concepts necessary for performance
prediction and does not introduce the high com-
plexity of arbitrary UML models with a variety
of concepts and views.

deVeloper roles And
process Model

The PCM metamodel is divided into several
domain-specific modelling languages, which are
aligned with developer roles in CBSE. This section
introduces these roles and provides an overview
of the process model for using the PCM.

An advantage of CBSE is the division of
work between different developer roles, such as
component developers and software architects.
Component developers specify and implement
components. They also have to provide a descrip-
tion of the component’s extra-functional proper-
ties to enable software architects to predict their
performance without deploying and testing them.
Software architects compose components from

different component developers to application
architectures. They are supported by tools to
predict the architecture’s performance based on
the performance specifications of the component
developers. With the predicted performance met-
rics, they can support their design decisions for
different architectural styles or components.

For performance predictions, the software
architect needs additional information about the
execution environment and the usage profile. The
role of the system deployer provides performance-
related information about the hardware/software
environment of the architecture (such as process-
ing rate of a CPU, throughput of a network link,
scheduling policies of the operating system,
configuration of the application server, etc.). Busi-
ness domain experts provide knowledge about
the anticipated user behavior (in terms of input
parameters and call frequencies), and must assist
software architects in specifying a usage model
of the architecture.

Figure 1 depicts the overall development
process of a component-based system including
performance prediction (Koziolek et al. (2006)):
Boxes model workflows, thick and grey arrows
indicate a change of activity, and thin and black ar-
rows illustrate the flow of artefacts. The workflows
do not have to be traversed linearly; backward
steps for revision are likely. After collecting and
analysing requirements for the system to develop
(Requirements), the software architect specifies
components and the architecture based on input
by component developers (Specification). With a
fully specified architecture, performance predic-
tions can be carried out by tools (QoS-analysis).
The software architect can use the results to
alter the specification or decide to implement
the architecture. This is done either by obtaining
existing components from third-party vendors or
by implementing them according to their specifi-
cation (Provisioning). Afterwards, the software
architect can compose the component implemen-
tations (Assembly), test the full application in a
restricted environment (Test), and then install and

 1115

Evaluating Performance of Software Architecture Models with the Palladio Component Model

operate it in the customer’s actual environment
(Deployment).

During “Specification”, the above introduced
roles interact as follows (cf. Figure 2): The PCM
provides a domain-specific modelling language
for each developer role, which is restricted to its

known concepts. Component developers model
performance-related component behaviour, soft-
ware architects add an assembly model. System
deployers model hardware/software resources and
the components’ allocation to these resources.
Finally, domain experts provide a usage model.

Figure 1. Component-based development process (©2007 Heiko Koziolek. Used with permission)

Requirem ents

Specification Q oS-Analysis Provisioning Assem bly

Test

Deploym ent

Business C oncept
M odel

U se C ase
M odels

QoS
R esults C om ponent S pecs &

Architecture

Business
R equirem ents

Existing A ssets
T echnica l C onstra ints C om ponents

U se C ase
M odels

Applications

T ested
Applications

Legend
W orkflow
C hange o f A ctiv ity
F low o f A rtifact

Figure 2. Specification and QoS analysis with the PCM (©2007 Heiko Koziolek. Used with permis-
sion)

U sage M ode l

C om ponen t S pecifica tions

<<U ser>>

A ssem b ly M ode l

A lloca tion M ode l

<< C om ponen t
D eve lope r>>

part o f

p art of

par t o
f

pa
r t

of

<< S ystem
A rch itect>>

<< S ystem
D ep loye r>>

<< D om a in
E xpert>>

pcM
Instance

M 2M

S tochastic P rocess A lgeb ra

Queue ing N e tw ork M ode l

P erfo rm ance P ro to type

Java C ode S ke le tons

M 2T

M2T

M 2T

1116

Evaluating Performance of Software Architecture Models with the Palladio Component Model

All specifications can be combined to derive a
full PCM instance. Section 4 will elaborate on
the PCM’s specification languages.

During “QoS-Analysis”, this model can be
transformed into different analysis models, such
as a stochastic process algebra or a queueing
network. These models provide capabilities to
derive performance metrics such as response
times, throughputs, or resource utilisations for
specific usage scenarios. Additionally, the PCM
can be transformed into a performance prototype,
which simulates the specified resource demands.
This prototype enables pre-implementation per-
formance measurements on the target platform.
Finally, the PCM instance can be converted into
Java code skeletons via model-2-text transfor-
mation, as a starting point for implementing the
system’s business logic. Section 5 describes the
analysis models and code transformations in
more detail.

oVerVIew pAllAdIo
coMponent Model

This section provides an overview of the model-
ing capabilities of the PCM to describe compo-
nent-based software architecture. The PCM is a
metamodel specified in Ecore from the Eclipse
Modelling Framework (EMF). The following
section will mainly use examples to introduce the
concepts, and does not go into technical details of
the metamodel, which are elaborated in (Reussner
et al., 2007). The description of the PCM in this
section is structured along the developer roles
and their domain-specific languages.

component developer

Component developers specify the functional and
extra-functional properties of their components.
They put the specification as well as the implemen-
tation in repositories, where software architects
can retrieve them. This section will first introduce

all entities, which can be stored in repositories and
then focus on service effect specifications, which
model the abstract behavior and performance
properties of component services.

Component Repositories

Figure 3 shows an example PCM repository,
which includes all types of entities that can be
specified. First class entities in PCM reposito-
ries are interfaces, data types, and components.
They may exist on their own and do not depend
on other entities.

The interface MyInterface is depicted
on the upper left in Figure 3. It is not yet bound
to a component, but can be associated as a pro-
vided or required interface to components. An
example of interfaces existing without clients
and an implementation in practice was the Java
Security API, which had been specified by Sun
before an implementation was available. Interfaces
in the PCM contain a list of service signatures,
whose syntax is based on CORBA IDL. Addi-
tionally, component developers may supplement
an interface with protocols, which restrict the
order of calling its services. For example, an I/O
interface might force clients to first open a file
(call service open()) before reading from it (call
service read()).

Components may provide or require interfaces.
The binding between a component and an interface
is called “provided role” or “required role” in the
PCM. For example, component A in Figure 3 is
bound to YourInterface in a provided role.
This means that the component includes an imple-
mentation for each of the services declared in the
interface. Other components, which are bound to
a compliant interface in a required role can use
component A to execute these services.

Repositories need common data types, so that
the service signatures refer to standardized types
(e.g., INT, FLOAT, CHAR, BOOL, STRING,
etc.). In the PCM, data types are either primi-
tive types, collection types, or composite types

 1117

Evaluating Performance of Software Architecture Models with the Palladio Component Model

(composed out of inner types). Figure 3 contains
a primitive data type INT and a collection data
type INT-Array, which contains INTs as inner
elements.

The PCM supports modeling different types
of components to a) reflect different development
stages, and b) to differentiate between basic (atom-
ic) components and composite components.

Different development stages are reflected
by provided, complete, and implementation
component type. Component developers can
refine components during design from provided
to implementation component types.

Provided component types (component B in
Figure 3) only provide one or more interfaces, but
include no mandatory required interfaces. Compo-

Figure 3. Example component repository (©2007 Heiko Koziolek. Used with permission)

<<repository >>

<<compositecomponent>>
e

<<basic
component>>

F

<<composite
component>>

g

<<Implementation
ComponentType>>

d

<<Provided
ComponentType>>

b

<<Complete
ComponentType>>

c

<<basic
component>>

h

<<delegation
connector>>

<<Assembly
connector>>

<<providedrole>>

<<requiredrole>>

<<delegation
connector>>

<<Interface>>
M yInter face

void m ethod1(Object par)
Object m ethod 2()

<<primitivedatatype>>
type = „ IN T “

<<collectiondatatype>>
nam e = „ IN T-AR R AY“
innerT ype = „ IN T “

<<provided
Interface>>

<<required
Interface>>

<<basic
component>>

A

<<Interface>>
YourInter face

IN T m ethod3()
vo id m ethod4()

<<serviceeffectspecification>>

<<externalcallAction>>
m ethod1

<<InternalAction>>
doSom ething

<<basiccomponent>>
I

<<providedrole >> <<requiredrole>>

1118

Evaluating Performance of Software Architecture Models with the Palladio Component Model

nent developers can use these type of components
early during the development, when they know
that a certain functionality has to be provided,
but do not know whether other components are
needed to provide this functionality.

Complete component types (component C
in Figure 3) are provided component types, but
additionally may contain mandatory required
interfaces. However, the inner dependencies be-
tween provided and required interfaces are not
fixed in complete component types, as different
implementations can lead to different dependen-
cies. Within a component architecture, a software
architect may easily replace one component with
another component, which conforms (i.e., imple-
ments the same provided and required interfaces)
to the same complete component type, without
affecting the system’s functionality.

Implementation component types (component
D in Figure 3) are complete component types,
but additionally contain fixed inner dependen-
cies between provided and required interfaces.
Replacing implementation component types in an
architecture ensures not only signature but also
protocol compatibility at the required interface.

Implementation component types are either
basic (i.e., implemented from scratch) or compos-
ite components (i.e., implemented by composing
other components). Component E in Figure 3 is a
composite component. It contains several inner
components (F, G, H). Inner component may again
be composite components (G) to build up arbitrary
hierarchies. Assembly connectors bind the roles
of inner components. Delegation connectors con-
nect provided roles of composite components with
provided roles of inner components, or required
roles of composite components with required roles
of inner components. From the outside, composite
components look like basic components, as they
provide and require services. The inner structure
of a composite component should only be known
to the component developer, but not to the software
architect, who shall use the component as a unit
and treat it the same as other components.

Finally, basic components are atomic and
therefore cannot be further decomposed. They
may contain a mapping for each provided service
to required services, which is called resource
demanding service effect specification.

Service Effect Specification

Resource demanding service effect specifications
(RDSEFF) provide means to describe resource
demands and calls to required services by a pro-
vided component service. Component developers
use RDSEFFs to specify the performance of their
components.

RDSEFFs reflect the environmental factors on
component performance introduced in Section 2.
These are external services, execution environ-
ment, usage profile, and component implementa-
tion as described in the following subsection.

RDSEFFs abstractly model the externally ob-
servable behavior of a component service. They
only refer to method signatures and parameters
that are declared in the interfaces and not to
local, private variables. They abstractly model
control flow between calls to required services,
parametric dependencies, and resource usage.
These specifications do not reveal any additional
knowledge about the algorithms used to imple-
ment the service’s functionality and thus retain
the black-box principle.

Consider the artificial example in Figure 4 for
a brief introduction into RDSEFFs. Component A
invokes required functionality via its required X,Y,
and Z. It provides a service called “do”, whose
source code is sketched in Figure 4. The service
first calls a service from interface X, and then
executes some internal code processing parameter
“input1”. Afterwards, depending on “input2”,
either services from interface Y or Z are called.
“method2” from interface Y is located within
a loop, whose number of iterations depends on
the array length of “input3”.

The corresponding RDSEFF for service “do”
is located on the right hand side in Figure 4. As a

 1119

Evaluating Performance of Software Architecture Models with the Palladio Component Model

graphical, concrete syntax, the illustration uses
the UML activity diagram notation. However, in
this case, the metamodel underlying the modeling
constructs is not the UML metamodel, but the
PCM, which is indicated by enclosing the PCM
class names in brackets. In the following, the
underlying concepts for control flow, resource
demands, and parametric dependencies will be
described.

Control Flow: Actions in RDSEFFs can either
be internal actions (i.e., the component executes
some internal code) or external call actions (i.e.,
the component calls a service declared in its re-

quired interface). RDSEFF offer as basic control
flow constructs sequences, alternatives, loops,
and parallel executions (forks). The order of these
actions may influence performance properties of
the service, because different services may con-
currently use the same resources or synchronize
each other, which induces delays for waiting.

Alternatives or branches split the control flow
with an XOR semantic (with guards covering the
whole input domain of parameters), while forks
(not depicted in Figure 4) split the control flow
with an AND semantic, i.e., all following actions
are executed concurrently. Loops have to specify

Figure 4. Resource demanding service effect specification (©2007 Heiko Koziolek. Used with permis-
sion)

void A.do(File input1,
int input2,
List input3){

X.method1();

// internal method
input4 =
innerMethod(input1);

if (input2>=0)
for (item : input3)
Y.method2();

else
Z.method3(input4);

}

A

X

Y

Z

<<externalcallAction >>
m ethod 1

<<externalcallAction >>
m ethod 2

<<externalcallAction >>
m ethod 3

<<InternalAction>>
innerM ethod

<<resourcedemanding
serviceeffectspecification>>

<<guardedbranch>>
S p e cifica tio n =
P (in p u t2 .V A L U E <0)

<<guardedbranch>>
S p e cifica tio n =
P (in p u t2.V A L U E>=0)

<<loopAction>>
Ite ra tio n s =
in p u t3.E L E M E N TS

<<Variableusage>>
R e fe re n ce N a m e = zIn p u t
Typ e = B Y TE S IZE
S p e cifica tio n =
in p u t1.B Y TE S IZE / 2

<<parametric
resourcedemand>>
S p e cifica tio n = 1 0 0 0 +
in p u t1 .B Y TE S IZE * 2 5
U n it = C P U cyc le s

1120

Evaluating Performance of Software Architecture Models with the Palladio Component Model

the number of iterations, so that the execution
times for actions within the loop can be added
up a limited number of times.

Notice that the control flow in RDSEFFs is
an abstraction from the actual inner control flow
of the service. Internal actions potentially sum-
marize a large number of inner computations and
control flow constructs, which do not contain calls
to required services.

Resource Demands: Besides external ser-
vices, a component service accesses the resources
of the execution environment it is deployed in.
Ideally, component developers would provide
measured execution times for these resource ac-
cesses in the RDSEFF. However, these measured
times would be useless for software architects,
who want to use the component, because their
hardware/software environment can be vastly
different from the component developer ones.
The execution times of the service could be
much faster or slower in the software architect’s
environment.

Therefore, component developers specify
resource demands in RDSEFFs against abstract
resource types such as a CPU or hard disk. For
example they can provide the number of CPU
cycles needed for execution or the number of bytes
read from or written to a hard disk. The resource
environment model supplied by the system de-
ployer (Section 4.3) then contains execution times
for executing CPU cycles or reading a byte from
hard disk. These values can be used to calculate
the actual execution times of the resource demands
supplied by the component developers. As an ex-
ample, the “ParametricResourceDemand” on the
internal action “method1” in Figure 4 specifies
that the service needs 1000 CPU cycles plus the
amount of a parametric dependency (described
in the next paragraph) to execute.

In addition to active resources, such as pro-
cessors, storage devices, and network devices,
component services may also acquire and release
passive resources, such as threads, semaphores,

database connections etc. Passive resources are
not capable of processing requests and usually ex-
ist only a limited number of times. A service can
only continue its execution, if the required amount
of resources is available. Acquisition/Release of
passive resources is not depicted in Figure 4.

Parametric Dependencies: To include the
influence of the usage profile into the RDSEFF,
component developers can specify parametric
dependencies. When specifying an RDSEFF,
component developers cannot know how the
component will be used by third parties. Thus
they cannot fix resource demands, branching
probabilities or the number of loop iterations if
those values depend on input parameters. Hence,
RDSEFFs allow specifying dependencies to input
parameters.

There are several forms of these dependencies.
For example, in Figure 4, the resource demand
of the internal action “innerMethod” depends
on byte size of input parameter “input1” (e.g.,
because the method processes the file byte-wise).
Once the domain expert characterizes the actual
size of this parameter (cf. Section 4.4), this value
can be used to calculate the internal action’s actual
resource demand.

Furthermore, branching probabilities are
needed for the alternative execution paths in this
RDSEFF. These probabilities are however not
fixed, but depend on the value of input parameter
“input2”. Therefore, the RDSEFF includes no
branching probabilities but guards (i.e., Boolean
expressions) on the branches. Once the domain
expert characterizes the possible values of “in-
put2” and provides probabilities for the input
domains “input2>=0” and “input2<0”,
these values can be mapped to the branching
probabilities.

The RDSEFF in Figure 4 also contains a para-
metric dependency on the number of loop itera-
tions surrounding the external call to “method2”
of component Y. Loop iterations can be fixed in
the code, but sometimes they depend on input

 1121

Evaluating Performance of Software Architecture Models with the Palladio Component Model

parameters. In this case the service iterates over
the list “input3” and calls the external service
for each of its elements. The RDSEFF specifies this
dependency as the component developer cannot
know in advance the lengths of the lists.

Finally, the service “do” executes the ex-
ternal call to “method3” in Figure 4 with an
input parameter that in turn depends on an input
parameter of the service itself. The service pro-
cesses “input1”, assigns it to a local variable
“input4”, and then forwards it to interface Z
via “method3”. While processing “input1”,
the service “do” reduces its byte size by 50%
(“input1.BYTESIZE / 2”). The RDSEFF
includes the specification of this dependency. Once
the domain expert specifies the actual byte size
of “input1”, the byte size of the input parameter
of “method3” can be calculated.

software Architect

Software architects retrieve components (in-
cluding their RDSEFFs) from repositories and
compose them to architectures. They can use
several component instances of the same type in

an architecture at different places. Hence, in the
PCM, software architects put component instances
in so called assembly contexts, which save the
connections of a single component instance.

Software architects bind the roles of compo-
nents in assembly contexts with system assembly
connectors, as illustrated in the example in Figure
5. Notice that the component type A is used in two
assembly contexts in this example (once connected
with component B and once with C and D).

A set of connected assembly contexts is called
assembly. An assembly is part of a system, which
additionally exposes system provided roles and
system required roles (cf. Figure 5). System del-
egation connectors bind these system roles with
roles of the system’s inner components. Domain
experts later use system provided roles to model
the usage of the system (Section 4.4). System
required roles model external services, which the
software architect does not consider part of the
architecture. For example, the software architect
can decide to model a web service or a connected
database as system external services.

There is a distinction between composite
components and systems. For software architects

Figure 5. System example (©2007 Heiko Koziolek. Used with permission)

 <<system>>

A

<<systemprovidedrole>> <<systemrequiredrole>>

B

C

<<Assemblycontext>>

A
D

<<systemdelegationconnector >>

<<systemAssemblyconnector >> <<systemdelegationconnector >>

<<Assemblycontext>>

<<Assemblycontext>>
<<Assemblycontext>>

<<Assemblycontext>>

1122

Evaluating Performance of Software Architecture Models with the Palladio Component Model

and system deployers, composite components
hide their inner structure and the fact that they
are composed from other components. The inner
structure is an implementation detail and its expo-
sure would violate the information hiding principle
of components. Opposed to this, the structure of
assemblies is visible to software architects and
system deployers. Therefore, system deployers
can allocate each component in a system to a
different resource. However, they cannot allocate
inner components of composite components to
different resources, because these stay hidden
from them at the architectural level.

system deployer

System deployers first specify the system’s re-
source environment and then allocate assembly
contexts (i.e., connected component instances)
to resources.

In resource environments, resource containers
group resources. For example, in Figure 6, the

resource container “Server1” contains a CPU, a
hard disk, and a database connection pool. The
PCM differentiates between processing resources,
which can execute requests (e.g., CPU, hard disk,
memory), and passive resources, which can-
not execute requests, but only be acquired and
released (e.g., threads, semaphores, database
connections).

Processing resources specify a processing
rate, which can be used to convert the resource
demands in RDSEFFs into timing values. Pas-
sive resources specify a capacity. If a compo-
nent acquires a passive resource, its amount of
available units (i.e., its capacity) decreases. Once
the capacity reaches zero, further components
requesting the passive resource must wait until
other services release it again. Linking resources
connect resource containers and are themselves
special processing resources.

System deployers use allocation contexts to
specify that a resource container executes an as-
sembly context. In Figure 6, the system deployer

Figure 6. Resource environment and allocation (©2007 Heiko Koziolek. Used with permission)

<<system>>

A B

<<Assemblycontext>><<Assemblycontext>>

<<Allocationcontext>>

<<linkingresource>>
processingR ate = 100 M bit/s

<<resourcecontainer >>
Server 1

<<resourcecontainer >>
Server 2

<<processing
resource

specification>>
C PU

processingR ate =
3* 10^9 cycles /s

<<processing
resource

specification>>
H ard D isk

processingR ate =
15.5 M B/s

<<passive
resource

specification>>
D atabaseC onnect

capacity = 3 0

<<processing
resource

specification>>
C PU

processingR ate =
2.2*10^9 cycles /s

<<passive
resource

specification>>
T hreadPool

capacity = 8

 1123

Evaluating Performance of Software Architecture Models with the Palladio Component Model

has allocated component A’s assembly context to
“Sever1” and component B’s assembly context to
“Server2”.

System deployers can specify different re-
source environments and different allocation
contexts to answer sizing questions. The PCM’s
resource model is still limited to abstract hard-
ware resources. We will extend it in the future
with middleware parameter, operating system
settings, and scheduling policies.

domain expert

Domain experts create a usage model that char-
acterizes user behavior and connects to system
provided roles. In the example in Figure 7, users
first log in to the system, then either browse or
search, then buy an item, and finally log out. All
actions target system provided roles (i.e., services
exposed by the system, cf. Section 4.2).

Domain experts can specify user behavior
with control flow constructs such as sequence,
alternative, and loop. They must specify branch-

ing probabilities for alternatives and the number
of iterations for loops.

Additionally, domain experts specify the user
workload. Workloads are either closed or open.
Closed workloads specify a fixed number of users
(population) circulating in the system. In Figure
7, the domain expert has specified a closed work-
load with 15 users, which perform the specified
actions and then re-enter the system after a think
time of 1 second. Open workloads specify a user
arrival rate (e.g., 5 users/second), and do not limit
the number of users in the system.

The PCM usage model also enables domain
experts to characterize the parameter values of
users. In Figure 7, variable “category” of action
browse has been characterized with a constant (5)
meaning that users always browse in the category
with id number 5. Besides constants, the usage
model offers specifying probability distribution
functions over the input domain of a parameter,
so that domain experts can provide a fine-grained
stochastic characterization of the user’s input pa-
rameters. The reader may find details in Reussner
et al. (2007).

Figure 7. Usage model example (©2007 Heiko Koziolek. Used with permission)

<<systemcallAction>>
Login

<<systemcallAction>>
Search

<<systemcallAction>>
Brow se

<<systemcallAction>>
BuyItem

<<systemcallAction>>
Logout

<<usageModel>>

<<branchtransition>>
Probability =0.6

<<branchtransition>>
Probability =0.4

<<closedworkload>>
Population= 15 u sers
T hink t im e = 1 second

<<loopAction>>
Iterations = 3

<<Variablecharacterisation>>
R eferenceN am e = „category“
Specification = 5

1124

Evaluating Performance of Software Architecture Models with the Palladio Component Model

tool support

We have implemented an Eclipse-based open-
source tool called “PCM-Bench”, which enables
software developers to create instances of the
PCM metamodel and run performance analyses
(cf. Figure 8). The tool offers a different view
perspective for each of the four developer roles
and provides graphical model editors. Models of
the different developer roles reference each other
in the editor, which enables the creation of a full
PCM instance. The PCM-Bench is an Eclipse
RCP application and its editors have been partially
generated from the PCM Ecore metamodel with
support of the Graphical Modelling Framework
(GMF).

The graphical editors provide an intuitive
way of modeling component-based architectures
analogous to UML modeling tools. They offer
model validation by checking OCL-constraints

(Object Constraint Language). The PCM-Bench
visualizes violated constraints directly in the
model diagrams. The editors support entering
performance annotations with special input
masks that offer syntax highlighting and code
completion. Model instances can be serialized
to XMI-files.

Besides graphical editors, the PCM-Bench is a
front-end for the performance analysis techniques
described in Section 5. Software architects can
configure and run simulations. They can retrieve
different performance metrics such as response
times for use cases, throughputs, and resource
utilizations. The PCM-Bench visualizes prob-
ability distribution functions of response times
as histograms and provides standard statistical
values such as mean, median, standard devia-
tion etc. Furthermore, the PCM-Bench supports
Model-to-Text transformations to generate Java
code from PCM instances.

Figure 8. Screenshot PCM-bench (©2007 Heiko Koziolek. Used with permission)

 1125

Evaluating Performance of Software Architecture Models with the Palladio Component Model

Model trAnsForMAtIon And
predIctIon Methods

The PCM offers different performance evaluation
techniques, which are still subject to research. For
analyzing use cases without concurrency, a PCM
instance can be transformed into a stochastic
process algebra (SPA), which offers a fast way of
predicting response times (Section 5.1). A PCM
instance can alternatively be transformed into a
queuing network based simulation model (Section
5.2). The simulation model is less restricted than
the SPA, but its execution is usually more time
consuming than solving the SPA. Finally, there
are transformations to derive Java code skeletons
from a PCM instance, to provide a starting point
for implementing the modeled architecture (Sec-
tion 5.3).

stochastic process Algebra

The PCM-Bench supports a model-2-model
transformation of a PCM instance into an SPA
called Capra (Happe et. al (2007), Koziolek et.
al (2007c)). Capra includes concurrent processes,
resources with current operating systems schedul-
ing policies, and is able to efficiently incorporate
timing values specified as arbitrary probability
distributions into the analysis process. It employs
a hybrid approach of analysis and simulation to
conduct the performance prediction.

To transform a PCM instance into a Capra
expression, a tool first solves the parametric
dependencies within the RDSEFFs. They use
the parameter characterizations provided by the
domain expert in the usage model to transform
parametric resource demands to resource de-
mands, guards on branches to probabilities, and
parameter dependent loop iteration specifications
into iteration numbers. Afterwards, the transfor-
mation into Capra is straightforward (Koziolek et.
al (2007a)). The remainder of this section gives a
brief overview on Capra’s syntax, semantics, and
analytical capabilities.

The basic entities of a process are actions.
In Capra, the set of actions Act is divided into
a set of event actions EAct and demand actions
DAct. Event actions represent atomic, indivisible
behavior which is mainly used for process com-
munication. Demand actions on the other hand
represent the usage of resources, like processors
and hard disks, for a certain time span. During
the execution of a demand action other activities
might happen in the system. A random variable
Da,r specifies the demand issued by a demand
action a to a resource r. It is characterized by a
probability density function (pdf) fa,r(t). To cre-
ate more complex behavioral structures, Capra
offers a set of different operators for sequential
and alternative composition as well as for the
specification of recursive process behavior. The
following describes the available operators.

Process QP ⋅ denotes the sequential composi-
tion of two processes P and Q. It first executes P
and then, after the successful termination of P,
it executes Q.

The alternative composition models the ex-
ecution of only one of the two processes P and
Q. Capra distinguishes two types of alternative
composition, depending on where the decision
for the next activity is made. If the process it-
self decides on the next activity, the internal or
probabilistic choice is used. Process QP p⊕
selects process P with probability π and process
Q with probability 1 – π. On the other hand,
the external or non-deterministic choice P + Q
models different possible behaviors. Here, the
selection is determined by event actions issued
by the process’ environment, i.e. other processes
running in parallel.

A process variable X can be used to define
recursive processes. For example, DoaDo ⋅=:
specifies a process that executes an infinite num-
ber of a actions. In real systems, the number of
recursive calls is usually bounded. Furthermore,
the limit is usually not fixed to a single value, but
depends on the system’s parameters. To approxi-
mate such behavior, Capra models the number

1126

Evaluating Performance of Software Architecture Models with the Palladio Component Model

of recursive calls as a discrete random variable
specified by a probability mass function (pmf).
Process P*(Iter) describes the bounded loop of a
processes P. The random variable Iter character-
ized by a pmf P(Iter = n) denotes the probability
of executing the recursion n times (Koziolek et.
al., 2007c).

Process QP A|| denotes the parallel compo-
sition of the processes P and Q. The processes
communicate (and synchronize) over the event
actions in the set A. Both processes compete for
the available resources, which might delay their
execution.

To reduce the complexity of the simulation,
the total demand of some operations can be de-
termined in advance. If two processes issue only
demands to a single resource, their total demand
can be computed for the operations sequential
composition, probabilistic choice, and finite
recursion. The following gives an impression on
the possible analyses.

The total demand of a sequence of demand
actions is the sum of the single demands. So, the
random variable for the sequential demand is given
by rQrPrQP DDD ,,, +=⋅ . The sum of two random
variables is the convolution of its pdfs. Thus, the
pdf of rQPD ,⋅ is))(()(,,, tfftf rQrPrQP ⊗=⋅ , where
⊗ denotes the convolution.

For the probabilistic choice QP p⊕ , the de-
mand is either rPD , with probability π or rQD ,
with probability 1 – π. Thus, the pdf of QPD

p⊕
is the weighted sum of the probability density
functions:

)()1()()(,,, tftftf rQrPrQP −+⋅=⊕ .

Finite recursion can be considered as large
probabilistic choices over the n-time sequential
composition of processes P and Q. The pmf P(I
= n) defines the probabilities for the probabilistic
choice. Thus, function:

∑ ⊗⊗= =)))(()(()(,,1,][tffiptf rQrP
i
jIrQIP

computes the pdf for demand QIPD][.
With such combined resource demands, the

number of required simulation steps is reduced
significantly. The simulation itself is an event-dis-
crete simulation based on the Desmo-J framework
and yields as result the response time of a usage
scenario as a probability distribution. Details on
Capra and the simulation can be found in Happe
et al. (2007).

queuing network simulation

Many performance analysis methods use queu-
ing networks as underlying prediction models
because of their capability to analyze concurrent
system interactions. Queuing models contain a
network of service centers with waiting queues
which process jobs moving through the network.
When applying queuing networks in performance
predictions with the PCM, some of the commonly
used assumptions need to be dropped. As the
PCM uses arbitrary distribution functions for the
random variables, generalized distributed service
center service times, arrival rates, etc. occur in
the model. Additionally, the requests are routed
through the queuing network according to the
control flow specified in the RDSEFF. In contrast,
common queuing networks assume probabilistic
movement of the jobs in the network. As a result,
only simulation approaches exist, which solve
such models.

Hence, we use a model-to-text transformation
to generate Java code realizing a custom queu-
ing network simulation based on the simulation
framework Desmo-J. The simulation generates
service centers and their queues for each active
resource. Passive resources are mapped on sema-
phores initialized with the resource’s capacity.
The transformation generates Java classes for the
components and their assembly. Service imple-
mentations reflect their respective SEFF.

For the usage model workload drivers for open
or closed workloads simulating the behavior of

 1127

Evaluating Performance of Software Architecture Models with the Palladio Component Model

users exist in the generated code. For any call
issued to the simulated system, the simulation
determines the parameter characterizations of
the input parameters and passes them in a so
called virtual stackframe to the called service.
Originally, the concept of a stackframe comes
from compiler construction where they are used
to pass parameters to method calls. In the PCM
simulation, stackframes pass the parameter char-
acterizations instead.

Utilizing the information in the simulated
stackframes, the simulated SEFF issues resource
demands to the simulated resources. If the re-
source is contented, the waiting time increases
the processing time of the demand.

The simulation runs until simulation time
reaches a predefined upper limit or until the width
of the estimation for the confidence interval of
the mean of any of the measured response times
is smaller than a predefined width. After the end
of a simulation run, the simulation result contains
different performance indicators (response times,
queue lengths, throughputs …) which the software
architect can analyze to determine performance
bottlenecks in the software architecture.

The computations described here reduce the
complexity of Capra expressions allowing a more
efficient and more accurate simulation. In the
special case, that all demands are issued to the
same resource and no concurrency is used, the
whole expression can be solved analytically.

java code & performance prototype

The effort spent into creating a model of a software
architecture should be preserved when implement-
ing the system. For this, a model-2-text transforma-
tion based on the openArchitectureWare (oAW)
framework generates code skeletons from PCM
model instances. The implementation uses either
Plain Old Java Objects (POJOs) or Enterprise Java
Beans (EJBs) ready for deployment on a J2EE
application server.

The transformation uses as much model infor-
mation as possible for the generation of artifacts.
Repository models result in components, assembly
connectors in distributed method calls, the alloca-
tion is used to generate ant scripts to distribute the
components to their host environment and finally,
the usage model results in test drivers.

A particular challenge is the mapping of
concepts available in the PCM to objects used in
Java or EJB. Consider for example the mapping
of composite components to Java. As there is no
direct support of composed structures in Java,
a common solution to encapsulate functionality
is the application of the session façade design
pattern.

Another issue with classes as implementing
entities for components is the missing capabili-
ties to explicitly specify required interfaces of
classes in object oriented languages. A solution
for this is the application of the component con-
text pattern by Völter et al. (2006). This pattern
moves the references to required services into
a context object. This object is injected into the
component either by an explicit method call or
by a dependency injection mechanism offered by
the application server.

Finally, we can combine the EJB and the
simulation transformation. This way, users can
generate a prototype implementation which can be
readily deployed and tested on the final execution
environment. Internal actions of the prototype
only simulate resource demands by executing
dummy code which offers quality characteristics
as specified in the model. By using the prototype,
early simulation results can be validated on the
real target environment to validate early perfor-
mance estimates.

exAMple

To illustrate the performance prediction ap-
proach with the PCM, this section provides a

1128

Evaluating Performance of Software Architecture Models with the Palladio Component Model

case study, in which we predicted the response
time of a usage scenario in a component-based
software architecture and compared the results
with measured response times from executing an
implementation.

The system under analysis is the “MediaStore”
architecture, a web-based store for purchasing
audio and video files, whose functionality is
modeled after Apple’s iTunes music store. It is a
three-tier architecture assembled from a number
of independently usable software components
(Figure 9). Users interact with the store via web
browsers, and may purchase and download dif-
ferent kinds of media files, which are stored in
a database connected to the store’s application
server via Gigabit Ethernet.

We analysed a scenario, in which users pur-
chase a music album (10-14 files, 2-12 MB per
file) from the store. As a measure for copy protec-
tion, a component “DigitalWatermarking” shall
be incorporated into the store. This component
unrecognisable attaches the user’s ID to the audio
files via digital watermarking. In case the audio
files would appear illegally in public file sharing
services, this enables tracking down the respon-

sible user. However, this copy protection measure
has an influence on performance, as it decreases
the response time of the store when downloading
files. With the model-driven performance predic-
tion, we analysed whether the store is capable of
answering 90% of all user download requests in
less than 8 seconds.

Each component in the store provides RD-
SEFFs to enable performance analyses (three
examples in Figure 10). The execution time in
this use case mainly depends on the number
and size of the files selected for download,
which influences network traffic as well as CPU
utilisation for the watermarking algorithm. The
specifications of the the components’ RDSEFFs
have been calibrated with measurements on the
individual components. In this case, we carried
out the predictions using Capra.

Besides modelling the store, we also
implemented the architecture assisted by the
introduced model-to-text transformations
to Java code (EJB3). After generating code
skeletons from the design, we manually added the
implementation of the business logic of forwarding
requests and watermarking audio files. The code

Figure 9. MediaStore architecture (©2007 Heiko Koziolek. Used with permission)

webbrowser MediastorewebguI

user
Managementsoundprocessing

billing

encoding

digital
watermarking

Audiodb

community
services

podcastInternetradio

equalizer

Accounting userdb

dbAdapter

<<resourcecontainer >>
C lien t

<<resourcecontainer>>
A pp lica tion S erve r

<<resourcecontainer >>
D B S erve r1

<<resourcecontainer >>
D B S erve r2

 1129

Evaluating Performance of Software Architecture Models with the Palladio Component Model

Figure 10. MediaStore service effect specifications (©2007 Heiko Koziolek. Used with permission)

<<externalcallAction>>
queryD B

<<collectionIteratorAction>>

<<external
callAction>>

w aterm ark

<<setVariableAction>>

<<InternalAction>>
search

<<setVariableAction>>

<<parametricresourcedemand>>
specification = „1.49E-6 *
StoredF iles.N U M BER_OF _ELEM EN T S
+ 0.0096“
<<ProcessingR esourceT ype>>
nam e = „H D “

<<InternalAction>>
addId

<<InternalAction>>
addtext

<<setVariableAction>>

probIncludeID

1-probIncludeID

probIncludeT ext

1-probIncludeT ext

<<Variableusage>>
fileT oM ark.BYT ESIZ E

<<parameter>>
desiredF iles

<<rdseFF>>
M ed iaS to re .dow n load

<<rdseFF>>
A ud ioD B.ge tF iles

<<Variableusage>>
filesID s .N U M BER_OF _ELEM EN T S

<<rdseFF>>
D ig ita lW ate rm ark ing.

w a te rm ark

<<Variableusage>>
filesT oM ark.BYT ESIZ E

<<parametricresourcedemand>>
specification = „ fileT oM ark.BYT ESIZ E *
5.11E-9
<<ProcessingR esourceT ype>>
nam e = „C PU “

<<Variableusage>>
desiredF iles.N U M BER
_OF_ELEM EN T S

<<InternalAction>>
getF iles

<<parametricresourcedemand>>
specification = „4.0E-8 *
desiredF ile .BYT ESIZ E + 0.08“
<<ProcessingR esourceT ype>>
nam e = „H D “

Figure 11. Case study results (©2007 Heiko Koziolek. Used with permission)

1130

Evaluating Performance of Software Architecture Models with the Palladio Component Model

generation also creates build scripts, test drivers,
deployment descriptors, and configuration files.
We weaved measurement probes into the code
using AspectJ.

The results of prediction and measurement
are compared in Figure 11. The diagram on the
left hand side visualises the histograms of the
response times. The dark columns indicate the
prediction, while the bright columns on top of
the dark columns indicate the measurement. The
highest probability of receiving a response from
the store with the mentioned parameters is at
around 6 second. In this case, the prediction and
the measurement widely overlap.

The diagram on the right hand side visualises
the cumulative distribution functions of the
response time prediction and measurements. This
illustration allows to easily check our constraint of
at least 90% of all responses in less than 8 seconds.
It was predicted that 90% of all requests would be
responded in 7.8 seconds even if watermarking
was used in the architecture. The measurements
confirmed the predictions, because in our tests
90% of the request could be answered less than
7.8 seconds. There is a difference of 0.1 seconds
or 1.3 percent.

In this case, the predictions were useful to
quantitatively support the software architect’s
decision to introduce watermarking without vio-
lating a service level agreement. Note, that the
predictions are not meant to be real-time predic-
tions for safety-critical systems. They are useful
at early development stages on the architectural
level to support design decisions and lower the
risk of performance problems in implementations.
Safety-critical systems (e.g., airbag controls)
instead need formal verifications of predictions
to prevent harming human lives. That requires
more fine grain specifications at lower abstraction
levels, which developers can only create if most
details of the system are known.

Future reseArch dIrectIons

Model-driven performance prediction and quality
assurance of software architecture models is still
in its infancy and provides lots of opportunities for
future research. Woodside et al. (2007) recently
commented on the future of software performance
engineering. We provide a list of future research
directions from our viewpoint complementing
their ideas:

• Intermediate languages: To bridge the gap
between designer-friendly model notations
and analytically-oriented formalisms, many
approaches have developed ad-hoc model
transformations. Several approaches aim
at providing a standard interface, i.e., an
intermediate modelling language, to ease the
implementation of model transformations
(Grassi et al. (2005), Petriu et. al. (2005))

• Dynamic architectures: The PCM is only
targeted at static architectures, and does
not allow the creation/deletion of compo-
nents during runtime or changing links
between components. With the advent of
web services and systems with dynamic
architectures changing during runtime,
researchers pursuit methods to predict the
dynamic performance properties of such
systems (Caporuscio et al. (2007), Grassi
et al. (2007)).

• Layered resource models: With OMG’s
MDA vision of platform independent mod-
els and platform specific models, it seems
straight forward to follow this approach in
performance modelling. For different system
layers (e.g., component containers, middle-
ware, virtual machine, operating system,
hardware resources), individual models
capturing performance-relevant properties
could be built. These models could be com-

 1131

Evaluating Performance of Software Architecture Models with the Palladio Component Model

posed with architectural models to predict
the performance (Woodside et. al (2007)).

• Combination of modeling and measure-
ment: Developers can only carry out per-
formance measurements if the system or
at least parts of it have been implemented.
Measurement results could be used to
improve models. In component-based per-
formance modelling, measurements are
useful to deduce the resource demands of
components. A convergence of early-life
cycle modelling and late-life cycle measure-
ment can potentially increase the value of
performance evaluations (Woodside et. al
(2007)).

• Performance engineering knowledge
database: Information collected by using
prediction models or measuring prototypes
tends to get lost during system development.
However, the information is useful for fu-
ture maintenance and evolution of systems.
Systematic storage of performance-related
information in a knowledge database could
improve performance engineering (Wood-
side et. al (2007)).

• Improved automated feedback: While
today’s model-transformations in software
performance engineering bridge the seman-
tic gap from the developer-oriented models to
the analytical models, the opposite direction
of interpreting performance result back from
the analytical models to the developer-ori-
ented models has received sparse attention.
Analytical performance results tend to be
hard to interpret by developers, who lack
knowledge about the underlying formal-
isms. Thus, an intuitive feedback from the
analytical models to the developer-oriented
models would be appreciated (OMG (2005),
Woodside et. al (2007)).

conclusIon

This chapter provided an overview of the Palla-
dio Component Model, a modelling language to
describe component-based software architectures
aiming at early life cycle performance predic-
tions. The PCM is aligned with developer roles in
CBSE, namely component developers, software
architects, system deployers, and domain experts.
Therefore, the PCM provides a domain specific
modelling language for each of these developer
roles. Combining the models from the roles leads
to a full PCM instance specification, which can
be transformed to different analysis models
or Java code. An hybrid analysis model (SPA)
provides a fast way to predict response times.
Simulation of PCM instances is potentially more
time-consuming, but offers more expressiveness
than the hybrid approach. Finally, developers may
use generated Java code skeletons from a PCM
instance as a starting point for implementation.
To illustrate the PCM’s capabilities the chapter
included a case study predicting the performance
for a small component-based architecture.

The PCM is useful both for component de-
velopers and software architects. Component
developers can specify the performance of their
components in a context-independent way, thereby
enabling third party performance predictions and
improving reusability. Software architects can re-
trieve component performance specification from
repositories and assemble them to architectures.
With the specifications they can quickly analyse
the expected performance of their designs without
writing code. This lowers the risk of performance
problems in implemented architectures, which
are a result of a poor architectural design. The
approach potentially saves large amounts of
money because of avoided re-designs and re-
implementations.

The chapter provided pointers for future direc-
tions of the discipline in Section 7. Future work

1132

Evaluating Performance of Software Architecture Models with the Palladio Component Model

for the PCM includes improving the resource
model, supporting dynamic architectures and
reverse engineering. The resource model needs
to be improved to support different scheduling
disciplines, concurrency patterns, middleware pa-
rameters, operating system features etc. Dynamic
architectures complicate the model as they allow
changing links between components and allow
the creation and deletion of components during
runtime. However, this is common in modern
service-based systems, and thus should be in-
corporated into performance predictions. Finally,
reverse engineering to semi-automatically deduce
performance models from existing legacy code
seems an interesting pointer for future research.
Reducing the effort for modelling would convince
more developers of applying performance predic-
tions. The inclusion of legacy systems enables
predicting the impact on performance of planned
system changes.

reFerences

Balsamo, S. , DiMarco, A., Inverardi, P. & Si-
meoni, M. (2004). Model-Based Performance
Prediction in Software Development: A Survey.
IEEE Transactions on Software Engineering,
30(5), 295-310.

Becker, S.; Grunske, L.; Mirandola, R. & Over-
hage, S. (2005). Performance Prediction of Com-
ponent-Based Systems: A Survey from an Engi-
neering Perspective. In Springer Lecture Notes in
Computer Science Vol. 3938 (pp. 169-192).

Becker, S., Koziolek, H. & Reussner, R. (2007).
Model-based Performance Prediction with the
Palladio Component Model. In Proceedings of
the 6th Workshop on Software and Performance
WOSP’07 (pp. 56-67). ACM Press

Bertolino, A. & Mirandola, R. (2004). CB-SPE
Tool: Putting Component-Based Performance
Engineering into Practice. In Crnkovic, I., Staf-

ford, J. A., Schmidt, H. W. & Wallnau, K. C. (Ed.),
Proceedings of the 7th International Symposium
on Component-Based Software Engineering,
CBSE2004 (pp. 233-248). Springer Lecture Notes
in Computer Science, Vol. 3054

Bondarev, E., de With, P., Chaudron, M. &
Musken, J. (2005). Modelling of Input-Param-
eter Dependency for Performance Predictions
of Component-Based Embedded Systems. In
Proceedings of the 31th EUROMICRO Confer-
ence (EUROMICRO’05)

Caporuscio, M., DiMarco, A. & Inverardi, P.
(2007), Model-based system reconfiguration
for dynamic performance management. Journal
of Systems and Software, 80(4), (pp. 455-473).
Elsevier

Eskenazi, E., Fioukov, A. & Hammer, D. (2004).
Performance Prediction for Component Composi-
tions. In Crnkovic, I., Stafford, J. A., Schmidt, H.
W. & Wallnau, K. C. (Ed.), Proceedings of the 7th
International Symposium on Component-Based
Software Engineering, CBSE2004. Springer
Lecture Notes in Computer Science, Vol. 3054
Grassi, V., Mirandola, R. & Sabetta, A. (2005).
From design to analysis models: a kernel language
for performance and reliability analysis of com-
ponent-based systems. In Proceedings of the 5th
international workshop on Software and perfor-
mance, WOSP ‘05 (pp. 25-36). ACM Press

Grassi, V., Mirandola, R. & Sabetta, A. (2007).
A Model-Driven Approach to Performability
Analysis of Dynamically Reconfigurable Com-
ponent-Based Systems. In Proceedings of the 6th
international workshop on Software and perfor-
mance, WOSP ‘07 (pp. 142-153). ACM Press

Happe, J., Koziolek, H., & Reussner, R. H. (2007).
Parametric Performance Contracts for Software
Components with Concurrent Behaviour. In Elec-
tronical Notes of Theoretical Computer Science,
Vol. 182 (pp. 91-106), Elsevier.

 1133

Evaluating Performance of Software Architecture Models with the Palladio Component Model

Hamlet, D., Mason, D. & Woit, D. (2004). Prop-
erties of Software Systems Synthesized from
Components. In Lau, K. (Ed.), Component-Based
Software Development: Case Studies (pp. 129-
159). World Scientific Publishing Company

Hissam, S. A., Moreno, G. A., Stafford, J. A. &
Wallnau, K. C. (2002). Packaging Predictable As-
sembly. In CD’02: Proceedings of the IFIP/ACM
Working Conference on Component Deployment
(pp. 108-124). Springer-Verlag

Koziolek, H., Happe, J. & Becker, S. (2006).
Parameter Dependent Performance Specifica-
tions of Software Components. In Hofmeister,
C., Crnkovic, I., Reussner, R. & Becker, S. (Ed.)
Proceedings of the 2nd International Confer-
ence on the Quality of Software Architecture,
QoSA2006 (pp. 163-179). Springer Lecture Notes
in Computer Science, Vol. 4214

Koziolek, H., Happe, J. & Becker, S. (2007).
Predicting the Performance of Component-based
Software Architectures with different Usage
Profiles. In Szyperski, C. & Overhage, S. (Ed.)
Proceedings of the 3rd International Confer-
ence on the Quality of Software Architecture,
QoSA2007. Springer Lecture Notes in Computer
Science, To Appear

Koziolek, H. & Firus, V. (2007). Parametric
Performance Contracts: Non-Markovian Loop
Modelling and an Experimental Evaluation. In
Electronical Notes of Theoretical Computer Sci-
ence, Vol. 176 (pp. 69-87), Elsevier

OMG: Object Management Group (2005). UML
Profile for Schedulability, Performance and Time.
http://www.omg.org/cgi-bin/doc?formal/2005-
01-02

Petriu, D. B. & Woodside, M. (2005). An inter-
mediate metamodel with scenarios and resources
for generating performance models from UML
designs. Springer Journal on Software and Sys-
tems Modeling

Reussner. R. H., Becker, S., Happe, J., Koziolek,
H., Krogmann, K. & Kuperberg. M. (2007). The
Palladio Component Model. Internal Report
Universität Karlsruhe (TH)

Sitaraman, M., Kuczycki, G., Krone, J., Ogden,
W.F. & Reddy, A. (2001). Performance Specifica-
tions of Software Components. In Proceedings
of the Symposium on Software Reusability 2001
(pp. 3-10).

Szyperski, C., Gruntz, D. & Murer, S. (2002).
Component Software: Beyond Object-Oriented
Programming. Addison-Wesley

Wu, X. & Woodside, M. (2004). Performance
modeling from software components. In Proceed-
ings of the 4th International Workshop on Software
Performance, WOSP2004 (pp. 290-301). ACM
SIGSOFT Software Engineering Notes

Völter, M. & Stahl, M. (2006). Model-driven
Software Development. Wiley & Sons

Woodside, M., Franks, G. & Petriu D. C. (2007).
The Future of Software Performance Engineering.
In Proceedings of 29th International. Conference
on Software Engineering, ICSE’07. Track: Future
of Software Engineering.

AddItIonAl reAdIng

Bolch, G., Greiner, S., de Meer, H. & Trivedi,
K. S. (2006). Queueing Networks and Markov
Chains: Modeling and Performance Evaluation
with Computer Science Applications. Wiley-In-
terscience, 2nd Edition

Cecchet, E., Marguerite, J. & Zwaenepoel,
W.(2002) Performance and scalability of EJB
applications. ACM SIGPLAN Notes, 37(11), 246-
261

Chen, S., Liu, Y., Gorton, I. & Liu, A. (2005).
Performance prediction of component-based

1134

Evaluating Performance of Software Architecture Models with the Palladio Component Model

applications. Journal of Systems and Software,
74(1), 35-43.

DiMarco, A. & Mirandola, R. (2006). Model
transformations in Software Performance En-
gineering. Springer Lecture Notes in Computer
Science, Vol. 4214, 95-110

Dumke, R., Rautenstrauch, C., Schmietendorf, A.
& Scholz, A. (2001). Performance Engineering:
State of the Art and Current Trends. Springer
Lecture Notes in Computer Science, Vol. 2047

Grassi, V., Mirandola, R. & Sabetta, A. (2006).
Filling the gap between design and performance/
reliability models of component-based systems: A
model-driven approach. Journal of Systems and
Software, 80(4), 528-558.

Hermanns, H., Herzog, U. & Katoen, J. (2002)
Process algebra for performance evaluation.
Theorectical Computer Science, 274(1-2), Elsevier
Science Publishers Ltd., 43-87

Jain, R. K. (1991). The Art of Computer Systems
Performance Analysis: Techniques for Experi-
mental Design, Measurement, Simulation, and
Modeling. Wiley

Kounev, S. (2006). Performance Modeling and
Evaluation of Distributed Component-Based Sys-
tems Using Queueing Petri Nets. IEEE Transac-
tions on Software Engineering, 32(7), 486-502.

Lazowska, E.; Zahorjan, J.; Graham, G. & Sevcik,
K. (1984). Quantitative System Performance,
Prentice Hall

Liu, Y., Fekete, A. & Gorton, I. (2005). Design-
Level Performance Prediction of Component-
Based Applications. IEEE Transactions on
Software Engineering, 31(11), 928-941.

Menasce, D. A. & Gomaa, H. (2000). A Method
for Design and Performance Modeling of Client/
Server Systems. IEEE Transactions on Software
Engineering, 26(11), 1066-1085

Menasce, D. A. & Almeida, V. A.(2000) Scaling
for E-Business: Technologies, Models, Perfor-
mance, and Capacity Planning, Prentice Hall

Menasce, D. A. & Almeida, V. A.(2002) Capacity
Planning for Web Services, Prentice Hall

Menasce, D. A., Dowdy, L. W. & Almeida, A.F.
(2004). Performance by Design: Computer
Capacity Planning By Example, Prentice Hall
PTR

Reussner, R. H., Schmidt, H. W. & Poernomo, I.
H. (2003). Reliability prediction for component-
based software architectures. Journal of Systems
and Software, 66(3), 241-252.

Rolia, J. A. & Sevcik, K. C. (1995). The Method
of Layers. IEEE Transactions on Software Engi-
neering, 21(8), 689-700

Smith, C. U. & Williams, L. G. (2001). Perfor-
mance Solutions: A Practical Guide to Creating
Responsive, Scalable Software. Addison-Wesley
Professional

Verdickt, T., Dhoedt, B., Gielen, F. & Demeester,
P (2005). Automatic Inclusion of Middleware
Performance Attributes into Architectural UML
Software Models. IEEE Transactions on Software
Engineering, 31(8), 695-771.

Woodside, C. M., Neilson, J. E., Petriu, D. C. &
Majumdar, S. (1995) The Stochastic Rendezvous
Network Model for Performance of Synchronous
Client-Server-like Distributed Software. IEEE
Transactions on Computers, 44(1), 20-34.

This work was previously published in Model-Driven Software Development: Integrating Quality Assurance, edited by J. Rech
& C. Bunse, pp. 95-118, copyright 2009 by Information Science Reference (an imprint of IGI Global).

Section III
Tools and Technologies

This section presents extensive coverage of the technology that both derives from and informs software
applications. These chapters provide an in-depth analysis of the use and development of innumerable
devices and tools, while also providing insight into new and upcoming technologies, theories, and
instruments that will soon be commonplace. Within these rigorously researched chapters, readers are
presented with examples of the tools that facilitate and support software design and engineering. In ad-
dition, the successful implementation and resulting impact of these various tools and technologies are
discussed within this collection of chapters.

1136

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.1
Knowledge Management Toolkit

for SMEs
Kerstin Fink

University of Innsbruck, Austria

Christian Ploder
University of Innsbruck, Austria

AbstrAct

The discipline of knowledge management is no
longer emerging in large organizations, but also
small and medium-sized enterprises (SMEs) are
focusing on finding the right process that will
allow them to make advantages of their intel-
lectual capital. Using survey data from 219 small
and medium-sized enterprises in Austria and
Switzerland, this chapter illustrates the four key
knowledge processes (1) knowledge identifica-
tion, (2) knowledge acquisition, (3) knowledge
distribution, and (4) knowledge preservation for
SMEs and also reports the findings of the empirical
study designed to allocate cost-efficient software
products to each of the four knowledge processes.
As a result a knowledge toolkit for SMEs that
integrates knowledge processes, methods and
software tool for decision support making is given.
Finally, the social view of knowledge manage-
ment to SMEs is discussed, showing that the use

of information technology is currently far more
important than the integration of a social-cogni-
tive perspective.

IntroductIon

The academic literature on knowledge manage-
ment has become a major research field in dif-
ferent disciplines in the last ten years (Nonaka
& Takeuchi, 1995; Ruggels, 1997; Sveiby, 1997;
Davenport & Prusak, 1998; Back, Enkel, &
Krogh, 2007). Through knowledge management,
organizations are enabled to create, identify and
renew the company’s knowledge base and to
deliver innovative products and services to the
customer. Knowledge management is a process of
systematically managed and leveraged knowledge
in an organization. In a global and interconnected
society, it is more difficult for companies to know
where the best and most valuable knowledge is.

 1137

Knowledge Management Toolkit for SMEs

The term knowledge has a wide range of defini-
tions in the knowledge management literature. The
authors follow the definition by Davenport and
Prusak (1998, p. 5) “knowledge is a fluid mix of
framed experiences, values, contextual informa-
tion, and expert insight that provides a framework
for evaluating and incorporating new experiences
and information. It originates and is applied in the
mind of knowers.” For a better understanding of
knowledge management Jennex (2007, p. 4) points
out that the concepts of organizational learning
and memory should be integrated. Therefore,
knowledge management can be defined as “the
practice of selecting applying knowledge from
pervious experiences of decision making to cur-
rent and future decision-making activities with the
express purpose of improving the organization ś
effectiveness” (Jennex, 2007, p. 6).

Knowledge management is more than the
technological solutions provided to give people
access to better and more relevant information
(Wang & Plaskoff, 2002, p. 113). It is important
that the design of the knowledge management
systems reflect the mindset of the knowledge
workers and their way of offering highly quali-
tative knowledge solutions with quick solution
processes. An effective knowledge management
system must integrate people, processes, technol-
ogy and the organizational structure.

Historically, knowledge management focused
on the domain of larger organizations and issues
of culture, networking, organizational structure
and technological infrastructure are applied upon
the implementation of knowledge management
initiatives in large multi-national organizations
and seem to give little relevance (Delahaye, 2003)
to small and medium-sized enterprises (SMEs).
SMEs are playing a key role in European economic
performance because they account for a high pro-
portion of the gross domestic product (GDP) and
employ some two- thirds of the European work-
force. According to the OECD (Organisation for
Economic Co-operation and Development) Small
and Medium-sized Enterprise Outlook 2002 and

2005 (OECD, 2005), the role of SMEs in OECD
economic is very important for strengthening
economic performances. SMEs represent over
95% of enterprises in most OECD countries, and
generate over half of private sector development. A
similar impact of SMEs to economic value can be
found in the report of the Asia-Pacific Economic
Cooperation (APEC, 2006), where about 90% of
enterprises are SMEs. During their 2006 meeting
in Beijing, the members agreed to strengthen the
SME`s competitiveness for trade and investment.
For example, SMEs account for more than 95% of
companies in Australia. Of the 624.010 SMEs in
Australia, more than two-thirds employ between
one and four people. A further 180,880 SMEs
employ between five and 19 people meaning that
93.5% of people employed by SMEs in Australia
are employed by what can be described as ‘mi-
cro-SMEs,’ namely companies with less than 20
employees. However, the success and growth
of SMEs depends on how well they manage the
knowledge of their knowledge workers. In 2000,
the European Council set the clear strategic goal
for the European Union (EU) of becoming “the
most competitive and dynamic economy in the
world, capable of sustaining economic growth
with more and better jobs and greater social
cohesion” by the year 2010 (EC, 2000). Dezouza
and Awazu (2006) point out that SMEs have to
compete on the know-how in order to gain com-
petitive advantages. Even more, SMEs do not have
much money to spend on knowledge management
initiatives, so knowledge must be leveraged that
goals can be achieved in an effective and efficient
manner (Fink & Ploder, 2007c). Ordanini (2006)
discusses the issue that the adoption of informa-
tion technology by SMEs began to be discussed
during the 1980s. Furthermore, it has to be stated
that the adoption of information technology for
SMEs was slower than that of larger organizations,
which can be referred to as the so-called digital
divide phenomenon.

Looking to the European countries of Austria
and Switzerland including Liechtenstein, a similar

1138

Knowledge Management Toolkit for SMEs

landscape of SMEs can be identified. According
to the Austrian Statistical Year Book (SA, 2006)
and the Austrian Institute for SMEs Research
(ASME, 2006) for the year 2006, 99.7% which
are 297,800 companies are SMEs in Austria. In
Switzerland, also 99.7% of the companies are
SMEs, looking at the data from CHSME (2006).
There are several research articles dealing with
knowledge management in SMEs (Sveiby, 1997;
Beijerse, 2000; McAdam & Reid, 2001; Salojärvi,
Furu, & Sveiby, 2005), but only a few empirical
studies are conducted to see the impact of knowl-
edge processes in SMEs. McAdam and Reid (2001)
found out that the time is right for knowledge
management within the SME-sector. The results of
their comparative study of large organizations and
SMEs showed that both sectors have much to gain
by the development of knowledge management
systems. Salojärvi, Furu and Sveiby (2005) have
observed that SMEs should be able to enhance
their performance and competitive advantages
by a more conscious and systematic approach to
knowledge management.

In this chapter, the focus lies on the impact of
knowledge process modeling for SMEs to help
them getting a framework to be more innovative
(Donnellan, Conboy, & Hill, 2006). In research
methodology, the theoretical framework for the
identification of knowledge processes in SMEs
will be discussed. The section that follows that
covers the use of cost-efficient software products
for the implementation of knowledge processes in
SME and introduces a SME knowledge toolkit.
Discussion and future research gives an outlook of
future research and a discussion of social factors
influencing knowledge management in SMEs.

reseArch Methodology

Definition of SMEs

There are several quantitative and qualitative
definitions of the term small and medium-sized en-

terprise (SME) depending on regional and national
differences. In the United States, the definition of
small business is set by a government department
called the Small Business Administration (SBA)
Size Standards Office. The SBA uses the term “size
standards” which is a numerical definition to be
considered as a small or medium-sized business. It
must also be independently owned and operated.
Unlike the European Union, which has simple
definitions applied to all industries, the United
States has chosen to set size standards for each
individual industry. This distinction is intended
to better reflect industry differences. SMEs are
also of high importance for in the U.S. Economy.
Similar to Europe, more than 97% of the firms in
the U.S. can be defined as SMEs.

The definition of SMEs of the European Com-
mission 2005 (EC, 2000) is used for this research
design. The European Commission analyzes
SMEs by using the following three characteristics:
(1) number of employees, (2) annual revenue and
(3) total assets. Characterized through these three
factors, the European Commission differs: (1)
middle enterprises (less than 250 employees and
less than 50 million euro annual revenue or less
than 43 million total assets); (2) small enterprises
(less than 50 employees and less than 10 million
euro annual revenue or less than 10 million euro
total assets); and (3) micro enterprises (less than
10 employees and less than 2 million euro annual
revenue or less than 2 million euro total assets).

Since the authors focus on the definition of
the European Commission of SMEs, they follow
the research view of a quantitative perspective
of SMEs. This means that all enterprises with
less than 250 employees and less than 50 million
euro annual revenue or less than 43 million euro
total assets in Austria and Switzerland including
Liechtenstein are the target population.

research Framework

The basic research model is the “building block”
approach by Probst, Raub and Romhardt (2002)

 1139

Knowledge Management Toolkit for SMEs

with the description of the knowledge processes
(Figure 1). Involved are eight components that
form two cycles: an inner cycle and an outer
cycle. The inner cycle is composed of six key
knowledge processes:

• Knowledge identification is the process of
identifying external knowledge for analyz-
ing and describing the company’s knowledge
environment.

• Knowledge acquisition refers to what forms
of expertise the company should acquire
from outside through relationships with cus-
tomers, suppliers, competitors and partners
in co-operative ventures.

• Knowledge development is a building block
which complements knowledge acquisition.
It focuses on generating new skills, new
products, better ideas and more efficient
processes. Knowledge development includes
all management actions consciously aimed
at producing capabilities.

• Knowledge distribution is the process of
sharing and spreading knowledge which is
already present within the organization.

• Knowledge utilization consists of carrying
out activities to ensure that the knowledge
present in the organization is applied pro-
ductively for its benefit.

• Knowledge preservation is the process
where the selective retention of informa-
tion, documents and experience required
by management takes place.

In addition, there are two other processes in the
outer cycle, knowledge assessment and knowledge
goals, which provide the direction to the whole
knowledge management cycle:

• Knowledge assessment completes the cycle,
providing the essential data for strategic
control of knowledge management.

• Knowledge goals determine which capabili-
ties should be built on which level.

Figure 1. Knowledge building block approach by Probst, Raub and Romhardt (2002)

1140

Knowledge Management Toolkit for SMEs

Among other knowledge process models
(Nonaka & Takeuchi, 1995; Laudon & Laudon,
2006; Jennex, 2007), the building block approach
of Probst, Raub and Romhardt (2002) has the
advantage that it is well known in European com-
panies as well as in SMEs and furthermore it is a
very unique and complete design of knowledge
processes. Business process modeling (Hammer
& Champy, 1993) has become a major research
field in the information systems discipline in the
last ten years. Davenport sees the term business
process as ‘a structured, measured set of activi-
ties designed to produce a specified output from a
particular customer or market’ (Davenport, 1995).
The linkage of business process modeling and
knowledge management is called knowledge pro-
cess modeling. Richter-von Hagen et al. describes
knowledge-intensive processes as sequences of
activities based on knowledge intensive acquisi-
tions and handling (Richter-von Hagen, Ratz, &
Povalej, 2005). Edwards and Kidd (Edwards &
Kidd, 2003, p. 124) named the following five char-
acteristics to enforce the argument that knowledge
management and business process management
should be integrated:

• Knowledge management is important for
business if the initiative implied an advan-
tage for the customers. The idea to implement
the customer’s requests—may be internal or
external—is the base for including the cus-
tomer (Fink, Roithmayr, & Ploder, 2006).

• Knowledge does not follow the business
borders. Business processes also model
activities by global trading companies and
build the base for modeling knowledge
intensive processes.

• Knowledge management can only be effi-
cient if it follows a structured model. Busi-
ness processes are modeled by structured
actions and they are necessary to deduce
knowledge-intensive processes.

• The success of knowledge management
depends on the measurement of knowledge.

There exists a similarity to the measurement
of business processes. The measurement
of the knowledge potential provides a cen-
tral position and biases the success (Fink,
2004).

• Knowledge management is affected by a
holistic approach. Every part of the business
process modeling is important for success
but every aspect should be considered.

data collection for knowledge
processes

At the beginning of our research was the identifica-
tion of knowledge processes for SMEs. Therefore
in the first step, the authors conducted a study
with the objective to find the key knowledge
processes—based on the framework of (Probst
et al., 2002)—for SMEs. In a second step, the
authors conducted empirical studies in order to
identify which software products support the
identified knowledge processes and can be used
in practice. The interviews were conducted at the
Department of Information Systems (University
of Innsbruck) in 2005. The key objective of the
expert interview was to analyze which of the eight
knowledge processes from Probst et al. (2002) are
relevant for SMEs. The data sample was 20 expert
interviews which were conducted by the authors
in summer 2005. Ten experts from science and
ten experts from practice were asked about the
most important knowledge processes in SMEs.
The result of these expert interviews showed that
SMEs are only determined by three key knowl-
edge processes: (1) knowledge identification,
(2) knowledge acquisition, and (3) knowledge
distribution. In addition, for SME the concept of
(4) knowledge disposal played a key role during
the expert interviews and was extended as the
fourth process called “knowledge preservation”
indicating the disposal as well as actualization of
knowledge. This knowledge process model for
SMEs was the first step in the research work and
the general research framework. The second step

 1141

Knowledge Management Toolkit for SMEs

was to find out which process can be supported by
which knowledge method. The research method
was a literature review for the identification of
knowledge methods (Coakes & Clarke, 2006;
Smolnik, Kremer, & Kolbe, 2007) in order to
build a method repository for each knowledge
process.

Figure 2 describes the four key knowledge
processes with the corresponding method re-
positories for SMEs (Fink & Ploder, 2006; 2007a)
illustrating the validated research framework
through interviews by the experts.

quality Model (Iso/Iec 9126) for the
evaluation of software
products

In a third step, the objective was to match a cost-ef-
ficient software product to each knowledge method
which are usable in practice. In the research
design the focus lies on Freeware and Shareware

software products in order to fulfil the pre-setting
of cost-efficient software support. The research
method was an online research with the result of a
list of evaluated cost-efficient software products.
The evaluation of each software product was
conducted by applying the ISO/IEC 9126 norm.
The quality model of the norm (ISO/IEC 9126-1)
is divided into two parts which are important for
the evaluation of the software products to support
knowledge methods:

• the internal and the external quality of the
software

• the quality for use

The ISO norm lists five characteristics to
evaluate software products: (1) functionality, (2)
reliability, (3) usability, (4) efficiency and (5) assign
ability. For each characteristic, a different number
of items were assessed by a Likert scale from -2
to +2. The data sample of the quality model was

Figure 2. Theoretical concept of knowledge process model and method repositories for SMEs

1142

Knowledge Management Toolkit for SMEs

more than 200 different software products. A key
research finding was that some of the software
products cannot be used in practice because their
quality was not sufficient. Finally there were 45
software products which are efficient for use in
SME.

Data Collection for Cost-Efficient
software products

The 2006 survey was developed and executed by
the authors and is an update and extension of the
empirical study conducted in 2004-2005. Balmisse
et al. (2007) present a knowledge management
tool review including the vendor perspective. The
article focuses on eight tool clusters. In compari-
son to our research, the authors focus primarily
on the tool with the corresponding vendor side,
while our research framework concentrates on
the methods used in SMEs with a cost-efficient
software support. So the objective of the empirical
study was to find out which cost-efficient software
products can support the efficient methods of the
four knowledge processes. For this approach the
authors differ between two categories of software.
At the one hand side there are the standard software
products which are already in use in SMEs (for
example: MS Office, Internet Explorer, Operat-
ing System, etc.) and on the other hand there are
software products like Shareware, Freeware and
Open Source products characterized by the issue
of cost-efficient software installation in SME.
This described issue is the key objective of the
empirical study. The research method for this
study was the online questionnaire technique.
The questionnaire was built with HTML, PHP
and based on a MySQL database.

The data sample of 537 SMEs were the aver-
age allocated over the regional federal states of
Austria, Switzerland and Liechtenstein to get a
representative result for the whole sector and were
opted stochastically. The total number of SMEs
was 540,000. The online questionnaire was carried
out in summer 2006 after a successful pre-test

with 20 respondents. The online questionnaire
was partitioned into three parts:

• Generally questions referring to the IT sup-
port and application of knowledge manage-
ment within the enterprise itself

• Rating relevance of the methods concerning
the four knowledge processes for SME and
get an idea of the favor supporting software
tool

• Information about future capital investment
plans referring to knowledge management

The return quote of the survey was 40%. This
means that 220 SME filled out the questionnaire.
The failure rate was calculated as 6.63%. So, all
statements out of the survey are correct at a per-
centage of 93.61%. In the following section the
research findings of the methods and the support-
ing software tools are presented and discussed.
The knowledge toolkit for SMEs integrates pro-
cesses, methods and software tools in a decision
support framework.

results

The distribution of industries can be described as
follows. Thirty percent of the SMEs were from
the industry sector and 22% from the consulting
and information technology sector. The retail
sector was represented by 13% and the trade
and handcraft sector by 19%. The rest of 21%
were divided to banks and insurances with 9%,
transportation 2% and Tourism 10%. Fifty-seven
percent of the SMEs already use knowledge man-
agement and 85% of the SMEs use a connected
infrastructure. A Web space is (hosted intern or
extern) available in 78% which is necessary to
deal with software products which need such an
IT-infrastructure.

 1143

Knowledge Management Toolkit for SMEs

Mapping of Cost-Efficient Software
products with knowledge
processes

Table 1 gives an overview of all methods sup-
porting the four knowledge processes for SMEs
and the corresponding cost-efficient software
products (Fink & Ploder, 2007c). The ranking
of each method is the calculated value based
on the Likert scale (“absolutely adequate”: +2
pt. – “not adequate”: -2 pt.). The “ISO ranking”
illustrates the assessment of the software based
on the quality model of the ISO/IEC 9126 norm
(“absolutely appropriate”: +2 – “not appropriate :́
-2). For example, the Software Tools Gama for sup-
porting business games is ranked with 15 points
in the ISO/IEC 9126 and 75 of the data sample
find Gamma is a good tool to support business
games. The absolute frequency of naming of the
software through the respondents can be seen in
the last column (ranking survey). The naming of
“no cost-efficient software support” indicates that
only high-priced software products are available
on the market.

Knowledge balance (92) was ranked highest
among the methods for the first process of the
identification of knowledge. Fifty-six percent of
SMEs think that this is the best method. Further
methods are the balanced scorecard (89) and the
Skandia navigator (74). The methods market-asset
value-method (-5) and Tobiǹ s q (-15) were rated
by less than 30% to be of good use in SMEs.

Brainstorming (225) and knowledge network
(203) are popular methods for the knowledge
acquisition. Mind mapping (195), e-mail sys-
tems (134), scenario technique (126) and system
simulation (98) are also suitable methods for this
knowledge process, while business games (91)
are also a possibility. The method of “Synektik”
was rated very low because of its complexity.
The favorite for the knowledge acquisition is the
search engine (232) with over 70% for efficient
use in SMEs. In this case, the Google desktop

search engine was the prior selection software.
Sixty percent of the respondents chose e-mail
systems which can be supported, for example, by
the software Thunderbird1.5. For brainstorming a
practical tool is Concept X7, while for mind map-
ping the tools Free Mind (42%) and Think Graph
(41%) were rated highly. As support software to a
business game, 64% rated Gamma as a possible
software tool.

As illustrated in Table 1 the methods e-mail
system (185), handbook FAQs (159), communities
of practice (152), groupware (139), questionnaire
(110) and best practice (108) are the favorites for
the knowledge distribution. It has to be pointed
out, that the methods micro article (2) and chat
room (29) are rated not as well in the survey. The
software products for the methods of transferring
knowledge are InfoRapid supporting knowledge
maps, EasySurvey supporting questionnaire, Sky-
pe and MSN supporting chat room, eGroupware
1.2 and AlphaAgent 1.6.0 supporting groupware,
CUCards 2000 supporting checklists and Pegasus
Mail, Thunderbird 1.5 and Amicron Mailoffice
2.0 for the support of e-mail systems.

Databases (242) are a recognized method of the
knowledge preservation process. Eighty percent
of the SMEs think that they will organize their
knowledge with databases. Mind mapping (200),
document management system (195) and check-
lists (164) are further efficient methods. Content
management systems (126), project review (122),
expert systems (74) and conceptualization (40) are
methods which can be chosen but are not the prior
choice. Neural network (-10) is not an adequate
method for preserving knowledge. There were
many different software products to support this
process. MySQL is the favorite database software
followed by the MSDE from Microsoft. Document
management can be realized by Office Manager,
UDEX dotNETContact or QVTutto.

1144

Knowledge Management Toolkit for SMEs

Table 1. Ranking of methods and cost-efficient software products (Fink & Ploder, 2007a)

ranking Supporting cost-efficient software products Iso ranking ranking
survey

Knowledge Identification

Knowledge Balance 92 no cost-efficient software product, Office similar
products

Balanced Scorecard 89 no cost-efficient software product, Office similar
products

Skandia Navigator 74 no cost-efficient software product, commercial
Software

Market - Asset Value - Method -5 no cost-efficient software product, Office similar
products

Tobin’s q -15 no cost-efficient software product, Office similar
products

Knowledge Acquisition

Search Engine 232 Google Desktop Search; MSN Toolbar; Yahoo Desk-
top Search not possible 25; 12; 10

Brainstorming 225 Brainstorming Toolbox; Concept X7 6;17 44; 88

Knowledge Network 203 no cost-efficient software product

Mind Mapping 195 Free Mind; Think Graph, Tee Tree Office 16; 12; 8 69; 53; 28

E-mail System 134 Pegasus Mail; Thunderbird Mail; Amicron Mailoffice
2.0 21; 21; 12 63; 165;

26

Scenario Technique 126 no cost-efficient software product, Office similar
products

System Simulation 98 no cost-efficient software product, commercial
Software

Business Game 91 Gamma 15 75

Synektik -17 no cost-efficient software product, commercial
Software

Knowledge Distribution

E-mail System 185 Pegasus Mail; Thunderbird Mail; Amicron Mailoffice
2.0 16; 12; 8 63; 165;

26

Handbook FAQs 159 no cost-efficient software product, Office similar
products

Communities of Practice 152 no cost-efficient software product, Office similar
products

Groupware 139 eGRoupware1.2; AlphaAgent 1.6.0; Tiki CMS
- Groupware 15; 14; 16 40; 26; 24

Questionnaire 110 Easy Survey 10 61

Best Practice 108 no cost-efficient software product, Office similar
products

Checklist 103 CUEcards 2000 8 128

continued on following page

 1145

Knowledge Management Toolkit for SMEs

Investment Allocation

Seventy-five percent of the respondents assumed
that they are still using knowledge management in
their SME. As shown in Figure 3, the attendance
to invest into knowledge management in the next
year exists with 60% and up to 40% cannot imag-
ine to invest into knowledge management in the
next year. Twenty percent of SMEs are planning
an investment in the future and want to spend
less than 500 euro, 58% will spend between 500
euro and 3,000 euro and only 22%will invest more
than 3,000 euro.

sMe knowledge toolkit

The SME knowledge toolkit (Figure 4) is one of the
results of our empirical research. Tiwana (2002)
discusses in her book The Knowledge Manage-
ment Toolkit a 10-step roadmap for implementing

knowledge management in a company. The key
objective of the toolkit is to guide a company
through the complex process of analyzing the
infrastructure, designing the knowledge system
and linking the business strategy to knowledge
management and make a performance evaluation.
Jashapara (2004, p. 92) uses the term knowledge
management suite that should offer a multitude of
knowledge management systems in order to build
an individualized toolset. The toolkit developed
by the authors is an implementation for portray-
ing knowledge processes, methods and software
tools for SMEs. Therefore, the use of the toolkit
can reveal the gap between the defined knowledge
processes and implemented knowledge methods
that could trigger further evidence to use different
knowledge methods or to rearrange the knowledge
processes. The explicit identification of knowledge
processes allows the user of the toolkit to match
knowledge methods with cost-efficient software
products that fit into the culture of SMEs. At the

Lessons Learned 103 no cost-efficient software product, Office similar
products

Knowledge Maps 82 InfoRapid KnowledgeMap 13 69

Story Telling 42 no cost-efficient software product, Office similar
products

Chat room 29 Skype; MSN, ICQ not possible 71; 33; 25

Micro article 2 no cost-efficient software product, Office similar
products

Knowledge Preservation

Database 242 MySQL; MSDE 86; 44

Mind Mapping 200 Free Mind; Think Graph, Tee Tree Office 16; 12; 8 69; 53; 28

Document Management System 195 Office Manager; UDEX dotNETContact; QVTutto 15; 15; 14 74; 35; 22

Checklist 164 CUEcards 2000 8 128

Content Management 126 CONTEX; ContentKit; VIO MATRIX 16; 13; 13 0; 47; 13

Project Review 122 no cost-efficient software product, Office similar
products

Experts System 74 KnowIT; KnowME 10; 7 38; 52

Conceptualization 40 no cost-efficient software product

Neural Network -10 no cost-efficient software product, commercial
Software

Table 1. continued

1146

Knowledge Management Toolkit for SMEs

same time, the knowledge toolkit calculates the
estimated costs for changes. The SME knowl-
edge toolkit (Figure 4) supports all aspects of
knowledge management relevant for SMEs and
is divided into four key steps:

Step 1: Definition of the characteristics by apply-
ing the national limitations and definitions

Step 2: Identification of the knowledge processes
and modeling of these processes in the SME
context

Step 3: Designing a knowledge method repository
which enables SMEs to match the methods

with the supporting knowledge processes
Step 4: Designing of a software repository which

helps to evaluate cost-efficient software
products for knowledge management in
SMEs

These four key steps are supported by the
knowledge culture in an SME and by a knowledge
cost viewer which has the function of a control-
ling instrument. The SME knowledge toolkit is
tailored toward the special needs of SMEs during
knowledge management initiatives.

Figure 3. Investment allocation in SMEs for knowledge initiatives

Figure 4. SME knowledge toolkit

Step 1 Definition of SME Characterstics Selection of a Definition

according to the national situation

Modeling Knowledge Processes in SMEs

Design of the Tool Repository

Design of the Knowledge Methods Repository

Identification of the Knowledge Processes

Evaluation of cost-efficient Software supporting
Knowledge Methods and Tools

Matching Knowledge Methods with
Knowledge Processes

Step 4

Step 3

Step 2

SM
E

K
no

w
le

dg
e

C
ul

tu
re

&
 C

os
t V

ie
w

er

 1147

Knowledge Management Toolkit for SMEs

dIscussIon And Future
reseArch

Knowledge process modeling for SMEs uses
the building block approach from Probst, Raub
and Romhardt (2002) and models correspond-
ing knowledge methods for the SME-domain. A
significant emphasis in this empirical study has
been the development of a flexible and usable
knowledge management toolkit to implement
knowledge initiatives in SMEs. This chapter
addresses one of the currently perceived issues
surrounding knowledge management, namely
the lack of defining key knowledge processes for
SMEs to handle knowledge methods in specific
settings. The study has drawn on an extensive
review of the literature as well as reported on
empirical studies concerning the Austrian and
Swiss SME sector.

social Impact to sMes

Even if the information technology infrastructure
is a key dimension of knowledge management,
the social and cognitive aspect may also be
considered. Cognitive activity takes place in a
complex, information-rich, and ever-changing en-
vironment. Tomasello (1999) notes that all human
beings share their cognitive skills and knowledge
with other individuals. The try to understand
other persons, changes the way of interaction and
social learning. A successful implementation of
knowledge management only can be achieved in
a culture (Holden, 2002) that supports knowledge
sharing and transfer. Nakra (2000) addresses the
issue that a knowledge culture is the most impor-
tant value for the implementation of knowledge
management because one important aspect of
knowledge management is having a culture that
fosters collaboration and sharing. Organizations
often fail to acknowledge that it is the people, not
technologies, that are the source of knowledge”

(Nakra, 2000, p. 54). Organizational knowledge
resides in the culture, structure, and individuals
who make up the organization.

Especially in SMEs the success depends on
the social system in which a knowledge worker
operate. SMEs need a culture that facilitates a
knowledge transfer through a more human factor
because knowledge workers want to share their
knowledge through communication and interac-
tion. The social ecology of the company drives
people’s expectations, defines their motivation to
share knowledge and pursues actions to interact
with others inside or outside the organization.
Ein-Dor (2005, p. 848ff) defines taxonomies
of knowledge and sees the social-individual
dimension as a key success factor to knowledge
diffusion. A similar view is presented by Alavi
und Leidner (2001). SMEs need a culture that
facilitates a knowledge transfer through a more
human factor because knowledge workers want
to share their knowledge through communication
and interaction (Trompenaars & Hampden-Turner,
2006). The use of information technology, espe-
cially Web sites, is recognized as a critical suc-
cess factor for knowledge management initiatives
in the SME sector (Wong & Aspinwall, 2005).
Wong (2005) sees information technologies as a
key enabler for the implementation of knowledge
management, and considers in the development of
a knowledge management system factors such as
the simplicity of technology, ease of use, suitability
of users’ needs, relevancy of knowledge content,
and standardization of a knowledge structure as
key factors for knowledge diffusion. The SME
culture greatly influences the communication
processes inside and outside the organization. The
impact of the culture to networking processes is
highly significant. Skyrme (1999, p. 15) lists two
fundamental descriptions of networking:

• Networking organizations are less about
organizational structures per se, and more
about the informal human networking pro-
cesses

1148

Knowledge Management Toolkit for SMEs

• The technology of computer networking
undergirds and enhances human network-
ing.

Knowledge networking is a dynamic process
in which knowledge, experiences, and expertise
are shared, developed, and evolved. A knowledge-
sharing culture can be developed through human
interaction supported by information technology
to foster new and innovative knowledge. Knowl-
edge networking is connectivity to achieve new
levels of interactivity, usability, and understanding
across organizations and communities. The first
results of an empirical study conducted by the
authors (Fink & Ploder, 2007b) indicate that the
social view is almost not taken into consideration
for European SMEs. The focus lies primarily
on the technical solution of knowledge manage-
ment, meaning that an IT support is essential for
knowledge initiatives.

Therefore, future research will direct into the
development of a framework for SMEs that inte-
grates the information technology view with the
social-cognitive view. One future problem for the
implementation of different software products are
the interfaces of the different applications. With
service-oriented architecture (SOA), it would be
possible to solve this problem of interoperability
and the problem of security (Kang, Kim, Lo, Mon-
trose, & Khashnobisch, 2006). Future research
will deal with SOA and should also consider open
source software (OSS) (Ploder & Fink, 2007) and
extending the knowledge toolkit for SMEs.

AcknowledgMent

This chapter is an extended version of the paper
presented at the International Resource Manage-
ment Conference (IRMA) May 2007 in Vancouver.
Sincere thanks to Dr. Murray Jennex for the op-
portunity of consideration it in the International
Journal of Knowledge Management.

reFerences

Alavi, M., & Leidner, D. (2001). Review: Knowl-
edge management and knowledge management
systems. MIS Quarterly, 25(1), 107-136.

APEC. (2006). Asia-Pacific Economic Corpora-
tion. http://www.apec.com.

ASME. (2006). Austrian Institute for SME Re-
search. http://www.kmuforschung.ac.at.

Back, A., Enkel, E., & Krogh, G. (Eds.). (2007).
Knowledge networks for business growth. Hei-
delberg: Springer Verlag.

Balmisse, G., Meingan, D., & Passerini, K. (2007).
Technology trends in knowledge management
tools. International Journal of Knowledge Man-
agement, 3(2), 118-131.

Beijerse, R. (2000). Knowledge management in
small and medium-sized companies: Knowledge
management for entrepreneurs. Journal of Knowl-
edge Management, 4(2), 162-179.

CHSME. (2006). SME-Portal of Switzerland.
http://www.kmu.admin.ch/index.

Coakes, E., & Clarke, S. (2006). Communities
of practice. In: D. Schwartz (Ed.), Encyclopedia
of knowledge management, (pp. 30-33). Hershey,
PA: Idea Group Publishing.

Davenport, T. (1995). Process Innovation. Reen-
gineering work through information technology.
Boston: Harvard Business School Press.

Davenport, T., & Prusak, L. (1998). Working
knowledge. How organizations manage what
they know. Boston, MA: Harvard Business School
Press.

Delahaye, D. (2003). Knowledge management at
SMEs. International Journal of Organizational
Behavior, 9(3), 604-614.

Dezouza, K., & Awazu, Y. (2006). Knowledge
management at SMEs: Five peculiarities. Journal

 1149

Knowledge Management Toolkit for SMEs

of Knowledge Management, 10(1), 32-43.

Donnellan, B., Conboy, K., & Hill, S. (2006).
IS to support innovation: Weapons of mass dis-
cussion. In: M. Khosrow-Pour (Ed.), Emerging
trends and challenges in information technology
management, (pp. 623-626). Hershey, PA: Idea
Group Publishing.

EC. (2000). Report of the Meeting of the Euro-
pean Commission 23.03.2000. http://ec.europa.
eu/growthandjobs.

Edwards, J., & Kidd, J. (2003). Bridging the
gap from the general to the specific by linking
knowledge management to business process
management. In: V. Hlupic (Ed.), Knowledge and
business process management, (pp. 124-132).
Hershey, PA: Idea Group Publishing.

Ein-Dor, P. (2005). Taxonomies of knowledge. In:
D. Schwartz (Ed.), Encyclopedia of knowledge
management, (pp. 848-854). Hershey, PA: Idea
Group Publishing.

Fink, K. (2004). Knowledge potential measure-
ment and uncertainty. Wiesbaden: Dt. Univ.-
Verl.

Fink, K., & Ploder, C. (2006). The impact of
knowledge process modeling on small and me-
dium-sized enterprises. In: K. Tochtermann & H.
Maurer (Eds.), Proceedings of I-KNOW ‘06: 6th
International Conference on Knowledge Manage-
ment, (pp. 47-51). Graz: J.UCS.

Fink, K., & Ploder, C. (2007a). A comparative
study of knowledge processes and methods in
Austrian and Swiss SMEs. In: H. Österle, J.
Schelp, & R. Winter (Eds.), Proceedings of the
15th European Conference on Information Systems
(ECIS2007), (pp. 704-715). St. Gallen.

Fink, K., & Ploder, C. (2007b). Knowledge dif-
fusion through SME Web sites. In: C. Stary, F.
Brarachini, & S. Hawamdeh (Eds.), Knowledge
management: Innovation, technology and cul-

tures, (pp. 91 - 100). New Jersey: World Scien-
tific.

Fink, K., & Ploder, C. (2007c). Knowledge process
modeling in SME and cost-efficient software
support: Theoretical framework and empirical
studies. In: M. Khosrow-Pour (Ed.), Managing
worldwide operations and communications with
information technology, (pp. 479-484). Hershey,
PA: IGI Publishing.

Fink, K., Roithmayr, F., & Ploder, C. (2006).
Multi-functional stakeholder information system
for strategic knowledge management: Theoretical
concept and case studies. In: M. Khosrow-Pour
(Ed.), Emerging trends and challenges in infor-
mation technology management, (pp. 152-155).
Hershey, PA: Idea Group Publishing.

Hammer, M., & Champy, J. (1993). Reengineer-
ing the corporation: A manifesto for business
revolution. New York: Harper Business.

Holden, N. (2002). Cross-cultural management: A
knowledge perspective. Harlow: Prentice Hall.

Jashapara, A. (2004). Knowledge management:
An integrated Approach. Upper Saddle River,
NJ: Prentice Hall.

Jennex, M. (2007). Knowledge management in
modern organizations. Hershey, PA: Idea Group
Pub.

Kang, M., Kim, A., Lo, J., Montrose, B., & Khash-
nobisch, A. (2006). Ontology-based security
specification tools for SOA. In: M. Khosrow-Pour
(Ed.), Emerging trends and challenges in infor-
mation technology management, (pp. 619-622).
Hershey, PA: Idea Group Publishing.

Laudon, K., & Laudon, J. (2006). Management
information systems: Managing the digital firm
(9. , 2. print. ed.). Upper Saddle River, NJ: Pearson
Education.

McAdam, R., & Reid, R. (2001). SME and large or-
ganization perception of knowledge management:

1150

Knowledge Management Toolkit for SMEs

Comparison and contrast. Journal of Knowledge
Management, 5(3), 231-241.

Nakra, P. (2000). Knowledge management: The
magic is in the culture. Competitive Intelligence
Review, 11(2), 53-60.

Nonaka, I., & Takeuchi, H. (1995). The knowl-
edge creating company. How Japanese create
the dynamics of innovation. New York/Oxford:
Oxford University Press.

OECD. (2005). OECD SME and Entrepreneurship
Outlook 2002/2005. Retrieved November 4, 2006,
from http://www.oecd.org/document/.

Ordanini, A. (2006). Information technology
and small businesses: Antecedents and conse-
quences of technology adoption. MA: Edward
Elgar Publishing.

Ploder, C., & Fink, K. (2007). An orchestra-
tion model for knowledge management tools in
SMEs. In: K. Tochtermann & H. Maurer (Eds.),
Proceedings of I-KNOW ‘07: 7th International
Conference on Knowledge Management, (pp.
176-183). Graz: J.UCS.

Probst, G., Raub, S., & Romhardt, K. (2002).
Managing knowledge: Building blocks for suc-
cess. Chichester, UK: Wiley.

Richter-von Hagen, C., Ratz, D., & Povalej, R.
(2005). Towards self-organizing knowledge- in-
tensive processes. Journal of Universal Knowl-
edge Management, 0(2), 148-169.

Ruggels, R. (1997). Knowledge management tools.
Boston: Butterworth-Heinemann.

SA. (2006). Statistical Yearbook of Austria.
http://www.statistik.at.

Salojärvi, S., Furu, P., & Sveiby, K. (2005).
Knowledge management and growth in Finnish
SMEs. Journal of Knowledge Management, 9(2),
103-122.

Skyrme, D. (1999). Knowledge networking.
Creating the collaborative enterprise. Oxford:
Butterworth-Heinemann.

Smolnik, S., Kremer, S., & Kolbe, L. (2007). The
role of context and its explication for fostering
knowledge transparency in modern organizations.
In: M. Jennex (Ed.), Knowledge management in
modern organizations, (pp. 256-277). Hershey,
PA: Idea Group Publishing.

Sveiby, K. (1997). The new organizational wealth:
Managing and measuring knowledge-based as-
sets. San Francisco: Berrett-Koehler.

Tiwana, A. (2002). The knowledge management
toolkit: Orchestrating IT, strategy, and knowledge
platforms (2nd ed.). Upper Saddle River, N.J.:
Prentice Hall.

Tomasello, W. (1999). The cultural origins of
human cognition. Boston/London: Harvard
University Press.

Trompenaars, F., & Hampden-Turner, C. (2006).
Riding the waves of culture: Understanding cul-
tural diversity in business (2. reprint. with corr.
ed.). London: Brealey.

Wang, F., & Plaskoff, J. (2002). An integrated
development model for KM. In: R. Bellaver &
J. Lusa (Eds.), Knowledge management strategy
and technology, (pp. 113-134). Boston: Artech
House.

Wong, K. (2005). Critical success factors for
implementing knowledge management in small
and medium enterprises. Industrial Management
& Data Systems, 105(3), 261-279.

Wong, K., & Aspinwall, E. (2005). An empirical
study of the important factors for knowledge—
management adoption in the SME sector. Journal
of Knowledge Management, 9(3), 64-82.

This work was previously published in International Journal of Knowledge Management, Vol. 5, Issue 1, edited by M. Jennex,
pp. 46-60, copyright 2009 by IGI Publishing (an imprint of IGI Global).

 1151

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.2
Information Communication

Technology Tools for Software
Review and Verification

Yuk Kuen Wong
Griffith University, Australia

IntroductIon

While information communication technology
(ICT) can be considered a well-established dis-
cipline, software development projects are still
prone to failure. Even if a software project is not
classified as a failure, the general level of software
quality leaves room for much improvement. It has
been suggested that one of the most prevalent and
costly mistakes made in software projects today is
deferring the activity of detecting and correcting
software problems until the end of the project.
Hence, the cost of rework in the later stages of a
project can be greater than 100 times the project
costs. About 80% of avoidable rework comes from
20% of defects. As a result, techniques such as
software review for improving software quality
are important.

Software review (inspection/verification) was
originally introduced by Fagan (1976). The review
process essentially includes six major steps:

1. Planning: Organize and prepare the soft-
ware review, typically for preparing the
review materials and review procedure,
forming review team and scheduling review
meeting, selecting review participants, and
assigning roles.

2. Overview: Author explains overall scope
and the purpose of the review.

3. Individual preparation: Individual re-
viewers analyze and review the software
artefact.

4. Group review meeting: Find errors, some-
times also called “logging meeting.” Review
teams correct and the reader summarizes
the work.

5. Rework: Defect correction, which involves
the author in resolving problems by review-
ing, revising, and correcting the identified
defect or by decreasing the existence of
errors of the software artefact.

6. Follow-up: Validate the correction quality
and decide if re-inspection is required

1152

Information Communication Technology Tools for Software Review and Verification

Since Fagan (1976) introduced software review
and verification as an important technique to
assure the quality of software projects, research-
ers have investigated ways to improve software
review performance. It has been suggested that
ICT software review tools are one of the important
elements to the support software review process.
This article overviews ICT tools to assist software
review and verification during this software
review process. The overall objective of this ar-
ticle is to identify various ICT tools that support
software review and verification. This includes a
discussion of the importance of software quality
and identifies ICT tools for effective software
reviews and verification.

Ict tools For soFtwAre
reVIew And VerIFIcAtIon

Intelligent code Inspection in a
c language environment (IcIcle)

The ICICLE (Intelligent Code Inspection in a
C Language Environment) is the first published
software review tool, which was developed at
Bellcore (Brothers, Sembugamoorthy, & Muller,
1990). The ICICLE tool is designed to support
code review and assists reviewers in both indi-
vidual preparation and group meetings. ICICLE
provides a synchronous communication sup-
port to group meetings. It has been argued that
traditional code review meeting is manually
documented (i.e., using paper and pen to record
defects detected). This documentation procedure
is very time consuming, tedious, and could be
inconsistent recording (Brothers et al., 1990). One
of the aims of this tool helps software reviewers
to find obvious defects. Brothers and his team
(1990) suggested that ICICLE provide several
benefits to code review:

• To detect routine sorts of errors, with the goal
of freeing the code inspector (reviewer) to

concentrate on verifying the correct imple-
mentation of requirement, specifications,
and designs.

• To offer various forms of knowledge about
the code being inspected (reviewed), includ-
ing domain and environment knowledge, and
information from various forms of analysis
such as cross-referencing.

• To allow code inspectors (reviewers) to
easily traverse source code in a windowed
environment instead of riffling through hard
copy from many different files.

• To render the code inspection (review)
meeting paperless through a shared window
interface which enables the code inspectors
(reviewers) to fulfill their roles electroni-
cally.

The ICICLE tool consists of two phases in the
review process: the individual review and group
review meeting. The group review meeting takes
in the same location/venue, usually a reviewers’
seat at nearby computers. An individual reviewer
allows entering comments on each line of code.
According to MacDonald, Miller, Brooks, Roper,
and Wood (1995), the researcher found that “the
computer supported meeting format appeared to
cause substantial changes in the dynamics of the
code inspection (review) meeting.” In other words,
the procedures of the code review meeting using
ICICLE can enable roles during the group meeting
process (Brothers et al., 1990). For example, the
additional duty of a moderator is to record statistics
relating to coding defects discovered during code
review. The reader can direct the attention of the
other reviewers to areas of interest in the source
code. The scribe’s records must be agreed on by
the review team. The author should present in the
code review meeting and answer the reviewers’
question. Any additional reviewers can participate
and share meeting discussions.

 1153

Information Communication Technology Tools for Software Review and Verification

scrutiny

Scrutiny is an online collaborative software review
tool, which was developed at Bull HN Informa-
tion Systems in conjunction with the University
of Illinois (Gintell, Houde, & Mckenney, 1993).
It is a synchronous meeting review tool. It is one
of the early comprehensive collaborative process
software review tools (MacDonald et al., 1995).
Scrutiny currently supports text documents
only.

Scrutiny can be used in the formal review pro-
cess, and it supports multi-users review but does
not support for rules and checklists. It provides
a “petri-net based process modeling language”
that allows the system to implement alternative
software review methods, such as a “shared
preparation” phase in which reviewers have ac-
cess to each other’s preliminary findings (Gintell
et al., 1993; MacDonald et al., 1995). However, in
comparison with the ICICLE, the Scrutiny usage
can depart radically from manual software review
processes, such as geographically distributed
software reviews (MacDonald et al., 1995).

collaborate software Inspection
(csI)

Collaborate software inspection (CSI) was built
and used in a case study to compare online
distributed computer-mediated software review
meetings vs. face-to-face software review meet-
ings at the University of Minnesota (Mashayekhi,
Feulner, & Riedl, 1994). As with other software
review tools, the CSI provides the similar process
characteristics of Humphrey’s software review
method with hypertext capability. CSI is devel-
oped for group review meetings in the (1) same
time and place, (2) same time and place, (3) same
time and different place, and (4) different time
and same place. CSI supports both asynchronous
and synchronous activities that include materials
distribution, individual preparation/individual

review, group review meeting, recording, and
reporting (Mashayekhi et al., 1994).

Inspeq

InspeQ was developed to support the phased
software review process (Knight & Myers, 1993).
The InspeQ was executed on “Sun 3, Sun 4, and
IBM RS/6000 computers running various forms
of Unix and the X-window display system and
the OSF/Motif widget set” (Knight & Myers,
1993). Although the InspeQ achieves the goals of
efficiency and rigor in the phased review process,
it is not viewed as essential to the “phased inspec-
tion” method (MacDonald et al., 1995). Similar
to other software review tools, InspeQ provides
numbers of facilities to support software review
process. These include work product display
(views the documents), checklist display (allows
the status of each checklist to be displayed and
modified), standard display (review rational and
a detailed descriptions), highlight display (helps
locating particular aspects of the documents), and
comments display (comments on the documents)
(Knight & Myers, 1993).

csrs

CSRS is developed to support computer-mediated
communication formal software review process
(Johnson, 1994). The CSRS is heavily used in
academic research and laboratory experiments
studies. The goals of CSRS is to reduce the human
effort in review process by conducting software
review incrementally during the development
and provide online capabilities to collect metrics
(Stein, Riedl, Harner, & Mashayekhi, 1997). The
CSRS is similar to Scrutiny; it provides an internal
process modeling mechanism to support a variety
of review methods. CSRS’s primary method is
FTArm, which “is unique among methods by
being designed explicitly to support properties of
computer-mediated communication and review”

1154

Information Communication Technology Tools for Software Review and Verification

(Johnson, 1994). CSRS automatically collects data
(e.g., number of defects/issues found, comments
made, time spent on software review, starting
time, finishing time, event logs, etc.). Another
feature of CSRS is that it supports a variety of
software review processes and handles several
types of documents and languages.

requirement traceability tool
(rAdIx)

Requirement traceability refers to the “ability to
describe and follow the life of a requirement, in
both a forwards and backward direction” (Gotel
& Finkelstein, 1994). The requirement trace-
ability tool (RADIX) is designed for verifying
software requirements (Yu, 1994; Yu, Smith, &
Huang, 1990). A requirement tracing method is
a systematic method to assist 5ESS Switch sci-
entist and engineers to deliver quality software
(Yu, 1994).

Asynchronous Inspector of software
Artefacts (AIsA)

Asynchronous Inspector of Software Artefacts
(AISA) was the early Web-based software review
tool (Stein et al., 1997). AISA supports asynchro-
nous and distribution software review as well as
reviewing both textual and graphical documents
(e.g., entity-relationship diagram or class diagram)
(Stein et al., 1997). The AISA Web-based tools
can be built using existing structures and were
reasonably easy to develop.

web Inspection prototype (wip)

Web inspection prototype (WiP) is another Web-
based tool, which provides a set of functions for
distributing the requirement documents to be re-
viewed (Harjumaa & Tervonen, 1998). The WiP is
developed to support distributed software review
processes. It utilizes the WWW to distribute the

review document, tailors the software review
process model according to the development
environment, can assign roles, adds or removes
a checklist, allows reviewers to add, modify, and
remove comments, has searching, cross-referenc-
ing, e-mail notification, combining comments/
annotations using hypertext and reporting ca-
pabilities, and generates metrics and statistics
summary (Harjumaa & Tervonen, 1998).

InspectA

InspectA is a completed automation tool, which
allows the whole software review process to be
automated (Murphy & Miller, 1997) from planing,
such as selecting a moderator and communications
between software review team, through follow-up
stage, where the moderator verified and finalized
that all the defects raised during the software
review have been resolved.

InspectA is an e-mail-based and asynchronous
tool for software review (Murphy, Ferguson, &
Miller, 1999). The tool is not based on the World
Wide Web approach (all reviewers can view other
individual reviewer comments). The argument is
when reviewers can view other reviewers mem-
bers defect lists during the individual preparation
that they may discourage (Murphy et al., 1999).
Another reason is that reviewers may focus or
discuss other reviewers’ comments rather than
focus their own individual reviews (Murphy et
al., 1999). Miller and their team believed that e-
mail-based tools provide a number of advantages.
These include (Stein et al., 1997, p. 108):

• Sharing information: Allow exchange and
sharing information via e-mail tool

• Threads of discussion: Allow individual
reviewers to contribute and free feel to com-
ments during the individual preparation

• Visual cues: Easy to format in the document
such as bold or italics

• Train of thought: Offer other reviewers to
response and reply

 1155

Information Communication Technology Tools for Software Review and Verification

• Reaching a consensus: Voting can be sent
via e-mail tool

• Coordination: Moderator can easily send
information to all reviewers

• History: Allow reviewers to keep a record
of their comments

hypercode

HyperCode is another one of the earliest Web-
based software review tools (Perpich, Perry,
Porter, Votta, & Wade, 1997). It uses the common
gateway interface (CGI), and the HyperCode
system allows software reviewers using WWW
browsers for software review (Perpich et al., 1997).
It is used for code review and very similar to the
WiP. Reviewers can comment on the Web, and
material is delivered via the Web (Perpich et al.,
1997). The process contains only asynchronous
phases, and other reviewers are able to see the
comments, so there is no software review meet-
ing required when in HyperCode (Perpich et al.,
1997). After individual review, the results are col-
lated together into a report containing links from
the original material to the comments (Perpich
et al., 1997).

Perry and his team (Perry, Porter, Wade,
Votta, & Perpich, 2002) suggested that there are
four primary differences between paper-based
and HyperCode software review processes. First,
HyperCode provides an automated approach to the
support software review process; this can reduce
time and amount of review effort. Second, notifica-
tion between software review team can be a useful
e-mail tool. Third, all comments or annotations
are visible to all participated software reviewers
in the whole review process. Fourth, there is no
meeting requirement needed in the HyperCode
process. In other words, the review discussion is
asynchronous communication.

Asynchronous/synchronous
soFtwAre InspectIon support
tool (AssIst)

Asynchronous/Synchronous Software Inspection
Support Tool (ASSIST) is built to provide both
individual and group software review (MacDonald
et al., 1995). It can perform both synchronously
or asynchronously with either different place or
same place meeting. It uses a costumed designed
modeling language, the Review Process Definition
Language (RPDL) and a flexible document type
system to allow support of any software review
process (MacDonald & Miller, 1999). ASSIST is
a client/server architecture, where the server is
a central database to store documents and data.
Table 1 shows details of four features of the AS-
SIST tool.

Fine-grained software Inspection
tool/codesurfer

The fine-grained software review tool is designed
for “exposing the results of sophisticated whole-
program static analysis” (Anderson, Reps, &
Teitelbaum, 2003) to the software review. This is
also known as CodeSurfer. The idea was originally
developed from the “dependence graphs” which
applications activities include parallelization
(Burke & Cytron, 1986), optimization (Ferrante,
Ottenstein, & Warren, 1987), program testing
(Bates & Horwitz, 1993), and software assurance
(Horwitz & Reps, 1992). A description of how
this tool work is summarized in the following
section.

cord

The CORD is developed for increasing the con-
sistency between requirements and a detailed
design (Chechik & Gannon, 2001). The CORD
creates a “finite state abstraction” of a detailed
design and checks it against a set of properties

1156

Information Communication Technology Tools for Software Review and Verification

automatically generated from the requirements
(Anderson et al., 2003). Its features are similar
to other static analysis tools such as CodeSuper.
The aim of CORD is to “simplify the verification
of properties of program; this system abstract the
forms of their formal specification notations or
create abstract models from program that could
be analysed with state-exploration” (Chechik &
Gannon, 2001, p. 669).

Agent-based software tool

Agent-based software tool in code review is
designed by Chan (2001). Chan (2001) recently
proposed the agent-based software tool that can
help reduce the cost and increase the number of
defects detected in the software review process.
The main focus of the intelligent agent software
tool (Chan, 2001) is to:

• Automate as much of the paper work and
administrative tasks as possible

• Enable the inspection (review) to perform
inspection (review) according to their
schedules. This aims to reduce the inspec-
tion (review) interval, and thus reducing the
turn around time for obtaining inspection
(review) results

• Provide as much assistance to the inspector
(reviewer) as possible during preparation

• Maximize the number of major faults found
while keeping the time costs of the process
low

Internet-bAsed InspectIon
systeM (IbIs)

Internet-based inspection system (IBIS) is devel-
oped to support geographically distributed soft-
ware review (Lanubile & Mallardo, 2002). IBIS
was originally designed by Cavivano, Lanubile,
and Visaggio (2001). This tool is another Web-
based application which is “based on a lightweight

architecture to achieve the maximum of simplicity
of use and deployment” (Lanubile & Mallardo,
2002). The IBIS can support Fagan’s Software
Review Process. There are a several advantages of
deploying IBIS (Lanubile & Mallardo, 2002):

• IBIS is Web-based software review tool; it
allows reviewers access from their desktop.
This could improve the chance of reviewers
participating in software review

• It allows the software review to be performed
in different places, even in different coun-
tries

• Allow different experts participate in the
software review process. Those experts
could from outside the organization or dif-
ferent department.

Visionquest

VisionQuest aims to support the experimentation
formal anonymity technical review (Vitharana &
Ramaurthy, 2003). The advantages of anonymity
in group collaboration are (Er & Ng, 1995):

• Each reviewers has equal weight
• Avoid the dominance group or status effect

during the review process
• Since the comments are made by an anony-

mous person, criticisms are the issues rather
than people

• Voting is anonymous; the final decision is
more likely to be objective and based on
merit

Future

A number of computer support tools have been
developed to support the software review meet-
ing process. Many tools provide documentation
facilities that allow software review documents
to be shared across networks, browsed online,

 1157

Information Communication Technology Tools for Software Review and Verification

and edited by reviewers. The current trend of
software review is for using software review
tools to the support software review process. Past
research has shown a spectrum of advantages of
using software review tools supporting technical
review. First, a computer-support tools review
environment can reduce paper work and clerical
costs, decrease error rates of recording review
meeting and comments, and allow computerised
data collection and data analysis. Software review
tools can integrate the review method with other
components of the specific software develop-
ment method such as asynchronous review and
facilitating both metrics collection. Companies
will adopt software review tools simply because
of such potential benefits over manual software
review techniques.

conclusIon

In summary, this article described modern soft-
ware review tools and techniques and the different
types of software review tools and how they work.
To achieve better software review performance, it
is important to understand use of inputs and the
software review process.

reFerences

Anderson, P., Reps, T., & Teitelbaum, T. (2003).
Design and implementation of a fine-grained
software inspection tool. IEEE Transaction on
Software Engineering, 721-733.

Bates, S., & Horwitz, S. (1993). Incremental pro-
gram testing using program dependence graphs.
In Proceedings of the Symposium on Principles
of Programming Language (pp. 384-396).

Brothers, L., Sembugamoorthy, V., & Muller, M.
(1990, October). ICICLE: Groupware for code
inspection. In Proceedings of the 1990 ACM

Conference on Computer Supported Cooperative
Work (pp. 169-181).

Burke, M., & Cytron, R. (1986). Inter-procedural
dependence analysis and parallelization. In Pro-
ceedings of SIGPLAN ’86 Symposium Complier
Construction (pp. 162-175).

Cavivano, D., Lanubile, F., & Visaggio, G.
(2001). Scaling up distributed software inspec-
tions. In Proceedings of 4th ICSE Workshop on
Software Engineering over the Internet, Toronto,
Canada.

Chan, K. (2001, August 27-28). An agent-based
approach to computer assisted code inspections. In
Proceedings of Australian Software Engineering
Conference (pp. 147-152).

Chechik, M., & Gannon, J. (2001, July). Automatic
analysis of consistency between requirement and
design. IEEE Transactions on Software Engineer-
ing, 27(7), 651-672.

Er, M., & Ng, A. (1995). The anonymity and prox-
imity factors in group decision support systems.
Decision Support Systems, 14(1), 75-83.

Fagan, M. E. (1976). Design and code inspections
to reduce errors in program development. IBM
System Journal, 15(3), 182-211.

Ferrante, J., Ottenstein, K., & Warren J. (1987).
The program dependence graph and its use in op-
timization. Transaction Programming Languages
and System, 3(9), 319-349.

Gintell, J. W., Houde, M. B., & Mckenney, R. F.
(1993, July 10-14). Lessons learned by building
and using scrutiny: A collaborative software
inspection systems. In Proceedings of the 7th
International Workshop on Computer-Aided
Software Engineering (pp. 350-357).

Gotel, O. C. Z., & Finkelstein, C. W. (1994, 18-22
April). An analysis of the requirements traceability
problem. In Proceedings of the 1st International

1158

Information Communication Technology Tools for Software Review and Verification

Conference on Requirement Engineering (pp.
94-101).

Harjumaa, L., & Tervonen, I. (1998, January 6-9).
A WWW-based tool for software inspection. In
Proceedings of the 31st Hawaii InternationalCon-
ference on System Sciences (pp. 379-388).

Horwitz, & Reps, T. (1992, May). The use of pro-
gram dependence graphs in software engineering.
In Proceedings of the 14th International Confer-
ence on Software Engineering (pp. 392-411).

Johnson, P. M. (1994, May). An instrumented
approach to improving software quality through
formal technical review. In Proceedings of the
16th International Conference on Software En-
gineering, Sorrento, Italy.

Knight, J. C., & Myers, A. E. (1993, November).
An improved inspection technique. Communica-
tions of the ACM, 36(11), 50-69.

Lanubile, L., & Mallardo, T. (2002). Preliminary
evaluation of tool-based support for distributed
inspection. In Proceedings of the ICSE Interna-
tional Workshop on Global Software Develop-
ment, Orlando, FL.

MacDonald, F., & Miller, J. (1997). A comparison
of tool-based and paperbased software inspec-
tion (EfoCS-25-97, RR/97/203). University of
Strathclyde, Department of Computer Science,
Empirical Foundations of Computer Science
(EFoCS).

MacDonald, F., & Miller, J. (1999). ASSIST: A
tool to support software inspection. Information
and Software Technology, 41, 1045-1057.

MacDonald, F., Miller, J., Brooks, A., Roper, M.,
& Wood, M. (1995, July 10-14). A review of tool
support for oftware inspection. In Proceedings
of the 7th International Workshop on Computer-
Aided Software Engineering, Toronto, Canada
(pp. 340-349).

Mashayekhi, V., Feulner, C., & Riedl, J. (1994).
CAIS: Collaborative asynchronous inspection of
software. In Proceedings of the 2nd ACM SIG-
SOFT Symposium on Foundations of Software
Engineering, 19(5), 21-34. New York.

Murphy, P., Ferguson, J. D., & Miller, J. (1999).
Groupware support asynchronous document re-
view. In Proceedings of the 17th Annual Interna-
tional Conference on Computer Documentation,
New Orleans, LA (pp. 185-192).

Murphy, P., & Miller, J. (1997). A process for
asynchronous software inspection. In Proceed-
ings of the 18th IEEE International Workshop
on Software Technology and Engineering (pp.
96-104).

Perpich, J. M., Perry, E. D., Porter, A. A., Votta,
L. G., & Wade, M. W. (1997). Anywhere, any-
time code inspections: Using the Web to remove
inspection bottlenecks in large-scale software
development. In Proceedings of the International
Conference on Software Engineering, ICSE (pp.
14-21).

Perry, D. E., Porter, A., Wade, M. W., Votta, L.
G., & Perpich, J. (2002, July). Reducing inspec-
tion interval in large-scale software development.
IEEE Transactions on Software Engineering,
28(7), 695-705.

Stein, M. V., Riedl, J., Harner, S. J., & Mashay-
ekhi, V. (1997). A case study of distributed, asyn-
chronous software inspection. In Proceedings of
the 19th International Conference on Software
Engineering (pp. 107-117).

Yu, W. D. (1994, February). Verifying software
requirement: A requirement tracing methodology
and its software tools: RADIX. IEEE Journal on
Selected Areas in Communications, 12(2).

Yu, W. D., Smith, D. P., & Huang, S. T. (1990,
May/June). Software productivity measurements.
AT&T Technology Journal, 69(3), 110-120.

 1159

Information Communication Technology Tools for Software Review and Verification

key terMs

Asynchronous Review: The review activities
can be performed at the same time. Asynchronous
review must rely on the ICT tools supported.

Defects: The term “defect” is defined as any
issue or problem that does not meet the require-
ments.

Fagan Inspection: Software review was origi-
nally proposed by Michael Fagan at IBM in the
early 1970s. Fagan’s software review and forms
of review structures. Fagan’s software review
includes six-step review processes: planning,
overview, preparation, group meeting, re-review,
and follow up.

Information Communication Technology
(ICT) Review Tools: Tools provide documenta-
tion facilities that allow software review docu-
ments to be shared across networks, browsed on-
line, and edited by reviewers. The current trend
of software review is for using software review
tools to support the software review process.

Online Software Review: Online software
review tools support some major functions:
document support, individual preparation, and
meeting support. It can meet online and share
data and documents in flexible time, thus it may
reduce time of review.

Software Review: Software review or in-
spection is one of the techniques for improving
software quality. Software review is an industry-
proven process for eliminating defects. It has been
defined as a non-execution-based technique for
scrutinizing software products for defects, devia-
tions from development standards.

Software Verification: Aims to find and
remove defects during the software development
cycle.

Synchronous Review: All review activities
in the synchronous software review happen in a
linear fashion, and the meetings are located in
same place at the same time.

This work was previously published in Encyclopedia of Information Communication Technology, edited by A. Cartelli & M.
Palma, pp. 429-435, copyright 2009 by Information Science Reference (an imprint of IGI Global).

1160

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.3
SurveyTracker E-Mail/
Web Survey Software

Eun G. Park
McGill University, Canada

AbstrAct

This chapter offers an introductory description of
SurveyTracker software. Comparisons are made to
competitor software programs. The central focus
is an explanation of the functions, features, and
advantages of the software application.

IntroductIon

SurveyTracker is one of the most popular software
applications in the current field of online survey,
developed from Pearson NCS Inc., and currently
registered from Training Technologies, Inc. This
company provides the integrated and powerful
SurveyTracker line of software applications on
survey, including SurveyTracker, SurveyTracker
Plus, SurveyTracker E-Mail/Web, SurveyTracker
Plus E-Mail/Web and Survey-by-Disk. One ad-
vantage of using this comprehensive software is to

provide many functions as one module, and offer
flexibility and extensibility for prewritten survey
modules, specialized training, survey design and
distribution services, and survey consulting.

As an introductory description of SurveyTrack-
er, this chapter explains the functions, features,
and advantages of the software application. The
software supports functional requirements that
educational software needs, including survey
authoring and design, interface, data management,
and multiple electronic and paper data collection
technologies. It can especially integrate all forms
of data collected from e-mails in text and images,
the Internet, networks, and scanning forms. This
software can be easily applicable to a variety of
survey-based research on schools, higher educa-
tion, government, business, and healthcare.

 1161

SurveyTracker E-Mail/ Web Survey Software

FunctIons

The latest versions of the SurveyTracker line of
software are SurveyTracker E-Mail/Web 4.5,
SurveyTracker Classic 4.5, and SurveyTracker
E-Mail/Web Network 4.5. These software appli-
cations support several advantageous features in
terms of interface, data management, reporting,
and distribution.

Interface. SurveyTracker is based on user-
friendly and graphic-based design so that users
can design a survey form with the overview,
questions, notes, sections, and a summary, quickly
and easily with a simple click of the mouse. Users
can get screen views as designed and displayed
in the mode of what-you-see-is-what-you-get in
32-byte interface. Regarding editing, the software
is flexible, with text-editing functions including
character sets, fonts, color, size, and other editing
settings. Graph provides enhanced color support,
a variety of data marker shapes, and improved
flexibility. Convenient shortcuts and standard
text-editing functions allow survey designers to
create and modify texts fast. It displays overall
updates of ongoing projects. The built-in question
library is chosen by a drag-and-drop interface.
The built-in image library also provides quick
access to commonly used graphics. Users can
create global layout settings for all current and
future surveys.

Data collection and management. File import
is fast and easy from the previous version or other
software applications. Data and report export is
easy for use in Microsoft Office and other prod-
ucts. Automatic recording of returned surveys is
possible to directly send reminder messages. The
survey forms and reports are printed, distributed,
collected, and read back into SurveyTracker.
There are many options for creating, manag-
ing, distributing, responding to, analyzing, and
reporting from response data. Spreadsheet-style
data collection for rapid manual data entry can be
changed to different layouts. The data collection
screen offers instant electronic survey retrieval,

and convenient manual response entry for paper-
based surveys. Open-ended questions can be
coded for quantitative data analysis, or printed out
verbatim in a report. Regarding coding, the built-in
codebook supports up to 300 codes per question,
as defined as single response or multiple response
for multiple code entry. Automatic filtering and
batch reporting are possible for the Web. It is easy
to customize score values after data collection.
Identification bar codes on scannable forms and
unique lithocodes on each survey are used to trace
printed forms. A number of statistical analyses are
built in, such as frequency, variance, minimum,
sum, maximum, skewness, range, correlation,
chi-square, standard deviation, significance, and
so on. SurveyTracker can analyze through manual
configuration or autofiltration for maximum re-
porting flexibility. Tables and graphs for reports
are used with multitable forms. All distribution
is handled by conducting multiple distributions.
E-mail responses can be sent directly through
e-mail systems.

Access and retrieval. A single source database
holds all project information for faster access and
better organization. The message library allows
users to store and retrieve survey and report
notes/instructions, as well as distribution.

systeM requIreMents

To install SurveyTracker, systems require an IBM
PC or compatible with at least a Pentium® 200
MHz processor (Pentium class processor running
at 300MHz or better strongly recommended), at
least 64MB RAM (128MB or more is strongly
recommended), in Microsoft Windows 95, 98
SE, ME, Windows NT® or 2000 (Professional),
at least 100MB hard disk space (more may be
needed depending on the size of the survey and
the number of respondents).

1162

SurveyTracker E-Mail/ Web Survey Software

FeAtures For
educAtIonAl reseArch

SurveyTracker has competitive advantages over
the following three aspects:

Flexibility. Most of all, SurveyTracker can
support a variety of survey forms. It is compatible
with traditional paper surveys, e-mail surveys, and
Web surveys. Each respondent opens a program on
the disk to access and complete the survey. When
the survey is returned, the survey administrator
reads it into SurveyTracker. Survey answers are
created in SurveyTracker and then converted to
scannable forms, using the fully integrated fea-
tures of the other software application. In network
environments, surveys are possible to distribute on
network or placed on a disk individually. Surveys
can also be carried in intranet or extranet. Paper
surveys directly support optical mark recognition
scanners and data sheets.

Compatibility. Different survey forms are com-
patible with Web survey forms. For example, disk
surveys, and html-based e-mail surveys deliver
the same look and feel directly to the respondent’s
e-mail inbox. The software works directly with
a personal computer’s e-mail system to send out
the survey questionnaire in text-based messages,
form-based messages, or html-based message.

Extensibility. The new SQL database engine
handles millions of records for larger projects,
audience lists, and more extensive reporting.
Audience supports up to 200 fields per record.
It is easy to enter a list of potential respondents
directly, and to import an existing list from another
software program up to 1.6 million people in an
audience list. The audience list can be narrowed
down as well. Users can create surveys with six
scales per question up to 300 choices per scale.
SurveyTracker includes a comprehensive library
of prewritten questions and scales. Scale types
in SurveyTracker include horizontal numerical,
Likert, multiple choices, semantic differential,
fixed sum, forced ranking, ordinal, and paired
comparison.

cost And locAtIon

Information on price and additional consulting
services is available at the Web site of Training
Technologies, Inc (http://www.SurveyTracker.
com).

coMMentAry

Currently, there are other survey software applica-
tions that are available in the market. For example,
popular alternatives include WebSurveyor 5.0,
Perseus SurveySolutions, Ultimate Survey, and
WebSurveyor. Among them, SurveyTracker is
recommended as a better way to integrate all
forms of separate surveys, and to maximize
many compatible functions. Next step will be
needed to examine their comparative usage and
implementation in depth on how to apply these
software applications’ functions to research on
schools, higher education, government, business,
and healthcare for ultimate results.

reFerences

KeySurvey (n.d). Retrieved March 1, 2005, from
http://www.keysurvey.com

Perseus SurveySolutions (n.d). Retrieved March
1, 2005, from http://www.perseus.com

SurveyTracker (n.d.). Retrieved March 1, 2005,
from http://www.SurveyTracker.com

Ultimate Survey (n.d). Retrieved March 1, 2005,
from http://www.prezzatech.com

WebSurveyor 5.0 (n.d). Retrieved March 1, 2005,
from http://www.websurveyor.com

 1163

SurveyTracker E-Mail/ Web Survey Software

key terMs

Compatibility: The ability of two or more
systems or components to perform their required
functions while sharing the same hardware or
software environment.

Extensibility: A property of a system, format,
or standard that allows changes in performance
or format within a common framework, while
retaining partial or complete compatibility among
systems that belong to the common framework.

Flexibility: The ease with which a system or
component can be modified for use in applications
or environments other than those for which it was
specifically designed.

Online Survey: To conduct a statistical sur-
vey by means of online tools or methods in the
procedures of survey, such as data gathering,
data analysis, summary reports, distribution of
results, and so forth.

What-You-See-is-What-You-Get (WYSI-
WYG): A user interface that allows the user to
view something very similar to the end result,
while the document or image is being created.

This work was previously published in Handbook of Research on Electronic Surveys and Measurements, edited by R. Reynolds,
R. Woods, & J. Baker, pp. 416-17, copyright 2007 by Information Science Reference (an imprint of IGI Global).

1164

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.4
A Survey of Selected Software
Technologies for Text Mining

Richard S. Segall
Arkansas State University, USA

Qingyu Zhang
Arkansas State University, USA

AbstrAct

This chapter presents background on text min-
ing, and comparisons and summaries of seven
selected software for text mining. The text mining
software selected for discussion and comparison
in this chapter are: Compare Suite by AKS-Labs,
SAS Text Miner, Megaputer Text Analyst, Visual
Text by Text Analysis International, Inc. (TextAI),
Magaputer PolyAnalyst, WordStat by Provalis
Research, and SPSS Clementine. This chapter
not only discusses unique features of these text
mining software packages but also compares the
features offered by each in the following key steps
in analyzing unstructured qualitative data: data
preparation, data analysis, and result reporting. A
brief discussion of Web mining and its software
are also presented, as well as conclusions and
future trends.

IntroductIon

The growing accessibility of textual knowledge
applications and online textual sources has
caused a boost in text mining and Web mining
research. This chapter presents comparisons and
summaries of selected software for text mining.
This chapter reviews features offered by each
package in the following key steps in analyzing
unstructured qualitative data: data preparation
including importing, parsing, and cleaning; data
analysis including association and clustering;
and result presenting/reporting including plots
and graphs.

bAckground oF text MInIng

Hearst (2003) defines text mining (TM) as “the
discovery of new, previously unknown informa-
tion, by automatically extracting information from

 1165

A Survey of Selected Software Technologies for Text Mining

different written sources.” Simply put, text mining
is the discovery of useful and previously unknown
“gems” of information from textual document
repositories. Also Hearst (2003) distinguishes text
mining from data mining by noting that with “text
mining the patterns are extracted from natural
language rather than from structured database of
facts.” A more technical definition of text mining
is given by Woodfield (2004) author of SAS Notes
for Text Miner, as a process that employs a set
of algorithms for converting unstructured text
into structured data objects and the quantitative
methods used to analyze these data objects.

Text mining (TM) or text data mining (TDM)
has been discussed by numerous investigators that
include Hearst (1999), Cerrito (2003) for the appli-
cation to coded information, Hayes et al. (2005) for
software engineering, Leon (2007) for identifying
drug, compound, and disease literature, and Mc-
Callum (1998) for statistical language modeling.
Firestone (2005) emphasizes the importance of
text mining in the future knowledge work. Romero
and Ventura (2007) survey text mining applica-
tions in the educational setting. Kloptchenko et
al. (2004) use data and text mining techniques for
analyzing financial reports. Mack et al. (2004)
describe the value of text analysis in biomedical
research for life science. Baker and Witte (2006)
discuss the mutation mining to support activities
of protein engineers.

Uramoto et al (2004) utilized a text-mining
system adopted from that developed by IBM and
named TAKMI (Text Analysis and Knowledge
Mining) for use with very large text biomedical
text documents. In fact the extension of TAKMI
was named MedTAKMI and was capable of
mining the entire MEDLINE of 11 million bio-
medical journal abstracts. The TAKMI system
allows extracting deeper relationships among
biomedical concepts by the use of natural lan-
guage techniques. Scherf et al. (2005) discuss the
applications of text mining in literature search to
improve accuracy and relevance. Kostoff et al.
(2001) combine data mining and citation mining

to identify user community, and its characteristics
by categorizing articles.

There is a Text Mining Research Group
(TMRG) (2002) at the University of Waikato in
New Zealand that maintains a Web page of related
publications, links, and software. Similarly there
is National Centre for Text Mining (NaCTeM) at
the University of Manchester in United Kingdom
(UK). The Aims and Objectives of NACTeM is
described in article by Ananiandou et al (2005)
in which it extensively discusses a need for text
mining in biology. According to their Web site
of 2002, “text mining uses recall and precision
(borrowed from the information retrieval research
community) to measure the effectiveness of dif-
ferent information extraction techniques, allowing
quantitative comparisons to be made.” A Text
Mining Workshop was held in 2007 in conjunction
with the Seventh Society of Industrial and Applied
Mathematics (SIAM) Conference on Data Min-
ing (SDM 2007). Textbooks in text mining have
included applications to biology and biomedicine
by Ananiadou and McNaught (2006).

Figure 1 of this paper from Liang (2003) shows
the text mining process from text preprocessing to
analyzing results. Saravanan et al. (2003) discuss
how to automatically clean data, i.e., summariz-
ing domain-specific information tailored to user’s
needs, by discovering classes of similar items that
can be grouped into prescribed domains. Hersh
(2005) evaluates different text-mining systems for
information retrieval. Turmo et al. (2006) describe
and compare different approaches to adaptive in-
formation extraction from textual documents and
different machine language techniques. Amir et al.
(2005) describe a new tool called maximal associa-
tions which allows the discovering of interesting
associations often lost by regular association rules.
Spasic et al. (2005) discuss ontologies and text
mining to automatically extract information and
facts, discover hidden associations and generate
hypotheses germane to user needs. Ontologies
specify the interpretations of terms, echo the
structure of the domain, and thus can be used to

1166

A Survey of Selected Software Technologies for Text Mining

support automatic semantic analysis of textual
information. Seewald et al. (2006) describe an
application for relevance assessment for multi-
document summarization. To characterize certain
document collections by a list of pertinent terms,
they have proposed a term utility function, which
allows a user to define parameters for continuous
trade-off between precision and recall.

Visa et al. (2002) develop a new methodol-
ogy based on prototype matching to extract the
document contents. Hirsch et al. (2005) describe a
novel approach for using genetic programming to
create classification rules and provide a basis for
text mining applications. Yang and Lee (2005)
develop an approach to automatically generate
category themes and reveal the hierarchical
structure. Category themes and their hierarchical
structures are most determined by human experts,
however, with this approach; text documents can
be categorized and classified automatically. Fan
et al. (2005) describe a method using genetic pro-
gramming to discover new ranking functions in
the information-seeking task for better precision

and recall. Wu at al. (2006) describe a key phrase
identification program to extract document key
phrases for effective document clustering, auto-
matic text summarization, development of search
engines, and document classification. Cody et al.
(2004) discuss the integration of business intel-
ligence and knowledge management based on an
OLAP model enhanced with text analysis.

Trumbach (2006) uses text mining to narrow
the gap between the information needs of technol-
ogy managers and analysts’ derived knowledge
by analyzing databases for trends, recognizing
emerging activity, and monitoring competitors.
Srinivasan (2006) develops an algorithm to gen-
erate interesting hypotheses from a set of text
collections using Medline database. This is a
fruitful path to ranking new terms representing
novel relationships and making scientific discov-
eries by text mining. Metz (2003) indicates text
mining “applications are clever enough to run
conceptual searches, locating, say, all the phone
numbers and places names buried in a collection
of intelligence communiqués. More Impressive,

Figure 1. Text mining process source: Liang (2003)

Tex t min ing p rocess
• Te xt p reprocessing

– S yn tac tic /S em antic
text ana lys is

• Fea tu res G enera tion
– B ag o f words

• Fea tu res Se lec tion
– S im p le counting
– S ta tistics

• Te xt/D a ta M in ing
– C lassifica tion -

S upervised
lea rn ing

– C lus te ring -
U nsupe rvised
lea rn ing

• A na lyzing results

 1167

A Survey of Selected Software Technologies for Text Mining

the software can identify relationships, patterns,
and trends involving words, phrases, numbers,
and other data.” Guernsey (2003) in an article
that appeared in The New York Times stated
Text-mining programs go further than Google
and other Web search engines by “categorizing
information, making links between otherwise
unconnected documents and providing visual
maps (some look like tree branches or spokes on
a wheel) to lead users down new pathways that
they might have been aware of.”

MAIn Focus oF the chApter:
bAckground oF text MInIng
soFtwAre

A comprehensive list of text mining, text analysis,
and information retrieval software is available on
Web page of KDnuggets (2007a) and similarly
for Web mining and Web usage mining software
of KDnuggets (2007b). Selected software from
these and other resources are discussed in this
chapter.

Some of the popular software currently avail-
able for text mining include Compare Suite, SAS
Text Miner, Megaputer Text Analyst, Visual Text
by Text Analysis International, Inc. (TextAI),
Megaputer PolyAnalyst, WordStat, and SPSS Cle-
mentine for text mining. These software provide a

Table 1. Text mining software

Software

Features

Compare
Suite

SAS Text
Miner

Text
Analyst

Visual Text Megaputer
PolyAnalyst

WordStat SPSS Clementine

Data
Preparation

Text parsing and
extraction

x x x x x x x

Define dictionary x x x x x

Automatic Text
Cleaning

x add-on

Data Analysis Categorization x x x x

Filtering x x x

Concept Linking x add-on x x

Text Clustering x x add-on x x x

Dimension
reduction
techniques

x x

Natural language
query

x x

Results
Reporting

Interactive Results
Window

x x x x x

Support for
multiple languages

x x x x x

Unique features Report
Generation,
compare
two folders
feature

Multi-path
multi-
paradigm
analyzer

Export
any table
to Excel

Linguistic approach
rather than
statistics-based
approach

1168

A Survey of Selected Software Technologies for Text Mining

variety of graphical views and analysis tools with
powerful capabilities to discover knowledge from
text databases. The main focus of this chapter is
to compare, discuss, and provide sample output
for each as visual comparisons.

As a visual comparison of the features for
these seven selected text mining software, the
authors of this chapter constructed Table 1, where
essential functions are indicated as being either
present or absent with regard to data preparation,
data analysis, results reporting, and unique fea-
tures. As Table 1 shows, Compare Suite and Text
Analyst have minimal text mining capabilities
while Megaputer PolyAnalyst, SAS Text Miner,
WordStat, and SPSS Clementine have extensive
text mining capabilities. Visual Text has add-ons
to make this software have versatile.

results

1. compare suite

Compare Suite is text mining software developed
by AKS-Labs, headquarters of which are located
in Raleigh, USA. The software allows comparing
any to any file including formats such as text file,
MS Word, MS Excel, pdf, Web pages, zip archives,
and binary files. It allows comparing two files
character by character, word by word, or by key
words. Two folders can also be compared to find
changes made and contained files. A report can
be created after comparison including detailed
comparison information. Documents can be
compared online by server-side comparison.

Figure 2. Compare Suite with two animal text files

 1169

A Survey of Selected Software Technologies for Text Mining

Compare Suite is able to provide to user a
window for option of file comparison of text.
Illustrated in Figure 2, two animal files are com-
pared by words and results are reported. From
the results, the same words that appear in both
the files are highlighted with green color and the
words that only appear in one of two files are
highlighted with purple color.

2. sAs text Miner

SAS Text Miner is actually an “add-on” to SAS
Enterprise Miner with the inclusion of an extra
icon in the ”Explore” section of the tool bar. SAS
Text Miner performs simple statistical analysis,
exploratory analysis of textual data, clustering,
and predictive modeling of textual data. SAS

Text Miner uses the “drag-and-drop” principle
by dragging the selected icon in the tool set to
dropping it into the workspace.

The workspace of SAS Text Miner was con-
structed with a data icon of selected animal data
that was provided by SAS in their Instructor’s
Trainer Kit. Figure 3 shows the results of using
SAS Text Miner with individual plots for “role by
frequency”, “number of documents by frequency”,
“frequency by weight”, “attribute by frequency”,
and “number of documents by frequency scat-
ter plot.” Figure 4 shows the interactive mode
of SAS Text Miner, which includes the text for
each document, the respective weight for each
term and also the concept linking figure using
SASPDFSYNONYMS text file. Figure 5 shows
regression results window in SAS Text Miner

Figure 3. Results of SAS Text Miner for animal text

1170

A Survey of Selected Software Technologies for Text Mining

Figure 4. Interactive window of SAS Text Miner for animal text

Figure 5. Regression results of SAS Text Miner using Federalists Papers

 1171

A Survey of Selected Software Technologies for Text Mining

using data for Federalists’ Papers from their
instructor's trainer kit.

3. Megaputer text Analyst

TextAnalyst has an ActiveX suite for dealing
with text and semantic analysis. According to
Megaputer (2007c) Web page, TextAnalyst uses
a Semantic Network similar to a molecular struc-
ture, and determines the relative importance of a
text concept, solely by analyzing its connection
to other concepts in the text, and also implements
algorithms similar to those used for text analysis
in the human brain.

Figure 6 show a representative screen shot of
Megaputer TextAnalyst which consists of a view
pane in top left, results pane in top right, and a
text pane in the bottom part of the window. The

view pane shows each of the nodes in the semantic
tree which each can be expanded. Megaputer Text
Analyst uses a semantic search window where a
query can be entered either as full sentences or
questions instead of having to determine key word
or phrases. A summary file in the top left pane of
Megaputer Text Analyst window can list the most
important sentences in the context of the original
document. The Summary chooses the sentences
on the basis of concepts and relationships between
concepts in the full text.

4. Visualtext by textAI

VisualText by TextAI (Text Analysis Interna-
tional, Inc.) uses national language processing
including “analyzers” for extracting informa-
tion from text repositories. Some applications

Figure 6. Text Analyst semantic network window of document databasing in the 90’s

1172

A Survey of Selected Software Technologies for Text Mining

include databases of resumes, Web pages, or
even e-mails or Web chat databases. VisualText
allows the user to create their own text analyzer,
and also includes a TAI Parse for tagging parts
of speech and chunking. Voice processing needs
to be converted to text first before text processing
can be performed.

According to VisualText Web page (2005),
it can be used for combating terrorism, nar-
cotic espionage, nuclear proliferation, filtering
documents, test grading, and automatic coding.
VisualText also allows natural language query,
which is the ability to ask a computer questions
using plain language.

Figures 7 and 8 provide screen shots of Vi-
sualText. Figure 7 shows the analyzer on the left
and the root of the text zone on the right. Figure 8
shows parsing trees. A window in VisualText can

show dictionary with an expansion of the root of
the text zone on the right part of this window.

5. Megaputer polyAnalyst

Previous work by the authors Segall and Zhang
(2009) have utilized Megaputer PolyAnalyst for
data mining. The new release of PolyAnalyst
version 6.0 includes text mining and specifically
new features for Text OLAP (on-line analytical
processing) and Taxonomy-based categorization
which is useful for when dealing with large col-
lections of unstructured documents as discussed
in Megaputer Intelligence Inc. (2007). The latter
cites that taxonomy-based classifications are
useful when dealing with large collections of
unstructured documents such as tracking the
number of known issues in product repair notes
and customer support letters.

Figure 7. Screen-shot of Visual Text window

 1173

A Survey of Selected Software Technologies for Text Mining

According to Megaputer Intelligence Inc.
(2007), PolyAnalyst “provides simple means for
creating, importing, and managing taxonomies,
and carries out automated categorization of text
records against existing taxonomies.” Megaputer
Intelligence Inc. (2007) provides examples of
applications to executives, customer support
specialists, and analysts. According to Megaputer
Intelligence Inc. (2007), “executives are able to
make better business decisions upon viewing a
concise report on the distribution of tracked issues
during the latest observation period.”

This chapter provides several figures of actual
screen shots of Megaputer PolyAnalyst version 6.0
for text mining. These are Figure 9 for workspace
of text mining of Megaputer PolyAnalyst, Figure
10 for key word extraction window for the word
“breakfast” from customer written comments,
and Figure 11 for initialization of link term report.

Megaputer PolyAnalyst can also provide screen
shots with drill-down text analysis and histogram
plot of text analysis.

6. wordstat

WordStat is developed by Provalis Research. It
is a text analysis software module run on a base
product of SimStat or QDA Miner. It can be used
to study textual information such as interviews,
answers to open-ended questions, journal articles,
electronic communications, and so on. WordStat
may also be used for categorizing text automati-
cally using a dictionary approach, or for develop-
ing and validating new categorization dictionaries
or taxonomies.

WordStat incorporates many data analysis
and graphical tools that can be used to explore
relationships between document contents and

Figure 8. Parsing trees in Visual Text

1174

A Survey of Selected Software Technologies for Text Mining

Figure 9. Workspace for text mining in Megaputer PolyAnalyst

information amassed in categorical or numeric
variables. Hierarchical clustering and multidi-
mensional scaling analysis can be used to identify
relationships among categories and document
similarity. Correspondence analysis and plots can
be used to explore relationships between keywords
and different groups.

An input file (e.g., excel file) can be imported
into the software for analysis. An important
preliminary to WordStat analysis is to create a
categorization dictionary (which needs domain
knowledge). WordStat analysis consists of many
tabulations or cross-tabulations of different cat-
egories. Figure 12 shows a screen shot of a cat-
egorization dictionary window. Correspondence
analysis results and 3-D plots by WordStat are
illustrated in Figure 13.

7. spss clementine

Text mining for Clementine is text mining soft-
ware developed by SPSS Inc. It can be used to
extract concepts and relationships from textual
data. It can also be used to convert an unstructured
format to a structured one for creating predictive
models. Text mining for Clementine can be ac-
cessed directly from the interface of SPSS Inc.’s
leading data mining software “Clementine”.

Text mining for Clementine can process
many types of unstructured data, including texts
in MS office files, survey text responses, call
center notes, Web forms, and Web logs, blogs,
Web feeds, streams, and so on. It uses a natural
language processing (NLP) linguistic extraction
process. It has a graphical interface and is easy to

 1175

A Survey of Selected Software Technologies for Text Mining

Figure 10. Keyword extraction window of text analysis in Megaputer PolyAnalyst

Figure 11. Initialization of link term report in Megaputer PolyAnalyst

1176

A Survey of Selected Software Technologies for Text Mining

Figure 12. Screen shot of categorization dictionary window using WordStat (source: http://www.prov-
alisresearch.com/WordStat/WordStatFlashDemo.html)

Figure 13. 3-D View of correspondence analysis results using WordStat (source: http://www.provalisre-
search.com/WordStat/WordStatFlashDemo.html)

 1177

A Survey of Selected Software Technologies for Text Mining

use. Dictionaries can be customized for specific
domain areas by using the built-in Resource Editor.
It allows extracting text from multiple languages
such as Dutch, English, French, German, Italian,
Portuguese, or Spanish. It can also process text
translated into English from 14 languages includ-
ing Arabic, Chinese, Persian, Japanese, and Rus-
sian. Figure 14 shows a screen shot of category
analysis using SPSS Clementine.

Future trends/conclusIon

This chapter has shown that software for text
mining is a new and expanding area of technology
that numerous vendors are in competition with
each other in providing both unique and com-
mon features. Users needing to use text mining
are fortunate to have such resources available for
needs that were unthinkable a decade ago. Future
trends are that text mining software will continue

to grow in dimensionalities of features and avail-
able software. The applications of software for text
mining will be extremely diverse ranging from
uses in customer survey responses to drill-downs
in medical records or credit or bank reports.

A future direction of this work is to pursue the
area of Web mining software and contrast with
that of text mining. Web mining is according to
the TMRG (Text Mining Research Group) Web
site defined to be “the slightly more general case
of looking for patterns in hypertext and often ap-
plies graph theoretical approaches to detect and
utilize the structure of Web sites.” Web mining
entails mining of content, structure, and usage.
Web content mining entails both Web page content
mining and search result mining. Web structure
mining uses interconnections between Web pages
to give weight to pages. Web usage mining is the
application that uses data mining to analyze and
discover interesting patterns of user’s usage of
data on the Web.

Figure 14. Screen shot of SPSS Clementine for text analysis (Source: http://www.spss.com/textanaly-
sis_surveys/demo.htm)

1178

A Survey of Selected Software Technologies for Text Mining

Some of the popular software that could be
selected for Web mining for future comparison
include Megaputer WebAnalyst, SAS Web Analyt-
ics, SPSS Web Mining for Clementine, WebLog
Expert 2.0, and Visitator.

AcknowledgMent

The authors would like to acknowledge funding
for support of this research from the Summer
Faculty Research Grant as awarded to both au-
thors from the College of Business at Arkansas
State University. The authors would also like to
acknowledge their gratefulness to those at SAS
Inc. for the Mini-Grant provided for SAS Text
Miner, TextAI and Megaputer Inc. for their ex-
tremely helpful technical support.

reFerences

Allan, J., Kumar, V., and Thompson, P. (2000).
Institute for Mathematics and Its Applications
(IMA). IMA Hot Topics Workshop: Text Mining.
April 17-18, 2000, University of Minnesota, Min-
neapolis, MN.

Amir, A., Aumann, Y., Feldman, R. and Fresko,
M., (2005). Maximal association rules: a tool for
mining associations in text. Journal of Intelligent
Information Systems, 25(3), 333–345.

Ananiadou, S. and McNaught, J. (eds) (2006).
Text Mining for Biology and Biomedicine, Artech
House Publishers, Boston, MA. ISBN 1-58053-
984-X.

Ananiadou, S., Chruszcz, J., Keane, J., McNight,
J., Watry, P. (2005). Ariadne, 42. Retrieved
January 2005, from http://www.ariadne.ac.uk/is-
sue42/ananiadou

Baker, C. and Witte, R., (2006). Mutation min-
ing - A prospector’s tale. Information Systems
Frontier, 8, 47–57.

Cerrito, P.B., Badia, A., and Cox, J., (2003). The
Application of Text Mining Software to Exam-
ine Coded Information. Proceedings of SIAM
International Conference on Data Mining, San
Francisco, CA, May 1-3.

Cody, W., Kreulen, J., Krishna, V., and Spangler,
W., (2002). The integration of business intelligence
and knowledge management. IBM Systems Jour-
nal, 41(4), 697-713.

Fan, W. P. (2006). Text Mining, Web Mining,
Information Retrieval and Extraction from the
WWW References. Retrieved from http://filebox.
vt.edu/users/wfan/text_mining.html

Fan, W., Gordon, M., and Pathak, P., (2005).
Genetic programming-based discovery of rank-
ing functions for effective Web search. Journal
of Management Information Systems, 21(4),
37-56.

Firestone, J., (2005). Mining for information gold.
Information Management Journal, 47-52.

Grobelnik, M. and Mladenic, D. (n.d.) Text-Gar-
den — Text-Mining Software Tools. Retrieved
from http://kt.ijs.si/Dunja/textgarden/

Guernsey, L. (2003). Digging for Nuggets of Wis-
dom. The New York Times, October 16, 2003.

Hayes, J. H., Dekhtyar, Sundaram, S., (2005). Text
Mining for Software Engineering: How Analyst
Feedback Impacts Final Results. International
Conference on Software Engineering: Proceed-
ings of the 2005 International Workshop on Mining
Software Repositories, St Louis, MO, May.

Hearst, M. A. (1999). Untangling Text Data
Mining, School of Information Management &
Systems, University of California at Berkeley.
Proceedings of the 37th Annual Meeting of the
Association for Computational Linguistics (ACL),
June 20-26.

Hearst, M. A. (2003). What is Data Mining?
Retrieved from http://www.ischool.berkeley.
edu/~hearstr/text_mining.html

 1179

A Survey of Selected Software Technologies for Text Mining

Hersh, W., (2005). Evaluation of biomedical text-
mining systems: lessons learned from informa-
tion retrieval. Briefings in Bioinformatics, 6(4),
344-356.

Hirsch, L., Saeedi, M., and Hirsch, R. (2005).
Evolving text classification rules with genetic
programming. Applied Artificial Intelligence,
19, 659–676

Jin, X., Zhou. Y., and Mobasher, B. (2004).
Web usage mining based on probabilistic latent
semantic analysis, Conference on Knowledge
Discovery in Data. Proceedings of the 10th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, 197-205.

KDNuggets (2005). Polls: Text Mining Tools.
Retrieved January, 2005 from http://www.
kdnuggets,com/polls/2005/text_mining_tools.
htm

KDNuggets (2007). Text Analysis, Text Mining,
and Information Retrieval Software. Retrieved
from http:///www.kdnuggets.com/software/text.
html

Kloptchenko, A., Eklund, T., Karlsson, J., Back, B.
and Vanhar, H., (2004). Combining data and text
mining techniques for analysing financial reports.
Intelligent Systems in Accounting, Finance and
Management, 12(1), 29-41.

Kostoff, R., Rio, J., Humenik, J., Garcia, E., and
Ramirez, A., (2001). Citation mining: Integrating
text mining and bibliometrics for research user.
Journal of the American Society for Information
Science and Technology, 52(13), 1148-1156.

Leon, D.A., (2007). Using text mining software
to identify drug, compound, and disease relation-
ships in the literature. In Proceedings of 233rd
ACS National Meeting, Chicago, IL, March 25-29.
Retrieved from http://acsinf.org/docs/meetings/
233nm/abs/CINF/073.htm

Liang, J.W.(2003). Introduction to Text and Web
Mining, Seminar at North Carolina Technical Uni-

versity. Retrieved from http://www.database.cis.
nctu.edu.tw/seminars/2003F/TWM/slides/p.ppt

Lieberman, H.(2000). Text Mining in Real Time,
Talk Abstract. Retrieved from http://www.ima.
umn.edu/reactive/abstract/lieberman1.html

Lynn, A. (2004). Mellon grant to fund project
to develop data-mining software for libraries.
Retrieved from http://www.news.uiuc.edu/news/
04/1025mellon.html

Mack, R., Mukherjea, S., Soffer, A., and Uramoto,
N., et al., (2004). Text analytics for life science
using the unstructured information management.
IBM Systems Journal, 43(3), 490-515.

McCallum, A. (1998). Bow: A Toolkit for statistical
language modeling, Text Retreival, Classifica-
tion and Clustering. Retrieved from http;//www.
cs.cmu.edu/~mccallum/bow/

Megaputer Intelligence Inc. (2000). Tutorial:
TextAnalyst Introduction. Retrieved from http://
www.megaputer.com/products/ta/tutorial/text-
analyst_tutorial_1.html

Megaputer Intelligence Inc. (2007). Data Mining,
Text Mining, and Web Mining Software. Retrieved
from http:///www.megaputer.com

Megaputer Intelligence Inc. (2007). Text OLAP.
Retrieved from http://www.megaputer.com/prod-
ucts/pa/algorithms/text_oplap.php3

Megaputer Intelligence Inc. (2007). TextAnalyst.
Retrieved from http://www.megaputer.com/pro-
ducts/ta/index.php3

Megaputer Intelligence Inc. (2007). WebAnalyst,
Benefits of Web Data Mining. Retrieved from
http://www.megaputer.com/products/wa/ben-
efits/php3

Megaputer Intelligence Inc. (2007). WebAnalyst,
Introduction to Web Data Mining. Retrieved http://
www.megaputer.com/products/wa/intro.php3

1180

A Survey of Selected Software Technologies for Text Mining

Metz. C. (2003). Software: Text mining. PC
Magazine. Retrieved from http://www.pcmag.
com/print_article2/0,1217.a=43573,00.asp

Miller, T. M. (2005). Data and Text Mining: A
Business Applications Approach. Pearson Prentice
Hall, Upper Saddle River, NJ.

Rajman, M. and Besann, R. (1997). Text Mining:
Natural Language Techniques and Text mining
Applications. Proceedings of the 7th IFIP2.6 Work-
ing Conference on Database Semantics (DS-7),
Leysin, Switerland, October 1997.

Robb, D., (2004). Text Mining tools take on un-
structured data. Computerworld, June 21

Romero, C. and Ventura, S., (2007). Educational
data mining: A survey from 1995 to 2005. Expert
Systems with Applications, 33, 135–146.

Saravanan, M.,Reghuraj, C., and Raman, S. (2003).
Summarization and categorization of text data in
high-level data cleaning for information retrieval.
Applied Artificial Intelligence, 17, 461–474.

SAS Raises Bar on Data, Text Mining (2005).
GRID Today. Retrieved August 29, 2005 from
www.gridtoday.com/grid/460386.html

Scherf, M., Epple, A., and Werner, T. (2005). The
next generation of literature analysis: integration
of genomic analysis into text mining. Briefings
in Bioinformatics, 6(3), 287-297.

Seewald, A., Holzbaur, C., and Widmer, G.,
(2006). Evaluation of term utility functions for
very short multidocument summaries. Applied
Artificial Intelligence, 20, 57–77.

Segall, R.S. and Zhang, Q. (2009). Comparing
four-selected data mining software. Encyclopedia
of Data Warehousing and Mining, Chapter XLV,
Edited by Jon Wang. IGI Global, Inc., 269-277.

Sixth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, August
20-23, 2000, Boston, MA.

Slynko, Y. and Ananyam, S. (2007). WebAnalyst
Server – universal platform for intelligent e-
business. Retrieved from http://www.megaputer.
com/tech/wp/wm.php3

Spasic, I., Ananiadou, S., McNaught, J., and
Kumar, A., (2005). Text mining and ontologies in
biomedicine: making sense of raw text. Briefings
in Bioinformatics, 6(3), 239-251.

Srinivasan, P. (2004). Text mining: Generating
hypotheses from MEDLINE. Journal of the
American Society for Information Science and
Technology, 55(5), 396-413.

Survey of Text mining: Clustering, Classification,
and Retrieval, Springer-Verlag.

Text mining (2007). Held in conjunction with
Seventh SIAM International Conference on Data
Mining, Minneapolis, MN, April 28, 2007.

Text mining Research Group at the University
of Waikato (2002). Text mining, Computer Sci-
ence Department. University of Waikato, Ham-
ilton, New Zealand. Retrieved from http://www.
cs.waikato.ac/nz/~nzdl/textmining

The Lemur Project (2007). The Lemur Toolkit for
Language Modeling and Information Retrieval.
Retrieved from http://www.lemurproject.org/in-
dex.php?version=print

Trumbach, C., (2006). Addressing the information
needs of technology managers: making derived
information usable. Technology Analysis & Stra-
tegic Management, 18(2), 221–243.

Turmo, J., Ageno, A., and Catala, N., (2006).
Adaptive Information Extraction. ACM Comput-
ing Surveys, 38(2), 1-47.

Uramoto, N., Matsuzawa, H, Nagano, T., Mu-
rakami, A., Takeuchi, H., and Takeda, K., (2004).
A text-mining system for knowledge discovery
from biomedical documents. IBM Systems Jour-
nal, 43(3), 516-533.

 1181

A Survey of Selected Software Technologies for Text Mining

Uramoto, N., Matsuzawa, H., Nagano, T., Muraka-
mi, A., Takeuchi, and Ta, K, (2004). Unstructured
Information Management, 43(3).

Visa, A., Toivonen, J., Vanharanta, H., and Back,
B., (2002). Contents matching defined by proto-
types: Methodology verification with books of
the bible. Journal of Management Information
Systems, 18(4), 87-100.

Weiss, S. M., Indurkhya, N., Zhang,T, and Dam-
erau, F. (2005). Text mining: Predictive Methods
for Analyzing Unstructured Information, Springer
Press

Woodfield, Terry (2004). Mining Textual Data
Using SAS Text Miner for SAS9 Course Notes,
SAS Institute, Inc., Cary, NC.

Wu, Y., Li, Q., Bot, R., and Chen, X., (2006).
Finding Nuggets in Documents: A Machine
Learning Approach, Journal of the American
Society For Information Science And Technology,
57(6), 740–752.

Yang, H. and Lee, C., (2005). Automatic Category
Theme Identification and Hierarchy Generation
for Chinese Text Categorization, Journal of Intel-
ligent Information Systems, 25(1), 47–67.

key terMs

Compare Suite: AKS Labs software that
compares texts by keywords, highlights common
and unique keywords.

Megaputer TextAnalyst: Software that offers
semantic analysis of free-form texts, summariza-
tion, clustering, navigation, and natural language
retrieval.

Natural Language Processing: Also know
as computational linguistics that is, using natural
language, e.g., English, to do query or search.

SAS Text Miner: Software by SAS Inc. that
provides a suite of text processing and analyti-
cal tools.

SPSS Mining for Clementine: Enables you to
extract key concepts, sentiments, and relationships
from call center notes, blogs, e-mails and other
unstructured data, and convert it to structured
format for predictive modeling.

Text Mining: Discovery by computer of new,
previously unknown information by automatically
extracting information from different written
resources.

Visual Text: Software manufactured by Tex-
tAI that uses a comprehensive GUI development
environment (www.textanalysis.com)

WordStat: Analysis module for textual infor-
mation such as responses to open-ended questions,
interviews, etc.

This work was previously published in Handbook of Research on Text and Web Mining Technologies, edited by M. Song & Y.
Wu, pp. 766-784, copyright 2009 by Information Science Reference (an imprint of IGI Global).

1182

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.5
A Software Tool for Reading

DICOM Directory Files

Ricardo Villegas
Universidad de Carabobo, Venezuela

Guillermo Montilla
Universidad de Carabobo, Venezuela

Hyxia Villegas
Universidad de Carabobo, Venezuela

AbstrAct

DICOMDIR directory files are useful in medical
software applications because they allow orga-
nized access to images and information sets that
come from radiological studies that are stored
in conformance with the digital imaging and
communication in medicine (DICOM) standard.
During the medical application software devel-
opment, specialized programming libraries are
commonly used in order to solve the requirements
of computation and scientific visualization. How-
ever, these libraries do not provide suitable tools
for reading DICOMDIR files, making necessary
the implementation of a flexible tool for reading
these files, which can be also easily integrated
into applications under development. To solve this
problem, this work introduces an object-oriented

design and an open-source implementation for
such reading tool. It produces an output data tree
containing the information of the DICOM images
and their related radiological studies, which can
be browsed easily in a structured way through
navigation interfaces coupled to it.

IntroductIon

The digital imaging and communications in
medicine (DICOM) standard (National Electri-
cal Manufacturers Association (NEMA0, 2004a;
Revet, 1997) was published in 1993. Its main goal
was to establish norms for handling, storing, and
interchanging medical images and associated digi-
tal information within open systems. Also it was
to facilitate the interoperability among acquisition

 1183

A Software Tool for Reading DICOM Directory Files

equipments and other medical devices, as well as
their integration within specialized information
systems in the medical and health care area.

Since then, the appearance and use of comput-
er-assisted medical applications have increased, as
a result of the accelerated technological develop-
ment and the standardization process of medical
information representation and handling, which
generated a greater demand of development tools
for those applications.

These applications range from health care
information systems and picture archiving and
communication systems (PACS) () solutions,
to technological support systems for medical
procedures, such as image-based diagnosis and
surgical planning, which previously depended on
the knowledge and expertise of the physicians.

In such applications, the handling of images
coming from different acquisition modalities is es-
sential. These images generated from radiological
studies and stored according to the specifications
of parts 10, 11 and 12 of the DICOM standard
(NEMA, 2004e, f,& g) must be retrieved from
storage media as a bidimensional display or in
tridimensional reconstructions and other special
processes, such as fusion and segmentation of
images. The use of DICOMDIR directory files is
almost mandatory for searching, accessing, and
browsing medical images because they index the
files belonging to the patient on whom the studies
were performed, thus making it easier to access
to those images and their associated medical
information.

During the medical application software de-
velopment, the use of programming interfaces
(APIs) or class libraries is frequent in order to
solve the computation and visualization needs,
as well as for providing DICOM support to the
applications. In that sense, there exist numerous
public domain applications that can be used by
radiologists and other specialists for reading and
displaying DICOM images files and even for
reading DICOMDIR index files, which cannot be

integrated into applications under development
because of their proprietary code.

Companies, such as Lead Technologies,
ETIAM, Merge, Laurel Bridge, and DeJarnette,
have commercial software development kits
(SDKs) that provide complete implementations of
the DICOM standard, but the acquisition costs for
these SDKs are high. Open-source libraries are an
alternative choice for integrating DICOM support
into applications. Regarding this matter, libraries,
such as visualization tool kit (VTK) (), insight
segmentation and registration tool kit (ITK),
DICOM tool kit (DCMTK), and virtual vision
machine (VVM), allow the reading of DICOM
images, but they do not provide mechanisms for
reading DICOMDIR files. Like in the DCMTK
case, there are other libraries that provide tools
for a basic and low-level access to the informa-
tion contained in the files. However, they have
disadvantages, such as troublesome information
retrieving process and reading tools, which are
difficult to integrate into the applications.

Due to the lack of an adequate tool for reading
and handling DICOMDIR files in a structured and
simple way, which could be also easily coupled
to browsing interfaces and attached to medical
application under development, we introduce
in this article the design and implementation of
a DICOMDIR files reader. This tool has been
successfully integrated into an application for
neurosurgery preoperative planning (Montilla,
Bosnjak, Jara, & Villegas, 2005), but it also can be
attached to any other software under development
that requires the handling of DICOM images and
DICOMDIR directory files.

The next sections include the revision of related
works, the essential theoretical background that
frames this work within the DICOM standard
context; the description of the methodology used
for the implementation of the tool; and, finally,
the discussion and conclusions obtained from the
integration and test of the implemented reader
into a medical application.

1184

A Software Tool for Reading DICOM Directory Files

Antecedents And
relAted works

The creation of the American College of Radiology
(ACR)-NEMA committee in 1983 was the prod-
uct of earlier attempts by the American College
of Radiology (ACR) and the National Electrical
Manufacturers Association (NEMA) to estab-
lish a normative for exchanging, transmitting,
and storing medical images and their associated
information. The version 1.0 of the standard was
published by this joint committee in 1985, under
the document ACR-NEMA No. 300-1985, fol-
lowed in 1988 by the document ACR-NEMA No.
300-1988 of version 2.0. Previous to these norma-
tives, medical images were stored in files by the
acquisition devices under their own proprietary
formats and transferred through point-to-point
communication or by removable storage media.
Versions 1.0 and 2.0 established a standardized
terminology and information structure, as well
as hardware interfaces, software commands sets,
and consistent data formats.

The most recent version, known as DICOM
3.0 (NEMA, 2004a) was published in 1993, and
it was structured in parts, or documents, to facili-
tate its support and extension. In the last version,
objects for the representation of patients, studies,
reports, and other data sets were added, as well
as unique identifiers for these objects, enabling
the transmission of information through com-
munication networks using the TCP/IP protocol.
The DICOM 3.0 standard facilitates the transfer
of images and related information within open
systems containing different medical equipments
and the integration with medical information
systems and applications.

DICOM parts 3, 6, 10, and 12 (NEMA, 2004b,
d, 4e, & g) were of particular interest for our tool
design. They define and describe the DICOMDIR
directory object and other information objects;
attributes and representation values of DICOM
information model entities; and specifications for

files formats and information storage in physical
media.

We have not found formal research papers
related to the design and implementation of open-
source tools for reading DICOMDIR files and their
integration within medical applications. Neverthe-
less, there exist documented development libraries
that include support for this kind of file. On the
other hand, regarding the complexity of searching
and decoding information contained in DICOM
files and the fact that the tool had to be integrated
into a medical application developed with C++
language, we decided to search for open-source
development libraries, based upon C++ and with
DICOM support in order to use them as a base
for the tool development.

Just a few development libraries, besides the
expensive commercial ones, enable the reading
and analysis of DICOMDIR files. Due to their
structures or features only three open-source
libraries, based upon C++ language, were deemed
appropriate to be used as reference for the tool
design and implementation; the remaining APIs
were found either to have a complicated structure
or were based upon Java language.

GDCM (GDCM, 2005) is an API supported
by Centre de Recherche et d’Applications en
Traitement de l’Image et du Signal (CREATIS),
which provides a fairly complete support for
reading DICOMDIR files and a simple access to
the information extracted from them. However,
it implements only part 5 of the DICOM stand-
ard; therefore, it would be of little use as a base
library for medical applications that require the
implementation of other features defined by the
standard.

Dicomlib library (DicomLib, 2005) provides
a fuller implementation of the DICOM standard,
and it also features the reading of DICOMDIR
files. Although this library tries to ease the huge
intrinsic complexity in the use of the DICOM
standard, its access and presentation of the DI-
COMDIR compiled information is not the best
one to be integrated into the applications.

 1185

A Software Tool for Reading DICOM Directory Files

Finally, DICOM tool kit (DCMTK) (DC-
MTK, 2005) from Oldenburger Forschungs und
Entwicklungsinstitut für Informatik-Werkzeuge
und Systeme (OFFIS) is another complete library,
having several years of evolution and continous
use in medical applications development. Al-
though DCMTK provides support for the creation,
modification, and opening of DICOMDIR files, it
does not offer structured and simple access to the
information gathered from the files. However, we
selected DCMTK as the base library for the reader
development due to its robustness, flexibility, and
ability to handle of DICOM images.

Thus, starting from the basic functions for
information searches and decoding that provides
DCMTK, it was possible to develop the tool for
reading the information contained in DICOMDIR
files and attach this tool to medical applications
that require organized access to DICOM image
sets from medical studies.

theoretIcAl bAckground

A lot has been written about the DICOM standard
ever since it was published, including revisions
and extensions. The scope of DICOM is so wide

that the researcher certainly gets overwhelmed
by the amount and complexity of the information
contained in the standard documents. In our case,
as in any other case of software development that
involves the handling of information within the
DICOM scope, the revision of basic fundamentals
for real-world information representation accord-
ing to the DICOM standard was necessary.

Within DICOM’s structure, the term “infor-
mation” refers to medical images coming from
different acquisition modalities, signals, curves,
look-up tables, and structured reports, as well
as to other information gathered during patient
visits to the healthcare specialist and the stud-
ies derived from them. This information and its
generating agents are represented by the standard
through models.

dIcoM Application and
Information Models

DICOM structures and organizes medical data
and information through models that emulate the
real-world hypothetical situation, where a patient
visits a health care specialist, who later orders a
set of radiological studies as shown in Figure 1.

Figure 1. Correspondence between the radiological exam environment and the DICOM Information
Model

1186

A Software Tool for Reading DICOM Directory Files

An application model is defined as an entity/
relationship diagram (see Figure 2) that relates
real-world objects inside the standard scope. Its
diagram derives from the way hospitals’ radiol-
ogy departments handle images from one or
more acquisition modalities. Those images are
ordered in a series, according to some spatial or
temporal relationship, and then stored in a folder
for each patient.

Although the application model contains en-
tities for representing several DICOM objects,
such as exams results, medical reports, and study
procedures, in this work only the patient, study,
series, and image entities were considered because
they are directly associated to data contained
within the images. This consideration produces
the simplified version of the DICOM application
model shown in Figure 2, where the dashed region
contains the entities of interest.

The DICOM information model derives from
the application model and its entities are known
as information object description (IOD). In an
abstract way, an IOD describes real-world objects
that share the same properties (NEMA, 2004b).
This abstraction keeps a close relationship to
the object-oriented design and programming
paradigm.

Information model entities are featured by at-
tributes whose types, multiplicities, and contents
change depending upon the entity to which they
belong. Attributes or data elements are defined in
part 5 of the standard (NEMA, 2004c), and they are
cataloged in part 6 of the data dictionary (NEMA,
2004d). An attribute is classified according to its
presence in obligatory (types 1 and 2), conditional
(types 1C and 2C), and optional (type 3).

Attributes are identified in the data diction-
ary through a tag composed from an ordered
16-bit number duple (gggg,eeee) expressed in
hexadecimal form. These numbers represent the
group and the element number within that group.
The standard attributes have an even group num-
ber, different from 0000, 0002, 0004, and 0006,
whereas private attributes, not contained in the
data dictionary, have an odd group number, dif-
ferent from 0001, 0003, 0005, 0007, and FFFF.
All aforementioned group numbers are reserved
by the standard.

In addition to the tag, there are other data
fields that also belong to the attributes structure,
such as value representation (VR), value multi-
plicity (VM), length, and contained value. The
VR describes, through a 2-byte character string,

 Figure 2. Simplified DICOM application model showing information entities and relationships among
them

 1187

A Software Tool for Reading DICOM Directory Files

the type and format of the data contained in the
attribute value field, such as integer or floating
numbers, dates, string characters, and sequences.
The VM specifies the cardinality or number of
values that are codified in the value field. The
length contains the attribute’s value size in bytes.
Finally, the value field stores the attribute data,
according to its respective presence type.

For each IOD there are defined operation
sets and named services that are executed on
the information objects. When an entity needs
to perform an operation over an IOD, it must re-
quest the proper service to another entity, which
behaves as a server. Each object-defined service
establishes a service-object pair (SOP), and the
whole service set that is applicable to a particular
IOD is a named SOP class.

The media storage service class and the que-
ryrRetrieve service class are examples of SOP
classes. The first one comprises the M-READ,
M-WRITE, and M-DELETE services set, applied
to the reading, writing, and deleting of files with
image IODs coming from acquisition modalities.
The second class groups the C-FIND, C-MOVE,
and C-GET services that can be requested for
querying and transferring information from IODs
associated with different entities.

An SOP instance is the occurrence of an IOD
that is operated within a communication context,
through a specific service set. For example, DI-
COMDIR directory files are SOP products from
requesting the information writing service from
a directory IOD to a physical storage media.

The simplified model from our research con-
siders only four entities and their corresponding
IODs. The patient entity contains data of the patient
for whom radiological studies were performed as
described by the study entity. The series entity
models information resulting from radiological
studies, such as images or signals, and keeps some
kind of spatial or temporal relationship among
them. The image entity represents the images
coming from some of the existing acquisition
modalities, for example, computed tomography

(CT), magnetic image resonance (MRI), or ultra
sound (US).

dIcoM File Format

The DICOM file format, described in part 10 of
the standard (NEMA, 2004e), defines the way
data representing a SOP instance is stored in a
physical storage media. The data is encapsulated
as a stream of bytes, preceded by a header with
metainformation required for identifying the SOP
instance and class.

The header has an organized sequence of
components, named file ID, which organizes
files hierarchically. An ID has up to eight compo-
nents, where each one is a string of one to eight
characters separated by backslashes. The file ID
generally corresponds to a directory path and to
a filename, for example, SUBDIR1\SUBDIR2\
SUBDIR3\ABCDEFGH.

Located after the header is the data set as-
sociated with the information model entity that
is stored in the file. Depending upon the entity
nature, this stream of bytes could represent some
of the following objects: images, curves, signals,
overlay annotations, lookup tables for transform-
ing images pixel values according to acquisition
modalities or values of interest, presentation
images descriptions, structure reports, or raw
data.

Within the context and scope of our research,
we considered only DICOM files containing
images associated with studies performed on
patients. Therefore, the stored data describes the
image plane and the pixels features, as well as val-
ues for mapping the image to color or gray scales,
overlay planes, and other specific features.

DICOM files are gathered in collections sharing
a common name space, such as storage volumes or
directory trees, and having unique file identifiers
within it. The file collection is an abstraction of a
container where files can be created or read. Each
collection must be accompanied by an index file
with a DICOMDIR identifier, corresponding to a

1188

A Software Tool for Reading DICOM Directory Files

DICOM directory object instance. Part 12 of the
standard (NEMA, 2004g) describes the way the
DICOM file information is encoded inside the
physical storage media. It depends upon the file
system used by the computer system for the files
creation and interchange, as well as the physical
media used for it.

dIcoMdIr File Format

The DICOM standard defines a special object class
as a named basic directory object, whose purpose
is to serve as an organizing index for DICOM
files stored in a physical media. The instance of
a DICOM directory class object is a file with a
unique filename and ID named DICOMDIR. The
formal definition of the DICOMDIR object and
its content are in part 3 annex F of the DICOM
standard (NEMA, 2004b), whereas its structure
complies with the DICOM files format specified
in section 7 of part 10 (NEMA, 2004e).

There are registers in the DICOMDIR file with
the information associated to objects stored in a
DICOM files set, and it does not make reference
to files that do not belong to the set. Each reg-
ister contains a field identifying the represented

information type, such as patient, study, series,
and image, besides a group of specific fields with
attributes extracted from the stored SOP instance.
The registers are hierarchically sorted, and they
are linked among themselves in the same hierarchy
level and to the next lower level in the hierarchy
(Figure 3).

The preceding information is generally present
in the file, such as indicated in the standard, but
some data fields can be optional, such as those
related to the complementary information of the
patient (birth date, sex, and age) and the studies
(referring physician, institution, protocols, and
diagnoses), as well as image descriptive infor-
mation, for example, dimensions, samples by
pixel, photometric interpretation, and gray-level
window.

There should be a unique DICOMDIR file
for each DICOM files set contained in a storage
media. The DICOMDIR file location is related to
the storage media directory organization, and it is
commonly found at the root directory. DICOM-
DIR files help to make fast queries and searches
throughout media contained images, without
the need for reading whole file sets. Otherwise,
searching and browsing images and information

Figure 3. Structure of a DICOMDIR file and its representation in a physical storage media

 1189

A Software Tool for Reading DICOM Directory Files

within file sets becomes an intensive, tedious,
and difficult task.

dIcoMdIr FIle reAder
IMpleMentAtIon

description

The implemented tool enables DICOMDIR files
to be opened in order to obtain the most relevant
information from the DICOM-file collection
they index. This information is organized in a
hierarchical data structure, which can be easily
consulted, and when coupled to a suitable graphic
interface, permits the interactive browsing of the
information related to the collection. The imple-
mentation was made using C++ language, based
upon an object-oriented design that allows new
DICOM data fields to be added to the reader. Some
DCMTK library classes and methods (DCMTK,
2005) were used to facilitate the searching and
decoding of the data contained within DICOM-
DIR files, thus avoiding the inherent complexity
in the handling of the information stored under
DICOM standard specifications.

data structures

The references to SOP instances contained in
DICOMDIR files are linked according to the
entities’ hierarchy of PATIENT-STUDY-SERIES-
IMAGE, which is implicitly established in the
DICOM information model, thus establishing a
natural correspondence between the hierarchy and
a tree data structure. This tree has heterogeneous
content nodes that correspond to the DICOM
simplified application model (Figure 2), so there
are five node types: root, patient, study, series, and
image. The entities’ relationship cardinality sets
the offspring multiplicity, that is, a patient could
be object from several studies, whereas each one
of them could have several image series.

During the reading of a directory file, all of the
file’s hierarchical links are traveled, and the related
collection file information is gathered for filling
the nodes’ specific fields, thus building the data
tree structure. At the end of the reading process,
the tree has the relevant collection information,
having a structure similar to that shown in Figure
4. This data structure could be browsed in order
to consult the information without the need of
accessing the whole file set again.

An approach was considered for the tree
structure implementation where the nodes behave

Figure 4. Structure of the data tree structure built by the reading tool

1190

A Software Tool for Reading DICOM Directory Files

simultaneously as structural elements and data
containers. In this way, the nodes establish the
tree hierarchical structure and each one of them
also stores the information associated to the cor-
responding entity. Hierarchy levels are made up
of linked node lists, and each one of these lists
have a children’s list, corresponding to elements
from the next lower hierarchy level (Figure 5).
This approach facilitates the travelling of the tree
and its coupling to browsing interfaces.

A class hierarchy was defined for enabling
the nodes polymorphic handling through vir-
tual methods. In this hierarchy, the base class,
DICOMDIRNode, defines the basic structure for
the other nodes, as well as the virtual methods for
accessing and travelling the tree. All subclasses
deriving from it, that is, DICOMDIRRootNode,
DICOMDIRPatientNode, DICOMDIRStudyN-
ode, DICOMDIRSeriesNode, and DICOMDIR-
ImageNode, redefine their contents and behavior
according to the corresponding DICOM applica-
tion model entity to which they belong.

collected dIcoM data Fields

DICOM files contain rather large data-element
groups that are cataloged in the DICOM data
dictionary (NEMA, 2004d). However, not all of
these elements are useful in the scope of software
applications that handle medical images, and for
that reason, a selection of relevant elements was
made in order to limit the number of data fields
gathered during the DICOMDIR files reading pro-
cess. Table 1 shows the collected data fields with
their tags, value representations, multiplicities,
presence attributes, and corresponding DCMTK
classes and C++ standard types.

One selection criteria for the data fields is
based upon the information provided by the im-
age processing. Among the selected fields are the
image dimensions, the samples per pixel number,
and the gray-level window. Another criterion is the
general information that guides the user during
the search and selection of images, for example,
patient’s data, description, and modality of the
study. Complementary fields that do not provide

Figure 5. Data tree implementation using linked node lists as data containers

 1191

A Software Tool for Reading DICOM Directory Files

Table 1. DICOM attributes compiled during DICOMDIR file reading process. Attributes are grouped
by node type, showing main DICOM data fields and corresponding DCMTK/ C++ data types for each
one of them

Node

type

Tag Field name VR VM Presence DCMTK

data type

C++

data type

PA
TI

EN
T

(0010,0010) Patient name PN 1 Obligatory DcmPersonName char[]

(0010,0020) Patient ID LO 1 Obligatory DcmLongString char[]

(0010,0030) Birth date DA 1 Optional DcmDate char[]

(0010,0040) Sex CS 1 Optional DcmCodeString char[]

(0010,1010) Age AS 1 Optional DcmAgeString char[]

ST
U

D
Y

(0020,0010) Study ID SH 1 Obligatory DcmShortString char[]

(0008,0020) Study date DA 1 Obligatory DcmDate char[]

(0008,0030) Study time TM 1 Obligatory DcmTime char[]

(0008,1030) Description LO 1 Obligatory DcmLongString char[]

(0018,1030) Protocol name LO 1 Optional DcmLongString char[]

(0008,0090) Referring

physician

PN 1 Optional DcmPersonName char[]

(0008,0080) Institution LO 1 Optional DcmLongString char[]

(0008,1080) Diagnoses LO 1..N Optional DcmLongString char[]

SE
R

IE

(0020,0011) Serie

number

IS 1 Obligatory DcmIntegerString signed long

(0008,0060) Modality CS 1 Obligatory DcmCodeString char[]

(0018,0015) Body part CS 1 Optional DcmCodeString char[]

(0008,0021) Serie date DA 1 Optional DcmDate char[]

(0008,0031) Serie time TM 1 Optional DcmTime char[]

(0008,103E) Description LO 1 Optional DcmLongString char[]

(0008,1050) P e r f o r m i n g

physician

PN 1..N Optional DcmPersonName char[]

continued on following page

1192

A Software Tool for Reading DICOM Directory Files

Table 1. continued

IM
A

G
E

(0020,0013) Image number IS 1 Obligatory DcmIntegerString signed long

(0008,0008) Image type CS 1..N Optional DcmCodeString char[]

(0008,0023) Image date DA 1 Optional DcmDate char[]

(0008,0033) Image time TM 1 Optional DcmTime char[]

(0028,0010) Rows number US 1 Optional Uint16 unsigned short

(0028,0011) Columns num-

ber

US 1 Optional Uint16 unsigned short

(0028,0100) Bits allocated US 1 Optional Uint16 unsigned short

(0028,0101) Bits stored US 1 Optional Uint16 unsigned short

(0028,0102) High bit US 1 Optional Uint16 unsigned short

(0028,0002) Sa mples pe r

píxel

US 1 Optional Uint16 unsigned short

(0028,0103) Pixel represen-

tation

US 1 Optional Uint16 unsigned short

(0028,0004) Photometric in-

terpretation

CS 1 Optional DcmCodeString char[]

(0018,0050) Slice thickness DS 1 Optional DcmDecimalString float

(0028,0030) Pixel spacing DS 2 Optional DcmDecimalString float

(0028,1050) Window center DS 1..N Optional DcmDecimalString signed long

(0028,1051) Window width DS 1..N Optional DcmDecimalString u n s i g n e d

long

(0028,1053) Rescale slope DS 1 Optional DcmDecimalString float

(0028,1052) Rescale Inter-

section

DS 1 Optional DcmDecimalString float

(0004,1500) Referenced file

ID

CS 1..8 Optional DcmCodeString char[]

Node

type

Tag Field name VR VM Presence DCMTK

data type

C++

data type

 1193

A Software Tool for Reading DICOM Directory Files

Algorithm 1.

Open DICOMDIR file for reading

Assign DICOMDIR file root register to NODE variable

With NODE, do recursively /* Begin of recursive block */

{

 Assign NODE first child to Next_Register variable

 While (Next_Register <> NULL)

 {

 Select according to Next_Register type

 {

 Case PATIENT:

 Get patient node related information

 Create a new DICOMDIR_PatientNode node object

 Fill node members with gathered information

 Insert node in the data tree

 Assign Next_Register to NODE

 Call recursive block with new NODE value

Complete missing patient information extracted from related image file

 Case STUDY:

 Get study node related information

 Create a new DICOMDIR_StudyNode node object

 Fill node members with gathered information

 Insert node in the data tree

 Assign Next_Register to NODE

 Call recursive block with new NODE value

Complete missing study information extracted from related image file

 Case SERIES:

 Get series node related information

 Create a new DICOMDIR_SerieNode node object

 Fill node members with gathered information

1194

A Software Tool for Reading DICOM Directory Files

significant information for the image processing
or to the user applications were not used for the
gathering process, for example, address, occu-
pation, and medical antecedents of the patient,
and the technical information from the image
acquisition devices.

Reading Process

The reader uses Algorithm 1 for the DICOMDIR
information retrieving process.

It can be observed that in this algorithm start-
ing from the parent nodes, each tree node and its
children’s nodes are recursively travelled, level by
level, until reaching the deepest tree level. Only
nodes from PATIENT, STUDY, SERIES, and
IMAGE types are taken into account, though it is
possible to extend the consideration to other types
of nodes. For each visited node, the selected fields
are compiled according to the node type (see Table
1). However, as explained in the DICOMDIR File
Format section, not all the fields have an obligatory
presence inside the DICOMDIR file, therefore the
missing information must be completed from the
corresponding DICOM image file, once its file
identifier is known.

Some methods from the DCMTK library are
used to travel through the DICOMDIR structure
and retrieve its data. These methods can handle
data elements encoded either in big Endian or
little Endian byte ordering, or with any kind
of representation values and cardinalities. The
retrieving methods are invoked by the data ele-
ment tag each time a node is visited, whereas the
travelling methods are used during recursive calls
to the tool’s main reading method.

results And dIsscussIon

The DICOMDIR reader was integrated for its test
and validation into software for neurosurgery and
brachytherapy planning, developed with the VVM
library (Montilla, Bosnjak, & Villegas, 2003). A

graphical interface was coupled to the reader in
order to enable the navigation of the information
in a simple way. By just opening the associated
DICOMDIR file, users will be able to have the
interface display the patients’ study images and
their related medical information. Control widgets
provided by the interface were used for interac-
tively browsing and selecting the images.

The reading process was verified with DI-
COMDIR files associated to several image sets,
coming from studies of CT and MRI performed
on different patients. It could be proved that the
reader recollected the information specified by the
class definitions for each type of node, enabling
display of its structure through the interface. Two
examples from the tests are shown in Figure 6.
In both examples, the studies were made on the
patient’s head but with two different modalities.
The CT study has an eight-image series, whereas
the MRI study contains 14 images.

It was observed that access to the informa-
tion collected from the studies can be made in
an organized and fast way, making transparent
the navigation process of data structures and
improving the efficiency in the use of the soft-
ware. The tool is able to be integrated with other
applications under development that require the
handling of DICOM images and DICOMDIR
files.As is usual in software projects implying
code reusability, benefits from using our tool are
going to be directly reflected in ease and speed
of development.

conclusIon

The design used for the DICOMDIR file reader
allows the medical application programmer to ef-
fortlessly incorporate the feature for the handling
of this kind of file in software under development.
Also, it avoids exhaustively understanding the DI-
COM standard and DCMTK classes and methods,
which can be really hard and bothersome, enabling
the programmer to focus on the integration of the

 1195

A Software Tool for Reading DICOM Directory Files

tool into the application, as well as on the develop-
ment of a navigation interface, according to the
application’s needs. Because the reading tool has
open-source code, it can be reused and modified at
will by the programmers. In addition, the design
used for the tool development enables inclusion
of new data fields to the presently used entities,
as well as to add other information model entities
to the data tree structure.

By integrating the tool into a medical ap-
plication that handles DICOM image sets, it was
proved it facilitates the browsing and searching
of the information contained in the image sets,
accelerating the fulfillment of these tasks and
improving the efficiency and performance of the
application. Open-source programming tools of
this type also facilitate the development of medical
applications and help to reduce software costs, thus
making it more accessible to health institutions,
physicians, and patients, particularly in regions
where investment in health care solutions is either
limited or not a priority issue.

Future works

We are considering the future implementation of
tools for converting images from other formats
to the DICOM format and for the creation of
DICOMDIR files from nonindexed studies files.
A tool for anonymization of DICOM fields also
could be useful in protecting patient confidenti-
ality during the sharing of clinical data among
research teams. We hope that the implementation
and subsequent use of this tool set will represent
an incremental increase in the efficiency, quality,
and speed of development of medical informatics
software, producing applications that will be more
complete and flexible at same time.

AcknowledgMent

The authors want to express their gratitude to
Dr. Luis Iván Jara, a neurosurgeon appointed to
the Hospital Metropolitano del Norte (Valencia-
Venezuela), for providing us the DICOM image
sets used for the functional verification and
evaluation of the reading tool. Financial support
for this research was granted by Scientific and
Humanistic Development Council of the Uni-
versity of Carabobo, Venezuela, under project
CDCH-UC No. 0461-06.

reFerences

Digital imaging and communications in medi-
cine took kit (DCMTK). (2005). DICOM toolkit
software documentation. Oldenburger For-
schungs und Entwicklungsinstitut für Informa-
tik-Werkzeuge und Systeme (OFFIS). Retrieved
on September 29, 2005, from http://dicom.offis.
de/dcmtk.php.en

DicomLib. (2005). DICOM software documenta-
tion. Sunnybrook and Women’s College Health
Sciences Center Imaging Research Group. Retrie-
ved on September 29, 2005, from http://dicomlib.
swri.ca/dicomlib/html/index.htm

GDCM. (2005). Grass roots DICOM software
documentation. Centre de Recherche et d’Ap-
plications en Traitement de l’Image et du Signal
(CREATIS). Retrieved on September 29, 2005,
from http://www.creatis.insa-lyon.fr/Public/
Gdcm

Montilla, G., Bosnjak, A., Jara, L. I., & Villegas,
H. (2005). Computer assisted planning using de-
pendent texture mapping and multiple rendering
projections in medical applications. Proceed-
ings from 3rd European Medical & Biological
Engineering Conference and Ifmbe European
Conference on Biomedical Engineering. Ifmbe
(pp. 4420-4425). Praga, Czech Republic: .

1196

A Software Tool for Reading DICOM Directory Files

Montilla, G., Bosnjak, A., & Villegas, H. (2003).
Visualización de mundos virtuales en la me-
dicina. bioingeniería en Iberoamérica: Avances
y desarrollos. In C. Müller-Karger & M. Cer-
rolaza (Eds.), Centro internacional de métodos
numéricos en ingeniería CIMNE (pp. 519-545).
Barcelona: .

National Electrical Manufacturers Association
(NEMA). (2004a). Digital imaging and commu-
nications in medicine. Part 1: Introduction and
overview (NEMA Standards Pub., PS3.1).

National Electrical Manufacturers Association
(NEMA). (2004b). Digital imaging and commu-
nications in medicine. Part 3: Information object
definitions (NEMA Standards Pub., PS3.3).

National Electrical Manufacturers Association
(NEMA). (2004c). Digital imaging and communi-
cations in medicine. Part 5: Data structures and
encoding (NEMA Standards Pub., PS3.5).

National Electrical Manufacturers Association
(NEMA). (2004d). Digital imaging and com-
munications in medicine. Part 6: Data dictionary
(NEMA Standards Pub., PS3.6).

National Electrical Manufacturers Association
(NEMA). (2004e). Digital imaging and commu-
nications in medicine. Part 10: Media storage
and file format for media interchange (NEMA
Standards Pub., PS3.10).

National Electrical Manufacturers Association
(NEMA). (2004f). Digital imaging and com-
munications in medicine. Part 11: Media storage
application profiles (NEMA Standards Pub.,
PS3.11).

National Electrical Manufacturers Association
(NEMA). (2004g). Digital imaging and communi-
cations in medicine. Part 12: Media formats and
physical media for media interchange (NEMA
Standards Pub., PS3.12).

Revet, B. (1997). DICOM cookbook for imple-
mentations in modalities (Tech. Rep.). Philips
Medical Systems.

 1197

A Software Tool for Reading DICOM Directory Files

AppendIx

glossary of terms

American College of Radiology(ACR)/ National Electrical Manufacturers Association
(NEMA)(ACR): This joint committee is responsible for the development and maintenance of the DI-
COM standard.

Acquisition modalities: These imaging techniques and devices provide radiological images from
patients’ anatomy. Most commonly used modalities are CT (computed tomography), MRI (magnetic
resonance imaging) and US (ultra sound).

Application programming interfaces (APIs): A set of specialized functions, class libraries, and
tools used by software programmers to facilitate the application development process.

Attribute: A property of an information object represented as a data element.

Big Endian: An encoding scheme where multiple byte values are encoded with the most significant
byte first, followed by the remaining bytes in decreasing order of significance.

Browsing interfaces: These mechanisms and widgets provide a way to navigate information within
software applications.

Data element: This is a single atomic information unit that is related to a real-world object attribute
and is defined by an entry in the DICOM data dictionary.

Digital imaging and communications in medicine (DICOM): This standard establishes norms for
handling, storing, and interchanging medical images and associated digital information.

DICOM application model: An entity/relationship diagram used to model the relationships existing
between real-world objects within the DICOM standard’s scope.

DICOM data dictionary: This is a catalog of DICOM data elements that describes the semantics
and contents of each one of them.

DICOM information model: An entity/relationship diagram used to model the relationships between
the information-object definitions representing classes of real-world objects defined by the DICOM
application model.

DICOMDIR file: This is a unique and mandatory file that accompanies a file set and indexes these
files.

Entity/relationship diagram: This is a graphical representation of a set of objects and the relation-
ships existing among them.

Image-based diagnosis: Techniques used by health care specialists to diagnose patients’ diseases
through analysis of radiological imaging studies.

1198

A Software Tool for Reading DICOM Directory Files

Information object description (IOD): This is an abstract definition for real-world objects that
share the same properties.

Little Endian: An encoding scheme where multiple byte values are encoded with the least significant
byte first, followed by the remaining bytes in increasing order of significance.

Open source: Programming paradigm based upon software engineering principles that pursues
software code reutilization to facilitate the development of applications.

Proprietary code: Programming paradigm that establishes that the software applications code is
protected and is not available either for modification or reutilization.

Software development kits (SDKs): See APIs.

Service: This is an operation that can be requested for acting over an information object.

Service-object pair (SOP): This is a relationship that is established between an information object
and an operation or the service applicable over it.

SOP class: This is the whole set of services applicable over an information object.

Surgical planning: This describes the preoperative procedure where the surgeon determines surgical
protocols and approachg trajectories to be followed during the intraoperative stage of the surgery.

Value multiplicity (VM): This is the DICOM data field that specifies the cardinality or number of
values existing for a data element.

Value Representation (VR): This is the DICOM data field that specifies the data type and format
of values existing for a data element.

AppendIx contInued

This work was previously published in International Journal of Healthcare Information Systems and Informatics, Vol. 2, Issue
1, edited by J. Tan, pp. 54-70, copyright 2007 by IGI Publishing (an imprint of IGI Global).

 1199

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.6
Tools for the Study of the

Usual Data Sources found in
Libre Software Projects

Gregorio Robles
Universidad Rey Juan Carlos, Spain

Jesús M. González-Barahona
Universidad Rey Juan Carlos, Spain

Daniel Izquierdo-Cortazar
 Universidad Rey Juan Carlos, Spain

Benjamin E. Erlandson
Universidad Rey Juan Carlos, Spain

AbstrAct

Due to the open nature of Free/Libre/Open Source
software projects, researchers have gained access
to a rich set of development-related information.
Although this information is publicly available
on the Internet, obtaining and analyzing it in
a convenient way is not an easy task and many
considerations have to be taken into account. In
this paper we present the most important data
sources that can be found in libre software projects
and that are studied by the research community:
source code, source code management systems,
mailing lists and bug tracking systems. We will

give advice for the problems that can be found
when retrieving and preparing the data sources for
a posterior analysis, as well as provide information
about the tools that support these tasks.

IntroductIon

The fact that communication and organization are
heavily tied in libre software1 projects to the use
of telematic means and that these interactions are,
in general, stored and publicly offered over the
Internet makes the number of data sources where
development information can be extracted from

1200

Tools for the Study of the Usual Data Sources found in Libre Software Projects

grow beyond source code. In addition, the abil-
ity of having memory (as data from activities in
the past can be obtained) offers the possibility of
performing longitudinal analysis as well. Research
groups from all around the world have already
taken benefit from the availability of such a rich
amount of data sources in the last years. Nonethe-
less, the access, retrieval and fact extraction is by
no means a simple task and many considerations
have to be considered to successfully mine the
data sources.

This chapter is probably the first attempt to
have a detailed description of the most common
data sources that can generally be found for libre
software projects on the Internet and the data that
can be found in them. In addition, we present
some available tools that might help researchers
obtaining and partially analyzing the described
data sources. These data sources comprise source
code, source code management (in the following,
SCM), mailing lists archives, and bug tracking
system (in the following, BTS).

Mining and analyzing these data sources offer
an ample amount of possibilities that surpass or
complement other data-acquiring methodologies
such as surveys, interviews or experiments. The
amount of data that can be obtained, in a detailed
way and in many cases for the whole lifetime of
a software project, gives a precise description of
the history of a project (Bauer and Pizka, 2003).
In this sense, we have access to the activities (the
what), the points in time (the when), the actors
(the who) and sometimes even the reason (the
why) (Hahsler and Koch, 2005). Compared to
surveys, mining these data sources allows to ac-
cess data for thousands of developers and a wide
range of software projects. Most of these efforts
can be considered as non-intrusive, as research-
ers can analyze the projects without interacting
with developers. But even in a small environment,
e.g., when evaluating the impact of software tools
in a small team (Atkins et al., 2002), the use of
data from one or more of these sources provides
additional insight. Furthermore, mining software

repositories has many advantages compared to
conducting experiments as real-world software
projects are taken into consideration (Mockus and
Votta, 2000, Graves and Mockus, 1998).

The structure of this chapter is as follows:
the next section handles the identification of the
data sources as well as its retrieval process. Next,
various analysis on source code are introduced
(hierarchy, file discrimination, analysis of tra-
ditional source code files, analysis of the rest of
files (such as documentation, multimedia, etc.),
and authorship). The fourth section presents how
SCM systems can be mined, putting special atten-
tion on the CVSAnalY tool and some details to be
considered when performing analyses on CVS.
The fifth section presents the most common format
in which mailing lists are stored (MBOX), while
the sixth one is devoted to present the data to be
found in a BTS. Finally, the reader can find a short
summary of the chapter in the last section.

IdentIfIcAtIon of dAtA
sources And retrIevAl

There are some steps before the analysis of data
from libre software projects can be started that
should be considered: identification and retrieval.
It should be noted that there may be several ways
of accessing the data, depending on the projects.
This is because of the use of the several develop-
ment-supporting tools that projects use and of hav-
ing different usage conventions (for instance, the
use of tags, comments, among others, may differ
from one project to another). The complexity and
feasibility of both activities depend on the data
source and on the project. Figure 1 gives a diagram
that shows the steps that have to be accomplished
for any source considered in our study.

 In general terms, the identification of the
data source depends mostly on its significance
for the software development of a project. Hence,
identifying the source code, the SCM system, the
mailing lists or the BTS is in no way problematic

 1201

Tools for the Study of the Usual Data Sources found in Libre Software Projects

as it lies in the interest of the projects that feedback
is provided by users in an easy and fast way. In
these cases, the biggest drawback is the lack of
historical data. Sometimes we only have a partial
set of the data, and in the worst cases nothing at
all. This situation is common for software releases,
where finding historical versions of the software
is sometimes not possible. Other situations where
this might happen is when a development tool has
not been used in the early stages of development.
This is the case of many projects that start using a
SCM system once the project has gained certain
momentum. Having only partial data can also be
the result of a migration from one tool to another,
losing in the way some information if not all.
When researching libre software projects, these
considerations have to be taken into account.

But there exist other data sources for libre
software projects that are not so obvious and
hence their identification is not that straightfor-
ward. For instance, organizational information
that is embedded into some format and that is
beyond the use of standard tools as SCM systems,
mailing lists and BTS. In general, such type of
information is project-dependent and can be only
obtained for one project or a small number of
them. This is the case for packaging systems such
as the .deb format used in Debian and Debian-
based distributions or the .rpm Red Hat package
system in use in Red Hat and other distributions.
But beyond this, we can find project-related
information in other places such as the Debian
Popularity Contest (Robles et al., 2006b) or the
Debian Developer database (Robles et al., 2005).
Other data sources may also be considered; for
instance, in KDE there is a file that is used to list
all the ones who have write access to their SCM
repository. Another example is given in a study

by Tuomi (Tuomi, 2004) in which the credits file,
a text file listing all important contributors to the
project, of the Linux kernel are studied in detail.
Identification of the data source requires in such
cases specific knowledge on the project and is
difficult if not impossible to be generalized.

Once the data source has been identified, it
has to be retrieved to a local machine in order to
be analyzed (see Figure 1). Although this process
may not seem to be very difficult at first, previous
experiences have shown that some considerations
and good practices should be followed in this
step as reported by Howison et al. in the retrieval
of information from the web pages hosted at
SourceForge (Howison and Crowston, 2004). For
instance, the analysis of the credits file, which
can be found together with the sources in many
projects, has to deal with the complexity that there
is no standardized way of naming the authors, so
projects follow their own conventions.

In the next sections we will enter into detail
in the process of data extraction and data storage
once the data have been properly retrieved from
the information source to a local machine.

source code

We should begin with the concept of release. It is
important due to the fact that it points out the main
milestone happened during the life of a project.
It usually has a common nomenclature which is
akin to “MM.mm.bb”. Where “MM” means the
number of the major release, “mm” means the
number of minor releases and “bb” connotes some
bug fixes and small improvements.

As software development projects, source
code is the central point of all interactions, being

Figure 1. Whole process: from identification of the data sources to analysis of the data

Identification Retrieval AnalysisData
Extraction

Data
Storage

1202

Tools for the Study of the Usual Data Sources found in Libre Software Projects

a primary way of communication and playing a
major signaling and coordination role. According
to (Lanzara and Morner, 2003), source code “is
transient knowledge: it reflects what has been pro-
grammed and developed up to that point, resuming
past development and knowledge and pointing to
future experiments and future knowledge.”.

The study of the source code, as the main
product of the software development process, is
a matter that has been done for over thirty years
now. But not only traditional source code (i.e.,
programmed in a programming language) can be
taken into account, but also all the other elements
that make the software, such as documentation,
translation, user interface and other files (Robles
et al., 2006a).

The analysis usually starts with a source code
base that is stored in a directory (or alternatively
in a compressed directory, usually in tar.gz or tar.
bz2 format common in the libre software world).
After decompressing the tarball, if needed, the
hierarchical structure of the source code tree is
identified and stored.

Then, files can be grouped into several cat-
egories depending on type (as will be described
below) which allows for a more specific analysis.
This means, for instance that source code files
in a programming language can be analyzed
differently than images or documentation files.
On the other hand, the discrimination for files
with source code can be finer, identifying the
programming language and offering the pos-
sibility of using alternative metrics depending
on it. As a consequence, object oriented metrics
could be applied to files containing Java code, but
would not be required for files that are written in
assembler language.

 The whole process can be observed in Fig-
ure 2: after (possibly) decompressing, the direc-
tory and file hierarchy is obtained, then files are
discriminated by their type and finally analyzed,
if possible taking into consideration the file type
that has been identified in the previous step. In
the following subsections the different steps are
described more in detail.

Hierarchical structure

The structure of directories and files of a soft-
ware program (and how it changes over time)
has already been the focus of some research
studies (Capiluppi, 2004, Capiluppi et al., 2004).
The idea is that the technical architecture and
probably therefore the organization of the devel-
opment team is mapped by the tree hierarchy of
directories. So, from a directory hierarchy, we
could infer the organizational structure of a libre
software development project.

file discrimination

File discrimination is a technique that is used
to specifically analyze files on behalf of their
content (Robles et al., 2006a). The most common
way of discriminating files is by using heuristics,
which may vary in their accuracy as well as in
the granularity of their results.

A first set of heuristics may determine the type
of a file by considering its extension. File exten-
sions are non-mandatory, but usually conventions
exist so that the identification of the content of a
file can be made easier and to enable the automa-
tion of administrative tasks.

Figure 2. Process of source code analysis

Uncom-
pression Hierarchy File Dis-

crimination
(customized)

Analysis

 1203

Tools for the Study of the Usual Data Sources found in Libre Software Projects

Hence, a first step for file discrimination con-
sists of having a list of extensions that links to the
content of the file. In this context, the .pl extension
is indicative for a file that contains programming
instructions while a .png can be considered as an
image file. Of course, this can be done at several
granularity levels, meaning that a .c file is a file
that with high probability contains programming
language, being that the programming language
C code. Table 1 shows an excerpt of the list of file
extensions that can be used.

The file types that can be considered are
documentation, images, internationalization
(i18n) and localization (l10n), user interface (ui),
multimedia and code files. For the latter type,
a more detailed analysis and discrimination
between source code that is part of the software
application (code) from the one that helps in the
building process (generally Makefiles, configure.
in, among others) and from documentation files
that are tightly bound to the development and
building process (such as README, TODO or
HACKING) can be made.

 A second step in the process of file discrimi-
nation includes inspection of the content of the
files both to check if the identification made by
means of matching file extensions is correct and
to identify files that have no extension or whose
extension is not included in the previous list.

In this case, heuristics are generally content-
specific and may go more in depth depending
on the detail of discrimination we are looking
for. One of the most common ways to improve
file discrimination by looking at the file content
is to analyze the first line. There exists some
convention in source code files that denotes that
the programming language that they contain.
For instance, in the case of a file written in the
Python, Bourne again shell or Perl programming
language (examples can be found in Table 2), the
first line could contain respectively the following
information2.

In the case of programming languages, further
information can be gained from the structure of
the code, by the identification of specific keywords
or other elements such as specific comments.
For text files (especially the ones that are based
on mark-up languages), tags and other specific
elements may help in the identification process.
Finally, other algorithms can be taken into ac-
count, as the information returned by the UNIX
file command on the file type (which also identifies
some of the binary formats, especially useful in
the case of images).

Some of the previous discrimination tech-
niques are already in use in some tools, most
notably in SLOCCount (see (Wheeler, 2001,
Robles et al., 2006b)). As SLOCCount counts
the number of lines of code it is only concerned
with identifying source code files and identify-
ing the programming language in which they are
written, not considering all other file types that
we have taken into consideration in this work
(documentation, translations, and other).

Analysis of source code files

The analysis of source code files is one of the
most known tasks. There exist an ample num-
ber of measures that can be and have been
extracted directly from the source code, among
other its length (in lines of code or source lines
of code), complexity measures (as the popular

Table 1. (Incomplete) set of matches performed
to identify the different file types

File type Extension/file name matching

documentation *.html *.txt *.ps *.tex *.sgml

images *.png *.jpg *.jpeg *.bmp *.gif

i18n *.po *.pot *.mo *.charset

ui *.desktop *.ui *.xpm *.theme

multimedia *.mp3 *.ogg *.wav. *.au *.mid

code *.c *.h *.cc *.pl *.java *.s *.ada

build configure.* makefile.* *.make

devel-doc readme* changelog* todo* hack-
ing*

1204

Tools for the Study of the Usual Data Sources found in Libre Software Projects

ones proposed by Halstead (Halstead, 1977) and
McCabe (McCabe, 1976)) or even composite
metrics such as the Maintainability Index (Oman
and Hagemeister, 1992).

The availability of a certain range of tools for
this purpose makes the conception of a tool that
integrates all of them a primary task. The goals
of the integration is to make it possible to extract
all the metrics and facts from source code files by
using several tools in a simple and most uniform
way. The tools used to measure the code should
be, if possible, used as black boxes, so that the
integration tool does not need to know or adapt
its inner functioning. In addition, the integration
tool should handle the input to and the output from
the measurement tools to ease its use.

That is precisely what can be done with
GlueTheos3, a tool designed and implemented
by the authors of this chapter: a system with an

architecture that allows the data retrieval and
analysis of public software development data
repositories. The structure of the GlueTheos tool
is presented in Figure 3, and consists of a module
for downloading (if required, with a periodical
pattern) the sources to be analyzed, to examine
the content of the sources on a file basis, to run
the tools depending on the file type, to identify
the results and store them properly in a relational
database system and finally to provide results.

 The current version can access CVS, Subver-
sion and git. File discrimination allows to run the
tools specifically on the files where this makes
sense. Hence, if we had a tool that returns object
oriented measures from Java files it would make
no sense to run it on a shell script. This step then
optimizes the analysis to be performed.

The next step is the heart of GlueTheos and
consists of running the different tools on the
source code and retrieving the data that these
tools return. GlueTheos has been designed in
a way in which it does not require to adapt the
tools it integrates, hence facing the complexity of
the various ways of calling them and the various
ways of obtaining their results. Both calling and
returning have been solved following an object-
oriented approach, so that for any tool only the
differences have to be implemented.

Table 2. Examples of first line indicating that the file
is written in Python, Shell or Perl respectively

#! /usr/bin/python

#! /usr/bin/sh

#! /usr/bin/perl

Figure 3. Architecture of the GlueTheos tool

Source code retrieval

file Discrimination

Storage in a rDBmS

(Statistical & other) analysis of the Data

tool 1 tool 2 tool n...

 1205

Tools for the Study of the Usual Data Sources found in Libre Software Projects

The calling procedure requires information
such as the way a tool has to be called (mainly
the path to the executable), the input that the tool
requires (usually a file or a directory) and the type
of output that the tool returns (again, usually a
file or a directory).

The returning methods depend on the type
of output that the analysis tools provide. If it is
a file, the number of returning elements has to
be given and the special character that is used to
separate them (usually a tabulator, a white space
or a comma). In general, the path that gives the
filename of the file that has been analyzed is also
returned, so its position has to be specified.

After retrieving and storing the data from
external tools, GlueTheos has to consider only
the data in the database to obtain statistical and
other results from the data set. This includes some
procedures to enhance the database structure in
order to normalize the fields or to obtain inter-
mediate tables with statistical information that
is of common use.

Analysis of other files

Besides source code written in a programming
language, we identify other artifacts that compose
the sources of libre software projects. (Robles et
al., 2006a) shows the many possibilities that arise
from the study of those files, but other references
to this issue may be found in related literature.
Some authors have focused on the analysis of the
change log files (Capiluppi et al., 2003) as they
usually follow a common pattern in libre soft-
ware projects, although sometimes this pattern
is slightly different from the standardized way
used in GNU projects4.

Translation files may be used to keep track
of the amount of translation work that has been
accomplished to the moment and hence have a
quantitative manner of knowing the support of
that software in a given language.

Regarding licenses, in addition of a reference
to the licensing terms that can be found at the top

of the code files, usually projects have a text file
which includes the full text of the license. The
filename may give enough evidence for the type
of license that a project uses, but other ways can
also be considered. One that we have been trying
with is the use of a locality-sensitive hash like
nilsimsa (Chang and Mockus, 2008). This type
of hashes return codes with small changes for
inputs that differ only slightly. As intellectual
property issues have become a recent area of
interest among industry, some approaches (and
tools, such as FOSSology) have been presented
that target these problems (Gobeille, 2008).

Finally, the amount of documentation for a
software system could be a good topic for empiri-
cal research. In this sense, the doceval5 tool offers
a way of assessing and partially evaluating the
documentation that can be found in the sources of
libre software projects (Robles et al., 2006c).

Authorship Analysis

Usually, source code files contain copyright and
license information in their first lines (Spinellis,
2003). So, for instance, the notice in the apps/units.
c file of the GIMP project shown in Table 3 clearly
states that the copyright holders are Spencer
Kimball and Peter Mattis and that the license in
use is the GNU General Public License.

 CODD6 is a tool that searches for authorship
information in source code by tracking copyright
notices and other information in the headings of
files (Ghosh and Prakash, 2000, Ghosh et al.,
2002). It assigns the length (in bytes) of each file
to the corresponding authors. The process that
CODD follows to obtain these results are shown
in Figure 4.

 File extraction is composed of the init sub-
routine which takes the source code package (or
packages) that are given through the command
line by the user, decompresses them if necessary,
and tries to identify recursively the files that the
package contains.

1206

Tools for the Study of the Usual Data Sources found in Libre Software Projects

Table 3. Excerpt of a copyright statement found in the GIMP project

/* The GIMP – an image manipulation program

 * Copyright (C) 1995 Spencer Kimball and Peter Mattis

 *

 * This program is free software; you can redistribute it and/or modify

 [...]

Figure 4. Process of the CODD tool

file
extraction

file
selection

dependency
database

shared
source

dependency
resolution

ownergrep

shared
resolution

xml2x

xml2sql

codd
cluster

web
interface

codd2xml

During the file selection all source code files,
documentation, interfaces and not-resolved
implementations are taken together with their
size in bytes, their MD5 sum and their relative
route in the package and stored in a codd7. Files
are selected by means of their extension, so for
instance the .c file extension is categorized into
source code files (usually they correspond to C
files). CODD stores the .h files that have a .c in
the same package as interfaces (the algorithm that
is used here depends partially on the program-

ming language that is being analyzed). Calls to
an interface in source code files (for instance .c
files for C) that do not have their corresponding
interface in the same package (a .h for C) will be
classified in the non-resolved implementations
category, that in a future step will be handled for
dependency resolution.

In a third step two databases are created in order
to find shared source code and dependencies. In
the first one, named codefile_signatures, all the
MD5 sums of the files are stored. The second

 1207

Tools for the Study of the Usual Data Sources found in Libre Software Projects

one contains all the interfaces that were found
in the previous step. MD5 is a type of hash that
allows to know if two files are equal; if they are
they will have the same MD5 hash value. MD5
hashes are very interesting when the source code
file is exactly the same, but a single modification
(i.e., when it is committed into the SCM of the
new project the RCT-type id changes) makes it
impossible to recognize it as a shared file.

In order to find shared source code, CODD
runs another time through all codds and looks if
the source code files appear more than once in the
database (really it looks if the name and MD5 sum
appear more than once). If this occurs, the file is
located in at least two different packages. A similar
process is used to resolve dependencies. CODD
will search for not-resolved implementations in
the codds and compare their MD5 sums with the
ones that are stored in the interfaces database. A
list with all the packages where this interface is
implemented will be inserted as well.

The owner grep block is the one that is responsi-
ble for looking for authorship contributions. It runs
again through all source code and documentation
files and scans authorship attribution by means of
certain heuristics. Mainly the heuristics look for
several patterns: email addresses [a], copyright
notices [b] and software control versioning ids [c].
Information about the authors is stored in the
credits section of the codds. The regular expres-
sions that have been used are following:

[a] Email grep: [\d\w_\=\.\%]+?\@[\d\w\._\-
]+?\.\w+?)(?=[\s:>\n\r\)]|$

[b] Copyright grep: .*copyright (?:\(c\))?[\d\,\-
\s\:]+(?:by\s+)?([?\d]*)

[c] Id grep: (?:Id|Header).*?\d\d\:\d\d\:\d\d (\S+?)
\S+?

Next, the resolution of shared source code is
done. In the shared source code section of the
codds we still have files and a list of packages
that contain these files. As these files can only
be assigned to a single package (in order to avoid

double counting the contribution of an author),
CODD looks for its author (running again the
ownergrep algorithm) in the file and assigns it
to the package in which the author is the main
contributor.

The last blocks of Figure 4 show that the codds
can be then transformed to an intermediate and
independent format (as for instance XML and
SQL).

CODD is a very powerful tool, but it has some
weaknesses. The most important one is that it
lacks a way of merging the various ways in which
an author may appear. So, authors may appear
several times with different names or e-mail ad-
dresses. For instance, we have found that some
developers have up to 15 e-mail addresses. In
the case of companies, the same may happen; so,
IBM or the MIT appear in several ways (up to ten
times!) with slightly different wordings (Robles
et al., 2007).

Cleaning of the data should also be enhanced.
The heuristics that are used in CODD have proved
to be very powerful, but cannot avoid that develop-
ers use different conventions to assign copyright.
Most of these problems could be solved by a set
of more powerful heuristics.

As CODD raises some limitations regarding
authorship identification, the authors decided
2004 to create a new tool from scratch based on
the heuristics given by CODD. This tool has been
called pyTernity8. The architecture of pyTernity
is identical to the one described for CODD as it
can be seen from Figure 5, although it lacks of
all the procedures for identifying dependencies
among files.

 The most innovative elements are the ones
that consider data cleaning and the identification
of multiple entries. For the former, entries in
database are removed from elements that make
them different; this goes from additional white-
spaces to the avoidance of dots. Some heuristics
have been set up for this, although they have
been complemented with a database of frequent
changes. Cleaning includes splitting up an entry

1208

Tools for the Study of the Usual Data Sources found in Libre Software Projects

when it is due to two or more authors. So, the entry
“Spencer Kimball and Peter Mattis” will result in
two, one for Spencer Kimball and another one for
Peter Mattis. If this is the case, both names appear
as authors of the file and get attributed half of its
length (in bytes or lines of code).

The latter part comprises the identification of
multiple entries. Developers may appear in several
ways, making results very unsatisfactory. The
first efforts in this sense went into the construc-
tion of a large database where the various entries
identified for a given developer were merged
into a unique one. This has proved to enhance
results in a prominent way. Other, more complex,
routines may be used for extracting names from
e-mails, with procedures from the machine learn-
ing world as for instance applying named entity
recognition (Minkov et al., 2005).

Once cleaning has been performed and mul-
tiple entries have been identified, pyTernity merges
the entries in the database so that authors appear
only once in a file. This procedure implies to add
all the contributions by an author, so it adds the
lengths of each entry (in bytes or lines of code).

scM systeM MetA-dAtA

Generally speaking, most libre software projects
use a SCM system to manage file versions during
the development process. They allow to track
changes and past states of a software project.
Thus, obtaining the current and any past state of

the code is made possible by the use of a SCM
system. This allows to make source code analyses
as we have presented them in the previous section
in a longitudinal manner and to extract facts on
the evolution of a software project.

But beyond this, SCM systems store a set of
meta-data of the changes. These meta-data can
be tracked and analyzed. This information is usu-
ally related to the interactions that occur among
developers and the SCM systems. In general the
information is only related to actions that com-
prehend write access while reading (download-
ing the sources) or obtaining other information
(diffs, among others) cannot be tracked in that
way. For instance, along with a change, valuable
information is recorded, like the date of change,
the full path where the change occurred, user
who committed or the comment written by the
committer9.

Here, we present a tool that analyzes the in-
teractions that occur between developers and the
most used SCM systems used in libre software
projects at the current time, CVS, Subversion,
git and Bazaar. This tool, which has been la-
beled CVSAnalY, is based on the analysis of the
SCM system log entries and implements all the
theoretical details that will be presented in this
section (Robles et al., 2004). Another tool, called
SoftChange, has been used for similar purposes
by German et al. (Germán and Hindle, 2005).

In CVSAnalY any interaction -also called
commit- a committer does with the central SCM
system repository is logged with following data

Figure 5. Process of the pyTernity tool

file
extraction

file
selection ownergrep insertion

database

Merging cleaning
Multiple
entries

 1209

Tools for the Study of the Usual Data Sources found in Libre Software Projects

associated (some aforementioned): committer
name, date, file, revision number, lines added,
lines removed and an explanatory comment
introduced by the committer. There is some file-
specific information that can also be extracted,
as for instance if the file has been removed10. On
the other hand, the human-inserted comment
can also be parsed in order to see if the commit
corresponds to an external contribution or even
to an automated script.

Basically CVSAnalY consists of three main
steps, preprocessing, insertion into database and
post-processing, but they can be subdivided into
several more as it has been done in Figure 6. In
the following subsections the inner functioning
of CVSAnalY will be presented, focusing on
details of its use with CVS. Its use with other
SCM systems should be similar.

Preprocessing:
retrieval and Parsing

Preprocessing includes downloading the sources
from the repository of the project in study. Once
this is done, the logs are retrieved and parsed to
transform the information contained in log format
into a more structured format (SQL for databases
or XML for data exchange).

Besides the information for every commit,
other data obtained from the parsing requires some
attention. Although committers seldom change
their username, sometimes this happens, so the
various usernames have to be merged into a unique
one. For instance, in the KDE project committers
usually get an account prior to a kde.org e-mail
address. If a developer is afterwards assigned an
e-mail address the username of e-mail and SCM

system have to be identical for organizational and
practical reasons. If the username in the e-mail
address is different from the CVS username,
CVSAnalY syncs with the former one and the
actions done with both usernames are considered
as done by a unique developer.

The following is a CVS log excerpt for the
AUTHORS file of the KDevelop project11. It
gives the last three revisions (from revision 1.47
to 1.49) done during the last months of the year
2003 until mid-2004. Log messages from other
SCM systems, such as Subversion, git or Bazaar
look similar.

[...]
RCS file: /mirrors/kde//kdevelop/AUTHORS,v
Working file: /mirrors/kde//kdevelop/AU-
THORS
head: 1.49
branch:
locks: strict
access list:
keyword substitution: kv
total revisions: 103; selected revisions: 103
description:

revision 1.49
date: 2004/06/21 18:57:13; author: rgruber; state:
Exp; lines: +4 -0
Added self

revision 1.48
date: 2004/02/24 14:42:59; author: dagerbo; state:
Exp; lines: +5 -1
Added self :)

revision 1.47

Figure 6. Process of the CVSAnalY tool

rsync checkout log Parsing storage enhancement Analyses

1210

Tools for the Study of the Usual Data Sources found in Libre Software Projects

date: 2004/02/15 22:40:33; author: aclu; state:
Exp; lines: +3 -3
Some more credits update.
[...]

While being parsed each file is also matched
for its type. Usually this is done by looking at its
extension, although other common filenames (for
instance README or TODO) are also looked for.
The goal of this separation is to identify different
contributor groups that work on the software, so
besides source code files the following file types
are also considered: documentation (including
web pages), images, translation (generally inter-
nationalization and localization), user interface
and sound files. Files that do not match any
extension or particular filename are accounted
as unknown. This discrimination follows the
criteria that have been presented in section 3.2,
although it lacks the possibility of looking at the
content of the files as we only consider filenames
(because this is the only information that appears
in the CVS logs).

CVS also has some peculiarities when intro-
ducing contents for the first time (this action is
called initial check-in). The initial version (with
version number 1.1.1.1) is not considered in our
computation as it is the same as the second one
(which has version number 1.1). The number of
aggregated and removed lines in CVS are com-
puted from this initial version. This means that
the first commit (the initial check-in) logs as if
0 lines were added. This does not correspond to
reality. In order to obtain the actual number of
LOCs in the first version we count the LOCs by
means of the UNIX wc tool12 of the latest ver-
sion, subtracting the added lines and adding the
removed lines of all the other commits.

Comments attached to commits are usually
forwarded to a mailing list so that developers
keep track of the latest changes in CVS. Some
projects have established some conventions so that
certain commits do not produce a message to the
mailing list. This happens when those commits

are supposed to not require any notification to the
rest of the development team. A good example
of the pertinent use of silent commits comes
from the existence of bots that do several tasks
automatically.

In any case, such conventions are not limited
to non-human bots, as human committers usually
may also use them. In a large community -as it is
the case for the ones we are researching- we can
argue that silent commits can be considered as
not contributory (i.e., changes to the head of the
files, for instance a change in the license or the
year in the copyright notice, or moving many files
from one location to another). Therefore, we have
set a flag for such commits in order to compute
them separately or leave them out completely in
our analysis.

For instance, the developers of the KDE project
mark such commits with the comment CVS_SI-
LENT as it can be seen from following log excerpt
extracted from the kdevelop_scripting.desktop file
of the KDevelop CVS module. In this case it is
due to a change to a desktop file, a file type that
is related to the user interface. Being this change
not considered interesting for other developers to
know about, the author of this commit decided to
make this commit silently.

[...]
RCS file: /mirrors/kde//kdevelop/kdevelop_
scripting.desktop,v
Working file: /mirrors/kde//kdevelop/kdevelop_
scripting.desktop
head: 1.24
branch:
locks: strict
access list:
keyword substitution: kv
total revisions: 30; selected revisions: 30
description:

revision 1.24
date: 2005/03/28 03:29:25; author: scripty; state:
Exp; lines: +2 -2

 1211

Tools for the Study of the Usual Data Sources found in Libre Software Projects

CVS_SILENT made messages (.desktop file)

[...]

Write access to the SCM system is not given
to anyone. Usually this privilege is granted only
to those contributors who have reached a compro-
mise with the project and the project’s goals. But
external contributions -commonly called patches,
that may contain bug fixes as well as implemen-
tation of new functionality- from people outside
the ones who have write access (committers) are
always welcome.

It is a widely accepted practice to mark an
external contribution with an authorship at-
tribution when committing it. Thus, we have
constructed certain heuristics to find and mark
commits due to such contributions. The heuristics
we have set up are based on the appearance of
two circumstances: patch (or patches in its plural
form) together with a preposition (from, by, of,
and other) or an e-mail address or an indication
that the code had been attached to a bug fix in
the BTS. The regular expressions that have been
used are following:

[a] patch(es)?\s?.* from [f] patch(es)?\s?.* by
[b] patch(es)?\s.*@ [g] @.* patch(es)?
[c] ?s.* patch(es)? [h] s? .* patch(es)?
[d] patch(es)? of [i] <.* [Aa][Tt] .*>
[e] attached to #

As an example, the following slightly modified
excerpt taken from the kdevelop.m4.in file from
the KDevelop module in the KDE CVS reposi-
tory shows a patch applied by a committer with
username “dymo” that was submitted originally
by Willem Boschman:

[...]

revision 1.39
date: 2004/06/11 17:07:57; author: dymo; state:
Exp; lines: +3 -3

Applied patch from Willem Boschman -
fix builddir != srcdir configuration problem.

[...]

All these efforts have in common that they
perform text-based analysis of the comments
attached by committers to the changes they
perform. The range of possibilities in this sense
is very ample. For instance, Mockus et al., and
later on in an enhanced manner Amor et al.,
have tried to identify the reasons for changes
(classifying changes as adaptative, perfective or
corrective) in the software using text-analysis
techniques (Mockus and Votta, 2000, Amor et
al., 2006).

data treatment and storage

Once the logs have been parsed and transformed
into a more structured format, some summarizing
and database optimization information is com-
puted and data is stored into a database.

Usually the output of the previous parsing
consists of a single database table with an entry
per commit. This means that information is stored
in a raw form, the table containing possibly mil-
lions of entries depending on the size and age of
a project. Information is hence in a raw format
and in an inconvenient way if we consider get-
ting statistical information for developers and
projects from it.

A first step in this direction is to make use
of normalization techniques for the data. In this
sense, committers are assigned a unique numerical
identification and if further granularity is needed,
procedures have been implemented to do the
same at the directory and file level. For the sake
of optimization this has been introduced during
the parsing phase so additional queries do not
have to be performed. The next step is to gather
statistical information on both committers and
modules. These additional tables will give detail
on the interactions by contributors or to modules,

1212

Tools for the Study of the Usual Data Sources found in Libre Software Projects

which is one of the most frequent information
that is asked.

Additional information that makes longitudi-
nal analyses possible is the evolution of contribu-
tions by developers and to modules. Hence, the
same statistical queries that have been obtained
for committers and modules for the summarizing
tables can be obtained in a monthly or weekly basis
since the date the repository was set up.

On the other hand, unfortunately CVS does
not keep track of which files have been committed
at the same time. The absence of this concept in
CVS may bring some distortion into our analysis.
We have therefore implemented the sliding win-
dow algorithm proposed by German (Germán,
2004) and Zimmermann et al. (Zimmermann et
al., 2005) that identifies atomic commits (also
known as modification requests or transactions)
by grouping commits from the CVS logs that have
been done (almost) simultaneously. This algorithm
considers that commits performed by the same
committer in a given time interval (usually in the
range of seconds to minutes) can be considered as
an atomic commit. If the time window is fixed,
the amount of time that is considered from the
first commit to the last one is a constant value.
For a sliding time window, the time interval is not
constant; the time window is restarted for every
new commit that belongs to the same transaction
until no new commit occurs in the (new) time
slot (Zimmermann et al., 2005).

The post-process is composed of several scripts
that interact with the database, statistically analyze
its information, compute several inequality and
concentration indexes and generate graphs for
the evolution over time for a couple of interest-
ing parameters (commits, committers, LOCs...).
Results are shown through a publicly accessible
web interface that allows easy inspection of the
whole repository (general results), a single module
or by committers13. Therefore results are available
for remote analysis and interpretation by project
participants and other stakeholders.

MAIlIng lIsts ArcHIves (And
foruMs)

Mailing lists and forums are the key elements for
information dissemination and project organiza-
tion in libre software projects. Without almost
any exception, libre software projects provide one
or more mailing lists. Depending on the project,
many mailing lists may exist for several target
audiences. So, for instance, SourceForge recom-
mends to open three mailing lists: a technical
one for developers, another one to give support
to users and and a third one that is used for an-
nouncing new releases.

Mailing lists are programs that forward e-mail
messages they receive to a list of subscribed e-mail
addresses. More sophisticated mailing list manag-
ers have plenty of functionality which allows for
easy subscription, unsubscription, storage of the
messages that have been sent (known as the ar-
chives), and avoidance of spam, among others.

Forums are web-based programs that allow
visitors to interact in a similar manner as in an
e-mail thread with the difference that in this case
all the process goes through HTML forms and
that results are visible on the web.

Both mailing lists and forums are based on
similar concepts and their differences lie in their
implementation and the need for different clients
to participate in them. Mailing lists require the
use of an e-mail client, while forums can be ac-
cessed through web browsers. As their concept
is the same, there exist some software programs
that transform mailing lists messages to a forum-
like interface and vice-versa. Because of that, in
this chapter we will only focus on mailing lists,
specifically on one of the most used mailing lists
managers called GNU Mailman14 and the RFC
822 (also known as MBOX) format in which it
generally stores and publishes the archives.

 1213

Tools for the Study of the Usual Data Sources found in Libre Software Projects

the rfc 822 standard format

As mentioned above, generally all mailing list
managers offer the possibility of storing all posts
(the archives) and making them publicly available
through a web interfaces. This offers the pos-
sibility for newcomers to go through the history
and to gain knowledge on technical as well as
organizational details of a project.

The archives are also offered in text files
following the MBOX format. MBOX is a for-
mat used traditionally in UNIX environments
for the local storage of e-mail messages. It is a
plain text file that contains an arbitrary number
of messages. Each message is composed of a
special line followed by an e-mail message in
the RFC-822 standard format. The special line
that allows to differentiate messages consists of
the keyword “From” followed by a blank space,
the poster’s e-mail address, another blank space
and finally the date the message was sent. The
RFC-822 format can be divided into two parts: (a)
headers, that contain information for the delivery
of the message and (b) the content, which is the
information to be delivered to the receiver; the
standard only allows lines of text, so filtering has
to be implemented if an image or other informa-
tion is attached.

Mailing lists in MBOX format can be analyzed
by means of the MailingListStats, or mlstats for
short, tool15. Given an URL of the archives of
the mailing lists, mlstats outputs the information
extracted from the headers and the content of the
message in database format for further processing
and analysis.

Below is an excerpt of a post sent to a mailing
list that has been stored following the RFC-822
standard. Is is an automatic message sent April
30 2005 to the GNOME CVS mailing list. This
list keeps track of all the commits that are done
to the CVS system of the GNOME project. This
assures that subscribers are aware of the latest
changes in the CVS. The content of the message,
the description of the modification that had been

performed, has been omitted in the excerpt.

From gnomecvs@container.gnome.org Sat Apr
30 20:16:38 2005

Return-Path: <gnomecvs@container.gnome.
org>

X-Original-To: cvs-commits-list@mail.gnome.
org

Delivered-To: cvs-commits-list@mail.gnome.
org

To: cvs-commits-list@mail.gnome.org
X-CVS-Module: marlin
Message-Id: <20050501001636.0C5EA165E4A@

container.gnome.org>
Date: Sat, 30 Apr 2005 20:16:36 -0400 (EDT)
From: gnomecvs@container.gnome.org (Gnome

CVS User)
X-Virus-Scanned: by amavisd-new at gnome.

org
Cc:
Subject: GNOME CVS: marlin iain
X-BeenThere: cvs-commits-list@gnome.org
X-Mailman-Version: 2.1.5
Precedence: list
Reply-To: gnome-hackers@gnome.org
List-Id: CVS Logs <cvs-commits-list.gnome.

org>
List-Unsubscribe: <http://mail.gnome.org/mail-

man/listinfo/cvs-commits-list>,
 <mailto:cvs-commits-list-request@gnome.

org?subject=unsubscribe>
List-Archive: </archives>
List-Post: <mailto:cvs-commits-list@gnome.

org>
List-Help: <mailto:cvs-commits-list-request@

gnome.org?subject=help>
List-Subscribe: <http://mail.gnome.org/mailman/

listinfo/cvs-commits-list>,
 <mailto:cvs-commits-list-request@gnome.

org?subject=subscribe>
X-List-Received-Date: Sun, 01 May 2005 00:16:38

-0000
[Here comes the body of the post which has been

omitted in this excerpt]

1214

Tools for the Study of the Usual Data Sources found in Libre Software Projects

From the message excerpt above, we can see
some of the headers that are described in the
standard. The most important ones are following:
From (e-mail address, sometimes also real name,
of the sender), Sender (address of the responsible
entity for the last transmission), Reply-To (address
the author wants to be replied), To (address(es)
of the receiver(s)), Cc (e-mail address(es) of
the receiver(s) that should receive a copy), Bcc
(addressee(s) with carbon copy), Subject (usu-
ally contains a brief description of the topic),
Received (contains address of the intermediate
machine that has transferred the message), Date
(when the message was sent given by the sender
machine), Message-ID (unique identifier of this
message), In-reply-to (Identifier of the parent
message to which the current one is a response),
and References (identifications (message-IDs) of
all the other messages that are part of the con-
versation thread).

In addition to the data that can be found in
the headers, some other information could be
obtained from analyzing the content of the mes-
sages. In this regard, Weißgerber et al. analyze
the type of patches first sent to mailing lists and
later on integrated into the source code tree of
the project (Weißgerber et al., 2008).

bug-trAckIng systeMs

BTS are used in libre software projects to man-
age the incoming error and feature enhancement
reports from users and co-developers. The use of
BTS is relatively extended and the most known
tool in this area is BugZilla16, a BTS developed by
the Mozilla project that has been adopted by other
large projects as well. Hence BugZilla is the system
we study in this chapter, although conceptually
all other systems should work similarly.

BugZilla allows to manage all bug reports and
feature requests by means of a publicly available
web interface. Besides the reports, it also offers
the possibility of adding comments so that devel-

opers may ask for further information about the
error or other end-users may comment it. Beyond
BugZilla, other tools exist with similar features, as
for instance GNATS (the one used in the FreeBSD
project). SourceForge and other web platforms that
support software development have implemented
their own BTS for the projects they host.

data description

BugZilla stores in its database specific informa-
tion for each bug report. The fields that can be
usually found are following17:

• Bugid: Unique identifier for any bug re-
port.

• Description: Textual description of the error
report.

• Opened: Date the report was sent.
• Status: Status of the report. It can take one

of the following status: new, assigned (to a
developer to fix it), reopened (when it has
been wrongly labeled as resolved), needinfo
(developers require more information), veri-
fied, closed, resolved and unconfirmed.

• Resolution: Action to be performed on the
bug. It can take following status: obsolete
(will not be fixed as it is a bug to a previ-
ous, already solved issue), invalid (not a
valid bug), incomplete (the bug has not been
completely fixed), notgnome (the bug is not
of GNOME, but of a component of another
project, as for instance X window system or
the Linux kernel), notabug (the issue is not
really a bug), wontfix (the developers con-
sider not to correct this error for any reason)
and fixed (the error has been corrected).

• Assigned: Name and/or e-mail address of
the developer in charge of fixing this bug.

• Priority: Urgency of the error. It can take
following values: immediate, urgent, high,
normal and low. Usually this field is modi-
fied by the bugmaster as users do not have

 1215

Tools for the Study of the Usual Data Sources found in Libre Software Projects

sufficient knowledge on the software to
know the correct value.

• Severity: How this error affects the use
and development of the software. Possible
values are (from high severity to lower one):
blocker, critical, major, normal, minor, trivial
and enhancement.

• Reporter: Name and e-mail address of the
bug reporter.

• Product: Software that contains the bug.
Usually this is given at the tarball level.

• Version: Version number of the product. If
no version was introduced, unspecified is
given. Also, for enhancements the option
unversioned enhancement may be chosen.

• Component: Minor component of the prod-
uct.

• Platform: Operating system or architecture
where the error appeared.

Usually all fields (besides the automatic ones
like bugid, the opening date or its status) are filled
out the first time by the reporter. Larger projects
usually have some professional or volunteer
staff that review the entries in order to adjust
the information (Villa, 2003, Villa, 2005). This
is especially important for fields like priority or
severity as end-users hardly have no knowledge
or experience on how to evaluate these fields.

data Acquisition and
further Processing

For the analysis of the data stored in a BTS, we
have created a preliminary tool that is specifi-
cally devoted to extract data from BugZilla. The
architecture of the BugZilla Analyzing Tool is

described in Figure 7. Although the retrieval
of the data could theoretically be simplified by
obtaining the database of the BugZilla system
from the project administrators, we thought that
retrieving the data directly from the web interface
would be more in accordance with the non-intru-
sive policy that all other tools described in this
chapter follow.

We had to deal with several problems while
retrieving the BugZilla data. After crawling for
all web pages (one per bug) and storing them lo-
cally, we had to transform the HTML data into
an intermediate log-type format, as not all fields
were given for all bugs due probably to a transition
from a previous system. Probably also because
of this, there may have been some information
loss and some ids could not be tracked. Other
problems that we found, were the existence of
wrong date entries for some bugs and comments.
As the bug report ids are sequential, we could fix
these entries when we found out that the date was
wrong. We applied the same solution to comments
with erroneous dates, as comments are also posted
sequentially and cannot be introduced before the
bug report has been submitted.

In recent versions of BugZilla, it is possible to
obtain the data in XML format which simplifies
in a great manner the data extraction18. When
writing this chapter, the use of the XML interface
was not as common as the author would wish, so
retrieving the data from parsing web pages was
the unique non-intrusive manner at that time. In
any case, the BugZilla analyzing tool has been
designed in such a way that only by removing
some parts (specifically the specific HTML-parser
which parses into the independent format) and
by modifying the generic parser we could reuse

Figure 7. Architecture of the BugZilla analyzer

retrieval
specific
Parser

Indep.
format

generic
Parser Analysesdatabase

1216

Tools for the Study of the Usual Data Sources found in Libre Software Projects

the rest of the modules without major changes
using the XML query format. This is also valid
for other BTS, as GNATS.

One of the issues of BTS is that in general
the most relevant information in a bug report is
included in natural language (usually in English)
in the Description field . Bettenburg et al. have
proposed a tool that extracts structural informa-
tion such as source code (i.e., patches), listings,
etc. from it (Bettenburg et al., 2008).

suMMAry

Libre software projects offer a vast amount of
information about their development process and
the resulting product. Although this information
is publicly available over the Internet, researchers
should take into consideration the many hidden
problems that may occur when obtaining and
properly analyzing these data. In this chapter
we have given some insight into the most data
sources in research, its problems, how to circum-
vent them and, if possible, have provided and
introduced tools that may help when researchers
mine them.

Table 4 summarizes the data sources described
in this chapter and the tools that can help research-
ers in their analysis. Regarding source code, there
exist an ample amount of tools that have been

used for years in corporate software engineering
environments. The ones presented here have a
specific target on libre software, as they address
issues such as licensing of the files (FOSSology),
the identification of the authors – or copyright
holders – (CODD and pyTernity) or the presence
of absence of documentation (doceval).

SCM systems are widely used in libre soft-
ware projects and provide much information
about the software development. The analysis of
the logs of these systems, by means of tools like
CVSAnalY, gives insight on the dynamics of the
projects. The combination of source code and
information from the SCM offers a wide range
of analysis, especially concerning patterns over
time. In this sense, GlueTheos and SoftChange,
retrieve the sources for various points in time and
extract some metrics. The final result allows to
analyse how software projects have evolved over
time in respect to measurements related to source
code (growth, complexity, etc.), human resources
(number of developers, inequality of contributions,
etc.) and activity (number of commits, number of
patches, etc.).

Finally, mailing lists and forums are usu-
ally the main communication channels used in
libre software projects. In this chapter, we have
discussed a tool, mlstats, that analyzes the in-
formation that can be found in the header of the
mail messages.

Table 4. Summary of data sources, tools and purpose

Data Source Tool Purpose

Source Code FOSSology Licensing

Source Code CODD/pyTernity Authorship (copyright hlder) analysis

Source Code doceval Assessment and partial evaluation of documentation

SCM CVSAnalY SCM log messages analysis (evolutionary analysis)

Source Code & SCM GlueTheos Evolutionary analysis

Source Code & SCM SoftChange Evolutionary analysis

Mailing lists & forums MailingListStat Analysis of MBOX headers

 1217

Tools for the Study of the Usual Data Sources found in Libre Software Projects

 Despite the possibilities that the vast amount
of publicly available information from libre
software projects offer, there are a number of
problems, threats and challenges that researchers
have to consider when using these data for their
activities.

The first major problem comes from incom-
plete data sets. The cause for this is due to the
fact that projects may have switched develop-
ment-supporting systems and have not migrated
old contents into the new system.

A threat to the use of SCM data comes from
the necessity of having an account to perform
changes. The original developers are in these
scenarios not the ones who commit the code into
the repository (committers). The validity of some
research may be affected by the policies of projects,
as for example the inequality of contributions may
be artificially skewed towards those who have
permission to do the changes in the SCM.

There is a big challenge in merging information
from various sources. For instance, correlating
bugs in the BTS to commits in SCM and to code
in the source code is a tricky task that requires
complex methods. In addition, these methods may
have to be changed from project to project as the
dynamics may be different among them (i.e., in
some projects, committers indicate the bug report
number in the commit message, while in others
patches are not handled via a BTS but through
a mailing list)

Finally, as mining libre software projects has
become popular among scientists, many projects
have suffered from an overflow of data gathering
petitions, both automatically by means of tools or
directly from humans in the sense of invitations
to participate in surveys. In the specific case of
tools, sometimes retrieving data has caused the
slow down, or denial of service, of servers where
the infrastructure of the project is installed, result-
ing in the tool being banned.

Some of the aforementioned issues are be-
ing addressed by the FLOSSMetrics19 and the
FLOSSMole (Conklin et al., 2005) projects, that

have as objective to construct, publish and anal-
yse a large scale database with information and
metrics about libre software development coming
from several thousands of software projects. If
such initiatives succeed, researchers wanting to
study the libre software phenomenon will have
an ample amount of data ready to be analyzed,
avoiding many of the tasks (identifications, ac-
quisition, extraction and storage) and the threats
discussed in this chapter.

AcknowledgMent

We thank the anonymous reviewers for their
helpful comments and suggestions. This work has
been funded in part by the European Commission,
under the FLOSSMETRICS (FP6-IST-5-033547),
QUALOSS (FP6-IST-5-033547) and QUALIPSO
(FP6-IST-034763) projects, and by the Spanish
CICyT, project SobreSalto (TIN2007-66172) and
by SEDEPECA.

references

Amor, J. J., Robles, G., and González-Barahona,
J. M. (2006). Discriminating development ac-
tivities in versioning systems: A case study. In
Proceedings PROMISE 2006: 2nd. International
Workshop on Predictor Models.

Atkins, D. L., Ball, T., Graves, T. L., and Mockus,
A. (2002). Using version control data to evaluate
the impact of software tools: A case study of the
version editor. IEEE Transactions on Software
Engineering, 28(7):625–637.

Bauer, A. and Pizka, M. (2003). The contribution
of free software to software evolution. In Proceed-
ings of the International Workshop on Principles
of Software Evolution (IWPSE), Helsinki, Finland.
IEEE Computer Society.

1218

Tools for the Study of the Usual Data Sources found in Libre Software Projects

Bettenburg, N., Premraj, R., Zimmermann, T., and
Kim, S. (2008). Extracting structural information
from bug reports. In MSR ’08: Proceedings of the
2005 Working Conference on Mining software
repositories.

Capiluppi, A. (2004). Improving comprehen-
sion and cooperation through code structure.
In Proceedings of the 4th Workshop on Open
Source Software Engineering, 26th International
Conference on Software Engineering, Edinburg,
Scotland, UK.

Capiluppi, A., Lago, P., and Morisio, M. (2003).
Evidences in the evolution of OS projects through
changelog analyses. In Proceedings of the 3rd
International Workshop on Open Source Software
Engineering, Orlando, Florida, USA.

Capiluppi, A., Morisio, M., and Ramil, J. F. (2004).
Structural evolution of an Open Source system:
a case study. In Proceedings of the 12th Interna-
tional Workshop on Program Comprehension,
pages 172–183, Bari, Italy.

Chang, H.-F. and Mockus, A. (2008). Evaluation
of source code copy detection methods on Free-
BSD. In MSR ’08: Proceedings of the 5th Working
Conference on Mining software repositories.

Conklin, M., Howison, J., and Crowston, K.
(2005). Collaboration using OSSmole: A reposi-
tory of FLOSS data and analyses. In Proceed-
ings of the International Workshop on Mining
Software Repositories, pages 126–130, St. Louis,
Missouri, USA.

Germán, D. M. (2004). Mining CVS repositories,
the softChange experience. In Proceedings of
the International Workshop on Mining Software
Repositories, Edinburgh, UK.

Germán, D. M. and Hindle, A. (2005). Visualiz-
ing the evolution of software using softChange.
Journal of Software Engineering Knowledge
Engineering. Accepted for publication, under
revisions.

Ghosh, R. A. and Prakash, V. V. (2000). The or-
biten free software survey. First Monday, 5(7).

Ghosh, R. A., Robles, G., and Glott, R. (2002).
Software source code survey (free/libre and open
source software: Survey and study). Technical
report, International Institute of Infonomics.
University of Maastricht, The Netherlands.

Gobeille, R. (2008). The fossology project. In MSR
’08: Proceedings of the 5th Working Conference
on Mining software repositories.

Graves, T. L. and Mockus, A. (1998). Inferring
change effort from configuration management
databases. In 5th IEEE International Software
Metrics Symposium, pages 267–, Bethesda,
Maryland, USA.

Hahsler, M. and Koch, S. (2005). Discussion of a
large-scale open source data collection methodol-
ogy. In Proceedings of the Hawaii International
Conference on System Sciences (HICSS-38), Big
Island, Hawaii, USA.

Halstead, M. H. (1977). Elements of Software
Science. Elsevier, New York, USA.

Howison, J. and Crowston, K. (2004). The perils
and pitfalls of mining SourceForge. In Proceed-
ings of the International Workshop on Mining
Software Repositories, pages 7–11, Edinburg,
Scotland, UK.

Lanzara, G. F. and Morner, M. (2003). The knowl-
edge ecology of open-source software projects. In
Proceedings of the 19th EGOS (European Group
of Organizational Studies) Colloquim.

McCabe, T. J. (1976). A complexity measure.
IEEE Transactions on Software Engineering,
2(4):308–320.

Minkov, E., Wang, R., and Cohen, W. (2005).
Extracting personal names from emails: Apply-
ing named entity recognition to informal text. In
Proceedings of the Human Language Technology
Conference. Conference on Empirical Methods

 1219

Tools for the Study of the Usual Data Sources found in Libre Software Projects

in Natural Language Processing, Vancouver,
B.C., Canada.

Mockus, A. and Votta, L. G. (2000). Identify-
ing reasons for software changes using historic
databases. In Proc Intl Conf Softw Maintenance,
pages 120–130.

Oman, P. and Hagemeister, J. (1992). Metrics for
assessing a software system’s maintainability. In
International Conference on Software Mainte-
nance, pages 337–344, Los Alamitos, CA. IEEE
Computer Society Press.

Robles, G., Dueñas, S., and González-Barahona,
J. M. (2007). Corporate involvement of libre
software: Study of presence in debian code over
time. In OSS, pages 121–132.

Robles, G., González-Barahona, J. M., and
Guervós, J. J. M. (2006a). Beyond source code:
The importance of other artifacts in software
development (a case study). Journal of Systems
and Software, 79(9):1233–1248.

Robles, G., Gonzalez-Barahona, J. M., Michlmayr,
M., and Amor, J. J. (2006b). Mining large software
compilations over time: Another perspective of
software evolution. In Third International Work-
shop on Mining Software Repositories, pages 3–9,
Shanghai, China.

Robles, G., González-Barahona, J. M., and Michl-
mayr, M. (2005). Evolution of volunteer partici-
pation in libre software projects: evidence from
Debian. In 1st International Conference on Open
Source Systems, pages 100–107, Genoa, Italy.

Robles, G., Koch, S., and González-Barahona,
J. M. (2004). Remote analysis and measurement
of libre software systems by means of the CVS-
AnalY tool. In Proc 2nd Workshop on Remote
Analysis and Measurement of Software Systems,
pages 51–56, Edinburg, UK.

Robles, G., Prieto-Martínez, J. L., and González-
Barahona, J. M. (2006c). Assessing and evaluat-
ing documentation in libre software projects.

In Proceedings of the Workshop on Evaluation
Frameworks for Open Source Software (EFOSS
2006).

Spinellis, D. (2003). Code Reading: The Open
Source Perspective. Addison Wesley Profes-
sional.

Tuomi, I. (2004). Evolution of the Linux Credits
file: Methodological challenges and reference
data for Open Source research. First Monday,
9(6). http://www.firstmonday.dk/issues/issue9_6/
ghosh/

Villa, L. (2003). How gnome learned to stop
worrying and love the bug. In Otawa Linux
Symposium, Otawa.

Villa, L. (2005). Why everyone needs a bugmaster.
In linux.conf.au, Canberra.

Weißgerber, P., Neu, D., and Diehl, S. (2008). Small
patches get in! In MSR ’08: Proceedings of the
2005 Working Conference on Mining software
repositories.

Wheeler, D. A. (2001). More than a gigabuck: Es-
timating GNU/Linux’s size. http://www.dwheeler.
com/sloc/redhat71-v1/redhat71sloc.html.

Zimmermann, T., Weißgerber, P., Diehl, S., and
Zeller, A. (2005). Mining version histories to
guide software changes. IEEE Transactions on
Software Engineering, 31(6):429–445.

endnotes

1 In this chapter the term “libre software” is
used to refer to any software licensed under
terms that are compliant with the definition
of “free software” by the Free Software
Foundation, and the definition of “open
source software” by the Open Source Initia-
tive, thus avoiding the controversy between
those two terms.

1220

Tools for the Study of the Usual Data Sources found in Libre Software Projects

2 The location of the binaries may depend
from system to system, although the standard
location for them is the /usr/bin directory.

3 GlueTheos is named after its purpose to
glue different tools together in an easy way.
Hence, this program is the god, theos in
Greek, of gluing some already existing tools
together. It can be retrieved from http://tools.
libresoft.es/gluetheos.

4 In the GNU coding standards, some con-
ventions for change log files are given, see
http://www.gnu.org/prep/standards/html_
node/Change-Logs.html

5 doceval can be obtained from https://forja.
rediris.es/projects/csl-doceval/.

6 The most current version of CODD may be
found at http://libresoft.es/Tools/CODD.

7 CODD uses as intermediate storage a file
for each source package which are called
the codd files.

8 The most current version of pyTernity may be
found at http://tools.libresoft.es/pyternity.

9 A committer is a person who has write
access to the repository and does a commit
-an interaction- with it at a given time.

10 In a SCM system there is actually no file
deletion. In the case of CVS, files that are

not required anymore are stored in the Attic
and may be called back anytime in future.

11 KDevelop is an IDE (Integrated Develop-
ment Environment) for KDE. More informa-
tion can be obtained from http://kdevelop.
org/.

12 wc is a standard UNIX tool to count lines
of files, among others.

13 See http://libresoft.es/Results
14 The MailMan’s project web site can be

found at following URL: http://www.gnu.
org/software/mailman/.

15 http://forge.morfeo-project.org/frs/? group_
id=33

16 http://www.bugzilla.org/
17 The ones shown next are the ones that can

be found for the GNOME BugZilla system.
BugZilla can be adapted and modified, so
the fields may (and will) change from project
to project.

18 For instance, bug #55,000 from the KDE
BTS, which can be accessed through the web
interface at http://bugs.kde.org/show_bug.
cgi? id=55000 may also be obtained in XML
at following URL: http://bugs.kde.org/xml.
cgi? id=55000.

19 http://flossmetrics.org

This work was previously published in International Journal of Open Source Software & Processes, Vol. 1, Issue 1, edited by
S. Koch, pp. 24-45, copyright 2009 by IGI Publishing (an imprint of IGI Global).

 1221

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.7
Software Platforms for Mobile

Programming
Khoo Wei Ju

Malaysia University of Science and Technology, Malaysia

K. Daniel Wong
Malaysia University of Science and Technology, Malaysia

IntroductIon

Java 2 Micro Edition (J2ME), .NET Compact
Framework (.NET CF), and Active Server Pages
.NET (ASP.NET) Mobile Controls are commonly
used alternatives in mobile programming. They
provide an environment for applications to run
on mobile devices. However, they are different in
many ways, such as supported mobile devices, ar-
chitecture, and development. Hence, it is important
for mobile application developers to understand
the differences between them in order to choose
the one that meets their requirement. Therefore, in
this article we will discuss the general architecture
of J2ME, .NET CF and ASP.NET Mobile Controls
and compare the three alternatives.

bAckground And
IntroductIon

Since the mid-1990s, the growth of wireless com-
munications has led to the mushrooming of mobile
devices in the market. Initially, the mobile devices

were mainly cell phones with limited program-
mability. However, many analysts and company
executives were worried that mobile phone sales
would eventually slow down, prompting research
and development into software suitable for cell
phones (Grice & Charny, 2001). Hence, now,
there is a rise of programmable mobile devices.
Furthermore, programmable mobile devices these
days include not just cell phones but smartphones,
PDAs, and pocket PCs. There are three well-
known alternatives in mobile programming for
general-purpose applications: J2ME, .NET CF,
and ASP.NET Mobile Controls.

J2ME is a version of Java that provides an
application environment running on consumer
devices and embedded devices. It targets ma-
chines with as little as 128KB of RAM (Tauber,
2001). J2ME consists of Java virtual machines
(JVMs) and a set of standard Java application
program interfaces (APIs) defined through the
Java community process (JCP). J2ME can be used
with different configurations and profiles, which
provide specific information to a group of related
devices. Configurations support the Java core

1222

Software Platforms for Mobile Programming

APIs. Profiles are built on top of configurations
to support device-specific features like network-
ing and user interfaces. The J2ME is available
in two main configurations: connected limited
device configuration (CLDC) and connected
device configuration (CDC). Figure 1 shows the
hierarchical structure of J2ME.

.NET CF is a lightweight version of Microsoft’s
.NET framework. It provides an environment for
executing client-side code and eXtensible Markup
Language (XML) Web services to smart devices.
It is compatible with C# and Visual Basic.NET
(VB.NET), and it supports (.NET Compact
Framework Team, 2005):

• Windows mobile (2000, 2002, 2003)-based
pocket PC,

• Windows mobile-based smartphones, and

• embedded systems running Windows CE
.NET 4.1 and later.

.NET CF consists of two main components:
the development environment and the runtime
environment. The development environment,
known as smart device extensions (SDEs), is a
Visual Studio .NET (VS.NET) 2003 project type
that allows .NET CF applications to be developed
rapidly by simply dragging appropriate controls
into the application. The runtime environment
is the common language runtime (CLR). The
size of the CLR and relevant class libraries is
smaller than 2MB, which is suitable for mobile
devices. The architecture of .NET CF is shown
in Figure 2.

Active server pages (ASPs) is Microsoft’s
server-side scripting technology. An active server
page has an .asp extension, and it mixes HyperText

Figure 1. Hierarchical structure of J2ME

Internet
Connection

Services on
Server

CLDC

Optional
Package

Mobile
Information

Device Profile
(MIDP)

Java Virtual
Machine (JVM)

CLDC

CDC

Optional
Package

Personal Profile

Personal Basis
Profile

Foundation
Profile

CDC

Java Virtual
Machine (JVM)

Device Operating System

Hardware

Java2ME

Platform

Local Code

 1223

Software Platforms for Mobile Programming

Markup Language (HTML) and scripting code
that can be written in VBScript or JavaScript.
ASP is distributed with Microsoft’s Internet in-
formation services (IIS) Web server, so most hosts
using IIS will also offer ASP for dynamic Web
programming. ASP.NET is the version of ASP that
works with Microsoft’s .NET Framework.

ASP.NET Mobile Controls was previously
known as Microsoft mobile Internet toolkit
(MMIT). It was renamed as ASP.NET Mobile
Controls to reinforce the concept that it is a col-
lection of ASP.NET controls designed for mobile
applications. It extends the ASP.NET server-side
technology to allow developers to develop ap-
plications for a variety of mobile devices. Ex-
ecuting on the IIS Web server, ASP.NET Mobile
Controls allows Web applications to be accessed
by almost any Internet-enabled mobile device.
During runtime, it will automatically detect the
device running the application. The application
is then transformed into a form suitable for that
device. This frees the developer to concentrate
on the application logic and leaves the user
interface rendering to the runtime (Lee, 2002a).
Furthermore, it allows developers to visually

drag and drop controls on forms aimed at mobile
devices using VS.NET. The rest of the work, such
as writing the proper markup language (e.g.,
Wireless Markup Language (WML), wireless
application protocol (WAP)), is handled by the
toolkit. The application development environment
for ASP.NET Mobile Controls should be familiar
to most ASP.NET programmers. Figure 3 shows
the architecture of ASP.NET Mobile Controls.

feAture coMPArIson

J2ME, .NET CF, and ASP.NET Mobile Controls
cannot be easily compared feature-to-feature
because the analysis must include non-technology
aspects such as market acceptance, development
and testing tools, reach, standardization, and
platform coherence. Besides, the final releases
of J2ME’s mobile information device profile
(MIDP), personal basis profile, and personal
profile are still in production (Sun, 2005). On the
other hand, .NET CF is in the final stages of its
beta tests. Nevertheless, a feature comparison,
although limited, should still be useful.

Figure 2. .NET compact framework

NET CF

Platform

Hardware

Device Operating System

 Native
Application

 Application
Domain Host

 Common
 Language
Runtime (CLR)

NET Compact
Framework
Class Library

 Local CodeSevices on Server

 Internet
connection

1224

Software Platforms for Mobile Programming

flexibility of Machine control
and scope of Applications

Virtual Machines, Pointers, Native
Features

In the .NET Compact Framework, the common
language runtime (CLR) environment executes
.NET’s Microsoft Intermediate Language code.
The CLR also offers support services, such as
code verification, memory, and code security.
The managed code is always translated into na-
tive machine code rather than interpreted. CLR
supports interfaces and pointers. As for security
policy, .NET CF grants full trust to all code (Mi-
crosoft, 2005b). The standard frameworks cover
only a limited set of commonly used mobile device
features. Other features are accessible via native
methods. Besides, it is believed that .NET CF
has better support for native methods than J2ME
because Microsoft controls both .NET CF and the
Windows operating system (Yuan, 2002).

With J2ME, Java source code is compiled into
machine-independent byte code. The byte code is
then interpreted by the Java virtual machine (JVM)
during runtime. J2ME employs different versions

of the JVM based on the needs of a particular situ-
ation. The configuration specifications define the
characteristics of the J2ME virtual machines. In
most cases, features of the JVM are removed to
accommodate the needs of a configuration. The
CDC runs on a C-virtual machine (CVM) that
is fully compliant with the Java virtual machine
specification. The CDC profile accommodates
devices with as little as 512kB of memory, although
it is really designed for platforms with about 2 MB
of available memory (White & Hemphill, 2002).
Sun provides a reference implementation of the
CLDC specification that is based on the KVM, a
small footprint of JVM that satisfies the CLDC
requirements. However, products need not be
based on KVM—any virtual machine that has
the features required by the specification and
can work within the resource restrictions of the
CLDC environment can be used (Topley, 2002).
Although JVM supports interfaces, it does not
support pointers because it can result in unsafe
code. The Java native interface (JNI), which allows
access to native methods, can be used but only
by CDC. For CLDC, the native features must be
built into the runtime.

Figure 3. ASP.NET mobile controls

Platform

Hardware

Device Operating
 System

Mobile Web
 Brower

Web Server

 Internet
connection

 Remote
Web Pages

ASP.NET Mobile
 Controls

 1225

Software Platforms for Mobile Programming

Consumer Applications,
Multimedia, Gaming

.NET CF supports direct draw on canvas, double
buffering, and device button remapping through
its rich Windows Forms User Interface library. It
also supports multimedia playback by using the
native methods from Windows Media Player on
Pocket PC (Yuan, 2002).

In J2ME, the mobile information device pro-
file (MIDP) 2.0 for CLDC includes animation
and game controls in the javax.microedition.
lcdui.game package. Multimedia playback is
supported via the Java media framework (JMF)
on the CDC or the multimedia optional package
for the CLDC. Many game developers prefer
J2ME, because it is supported by a wider range
of mobile platforms.

development support

Programming Languages

ASP.NET supports any language supported by the
.NET Framework, including C, C++, C#, Visual
Basic, and even Java. However, .NET CF currently
supports only two major .NET languages: C# and
VB.NET (Microsoft, 2005a). C# and VB.NET are
standardized by EMCA and ISO/IEC. Hence,
Microsoft has long been criticized for tightly con-
trolling its technologies. However, the support of
multiple standardized languages allow developers
flexibility in programming in .NET CF.

J2ME only supports Java. Anyone can propose
a Java specification request (JSR) to the Java
community process (JCP) for a new platform
extension. Unlike with the tightly controlled
development of .NET compact framework and
ASP.NET, it may appear that under a more free
process like the JCP, developers have to spend
much time understanding the features to make
use of all extensions in the language. However,
J2ME APIs undergo rigorous standardization

processes to ensure wide industry support and
minimum learning for developers.

Platforms

.NET CF supports high-end PDAs such as Win-
dows pocket PCs, Windows smartphones, and
embedded devices running on the Windows CE
.NET platform (Microsoft, 2005a). Windows
devices consist of only a small part of today’s
mobile device population.

With J2ME, most of the cell phone devices
(Motorola iDEN, Nokia Symbian OS, and Qual-
comm Brew platforms) and low-end PDAs (Palm
OS and Real-Time OS platforms) have built-in
Java support because Java allows developers to
be productive across many mobile platforms.

Because it is server-side based, placing
minimal requirements on the client, ASP.NET is
supported by the widest range of mobile devices,
including all devices that support .NET CF, all
devices that support J2ME, and more. However,
each of these devices may present the output of
the ASP.NET controls differently due to their
different limitations and capabilities.

Development Tools

Regarding .NET CF and ASP.NET, Visual Studio
.NET provides similar design interfaces for both
mobile and non-mobile applications. It supports
Web services integration and relational database
access, and VS.NET is tightly integrated with
Visio Enterprise Network Tools edition, which
can generate C# or VB.NET code from UML
(Unified Modeling Language) diagrams. Fur-
thermore, VS.NET supports debugging on both
emulators and real devices. However, VS.NET
is not free.

Sun’s J2ME Wireless ToolKit is a widely used
MIDP development tool. Furthermore, command-
line tools and vendor-specific toolkits are readily
available. All major Java integrated development
environments (IDEs) have J2ME modules or plug-

1226

Software Platforms for Mobile Programming

ins. A big challenge for all J2ME IDEs is vendor
software development kit (SDK) integration.
Every device vendor provides SDKs for their de-
vice emulators and proprietary J2ME extensions.
The unified emulator interface (UEI) is designed
to standardize the interfaces between IDEs and
device SDKs. However, the UEI is available only
through a Sun licensing program.

Miscellaneous

Specification Process

When a new technology emerges, Microsoft
has the veto power to make decisions and make
it available on .NET CF and/or ASP.NET. This
saves time and effort. On the other hand, this
also means that developers have no say on the
specification process.

The Java community process (JCP) decides
the new J2ME standard APIs, whereas Sun has
veto power on only Java language specifications.
The JCP develops all current J2ME configura-
tions, profiles, and optional packages, so the

specification process is arguably very lengthy and
inefficient. However, some developers like this
because more people are allowed to contribute
and decide.

Gateways

There are technical difficulties in using .NET CF
in mobile gateways because it was not designed
to run lightweight application servers required
in mobile gateways. Although Microsoft mobile
information server (MIS) is a powerful gateway,
messaging, and synchronization server, .NET CF
lacks built-in APIs to interact with Microsoft MIS
(Yuan, 2002).

For J2ME, the primary mobile service gateway
product is from IBM. The Oracle9i wireless ap-
plication server and Oracle J2ME SDKs provide
gateway integration points for mobile devices
to many other Oracle or third-party application
servers (Yuan, 2002).

Figure 4. Devices supported by .NET CF, J2ME, and ASP.NET mobile controls

Devices with
Web browser

Devices on
Windows CE

.NET and
Windows mobile

platform

Some PDA,
Smartphone

Java-enabled
devices

.NET CF
J2ME

ASP .NET
Mobile Controls

 1227

Software Platforms for Mobile Programming

Table 1. Comparison summary between .NET CF, J2ME (CDC and CLDC) and ASP.NET Mobile Con-
trols

 .NET Compact
Framework

J2ME Connected
Device Configuration

J2ME Connected
Limited Device
Configuration

ASP.NET Mobile
Controls

Virtual Machine Common Language
Runtime (CLR) Java Virtual Machine (JVM) Common Language

Runtime (CLR)

Portable Code Intermediate
Language (IL) Byte code Intermediate Language

(IL)

Just-In-Time (JIT)
Compiling Yes Yes Yes

Garbage Collection Yes Yes Yes

Portability No Yes Yes

Additional comparisons between
.net cf and AsP.net Mobile
controls

Server-Client Side

.NET CF uses client-side technology. Code is
executed on the mobile device using just-in-time
(JIT) compilation and native execution. ASP.NET
uses server-side technology. Code is executed
on the server, producing markup-language-based
output such as HTML to be interpreted by a Web
browser.

Web Server

For .NET CF, a Web server is not needed because
code is executed directly on the device. For ASP.
NET, a Web server (such as Microsoft IIS 5.0 or
6.0) that supports ASP.NET is required. The ASP.
NET HTTP runtime is used to handle and process
requests via a set of ASP.NET server controls.

Device Support

Only devices that have .NET CF runtime can
execute programs written on .NET CF. On the

other hand, since ASP.NET is server-side based,
less processing is required on the client side
compared to .NET CF. However, each of these
devices may present the output of the ASP.NET
controls differently due to their different limita-
tions and capabilities.

Connectivity

For .NET CF, standalone applications can be cre-
ated and installed on portable devices such as the
pocket PC, pocket PC phone, and smartphone.
By having the applications downloaded into such
devices, the devices can either be connected or
not connected. The XML or SQL Server 2000
Windows CE editions are used for local storage
when working off-line. With ASP.NET Mobile
Controls, an HTTP connection is required to
request an ASP.NET page that uses the Mobile
Controls.

future trends

In recent years, a strange trend can be seen in the
design of mobile devices; they are getting bigger
and bigger. They are gradually taking on more

continued on the following page

1228

Software Platforms for Mobile Programming

Cross-Language
Integration Yes No Yes

Standardized EMCA, ISO/IEC Yes EMCA, ISO/IEC

Server-Client Side Client side Client side Server side

Web Server Not needed Not needed Needed

Device Support
Pocket PC,
smartphone, Windows
CE

General-purpose Java phone,
smartphone, and PDA Device independent

Connectivity Standalone Standalone Connected

Market Focus Enterprise Enterprise Consumer and
enterprise

Consumer and
enterprise

Language Support VB.NET, C# Java Java VB.NET, C#, C++,
C, Java

Platforms Pocket PC, Windows
CE

Major mobile
platforms except Palm
OS

All mobile platforms All mobile platforms

API Compatibility Subset of .NET
Subset of J2SE plus
standard optional
packages

Partial compatibility
with CDC with
additional standard
optional packages

Subset of .NET

Native APIs Platform Invoke JNI; device and OS
specific - -

Coding and
Development Tools

Smart Device
Programming (SDP),
Microsoft Visual
Studio .NET

Command line, vendor
SDKs, CodeWarrior,
and WebSphere

Command line,
vendor SDKs, all
major Java IDEs

Microsoft Visual
Studio .NET

Specification Process Single company Community Community Single company

Service Gateway -

Run gateways as
OSGi servlets; run
gateway clients via
vendor-specific SDKs

Run gateway clients
via vendor-specific
SDKs

-

Security Model Simplified.NET model Full Java security
manager

Limited Java 2 model
supplemented by OTA
specification

Simplified.NET model

Client Installation ActiveSync, Internet
Explorer download Sync, download Formal OTA

specification

Lifecycle Management -

OSGi for gateway
apps, J2EE Client
Provisioning
Specification for
generic clients

Included in OTA spec,
works with J2EE
Client Provisioning
Specification

-

User Interface Rich subset of
Windows Forms

Rich subset of AWT
(Abstract Windowing
Toolkit), vendor-
specific UI libraries

PDA Profile subset of
AWT, vendor-specific
UI libraries

Rich subset of
Windows Forms

Table 1. continued

continued on the following page

 1229

Software Platforms for Mobile Programming

Mobile Database

SQL Server CE,
Sybase iAnywhere
Solutions(coming
soon)

IBM DB2 Everyplace,
iAnywhere Solutions,
PointBase, Oracle9i
Lite

Vendor-Specific
relational
implementation over
RMS, Oracle SODA

SQL Server CE

Database
Synchronization Vendor specific Vendor specific Vendor specific Vendor specific

XML API
Built into ADO.NET
and other standard
APIs

Third-party tools Third-party tools
Built into ADO.NET
and other standard
APIs

E-Mail and PIM
(Personal Information
Manager)

Platform
InvokeOutlook
APIs

PDA optional
packages

PDA optional
packages -

Short Message Service
(SMS)/Multimedia
Messaging (MMS)

Platform
InvokeSMS/MMS

Wireless Messaging
API (WMA)/WMA
2.0

Wireless Messaging
API (WMA)/WMA
2.0

Simple Mail Transport
Protocol (SMTP) and
third party

Instant Messenger

Platform
InvokeMicrosoft
Network (MSN) and
other IM client APIs

Third-party APIs
for most IM clients
including Jabber and
Jxta

Third-party APIs
for most IM clients
including Jabber and
Jxta

-

Enterprise Messaging

Platform
InvokeMicrosoft
Message Queuing
(MSMQ)

Proprietary JMS (Java
Message Service)
APIs

JMS via third-
party toolkits (e.g.,
WebSphere MQ
Everyplace, iBus
Mobile)

-

Cryptography Third-party APIs

JCE (Java
Cryptography
Extension) and third-
party libraries

Third-party libraries Third-party APIs

Multimedia
Platform
InvokeWindows
Media Player APIs

Subset of Java Media
Framework (JMF)

Built into MIDP plus
J2ME multimedia
APIs

-

Game Included Windows
Forms UI

Direct draw on
Canvas

GameCanvas support
in MIDP -

Location API APIs provided by
carriers Location API Location API -

Table 1. continued

of the features of regular computers. We say this
is a strange trend because mobile devices were
originally meant to be stripped down, barebones
devices with only the most useful features for
mobile usage. Nevertheless, this trend is getting
encouraging responses from users because the mo-
bile devices are able to hold all the files they need
to carry around. Due to the encouraging response
from the users and the advances in technology, it
is predicted that the trend will continue.

Besides, the sales of traditional PDAs have
declined in the past few years (ETForecasts, 2003).

This is because the PDA market is gradually being
taken over by the smartphone, also known as the
PDA phone. Users favor phones with computer
features, such as storage capacity and clearer
display (Kewney, 2005).

Currently, non-Microsoft operating systems
like Symbian dominate the smartphone operat-
ing system market. As the sales and variety of
smartphones are increasing worldwide, assum-
ing Windows mobile platform keeps the same
percentage of the market, the usage of Windows
mobile platform will grow as well. Besides, given

1230

Software Platforms for Mobile Programming

the past success of Microsoft to expand into new
related markets, it is quite likely that they could
increase their market share over the next few
years, and there is much room for them to grow.
Since Windows mobile platform will support
only .NET CF (Java is not included), the growth
of Windows mobile platform will directly lead
to the increase in the use of .NET CF in mobile
programming.

Furthermore, the current versions of .NET CF
grant full trust to all code. However, the upcom-
ing versions of .NET CF will offer a subset of
the policy-driven, evidence-based code access
security of the full .NET framework (Microsoft,
2005b). This is a good feature from the security
point of view; however, it may be less convenient
for developers compared to the current version.

Hopefully in the future, both Microsoft and
Java applications can coexist in the same mobile
device.

conclusIon

.NET CF and J2ME are both excellent platforms
for developing smart clients for mobile commerce
applications. J2ME has already gained a lot of
industry support as the most favorable platform
for developing mobile applications, and there
are over 500,000 skilled Java developers around
the world (Wishart, 2002). J2ME implements a
modular design and is portable across a variety
of devices. The platform provides balanced sup-
port for both enterprise and consumer applica-
tions. J2ME vendors offer excellent selections of
mobile databases and gateway application server
products.

On the other hand, .NET has the advantage
over J2ME where it provides a single development
platform and common coding practices based
around Visual Studio. There are more than 1.5
million skilled developers worldwide (Wishart,
2002), and Microsoft has the largest tools and
third-party developers program. The .NET CF
platform focuses on enterprise applications with

rich user interface, database, and XML Web
services support. Hence, .NET CF is suitable
for cash-rich customers with controlled mobile
environments. However, .NET CF runs only on
Windows-powered high-end PDAs. As a young
platform, it currently lacks support for gateway
servers and choices for mobile databases.

For the near future, the choice between .NET
CF and J2ME is not so much a question of the
desired platform features (both are excellent in
this respect) as the targeted devices. In the short
run, J2ME is supported by more devices than
.NET CF. In the long run, most experts expect
both platforms to coexist in all market sectors.
Developers must choose the right tools and make
them all work in heterogeneous environments.
For example, J2ME clients would need to work
with .NET backend servers and vice versa. So
it would ultimately not come down to a choice
between J2ME or .NET CF.

Both .NET CF and J2ME have advantages
over ASP.NET Mobile Controls in supporting
code that will execute on the device, and that can
run in disconnected, connected, or occasionally
connected modes. Therefore, for most enterprise
mobile solutions, .NET CF and J2ME are more
appropriate.

On the other hand, if browser-based applica-
tions are required, Microsoft ASP.NET Mobile
Controls can be used to develop mobile Web
applications that adapt their page rendering for
a range of devices, such as micro-browsers on
PDAs, smartphones, and WAP phones. ASP.NET
Mobile Controls allows the developers to target
the users they need to target, without worrying
about the device they are using.

AcknowledgMent

The assistance of Lisa Tang in reviewing, and
commenting on, a draft of this article is gratefully
acknowledged.

 1231

Software Platforms for Mobile Programming

references

ETForecasts. (2003, June 16). Smartphones have
started to impact PDA sales. Retrieved December
13, 2005, from http://www.etforecasts.com/pr/
pr0603.htm

Faridi, M. (2003). Beginning compact framework.
Retrieved from http://www.ilmservice.com/twin-
citiesnet/presentations/BeginningCF.NET.ppt

Grice, C., & Charny, B. (2001, February 2). Wire-
less jungle still waiting for its king. Retrieved from
http://news.com.com/2100-1033-252009.html

Jagers, B. (2003). Comparing file transfer and
encryption performance of Java and .NET. Re-
trieved from http://www.lore.ua.ac.be/Publica-
tions/pdf/Jagers2004.pdf

Kewney, G. (2005, February 8). Landscape phones
mark the resurgence of the PDA smartphone.
Retrieved December 13, 2005, from http://www.
newswireless.net/index.cfm/article/1918

Lee, W. (2002a, December 2). Developing mobile
applications using the Microsoft Mobile Internet
Toolkit. Retrieved from http://www.devx.com/
wireless/Article/10148

Lee, W. (2002b, November 18). Announcing .NET
Framework 1.1. Retrieved from http://www.ondot-
net.com/pub/a/dotnet/2002/11/18/everett.html

Leghari, N. (2003, December 17). Tools and
platforms: Choices for a mobile application
developer. Retrieved from http://weblogs.asp.
net/nleghari/articles/mobiledeveloper.aspx

Microsoft. (2005a). .NET Compact Framework.
Retrieved from http://msdn2.microsoft.com/en-
us/library/f44bbwa1(en-us,vs.80).aspx

Microsoft. (2005b). Security in the .NET Compact
Framework. Retrieved from http://msdn2.micro-
soft.com/en-us/library/13s3wxyw.aspx

Milroy, S. (2003, March 6). .NET Compact
Framework overview. Retrieved from http://www.

windowsitpro.com/Articles/Index.cfm?ArticleID
=38314&DisplayTab=Article

NET Compact Framework Team. (2005, January
6). .NET Compact Framework FAQ. Retrieved
December 6, 2005, from http://msdn.microsoft.
com/smartclient/community/cffaq/default.aspx

Sun. (2005). Java 2 Platform Micro Edition
(J2ME). Retrieved December 8, 2005, from
http://java.sun.com/j2me/index.jsp

Tauber, D. A. (2001, August 3). What’s J2ME?
Retrieved from http://www.onjava.com/pub/a/on-
java/2001/03/08/J2ME.html

Topley, K. (2002). J2ME in a nutshell. O’Reilly
& Associates.

White, J.P., & Hemphill, D.A. (2002). Java 2
Micro Edition. Manning Publications.

Wishart, A. (2002, April 29). Mobile development
environments: .NET Contra J2ME. Retrieved
from http://www.datalogforeningen.dk/fa/fa-
20020221.html

Yuan, M.J. (2002, February 21). Let the mobile
games begin, Part 1. A comparison of the philoso-
phies, approaches, and features of J2ME and the
upcoming .NET CF. Retrieved from http://www.
javaworld.com/javaworld/jw-02-2003/jw-0221-
wireless.html

Yuan, M.J. (2003, May 16). Let the mobile games
begin, part 2 J2ME and .NET Compact Frame-
work in action. Retrieved from http://www.
javaworld.com/javaworld/jw-05-2003/jw-0516-
wireless.html

key terMs

Active Server Page (ASP): Microsoft’s server-
side technology that allows scripting language for
dynamically generated Web.

Cell Phone (Mobile Phone): Electronic tele-
communications device that is able to move over

1232

Software Platforms for Mobile Programming

a wide area, connected using wireless radio wave
transmission technology.

Personal Digital Assistant (PDA): Mobile
device that serves as personal organizer. The basic
features of a PDA include phone book, address
book, task list, memo pad, clock, and calculator
software.

Pocket PC: Operating platform for handheld
devices introduced by Microsoft, based on the
Windows CE operating system.

Smartphone: Mobile device that integrates
the functionality of a mobile phone and PDA by
adding telephone functions to a PDA or including
the PDA capabilities on a mobile phone.

Web Service: Software system designed to
support interoperability among machines over a
network using a standardized interface.

Windows CE: A simplified version of the
Windows operating system designed to run on
handheld-size computers.

Windows Mobile: Operating system that
replaced the Windows CE operating system on
mobile devices. It includes a suite of basic applica-
tions for mobile devices based on the Microsoft
Win32 API.

This work was previously published in Encyclopedia of Mobile Computing and Commerce, edited by D. Taniar, pp. 912-920,
copyright 2007 by Information Science Reference (an imprint of IGI Global).

 1233

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.8
Present and Future of Software

Graphics Architectures for
Interactive Digital Television

Pablo Cesar
CWI: Centrum voor Wiskunde en Informatica, The Netherlands

Keith Baker
Philips Applied Technologies, The Netherlands

Dick Bulterman
CWI: Centrum voor Wiskunde en Informatica, The Netherlands

Luiz Fernando Gomes Soares
PUC-RIO, Brazil

Samuel Cruz-Lara
LORIA-INRIA Lorraine, France

Annelies Kaptein
Stoneroos, The Netherlands

AbstrAct

This chapter aims to define a research agenda regard-
ing the software graphics architecture for interactive
digital television (iDTV). It is important to note that
by iDTV we do not refer to the provision of a return
path, but rather to the potential impact the user has
over the television (both video stream and applica-

tions) content. We can differentiate three major topics
to be included in the agenda: (1) to define a suitable
declarative environment for television receivers, (2)
to research television input (as multiple input devices)
and output (multiple display devices) capabilities,
and (3) to rethink the models of television distribu-
tion and post-distribution (e.g., peer-to-peer [P2P]
networks and optical storage technologies). This

1234

Present and Future of Software Graphics Architectures for Interactive Digital Television

chapter elaborates on these topics.

IntroductIon

Digital television receivers are starting to show
a reasonable level of maturity and their market
penetration is becoming significant (e.g., Italy,
Finland, UK, and Korea). A number of multimedia
home platform (MHP) (European Telecommuni-
cations Standards Institute [ETSI], 2003, 2005)
compliant receivers exist and regional standard-
ization initiatives have joined forces by creating
the Globally Executable MHP (GEM) standard
(ETSI, 2004).

Still, a number of questions regarding the
graphics engine (that is, the low-level software
presentation control engine) and the interactive
capabilities of next-generation receivers arise from
both the research community and the industry.
Some of the research topics include:

• Definition of a suitable declarative environ-
ment for digital television receivers, such
as the synchronized multimedia integra-
tion language (SMIL) and the World Wide
Web Consortium (W3C) recommendation
(Bulterman & Rutledge, 2004).

• Integration of other standards, such as Mov-
ing Picture Experts Group (MPEG)-4, and
Multimedia and Hypermedia information
coding Expert Group (MHEG) in current
standardization efforts.

• Interaction/visualization using other devices
than the remote control/television set (e.g.,
mobile devices, tablet augmenters).

• Definition of new distribution and post-
distribution models, such as P2P and opti-
cal storage devices, apart from the typical
broadcast model.

This chapter is structured as follows. First, sec-
tion 2 discusses the state of the art in terms of the
broadcast environment, the receiver middleware,

and services. Then, based on the state of the art,
section 3 identifies relevant research topics in the
area. Next, section 4 proposes a research agenda,
and section 5 concludes the chapter.

stAte of tHe Art

Jensen (2005) has written an interesting study
that categorises and defines iDTV services. He
differentiates three different iDTV forms:

• Enhanced: Enhanced information that is
sent via the broadcast channel (e.g., ban-
ners)

• Personalized: Automatic selection of pro-
grams by the receiver (recommendations)
and personal digital recording (PDR) ca-
pabilities such as play/pause

• Complete Interactive: Return channel
provision

He points out that, currently, only “low-tech-
nology discount solutions,” referring to Nielsen
usability evaluation methods, are provided. The
most important discount solution today is SMS
mobile phone return channel, which can evolve
in the future to multimedia messaging service
(MMS) solutions.

The following subsections describe the state
of the art in terms of broadcast environment,
software middleware, and services.

broadcast environment

Figure 1 depicts a typical example of a terrestrial
digital television broadcast system.1 It is composed
of the following components: MPEG2 encoder,
digital video broadcasting (DVB) asynchronous
serial interface (ASI) internet protocol (IP) link
pair, gateway server, remote control/monitor unit,
object carousel, multiplexer, modulator/transmit-
ter, and antenna.

First, the audiovisual stream is encoded with

 1235

Present and Future of Software Graphics Architectures for Interactive Digital Television

the MPEG-2 encoder. Because people in several lo-
cations might encode the audiovisual content, the
encoder is stored in a mobile rack and connected
to the broadcast system by using the DVB-ASI
IP links. The object carousel contains applica-
tion code and data. It can be uploaded using the
gateway server. Next, the multiplexer generates
the final MPEG-2 transport stream by combining
the audiovisual content (output of the DVB-ASI
IP link) and the applications (output of the object
carousel). Finally, the modulator/transmitter feeds
the multiplexed MPEG-2 transport stream to the
antenna. The remote control/monitor can be used
to remotely monitor the whole system.

software Middleware

Third-party development of services requires the
digital television receiver to incorporate an in-
teroperable middleware component. Three major

regional initiatives exist: MHP2 in Europe,3 Ad-
vanced Common Application Platform (ACAP4)
in the USA, and Association of Radio Industries
and Business (ARIB5) in Japan.

These standardized solutions are composed
of a procedural and a declarative environment,
as depicted in Figure 2. The two environments
do not have to be separated; bridge functional-
ity might link them. In addition to the environ-
ments, native applications, proprietary formats,
and service-specific software and content can
be supported.

The procedural component includes a Java
Virtual Machine (JVM) and a set of Java Appli-
cation Programming Interfaces (APIs), while the
declarative corresponds to an extensible markup
language (XML) user agent. The declarative
environment of the three mentioned standards is
based on extensible hypertext markup language
(XHTML), cascading style sheets (CSS), and

Figure 1. Broadcast system (Cesar, 2005)

1236

Present and Future of Software Graphics Architectures for Interactive Digital Television

television-specific extensions to the Document
Object Model (DOM) (Cesar, 2005; International
Telecommunication Union [ITU]-T, 2001, 2003,
2004; Morris & Smith-Chaigneau, 2005).

In the case of MHP, the procedural envi-
ronment is called DVB-Java (DVB-J) and the
declarative one is named DVB-HTML. Since
the regional standards (MHP, ACAP, and ARIB)
share a common approach, DVB has collaborated
with the American and Japanese standardization
bodies in defining a worldwide application en-
vironment: GEM. GEM has been ratified by the
ITU in the J.200 (ITU-T, 2001) and J.202 (ITU-T,
2003) recommendations. GEM defines a proce-
dural environment, DVB-J, which includes two
Java APIs for graphics: Java Media Framework
(JMF) and Home Audio/Video Interoperability
(HAVi) (Cesar, 2005; Morris & Smith-Chaigneau,
2005).

GEM defines the television display as three
overlapping planes, ordered from bottom to top:
background, video, and graphics. The broadcast
video is normally hardware decoded and demul-
tiplexed, and then rendered in the video layer by

JMF. Alternatively, the applications are developed
using HAVi and rendered in the graphics layer,
requiring an alpha channel for composition pur-
poses. HAVi extends Personal Java’s java.awt
package, including, for example, remote control
events and a television-specific set of widgets.

Still, one of the challenges ahead is the defi-
nition of a common declarative environment. In
order to clarify the goals of the standardization
activities, their relationships are depicted in
Figure 3.

Apart from conventional digital television
receivers such as set-top boxes, companies are
producing the next generation of optical storage
devices. The two major options are Blu-ray and
interactive high definition (iHD). In the case of
Blu-ray, its application environment is based on
the procedural environment of GEM. In the case
of iHD, the application environment is HTML +
Time (based on the XHTML + SMIL profile.)

Other technology options for the digital televi-
sion application environment include MPEG-4,
Flash, and MHEG. First, MPEG-4 video codecs
are already part of the standards, while the interac-

Figure 2. Application environment of interactive digital television receivers (Cesar, 2005)

ApplicationApplication Application Application

Service
Information

GUI
Presentation

Broadcast
Events

Broadcast
Data

Digital
Video

Other
Media

CANetwork

App Lifecycle Monitor

Bridge
Elements Native

Software

Operating System

Hardware

User Interaction

Application Environment

Application

Procedural Environment Declarative Environment

 1237

Present and Future of Software Graphics Architectures for Interactive Digital Television

tive part of MPEG-4 is a popular research topic,
but it is not (yet) a real commercial alternative
(Cesar, 2005; Baker, 2006).

Flash, on the other hand, is a popular solution
for interactive multimedia on the Internet. Still, it
has major problems such as: it is a non-structured
technology, it uses a scripting language, it is a
proprietary format, and dynamic modifications
to a presentation are difficult to manage. Finally,
MHEG, because of its popularity on digital televi-
sion in the UK region, is a standard that will be
supported by MHP.

services

The development of MHP applications have be-
come a lucrative business, as can be seen from
the number of graphical authoring tools available
on the market (e.g., Cardinal Studio6). The range
of available services is ample;7 some examples
include games, commercials, home shopping, and

banking. Nevertheless, the two major services are
the electronic program guide (EPG) and the Super
Teletext. The former shows information related to
the scheduled audiovisual content. The latter is
a new version of the traditional teletext service,
in which multimedia content is broadcast within
the MPEG-2 stream.

This subsection illustrates current services by
taking a look at the work of a Dutch digital tele-
vision company called Stoneroos. First, we will
describe an adaptable EPG and then an interactive
application called C-Majeur.

Stoneroos has developed a personalized pro-
gram guide that uses XML TV. This way, the
graphical layout of the application can be adapted.
Figure 4 shows the Dutch layout, while Figure
5 shows the British Broadcasting Corporation
(BBC) layout.

C-Majeur is a weekly television program about
classical music. Stoneroos created an interactive
episode of C-Majeur, shown in Figure 6. View-

Figure 3. Worldwide standardization situation of the application environment for iDTV (Cesar, in
press)

BML

ITU J.201

???

ITU J.200

bridge

bridge

ITU J.202

GEM

USA (ATSC)

Japan (ARIB)

ITU

Europe (DVB)
(MHP 1.1)

System Architecture

Declarative Env.Procedural Env.

1238

Present and Future of Software Graphics Architectures for Interactive Digital Television

Figure 4. Screen shot of Stoneroos program guide (Dutch layout)

Figure 5. Screen shot of Stoneroos program guide (BBC layout)

Figure 6. Screen shot of C-Majeur

 1239

Present and Future of Software Graphics Architectures for Interactive Digital Television

ers could select extra commentary and a karaoke
version of the content in which a scrolling score
of the vocals was shown along with close-ups of
the soloist and conductor. The interactive extras
were available during the entire week following
the initial broadcast.

summary

The following list summarizes the state of the
art:

• Standards:
° Procedural: Java-based
° D e c l a r a t i v e : B a s e d o n

XHTML(+SMIL), CSS, and DOM
extensions

• Services: A number of selection-based
services (e.g., EPG and Super Teletext) plus
discount interactive solutions such as SMS
voting

• Current configuration: Low-print hard-
ware configuration (around 250MHz,
16MB-64MB of RAM, and 8MB-32MB of
flash memory), remote control (input), and
television set (output). Some models include
storage capacity and PDR capabilities (e.g.,
Tivo, iHD, and Blu-ray devices).

• Distribution mechanisms: Broadcast

As a final summary of the current state of

the art, Figure 7 depicts the current model of
interactive television. The interactive content
is broadcasted to the receiver, which includes
an application environment. Then, this content
is visualized through the television set and the
user can interact with the receiver using a remote
control. The thickness of an arrow represents the
amount of content that is transmitted. The receiver
might have a return path connected to a server.
Finally, as the figure shows, even though many
people can watch the television set at once, only
one person can interact with it.

future of InterActIve dIgItAl
televIsIon

We can distinguish four different topics on which
research should be focused: (1) definition of the
concept interactive digital television (IDTV),
(2) extensions of current standards, (3) service
development, and (4) configuration of digital
television receivers. The following subsections
elaborate on those issues.

Definition of idtv

One of the most important questions to be an-
swered by this chapter is: what do we mean by
iDTV? Is it IDTV a dodo of history like the paper-

Figure 7. Current model of iDTV

Broadcast
Station

Server

TV Set

Receiver

1240

Present and Future of Software Graphics Architectures for Interactive Digital Television

less office and the information superhighway?
Have we already made of IDTV a meaningless
concept?

In our opinion, IDTV is not about plugging
your television to the phone line, to use your mobile
phone for voting, or for that matter, to use your
normal telephone to call to a television program
and achieve your 15 seconds of fame. IDTV is
about the potential impact a user has on the digital
content. Some forms of interaction include ap-
plications that enhance the broadcast content and
possibility of selecting different subtitles streams.
Higher level of interaction is provided by PDR
equipment in the form of pause, play, and skip
content (Agamanolis & Bove, 2003) since the user
actually affects the status of the content.

Further interactive capabilities include, for
example, the possibility to control the content that
the user consumes (i.e., personalized television)
and end-user enrichment of the incoming mate-
rial (Cesar, Bulterman, & Jansen, 2006). In our
opinion, the research community should focus
on the definition of new models that define the
iDTV paradigm such as Chorianopoulos (2004)
has done with his virtual channel proposal.

standards

All in all, the definition of the GEM standard is
good news for the digital television community.
It is a worldwide solution for a digital television
application environment. Even though its market
penetration is low, apart from the Italian market in
which proper subside policies have been applied,
its procedural environment is a technology success
(e.g., Blu-ray Java intends to reuse it).

Nevertheless, the definition of a suitable de-
clarative environment is a challenge. Currently,
apart from the structure and the visual style of
the documents, the regional standards define
three types of DOM events: user, internal, and
broadcast generated (e.g., starting of a show). The
major limitation of these standards is that they
require the use of scripting for handling these

events. For example, in order to synchronize the
audio-visual content and an application, a script
is activated when a broadcast event is received.
This limitation can be overcome by adopting
multimedia declarative approaches such as SMIL
(Bulterman & Rutledge, 2004) or nested context
language (NCL) (Soares & Rodrigues, 2005).

SMIL is the W3C standard for multimedia
presentations. SMIL is a declarative format: rather
than encoding the functionality of an (interactive)
piece of content as a script or within the definition
of a particular media codec, SMIL describes the
set of interactions among media objects. Then,
SMIL allows a particular renderer (or player) to
implement this functionality in a manner that best
suits the needs of the application runtime envi-
ronment. The structure of an SMIL presentation
follows the simple standard XML form:

<smil... >
 <head>
 general declarations for metadata,
 layout and interactive control
 </head>
 <body>
 temporal schedule of contents and
 content events
 </body>
 </smil>

Any object within a time container (i.e., par,
seq, and excl) can have a scheduled or interactive
begin time. The events associated with interactive
begin times can be triggered by user interactions,
by external script objects (via a set of SMIL DOM
events), or by events that are triggered within as-
sociated content streams.

Hence, the main advantage of using SMIL is
two-fold:

1. SMIL is a well-developed and widely de-

ployed language, available on desktop and
mobile devices.

2. Being declarative, SMIL code is small

 1241

Present and Future of Software Graphics Architectures for Interactive Digital Television

(compared with Java), and it is easily verifi-
able—meaning that the risk of introducing
viruses and other unwanted interaction side
effects is limited.

As shown in Figure 8, SMIL defines 10 major
functional grouping elements and attributes (mod-
ules). This results in the definition of a number of
profiles. Each profile provides a fixed collection
of elements and attributes, drawn from one or
more modules. The purpose of the profile model
is to enable the customizing of the integration of
SMIL’s functionality into a variety of XML-based
languages. The major profiles are:

• SMIL 2.1 Language: The host-language
version of SMIL 2.0

• SMIL 2.1 Extended Mobile: A rich lan-
guage subset for advanced mobile devices

• SMIL 2.1 Mobile: A baseline set of features
for general mobile devices

• SMIL 2.1 Basic: A baseline set of features
for low-powered devices with a minimal set
of elements and attributes.

In order to facilitate the use of SMIL in an
IDTV application environment, W3C is working
on two new profiles for SMIL:

• SMIL iDTV: A profile containing the major

modules to support a broad range of interac-
tion facilities in a lightweight set-top box

• SMIL Enhanced iDTV: A profile contain-
ing additional enhancements to allow a richer
processing across a set of devices

Some of the services these profiles are intended
for include stand-alone applications (e.g., photo
slides visualized in the television set), semi-
synchronized applications (e.g., Teletext with
extra audio files and animations), and services
synchronized with the broadcast stream (e.g.,
statistics of a football match).

Another declarative solution for IDTV, similar
to SMIL, is NCL. NCL claims to do for nonlinear
television programs what HTML did for the Web.
But, NCL is focused on temporal synchroniza-
tion of multimedia objects in general and not on
user interaction in particular. NCL supports the
typical media objects (e.g., video and image), as
well as HTML objects.

The Brazilian8 government is currently stan-
dardizing the application environment for their
digital television system. One of the alternatives
is MAESTRO. MAESTRO is a complete solution,
based on NCL.

There are several alternatives for the pro-
cedural and declarative middleware by using
MAESTRO. The first one, shown in Figure 9, is

Figure 8. SMIL module architecture

Animation Content
Control

Layout Linking

Meta-
Information

Time
Manipulation Transitions

Media
Objects

Timing &
SynchronizatonStructure

1242

Present and Future of Software Graphics Architectures for Interactive Digital Television

a resident middleware with only the declarative
module. Procedural codes could be launched from
declarative applications because MAESTRO al-
lows procedural objects in NCL documents.

The second alternative, shown in Figure 10,
is MAESTRO coupled with a procedural middle-
ware. Of course this alternative will require a
set-top box with better performance. However,
a better support for all kinds of applications is
achieved.

It must be mentioned that both alternatives

already presented can run not only NCL but
also HTML applications. This means that any
content developed for the three main digital TV
systems (ARIB, ACAP, and MHP) is supported
by MAESTRO.

The third alternative runs MAESTRO
triggered by a procedural middleware in Java,
as shown in Figure 11. MAESTRO was also
implemented as an XLET that can be exported
to the user set-top box. Therefore, any application
developed in NCL will be able to run in any of

Figure 9. MAESTRO alone

lua
engine

ecMA
script
engine

Apl 1 Apl 2 Apl 3 Apl n…

OSOS

Figure 10. MAESTRO + procedural middleware

OSOSOS

vM
(java)

Procedural
Middleware

Apl 1 Apl 2 Xlet i Apl n…

 1243

Present and Future of Software Graphics Architectures for Interactive Digital Television

the main digital TV systems.
Both SMIL and NCL are interesting propos-

als for a declarative solution that fits the televi-
sion model; both are focused on the temporal
synchronization of multimedia objects, while
HTML was mostly intended for text content. They
are different, though, in a number of issues. For
example, while SMIL defines strict temporal and
spatial semantics (e.g., par and seq), NCL uses
templates. These templates can include any kind
of semantics.

Finally, another interesting extension to cur-
rent standardization efforts is to include multi
lingual information framework (MLIF) (ISO
AWI24616)9 (Cruz-Lara, Gupta, & Romary,
2005) support. MLIF defines an abstract model
to encode the textual information of multimedia
services (e.g., subtitles, captions, and t-learning
resources). Currently, different groups are work-
ing on this issue (e.g., Timed Text in W3C). Hence,
MILF does not create a new format from scratch,
but deals with the issue of overlap between the
formats. The final intention is to create a core
framework, in which all the other formats will be
integrated. Their research is especially relevant

in the case of services serving multilingual com-
munities (e.g., Spain) and in the case of reusing
services for different countries (e.g., European
services).

services

A number of innovative services can be provided
to the digital television viewers. In this chapter we
concentrate on one important topic: recommender
systems (Smyth & Cotter, 2000).

Because the amount of content available to end
users is continually increasing, there is a need of
content personalization. This personalization is
a filter and takes place prior to the actual deci-
sion of what to watch. For example, Stoneroos
has developed I-Fancy. I-Fanzy is a personalized
program guide shown in Figures 4 and 5. It uses
TV Anytime metadata and its content can be
accommodated to different layouts (e.g., Dutch
and BBC layout). In our opinion, personalized
television is an essential research topic because
of its non-intrusive nature and the big amount of
available digital content.

other distribution Methods

Figure 11. MAESTRO as XLET

vM
(java)

Xlet i Apl n…
Xlet

OSOSOS

Procedural
Middleware

1244

Present and Future of Software Graphics Architectures for Interactive Digital Television

The long unforeseen threat to iDTV is the P2P
network. P2P networks have proven to be the
killer application of broadband access. These
networks are proving to be economically very
efficient, and with the BBC leading adoption,
this will provide a serious alternative to internet
protocol television (IPTV) networks based on
client-server technologies.

P2P networks are starting to offer a complete
triple play to users for TV, voice, and related
IP services. Unfortunately, the type of person-
to-person interactivity that a P2P network can
sustain is poorly supported by an iDTV platform.
If P2P networks based on “Super-peers” are the
future of TV, as the BBC’s iMP experiment would
suggest, the research community has a clear set
of challenges to address. These are challenges
that can only be addressed from a user-centric
viewpoint, commercial and business interests
will not design these networks, they will evolve
as memes. They will evolve directly in response
to user needs, and if not driven by common open
innovation platforms, then by the open source
communities alone.

One interesting project researching these is-
sues is the I-Share project (Pouwelse, Garbacki,
Epema, & Sips, 2005).

other devices

In addition to traditional input/output devices,
research should be focused on extended user in-
teraction in the television domain. For example,
Figure 12 shows two devices already at home
that can be used for enriching the television
experience.

In relation to their output capabilities, one in-
teresting research topic is that of personal devices.
Personal devices, apart of incorporating rendering
capabilities, are aware of the identity of the user.
Thus, these devices (e.g., a handheld device) can
personalize television content in a non-intrusive
manner. We propose a number of scenarios:

1. Extra information: Personal devices can
provide enhanced information a user might
be interested in, while watching a television
program (Finke & Balfanz, 2002, 2004),
for example, the statistics of a player dur-
ing a football match. The key issue is that
the information is displayed in the personal
device, as thus, it does not disturb the other
television viewers in the room.

2. Audio: Because the personal device knows
the identity of the viewer, it can provide a
subset of the content. Imagine, for example,
an elderly man who is watching television.
He might have lost some of his auditory

Figure 12. Interactive devices at home

 1245

Present and Future of Software Graphics Architectures for Interactive Digital Television

capabilities. In this case, the personal device
might render the audio of the program to
the headphones of the elderly person. But,
the actual shared volume is maintained at
the same level for the other members of the
family.

3. Text: Similar to the previous example, the
personal device might render personally
the subtitles of a movie. For example, if I
am in a foreign country watching a movie
with some foreign friends. I would like to
receive the subtitles in my mother tongue,
but, not necessarily the rest of the people
watching television would like to see those
subtitles.

In order to implement the scenarios presented
previously, we need a non-monolithic10 renderer.
A nonmonolithic renderer is one that it is capable
of deliver parts of a multimedia presentation
and extra information to several renderers. The
audiovisual content is delivered to the television

set. While, user interfaces, extra information, and
specific parts of the content are delivered in a syn-
chronized manner to other personal devices.

In addition to output devices, other devices
can extend the limited remote control interaction
provided by current television systems. For ex-
ample, gesture recognition and voice interaction
(Berglund, 2004; Berglund & Johansson, 2004)
are interesting topics that need to be further
researched.

Figure 13 shows a categorization of devices
depending on their rendering and interaction
capabilities. We can differentiate two levels of
user interaction, when watching content:

• Navigation/selection. This level of interac-
tion allows the user to navigate and select
content (e.g., go to the next scene).

• Enrichment. This level of interaction allows
the user to produce his/her personalized copy
of the television content. Some examples of
this augmentation includes subsetting the

Figure 13. Classification of devices at home

Interaction Level

R
e
n
d
e
r
i
n
g

L
e
v
e
l

Navigators/
Selectors Enrichers

1246

Present and Future of Software Graphics Architectures for Interactive Digital Television

content (e.g., deleting scenes) and adding
new content (e.g., to include your own audio
commentary of a movie).

One example of navigation/selection is am-
bient technology. We can use everyday objects
at home, such as an intelligent pillow, to gather
information about the user. These devices can
gather context-based information such as the
level of excitement of a user. Then, the television
renderer can act accordingly to the gathered data
(e.g., by pausing the television program in case
the level of excitement is too high).

Personal devices can be used to enrich content
(Cesar et al., 2006). Figure 14 shows a screen
shot of content augmentation (in the form of an
image) over television content. In this case, the
end user has highlighted one part of the screen
(in this case a tie). For example, he could include,
as well, some text such as “I would like this tie
for my birthday!” Research in this topic is related
to social TV and collaborative work. The major
requirement for a content enrichment system is
that the base content must not be altered (personal
copies should be generated as overlapping layers

of content). In addition, because television watch-
ing is an entertainment activity, the enrichment
process should be fast and simple. We have termed
this process as Authoring from the Sofa.

Apart from the inclusion of media objects,
content enrichment includes virtual edits (e.g.,
alteration of the presentation timeline and exclu-
sion of media objects) and creation of conditional
navigation paths. These capabilities are researched
within the European Passepartout11 project. The
scenario in this project is called Maxima. Maxima
is the content manager in the house. She selects
content and edits it for her children.

AgendA

As a summary, the agenda we propose in this
chapter for the future research in iDTV is de-
picted in Figure 15. From the distribution/post-
distribution of content, digital television content
(and services) can be transmitted using any kind
of network (e.g., broadcast, P2P networks, and
mobile networks). Then, the user can utilize any
kind of device to interact with and visualize the

Figure 14. Screen shot of end-user content augmentation

 1247

Present and Future of Software Graphics Architectures for Interactive Digital Television

television content. Each of the devices provides
different levels of interaction depending on their
limitations. For example, the user can interact with
one remote control and one television set (rather
limited scenario). But, the user might interact, as
well, with a personal tablet augmenter or a personal
digital assistant (PDA), non-intrusive interaction
is the concept to describe this kind of interaction.
Finally, the receiver (and the interactive devices)
includes a suitable declarative environment (e.g.,
SMIL, MAESTRO) and storage capabilities. The
receiver might well include extra capabilities such
as a recommender engine based on TV Anytime
standard and a multilingual framework.

conclusIon

The traditional definition of iDTV as the provision
of a return path focuses on the receiver capabili-
ties instead of on the user potentiality. In order
to avoid that iDTV becomes a dodo of history,

we should move our focus from the receiver to
the user. iDTV should not be restricted to one
television set and a remote control (intrusive
interaction), but extended to other digital devices
at home (non-intrusive interaction).

One essential research area is to rethink the
validity of the current standards and their evolu-
tion. Based on their market penetration of MHP, for
example, we might conclude that they are similar
to the European Constitution; the parliament of
each country approves it, but the citizens are not
so sure about it. In our opinion, the problem is
in the acceptance timetable of new technologies.
Nevertheless, standards should continue evolving
(e.g., declarative environment) in order to provide
the users the best possible alternatives.

Finally, we should try to model the current
situation, in which the traditional role of users as
consumers is shifting to become producers (e.g.,
blogging and personal Web pages) and distributors
(e.g., iPod). Much research is needed in topics such
as television content enrichment, post-distribution

Figure 15. Proposed agenda for iDTV

1248

Present and Future of Software Graphics Architectures for Interactive Digital Television

mechanisms (e.g., P2P networks), adaptability of
interactive services to other devices, and providing
an ambient experience (Baker 2006b).

AcknowledgMent

This work was supported by the ITEA proj-
ect Passepartout and by the NWO project
BRICKS.

references

Agamanolis, S. P., & Bove, V. M., Jr. (2003). Vi-
per: A framework for responsive television. IEE
Multimedia, 10(3), 88-98.

Aroyo, L., Nack, F., Schiphorst, T., Schut, H.,
KauwATjoe, M. (2007). Personalized ambient
media experience: Move me case study. In Pro-
ceedings of the 12th International Conference on
intelligent user interfaces (pp. 298-301)

Baker, K. (2006a). Jules Verne project: Realiza-
tion of reactive media using MPEG4 on MHP. In
Proceedings of the IEEE International Conference
on Consumer Electronics.

Baker, K. (2006b). Intrusive interactivity is not
an ambient experience. IEEE Multimedia, 13(2),
4-7.

Berglund, A. (2004). Augmenting the remote con-
trol: Studies in complex information navigation
for digital TV. Unpublished doctoral dissertation,
Linkoping University, Sweden.

Berglund, A., & Johansson, P. (2004). Using
speech and dialogue for interactive TV naviga-
tion. Universal Access in the Information Society,
3(3-4), 224-238.

Bulterman, D. C. A., & Rutledge, L. (2004). SMIL
2.0: Interactive multimedia for Web and mobile
devices. Heidelberg, Germany: Springer-Verlag.

Cesar, P. (2005). A graphics software architecture
for high-end interactive TV terminals. Doctoral
dissertation, Helsinki University of Technology,
Finland.

Cesar, P., Bulterman, D. C. A., & Jansen, A. J.
(2006a). An architecture for end-user TV content
enrichment. In Proceedings of the 4th European
Interactive TV Conference (pp. 39-47).

Cesar, P., Vuorimaa, P., & Vierinen, J. (2006b).
A graphics architecture for high-end interac-
tive television terminals. ACM Transactions on
Multimedia Computing, Communications, and
Applications (TOMCCAP), 2(4), 343-357.

Chorianopoulos, K. (2004). Virtual television
channels: Conceptual model, user interface
design and affective usability evaluation. Unpub-
lished doctoral dissertation, Athens University of
Economic and Business, Greece.

Cruz-Lara, S., Gupta, J. D., Fernández García,
& Romary, L. (2005). Multilingual information
framework for handling textual data in digital
media. In Proceedings of the Third International
Conference on Active Media Technology (pp.
82-84).

European Telecommunications Standards Insti-
tute. (2003). Digital video broadcasting (DVB)—
Multimedia home platform (MHP) specification
1.0.3. (Doc. No. ETSI TS 101 812 v1.3.1).

European Telecommunications Standards
Institute. (2004). Digital video broadcasting
(DVB)—Globally executable MHP (GEM). (Doc.
No. ETSI TS 102 819 v.1.2.1).

European Telecommunications Standards Insti-
tute. (2005). Digital video broadcasting (DVB)—
Multimedia home platform (MHP) specification
1.1. (Doc. No. TS 101 812 v1.2.1).

Finke, M., & Balfanz, D. (2002). Interaction with
content-augmented video via off-screen hyper-
links for direct information retrieval. In Proceed-
ings of the International Conference in Central

 1249

Present and Future of Software Graphics Architectures for Interactive Digital Television

Europe on Computer Graphics, Visualization and
Computer Vision (pp. 187-194).

Finke, M., & Balfanz, D. (2004). A reference
architecture supporting hypervideo content for
IDTV and the Internet domain. Computers &
Graphics, 28(2), 179-191.

ITU-T. (2001). Worldwide common core—Appli-
cation environment for digital interactive televi-
sion services (Doc. No. ITU-T J.200).

ITU-T. (2003). Harmonization of procedural
content formats for interactive TV applications
(Doc. No. ITU-T J.202).

ITU-T. (2004). Harmonization of declarative
content format for interactive TV applications
(Doc. No. ITU-T J.201).

Jensen, J. F. (2005). Interactive television: New
genres, new format, new content. In Proceed-
ings of the Second Australasian Conference on
Interactive Entertainment (pp. 89-96).

Morris, S., & Smith-Chaigneau, A. (2005). Inter-
active TV standards: A guide to MHP, OCAP and
JavaTV. Burlington, MA: Focal Press.

Pouwelse, J. A., Garbacki, P., Epema, D. H. J.,
& Sips, H. J. (2005). The Bittorrent P2P file-
sharing system: Measurements and analysis. In
Proceedings of the 4th International Workshop on
Peer-to-Peer Systems (pp. 205-216).

Smyth, B., & Cotter, P. (2000). A personalized
television listings service. Communications of
the ACM, 43(8), 107-111.

Soares, L. F. G., & Rodrigues, R. F. (2005). Nested
context model 3.0. Part 5—NCL (Nested Context
Language). (Tech. Rep. MCC-26/05, PUC-Rio).
Rio de Janeiro, Brazil.

endnotes

1 The architecture presented here is the one of
OtaDigi. The author collaborated with this
project; the intention was to set up a digital
television broadcast system for the Otaniemi
region, Finland. More information can be
obtained in: http://www.otadigi.tv

2 http://www.mhp.org/
3 This solution has not been fully supported

by the UK and France.
4 http://www.acap.tv/
5 http://www.arib.or.jp/english/
6 http://www.cardinal.fi
7 Please refer to the MHP Knowledge Project

for a complete study on the issue (http://
www.mhp-knowledgebase.org/)

8 It is important to remark that Brazil is the
fifth most populated country in the world.

9 http://www.iso.org/iso/en/CatalogueDetail-
Page.CatalogueDetail?CSNUMBER=37330
&scopelist=PROGRAMME

10 Our first results in this topic can be found
in http://www.ambulantplayer.org

11 http://www.citi.tudor.lu/QuickPlace/Passep-
artout/Main.nsf

This work was previously published in Interactive Digital Television: Technologies and Applications, edited by G. Lekakos, K.
Chorianopoulos & G. Doukidis, pp. 91-111, copyright 2007 by IGI Publishing (an imprint of IGI Global).

1250

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.9
Design Diagrams as
Ontological Sources:

Ontology Extraction and Utilization
for Software Asset Reuse

Kalapriya Kannan
IBM India Research Labs, India

Biplav Srivastava
IBM India Research Labs, India

AbstrAct

Ontology is a basic building block for the semantic
web. An active line of research in semantic web
is focused on how to build and evolve ontologies
using the information from different ontological
sources inherent in the domain. A large part of
the IT industry uses software engineering meth-
odologies to build software solutions that solve
real-world problems. For them, instead of creating
solutions from scratch, reusing previously built
software as much as possible is a business-im-
perative today. As part of their projects, they use
design diagrams to capture various facets of the
software development process. We discuss how
semantic web technologies can help solution-
building organizations achieve software reuse by
first learning ontologies from design diagrams of

existing solutions and then using them to create
design diagrams for new solutions. Our technique,
called OntExtract, extracts domain ontology in-
formation (entities and their relationship(s)) from
class diagrams and further refines the extracted
information using diagrams that express dynamic
interactions among entities such as sequence
diagram. A proof of concept implementations is
also developed as a Plug-in over a commercial
development environment IBM’s Rational Soft-
ware Architect.

IntroductIon

A Scientific American article describes evolution
of Web that consisted largely of documents for
humans to read and that included data and infor-

 1251

Design Diagrams as Ontological Sources

mation for computers to manipulate. In order, to
help the people and machines to communicate
concisely, this huge repository of information
(Web) have to be re-engineered to define shared
and common domain theories that are machine
processable. This is the precise aim of Semantic
Web to build metadata – rich Web where presently
human-readable content will have machine-under-
standable semantics. Semantic Web achieves the
increased demand of shared semantic and a web of
data and information derived from it through the
adaptation of common conceptualizations referred
to as Ontologies. Ontologies are fundamental
building blocks of Semantic Web and therefore
cheap and fast construction of domain-specific
ontologies is crucial for the success and the pro-
liferation of the Semantic Web. We explore how
a semantic web may impact software engineering
where common conceptualizations (e.g., software,
work products, experience) from previous projects
need to be reused in new projects.

The chapter will contribute in the following
ways: (a) It will introduce an ontology learning
technique from design diagrams (specifically
UML) which is in line with the research direc-
tion of building ontologies from different sources
to enable a rich semantic web; (b) It will show a
concrete semantic web application how the se-
mantic web technology of ontology can promote
software reuse; (c) It will put recent research on
transformations from UML to OWL and vice-
versa in perspective; and (d) it will motivate more
research effort in semi-automatically building
integrated information models.

ontology learning and sources

Ontology learning facilitates the construction of
ontologies by ontology engineering. Ontology
learning includes a number of complementary
disciplines that feed on different types of unstruc-
tured, semi-structured and fully structured data in
order to support a (semi -) automatic, cooperative
ontology engineering process. Ontology learning

is quiet a tedious task and often requires manual
intervention. Ontology learning algorithms have
concentrated in finding efficient methods of
automatically extracting ontology information.
Today, research apart from automatic ontology
learning has also focused on finding sources
(RDF, html, unstructured text etc) of ontologi-
cal information. In our work we concentrate on
identifying one such source i.e., design diagrams
and provide an (semi-) automatic technique to
extract (domain) ontological information. In the
process of software solution development, large
amount of ontological information is implicitly
modeled in design diagrams. Our work aims at
extracting this implicit ontology from the design
diagrams. It largely helps reuse of the concepts
in other software solutions.

In Figure 1, a simplified project cycle is shown.
The project requirements are collected; the solu-
tion is developed and tested, and finally released
to the customer. At the end of the project, a report
is generated to capture the learning. However, it
is rare that project-end deliverables or reports are
explicitly used to improve the solution develop-
ment process for new projects.

Our key observation is that the similarity
among the projects alludes to the existence of a
veritable domain of discourse whose ontology,
if created, would make the similarity across the
projects explicit. However, manually creating
such domain ontologies is infeasible due to the
training needed for the software professionals
and the efforts required. Although many ontol-
ogy engineering tools have matured over the last
decade, manual ontology acquisition remains a
tedious, cumbersome task that can easily result
in domain knowledge acquisition bottleneck. We
note that design diagrams are integral part of
software project deliverables as they document
crucial facets of the solution dealing with software
artifacts, their relationships and runtime behavior.
Much, but not all, information in theses diagrams
are ontological information. If one were to extract
and explicitly represent them, they would enable

1252

Design Diagrams as Ontological Sources

shared and common domain theories that would
not only enable better understanding of the domain
but also allow software professionals to reuse the
domain theories in creation of new solutions over
their project cycle. This is illustrated in the lower
half of Figure 1.

Using UML-2 as the design diagram represen-
tation, we present the OntExtract tool to extract
ontologies from project deliverables and show
that they can be reused for new projects. UML
has become a de-facto standard for modeling
software development activities. In UML, static
behavior of the solution is captured by diagrams
like the class diagram and dynamic behavior by
diagrams like the sequence diagram. Two types of
elements are present in UML diagrams: (a) those
representing environmental artifacts representing
characteristics of the problem space, and (b) those
representing implementation artifacts introduced
to ease a form of software implementation. We
assume that the generated ontology should be

general enough to span implementation trends.
Our method, OntExtract, reads UML diagrams
and proceeds by preserving the environmental
artifacts, removing the implementation artifacts
and maintaining the consistency of the resulting
diagram. The output ontology is represented using
UML class notations to ease the understanding by
developers who may not be familiar with a new
(ontology) representation language like OWL.
However, using emerging UML to OWL (and
vice-versa) transformation methods, the ontology
can be maintained in multiple representations.
Moreover, with UML diagrams from multiple
projects, the emergent ontology can be refined.
Over time, the ontology will capture the learning
from previous projects.

The ontology can be used for any purpose
including software reuse for new solution cre-
ation. For reuse, as the solution process is being
followed, the initial UML diagrams for the new
solution can be created by filtering the relevant

Figure 1. Custom Software Projects and the Impact of OntExtract

 1253

Design Diagrams as Ontological Sources

content from the ontology. As an example, we
show how the sequence diagram from the new
solution can be used as a requirement over the
ontology and an initial class diagram for the
solution can be created.

contributions

The main contributions of our work can be listed
as follows:

1. Concept of Design diagrams (in specific
UML diagrams) as sources of ontological
information.

2. An automatic ontology extraction technique
called ‘OntExtract.

3. OntExtract Methodology from UML dia-
grams of a single solution of a specifica-
tion:
a. Concept of identifying the elements

that relate to concepts in domain.
b. Preserving those elements that express

domain concepts.
c. Eliminating and reducing the impact of

elimination of components that doesn’t
relate to concepts.

4. Ontology aggregation methodology from
Multiple UML diagrams.

5. The impact of extracted ontology in solution
building. Hence, it is important to apply
semantic techniques in this domain.

6. Relationship with approaches for informa-
tion transformation: UML to OWL and
vice- versa, UML as ontology language.

7. Challenges in extending information models
with more ontological data sources.

We have implemented OntExtract as a plug-in
using IBM Rational Software Architect. It benefits
two groups of people: (a) Software professionals
and (b) Ontology engineers. Software profession-
als benefit by using this tool to obtain domain

models that allow reuse of design decisions at
all stages of a new software project. Ontology
engineers can use our tool to create/ maintain
domain ontology considering design diagrams as
a new source of information. Initial results show
that the created ontologies are accurate and help
in better software reuse for new solutions.

bAckground

In this section we provide the background knowl-
edge about the design diagrams and the standards
used for creating and representing design diagrams
and ontology. We also provide the same example
considered in our work for evaluation purpose.

design diagrams and uMl 2

Design Diagrams are used to represent visually
software solution for a problem. They express en-
vironmental relationship (entities and relationship
among entities that represent domain concept in
domain ontology) among entities in the solution
developed for requirement specification of a prob-
lem. In addition design diagrams express imple-
mentation artifact that model implementation
entities and relationship needed for development
of software solutions. We use UML 2 since it has
become a de-facto standard for modeling software
development activities. UML (Terry Quatrani,
2001), is a standard modeling language for speci-
fying, constructing, visualizing and documenting
artifacts of the software system. UML consists
of 9 set of diagrams to model various software
artifacts. In our work we use class diagram that
belongs to the category of the structural diagrams
that represents static behavior of the system to
extract domain concepts. Sequence diagrams are
used for further refining the extracted ontology.
OCL is the constraint language with UML but it
is not used widely in commercial projects.

1254

Design Diagrams as Ontological Sources

ontology

Ontologies are meta data schemes, providing
controlled vocabulary of concepts, each with an
explicitly defined and machine processable seman-
tics and inter-relationships with other concepts.
Ontology uses the following elements to express
environmental artifacts: Classes represents gen-
eral things in the domain of interest, Individuals
defines instance of an class and includes concrete
objects such as people, animals etc., Attributes
describes the general properties of the classes,
Relationship represents the relationships in terms
of subsumption (IS-A) relationship, meronymy
(HAS-A) relationship that exists among things.
The OWL language (Deborah, 2004) is a leading
standard for ontology representation.

example domain

We use the case study of student course registra-
tion taken from the Rational tutorial (Terry, 2002)
as the running example in the chapter:

At the beginning of each semester students may
request a course catalogue containing a list of
course offerings for the semester. Information
about each course, such as professor, depart-
ment, and prerequisites will be included to help
students make informed decisions. The new on-line
registration system will allow students to select
four course offerings for the coming semester. In
addition, each student will indicate two alternative
choices in case a course offering becomes filled
or canceled. No course offering will have more
than ten students. No course offering will have
fewer than three students. Once the registration
process is completed for a student, the registration
system sends information to the billing system, so
the student can be billed for the semester. Profes-
sors must be able to access the on-line system
to indicate which courses they will be teaching.

They will also need to see which students signed
up for their course offering. The billing system
will credit all students for courses dropped during
this period of time.

For purpose of experimentation and evalua-
tion, in this work we consider several solutions
for the above problem. Figure 3 gives the UML
class diagram for a solution we have proposed.
This solution is henceforth referred to as Solution
A (SolA). We consider two other solutions (class
diagrams) taken from tutorial website of Rational
Software Corporation (Rational, 2000), (referred
to as Solution B (SolB) and class room lecture
of Prof. Dr. Bettina Berendt (Bettina, 2005),
(referred as Solution C (SolC)). We assume that
these input class diagrams are correct. We repre-
sent classes and association between two classes
as nodes and edges, respectively.

We use the terms nodes and classes inter-
changeably, and similarly the terms edges and
associations. The term Root node is used to refer
to a node that is placed at the highest level of the
tree and has no parents.

usIng uMl dIAgrAMs As
ontologIcAl sources

Figure 2 gives the system architecture of On-
tExtract. OntExtract takes UML diagrams (class
and sequence diagram) of multiple projects and
extracts the domain ontology. Domain require-
ments are taken as a tuple of keywords.

UML elements can be classified broadly into
two categories: (a) Implementation Artifacts:
They are introduced by the architect of the
software solution to capture those elements that
represent low-level details of the solution such
as messages exchanged and their behavior. Such
artifacts are either full-fledged classes or specific
attributes of a class. (b) Environmental Artifacts:

 1255

Design Diagrams as Ontological Sources

They include ontological entities and relation-
ship among such entities. Relationship includes
generalization (IS-A), aggregation/composition
(HAS-A) and USING association. We use the
stereotypes to identify UML elements. Imple-
mentation artifacts do not contribute to domain
concepts while environmental artifacts such as
IS-A, HAS-A, USING relationship and entities
participating in such relationship reflects domain
concepts. All UML diagrams have implementa-
tion or environmental artifacts. However, static
information such as classes (concepts), attributes
and relations (semantics) can be obtained from
class diagrams. Therefore, in our we use class
diagrams to extract domain information (ontol-
ogy) and explore whether interaction diagrams
such as sequence diagram would help identify
more domain concepts.

ontology extraction from class
diagram

Class level implementation artifact: UML defines
three types of stereotyped classes (a) Boundary

class (b) Controller class and (c) Entity class. A
boundary class models interaction between the
software system and the environment. A control
class acts as coordinator of activities. An entity
class models information that has been stored by
the system and its associated behavior. By and
large, entity classes reflect real world entity and
are part of environmental artifacts. Boundary and
Controller classes are implementation artifacts,
used to ease software development.

Attribute level implementation artifact: At-
tributes are storage elements of a class instance.
Some attributes are introduced to maintain
property values of an entity class while others are
used purposes such as maintaining uniqueness,
class level state, providing identities to entities.
Attributes of the form of second category are
implementation artifacts.

In Figure 3 we identify some of the implementa-
tion and environmental artifacts. In this Figure, the
class RegistrationMgr is a class level implemen-
tation artifact (co-ordinates messages between
other entities). Attribute ‘stuID’ in the class Reg-
isteredClass is an attribute level implementation

Figure 2. System overview

1256

Design Diagrams as Ontological Sources

artifact introduced to maintaining uniqueness
of the entity. Environmental artifacts such as
class ‘Student’ inherits from ‘InstituteMember’
can also be seen in this Figure. Environmental
artifacts reflecting domain concepts, OntExtract
proceeds by removing implementation artifacts
and preserving environmental artifacts.

ontextract: elimination of
Implementation Artifact

Elimination of a class level attribute affects nodes
that are associated with the eliminated node

through inheritance, aggregation/composition
and USING relationship. Nodes that are related to
eliminated node through the above relationships
is also eliminated. Links representing USING
relationship between the neighbors of eliminated
node result in dangling edges. In order to build
relationship rich ontology, we aim to preserve
this relationship by the process of propagation.
Propagation results in new relationship (edges)
among neighbors. The properties of the new
relationship depends on the properties of two
dangling edges that results in propagation. Figure
4 shows the nature of edges that are atypical of

Figure 3. Ontology information from class diagram

 1257

Design Diagrams as Ontological Sources

a relationship. In Figure 4, case 1 and case 2 do
not have propagating links. We are interested in
case 3 that has propagation edges where a new
association is created between every incoming,
bidirectional and outgoing links.

The attributes such as name, direction, car-
dinality, role names of the new association are
obtained as follows: Direction: The direction of
the new edge depends on whether the dangling
edges were bidirectional or directed. New edge
assumes the direction of the dangling edge(s) if
the dangling edges were directed otherwise it is
bidirectional. Role name: The new edges assume
the role name of the nodes that the new edge con-
nects. Cardinality: Cardinality of the new edge is
obtained by finding the minimum and maximum
number of instances of nodes that the new edge
connects, can be associated through the node that
is eliminated. In other words, the cardinality is
calculated as the cross product of cardinality of the
two links that results in propagation. Figure 5 (a)
shows the propagation of cardinality constraints
among the dangling edges.

Figure 5 (b) shows the new edges with the prop-
erties after elimination of a node (refer case 3 of
Figure 4) and Figure 6 shows the class diagram of
the student registration example after elimination
of the class level implementation artifacts.

We leave the elimination of attribute level
implementation artifacts as future work. Identi-
fying these artifacts is difficult since there is no
explicit notation is available in UML to annotate
attributes according to intended usage and requires
profiling of the code.

Algorithm 1 describes the steps for removing
class level implementation artifact and propagat-
ing relationships. The algorithm gets and removes
controller and boundary classes in the UML dia-
grams (line 1). A new association is created for
every incoming (line 12), bidirectional edge (line
17) (to the controller/boundary class) to outgoing
edge (from the controller/boundary class) line 4.
The properties of the new association are obtained
from the incoming/bidirectional - outgoing edge
pair. In the algorithm, the terms ‘this end’ refers
to the end associated with a neighbor nodes and

Figure 4. Elimination of a node and its dangling edges

1258

Design Diagrams as Ontological Sources

Figure 5. (a) Cardinality constraints propagation; (b) Role names and Direction

(a) (b)

Algorithm 1.

 1259

Design Diagrams as Ontological Sources

‘other end’ refers to the end associated with the
other neighbor, between which a new associa-
tion is created. Property role name, cardinality
constraints are obtained in line 8 and 16. The new
association assumes a new name for reference. The
resultant class diagram is henceforth referred as
Eliminated Entities Class Diagram (EECD).

ontextract: Preserving
environmental Artifact

The EECD obtained as a result of elimination of
implementation artifact represents in general all

conceptual entities which can be directly reused in
other similar software projects. In addition to this,
we provide provisions for extraction of ontological
information for specific domain requirements pro-
vided by the software professional. For example,
in the context of ‘professor’ (in Figure 3) students
billing information is not relevant.

The domain requirement is provided by the
architect as a tuple of keywords. Let us consider an
example in which we are interested in extracting
student domain information i.e., input keyword
is {student}. We assume that this input keyword
directly maps to an entity class in EECD. This

Figure 6. Student registration class diagram after elimination of class level implementation artifacts

1260

Design Diagrams as Ontological Sources

class is henceforth referred to as the candidate
class. Preserving environmental artifact includes
identifying those entities that reflect domain con-
cepts in the resultant EECD. All entities that are
related through inheritance (IS-A), aggregation/
composition (HAS-A) and USING relationship
(collectively known as environmental relation-
ship) directly reflects domain information with
respect to the input tuple.

For inheritance relationship, all ancestor
classes influence the candidate class and all
descendants classes are influenced by candidate
class. Figure 7 (a) gives the generic graph of
the candidate class and its neighbors in a class
diagram. Therefore, with respect to inheritance
relationship all ancestors and descendants of the
candidate class are preserved. The siblings of the
candidate class do not affect the candidate class

(a) (b)

Figure 7. Generic Model (a) neighbors (b) inheritance output

Algorithm 2.

 1261

Design Diagrams as Ontological Sources

and therefore do not reflect concepts of the domain
represented by the candidate class. Algorithm 2
presents the algorithm to obtain all ancestors and
descendants for the candidate class. To extract
the nodes that are ancestors for the candidate
class, the algorithm finds all the paths from the
candidate class to the root node (line 1). To find
a descendant node the algorithm checks if a node
has route to the candidate class in line 4. Figure 7
(b) gives the generic output structure (tree) after
preserving inheritance relationship.

Preserving aggregation/composition relation-
ship is similar to the technique presented for
extracting inheritance relationship. ‘USING’
relationship is denoted by Directed and Bidirec-
tional links. It represents exchange of messages
between two classes during execution. We are

interested in the classes that help to achieve
the functionality (use case) by the relationship.
Run time information such as classes related to
candidate class through ‘USING’ relationship is
not directly available from class diagram. The
actual set of related classes can only be obtained
from diagrams that reflect dynamic behavior (dia-
grams that describe the behavior of classes). Two
UML diagrams, activity diagrams and sequence
diagrams are candidates that provide dynamic
information.

Ontology Refinement Using
sequence diagram

Sequence diagrams describe the services provided
by objects through exchange of messages.

Figure 8. Sequence diagram for functionality ‘course registration’

1262

Design Diagrams as Ontological Sources

Activity diagram describe sequence of ac-
tivities and is generally more expressive than the
state diagram. Based on the above comparison,
we propose to use sequence diagram to extract
classes that are related to the candidate class
through ‘USING’ relationship. All sequence dia-
grams that has the candidate class are considered.
Figure 8 gives the sequence diagram for the use
case ‘course registration’. Classes CoursePackage,
Course, RegisteredCourse, Billing that are related
to the candidate class {Student} through these
sequence diagrams are preserved as ontological
information.

Figure 9 gives the Ontology Diagram (OD) that
represents the extracted ontology information for
domain requirement {Student}.

Sequence diagrams acts as filters for extract-
ing entities that are associated with the candidate
class to achieve a certain functionality (use case)
or to provide a service. Using Model Driven Ar-
chitecture (MDA), the architects/professionals
begin by describing the use cases (functional-
ities/services) from the functional requirements
of a problem. By modeling these services into a
set of sequence diagrams our approach can be
used to obtain ontology customizable for the new
problem. This helps to obtain existing solution ap-
proaches for the new problem and thereby largely
help software reuse.

Figure 9. Extracted Ontology Diagram (OD)

 1263

Design Diagrams as Ontological Sources

ontology eXtrActIon froM
MultIPle uMl dIAgrAMs

Methodology

With view of improving the quality of the extracted
ontology, we propose an ontology refinement tech-
nique in which OntExtract extends to aggregate
ontology from multiple Ontology Diagrams (OD)
with respect to a domain requirement. The refine-
ment process helps to correct/update/change to a
fine granularity and increases the confidence of
the correctness of the extracted ontology. These
design diagrams can be different solution of same
problem or solution(s) of different problem(s).
Ontology aggregation from multiple OD can be
done in two ways (a) Incremental approach, ag-
gregates ontology by considering one relationship
at a time, (b) Consolidated approach, aggregates
ontology by considering all relationship in an on-
tology diagram. Consolidated approach increases
the complexity of analysis of relationships since
a single node can have multiple types of relation-
ship. In addition, the consolidated approach does
not handle propagation of relation inherently
(explicit/ manual invention is required to handle
propagation) whereas incremental approach

handles propagation inherently (aggregation
is based on all relationship but incrementally).
Therefore, we use incremental approach by taking
one relationship from multiple ontology diagrams
to aggregate ontology.

Aggregation of ontology from multiple ontol-
ogy diagrams requires adding/deleting/ updating
ontology entities. We use the metric semantic
distance to arrive at a decision whether to add/de-
lete/update entities. Semantic distance measures
the closeness of two entities in ontology diagram.
Semantic Distance between nodes is reduced to
distance between concepts in a graph. The distance
between concepts is determined according to their
positions (measured as levels). When a hierarchy
is N = (n+1) layered, K/N nodes is connected to
the class in the Kth level where (0 < K < N). Figure
10 (refer to output inheritance diagram Figure
9) diagram shows a sample inheritance graph in
the ontology diagram with the candidate class
in the Kth level. Value of K/N determines the
characterization of the graph, if K/N is very low,
then the relationship structure represents more
generalization then specialization with respect to
candidate class and vice-versa. The more general
is the structure, the more re-usable is the extracted
ontology. Therefore, our algorithm aims to keep

Figure 10. Semantic distance desired

1264

Design Diagrams as Ontological Sources

the K/N as low as possible. More generalization
the structure represents more re-usable is the
extracted ontology. Therefore, our algorithm aims
to keep the K/N as low as possible.

Aggregating Ontology from Multiple
Inheritance/ Aggregation/ Composition
Relationship Graph

We use the edge counting graph (Rada, 1989)
method to calculate the semantic distance between

the nodes since it gives a good estimate of how
close two nodes are. In edge counting method,
semantic distance between two nodes is measured
as the number of edges between two nodes. In
order to maximize generalization nodes, a smaller
path between any two nodes in the levels above the
level of the candidate class in a ontology diagram
is replaced by a longer path (if one exists) from
another ontology diagram(s). Figure 11(a) gives
various input and output diagram for generaliza-
tion nodes in an inheritance. The Figure shows the

Figure 11. Ontology aggregation (a) specialization (b) generalization

 1265

Design Diagrams as Ontological Sources

replacement of the smaller paths by longer paths
if present in the input diagrams. The Figure also
shows that if there are no common nodes, all the
paths are preserved. In order to keep specialization
nodes as low as possible, a longer path between
two nodes below the level of the candidate class in
a ontology diagram is replaced by a shorter path
(if one exists) from another ontology diagram(s).
Figure 11(b) shows the replacement of longer
path(s) between any two nodes by shorter paths
if available in the input diagrams. If no common
nodes are present all the nodes in the ontology
diagrams are preserved in the resultant structure.
The resultant diagram obtained by aggregating
inheritance/aggregation/com position relationship
is referred to as the Partial Aggregated Relation-
ship Diagram (PARD).

Aggregating Ontology from Multiple
‘USING’ Relationship Graphs

For aggregating ‘USING’ relationship, all the
elements that are related to the candidate class
through ‘USING’ relationship from the ontology
diagram(s) are added to PARD. The resultant
diagram is the final Aggregated Ontology Dia-
gram (AOD).

Inconsistency

In general, aggregating information from multiple
ontology diagrams would give rise to two kinds of
inconsistencies: Class Level Inconsistency: This
inconsistency arises when a class (identified by
name) appears in multiple ontology diagrams but
the attributes of the class are different in different
in ontology diagrams. For example Registered-
Course in an ontology diagram has {StudentId,
CourseId} as two attributes and has {StudentId,
CourseId, BillAmt} in another ontology diagram.
Our aggregation algorithm handles this inconsis-
tency by merging the list of attributes (attribute
richness) in the resultant AOD. Association Level
Inconsistency: This inconsistency arises when

association between two nodes in one ontology
diagram is different than in another ontology
diagram. If such association exists between two
nodes we preserve all the associations between
the two nodes. In ontology each association is
represented as a property. Properties are first
class elements in ontology and therefore can
exist independent (of the class). In ontology end
points of the property are defined by defining
the domain (source) and range (destination) for
the property. This implies there can be multiple
properties whose end points and range are same,
but their utilization depends on the context. By
maintaining these associations (as properties) we
are precisely extracting the domain (context) in
which a entity exits. This is one of the important
benefits of aggregating domain information from
multiple ontology diagrams.

onteXtrAct: IMPleMentAtIon,
evAluAtIon And AssessMent

To put our approach into practice, we have imple-
mented our approach as a plug-in using IBM
Rational Software Architect (IBM Enterprise
Architect Kit for SOA, 2006) using Java lan-
guage. The plug-in reads in the class and outputs
an ontology diagram that is represented using
UML notation. Our tool provides provisions for
software professionals to extract relevant ontol-
ogy as applicable to a new problem by providing
two optional input holders: (a) sequence diagram
holder and (b) domain requirement holder. Both
these inputs help extract refined or customized
ontology. We have evaluated two cases: (a) Sample
Domain - Student course registration, (b) Large
scale real world example from IBM. We refer to
the extracted ontology of SolA as Base Ontol-
ogy [BaseOnt] (Figure 6). In general ontology
evaluation approaches are classified into four
categories (i) those that evaluate the ontology by
comparing it to the golden standard, (ii) those
that evaluate the ontologies by plugging them in

1266

Design Diagrams as Ontological Sources

an application and measuring the quality of the
results that the application returns, (iii) those
that evaluate ontologies by comparing them to
unstructured or informal data (e.g. text documents)
and (iv) and those based on human interaction
to measure ontology features not recognizable
by machines. In our work we have used all the
above mentioned work to prove two main aspects
described as follows:

1. First we proceed to show that our extracted
ontology by OntExtract is reasonable and
correct.

2. The extracted ontology is reusable in new
solutions (due to the fact that the created
ontology overlaps with the design require-
ments of a new solution).

The first aspect evaluates the validity of the
extracted ontology. We use the approach of com-
paring the extracted ontology with the golden
standard to show that our algorithm extracts
ontology similar to existing standard ontologies.
In the second aspect, we use the approach of plug-
ging the extracted ontology in an application and
measuring the quality of results to evaluate the
useful of the extracted domain ontology. Finally,
we take the help of domain experts (humans) and
bring out the importance of our tool in help them
with defining better UML diagrams.

ontextract extracts reasonable
ontology

The aim is to show that OntExtract extracts rea-
sonably accurate ontology (serves the intended
purpose of extracting ontology). By this we also
show that our approach is correct.

Methodology

We evaluate our approach for correctness of is-
a, has-a and other associations between entities
relations by comparing the extracted ontology

with manually built Golden standard (ontology).
Golden standard ontology consists of set of entities
and relationships that are considered as a good
representation of the concepts of the problem
domain under consideration. The golden ontology
is often manually created by experts (Hassell,
2006) or obtained by merging multiple individual
ontologies that are correct. We compare the ex-
tracted ontology to a golden ontology, considered
as a good representation of the concepts of the
problem domain under consideration. High values
of matching entities between the two ontologies
indicate that our approach OntExtract extracts
similar ontology to existing ones.

In our case we consider domain ‘University’
(whose subset is the course registration) and obtain
the golden standard ontology by aggregating sev-
eral individual ‘University’ ontologies from (Jeff,
2000; University Ontology, 2002; Donnie Dorr,
2000). Let UML1, UML2 and UML3 be notations
that represent these ontologies respectively. We
first show that these individual ontologies are
correct and therefore the aggregation of these on-
tologies results in golden standard ontologies. We
use the evaluation method presented by Bruno et
al (2005) to measure the correctness of individual
ontologies. This method assigns grades (depend-
ing on the correctness) to individual ontologies
and determines the corrections based on these
grades. It uses the combined approaches proposed
in (Gmez-Prez, 1994; Oltramari, 2002) considered
as traditional evaluating methodologies. To begin
with it assigns each ontology a grade starting at
20. For each error encountered the grade value
is decreased.

Table 1 presents the various criteria s consid-
ered for assigning grades. Ontologies that have
grades greater than 13 are considered to be satisfy
correctness conditions.

Table 2 presents the consolidation of the grades
obtained for individual ontology diagrams that
we have considered to obtain the golden ontol-
ogy. From Table 2 it can be seen that the UML
diagrams that we have considered to obtain the

 1267

Design Diagrams as Ontological Sources

golden ontology are correct (have grade points
greater than 13). We aggregate these individual
ontologies to obtain the golden standard. The
reason why consider a golden ontology and not
individual UML diagrams considered to aggre-
gate is primarily because the individual ontologies
considered might be not include all/most of the
components of the domain. Complete or partially
complete domain ontology can be obtained by
merging multiple ontologies.

We present the rules considered for aggregating
these correct UML diagrams to obtain a golden
standard. The aggregation of these individual

ontologies is done using the following rules: (a)
union of all relationships is considered between
two similar classes (b) for any association all the
classes that it connects are considered. A golden
ontology thus obtained is shown in Figure 12.

For purposes of comparison, we define Entity
Level Relationship Diagram (ELRD), which is
a high level abstracted diagram of the extracted
ontology containing only the entities and relation-
ship after removing the properties of class and
associations. The following rules are used to obtain
ELRD from either EECD or OD. (a) Properties of a
class in a UML diagram (attributes) are specific to

Criteria Points
Completeness Errors (not satisfying the requirements) -1
Wrong usage of is-a relationship -1
Wrong usage of has-a relationship -1
Wrong usage of association -1
Modeling errors -2
Clarity errors -1
Consistency errors -10

Criteria UML 1 UML 2 UML 3
Completeness error 0 0 0
Wrong usage of is -a relationship 0 0 0
Wrong usage of has-a relationship 0 0 0
Modeling errors -2 -2 -1
Clarity errors -1 0 -1
Consistency errors 0 0 0
Total grade 17 18 18

Table 2. Grades for UML diagrams considered for merging

Table 1. Criteria considered for grade assignment

1268

Design Diagrams as Ontological Sources

a specification. For example, property ‘studentid’
may appear in some university diagram. In some
other university it may be ‘studentName’. Since
our aim is show that the extracted information
is ontology we omit the properties and consider
only the entity and relationships. Similarly, attri-
butes of associations are omitted. (b) Inheritance
link is replaced by a directed link; Aggregation,
composition and using are replaced by just a link.
(c) Inheritance is replaced by text ‘is-a’, Aggrega-
tion/compositions is replaced by text ‘has-a’, using
is replaced by the appropriate verb (d) ‘has-a’ and

‘is-a’ relationship is given high priority. If two
nodes are connected by has-a or is-a, then all other
relationship is ignored. (e) Any variable contain-
ment is treated (including pointer containment)
as ‘has-a’ relationship. (f) CASE is ignored (g)
Naming conflicts are manually resolved through
annotations using external sources. (h) Terms are
extended with meanings to increase the scope
of matching Figure 13 presents the ELRD of the
BaseOnt. Base-ELRD is the term used to refer
to this ELRD. We compare Base-ELRD with the
golden ontology of university (Figure 12). Table

Figure 12. Golden Ontology – University

 1269

Design Diagrams as Ontological Sources

3 presents the inference criteria for determining
matches between the golden ontology and the
ELRD elements.

results

Equation 1 gives the quantitative measure of
entity level similarity (Esim) observed as the ratio
of the number of matching entities(s) between

the golden ontology and Base-ELRD to the total
number of entities present in the Base-ELRD of
the extracted ontology:

Esim = nE
match/ n

E
ELRD (1)

where nE
match is the matching entities between the

golden ontology and Base-ELRD and nE
ELRD give

the number of total number of entities present

Criteria Name Extensions to criteria
is-a, has-a Matched as such
Other IS-A
relation-
ship(s)

Inference 1 A is-a B is-a C implies A is-a C
Inference 2 In the above, Property of C is inherited

by A
Inference 3 A has-a B has-a C =) A has-a C

Using relationship Offer Matches offer of the standard ontology
Registers Since student has registered course and

registered course has course, one can
conclude that student has course

Figure 13. ELRD for student course registration

Table 3. Inference rules applicable for matching

1270

Design Diagrams as Ontological Sources

in the Base-ELRD diagram. In the similar way,
Equation 2 gives the quantitative measure of
relationship level similarity (Rsim):

Rsim = nR
match/n

R
ELRD (2)

where nR
match is the number of matching

relationship(s) between the golden ontology and
the Base-ELRD and nR

ELRD gives the number of
total number of relationship elements present in
the Base-ELRD diagram.

Table 4 gives the number of matching entity and
relationship elements between the golden ontology
and Base-ELRD (Figure 12 and Figure 13). The
class Course is related to registered course through
inference property of ‘HAS-A’ relationship. Using
Table 4 and Equations 1 and 2, we calculate the
matching (similarity) entities and relationships
metrics as presented in Table 5.

The extracted ontology from the UML
diagrams by preserving relationship and entities
shows about 85.7% match with the golden stan-
dard and about 75% match with the relationships.
High values of matching entities and relation-
ships between the extracted ontology through
OntExtract and golden ontology show that our
approach extracts ontology similar to existing
(golden) ontologies. In addition, our method de-
tects other elements that do not have corresponding

matches in the golden ontology thereby enriching
the existing ontologies with additional elements.
This directly proves that our OntExtract method
is correct since otherwise there would have been
large mismatch between the golden ontology and
ontology extracted through OntExtract.

reusability evaluation

Design of software solutions is greatly enhanced
if the software architect has/gets ‘a-priori’ knowl-
edge about concepts involved in the problem
specification (Marcus A. Rothenberger, 1999).
The aim is to show that the extracted ontology is
reusable in a number of situations like: (a) Reuse
in new solution development (b) Reuse in new
problem scenario.

Reuse In New Solution Development

Let us consider a solution for a problem domain
to be developed by different group of architects.
A solution provided by a group will greatly help
the other architects to detect artifacts and provide
better solution in the problem. We illustrate this by
showing that there exists large amount of common
concepts among the solutions, if the solution is
developed by different group of architects.

Matching entities Matching Relationship
Student, Professor, Course (registered
course, through inference property of ‘HAS-
A’ relationship), schedule/courselisting,
Institutemember.

Total: 6

is-a (Professor, institutemember), is-a(Student,
institutemember) , has-a (student,course ;sub-
Category registered course), Offer (professor, course)
term ‘offer’ is matched with ‘teacher-of’, has-a
(course, registered course), has-a (course [subcategory:
registeredcourse], courselisting).

Total:6

Table 4. Matching found for golden ontology and extracted ontology

 1271

Design Diagrams as Ontological Sources

Methodology: We take two different solutions
SolB and SolC provided by different group of
experts for the course registration problem speci-
fication. Comparisons are made to determine the
number of common matching entities between
these solutions and the BaseOnt. High value of
this metric indicates that the ontology from one
solution is highly re-usable for new solutions of
the problem.

We measure entity reuse (Ereuse) as the ratio of
number of matching entities with the BaseOnt
(nBE

match) to total number of entities present in the
solution (nSE

sol) and is given by Equation 3. In
the similar way, Equation 4 gives the relationship
reuse Rreuse:

Ereuse = nBE
sim/ nSE

Sol (3)

Ereuse =nBR
sim/nSR

Sol (4)

where nBR
sim is the number of matching

relationship(s) with the BaseOnt and nSR
Sol is the

number of relationship(s) present in the solu-
tion. Table 3 was used to obtain the matching
entities.

SolB with Base Ontology: The ERLD of the
extracted ontology for Solution 1 is provided in
Figure 14.

Matching Entities Matching Relationship
Course, Student, courseoffering, Professor,
Universitystaff

is-a (professor,university staff),is-a(professor,
univeristystaff), has-a(course, courseoffering),
Using (Courselisting, student)

Table 6. Matching for SolB and BaseOnt

Criteria Number value
Number of entities present in solution 1 ELRD
Number of entities matching with base ontology
Number of relationship(s) present in the solution 1
ELRD
Number of relationship(s) matching with base
ontology

5
5
5
4

Re-use of entities present Ereuse

Re-use of relationship present Rreuse

5/5 * 100 = 100%
4/5*100 = 80%

Table 7. Comparison of Solution 1 with BaseOnt

Figure 14. Sol B ELRD diagram

1272

Design Diagrams as Ontological Sources

Table 6 presents the matching elements be-
tween the ELRD of SolB and Base Ontology. In
some cases, inference rules were extended to find
similar relationships. For example has-a(course,
courseoffering) in Solution 1 is similar to has-
a(course, courseoffering) in the BaseOnt through
‘courseSchedule’. Classes universityStaff in Solu-
tion 1 and instituteMember in BaseOnt represent
the same entity and is resolved manually.

Equation 3 and 4 are used to measure re-us-
ability as presented in Table 7. Reuse of entities

and relationship(s) has been observed as high as
100% and 80% respectively.

SolC with Base Ontology: Figure 15 gives the
ELRD diagram for Solution 2. Table 8 gives the
matching elements between ELRD of Sol2 and
BaseOnt. Class person match is obtained using
extended annotations using external source. Re-
usability is calculated as shown in Table 9.

Our results indicate that there is indeed great
amount of reuse ranging from 70% -100% entity
level and 57% to 80% relationship level reusable

Matching entities Matching relationships
student, professor,
person, course,
scheduleclass

is-a(student, person), is-
a(professor, person),
teaches(professor,co
urse), has-a(course,
schedulecourse)

Figure 15. Sol C ELRD diagram Table 8. Matching for Solution C and BaseOnt

Criteria Number value
Number of entities present in solution 2 ELRD
Number of entities matching with base ontology
Number of relationship(s) present in the solution
ELRD
Number of relationship(s) matching with base
ontology

7
5
7
4

Re-use of entities present Ereuse

Re-use of relationship present Rreuse

5/7 *100 = 71.4%
4/7*100 = 57.14%

Table 9. Comparison of Solution 2 with BaseOnt

 1273

Design Diagrams as Ontological Sources

components. This shows OntExtract provides
provisions for reusing previously available ontol-
ogy to new solutions.

Reuse in New Problem Scenario

Our approach provides provisions for the software
professionals to model the use cases of the new
problem as sequence diagram and extract related
ontology.

Methodology: The architect provides his solu-
tion as design diagrams. We extract the domain
concepts through OntExtract and call the ontol-
ogy as ArchitectOnt. We model the use-case
requirement as a sequence diagram and use this
as a filter to extract ontology from the BaseOnt.

We call this ontology as NewScenarioOnt. We
find the number of elements of NewScenarioOnt
is present in the ArchitectOnt. High values of
this metric indicate that large number of domain
entities can be reused.

We take an example where the software
architects want to design requirements to imple-
ment ‘ClearDues’ use-case of the administra-
tion department. The ‘ClearDues’ checks if the
student is valid and have cleared all the courses
with clear grades. The architect intends to design
new classes and relationship with existing course
registration system. For the sake of brevity, only
the ELRD diagram (Figure 16) of the class dia-
gram developed by the architect (ArchitectOnt)
is provided.

Figure 16. Class diagram by architect Figure 17. Relevant ontology extracted

Criteria Number value
Number of matching entities between the NewScenarioOnt and
ArchitectOnt
Number of matching relationship(s) between the NewScenarioOnt and
ArchitectOnt
Total number of entities present in the NewScenarioOnt
Total number of relationship present in the NewscenarioOnt

2
1
2
1

Reuse of entities Ereuse
Reuse of relationship Ereuse

2/2*100 = 100%
1/1*100 = 100%

Table 10. Reuse in similar but different domain

1274

Design Diagrams as Ontological Sources

We use the sequence diagram pertaining to
‘ClearDues’ (Figure 18) as a filter to extract on-
tology from Figure 6. This ontology extracted is
henceforth referred to as the NewScenarioOnt. All
the classes in the sequence diagram are considered
to extract NewScenarioOnt. The NewScenarioOnt
extracted in ELRD form is given in Figure 17.

The results presented in Table 10, indicates
that the sequence diagram of a new functionality
helps identifying reusable components from pre-
viously available solutions. Though this situation
is ideal and has 100% reusable components, in
practice the amount of re-usability might be less
than the one presented here. However, the domain
ontology is intended for reuse of domain concepts
wherever required; one might expect high values
of reusability.

evaluation on real world example

We have taken a real world scenario called “Secure
Trade Lanes” (Schaefer, 2006). The description is

Figure 18. Sequence diagram for Use case “ClearDues”

public but the design diagrams are confidential. It
was made available from a business unit in IBM
to evaluate our approach on a large scale problem.
There were 25 component level diagrams, interac-
tion diagrams (sequence diagram) for use cases.
Practical limitations were observed in applying
our approach to the real world scenario. The
classes were not stereotyped. We had stereotyped
the classes manually, since our tool relies on the
stereotypes for identifying class level implemen-
tation artifacts. The sequence diagrams were at
the component level. With the help of architects
we had interpreted class level sequence diagrams
before using our tool.

The work on real world problem was presented
to a group of architects and developers to demon-
strate the utility of our plug-in. Their feedbacks
indicate that our tool will be useful to develop
better software solution architecture.

Finally as a part of evaluation we present the
practical usability of our tool. Table 11 provides
the benefits of work for different category of

 1275

Design Diagrams as Ontological Sources

people involved in design and development of
software solutions.

contrIbutIons, lIMItAtIons,
relAted And future work

We have introduced a novel automatic approach
for extracting domain ontology for software asset
reuse from multiple design diagrams like UML.
We observe that dynamic behavior diagrams act
as powerful filters in extracting customizable
ontology for new scenario. Our OntExtract ex-
tends to aggregate ontology from multiple design
diagrams. We have developed an ontology extrac-
tion plugin over IBM Rational. We have evaluated
our work with a sample domain and a real world
example. Our approach shows promising results

to provide domain view and reuse of the domain
theories to develop new scenarios.

Our main contribution in this article can be
summarized as follows:

1. An approach for extracting ontology from
UML class diagrams.
 An approach to refine the extracted

ontology using sequence diagram.
 To obtain ontology relevant to a domain

by specifying domain requirements as
a set of key words.

 To generate ontology customizable to
a new problem domain.

2. An approach to aggregate the extracted
ontology using multiple class diagrams of
either same or different solutions.

Users Advantages Impact on software development process
Architects • Provides Domain View from

previous knowledge base (rather
than implementation)

• Provides existing solution
approaches for the new problem
and helps extract customized
ontology

• Obtaining complete domain prior
to development is complicated. Our
plug-in helps to provide domain view.

• Better architectures by providing
view of constraints, entities and
relationships that would have been
otherwise omitted.

Developer Helps justify implementation decisions and
model constraints
from existing solutions

Re-usability

Reasoners • Uniform understanding of the
domain

• Aggregation of ontology diagrams
provides reuse through inference

• Aggregated Domain view from
multiple design diagrams

• Fosters reuse of components across
different but related problems

Table 11. Advantages and relevance for practice of OntExtract

1276

Design Diagrams as Ontological Sources

limitations

The following are the limitations of our work:

1. In our work we have shown extraction of
ontology as relevant to a single domain
requirement. An incremental approach of
extracting ontology with respect to indi-
vidual domain requirements followed by
aggregation of these models will not satisfy
the requirements of obtaining single unified
ontology with respect to both domains. This
is primarily due to fact that individual do-
main ontology can vary a lot. There will be
missing associations between those entities
that were extracted with respect to a domain
requirement and those entities that were ex-
tracted with respect to other domain require-
ments. A different approach is required to
capture more than one domain requirement
and extract ontology with respect to both of
them.

2. Although we have used analysis class
diagram in our work, we are currently
working on methodologies that would help
identification of stereotypes for classes.
For example, we are exploring methods
such as code analysis, pattern analysis to
categorize classes. In the code analysis
methodology, we map the classes in UML
diagram to specific stereotype based on the
implementation. For example, entity beans
can be categorized as entity class, session
beans as controller class and servlets and
JSPs are boundary class. In pattern based
analysis, we analyze the interaction pattern
among the class to arrive at a decision of the
category of the classes. Such methodologies
would enable and promote usage of more
commonly available implementation class
diagrams as sources of ontology.

related work

Significant work has been done in the area of on-
tology learning and extraction (Alexander, 2001).
Various approaches have been used to extract and
learn ontology: (a) pattern based approach (Morin,
1999) where a relation is recognized when a se-
quence of words in the text matches a pattern, (b)
association rule approach (Adriaans ,1996) where
rules are used to match the query, typically used
for data mining process, (c) conceptual pruning
approach (Faure D, 2000) where the concepts
are grouped according to semantic distance,
(d) ontology pruning approach (Kietz, 2000),
where the objective is to build a domain ontol-
ogy based on different heterogeneous sources, (e)
concept learning approach (Hahn, 2000), where
the ontology is incrementally updated with new
concepts. OntExtract is precisely an extraction
technique that combines rule based approach
along with conceptual pruning. Rules define
the UML entities to be removed and preserved,
while concept pruning groups entities based on
semantic distance.

While the above-mentioned work concentrates
on ontology sources and techniques to obtain on-
tological information, there has been significant
amount of work done in using UML as an ontology
language (Baclawski, 2002). Some work, such as
presented in (Cranefield, 2001), aim at converting
an UML specification to an Ontology language
specification such as OWL (Deborah 2000). Our
work does not concentrate on converting or map-
ping the UML notation (specification) to ontology
language specification but concentrate on iden-
tifying and preserving elements that represents
domain knowledge (ontology).

Close to our work along the lines of using UML
diagrams in the field of domain engineering is the
work presented in (Cranefield, 2003). The aim of
their work is to express the ontology using UML
and to automatically generate related ontology

 1277

Design Diagrams as Ontological Sources

specific content language along with correspond-
ing java classes and an RDF based serialization
mechanism. The work in (Maurizio, 2000) aims
at providing a domain engineering approach and
the supporting tools to define software product
lines. The approach concentrates on domain en-
gineering (identifying domain, domain analysis,
and reusable domain components) and expressing
these entities using UML.

future work

The work presented in this article brings forward
various promising areas as follow-up work which
we have set as for exploring in the future. We
present some of them below:

1. Exploring extraction of ontology by consid-
ering other UML diagrams such as object
diagrams and use case diagrams has been
left for future work. For example, object
diagrams provide information about indi-
viduals which are one of the constituents of
ontology. Time dependent activities can be
captured as ontology from dynamic UML
diagrams such as activity and use case dia-
grams. State diagrams are excellent sources
of events that can be captured as ontology.

2. Our experience from the real world ex-
ample that classes are not stereotyped point
out that learning stereotype can also be a
promising direction. Learning stereotypes
are important not only in the context of
ontology learning but also in the context of
developing readable models.

summary

Ontology extraction methods are of great impor-
tance to the Semantic Web, because it establishes
(semi-) automatic methods of constructing fast
and confident ontologies. We have presented a
novel automatic ontology extraction methodol-
ogy (OntExtract) that exploits commonalities in

the domain software solutions to build ontologies
which would not only help ontology engineers
but greatly fosters software reuse. Our work uses
design diagram as ontological sources to extract
and explicitly represent these common domain
concepts.

OntExtract tool provides software profession-
als a-priori information about domain theories
thereby helping them to build faster and improved
software solutions. With OntExtract, software
professionals can extract domain ontology and
ontologies customized to new scenarios. The
prime target application of our ontology extrac-
tion being software reuse, it by itself serves as
a measure for evaluating the resultant ontology.
Evaluation results indicate that our method greatly
promotes software reuse.

references

Adriaans P & Zantinge D (1996), Data Mining,
Addisson-Wesley.

Bettina Berndt (2005), UML II: Class diagrams,
from UML to Java, other UML diagrams, Lecture
Series Information systems, http://warhol.wiwi.
huberlin.de/berendt/MEMS/information_sys-
tems_presentation_oct05.PPT

Bruno,G & Sofia,P. H (2005), Experiences in
Evaluation and Selection of Ontologies, KCAP
05 workshop on Ontology Management, Oct.
2005 , pp. 25-32.

Baclawski, K. et al (2002), Extending the Unified
Modeling Language for ontology development,
Berlin, NewYork, Journal Software and Systems
Modeling (SoSyM), Vol.1, No.2, pp. 142-156.

Cranefield, S (2001), UML and the Semantic
Web, Palo Alto, Proceedings of the International
Semantic Web Working Symposium (SWWS).

Cranefield,S. , Jin,P. & Martin., P. (2003), A UML
ontology and derived content language for a travel

1278

Design Diagrams as Ontological Sources

- Booking Scenario, World Wide Web Consortium
Web page, http://www.w3.org/RDF/

Donnie,D. (2000), CS Dept Ontology in SHOE
Ontologies in DAML Format, http://www.cs.umd.
edu/projects/plus/DAML/onts/cs1.0.daml

Faure D & Poibeau T (2000), First experiments
of using semantic knowledge learned by ASIUM
for information extraction task using INTEX,
Berlin, Germany, Proceedings of the Workshop
on Ontology Learning, 14th European Conference
on Artificial Intelligence.

Gmez-Prez, A. (1994), Some Ideas and Examples
to Evaluate Ontologies, tech. report KSL-94-65,
Knowledge System Laboratory, Stanford Univ.,
1994.

Hassell, J., Aleman-Meza, B., & Arpinar, I.B.
(2006), Ontology-Driven Automatic Entity
Disambiguation in Unstructured Text, th In-
ternational Semantic Web Conference (ISWC
2006), Athens, GA, November 5–9, 2006, I,
Lecture Notes in Computer Science, vol. 4273,
Springer, 2006.

Hahn U & Schulz S (2000), Towards Very Large
Terminological Knowledge Bases: A Case Study
from Medicine. In Canadian Conference on AI
2000: 176-186.

IBM Enterprise Architect Kit for SOA (2006), http://
www.ibm.com/developerworks/architecture/kits/
archkit2/index.html?S_TACT=105AGX23&S_
CMP=AKBDD

Jeff Heflin (2000), University Ontology, http://
www.cs.umd.edu/projects/plus/SHOE/onts/
univ1.0.html

Kietz JU, Maedche A & Volz R (2000), A Method
for Semi-Automatic Ontology Acquisition from
a Corporate Intranet, Juan-Les-Pins, Franc
EKAW‘00 Workshop on Ontologies and Texts.

Marcus A. Rothenberger, System Development
with Systematic Software Reuse: an Empirical

Analysis of Project Success Factors, Technical
report, http://wi99.iwi.uni-sb.de/de/Doktoranden-
Seminar_PDF/D_Rothenberger.pdf

Maurizio Morisio, Guilherme H. Travassos &
Michael E. Stark (2000), “Extending UML to
Support Domain Analysis”, Proceedings of the
15th IEEE international conference on Automated
software engineering, Page: 321.

Morin E (1999), Automatic acquisition of semantic
relations between terms from technical corpora,
TermNet-Verlag, Vienna, Proc. Of the Fifth Int.
Congress on Terminology and Knowledge Engi-
neering (TKE-99).

Oltramari, A. , Gangemi, A. , Guarino. N, &
Masol.C (2002), Restructuring WordNet’s Top-
Level: The OntoClean approach, presented at
LREC 2002.

Deborah L,M. , Frank,V. H., (2004) , OWL- Web
Ontology Language (2004) , http://www.w3.org/
TR/owl-features/

Rada.R, Hafedh Mili, Ellen Bicknell, & Maria
Blettner (1989). Development and Application of
a Metric on Semantic Nets, IEEE Transactions on
Systems, Man and Cybernetics, 19:17-30.

Rational Software Corporation (2000), Rational
Tutorial, www.ibm.com/developerworks

Schaefer,S., (2006), Secure Trade Lane: A Sensor
Network Solution for More Predictable and More
Secure Container Shipments, Portland, Oregon,
USA, Dynamic Languages Symposium, Pages:
839 - 845.

Terry Quatrani (2001), Introduction to the Uni-
fied Modeling Language, Rational Developer
Network, http://rational.net//

Terry Quatrani (2002) Visual Modeling with
Rational Rose 2002 and UML, (pp 1-100), The
Addison-Wesley Object Technology Series.

 1279

Design Diagrams as Ontological Sources

AddItIonAl reAdIng

Babenko. L. P. (2003), Information Support of
Reuse in UML-Based Software Engineering,
Cybernetics and Systems Analysis, Hingham,
MA, USA, Kluwer Academic Publishers, Volume
39, Issue 1, PP: 65 - 70.

Benslimane, S. M, Malki .M., & Lehirech, A.,
(2006), Towards ontology-based semantic web
from data-intensive web: A reverse engineering
approach, International Conference on Computer
Systems and Applications, pp. 771-778

Carlos,P., Amaia, B., Tim, S., Jessica, A.&
Manuel, C., (2004), A Framework for Ontology
Reuse and Persistence Integrating UML and
Sesame, Springer Berlin / Heidelberg, Lecture
Notes in Computer Science, Volume 3040/2004,
pp: 37-46.

Daniel O, Andreas, E., Steffen,S & Raphael Volz
(2004), Developing and Managing Software
Components In An Ontology-Based Application
Server, Toronto, Ontario, Canada, In 5th Inter-
national Middleware Conference, volume 3231
of LNCS, pp. 459-478. Springer.

Falkovych, K. , Sabou, M. & Stuckenschmidt. H
(2003), UML for the Semantic Web: Transforma-
tion-Based Approaches, Amsterdam, OS Press,
Vol. 95 (2003) 92-106

Guizzardi, G., Herre, H. & Wagner G. (2002),
On the General Ontological Foundations of
Conceptual Modeling. Berlin, 21 Intl. Conf. on
Conceptual Modeling (ER 2002). Springer-Verlag,
Berlin, Lecture Notes in Computer Science, pp
: 65—78

Guizzardi, G. & Wagner G. (2002), Using For-
mal Ontologies to define Real-World Semantics
for UML Conceptual Models. In 1 Workshop on

Application of Ontologies to Biology, European
Media Laboratory, Heidelberg, Germany.

Happel, H.-J., Korthaus, A., Seedorf, S., & Tom-
czyk, P.(2006), KOntR: An Ontology-Enabled
Approach to Software Reuse, San Francisco, In:
Proc. of the 18th Int. Conf. on Software Engineer-
ing and Knowledge Engineering (SEKE).

Hyoil, H. & Ramez,E., (2003), Ontology extraction
and conceptual modeling for web information,
Hershey, PA, USA, Information modeling for
internet applications, Pages: 174 - 188 .

Stephen,C., & Martin P., (1999), UML as an
Ontology Modelling Language, Sweden, Work-
shop on Intelligent Information Integration, 16th
International Joint Conference on Artificial Intel-
ligence, volume 23, pp: 46-53

Szyperski. C (2002), Component Software - Be-
yond Object- Oriented Programming, London,
2nd edition, Addison-Wesley.

Odell, J. & Bock, C. (1998), A More Complete
Model of Relations and their Implications: Roles.
Journal of OO Programming, May, 51-54.

Uschold, M., Clark, P., Healy, M., Williamson,
K., & Woods, S. (1998), Ontology Reuse and Ap-
plication. Italy, Formal Ontology in Information
Systems. IOS Press PP:179-192.

Welty, C.A. & Ferrucci, D.A.(1999) ,A formal
ontology for re-use of software architecture
documents, Cocoa Beach, FL, USA, Automated
Software Engineering, PP: 259-262.

Yang, J. & Chung, I. (2006), Automatic Genera-
tion of Service Ontology from UML Diagrams
for Semantic Web Services , Springer Berlin /
Heidelberg, Lecture Notes in Computer Science,
Volume 4185/2006, pp: 523-529.

This work was previously published in The Semantic Web for Knowledge and Data Management: Technologies and Practices,
edited by Z. Ma & H. Wang, pp. 288-315, copyright 2009 by Information Science Reference (an imprint of IGI Global).

1280

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.10
Evolution in Model-Driven

Software Product-Line
Architectures

Gan Deng
Vanderbilt University, USA

Jeff Gray
University of Alabama at Birmingham, USA

Douglas C. Schmidt
Vanderbilt University, USA

Yuehua Lin
University of Alabama at Birmingham, USA

Aniruddha Gokhale
Vanderbilt University, USA

Gunther Lenz
Microsoft, USA

AbstrAct

This chapter describes our approach to model-
driven engineering (MDE)-based product line
architectures (PLAs) and presents a solution to
address the domain evolution problem. We use a
case study of a representative software-intensive
system from the distributed real-time embedded

(DRE) systems domain to describe key challenges
when facing domain evolution and how we can
evolve PLAs systematically and minimize hu-
man intervention. The approach uses a mature
metamodeling tool to define a modeling language
in the representative DRE domain, and applies a
model transformation tool to specify model-to-
model transformation rules that precisely define

 1281

Evolution in Model-Driven Software Product-Line Architectures

metamodel and domain model changes. Our
approach automates many tedious, time consum-
ing, and error-prone tasks of model-to-model
transformation, thus significantly reducing the
complexity of PLA evolution.

IntroductIon

Software product-line architectures (PLAs)
are a promising technology for industrializing
software-intensive systems by focusing on the
automated assembly and customization of domain-
specific components, rather than (re)programming
systems manually (Clements & Northrop, 2001).
A PLA is a family of software-intensive product
variants developed for a specific domain that share
a set of common features. Conventional PLAs
consist of component frameworks (Szyperski,
2002) as core assets, whose design captures recur-
ring structures, connectors, and control flow in
an application domain, along with the points of
variation explicitly allowed among these entities.

PLAs are typically designed using scope/com-
monality/variability (SCV) analysis (Coplien,
Hoffman, & Weiss, 1998), which captures key
characteristics of software product-lines, includ-
ing: (1) scope, which defines the domains and
context of the PLA, (2) commonalities, which name
the attributes that recur across all members of the
product family, and (3) variabilities, which contain
the attributes unique to the different members of
the product family.

Motivating the need for
Model-driven software Product-line
Architectures

Despite improvements in third-generation pro-
gramming languages (such as C++, Java and C#)
and runtime platforms (such as CORBA, J2EE and
Web Services middleware), the levels of abstrac-
tion at which PLAs are developed today remains
low-level relative to the concepts and concerns
within the application domains themselves, such
as manually tracking the library dependency or

Solution
Space

Problem
Space

Figure 1. Using DSMLs and domain-specific component frameworks to enhance abstraction and narrow
the gap between problem and solution space of software-intensive systems

1282

Evolution in Model-Driven Software Product-Line Architectures

ensuring component composition syntactical
and semantic correctness. A promising means to
address this problem involves developing PLAs
using model-driven engineering (MDE) (Schmidt,
2006), which involves systematic use of mod-
els as key design and implementation artifacts
throughout the software lifecycle. MDE represents
a design approach that enables description of the
essential characteristics of a problem in a manner
that is decoupled from the details of a specific
solution space (e.g., dependence on specific OS,
middleware or programming language).

As shown in Figure 1, MDE-based PLAs help
raise the level of abstraction and narrow the gap
between the problem space and the solution space
of software-intensive systems by applying the
following techniques:

• Domain-specific modeling languages:
A DSML (Gray et al., 2007) consists of
metamodels and model interpreters. A
metamodel is similar to the grammar cor-
responding to a programming language
that defines a semantic type system that
precisely reflects the subject of modeling and
exposes important constraints associated
with specific application domains. Model
interpreters can read and traverse the models,
analyze them, and help create the execut-
able system based on these models. DSMLs
help automate repetitive tasks (Gray, Lin, &
Zhang, 2006) that must be accomplished for
each product instance, including generating
code to glue components or synthesizing
deployment and configuration artifacts for
middleware platforms and the underlying
operating systems (Balasubramanian et al.,
2006).

• Domain-specific component frameworks:
Through SCV analysis, object-oriented ex-
tensibility capabilities are often used to cre-
ate domain-specific component frameworks,
which factor out common usage patterns in

a domain into reusable platforms (Clements
& Northrop, 2001). These platforms, in turn,
help reduce the complexity of designing
DSMLs by simplifying the code generated
by their associated model interpreters and
addressing the product-line specific func-
tional and systemic concerns, including
quality of service (QoS) concerns, such as
latencies, throughput, reliability, security,
and transactional guarantees. Throughout
the rest of the chapter we use the two terms
“domain-specific component frameworks”
and “component frameworks” interchange-
ably.

MDE helps software developers explore
various design alternatives that represent pos-
sible configurations for a specific instance of the
product family. For example, a product instance
ultimately needs to be deployed into a specific
target running environment, where all software
components must be deployed and mapped
to available hardware devices and configured
properly based on the specific software/hardware
capabilities of the devices. If the PLAs are intended
for use with different hardware devices, however,
the mappings between the software components
and hardware devices cannot be known a priori
when the software PLAs are developed. Instead
of analyzing every product instance individu-
ally and manually writing source code or scripts
repetitively for every different target execution
environment, an MDE-based approach to PLA
deployment and configuration automates such
repetitive and labor-intensive tasks by integrating
domain knowledge and expertise into metamodels
and model interpreters. Hence, a DSML infuses
intelligence into domain models, which helps ad-
dress many “what if” problems, such as “what glue
code or configuration scripts must be written if the
product is to be deployed into an environment with
XYZ requirements?” These “what if” scenarios
help developers understand the ramifications of

 1283

Evolution in Model-Driven Software Product-Line Architectures

design choices of software-intensive systems at a
higher level of abstraction than changing source
code manually at the implementation level.

challenges with evolution of
Model-driven software Product-line
Architectures

Although an MDE-based approach helps improve
productivity of software-intensive systems by
raising the level of abstraction through composi-
tion of DSMLs and domain-specific component
frameworks, it is hard to evolve software PLAs
by incorporating new requirements. Examples
of such requirements include using new soft-
ware platforms or applying the current PLA in
a new use case that may impose a different set
of concerns than those handled by the current
PLA. Consequently, in addition to assisting in the
exploration of design alternatives among product
instances, an MDE-based PLA technology must
also address the domain evolution problem (Ma-
cala, Stuckey, & Gross, 1996), which arises when
existing PLAs must be extended or refactored to
handle unanticipated requirements.

Depending on the scopes of the DSMLs and
domain-specific component frameworks, unan-
ticipated requirements can be either functional
requirements or nonfunctional requirements,
or both. For example, consider an MDE-based
PLA that is available on two different component
middleware technologies, such as Enterprise
Java Beans (EJB) (Sun Microsystems, 2001)
and CORBA Component Model (CCM) (OMG,
2006). A goal of a DSML that supports PLA is to
selectively use the technologies within a product
instance based on the system requirements. The
metamodel of the DSML must define proper syn-
tax and semantics to represent both component
middleware technologies. With domain evolution,
if the CCM technology must be replaced by an-
other emerging middleware technology such as
Web Services, the MDE-based PLA must evolve
accordingly to satisfy the new requirements, that

is, new syntax and semantics must be introduced
into the metamodel and new domain-specific
component frameworks must be developed based
on the emerging Web Services technology.

Unfortunately, adding new requirements
to MDE-based PLAs often causes invasive
modifications to the PLAs in the DSMLs and
component frameworks if DSMLs and compo-
nent frameworks were not initially designed to
be extensible to incorporate such new require-
ments. Conventional MDE tools do not handle
the domain evolution problem effectively because
they require significant handcrafted changes to
existing PLAs, at both the component framework
level and the DSML level. The domain evolution
problem is particularly hard because the coupling
of architecture and infrastructure concerns often
crosscut the component framework layer and the
DSML layer (Deng, Lenz, & Schmidt, 2005)
within a PLA.

Moreover, changes made on metamodels in
a PLA often invalidate existing domain models
based on previous versions of the metamodels
(Sprinkle & Karsai, 2004), which makes the
evolution process of model-driven software
PLAs hard. Other examples of this problem oc-
cur in programming language or object-oriented
framework design, where changes to a grammar
or class hierarchy for a programming language or
framework may introduce errors in existing legacy
source code (Klusener, Laemmel, & Verhoef,
2005). Another example is schema evolution in
a database, where changes to a database schema
may render the contents of the database useless
(Roddick, 1992). Just like legacy source code and
contents of database, domain models are crucial
assets of an organization, so they must be handled
well during the metamodel evolution process.

From these observations, there are many
complexities involved when MDE-based software
PLAs need to evolve. Although software develop-
ers can manually update their metamodels, domain
models, and component frameworks for small-
scale systems, this approach is clearly tedious,

1284

Evolution in Model-Driven Software Product-Line Architectures

time consuming, error-prone, and nonscalable
for software-intensive systems.

Solution → Systematic PlA
evolution with Automated domain
Model transformation

To address these challenges, a layered and com-
positional architecture is needed to modularize
system concerns and reduce the effort associated
with domain evolution. With the help of this ar-
chitecture, different layers of PLAs can evolve
systematically and tool supported domain model
evolution also becomes feasible. The overall ap-
proach can be characterized in the following
ordered steps:

1. The first step deals with component frame-
work evolution. Because component frame-
works provide core functionalities to the
product instances, they have the most direct
impact on the PLAs. As a result, whenever
PLAs need to incorporate new requirements,
component frameworks must first be refac-
tored. To reduce the impact of such evolu-
tion outside the component frameworks, the
key point is using pattern-oriented software
architecture (Gamma, Helm, Johnson, &
Vlissides, 1995; Schmidt, 2000).

2. The second step deals with metamodel evolu-
tion. Because metamodels are used to define
type systems of particular domains based
on proper language syntax, a language can
be decomposed into smaller units to local-
ize the evolution impact, and allow such
smaller units to be composed to form the new
metamodel.

3. The third step deals with the domain model
transformation. This step applies automated
model transformation techniques to specify
model-to-model transformation rules that
define metamodel changes. The application
of automated model transformation alleviates

many tedious, time consuming, and error-
prone tasks of model-to-model transformation
to reduce the complexity of PLA evolution.
In particular, when an existing DSML in a
PLA is changed, the domain models defined
by this DSML can be migrated automatically
to the new DSML by applying a set of model
transformation rules.

While the three-step approach above could be
applied to any model-driven software PLAs, this
chapter focuses on distributed real-time embedded
(DRE) PLAs, which are among the most difficult
software-intensive systems to develop because
such systems have limited resources and must
communicate via the network to meet stringent
real-time quality-of-service (QoS) assurance and
other performance requirements. A representative
software-intensive DRE system is used through-
out the chapter as a case study to describe how
to evolve PLAs systematically and minimize
human intervention. Along with presenting the
approach for domain evolution of MDE-based
PLAs, the chapter also describes key concepts,
such as model-driven engineering, product-line
architectures, and model transformations that are
important for developing and evolving PLAs for
large-scale software-intensive systems.

The remainder of this chapter is organized
as follows: We first evaluate related work that
supports evolution of software PLAs for DRE
systems and compare it with our approach. Then,
we describe a conceptual architecture of MDE-
based PLAs for DRE systems and define the key
elements in this architecture as background of this
chapter. After that, we introduce a representative
case study of a PLA for avionics mission comput-
ing used throughout the chapter. Then, we describe
the challenges involved when facing evolving
model-driven PLAs and present the solutions to
address these challenges. Lastly, we present our
concluding remarks and lessons learned.

 1285

Evolution in Model-Driven Software Product-Line Architectures

relAted work

This section surveys the technologies that provide
solutions to MDE-based software PLA evolu-
tion for software-intensive systems. The related
work has been categorized along two dimensions
based on the syntax of the modeling mechanism
the software PLA evolution relies on, that is, a
graphical based modeling approach or a text-based
modeling approach.

graphical Modeling Approaches

A UML metamodel for software PLA evolution
(Mens & D’Hondt, 2000) has been developed
based on the concept of an evolution contract.
The idea of an evolution contract is that when
incremental modifications and evolution of soft-
ware artifacts are made on a software product
line, a formal contract must be defined between
the provider and the modifier. The purpose of
the contract is to define the evolution behavior
formally. A UML metamodel has been defined to
capture the formal evolution contract. This offers
a generic MDE-based mechanism for dealing with
unanticipated evolution. By documenting model
evolution through formal models, incompatibili-
ties or undesired behavior across different mod-
eling artifacts can be detected when models are
upgraded, or when different software developers
independently make changes to the same or related
parts of a model. This approach allows conflicts
to be detected regardless of the specific kind of
model that is under consideration. The approach
has been integrated into third-party CASE tools,
such as IBM Rational Rose (IBM, 2007).

KobrA (Atkinson et al., 2002) is another
approach based on UML for component-based
software PLAs that support model-driven repre-
sentation of components. In this method, evolution
management in software PLAs is divided into
three activities, that is, configuration management,
change management, and maintenance planning.

Configuration management in KobrA is a static
method for bringing together different artifacts
within a PLA. Change management consists of
techniques to evaluate evolution requests. The use
of appropriate formal change operators to evolu-
tion requests assists in traceability within change
propagations in a PLA. Maintenance planning is
responsible for constructing infrastructure for the
change and configuration management activities.
The idea of KobrA is based on a change-ori-
ented model, that is, new versions are obtained
from changes applied to some artifacts in the
product line. To support the evolution in KobrA,
the evolution graph technique (Atkinson et al.,
2002) is proposed to capture version histories
of different artifacts of the PLA and trace the
dependencies.

Another technique similar to the evolution
graph is called design decision tree (DDT) (Ran
& Kuusela, 1996), which is a formal approach
to incrementally document, refine, organize and
reuse the architectural knowledge for software
design. The formalism is a hierarchical organiza-
tion of design patterns that is a partial ordering of
design decisions put in the context of the problem
requirements and the constraints imposed by ear-
lier decisions. This model integrates architectural
knowledge of software design into a software
development process. A DDT contains system-
wide design information in a form that can be
used to analyze change requests and determine
their impact on system structure. Because the tree
is maintained throughout the lifecycle of a PLA,
it can be used as the main repository of design
knowledge (Karhinen & Kuusela, 1998). Such a
repository can be used to analyze the impact of
new requirements to the existing requirement
space and to investigate the changes that different
implementation strategies may cause to the system
structure, which makes it possible to classify dif-
ferent options and to react to them and analyze
their architectural implications.

1286

Evolution in Model-Driven Software Product-Line Architectures

Summary

The related work described above adopts a do-
main-independent modeling technique to capture
the software PLA evolution requirements either
explicitly or implicitly. Our approach is similar to
these related works in the sense that they all pro-
vide visualization capabilities through graphical
modeling tools for PLAs. Our approach, however,
uses a domain-specific modeling technique that
adds additional abstractions representing domain
concepts to the modeling languages that are not
available in general-purpose domain-independent
modeling languages such as UML. DSMLs thus
require less effort and fewer low-level details
to specify a given system (Tolvanen & Kelly,
2005).

text-based Modeling Approaches

Architectural Description Language (ADL) is
an important technique in this dimension that
facilitates software PLA evolution. The Mae
environment (Hoek, Mikic-Rakic, Roshandel,
& Medvidovic, 2001), for example, uses ADL to
facilitate incremental evolution by capturing all
changes made to any architectural elements within
a PLA. A key concept in the Mae environment is
a system model that allows architectural concepts
and configuration management to be mapped with
each other through ADL syntax, that is, the ADL
allows users to describe what and how the changes
should be made to the model. The essence of the
approach lies in the use of this model to integrate
change management concepts (such as revisions,
variants, and configurations) with architectural
concepts (such as components, connectors, sub-
types, and styles) through ADL descriptions. By
mapping the generic system model onto a specific
ADL, the design analyses of a software PLA and
its evolution can be adapted for the purpose of
maintaining the consistency of the architectural
configurations captured by the model.

Similar to the idea of the Mae environment,
the Koala Component Model (Ommering, Lin-
den, Kramer, & Magee, 2002) also uses ADL to
explicitly describe the architecture and provides a
platform-centric approach to the design of PLAs
for consumer electronics software. Specifically,
the Koala Component Model allows variability
options to be modeled explicitly via a property
mechanism. Using a third-party versioning sys-
tem, Koala can be used to capture the evolution
of a PLA.

XADL (Dashofy, Hoek, & Taylor, 2003) is
an XML-based ADL that is constructed from
a set of extensible XML schemas. XADL also
defines a set of associated libraries that provide
a programmatic interface to XADL documents,
and provide runtime facilities to create, store, and
modify XADL documents. XADL and its asso-
ciated libraries provide three important benefits
for the purposes of supporting software PLA
evolution: (1) the core of the XADL language
supports variability in both space and time; in
XADL, variabilities of artifacts are a natural and
integral part of the language, (2) the language can
be extended, which allows individual activities
in the lifecycle to be able to attach additional in-
formation, and (3) the library provides a generic
interface to easily access XADL documents,
which supports the rapid construction of new
tools supporting PLA evolution.

Summary

The related work described in this section all
use text-based languages (such as structural lan-
guages or XML) to either explicitly capture the
PLA evolution activities, or implicitly associate
the evolution requirements with actual software
components. Our approach is similar to this di-
mension of the related work in the sense that PLA
evolution can be captured through the software
PLA architecture itself, rather than through a
separate dedicated language.

 1287

Evolution in Model-Driven Software Product-Line Architectures

Hybrid Approaches

Some technologies span both text-based and
graphical-based approaches. A well-known
example in this category is called QVT (Query/
View/Transformation) (OMG, 2005b), which is
the OMG standard for model-to-model transfor-
mations. This technology provides a standard
language to transform UML or custom model
types from one type to another. It accepts XML
Interchange (XMI) (OMG, 2005b) as input and
output. Typical usage scenarios include automat-
ing transformation of a high-level design model
into a more detailed model, transforming a UML
model into a custom data model, or transforming
one custom model type into another. The core
benefits of this feature set are a standards-based
language to express common model transforma-
tions with traceability, which provides repeatable
results.

Summary

The specification of QVT defines both graphical
syntax and textual syntax for the transformation
language, but so far there lacks a full implementa-
tion of the specification. Moreover, while QVT is
restricted to only XMI to XMI transformations,
our approach does not have this restriction, so
it can exploit any internal representation of the
DSMLs.

Mde-bAsed Product lIne
ArcHItecture for dre
systeMs

This section introduces an architecture of a MDE-
based product line architecture for software-
intensive DRE systems, focusing on the design
concepts, common patterns, and software meth-

Figure 2. MDE-based product-line architecture for DRE systems

1288

Evolution in Model-Driven Software Product-Line Architectures

odology. An MDE-based design and composition
approach for DRE systems entails the combination
of DSMLs with reusable component frameworks.
Figure 2 illustrates the high-level design principles
and an overall architecture of an MDE-based PLA
solution for software-intensive DRE systems that
exploits a layered and compositional approach.
This architecture takes advantage of layering and
composition design principles (Krueger, 2006) to
make the associated PLAs easier to develop and
evolve than ad hoc approaches.

As shown in Figure 2, the PLA architecture
is based on a core set of COTS middleware
and OS platforms, component frameworks and
domain-specific modeling languages. The right
side of the figure shows the technologies avail-
able to implement the design artifacts on the left
side. For example, the “Generator Technology”
shown on the right can be used to build model
interpreters that automatically generate code to
bridge the gap between models and component
frameworks.

The remainder of this section introduces and
defines key terms and concepts in the architecture
shown in Figure 2.

commercial-off-the-shelf (cots)
Middleware and os Platforms

COTS middleware and OS platforms provide the
infrastructure upon which DRE systems run.
Many DRE systems are based on OS platforms
with real-time scheduling capabilities. Examples
of such OS platforms include VxWorks (Wind
River Systems, 1998), Timesys Linux (Timesys,
2002), and Windows CE (Microsoft, 2007).
Middleware is an enabling technology that allows
multiple processes running on one or more ma-
chines to interact across a network. Middleware
can be further decomposed into multiple layers
(Schmidt, 2002), such as those shown in Figure
3 and described below:

• Host Infrastructure Middleware: The
host infrastructure layer resides directly
atop the operating system and provides a
set of higher-level APIs that hide the hetero-
geneity of different operating systems and
network protocols. The host infrastructure
layer provides generic services to the upper
middleware layers by encapsulating func-
tionality that would otherwise require much
tedious, error-prone, and nonportable code,
such as socket programming and thread
manipulation primitives. Examples of such
middleware include ACE (Schmidt, 1993),
Real-time Java (Bollella et al., 2000) and
Rocks (Zandy & Miller, 2002).

• Distribution Middleware: The distribution
layer resides atop the host-infrastructure
layer and provides high-level programming
abstractions, such as remote object opera-
tions. Using the distribution layer, a devel-
oper can write a distributed application in
a similar way to a stand-alone application.

Figure 3. OS, middleware, DSML and application
layer relationships

 1289

Evolution in Model-Driven Software Product-Line Architectures

CORBA 2.x (OMG, 2003), DCOM (Micro-
soft, 2000), Java RMI (Sun Microsystems,
2000) and Data Distribution Service (DDS)
(OMG, 2004a) are the main solutions to
distribution middleware.

• Component Middleware: The component
middleware layer resides atop the distri-
bution middleware layer and adopts the
component-based software engineering
approach (Heineman & Councill, 2001) to
allow maximum reuse of software compo-
nents. Component middleware also provides
mechanisms to configure and control key
distributed computing aspects, such as con-
necting event producers to event consum-
ers and managing transactional behavior,
separate from the functional aspects of
the application. Examples of component
middleware platforms include Enterprise
Java Beans (EJB) (Sun Microsystem, 2001)
and OMG Corba Component Model (CCM)
(OMG, 2005a).

Because many DRE systems require a loosely-
coupled distribution architecture to simplify ex-
tensibility, COTS middleware typically provides
event-driven publish/subscribe communication
mechanisms, which help reduce ownership costs
by defining clear boundaries between the compo-
nents in the application. Such mechanisms reduce
dependencies and maintenance costs associated
with replacement, integration, and revalidation of
components. COTS middleware and OS platforms
are designed to maintain the commonality, por-
tability, reusability, and applicability of software
for different domains.

component frameworks

Component frameworks provide reusable do-
main-specific building blocks for PLAs of DRE
systems. As illustrated in Figure 3, component

frameworks reside atop COTS middleware and
OS platforms. The key difference between com-
ponent frameworks and component middleware
is that the latter is domain independent while the
former is domain-specific. Component frame-
works define “semicomplete” applications that
embody domain-specific object structures and
functionality to raise the level of abstraction at
which the software product instance is composed,
and offer product-line specific environments to
capture the variabilities. Components in such a
framework coordinate with each other to provide
core functionalities for a family of related appli-
cations. Complete applications can be composed
by inheriting from or instantiating framework
components.

Examples of component frameworks include
the Boeing Bold Stroke product line architecture
(Schulte, 2003) in the avionics mission comput-
ing domain and Siemens Building Technology
APOGEE product line architecture (Siemens,
2007) in the building automation domain. For
example, the Boeing Bold Stroke PLA supports
many Boeing product variants using a compo-
nent-based platform. The Boeing Bold Stoke PLA
supports systematic reuse of mission computing
functionality and is configurable for product-spe-
cific functionality and execution. The philosophy
of component frameworks is to develop reusable
components that are well-defined and have specific
use contexts and variability points, which helps
reduce the effort associated with using low-level
middleware interfaces or OS APIs.

Domain-Specific Modeling
languages (dsMls) and Patterns

DSMLs and patterns facilitate the model-based de-
sign, development, and analysis of DRE systems.
Figure 4 shows how DSMLs and patterns can be
combined with component frameworks to build
product instances. A DSML can represent either
a vertical application domain model (specific to

1290

Evolution in Model-Driven Software Product-Line Architectures

concerns within a specific industry or domain)
or a horizontal model (generic to concerns that
span several domains).

Vertical application domain models address
the problems arising within a particular domain,
and they are often modeled in a platform-inde-
pendent manner (Frankel, 2003). Examples of
such vertical application domains include indus-
trial process control, telecommunications, and
avionics mission-critical systems. Some DSML
examples developed for vertical domains include
the Saturn Site Production Flow (SSPF), which is
a manufacturing execution system serving as an
integral and enabling component of the business
process for an automotive factory (Long, Misra,
& Sztipanovits, 1998). Another example is the
Embedded System Modeling Language (ESML)
(Karsai, Neema, Abbott, & Sharp, 2002), which
models mission computing embedded avionics
applications in the Boeing Bold Stroke PLA.

Horizontal platform domain models are also
called platform-specific models (Frankel, 2003).
A platform-specific model is a model of a system
that is linked to a specific technological platform
(e.g., a specific middleware platform, operating
system or database). An example of a DSML for
horizontal platforms is the Rhapsody modeling
environment (iLogix, 2006), which allows applica-

tion generation for embedded software platforms
based on many real-time operating systems. Other
examples of DSMLs for horizontal platforms
include the Platform Independent Component
Modeling Language (PICML) (Balasubramanian
et al., 2005a) and J2EEML (White, Schmidt, &
Gokhale, 2005), which facilitate the development,
deployment, and configuration of QoS-enabled
component-based DRE systems based on CCM
and EJB, respectively.

The main idea is that it should be possible to
use a model transformation technique to transform
vertical application domain models to a horizontal
platform domain model. Regardless of whether
the DSMLs target horizontal or vertical domains,
model interpreters can be used to generate various
artifacts (such as code and metadata descriptors
for deployment and configuration), which can be
integrated with component frameworks to form
executable applications or simulations. Key ad-
vantages of using DSMLs and patterns in PLAs
are to rigorously capture the key roles and respon-
sibilities of a product instance and help automate
repetitive tasks that must be accomplished for
each product instance.

In summary, an MDE-based PLA for soft-
ware-intensive systems must be based on an
architecture that adheres to well-documented

Vertical Application
Dom ain M odel

(Platform -independent)

Horizontal
Platform M odel

(Platform -specific)

Com ponent
Fram eworks

G enerated Code

Product
Instance

Product
Models

Map to

Patterns

Figure 4. Integration of domain-specific modeling and component frameworks

 1291

Evolution in Model-Driven Software Product-Line Architectures

principles of architectural design with a clear
separation of commonalities and appropriate
provisions for incorporating variations by inte-
grating vertical/horizontal DSMLs, component
frameworks, middleware and OS platforms. In this
architecture, MDE technologies are used to model
PLA features and glue components together; for
example, they could be utilized to synthesize
deployment artifacts for standard middleware
platforms (Balasubramanian et al., 2006).

overvIew of tHe boeIng bold
stroke PlA And eQAl Mde
tool

This section introduces a case study based on a
real-time avionics mission computing product
line called Boeing Bold Stroke and describes
the structure and functionality of the Event QoS
Aspect Language (EQAL) MDE tool based on this
product line. The Boeing Bold Stroke PLA sup-
ports many Boeing product variants (e.g., F/A-18E,
F/A-18F, F-15E, and F-15K) using a component-
based publish/subscribe pattern (Gamma et al.,

1995). The EQAL MDE tool is intended to reduce
many complexities associated with the integra-
tion, deployment and configuration of different
implementations of publish/subscribe mechanism.
The Bold Stroke PLA and its associated models
in EQAL will serve as the case study throughout
this chapter.

overview of boeing bold stroke
Product line Architecture

Figure 5 illustrates the Boeing Bold Stroke PLA
(Sharp, 1999), which was developed by Boeing
in the mid-1990s to support systematic reuse of
avionics mission computing functionality and is
configurable for product-specific functionality
(such as heads-up display, navigation, and sensor
management) and execution environments (such
as different networks/buses, hardware, operat-
ing systems, and programming languages) for
a variety of military aircraft. Bold Stroke is a
very complex framework with several thousand
components implemented in several million lines
of C++ code.

Figure 5. Boeing bold stroke product line architecture

f-15
product
variant

A/v 8-b
product
variant

f/A 18
product
variant ucAv

product
variant

Product-line
architecture

f-15
product
variant

A/v 8-b
product
variant

f/A 18
product
variant ucAv

product
variant

Product-line
architecture

f-15
product
variant

A/v 8-b
product
variant

f/A 18
product
variant ucAv

product
variant

Product-line
architecture

Hardware (cPu, Memory, I/o)Hardware (cPu, Memory, I/o)Hardware (cPu, Memory, I/o)Hardware (cPu, Memory, I/o)
os & network Protocolsos & network Protocolsos & network Protocolsos & network Protocols

Host Infrastructure MiddlewareHost Infrastructure MiddlewareHost Infrastructure MiddlewareHost Infrastructure Middleware
distribution & component Middlewaredistribution & component Middlewaredistribution & component Middlewaredistribution & component Middleware

component frameworkscomponent frameworks

Air
frame

AP
nav

Hud gPs

Iff

flIr

domain specific Modeling languagesdomain specific Modeling languages

1292

Evolution in Model-Driven Software Product-Line Architectures

The Boeing Bold Stroke architecture contains
a set of event-driven component-based component
frameworks built atop (1) The ACE ORB (TAO)
(Schmidt, Levine, & Mungee, 1998), which imple-
ments key Real-time CORBA (OMG, 2005a)
features, and (2) TAO’s Real-time Event Service
(Harrison, Levine, & Schmidt, 1997), which
implements the publish/subscribe architectural
pattern. Bold Stroke uses a Boeing-specific com-
ponent model called PRISM (Roll, 2003), which
implements a variant of the CORBA Component
Model (CCM) atop TAO.

Following the CCM specification, PRISM
defines the following types of ports, which are
named interfaces, and connection points compo-
nents used to collaborate with each other:

• Facets, which define named interfaces that
process method invocations from other
components.

• Receptacles, which provide named con-
nection points to facets provided by other
components.

• Event sources and event sinks, which
indicate a willingness to exchange event
messages with one or more components via
event channels.

Bold Stroke is a representative PLA for
DRE systems in the real-time avionics mission
computing domain. Its event-driven communi-
cation architecture employs a control flow/data
flow (Sharp, 1999) principle, where control flow
represents the movement of execution through a
software system, while the data flow represents
the movement of data through a software system.
Depending on requirements, different product
variants in the Boeing Bold Stroke PLA may re-
quire different levels of QoS assurance for event
communication, including timing constraints,
event delivery latency, jitter, and scalability. Even
within the same product variant, different levels
of QoS assurance must be ensured for different
communication paths, depending on criticality of

the data. For example, the communication path
between a collision radar component and the
LED display component must have much more
stringent timeliness deadline requirements than
regular GPS components and navigation display
components.

To alleviate the complexity in provisioning the
event-driven publish/subscribe services and their
QoS assurance in the Boeing Bold Stroke PLA,
we designed an MDE-based tool called the Event
QoS Aspect Language (EQAL) that can automate
and simplify the integration of publish/subscribe
services into QoS-enabled component-based
systems.

overview of the eQAl Mde tool

One core part of the EQAL MDE tool is the EQAL
DSML (Edwards, Deng, Schmidt, Gokhale, &
Natarajan, 2004), which is implemented using the
Generic Modeling Environment (GME) (Lédeczi,
Nordstrom, Karsai, Volgyesi, & Maroti, 2001).
The GME is a toolkit that supports the develop-
ment of DSMLs. The EQAL DSML provides an
integrated set of metamodels, model interpreters,
and standards-based component middleware that
allow DRE system developers to visually con-
figure and deploy event-driven communication
mechanisms in DRE systems via models instead of
programming them manually. The EQAL DSML
is an example that supports a horizontal platform
domain; that is, it is not restricted to a particular
vertical application domain, but instead can be
leveraged by multiple vertical domains. In this
case study, we describe how EQAL was applied
to the Bold Stroke avionics mission computing
PLA.

As shown in Figure 6, EQAL is a layered
architecture that supports several types of abstrac-
tions, which are subject to change stemming from
domain evolution as explained below:

• The bottom layer in the architecture is the
EQAL Runtime Framework, which is a por-

 1293

Evolution in Model-Driven Software Product-Line Architectures

table, OS-independent middleware frame-
work based on light-weight CCM (OMG,
2004b). The EQAL Runtime Framework
provides an extensible way to deploy various
event-driven publish/subscribe mechanisms,
including a two-way event communication
mechanism based on direct method invoca-
tion instead of using a mediator channel.

• The middle layer in the EQAL architecture
is a set of domain models that represent in-
stances of the modeled DRE systems. These
models are created using the EQAL DSML
and are used to capture the structural and
behavioral semantic aspects of event-driven
DRE systems.

• The top layer of the EQAL architecture
consists of a metamodel that enables de-
velopers to model concepts of event-driven
DRE systems, including the configuration

P ublish /S ubscribe
M echanism s S upported

eQAl run-time
framework

E Q A L
Interpreter

eQAl domain Models

eQAl Metamodel
c

d
e

 g
en

er
at

io
n

D ire c t C o m m u n ica tio n

C o S E ve n t S e rv ice

 d
ef

in
es

M eta M odel
Interpreter

R e a l-T im e E ve n t S e rv ice

Figure 6. EQAL MDE tool architecture

eQAl domain Models

XMl-based Qos configuration

container

P R IS M
C om ponen t

R ea l-tim e P OA

QoS P roperty
A dap to r

R T E ven t C hanne l In te rfaces
(S chedu ling, T im e liness,

P rio rity, ...)

QoS P o lic ies

Re
fle

ct

generate

deployment and
configuration

tools
deployer

deploy

ITS D&C
Profile

EQAL D&C
Profile

deploy and configure

⋯⋯
<instance xmi :id="operatorconsole _038d1042-3040-4776-9fbA-0e0e058eb020">

<name>operatorconsole </name>
<package href="operatorconsole .cpd"/ >

</instance>
<instance xmi :id="goodrepo _7Ab5db4A-7998-4A50-807c-7bd2b5Ace43f">

<name>goodrepo </name>
<package href="goodrepo.cpd"/>

</instance>
<connection>

<name >transportation_repo_transportation _repo</name>
<internalendpoint>

<portname>transportation_repo</portname >
<instance xmi:idref="transportationfacility _df7b1dbA-7674-45b5-Ab9d"/>

</internalendpoint>
<internalendpoint>

<portname>transportation_repo</portname >
<instance xmi:idref="operatorconsole _038d1042-3040-4776-9fbA"/ >

</internalendpoint>
</connection>

</connection>
⋯⋯

⋯⋯
<instance xmi:id="operatorconsole _038d1042-3040-4776-9fbA-0e0e058eb020">

<name >operatorconsole </name>
<package href="operatorconsole .cpd"/>

</instance >
<instance xmi:id="goodrepo _7Ab5db4A-7998-4A50-807c-7bd2b5Ace43f">
<name >goodrepo</name >
<package href="goodrepo .cpd"/>

</instance >
<connection >

<name>transportation _repo_transportation_repo</name>
<internalendpoint >

<portname >transportation_repo</portname >
<instance xmi :idref="transportationfacility _df7b1dbA-7674-45b5-Ab9d"/ >

</internalendpoint >
<internalendpoint >

<portname >transportation_repo</portname >
<instance xmi :idref="operatorconsole _038d1042-3040-4776-9fbA"/>

</internalendpoint >
</connection >

</connection >
⋯⋯

⋯⋯
<instance xmi :id="operatorconsole _038d1042-3040-4776-9fbA-0e0e058eb020">

<name>operatorconsole </name >
<package href="operatorconsole .cpd"/>

</instance>
<instance xmi :id="goodrepo_7Ab5db4A-7998-4A50-807c-7bd2b5Ace43f">

<name>goodrepo </name>
<package href="goodrepo .cpd"/>

</instance>
<connection>

<name >transportation_repo_transportation_repo</name>
<internalendpoint>

<portname>transportation _repo</portname >
<instance xmi:idref="transportationfacility _df7b1dbA-7674-45b5-Ab9d"/>

< /internalendpoint >
< internalendpoint>

<portname>transportation _repo</portname >
<instance xmi:idref="operatorconsole _038d1042-3040-4776-9fbA"/>

< /internalendpoint >
</connection>

</connection>
⋯⋯

event d&c
Profile

Figure 7. Code generation from EQAL domain model

1294

Evolution in Model-Driven Software Product-Line Architectures

and deployment of various publish/sub-
scribe services. This layer also contains
several model interpreters that synthesize
different types of configuration files that
specify QoS configurations, parameters,
and constraints, such as the threading
model for event dispatching, event filtering
configuration, and event channel federation
configurations (Edwards et al., 2004). The
EQAL interpreters automatically generate
publish/subscribe service configuration
files and service property description files
needed by the underlying EQAL Runtime
Framework and selected middleware.

As shown in Figure 7, EQAL allows DRE
system deployers to create and synthesize pub-
lish/subscribe QoS configurations and deploy-
ments via graphical models (i.e., EQAL domain
models) that are much easier to understand and
analyze than hand-crafted code. During the mod-
eling phase, EQAL ensures that dependencies
between configuration parameters are enforced
by declaring constraints on the contexts in which
individual options are valid (e.g., priority-based
thread allocation policies are only valid with
component event connections that have assigned
priorities). EQAL can then automatically validate
configurations and notify users of incompatible
QoS properties during model validation, rather
than at component deployment and runtime. The
generated XML-based QoS configuration and de-
ployment descriptors can then be fed into deploy-
ment and configuration runtime tools to deploy
and configure the components and real-time event
channels within the Boeing Bold Stroke.

suPPort Mde-bAsed PlA
evolutIon wHen fAcIng
doMAIn evolutIon

This section examines the following challenges
associated with evolving MDE-based PLAs:

1. Challenges stemming from capturing new
requirements into existing MDE-based
PLAs for DRE systems.

2. Challenges stemming from migrating exist-
ing domain models with MDE-based PLA
evolution.

For each challenge, we explain the context
in which the challenge arises and identify key
problems that must be addressed. Many of these
challenges also exist in MDE-based PLAs for
DRE systems, so they are not limited solely to
event-driven DRE systems as described in our
case study. In the remainder of this section, we
first discuss the challenges and solutions associ-
ated with domain-specific component framework
evolution and DSML evolution, then the chal-
lenges and solutions associated with domain
model evolution.

challenges stemming from
capturing new requirements into
existing Mde-based PlAs for dre
systems

Context

Evolution is a natural occurrence in software de-
velopment and an inevitable part of the software
PLA lifecycle (Chapin, Hale, Kham, Ramil, & Tan,
2001). The changes may be initiated to correct,
improve, or extend assets or products. Because
assets are often dependent on other assets, changes
to one asset may require corresponding changes in
other assets. Moreover, changes to assets in PLAs
can propagate to affect all products using these
assets. A successful process for PLA evolution
must therefore manage these changes effectively
(McGregor, 2003).

 1295

Evolution in Model-Driven Software Product-Line Architectures

Problem: New Requirements Impact
Metamodels and Component
Frameworks

DRE systems must evolve to adapt to chang-
ing requirements and operational contexts such
as supporting new features. In addition, when
some emerging technologies become sufficiently
mature, it is often desirable to integrate them
into existing PLAs for DRE systems. Figure 8
shows different affected scopes caused by such
evolution.

In our Boeing Bold Stroke case study, for
example, depending on system requirements,
different product variants in the Bold Stroke
PLA may require different levels of QoS assur-
ance for event communication, including timing
constraints, event delivery latency, jitter, and
scalability. Even within the same product variant,
different levels of QoS assurance may be required
for different communication paths, depending on
system criticality (e.g., certain communication
paths between components may require more
stringent QoS requirements than others).

Solution: Evolve a PLA Systematically
Through Framework and Metamodel
Enhancement.

A layered PLA can reduce software design com-
plexity by separating concerns and enforcing
boundaries between different layers. Because
different layers in a PLA need to interact with each
other through predefined interfaces, to integrate
new requirements into a PLA, all layers must
evolve in a systematic manner. This evolution can
be generalized to the following three steps:

1. Component framework evolution. As
discussed earlier, frameworks are often
built atop middleware and OS platforms to
provide the runtime environment of DRE
systems. As a result, whenever a DRE system
must evolve to adapt to new requirements,
component frameworks are often affected
because they have direct impact on the
system.

2. DSML evolution. DSML metamodels and
interpreters are often used to capture the

PLA
Evolution

Challenges

component frameworks

M odel
Interpreter

domain Models

Metamodels new requirements

M eta M odel
Interpreter

framework
evolution

domain Model
evolution

Metamodel
evolution

defines

targets
to

Figure 8. Challenges stemming from adding new requirements into model-driven software PLAs

1296

Evolution in Model-Driven Software Product-Line Architectures

variability and features of DRE systems to
expose different capabilities for different
product variants. As discussed previously
and shown in Figure 2, typically the DSMLs
for vertical application domains have a
higher level of abstraction than DSMLs for
horizontal platform domains. These lower
level DSMLs are built atop domain-specific
component frameworks and are often used
to glue different component framework
entities together to form a complete ap-
plication. Therefore, the evolution of lower
level DSMLs should be performed after
framework evolution is completed.

3. Domain model evolution. The DSML
metamodel defines a type system to which
domain models must conform. Because the
changes to the metamodel of a DSML often
invalidate the existing domain models by
redefining the type system, domain model
evolution must be performed after the DSML
evolution.

In the remainder of this section, we further
elaborate the solution approach and describe how
it applies to our case study.

Component Framework Evolution

Component frameworks consist of a set of core
reusable components that can be configured us-
ing well-defined interfaces. In order to capture
the commonalities of software PLAs, one must
formulate a set of usage patterns. The component
frameworks encapsulate these usage patterns and
provide reusable libraries that contain wrapper
façades for the underlying implementation classes
and shield component developers from tedious and
error-prone programming tasks associated with
lower-level details. Component frameworks are
typically designed by analyzing various potential
problems that the frameworks might address and
identifying which parts of each solution are the

same and which areas of each solution are unique
through the SCV analysis.

The first step is to define the domains (i.e.,
the problem areas a framework addresses) and
the context of the framework. The next step is to
define the attributes that recur across all members
of the family of products based on the framework.
The final step is to describe the attributes unique
to the different members of the family of products.
The SCV analysis requires extensive knowledge
about the domain and the PLA requirements so
one can reason what parts of the system should be
implemented by the framework (commonalities)
and what parts of the system should be special-
ized in subclasses or parameters (variabilities).
To implement such design usually requires ef-
fective and skillful use of programming language
features, such as templates and virtual functions,
in conjunction with design patterns (Gamma et
al. 1995).

Applying the Solution to the EQAL Case Study

In our EQAL case study, the scope is to design
a framework to simplify the event communica-
tion between the event sources and event sinks
of PRISM components. The commonality in this
scope is straightforward, that is, every software
product instance should implement an event-
driven publish/subscribe pattern. The variability
of the EQAL Runtime Framework results from
different concrete service types that provide dif-
ferent interfaces and different QoS mechanism
for the event communication, as shown in Figure
9. Because different real-time publish/subscribe
services depend on different representations of
real-time QoS properties, the EQAL Runtime
Framework implements the adapter pattern that
converts a service-independent representation
of real-time properties into a service-specific
representation.

The benefits of EQAL’s design are twofold:
(1) component developers need not concern

 1297

Evolution in Model-Driven Software Product-Line Architectures

themselves with peculiar configuration interfaces,
and (2) no matter what changes occur to the un-
derlying publish/subscribe services, the interface
exposed to components does not change. The
EQAL Runtime framework also implements the
strategy pattern to enhance the extensibility by
allowing new publish/subscribe services to be eas-
ily plugged-in. This design results in a pluggable
publish/subscribe service implementation that is
interchangeable and extensible, and enables all
event communication mechanisms supported by
EQAL to provide the same interface, yet can also
be configured with different strategies and QoS
configurations even facing the domain evolution
of adding new publish/subscribe service types.

DSML Evolution

The core component in the DSML is the
metamodel. To help understand the context of

domain evolution, Figure 10 presents a matrix
of several evolution tasks that require automated
assistance to manage the various dependencies
among metamodels, instance models, and cor-
responding source code. As shown at the top of
Figure 10, a metamodel represents a modeling
language definition that is instantiated to represent
end-user intentions in a specific domain. Elements
in the instance models (middle of figure) have
metatypes that are specified in the metamodel. A
vertical transformation (i.e., a transformation that
goes across abstraction layers) exists between the
instance models and the legacy source code at the
bottom, which represents updates that are needed
in one artifact that are triggered by a change at a
different layer of abstraction. Correspondingly,
horizontal transformation occurs at the same layer
of abstraction to address changing requirements
(i.e., the ∆ at each layer represents a horizontal
transformation).

C om ponen tS erve r

C on ta ine r

C C M
C om ponen t

P OA

In
te

rn
al

In
te

rf
ac

es

event
sinks

facets

re
ce

pt
ac

le
s

ev
en

t
so

ur
ce

s

co
m

po
ne

nt
 c

on
te

xt

runtime framework service Initializer

ORB

dds
svc lib

federated
notify svc lib

event
svc lib

.......

E ven t R T E C N otifica tion D D S....

Service
U sage

M etadata

Service
U sage

M etadata

Service
U sage

M etadata

C om ponen tS erve r

C on ta ine r

C C M
C om ponen t

P OA

In
te

rn
al

In
te

rf
ac

es

event
sinks

facets

r
ec

ep
ta

cl
es

ev
en

t
so

ur
ce

s

c
om

po
ne

nt
 c

on
te

xt

runtime framework service Initializer

ORB

dds
svc lib

federated
notify svc lib

event
svc lib

.......

E ven t R T E C N otifica tion D D S....

Service
U sage

M etadata

Service
U sage

M etadata

Service
U sage

M etadata

Figure 9. Component framework architecture of EQAL

1298

Evolution in Model-Driven Software Product-Line Architectures

To simplify the evolution of DSMLs, the
reusability of metamodels is crucial when the
domain becomes complex. Ideally, a metamodel
can be developed based on a set of reusable (usu-
ally smaller) metamodel units, with different
units capturing different aspects in the domain
of interest. For example, these metamodel units
might include different variations of signal flow,
finite state machines, data type specifications,
and petri-nets. The unified metamodel can then
extend these units and glue them together. This
technique is called compositional metamodeling
(Karsai et al., 2004), and the main motivation of
this technique is to make metamodels more scal-
able and easier to evolve.

Composition metamodeling provides a capa-
bility for reusing and combining existing modeling

languages and language concepts. When changes
need to be made in the metamodel units to reflect
a better understanding of the given aspect in the
domain, such changes can be propagated automati-
cally to the metamodels that utilize them. Further-
more, by precisely specifying the extension and
composition rules, models specified in the original
domain language can be automatically translated
to comply with the new, extended and composed,
modeling language. Another important benefit
of compositional modeling is its ability to add
new capabilities while simultaneously leveraging
prior constraints and model generators of existing
DSMLs. Thus, it is ideal for evolving existing
DSMLs to address new requirements.

Figure 10. A matrix of evolution activities within DSMLs

 1299

Evolution in Model-Driven Software Product-Line Architectures

Applying the Solution to the EQAL Case Study

EQAL is implemented within GME, which offers
the compositional modeling capability. When
new publish/subscribe services are integrated,
a new DSML can be designed within GME and
import the old EQAL metamodel as a reusable
“library.” Apart from being read-only, all objects
in the metamodel imported through the library
are equivalent to objects created from scratch.
Because the new publish/subscribe services share
much commonality between the existing publish/
subscribe services that EQAL already supports,
when the old EQAL metamodel is imported as
a library, subtypes can be created and instances
from the metamodel library can refer to library
objects through references.

challenges stemming from
Migrating existing domain Models
with Mde-based PlA evolution

Context

The primary value of the MDE paradigm stems
from the models created using the DSML. These
models specify the system from which the execut-
able application can be generated or composed.
Changes to the system can be modeled and the
resulting executable model is thus a working
version of the actual system. Unfortunately, if
the metamodel is changed, all models that were
defined using that metamodel may require main-
tenance to adapt to the semantics that represent
the system correctly. Without ensuring the cor-
rectness of the domain models after a change to
the domain, the benefits of MDE will be lost.
The only way to use instance models based on
the original metamodel is to migrate them to use
the modified metamodel. During this migration
process, we must preserve the existing set of do-
main model assets and allow new features to be
added into domain models; ideally, with as little
human intervention as possible.

Problem: Existing Domain Model
Evolution Techniques Require
Excessive Human Intervention

As illustrated in Figure 11, to preserve the ex-
isting set of domain model assets, old domain
models must be transformed to become compli-
ant with the changed metamodel. In the MDE
research community, particularly in the DSML
community, research has been conducted on us-
ing model transformation to address metamodel
evolution (Sprinkle et al., 2003, Gray et al., 2006,
Jouault & Kurtev, 2006). The underlying struc-
ture of models, particularly visual models, can
be described by graphs. Model transformation
research has therefore often been conducted in
the context of graph transformation. In particular,
recent research (Balogh & Varro, 2007; Vizhanyo,
Agrawal, & Shi, 2004) has shown that graph
transformation is a promising formalism to specify
model transformations rules.

Most existing model transformation techniques,
however, require the transformation be performed
after the domain metamodel has changed. For
example, when an old metamodel is modified
and a new metamodel based on it is created, the
model transformation must consider both the old
metamodel and new metamodel as input, and
then manually specify the model transformation
rules based on these two metamodels by using a
transformation specification language provided by
the transformation tool. Although such a design
approach could solve the model transformation
problem, it introduces additional effort in speci-
fying the model transformation rules, even if the
metamodel evolution is minor (e.g., a simple rename
of a concept in the metamodel). This additional
effort is particularly high when the metamodels
are complex, because the transformation tool must
take both complex metamodels as input to specify
the transformation.

1300

Evolution in Model-Driven Software Product-Line Architectures

Solution: Tool-Supported Domain
Model Migration

To preserve the assets of domain models, our ap-
proach is to integrate model migration capabilities
into the metamodeling environment itself. This
approach is sufficiently generic to be applied to
any existing metamodeling environment. A de-
scription of the change in semantics between an
old and a new DSML is a sufficient specification
to transform domain models such that they are
correct in the new DSML. Moreover, the pat-
tern that specifies the proper model migration is
driven by the change in semantics and may be
fully specified by a model composed of entities
from the old and new metamodels, along with
directions for their modification.

Below we describe how syntactic and semantic
based model transformation approaches can be
integrated to address the domain model migra-
tion problem.

Integration of Syntactic-Based and
Semantic-Based Domain Model Evolution

The purpose of a DSML metamodel is to properly
define the syntax and semantics to precisely de-
scribe software-intensive systems at a higher level
of abstraction. As a result, both the syntax and the
semantics of a metamodel can be affected when it
is migrated from one version to another version.
Consequently, to migrate a source domain model
to the destination model, we must deal with both
the syntax aspect and the semantics aspect.

Based on the characteristics of metamodel
change, we have classified 8 atomic types of
metamodel changes, as shown in Table 1. From
this table, we can see that the all “additions” (addi-
tion of new type, new attribute or new association
between types) to the metamodel will not affect
the domain models because the target metamodel
is a superset of the source metamodel and all the
relationships of the source metamodel will still

MM 1

Metamodel1Metamodel0

Instantiation Inference Instantiation Inference

M 1

MM: The changes made to the metamodels

M: The changes reflected in the domain models

Figure 11. Domain model evolution problem

 1301

Evolution in Model-Driven Software Product-Line Architectures

be preserved. On the other hand, other types of
metamodel changes including all “deletion” and
“modifications” will result in unavoidable domain
model change because the target metamodel is no
longer a superset of the source metamodel.

These results provide intuition into the problem
of domain model evolution. In some cases, the
semantics can be easily specified. For example,
if the metamodel designer deletes an atom called
“foo” in the metamodel and creates a new atom
called “bar” we can then specify the semantics
of the change as:

replace(Atom("foo") -> Atom("bar"));

Syntactic metamodel changes, however, can
often affect semantic changes, which result in a
highly challenging task in model migration, that is,
semantic migration. Semantic migration requires

that the meaning of the old domain models be
preserved after the transformation and that the
new domain models conform to the entire set of
static constraints required in the new domain.

For model migration, we generalized two ap-
proaches to perform model transformation with
semantic migration. In the first approach, given
two distinct metamodels, source metamodel and
destination metamodel, we can perform a transfor-
mation that converts the source models in entirety
to the destination models. This means that a com-
plete set of rules is needed to convert each entity
in the models. In the second approach, we create
a unified metamodel (old + new), such that both
old and new domain models are valid. Developers
can then write transformation specifications that
convert those parts of the model belonging to the
source part of the paradigm to equivalent models
in the destination part of the paradigm.

Table 1. How atomic types of metamodel changes will affect domain models

Type of Metamodel Changes Domain Model
Change Required?

Additions

1 Addition of new type No

2 Addition of new attribute of a type No

3 Addition of association between types No

Deletions

4 Deletion of an existing type Yes

5 Deletion of an attribute of a type Yes

6 Deletion of association between types Yes

Modifications

7 Replacing one type with another type Yes

8 Replacing one association with another Yes

1302

Evolution in Model-Driven Software Product-Line Architectures

We have found that the second approach is
much cleaner and user-friendly than the first ap-
proach because it requires much less human effort.
In particular, in this second approach, after the
unified metamodel is formulated, we can use an
“SQL-like” declarative language that allows one
to query and change the model to define model
transformation rules. The Embedded Constraint
Language (ECL), used by the C-SAW GME plug-
in (Gray, Bapty, Neema, & Tuck, 2001), is such a
language. ECL is a textual language for describ-
ing transformations on visual models. Similar to
the Object Constraint Language (OCL) defined
in OMG’s UML specification, ECL provides
concepts such as collection and model naviga-
tion. In addition, the ECL also provides a rich
set of operators that are not found in the OCL to
support model aggregations, connections, and
transformations. ECL is a declarative language
that allows one to specify the formal transforma-
tion rules of the syntax translator to capture the
semantic migration.

In previous work, we showed how ECL can be
used to accomplish several model transformation
tasks (Gray et al., 2006). As an input language
to C-SAW, ECL can support aspect modeling, as
well as the ability to scale a base model to a larger
model with replicated structures. Figure 12 illus-
trates an input source model being transformed
by an ECL transformation rule to generate a new
target model. An example of using ECL to handle
the domain model migration in our case study is
described in the next subsection.

Applying the Solution to the EQAL
Case Study

In an old version of the EQAL metamodel there
is a modeling object type called “EventChan-
nelGateway,” which can be used to federate
different event channels together (Edwards et
al., 2004). The definition of such a modeling
element in a metamodel is similar to defining a
class in C++ or Java. With domain evolution, this

Figure 12. Model transformation using the ECL (Gray et al., 2006)

 1303

Evolution in Model-Driven Software Product-Line Architectures

EventChannelGateway object type needs to
be defined as an abstract base type (similar to the
abstract base class concept in C++ or Java), and
two new derived types called IIOPGatway and
UDPGateway are defined in order to configure
different underlying transport protocols between
event channels. An issue arises regarding the
type assignment of EventChannelGate-
way elements; depending on the context, these
elements could be migrated to either the type
of IIOPGatway or UDPGateway. In cases
like these, it is quite challenging to discover the
semantics of the change, that is, the semantics of
the model elements cannot be deduced from the
syntax. To require that such algorithms provide
actual semantic migration capabilities necessi-
tates human input because semantic changes in
metamodels cannot be captured through syntactic
changes alone.

Figure 13 shows the BasicSP application
scenario (Balasubramanian et al., 2005b) in the
Boeing Bold Stroke PLA. We use the BasicSP
scenario as an example to showcase the problems

encountered when evolving PLAs for compo-
nent-based DRE systems and motivate the need
of ECL for model transformation. In this figure,
two component instances named BMDevice and
BMClosedED are connected with each other
through a real-time event channel provided by
TAO’s Real-time Event Service. An event channel
consists of one RTEC _ Proxy _ Consumer
module and RTEC _ Proxy _ Supplier
module, which could be configured with various
QoS settings, such as event dispatching threading
models, priority configuration and periodic event
processing configurations. Consider a domain
evolution scenario, where the Real-time Event
Service is not the desired choice for a particular
Bold Stroke product variant, so it must be replaced
with the TAO Federated Notification Service. In
this case, the current domain model of Figure 13
will become invalid and must be migrated to the
new EQAL DSML that supports the configuration
of TAO’s Federated Notification Service.

With ECL, a model transformation rule can be
defined to accomplish the model migration task

Figure 13. EQAL configuring real-time event service between two components

1304

Evolution in Model-Driven Software Product-Line Architectures

noted above. In the ECL, a strategy represents a
transformation rule that is applied to a specific
location of a model. A query can be written in the
ECL to define a collection of models that need
to be transformed, and a strategy can be invoked
on the collection. The strategy in Box 1 speci-
fies the desired model migration. The semantic
meaning of this transformation is straightforward,
that is, line 1 declares the strategy based on the
ECL syntax; lines 4-10 find the interested model
elements and their associations that are based on
TAO’s Real-time Event Service; line 11 removes

the found model elements, and lines 13-20 replace
these model elements and associations with TAO’s
Federated Notification Service. (see Box 1)

conclusIon

Change is a natural and inevitable part of the soft-
ware-intensive system lifecycle. The changes may
be initiated to correct, improve, or extend assets
or products. Because assets are often dependent
on other assets, changes to one asset may require

01. strategy changetofns() {
02. declare FNS_Proxy_Consumer, FNS_Proxy_Supplier : model;
03.
04. // Find interested model elements…
05. if(atoms()->select(a | a.kindOf() = “RTEC_Proxy_Consumer”)->size() >= 1) then
06.
07. //get the RTEC_Proxy_Consumer model element
08. //and its connections
09. …
10. //delete the RTEC_Proxy_Consumer model element
11. RTEC_Model.deleteModel(“RTEC_Proxy_Consumer”, “RTEC_proxy_consumer”);
12.
13. //add the FNS_Proxy_Consumer model
14. FNS_Proxy_Consumer:= addModel(“FNS_Proxy_Consumer”, “FNS_proxy_consum-
er”);
15. FNS_Proxy_Consumer.setAttribute(“Reactive”, “1”);
16. FNS_Proxy_Consumer.setAttribute(“LockType”, “Thread Mutex”);
17.
18. //add the connections
19. RTEC_Model.addConnection(“Event_Source_Proxy_Consumer”, event_source, FNS_
Proxy_Consumer);
20. RTEC_Model.addConnection(“Proxy_Supplier_Event_Sink”, FNS_Proxy_Consumer,
event_sink);
21.
22. //do similar to the FNS_Proxy_Supplier model
23. …
24. endif;
25. }

Box 1.

 1305

Evolution in Model-Driven Software Product-Line Architectures

corresponding changes in other assets. Moreover,
changes to assets in PLAs can propagate to affect
all products using these assets.

To use MDE-based PLA technologies ef-
fectively in practice requires practical and scal-
able solutions to the domain evolution problem,
which arises when existing PLAs are extended
or refactored to handle unanticipated require-
ments or better satisfy existing requirements. For
example, changing metamodels in a PLA often
invalidates models based on previous versions of
the metamodels. Although software developers
can manually update their models or components
developed with a previous metamodel to work
with the new metamodel, this approach is clearly
tedious, error-prone, and nonscalable. A success-
ful process for PLA evolution must therefore
manage these changes effectively.

To rectify these problems, this chapter de-
scribes a layered and compositional architecture
to modularize system concerns and reduce the
effort associated with domain evolution. This
chapter illustrates via a case study how systematic
evolution with three ordered steps can maintain
the stability of domain evolution against MDE-
based software PLAs, and how structural-based
model transformations help reduce human effort
by automatically transforming existing domain
models based on metamodel-based rules.

The following is a summary of lessons learned
from our experience in evolving product-lines
using MDE tools:

• DSMLs and component frameworks are
highly synergistic: An MDE approach
expedites PLA development with the proper
integration of DSMLs and component
frameworks. The component frameworks
help shield the complexities of the design
and implementation of modeling tools,
and decouple many aspects of concerns
between the modeling tools and the ex-
ecutable systems. In our case study, if the
publish/subscribe service type is the only

missing or changing concern in the Boe-
ing Bold Stroke PLA (which is typical in
our case), little new application code must
be written, yet the complexity of the gen-
eration tool remains manageable due to the
limited number of well-defined configura-
tion “hot spots” exposed by the underlying
infrastructure. Likewise, when component
deployment plans are incomplete or must
change, the effort required is significantly
less than starting from the raw component
middleware without MDE tool support.

• Declarative-based model transforma-
tion alleviates transformation effort:
Structural-based model transformations
help maintain the stability of domain
evolution of MDE-based DRE systems by
automatically migrating domain models.
A declarative-based model transformation
language like ECL is an ideal approach in
such a case. The case study presented in this
chapter highlights the ease of specification
and the general flexibility provided by the
transformation engine.

• Testing and debugging of transformation
specification is still hard: Transformation
specifications, such as those used to specify
the transformation strategy in this chapter,
are written by humans and prone to error.
To improve the robustness and reliability of
model transformation, there is a need for test-
ing and debugging support to assist in finding
and correcting the errors in transformation
specifications. Ongoing and future work on
ECL focuses on the construction of testing
and debugging utilities to ensure the cor-
rectness of ECL transformation specifica-
tions.

All software in this chapter can be downloaded
from our Web sites. The EQAL framework is
shipped as part of the CIAO and is available at
http://download.dre.vanderbilt.edu. The EQAL
DSML is available at http://www.dre.vanderbilt.

1306

Evolution in Model-Driven Software Product-Line Architectures

edu/cosmic/. C-SAW is available at http://www.
cis.uab.edu/gray/research/C-SAW/.

future reseArcH dIrectIons

This section discusses the future trends in the
areas of MDE and component middleware, and
how together they are impacting MDE-based
PLAs, particularly for DRE systems.

emerging Interest in
Domain-Specific Modeling

The interest and adoption of DSMLs over the
past decade has surged. Strong support for basic
research has been committed by the large Euro-
pean Union ModelWare and ModelPlex projects,
which are funded at 30M Euros (ModelWare
Project, 2006). Metamodeling tools that support
DSM continue to emerge from both commercial
and open source projects (e.g., Microsoft’s DSL
Toolkit (Microsoft, 2006) and the Eclipse Model-
ing Project (Eclipse, 2007)), as well as numerous
academic research projects (e.g., Vanderbilt’s
Generic Modeling Environment (GME, 2007)).
Initial success stories from industry adoption of
DSM have been reported: The newly created DSM
Forum (DSM Forum, 2007) serves as a repository
of several dozen successful projects (mostly from
industry, such as Nokia, Dupont, Honeywell, and
NASA) that have adopted DSM. Over the past 5
years, the annual DSM workshop at OOPSLA
(52 international participants in 2007) provides a
venue for reporting experiences in DSM research
and practice.

future research directions
of Mde tools for dre systems

MDE has already played an important role in the
assembly, configuration and deployment lifecycle
stages of today’s DRE systems. We envision next
generation MDE tools will seamlessly integrate

all lifecycle stages of software product lines, in-
cluding requirement management, functionality
specification, QoS specification, system partition-
ing and implementation, component assembly and
packaging, system configuration, system planning
and analysis and runtime system management.
With such seamless integration, models will
become vital artifacts in all aspects of software
PLA development lifecycle, and sophisticated
model transformation techniques will bridge the
gap between models in different lifecycle stages.
The need for seamless integration of models across
the lifecycle is driving the need for integration
across a collection of different modeling tools,
where each offers some advanced capability not
found in another tool. The need for tool integra-
tion will continue to heighten the role that model
transformation plays as the key enabler of model
sharing (Sendall & Kozaczynski, 2003).

future research directions of
component Middleware for dre
systems

The success of component middleware technolo-
gies has resulted in DRE systems created by cus-
tomizing pre-existing COTS components rather
than creating them from scratch. The increased use
of pre-existing components shifts the focus from
development to configuration and deployment of
COTS components. With more COTS components
provided by different vendors, the capability of
heterogeneous deployment becomes a challenging
task to evolve today’s DRE systems.

Future component middleware technologies
will enable rapid development of adaptive large
scale DRE systems to accommodate changing
operating environments. To facilitate the devel-
opment of large-scale DRE systems, component
middleware must support the agility in business
service provisioning within and across organiza-
tions while ensuring the quality of service. The
combination of these two techniques will finally
enable software PLA developers to capture and

 1307

Evolution in Model-Driven Software Product-Line Architectures

represent adaptability of DRE systems at the
business level and automatically translate this
business adaptability into component and process
adaptability.

As PLAs become more complex, they will be
adopted into software-intensive systems of very
large-scale, as typified by the focus of Ultra Large-
Scale systems (Ultra Large-Scale, 2007). In such
cases, it is not unrealistic to imagine the PLAs
using multiple different middleware platforms.
To accommodate these requirements demands
new investigation in deployment and configura-
tion across heterogeneous middleware platforms.
This heterogeneity also adds to the challenges in
provisioning QoS end-to-end for these PLAs. All
these require novel modeling capabilities that can
abstract away the heterogeneity.

We envision these future research directions
will greatly simplify the development of MDE-
based PLAs and make next generation DRE
systems more robust.

AcknowledgMent

This was supported in part by an NSF CAREER
award (CCF-0643725).

references

Atkinson, C., Bayer, J., Bunse, C., Kamsties, E.,
Laitenberger, O., Laqua, R., et al. (2002). Compo-
nent-based product line engineering with UML.
Addison-Wesley.

Balasubramanian, K., Balasubramanian, J., Par-
sons, J., Gokhale, A., & Schmidt, D.C. (2005a,
March). A platform-independent component
modeling language for distributed real-time and
embedded systems. In Proceedings of the 11th
IEEE Real-Time and Embedded Technology and
Applications Symposium, San Francisco, CA,
(pp. 190-199).

Balasubramanian, K., Gokhale, A., Lin, Y., Zhang,
J., & Gray, J. (2006, June). Weaving deployment
aspects into domain-specific models. Interna-
tional Journal on Software Engineering and
Knowledge Engineering, 16(3), 403-424.

Balasubramanian, K., Krishna, A., Turkay, E.,
Balasubramanian, J., Parsons, J., Gokhale, A., &
Schmidt, D.C. (2005b, April). Applying model-
driven development to distributed real-time and
embedded avionics systems International Journal
of Embedded Systems, special issue on Design and
Verification of Real-Time Embedded Software.

Balogh, A., & Varro, D. (2007). The model trans-
formation of the VIATRA2 framework. Science
of Computer Programming (Special Issue on
Model Transformation).

Bollella, G., Gosling, J., Brosgol, B., Dibble,
P., Furr, S., Hardin, D., & Turnbull, M. (2000).
The real-time specification for Java. Addison-
Wesley.

Buschmann, F., Meunier, R., Rohnert, H., Som-
merlad, P., & Stal, M. (1996). Pattern-oriented
software architecture—a system of patterns. John
Wiley & Sons.

Chapin, N., Hale, J., Kham, K., Ramil, J., & Tan,
W. (2001, January). Types of software evolution
and software maintenance. Journal of Software
Maintenance: Research and Practice, 3-30.

Clements, P., & Northrop, L. (2001). Software
product-lines: Practices and patterns. Addison-
Wesley.

Ultra large-scale systems: The report. (2007).
CMU Technical Report. Retrieved March 7, 2008,
from http://www.sei.cmu.edu/uls/

Coplien, J., Hoffman, D., & Weiss, D. (1998,
November/December). Commonality and vari-
ability in software engineering. IEEE Software,
15(6), 37-45.

1308

Evolution in Model-Driven Software Product-Line Architectures

Dashofy, E.M., Hoek, A., & Taylor, R.N. (2002,
May). An infrastructure for the rapid develop-
ment of XML-based architecture description
languages. In Proceedings of the 24th International
Conference on Software Engineering, Orlando,
FL, (pp. 266-276).

Deng, G., Lenz, G., & Schmidt, D.C. (2005, Octo-
ber). Addressing domain evolution challenges for
model-driven software product-line architectures
(PLAs). In Proceedings of the MoDELS 2005
Workshop on MDD for Software Product-lines:
Fact or Fiction?, Montego Bay, Jamaica.

DSM Forum. (2007). From domain-specific
modeling forum. Retrieved March 7, 2008, from
http://www.dsmforum.org/tools.html

Eclipse Modeling Project. (2007). Retrieved
March 7, 2008, from http://www.eclipse.org/
modeling/

Edwards, G., Deng, G., Schmidt, D.C., Gokhale,
A., & Natarajan, B. (2004, October). Model-
driven configuration and deployment of compo-
nent middleware publisher/subscriber services.
In Proceedings of the 3rd ACM International
Conference on Generative Programming and
Component Engineering, Vancouver, Canada,
(pp. 337-360).

Frankel, D.S. (2003). Model driven architecture:
Applying MDA to enterprise computing. John
Wiley & Sons.

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1995). Design patterns: Elements of reusable
object-oriented software. Addison-Wesley.

GME. (2007). Generic modeling environment.
Retrieved March 7, 2008, from http://escher.isis.
vanderbilt.edu/downloads?tool=GME

Gray, J., Bapty, T., Neema, S., & Tuck, J. (2001).
Handling crosscutting constraints in domain-
specific modeling. Communications of the ACM,
44(10), 87-93.

Gray, J., Lin, Y., & Zhang, J. (2006, February).
Automating change evolution in model-driven
engineering. In D. Schmidt (Ed.), IEEE Computer,
Special Issue on Model-driven Engineering,
39(2), 51-58.

Gray, J., Tolvanen, J., Kelly, S., Gokhale, A.,
Neema, S., & Sprinkle, J. (2007). Domain-specific
modeling. In P. Fishwick (Ed.), CRC handbook on
dynamic system modeling. CRC Press.

Heineman, G.T., & Councill, W.T. (2001). Com-
ponent-based software engineering: Putting the
pieces together. Addison-Wesley.

Harrison, T., Levine, D., & Schmidt, D.C. (1997,
October). The design and performance of a real-
time CORBA event service. In Proceedings of
OOPSLA, Atlanta, GA, (pp. 184-200). ACM.

Hoek, A., Mikic-Rakic, M., Roshandel, R., &
Medvidovic, N. (2001, September). Taming ar-
chitectural evolution. In Proceedings of the 8th
European Software Engineering Conference
(held jointly with 9th ACM SIGSOFT International
Symposium on Foundations of Software Engineer-
ing), Vienna, Austria, (pp. 1-10).

IBM. (2007). Rational software. Retrieved March
7, 2008, from http://www-306.ibm.com/software/
rational/

iLogix. (2006). Rhapsody. Retrieved March
7, 2008 from http://www.ilogix.com/sublevel.
aspx?id=284

Jouault, F., & Kurtev, I. (2006, April). On the
architectural alignment of ATL and QVT. In
Proceedings of ACM Symposium on Applied
Computing (pp. 1188-1195). Dijon, Bourgogne:
France.

Karhinen, A., & Kuusela, J. (1998, February).
Structuring design decisions for evolution. In
Proceedings of the Second International ESPRIT
ARES Workshop, Las Palmas de Gran Canaria,
Spain, (pp. 223-234). Springer-Verlag.

 1309

Evolution in Model-Driven Software Product-Line Architectures

Karsai, G., Maroti, M., Lédeczi, A., Gray, J., &
Sztipanovits, J. (2004, March). Composition and
cloning in modeling and metamodeling. IEEE
Transactions on Control System Technology,
Special Issue on Computer Automated Multi-
paradigm Modeling, 12(2), 263-278.

Karsai, G., Neema, S., Abbott, B., & Sharp, D.
(2002, August). A modeling language and its sup-
porting tools for avionics systems. In Proceedings
of the 21st Digital Avionics Systems Conference,
(Vol. 1, pp. 6A3-1-6A3-13).

Klusener, S., Laemmel, R., & Verhoef, C. (2005).
Architectural modifications to deployed soft-
ware. Science of Computer Programming, 54,
143-211.

Krueger, C.W. (2002, August). Variation manage-
ment for software production lines. In Proceed-
ings of the Second International Conference of
Software Product Lines, SPLC 2, San Diego, CA,
(pp. 37-48).

Lédeczi, Á., Nordstrom, G., Karsai, G., Volgyesi,
P., & Maroti, M. (2001). On metamodel compo-
sition. In Proceedings of the 2001 IEEE Inter-
national Conference on Control Applications,
Mexico City, Mexico, (pp. 756-760).

Long, E., Misra, A., & Sztipanovits, J. (1998,
August). Increasing productivity at Saturn. IEEE
Computer, 31(8), 35-43.

Macala, R.R., Stuckey, L., & Gross, D. (1996,
May). Managing domain-specific, product-line
development. IEEE Software, 14(13), 57-67.

Mens, T., & D’Hondt, T. (2000, March). Auto-
mating support for software evolution in UML,
Automated Software Engineering, 7(1), 39-59.

McGregor, J.D. (2003). The evolution of product-
line assets (Tech. Rep. No. CMU/SEI-2003-TR-
005m ESC-TR-2003-005).

Microsoft Corporation. (2000). Microsoft COM
technologies DCOM.

Microsoft Corporation. (2006). Microsoft domain-
specific language (DSL) tools: Visual studio 2005
team system. Retrieved March 7, 2008, from
http://msdn.microsoft.com/vstudio/teamsystem/
workshop/DSLTools

Microsoft Corporation. (2007). Windows embed-
ded CE 6.0. Retrieved March 7, 2008, from http://
www.microsoft.com/windows/embedded/

ModelWare Project. (2006). Retrieved March 7,
2008, from http://www.modelware-ist.org/

OMG. (2002, April). MOF 2.0 query/views/
transformations RFP. OMG document ad/2002-
04-10.

OMG. (2003, July). The common object request
broker: Architecture and specification.

OMG. (2004a, December). Data distribution
service. OMG document, formal/04-12-02.

OMG. (2004b).Light-weight CORBA component
model. OMG document, ptc/04-06-10.

OMG. (2005a, January). Real-time CORBA speci-
fication. OMG document, formal/05-01-04.

OMG. (2005b, November). MOF QVT final
adopted specification. OMG document, ptc/05-
11-01.pdf.

OMG. (2006, April). CORBA component model.
OMG Document formal/2006-04-01 ed.

Ommering, R., Linden, F., Kramer, J., & Magee,
J. (2002, March). The Koala Component Model for
consumer electronics software. IEEE Computer,
33(3), 78-85.

Ran, A., & Kuusela, J. (1996, March). Design
decision trees. In Proceedings of the Eighth In-
ternational Workshop on Software Specification
and Design, (p 172).

Roddick, J.F. (1992). Schema evolution in database
systems: An annotated bibliography. SIGMOD
Record, 21(4).

1310

Evolution in Model-Driven Software Product-Line Architectures

Roll, W. (2003, May). Towards model-based and
CCM-based applications for real-time systems. In
Proceedings of the International Symposium on
Object-oriented Real-time Distributed Computing
(ISORC), Hokkaido, Japan, (pp. 75-82).

Schmidt, D. C. (1993). The ADAPTIVE com-
munication environment: An object-oriented
network programming toolkit for developing
communication software. Concurrency: Practice
and Experience, 5(4), 269-286.

Schmidt, D. C. (2002, June). Middleware for real-
time and embedded systems. Communications of
the ACM, 45.

Schmidt, D.C. (2006, February). Model-driven
engineering. IEEE Computer, 25-32.

Schmidt, D.C., Levine, D., & Mungee, S. (1998,
April). The design and performance of real-time
object request brokers. Computer Communica-
tions, 21, 294-324.

Schulte, M. (2003, May). Model-based integration
of reusable component-based avionics system. In
Proceedings of the Eighth IEEE International
Symposium on Object-oriented Real-time Dis-
tributed Computing (ISORC’05) (pp. 62-71).
Seattle, WA.

Sendall, S., & Kozaczynski, W. (2003, Septem-
ber-October). Model transformation—the heart
and soul of model-driven software development.
IEEE Software, 20(5), 42-45.

Sharp, D. (1999, October). Avionics product line
software architecture flow policies. In Proceed-
ings of the 18th IEEE/AIAA Digital Avionics Sys-
tems Conference (DASC), St Louis, MO.

Siemens. (2007). Retrieved March 7, 2008, from
http://www.us.sbt.siemens.com/bau/products/de-
fault.asp

Sprinkle, J., Agrawal, A., Levendovszky, T., Shi,
F., & Karsai, G. (2003, April). Domain model

translation using graph transformations. In Pro-
ceedings of the Conference on Engineering of
Computer-based Systems, Huntsville, AL, (pp.
159-167).

Sprinkle, J., & Karsai, G. (2004, June). A domain-
specific visual language for domain model evolu-
tion. Journal of Visual Languages and Computing,
15(3-4), 291-307.

Sun Microsystems. (2000). Java remote method
invocation specification, revision 1.5, JDK 1.2,
Oct. 1998.

Sun Microsystems. (2001). Enterprise JavaBeans
specification. Retrieved March 7, 2008, from java.
sun.com/products/ejb/docs.html

Szyperski, C. (2002). Component software:
Beyond object-oriented programming. Addison-
Wesley.

Timesys. (2002). Predictable performance for
dynamic load and overload. Retrieved March 7,
2008, from www.timesys.com/prodserv/whitepa-
per/Predictable_Performance_1_0.pdf

Tolvanen, J.P., & Kelly, S. (2005). Defining do-
main-specific modeling languages to automate
product derivation: Collected experiences. In
Proceeding of the 9th Software Product Line
Conference, Rennes, France, (pp. 198-209).

Vizhanyo, A., Agrawal, A., & Shi, F. (2004, Oc-
tober). Towards generation of efficient transfor-
mations. In Proceeding of the ACM International
Conference on Generative Programming and
Component Engineering, Vancouver, Canada,
(pp. 298-316).

White, J., Schmidt, D.C., & Gokhale, A. (2005,
October). Simplifying autonomic enterprise Java
Bean applications via model-driven development:
A case study. In Proceedings of the 8th Interna-
tional Conference on Model Driven Engineering
Languages and Systems, Montego Bay, Jamaica,
(pp. 601-615).

 1311

Evolution in Model-Driven Software Product-Line Architectures

Wind River Systems. (1998). VxWorks 5.3. Re-
trieved March 7, 2008, from ww.wrs.com/prod-
ucts/html/vxworks.html

Zandy, V. C., & Miller, B. P. (2002, September).
Reliable network connections. In Proceedings
of the Eighth Annual International Conference
on Mobile Computing and Networking, (pp.
95-106).

AddItIonAl reAdIng

Batory, D. (2006). Multilevel models in model-
driven engineering, product lines, and metapro-
gramming. IBM Systems Journal, 45(3), 527-
540.

Bézivin, J. (2001, July 29-August 03). From object
composition to model transformation with the
MDA. In Proceedings of the 39th international
Conference and Exhibition on Technology of
Object-oriented Languages and Systems, Wash-
ington, DC, (p. 350).

Bézivin, J. (2005). On the unification power of
models. Software and Systems Modeling, 4(2),
171-188.

Billig, A., Busse, S., Leicher, A., & Süß, J. G.
(2004, October 18-22). Platform independent
model transformation based on triple. In Proceed-
ings of the 5th ACM/IFIP/USENIX International
Conference on Middleware, New York, (Vol. 78,
pp. 493-511). New York: Springer-Verlag.

Bosch, J. (2000). Design and use of software ar-
chitectures: Adopting and evolving a product-line
approach. ACM Press/Addison-Wesley.

Buck, J., Ha, S., Lee, E.A., & Messerschmitt, D.G.
(1991). Ptolemy: A framework for simulating and
prototyping heterogeneous systems. International
Journal on Computer Simulation, 4, 155-182.

Czarnecki, K., Antkiewicz, M., & Kim, C. H.
(2006, December). Multi-level customization in

application engineering. Communications of the
ACM, Special Issue on Software-Product Line
Engineering.

Czarnecki, K., & Helsen, S. (2003, October). Clas-
sification of model transformation approaches. In
Proceedings of the 2nd OOPSLA’03 Workshop on
Generative Techniques in the Context of MDA,
Anaheim, CA.

Durán, A., Bernárdez, B., Genero, M., & Piat-
tini, M. (2004, October). Empirically driven use
case metamodel evolution. In Proceedings of 7th
International Conference Unified Modeling Lan-
guage: Modeling Languages and Applications,
Lisbon, Portugal, (pp. 1-11).

Fairbanks, G., Garlan, D., & Scherlis, W. (2006,
October). Design fragments make using frame-
works easier. ACM SIGPLAN Notices, 4(10).

Greenfield, J., Short, K., Cook, S., & Kent, S.
(2004). Software factories: Assembling applica-
tions with patterns, models, frameworks, and
tools. John Wiley & Sons.

Gokhale, A., Balasubramanian, K., Balasubra-
manian, J., Krishna, A., Edwards, G.T., Deng,
G., et al. (2007). Model driven middleware: A
new paradigm for deploying and provisioning
distributed real-time and embedded applications.
In M. Aksit (Ed.), Elsevier Journal of Science of
Computer Programming: Special Issue on Model
Driven Architecture.

Gokhale, A., Schmidt, D. C., Natarajan, B., &
Wang, N. (2002, October). Applying model-inte-
grated computing to component middleware and
enterprise applications. The Communications of
the ACM Special Issue on Enterprise Components,
Service and Business Rules, 45.

Gore, P., Schmidt, D.C., Gill, C., & Pyarali, I.
(2004, May). The design and performance of a
real-time notification service. In Proceedings of
the 10th Real-time Technology and Application
Symposium (pp. 112-120). Toronto, CA.

1312

Evolution in Model-Driven Software Product-Line Architectures

Gray, J., Bapty Neema, T., & Tuck, J. (2001,
October). Handling crosscutting constraints in
domain-specific modeling. The Communications
of the ACM.

Johnson, R.E. (1997, October). Frameworks =
(components + patterns). Communications of the
ACM, 40(10), 39-42.

Ledeczi, A., Bakay, A., Maroti, M., Volgysei, P.,
Nordstrom, G., Sprinkle, J., & Karsai, G. (2001,
November). Composing domain-specific design
environments. IEEE Computer, 44-51.

Lenz, G., & Wienands, C. (2006, July 6). Practical
software factories in .NET. Apress.

Pohl, K., Bockle, G., & Linden, F., van der. (2005).
Software product line engineering. Berlin, Hei-
delberg, New York: Springer-Verlag.

Schmidt, D.C., Stal, M., Rohert, H., & Buschmann,
F. (2000). Pattern-oriented software architecture:
Concurrent and networked objects. John Wiley
& Sons.

Sztipanovits, J., & Karsai, G. (1997, April).
Model-integrated computing. IEEE Computer,
110-112.

Tourwé, T., & Mens, T. (2003, September). Au-
tomated support for framework-based software
evolution. In Proceedings of the International
Conference on Software Maintenance, (p. 148).
Washington, DC: IEEE Computer Society.

This work was previously published in Designing Software-Intensive Systems: Methods and Principles, edited by P. Tiako, pp.
102-132, copyright 2009 by Information Science Reference (an imprint of IGI Global).

 1313

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.11
Reverse Engineering from an

XML Document into an
Extended DTD Graph

Herbert Shiu
City University of Hong Kong, Hong Kong

Joseph Fong
City University of Hong Kong, Hong Kong

AbstrAct

The extensible markup language (XML) has be-
come a standard for persistent storage and data
interchange via the Internet due to its openness,
self-descriptiveness, and flexibility. This article
proposes a systematic approach to reverse engi-
neer arbitrary XML documents to their conceptual
schema, extended DTD graphs, which are DTD
graphs with data semantics. The proposed ap-
proach not only determines the structure of the
XML document, but also derives candidate data
semantics from the XML element instances by
treating each XML element instance as a record
in a table of a relational database. One application
of the determined data semantics is to verify the
linkages among elements. Implicit and explicit
referential linkages are among XML elements

modeled by the parent-children structure and
ID/IDREF(S), respectively. As a result, an arbi-
trary XML document can be reverse engineered
into its conceptual schema in an extended DTD
graph format.

IntroductIon

As the extensible markup language (XML; Bray,
Paoli, Sperberg-McQueen, Maler, & Yergeau,
2004) has become the standard document format,
the chance that users have to deal with XML
documents with different structures is increasing.
If the schema of the XML documents in a docu-
ment type definition (DTD; Bosak, 1998) is given
or derived from the XML documents right away
(Kay, 1999; Moh, Lim, & Ng, 2000), it is easier

1314

Reverse Engineering from an XML Document into an Extended DTD Graph

to study the contents of the XML documents.
However, the formats of these schemas are hard
to read and not very user friendly.

XML has been the common format for storing
and transferring data between software applica-
tions and even business parties as most software
applications can generate or handle XML docu-
ments. For example, a common scenario is that
XML documents are generated and based on the
data stored in a relational database; there have
been various approaches for doing so (Fernandez,
Morishima, & Suciu, 2001; Thiran, Estiévenart,
Hainaut, & Houben, 2004). The sizes of XML
documents that are generated based on the data
stored in databases can be very large. Most prob-
ably, these documents are stored in a persistent
storage for backup purposes as XML is the ideal
format that can be processed by any software
applications in the future.

In order to handle the above scenario, it is
possible to treat XML element instances in an
XML document as individual entities, and the
relationships from the different XML element
types can be determined by reverse engineering
them for their conceptual models, such as extended
DTD graphs with data semantics. As such, users
can have a better understanding of the contents
of the XML document and further operations
with the XML document become possible, such
as storing and querying (Deutsch, Fernandez, &
Suciu, 1999; Florescu & Kossmann, 1999; Kanne
& Moerkotte, 2000).

This article proposes several algorithms that
analyze XML documents for their conceptual
schema. Two main categories of XML documents
exist: data centric and narrative. As the contents
of narrative XML documents, such as DocBook
(Stayton, 2008) documents, are mainly unstruc-
tured and their vocabulary is basically static, the
necessity of handling them as structured contents
and reverse engineering them into conceptual
models is far less than that of handling data-centric
ones. Therefore, this article will concentrate on
data-centric XML documents.

referential Integrity in XMl
documents

XML natively supports one referential integrity
mechanism, which is the ID/IDREF(S) type of at-
tribute linkages. In every XML document, the
value of an ID type attribute appears at most
once and the value of the IDREF(S) attribute must
refer to one ID type attribute value. An IDREF(S)
type attribute can refer to any XML element in
the same document, and each XML element can
define at most one ID type attribute. Due to the
nature of ID/IDREF(S) type attributes in XML
documents, relationships among different XML
element types can be realized and it is possible to
use them to implement data semantics.

This article will discuss the various data
semantics and the possible ways to implement
them. The algorithms presented are based on
observations of the common XML document
structures:

1. Due to the nested structure of an XML
document (the relationship between a parent
element and its child elements), the child
elements implicitly refer to their parent
element.

2. For an IDREF or IDREFS type attribute, the
defining element is referred to the element(s)
with an ID type attribute by the referred
value. Such linkages are similar to the for-
eign keys in a relational database. The two
associated element types are considered to
be linked by an explicit linkage.

3. As an IDREFS type attribute can refer to more
than one element, there is a one-to-many
cardinality from the referring element type
and the referred element type(s).

The schema of an XML document can restrict
the order of the XML elements, which may be sig-
nificant; the order depends on the intentions of the
original XML document designer. For example,

 1315

Reverse Engineering from an XML Document into an Extended DTD Graph

two XML documents with their corresponding
DTDs are shown in Table 1.

The two XML documents shown in Table 1 are
storing the same data, which are the data of two
couples. For the first one, its couple elements use
the two IDREF type attributes to denote the cor-
responding husband and wife elements. However,
the use of ID/IDREF cannot ensure that a particular
husband or wife element is referred by one couple
element only. For the second XML document, the

DTD restricts the husband and wife elements to
exist as a pair. Furthermore, the use of ID type
attributes hid and wid ensures any husband and
wife element instance must exist in the document
at most once.

extended dtd graph

As XML element instances are treated as indi-
vidual entities, the relationships of the element

DTD XML Document

<!ELEMENT couples (husband*,wife
,couple)>
<!ELEMENT husband EMPTY>
<!ELEMENT wife EMPTY>
<!ATTLIST husband
 hid ID #REQUIRED
 name CDATA #REQUIRED>
<!ATTLIST wife
 wid ID #REQUIRED
 name CDATA #REQUIRED>
<!ATTLIST couple
 hid IDREF #REQUIRED
 wid IDREF #REQUIRED>

<?xml version=”1.0”?>
<couples>
 <husband hid=”A123456”
name=”Peter”/>
 <husband hid=”B234567”
name=”John”/>
 <wife wid=”X123456”
name=”Amy”/>
 <wife wid=”Y234567”
name=”Bonnie”/>
 <couple hid=”A123456”
wid=”X123456”/>
 <couple hid=”B234567”
wid=”Y234567”/>
</couples>

<!ELEMENT couples
 (husband,wife)*>
<!ELEMENT husband EMPTY>
<!ELEMENT wife EMPTY>
<!ATTLIST husband
 hid ID #REQUIRED
 name CDATA #REQUIRED>
<!ATTLIST wife
 wid ID #REQUIRED
 name CDATA #REQUIRED>

<?xml version=”1.0”?>
<couples>
 <husband hid=”A123456”
name=”Peter”/>
 <wife wid=”X123456”
name=”Amy”/>
 <husband hid=”B234567”
name=”John”/>
 <wife wid=”Y234567”
name=”Bonnie”/>
</couples>

Table 1. Two equivalent XML documents that can represent the same data

1316

Reverse Engineering from an XML Document into an Extended DTD Graph

types are therefore related not only to the structure
of the XML document, but also to the linkages of
the different types. As such, DTD cannot clearly
indicate the relationships.

An extended DTD graph for XML is proposed
to add data semantics into a DTD graph so that
the data semantics can be clearly identified, which
is an excellent way of presenting the structure of
an XML document. As such, in order to visual-
ize the data semantics determined based on the
XML document with its optional schema, it will
provide the notations to be used for presenting
the various data semantics. This article uses the
authors’ notations of the extended DTD graph for
presenting the structure and the data semantics
of the elements:

1. The vertexes as squares are drawn on the
graph for elements, and vertexes as circles
are drawn for the occurrence operators (?,
+, and *) and selection operator (|).

2. Attributes and simple elements are omitted
from the graph as they specify a particular
attribute of their defining and parent ele-
ments, respectively.

3. Data semantics, other than one-to-one and
one-to-many cardinality relations, are pre-
sented in the graph as arrows pointing from
the referring element to the referred element
with suitable descriptions as legends.

Based on the above criteria, it is possible
to consider the ELEMENT declarations only for
constructing the extended DTD graph. Three
types of ELEMENT declarations can be identified
as follows:

1. An ELEMENT declaration defines subelements
only.

2. An ELEMENT declaration involves subele-
ments and #PCDATA as its contents.

3. An ELEMENT declaration defines #PCDATA as
its contents only.

The above three types correspond to the fol-
lowing three examples.

<!ELEMENT PARENT (CHILD1+, CHILD2*)>

<!ELEMENT MIXED _ ELEMENT (#PCDATA | CHILD1

| CHILD2)*>

<!ELEMENT SIMPLE _ ELEMENT (#PCDATA)>

For each ELEMENT declaration of the first type,
the content model expression can be tokenized
as individual elements, occurrence indicators,
and sequence separators (,), and represented as a
tree structure with the element name as the root
node. For example, the first example above can
be visualized as a tree diagram. In Figure 1, the
sequence (,) is implied in the diagram.

Figure 1. A sample extended DTD graph

PARENT

CHILD1 CHILD2

,

+ *

PARENT

CHILD1 CHILD2

+ *

 1317

Reverse Engineering from an XML Document into an Extended DTD Graph

DTDs mostly contain more than one ELEMENT
declaration, but each element type can only ap-
pear once. Therefore, to construct the complete
DTD graph for a DTD, the tree structures of all
ELEMENT declarations in a DTD are constructed
first and are eventually merged by replacing each
subelement node in a tree with the tree structure
of that element. Such merging is repeated until
there is only one tree structure or all subelements
have been replaced with their corresponding tree
structures.

cardinality and Participation

Element types are visualized as rectangles in
the graph and a cardinality relationship is pre-

sented as an arrow pointing from the referring
element type to the referred element type, with
a double line and single line for total participa-
tion and partial participation, respectively. The
cardinality types, including one to one (1/1), one
to many (1/m), many to one (m/1), and many to
many (m/m), are shown as legends of the arrows.
If the cardinality relationship is implemented as
explicit ID/IDREF(S) linkages, the name of the ID
type attribute of the referring element is appended
to the legend, such as 1/m (parent _ id). To
identify explicit linkages from implicit linkages,
cardinality relationships due to ID/IDREF(S) type
attributes are shown as arrows with curved lines.
Table 2 presents the eight possible combinations
of arrows and legends.

Participation

Cardinality

One to one 1/1

1/1

One to many 1/m

1/m

Many to one m/1

m/1

Many to many m/m

m/m

Table 2. The arrows illustrating various cardinalities with participation types

Figure 2. A sample diagram with an n-ary relationship

relation m/11/m

1/m

element1

element3 element2

1318

Reverse Engineering from an XML Document into an Extended DTD Graph

n-ary relationship

An n-ary relationship is implemented as a particu-
lar element type involved in more than two binary
relationships. To represent such a relationship, a
diamond-shaped vertex is used for such element
types. Figure 2 presents a sample diagram with
an n-ary relationship.

Aggregation relationship

An aggregation relationship denotes that the
involved element types must exist as a unity.
In Figure 2, an aggregation exists as the defin-
ing characteristic of mandatory participation
between parent and child elements. As such, a
rectangle is to be drawn enclosing all involved
element types.

relAted work

In order to have a complete picture of the reasons
behind the algorithms for determining various
data semantics, this article explains the existing
approaches of constructing XML documents,
especially those exported from relational data-
bases.

the determination of XMl schema

There is some existing work concerning the
extraction of schema, such as DTD, from XML
documents (Chidlovskii, 2001; Min, Ahn, &
Chung, 2003). The outputs of these algorithms
are the schemas that can validate the XML docu-
ments. However, the derived schemas provide no
semantic interpretation other than the containment
structures of the XML documents. The algorithms
proposed in this article concern the determination
of data semantics from the XML element instances
rather than simply XML schema among XML
elements. Compared to the approach proposed
by Goldman and Widom (1997) that directly

manipulates semistructured databases, such as
an XML document, the algorithm proposed here
provides the user with a clear picture of the data
semantics from the XML element instances before
further manipulating them.

the determination of data
semantics from XMl documents

One approach exists that can reverse engineer
data semantics from XML documents (Fong
& Wong, 2004), but the algorithm maps some
predefined templates of document structures
to data semantics, and the algorithm can only
be implemented with DOM (World Wide Web
Consortium [W3C], 2003), which needs to read
the entire XML document to the memory and
therefore is inappropriate for huge documents.
The methodology presented in this article, how-
ever, determines basic candidate data semantics
from arbitrary XML documents with SAX (W3C,
2004), which is applicable to XML documents of
any size. Some of the determined data semantics
may not be the intentions of the original writer
and need user supervision for verification.

the Implementation of Inheritance
among XMl elements

Schema for object-oriented XML (SOX; W3C,
2005) introduced the idea of element and attribute
inheritance, which enables an element to extend
another element so that the derived element can
have all attributes defined by the base element
with its own new attributes.

Due to the limitations and low extensibility of
DTD (Sahuguet, 2000), XML schema definition
(XSD; Sperberg, 2000) is becoming the popular
replacement schema of DTD. Unlike DTD, XSD
is an XML document itself and can define more
restrictive constraints and clear definitions of the
XML documents to be validated. In other words,
the set of capabilities for defining the structures
and data types of XSD are the superset of that

 1319

Reverse Engineering from an XML Document into an Extended DTD Graph

of DTD. As such, there has been research and
software for converting DTD to XSD (Mello &
Heuser, 2001; W3C, 2000).

There are other alternative schemas, such as
RELAX NG (RELAX NG, 2003) and Schematron
(Shanmugasundaram et al., 2008). Lee and Chu
(2000a) evaluated six common XML schemas,
including DTD and XSD. As the others are not as
popular as DTD and XSD, they are not discussed
in this article.

By constructing a graph by placing vertexes
for elements—and the elements that are involved
in a parent-child relation, which is defined by
ELEMENT declaration in DTD, are connected with
edges—it is possible to derive a graphical repre-
sentation of the DTD that is commonly known as
a DTD graph. Up to now, there has been no formal
standard for DTD graphs, and various researchers
are using their own conventions, as in Klettke,
Schneider, and Heuer (2002), Shanmugasundaram
et al. (2008), Lu, Sun, Atay, and Fotouhi (2003),
and Böttcher and Steinmetz (2003); the graph
introduced in Funderburk, Kiernan, Shanmugas-
undaram, Shekita, and Wei (2002) is the first one
that was denoted as a DTD graph.

There is a graphical representation of XSD
(Fong and Cheung, 2005) that derives an XML
conceptual schema of an XML tree model from
an XML schema of XSD. Its approach is differ-
ent from this article’s approach, which derives an
extended DTD graph from an XML document.

As the conventions of most graphs for pre-
senting the structure of an XML document are
applicable to different schema languages, the
graph is also known as a semantic graph (An,
Borgida, & Mylopoulos, 2005). Some research-
ers proposed other graphical representations of
XML schemas, such as the use of UML (unified
modeling language; Booch, Christerson, Fuchs,
& Koistinen, 1999).

the Application of extended dtd
graphs

A data graph is a DTD in a graph. Zhao and Siau
(2007) described DTD as a good common data
model when the majority of data sources are
XML sources for the interoperability between
relational databases and XML databases. Reverse
engineering an XML document into a DTD graph

Proposed Approach Other Approaches
Input XML document with optional schema XML document

Output Conceptual schema with data semantics Schema without data
semantics

Completeness All common data semantics can be deter-
mined.

Schemas that can validate
the XML document can be
derived.

User friendli-
ness

Algorithms can be implemented with a
user-friendly GUI (graphical user inter-
face), such as the prototype.

Commercial products
exist that provide a user-
friendly GUI.

Performance Good
Not available as no
mathematical proofs were
provided

Table 3. A comparison between the proposed and other existing approaches

1320

Reverse Engineering from an XML Document into an Extended DTD Graph

is similar to data mining an XML document into
a data tree (Zhang, Liu, Ling, Buckner, & Tija,
2006). The former is a database schema while
the latter is internal data in tree structure. Tru-
jillo and Luján-Mora (2004) demonstrated that a
DTD can be used to define the correct structure
and content of an XML document representing
the main conceptual multidimensional model for
data warehouses.

Compared to the approach proposed by Gold-
man and Widom (1997) that directly manipu-
lates semistructured databases such as an XML
document, the algorithm proposed in this article
enables the user to have a clear picture of the data
semantics from the XML element instances be-
fore further manipulating them. Table 3 provides
a comparison between the proposed algorithms
and other existing approaches.

reverse-engIneerIng
MetHodology

There are basically two different definitions
in a DTD: ELEMENT and ATTLIST. Each ATTLIST
definition defines the attributes of a particular
element, whereas ELEMENT defines its possible
containments. Each ELEMENT definition can be
represented in a tree structure with the element
name as the root and its child subelements as
leaves; there must be another ELEMENT definition
for each of the child elements.

It is not mandatory to define the ELEMENT
declaration prior to all its child elements, and it
is actually uncertain which element is the root
element of the corresponding XML documents.
The root element of the XML document is defined
by the DOCTYPE declaration before the root-ele-
ment start tag.

Implementations of various data
semantics in XMl

The following subsections provide all possible
implementations of various data semantics, some
of which are consistent with those proposed by
other researchers (Lee, 2000; Lee, Mani, & Chu,
2003).

cardinalities

One-to-many cardinalities can be realized by both
explicit and implicit referential linkages. Through
implicit referential linkages, a parent element can
have child elements of the same type, such as

<PURCHASE _ ORDER>

 <PURCHASE _ ORDER _ LINE .../>

 <PURCHASE _ ORDER _ LINE .../>

< / P U R C H A S E _ O R D E R > .

The parent element PURCHASE _ ORDER and the
child elements PURCHASE _ ORDER _ LINE are im-
plicitly in a one-to-many relationship. If the occur-
rences of child element PURCHASE _ ORDER _ LINE
are at most one for all PURCHASE _ ORDER elements,
they are in a one-to-one relationship instead.

If the schema of the XML document is given,
it can specify the ID/IDREF(S) type attributes. If
an XML element defines an IDREF attribute and
all such elements refer to the same element type,
there is a one-to-many relationship between
the referred and referring XML elements. For
example, sample DTD and XML documents are
shown in Figure 3.

For explicit referential linkages, to determine
if the cardinality is one to one or one to many, it
is necessary to scan the entire XML document.
An XML element type may be involved in more
than one one-to-many relationship. In other words,
all elements of such XML element types define
more than one linkage. For example, if an XML
element type defines an IDREF(S) type attribute,

 1321

Reverse Engineering from an XML Document into an Extended DTD Graph

all elements of such XML element type actually
define two linkages: one implicit linkage by the
nested structure and one explicit linkage by the
IDREF(S) type attribute. If the two linkages are
both one-to-many relationships, the two referred
element types by such a referring element type can
be considered to be in a many-to-many relation-
ship. For example, the XML document in Figure
4 illustrates a many-to-many relationship.

For an XML element type that defines two
linkages and hence two one-to-many relation-
ships, the two referred XML element types can
be considered to be in a many-to-many relation-
ship.

The linkages from the XML elements in an
XML document are identified by the referring
element name, linkage name, and the referred
element name. The algorithm shown in Figure 6
is used to determine the linkages in Table 4.

Figure 5 illustrates the meanings of the four
attributes.

There are eight XML elements in the document
and there is only one implicit linkage from them.
The values of the above four linkage attributes for
such implicit linkage are given in Table 5.

According to the combination of the values
of the four attributes, it is possible to determine
the cardinality data semantics for the involved
elements. The rules are shown in Table 6.

The algorithm is composed of two passes of
parsing of the same XML document. The first
pass assigns a synthetic element identity to each
XML element in the document and determines
all ID type attribute values and their correspond-
ing element types. For the second pass, the XML
document is traversed again and the linkages of
each XML element are investigated and their
attributes are stored. Finally, the stored linkage
attributes are consolidated to give the four linkage
attributes mentioned above and in Table 4.

The algorithm shown in Figure 6 can determine
whether the XML document is valid, in particular,

Figure 3. A many-to-one cardinality implemented by an IDREF type attribute

<!ELEMENT PURCHASE_ORDER ...>
<!ELEMENT PURCHASE_ORDER_LINE ...>
<!ATTLIST PURCHASE_ORDER
 P O_ID ID #REQUIRED
 . ..
>
<!ATTLIST PURCHASE_ORDER_LINE
 P O_ID IDREF #REQUIRED
 . ..
>
<PURCHASE_ORDER PO_ID="PO001" ... />
...
<PURCHASE_ORDER_LINE
 PO_ID="PO001"
 ... />
<PURCHASE_ORDER_LINE
 PO_ID="PO001"
 ... />

1322

Reverse Engineering from an XML Document into an Extended DTD Graph

Figure 4. A many-to-many cardinality implemented by an element type with two IDREF type attri-
butes

<!ELEMENT KEYWORD ...>
<!ELEMENT TOPIC ...>
<!ELEMENT MESSAGE ...>
<!ATTLIST KEYWORD
KEYWORD_ID ID #REQUIRED
 ...
>
<!ATTLIST TOPIC
TOPIC_ID ID #REQUIRED
 ...
>
<!ATTLIST MESSAGE
MSG_ID ID #REQUIRED
TOPIC_ID IDREF #REQUIRED
KEYWORD_ID IDREF #REQUIRED
 ...
>
<KEYWORD KEYWORD_ID="KW001" NAME="XML"/>
<KEYWORD KEYWORD_ID="KW002" NAME="DATABASE"/>
...
<TOPIC TOPIC_ID="TP001" NAME="Reverse Engineer an XML document"/>
<TOPIC TOPIC_ID="TP002" NAME="Exporting a database as an XML document"/>
...
<MESSAGE MSG_ID="MG001"

TOPIC_ID="TP001"
KEYWORD_ID="KW001"

.../>
<MESSAGE MSG_ID="MG002"

TOPIC_ID="TP002"
KEYWORD_ID="KW002"

.../>

Attribute Description Value

MaxReferring The maximum number of referred elements
referred by a single referring element

Get from ReferringInfo
with key (RGE, RDE, L)

MaxReferred
The maximum number of referring ele-
ments that are referring to the same referred
element with the same linkage type

Get from ReferredInfo
with key (RGE, RDE, L)

SumReferring The number of referring elements that pos-
sess the linkage

Get from ReferringInfo
with key (RGE, RDE, L)

NumberEle-
ments The number of referring elements in the

document
Get from ElementNam-
eCount with key RGE

Table 4. The attributes and their sources for determining data semantics

 1323

Reverse Engineering from an XML Document into an Extended DTD Graph

Attribute
Name Value Explanations

MaxReferring 1 All linkages are implicit and each child element has one im-
plicit parent element only.

MaxReferred 3

The root message element with attribute ID value ID1 is
referred by two subelements (with attribute ID values ID2
and ID6). The message element with attribute ID value ID2 is
referred by three subelements (with attribute ID values ID3,
ID4, and ID5). The message element with attribute ID value
ID6 is referred by two subelements (with attribute ID values
ID7 and ID8). Therefore, the value of MND is 3.

SumReferring 7
Except the root message element with attribute ID value ID1,
all other message elements define such linkages. The value of
NL is therefore 7.

NumberEle-
ments 8 There are eight message elements.

Table 5. Descriptions of variables in reverse-engineering algorithms

Figure 5. MaxReferring, MaxReferred, SumReferring, and NumberElements example

<?xml version="1.0"?>

<message id="ID1" ... >

 <message id="ID2" ... >

 <message id="ID3" ... >

 <message id="ID4" ... >

 <message id="ID5" ... >

 </message>

 <message id="ID6" ... >

 <message id="ID7" ... >

 <message id="ID8" ... >

 </message>

</message>

ID1

ID2

ID3

ID4

ID5

ID6

ID7

ID8

messagemessage

ID1

ID2

ID3

ID4

ID5

SumReferring = 7 MaxReferred = 3

MaxReferring= 1

ID6

ID7

ID8

NumberElements= 8

 IDREFs

whether a nonexisting ID value is referred by an
IDREF(S) type attribute. If the XML document is
valid, three tables can be obtained: ReferringInfo,
ReferredInfo, and ElementNameCount. The key

for the former two tables is the composite key
(RGE, RDE, L), that is, the referring element
name, the referred element name, and the linkage
name, whereas the key for ElementNameCount is

1324

Reverse Engineering from an XML Document into an Extended DTD Graph

Participation
Total Partial

Cardinal-
ity

One to one

MaxReferring= 1
MaxReferred = 1
SumReferring= Number-
Elements

MaxReferring = 1
MaxReferred= 1
SumReferring < Number-
Elements

One to
many

MaxReferring = 1
MaxReferred > 1
SumReferring = Number-
Elements

MaxReferring = 1
MaxReferred > 1
SumReferring < Number-
Elements

Many to
one

MaxReferring > 1
MaxReferred = 1
SumReferring = Number-
Elements

MaxReferring > 1
MaxReferred = 1
SumReferring < Number-
Elements

Many to
many

MaxReferring > 1
MaxReferred > 1
SumReferring = Number-
Elements

MaxReferring > 1
MaxReferred > 1
SumReferring < Number-
Elements

Table 6. Matrix for determining cardinality and participation based on the determined linkage attri-
butes

Figure 6. The algorithm for determining linkage information by traversing the XML document

Vari-
able
name

Definition

EID The current element ID. While processing the XML document sequentially, the
EID determines the ID to be assigned to individual element encountered.

E The current element to be handled.
A An attribute of the current element to be handled.
AV The attribute value of attribute A.

L

A linkage of the current element. It can be an implicit linkage with its parent
element or an explicit linkage with an IDREF(S) type attribute. For a non-root
element without IDREF(S) attribute, the element has only one implicit linkage to
its parent element. Otherwise, the element can have more than one linkage, one
implicit linkage and at least one explicit linkages.

Lvalue

The Element ID of the linkage L for the current element E. For example, if L is
an implicit linkage, Lvalue is the element ID of the parent element of E. Otherwise,
Lvalue is the attribute value of IDREF value and the value should be an ID type
attribute of an element in the same document.

NG The number of referring element of the same element name is referring to the
same referred element with the same link.

RGE The referring element of a link.
RDE The referred element by a link.

continued on following page

 1325

Reverse Engineering from an XML Document into an Extended DTD Graph

Pass One:
Let EID = 1;
Repeat until all XML document elements are read
 Let E be the current element to be processed
 If ∃ record in TableElementNameCount where ElementName = element name of E
 Get record (ElementName, NumberElement) from TableElementNameCount
 Increment NumberElement by 1;
 Update (ElementName, NumberElement) into TableElementNameCount;
 Else
 Add (ElementName, 1) into SetElementNameCount;
 End If
 Add (EID, ElementName) into SetElementIDName;
 If there exists ID type attribute A of element E with attribute value AV
 Add (AV, ElementName) into SetElementIDName;
 End If
 Increment EID by 1;
 Navigate to the next element E in the XML document

Pass Two:
Repeat until all XML document elements are read
 Let RGE is the current element to be handled
 For each linkage, L, of RGE

 For each linkage value, Lvalue of linkage L of RGE
Get record (EID,ElementName) from TableElementIDName

 where primary key value is Lvalue
 If no such record exist in TableElementIDName
 XML document is invalid
 Else
 Let RDE = ElementName of the record obtained from TableElementIDName
 End If

 Get record (RGE, RDE, L, Lvalue, ND) from TableRawReferredInfo
 for primary key (RGE, RDE, L, Lvalue);
 If record exists
 Increment ND of the record by 1;
 Update the record to TableRawReferredInfo;
 Else
 Add record (RGE, RDE, L, Lvalue, 1) to the TableRawReferredInfo;
 End If

 For each referred element type, RDE
 Let NG = number of RDE referred by this linkage, L;
 Get record (RGE, RDE, L,MaxReferring, SumReferring)
 from the TableReferringInfo for primary key (RGE, RDE, L);
 If record exists
 If NG > MaxReferring from the record
 Update MaxReferring of the record to be NG
 End If
 Increment SumReferring of the record by 1;
 Upda te the record to the TableReferringInfo;

Else
 Add record (RGE, RDE, L, NG, 1) to the TableReferringInfo;

End If
 End For
 End For
 End For
 Navigator to the next element RGE in the XML document

Consolidate the records with same combination of (RGE, RDE, L) in table RawReferredInfo;

 let MaxReferred = maximum of the ND values of all records;
 Add record (RGE, RDE, L, MaxReferred) to the table ReferredInfo;

Figure 6. continued

1326

Reverse Engineering from an XML Document into an Extended DTD Graph

simply the element name. With three such tables,
it is possible to derive the linkage attributes as
shown in Table 4.

The complete algorithm is presented in Figure
6, which is followed by a list of definitions for the
variables to be used.

The operation in Figure 6 can be represented
by the following in SQL (structured query lan-
guage):

SELECT
 RGE, RDE, L,
 ReferringInfo.MaxReferring,
 ReferredInfo.MaxReferred,
 ReferringInfo.SumReferring,
 ElementNameCount.NumberElements
FROM
 ReferringInfo
 INNER JOIN ReferredInfo
 ON ReferringInfo.RGE = ReferredInfo.

RGE
 AND ReferringInfo.RDE = ReferredInfo.

RDE
 AND ReferringInfo.L = ReferredInfo.L
 INNER JOIN ElementNameCount
 ON ReferringInfo.RGE = ElementNam-

eCount.E.

Once the four attributes of a linkage are de-
termined, the data semantics can be determined
by using the matrix shown in Table 6. According
to the determined one-to-one and one-to-many

relationships, it is then possible to consolidate
the related ones into many-to-many and n-ary
relationships.

As mentioned above, if an XML element
type defines two linkages that are determined to
be many-to-one cardinalities, the two referred
XML element types are considered to be in a
many-to-many relationship. Similarly, if an XML
element type defines more than two linkages that
are determined to be many-to-one cardinalities,
the referred XML element types are considered
to be in an n-ary relationship. Therefore, based
on the one-to-many cardinalities determined by
the previous algorithm, the many-to-many and
n-ary relationships can be determined, and the
algorithm is shown in Figure 7.

The many-to-one relationship to be considered
should be those implemented by explicit linkages,
that is, those defined by ID/IDREF(S) linkages.
Otherwise, an element type exhibits implicitly
a one-to-many relationship due to the nested
structure and defines a many-to-one relationship
that will be considered to be a many-to-many re-
lationship even though the two referred elements
are actually not related at all.

Participation

Participation concerns whether all instances of a
particular element type are involved in a relation-
ship with the corresponding element type.

Figure 7. The algorithm for determining many-to-many and n-ary relationships

Get referring XML element types from one-to-many cardinalities;
For each referring XML element Treferring type

Get referred XML element types, Sreferred referred by Treferring via explicit linkages;
 If the size of the set Sreferred = 2

 XML element types in Sreferred = many-to-many relationship with Treferring;
 Else

If size of Sreferred > 2
XML element types in Sreferred = n-ary relationship with Treferring ;

 1327

Reverse Engineering from an XML Document into an Extended DTD Graph

For implicit referential linkage by a parent-
child relation, such as the following DTD ELE-
MENT declaration,

<!ELEMENT PARENT (CHILD*)>,

where there are no other ELEMENT declarations that
define CHILD as their child elements, all CHILD ele-
ment instances must appear as the child element
of a PARENT element, and hence the participation
can be considered to be total as all instances
of CHILD must be involved in the one-to-many
cardinality relation with PARENT. If no schema is
provided, and if all instances of an element type
always appear as the child elements of the same
parent element type, the participation is also
considered to be total.

For explicit referential linkage by ID/IDREF(S)
attributes, if all instances of an element type use
the same attribute with values referring instances
of the same element type, the relationship is
considered to be total participation. Otherwise,
the relation is considered to be partial. The DTD
of the XML document can only identify the ID/
IDREF(S) type attributes and cannot restrict the
referring and referred element types. As such,
actually parsing the XML document is required
to determine the type of participation.

Aggregation

An aggregation means that the creation of a whole
part of an element depends on the existence of its
component subelements. An aggregation relation
is signified by the scenario that elements of dif-
ferent types are considered to be a single entity
and all constituting elements must exist together.
An XML document by itself does not provide
any facility to enforce such a constraint. At best,
the schema can hint at the correlations of the
existence of the elements in the corresponding
XML document.

Implicit referential linkage by an aggregation
relationship is shown in the following DTD ELE-
MENT declaration:

<!E L E M E N T A G G R E G A T IO N (C O M P O -

NENT1, COMPONENT2,….COMPONENTN)+>.

For example, the following ELEMENT declaration
can restrict the existence of the elements enroll-
ment, student, and course:

<!ELEMENT enrollment (student, course)+>.

Furthermore, no student or course elements
exist in the document that are not subelements
of an enrollment element. For example, if there
is another ELEMENT declaration in the same DTD,
such as

<!ELEMENT student _ list (student*)>,

student elements can exist in the document as
the subelements of a student _ list element. As
such, the coexistence relationship of enrollment,
student, and course elements no longer holds.

Such a coexistence relationship specified in the
schema can be extended to more than one nested
level. For example, if the existence of a course
element must be accompanied by a lecturer
element and a tutor element, that is,

<!ELEMENT course (lecturer, tutor)+>,

then the elements enrollment, student, course,
lecturer, and tutor must exist as a whole. All
these elements are considered as being in an ag-
gregation relationship. From another perspective,
an aggregation relationship is actually composed
of two one-to-one cardinality relations (course-
lecturer and course-tutor) that are both total
participation.

An exceptional case is if the subelements are
actually the attribute of the parent element, such

1328

Reverse Engineering from an XML Document into an Extended DTD Graph

as in the first example, where it is inappropriate
to consider that the involved elements are in an
aggregation relationship. As a result, user supervi-
sion is needed in the process.

Based on the DTD of the XML document, it
is possible to determine the aggregation relation-
ships from the elements. As the requirements of
an aggregation relationship are the coexistence
of the involved elements and the insignificance of
the order of the subelements for a parent element,
the nested structure of the elements should first be
simplified with the algorithm presented in Figure
8, where T is an aggregation tree.

The determination of aggregation relationships
is separated into two parts. The first part discovers

the pair of parent and child elements that must
coexist. Once the pairs are determined, the second
part of the algorithm treats each pair as a path
from the parent element to the child element in
a subtree, and these subtrees are merged to form
a bigger tree. Eventually, the nodes in each tree
must coexist in an aggregation relationship. The
second part is straightforward except for a tricky
point: If a child element is found to be a nonroot
node of a particular subtree, it implies that such an
element can have more than one parent element,
and the aggregation relation that includes such
element must start with the parent element.

An example is this list of ELEMENT declarations
in the DTD:

Figure 8. The algorithm for determining aggregation relationships

Let Settemporary = empty;
For each ELEMENT declaration for element Eparent

 For each child element, elementchild
 If elementchild = mandatory and non-repeatable
 Add an aggregation relation (Eparent, Echild) to Settemporary;

Let Setaggregation and Setroot = empty;
For each relation R (Eparent, Echild) in Settemporary

 If (∃ tree, T, in Setaggregation) ∧ (Eparent is a node in T) ∧ (Echild is not a node in T)
 Add a path Eparent to Echild to T;

 Else
(∃ tree, T, in Setaggregation) ∧ (Echild is a node of T) ∧ (Eparent is not a node)

 If (Echild = root node) ∧ (Echild not in Setroot of T)
 A dd the path Eparent to Echild to T;

 Else
 Add Echildto Setroot

Remove the sub-tree starting with Echild from T;
If ∃ sub-tree starting with Echild in multiple nodes

 Add sub-tree to Setaggregation;
 Else

∃ tree Ti with a node for Eparent and Tj with Echild as root node;

 Merge trees Ti and Tj with a path from node for Eparent in Ti to root of Tj
 Else

¬∃ sub-tree in Setaggregation with node for either Eparent and Echild;
 Add a new tree with a path Eparent to Echild to Setaggregation;

 1329

Reverse Engineering from an XML Document into an Extended DTD Graph

<!ELEMENT A (B, C)>

<!ELEMENT B (D)>

<!ELEMENT C (D)>

<!ELEMENT D (E, F)>.

The determined pairs of raw aggregation
relations are (A, B), (A, C), (B, D), (C, D), (D,
E), and (D, F).

A

B C

D

Relations to be added

(C, D), (D, E) and (D, F)

When adding the path (C, D) to the subtree, as
D is not a root node, D should be removed from
the subtree and is considered to be an individual
subtree with D as the single node.

A

B C

D

Relations to be added

(D, E) and (D, F)

After the path (D, E) and (D, F) is added to
the subtree with node D as the root node, two
subtrees are obtained.

A

B C

D

E F

As such, the elements A, B, and C and the
elements D, E, and F are considered as being two
individual aggregation relationships.

Figure 9. test.xml and test.dtd

<?xml version="1.0"?>
<test>
 <element1 id="id1"/>
 <element1 id="id2"/>
 <element2 id="id3"/>
 <element2 id="id4"/>
 <element3 id="id5" idref1="id1" idref2="id3"/>
 <element3 id="id6" idref1="id2" idref2="id4"/>
 <element3 id="id7" idref1="id1" idref2="id4"/>
 <element3 id="id8" idref1="id2" idref2="id3"/>
</test>
<!ELEMENT test (element1*,element2*,element3*)>
<!ELEMENT element1 EMPTY>
<!ELEMENT element2 EMPTY>
<!ELEMENT element3 EMPTY>

<!ATTLIST element1
 id ID #REQUIRED>

<!ATTLIST element2
 id ID #REQUIRED>

<!ATTLIST element3
 id ID #REQUIRED
 idref1 IDREF #REQUIRED
 idref2 IDREF #REQUIRED>

1330

Reverse Engineering from an XML Document into an Extended DTD Graph

cAse study And PrototyPe

To illustrate the applicability and correctness of the
algorithms mentioned in this article, a prototype
was built that implements the algorithms proposed.
For actually drawing the DTD graph, the algorithm
proposed by Shiren, Xiujun, Zhongshi, and Bing
(2001) is used to define the layout of the vertexes
on the graph. With such a prototype, a sample
XML document with its DTD file as shown in
Figure 9 is provided for the prototype.

For this case study, both ID/IDREF type attri-
butes are considered and the minimum number
of common attributes is one. All elements with at
least one attribute are sorted in ascending order of
the lengths of their attribute lists. Therefore, the
order of the elements to be processed is element1,
element2, and element3.

According to the DTD of the XML document,
only one ELEMENT declaration is used for construct-
ing the extended DTD graph as the contents of
other element types are EMPTY.

Figure 10. The determined data semantics

Figure 11. Extended DTD graph based on the DTD and the determined cardinality references

 1331

Reverse Engineering from an XML Document into an Extended DTD Graph

< ! E L E M E N T t e s t (e l e m e n t 1*,

e l e m e n t 2 * , e l e m e n t 3 *) >

Therefore, only those explicit one-to-many
relationships are to be added to the graph, and
the graph will become the one shown in Figures
10 and 11. The detailed derivation of the reverse
engineering can be referred to in Shiu (2006).

conclusIon

In order to make use of an XML document,
software developers and end users must have a
thorough understanding of the contents in the
document, especially in historical and large
XML documents. Sometimes, the schemas of
XML documents are missing and the documents
cannot be opened to be inspected on the screen
due to their huge size. Therefore, it is necessary
to determine as much information as possible
regarding the relationships from the elements in
the document.

By reverse engineering the XML document
with DTD, all explicit linkages can be determined,
and the resultant DTD graph can be used to verify
the correctness of ID/IDREF(S) linkages as any
incorrect IDREF(S) linkage will be indicated as
an extra cardinality and shown in the extended
DTD graph. This article provides algorithms to
help the users to understand the relationships
from the elements by reverse engineering data
semantics from the XML document, including
the following.

1. Cardinality relationships
2. Participation relationships
3. n-ary relationships
4. Aggregation relationships
5. Many-to-many relationships (a special case

of cardinality relationships)

In summary, to visualize the determined data
semantics, a new extended DTD graph is proposed.

XML documents natively support one-to-one,
one-to-many, and participation data semantics.
With a corresponding schema such as DTD, the
ID and IDREFS attributes of the elements can be
identified, and many-to-many, n-ary, and aggrega-
tion relationships can also be determined.

AcknowledgMent

This article is funded by Strategic Research Grant
No. 7002325 of City University of Hong Kong.

references

An, Y., Borgida, A., & Mylopoulos, J. (2005). Con-
structing complex semantic mappings between
XML data and ontologies. In International Se-
mantic Web Conference ISWC 2005 (pp. 6-20).

Booch, G., Christerson, M., Fuchs, M., & Koistin-
en, J. (1999). UML for XML schema mapping
specification. Retrieved from http://xml.coverp-
ages.org/fuchs-uml_xmlschema33.pdf

Bosak, J., Bray, T., Connolly, D., Maler, E., Nicol,
G., Sperberg-McQueen, C. M., et al. (1998). Guide
to the W3C XML specification (XMLspec) DTD,
version 2.1. Retrieved from http://www.w3.org/
XML/1998/06/xmlspec-report-v21.htm

Böttcher, S., & Steinmetz, R. (2003). A DTD
graph based XPath query subsumption test. In
Xsym 2003 (pp. 85-99).

Bray, T., Paoli, J., Sperberg-McQueen, C. M.,
Maler, E., & Yergeau, F. (2004). Extensible markup
language (XML) 1.0 (3rd ed.). Retrieved from http://
www.w3.org/TR/2004/REC-xml-20040204

Chidlovskii, B. (2001). Schema extraction from
XML data: A grammatical inference approach. In
KRDB’01 Workshop (Knowledge Representation
and Databases).

1332

Reverse Engineering from an XML Document into an Extended DTD Graph

Deutsch, A., Fernandez, M., & Suciu, D. (1999).
Storing semi-structured data with STORED.
Paper presented at the SIGMOD Conference,
Philadelphia.

Fernandez, M., Morishima, A., & Suciu, D.
(2001). Publishing relational data in XML: The
SilkRoute approach. IEEE Data Engineering
Bulletin, 24(2), 12-19.

Florescu, D., & Kossmann, D. (1999). Storing and
querying XML data using an RDBMS. Bulletin
of the Technical Committee on Data Engineer-
ing, 22(3), 27-34.

Fong, J., & Cheung, S. K. (2005). Translating
relational schema into XML schema definition
with data semantic preservation and XSD graph.
Information and Software Technology, 47(7),
437-462.

Fong, J., & Wong, H. K. (2004). XTOPO: An
XML-based technology for information highway
on the Internet. Journal of Database Manage-
ment, 15(3), 18-44.

Funderburk, J. E., Kiernan, G., Shanmugasunda-
ram, J., Shekita, E., & Wei, C. (2002). XTABLES:
Bridging relational technology and XML. IBM
Systems Journal, 41(4).

Goldman, R., & Widom, J. (1997). DataGuides:
Enabling query formulation and optimization
in semistructured databases. In Proceedings of
the 23rd International Conference on Very Large
Data Bases.

Kanne, C. C., & Moerkotte, G. (2000). Efficient
storage of XML data. In Proceedings of ICDE
(p. 198).

Kay, M. (1999). DTDGenerator: A tool to generate
XML DTDs. Retrieved from http://users.breathe.
com/mhkay/saxon/dtdgen.html

Klettke, M., Schneider, L., & Heuer, A. (2002).
Metrics for XML document collections. In A.

Chaudri & R. Unland (Eds.), XMLDM Workshop,
Prague, Czech Republic (pp. 162-176).

Koike, Y. (2001). A conversion tool from DTD
to XML schema. Retrieved from http://www.
w3.org/2000/04/schema_hack

Lee, D. W., & Chu, W. W. (2000a). Comparative
analysis of six XML schema languages. SIGMOD
Records, 29(3).

Lee, D. W., & Chu, W. W. (2000b). Constraints-
preserving transformation from {XML} document
type definition to relational schema. In Interna-
tional Conference on Conceptual Modeling: The
Entity Relationship Approach (pp 323-338).

Lee, D. W., Mani, M., & Chu, W. W. (2003).
Schema conversion methods between XML and
relational models. In Knowledge Transformation
for the Semantic Web.

Lu, S., Sun, Y., Atay, M., & Fotouhi, F. (2003). A
new inlining algorithm for mapping XML DTDs
to relational schemas. In Proceedings of the First
International Workshop on XML Schema and
Data Management, in conjunction with the 22nd
ACM International Conference on Conceptual
Modeling (ER2003).

Mello, R., & Heuser, C. (2001). A rule-based con-
version of a {DTD} to a conceptual schema. In
Lecture notes in computer science (Vol. 2224).

Min, J. K., Ahn, J. Y., & Chung, C. W. (2003). Ef-
ficient extraction of schemas for XML documents.
Information Processing Letters, 85(1).

Moh, C., Lim, E., & Ng, W. (2000). DTD-Miner:
A tool for mining DTD from XML documents. In
Proceedings of the Second International Work-
shop on Advanced Issues of E-Commerce.

RELAX NG. (2003). Retrieved from http://www.
relaxng.org

 1333

Reverse Engineering from an XML Document into an Extended DTD Graph

Sahuguet, A. (2000). Everything you ever wanted
to know about DTDs, but were afraid to ask. In
WebDB-2000.

Shanmugasundaram, J., Shekita, E., Kiernan, J.,
Krishnamurthy, R., Viglas, E., Naughton, J., et al.
(2008). Schematron. Retrieved from http://www.
schematron.com

Shiren, Y., Xiujun, G., Zhongzhi, S., & Bing, W.
(2001). Tree’s drawing algorithm and visualizing
method. In CAD/Graphics’2001.

Shiu, H. (2006). Reverse engineering data seman-
tics from arbitrary XML document. Unpublished
master’s thesis, City University of Hong Kong,
Hong Kong, China.

Sperberg-McQueen, C., & Thompson, H. (2000).
W3C XML schema. Retrieved from http://www.
w3.org/XML/Schema

Stayton, B. (2008). DocBook. Retrieved from
http://www.docbook.org

Tatarinov, I. (2001). A general technique for query-
ing XML documents using a relational database
system. SIGMOD Record, 30(3), 261-270.

Thiran, P. H., Estiévenart, F., Hainaut, J. L., &
Houben, G. J. (2004). Exporting databases in

XML: A conceptual and generic approach. In
Proceedings of CAiSE Workshops (WISM’04).

Trujillo, J., & Luján-Mora, S. (2004). Applying
UML and XML for designing and interchang-
ing information for data warehouses and OLAP
applications. Journal of Database Management,
15(1), 41-72.

World Wide Web Consortium (W3C). (1998).
Schema for object-oriented XML. Retrieved
from http://www.w3.org/TR/1998/NOTE-SOX-
19980930

World Wide Web Consortium (W3C). (2003).
Document object model DOM. Retrieved from
http://www.w3.org/DOM

World Wide Web Consortium (W3C). (2004).
Simple API for XML, SAX. Retrieved from http://
www.saxproject.org

Zhang, J., Liu, H., Ling, T., Bruckner, R., & Tija,
A. (2006). A framework for efficient association
rule mining in XML data. Journal of Database
Management, 17(3), 19-40.

Zhao, L., & Siau, K. (2007). Information media-
tion using metamodels: An approach using XML
and common warehouse metamodel. Journal of
Database Management, 18(3), 69-82.

This work was previously published in the Journal of Database Management, edited by K. Siau, Volume 19, Issue 4, pp. 62-80,
copyright 2008 by IGI Publishing (an imprint of IGI Global).

1334

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.12
LOGIC–Minimiser:

A Software Tool to Enhance Teaching
and Learning Minimization of

Boolean Expressions

Nurul I. Sarkar
Auckland University of Technology, New Zealand

Khaleel I. Petrus
University of Southern Queensland, Australia

AbstrAct

Boolean algebra, minimization of Boolean expres-
sions, and logic gates are often included as subjects
in electronics, computer science, information
technology, and engineering courses as computer
hardware and digital systems are a fundamental
component of IT systems today. We believe that
students learn minimization of Boolean expres-
sions better if they are given interactive practi-
cal learning activities that illustrate theoretical
concepts. This chapter describes the development
and use of a software tool (named LOGIC-Mini-
miser) as an aid to enhance teaching and learning
minimization of Boolean expressions.

leArnIng objectIves

After completing this chapter, you will be able
to:

• List and describe three main features of
LOGIC-Minimiser.

• Explain how LOGIC-Minimiser can be
used in the classroom to enhance teaching
and learning Boolean expression minimiza-
tion.

• Describe the Q-M algorithm for the mini-
mization of Boolean expressions.

• Define the following key terms: Boolean
expression, SOP, logic gate, logic minimiza-
tion, and K-maps.

 1335

LOGIC–Minimiser

IntroductIon

It is often difficult to motivate students to learn
minimization of Boolean expressions because
students find the subject rather abstract and techni-
cal. A software tool (named LOGIC-Minimiser)
has been developed that gives students a hands-
on learning experience in minimizing Boolean
expressions. LOGIC-Minimiser was developed
in C language under MS Windows and is suit-
able for classroom use in introductory Boolean
algebra courses. Based on user input (i.e., logic
expression), the system displays the sum of product
(SOP) functions as well as minimized logic gate
diagrams. Test results demonstrate the successful
implementation of LOGIC-Minimiser, and the
simplicity of the user interface makes it a useful
teaching and learning tool for both students and
instructors.

This chapter describes the development of
LOGIC-Minimiser and its usefulness as an aid to
teaching and learning minimization of Boolean
expressions. The chapter concludes with a discus-
sion of the strengths and weaknesses of LOGIC-
Minimiser and its future development.

bAckground And MotIvAtIon

Boolean algebra, minimization of Boolean expres-
sions, and logic gates are essential concepts in-
cluded in electronics, computer science, informa-
tion technology, and engineering. These concepts
play a fundamental role in computer hardware
and digital systems design. We believe that it is
extremely important to incorporate practical dem-
onstrations into these courses to illustrate theoreti-
cal concepts and therefore provide an opportunity
for hands-on experience. These demonstrations
will significantly enhance student learning about
Boolean expression minimization.

In fact, very little material has been designed
and made available for public access to supplement
the teaching of Boolean expression minimization.

This is revealed by searches of the Computer
Science Teaching Center Web site (http://www.
cstc.org/) and the SIGCSE Education Links page
(http://sigcse.org/topics/) on the Special Interest
Group on Computer Science Education Web site.
We strongly believe, as do many others (Bem &
Petelczyc, 2003; Hacker & Sitte, 2004; Ibbett,
2002; Leva, 2003; Shelburne, 2003; Williams,
Klenke, & Aylor, 2003), that students learn more
effectively from courses that provide for active
involvement in hands-on learning activities.

Boolean expression minimization is one of the
most challenging subjects to teach and learn in a
meaningful way because students find the topic
full of technical jargon, dry in delivery, and quite
boring. Sarkar, Petrus, and Hossain (2001) have
developed LOGIC-Minimiser in C under MS
Windows to give students an interactive, hands-on
learning experience in minimization of Boolean
expressions. LOGIC-Minimiser can be used by
a teacher in the classroom as a demonstration to
enhance the traditional lecture environment at
an introductory level. Also, students can use the
system in completing tutorials on Boolean expres-
sion minimization and to verify (interactively and
visually) the results of in-class tasks and exercises
on Boolean expression minimization. LOGIC-Mi-
nimiser can be used either in the classroom or at
home as an aid to enhance teaching and learning
Boolean expression minimization.

Minimization of Boolean expressions using
traditional methods such as truth tables, Boolean
algebra, and K-maps can be very tedious and is not
well-suited for expressions involving more than
six variables. A more useful approach, the Quine-
McCluskey (Q-M) algorithm, also called tabular
method, is an attractive solution for minimizing
complex Boolean expressions involving variables
of any length. Moreover, the algorithm lends itself
to a fast and easy machine implementation.

The remainder of the chapter is organized as
follows. First we examine various open source
software tools suitable for logic-gate design and
minimization. We then describe LOGIC-Mini-

1336

LOGIC–Minimiser

miser in teaching and learning contexts. Then,
software implementation of LOGIC-Minimiser
is discussed, and the educational benefits of the
software are highlighted. An example of a class-
room plan and LOGIC-Minimiser in practice is
discussed. Test results which verify the success-
ful implementation of LOGIC-Minimiser are
presented, followed by a conclusion and future
research directions.

relAted work

A detailed discussion of digital systems design and
minimization of Boolean expressions in general
can be found in Green (1985), Greenfield (1977),
Mano (1984), and Tanenbaum (1999). The Quine-
McCluskey algorithm is described extensively in
the computer hardware and digital logic design
literature (Carothers, 2003; Costa, 2004; Hideout,
2003; Hintz, 2003). Grimsey (2000) examined
the strengths and weaknesses of various methods
of minimizing Boolean expressions, including
truth tables, Boolean algebra, and Karnaugh
maps (K-maps).

A variety of open source and commercial
software tools exist for modelling and simulation
of logic circuit design and Boolean expression
minimization. These powerful tools can have
steep learning curves; while they may be good
for doing in-depth performance modelling of
computer hardware and logic design, they often
simulate a hardware environment in far more
detail than is necessary for a simple introduction
to the subject.

Lockwood (2003) presented a program for the
implementation of the Q-M algorithm. However,
it is of limited use as a teaching and learning
tool because of its text-based interface that is not
user-friendly. Leathrum (2003) described another
text-based menu-driven program for the Q-M
algorithm, but the user interface is rather difficult
to use. Costa (2004) developed a package called
“bfunc” for Boolean functions minimization. It

is an MS-DOS-based program and is considered
an alternative to the K-map method of simplify-
ing Boolean functions. Burch (2002) proposed a
tool named Logisim, a graphical system for logic
circuit design and simulation which is suitable
for classroom use. Logisim is a Java applica-
tion and can be run on both Windows and Unix
workstations. While Logisim is an excellent tool
for building a variety of complex combinational
circuits, but it is not suitable for logic gate mini-
mization. Other tools such as Digital Works 3.0
(2001) and LogicWorks (1999) are similar to
Logisim in that they provide a graphical toolbox
interface for composing and simulating logic
circuits. LOGIC-Minimiser, which we describe
in the next section, has its own unique features,
including simplicity and ease of use either in the
classroom or at home, to enhance teaching and
learning Boolean expression minimization.

ArcHItecture of
logIc-MInIMIser

Figure 1 shows the structured diagram of LOGIC-
Minimiser. The main features of LOGIC-Mini-
miser are briefly described.

• New: This feature allows users to enter a
new set of variables for minimization.

• Min/Out: This feature allows users to view
a minimized sum of product (SOP) expres-
sion and logic circuit diagram.

• Quit: This feature allows users to exit from
the program at any time.

The following three features have not been
implemented yet and are considered as future
work.

• Load: This feature will allow users to view
existing data (i.e., minimized minterms) for
further analysis and modifications.

 1337

LOGIC–Minimiser

• Save: This feature will allow users to store
outputs on disk for later use and further
modifications.

• Help: This feature will provide help on vari-
ous topic related to minimization of Boolean
expressions.

softwAre IMPleMentAtIon

The Q-M algorithm is used to reduce a Boolean
expression to its simplest form. It is designed
particularly for use with problems containing six
variables or more but can be used equally well for
a smaller number of variables. The algorithm is
based on repeated applications of the distributed
law and the fact that XOR (NOT X) is always
true. The Q-M method is a systematic way of
selecting the pairs to be used for simplification.
The main steps in the Q-M algorithm are sum-
marized below:

1. Representing all addends as sums of mint-
erms

2. Grouping the minterms that have the same
number of ones

3. Merging the terms that differ in only one
bit (this is done in several steps)

4. In order to find the irredundant cover we
use the min-cover algorithm:
a. Find all distinct minterms.
b. Find all essential prime implicants.
c. Find all the minterms that are covered

by the essential prime implicants.
d. Remove all minterms and prime im-

plicants found in (a)-(c).
e. Choose that prime implicant that covers

most of the remaining minterms.
f. Repeat (d) until all minterms have been

covered.

A structured analysis and design has been
employed to design the package. C programming
language under MS Windows has been used in
the implementation.

Figure 1. Structured diagram of LOGIC-Minimiser

1338

LOGIC–Minimiser

usefulness And benefIts
of logIc-MInIMIser

For simplicity and ease of use, it has been de-
cided to implement LOGIC-Minimiser with a
menu-driven, keyboard-based interface with a
few menu options. The interface is self-explana-
tory, which makes the package well-suited for
both students and teachers for classroom use.
Therefore, the package can be an integral part
of a 2-hour session for teaching and learning
the Q-M method for logic gate minimization.
An in-class task will be given to the students to
produce a minimized logic diagram on paper.
After a prescribed period of time (for example, 20
minutes), LOGIC-Minimiser will be introduced
to the students on a step-by-step basis to verify
their solution and learn more about minimization
of Boolean expressions.

LOGIC-Minimiser provides the following
main benefits:

• Hands-on: It facilitates an interactive,
hands-on introduction to minimization of
Boolean expressions.

• Modelling: It provides a simple and easy
way to develop a variety of SOP functions
and models. Students can experiment with
minterms of various sizes and develop a
sound knowledge and understanding of
Boolean expression minimization.

• Ease of use: The use of a menu-driven in-
terface makes LOGIC-Minimiser easy to
use and a user-friendly tool. The software
can be easily installed and run on any PC
operating under MS Windows.

• Economical/usefulness: It enhances face-
to-face teaching with online learning and
can be used either in the classroom or at
home to provide hands-on experience.

• Robustness: It was tested on various PCs
across campuses and was found to be ro-
bust.

• Challenging: It provides an environment for
students to test their knowledge on Boolean
expression minimization.

eXAMPle of clAssrooM PlAn

In this section we present a detailed lesson plan
(2-hour session) which can be used in teaching
and learning minimization of Boolean expres-
sions using LOGIC-Minimiser. The learning
outcomes focus on learning the Q-M algorithm
as well as use of the software tool for verifying
results of Boolean expression minimization. The
lesson plan incorporates a number of resources
and classroom activities, including revision of
Boolean expressions, brainstorming, teaching,
example, worksheet, demonstration of software
package, and use of the package to verify the
worksheet exercises.

lesson Plan

Table 1 lists the learning outcomes, resources,
and various activities that can be conducted
in the classroom in teaching minimization of
Boolean expressions effectively. It can be used
for a 2-hour lecture session on the minimization
of Boolean expressions. The lesson plan includes
a guided worksheet (see Table 2) suitable for
classroom use.

How to use tHe systeM

LOGIC-Minimiser is easy to use and can be run
from any PC operating under MS-DOS/Windows.
To run the package, the user can either double-click
on “newqm.exe” or type “newqm” at the DOS
prompt. The main steps of using this package
(from Windows) are summarized below:

 1339

LOGIC–Minimiser

By the end of this session students will be able to:
• Outline steps in minimization of Boolean expressions using Q-M algorithm.
• Use LOGIC-Minimiser to verify the minimization of Boolean expressions.
Resources
required

• LOGIC-Minimiser
• Data Show
• Computer Laboratory
• Whiteboard
• Worksheets

Time (minutes) Activity
10 Quickly review of Boolean expressions
5 Brain storming (ask the class what they know about Boolean expression

minimization)
15 Explain Q-M algorithm
5 LOGIC-Minimiser demonstration
15 Solve workout/example problems
10 Break
20 Worksheet Exercises (ask the class to work in pairs and solve worksheet exercises)
20 Use LOGIC-Minimiser and verify results of minimization (worksheet exercises)
10 Conclusion and checking learning outcomes

Review:
What went well:

What could be improved:

Table 1. Lesson plan (2-hour session with 10-minute break)

• Run: Double-click on “newqm.exe.”
• Entering minterms: Select the New option

to enter a new set of minterms. The user will
be prompted for the number of variables
to be used. After entering the appropriate
number of variables, a matrix of cells with
index numbers will appear on the screen. At
this point the user can enter each minterm
by selecting a cell by pressing the Enter key
on the keyboard.

• Accepting data: When a set of minterms has
been entered, press the F8 key to accept.

• Display diagram: The minimized logic-gate
diagram can be seen on the screen in graph-
ics mode. The user can zoom the diagram
using the F1, F2, and F3 keys for 100%,
50%, and 20% scaling, respectively. To go
back to main menu, press the F10 key.

• Display minterms and output: Select the
Min/Out option from the main menu to see

1340

LOGIC–Minimiser

Table 2. Boolean expression minimization worksheet

the list of minterms (that have been entered)
and the minimized output expression.

•	 Exit	 from	 the	 program: Select the Quit
option from the main menu to exit from the
program at any time.

TesT ResulTs

To evaluate the performance of LOGIC-Mini-
miser, the software has been installed on various
PCs and tested with various Boolean expres-

Consider the minimization of following logical function:
DCBADCBADCBADCBADCBADCBAF +++++=

The above function can be written as:
∑=)9,8,4,2,1,0(),,,(DCBAF

Where 0, 1, 2, 4, 8, 9 are the decimal values of the minterms.
It is required to apply the minimization on this Boolean function with the use of Quine-
McCluckey’s algorithm, firstly by hand and then verify the solution using LOGIC-
Minimiser.

Solution:

1. Write the first list as:

A B C D
0 0 0 0 0
1 0 0 0 1
2 0 0 1 0
4 0 1 0 0
8 1 0 0 0
9 1 0 0 1

2. Deduce the second list (You have to complete this list)

A B C D
0,1 0 0 0 -
0,2
0,4
0,8
1,9
8,9 1 0 0 -

3. Third list (You have to do it all yourself)

A B C D
0,8,1,9

4. Now build the chart which relates minterms with the prime implicates as shown:
0 2 4 8 9

CBA .. X X

5. Now use the LOGIC-Minimiser to cross check your solution.

 1341

LOGIC–Minimiser

sions, each involving a different number of input
variables. Then the test results were validated
manually. Figure 2 shows a sample test result for
four-variable (A, B, C, and D) Boolean expres-
sion minimization. The following minterms were
entered from the keyboard: [0,2,3, 5,7,8,10,13,15],
and the software produced the simplified logic-gate
diagram as well as the output expression, as shown
in Figure 2.

evAluAtIon

An earlier version of LOGIC-Minimiser had been
presented at the National Advisory Committee on
Computing Qualifications conference in Napier,
New Zealand (Sarkar & Petrus, 2001). The dis-
cussion during the conference presentation was
quite encouraging, and many staff members from

various polytechnic institutions expressed their
interest in using the package in their classes.

To assess the educational value of LOGIC-Mi-
nimiser, we administered a survey to the students
of the introductory digital logic subject. The
survey was repeated for two consecutive years.
Overall results revealed that the majority of stu-
dents found the package useful and user-friendly,
with an overall rating of 4 out of 5.

The questionnaire also posed five open-ended
questions: (1) How well did you understand
minimization of Boolean expressions before
entering this course? (2) How easy did you find
the software package to use? (3) How well did the
package help in understanding the minimization of
Boolean expressions? (4) Would you like to have
more software tools of this kind as part of your
course? (5) Would you prefer to learn minimiza-
tion of Boolean expressions in a hybrid mode (i.e.,

Figure 2. Example of four-variable minimization with minimized output expression and logic gate
diagram

1342

LOGIC–Minimiser

minimization by hand and verification of results
by software tool)?

concludIng reMArks

A software tool (LOGIC-Minimiser) has been
developed that can be used in the classroom to
enhance the teaching and learning of various
aspects of Boolean expression minimization.
LOGIC-Minimiser is easy to use and can be run
from any computer operating under MS-DOS and
MS Windows. It was tested on various PCs and
was found to be robust. Many staff members from
various polytechnic institutions expressed their
interest in using the software in the classroom.

Currently, the system minimizes Boolean
expressions involving variables of size 8, which
is adequate for demonstration purposes. LOGIC-
Minimiser can easily be upgraded to accommo-
date variables of any length. User options such as
New, Min/Out, and Quit have been implemented.
More options such as Save, Load, and Help are
still under development, and incorporation of a
mouse-based user interface is also suggested for
future work.

LOGIC-Minimiser is available free of cost
to faculty interested in using it to supplement
their teaching. More information about LOGIC-
Minimiser can be obtained by contacting the
first author.

suMMAry

Boolean algebra, minimization of Boolean ex-
pressions, and logic gates are essential concepts
included in electronics, computer science, in-
formation technology, and engineering. These
concepts play a fundamental role in computer
hardware and digital systems design. We believe
that it is extremely important to incorporate
practical demonstrations into these courses to il-

lustrate theoretical concepts and therefore provide
an opportunity for hands-on experience. These
demonstrations will significantly enhance student
learning about Boolean expression minimization.
This chapter described the development and use of
LOGIC-Minimiser as an aid to enhance teaching
and learning Boolean expression minimization.
It was tested on various PCs and was found to
be robust.

revIew QuestIons

1. List and describe three main features of
LOGIC-Minimiser.

2. Discuss the usefulness of LOGIC-Minimiser
in teaching and learning contexts.

3. Describe the main steps in the Q-M al-
gorithm for the minimization of Boolean
expressions.

4. Define the following key terms: Boolean
expression, logic gate, logic, minterms, and
K-maps.

5. Explain how LOGIC-Minimiser can be used
in the classroom for demonstration.

6. List and describe further enhancements to
LOGIC-Minimiser.

references

Anonymous. (2006). Digital Works. Retrieved
January 5, 2006, from http://www.spsu.edu/cs/
faculty/bbrown/circuits/howto.html

Bem, E. Z., & Petelczyc, L. (2003, February 19-23).
MiniMIPS: A simulation project for the computer
architecture laboratory. Paper presented at the
Proceedings of the 34th Technical Symposium
on Computer Science Education (SIGCSE‘03),
Reno, NV (pp. 64-68).

Burch, C. (2002). Logisim: A graphical system
for logic circuit design and simulation. Journal

 1343

LOGIC–Minimiser

of Educational and Resources in Computing,
2(1), 5-16.

Carothers, J. D. (2003). Quine-McCluskey al-
gorithm. Retrieved September 20, 2004, from
http://www.ece.arizona.edu/~csdl/474aslide4

Costa, A. (2004). Boolean functions simplifica-
tion (logic minimization). Retrieved December
27, 2004, from http://www.dei.isep.ipp.pt/~acc/
bfunc

Green, D. C. (1985). Digital techniques and sys-
tems (2nd ed.). Longman.

Greenfield, J. D. (1977). Practical digital design
using ICs. Wiley.

Grimsey, G. (2000). The truth, the whole truth,
and/or nothing but the truth. Journal of Applied
Computing & Information Technology, 4(1),
42-52.

Hacker, C., & Sitte, R. (2004). Interactive teach-
ing of elementary digital logic design with
WinLogiLab. IEEE Transactions on Education,
47(2), 196-203.

Hideout, G. (2003). The Quine-McCluskey method
of logic reduction. Retrieved September 20, 2004,
from http://www.geekhideout.com/qmm.shtml

Hintz, K. (2003). Quine-McCluskey method. Re-
trieved September 20, from http://www.cpe.gmu.
edu/courses/ece331/lectures/331_8/sld001.htm

Ibbett, R. N. (2002, June 24-26). WWW visualiza-
tion of computer architecture simulations. Paper
presented at the 7th annual SIGCSE conference
on Innovation and Technology in Computer
Science Education (ITiCSE), Aarhus, Denmark
(pp. 247).

Leathrum, J. F. (2003). Quine McCluskey tabular
minimization method. Retrieved September 20,
2004, from http://www.ece.odu.edu/~leathrum/
ECE241_284/support/quine.html

Leva, A. (2003). A hands-on experimental labo-
ratory for undergraduate courses in automatic
control. IEEE Transactions on Education, 46(2),
263-272.

Lockwood, J. W. (2003). Quine-McClusky
algorithm; computational techniques; cygwin
freeware (GPL) tools. Retrieved September 20,
2004, from http://www.arl.wustl.edu/~lockwood/
class/coe460/

LogicWorks. (1999). Capilano Computing Systems
Ltd. Retrieved January 10, 2006, from http://www.
logicworks4.com

Mano, M. (1984). Digital design. Prentice Hall.

Sarkar, N., & Petrus, K. (2001, July 2-5). Logic
gate minimization demonstration. Paper presented
at the 14th annual conference of the National Ad-
visory Committee on Computing Qualifications
(NACCQ), Napier, New Zealand (p. 456).

Sarkar, N., Petrus, K., & Hossain, H. (2001, July
2-5). Software implementation of the Quine-Mc-
Cluskey algorithm for logic gate minimization.
Paper presented at the 14th annual conference of
the National Advisory Committee on Computing
Qualifications (NACCQ), Napier, New Zealand
(pp. 375-378).

Shelburne, B. (2003). Teaching computer organi-
zation using a PDP-8 simulator. Paper presented
at the SIGCSE‘03 Technical Symposium on
Computer Science Education (pp. 69-73).

Tanenbaum, A. S. (1999). Structured computer
organization (4th ed.). Prentice Hall.

Williams, R. D., Klenke, R. H., & Aylor, J. H.
(2003). Teaching computer design using virtual
prototyping. IEEE Transactions on Education,
46(2), 296-301.

1344

LOGIC–Minimiser

key terMs And defInItIons

Boolean Expression: An expression which re-
sults in a Boolean (binary or TRUE/FALSE) value.
For example 4 > 3 is a Boolean expression. All
expressions that contain relational operators like
>, <, and so forth are Boolean. Logical gates and
their combinations are used to implement physical
representations of Boolean expressions.

K-Maps: This term refers to Karnaugh
maps, a logical minimization method based on
graphical representation of Boolean functions in
which each row in the truth table of the Boolean
function is represented as a box. Unlike the truth
table, K- map values of input must be ordered
such that the values of adjacent columns vary by
one single bit.

Logic Gate: An electronic device (based
on transistors) used for implementing logical
functions. The inputs and outputs of the gate are
Boolean (i.e., binary) values. Gates can be used
to implement various Boolean functions. NOT
gates take one input and have one output. The
AND, NAND, OR, and NOR gates may take two
or more inputs and have one output. XOR gates
take two inputs and have one output. Logical
functions are all combinational functions, that is,
their output depends on the input. Gates can also
be used to implement latches and flip-flops which
have an internal state and are used to implement
sequential logical systems.

Logic Minimization: Simplification of Bool-
ean expressions with the aim of reducing the
number of logical gates. This is done by reducing
the number of minterms into a number of prime
implicants in which as many variables as pos-
sible are eliminated. The tabular method makes
repeated use of the rule Ā + A = 1.

LOGIC-Minimiser: Software package devel-
oped at the Auckland University of Technology
to enhance teaching and learning minimization
of Boolean expressions. The package was imple-
mented in C programming language.

Minterms: This term refers to the product of
Boolean variables. These variables can appear
either as themselves or their inverses. A minterm
corresponds to exactly one row in the truth table
of the Boolean function. If we have four variables
A, B, C, and D, then a minterm can be something
like A.B.C.D or .B.C.D, and so forth.

Quine-McCluskey Algorithm: Table-based
reduction method for simplification of Boolean
expressions. This method is quite versatile as
compared with other algorithms. It can handle any
number of inputs and can easily be implemented
on machines. The method starts from the truth
table of the Boolean function.

Sum of Product (SOP): A two-level expres-
sion which represents a sum of minterms of a
logical function. It is two-level because it is imple-
mented by two layers of logic gates. The first level
represents the product of Boolean variables of the
logical function and the second level represents
summing the products with OR operator.

This work was previously published in Tools for Teaching Computer Networking and Hardware Concepts, edited by N. Sarker,
pp. 303-318, copyright 2006 by Information Science Publishing (an imprint of IGI Global).

 1345

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.13
Assisting Learners to

Dynamically Adjust Learning
Processes through
Software Agents

Weidong Pan
University of Technology, Sydney, Australia

Igor Hawrysiewycz
University of Technology, Sydney, Australia

AbstrAct

To make online learning more productive, soft-
ware agent technology has been applied to pro-
vide services for learners in order to assist them
to construct knowledge in constructivist ways.
This paper is focused on the application of soft-
ware agents in assisting learners to dynamically
adjust learning processes. Unlike pedagogical
agents, the agents in this application do not hold
domain knowledge but simply assist learners to
get through learning processes by a variety of sup-
portive services. They assist learners to develop
personalized preferred learning plans and to guide
them to dynamically adjust learning toward their
goals. In this article, the online learning process
is first investigated, and an approach to assisting

learners to dynamically adjust learning is outlined.
Then, the structure of the UOL (unit of learning)
database that provides links between a practical
learning scenario and the required services is
explored. A multi-agent architecture for real-
izing the services is configured, and the roles of
the involved agents are described. After that, the
related agent algorithms for guiding learners to
dynamically adjust learning are described.

IntroductIon

Constructivist learning is being recognized by
more and more people as a productive learning
method. Although there are diverse constructivist
paradigms, they share commonly epistemologi-

1346

Assisting Learners to Dynamically Adjust Learning Processes through Software Agents

cal assumptions for learning (Fosnot, 1996). The
fundamental epistemological assumption is that
knowledge cannot be transmitted to learners but
must be individually constructed and socially co-
constructed by learners (Jonassen, 1999). Because
constructivist learning focuses on actively con-
structing meaningful understandings of the study
theme, it can generate more significant outcomes
than other methods such as the objectivist ones
(Wilson, Teslow, & Osman-Jourchoux, 1995).

According to constructivist theories for learn-
ing, learners are active knowledge-construc-
tors, whereas teachers are cognitive guides who
provide guidance and scaffolds to support the
construction (Mayer, 1999). Unfortunately, most
current online instructional systems have not
really taken such roles. Mostly, they just simply
deliver online course materials over the Internet
without providing effective guidance on how to
use these materials to construct knowledge. As
a result, learners only passively receive informa-
tion from the presented materials. They have not
been engaged in actively constructing meaningful
understandings of the study theme. This research
is aimed by applying software agents into online
learning to actively assist learners to construct
knowledge by using constructivist methods.

The research into software agents has been
a rapidly developing area of research. Already a
lot of agent-based systems have been proposed,
ranging from comparatively small systems such
as e-mail filters to large, complex, mission-criti-
cal systems such as air-traffic control (Jennings,
Sycara, & Wooldridge, 1998). In particular,
pedagogical agents have been developed to take
the role of a virtual tutor, a virtual learning part-
ner, and so forth. The agents we are developing
facilitate online learning through comprehensive
applications of the properties agents exhibit (e.g.,
autonomy, learning, cooperation, reactivity, goal-
driven, etc.). They work together cooperatively in
order to facilitate effective knowledge construc-
tion for individual learners. They assist learners

to construct knowledge not through understand-
ing the academic content of subjects but rather
through providing a wide range of services. These
services include (1) providing access to appropri-
ate learning resources and learning strategies; (2)
fostering meaningful interactions with content,
teachers, and fellow learners; (3) supporting
personalized learning for individual learners; (4)
promoting collaborative learning among learners
in groups; and (5) aiding to evaluate learning
achievements in a timely and accurate manner
(Pan & Hawryszkiewycz, 2004a).

This article is focused on showing how
software agents are applied to assist learners to
dynamically adjust learning processes. This in-
cludes (1) guiding them to develop personalized
preferred learning plans that satisfy their learning
needs and that match their particular learning
styles; and (2) assisting them in the alignment
of learning plans according to the real progress
in learning. The purpose of such services is to
engage learners in knowledge construction and to
promote its success through providing guidance
for learners to solve the problems pertaining to
learning strategies that they often encounter in
online learning.

dynAMIcAlly AdjustIng tHe
leArnIng Processes

online learning and learning Plans

Online learning takes place in many environ-
ments rather than just at educational institutions.
Learners in education institutions usually follow
a particular instruction program. Other learners,
however, build their knowledge through a continu-
ous and guided process of identifying learning
project goals, discussing and trying ideas, and
evaluating learning outputs. Such a process, as
shown in Figure 1, is initiated and driven by a
learning goal. After a goal is constituted based

 1347

Assisting Learners to Dynamically Adjust Learning Processes through Software Agents

on a project or a case study, learners go through a
guided process in order to reach it. The first step
is to build a plan in order to achieve the goal.
This includes defining the learning activities to
be taken and designing the methods to conduct
these activities based on their particular cognitive
features and learning history. Then, learners carry
out the plan to construct their own understanding
of the study theme. They follow the learning steps
in sequence, as defined in the plan. Each learning
step is a particular learning activity (e.g., accessing
learning resources, discussing with others, doing
assignments, doing self-assessments, requesting
assistance from others, etc.). As the learning
proceeds, learners manage the plan in order to
align learning toward their goal. They record the
learning activities that they conducted, evaluate
their outcomes, and then revise the current plan
based on the evaluation. The updated plan im-
mediately will affect the learning process; the
relevant activities or sequences will be aligned.
The learning, based on the updated plan, will be
evaluated again that further results in a plan revi-
sion. An online learning process evolves in this

way, until the evaluation shows that the learning
goal has been achieved.

general framework for
supporting online learning

As previously described, the major challenges for
learners to take part in online learning include (1)
building an appropriate learning plan to achieve
their learning goal; and (2) timely and accurately
adjusting the learning plan toward the goal, based
on the practical learning progress. It will signifi-
cantly benefit learners to continue their pursuits
for the goal, if the online instructional system
can provide assistance for them to tackle these
challenges. This is because not all learners are
equally capable of adequately addressing these
challenges on their own (Large, 1996). Some may
lack the necessary prior knowledge or abilities
to determine independently the needed learning
activities and to choose a proper method to conduct
them. Some may have no idea how to evaluate the
outcomes of learning and to vary plans according
to learning progress.

Figure 1. An online learning process

Define
learning
activities

Activity
record

Carry out
plan

Set up
goal

Build plan

Design
methods

Do

assignment

Change
plan

Record

Evaluate

Manage
plan

Learner
domain
profile

Learner
cognitive

profile

1348

Assisting Learners to Dynamically Adjust Learning Processes through Software Agents

What degree of assistance is suitable for
helping learners to deal with these problems? Is
it suitable to take full control of the learning by
the online instructional system? Most intelligent
tutoring systems (ITS) adopt this mode. They
predesign all learning routes for learners based
on a variety of learner models, expert models,
and tutorial models. Learners only can follow
these routes precisely. The problem is that these
models cannot possibly specify all possible ways
in which learners may go about trying to solve a
problem (Jonassen, 2000). This is because learners
never learn in the same way due to their differ-
ent backgrounds, interests, styles, motivations,
capabilities, and so forth. It is even truer for
online learning, because most online learners are
adults. As a result, learners in those systems often
are forced down the preset learning routes that
do not suit them or even limit the development
of their cognitive abilities.

In order to provide personalized learning ex-
periences for individual learners and to make the
learning process optimal, learners must assume
responsibility for some decisions in the process
(Kay, 2001). Active learning must be encouraged,
because learners construct knowledge only by
active learning (Akhras & Self, 2000). Therefore,
an innovative strategy have been applied in our
work where learners are encouraged to actively
construct knowledge, and meanwhile, the system
provides them with services to shape and to scaf-
fold the learning process. Those services are aimed
directly at solving the problems that emerge in
the learning process. They are customized to the
personalized needs of learners according to their
unique learning characteristics.

In the proposed instructional system, learners
are not imposed to take any learning activities.
They thus can independently develop and explore
their own learning plans for the study themes and
actively construct meaningful understandings of
the themes. Their autonomy in learning has been
sufficiently supported and encouraged. Mean-
while, the system offers suggestions or advice

for directing them to develop learning plans and
to revise learning plans while they have trouble
with these things. This contrasts with most cur-
rent online instructional systems that just present
course materials and leave learners to determine
how to achieve their learning goals. This also
contrasts with those ITS where learners only can
passively follow a preset learning plan chosen by
the system.

Approach for dynamically
Adjusting learning

In order for the online instructional system to pro-
vide services to meet an individual learner’s just-
in-time needs or even just-for-me needs in online
learning, knowledge about the learning activities
being conducted, the practical learning progress,
and the learner’s learning styles is necessary. It
thus requires combining learning content and
learning evaluation with the service components
together. A UOL (unit of learning) database is
being used to provide the connection.

A UOL is a learning unit that satisfies one
or more learning objectives. It may correspond
to a course, a module, or even a single learning
activity such as a discussion to elaborate on some
topic. The UOL database contains a collection
of UOLs, each of which is a carefully designed
learning scenario where not only the learning
content and evaluation methods are specified,
but also the relevant learning activities, conduct
sequences, and supportive services for various
types of learners are defined, as well. The structure
of the UOL database will be explored in detail in
the next section.

Furthermore, the customized services suggest
the requirements for the dynamic interaction and
communication between different components
in the system. Those require communications
between distributed components, sensing and
monitoring of the environment, and autonomous
operations. The application of software agents is
quite appropriate to realize these services, since

 1349

Assisting Learners to Dynamically Adjust Learning Processes through Software Agents

software agents can act as human agents on behalf
of humans. They can easily perform sequences
of complex operations based on the messages
they receive, their own internal beliefs, and the
overall goals and objectives (Garro & Palopoli,
2002). Therefore, software agents have been
developed to implement the service components.
They are responsible for providing suggestions
or advice according to the real learning progress
and learner styles.

Figure 2 depicts the overall system architec-
ture. The agents work independently of learners,
observe and monitor the learning of individual
learners, and make suggestions and advise them,
when necessary. Any change taking place in the
learning environment made by the learner is
detected by the agents. The learning progress is
evaluated through evaluating the detected events.
The learner profiles are built and updated timely
through collecting the detected events and induc-
ing from them. The multi-agent architecture takes
a practical learning scenario and the learner styles
as input and generates a suggestion or advice
for individual learners. The suggestion is about
what the learner should do next, which mainly is
based on the knowledge extracted from the UOL

database by matching the input to the learning
scenario in the UOL database.

tHe uol dAtAbAse

The purpose of developing a UOL database is
to link the practical learning scenarios with the
corresponding services for different learners so
that agents can, based on the links, determine
an appropriate service to assist individual learn-
ers to learn while a scenario appears. Building
upon the earlier work in the descriptions of
learning activities, particularly the educational
modeling language (EML) (Koper, 2001), we are
developing mechanisms to describe and specify
learning processes so that individual learning
can be promoted by the services provided by the
agents. The primary means is to extend and to
adapt the object parameters of the EML in ways
that they can be combined flexibly to describe
the arrangements of learning activities and the
services to support personalized learning (Pan
& Hawryszkiewycz, 2004b).

As shown in Figure 3, a UOL describes the
learning activities for a particular objective and

Figure 2. The overall architecture of the online learning system

Learning styles
of learners

Software
agents

Suggestions
and advice

Learning
designs

UOL
database

Learning activities and
learning progress

Monitoring and
evaluating

Collecting and
reasoning

Learners

Interface to
the learning
system

1350

Assisting Learners to Dynamically Adjust Learning Processes through Software Agents

the corresponding supportive services using
seven composite fields. Every field contains
more elementary fields, constructing a complex
architecture. The major fields and their roles in
implementing the services to facilitate knowledge
construction of learners are outlined below.

The metadata field is for providing the meta-
information of the UOL, including the title, the
prerequisites, the learning objectives, and so
forth. Each objective has a brief description and
a corresponding category (e.g., skill, knowledge,
etc.). The keywords field is to store the keywords
extracted from the objective descriptions that are
used to match the learning goals of the learner.

The roles field is for specifying the intended
users of the UOL. Its property field contains the
description of the learning characteristics of every
class of the intended learners, which enables the
software agents to provide services according to
the unique learning characteristics of individual
learners.

The content field is for storing the description
of all the learning resources and all the learning
activities relating to the UOL. Every activity
field describes a learning activity. Its complete
field specifies the progress status of learning
while the activity is completed. Its activity output
field specifies the artifact files that the activity

Figure 3. The major components of a UOL

+ C ase
Source

T ype
? means o
* means zero or more

+ means one or more

list of elements

UOL

? C onten t ob ject
? Com munication object

? T ool ob ject

T ype

? M etada ta

? Loca tion

C ontent

+ Activ ity

? T ype
W hat

* Activ ity inpu t

C o m ple te

 * A ctiv ity ou tpu t

M etadata

R oles

T ype

D escrip tion
+ P roperty

? T u tor

Id

Learning ob jectives

Prerequisites

T itle

Keywords
T ype

D escrip tion
+ Learning ob jective

? A ssessm ents

? C ases

Lea rn ing p lans + Learning p lan
Property re f

Activity s tructu re re f

M ethods * Activ ity s tructure

+ Assessm ent
Source

T ype

+ Activ ity sequence

 Activity s tructu re Id

+ Learning resource ref

* Assessm ent re f

* C ase re f

T raits
Activity re f

U O L re f
+ Learning step

? O rder

* Serv ice options

T ype

T raits
+ Learning

resource

S tuden t

represents a selection
of one of the elements

 1351

Assisting Learners to Dynamically Adjust Learning Processes through Software Agents

will produce, which is used for evaluating the
outcomes of learning. Every learning resource
field describes a resource available for the UOL.
Its traits field specifies the specific features of
the learning resource; content object indicates
the medium type of the resource and its exact
location; communication object represents the
requirements for the communication facilities;
and tool object specifies the prerequisite tools
and facilities for using the resource.

The methods field is for defining all the dynam-
ics of the learning process in order to achieve the
objectives of the UOL. They are categorized based
on the learning characteristics of their targeted
learners and divided into different groups accord-
ingly. Each group is put into an activity structure
field. This implies that an activity structure field
stores all of the possible methods suitable for a
particular category of learners to achieve the
learning objectives defined in the UOL. Within
an activity structure, there are multiple activity
sequence fields, each of which defines a particular
learning flow in which a sequence of learning
activities is performed during the learning pro-
cess. This enables the software agents to assist a
learner with optional activity sequences that suit
his or her learning characteristics. Each activ-
ity sequence can be associated with more than
one learning resource, ensuring that an activity
sequence can be conducted by using different
learning resources. Each activity sequence can be
associated with multiple assessment approaches
and multiple related case materials, ensuring an
activity sequence can be evaluated through alter-
native methods and be scaffolded by alternative
case materials, respectively.

Within the description of a particular activity
sequence, a learning step can be a reference to a
learning activity defined in the UOL or a refer-
ence to another UOL. In the latter case, another
UOL is referenced in order to implement a learn-
ing step of the UOL, constructing a hierarchical
architecture of a module or a subject. The type

field is to specify the pedagogical methodology
category of the activity sequence (e.g., knowl-
edge acquisition, problem-based, project-based,
learning by designing, discovery learning, etc.).
Service options declare the computer-supported
collaborative tools that are required in the learn-
ing activities (e.g., learning spaces, discussion
forums, etc.). Traits indicate the particular features
of the sequence.

The assessments field and the cases field are
respectively for describing the assessment ap-
proaches and the case materials, related to the
UOL. The type specifies the category, and source
indicates where to find it.

The learning plans field provides the link
between a learning method and its targeted
learner category. It is composed of a number of
learning plan fields, each of which contains a
pair of property ref and activity structure ref.
The former is an ID of the property defined in
the roles field, whereas the latter is an ID of the
activity structure defined in the methods field. This
enables the software agents to specify the learn-
ing methods based on the category of the learner.
This field is crucial to determine dynamically a
specific learning mode for individual learners
and to provide associated supportive services for
different learning needs.

tHe MultI-Agent ArcHItecture

Agents and their roles

The agents that we have developed to realize the
services to facilitate knowledge construction of
learners are a series of individual agents with
specific expertise, which forms a multi-agent
architecture. In this article, we only concentrate
on the agents that are involved in assisting learners
to dynamically adjust their learning processes.
The agents responsible for this task are described
briefly as follows:

1352

Assisting Learners to Dynamically Adjust Learning Processes through Software Agents

• Personal Assistant Agent: Helps individual
learners with their learning activities. It
continuously observes the behaviors of its
owner learner in order to maintain a profile.
The profile covers many facets that can be
relevant in the learning process. The assis-
tant agent updates the profile as the learning
proceeds and provides this information to
other agents when being requested.

• Planning Agent: An agent responsible for
assisting learners to develop personalized
preferred learning plans for a particular
goal. Its tasks include designing learning
activities and their sequences, determining
evaluation methods, and so forth. All of these
are accomplished based on the practical
learning scenarios and the unique learning
characteristics of individual learners.

• Managing Agent: Responsible for manag-
ing the learning for a particular UOL. Each
UOL has an agent, whose task is to provide
personal assistance for individual learners
to learn the unit and to manage the learning
based on the plan being adopted. It delegates
work to learning activities according to the
plan. The managing agent keeps track of
the progress in the learning activity for the
UOL and provides assistance to learners in
revising the learning plan accordingly. It
includes monitoring the submission of the
artifact file for the UOL, evaluating the ar-
tifact file or asking a field expert to evaluate
it and then receiving the evaluation result
from the expert.

working Modes of the Agents

The agents use a hybrid architecture that combines
a reactive reasoning and a BDI-based proactive
reasoning (Wooldridge, 2002). They autono-
mously monitor the learning environment, observe
and react to the events in the environment. When
a learner sets up a learning goal, the personal as-
sistant agent for the learner perceives the event.

It requests the planning agent for a learning plan
for that goal. The planning agent, based on the
goal and the learning characteristics of the learner
provided by the assistant agent, designs learning
plans for that goal and provides them to the learner
for making decisions. While the learner starts
learning a unit, a managing agent is created for
assisting the completion of the learning activities
in that unit. The managing agent manages the
learning of the unit by following the plan being
adopted. Based on the sequence of the learning
activities scheduled in the plan, it delegates a
learning activity and creates a learning space for
the learning activity and an agent for it, as well.
The activity agent further creates action agents to
assist in conducting related actions in the activity
and reports the progress to the managing agent.
The managing agent delegates another learning
activity after it receives the report from the activity
agent on the completion of the activity with which
it is associated. It reports the progress of the plan
to the planning agent, and the latter revises the
plan accordingly.

IMPleMentAtIon APProAcHes
for AdjustIng leArnIng
Processes

developing Personalized Preferred
learning Plans

Assisting learners to develop personalized pre-
ferred learning plans is realized through advis-
ing them on several plans that they can follow to
achieve their goals. These plans are the methods
to conduct learning, including relevant learning
activities to be taken and their sequence. They
are extracted from the UOL database, based on
the practical learning scenario and the specific
learning characteristics of the learner. As shown
in Figure 4, the agent first determines a UOL
by matching an individual learner’s goals to the
objectives of a UOL in the UOL database. Then,

 1353

Assisting Learners to Dynamically Adjust Learning Processes through Software Agents

it captures the learning methods for the UOL
from the database. Next, it further determines the
ones from them that are suitable for the learner
according to the fit degree of the method for him.
Finally, it presents these methods as the recom-
mended learning plans.

The following technique is used by the agent
to identify if a particular learning method is suit-
able for a learner and to measure the fit degree.

The learning property of a learner, stored in his
or her cognitive profile, is characterized by a set
P = {p1, p2, …, pn}, where pi is one of his or her
preferred styles in learning (e.g., like to study
together with other learners, like to work through
concrete experiences, etc.). Every learning method
for a UOL stored in the UOL database has a set
M = {m1, m2, …, mm} to describe its traits, where
mi is a style that the method can accommodate.

Figure 5. Presenting learners with appropriate learning plans

Figure 4. Assisting learners to develop personalized preferred learning plans

UOL
database

Keywords
of the
learning
goals

Learning
methods suitable
for the learner to
learn the UOL

Learner’s
learning
goals

keywords

Matching
the
keywords to
the learning

UOL
Obtaining all
the learning
methods
from the UOL

Learning
methods

Matching
the learning
methods to
the learning
property

the learning
methods as
the learning
plans

Learner
the learning
property of
the learner

Learning
property

1354

Assisting Learners to Dynamically Adjust Learning Processes through Software Agents

The agent recognizes if a method is suitable for
a learner by comparing set M with P. The fit
degree is calculated by summing the numbers
where the learner’s favored styles are met by a
method; namely, Vfit = ∑ (pi in M). A method is
recognized as an appropriate one for a learner, if
its Vfit is larger than a designated threshold value.
A method is considered as the optimal one, if it
has a larger Vfit than other methods.

In order to promote active learning, the agents
do not force a learner to accept any of the learn-
ing plans that they have designed for him or her.
Instead, they present these plans as a suggestion
for the learner to make his or her own decisions.
Figure 5 shows a typical scene, where the plan-
ning agent, based on the cognitive profile and
domain profile of a learner, already has generated
three plans for the learner to learn the database
design unit and is presenting the three plans for
the learner in a popup window. The learner is
free to accept any one of them or to reject them,
building his or her own plan. If the learner wants
to accept a plan recommended by the agent, he
or she only needs to click on Follow the plan in
the plan line. The learner then is forwarded to the
learning step defined in the plan. The learner also
may want to look at the detailed learning steps
of a plan before making a decision. If so, he or
she can click See the steps in the plan line. If the
learner wants to inspect and to analyze a plan in
depth, he or she can click on Visualize the plan
in the plan line. The learner will be presented
with an interactive visual interface, where he or
she can inspect the learning steps and view their
hierarchical architecture.

dynamically revising learning
Plans

Guiding learners to align the learning toward
their goals is implemented through managing
individual learning plans. The agents perform
this work with the aid of two lists; namely, activ-
ity list and checklist. The activity list stores the

UOLs that a learner has started learning but has
not completed yet; whereas the checklist stores
the UOLs that a learner has completed. The major
components of these lists are shown in Table 1
and Table 2. When a learner initiates the learn-
ing for a UOL, the UOL, its learning goal (i.e.
the goal UOL), and the adopted learning plan for
achieving the goal are added to the activity list.
When the learner has completed the learning for
a UOL, the UOL will be moved to the checklist.
The two lists are updated dynamically by the
agents as the learning proceeds.

The requirements for aligning learning rec-
ognized by the agents take place mainly in two
scenarios: (1) when a learner starts learning a new
UOL but has not completed all the UOLs planned
to learn prior to the one he or she is going to
study; and (2) when a learner is not able to achieve
the objectives of the UOL. Figure 6 depicts the
recognition of the first scenario. The agent first
retrieves the learning plan from the activity list
that the learner is adopting for the UOL goal. It
then compares the checklist against the learning
tasks scheduled in the plan to see if the checklist
contains all of the UOLs planned to be learned
prior to the one to be studied. If it does not, then
the agent will suggest adjusting the learning plan.
The second scenario is recognized by keeping
track of the execution of the UOLs in the activity
list and by evaluating the artifacts submitted by
the learner for those UOLs. If a learner fails to
submit the desired artifacts for a long time after
starting a UOL, the agent will suggest adjusting
the learning plan. If the evaluation of an artifact
indicates that a learner is not able to achieve the
objectives of a UOL, the agent also will suggest
adjusting.

As to the approaches for adjusting learning,
the agent usually suggests two kinds of adjust-
ments: (1) keep the learning plans being carried
out unchanged and select another UOL to learn; or
(2) revise one of the plans being carried out. The
agent can generate a suggestion for the first kind of
adjustment by examining the current plan and the

 1355

Assisting Learners to Dynamically Adjust Learning Processes through Software Agents

checklist, since it can identify the UOL that should
be learned next by comparing the learning tasks
scheduled in the current plan against the ones in
the checklist. It is a challenging task to generate a
suggestion for the second kind of adjustment, as it
needs a complicated search procedure. As can be
seen, a UOL with a larger grain (e.g., a subject or

a chapter) may have a lot of learning paths with a
complicated hierarchical structure. Accordingly,
there are very complicated relationships between
the plans being carried out and the ones that can
be adopted after some alignment. To search for a
suitable plan in the hierarchical architecture, the
agent has to examine the plans from the current

Table 1. The major components of the activity list

Field Meaning
username the user name of a learner
uol the ID of a UOL the learner has started learning
goal_uol the ID of the goal UOL for the UOL
plan the ID of the plan for achieve the goal UOL

status
the status of learning for the UOL by using the
plan, e.g. proceed or suspended

remarks the plan is selected by agent or designed by learner

Field Meaning
username the user name of a learner
uol the ID of a UOL that the learner has completed
goal_uol the ID of the goal UOL for the UOL
remarks the plan is selected by agent or designed by learner

Table 2. The major components of the check list

Figure 6. Recognizing the requirement for learning adjustment

learning
adjustment

Judging if all the UOLs
planned to learn prior
to the UOL to be learnt
have been completed.

If not
list

The plan
being used
currently for
the goal UOL

The UOLs
planned to
learn

Check
list

The UOLs
that have
been learnt

1356

Assisting Learners to Dynamically Adjust Learning Processes through Software Agents

UOL to higher level UOLs level by level. That is,
the agent first checks if there is any other plan to
reach the current UOL’s goal, and, if not, it will
further check to see if there is any possible plan
suitable for the goal of the higher level UOLs.
In this way, the agent checks the plans for the
UOLs level by level, until it finds a suitable plan
or attains another reasonable result.

Figure 7 shows two examples of the suggestions
generated by the agents for learning alignment.
The one on the left shows the agent suggesting
that the learner study another UOL first, because
it is scheduled to be learned prior to the one that
the learner is going to study, based on the plan
being adopted. The one on the right corresponds
to changing the current learning plan, because the
evaluation illustrates that the learner is not able
to achieve the objectives of the UOL.

suMMAry And furtHer work

A prototype of the multi-agent architecture for
facilitating knowledge construction of learners
has been developed, and the services related to
assisting learners to dynamically adjust learning
processes have been implemented. This research
has illustrated that software agents are effec-
tive in assisting learners to dynamically adjust
learning processes. They can efficiently solve
the problems that learners face in online learning
and can promote deeper cognitive engagement
for them. Our future work involves further refin-
ing and extending of the UOL database and the
agent services so that they can assist learners in
adjusting learning process in different ways. An
empirical validation of the system also would be
carried out in order to demonstrate the usefulness
of the system to a wide audience.

Figure 7. Example suggestions by agents for learning alignment

 1357

Assisting Learners to Dynamically Adjust Learning Processes through Software Agents

references

Akhras, F. N., & Self, J. A. (2000). System intel-
ligence in constructivist learning. International
Journal of Artificial Intelligence in Education,
11. 348-376.

Fosnot, C. (1996). Constructivism: Theory,
perspectives, and practice. New York: Teachers
College Press.

Garro, A., & Palopoli, L. (2002). An XML multi-
agent system for e-learning and skill management.
Proceedings of the Third International Sympo-
sium on Multi-Agent Systems, Large Complex
Systems, and E-Businesses (MALCEB’2002),
Erfurt, Thuringia, Germany (pp. 8-10).

IMS. (2004). IMS learning design specification
V1.0. Retrieved October 4, 2004, from http://www.
imsglobal.org/learningdesign/index.cfm

Jennings, N., Sycara, K., & Wooldridge, M. (1998)
A roadmap of agent research and development.
Autonomous Agents and Multi-Agent System, 1,
7-38.

Jonassen, D. (1999). Constructivist learning
environments on the Web: Engaging students in
meaningful learning. Proceedings of the Edu-
cational Technology Conference (EdTech 99),
Singapore.

Jonassen, D. (2000). Computer as mindtools for
schools: Engaging critical thinking. Columbus,
OH: Prentice-Hall.

Kay, J. (2001). Learner control. User Modeling
and User-Adapted Interaction, 11(1). 111-127.

Koper, R. (2001). Modeling units of study from a
pedagogical perspective: The pedagogical model
behind EML. Retrieved October 12, 2004, from
http://eml.ou.nl

Large, A. (1996). Hypertext instructional pro-
grams and learner control: A research review.
Education for Information, 14, 95-105.

Mayer, R. E. (1999). Designing instruction for
constructivist learning. In C. M. Reigeluth (Ed.),
Instructional design theories and models: A new
paradigm of instructional theory (pp. 141-159).
Mahwah, NJ: Lawrence Erlbaum Associates,
Publishers.

Pan, W., & Hawryszkiewycz, I. (2004a). To
develop constructivist learning environments
on the Web using software agent technology.
Proceedings of the 7th IASTED International
Conference on Computers and Advanced Tech-
nology in Education (CATE 2004), Kauai, Hawaii
(pp. 236-241).

Pan, W., & Hawryszkiewycz, I. (2004b). A method
of defining learning processes. Proceedings of
the 21st ASCILITE Conference, Perth, Australia,
734-742.

Wilson, B. G., Teslow, J., & Osman-Jourchoux,
R. (1995). The impact of constructivism (and
postmodernism) on instructional design funda-
mentals. In B. B. Seels (Ed.), Instructional design
fundamentals: A review and reconsideration.
Englewood Cliffs, NJ: Educational Technology
Publications.

Wooldridge, M. (2002). An introduction to mul-
tiagent systems. John Wiley & Sons.

This work was previously published in the International Journal of Intelligent Information Technologies, edited by V. Suguma-
ran, Volume 2, Issue 2, pp. 1-15, copyright 2006 by IGI Publishing (an imprint of IGI Global).

1358

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.14
Integrating Software

Engineering and
Costing Aspects within

Project Management Tools
Roy Gelbard

Bar-Ilan University, Israel

Jeffrey Kantor
Bar-Ilan University, Israel, & University of Windsor, Canada

Liran Edelist
Bar-Ilan University, Israel

IntroductIon

Currently, there is no integration among CASE
tools (computer aided software engineering, also
named AMD tools, analysis modeling and design),
costing tools, and project management (PM) tools.
Not only are there no integrated tools, but there
is also no conceptual integration among software
engineering (SE) aspects and accounting-costing
aspects of software projects within PM tools. PM
tools, as well as costing tools are used not only
for tracking and controlling an ongoing software
project, but also at the very beginning stages of

the project, in which critical estimations concern-
ing budget and time frame are made. In order to
have a firm, robust, and accurate planning, project
planning should be based directly upon raw SE
components-objects, that is, upon analysis and
design components-objects.

According to the Standish Group CHAOS
Report 2003, each year in the USA there are ap-
proximately 175,000 projects in IT Application
Development which spends $250 billion. Among
these, 31.1% of projects will be cancelled, 52.7% of
projects will cost 189% of their original estimates,
only 52% of required features and functions make

 1359

Integrating Software Engineering and Costing Aspects within Project Management Tools

it to the released product, and Time overruns 82%.
In financial terms $55 Billion dollars is wasted
in these projects (Madpat, 2005).

Budget overrun indicates cost management
problems, although this area is defined by the
project management integration (PMI), as one of
the nine core activities of projects management.
Costing difficulties result from both implementa-
tion limitations of costing solutions in complex
and changing requirements as well as the tech-
nological environment. Risk management is also
defined by the PMI as one of the nine core areas
of project management; but there is also no inte-
gration between PM tools and SE tools in light
of the need for risk management.

According to Maciaszek and Liong (2005), suc-
cess of a software project depends on five software
engineering areas that are related to each other:
the development of the life cycle of the software,
processes management, the model’s configuration
and language, and SE tools and project planning.
The combining between formal tools of SE and PM
processes in the different stages has been proved
by research as holding a positive contribution to
the efficacy of the project and as an improver of
the adherence to costs, technical requirements,
and the schedules that were allocated to the project
(Barker & Verma, 2003).

This study proposes and prototypes a model
that integrates these three aspects of software
projects by automatically mapping SE objects and
accounting–costing objects into PM objects. To
validate the feasibility of the model and without
loss of generality, it is demonstrated using former
research platform focused on conversion of data
flow diagrams (DFD), which are actually full en-
terprise set of use cases diagrams reflecting entire
system-software project into Gantt charts.

bAckground

cAse and PM tools

CASE/AMD tools support the analysis, design,
construction, and implementation stages of the
information system life cycle (ISLC) (Barker &
Longman, 1992; Pendharkar, Subramanian, &
Rodger, 2005; Sommerville, 2004). Commercial
tools, such as IBM–Rational XDE, are covering
main stages of ISLC; the “Requisite-Pro” module,
for instance, is designated to the stage of require-
ment definition, “Rose” module to the analysis
and design stage, and “Test-Studio” module to
the testing stage.

Although PM tools support management and
control along the ISLC, there is hardly any inte-
gration between CASE tools and PM tools. Thus,
ISLC modeling approaches, such as the functional
approach (e.g., DFD, ERD, STD), as well the
object-oriented approach (e.g., use cases, activity
diagrams, STD), even when automated, are used
mainly in the early analysis stage primarily for
visual documentation. The “database of specifica-
tions,” laboriously elicited and gathered during
the creation of modeling diagrams, is hardly ever
applied again for project management purposes,
even though this information is valuable for project
managers who are involved in the construction
and implementation stages. In fact, due to lack
of integration along the ISLC, the specifications
database is often either overlooked altogether or
collected again as if their creation earlier never
took place. Moreover, standard methods for sys-
tem analysis and development usually make no
reference to methods for project management.
Accounting and costing parameters, which are
reviewed at the next chapter, are not represented
not at SE tools or at PM tools, and handled in
totally separated systems.

1360

Integrating Software Engineering and Costing Aspects within Project Management Tools

One conclusion that emerges from a thorough
review of software engineering and project man-
agement areas is that SE tools are much more
heterogeneous than PM tools. Gantt and Pert
charts have become dominant project management
modeling tools (Fox & Spence, 1998; Hughes &
Cotterell, 2002) and are currently included in
standard PM software such as Microsoft Project,
PS-Next, and others. A survey of 1,000 project
managers has found that 48.4% use MS Project,
8.5% use MS Excel, and the rest use Gantt/Pert-
based tools from other vendors. The average
satisfaction from PM tools in this survey was
3.7 on a scale of 1 to 5. Another survey reveals
that only 10% of 240 project managers do not
use PM tools at all, down from 33% in 1996.
Moreover, more than 50% use Gantt/Pert-based
project management software to manage every
project, independently of its application domain
and characteristics.

In contrast, the following two commercial
CASE software packages demonstrate the het-
erogeneity of tools in the area of software engi-
neering. Oracle’s Designer supports functional
hierarchy analysis based on Barker and Longman
(1992) methodology, and IBM-Rational offers
XDE-Rose, a modeling tool based on the unified
modeling language (UML) only. PM tools thus
seem more standardized and mature than CASE
tools. This could be the reason why 71% of 397
software engineers surveyed in 20 European
countries employ PM tools while only about
26% utilize CASE tools, despite similar levels
of training (Domges & Pohl, 1998).

Although CASE tools, including those men-
tioned above, support teamwork, none contain
elements that take into consideration teamwork
planning, time planning, dependencies, resources
allocation, cost estimation, or risk management.
Moreover, none include Gantt or Pert models or
offer built-in interfaces to PM tools. Methodolo-
gies and models for managing software projects

have yet to make it from the idea to the product
phase, despite persistent improvements in auto-
mated tools for requirement definition, systems
modeling, and software engineering. The fail-
ure to transform project management theory to
practice in the context of software development
is especially troubling since more than 50% of
such projects do not succeed (Madpat, 2005;
Reel, 1999). In addition to the lack of integra-
tion between SE tools and PM tools managers in
charge of software projects usually refrain from
basing managerial judgement on data about re-
quirements and functional characteristics of the
specific development project (Reel, 1999).

With decades of systems development behind
us, there is quite a consensus today with respect
to the critical success factors (CSF) of system
development projects and agile methodologies,
there is still a need to introduce effective concepts,
methods, measures, and tools for better control
of software projects. All these observations lead
one to conclude that assembling a repository of
system requirements and system components,
complete as it might be, does not guarantee
effective planning of teamwork, scheduling of
tasks, and controlling deviations between planned
milestones and actual progress.

Against this background, the questions to
consider are:

I. Is the gap between SE tools, costing methods,
and PM tools is bridgeable?

II. Can SE components, collected by CASE
tools, become directly available for the use
of cost estimation, risk management, and
directly integrated within PM without being
subjectively interpreted or biased?

III. Is there a way to improve software modeling
and engineering by introducing a manage-
rial perspective in addition to the technical
perspectives?

 1361

Integrating Software Engineering and Costing Aspects within Project Management Tools

Our preliminary answers to those questions
are “yes.” This study proposes and prototypes a
model that integrates these three aspects of soft-
ware projects by automatically mapping SE objects
and accounting–costing objects into PM objects.
We have engaged in symmetry–isomorphism
research with respect to distinct methodologies
for software engineering and project manage-
ment. Since Gantt chart is a technique for visual
description of networks, the ability to convert
DFD model or hierarchical use-case model to
a network format is at the basis of our symme-
try–isomorphism research. It is our intention in
this article to demonstrate, based on this research,
a possible integration scheme and provide more
robust answers to the above questions. Given the
wealth of CASE and PM tools, this work refrains
from developing yet another one, but prototyping
an integrated platform built-up of common CASE
tool, costing models, and common PM tools. We
show that combining these sets of capabilities
can create the desired synergy where the whole
is greater than the sum of its parts.

costing Aspects and Methods

Detailed costing information is expected to
include all types of costs that are required for
manufacturing a product-software or providing
a service. Data based on financial systems, which
contain costs, derived from the income statement
and the estimation of the company’s capital and
assets, enclosed the historical execution data
and future estimations and forecasts (Roztocki
& Needy, 1999). Williams (2004) supports the
integration approach according to the conception
that a modern accounting system is supposed to
supply a framework for strategic management of
the company’s resources. In order to realize this
conception, Williams proposes a multidimen-
sional construct that clusters information from
the company’s systems on customers base, activ-
ity areas, and more for the purpose of forming
an accounting system that facilitates planning,

improvement and control, analysis and regulation
of resources, and enhancement of profitability.
Such a system is based on integrative informa-
tion from a number of systems or from the arrays
DW (data warehouse), BI (business intelligent)
in five areas: costs, assets, quality/service, time,
and outputs. The pioneers of the combining of
financial and operational information are Cooper
and Kaplan who developed the method of activ-
ity based costing (ABC) at the end of the 1980s.
Cooper and Kaplan (1998) suggest in light of the
technological development of information systems
to define the integration between operational and
financial systems for the purpose of building an
accurate costing model.

In light of the above, establishment of inte-
gration conception required the definition not
only of an enterprise costing model but also the
definition of interfacing between the different
areas and systems, that is, interface between SE
aspects tools, financial aspects tools, and PM
tools. Cost management is a term used for a wide
description of short-term and long-term manage-
rial activities involved in planning and controlling
of costs (Horngren, Foster, & Datar, 2000). Table
1 presents variety aspects of costing model in a
technological projects environment.

Costs analysis within the framework of techno-
logical environment must be carried out with the
understanding of the project life cycle. Kerzner
(2000) portrays the distribution of the project’s
cost over the project’s life cycle:

•	 5% - Conceptualization
•	 10% - Feasibility study
•	 15% - Preliminary planning
•	 20% - Detail planning
•	 40% - Execution
•	 10% - Testing and commissioning

Tasks in each of these stages are described
under the work breakdown structure (WBS). The
WBS represents the required activities for the
project’s management in a hierarchical structure.

1362

Integrating Software Engineering and Costing Aspects within Project Management Tools

For each component of the WBS, an evaluation
of direct and indirect (overhead) costs must be
included. Direct costs are divided to work’s cost
(usually work hours multiple hourly rate) and
direct costs that are not work payment such as
travel, materials, and so forth. It is recommended
that these costs will include managerial reserve
as well (Jurison, 1999).

A reinforcement of the need to include the
project’s tasks (or the WBS components) in a
costing model is intensified in the light of the
cost estimations that are founded on work hours’
evaluation. It has been argued (Ooi & Soh,
2003) that according to traditional approaches
of software costing (time-based estimations),
there may be a bending towards time planning
without linking it to the specific task and the role
player that performs it. Therefore, it is suggested
to include the detailing of the tasks (Ooi & Soh,
2003) and/or an elaborate planning of the various

project’s resources as part of the costing model.
The advantages of the resources’ cost analysis
throughout activities/tasks are more detailed
information for managers, monitoring abilities,
analysis of resources’ cost and allocation, and a
more accurate ability of overhead allocation (Ja-
hangir, 2003; Kinsella, 2002; Ooi & Soh, 2003;
Raz & Elnathan, 1999).

Indirect costs (overhead costs) include all
types of costs that cannot be attributed directly
to a specific task in the project marketing and
sales expenses, office supplies, buildings’ cost,
professional services, information systems,
computerization infrastructure, and the like.
These costs are only occasionally incorporated
in the project planning, but they carry great in-
fluence on the profitability of the portfolio and
the projects’ pricing decisions (Horngren et al.,
2000). These costs are described as one of the
“major headaches” (Kerzner, 2000). However,

Aspect Description Difficulties

1. Planning Costs estimation of the project and for
each resource in the projects portfolio

Defining direct and indirect resources
and their costs

2. Controlling Costs analysis for each project and
executed task

Attributing in-reality-costs to each
project’s task

3. Timeline Costs analysis over different time
periods in planning and execution

Evaluating capacities of resources
consumption over specified time
periods

4. Tasks Identification and costing of project’s
tasks (WBS items)

Matching the costs to each of the
project’s components

5. Overhead
Allocation A precise allocation of indirect costs Determining the indirect cost

generators in project’s tasks

6. Risk management The inclusion of risk element and its
value as part of the costing

Estimating risk on the basis of risk
factors in the different tasks

7. Scenarios The ability to analyze alternative
modes of action and costs

Defining assumptions and alternatives
to the mode of cost’s calculation

8. Profitability
Analysis

The understanding of the profit that
derives from each of the projects and
the whole projects portfolio

The inclusion of all the cost factors in
the model

Table 1. Aspects of costing model in a technological projects environment

 1363

Integrating Software Engineering and Costing Aspects within Project Management Tools

in this context, it has been argued that the abil-
ity to control costs is largely dependent on the
monitoring of these costs.

Table 2 summarizes costing methods ac-
cording to financial and engineering literature.
The table also presents the common evaluation
of model compatibility in light of entire costing
aspects.

• Analogy: Cost estimation based on previ-
ous experience, using case-based reasoning
(CBR) techniques. The accuracy of this
method ranges from –10% to +25% (Kerzner,
2000).

• Parametric: Cost estimation based on heu-
ristics and thumb’s rules (Jahangir, 2003).
Similar to the analogy estimation method,
a parametrical model is also based on ac-
cumulation of historical data of project costs.
On the basis of these data, a mathematical
model is defined for the prediction of costs

(Kinsella, 2002). The level of accuracy of a
parametrical model ranges on a wide scope
of –25% to +75% (Kerzner, 2000).

• Function points: A method that was first
introduced in 1979 by Albrecht. Its objective
is to assess the software system’s size while
using the user’s requirements without direct
dependence on the technological realization
(Hale & Smith, 2001). The function points
method is calculated in three steps using the
quantity and complexity of the functional
components and the system attributes (Ke-
merer, 1993).

• COCOMO (constructive cost model):
The model was first introduced in 1981 and
since then several modifications were made
in order to suit fourth generation languages,
decrease in hardware costs, increase in
quality assurance (QA) levels, advanced
and agile development methods. The cur-
rent version, COCOMO 2.0 (Boehm, Clark,

 P
la

nn
in

g

 C
on

tr
ol

lin
g

 T
im

e
L

in
e

 T
as

k
 R

es
ol

ut
io

n

 O
ve

rh
ea

d
 A

llo
ca

tio
n

 R
is

k
 M

an
ag

em
en

t

 S
ce

na
ri

os

 P
ro

fit
ab

ili
ty

 A

na
ly

si
s

Software
Eng.

Top
Down

Analogy √ * P* X X P* X X X
Parametric √ * P* X X P* P* √ X

Bottom
Up

F u n c t i o n
Points √ X X √ P* √* √ X

C O C O M O
II √ P X √ P* √ √ X

Costing

T a r g e t
Costing √ P P P* P X P √

S t a n d a r d
Costing √ P √* √* P X √ P

ABC √ P P* X √ X √ √

Table 2. Costing methods according to financial and engineering literature

√ - Good compatibility; X - No compatibility; P - Partial compatibility; * - Adjustments are required

1364

Integrating Software Engineering and Costing Aspects within Project Management Tools

Horowitz, Madachy, Sclby, & Westland,
1995), is not based upon line of codes but
on four submodels that match a spiral ap-
proach of software system development that
are applied according to the stage of the life
cycle (the application-composition model,
early design model, reuse model, and post-
architecture model).

• Target costing: Suits engineering frame-
work in which there are several engineering
activities simultaneously and is utilized as a
means for costs strategic management. The
idea behind the method is that a product’s
cost must be based on the sum that can be
received for it in the market, and in other
words, the development cost should be the
basis for the quantity and mode of invest-
ment in the development rather than the
development’s outcome.

• Standard costing: Ascertains the cost
framework while employing the amount of
direct cost components and a standard price
that was set for this unit. We shall formulate
it concisely as:

 ∑
−

=
n

i
ii StdPQtyTotalCost

1
* .

 It should be accentuated that the standard
price does not solely include the direct price
of the component (price per working hour)
and is intended to contain the meaning of
the cost or the consumption of indirect
resources (rent, computerization, etc.). In
the calculation of the standard price, it is
customary to rely on known performance
data from the past (Horngren et al., 2000).

• Activity based costing (ABC): Considered
one of the advanced models for predicting
costs while incorporating managerial deci-
sions. The model was developed in the 1980s
and its main innovation is in the addition of
nonfinancial elements to the costing model.
The model is widely used in a variety of

industries such as agronomy, banking (Kao
& Lee, 2001), and medicine. In the projects
area, there is not much literature that discuss-
es the application of ABC; however, there
are a few studies that help to understand the
method. These studies include the descrip-
tion of the method for software developing
and assimilation (Ooi & Soh, 2003), the
portrayal of the mode in which ABC can
be taken on in projects (Raz & Elnathan,
1999), the implementation of ABC in favor
of IT cost analysis in the organization, and
a recommendation to include this model in
the project management body of knowledge,
or PMBOK (Kinsella, 2002).

tHe IntegrAted Model

The integrated model is based upon former re-
search (Gelbard, Pliskin, & Spiegler, 2002) that
has mapped data flow diagrams, which are actu-
ally comprehensive enterprise sets of use cases
diagrams reflecting entire system-software project
into Gantt charts. Current research is focused on
the following extensions:

• Extending the database schema, used as the
integrated system repository, in a flexible
way enabling the addition of any costing
parameter to each of the DFD/use case/SE
components.

• Adding specific manipulations and outputs
in order to support presentation of costing
aspects.

Mapping dfd/use case objects into
gantt objects

As suggested in former research (Gelbard et al.,
2002), data flow diagrams as well as use case
diagrams can be mapped into Gantt charts based
on the following conversions:

 1365

Integrating Software Engineering and Costing Aspects within Project Management Tools

1. Each of the external entities are represented
once only for input (if they produce input)
and once only for output (if they produce
output).

2. Each read only (RO) data store and each
read/write (R/W) data store are represented
once only for input and once only for out-
put.

3. Each basic flow appears once only in every
Gantt diagram.

4. Each basic process appears once only in
every Gantt diagram.

5. OR connections between flows are not
represented in the absence of parallels in
Gantt diagrams. Logical connection traits
between flows can, however, be included

within basic process characteristics, thus
maintaining mapping completeness.

6. A general process is represented by means
of a summary task, that is, a grouping of
activities and flows under a general name.

7. General flows are those that connect between
summary tasks.

Example: Mapping of Hierarchical DFD

DFD as well as use case methodology enable
hierarchical analysis of systems. The hierarchical
description is achieved by “blowing up” gen-
eral processes-usages into dedicated diagrams.
Those dedicated diagrams represent lower level
descriptions and can be composed of basic pro-

Figure 1. DFD-0

2 E 11 3

6
4

E 1

D a ta S t o r e

5

P 1

7

P 2P 1

81 2

4

E 1

D a t a S t o r e

P 1 .1 P 2

5

P 1 .2

Figure 2. DFD-1 (“Blow-up” of General Process P1)

1366

Integrating Software Engineering and Costing Aspects within Project Management Tools

cesses, general processes, and of “includes” and
“extends” use cases. The hierarchical description
can be halted when there are no more general
processes at the lowest-level diagrams. Except
for the root level, identified as “DFD-0,” each
diagram in the DFD hierarchy is identified by
the respective general function, and the same can
be defined for use case diagrams. For the sake of
simplicity, the DFD used in the examples below
contains only the following objects: basic and
general processes, flows, external entities, and
data stores. Processes are symbolized by ellipses
and denoted by P#, entities by rectangles and E#,
and flows by arrows and #.

Figures 1 and 2 demonstrate a hierarchical
DFD. Figure 1 describes the root level with Basic
Process P2 and General Process P1 (a general
process is depicted by concentric ellipses). Fig-
ure 2 describes a lower level description of the
General Process P1.

A composite DFD, made up from both DFD-
0 (Figure 1) and DFD-1 (Figure 2), is shown in
Figure 3. A composite DFD, not a typical or
common representation of a hierarchical DFD, is
included here because of its similarity to Gantt
diagram representation, where summary tasks and

subtasks can be displayed on the same diagram. A
summary task represents, in the mapping model,
a general process, while each subtask represents
a component at the respective hierarchical DFD
level. As can be seen in the fourth section, Fig-
ure 6 depicts the Gantt diagram corresponding
to DFD-0 in Figure 1, and Figure 7 depicts the
mapping of the composite DFD in Figure 3 into
a Gantt diagram.

Adding costing Aspects

In order to enable location of any costing parameter
to each of the DFD/use case models, we have used
predefined symbols for each costing aspect. Not-
ing a symbol with a numerical parameter beside
it, in the “Label” input box at any “engineering”
object dialog box, as shown in Figure 4, inserts
relevant costing value (in light of the relevant
costing aspect) to the relevant software compo-
nent. A parser, running over the CASE repository,
recognizes those predefined symbols and allocates
the costing data in the integrated repository for
further manipulation and interchanges. Overheads
(indirect costs) inputs are made as labels of the
entire project (the DFD-0 object itself).

Figure 3. A composite DFD representing both DFD-0 and DFD-1

2

E 13

6

4

D a ta S t o r e

5

7

P 2

81 P 1 .1E 1 P 1 .2

 1367

Integrating Software Engineering and Costing Aspects within Project Management Tools

the Integrated repository

As mentioned above, the database schema, used
as the integrated system repository, was extended
in a flexible way so it is possible to add any cost-
ing parameter to each of the DFD/use case/SE
components. Figure 5 illustrates the integrated
database schema, which supports engineering
objects (DFD/use cases), PM objects (WBS and
ascription of dependencies), and costing objects
(costing aspects and values). The integrated
repository contains three main components:
SE components, PM components, and costing
components.

The SE component is based upon the follow-
ing tables:

• Objects Dictionary = Tables: [DFD’s
COMPONENTS], and [COMPONENT’s
TYPES].

• Data Items Dictionary = Tables: [DATA
ITEMS], [ITEM SYNONYMS], [DO-
MAINS], and [RELATION GROUPS].

• Ascription of Data Items to Basic Flows =
Table: [DATA ITEMS in FLOWS].

The PM component is based upon the follow-
ing tables:

• Ascription of dependencies between SE
objects = Tables: [DFD’s COMPONENTS],
and [PRECEDENCES].

Figure 4. The “Label” input box used to insert costing aspects and values

1368

Integrating Software Engineering and Costing Aspects within Project Management Tools

The costing component is based upon the
following tables:

• Ascription of costing aspects and values
to each SE object = Tables: [DFD’s COM-
PONENTS], [Component Costing], and
[Costing’s Types]

In this way, those components enable repre-
senting and manipulating of DFD objects, costing
aspects, and Gantt objects. The [PRECEDENCES]
table stands for many-to-many network relation-
ships as required for a Gantt representation.

In Figure 5, rectangles represent database
tables, with the table name contained in the blue
header and the primary key bolded. Lines between
rectangles represent the database constraints
(foreign key) and indicate the cardinality (one-
to-many) of the relation. To distinguish between

the various DFD/use case components, each
component, in the [DFD’s COMPONENTS] table,
is attributed to a component type, defined in the
[COMPONENT TYPES] table. The [Cocting’s
Types] table stands for the variety of costing as-
pects, while the [Component Costing] represents
many-to-many relations between SE component-
object and costing aspects. The specific value of
costing aspect of the relevant SE component-object
is stored in this table (in the [Value] field).

tHe PrototyPe

Data flow diagrams where constructed by using
the CASE tool “Power Designer; Process Analyst,”
and it is worth mentioning that the same can be
done for use cases using the same tool. Costing
aspects and values were referenced to each SE

Figure 5. Database schema of the integrated repository

 1369

Integrating Software Engineering and Costing Aspects within Project Management Tools

component (see Figure 4). A parser while running
over the CASE repository inserts accordingly the
relevant records to the integrated database schema,
as described in the third section and illustrated
in Figure 5. Then, the prototype activates MS
Projects and MS Excel, creating project Gantt
charts (by MS Project), and project summation
(by MS Excel). The following figures illustrate
two kinds of outputs: “classic” PM outputs and
costing outputs. “Classic” PM outputs relate to
Gantt chart, while costing outputs relate to project
summations.

“classic” PM outputs

DFD models shown in Figures 1, 2, and 3 were
mapped into MS Project Gantt charts. Figure 6

displays the Gantt chart corresponding to DFD-0
in Figure 1, and Figure 7 displays the mapping
of the composite DFD in Figure 3 into a Gantt
chart. The Summary Task P1 in Figures 6 and 7
(line 10) corresponds to General Process P1, while
subtasks of P1 are represented only in Figure 7.
The P1 Summary Task has a distinct symbol with
emphases at the edges.

Double clicking on line 10 “blows up” the
summary task and displays its subtasks. Lines
11, 12, and 13 in the Gantt chart of Figure 6 are
hidden because they are related to a lower level in
the DFD hierarchy, DFD-1 (Figure 2). Lines 11,
12, and 13 in Figure 7 represent the DFD objects
that are shown in DFD-1 (Figure 2).

Figure 7. Ms Project Gantt chart representation of Figure 3 DFD’s objects

Figure 6. Ms Project Gantt chart representation of Figure 1 DFD’s objects

1370

Integrating Software Engineering and Costing Aspects within Project Management Tools

costing outputs

Costing aspects of risk and direct costs where
constructed by using the “Label” input box (see

Figure 4). A parser, while running over the CASE
repository, inserts accordingly the relevant re-
cords to the integrated database schema and then
activates the Visual Basic Excel module, which

Figure 8. Summary of risks and resources

Figure 9. “Blown-up” of risks related to Process “P-1”

 1371

Integrating Software Engineering and Costing Aspects within Project Management Tools

has created a project summation accordingly.
Hierarchical presentations were applied using
built-in features of MS Excel.

Figures 8 and 9 illustrate hierarchical presenta-
tions of the same DFD models shown in Figures
1, 2, and 3. Figure 8 displays the summation
corresponding to DFD-0 in Figure 1, and Figure
9 displays the summation of the composite DFD
in Figure 3. The Summary Task P1 in Figures 8
and 9 (line 13) corresponds to General Process
P1, while subtasks of P1 are represented only in
Figure 9. The P1 Summary Task has a distinct
background with “+” sign beside it.

Risk was assigned separately to time, budget,
and functional aspects of each SE component-
object. Direct costs are presented in units of
months. Further calculation can be made accord-
ing to parameters of salary rates and overheads,
presented in the “costing” sheet.

Double clicking on the “+” sign beside line
13 “blows up” the summary task and displays its
subtasks. Lines 14 and 15, in the Excel spreadsheet
of Figure 8, are hidden because they are related to
a lower level in the DFD hierarchy, DFD-1 (Figure
2). Lines 14 and 15 in Figure 9 represent the DFD
objects that are shown in DFD-1 (Figure 2).

dIscussIon And conclusIon

Current research demonstrates the derivation of
PM objects and project risk and costing evalua-
tion, directly on the basis of raw SE components-
objects. By this, we provide an integrating layer,
which combines standard PM tools with common
system analysis and design tools and costing as-
pects and models. Applying such an integrating
layer in software development projects enables
improved risk and cost estimations at the very
beginning stages of a software project, as well as
better monitoring and control over various topics
uniquely related to software projects.

The integration model presented in this study
has the following advantages:

1. The integrated model enables risk, effort,
direct, and indirect cost estimation for
software development to be an integral part
of conventional analysis and design meth-
odologies. This is due to the possibility of
deriving assessments directly from raw data
stored at the repository of a CASE tool, as
opposed to relying on aggregates or other
secondary sources.

2. The integrated model enables extension
of the basic development time assessment
beyond the mere aspects of time and direct
cost to include also risk, overheads, and
any accounting-costing parameter.

3. The integrated model bases the estimation
process on the very common management
tools, for example, MS Project and MS
Gantt.

4. Use of Gantt charts enables dynamic con-
trol of the estimation, based on reports
regarding actual progress. This provides
for projected-to-actual comparisons of cost
and moment-to-moment updates of CPM
calculations, as opposed to the static control
methods customary in the field of software
development.

5. Use of Gantt charts allows “drilling down,”
into the system code design, including master
routines and system major service routines.
This differs from current methods used for
software development, which are limited
primarily to the area of functionality.

6. The potential of a detailed drill-down
concerning system code design provides
for engaging and integrating the technical
team (development managers) as early as
the analysis stage. This results in a more
reliable and accurate estimation base for
the entire system development project.

It is noteworthy that conversion of a DFD model
as well as of a use-case model into a Gantt chart is
actually a representation of a knowledge model as
a semantic network. We have reason to believe that

1372

Integrating Software Engineering and Costing Aspects within Project Management Tools

the integration of SE aspects and costing aspects
within PM tools, modeled and prototyped in this
study, is not limited to the DFD/use-case approach
or to the described costing methods, but can be ap-
plied to any “network-based” software engineer-
ing modeling, as well as to any additional costing
method. The fact that DFD conversion into Gantt
chart is actually a representation of a knowledge
model as a semantic network opens opportunities
for commercialization for practitioners.

In sum, this study showed the feasibility and
validity of converting SE objects and the risk and
the cost we ascribe to those software components
into PM objects. The integration of common
CASE tools with costing models and standard
PM tools can potentially improve estimation,
planning, and control of software development
projects in terms of cost, time, and risk manage-
ment. In software projects, where so many things
may go out of control, any theoretical as well as
practical novelty is required in order to gain ad-
ditional progress.

references

Armour, P. (2002). Ten Un-Myths of Project Esti-
mation. Communications of the ACM, 45(11).

Barker, R., & Longman, C. (1992). CASE method:
Function and process modeling. Addison-Wes-
ley.

Barker, B.G., & Verma, D. (2003). System engi-
neering effectiveness: A complexity point para-
digm for software intensive systems. Engineering
Management Journal, 15(3), 29.

Becker, S.A., & Bostelman, M.L. (1999, May/
June). Aligning strategic and project measurement
systems. IEEE Software, pp. 46-51.

Boegh, J., Depanfilis, S., Kitchenham, B., &
Pasquini, A. (1999, March/April). A method for
software quality planning, control, and evaluation.
IEEE Software, pp. 69-77.

Boehm, B.W., Clark, B.K., Horowitz, E., Madachy,
R., Sclby, R.W., & Westland, C. (1995). Cost mod-
els for future software processes: COCOMO 2.0.
Annals of Software Engineering, 1, 57-94.

Cooper, R., & Kaplan, R.S. (1998, July/August).
The promise and peril of integrated cost systems.
Harvard Business Review, 76(4), 109-119.

Dasher, G.T. (2003). The interface between
systems engineering and program management.
Engineering Management Journal, 15(3), 11-21.

Datar, S.M, Foster, G., & Horngren, C. (2000).
Cost accounting (10th ed.). Prentice Hall.

Domges, G., & Pohl, K. (1998). Adapting trace-
ability environments to project-specific needs.
Communication of the ACM, 41(12), 54-62.

Dutta, S., Lee, M., & Van Wassenhove, L. (1999,
May/June). Software engineering in Europe:
A study of best practices. IEEE Software, pp.
82-89.

Fox, T.L., & Spence, J.W. (1998, September). Tools
of the trade: A survey of project management tools.
Project Management Journal, pp. 20-27.

Gelbard, R., Pliskin, N., & Spiegler, I. (2002).
Integrating systems analysis and project man-
agement tools. International Journal of Project
Management, 20, 461-468.

Geri, N., & Ronen, B. (2005, April). Relevance
lost: The rise and fall of activity-based costing.
Human Systems Management, pp. 1-12

Grady, R.B. (1994). Successfully applying soft-
ware metrics. Computer, 27(9), 18-25.

Hale, J., & Smith, R. (2001). An empiri-
cal study using task assignment patterns to
improve the accuracy of software effort estima-
tion. IEEE Transactions on Software Engineering,
27(3), 264-271.

Horngren, C., Foster, G., & Datar, S. (2000). Cost
accounting. Prentice Hall.

 1373

Integrating Software Engineering and Costing Aspects within Project Management Tools

Hughes, B., & Cotterell, M. (2002). Software
project management (3rd ed.). McGraw-Hill.

Jahangir, M. (2003). Costing R&D projects: A
bottom-up framework. Cost Engineering, 45(2),
12-20.

Jurison, J. (1999). Software project management:
The manager’s view. Communications of the
AIS, 2(17).

Kaindle, H., & Carroll, J.M. (1999). Symbolic
modeling in practice. Communications of the
ACM, 42(1), 28-30.

Kao, J., & Lee, T. (2001). Application of simu-
lation technique to activity-based costing of
agricultural systems: A case study. Agricultural
Systems, 67, 71-82.

Kemerer, C.F. (1993). Reliability of function points
measurement: A field experiment. Communica-
tions of the ACM, 36(2), 85-98.

Kerzner, H. (2000). Project management (7th ed.).
John Wiley & Sons.

Kinsella, S.M. (2002). Activity-based cost-
ing: Does it warrant inclusion in a guide to the
PMBOK? Project Management Journal, 33(2),
49-56.

Maciaszek, L.A., & Liong, B.L. (2005). Practical
software engineering: A case-study approach.
Addison-Wesley.

Madpat, S. (2005). Bridging organizational strat-
egy and projects: An OPM3 insiders perspective.
PMI Journal, 5(10), 16-20.

Ooi, G., & Soh, C. (2003). Developing an activ-
ity-based costing approach for system develop-
ment and implementation. The DATA BASE for
Advances in Information Systems, 34(3), 54-71.

Pendharkar, P.C., Subramanian, G.H., & Rodger,
J.A. (2005). A probabilistic model for predicting
software development effort. IEEE Transactins
on Software Engineering, 31(7), 615-624.

Rajkumar, R., & Rush, C. (2000). Analysis of cost
estimating processes used within a concurrent
engineering environment throughout a product
life cycle. In Proceedings of the 7th ISPE Inter-
national Conference on Concurrent Engineering
(pp. 58-67).

Raz, T., & Elnathan, D. (1999). Activity based
costing for projects. International Journal of
Project Management, 17(1), 61-67.

Reel, J.S. (1999, May/June). Critical success factors
in software projects. IEEE Software, pp. 18-23.

Roztocki, N., & Needy, K.L. (1999). Integrating
activity-based costing and economic value added
in manufacturing. Engineering Management
Journal, 11(2), 17-22.

Sommerville, I. (2004). Software engineering (7th
ed.). Addison-Wesley.

Wouters, M., & Davila, A. (2004). Designing
cost-competitive technology products through
cost management. Accounting Horizons, 18(1),
13-26.

key terMs

Activity Based Costing (ABC): A cost predic-
tion model that has greatly improved the ability
to predict a proper allocation of indirect costs
among several activities and thereafter between
many products. Before using this model, one has
to appreciate and understand the overall business
(including its production and marketing). The
model is not always applicable: a cost-benefit
analysis is necessary before a final decision is
made.

CASE/AMD Tools: Software tools (Computer
Aided Software Engineering), also named AMD
tools (Analysis Modeling and Design), to assist
entire System Life Cycle (SLC), including analy-
sis phase, design phase, testing phase, and even

1374

Integrating Software Engineering and Costing Aspects within Project Management Tools

maintenance phase. CASE/AMD tools support
the fuctional analysis phase using visual model-
ing notations, which can automatically convert
into code.

COCOMO (Constructive Cost Model): An
estimation method used to assess the human effort
required for software development, which was first
introduced in 1981, and since then several modifica-
tions were made in order to suit fourth generation
languages, decrease in hardware costs, increase in
QA levels, and advanced and agile development
methods. The current version, COCOMO 2.0
(Boehm et al., 1995), is not based upon line of codes
but on four submodels that match a spiral approach
of software system development that are applied
according to the stage of system life cycle.

Function Points: An estimation method used
to assess the human effort required for software
development, which was first introduced in 1979.
Method objective is to assess the software system’s
size while using the user’s requirements without
direct dependence on the technological realization.
It is calculated in three steps using the quantity and
complexity of the functional components and the
system attributes.

Gantt Chart: A popular type of bar chart
that illustrates a project schedule. Gantt charts
illustrate the start and finish dates (ES, EF, LS,
LF) of entire project elements. Project elements
comprise the work breakdown structure (WBS) of
the project. Gantt charts also show the dependency
(i.e., precedence network) relationships between
activities. Gantt charts can be used to show current

schedule status using percent-complete shadings
and a vertical “Today” line.

Modeling Languages: Visual-graphical no-
tations used to express functionality, processes,
structures, behavior, as well as technical aspects
of a system. Modeling languages are defined
by a consistent set of rules, which are used
for interpretation of those graphical symbols.
Among modeling languages, in the software
domain, there are data flow diagrams, used for
hierarchical functionality decomposing; process
diagrams, used for business processes modeling;
entity relation diagrams, used for data structure
modeling; and state transition diagrams, used for
behavior modeling.

Target Costing: A cost prediction model that
suits an engineering framework in which there
are several engineering activities which take
place simultaneously. It is utilized as a means
for costs strategic management. The idea behind
the method is that a product’s cost must be based
on the sum that can be received for it in the mar-
ket. It is therefore the development costs which
should be the basis for the quantity and mode of
investment in the development rather then the
development’s outcome.

UML (Unified Modeling Language): A
standardized visual-graphical notation gathering
together diverse modeling diagrams, which are
required in order to define entire software system
aspects. UML is officially defined at the Object Man-
agement Group (OMG) by the UML metamodel, a
meta-object facility metamodel (MOF).

This work was previously published in Encyclopedia of Information Communication Technology, edited by A. Cartelli & M.
Palma, pp. 443-456, copyright 2009 by Information Science Reference (an imprint of IGI Global).

 1375

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.15
Developing Enjoyable

Second Language Learning
Software Tools:

A Computer Game Paradigm

Chee Siang Ang
City University, UK

Panayiotis Zaphiris
City University, UK

AbstrAct

This chapter attempts to examine computer game
theories—ludology and narratology—that explain
computer games as play activities and storytelling
media. Founded on this theoretical explanation, a
game model that incorporates gameplay and nar-
ratives is presented. From the model, two aspects
of learning in the game environment are identified:
gameplay-oriented and narrative-oriented. It is
believed that playing computer games involves
at least one of these types of learning; thus, this
game’s nature can be used in designing engag-
ing educational software. In addition, based on
Malone’s theoretical framework on motivational
heuristics, there are two methods of applying
computer games in language learning: extrinsic

and intrinsic, depending on the integration of game
designs and learning materials. Then, two cases
of language-learning games are scrutinized, using
the game model, in order to demonstrate the use
of computer games in language learning.

IntroductIon

In one of his most influential texts about com-
puter games, The Art of Computer Game Design,
Chris Crawford (1982) states that schools, but
not games, are the untested fad and violator of
tradition in education. Game playing is a vital
educational function for any creature capable of
learning. Hence, games are the most ancient and
time-honored vehicle for education. Crawford

1376

Developing Enjoyable Second Language Learning Software Tools

explores the reasons for people playing games
and asserts that the fundamental motivation of
game playing is to learn. He also cites an example
to support his view by observing the behavior of
lion cubs near their mother: the cubs crouch in
the grass, creeping slowly toward a butterfly and
pouncing on it. The beasts are apparently playing
some sort of game and having fun. However, the
game is also how lions learn to hunt their prey
without being injured. They are learning by doing,
with minimum risks. This observation is true not
only for animals. Since the dawn of human his-
tory, games have been used in the teaching and
learning process. Board games, for example, are
believed to be the earliest games, and they were
battle simulations designed to instruct the young
(Murray, 1978).

The ability of computer games to spark interest
among players can hardly be denied, and some
educators have started to see the capability of
these highly engaging games. People play games
voluntarily, without asking for external rewards.
Besides, the use of computer games in learning
is parallel with Piaget’s constructivism, in which
knowledge is constructed instead of being trans-
mitted. A lot of game-based learning projects
have been carried out with an emphasis on this
pedagogical epistemology. Nevertheless, most of
these projects are centered in science education
and mathematics. Not much theoretical work
has been done on language learning, although
computer games have long been used in this area.
This is due to the fact that computer games are too
varied and intricate to indicate a clear function
in language education. Furthermore, what counts
as a game is rather loosely defined. Therefore, a
proper study of computer game theories would
throw light upon this issue.

This chapter is structured as follows: First, we
review the theoretical parts of computer games,
which include ludology and narratology. Then, a
theoretical model of game is proposed. The next
section explains two kinds of learning that oc-
cur when playing computer games based on the

model. We outline two methods of integrating
game designs with language learning. Next, an
analysis of two cases of language-learning games
is presented. Then, we discuss the future direc-
tion of this study; and the final section concludes
the chapter.

tHeoretIcAl revIew on
gAMIng

Although the use of computer games in learning is
gaining attention among educators, there is still a
lack of theoretical understanding of the game itself
in most studies. Recent literature reveals that the
research of computer games falls into two major
principles: ludology and narratology. Ludology
focuses on the study of computer games as play
and game activities, while narratology focuses
on the study of computer games as stories. The
views between ludologists and narratologists
are generally contradictory; the former argues
that the pleasure of playing games lies in the
gameplay, while the latter treats narrative as the
fundamental enjoyment players are experienc-
ing during the play session. In computer games,
gameplay is referred to as activities conducted
within a framework of agreed rules that directly or
indirectly contribute to achieving goals (Lindley,
2002). A narrative is an account of something that
happens to someone (Barrett, 1997). It consists
of a series of events, from the background setting
to the completion of the game. In other words,
gameplay is the actions taken by the players, while
narratives are an account of these actions. In this
section, several kinds of game rules are explicated
to better comprehend gameplay. The narrative
mechanisms of the game are also scrutinized.

gameplay and ludology

The term ludology first appeared in the text of
computer game research in 1999. Gonzalo Frasca
(1999) points out in his paper, Ludology Meets

 1377

Developing Enjoyable Second Language Learning Software Tools

Narratology: Similitude and Differences Between
(Video) Games and Narrative, that another
dimension has been almost ignored when study-
ing computer games: to analyze them as games.
He proposes the term “ludology” to refer to the
discipline that studies game and play activities as
opposed to narratives, and asserts that ludology
should be independent from the medium that
supports the activity. Frasca (2001) identifies two
kinds of game: ludus and paidea. Ludus refers to
the games whose result defines a winner and a
loser, while paidea refers to the games whose result
does not (Frasca, 2001). Based on this difference,
Frasca introduces two types of game rules: paidea
rules and ludus rules. Paidea rules are established
to play the game as paidea, while ludus rules are
established to win or lose the game. In chess, for
example, paidea rules describe how each token
moves, while ludus rules state a condition to end
the match. It is noticed that we can easily switch
from paidea to ludus and vice versa. In SimC-
ity (see Figure 1) — a paidea game in which no
explicit ludus rules are defined — players can
engage in paidea by playing with the buildings.
Once they establish a goal, say, to build a city with
a population of 10,000, they immediately switch
to a ludus activity. Not only can we have several
paidea rules, we can also have several ludus rules.
In chess, we can define the winner by counting
the amount and value of each player’s remaining
tokens. Table 1 shows some examples of paidea
and ludus rules in computer games.

Besides rules, ludologists are also keen on un-

derstanding gameplay. Jesper Juul (2002) proposes
two types of gameplay based on the relationship
between the rules of a game and the actual game
sessions played. First is emergent gameplay, where
a number of simple rules are combined to form
an interesting variation of gameplay. In a game
of emergence, the game structure is primitive
and defined by a set of simple paidea rules with
usually only one ludus rule. Chess, for instance, is
a game of emergence. It has a set of paidea rules
that define how each piece moves, and one ludus
rule, which is to take the opponent’s King. Driven
towards this explicitly stated ludus rule, players
might construct more ludus rules (such as to take
the Knight) and plan for complicated strategies to
achieve the goal. Second is progressive gameplay,

Table 1. Paidea rules and ludus rules

Paidea rules Ludus rules
SimCity (Paidea game) If the crime rate is high, the

population becomes low
Nil

Tetris (Ludus game) If the blocks fill a layer, the layer
is cleared

To keep the level of block as low as
possible

Figure 1. SimCity 4000 (courtesy Electronic
Arts, 2003)

1378

Developing Enjoyable Second Language Learning Software Tools

where separate challenges are introduced serially
for the player to solve. Most adventure games, like
Myst (see Figure 2), fall into this category. Players
are introduced, one after another, to ludus rules
of goals to be achieved that lead to the attainment
of the ultimate game goal.

narratives and narratology

For narratologists, the advent of the computer
signifies the birth of a new medium for storytell-
ing. The capability of computers is not limited
to performing calculations; computers are a new
medium to represent human activities and pres-
ent narratives in an unprecedented way. In most
modern computer games, players can naturalize
their actions as the solving of a familiar type of
problem (Ryan, 1994). In Myst III, the player
needs to track down the villain; in Super Mario
Bros. 3 (see Figure 3), the player is trying to save
Princess Toadstool; and in SimCity, the player
plays the role of the mayor and plans for city
development.

Marie Ryan (2001) tries to understand nar-
ratives in computer games, and she proposes a
definition of narrative based on mental images: A

narrative is defined as a mental image, or cogni-
tive construct, that can be activated by various
types of signs. This image consists of a world
(setting) populated by intelligent agents (char-
acters). These agents participate in actions and
happenings (events, plot) that cause global changes
in the narrative world. Several useful terms are
recognized in this definition: world, character and
action, and we would like to know to what extent
these exist in computer games. First, a game has
a spatial representation, whether real or abstract.
Espen Aarseth (1998) has claimed in the article
Allegories of Space that computer games are es-
sentially concerned with spatial representation
and negotiation. Myst, for example, has a rich
description of space represented with high-quality
pre-rendered 3D images. The player recognizes
the space immediately after entering the game
world, and knows what and how they should act
because it resembles a real social setting. Pong,
on the other hand, represents an abstract space,
which might not have a referent in the real world.
Players might construct their own mental image
about the game, though most players would prob-
ably relate Pong with table tennis. The space in
Pong is symbolic, while in Myst it is narrative.

Figure 2. Myst III (courtesy UbiSoft Entertain-
ment, 2001)

Figure 3. Super Mario Bros. 3 (courtesy Nintendo,
1988)

 1379

Developing Enjoyable Second Language Learning Software Tools

One thing in common is that these two worlds
operate within a strict set of rules that define the
mechanism of the worlds. Second, most com-
puter games feature explicit characters who will
interact with the world or the player. In Myst, the
characters are descriptive, and players can interact
with them as if they are real humans, although the
interaction is limited to several chosen aspects.
In Pong, even though it does not have an explicit
character, the player is apparently playing against
an opponent or intelligent agent. The character
is not depicted graphically in the game world,
but the existence cannot be overlooked. Third,
all games involve active actions and reactions of
the players. Games are usually discerned from
linear narratives by the existence of interaction:
the reciprocal actions between players and games.
These actions include not only the action of the
player, but also the autonomous actions of the
characters in the game world.

A gAMe Model of gAMePlAy
And nArrAtIves

In this section, we propose a game model of
gameplay and narratives that attempts to unify
the view of ludologists and narratologists, thus
advocating the study of computer games that
comprises both gameplay and narratives. From the
ludological perspective, we know that game rules
are significant in understanding the semantics and
structure of the game. Though they constitute a
very important part of computer games, rules are
not always the only thing one needs to learn in
order to play. Game playing is more than simply
memorizing the rules. Having learned the rules
merely establishes the ability to play, and success-
ful play does not necessarily require learning all
the rules (Lindley, 2002). We need to understand
something more complex that can arise from the
rules: the gameplay. Examining the two types
of rules and gameplay closely, it has been found
that gameplay emerges from and must conform to

the paidea rules that describe the semantic of the
game. In addition, gameplay is oriented towards
the ludus rules that describe the structure of the
game. This relation is described in Figure 4.

Usually, paidea rules are fixed and predefined
by the game designer. The player cannot breach
paidea rules and their planning of strategies should
conform to these rules. If the paidea rules state that
the game character can only move forward and
backward, the player can never move it upward
or downward. Ludus rules are more flexible com-
pared to paidea rules. The player may change the
ludus rules and get involved in a different game-
play the game designer has intended, although
the player might not be able to win the game.
Gameplay emerges from paidea rules; but without
ludus rules, there is hardly any gameplay. Paidea
rules can be simple, but ludus rules can lead to
complex gameplay. If players do not set the ludus
rules while playing SimCity, the gameplay does
not exist in the play session, because the players’
actions are not oriented toward achieving a goal.
In Super Mario Bros. 3, if players are only playing
around with the world without having the inten-
tion to solve the level, gameplay does not exist,
although the ludus rules are explicitly defined by
the game designer.

If we view from the prism of narratology, it

Figure 4. A game model of gameplay and rules

Paidea rules Ludus rules

Gameplay

emerge engender

1380

Developing Enjoyable Second Language Learning Software Tools

appears that games and narratives are quite simi-
lar, as computer games use narrative structures
to organize their worlds. Nevertheless, games are
not a mental image; they are a system defined
by a set of concrete rules. Within this context,
players can act freely as long as their actions
conform to the rules. The chain of these actions
can then be recounted in narrative discourse.
In brief, the difference between narratives in
computer games and linear narratives is that a
linear narrative presents the facts in an immutable
sequence, while a game presents a branching tree
of sequences and allows the players to create their
own story by making choices at each branch point
(Crawford, 1982). However, there are sequences
of events in games that do not become or form
stories (like in Tetris). Therefore, not all games
are interactive narratives; rather, some games can
be interactive narratives, and these games can be
used as a medium for storytelling. In fact, Frasca
(1999) has attempted to relate paidea and ludus

with narrative elements:

If ludus can be related to narrative plot, paidea
can be related to the narrative settings. The ability
to perform paidea activities is determined by the
environment and the actions.

This statement is quite valuable in analyzing
the relationship between rules and narratives in
computer games. To perceive this subtle rela-
tionship, we would like to derive two narrative
components from the narratological framework:
spatiality, the space of the narrative; and fabula,
the actions and events that might happen in the
space. By applying these to the previous model,
we have a more descriptive one (see Figure 5). The
game space usually consists of compound worlds
(Gingold, 2003). In most games, players travel
through many locations, and enjoy the explora-
tion of these multiple worlds and the movement
between them. Compound worlds are collections

Figure 5. A game model of gameplay and narratives

Paidea rules Ludus rules

Spatial
representation Fabula

Narrative

affect affect

Gameplay

emerge engender

 1381

Developing Enjoyable Second Language Learning Software Tools

of micro-worlds, which are governed by their own
sets of paidea rules. These rules influence how
the narrative world operates, while the move-
ment of each world is marked by the changes in
description and organization. Music, environment
and, most importantly, rules change as the player
moves between worlds. Ludus rules, on the other
hand, are closely related to the narrative events
in the narrative world. The player’s actions are
directly or indirectly affected by the ludus rules
which, in turn, are changed according to the
players’ actions.

The relationship between narratives and game-
play is two-way. As narratives change, the rules
become different. Evolving fabula can create new
ludus rules, new sources of conflict and even new
forms of gameplay. In fact, the best evolving sto-
ries can effectively change the rules of the game,
something that probably would not be tolerated
by a player lacking a story-driven reason. Rules
in games need not be static. Narratives provide an
explanation and meaning of the change of rules
so that the virtual world is more believable. To
exemplify this relationship, let us presume that
Mario eats the mushroom and grows up in Super
Mario Bros. 3. This event immediately triggers the
creation of a ludus rule: to avoid being touched by
monsters. It is very likely that in a certain point of
the game, a monster will touch Mario and Mario
will shrink. This event then again activates new
ludus rules: to eat the mushroom.

tHe gAMe Model And leArnIng
In coMPuter gAMes

The game model that binds both gameplay and
narratives reveals something about learning activi-
ties when players are engaged in game playing. In
most modern computer games, the successfully
playing of a game involves at least two types of
learning: gameplay and the narrative. In this sec-
tion, we look into these two aspects of learning in
games and how we could use them in designing

engaging learning software tools.

gameplay-oriented learning

This relationship between rules and gameplay has
a significant implication on designing pleasurable
activities, such as learning. In the article E-Learn-
ing as Computer Games: Designing Immersive
and Experiential Learning, e-learning software
is interpreted as computer games, and several
principles in designing interesting learning envi-
ronments are outlined (Ang & Rao, 2004). If we
look into the definition of paidea and ludus, it is
not difficult to conclude that most conventional
educational software is actually a loose type of
game. It has paidea rules: Click the menu buttons
and scroll the text with the mouse button, and
so forth. Ludus rules are usually stated as the
learning objective: to understand the concept of
metamorphosis. Although the definition of game
is much more intricate than just having these
rules, this software could be seen as paidea or
ludus games depending on the existence of an
explicit goal. We are interested in investigating
why it is not as engaging as commercial games
with game rules.

The internal structure of a game can be char-
acterized by its paidea rules, which can further be
classified into two types: symbolic and semantic.
Briefly, symbolic paidea rules explain the first
layer of game interface — the input and output
device interactions; while semantic paidea rules
describe the narrative layer of interface. Obvi-
ously, the paidea rules of most learning software
are symbolic, and do not impel learners to search
for semantic meaning. The enjoyment of users
should not be limited to symbolic paidea rules
that define how users interact with computer
devices. Learners should engage in gameplay
by observing, hypothesizing, testing and updat-
ing the semantic paidea rules of the narrative
environment. The pleasure of paidea should lie
in the exploration of the virtual world and the
discovery of paidea rules. Some learners find

1382

Developing Enjoyable Second Language Learning Software Tools

some educational software interesting when they
first play with it. They might have fun interacting
with the mouse or keyboard. However, they soon
will see through the mechanisms of the system:
There is nothing more to explore. Besides, under-
standing the paidea rules does not let them plan
for strategies to achieve the goal. Unlike Super
Mario Bros. 3, where players play and observe
the causality of their actions and the behavior of
the spatial system, most learning software does
not contain such qualities. The major “gameplay”
of this software revolves around the reading of
texts, since the paidea rules are oversimplified:
Click and read.

The game designer not only has to design the
paidea rules that define how games work, but also
must define the goal of the game (ludus rules).
We can further derive two kinds of ludus rules:
micro and macro. Micro ludus rules contribute
indirectly to winning a game, while macro ludus
rules contribute directly. Computer games usually
have macro ludus rules, which define the ultimate
goal; while most micro ludus rules are either pre-
defined by the game designers or created by the
players during the play session. Oriented towards
macro ludus rules, the player devises individual
micro ludus rules in order to achieve the goal. For
a game-based learning system, explicitly stated
micro ludus rules can be important to scaffold
learning. Micro ludus rules also function as
guidance in the virtual world that steers players
toward the learning objective. Learning objectives
are presented as part of the narrative context. In-
stead of “to understand genetic configuration of
animals,” we can intrigue the learners “to defeat
the monsters by breaking the genetic codes.”
Besides, this matches task-based learning, while
each task is introduced as ludus rules.

Narrative-Oriented Learning

Narrative interfaces have been used in the game
industry since its infancy and have successfully
enticed a large portion of computer users for de-

cades. Unfortunately, most educational software
fails to take advantage of this highly effective
design. Spatial design is obviously lacking, as
most interfaces of conventional learning software
adopt the metaphor of a book. The computer
screen should not be a representation of a page
of book, but a window to a new world. Learners
look through the screen like through a window
to a new spatial world of knowledge in which the
images of real objects act coherently with virtual
models (Morozov & Markov, 2000).

Like paidea rules, the interface of a game is
doubled in an interesting way. First is the interface
of the computer: the keyboard and the mouse. An
additional interface is the narrative metaphor,
which illuminates the narrative space in a new
dynamic and interactive medium. The spatial
design makes the first interface “disappear.”
Learners are not interacting with the keyboard
or mouse, but with the story presented from the
computer screen (Jaron & Biocca, 1992). Another
issue pertaining to the spatiality of the software is
that most educational software structures learning
contents linearly, offers textual explanations and
gives a particular spatial organization that does
not reflect physical experiences. Learners should
not regurgitate the context-free facts; rather, they
expect to use knowledge in a contextually rich
situation.

Apart from these, educational software does
not offer narrativity to its users. There is hardly
any action except for the clicking of menu but-
tons, which is hardly conceivable as stories. As
Ryan (2001) has pointed out, players do not want
to “gather points by hitting moving targets with
a cursor controlled by a joystick”; they want to
fight terrorists or save Earth from invasion by
evil creatures from outer space. It is the same for
learning software, which is also a type of game.
Learners do not want to click the button to flip
through the pages about genetics; they want to
defeat monsters by analyzing and breaking their
genetic codes.

 1383

Developing Enjoyable Second Language Learning Software Tools

LaNguage LearNiNg as
extriNsic aNd iNtriNsic games

We have elucidated two types of learning that
might arise when playing a game. But how could
these game designs be applied in language-learn-
ing software? Malone (1980) has propounded
a motivational heuristic of educational games
that comprises challenge, curiosity and fantasy.
According to his interpretation of fantasy in
computer games, two kinds of game design for
learning are distinguished: intrinsic and extrinsic
games. Intrinsic games rely on the understanding
of the subject matter from within the game world,
while extrinsic games rely on those external to the
game world. Extrinsic games usually consist of
a structured series of puzzles or tasks embedded
in a game or narrative structure with which they
have only the most slender connection. Intrinsic
games build in challenges and activities that are
more seamlessly integrated, more dependent on
the narrative of the game. In brief, extrinsic games
are used to attract users to learn a language, while
in intrinsic games, the computer game itself be-
comes the learning activity. Therefore, the game
design could be applied in language learning with
two methods: the learning of the material as well
as the learning of the game itself.

extrinsic game Learning

In extrinsic game design, the language learning is
superimposed on the paidea rules of an existing
game, resulting in new paidea rules. This may and
may not engender new gameplay, depending on the
quality of the bond between paidea rules and the
learning material: Does the game world depend on
the learning? In fact, this kind of game design is
quite commonly used in language-learning games.
Kana Warrior, for example, is a combination of
first-person shooter and the learning of Japanese
characters (Stubbs, 2003). In this game, the game
world is dependent on the language skill. The
player must improve in the language to make

progress in the game. Often, extrinsic games are
regarded as not as good as intrinsic games. They
are somewhat the same as conventional e-learning
software: Learners are not learning the paidea
rules or the narrative of the system, but something
external — the textual description of the subject
matter. This is rather similar to reading books;
we are not learning how the book operates, but
the contents in the book. However, an extrinsic
game could be effective in making some boring
aspects of language learning interesting, such as
rote learning of Japanese characters. The key fac-
tors that make game-based learning appear more
interesting than typical e-learning software are its
paidea rules and narratives. It is made enjoyable by
binding paidea and ludus rules of computer games
and language learning with narratives, creating
an imaginary learning space that is engaging and
immersive. It is very much like inventing a new
form of book, in which every turning of the page
yields a more interesting experience to the reader.
The paidea is made fun, but it does not help the
learning process.

Theoretically, almost every genre of games
from the industry — racing games, board games,
action games and so forth — could be used for
this purpose. Extrinsic game design can be used
to develop language-learning games for spelling,
character recognition and vocabulary that require
memorization and repetitive learning. Extrinsic
design can be characterized as drill and practice,
in which learning is context-free. Games-based
learning has the potential for motivating drill and
practice by offering an environment in which
learners actually enjoy repetition. To fully utilize
this design in learning, the following measures
are suggested:

1. Investigate the type of game that target us-
ers enjoy. If learners get no delight in the
particular genre of the game, it will not be
successful in motivating them.

2. Allow learners to switch off the game in the
middle of playing. Although the game is used
totally as an extrinsic motivation to attract

1384

Developing Enjoyable Second Language Learning Software Tools

learners, they might become interested in
the subject matter and want to focus only
on the learning content.

3. Provide strong narratives to create drama
effect. Since the bond between paidea and
the subject matter is rather weak, narratives
are needed to reinforce the connection apart
from creating drama effect.

4. The students must be familiar with the
game’s paidea rules. If the learner is unfa-
miliar with the game, the paidea rules must
be simple so that the learning of paidea rules
does not interfere with the learning of the
subject matter.

5. Ludus rules must lead to the learning objec-
tive. Ludus rules should be stated distinctly
and give guidance to the learner.

narrative-oriented Intrinsic game
learning

Unlike extrinsic games, for intrinsic game design,
learning contents are seamlessly integrated into
either narrative or gaming mechanisms. Hence,
intrinsic games provide two ways of learning as
derived from the game model previously: narra-
tive-oriented and gameplay-oriented. In narrative-
oriented game design, players need to understand
the virtual world, the event, the character and, most
importantly, the story, in order to proceed. Like
a book, the game mechanisms are trivial com-
pared to the narrative mechanisms. The learning
material is woven into the game as a story and,
strictly speaking, the learning process is almost
the same as for extrinsic games. Although the
learning content is woven into a narrative context,
the learning is explicit because the learners are
shown the learning material in the form of text or
graphics. Paidea rules merely define how learners
should discover and read the material.

This differs from extrinsic game design in that
it serves as a complete learning situation. This is
most suitable characterized as a computer-based
tutorial, in which information is designed to be

presented in an effective and interesting way.
Material is presented to the student in a narra-
tive structure. This design is useful for learning
the cultural aspects of a language by displaying
pictorial or animated narratives of social settings,
while reading skills could be fostered by exposing
learners to textual narratives. In short, in this game
design, the learning content or environment is de-
signed as narrative, while paidea is for navigation.
To fully utilize this design in language learning,
the following measures are suggested:

1. Investigate what fantasy theme the target
user is interested in. Narratives are crucial
factors in this design. If the user does not like
the fantasy theme the designer has chosen,
it is likely that the design will be a failure.

2. The learning material is designed in the
narrative context. The learning content is
not presented as detached items of words
or characters, but is connected to form a
narrative.

3. The narrative should be able to stimulate the
player to know what happens next. Curios-
ity is incited through the twist of narrative
plots.

4. Goals are divided into several sub-goals to
scaffold learning. Generally, the sub-goals
are gradually presented to lead learners to
the learning objective.

5. The control over the program is not as crucial
as the control of the flow of the learning
content.

gameplay-oriented Intrinsic game
learning

In gameplay-oriented intrinsic games, players
learn in a virtual world by interacting with the
characters and events with languages. In this
game design, paidea rules do not act as a simple
interactivity that allows the player to discover
predefined material. The learning material is
embedded tactfully into the paidea rules of the

 1385

Developing Enjoyable Second Language Learning Software Tools

game. This is used as a game design that prevails,
as it demands active experimentation rather than
observation, of its subject material. It is also a way
to explore, to test models and hypotheses, and to
construct and acquire new knowledge in a way
traditional media never can. At the extreme end of
an intrinsic game for language learning, it would
be a computerized conversation game. In fact, a
project has been undertaken to develop a language
training game in a fully 3D virtual world. The
character in the game would be able to respond
to what the learner speaks via Natural Language
Processing Parser (Johnson, Marsella, Mote,
Viljhálmsson, Narayanan, & Choi, 2004).

While in extrinsic games, the learning mate-
rial is read and understood, in intrinsic games,
the learning is experienced. In this design, the
game designers — rather than implementing the
material for the player to experience — implement
a system of parts that come together to form the
material in the hands of the player. This design can
be used for subjects that require logical thinking,
where information is not fact-based but rule- or
process-based, such as the grammar of a language.
It can be attributed to simulation. This simulation,
however, is different from scientific simulations.

This design is narrative and context-based, rather
than simulating a scenario such as the lab experi-
ment that is not relevant to real-life experiences. It
provides an enticing problem-solving environment
where students play an authentic role, exploring
at will, creating their own ideas of its underly-
ing structure and synthesizing strategies, which
reflect their understanding of this structure. To
fully use this design, the following measures are
suggested:

1. The game should have explicit goals. Un-
like scientific simulations, which have no
goals, this design should provide clear and
unambiguous goals.

2. It should have a narrative theme. This is true
for three types of design; as, without narra-
tives, the learner will be just manipulating
words and alphabets.

3. The games should be able to stimulate the
player to know more about the mechanism
of the system by giving clear feedback.

4. The control over the program is crucial. The
interaction will determine how the learner
observes and infers the rules of the system,

Table 2. The summary of extrinsic and intrinsic game design

Extrinsic Intrinsic
Narrative-oriented Gameplay-oriented

Paidea rules Paidea rules are loosely
linked with learning
contents

Paidea rules define the
navigation of learning
contents

Paidea rules define the
construction of learning
contents

Ludus rules Fictional learning
objectives

Fictional learning
objectives

Fictional learning
objectives

Narrative Narrative has little or no
connection with learning

Narrative provides a
context and contents for
learning

Narrative provides a
context for learning

Learning Explicit,
Context-free

Explicit,
Context-based

Tacit,
Context-based

1386

Developing Enjoyable Second Language Learning Software Tools

which are also the subject matter.

Table 2 is the summary of game-based learn-
ing design.

An AnAlysIs of gAMe-bAsed
lAnguAge leArnIng wItH tHe
gAMe Model

In this section, a theoretical view of games in
computer-based learning is elucidated based on
the game model and method of game-learning

integration illustrated in the previous section.
Two case studies are presented to demonstrate
the implementation of “Slime Forest” in learn-
ing Japanese language, as well as how “Alien
Language” is used for learning English, Spanish,
French and German.

case study: slime forest

Slime Forest is a game similar to a role playing
game (RPG) created to teach three sets of kana
(Japanese characters). This is a summary of

Figure 6. Screenshots of Slime Forest (courtesy http://lrnj.com/sfa)

(a) the world map (b) dealing with one Japanese character

(c) dealing with a katakana word

 1387

Developing Enjoyable Second Language Learning Software Tools

Slime Forest:

The game starts in a cave where the player is
required to venture into the world outside to sell
potatoes. The player will then be assigned, one
by one, several sub-tasks and fight slime monsters
in the forest to accomplish the tasks.

The game features two complete sets of hira-
gana and katakana, and 200 kanji, the Chinese
characters. The aim of this game is to create a
learning environment that provides a fun way
of memorizing these characters, which are usu-
ally learned in a classroom via rote learning.
In addition, players are also expected to learn
some words borrowed from non-Chinese foreign
languages, written in katakana. The instruction

of the game is in English; therefore, this game
aims at English speakers who wish to learn the
Japanese language.

Basically, there are two types of activities: the
world, and the battle in which the learning takes
place. In the world map, the player plays a role
of the game protagonist and explores different
locations, such as the cave and the castle. The
player needs to gather information about various
missions by talking to people in the game. In the
forest, the player will get involved in battles to
fight slime monsters by typing the Romanized
pronunciation of a particular kana that appears
on top of the monster. If it is answered correctly,
the player gains a chance to attack. Actually, the
ultimate goal of this project is to design a game
for everyone, even for those who are not interested

Game World To defeat
enemies

gameplay

Japanese
characters

gameplay

Role Playing GameJapanese language

Slime Forest Adventure

Explicit learning Entertainment

Figure 7. Theoretical view of Slime Forest

1388

Developing Enjoyable Second Language Learning Software Tools

in learning Japanese.
We would like to examine the game and learn-

ing using the theoretical model of gameplay. Based
on the definition of paidea and ludus, one can
make learning Japanese a form of game by simply
adding ludus rules; say, “Those who manage to
write down 10 kanas the fastest win the game.”
In Slime Forest, users are more eager to learn the
language because they have an interesting goal in
mind: to kill the monsters, so they can progress in
the game. However, adding ludus rules to a boring
activity merely reduces the boredom. This form
of game is not fun enough to engage learners for
hours. What would have happened if the rules of
“Who Wants to be a Millionaire” were reduced
to answering the questions and wining $1 million
without the “safe havens,” “lifelines” and so on?
Apparently, extra paidea rules are added to make
the game really interesting.

It is noted that without the learning part, the
game is a complete RPG game system (see Figure
7). The learning of Japanese characters is inte-
grated, though in a loose manner, with the paidea
rules of the battle system, resulting in a new form
of gameplay oriented toward the ludus rules of
the RPG. Besides, the integration of language
learning and entertainment would not have been
successful if not for narratives. The narrative in
Slime Forest has at least two functions: to intro-
duce fantasy learning goals (to fight monsters and
save the princess) and to project the game as a
complete virtual space with characters and events
that retain the learner’s interests. The narrative
gives an explanation why players have to perform
certain tasks. It is unlike certain educational
software, in which the user is rewarded with a
game playing session after completing learning
tasks. By applying a well-integrated narrative,
the learning and the game are bound together.
Narratives also increase the urgency that pushes
learners to complete the learning tasks.

It is concluded that the RPG game used in
Slime Forest serves only as an external motivation.
The integration of game and learning is extrinsic.

It by no means aids the users in understanding
the language. Some educators argue that games
should not be used merely as means to motivate
students to learn, and that play and learning must
be mutually constitutive (Jenson, 2002). Indeed,
learning should be made self-motivating, so learn-
ers are willing to learn it voluntarily. However,
we should realize that not all aspects of language
learning are internally motivating. Some are
boring and difficult, and we need to help learn-
ers learn. In fact, if the learning was motivating,
people may have learned them on their own and
we probably need not put them in the curriculum
(Prensky, 2001).

case study: Alien language

Alien Language is a game distributed over the
Internet used to support the teaching of “parts
of the body” in four modern languages: English,
French, Spanish and German. This is a brief sum-
mary of Alien Language:

The aliens are on a mission to collect creatures
from around the galaxy for the alien zoo. You
need to help them transport the creatures, label
the specimens and cure the sick aliens.

The motivation of this project is to create
supplementary material for foreign language
education based on a particular topic. The key
aspects of language learning — spelling, gram-
mar and sentence construction — are the focus
of this project. The game can be used in many
different combinations; for example, learning
English for German speakers, learning Spanish
for French speakers and so forth. It assumes that
learners have known the basic vocabulary and
sentences on the target language. However, if they
need help, they can get a translation of the game
instruction in their native language by pressing
the control button.

Basically, the learners have three major tasks.

 1389

Developing Enjoyable Second Language Learning Software Tools

First, they need to record the number of each
body part the alien has and transport it to the
alien zoo. Second, they will label the specimen
in the museum by typing the name of a body part.
Third, they need to construct sentences from a set
of given words to identify the medical condition
of the alien. The game includes a trivia game
— resembling the popular “Who Wants to be a
Millionaire” game — that tests the understanding
of the learners. It also contains a simple diction-
ary of body parts.

One of the best ways of learning a language

is to use it in daily life. When interacting with
people, we are actively receiving what people
say, reflecting the meaning in our mind and con-
structing sentences. Different ludus rules could
be introduced to create different scenarios to the
language learning environment, hence, creating a
game-like learning activity. If we examine Alien
Language with the game model, we could see that
the learning is designed to be part of the paidea
rules. Take the hospital activity, for example: It
is actually a micro version of a real-life conver-
sation environment, where the player constructs

(a) the dictionary (b) the transporter

(c) the body museum (d) the hospital

Figure 8. Screenshots of Alien Language (courtesy www.alienlanguage.co.uk)

1390

Developing Enjoyable Second Language Learning Software Tools

sentences from words, although the sentence
construction activity is far less complex than the
real-life conversation.

Figure 9 shows a similar gameplay model as
shown in the previous section. No external learn-
ing material is imposed to this internal structure
of game. The paidea rules of the game are, in
fact, the grammar rules that the player needs to
learn in order to proceed in the game. Predefined
ludus rules exist for each activity: to construct a
meaningful sentence based on a given context,
to construct the word and to count the number
of each body part correctly. The use of narrative
is also obvious in this case. The game projects a
fantasy space with imaginative characters. This
creates a more experiential learning environment,
as the learners are put in a role within the narra-
tive space. The design is coupled with narrative
so the learners are not just manipulating the words
and grammar rules, but are solving context-based
problems and overcoming challenges.

Unlike Slime Forest, the learning happens in
Alien Language itself. The players learn to play
the game, and at the same time, they learn the

language. The learning happens internally in the
game, as the learning content is an integral part
of the game structure. It is a gameplay-oriented
intrinsic game design. Instead of learning some-
thing external to the game, the learner of Alien
Language plays an authentic role and carries out
interesting tasks.

cross-case Analysis

The two cases are examined together to find out
what elements differentiate them and what they
have in common. The observation is done from
two perspectives: ludology and narratology, to
derive something about computer game designs
for learning. First, it is noted that even if the lan-
guage learning part is removed from Slime Forest,
the game is still a complete RPG on its own. The
language learning is superimposed on the paidea
rules and can be easily changed to something else,
such as answering mathematics questions. There-
fore, paidea rules of the RPG are used to attract
learners into the learning environment. For Alien
Language, however, this is quite different, since

Game World To tell correct
information

gameplay

Alien Language

Figure 9. Theoretical view of Alien Language

 1391

Developing Enjoyable Second Language Learning Software Tools

the paidea rules are actually designed specifically
for language learning. The learning contents can-
not be swapped without significant modification
of the fundamental structure of the game.

Second, both have clear and explicit ludus rules
that bring about gameplay. The learning objec-
tives are not stated explicitly as the learning of a
language. Although both games use fantasy goals,
such as defeating monsters and transporting aliens,
the goals will eventually lead to language learning,
since without leaning the specific language, the
goals can never be achieved. Third, both games
make full use of the narrative metaphor in design-
ing the user interface. The games are designed
as a fantasy world with narrative events. They
also feature explicit characters that interact with
learners to provide challenges: a fantasy narrative
explanation of ludus rules. Some characters in
Alien Language also give guidance to the learners
regarding language contents. Actions taken by
the learner in the game are conceivable and can
be recounted as narratives. The following table
summarizes the case studies.

Discussion anD Future
Direction

By studying ludology and narratology, we are able
to derive something on how these theories are
useful in designing language-learning software
applications. It is maintained that computer game
theories provide a better framework for design-
ing language-learning software tools, making
the experience of learning more immersive and
engaging. Computer game-based language learn-
ing is expected to be better than its traditional
counterpart from two perspectives: learning ef-
fectiveness and motivation. It is more effective in
the sense that knowledge is constructed instead of
being transmitted, especially for intrinsic game
designs. It is also motivating, where it challenges
the learners, intrigues their curiosity and brings
about fantasy. However, an empirical study needs
to be conducted to verify the advantages, and these
results should help guide designers of educational
games to consider how to effectively balance the
demands of motivation and learning. Moreover,
implementing game-based learning in light of
language education needs detailed studies on the

Table 3. Summary of cross-case analysis

Slime Forest Alien Language
Paidea rules The learning material is loosely

incorporated as part of the paidea
rules of the RPG

The paidea rules are carefully designed
based on the target languages

Ludus rules Ludus rules are fantasy objectives,
which are not related to the learning
(killing monster has nothing to do
with learning Japanese)

Ludus rules are fantasy objective, which
are related to the learning (reporting
illnesses is related to languages)

Narrative Like paidea rules, the narrative
serves no purpose in the learning. It
merely makes the game appear more
interesting.

The narrative presents a context in which
learning takes place.

1392

Developing Enjoyable Second Language Learning Software Tools

nature of language learning, which could be ap-
proached from linguistics, psycholinguistics and
sociolinguistics. Each of these fields seems to pose
an insightful view of language acquisition from
different stands. We believe that the understand-
ing of how a language is acquired and learned,
either by an infant or an adult, might open up a
new door for a more novel use of computer games
in language learning.

suMMAry

We have analyzed two educational games from
the perspective of ludology and narratology that
explain two important types of game design in
language-learning applications. In Slime Forest,
computer games are used to attract the learner to
learn a language aspect, while in Alien Language,
the computer game itself becomes the learning
activity. By analyzing both cases with computer
game theories, we are able to understand them
more closely, and thus derive a better principle of
designing learning software based on computer
games. Both extrinsic and intrinsic games are
suitable for language-learning designs, although
the latter is more desirable. It not only creates
an engaging learning environment, but also an
experiential one in which learners experience the
knowledge first hand instead of being told.

references

Aarseth, E. (1998). Allegories of space: The ques-
tion of spatiality in computer games. Retrieved
March 2005, from www.hf.uib.no/hi/espen/pa-
pers/space/

Ang, C. S., & Rao, R. K. (2004). E-learning as
computer games: Designing immersive and ex-
periential learning. Pacific Rim Conference on
Multimedia, Tokyo, Japan.

Barrett, M. (1997). Irreconcilable differences:

Game vs. story, Gamasutra. Retrieved March
2005, from www.gamasutra.com

Crawford, C. (1982). The art of computer game
design. Retrieved March 2005, from www.van-
couver.wsu.edu/fac/peabody/game-book/Coverp-
age.html

Frasca, G. (1999). Ludology meets narratology:
Similitude and differences between (video) games
and narrative. Retrieved March 2005, from http://
www.ludology.org

Frasca, G. (2001). Video games of the oppressed:
Video games as a means for critical thinking and
debate. Unpublished master’s thesis, Georgia
Institute of Technology.

Gingold, C. (2003). Miniature gardens & magic
crayons: Games, spaces, & worlds. Georgia
Institute of Technology

Jaron, L., & Biocca, F. (1992). An insider’s view
of the future of virtual reality. Journal of Com-
munications, 42(4), 150-172.

Jenson, J. (2002, April). Serious play: Challenges
of educational game design. Proceedings of the
AERA Annual Meeting, New Orleans, LA.

Johnson, W. L., Marsella, S., Mote, N., Viljhálms-
son, H., Narayanan, S., & Choi, S. (2004, June).
Tactical language training system: Supporting the
rapid acquisition of foreign language and cultural
skills. Proceedings of the STIL/ICALL 2004 Sym-
posium on Computer Assisted Learning.

Juul, J. (2002). The open and the closed: Game
of emergence and games of progression. In F.
Mäyrä (Ed.), Computer game and digital cultures
conference proceedings. Tampere. Tampere Uni-
versity Press.

Lindley, C. A. (2002, June). The gameplay gestalt,
narrative, and interactive storytelling. Proceed-
ings of the Computer Games and Digital Cultures
Conference, Tampere, Finland.

Malone, T. W. (1980, September). What makes

 1393

Developing Enjoyable Second Language Learning Software Tools

things fun to learn? Heuristics for designing in-
structional computer games. Proceedings of the
3rd ACM SIGSMALL Symposium and the First
SIGPC Symposium on Small Systems.

Morozov, M. N., & Markov, A. I. (2000, Decem-
ber). How to make courseware for schools interest-
ing: New metaphors in educational multimedia.
International Workshop on Advanced Learning
Technologies: Design and Development Issues.
IEEE Computer Society.

Murray, J. J. R. (1978). A history of board-
games other than chess. New York: Hacker Art
Books.

Prensky, M. (2001). Digital game-based learning.
New York: McGraw Hill.

Ryan, M.-L. (1994). Immersion vs. interactivity:

Virtual reality and literary theory, postmodern
culture. Postmodern Culture, 5(1). Retrieved
March 2005, from http://muse.jhu.edu/journals/
postmodern_culture/v005/5.1ryan.html

Ryan, M.-L. (2001). Beyond myth and meta-
phor — The case of narrative in digital media.
The International Journal of Computer Game
Research. Retrieved March 2005, from www.
gamestudies.org

Stubbs, K. (2003). E-learning: Kana no senshi
(kana warrior): A new interface for learning
Japanese character. The International Confer-
ence of Computer-Human Interaction (CHI) 2003
Extended Abstracts (pp. 894-895).

This work was previously published in User-Centered Computer Aided Language Learning, edited by P. Zaphiris & G. Zacharia,
pp. 1-21, copyright 2006 by Information Science Publishing (an imprint of IGI Global).

1394

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.16
VIPER:

Evaluation of an Integrated Group
VoiceIP Software Application for

Teaching and Learning in
Higher Education

John Beaumont-Kerridge
University of Luton Business School, UK

AbstrAct

Recent developments producing new Internet
conferencing (IC) and multipoint desktop con-
ferencing (MDC) systems have emerged, which
may supersede text-based and audio/video con-
ferencing (AVC) software. The newer IC or MDC
systems also integrate interactive tools and have
the advantage of operating at a fraction of the cost
when compared to AVC systems. Communication
by face to face methods are important within the
learning process, but can online methods that
incorporate sound, video, and integrated online
tools be as effective? AVC systems within higher
education (HE) have been available for some time
although the quality of such approaches, however,
has been open to question. This chapter evaluates
an exploratory study of one MDC application,
“Voice Café,” in a higher education, business

school setting. For commercial distinctiveness,
the academic application of this software was
called “VIPER” (voice Internet protocol extended
reach). Consideration is given to the software itself
in terms of its features, pedagogic aspects, and
how students and faculty viewed its use.

IntroductIon

Recent developments producing new Internet
conferencing (IC) and multipoint desktop confer-
encing (MDC) systems have emerged over and
above the text-based discussion and audio/video
conferencing (AVC) software. The major differ-
ences of the newer IC or MDC systems are the
integrated use of interactive tools and their ad-
vantage of operating at a fraction of the cost when
compared to the AVC systems. Communication

 1395

VIPER

by face-to-face methods is important within the
learning process, but can online software that
incorporates sound and video and interactive
tools be as effective? AVC systems within higher
education (HE) have been available for some time.
The quality of such approaches, however, has been
open to question when compared to face-to-face
methods (Knipe & Lee, 2002). Compatibility is-
sues exist between competing AVC commercial
providers, which have limited deployment, they
are relatively expensive, and disagreement has
also been voiced about how AVC should be used
(Laurillard, 1993; Mason, 1998).

Easy access to education is not available for
everyone. As a result, pressure is upon teach-
ing providers to develop different methods of
communication to extend the “reach” from an
institution to students. Computer conferencing
using text-based systems is widely used within
online courses although learners and tutors have
noted problems (Cartwright, 2000; Harasim, 1997;
Salmon, 2000).

This chapter evaluates an exploratory study
of an MDC application, “voice café,” in a higher
education, business school setting. For commer-
cial distinctiveness, the academic application of
this software was called “VIPER” (voice Internet
protocol extended reach). Consideration is given
to the software itself in terms of its features,
pedagogic aspects, and how students and faculty
viewed its use.

voIce cAfé And vIPer

The business school became aware of the voice
café software at the beginning of 2004. It was
initially evaluated as a useful means of improving
communication for staff, students, and between
partner institutions. It was initially applied to
the overseas MBA program. Because of the
“newness” of this software and the alacrity of
HE providers to search out new methods of com-
munication, it was decided to call the academic

application of this software “VIPER,” short for
voice Internet protocol extended reach. Figure 1
shows a screen shot of the VIPER, which has the
following features:

1. Voice to voice capability over analogue
telephone modem: For a participant to
speak, similar to a “walkie talkie” par-
ticipants depress the F9 or ctrl button
continuously for others to be heard. Either
speakers or headphones can be used with a
microphone needed for speech. Important,
however, was the feature that communica-
tions took place over an ordinary telephone
line and a broadband connection was not
needed, helpful for connections in many
parts of the world do not have the advantages
of broadband. The minimum requirement
for the software was 33kb, which is well
below the normal analogue telephone con-
nection speed of about 40- 50kb, although
in some countries speeds as low as 26k were
recorded.

2. Up to 25 synchronous connections: The
version used provided up to 25 simultane-
ous connections, although up to 500+ are
possible. One connection could be one
person, a group in front of one computer,
or a computer in a lecture theatre. Where
there was more than one person, a suitable
screen or projector was needed, as well as
speakers and a “moderator” to control the
computer to allow for a full dialogue to take
place.

3. Browser capability with “follow me”
functions: The ability to combine voice
and browser capability proved to be a most
powerful feature. Not only could Web sites
be accessed, but also materials for presen-
tation within discussion could be viewed.
The PowerPoint™ “publish and save as Web
page” function proved to be most useful
because of its ease converting PPT files to
HTML files, which also provided an index

1396

VIPER

within the conversion process.
4. “Hands Up” functions: Due to the absence

of a video of the student, the tutor is not able
to “see” if a student wishes to ask a question.
The hands up facility is activated by the
student using the right mouse button over
the participants icon and the five options of
(a) ask a question, (b) make a statement, (c)
thumbs up image, (d) thumbs down image,
or (e) never mind. The last function enables
the user to reset this feature. Activating
this provides a small icon for each of the
items (a) to (d), which is viewable by all.
There is also an overview screen that lists
who is waiting to ask a question or make a
statement, and a sum total of “thumbs up”
or “thumbs down.”

5. Text chat, group and private: Two text chat
facilities are available, group and individual.
The former allows all participants to see
the posted messages, which can be saved in
either a text or HTML format. The individual
messaging allows only the participant and
tutor to see the message.

6. Interactive whiteboard: This tool was
interactive for all participants with a stan-
dard palette for the variety of drawing tools
available. One interesting feature was the
ability to “capture” a browser image for
interactive use with students. In addition,
as would be expected with software such
as this, browser compatible images could
be loaded from the desktop.

7. Tutor video out: Albeit a frame rate of
some 24 frames per second, only one im-
age is available of the tutor and this all
participants can see. The default size of the
image is 150x150 pixels, although this can
be enlarged. The minimal video capability
was, however, one of the reasons for the
very low bandwidth requirement. This was
essential for operation in some parts of the
world where it was known that only analogue
telephone over poor standard lines would

be available. In addition, it was noted early
on that once the video had been set up, and
a tutor’s image was available, it could then
be paused further decreasing the bandwidth
requirement.

8. Installation and network requirements:
The voice café software operates on the client
PC via a “plug in” on Internet Explorer™
v6.0 or later browser software. It requires
a PC with at least a Pentium III equivalent,
appropriate memory, hard drive, mic, and
headphones or speakers. Functionally it
worked via servers in the U.S. and Australia.
Installation took about three minutes on a
broadband connection, but 30 minutes on a
dialup. This was, however, a once only opera-
tion unless the software was updated, which
was automatically sensed by the installed
program. Setup in the home environment
did not generally meet with problems unless
the PC specification was below specification.
Setup in an office or college environment,
however, was more problematic due to the
need for firewall ports required opening
(9500 to 9509 outgoing traffic only). The
major difficulty under these circumstances
was being able to contact the appropriate
member of staff. In almost all instances,
once the network member of staff was con-
tacted any communications’ problems were
resolved in a matter of minutes. What often
caused the delays, often days or weeks, was
the difficulty of contacting the member of
the network staff.

9. 256 bit security encryption: Previous ex-
perience by voice café designers were com-
mercial considerations of confidentiality and
outsiders “listening in” to conversations and
documents under consideration. Although
not tested, the software boasts this high
level of security. The only drawback with
this, however, was the inability to enter and
show in the browser Web sites that required

 1397

VIPER

a username and password for access.
10. Management functions: The moderator

has mute, boot, and banish functions if
needed. Userful also was the ability to use
multiple usernames and passwords, that is,
one cohort could be assigned one username
and password. This enabled a much easier
management of student and staff access.

Pedagogic considerations

Early models of learning suggested the “ex-
tended classroom” as a good design for online
teaching and learning. VIPER would certainly
enable this, either in the form of “one to many”
or “many to many” with respect to tutors and
students. Criticism exists, however, that online
tutors and instructors come to the new medium
from traditional backgrounds with skills that do
not translate well (Schieman, Taere, & McLaren,

1992), an issue, which is still reported (Salmon,
2003). This is mostly based, however, on text-
based online learning models and this MDC
application. Because VIPER incorporates voice
and basic IT skills, may need a shorter learning
curve and as a result such difficulties may not arise.
Even so, the online environment is dynamic with
developments in design continually being added
to the knowledge base of this domain. Laurillard’s
important work in 1993 has been re-evaluated,
and this original taxonomy cannot easily be
applied to group work (Britain & Liber, 1999).
Indeed, Laurillard (2000) herself has added more
in the light of recent developments. It is perhaps
as a result of this and the variety of online tools
available within the “blended suite” that a single
framework for teaching and learning to which a
majority can subscribe as best practice has yet to
emerge. This exploratory evaluation of the VIPER
is therefore set against participant experience,
observation, and interactivity.

Figure 1. Screen shot of Viper software

Browser Area

Web address line

Options listing in moderator mode

offers management elements and user ad-

ministration.

Options within the text chat area allows

emoticons to be inserted.

Video “out only” from

the tutor.

Text chat area

1398

VIPER

evaluation of vIPer

These were conducted with three student groups
and faculty:

1. Six selected undergraduate business studies
students.

2. A dissertation support group.
3. An MBA student group.
4. Faculty staff.

selected Marketing and business
undergraduate students

Of six students, four were connected via comput-
ers that were “on campus,” whilst the remaining
two were connected via external connections to
the University. Of particular interest were set
up issues, learning curves of participants, and
techniques of verbal discussion online. The two
sessions began with the tutor outlining a topic and
then inviting discussion. The set up and installa-
tion phase went well without event for all of the
students. Anticipated firewall problems did not
arise, and all equipment and software functioned
appropriately. As a consequence, the use of the
software was reliable.

Initially, students and the tutor engaged only
in verbal discussion, and in the first session
text chat used only very occasionally while a
participant was talking. In the second session,
however, particularly the students who considered
themselves IT literate used the text function much
more extensively. At one stage the tutor did ask
the students to stop using the text function since
they were using it to organize a forthcoming
social function. This did appear to be similar to
a face-to-face session where the tutor was asking
the students in the “back row” to be quiet!

There are a number of tools in the VIPER
suite available to both participants and tutor. It
was not unexpected that only the voice, text and
browsing functions were used but these were,

toward the end of the second session all were
used extensively. When asked, after the sessions
had been completed, participants reported that
they found the software acceptable, but two of
the six stated that they would prefer face-to-face
lectures. One commented:

I would not like to study in this way, being on
my own in front of a computer. I would miss my
friends.

Participants in the demonstration classes re-
ported the software was “interesting.” The quality
of sound was reported as being acceptable. There
was a request, however, by some “to slow down,”
since speaking quickly prevented comprehension.
This appeared to be overcome in the first instance
by asking participants to speak relatively carefully,
but was not noted as an issue in later sessions. The
sessions were deemed by the students and staff,
however, as being successful, with the lectures
having been conducted successfully.

dissertation student group

This postgraduate group was completing their
MSc in business related studies, and two were
abroad for the data gathering exercise (Germany
and India). Initial meetings were held face-to-face
to begin the study process and resolve issues of
subject matter and research directions. The set up
of the software was straight forward and unevent-
ful for all of the students. This was unexpected
since all participants reported a mistrust of IT in
general, reporting critical failures at some stage
in their academic lives. The dissertation was a
major academic stage, and seemed to heighten
their lack of confidence in IT.

Regular meetings were arranged, at which it
was intended that all participants would login at
a set time. Students produced Word™ documents
for discussion, for example literature reviews,
questionnaires, and the group and tutor would
discuss issues that arose. The tutor printed the

 1399

VIPER

Word™ document in an Adobe Acrobat™ format,
and then placed them on a Web site so they could
be accessed by the software and viewed by all in
the group. In one instance, while the group was
actively engaged, the student who was in India
e-mailed a document (draft questionnaire), which
the tutor converted “on the fly” and uploaded
to a Web site for group discussion. It was noted
that adequate IT skills on the part of the tutor are
needed for this, not least the ability to “multitask”
while the discussions are ongoing. After the ses-
sions were completed, participants reported that
they found the software relatively straightforward
to use, and had the convenience of saving travel
time. One participant stated:

I found VIPER to be really good for preparation,
but for the really difficult issues that I did not
understand, I really needed to meet my tutor to
talk things through. It was frustrating, and I really
needed to be in front of my tutor. (Student 9)

While the students were in the data collec-
tion phase, face-to-face contact was not possible.
Although this might be preferable, learning
objectives were achieved using VIPER. This
student achieved good grades without the face-
to-face communication, but none the less felt the
need for this type of support and viewed VIPER
methods for deep learning, secondary. A similar
result found by Katz and Yablon (2003), where
no significant differences in grade performance
between Internet and traditional lecture based
courses were reported, but attitudinal differences,
however, was identified where students preferred
off-line methods.

MbA student group

Twenty-two participants were involved in learn-
ing and teaching situation, and 12 were selected
for the evaluation on a random basis. Although
this study concentrated upon the use of VIPER,

other in course tools and techniques were also
being used. These included face-to-face teaching,
Blackboard™ virtual learning environment, and
bespoke CD-ROM materials. The students on
the MBA course met for an induction session at
the beginning of the course. The intention was
to create a better environment for socialization
processes to take place rather than using online
communication methods.

Those who considered themselves IT compe-
tent found no problems with the set up or use of
the software. The following statement typified
this for one such participant:

Good. Simple to use and a good way to hold tuto-
rials. I have also found it excellent for our study
group to use weekly to keep in touch.

One student, due to work commitment was
posted to Saudi Arabia during the course. He was
able to set up his laptop from his hotel room and
participate as effectively as others within sessions.
Although positive statements were received about
the software and its use, comments of problems
in this category are interesting and provide a dif-
ferent perspective:

Examples of problems reported were:

1. A problematic Internet service provider
(ISP), (blocked port access): This was
resolved by IT support by informing the
student to request the ISP provider of the
appropriate instructions.

2. A PC well below the required and noti-
fied specification: Overcome by the student
purchasing a computer that was a reasonably
new specification and not seven years old.

3. Smooth functioning not occurring at peak
periods due to a “free” ISP provider:
Resolved by the student “upgrading” to a
paid service.

4. Some individuals reported difficulties

1400

VIPER

with audio settings: This last aspect was
resolved by providing a “set up routine,”
which students undertook when first log-
ging into the system. This appeared in later
sessions to resolve the problems.

Both moderated and un-moderated meetings
were observed, and this provided an important
collaborative mechanism for students. From these
groups VIPER was reported as being very helpful
for students to “stay in touch,” and the level of
academic use for the collaborative work varied
from complex assignment oriented to social
conversations. Better learning independence is
noted as one of the higher order skills of learn-
ing sometimes characterized by the preference
by students for un-moderated meetings to chal-
lenge the given “norms” (Salmon, 2000). Students
appeared to require a need to develop “online”
meeting skills, however, when they met through
VIPER, which improved over time. Conversations
were more relaxed in later meetings, with almost
no problems being reported.

Where moderated group meetings were orga-
nized with tutors with no set agenda, requests were
made for more information relating to assessment
and other issues, for example, housekeeping mat-
ters such as the “font size” and “layout” of docu-
ments to be submitted. Both faculty and students
felt that questions such as these improved the
face-to-face meetings because much of the “trivia,
but necessary trivia” had been resolved leaving
the physical meetings to more important matters
on the course. Students also considered this to be
valuable, and saved considerably on travel time.

tHe fAculty PersPectIve

Salmon (2000) emphasizes that the skills of the
moderator are paramount in the success of an
online course. Theoretically, the basic use of the

system should not impede the communication of
the group and tutor. This appeared to be the case
within the MBA group. One tutor commented:

…It has improved my listening and understand-
ing skills of what a student was doing. Sometimes
there would be a silence, and at first I was trying
to work out what was going on. Then I began to
realize the difference between when the student
was thinking and when they were writing down
notes. It enabled me to be more effective about
who to draw into discussion and when there ap-
peared to be some delay. It is a different kind of
skill. (Tutor 1)

In addition to audio from the perspective of
interaction and the available online tools, VIPER
appeared to provide subtle additional aspects of
communication.

…The communication was surprisingly active. It
was not just all one way, it engaged many senses,
and I had all my things around me, which I could
quickly refer to. I was able to set myself up because
they could not see. (Tutor 3)

This tutor went on to say:

…One soon learnt to bring the students in by
asking questions, searching questions. Some
students cannot bear to have a silence; others
can so noting those who had not answered and
bringing them in later.

More extensive use of the system was made
following requests from some of the students.
Observations of the seven tutors involved provided
the following main usages of the system, and can
be grouped under three headings: (a) voice only
with hands up indicator, (b) voice only with hands
up indicator plus Web browsing, (c) voice only
with hands up indicator, Web browsing plus the
use of the whiteboard.

 1401

VIPER

level I: voice only and Hands up
Indicator

Tutors and students engaged in conversations
about topics, using the hands up indicator for di-
chotomous questions of the group. Often this was
used to bring contributions together to redirect
the flow of a discussion, a technique described
by Salmon (2000) as “weaving.” There was a
perception by the tutors that Level I use was
straightforward and easy enough after the set up
procedures were complete. The text chat facility
appeared to be used very rapidly within all ses-
sions, contained questions, brief replies, clarity, or
confirmation of issues between participants while
the session was progressing. It was a main sup-
porting communications channel supporting the
voice discussion. It also served as a tangible record
post meeting via a “copy of text” function.

level II: voice, Hands up Indicator
and web-based Materials

The browser capability enabled Web-based
materials to be presented in conjunction with
the other tools. The materials were either Web
sites relevant to the topic or learning materials
prepared for the Web specifically for the session,
normally PowerPoint™ files saved in an HTML
Web format or pdf files. One tutor demonstrated
the dynamic use of the system:

We were discussing an assignment case study that
was due, and one of the students mentioned that
because they were at work did not have the mate-
rial with them. The assignment was converted to
a pdf document on the fly, posted to a Web site,
and then used in the discussions. (Tutor 6)

The VIPER system operates by sending the
Web address to participants, and thereby providing
the same image to all those connected within that
session. One obvious advantage of this method is

the saving of bandwidth. Some equivalent systems
send an “image” to connected participants. This
can require a high bandwidth due to the file size
of the images being sent.

level III: voice, Hands up Indicator,
and web-based Materials Plus the
whiteboard

The whiteboard “background Web browser cap-
ture” capability means documents and diagrams
can be presented for participants to interact as a
part of the discussion using the integrated tools.
Students were requested to “mark” or “write text”
on the images to elicit participant viewpoints pre,
post, and during discussion. The same group and
tutor also used the “capture browser” function to
create an image of the assignment upon which all
participants could put questions and comments
for discussion.

…It was interesting; I could go through the issues
in a much more interesting way. It was much more
interactive than in class. (Tutor 4)

On an operational level, significant variations
existed. In terms of the skills ability of tutors,
some required very little guidance, while oth-
ers needed considerable support both prior to,
during, and post sessions. Tutors as individuals
it would appear will need to go through a learn-
ing curve process if this type of system is to be
used within teaching and learning. As a result,
depending upon the ICT of the individual tutors
varying levels of support will be required, an
issue reported by other studies (Garrison, 1998;
Salmon, 2000, 2003).

An interesting aspect has arisen in the use
of VIPER between tutors in distant geographic
regions. International courses require much ad-
ministration, management, and communication
“staying behind” after sessions to discuss issues of
management, quality, and pragmatic housekeep-
ing issues. This does represent an important ad-

1402

VIPER

vantage over previous communications methods.
These were prohibitive due to cost, or limiting
since they were based on text-based systems,
telephone, or face-to-face meetings.

senIor MAnAgeMent
PersPectIve

The view of senior management focused upon the
strategic advantages of the software:

VIPER currently provides a USP, a unique advan-
tage, which is very difficult in today’s HE market
place. It enables personal teaching at a distance.
It also gives us further reach in terms of target
markets. It has enabled us to win two overseas
contracts against other HE institutions, and has
dragged us to the attention in front of others…I am
surprised, however, that other Universities have
not used this type of software more extensively.
(Dean, University of Luton Business School)

One contract, for example, to provide the MBA
with the British Council in India, was won in com-
petition against a number of other Universities.
Although the distance learning packages were all
similar, the inclusion of VIPER was unique and
provided the significant advantage. Other issues
raised by faculty concerned how the software was
going to develop, over time with suggestions of
video to improve the “comfort” of communication
although the mechanics of large student numbers
may be problematic.

suMMAry

VIPER has shown itself to be a useful commu-
nications tool, for both students and tutors. It has
currently given a unique advantage to the Univer-
sity of Luton Business School product portfolio
enabling it to win contracts in competition with

other Universities.
The technical issues surrounding its use were

mostly straight forward, with the only problems
appearing where some wanted to use the system
from within a commercial network that had strin-
gent firewall policies. These were overcome once
the appropriate network staff were contacted and
appropriate ports opened. The low bandwidth
requirement also enabled VIPER to function
where other, more demanding MDC software
applications might not have been possible.

Overall, the general view of the students
that have used the system was positive. This
was particularly true of those who were distant
geographically and needed to make contact on a
regular or emergency basis. Students and faculty
did need repetitive use to gain confidence and ex-
pertise in the use of VIPER. The system was used
for a wide range of applications from important
learning issues, very basic house keeping matters,
to a social aspect of students keeping in regular
contact with each other. Students as recipients
of the teaching management approaches appear
also to demand the highest level of interaction
available, irrespective of the tutor capability or
indeed perhaps the need of the subject matter.
As a result, the student learning curve appeared
to progress ahead of the faculty learning curve,
which can be a source of stress for members of
staff, with the consequence of training resource
implications.

Staff also found VIPER useful, from the
perspectives of teaching and learning as well as
keeping good communications with staff in part-
nership colleges that were based abroad. Issues of
pedagogic design were important in conjunction
with the three levels of use of VIPER from voice
only to full use of all tools and the interactive
whiteboard. Good planning and preparation to
provide the maximum benefit for the student
experience also emerged as important from a
tutor’s perspective. As a result, VIPER would
appear to offer another helpful communications

 1403

VIPER

platform to add to the blended mix of online tools
that are available for teaching and learning in an
HE, business school context.

references

Britain, S., & Liber, O. (1999). A framework
for pedagogical evaluation of virtual learning
environments. Report to JISC Technology Ap-
plications Program.

Cartwright, J. (2000). Lessons learned: Using
asynchronous computer-mediated conferencing
to facilitate group discussion. Journal of Nursing
Education, 39(2), 87-90.

Garrison, D., (1998). Distance education for
traditional universities: Part-time professional
learning. Journal of Distance Education, 13(2),
74-78.

Harasim, L. M. (1997). Interacting in hyperspace:
Developing collaborative learning environments
on the WWW. Retrieved October 1, 2005, from
http://www.worldbank.org/html/fpd/technet/mdf/
edi-trng/har1.htm

Katz, J., & Yablon, B. (2003). Online university
learning: Cognitive and affective perspectives.
Campus Wide Information Systems, 20(2), 48-
54.

Knipe, D., & Lee, M. (2002). The quality of
teaching and learning via videoconferencing.
British Journal of Educational Technology, 33(3),
301-311.

Laurillard, D. (1993). Rethinking university
teaching: A framework for the effective use of
educational technology. London: Routledge.

Laurillard, D. (2000). Keynote presentation, Alt-C
2000 Conference, Umist. Retrieved December 20,
2003, from http://www2.umist.ac.uk/isd/lwt/altc/
programme/keynote.htm#laurillard

Mason, R. (1998). Globalising education: Trends
and applications. London: Routledge.

Salmon, G. (2000). E-moderating: The key to
teaching and learning online. London: Kogan
Page.

Salmon, G. (2003). E-moderating: The key to
teaching and learning online (2nd ed). London:
Kogan Page.

Schieman, E., Taere, S., & McLaren, J. (1992).
Towards a course development model for gradu-
ate level distance education. Journal of Distance
Education, 7(2), 51-65.

This work was previously published in Cases on Global E-Learning Practices: Successes and Pitfalls, edited by R. Sharma &
S. Mishra, pp. 123-134, copyright 2007 by Information Science Publishing (an imprint of IGI Global).

1404

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 3.17
A Pliant-Based Software Tool
for Courseware Development

Marcus Vinicius Santos Kucharski
Pontifical Catholic University of Paraná, Brazil

Isaac Woungang
Ryerson University, Canada

Moses Nyongwa
University of Manitoba CUSB, Canada

AbstrAct

The increasing importance of e-learning has
been a boosting element for the emergence of
Internet-based educational tools. As we move
into the information age, tremendous efforts are
made in the development of new information
and communication technologies for educational
purposes. The ultimate goal is to facilitate e-
learning methodologies and acquisition. The
chapter’s contribution is in the area of open source
software for technology-enhanced learning. First,
we report on the capabilities of Pliant, a novel
software framework for Web-based courseware
development. Pliant’ design features upon which
e-learning capabilities are built are presented,
showing that Pliant has some advantages over
existing software, including flexibility, efficiency,

and universal usability. A case study of the use
of Pliant in the project “Multilanguage Database
for Localization” developed at the CUSB School
of Translation is presented. Second, we present
Academia,3 a Pliant-based courseware develop-
ment Web portal, and its use in translation studies
at CUSB.

IntroductIon

The widespread availability of Web-based edu-
cational systems and standard-based courseware
systems, and their deployment in educational
institutions, including educational community
as a whole, has raised a clear concern regarding
their “universal usability” scope (Hochheiser
& Shneiderman, 2001). A thorough analysis of

 1405

A Pliant-Based Software Tool for Courseware Development

the situation and informal discussions with “on-
line teachers” and teacher educators show that
Web-based educational tools are quite far from
achieving their main goalthat is, being used by
a wide distance audience in a cost-effective and
educationally sound manner, and in particular,
endowing Web literacy to both young, old, novice,
expert, and end users with less computing back-
ground. This chapter reports on the capabilities
of Pliant, a high-level and flexible programming
language and Web development framework. It
shows how Pliant can be used both for high-level
programming and e-learning purposes, while
meeting educational and software-oriented expec-
tations. Academia, an example of an open-source,
lightweight, Web-based courseware tool fully
implemented in Pliant, is presented. This portal has
been designed to help instructors quickly create,
post, manage, and deliver Web-based courses and
other e-learning resources. A case study of the
usability of Academia at a Canadian institution is
presented. This Pliant-driven application is meant
to show the efficiency of the Pliant’s framework
as a supporting tool for e-learning methodologies
and acquisition.

The chapter is organized as follows. First, we
briefly introduce the main streams driving the
development of Web-based educational tools, and
situate Pliant in that context. We then present an
overview of the Pliant approach in terms of lan-
guage constructshere, we present our view of
the Pliant architecture, and its underlying design
features upon which e-learning capabilities can
be supported. Next, we discuss various e-learn-
ing capabilities of Pliant, while highlighting their
relationships to some of the main topics of this
book. These include:

a. A description of Pliant as a tool for
consolidating e-learning methodologies/
acquisitionhere, elements for explora-
tion, data management, teaching, com-
munications, and users’ management are
presented;

b. A description of Pliant as a tool for learn-
ing programming languages and Web
programminga case study of the use of
Pliant in a project entitled “Multilanguage
Database for Localization,” developed at
the CUSB School of Translation, is also
presented; and

c. A description of Academiahere, our focus
is on showing how this portal has been used
as a tool for supporting translation studies
at the CUSB School of Translation.

We also introduce Co-op Web,4 a Pliant-based
Web portal developed at Ryerson University,
Canada, used to administer the Cooperative
Education and Internship Program.

Some shortcomings of our framework and how
these can be addressed as future research themes
are then offered, in the perspective of enhancing
e-learning methodologies and acquisition. Future
developments of our framework are also high-
lighted, and finally, our conclusion synthesizes
our discussion and presents our final remarks on
Pliant’s e-learning features.

bAckground

web-based educational tools

The exponentially increasing number of educa-
tional courses being offered over the Web has
spurred a growing industry of software tools to
assist in the creation of Web-based curriculum and
in performing class management tasks. For this
reason, Web-based educational tools and standard
courseware systems are two main research and
development streams in the field of e-learning. The
development of these systems can be categorized
in two complementary streams. The first stream
is based on the traditional approach of “hardwir-
ing” high-quality educational material items in
the course contentthat is, the learning content
used by the student resides in the system. Well-

1406

A Pliant-Based Software Tool for Courseware Development

known examples of course management systems
built upon this approach are Blackboard (2002)
and WebCT (2002). The second stream is based
on an adaptive approach, where a model of goals,
preferences, and knowledge of each individual
student is built and then used throughout the
interaction with the student in order to adapt to
the needs of that particular student. In this case,
the learning content does not reside in the system,
but in other distributed servers. Independently of
the approach used, the majority of Web-based
educational systems are based on technologies
developed in the areas of hypermedia and intel-
ligent tutoring systems (Brusilovsky, Stock, &
Strapparava, 2000; Brusilovsky, 2001). The Pliant-
based educational tool introduced in this chapter
falls within the first stream. Pliant is a standalone
and Web-based language, which encapsulates
both the “human” and “computer” levels of think-
ing and coding programs. This unique privilege
makes it an exceptional language, compared to
any other existing one. It demonstrates that Pliant
has a higher level of flexibility, adaptability, and
integration, providing for higher software devel-
opment capabilities and enhancements. Thanks
to Pliant’s HTTP (hypertext transfer protocol)
server power, including server-side rendering,
any mainstream Web browser should always
be enough to access Pliant’s documents, and by
extension, Pliant e-learning materials. These
features can be used to develop standalone Web
portals for teaching/educational purposes, or to
improve the current state-of-the-art e-learning
development tools, while maintaining educational
expectations, and economical, time constraints,
and human resources limitations.

MAIn focus of tHe cHAPter

An overview of the Pliant Approach

The Pliant project5 was initiated in 1984 by Hubert
Tonneau (Tonneau, De Mendez, & Santos, 1984).

In his analysis of numerous software develop-
ments, Tonneau realized

1. The lack of coherence between applications,
libraries, and so forth often required a large
amount of glue between relevant pieces of
code.

2. It seemed impossible to conciliate high-
level constructions allowing improved
expressiveness and conciseness in specific
contexts, with low-level adaptability allow-
ing efficiency and optimized handling of
exceptional cases.

From these considerations, the introduction
of a new, efficient, and multi-level language with
a flexible syntax and structure, which could be
adapted to particular application contexts, seemed
appropriate. The Pliant language is thus oriented
towards efficiency, understood in terms of com-
putational resources, as well as programming
adaptability (De Mendez, De Mendez, Santos, &
Tonneau, 2000). The main design structures of the
language can be described as modularity, dynamic
compilation, and full reflexivity, allowing for the
redefinition of the syntactical, compilation, and
code optimization rules. New application services
have then been integrated at the language level
(good examples are scheduling primitives and
database management), hence suppressing usual
gaps and interfaces between applications. From
this point of view, an application is seen as a set of
libraries, or even as a language extension possibly
introducing its own syntactical changes. These
applications may also be gathered into a coherent
execution context, leading to an actual operating
system, called Fullpliant (whose source code is
a size of 4.2 Mb only). This framework can be
executed in two different ways: as a program
executing various servers (on Linux or Windows
platforms), or as an operating system lying on top
of a Linux kernel. Pliant comes with many pre-built
servers including DNS (Domain Name System),
FTP (File Transfer Protocol), POP3 (Post Office

 1407

A Pliant-Based Software Tool for Courseware Development

Protocol version 3), HTTP, SMTP (Simple Mail
Transfer Protocol), LPD (Line Printer Daemon
protocol), remote execution, secured channel,
and a database engine. The HTTP multi-site
Web server provides the standard application
interface. A powerful server-side dynamic page
mechanism has been introduced, on which exist-
ing applications (Forum, photography correction
and high-fidelity printing, Web-mail, etc.) rely, as
well as additional HTTP-related servers (such as
Web-based Distributed Authoring and Version-
ing–WebDAV). The limitation of the HTML (Hy-
per Text Markup Language)/Javascript scheme has
led to the introduction of an enhanced extended
Pliant browser, valuable as a state-of-the-art user
interface for possibly distributed application soft-
ware. Being used in an industrial context since
2000, Fullpliant is also concerned with security
issues. The transparent integration in the dynamic
page extension of signature and right verification
mechanisms obviously demonstrates that security
may be achieved without unnecessary additional
programming complexity. Pliant (De Mendez et
al., 2000) may thus be seen as a triad (see Figure
1): (1) the Pliant programming language and low-

level libraries, (2) an Internet applications suite,
and (3) the Fullpliant operating system.

The Pliant programming language is human
oriented, that is, its syntax is trivial and strongly
typed. Its expressiveness allows the user to pro-
gram in a high abstraction level. The language
is also reflexive, allowing the user to change the
way Pliant parses and compiles expressions. In
other words, users have a high degree of freedom
to redefine the Pliant language itself, should they
dislike a particular feature of the language or want
to extend it (De Mendez, 1998). In addition to
these meta-programming6 capabilities of Pliant,
the framework includes other modern program-
ming principles, such as static typing, dynamic
objects, lazy evaluation, reflective compiling,
reference counting garbage collection, built-in de-
bugger utility, scalability from low-level systems
programming to high-level control languages, and
an easy-following syntax. The Pliant compiler is
dynamic and efficient, producing code, on-the-fly,
as efficient as the best C compilers. The Pliant
Internet applications suite consists of a set of
servers, a database engine, data encryption tools,
and a handful of Web application tools, such as the

Figure 1. Pliant architecture

1408

A Pliant-Based Software Tool for Courseware Development

HTTP server configuration tool, an online forum,
Web mail, and printer configuration tool, to name
a few. In the core of the suite is the Pliant HTTP
server. It is in charge of hosting and dynamically
translating Pliant Web pages, written in a subset
of the Pliant language called the page format
into HTML. The Fullpliant operating system (to
be used by advanced users) has two main goals:
facilitate the system administration of a set of
computers, and make it easy to automate repetitive
tasks. It appears from the above description that
the two key design features of Pliant, upon which
e-learning capabilities can be developed and sup-
ported, are the Pliant’ intrinsic meta-programming
constructs and the Pliant’ ability to accommodate
several multi-site Web servers.

Pliant’ e-learning capabilities

E-learning can be defined as the use of network
technology to design, deliver, select, administer,
and adapt learning activities. Here, two basic
types of technological solutions can be used:
synchronous model (such as audio-video stream-
ing and videoconference), and asynchronous
model (such as hypertext publication). Existing
e-learning management systems such as We-
bCT and Blackboard incorporate both models
and corresponding services in different ways.
However, due to certain limitations inherent to
system stability, troubleshooting, cost-reduc-
tion, file format accommodations, Web brows-
ers, customization, and others, none of these
platforms includes a support to help manage the
dynamics of e-learning activities. In an attempt
to overcome these disadvantages, studies of man-
agement issues in e-learning environments has
become critical for the success of Internet-based
educational services. A relatively recent work
on the management of e-learning environments
has shown the effectiveness of using the work-
flow concepts (E-Workflow, 2003), techniques,
and tools to help manage e-learning. Under this
concept, the e-learning process is considered as a

two-level interconnected process: the e-learning
environment and the e-learning activities. The
e-learning environment is further broken down
into five different phases, each with its own set
of tasks. These are:

1. The conceptual phase: Course subject,
target audience, contents, budget organiza-
tion, and so forth;

2. The planning phase: Details for the es-
tablishment and preparation of a specific
instance of an e-learning action;

3. The execution phase: Period of time during
which the students are active in the learning
process; and

4. The procedural evaluation phase: An
analysis of how the e-learning fulfilled its
aims; additionally, the workflow e-learning
environment model incorporates features
such as improved efficiency, better process
control (i.e., standardization of working
methods), improved users service (i.e.,
greater predictability in levels of response
to users), flexibility (i.e., ease of redesigning
in line with changing needs); and

5. The business process improvement:
Streamlining and simplification of pro-
cesses.

The e-learning activities are concerned with
the monitoring of actions and interactions among
the above described phases. They are controlled
by means of learning objects. The efficiency of an
e-learning management system using workflow
is measured by its capability in reusing learning
objects. In this respect, workflow software and
XML (Extensible Markup Language) are viable
tools for describing learning objects. Any attempt
to provide implementation techniques that could
result in promoting the deployment of reusable
contents or learning objects for e-learning pur-
pose, while enhancing the integration capability
of its underlying software platform, is therefore
highly desirable for both the providers of educa-

 1409

A Pliant-Based Software Tool for Courseware Development

tional services and the e-learning research com-
munity. Pliant seems to be a suitable candidate
able to fulfill these requirements because of the
versatility of the language constructs.

Pliant as a tool for consolidating
e-learning Management systems
Platforms

Any e-learning management system is driven
by its underlying software platform (i.e., the set
of programs that provide functionality to the
application). At a human level, programs appear
as algorithms, that is, a list of tasks, each being
expressed by a single word or by a full sentence
with subordinate clauses referring to subtasks. At
a high (symbolic) level, a program is stated as a
list of expressions. Each expression is a piece of
raw data characterized by its semantics. At a low
(i.e., code) level, a program is a set of instructions,
where each instruction is a function call with a
set of parameters. At this level, no ambiguity
should remain.

A programming language is a bridge between
the human way of thinking of an algorithm and
the computer way of coding a program. Prior
languages, including those on which the existing
e-learning management systems are built, focus
either on the semantics, but fail to be efficient
at code level, or on efficiency, hence failing to
be intuitive and easy to use by a human. To our
knowledge, Pliant is the first language that makes
the “single language” option a possible one by
acting as a bridge between the aforementioned
two levels. We assert that Pliant is the best one
available, because it addresses this bridging goal
at the highest level of flexibility and the best
level of efficiency. This ability to write all code
using a “single language” means better internal
communication, time-saving improvements, load
sharing, and shorter code. It also means reason-
able scalability, adaptive user interface, easy
switching from a closed software-like model to
an open software-like model, more flexibility,

customization, development power, strong design
and high-quality program, low cost, dynamic
highly reflexive compiler, less hardware limita-
tions, adaptive hardware, and so forth. The list of
goods is long. In order words, Pliant tries to bring
as much expression power as possible, without
impacting low-level code performance. These
capabilities allow Pliant to be seen as a kit that
greatly simplifies the distribution of software. In
addition, Pliant can also offer e-learning potential,
such as Internet-based learning and didactical
requirements.

As a developed Web technology, Pliant is an
Internet suite containing material needed to start
an Internet site, including a database engine, a
forum, a graphical toolkit, dynamic pages, and
mail support. Therefore, it provides a suitable
multimedia support to teachers and students, just
as other proven e-learning systems, but with the
added flexibility and adaptability of the underly-
ing software and hardware platforms as pointed
out previously. Pliant provides the choice to select
elements according to the needs of teachers and
students, and independently of their program of
study. These elements can be divided into three
interrelated groups, classified as: (1) elements for
exploration and data management, (2) elements for
teaching and communications, (3) and elements
for users’ management.

elements for exploration and data
Management

Pliant allows for a selection of various types of
advanced Web browsersNetscape, Mozilla,
Internet Explorer, Konquerorand is open to
other better ones available. The choice of a browser
depends on the security, portability, and computer
power requirements. It also provides various types
of servers suitable for Internetworking, such
as HTTP, FTP, DNS, SMTP, POP3, Web mail,
backup system, files browser, database engine,
and so forth.

1410

A Pliant-Based Software Tool for Courseware Development

elements for teaching and
communications

Pliant can be used as a tool for enhancing course
management systems. It provides a flexible soft-
ware support for a variety of learning processes
such as the distribution of documents and com-
munications through the Internet. Pliant’s online
forum application provides asynchronous com-
munication between instructors and students.
The simple structure of the language allows one
to easily create course Web sites on which one
can post course notes for anytime access by stu-
dents. With some training in Pliant programming,
novices can quickly move on to the development
of their own handy, tailor-made teaching tools,
such as course assessments, online tests, and an
online grade book. To illustrate the above points,
we consider a simple case of a typical course Web
page written in Pliant, and its results as shown
in Figure 2.

Several interface options are provided:

1. Access to course documents, in this case
exemplified by a link to the course manage-
ment form and the course work, but can be a
list of documents, such as readings, lecture
notes, schedules, syllabi, course manage-
ment forms, organization of course projects,

priorities, and details, and so forth. It also
supports the import and export capabilities
by means of inserted Web site links, allowing
the instructors to gain access to a complete
set of teaching tools provided by academic
publishers, or to create a package of the
course content that can later be imported
into another course.

2. Course announcements, a key place to
put daily, weekly, or monthly time-sensi-
tive course information such as deadline
changes, clarifications, remainder of upcom-
ing class chats, schedules, important events
and dates, and so forth.

3. Forum is a Web portal that behaves as a
virtual classroom and lightweight chat. It
enables users to participate in an online col-
laboration with students and instructors. As
a discussion board, messages are posted to
the board, and every permitted user is able
to read the messages and reply to them. Like
a bulletin board, one copy of the message
exists, and only the course designer has
the right to delete the messages. A forum
is a tool that fosters communication and
collaboration as a way to enhance course
material. Several forums can be created si-
multaneously, providing for a frame for team
working. Each forum is assigned a thread

Figure 2. Typical course Web page in Pliant

 1411

A Pliant-Based Software Tool for Courseware Development

(i.e., a discussion session) so that all replies
to a given message are contained within the
same thread. Within a forum, a messaging
program is implemented that allows one to
send e-mail messages to the users who are
members of the forum, and to keep track of
those messages. As a collaboration tool, a
forum allows its users to enter into a real-
time discussion with instructors, students,
and colleagues; to access the Web; and to
engage in question-and-answer sessions.
The option of considering grouping student
lists into several small groups can also be
applied to keep the conversation manageable
due to the synchronous nature of the discus-
sion forum panel. It is important to point
out that collaboration sessions throughout
forums are recorded by means of subjects
and messages. The leader of the session
(course designer) must start the recorder to
create an archive.

elements for users Management

In an e-learning prospective, the user manage-
ment capabilities of Pliant is mostly reflected
on the ways that Pliant enables the instructor to
manage the users in their course sites. This in-
volves the following types of setting privileges:
enrolling users in the course, which means that
the user must already have an account; remov-
ing users from the course; and creating groups
of users within a course with the right to modify
groups. The instructor has the option of giving
the group access to its own private discussion
board, virtual classroom, group file exchange,
or group e-mail.

Pliant as a tool for learning
Programming languages and
web Programming

Due to the Pliant’s meta-programming features,
Pliant can be customized for learning and teach-

ing purposes. Standard Pliant applications are
browser basedthat is, the programmer can
host his or her Pliant program in the Pliant HTTP
server and then interact with it using a Web
browser. Browser-based Pliant programs have
file extension .page and are written using Pliant’s
Web page programming instructions, called the
.page format, an alternative to HTML/XML.
Throughout the aforementioned interaction, the
HTTP server works as follows: it keeps listening
to requests from clients (i.e., other browsers on the
Web); once it gets a request for a page, it translates
the respective .page Pliant program into HTML
and JavaScript code and sends it to the client
(browser). If the client requests a plain HTML
page hosted in the server, then the server simply
sends it as it is. Hence, for the client, there is no
difference; it is plain HTML/JavaScript coming
from the server side. If the requested page does
not point to a .page or static HTML file, then
the Pliant HTTP server recursively searches for
a file called virtual_tree.page in the path of the
requested URL. This Pliant concept, called vir-
tual tree mechanism, provides an easy mapping
of data sets to URLs. Without it, HTTP options
would be useda not as clever and convenient
solution. We relied heavily on such contrivance to
implement one of Academia’s7 subsystemsthe
course Web content renderer.

To illustrate this simplicity and power of the Pli-
ant language combined with the HTTP server, we
now present short examples of Web applications
written in Pliant. The Pliant program presented
in Figure 3 illustrates how easy it is to write a
simple static Web page with a title and some text.
It shows a simplified HTML code generated by
the Pliant HTTP server. The client will see this
application as shown in Figure 3 (right side). As
illustrated, Pliant has the capability of generating
and caching online graphics when server-side font
rendering has been requested.

The command title “A Pliant page” produces
a page title; the command text, whose argu-
ment is a string, outputs text. Pliant provides a

1412

A Pliant-Based Software Tool for Courseware Development

plethora of commands for writing Web pages.
The interested reader should check the Pliant
Documentation Initiative site (De Mendez et al.,
2000). The next example illustrates how Pliant can
be used to generate dynamic Web pages, such as
a Web page for converting currency from Euros
to Canadian Dollars. The programmer writes a
page as follows:

title “Euro to Dollar”
 var Float euro := 1
input “Amount: “ euro
 button “Press me”
title “The answer is…
text (string euro*1.2)

The user types in the amount in Euros he or
she wants to convert (left of Figure 4). When
the user clicks on the button, a new page, whose
code is defined in the shadow of the button (i.e.,
indented with respect to the button instruction),
will present the result of converting the input value
from Euros to dollars (right of Figure 4). Notice
that the function call (string euro*1.2) transforms

the numerical result of the expression euro*1.2
into a string.

For programming languages development
purposes, Pliant’s default syntax is lighter than
others because of the following main features:

1. Many parentheses are implied by indenta-
tion,

2. The ‘:’ operator replaces some extra paren-
theses, and

3. There is no ‘,’ operator to separate the pa-
rameters of a function.

Figure 3. A Pliant program and its resulting Web page

Figure 4. Dynamic Web page in Pliant

 1413

A Pliant-Based Software Tool for Courseware Development

These features, combined with the meta-
programming ones, make Pliant a language of
choice for teaching the programming concepts.
Because the purpose of this chapter is not on
“experiencing programming languages,” we will
not elaborate much on Pliant’s language specifica-
tions referred to the main concepts, user interface,
data types, meta-programming optimizers, and
other programming features. Interested readers
can find detail information at http://old.fullpliant.
org/pliant/language/.

In short, beginners can use Pliant as an inter-
preted language by writing small pieces of code
and running them directly. Experienced program-
mers can run Pliant as a compiled languagethat
is, by writing efficient programs while using
most high-level programming features of object-
oriented languages and the expression power of
logical programming languages. Pliant is also an
ideal linker, in the sense that one can write differ-
ent pieces of a project in different programming
styles with all parts interacting.

case study on the use of Pliant in
the “Multilanguage database for
localization” Project

In today’s world of global operations and interna-
tional technical communication, the Internet is fast
becoming the primary port of call for information,
education, training, and services. Consequently,
more and more development initiatives go be-
yond local borders. Experienced professionals
understand that to be effective, training must
be done in the right language and with cultur-
ally appropriate resources and methodologies.
In response, Canadian businesses, corporations,
and universities have quickly become aware of
the benefits of localization as one of the boosted
agents shaping the new economy.

Localization can be defined as the process of
taking a product and making it linguistically and
culturally appropriate to a target locale (country,

region, and language) where it is used and sold.
This multi-layered process requires programming,
linguistic skills, translation skills, cultural knowl-
edge, and most importantly, an e-learning devel-
opment platform support. It has been recognized
as an important part of the educational program
in Translation and Computer Science schools at
Canadian universities and abroad, where students
obtain basic education and training (both onsite
and Web based) in both computational methods
and localization techniques.

The increasing importance of terminology
banks and translation memories in the transla-
tion process, a sub-component of the localization
process, has created a need for developing lan-
guage-based repositories for the purpose of using
them in the localization training and practices. As
a response to this deficiency, the “Multilanguage
Database for Localization” project (Nyongwa &
Aubin, 2004) was launched at the CUSB School
of Translation, in collaboration with Ryerson
University. The objective of this research is to
develop a comprehensive database framework
of languages which can efficiently support the
localization training and practices. One subcom-
ponent of this project entitled “Enhancement of
the Pliant Language Database Engine” has been
to investigate how the Pliant system, although not
originally meant for language acquisition, can
be used as a benchmark tool to support the user
interface design of the aforementioned database
framework, at least for the online localization
training portion. In this context, thanks to its
meta-programming feature, the Pliant language
design has been altered and successfully tested
to allow for customized content-building instruc-
tions. These later features were then used through
Academia—a Pliant-based courseware tool,8
to support the localization training in various
capacities. Two scenarios are described later in
this chapter to illustrate some of these capacities.
The first scenario, described in the subsection
entitled “Case Study of a Course Delivery,” dis-

1414

A Pliant-Based Software Tool for Courseware Development

cusses a particular instance in the teaching of
the “translation process” portion of the course in
localization. The second scenario, described in
the subsection entitled “Pliant System, Translation
and CALL,” illustrates how the “terminology”
component of the localization course is taught
using Academia.

usability of Pliant in teaching and
Project Management contexts

To further assess the usability of Pliant in teach-
ing and project management contexts, we have
implemented two Pliant-based applications. The
first one is Academia, a courseware development
Web portal, and the second one is Co-op Web, a
management Web portal. In the sequel, we de-
scribe the first application in-depth, followed by
a brief description of the second one. The reason
is that the second application does not directly
serve the purpose of this book.

why Academia?

For instructors to carry on the mundane activ-
ity of setting course Web pages, two options
are possible: design new course Web sites from
scratch or resort to a courseware tool. However,
such a tool is usually expensive and complex. The
source code is usually proprietary, that is, it does
not allow end users to further customize the code
to suit their needs. Academia can address these
deficiencies. The reader may then ask why one
would use Academia and not another well-known
courseware tool that provides every single feature
an instructor can possibly fancy. Our answer:
because as a Pliant-based application, end users
can build on Academia’s design and source code
to develop more advanced and customized course-
ware materials, since there is no need to resort
to different languages (as traditional approaches
do) to develop applications that involve dynamic
pages and databases.

Academia features

Courseware products such as Blackboard (2002)
and WebCT (2002) will take HTML documents,
along with other media and resources, and quickly
organize them into a framework specifically
designed for delivery of Web-based courses and
other learning resources. Frequently, they are
used to complement traditional lecture-based
programs. Courseware products are helpful to
educators who are unfamiliar with programming,
allowing easy integration of password protection,
interactive activities, tracking of student prog-
ress, and so forth. Overall, the interface is fairly
simple for the designer, as many use templates
and wizards extensively to assist in course content
creation. Step-by-step guides support creation of
a range of components, from the course homep-
age, to bulletin boards, to quizzes and marking
systems. When compared to the aforementioned
courseware tools, Academia is a much ‘lighter’
application in the sense that it provides only the
essential features required to set up a simple Web
page for a course. Such a Web page may include
links to a locally hosted copy of the course sylla-
bus, assignment descriptions, instructor’s lecture
notes, and other materials.

Academia’s user Interface design

The design concept behind Academia’s user
interface was: it should be as simple as possible,
but not simpler. In the first stage of the design
process, a list of the functionality required of
the system to accomplish the goals of the project
and the potential needs of the users was prepared.
From the instructor, manager, and students’ view-
points, this list included the major functionalities
illustrated in the user-case diagrams presented
in Figure 5. In the second stage of the design
process, an analysis of the potential users of the
system was carried out through discussion with
instructors who already had previous experience

 1415

A Pliant-Based Software Tool for Courseware Development

with other computer-based teaching tools, with
instructors who had no previous experience with
such systems, and with university students attend-
ing courses taught by the authors of this chapter.
Typical questions presented to these individuals
were of the sort:

• What would the user want the system to
do?

• How would the system fit in with the user’s
normal workflow or daily activities?

• How technically savvy is the user and what
similar systems does the user already use?

• What interface look-and-feel styles appeal
to the user?

The answers were then compiled and cross-
checked with the functionality list obtained in the
respective analysis, resulting in a new minimal
functionality set and overall look-and-feel style.

In the next stage, a site flow of the system that
showed the hierarchy of the pages was developed.
Next, prototyping and usability tests (Nielsen,
1993) were performed. In this stage, a proof-
of-concept Web application was developed that
showed the basic functionality set and content.
Fast prototyping of the system was facilitated by
the intrinsic features of the Pliant programming
language. In regards to usability tests, the so-called
talk aloud protocol (Wang, 2000), where you ask
the user to talk about their thoughts during the
experience, was performed via personal inter-
views with a small set of users—only instructors
who volunteered to serve as guinea pigs during
this tests—or ‘looking over their shoulder’ while
they attempted to perform specific tasks with the
system.

The ultimate goal of the Pliant software is
“universal usability.” As such, the Pliant user
interface, or equivalently, the communication
channel between the user and the functional ele-
ments of the system, has been intentionally made
text mode based. This allows the user to focus on
the task at hand and reduce the amount of overhead

knowledge required to communicate effectively
with Pliant and its underlying e-learning system
(Academia). The function of the Pliant interface
subsystem resumes in assigning user input to
internal representations of Pliant’s application
and internal representations of the application to
output that is comprehensible to the user. Thanks
to the meta-programming features of the Pliant
language and its reflective architecture, we believe
that Pliant is compliant with the CALL aspects
(i.e., the teaching and learning processes) with
respect to online learning.

Academia’s system-level
capabilities

These are presented here by means of use cases and
sequence diagrams. Such notations are commonly
used in the area software engineering for describ-
ing a system without revealing or implying any
particular implementation of the system (Booch,
Rumnaugh, & Jacobson, 2005). The use case (left
of Figure 5) presents Academia’s subsystems and
its actors.9 The system administrator actor uses
the system manager subsystem to keep track of
the instructors registered in the system and the
courses they teach. Instructors use the course
Web content subsystem to set up the Web page of
their courses. Once a course Web page has been
configured, students can then visit the respective
Web page, which is dynamically created by the
course Web page renderer.

course web content Manager
subsystem

Figure 5 (right side) depicts the course Web
content manager subsystems. The student login
manager subsystem allows the instructor to
upload and manage the student’s login access to
the system. The assignment submission manager
subsystem allows the instructor to view currently
online submitted assignments and to download
a compressed file containing all the assignment

1416

A Pliant-Based Software Tool for Courseware Development

submissions. The course Web content configurator
subsystem allows the instructor to interactively
configure a template design for the course Web
page. The instructor can define his or her contact
information, such as office number, office hours,
lecture times, and locations; upload course syl-
labi, assignment descriptions, and lecture notes
to the server; add an announcement board to the
course Web page; and set up an online discussion
board for the course.

course web Page renderer

The course Web page configurator subsystem
stores the configuration settings of a course Web
page template design in a database. This database
indexes courses by their term, year, code, and sec-
tion number. The course Web page renderer uses
this information and Pliant’s virtual tree mecha-
nism (explained earlier) to retrieve and display the
Web content stored for a particular course. More
specifically, suppose that an instructor whose
username is john.doe has already configured the
Web content for the following course:

Term: Winter
Year: 2005
Code: Phil 660
Section: 001
Name: Philosophy of Love and Sex

If a client (browser) requests the URL10 http://
academia.org/browse/mycourses/john.doe/, then
the Academia course Web page renderer would
dynamically create a Web page that lists links to
all currently hosted courses of instructor john.doe.
It does that by using the virtual tree mechanism
because there is no index.html file in the above
location on the server. The Pliant program that
implements the course Web page renderer resides
in the virtual_tree.page file, located at the root
of the path /browse/. Therefore, when the client
requests the above URL and the server finds the
virtual_tree.page file in /browse/, it stores in the in-
ternal variable virtual_path the remainder subpath
/mycourses/john.doe/ and runs the virtual_tree.
page program. For this particular case in which
the above path starts with mycourses, the renderer
parses the path and extracts the relevant informa-

Figure 5. Academia system-level architecture

 1417

A Pliant-Based Software Tool for Courseware Development

tion needed for determining which courses to list
on the dynamically created Web page.

A similar process takes place when a client
(browser) requests the following URL: http://
academia.org/browse/courses/Winter/2005/
Phil660/001/index.html. However, no index.html
(or index.page) file actually exists in the above
location. Hence, analogous to what we explained
above, the Pliant virtual path mechanism will
again run the renderer. This time, the internal
variable virtual_ path will hold the sub-path
/courses/Winter/2005/Phil660/001/. Notice that
this path provides all the information to locate
the Web content for a course in Academia’s da-
tabase. The renderer parses this path to extract
the course information (code, term, etc.). It then
retrieves the Web content for the course from the
database and dynamically creates a Web page for
the course.

towards Integrating Academia
with other learning Management
systems

The initial idea underlying Academia’s design
was to provide an “as simple as possible,” but not
simpler courseware development and e-learning
tool. As such, integration with more robust learn-
ing management systems (LMSs) was not a pri-
ority during the development. Notwithstanding,
all database files used or produced by Academia
are in ASCII text, and information is stored in
XML-like data structures. As an example, below
we list an excerpt of a user database:

<pdata path=“/user/marcus/contact”>7062</
pdata>
<pdata path=“/user/marcus/email”>marcus.san-
tos@mac.com</pdata>
< p d a t a p a t h = “ / u s e r / m a r c u s / f i r s t _
name”>Marcus</pdata>
<pdata path=“/user/marcus/homepage”>www.
cs.ryerson.ca/m3santos</pdata>

<pdata path=“/user/marcus/language”>English</
pdata>

Notice that each entry in the database is en-
coded as simple XML code. Therefore, interfacing
such data with an LMS would be straightforward.
Pliant also includes many modern programming
principles such as meta-programming, static
typing, objects, reflective compiling, reference
counting garbage collection, built-in debugger,
clean syntax, and many pre-built components such
as HTTP, FTP, SMTP, POP3 servers, a tree-based
distributed data model, and a database engine.
The intrinsic features of these core components
can be used to support open Internet standards
such as ECMAScript, thus, a-fortiori, to facilitate
the compliance of Pliant with SCORM, but there
still a long way to go to achieve this goal, and we
have left it for future work.

A case study of Academia

This section reports on the findings from a study
to experimentally compare some available Web-
based learning tools used for the CUSB Certifi-
cate Program in Translation. These findings are
discussed in relation to basic usability issues of
Web-based tools, in terms of online course peda-
gogy, technological infrastructure, and students’
perceptions. Our investigation attempts to justify
the use of Academia as an e-learning methodology
and acquisition tool.

the context

Translation is a professional activity that requires
both mental and physical settings, where profits
and ethics must be met, just like in any other
profession. Becoming a professional translator
requires hard work, curiosity, open-minded-
ness, and experience. Based on these basic facts,
the School of Translation at CUSB foresaw the
importance of Web-based education in the mid-

1418

A Pliant-Based Software Tool for Courseware Development

1990s, then introduced a few online courses in
its Translation program. By the year 2000, the
entire Certificate Program, composed of 10 three-
credit courses, was successfully launched. This
program (referred to as the TOP program) was
designed to accommodate the draft curricula for
various areas of expertise within translation and
the actual needs of the translation industry. It has
been set up primarily for people who are interested
in studying translation while maintaining their
current employment. It was particularly aimed at
those who work in remote areas and would find it
impossible to attend classes at a local university. At
each session, students may decide to take only one
course at a time, or more, depending on their own
personal timetable. A number of Internet-based
courses, including Localization, were gradually
introduced into the TOP program.

technological Infrastructure

The CUSB infrastructure is made up of three
servers, a dozen PCs for instructors, and a 10-PC
laboratory for students. There are also three other
high-tech laboratories and a multimedia center
where on-campus students can work. Several
programming tools and Blackboard (2002) are
used by students and professors to develop and
manage Web-related documents. Although this
courseware tool was greatly appreciated by the
students and staff, complaints were quickly raised,
mostly on usability issuessuch as long login
sequence and difficult navigation. To address
these drawbacks, Academia was used to supple-
ment Blackboard.

online course Methodology

Unlike traditional courses, online courses are
space and time independent. Meanwhile, in the
case of the TOP program courses, a framework has
been developed that meets the traditional division
of an academic yearinto sessions of 15 weeks

each. Courses are delivered according to this divi-
sion. The content of each course is organized as
followed: knowledge review, lectures, practices,
debates and discussions in the forum, exchanges of
e-mails with instructors, and evaluation. Courses
content is built into modules to facilitate individual
learning. The evaluation consists of four formal
tests, one in the fourth week, the second in the
eighth week, the third in the twelfth week, and
the last one in the fifteenth week.

case study of a course delivery

To demonstrate the capability of Academia as a
support for e-learning methodology and acquisi-
tion, we have implemented an instance of a par-
ticular course entitled “Localization” on a specific
problem: the problem of encoding/decoding the
characters in a text file during the lifetime of the
localization process. Localization is a process by
which a product (in this case a text file) should be
adequately adapted to the characteristics of each
country and equipped with a presentation that is
acceptable at least at the level already reached for
its original locale. This process requires various
types of operations involving the targeted lan-
guage and written communication (localization
of translations), as well as the supported technical
infrastructure for data processing (software local-
ization). Both types of localization sub-processes
are technology dependent and are mandatory in a
training program in Translation such as the TOP
program. Here, we focus only on the software
localization process. One of the major problems
when running this process is the lack of a clear
mechanism that ensures the identification of the
encoding used to save/open any type of docu-
ment, or to escape extended characters that are
not supported by the targeted encoding technique.
This issue is particularly important in this context
since it determines translatable and non-translat-
able data. Among proposed solutions, XML has
been proposed as a viable one (Savourel, 2000)

 1419

A Pliant-Based Software Tool for Courseware Development

for the implementation of a multilingual solution.
However, handling XML-like data structure files
within the localization process is still a difficult
task. To circumvent this difficulty, the Pliant-
based capabilities of Academia are embodied
in new standards or software processes such as
XPath (Extensible Path), which provide several
new features of dealing with data in general and
localizable text in particular, based on the file
format. Many state-of-the-art translator tools,
available at http://www.w3.org/, are then used to
apply the above mechanism in a concrete example.
Depending on the power of the translator tool,
the Fullpliant, and the type of XML file to be
translated, the required steps are:

1. Mark up the information in the text to be lo-
calized, that is, find answers to the following
questions: What text is translatable? Which
language is chosen? Which local is referred
to? What are the acronyms explanations?
What constitutes the verbals and nominals
in short sentences of the targeted text?

2. Using the Translator tool, create an XSL
template (document) with appropriate
parameters. This is achieved by writing a
skeleton of HTML elements and by using
the XSL style sheet commands to provide
the text.

3. Process the file to be localized by using the
above template and by choosing the locale
to work with. Steps 1 and 2 are not always
straightforward and need some good under-
standing of XML and XPath.

The following methodology was used. Prior
to the localization course, students are given
some basics in HTML and XML programming.
They are introduced to the structural power of
both languages and to Academia as a program-
ming platform. Their attention is then focused on
the simplicity of XML, and the way its features
can be used to extract the translatable and non-
translatable text in the file format to be localized.

Students are taught, by means of examples, on
how XML code can be written based on the file
format and content, and then structured in a way
that the translator can use it to generate the desired
output. Students are then asked to compare the
XML and corresponding HTML files. Then, the
localization course is taught to students through
different modules (process, Web site, project
management, etc.), providing them with necessary
material to tackle other steps of the translation
process. At the end, students are asked to extract
HTML and XML files in English and to localize
them in Canadian French.

Findings

The separation of the content from the format
allows the translation task to move faster while
reducing the time allocated to pre-translation and
post-translation processing. Due to the expressive
power capabilities of the Pliant-based framework
upon which Academia is built, students have
gained a great level of confidence when integrat-
ing the localization information as a component
of XML, rendering the translation process more
achievable than ever. This integration would have
been more difficult without the use of built-in and
enticing capabilities for data processing provided
by the Academia platform, which greatly simpli-
fies the entire localization process.

Pliant system, translation, and
cAll

Even though the Pliant system was not originally
meant for language acquisition, the flexibility it
provides in terms of integration features makes
it possible. In technical translation and specialty
languages teaching, terminology is an essential
topic that should be studied. The teaching of
terminology in the context of the localization
course using Academia has been addressed in
a CALL-like methodology manner. For a given
text that needs to be translated from one language

1420

A Pliant-Based Software Tool for Courseware Development

to another, the steps followed by the students, as
well as the corresponding Pliant-based methods
implemented to achieve these steps, are shown
below.

1. Identify and establish a list of “appropriate”
terms from the text to be translated. This
task is achieved through the design of the
Data Discovery Module (DDM). Here, some
predefined language-based metrics are used
to identify the aforementioned terms, and
a Pliant-based user-interface is developed
to extract these terms and stored them in
DDM.

2. Ask the students to search for two or three
contexts of the usage of each term from an
established list obtained from various ter-
minology repositories. This task is achieved
through the design of the Data Context
Module (DCM), where dictionaries and
textual databases are stored. It mandates
the implementation of a Pliant-based Web
interface for data search and retrieval (us-
ing the Pliant mainstream servers) in these
repositories.

3. Search for equivalent terms in the target
language through available dictionaries and
databases. This task is achieved by means
of the Pliant-based Web interface for data
search and retrieval described in Step 2.

4. Divide the text to be translated into indi-
vidual sentences to be translated, and then
allocate one sentence per student. This task
is achieved through the design of the Divi-
sion Module (DM). A Pliant-based script is
developed to build this module.

5. Each sentence is translated by a student and
sent to the discussion forum for revision by
other students within the group. This task is
achieved through the design of the Transla-
tion Module (TM). A Pliant-based forum
is designed and implemented to handle the
communication and transfer of information
between all participants.

6. The revised sentences are put together again
to create the translated text. This task is
achieved through the design of the Assem-
bly Module (AM). A Pliant-based script is
developed to build this module.

7. The translated text is sent to the instructor
for evaluation, verification, and validation.
This task is achieved through the design of
the Quality Assessment Module (QAM)a
set of Pliant-based evaluation and validation
methods (or functions). This module also
provides the potential for integrating the Pli-
ant system in a distributed environment.

co-op web

The Department of Computer Science at Ryerson
University offers a five-year bachelor’s program in
Computer Science with a Co-op option (CSCC).
The program requires the management of stu-
dents’ applications, admissions, career planning
resources, course selection requirements, gradua-
tion requirements, financial requirements, and job
placements, to name a few. To efficiently address
these challenges, Co-op Web was developed using
Pliant; it is currently use to administer the CSCC
program and has shown great satisfaction from
its usability’ point of view.

Actual Management Aspects of
Pliant after development

Our current challenge remains to understand the
experiences of instructors (and students) as they
adopt Academia as a course management system
and integrate it into their teaching (respectively
learning), either in isolation or as a complement
to existing learning management systems. Our
plan is to study several patterns explaining how
instructors/students experiment with individual
features of Academia, facing both technical and
integration challenges, and attempting to adapt
Blackboard or any other sophisticated learning
system to match their goals and practices. Aca-

 1421

A Pliant-Based Software Tool for Courseware Development

demia has become “mission critical” in fulfilling
some of the teaching and learning central goals:
enriching the student/instructor learning experi-
ence and advancing access to resources for teach-
ing, learning, and research. Academia’s training
programs are currently being handled throughout
the university, in parallel with Blackboard train-
ing programs, where faculty and students can
receive assistance with all aspects of Academia
and Blackboard operations. Several upgrades have
been done and are continuously done to the Pli-
ant framework in order to solidify its underlying
e-learning capabilities and integration features,
both transparent through Academia. For example,
at the departmental site, faculty members can
now upload their final grades from a Blackboard
grade book into a Web grade roster, instead of
having to enter them manually. A tracker has also
been set to report general bugs, feature requests,
fixes, and other issues such as sensitive security
problems.

In its current form, the dynamic compilation
structure of Pliant offers many opportunities
of experimentation for academic and industrial
research as well. Thanks to Pliant’s control over
generated codes, academic and industrial fields
used Pliant for physical modeling purposes. For
example, in thermic equilibrium when injecting
thermoplastic material in a mould, Pliant was
used to update some models without having to
recompile the system. In Mathematics, Pliant was
used to re-implement some graph manipulation
tools.

The integration of Pliant with SCORM, NLN,
and IMS format learning objects is possible due
to the dynamic compilation architecture of Pli-
ant and its reflectivity. This option is currently
under investigation. Another current application
scenario is the use of Pliant to manage distributed
systems. This has been achieved so far in some
cases thanks to the meta-programming feature of
Pliant and its tree-based distributed data model,
which allows one to maintain a database of hard-

ware available on each machine and of software
to be deployed there.

To circumvent some of the drawbacks of
Pliant’s architecture, it is suggested that we look
at some high-level optimization algorithms in
academic literature and implement them in the
Pliant language, the goal being to rewrite the entire
framework in Pliant. This will facilitate the pliant
deployment, its integration with other systems
including learning management systems, and its
ability to embrace and extend existing services,
as well as enhancing Pliant’s robustness in terms
of code generation and reusability.

future trends

The Pliant .page mechanism, which we have used
to implement Academia, has proven very conve-
nient for quickly prototyping and writing simple
user interfaces. However, the current (and future)
trend is to provide programming languages and
Web application development platforms rich in
interactive features, such as graphical user inter-
face elements, to create dynamic, nice-looking,
and functional user interfaces. To this aim, the
Pliant team recently started the development of
the Pliant browser. The Pliant browser consists
of a new language (an extension to the .page lan-
guage) for developing Web applications and an
HTTP “bridge” for translating the Pliant browser
interface to HTTP/Javascript.

For the future, once the additional features
provided by the Pliant browser are in place, we
plan to give Academia a new makeover on its user
interface and features, such as a quiz/survey tool,
and added flexibility to course Web page design
and “look-and-feel.” The style sheet mechanism
used by the Pliant browser should greatly facili-
tate the implementation of a more flexible styling
mechanism for Academia. Ultimately, Academia
will stand as an example of how end users (teach-
ers) of Pliant tend to become developers of Web-

1422

A Pliant-Based Software Tool for Courseware Development

based software solutions. An instructor with little
or no programming background can smoothly
migrate from a user of a simple system to a pro-
grammer of also simple pragmatic systems. The
contribution of this framework to students is also
noticeable. Student engagement can be improved
by online instructional multimedia material, and
course online content can be easily tailored to the
students’ needs.

Since new technologies always afford new
roles for teachers as learners and researchers,
we also intend to pursue our current research
program endeavors, aiming at developing e-
learning strategies for the purpose of promoting
reflection on teaching and collaborative learning
using the Pliant framework. For example, how
might teachers/teacher educators use Pliant tools
for reflection and research into their classrooms?
What are the most critical Pliant design patterns
that would optimize their knowledge-building
efforts? How will they use that information in
their instructional decisions? These challenges
are currently under investigation, and our ulti-
mate goal is to produce a solution in the form of
an analysis toolkit.

Finally, we would like to initiate a compre-
hensive evaluation (empirical study) of the use of
Academia at both CUSB and Ryerson University.
Our targeted audiences are students and staff. We
are currently preparing an online questionnaire
with the aim of gaining substantial and quantita-
tive-based reactions to the use of Academia as a
complement to the already sophisticated Black-
board platform for the purpose of e-learning. Our
intention is to measure how far our framework
can be useful in delivering and managing online
courses.

conclusIon

We have described Pliant as a “standalone” and
“Web-based” language that encapsulates both the

“human” and “computer” levels of thinking and
coding programs. This unique privilege makes it
an exceptional language, compared to any other
existing one. It also demonstrates a higher level
of flexibility, reasonable adaptability, and integra-
tion, providing for higher software development
capabilities and enhancements. These qualities
can be exploited to improve the current state-of-
the-art e-learning development tools, while meet-
ing educational expectations, economical and time
constraints, and human resources limitations. The
main advantages of Pliant over other integrated
software solutions are high transferability, flex-
ibility, and maintainability. We have also presented
Academia, a lightweight courseware application
fully implemented in Pliant. When compared to
mainstream courseware applications, Academia
is surely over-simplified. Finally, a simple, yet
concrete example of how Academia was used in a
Translation program at CUSB was proposed, along
with some insights on the e-learning methodology
and pedagogy that were used.

references

Blackboard. (2002). Blackboard Course Man-
agement System 5.1. Retrieved from http://www.
blackboard.com/

Booch, G., Rumnaugh, J., & Jacobson, I. (2005).
The Unified Modeling Language user guide (2nd
ed.). Englewood Cliffs, NJ: Prentice Hall.

Brusilovsky, P. (2001, October 23-27). WebEx:
Learning from examples in a programming
course. In W. Fowler & J. Hasebrook (Eds.),
Proceedings of WebNet’2001, the World Confer-
ence of the WWW and Internet (pp. 124-129),
Orlando, FL.

Brusilovsky, P., Stock, O., & Strapparava, C.
(Eds.). (2000, August). Adaptive hypermedia and
adaptive Web-based systems. Proceedings of the

 1423

A Pliant-Based Software Tool for Courseware Development

AH 2000 International Conference, Trento, Italy.
Berlin: Springer-Verlag (LNCS 1892).

De Mendez, P.O. (1988). Pliant: Expressive power
plus efficiency. Proceedings of the SALCOM-
IT Workshop and Review Meeting, Barcelona,
Spain.

De Mendez, M., De Mendez, P.O., Santos, M.V.,
& Tonneau, H. (2000). Pliant documentation.
Retrieved from http://old.fullpliant.org/

E-Workflow. (2003). The workflow portal. Re-
trieved from http://www.e-workflow.org

Hochheiser, H., & Shneiderman, B. (2001).
Universal usability statements: Marking the
trail for all users. ACM Interactions, 8(March-
April), 16-18. Retrieved from http://www.acm.
org/pubs/citations/journals/interactions/2001-8-
2/p16-hochheiser/

Nielsen, J. (1993). Usability engineering. Boston:
Academic Press.

Nyongwa, M., & Aubin, M.C. (2004). Plan
de développement stratégique: Traduction et
langues. Retrieved from http://www.ustboniface.
mb.ca/

Savourel, Y. (2000). XML technologies and the
localization process. Multi-Lingual Computing
& Technology, 11(7).

Tonneau, H., De Mendez, P.O., & Santos, M.V.
(1984). Pliant homepage. Retrieved from http://
pliant.cx

Wang, M. (2000). Evaluating the usability of
Web-based learning tools. Master’s Thesis,
Department of Computer Science, University of
Victoria, Canada.

WebCT. (2002). WebCT Course Management Sys-
tem 3.8. Retrieved from http://www.webct.com

key terMs

Academia: A courseware development
Web portal, fully implemented in the Pliant
language.

Courseware: Computer software and as-
sociated materials designed for educational or
training purposes.

E-Learning: The use of network technology
to design, deliver, select, administer, and adapt
learning activities.

Fullpliant: Name given to the Pliant’ operat-
ing system.

Pliant: The first efficient, truly extendable,
customizable programming language. It is suited
both for small scripts and for very large applica-
tions, and could be described as a combination
of reflexive C, C++, typed Lisp, and clean syntax
in a single language.

Software Design: Process of problem solving
and planning for a software solution.

Usability: A measure, in our context, of how
easy it is to use software to perform prescribed
tasks.

endnotes

1 This chapter is an extended version of a

preliminary work entitled “Pliant: More
Than a Programming Language, a Flex-
ible E-Learning Tool,” published in the
Proceedings of the World Conference on
Educational Multimedia, Hypermedia and
Telecommunications 2004 (pp. 505-510).
Chesapeake, VA: AACE.

2 Collège Universitaire de Saint-Boniface,
University of Manitoba, Winnipeg, Mani-
toba, Canada.

1424

A Pliant-Based Software Tool for Courseware Development

3 Academia was developed at the Department
of Computer Science at Ryerson University,
Toronto, Canada.

4 The Co-Op Education and Internship pro-
gram at Ryerson University is managed by
means of a Co-op Web portal available at
http://www.scs.ryerson.ca/~co-op.

5 This should not be confused with other
project of the same name available online
at http://www.pliant.org/.

6 Meta-programming refers to the ability
of Pliant to eliminate the barrier between
low-level languages like C and high-level
languages like Lisp or Python.

7 Academia is a Pliant-based Web portal. Its
architecture is described later in the section
entitled “Academia’s System-Level Capa-
bilities.”

8 Please refer to the section entitled “Why
Academia?” for an introduction to this
tool.

9 Actors are objects outside of the scope of the
system, but that have significant interactions
with it.

10 All URLs mentioned in this chapter are
fictitious.

This work was previously published in Handbook of Research on E-Learning Methodologies for Language Acquisition, edited
by R. de Cássia Veiga Marriott & P. Lupion Torres, pp. 166-185, copyright 2009 by Information Science Reference (an imprint
of IGI Global).

Section IV
Utilization and Application

This section introduces and discusses the ways in which information technology has been used to
shape the realm of software applications and proposes new ways in which IT-related innovations can
be implemented within organizations and in society as a whole. These particular selections highlight,
among other topics, intelligent software agents in e-commerce and utilizing open source software in
organizations. Contributions included in this section provide excellent coverage of today’s changing
environment and insight into how evolutions in software applications impact the fabric of our present-
day global village.

1426

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.1
Intelligent Software Agents with

Applications in Focus
Mario Janković-Romano

University of Belgrade, Serbia

Milan Stanković
University of Belgrade, Serbia

Uroš Krčadinac
University of Belgrade, Serbia

IntroductIon

Most people are familiar with the concept of
agents in real life. There are stock-market agents,
sports agents, real-estate agents, etc. Agents are
used to filter and present information to consum-
ers. Likewise, during the last couple of decades,
people have developed software agents, that have
the similar role. They behave intelligently, run
on computers, and are autonomous, but are not
human beings.

Basically, an agent is a computer program that
is capable of performing a flexible and independent
action in typically dynamic and unpredictable
domains (Luck, McBurney, Shehory, & Willmott,
2005). Agents are capable of performing actions
and making decisions without the guidance of a
human. Software agents emerged in the IT be-

cause of the ever-growing need for information
processing, and the problems concerning dealing
and working with large quantities of data.

Especially important is how agents act with
other agents in the same environment, and the
connections they form to find, refine and present
the information in a best way. Agents certainly can
do tasks better if they perform together, and that
is why the multi-agent systems were developed.

The concept of an agent has become important
in a diverse range of sub-disciplines of IT, inclu-
ding software engineering, networking, mobile
systems, control systems, decision support, infor-
mation recovery and management, e-commerce,
and many others. Agents are now used in an in-
creasingly wide number of applications — ranging
from comparatively small systems such as web or
e-mail filters to large, complex systems such as

 1427

Intelligent Software Agents with Applications in Focus

air-traffic control, that have a large dependency
on fast and precise decision making.

Undoubtedly, the main contribution to the
field of intelligent software agents came from
the field of artificial intelligence (AI). The main
focus of AI is to build intelligent entities and if
these entities sense and act in some environment,
then they can be considered agents (Russell &
Norvig, 1995). Also, object-oriented program-
ming (Booch, 2004), concurrent object-based
systems (Agha, Wegner, and Yonezawa, 1993),
and human-computer interaction (Maes, 1994)
are fields that constantly drive forward the deve-
lopment of agents.

bAckground

Although the term ‘agent’ is widely used, by many
people working in closely related areas, it defies
attempts to produce a single universally accepted
definition. One of the most broadly used definitions
states that “an agent is an encapsulated computer
system that is situated in some environment, and
that is capable of flexible, autonomous action
in that environment in order to meet its design
objectives” (Wooldridge and Jennings, 1995).

There are three main concepts in this defini-
tion: situatedness, autonomy, and flexibility:

• Situatedness means that an agent is situated

in some environment and that it receives
sensory input and performs actions which
change that environment in some way.

• Autonomy is the ability of an agent to act
without the direct intervention of humans. It
has control over its own actions and over its
internal state. Also, the autonomy implies the
capability of learning from experience.

• Flexibility means that the agent is able to
perceive its environment and respond to
changes in a timely fashion; it should be
able to exhibit opportunistic, goal-directed
behaviour and take the initiative whenever

appropriate. In addition, an agent should
be able to interact with other agents and
humans, thus to be ‘social’.

For some researchers - particularly those
interested in AI - the term `agent’ has a stronger
and more specific meaning than that sketched out
above. These researchers generally mean an agent
to be a computer system that, in addition to having
the properties identified above, is either concep-
tualized or implemented using concepts that are
more usually applied to humans. For example, it
is quite common in AI to characterize an agent
using mentalistic notions, such as knowledge,
belief, intention, and obligation (Wooldridge &
Jennings, 1995).

IntellIgent softwAre Agents

Agents and environments

An agent collects its percepts through its sen-
sors, and acts upon the environment through its
actuators. Thus, the agent is proactive. Its actions
in any moment depend on the whole sequence of
these inputs up to that moment. A decision tree
for every possible percept sequence of an agent
would completely define the agent’s behavior.
This would define the function that maps any
sequence of percepts to the concrete action – the
agent function. The program that defines the agent
function is called the agent program. So, the agent
function is a formal description of the agent’s
behavior, and the agent program is a concrete
implementation of that formalism. (Krcadinac,
Stankovic, Kovanovic & Jovanovic, 2007)

To implement all this, we need to have a
computing device with appropriate sensors and
actuators on which the agent program will run.
This is called agent architecture. So, an agent is
essentially made of two components: the agent
architecture and the agent program.

Also, as Russell and Norvig (1995) specify,

1428

Intelligent Software Agents with Applications in Focus

one of the most sought after characteristics of
an agent is its rationality. An agent is rational
if it always does the action that will lead to the
most successful outcome. The rationality of an
agent depends on (a) the performance measure
that defines what is a good action and what is a
bad action, (b) the agent’s knowledge about the
environment, (c) the agent’s available actions, and
(d) the agent’s percept history.

the types of Agents

There are several basic types of agents with respect
to their structure (Russell & Norvig, 1995):

1. The simplest kind of agents are the simple
reflex agents. Such an agent only reacts to
its current percept, completely ignoring
its percept history. When a new percept is
received, a rule that maps that percept to an
action is activated. Such rules are known as
condition-action rules.

2. Model-based reflex agents are more power-
ful agents, because they maintain some sort
of internal state of the environment that de-
pends on the percept history. For maintaining
this sort of information, an agent must know
how the environment evolves, and how its

actions affect the environment.
3. Goal-based agents have some sort of goal

information that describes desirable states of
the world. Such an agent’s decision making
process is fundamentally different, because
when a goal-based agent is considering per-
forming an action it is asking itself “would
this action make me happy?” along with
the standard “what this action will have as
a result?”.

4. Utility-based agents use a utility function
that maps each state to a number that repre-
sents the degree of happiness. They are able
to perform rationally even in the situations
when there are conflicting goals, as well
as when there are several goals that can be
achieved, but none with certainty.

5. Learning agents do not have a priori knowl-
edge of the environment, but learn about it.
This is beneficial because these agents can
operate in unknown environments and to a
certain degree facilitates the job of develop-
ers because they do not need to specify their
whole knowledge base.

Multi-Agent systems

Multi-Agent Systems (MAS) are systems com-
posed of multiple autonomous components
(agents). They historically belong to Distributed
Artificial Intelligence (Bond & Gasser, 1998).
MAS can be defined as a loosely coupled net-
work of problem solvers that work together to
solve problems that are beyond the individual
capabilities or knowledge of a single problem
solver (Durfee and Lesser, 1989). In a MAS, each
agent has incomplete information or capabilities
for solving the problem and thus has a limited
viewpoint. There is no global system control,
the data is decentralized and the computation is
asynchronous.

In addition to MAS, there is also the concept of
a multi-agent environment, which can be seen as
an environment that includes more than one agent.

Figure 1. Agent and environment

 1429

Intelligent Software Agents with Applications in Focus

Thus, it can be cooperative, or competitive, or a
combined one, and creates a setting where agents
need to interact (socialize) between each other,
either to achieve their individual objectives, or to
manage the dependencies that follow from being
situated in a common environment. These interac-
tions range from simple semantic interoperation
(exchanging comprehensible communications),
client-server interactions (the ability to request
that a particular action is performed), to rich social
interactions (the ability to cooperate, coordinate,
and negotiate about a course of action).

Because of the issues due to heterogeneous
nature of agents involved in communication
(e.g., finding one another), there is also a need for
middle-agents, which cover cooperation among
agents and connect service providers with service
requesters in the agent world. These agents are
useful in various roles, such as matchmakers or
yellow page agents that collect and process service
offers (“advertisements”), blackboard agents that
collect requests, and brokers that process both
(Sycara, Decker, & Williamson, 1997). There
are several alternatives to middle agents, such as
Electronic Institutions – a framework for Agents’
Negotiation which seeks to incorporate organiza-
tional concepts into multi-agent systems. (Rocha
and Oliveira, 2001)

Communication among agents is achieved by
exchanging messages represented by mutually
understandable language (syntax) and containing
mutually understandable semantics. In order to
find a common ground for communication, an
agent communication language (ACL) should
be used to provide mechanisms for agents to
negotiate, query, and inform each other. The
most important such languages today are KQML
(Knowledge Query and Manipulation Language)
(ARPA Knowledge Sharing Initiative, 1993) and
FIPA ACL (FIPA, 1997).

Agent APPlIcAbIlIty

There are great possibilities for applying multi-
agent systems to solving different kinds of practi-
cal problems.

• Auction negotiation model, as a form of
communication, enables a group of agents
to find good solutions by achieving agree-
ment and making mutual compromises in
case of conflicting goals. Such an approach
is applicable to trading systems, where
agents act on behalf of buyers and sellers.
Financial markets, as well as scheduling,
travel arrangement, and fault diagnosing
also represent applicable fields for agents.

• Another very important field is information
gathering, where agents are used to search
through diverse and vastly different infor-
mation sources (e.g., World Wide Web) and
acquire relevant information for their users.
One of the most common domains is Web
browsing and search, where agents are used
to adapt the content (e.g., search results) to
the users’ preferences and offer relevant help
in browsing.

• Process control software systems require
various kinds of automatic (autonomous)
control and reaction for its processes (e.g.
production process). Reactive and respon-
sive, agents perfectly fit the needs of such a
task. Example domains in this field include:
production process control, climate moni-
toring, spacecraft control, and monitoring
nuclear power plants.

• Artificial life studies the evolution of agents,
or populations of computer simulated life
forms in artificial environments. The goal
is to study phenomena found in real life
evolution in a controlled manner, hopefully
to eliminate some of the inherent limitations
and cruelty of evolutionary studies using
live animals.

1430

Intelligent Software Agents with Applications in Focus

• Finally, intelligent tutoring systems often
include pedagogical agents, which represent
software entities constructed to present the
learning content in a user-friendly fashion
and monitor the user’s progress through the
learning process. These agents are respon-
sible for guiding the user and suggesting
additional learning topics related to the
user’s needs (Devedzic, 2006).

Some of the more specific examples of intel-
ligent agent applications include Talaria System,
military training, and Mobility Agents. T a l a r i a
System (The Autonomous Lookup And Report
Internet Agent System) is a multi-agent system,
developed for academic purposes at the University
of Belgrade, Serbia. It was built as a solution to the
common problem of gathering information from
diverse Web sites that do not provide RSS feeds
for news tracking. The system was implemented
using the JADE modeling framework in Java.
(Stankovic, Krcadinac, Kovanovic & Jovanovic,
2007) Talaria System is using the advantages of
human-agent communication model to improve
usability of web sites and to relieve users from
annoying and repetitive work. The system pro-
vides each user with a personal agent, which
periodically monitors the Web sites that the user
expressed interest in. The agent informs its user
about relevant changes, filtered by assumed user
preferences and default relevance factors. Human-
agent communication is implemented via email,
so that a user can converse with her/his agent in
natural language, whereas the agent heuristically
interprets concrete instructions from the mail text
(e.g., “monitor this site” or “kill yourself”).

Simulation and modelling are extensively
used in a wide range of military applications,
from development, testing and acquisition of new
systems and technologies, to operation, analysis
and provision of training, and mission rehearsal
for combat situations. The Human Variability in
Computer Generated Forces (HV-CGF) project,
undertaken on behalf of the UK’s Ministry of

Defence, developed a framework for simulating
behavioral changes of individuals and groups of
military personnel when subjected to moderat-
ing influences such as caffeine and fatigue. The
project was built with the JACK Intelligent Agents
toolkit, a commercial Java-based environment for
developing and running multiagent applications.
Each team member is a rational agent able to ex-
ecute actions such as doctrinal and non-doctrinal
behaviour tactics, which are encoded as JACK
agent graphical plans. (Belecheanu et al., 2005)

Mobility Agents is an agent-based architecture
that helps a person with cognitive disabilities to
travel using public transportation. Agents are used
to represent transportation participants (buses
and travelers) and to enable notification of bus
approaching and arrival. Information is passed
to the traveler using a multimedia interface, via
a handheld device. Customizable user profiles
determine the most appropriate modality of in-
teraction (voice, text, and pictures) based on the
user’s abilities (Repenning & Sullivan, 2003).
This imposes a personal agent to take care that
abstract goals, as “go home”, are translated into
concrete directions. To achieve this, an agent
needs to collect information about user-specific
locations and must be able to suggest the right
bus for the particular user’s current location and
destination.

future trends

Future looks bright for this technology as develop-
ment is taking place within a context of broader
visions and trends in IT. The whole growing
field of IT is about to drive forward the R&D
of intelligent agents. We especially emphasize
the Semantic Web, ambient intelligence, service
oriented computing, Peer-to-peer computing and
Grid Computing.

The Semantic Web is the vision of the future
Web based on the idea that the data on the Web
can be defined and linked in such a way that it can

 1431

Intelligent Software Agents with Applications in Focus

be used by machines for the automatic processing
and integration (Berners-Lee, Hendler, & Lassila,
2001). The key to achieving this is by augment-
ing Web pages with descriptions of their content
in such a way that it is possible for machines to
reason automatically about that content. The com-
mon opinion is that the Semantic Web itself will
be a form of intelligent infrastructure for agents,
allowing them to “understand” the meaning of the
data on the Web (Luck et al., 2005).

The concept of ambient intelligence describes
a shift away from PCs to a variety of devices
which are embedded in our environment and
which are accessed via intelligent interfaces.
It requires agent-like technologies in order to
achieve autonomy, distribution, adaptation, and
responsiveness.

Service oriented computing is where MAS
could become very useful. In particular, this might
involve web services, where the Quality Of Service
demands are important. Each web service could
be modeled as an agent, with dependencies, and
then simulated for observed failure rates.

Peer-to-peer (P2P) computing, presenting
networked applications in which every node is
in some sense equivalent to all others, tends to
become more complex in the future. Auction
mechanism design, agent negotiation techniques,
increasingly advanced approaches to trust and
reputation, and the application of social norms,
rules and structures - presents some of the agent
technologies that are about to become relevant in
the context of P2P computing.

Grid Computing is the high-performance
agent-based computing infrastructure for support-
ing large-scale distributed scientific endeavour.
The Grid provides a means of developing eScience
applications, yet it also provides a computing
infrastructure for supporting more general ap-
plications that involve large-scale information
handling, knowledge management and service
provision. The key benefit of Grid computing is
flexibility – the distributed system and network

can be reconfigured on demand in different ways
as business needs change.

Some considerable challenges have still re-
mained in the agent-based world, such as the lack
of sophisticated software tools, techniques and
methodologies that would support the specifica-
tion, development, integration and management
of agent systems.

conclusIon

Today, research and development in the field of
intelligent agents is rapidly expanding. At its core
is the concept of autonomous agents interacting
with one another for their individual and/or collec-
tive benefit. A number of significant advances have
been made over the past two decades in design and
implementation of individual autonomous agents,
and in the way in which they interact with one
another. These concepts and technologies are now
finding their way into commercial products and
real-world software solutions. Future IT visions
share the common need for agent technologies
and prove that agent technologies will continue
to be of vital importance. It is foreseeable that
agents will become the integral part of informa-
tional technologies and artificial intelligence in
the near future, and that is why they should be
kept an eye on.

references

Agha, G., Wegner, P., & Yonezawa, A. (Eds.).
(1993). Research directions in concurrent ob-
ject-oriented programming. Cambridge, MA:
The MIT Press.

ARPA Knowledge Sharing Initiative. (1993).
Specification of the KQML agent-communica-
tion language – plus example agent policies and
architectures. Retrieved January 30, 2007, from

1432

Intelligent Software Agents with Applications in Focus

http://www.csee.umbc.edu/kqml/papers/kqml-
spec.pdf.

Barber, K. S., and Martin, C. E. (1999). Agent
Autonomy: Specification, Measurement, and Dy-
namic Adjustment, Autonomy Control Software
Workshop, Seattle, Washington.

Belecheanu, A. R., Luck, M., McBurney P.,
Miller T., Munroe, S., Payne T., & Pechoucek
M. (2005). Commercial Applications of Agents:
Lessons, Experiences and Challenges. (p. 2)
Southampton, UK.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001,
May). The Semantic Web, Scientific American,
pp. 35-43.

Bond, A. H., & Gasser, L. (Eds.). (1998). Readings
in distributed artificial intelligence. San Mateo,
CA: Morgan Kaufmann Publishers.

Booch, G. (2004). Object-oriented analysis and
design (2nd ed.). MA: Addison-Wesley.

Booth, D., Haas, H., McCabe, F., Newcomer, E.,
Champion, M., Ferris, C., & Orchard, D. (2004,
February)., Web services architecture. W3C work-
ing group note 11. Retrieved January 30, 2007,
from http://www.w3.org/TR/ws-arch/.

Devedzic, V. (2006). Semantic web and education.
Berlin, Heidelberg, New York: Springer.

Durfee, E. H., & Lesser, V. (1989). Negotiating
task decomposition and allocation using partial
global planning. In L. Gasser, & M. Huhns (Eds.),
Distributed artificial intelligence: Volume II (pp.
229–244) London: Pitman Publishing and San
Mateo, CA: Morgan Kaufmann.

FIPA (1997). Part 2 of the FIPA 97 specifica-
tions: Agent communication language. Retrieved
January 30, 2007, from http://www.fipa.org/specs/
fipa00003/OC00003A.html.

Krcadinac, U., Stankovic, M., Kovanovic, V.,
& Jovanovic, J. (2007). Intelligent Multi-Agent
Systems in: Carteli, A., & Palma, M. (Eds.).

Encyclopedia of Information Communication
Technology, Idea Group International Publishing,
(forthcoming)

Luck, M., McBurney, P., Shehory, O., & Will-
mott, S. (2005). Agent technology: Computing
as interaction. Retrieved January 30, 2007, from
http://www.agentlink.org/roadmap/al3rm.pdf.

Maes, P.(1994) Agents that reduce work and
information overload. Communications of the
ACM, 37(7), 31–40.

Repenning, A., & Sullivan, J. (2003). The Pragmat-
ic Web: Agent-Based Multimodal Web Interaction
with no Browser in Sight, In G.W.M. Rauterberg,
M. Menozzi, & J. Wesson, (Eds.), Proceedings of
the Ninth International Conference on Human-
Computer Interaction (pp. 212-219). Amsterdam,
The Netherlands: IOS Press.

Rocha, A. P. & Oliveira, E. (2001) Electronic
Institutions as a framework for Agents’ Negotia-
tion and mutual Commitment. In P. Brazdil, A.
Jorge (Eds.), Progress in Artificial Intelligence
(Proceedings of 10th EPIA), LNAI 2258, pp.
232-245, Springer.

Russell, S. J., & Norvig, P. (1995). Artificial
intelligence: A modern approach. New Jersey:
Prentice-Hall.

Stankovic, M., Krcadinac, U., Kovanovic, V., &
Jovanovic, J. (2007). An Overview of Intelligent
Software Agents in: Khosrow-Pour, M. (Ed.).
Encyclopedia of Information Science and Tech-
nology, 2nd Edition, Idea Group International
Publishing, (forthcoming)

Sycara, K., Decker, K., & Williamson, M. (1997).
Middle-Agents for the Internet, In M. E. Pollack,
(Ed.), Proceedings of the Fifteenth International
Joint Conference on Artificial Intelligence (pp.
578-584). Morgan Kaufmann Publishers.

Wooldridge, M., & Jennings, N. R. (1995). Intel-
ligent agents: Theory and practice. The Knowledge
Engineering Review, 10(2), pp. 115–152.

 1433

Intelligent Software Agents with Applications in Focus

key terMs

Actuators: Software component and part of
the agent used as a mean of performing actions
in the agent environment.

Agent Autonomy: Agent’s active use of its
capabilities to pursue some goal, without interven-
tion by any other agent in the decision-making
process used to determine how that goal should
be pursued (Barber & Martin, 1999).

Agent Percepts: Every information that an
agent receives trough it’s sensors, about the state
of the environment or any part of the environ-
ment.

Intelligent Software Agent: An encapsulated
computer system that is situated in some environ-
ment and that is capable of flexible, autonomous
action in that environment in order to meet its de-
sign objectives (Wooldridge & Jennings, 1995).

Middle-Agents: Agents that facilitate coop-
eration among other agents and typically connect
service providers with service requesters.

Multi-Agent System (MAS): A software
system composed of several agents that interact
in order to find solutions of complex problems.

Sensors: Software component and part of the
agent used as a mean of acquiring information
about current state of the agent environment (i.e.,
agent percepts).

This work was previously published in Encyclopedia of Artificial Intelligence, edited by J. Dopico; J. de la Calle; A. Sierra,
pp. 950-955, copyright 2009 by Information Science Reference (an imprint of IGI Global).

1434

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.2
Simulation Modelling within

Collaborative Spatial Decision
Support Systems Using

“Cause-Effect” Models and
Software Agents

Raja Sengupta
McGill University, Canada

AbstrAct

Solutions to spatial environmental problems often
require the integration of dynamic simulation
models within GIS to create spatial decision sup-
port systems (SDSS) that can generate responses
to theoretical ”What if?” scenarios. Extending
this paradigm to a collaborative spatial decision
support system, however, faces significant chal-
lenges. This includes the inability of computation-
ally intensive models to provide real-time results,
and the inability of novice end users to effectively
parameterize the models. Effective solutions to
these problems proposed here include the use of
”cause-effect” models to link inputs to outputs
for a limited number of scenarios, as well as uti-
lizing software agents that assist novice users in
determining the correct input parameters for the

models. Examples from the St-Esprit watershed
SDSS serve to elucidate the proposed solutions.

IntroductIon

Sprague (1980) defined decision support systems
(DSS) as computer software that are: (a) designed
to solve the kinds of semi- and unstructured prob-
lems that upper level managers often face; (b) able
to combine analytical models with traditional data
storage and retrieval functions; (c) user-friendly
and accessible by decision makers with minimal
computer experience; and (d) flexible and adapt-
able to different decision-making approaches.
Extending this definition, Armstrong, Densham,
& Rushton (1986) used the term spatial decision
support systems to refer to computer programs

 1435

Simulation Modelling within Collaborative Spatial Decision Support Systems Using “Cause-Effect”

that help decision-makers solve semistructured
spatial problems through the integration of
analytical models, spatial data, and traditional
geoprocessing software (such as GIS). Therefore,
an SDSS supports the spatial decision-making
process by providing access to models that help
users assess the impact of alternative solutions
on stakeholders in collaborative environments
(Armstrong, 1994).

Several spatial decision support systems
(SDSS) implementations have been proposed
or demonstrated in literature that incorporates
analytical modeling with traditional GIS software
packages for decision support. For example, the
NELUP DSS was developed to study the im-
pact of policy changes (at a global, European,
national, regional, county, or local level) on the
rural landscape, agriculture, and environment
using economic, hydrologic, and habitat models
(Watson & Wadsworth, 1996). Another SDSS,
which relocated supply stores for school districts,
was developed to find the optimal number of re-
gions and service locations within each region to
serve a dispersed geographical pattern of demand
(Armstrong, Rushton, Honey, Dalziel, Lolonis,
De, & Densham, 1991). The “WaterWare” DSS
was developed as a comprehensive SDSS to sup-
port the development of an integrated river basin
management plan to resolve conflicting uses such
as recreation, agriculture, water supply, and the
environment (Jamieson & Fedra, 1996). And
finally, faunal habitat and landscape ecology
models are being increasingly integrated with GIS
to support decision making at the landscape level
(McGarigal & Marks, 1993; Larson & Sengupta,
2004; Zhu, Healey, & Aspinall, 1998)

However, current SDSS often act as a basic
interface to complicated models, leaving the end
user to figure out model input parameters on their
own. Therefore, the execution of such models in
the SDSS in real time creates three hurdles for
end users of the SDSS:
1. The models are computationally demanding,

and can take up system resources that es-

sentially render them impossible to execute
in real time;

2. Most SDSS expect the end user to be well
versed with the input data requirements
and critical parameters of the model, which
requires scientific knowledge of the process
being simulated; and

3. Most models integrated within SDSS aren’t
well suited to assisting a collaborative deci-
sion-making process, with the above two
points creating significant complexity while
running models in group settings.

In effect, the lack of real-time model runs
forces the collaborative decision-making process
to rely on preset examples and/or static map out-
puts of sophisticated numerical simulations. This
limitation not only severely restricts the range of
options that can be evaluated by the group, it also
forces individuals to rely on third-party technical
support for generation of key scenarios.

This chapter describes the development of
two strategies that can allow dynamic simulation
scenarios to be incorporated within an SDSS to
make it capable of supporting collaborative re-
search, namely (i) “cause-effect” models linking
outputs to spatial inputs, and (ii) software agents
to assist users in selecting and understanding
model parameters and input variables. Taken
together, these two approaches can be combined
with traditional multicriteria analysis (e.g., ana-
lytical hierarchy process or AHP) and GIS-based
overlay procedures, thereby providing multiple
decision-makers access to real-time generation
of “What if?” scenarios incorporating dynamic
spatial process simulations and allowing for col-
laborative problem-solving (Jankowski, 1995).

The effectiveness of this procedure in creating
the prototype of a collaborative planning tool is
tested using the example of the St-Esprit water-
shed in Quebec. In the first part, “cause-effect”
models of stream discharge linked to varied land
use scenarios are generated using the Soil and
Water Assessment Tool (SWAT) program. In the

1436

Simulation Modelling within Collaborative Spatial Decision Support Systems Using “Cause-Effect”

second part, conceptual models of software agents
are discussed that could assist users in mastering
the nuances of SWAT.

cAuse-effect Models

Modelling runoff and sediment
loading of the saint-esprit
watershed using swAt

The watershed modeled in SWAT drains a portion
of the St. Esprit County in Québec, 50 km north
of Montreal (Figure 1). The St. Esprit River is a
tributary of the L’Assomption River, which flows
into the St. Lawrence. The St. Esprit watershed is
26.1 Km2 , of which 28% is forest, 26% corn, 12%
hay, 8.5% wheat, and 7.3% residential (Figure 2).
Generally, the relief of this region is rolling with a
64 m difference from the highest to lowest point,
and slopes generally well below 5%. The soils are
more gravelly and sandy in the headwaters, while
clays predominate at the lower reaches of the basin.
The soil texture classes are mainly loamy sands,
sandy loams, and clays (see Figure 3).

SWAT, developed by the Blackland Research
Center of the Texas A&M University System, the

Grassland, Soil, and Water Research Laboratory
of the USDA, and the US EPA Office of Science
and Technology, is a public domain, physically
based, distributed parameter hydrologic model
specifically designed for agricultural watersheds
(Srinivasan & Arnold, 1994).

 SWAT relates a set of spatially distributed
input parameters representing land use, soils, and
climate to the output parameters of streamflow,
sediment concentration, and nitrate and phosphate
loading. For example, Figure 2 shows the land-
use maps for the St. Esprit watershed, obtained
in 1995 by a land survey carried out by the Brace
Water Resources Center at the Macdonald Cam-
pus of McGill University (Enright, Papineau, &
Madramootoo, 1998). This data, combined with
nonspatial climate data obtained from Environ-
ment Canada (consisting of solar radiation, tem-
perature, rainfall, evapotranspiration, and wind
speeds from 1994 to 1998) and spatially explicit
soil (Figure 3) and topographic maps obtained
from the “Institut de Recherche et Development
en Agroenvironnement” (IRDA), can be used to
estimate stream discharge and sediment output
from the mouth of the river (Figure 4). Obviously,
there exists a complex mathematical relationship
within the model where the output of the model

Figure 1. Location map of Saint-Esprit watershed

 1437

Simulation Modelling within Collaborative Spatial Decision Support Systems Using “Cause-Effect”

Figure 2. Landuse Map of Saint-Esprit Watershed

Landuse Legend

Cereal

Soy

Cabbage / Radish
Cucumbers

Pasture

Vegetables

Non-cultivate

Corn

Hay
Forest

Residential

Figure 3. Soils Map (with streams overlay) of Saint-Esprit Watershed

Saint-Urbain

Stream Network
Soil Series

Archigan
Alluvial Material
Joliette
Saint-Bernard
Saint-Laurent
Soulanges
Sainte-Rosalie

Monthly discharge and sediment output for the saint-espirit river (1994-1998)

-10

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40 50 60

Months

s
ed

im
en

t
(to

ns
)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

di
sc

ha
rg

e
(c

u.
 m

/s
ec

)

Sed_Out
Flow_Out

Figure 4. SWAT output showing simulated monthly discharge and sediment loading at the mouth of the
St-Esprit River (1994-1998).

1438

Simulation Modelling within Collaborative Spatial Decision Support Systems Using “Cause-Effect”

(e.g., discharge) is dependent on the input param-
eters (e.g., land use, soils, and climate), as shown
in a simplified manner in Figure 5.

Modelling the Model: “cause-effect”
Models that link nonspatial Inputs
to outputs

The interesting feature of the relationship shown
in Figure 5 is that for an unchanged set of spatial
data, the relationship between inputs and outputs
is nonspatial in nature, and can be derived using
either statistical techniques or with heuristic meth-
ods such as neural networks (Bekele & Nicklow,
2005). In other words, if land use, topography, or
soils are not altered, then the relationship of the
independent nonspatial variable, that is, climate,
to the dependent nonspatial output, for example,
discharge, varies with time but not across space.
This important characteristic of SWAT and other
similar spatially distributed hydrological models
can therefore be exploited to build simplified mod-
els of relationships between the two nonspatial
components, which is termed a “cause-effect”
model here.

As demonstration, two cause-effect models
were built for the Saint-Esprit SWAT simulation
using a neural network software and linear re-

gression respectively. In both cases, an identical
dataset consisting of select climate variables (i.e.,
rainfall, snowmelt, and evapotranspiration) and
discharge for 241 monthly simulations (1994-1998)
were used to derive the relationship between
these variables. For the first model, the neural
network software Neurosolutions (http://www.
neurosolutions.com) consisting of two layers
of neurons connected in a feed-forward fashion
was used. Eleven sample points were set aside
as test cases, and the remaining 230 points used
to train the neural network. Within the software,
a genetic algorithm is used to train the neurons
multiple times, and the default value of 1,000
iterations was selected to converge the neurons
on a solution. The neural network was, however,
able to converge within the first hundred itera-
tions, indicating that a robust solution had been
found. This solution was then used to predict
discharge values. Figure 6 shows the comparison
of the actual values for discharge for the eleven
test points compared with the values predicted
by the Neural Network.

The second cause-effect model was built
statistically using linear regression. Its results
were even more striking in that a single climate
variable, snowmelt, explained over 78% of the
variability in discharge. The strong correlation

Landuse

Climate
Data

Soils
Soil and Water

Assessment Tool
(SWAT)

Monthly
discharge and

sediment loading

OUTPUT(S) INPUT

Topography

Discharge = (Landuse, Soils, Topography, Climate)

Figure 5. Relationship between Input and Output variables

 1439

Simulation Modelling within Collaborative Spatial Decision Support Systems Using “Cause-Effect”

amongst these two variables can be observed in
a time-series plot and explained with the help of
simple linear regression, as shown in Figure 7.

The cause-effect models discussed above in-
dicate that if the spatially-explicit input datasets
are not altered between model runs, it may be
possible to devise simplified relationships that
mimic the model’s output without having to re-
run the model itself. This would allow real-time
simulations in a collaborative –decision-making
environment, whereby users could get to work
with instantaneous model outputs. In the case of
SWAT shown previously, it was possible to relate
only the climate variables to discharge (given that
land use, topography, and soils remained constant).
But what about land-use change scenarios, which
entails changes to a spatially explicit input? For
example, decision makers may wish to evaluate
the effectiveness of placing riparian buffer strips
adjacent to major streams, an accepted man-
agement practice that reduces nonpoint source

pollution (Cey, Rudolph, Aravena, & Parkin,
1999; Peterjohn & Correll, 1984). In that case,
it is proposed that a “cause-effect” model be
developed for the finite set of land-use change
scenarios that are likely to be evaluated by the
decision makers. Figure 8 provides the example
of four scenarios where decision makers must
evaluate the establishment and effectiveness of
riparian buffer strips of varying widths. In such
a case, four ‘cause-effect” models, one for each
scenario, would need to be developed to assist in
collaborative decision making.

softwAre Agents

what are Intelligent software
Agents?

The term “intelligent agents” originated as an
extension of artificial intelligence (AI) research

Predicted Values Actual Values
(cu. m/sec) (cu. m/sec)
0.2158 0 .3854
0.5858 0 .4558
0.9506 0 .97
0.0506 0 .129
0.2118 0 .1915
0.3167 0 .2661
0.6421 0 .4862
0.2723 0 .8089
0.0772 0 .1198
0.0623 0 .2373
0.1251 0 .1919

Figure 6. Comparison of discharge values predicted by the Neural Network with actual values; statisti-
cal results and scatter plot indicate a correlation coefficient of 0.78

1440

Simulation Modelling within Collaborative Spatial Decision Support Systems Using “Cause-Effect”

relationship between snowmelt and discharge

-20

0

20

40

60

80

100

120

140

160

0 10 20 30 40 50 60

Months

s
no

w
m

el
t (

m
m

)

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

d
is

ch
ar

ge
 (c

u.
 m

/s
ec

)

Snomelt
Flow_Out

Sn
ow

m
el

t (
m

m
)

R2 = 0.783942
p < 0.0001
Flow_Out = 0.16324 + 0.00766 Snowmelt

Relationship between Snowmelt & Discharge

)ces/
m . uc(egrahcsi

D

Months

Snowmelt
Flow_Out

Snowmelt

Figure 8. Varying widths of riparian band in the four scenarios, each with its own ‘cause-effect’
model

Figure 7. Statistical relationship between snowmelt and discharge (r2 = 0.78, p < 0.0001)

Model 1 (No Buffer)
Y = •(X1, X2…Xn)

Model 2 (10m Buffer)
Y = •(X1, X2…Xn)

Model 3 (20m Buffer)
Y = •(X1, X2…Xn)

Model 4 (30m Buffer)
Y = •(X1, X2…Xn)

Scenario 1 Scenario 2

4 oiranecS3 oiranecS

 1441

Simulation Modelling within Collaborative Spatial Decision Support Systems Using “Cause-Effect”

in late 1980s and early 1990s (Woolridge & Jen-
nings, 1995). It refers to relatively autonomous
software that manages information searching/
retrieval and simulation in complex and chang-
ing operating environments such as the Internet.
There is general consensus that to be considered
an intelligent agent, the software must possess
the following four properties: (a) autonomous
behavior, (b) ability to sense its environment and
other agents, (c) ability to act upon its environment
alone or in collaboration with others (sometimes
via an agent communication language), and (d)
possession of rational behavior (Woolridge, 1999;
Woolridge & Jennings, 1995). In some cases, intel-
ligent agents should not only be able to respond
to, but also learn from their environment (Maes,
1994). Humanistic characteristics such as beliefs,
desires, intentions, (Shoham, 1993) and emotions
and trust (Maes, 1994) also could form a part of
agent behaviour. Since their inception, agents
have become a popular technology for a variety
of computer applications, ranging from manag-
ing human-computer interactions to simulating
social interactions.

Software agents, a subclass of intelligent
agents, are designed to act autonomously to man-
age complex information. Generally in GIScience,
software agents can be oriented by four tasks
(Nwana, 1996). First, interface agents assist users
in interacting with a specific software or hardware
environment by automating routine or difficult
computing tasks. For example, Campos, Naumov,
& Shapiro (1996) describe a user interface agent
that provides assistance to users of the GIS soft-
ware ARC/INFO. Interfacing is the primary task
of software agents. Second, collaborative agents
enable interagent, interhuman, or agent-human
collaboration for tasks that require cooperation and
consensus building. A subset of interface agents
learns from observing repeated user-software
interactions, thereby acting on behalf of users.
Sengupta and Bennett (2003) detail an agent-based
environment that uses multiple interacting agents
to retrieve and manipulate data and spatial models

to support decision-making environments. Third,
mobile agents specialize in navigating networks
by moving between computers, sensing security,
and Internet protocols. Tsou and Buttenfield
(2002) describe a mobile, distributed, geospatial
analysis environment using mobile agents. Last,
information agents specialize in data mining and
information retrieval. An example of an informa-
tion agent in GIScience/geography is one that
surfs the Web for digital geospatial data, given a
specific map extent and cartographic scale (Luo,
Wang, & Xu, 2003).

Here I propose that interface agents be used
to help users of collaborative SDSS parameter-
ize the SWAT model, freeing them to focus on
metatasks such as evaluating alternative land-use
scenarios. The complexity of the input variables
and the possible assistance afforded by agents is
described in the following sections.

A look at the complexity of
swAt’s Input Parameters and its
Implications for collaborative
decision-Making

Although there is an Arcview extension called
AVSWAT available for SWAT (De Luzio, Srini-
vasan, & Arnold, 2004), it still requires the end
user to have adequate knowledge of GIS data for-
mats, structure of attribute tables, and projections.
For example, the screen shot in Figure 9 shows
how novice users may have to navigate pop-up
windows with terminology like “DEM Set Up”
and statements like “Project UTM – 1983; Zone
17.” More complications arise when setting up
soil parameters, where the users must deal with
STATSGO/SURGO soil scheme classifications
in order to complete one simulation cycle. This
often leads to a bottleneck where most end users
of SDSS rely on a GIS technician to operate the
system (Armstrong & Densham, 1995). As a result,
an interactive process dialog between the system
and the decision makers is no longer possible.
This severely distracts from the collaborative

1442

Simulation Modelling within Collaborative Spatial Decision Support Systems Using “Cause-Effect”

decision-making environment as members of the
group wrestle with the nuances of the software.
In addition, technologically adept members of the
group begin to gain an unfair advantage in the
collaborative decision-making process.

Agents to the rescue

The interface agents proposed here assist users in
two instances: first to parameterize models, and
second to evaluate plausible scenario alternatives.
The key to agent-based modeling is flexibility.
Therefore, the interface agents themselves are
simply front ends to a larger knowledge base
that can take the form of other agents within
Blackboard Architectures (Sengupta & Bennett,
2003) or changeable elements of knowledge stored
in a database. The key function of the interface
agents is to search the knowledge base to find
possible sequence of transformations/solutions
that completes the task at hand.

In the case of parameterizing SWAT, end us-
ers should not need to deal with complexities and
specificities of the model, such as the land use

code used by SWAT for representing vegetation.
This information can be embedded in a database.
An interface agent, as shown in Figure 10, is able
to retrieve this and other details from database
searches and place it in the model input files for
the user, when necessary. Further, the agent is
also able to assist users enter missing pieces of
information, such as composition of the buffer
strips, by converting user input into the numeri-
cal equivalents (e.g., land-use codes) desired by
the model.

 A second interface agent can be used to define
spatially explicit scenarios. For example, in Figure
11, the agent is used to define regions within the
map where land-use change is desired, which is
then used as input to SWAT. In the figure, the user
is prompted to demarcate areas on the map that
need to be converted to buffer areas. Following
the demarcation, the agent automatically creates
buffer strips within the land use map (note that a
second pop-up window not shown in the figure
asks for the width of the buffer strips, and places
the strips adjacent to land use coded as “water”).
Both these agents hide the actual complexity of
setting up the SWAT input files from the user.

Figure 9. Setting up input parameters for SWAT; Step 1 involves delineating sub-watersheds from a
DEM

 1443

Simulation Modelling within Collaborative Spatial Decision Support Systems Using “Cause-Effect”

conclusIon

Using either the “cause-effect” models or intel-
ligent agents or a combination of the two, it is
possible to reduce both the time required to run
a model multiple times, as well as the complexity
of setting up its input parameters. As shown with
examples from the St-Esprit SDSS, these methods
can be very useful in real-world scenarios where
decision makers, who are often nonGIS experts,

may have to contend with deriving discharge
information from simulation models like SWAT.
Simplifying these tasks should enable better use
of the SDSS in collaborative decision-making
environments and restore the tool to its rightful
position: in the hands of decision makers who have
no GIS experience, but feel comfortable using it
to make informed decisions.

Figure 10. Interface Agent assistance in defining parameters for the model SWAT.

Figure 11. Interface Agents assist in development of land use scenarios

1444

Simulation Modelling within Collaborative Spatial Decision Support Systems Using “Cause-Effect”

references

Armstrong, M. P. (1994). Requirements for the
development of GIS-based group decision sup-
port systems. Journal of the American Society
for Information Science, 45(9), 669-677.

Armstrong, M. P., & Densham, P. J. (1995). Col-
laborative spatial decision making: A look at the
dark side. In Proceedings of GIS/LIS: Vol. 1, (pp.
11-19). Bethesda, MD: American Congress on
Surveying and Mapping.

Armstrong, M. P., Densham, P. J., & Rushton, G.
(1986). Architecture for a microcomputer-based
spatial decision support system. In Proceedings
of the Second International Symposium on Spatial
Data Handling (pp. 120-131). Williamsville, NY:
IGU Commission on Geographical Data Sensing
and Processing.

Armstrong, M. P., Rushton, G., Honey, R., Dalziel,
B. T., Lolonis, P., De, S., & Densham, P. J. (1991).
Decision support for regionalization: A spatial
decision support system for regionalizing service
delivery systems. Computers, Environment and
Urban Systems, 15, 37-53.

Bekele, E. G., & Nicklow, J. W. (2005, May 15-20).
Hybrid evolutionary search methods for training
an artificial neural network. Proceedings of the
Conference of the Environmental and Water
Resources Institute, Anchorage, AK. Reston,
VA: ASCE.

Campos, D., Naumov, A., & Shapiro, S. (1996).
Building an interface agent for ARC/INFO. Pro-
ceedings of the ESRI International User Confer-
ence, Palm Springs, CA. Redlands, CA: ESRI.

Cey, E., Rudolph, D., Aravena, R., & Parkin, G.
(1999). Role of the riparian zone in controlling
the distribution and fate of agricultural nitrogen
near a small stream in southern Ontario. Journal
of Contaminant Hydrology, 37, 45-67.

Di Luzio, M., Srinivasan R., & Arnold J.G. (2004).
A GIS-coupled hydrological model system for the
watershed assessment of agricultural nonpoint
and point sources of pollution. Transactions in
GIS, 8(1), 113-136.

Enright, P., Papineau, F., & Madramootoo, C.
(1998). Gestion de l’Eau dans le Bassin Versant de
la Partie Superieure du Ruisseau St-Esprit (Project
61-13008, Rapport Final). Montreal: McGill.

Jamieson, D. G., & Fedra, K. (1996). The “Wa-
terWare” decision-support system for river basin
planning: 1. Conceptual design. Journal of Hy-
drology, 177, 163-175.

Jankowski, P. (1995). Integrating GIS and mMul-
tiple criteria decision making methods. Inter-
national Journal of Geographical Information
Systems, 9(3), 252-273.

Larson, B. D., & Sengupta, R., (2004). A spatial
decision support system to identify species-spe-
cific critical habitats based on size and accessibility
using US GAP data. Environmental Modelling
and Software, 19(1), 7-18.

Luo, Y., Wang, X., & Xu, Z. (2003). Extension
of spatial metadata and agent-based spatial data
navigation mechanisms. Proceedings of the Elev-
enth ACM international symposium on Advances
in Geographic Information Systems (pp. 102-109).
New York: ACM Press.

Maes, P. (1994). Agents that reduce work and
information overload. Communications of the
ACM, 37(7), 30-40.

McGarigal, K., & Marks, B. J. (1993). FRAG-
STATS-Spatial Pattern Analysis Program for
Quantifying Landscape Structure. Corvallis:
Oregon State University, Forest Science Depart-
ment.

Nwana, H. (1996). Software agents: An overview.
Knowledge Engineering Review, 11(3), 1-40.

 1445

Simulation Modelling within Collaborative Spatial Decision Support Systems Using “Cause-Effect”

Peterjohn, W., & Correll, D. (1984). Nutrient
dynamics in an agricultural watershed: Obser-
vations on the role of a riparian forest. Ecology,
65, 1466-1475.

Sengupta, R., & Bennett, D. A. (2003). Agent-
based modeling environment for spatial decision
support. International Journal of Geographical
Information Science, 17(2), 157-80.

Shoham, Y. (1993). Agent-oriented programming.
Artificial Intelligence, 60(1), 51-92.

Srinivasan, R., & Arnold, J.G. (1994). Integration
of a basin-scale water quality model with GIS.
Water Resources Bulletin, 30(3), 453-462.

Sprague, R. H. (1980). A framework for the
development of decision support systems. MIS
Quarterly, 4, 1-25.

Tsou, M. H., & Buttenfield, B. P. (2002). A dy-
namic architecture for distributed geographic

information services. Transactions in GIS, 6(4),
355-81.

Watson, P. M., and Wadsworth, R. A. (1996). A
computerized decision support system for rural
policy formulation. International Journal of Geo-
graphical Information Systems, 10(4), 425-440.

Wooldridge, M. (1999). Intelligent agents. In G.
Weiss (Ed.), Multiagent systems: A modern ap-
proach to distributed artificial intelligence (pp.
27-77). Cambridge: The MIT Press.

Wooldridge, M., & Jennings, N. R. (1995). Intel-
ligent agents: theory and practice. Knowledge
Engineering Review, 10(2), 115-52.

Zhu, X., Healey, R. G., & Aspinall, R. J. (1998).
A knowledge-based systems approach to design
of spatial decision support systems for environ-
mental management. Environmental Manage-
ment, 22(1), 3-48.

This work was previously published in Collaborative Geographic Information Systems, edited by S. Balram; S. Dragicevic,
pp. 134-149, copyright 2006 by IGI Publishing (an imprint of IGI Global).

1446

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.3
Intelligent Software Agents
Analysis in E-Commerce I

Xin Luo
The University of New Mexico, USA

Somasheker Akkaladevi
Virginia State University, USA

IntroductIon

Equipped with sophisticated information tech-
nology infrastructures, the information world is
becoming more expansive and widely intercon-
nected. Internet usage is expanding throughout the
web-linked globe, which stimulates people’s need
for desired information in a timely and convenient
manner. Electronic commerce activities, powered
by Internet growth, are increasing continuously.
It is estimated that online retail will reach nearly
$230 billion and account for 10% of total U.S.
retail sales by 2008 (Johnson et al. 2003). In addi-
tion, e-commerce entailing business-to-business
(B2B), business-to-customer (B2C) and customer-
to-customer (C2C) transactions is spawning new
markets such as mobile commerce.

By increasing the degree and sophistication of
the automation, commerce becomes much more
dynamic, personalized, and context sensitive for
both buyers and sellers. Software agents were first

used several years ago to filter information, match
people with similar interests, and automate repeti-
tive behavior (Maes et al. 1999). In recent years,
agents have been applied to the arena of e-com-
merce, triggering a revolutionary change in the
way we conduct online transactions in B2B, B2C,
and C2C. Researchers argue that the potential of
the Internet for transforming commerce is largely
unrealized (Begin et al. 2002; Maes et al. 1999).
Further, He and Jennings noted that a new model
of software agent is needed to achieve the degree
of automation and move to second generation e-
commerce1 applications (He et al. 2003). This is
due to the predicament that electronic purchases
are still largely unautomated. Maes et al. (1999)
also addressed that, even though information is
more easily accessible and orders and payments
are dealt with electronically, humans are still
in the loop in all stages of the buying process,
which inevitably increase the transaction costs.
Undoubtedly, a human buyer is still responsible

 1447

Intelligent Software Agents Analysis in E-Commerce I

for collecting and interpreting information on
merchants and products, making decisions about
merchants and products, and ultimately entering
purchase and payment information. Additionally,
Jennings et al. (1998) confirmed that commerce
is almost entirely driven by human interactions
and further argued that there is no reason why
some commerce cannot be automated.

This unautomated loop requires a lot of time
and energy and results in inefficiency and high
cost for both buyers and sellers. To automate time-
consuming tasks, intelligent software agent (ISA)
technology can play an important role in online
transaction and negotiation due to its capability
of delivering unprecedented levels of autonomy,
customization, and general sophistication in the
way e-commerce is conducted (Sierra et al. 2003).
Systems containing ISAs have been developed to
automate the complex process of negotiating a
deal between a buyer and a seller. An increasing
number of e-commerce agent systems are being
developed to support online transactions that have
a number of variables to consider and to aim for
a win-win result for sellers and buyers.

In today’s e-commerce arena, systems
equipped with ISAs may allow buyers and sellers
to find the best deal taking into account the relative
importance of each factor. Advanced systems of
e-commerce that embody ISA technologies are
able to perform a number of queries and to process
phenomenal volumes of information. ISAs reduce
transaction costs by collecting information about
services and commodities from a lot of firms and
presenting only those results with high relevance
to the user. ISA technologies help businesses au-
tomate information transaction activity, largely
eliminate human intervention in negotiation,
lower transaction and information search cost,
and further cultivate competitive advantage for
companies. Therefore, ISAs can free people to
concentrate on the issues requiring true human
intelligence and intervention. Implementing the
personalized, social, continuously running, and
semi-autonomous ISA technologies in business

information systems, the online business can
become more user-friendly, semi-intelligent, and
human-like (Pivk 2003).

lIterAture revIew

A number of scholars have defined the term
intelligent software agent. Bradshaw (1997)
proposed that one person’s intelligent agent is
another person’s smart object. Jennings and
Wooldridge (1995) defined agents as a computer
system situated in some environment that is ca-
pable of autonomous action in this environment
to meets its design objective. Shoham (1997)
further described an ISA as a software entity
which functions continuously and autonomously
in a particular environment, often inhabited by
other agents and processes. In general, an ISA is
a software agent that uses Artificial Intelligence
(AI) in the pursuit of the goals of its clients (Croft
2002). It can perform tasks independently on
behalf of a user in a network and help users with
information overload. It is different from current
programs in terms of being proactive, adaptive,
and personalized (Guttman et al. 1998b). Also, it
can actively initiate actions for its users accord-
ing to the configurations set by the users; it can
read and understand user’s preferences and habits
to better cater to user’s needs; it can provide the
users with relevant information according to the
pattern it adapts from the users.

ISA is a cutting-edge technology in computa-
tional sciences and holds considerable potential
to develop new avenues in information and com-
munication technology (Shih et al. 2003). It is used
to perform multi-task operations in decentral-
ized information systems, such as the Internet,
to conduct complicated and wide-scale search
and retrieval activities, and assist in shopping
decision-making and product information search
(Cowan et al. 2002). ISA’s ability of performing
continuously and autonomously stems from hu-
man desire in that an agent is capable of operat-

1448

Intelligent Software Agents Analysis in E-Commerce I

ing certain activities in a flexile and intelligent
manner responsive to changes in the environment
without constant human supervision. Over a long
period of time, an agent is capable of adapting
from its previous experience and would be able
to inhabit an environment with other agents to
communicate and cooperate with them to achieve
tasks for human.

Intelligent Agent taxonomy and
typology

Franklin and Grasser (1996) proposed a general
taxonomy of agent (see Figure 1).

This taxonomy is based on the fact that ISA
technologies are implemented in a variety of areas,
including biotechnology, economic simulation and
data-mining, as well as in hostile applications (ma-
licious codes), machine learning and cryptography
algorithms. In addition, Nwana (1996b) proposed
the agent typology (see Figure 2) in which four
types of agents can be categorized: collaborative
agents, collaborative learning agents, interface
agents and smart agents. These four agents have
different congruence amid learning, autonomy,
and cooperation and therefore tend to address
different sides of this topology in terms of the
functionality.

According to Nwana (1996b), collaborative
agents emphasize more autonomy and coopera-
tion than learning. They collaborate with other
agents in multi-agent environments and may have
to negotiate with other agents in order to reach
mutually acceptable agreements for users. Unlike
collaborative agents, interface agents emphasize
more autonomy and learning. They support and
provide proactive assistance. They can observe
user’s actions in the interface and suggest better
ways for completing a task for the user. Also,
interface agents’ cooperation with other agents is
typically limited to asking for advice (Ndumu et
al. 1997). The benefits of interface agents include
reducing user’s efforts in repetitive work and
adapting to their user’s preferences and habits.
Smart agents are agents that are intelligent,
adaptive, and computational (Carley 1998). They
are advanced intelligent agents summing up the
best capabilities and properties of all presented
categories.

This proposed typology highlights the key
contexts in which the agent is used in AI literature.
Yet Nwana (1996b) argued that agents ideally
should do all three equally well, but this is the
aspiration rather than the reality. Furthermore,
according to Nwana (1996b) and Jennings and
Wooldridge (1998), five more agent types could be
derived based on the typology, from a panoramic
perspective (see Figure 3).

In this proposed typology, mobile agents are
autonomous and cooperative software processes
capable of roaming wide area networks, inter-
acting with foreign hosts, performing tasks on
behalf of their owners (Houmb 2002). Information
agents can help us manage the explosive growth
of information we are experiencing. They perform
the role of managing, manipulating, or collat-
ing information from many distributes sources
(Nwana 1996b). Reactive agents choose actions
by using the current world state as an index into
a table of actions, where the indexing function’s
purpose is to map known situations to appropriate
actions. These types of agents are sufficient for

Figure 1. Franklin and Grasser’s agent taxonomy
(Source: Franklin & Grasser. 1996)

 1449

Intelligent Software Agents Analysis in E-Commerce I

limited environments where every possible situ-
ation can be mapped to an action or set of actions
(Chelberg 2003). Hybrid agents adopt strength of
both the reactive and deliberative paradigms. They
aim to have the quick response time of reactive
agents for well known situations, yet also have
the ability to generate new plans for unforeseen
situations (Chelberg 2003). Heterogeneous agents
systems refer to an integrated set-up of at least
two or more agents, which belong to two or more
different agent classes (Nwana 1996b).

conclusIon And future work

This paper explores how ISAs can automate and
add value to e-commerce transactions and nego-
tiations. By leveraging ISA-based e-commerce
systems, companies can more efficiently make

decisions because they have more accurate infor-
mation and identify consumers’ tastes and habits.
Opportunities and limitations for ISA develop-
ment are also discussed. Future technologies of
ISAs will be able to evaluate basic characteristics
of online transactions in terms of price and prod-
uct description as well as other properties, such
as warranty, method of payment, and after-sales
service. Also, they would better manage ambigu-
ous content, personalized preferences, complex
goals, changing environments, and disconnected
parties (Guttman et al. 1998a). Additionally, for
the future trend of ISA technology deployment,
Nwana (1996a) describes that “Agents are here
to stay, not least because of their diversity, their
wide range of applicability and the broad spec-
trum of companies investing in them. As we move
further and further into the information age, any
information-based organization which does not

Figure 2. A Part View of Agent Typology Source: Nwana (1996b)

Figure 3. A panoramic overview of the different agent types (Source: Jennings & Wooldridge, 1998)

1450

Intelligent Software Agents Analysis in E-Commerce I

invest in agent technology may be committing
commercial hara-kiri.”

references

Begin, L., and Boisvert, H. “Enhancing the
value proposition Via the internet,” International
Conference on Electronic Commerce Research
(ICECR-5), 2002.

Bradshaw, J.M. “Software Agents,” online: http://
agents.umbc.edu/introduction/01-Bradshaw.pdf)
1997.

Carley, K.M. “Smart Agents and Organizations
of the Future,” online: http://www.hss.cmu.edu/
departments/sds/faculty/carley/publications/
ORGTHEO36.pdf) 1998.

Chelberg, D. “Reactive Agents,” online: http://zen.
ece.ohiou.edu/~robocup/papers/HTML/AAAI/
node3.html), 03-05 2003.

Cowan, R., and Harison, E. “Intellectual Prop-
erty Rights in Intelligent-Agent Technologies:
Facilitators, Impediments and Conflicts,” online:
http://www.itas.fzk.de/e-society/preprints/ecom-
merce/CowanHarison.pdf) 2002.

Croft, D.W. “Intelligent Software Agents: Defi-
nitions and Applications,” online: http://www.
alumni.caltech.edu/~croft/research/agent/defini-
tion/) 2002.

Franklin, S., and Graesser, A. “Is it an Agent, or
just a Program?: A Taxonomy for Autonomous
Agents,” Proceedings of the Third International
Workshop on Agent Theories, Architectures, and
Languages, Springer-Verlag, 1996.

Guttman, R., Moukas, A., and Maes, P. “Agent-
mediated Electronic Commerce: A Survey,”
Knowledge Engineering Review (13:3), June
1998a.

Guttman, R., Moukas, A., and Maes, P. “Agents
as Mediators in Electronic Commerce,” Inter-

national Journal of Electronic Markets (8:1),
February 1998b, pp 22-27.

He, M., Jennings, N.R., and Leung, H.-F. “On
Agent-Mediated Electronic Commerce,” IEEE
Transactions on Knowledge and Data Engineer-
ing (15:4), July/August 2003.

Houmb, S.H. “Software Agent: An Overview,”
online: http://www.idi.ntnu.no/emner/dif8914/ppt-
2002/sw-agent_dif8914_2002.ppt) 2002.

Jennings, N.R., and Wooldridge, M. “Applica-
tions of Intelligent Agents,” in Agent Technology:
Foundations, Applications, and Markets,1998,
pp 3-28.

Johnson, C., Delhagen, K., and Yuen, E.H. “US
eCommerce Overview: 2003 To 2008,” Online:
http://www.forrester.com/ER/Research/Brief/Ex-
cerpt/0,1317,16875,00.html), July 25 2003.

Maes, P., Guttnab, R.H., and Moukas, A.G.
“Agents That Buy and Sell. (software agents for
electronic commerce)(Technology Information),”
Communications of the ACM (42:3) 1999, p 81.

Ndumu, D., and Nwana, H. “Research and De-
velopment Challenges for Agent-Based Systems,”
IEE Proceedings on Software Engineering
(144:01), January 1997.

Nwana, H.S. “Software Agents: An Overview,”
online: http://agents.umbc.edu/introduction/ao/)
1996b.

Pivk, A. “Intelligent Agents in E-Commerce,”
online: http://ai.ijs.si/Sandi/IntelligentAgent-
Repository.html) 2003.

Shih, T.K., Chiu, C.-F., and Hsu, H.-h. “An
Agent-Based Multi-Issue Negotiation System in
E-commerce,” Journal of Electronic Commerce in
Organizations (1:1), Jan-March 2003, pp 1-16.

Sierra, C., Wooldridge, M., Sadeh, N., Conte, R.,
Klusch, M., and Treur, J. “Agent Research and
Development in Euroope,” online: http://www.
unicom.co.uk/3in/ISSUE4/4.Asp) 2003.

 1451

Intelligent Software Agents Analysis in E-Commerce I

key terMs

Agent: A computer system situated in some
environment that is capable of autonomous
action in this environment to meets its design
objective.

Business-to-Business E-Commerce: Elec-
tronic transaction of goods or services between
businesses as opposed to that between businesses
and other groups.

Business-to-Customer E-Commerce: Elec-
tronic or online activities of commercial organi-
zations serving the end consumer with products
and/or services. It is usually applied exclusively
to e-commerce.

Customer-to-Customer E-Commerce: On-
line transactions involving the electronically-fa-
cilitated transactions between consumers through
some third party.

Electronic Commerce (E-Commerce):
Consists of the buying and selling of products or
services over electronic systems such as the Inter-
net and other computer networks. A wide variety
of commerce is conducted in this way, including
electronic funds transfer, supply chain manage-
ment, e-marketing, online transaction processing,
and automated data collection systems.

Intelligent Software Agent: A software agent
that uses Artificial Intelligence (AI) in the pursuit
of the goals of its clients.

Ubiquitous Commerce (U-Commerce): The
ultimate form of e-commerce and m-commerce
in an ‘anytime, anywhere’ fashion. It involves
the use of ubiquitous networks to support per-
sonalized and uninterrupted communications and
transactions at a level of value that far exceeds
traditional commerce.

This work was previously published in Encyclopedia of Artificial Intelligence, edited by J. Dopico; J. de la Calle; A. Sierra,
pp. 940-944, copyright 2009 by Information Science Reference (an imprint of IGI Global).

1452

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.4
Intelligent Software Agents
Analysis in E-Commerce II

Xin Luo
The University of New Mexico, USA

Somasheker Akkaladevi
Virginia State University, USA

IsA oPPortunItIes And
lIMItAtIons In e-coMMerce

Cowan et al. (2002) argued that the human cog-
nitive ability to search for information and to
evaluate their usefulness is extremely limited in
comparison to those of computers. In detail, it’s
cumbersome and time-consuming for a person
to search for information from limited resources
and to evaluate the information’s usefulness. They
further indicated that while people are able to
perform several queries in parallel and are good
at drawing parallels and analogies between pieces
of information, advanced systems that embody
ISA architecture are far more effective in terms
of calculation power and parallel processing
abilities, particularly in the quantities of material
they can process (Cowan et al. 2002). According
to Bradshaw (1997), information complexity will
continue to increase dramatically in the coming
decades. He further contended that the dynamic

and distributed nature of both data and applications
require that software not merely respond to re-
quests for information but intelligently anticipate,
adapt, and actively seek ways to support users.

E-commerce applications based on agent-
oriented e-commerce systems have great po-
tential. Agents can be designed using the latest
web-based technologies, such as Java, XML,
and HTTP, and can dynamically discover and
compose E-services and mediate interactions to
handle routine tasks, monitor activities, set up
contracts, execute business processes, and find
the best services (Shih et al., 2003). The main
advantages of using these technologies are their
simplicity of usage, ubiquitous nature, and their
heterogeneity and platform independence (Begin
and Boisvert, 2002). XML will likely become the
standard language for agent-oriented E-commerce
interactions to encode exchanged messages, docu-
ments, invoices, orders, service descriptions, and
other information. HTTP, the dominant WWW

 1453

Intelligent Software Agents Analysis in E-Commerce II

protocol, can be used to provide many services,
such as robust and scalable web servers, firewall
access, and levels of security for these E-com-
merce applications.

Agents can be made to work individually, as
well as in a collaborative manner to perform more
complex tasks (Franklin and Graesser, 1996). For
example, to purchase a product on the Internet,
a group of agents can exchange messages in a
conversation to find the best deal, can bid in an
auction for the product, can arrange financing,
can select a shipper, and can also track the order.
Multi-agent systems (groups of agents collabo-
rating to achieve some purpose) are critical for
large-scale e-commerce applications, especially
B2B interactions such as service provisioning,
supply chain, negotiation, and fulfillment, etc.
The grouping of agents can be static or dynamic
depending on the specific need (Guttman et al.,
1998b). A perfect coordination should be estab-
lished for the interactions between the agents to
achieve a higher-level task, such as requesting,
offering and accepting a contract for some services
(Guttman et al., 1998a).

There are several agent toolkits publicly avail-
able which can be used to satisfy the customer
requirements and ideally they need to adhere
to standards which define multi-party agent
interoperability. For example, fuzzy logic based
intelligent negotiation agents can be used to in-
teract autonomously and consequently, and save
human labor in negotiations. The aim of modeling
a negotiation agent is to reach mutual agreement
efficiently and intelligently. The negotiation agent
should be able to negotiate with other such agents
over various sets of issues, and on behalf of the
real-world parties they represent, i.e. they should
be able to handle multi-issue negotiations at any
given time.

The boom in e-commerce has now created the
need for ISAs that can handle complicated online
transactions and negotiations for both sellers and
buyers. In general, buyers want to find sellers that
have desired products and services. And they want

to find product information and gain expert advice
before and after the purchase from sellers, which,
in turn, want to find buyers and provide expert
advice about their product or service as well as
customer service and support. Therefore, there is
an opportunity that both buyers and sellers can
automate handling this potential transaction by
adopting ISA technology. The use of ISAs will
be essential to handling many tasks of creating,
maintaining, and delivering information on the
Web. By implementing ISA technology in e-com-
merce, agents can shop around for their users; they
can communicate with other agents for product
specifications, such as price, feature, quantity,
and service package, and make a comparison ac-
cording to user’s objective and requirement and
return with recommendations of purchases, which
can meet those specifications; they can also act
for sellers by providing product or service sales
advice, and help troubleshoot customer problems
by automatically offering solutions or suggestions;
they can automatically pay bills and keep track
of the payment.

Looking at ISA development from an inter-
national stand point, the nature of Internet in
developed countries, such as USA, Canada, West
Europe, Japan, and Australia, etc. and the conse-
quent evolution of e-commerce as the new model
provide exciting opportunities and challenges for
ISA-based developments. Opportunities include
wider market reach in a timely manner, higher
earnings, broader spectrum of target and potential
customers, and collaboration among vendors. This
ISA-powered e-commerce arena would be differ-
ent than our traditional commerce, because the
traditional form of competition can give way to
collaborative efforts across industries for adding
value to business processes. This means that agents
of different vendors can establish a cooperative
relationship to communicate with each other via
XML language in order to set up and complete
transactions online.

Technically, for instance, if an information
agent found that the vendor is in need of more

1454

Intelligent Software Agents Analysis in E-Commerce II

airplane tickets, it would notify a collaborative
agent to search for relevant information regard-
ing the ticket in terms of availability, price, and
quantity etc. from other sources over the Internet.
In this case, the collaborative agent would work
with mobile agents and negotiate with other
agents working for different vendors and obtain
ticket information for its user. It would be able
to provide the user with the result of the search,
and, if needed, purchase the tickets for the user if
certain requirements can be met. In the meantime,
interface agents can monitor the user’s reaction
and decision behavior, and would provide the user
with informational assistance in terms of advice,
recommendation, and suggestion for any related
and similar transactions.

On the other hand, however, this kind of intel-
ligent electronic communication and transaction
is relatively inapplicable in traditional commerce
where different competitive vendors are not will-
ing to share information with each other (Maes et
al., 1999). The level of willingness in ISA-based
e-commerce is, however, somewhat limited due
to sociological and ethical factors, which will
be discussed later in this paper. In addition, de-
signing and implementing ISA technology is a
costly predicament preventing companies from
adopting this emerging tool. Companies need to
invest a lot of money to get the ISA engine started.
Notwithstanding the exciting theoretical benefits
discussed above, many companies are still not
sure about how much ISA technology can benefit
themselves in terms of revenue, ROI, and business
influence in the market where other players are
yet to adopt this technology to cooperate with
each other. Particularly, medium or small size
companies are reluctant to embark on this arena
mainly due to the factor of cost.

Additionally, lack of consistent architectures
in terms of standards and laws also obstructs the
further development of ISA technology (He et
al., 2003). In detail, IT industry has not yet final-
ized the ISA standards, as there are a number of
proprietary standards set by various companies.

This causes a confusion problem for ISAs to
freely communicate with each other. Also, related
to standards, relevant laws have not surfaced to
regulate how ISAs can legally cooperate with
each other and represent their human users in
the cyber world.

Additionally, ISA development and deploy-
ment is not a global perspective (Jennings et al.
1998). Despite the fact that ISA technology is an
ad-hoc topic in developed countries, developing
countries are not fully aware of the benefits of
ISA and therefore have not deployed ISA-based
systems on the Web because their e-commerce de-
velopment levels and skills are not as sophisticated
or advanced as those of the developed countries.
This intra-national limitation among developed
and developing countries unfortunately hinders
agents from freely communicating with each other
over the globally connected Internet.

socIologIcAl And etHIcAl
cHAllenges

In the preceding sections of this paper, the tech-
nical issues involved in agent development have
been addressed. However, in addition to these
issues, there are also a range of social and cyber-
ethical problems, such as trust and delegation,
privacy, responsibility, and legal issues, which
will become increasingly important in the field
of agent technology (Bradshaw 1997; Jennings
et al. 1998; Nwana 1996b).

Trust and delegation: For users who want to
depend on ISA technology to obtain desired
information, they must trust agents which
autonomously delegate for users to do the
job. It would take time for users to get used to
their agents and gain confidence in the agents
that work for them. And users have to make a
balance between agents continually seeking
guidance and never seeking guidance. Users
might need to set proper limitations for their

•

 1455

Intelligent Software Agents Analysis in E-Commerce II

agents, otherwise agents might surpass their
authorities.
Privacy: In the explosive information society,
security is becoming more and more impor-
tant. Therefore, users must make sure that
their agents always maintain their privacy in
the course of transactions. Electronic agent
security policies may be needed to encounter
this potential threat.
Responsibility: Users need to seriously con-
sider how much responsibility the agents need
to carry regarding the transaction pitfall. To
some extent, agents are rendered responsibil-
ity to get the desired product/service for their
users. If the users are not satisfied with the
transaction result, they may need to redesign
or reprogram the agent rather than directly
blame the fault on electronic agents.
Legal issues: In addition to responsibility,
users should also think about any potential
legal issues triggered by their agents, which,
for instance, offer inappropriate advice to
other agents resulting in liabilities to other
people. This would be very challenging to the
ISA technology development, and the scenario
would be complicated since the current law
does not specify which party (the company
who wrote the agent, the company who cus-
tomized and used the agent, or both) should
be responsible for the legal issues.
Cyber-ethical issues: Eichmann (1994) and
Etzioni & Weld (1994) proposed the following
etiquettes for ISAs which gather information
on the Web.

Agents must identify themselves;
They must moderate the pace and
frequency of their requests to some
server;
They must limit their searches to ap-
propriate servers;
They must share information with
others;
They must respect the authority placed
on them by server operators;

•

•

•

•

•
•

•

•

•

Their services must be accurate and
up-to-date;
Safety: they should not destructively
alter the world;
Tidiness: they should leave the world
as they found it;
Thrift: they should limit their consump-
tion of scarce resources;
Vigilance: they should not allow client
actions with unanticipated results.

conclusIon And future work

ISA technology has to confront the increasing
complexity of modem information environments.
Research and development of ISAs on the Internet
is crucial for the development of next generation in
open information environments. Sociological and
cyber-ethical issues need to be considered for the
next generation of agents in e-commerce system,
which will explore new types of transactions in
the form of dynamic relationships among previ-
ously unknown parties (Guttman et al. 1998b).
According to Nwana (1996a), the ultimate ISA’s
success will be the acceptance and mass usage by
users, once issues such as privacy, trust, legal, and
responsibility are addressed and considered when
users design and implement ISA technologies in
e-commerce and emerging commerce, such as
mobile commerce (M-commerce) and Ubiquitous
commerce (U-commerce). It is expected that fu-
ture research can further explore how ISAs are
leveraged in these two newly emerged avenues.

references

Begin, L., and Boisvert, H. “Enhancing the
value proposition Via the internet,” International
Conference on Electronic Commerce Research
(ICECR-5), 2002.

•

•

•

•

•

1456

Intelligent Software Agents Analysis in E-Commerce II

Bradshaw, J.M. “Software Agents,” online: http://
agents.umbc.edu/introduction/01-Bradshaw.pdf)
1997.

Cowan, R., and Harison, E. “Intellectual Prop-
erty Rights in Intelligent-Agent Technologies:
Facilitators, Impediments and Conflicts,” online:
http://www.itas.fzk.de/e-society/preprints/ecom-
merce/CowanHarison.pdf) 2002.

Eichmann, D. “Ethical Web Agents,” Second In-
ternational World-Wide Web Conference: Mosaic
and the Web, October 18-20 1994, pp 3-13.

Franklin, S., and Graesser, A. “Is it an Agent, or
just a Program?: A Taxonomy for Autonomous
Agents,” Proceedings of the Third International
Workshop on Agent Theories, Architectures, and
Languages, Springer-Verlag, 1996.

Etzioni, O., and Weld, D. “A Softbot-Based In-
terface to the Internet,” Communications of the
ACM, July 1994, pp 72-76.

Guttman, R., Moukas, A., and Maes, P. “Agent-
mediated Electronic Commerce: A Survey,”
Knowledge Engineering Review (13:3), June
1998a.

Guttman, R., Moukas, A., and Maes, P. “Agents
as Mediators in Electronic Commerce,” Inter-
national Journal of Electronic Markets (8:1),
February 1998b, pp 22-27.

He, M., Jennings, N.R., and Leung, H.-F. “On
Agent-Mediated Electronic Commerce,” IEEE
Transactions on Knowledge and Data Engineer-
ing (15:4), July/August 2003.

Jennings, N.R., and Wooldridge, M. “Applica-
tions of Intelligent Agents,” in Agent Technology:
Foundations, Applications, and Markets,1998,
pp 3-28.

Maes, P., Guttnab, R.H., and Moukas, A.G.
“Agents That Buy and Sell. (software agents for
electronic commerce)(Technology Information),”
Communications of the ACM (42:3) 1999, p 81.

Ndumu, D., and Nwana, H. “Research and De-
velopment Challenges for Agent-Based Systems,”
IEE Proceedings on Software Engineering
(144:01), January 1997.

Nwana, H.S. “Intelligent Software Agents on
the Internet: an inventory of currently offered
functionality in the information society & a pre-
diction of (near-) future developments,” online:
http://www.hermans.org/agents/index.html), July
1996a.

Nwana, H.S. “Software Agents: An Overview,”
online: http://agents.umbc.edu/introduction/ao/)
1996b.

Shih, T.K., Chiu, C.-F., and Hsu, H.-h. “An
Agent-Based Multi-Issue Negotiation System in
E-commerce,” Journal of Electronic Commerce in
Organizations (1:1), Jan-March 2003, pp 1-16.

key terMs

Agent: A computer system situated in some
environment that is capable of autonomous
action in this environment to meets its design
objective.

Business-to-Business E-Commerce: Elec-
tronic transaction of goods or services between
businesses as opposed to that between businesses
and other groups.

Business-to-Customer E-Commerce: Elec-
tronic or online activities of commercial organi-
zations serving the end consumer with products
and/or services. It is usually applied exclusively
to e-commerce.

Customer-to-Customer E-Commerce: On-
line transactions involving the electronically-fa-
cilitated transactions between consumers through
some third party.

Electronic Commerce (E-Commerce):
Consists of the buying and selling of products or

 1457

Intelligent Software Agents Analysis in E-Commerce II

services over electronic systems such as the Inter-
net and other computer networks. A wide variety
of commerce is conducted in this way, including
electronic funds transfer, supply chain manage-
ment, e-marketing, online transaction processing,
and automated data collection systems.

Intelligent Software Agent: A software agent
that uses Artificial Intelligence (AI) in the pursuit
of the goals of its clients.

Ubiquitous Commerce (U-Commerce): The
ultimate form of e-commerce and m-commerce
in an ‘anytime, anywhere’ fashion. It involves
the use of ubiquitous networks to support per-
sonalized and uninterrupted communications and
transactions at a level of value that far exceeds
traditional commerce.

This work was previously published in Encyclopedia of Artificial Intelligence, edited by J. Dopico; J. de la Calle; A. Sierra,
pp. 945-949, copyright 2009 by Information Science Reference (an imprint of IGI Global).

1458

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.5
A Semantic Web-Based
Information Integration

Approach for an Agent-Based
Electronic Market

Maria João Viamonte
GECAD – Knowledge Engineering and Decision Support Research Group,

Porto Polytechnic Institute, Portugal

Nuno Silva
GECAD – Knowledge Engineering and Decision Support Research Group,

Porto Polytechnic Institute, Portugal

AbstrAct

With the increasing importance of e-commerce
across the Internet, the need for software agents
to support both customers and suppliers in buying
and selling goods/services is growing rapidly. It
is becoming increasingly evident that in a few
years the Internet will host a large number of
interacting software agents. Most of them will
be economically motivated, and will negotiate
a variety of goods and services. It is therefore
important to consider the economic incentives
and behaviours of e-commerce software agents,
and to use all available means to anticipate their
collective interactions. Even more fundamental

than these issues, however, is the very nature of
the various actors that are involved in e-commerce
transactions. This leads to different conceptu-
alizations of the needs and capabilities, giving
rise to semantic incompatibilities between them.
Ontologies have an important role in Multi-Agent
Systems communication and provide a vocabulary
to be used in the communication between agents.
It is hard to find two agents using precisely the
same vocabulary. They usually have a heteroge-
neous private vocabulary defined in their own
private ontology. In order to provide help in the
conversation among different agents, we are pro-
posing what we call ontology-services to facilitate
agents’ interoperability. More specifically, we

 1459

A Semantic Web-Based Information Integration Approach for an Agent-Based Electronic Market

propose an ontology-based information integra-
tion approach, exploiting the ontology mapping
paradigm, by aligning consumer needs and the
market capacities, in a semi-automatic mode. We
propose a new approach for the combination of
the use of agent-based electronic markets based
on Semantic Web technology, improved by the
application and exploitation of the information
and trust relationships captured by the social
networks.

current sItuAtIon

As the result of technological developments, e-
commerce, namely business-to-consumer (B2C),
is emerging as the new way of doing business.

In most current (first generation) e-ecommerce
applications, the buyers are generally humans
who typically browse through a catalogue of
well-defined commodities (e.g., flights, books,
compact discs, computer components) and make
(fixed price) purchases (often by means of a credit
card transaction). However, this modus operandi
is only scratching the surface of what is possible.
By increasing the degree and the sophistication
of automation, on both the buyer’s and the seller’s
side, e-commerce becomes much more dynamic,
personalized, and context sensitive.

We believe that over the course of the next
decade, the global economy and the Internet will
merge into a global market with a large amount of
autonomous software agents that exchange goods
and services with humans and other agents. Agents
will represent, and be, consumers, producers, and
intermediaries.

When interactions among agents become
sufficiently rich, a crucial qualitative change will
occur. New classes of agents will be designed
specially to serve the needs of the other agents.
However, in order to harness the full potential
of this new mode of e-commerce, a broad range
of social, legal, and technical issues need to be
addressed. These issues relate to things such as

security, trust, payment mechanisms, advertising,
logistics, and back office management. Even more
fundamental than these issues, however, is the
very nature of the various actors that are involved
in e-commerce transactions.

In an efficient agent-mediated electronic
market, where all the partners, both sending and
receiving messages have to lead to acceptable and
meaningful agreements, it is necessary to have
common standards, like an interaction protocol
to achieve deals, a language for describing the
messages’ content and ontologies for describing
the domain’s knowledge.

The need for these standards emerges due to
the nature of the goods/services traded in business
transactions. The goods/services are described
through multiple attributes (e.g. price, features
and quality), which imply that negotiation pro-
cesses and final agreements between seller and
buyers must be enhanced with the capability to
both understand the terms and conditions of the
transaction (e.g. vocabulary semantics, curren-
cies to denote different prices, different units to
represent measures or mutual dependencies of
products). A critical factor for the efficiency of the
future negotiation processes and the success of
the potential settlements is an agreement among
the negotiating parties about how the issues of a
negotiation are represented and what this repre-
sentation means to each of the negotiating par-
ties. This problem is referred to as the ontology
problem of electronic negotiations (Ströbel, 2001).
Distributors, manufactures, and service providers
may have radically different ontologies that differ
significantly in format, structure, and meaning.
Given the increasingly complex requirements
of applications, the need for rich, consistent and
reusable semantics, the growth of semantically
interoperable enterprises into knowledge-based
communities; and the evolution; and adoption
of Semantic Web technologies need to be ad-
dressed. Ontologies represent the best answer to
the demand for intelligent systems that operate
closer to the human conceptual level (Obrst, Liu,

1460

A Semantic Web-Based Information Integration Approach for an Agent-Based Electronic Market

and Wray, 2003).
To achieve this degree of automation and move

to new generation e-commerce applications, we
believe that a new model of software is needed.

ProbleM stAteMent

In order to make possible the interaction between
agents in a Multi-Agent Systems, it is necessary to
have a communication platform, a communication
language and a common ontology.

With respect to communications, there are
some implications:

• There are many different ontology lan-
guages.

• Different ontology languages are sometimes
based on different underlying paradigms.

• Some ontology languages are very expres-
sive, some are not.

• Some ontology languages have a formally
defined semantics, some do not.

• Some ontology languages have inference
support, some do not.

However, even if the exact same language is
used, the resulting ontologies can be incompatible
in various ways:

• People or agents may use different terms
for the same thing.

• People or agents may use the same term for
the different things.

• A given notion or concept may be modeled
using different primitives in the language.

• A given notion or concept may be modeled
with very different fundamental underlying
primitives.

Once we take this problem as a challenge,
representing these differences in a common
ontology becomes essential. The ontology in-
cludes the entire domain’s knowledge, which is
made available to all the components active in

an information system (Huhns & Singh, 1997).
The use of a common ontology guarantees the
consistency (an expression has the same mean-
ing for all the agents) and the compatibility (a
concept is designed, for the same expression,
for any agent) of the information present in the
system. However, we cannot assume that all the
agents will use a common ontology. In fact, as
stated in (Hepp, 2007), the adoption of ontologies
in e-commerce has some drawbacks, namely
concerning the comprehension and correct use
of the adopted ontology which is a difficult and
time consuming task, often leading to conflict-
ing interpretations and eventually wrong use of
the ontology and data. Usually, each agent has
its heterogeneous private ontology and it cannot
fully understand another agent’s ontology, giv-
ing rise to semantic incompatibilities between
them. Consequently, different actors involved in
the marketplace must be able to independently
describe their universe of discourse, while the
market is responsible for providing a technological
framework that promotes the semantic integration
between parties.

However, it is necessary to consider that the
solution proposed to overcome theses problems,
has to take into consideration the technological
support already existent, namely a well-proven
e-commerce platform, where agents with strategic
behaviour represent consumers and suppliers.

ProPosed solutIon

We propose an agent-based electronic market
with an ontology-based information integra-
tion approach, exploiting the ontology mapping
paradigm, by aligning consumer needs and the
market capacities throughout the negotiation
conversations in a semi-automatic mode, im-
proved by the application and exploitation of the
information and trust relationships captured by
the social networks.

 1461

A Semantic Web-Based Information Integration Approach for an Agent-Based Electronic Market

To study our proposal we will combine the
use of ISEM and MAFRA Toolkit into a novel
electronic marketplace approach, together with
the exploitation of social semantic network ser-
vices.

ISEM – Intelligent System for Electronic
MarketPlaces (Viamonte, Ramos, Rodrigues &
Cardoso, 2006) is a simulation platform developed
at our research group. ISEM is a multi-agent mar-
ket simulator, designed for analysing agent market
strategies based on a complete understanding of
buyer and seller behaviours, preference models
and pricing algorithms, considering user risk
preferences and game theory for scenario analy-
sis. Each market participant has its own business
objectives and decision model. The results of the
negotiations between agents are analyzed by data
mining algorithms in order to extract knowledge
that gives agents feedback to improve their strat-
egies. The extracted knowledge will be used to
set up probable scenarios, analyzed by means of
simulation and game theory decision criteria.

The main objectives of ISEM are: first, the
ISEM system addresses the complexities of on-
line buyers’ behaviour by providing a rich set of
behaviour parameters; second, the ISEM system
provides available market information that allows
sellers to make assumptions about buyers’ behav-
iour and preference models; third, the different
agents customise their behaviour adaptively,
by learning each user’s preference models and
business strategies. The learning agent capacity
is achieved through data mining techniques ap-
plied on-line during the market sessions within
the ISEM system.

MAFRA Toolkit is the instantiation of the MA-
FRA-MApping FRAmework (Maedche, Motik,
Silva & Volz, 2002), addressing the fundamental
phases of the ontology mapping process. In par-
ticular, it allows the identification, specification
and representation of semantic relations between
two different ontologies. These semantic rela-
tions are further applied in the execution phase
of the interoperation, by transforming the data

(messages’ content) as understood by one of the
actors into the data understood by the other. In
this sense, ontology mapping allows actors to
keep their knowledge bases unchanged while
supporting the semantic alignment between their
conceptualizations (ontologies).

On the other hand, social network repositories
aim to capture collaboratively created informa-
tion and trust relationships between individuals
according to different subjects (e.g. business,
family, music, sport, travel, and hobbies). Social
networks together with security oriented technolo-
gies form the basic infrastructure to encompass
collaboration and trust relationships in many
internet based activities, including e-commerce
transactions and information integration.

objectives

The proposed approach introduces a novel
agent-based marketplace architecture that will
be deployed within the ISEM simulator in or-
der to assure that different agents can establish
deals in a more flexible and evolved form. In
order to judge the feasibility and relevance of
the approach, we will use the Consumer Buying
Behaviour model (CBB) as a reference (Runyon
& Stewart, 1987).

Another important goal is to support the
identification stage of the CBB model using on-
tologies to construct the most accurate model of
the consumer’s needs. Moreover, at the product
brokering, buyer coalition formation, merchant
brokering and negotiation stages, the ontology
mapping process will provide the integration of
the seller and consumer’s models (HarmoNet,
2007).

Complementarily, the repository of relation-
ships provided by emergent social networks will
support establishing more accurate trust rela-
tionships between businesses and customers, as
well as providing a better alignment (mapping)
between their models. This new information is
very important to feed the agents’ knowledge

1462

A Semantic Web-Based Information Integration Approach for an Agent-Based Electronic Market

bases to improve their strategic behaviour. Market
participant’s strategic behaviour is very significant
in the context of competition.

overview

In the following sections, we will describe the
electronic market objectives and model, the
ontology mapping features and the proposed
ontology-based, socially-driven information
integration approach.

Our ontology-based services will be provided
through an additional Market service provided by
a specific agent, the Market Facilitator agent. This
agent will be responsible for providing structural
and semantic relationships between different vo-
cabularies, which carry appropriate conversations
and make agreement possible.

The Marketplace Objectives

Agents can be used in many ways in the electronic
commerce applications and for this it will be neces-
sary to create a scenario where they can interact
with each other. The Marketplace function is to
permit and facilitate the interaction between the
agents. We support the idea of a Web site where
users go to trade items. All agents are notified by
the market about existing buying agents and sell-
ing agents and about what they want to sell and
what they want to buy. We expect that we have
agents interested in buying and selling the same
category of commodities. At any time, we can have
a variable number of partners in our market and
every transaction has specific parameters.

A language support for inter-agent communi-
cation has to be defined; we need to ensure that
all the agents participating in the market use the
same language, or that the languages in use can
be translated; and an ontology-based informa-
tion integration to ensure transparent semantic
interoperability.

Another objective is supporting some of the
stages of the CBB model:

• Need Identification, "the consumer can be
stimulated through product information".
Although all the buyer agents are notified
by the market about existing selling agents
and about their products, the marketplace
needs some additional expertise to notify
the users about products available based on
their profiles and last deals.

• Product Brokering, "the evaluation of prod-
uct alternatives based on consumer-provided
criteria." The agent system must be able to
assist consumers in deciding which products
best fit their personal criteria, they must act
as recommendation agents, make predictions
based on profiles and "business intelligence",
possibly derived by data mining techniques
and based on social-driven information.

• Buyer Coalition Formation, “having deter-
mined the product to buy, customers may
move directly to the merchant brokering
phase (see below) or they may interact
with other similar buyers to try and form
a coalition before moving to the merchant
brokering phase. Here, a coalition is viewed
as a group of agents cooperating with each
other in order to achieve a common task.
In these “buyer coalitions,” each buyer is
represented by their own agent and together
these agents try to form a grouping in order
to approach the merchant with a larger order
(in order to obtain leverage by buying in
bulk). Normally a buyer coalition model is
composed of five stages: negotiation, leader
election, coalition formation, payment col-
lection, and execution stages. It is essential
to have a trustworthy and reliable agent that
will collect the buyer’s information, divide
the agents into coalitions, and negotiate
with sellers (refer to Yamamoto & Sycara,
2001 and Tsvetovat & Sycara, 2000 for a
full discussion of these issues).

• Merchant Brokering, "who to buy from,
includes the evaluation of merchant alterna-

 1463

A Semantic Web-Based Information Integration Approach for an Agent-Based Electronic Market

tives based on consumer-provided criteria".
Having selected the desired product, and
perhaps after having formed a buyer coali-
tion, merchant brokering involves the agent
finding an appropriate seller to purchase the
item from. The customer agent must be able
to find several providers for each item, taking
into account different user preferences and
based on past events and users satisfaction
with certain providers.

• Negotiation, "this stage is about how to
determine the terms of the transaction".
Having selected a merchant (or set of mer-
chants), the next step is to negotiate the terms
and conditions. We believe that this is one
of the major changes that will be brought
about by agent-mediated e-commerce. The
agents negotiate with each other by using
strategies based on rule systems and users’
criteria, searching for an agreement on
multiple goals and considering tradeoffs
between the goals.

The Marketplace Model

Our Marketplace facilitates agent meeting and
matching, besides supporting the negotiation
model. In order to have results and feedback to
improve the negotiation models and consequently
the behaviour of user agents, we simulate a se-
ries of negotiation periods, D={1,2,…,n}, where
each one is composed by a fixed interval of time
T={0,1,…,m}. Furthermore, each agent has a dead-
line max

AgtD D∈ to achieve its business objectives.
At a particular negotiation period, each agent
has an objective that specifies its intention to buy
or sell a particular good or service and on what
conditions. The available agents can establish their
own objectives and decision rules. Moreover, they
can adapt their strategies as the simulation pro-
gresses on the basis of previous efforts’ successes
or failures. The simulator probes the conditions
and the effects of market rules, by simulating the
participant’s strategic behaviour.

Our simulator was developed based on “A
Model for Developing a MarketPlace with Soft-
ware Agents (MoDeMA)” (Viamonte, 2004).
MoDeMA is composed of the following steps:

• Marketplace model definition, that permits
doing transactions according to the CBB
model.

• Identification of the different participants,
and the possible interactions between
them.

• Ontology specification, that identifies and
represents items being transacted.

• Agents’ architecture specification, and
information flows between each agents
module.

• Knowledge Acquisition, defining the process
that guarantees the agent the knowledge to
act in pursuit of its role.

• Negotiation Model, defining the negotiation
mechanisms to be used.

• Negotiation Protocol, specification of each
of the negotiation mechanism rules.

• Negotiation Strategies, specification and
development of several negotiation strate-
gies.

• Knowledge Discovery, identification and
gathering of market knowledge to support
agents’ strategic behaviour.

ISEM is flexible; the user completely defines
the model he or she wants to simulate, includ-
ing the number of agents, each agent’s type and
strategies.

The Negotiation Model and Protocol

The negotiation model used in ISEM is bilateral
contracting where buyer agents are looking for
sellers that can provide them with the desired
products at the best conditions.

We adopt what is basically an alternating
protocol (Fatima, Wooldridge & Jennings, 2004
and Osborne & Rubinstein, 1994).

1464

A Semantic Web-Based Information Integration Approach for an Agent-Based Electronic Market

Negotiation starts when a buyer agent sends a
request for proposal (RFP) (Figure 1). In response,
a seller agent analyses its own capabilities, current
availability, and past experiences and formulates
a proposal (PP).

Sellers can formulate two kinds of proposals:
a proposal for the product requested or a proposal
for a related product, according to the buyer
preference model.

On the basis of the bilateral agreements made
among market players and lessons learned from
previous bid rounds, both agents revise their strat-
egies for the next negotiation round and update
their individual knowledge module.

The negotiation protocol of the ISEM simulator
(Figure 2) has three main actors:

• Buyer (B) is the agent that represents a
consumer or a buyer coalition. Multiple

Buyers normally exist in the marketplace
in an instant.

• Seller (S) is the agent that represents a sup-
plier. Multiple Sellers normally exist in the
marketplace in an instant.

• Market Facilitator agent (MF), usually one
per marketplace, coordinates the market and
ensures that it works correctly. MF identi-
fies all the agents in the market, regulates
negotiation, and assures that the market
operates according to established rules.
Before entering the market, agents must
first register with the MF agent.

The Ontology

Ontologies, as knowledge representation arte-
facts, allow the “explicit formal specification of
a shared conceptualization” (Studer, Benjamins

B uy er A gent
Form ulate R eques t for P ropos al (R FP)
R F P = {A gtID , R FP Id, G ood , A ttr, V al}

M ark et F ac ilitator A gent
A naly s e R FP s and send to a v ailable S eller A gents

S eller A gents
E valuate and A c c ept /C ounter -P ropos al

P P = { A gtId, P P Id, R FP Id, G ood , A ttr, V al}

B uy er A gents
E v aluate and A c c ept /C ounter -P ropos al

C P = { A gtId, C P Id, P P Id, G ood , A ttr, V al}

B uy er A gents and S eller A gents
R ev is e S trategies bas ed on p rev ious r es ults

Ne
xt

Ro
un

d

Figure 1. Sequence of bilateral contracts

 1465

A Semantic Web-Based Information Integration Approach for an Agent-Based Electronic Market

& Fensel, 1998). Ontologies raise the level of
specification, incorporating semantics into the
data, and promoting its exchange in an explicit
understandable form. The resulting artefact is
then shared between interoperating actors and is
used for querying and reasoning about each others
knowledge base. Ontologies are therefore fully
geared as a framework for capturing, specifying,
representing and sharing the domain of discourse
in the scope of distinct types of e-commerce,
namely B2C or business-to-business (B2B).

However, ontologies per se are not able to
overcome information interoperability incompat-
ibilities and it is hardly conceivable that a single
ontology can be applied to all kinds of domains and
applications. Information integration mechanisms
are necessary in order to identify, represent and
apply the diverse relationships between concepts
and relations of two or more ontologies. Ontology
Mapping is one of the most successful information
integration paradigms used in the Internet and in
particular in the Semantic Web. Despite a more
holistic description of the Ontology Mapping Pro-
cess (Maedche et al., 2002), ontology mapping is
primarily the process whereby semantic relations
are defined at an ontological level between source
ontology entities and target ontology entities and
then further applied at instance level, transform-

ing source ontology instances into target ontology
instances (Figure 3).

Therefore, unlike other information integra-
tion paradigms (e.g. Merging and Integration)
(Pinto, Gómez-Pérez & Martins, 1999) that lead
to definitive semantics and information loss,
through ontology mapping, repositories are kept
separated, independent and distinct, maintaining
their complete semantics and contents.

The approach followed in MAFRA Toolkit
adopts a declarative specification of semantic
relations through the use of the SBO-Semantic
Bridging Ontology, itself an ontology. When
instantiated it becomes the description of the
syntactic and semantic relations between entities
of two ontologies. MAFRA Toolkit’s support
of the SBO manipulation hides the procedural
complexity of specification and execution of
relations. Additionally, its open Service-oriented
architecture allows the incorporation of new types
of mapping relations into the system (Services),
improving the expressive power and mapping
capabilities of the system. Additionally, Services
play the important role of driving the semi-auto-
matic specification of semantic relations, releasing
the user from this time consuming and difficult
task. Instead, the user is invited to supervise the

B uy er

R eqP ropos al (R FP)

S ellerM F

R eqP ropos al (R FP)

E v aluate PP : A c c ept; R ejec t or Form ulate a Counter P ropos al (C P P)

E v aluate RFP and F orm ulate P ropos al (P P)

Figure 2. ISEM bilateral contract protocol

1466

A Semantic Web-Based Information Integration Approach for an Agent-Based Electronic Market

services’ process and confirm the automatically
generated proposals.

MAFRA Toolkit has been successfully
adopted in the EU-funded project Harmo-Ten
(www.harmo-ten.org) devoted to the exchange
of information in tourism. The outcome of this
project is now being applied in the HarmoNet
initiative (HarmoNet, 2007).

The Social Networks

Social Networks are one of the grounding theories
behind the promotion and success of Web 2.0.
Social Networks connect people around issues
or causes. Different interests give rise to and
promote different communities (e.g. music, sports,
technology, religion, fashion), which simplify
many customer target initiatives such as pric-
ing, marketing, advertising and selling. Social

Network Analysis (SNA) unveils clusters of users
with similar interests, even when such relations
are vague or implicit. Based on users’ manually
created relationships, SNA provides important
formal metrics such as Activity, Betweenness
and Closeness. Yet, either explicit social relation-
ship expressed through social network tools (e.g.
LinkedIn, MySpace, Friendster) or through email
analysis, the so called social network mapping
tools are emerging that are capable of exposing
relevant links between users (e.g. InFlow) and
generate statistics on almost anything. As often
stated in many blogs and editorials, business
managers expect that Web 2.0 will bring more
information about users, customers and their
trends, allowing business efforts to focus on
specific target communities.

Through tagging and social bookmarking,
folksonomies are emerging as a valuable clas-

-brand
-model
-waist
-inseam

trousers

-reference
-size

Pants
Trousers are semantically
equivalent to Pants. The

concatenation of the Trouser's
brand and model corresponds to the
Pant’s reference. The value of the
Trouser's waist is equivalent to the

Pant's size

brand = Chayenne
model = Brutal
waist = 34
inseam = 44

T2 : Trousers

reference = Levi 501
size = 32

P1 : Pants

c
on

ce
pt

ua
l l

ev
el

In
st

an
ce

 l
ev

el

transformation

brand = Levi
model = 501
waist = 32
inseam = 44

T1 : Trousers

reference = Brutal
size = 34

P2 : Pants

Figure 3. Informal representation of ontology mapping

 1467

A Semantic Web-Based Information Integration Approach for an Agent-Based Electronic Market

sification mechanism of documents and goods.
Moreover, folksonomies, seen as very simple
ontologies (Van Damme, Hepp & Siorpaes, 2007)
are perceived as an important social interrelation
mechanism allowing systems to track the relation-
ships between individuals and groups across the
social networks. This assumption is based on
empirical evidence showing that users follow the
tendencies originated by specific users (or groups
of users). With this approach, i.e. decentralized,
cooperative and intuitive development (Siorpaes
& Hepp, 2007), folksonomies tend to better
represent the conceptualization of a community,
while at the same time the community is able to
cooperatively participate in other ontology-based
processes, such as information integration and
evolution. This permeating process promotes
discussion about future communities’ tendencies,

their similar desires, interests and knowledge
patterns, supporting the idea of exploiting the
intrinsic social knowledge for improving the e-
commerce interactions.

It is expected that social network services
will soon provide automatic access to SNA met-
rics, improved content classification and many
statistical reports. For that, API, agent-based or
Web Services will be used instead of the tradi-
tional Web page interaction. The Web-Of-Trust
and PKI (Public Key Infrastructure) (Aberer,
Datta & Hauswirth, 2005) infrastructures will be
combined with such services in order to assure
identity, trust and no repudiation between users
and systems. Kondifi and FOAFRealm are two
examples of such systems. The FOAFRealm aims
to integrate several types of social semantic infor-
mation sources through the same infrastructure,

 B uy er M F

R eqP ropos al (R FP)

R eqA c c eptanc e (M)

Fow ardR eqP ropos al (R FP ')

S eller

R es ult (R)

Fow ardR es ult (R ')

R eqM apping

R eqT rans f (R FP)

R eqT rans f (P)

R eqT rans f (R)

R eqA c c eptanc e (M)

Forw ardP ropos al (P ')

A c c ept(M) A c c ept(M)

R eply P ropos al (P)

Figure 4. The information integration basic protocol

1468

A Semantic Web-Based Information Integration Approach for an Agent-Based Electronic Market

and its access control rules are based in FOAF
data (http://www.foaf-project.org/). Kondifi de-
ploys and exploits relations between the formal
identification mechanisms available through
PKI infrastructure, and RDF-based (Resource
Description Framework) information provided
by accessed documents.

solutIon detAIls

While the use of ontologies allows e-commerce
actors to describe their needs and capabilities into
proprietary repositories, the use of the ontology-
mapping paradigm allows transparent semantic
interoperability between them. This is the tech-
nological basis for the alignment between needs
and capabilities of consumer and supplier, even
when they use different ontologies. Based on this
approach we can obtain the minimal requirements
to support our proposed solution.

Minimalist Approach

The first proposed version of the protocol (Figure
4) models the simplest interactions between the

three types of agents, minimizing the changes
in interactions between B (Buyer) and S (Seller)
agents with the MF (Market Facilitator) agent,
based on the ISEM protocol (Figure 2).

This minimal approach aims to overcome
the simplest information integration problems
mentioned above.

In this protocol, the MF agent is responsible
for the specification of the mapping between
the B and S ontologies. When the B requests a
proposal (ReqProposal), the MF agent generates
(or queries) the ontology mapping repository for
a mapping between the two agents’ ontologies,
and proposes it to the agents. The agents are free
to accept or reject the mapping, but in case both
accept, the messages’ content will be transformed
between agents according to that ontology map-
ping specification.

The changes to the original protocol are mini-
mal. In fact, most of the changes affect the MF
agent only, in the sense that the ReqMapping and
ReqTransf messages will trigger MF’s internal
processes.

4. T rans form ation

query

2. O ntology public at ion

query query

3 . O ntology M apping

1. R egis trat ion 1. R egis trat ion

4 . T rans form ation

3 . O ntology M apping

2 . O ntology P ublic at ion

B S

S N -i

O M - i

M F

Figure 5. Marketplace’s actors and interactions

 1469

A Semantic Web-Based Information Integration Approach for an Agent-Based Electronic Market

extended Approach

However, this system infrastructure is too simple
to be effective especially because:

• It neglects the complexity and subjectivity
of the ontology mapping process.

• It does not consider the social relationships
emerging in the Web and their potential
in disambiguation and decision-making
processes.

As a consequence, a new system infrastruc-
ture is proposed, recognizing two new types of
actors:

• Ontology Mapping Intermediary (OM-i), is
the agent that supports the information inte-
gration process during the market interoper-
ability, typically one per marketplace.

• Social Networks Intermediary (SN-i), is
the agent that provides trust relationship
information holding between B, S and other
agents that undertake similar experiences
(e.g. a trader agent), typically one per mar-
ketplace.

These actors deploy a set of relationship types
whose goal is to automate and improve the quality
of the results achieved in the e-commerce transac-
tions. Figure 5 depicts the types of interactions

B uy er M F

R eqP ropos al (R FP)

S eller

R es ult(R)

R eqA c c eptanc e (M)

Forw ardP ropos al (P ')

A c c ept(M)

O M - i S N -i

R eqM apping

M apping (M)

R eqS N Inf

S N Inf(Inf)

R eqT rans f (R FP)

R eqT rans f (P)

T (P ')

T (R FP')

C onfA c c ept(M)

R eqT rans f (R)

T (R ')

Fow ardR es ult (R ')

R eqA c c eptanc e (M)

Fow ardR eqP ropos al (R FP')

A c c ept(M)

R eply P ropos al (P)

Figure 6. The integration protocol

1470

A Semantic Web-Based Information Integration Approach for an Agent-Based Electronic Market

between the marketplace supporting agents (i.e.
MF, OM-i and SN-i agents) and the operational
agents (i.e. B and S).

Considering the previous descriptions, a more
complete and complex protocol is now detailed,
including the OM-i and SN-i agents in the system
(Figure 6).

The integration starts when the B agent sends
a request for proposal message (ReqProposal) to
the MF agent. In response, the MF sends to the
OM-i a request for mapping message (ReqMap-
ping) between B and S’s ontologies.

Once OM-i receives the ReqMapping message,
it will start the ontology mapping specification
process, with the support of other entities, includ-
ing matching agents, ontology mapping reposito-
ries and SN-i. SN-i is responsible for retrieving
the relevant information from ontology mapping
repositories and social networks. Past similar
ontology mapping experiences undertaken by
agents with trust relationships with B and S will
be used by SN-i to compile the social network
repository information (i.e. SNInf(Inf)). Because
the ReqSNInf is the sole responsibility of OM-i,
both B and S are advised to perform a similar
verification (eventually using other SN-i) once
the ontology mapping is submitted for acceptance
(i.e. ReqAcceptance(M)). Despite the fact that
figure 6 represents only the acceptance scenario,
a rejection scenario is also possible, in which case
no further interaction will occur between B and
S. In case the mapping is accepted, MF resumes
the protocol by requesting to OM-i the RFP data
transformation. Using the ontology mapping
document, RFP data represented according to
B’s ontology is transformed into data represented
according to S’s ontology. The transformed data
(RFP’) is forwarded to S, which will process it
and will reply to MF. MF will then request the
transformation of the proposal data (P) and will
forward P’ to B. B processes it and will accept
or formulate a counter-proposal (CP). As can be
seen, once a mutually acceptable ontology map-
ping is established between B’s ontology and

S’s ontology, all messages exchanged between
B and S through MF are forwarded to OM-i for
transformation.

Notice that Figure 6 represents one single S
in the system, but in fact multiple S’s capable of
replying to the request may exist in the market-
place. In such case, the protocol would replicate
the previous protocol for as many capable S’s. In
order to decide which S’s are capable of answering
the request, a simple approach based on a keyword
matching algorithm is taken. The B agent speci-
fies a few keywords along with its formal request
(RFP). The MF, with the aid of SN-i, matches this
list against every S’s publicized keyword list. In
case the match succeeds to a certain level, the S
is classified as capable.

The interaction protocol just described em-
phasises the information integration problem
occurring in the negotiation stage of the CBB
model. However, other interaction protocols are
needed to improve the marketplace in accordance
to the objectives stated in section 2.1. In fact, in
every stage of the CBB model, both the SN-i and
OM-i are major players in the proposed solution.
Notice that the social network information and
trust component of the system is orthogonal to
previous processes, as depicted in Figure 5. Also
notice that the trust component of the system is
orthogonal to previous processes, as depicted in
Figure 7.

In particular, the Social Network component
is envisaged as a source of information for dis-
ambiguation and decision-making to the other
processes, along with trust relationships between
users and groups:

• The Registration process will profit from
the Trust component in several ways. For
example, the S agents can better decide
which Services to provide in a marketplace,
depending on the segment of customers
traditionally found in specific marketplace.
This is achieved by the social characteriza-
tion of the B agents according to the social

 1471

A Semantic Web-Based Information Integration Approach for an Agent-Based Electronic Market

networks they belong to. In the same sense,
B agents can more accurately choose the
marketplaces to register to, depending on
the social network advice, based on a social
characterization of the other marketplace
participants (i.e. Buyers and Sellers);

• During the Ontology Publication process,
agents need to decide which ontologies are
advisable in that particular marketplace
(e.g. simple or more detailed). The agent
is able to choose the ontology that conve-
niently describes the semantics of its data
in a certain context. In order to decide the
more convenient ontology, S agents require
a social characterization of the marketplace.
Similar decisions are taken by B agents.
Notice however, that the agent’s published
ontology should not be understood as the
complete representation of its internal
data, but the semantics the agent intends to
exteriorize through the Ontology Publica-
tion process. As a consequence, the agent
should encompass the mechanisms allow-
ing the internal transformation between the
internal data semantics (e.g. data schema)
and the external semantics (ontology), and
vice-versa;

• The Ontology Mapping Specification pro-
cess is typically very ambiguous, thus it can
potentially profit from the social characteri-
sation and social trust relationships provided

by SN-i. This process is understood as a
negotiation process, in which B and S try
achieving a consensus about the ontology
mapping. The SN-i agent participates in this
process as an information provider to the
OM-i in order to disambiguate the ontol-
ogy mapping achieved through automatic
mechanisms and protocols. A possible ap-
proach for this negotiation can be found in
(Silva, Maio & Rocha, 2005);

• The Ontology Mapping Execution process
is very systemic (in accordance to the ontol-
ogy mapping specification document). Yet,
the messages’ data may be inconsistent in
respect to the B’s and S’s data repository.
In such cases, social knowledge is often
required in order to decide/correct the
consistency of the data. Through the use of
social relationships, SN-i is a facilitator of
this process.

AlternAtIves

Some approaches to agent-based applications for
competitive electronic markets are more targeted
or limited than our proposal: some of them not
address a multi-issue negotiation type; do not
consider behaviour dependent dynamic strategies,
or expected future reactions. Others, although
considering behaviour dependent dynamic strate-

So
cia

lN
et

wo
rk’

s
Inf

orm
ati

on
an

dT
ru

st

R egis trat ion

O ntology P ublic at ion

O ntology M apping S pec if ic at ion

O ntology M apping E x ec ut ion

Figure 7. Marketplace’s ontology-based services

1472

A Semantic Web-Based Information Integration Approach for an Agent-Based Electronic Market

gies, frequently assume that agents have complete
information about market, such as the distribution
of buyer preferences or its competitor’s prices like
(Dasgupta & Das, 2000) and (Sim & Choi, 2003),
and, in general, all of them assume that actors be
aware of understand each other. Nevertheless, we
can find approaches where the semantic problems
are been considered.

For example, in (Malucelli, Rocha & Oliveira,
2004) ontology-based services are proposed to be
integrated in the ForEV architecture in order to
help in the Virtual Enterprise formation process
(B2B). ForEV is an appropriate computing plat-
form that includes and combines a multi-issue
negotiation method in the context of Multi-Agent
Systems, which makes the platform more open,
enabling the establishment of the negotiation
process between agents with different ontolo-
gies although representing the same domain of
knowledge. They propose an ontology-based
services Agent which is responsible for provid-
ing the ontology-based services. However we are
interested in studying Multi-agent systems for
B2C domain where other stages, as advocated
by the CBB model, need to be contemplated in
order to represent real situations. We are inter-
ested in studying how the identification stage
of the CBB model can be supported by using
ontologies to construct the most accurate model
of the consumer’s needs. Moreover, at the product
brokering, buyer coalition formation, merchant
brokering and negotiation stages, the ontology
mapping process will provide the integration of
the seller and consumer’s models and guarantee
the agent’s heterogeneity. On the other hand,
they don’t explore the repository of relationships
provided by emergent social networks, which can
carry out the establishment of more accurate trust
relationships between businesses and customers,
as well as providing a better alignment (mapping)
between their models.

In (Paolucci, Sycara, Nishimura & Srinivasan,
2003) authors present a capabilities matchmaker
for applications in the Web, wrapped by Web

Services. DAML-S is an ontology of capabili-
ties that is instantiated for describing the capa-
bilities of Web Services, which are then matched
against other Web Services’ capabilities. Thus
a semantic matchmaking approach is adopted,
ahead of the syntactic description approach com-
monly adopted. A very important limitation of
the approach is the lack of a decision-making
mechanism. In fact, as stated by the authors,
“DAML-S requires applications that look more
like intelligent software agents than traditional
e-commerce applications”.

Instead, the approach proposed in this chapter
suggests the adoption of an orthogonal information
and trust and social relationship service, capable
of supporting the overall e-commerce processes,
especially the decision-making and disambigua-
tion processes.

A similar concept is adopted by the on-going
myOntology project (http://www.myontology.
org), in which the ontologies are perceived as
socially evolving descriptive artefacts of a domain
of discourse, namely that of e-commerce. This
project aims to create infrastructures capable
of capturing the social interactions in develop-
ing/evolving the ontologies, and exploit such
information “to improve the expressiveness and
disambiguity of informal concept definitions in
an ontology”.

Therefore, this project is complementary to the
approach we propose, in the sense that it is focused
on capturing, populating and systematizing the
repository with the ontology changes carried by
the social groups. The approach suggested in this
chapter will profit form this technology as a social
information and Web-of-trust source of informa-
tion. It is up to the SN-i to conveniently exploit
such information in e-commerce scenarios.

cost And benefIts

In an efficient agent-mediated electronic market
it is necessary to have common standards: an

 1473

A Semantic Web-Based Information Integration Approach for an Agent-Based Electronic Market

interaction protocol to achieve deals; a language
for describing the messages’ content; and ontology
for describing the domain’s knowledge.

The interaction protocol is usually announced
at the marketplace and composed of a set of
interaction phases. The language for describing
the messages’ content is usually provided by
the communication platform used to develop
the e-commerce application. Platforms for dis-
tributed agent’s communication are also avail-
able, however, an ontology for describing the
domain’s knowledge needs to be incorporated
and represent the best answer to the demand for
intelligent systems that operate closer to the hu-
man conceptual level.

With regard to ontologies, many studies
are being done but, currently, there is neither
a standard ontology language nor a standard
ontology knowledge representation. This lack of
standardization, which hampers communication
and collaboration between agents, is known as
the interoperability problem. However, ontolo-
gies per se are not able to overcome information
interoperability incompatibilities and it is hardly
conceivable that a single ontology can be applied
to all kinds of domains and applications. Infor-
mation integration mechanisms are necessary in
order to identify, represent and apply the diverse
relationships between concepts and relations of
two or more ontologies. Ontology Mapping is one
of the most successful information integration
paradigms used in the Internet and in particular in
the Semantic Web. The use of a common ontology
guarantees the consistency and the compatibility
of the information present in the system.

In this work, the different actors involved in
the marketplace are able to independently describe
their universe of discourse, while the market is re-
sponsible for providing a technological framework
that promotes the semantic integration between
parties through the use of ontology mapping.

On the other hand, we propose an approach
where the agents are free to accept or reject the
mapping done by the marketplace. With this ap-

proach we can test several scenarios and explore
a valid future agent-based platform for B2C.
Additionally, through the integration information
process carried out in the different stages, the
searching space is enlarged, promoting the access
to goods/services otherwise inaccessible.

Nevertheless, this solution has some draw-
backs related to development and deployment.
The development problems are specially related
with the heterogeneity of the main technology
requirements. The deployment issues are related
with the configuration of the agent according to
the user’s constraints and strategic behaviours.

rIsk AssessMent

During this chapter, several assumptions were
considered in order to support the proposed sys-
tem. In particular, it is assumed that the social
network paradigm will continue growing and
that processing mechanisms will be provided. In
particular it has been assumed that:

• The social participation in the Web will
continue growing, namely tagging, social
bookmarking and collaborative activism;

• The capabilities of the social network in-
frastructures will increase, providing and
promoting services exploiting the informa-
tion brought online by each individual;

• The relation (dependency) between Web-Of-
Trust systems and Social Networks (based
on FOAF or other representation mecha-
nism) will tighten. This relation will be of
fundamental importance in the effective
development of the proposed infrastructure
since it will provide the identification and
trust infrastructure between communities
and systems.

• The social network concept will evolve in
order to encompass some explicit seman-
tics, turning into semantic social networks.
More than an enabler, such evolution would

1474

A Semantic Web-Based Information Integration Approach for an Agent-Based Electronic Market

facilitate the adoption of the proposed ap-
proach.

According to what has been stated, the pro-
posed approach has several internal strengths
and weaknesses.

Strengths:

• The CBB reference model is widely rec-
ognized as a correct interaction model in
B2C.

• The proposed approach adopts concepts
and behaviours not supported by traditional
agent-based approaches.

• Permeation of ideas, domain modelling and
content characterization between individu-
als and communities leads to socially sup-
ported decisions and disambiguation.

Weaknesses:

• Intrinsic semantic ambiguity of the proposed
approach, which might lead to users having
difficulty in accepting the decisions recom-
mended by the system.

• Novelty of the suggested model, which might
lead to poor results which are not fully geared
and tweaked.

At the same time, the proposed approach
profits and suffers from the technological, social
and economic context.

Opportunities:

• Limitations of the user-driven portal-based
and of the traditional agent-based B2C.

• Social network relationships, giving rise to
communities of interests with some degree
of mutual trust.

• SNA metrics and statistics, enabling the
characterization of (implicit) communities,
and hence promoting business activities ac-
cording to target community.

• Social network engagement, promoting

the cooperation between individuals, thus
facilitating technological solutions, such as
information integration and decision sup-
port.

Threats:

• Maturity of the Social Networks and related
technologies.

• Lack of the supposed social network ser-
vices.

• Lack of social network services accessi-
bilities for software agents (e.g. API, Web
Services).

future trends

One of the largest problems this approach faces is
related to the access and processing of social rela-
tionships. Despite the fact that the social networks
and social network analysis are well established
concepts, their implementation in the scope of
the Internet started a couple of years only. As a
consequence, some of the available services sup-
porting online social communities (e.g. LinkedIn,
MySpace, FaceBook) are now facing relevant
problems, such as duplication of registers inside
and across services, abandoned registers, ghost
(virtual) registers. Instead, the evolution seems
to follow the specialization trend (e.g. one service
is used to create music relationships, another one
is used for sports relationships) and respecting
the age of user (i.e. one service is mostly used by
young people, while another is used by middle
age people). Additionally, organizations are now
creating their own business-oriented social net-
works, either for employers or customers. Social
networks are spreading on the Web, which will
require an immense effort of integration. Our
approach would profit from this characterization
as it will be possible to better characterize the
customer needs in respect to buyers and other
customers.

 1475

A Semantic Web-Based Information Integration Approach for an Agent-Based Electronic Market

We need to develop our approach and test
several scenarios in order to obtain and explore
new market information, which will be used
to feed agent’s knowledge-bases and the social
networks repositories.

conclusIon

The meaningful interaction between distributed,
heterogeneous computing entities (e.g. software
agents), in order to be both syntactic and seman-
tically compatible, needs to follow appropriate
standards well understood by all participants.
Some standards are being developed with regard
to ontologies specially the Ontology Web Lan-
guage (i.e. OWL) in the context of Word Wide
Web Consortium.

Several problems involved in the overcoming
of syntactic and semantic heterogeneity are dif-
ficult to be solved, at least nowadays. However,
some efforts have been made in order to find
possible ways to resolve parts of this complex
problem.

A big challenge for communicating software
agents is to resolve the problem of interoper-
ability. Through the use of a common ontology
it is possible to have a consistent and compatible
communication. However, we maintain that each
different actor involved in the marketplace must
be able to independently describe their universe
of discourse, while the market has the respon-
sibility of providing a technological framework
that promotes the semantic integration between
parties through the use of ontology mapping. In
addition, we think that the solution to overcome
theses problems has to take into consideration the
technological support already existent, namely a
well-proven e-commerce platform, where agents
with strategic behaviour represent consumers
and suppliers.

This chapter has proposed the use of agents
and Multi-Agents Technology as a platform for

B2C. We propose an agent-based electronic market
with an ontology-based information integration
approach, exploiting the ontology mapping para-
digm, by aligning consumer needs and the market
capacities, in a semi-automatic mode, improved
by the application and exploitation of the trust
relationships captured by the social networks.
Additionally we explore the repository of rela-
tionships provided by emergent social networks,
which can carry out the establishment of more ac-
curate trust relationships between businesses and
customers, as well as providing a better alignment
(mapping) between their models. Social networks
form the basic infrastructure to encompass trust
in many internet based activities, including B2C
transactions and information integration.

references

Aberer, K., Datta, A., & Hauswirth, M. (2005).
A decentralized public key infrastructure for
customer-to-customer e-commerce. International
Journal of Business Process Integration and
Management, 1, 26-33.

Dasgupta, P., & Das, R. (2000). Dynamic Service
Pricing for Brokers in a Multi-Agent Economy.
Proceedings of the Third International Confer-
ence for Multi-Agent Systems (ICMAS), pp.
375-76.

Fatima, S., Wooldridge, M., & Jennings, N. (2004).
An agenda-based framework for multi-issue ne-
gotiation. Artificial Intelligence, 152(1), 1-45.

HarmoNet (2008). HarmoNET - the Harmoni-
sation Network for the Exchange of Travel and
Tourism Information. Retrieved January 11, 2008,
from the World Wide Web: http://www.etourism-
austria.at/harmonet.

Hepp, M. (2007). Possible Ontologies: How Re-
ality Constrains the Development of Relevant

1476

A Semantic Web-Based Information Integration Approach for an Agent-Based Electronic Market

Ontologies. IEEE Internet Computing, 11(7),
96-102.

Huhns, M. N., & Singh, M. P. (1997). Readings
in Agents. San Francisco, CA: Morgan Kaufmann
Publishers.

Maedche, A., Motik, B., Silva, N., & Volz, R.
(2002). MAFRA-A MApping FRAmework for
Distributed Ontologies. Proceedings of the 13th
International Conference on Knowledge Engi-
neering and Knowledge Management, LNCS,
2473, 235-250.

Malucelli, A., Rocha, A., & Oliveira, E.. (2004).
B2B Transactions enhanced with ontology-based
services. Proceeding of the 1st International
Conference on E-business and Telecommunica-
tion Networks. Setúbal, Portugal.

Obrst, L., Liu, H. & Wray, R. (2003). Ontologies
for Corporate Web Applications. AI Magazine,
24(3), 49-62.

Osborne, M. J., & Rubinstein, A. (1994). A Course
in Game Theory. Cambridge, MA: MIT Press.

Paolucci, M., Sycara, K., Nishimura, T., &
Srinivasan, N. (2003). Toward a Semantic Web
e-commerce. Proceedings of the 6th International
Conference on Business Information Systems.
Colorado Springs (CO), USA.

Pinto, H., Gómez-Pérez, A., & Martins, J. P.
(1999). Some issues on ontology integration.
Proceedings of the Workshop on Ontology and
Problem-Solving Methods: Lesson learned and
Future Trends at IJCAI’99, 18, 7.1-7.11.

Runyon, K., & Stewart, D. (1987). Consumer Be-
havior (3rd ed.). Merrill Publishing Company.

Silva, N., Maio, P., & Rocha J. (2005). An approach
to ontology mapping negotiation. Proceedings of
the Third International Conference on Knowledge
Capture Workshop on Integrating Ontologies.
Banff, Canada.

Sim, K. M., & Choi, C. Y. (2003). Agents that
React to Changing Market Situations. IEEE
Transactions on Systems, Man and Cybernetics,
Part B, 33(2), 188-201.

Siorpaes, K., & Hepp, M. (2007). myOntology:
The Marriage of Ontology Engineering and Col-
lective Intelligence. Proceedings of the ESWC
2007 Workshop “Bridging the Gap between Se-
mantic Web and Web 2.0”. Innsbruck, Austria.

Ströbel, M. (2001). Communication Design for
Electronic Negotiations on the Basis of XML
Schema. Proceedings of the Ten’th International
Conference on World Wide Web. Hong-Kong,
pp. 9-20.

Studer, R., Benjamins, R., & Fensel, D. (1998).
Knowledge Engineering: Principles and Methods.
Data & Knowledge Engineering, 25(1), 161-197.

Tsvetovat, M., & Sycara, K. (2000). Customer
Coalitions in the Electronic Marketplace. Pro-
ceedings of the Fourth International Conference
on Autonomous Agents, pp. 263-264.

Van Damme, C., Hepp, M., & Siorpaes, K. (2007).
FolksOntology: An Integrated Approach for Turn-
ing Folksonomies into Ontologies. Proceedings
of the ESWC 2007 Workshop “Bridging the Gap
between Semantic Web and Web 2.0”. Innsbruck,
Austria.

Viamonte, M.J. (2004). Mercados Electrónicos
Baseados em Agentes – Uma Abordagem com
Estratégias Dinâmicas e Orientada ao Conhe-
cimento. Doctoral dissertation, University os
Trás-os-Montes e Alto Douro, Portugal.

Viamonte, M.J., Ramos, C., Rodrigues, F., &
Cardoso, J.C. (2006). ISEM: A Multi-Agent
Simulator For Testing Agent Market Strategies.
IEEE Transactions on Systems, Man and Cyber-
netics – Part C: Special Issue on Game-theoretic
Analysis and Stochastic Simulation of Negotiation
Agents, 36(1), 107-113.

 1477

A Semantic Web-Based Information Integration Approach for an Agent-Based Electronic Market

Yamamoto, J., & Sycara, K. (2001). A Stable and
Efficient Buyer Coalition Formation Scheme for

E-Marketplaces. Proceedings of the Fifth Inter-
national Conference on Autonomous Agents, pp.
237-288.

This work was previously published in Semantic Web for Business: Cases and Applications, edited by R. García, pp. 150-169,
copyright 2009 by Information Science Reference (an imprint of IGI Global).

1478

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.6
Electronic Commerce Strategy
in the UK Electricity Industry:
The Case of Electric Co and Dataflow

Software

Duncan R. Shaw
University of Nottingham, UK

Christopher P. Holland
University of Manchester, UK

Peter Kawalek
University of Manchester, UK

Bob Snowdon
University of Manchester, UK

Brian Warboys
University of Manchester, UK

AbstrAct

This paper investigates the collective use of a
simple modeling technology by highly complex,
heterogeneous and numerous groups of stakehold-
ers who heavily depend upon it to mediate their
interactions. We use economic theory, design
theory, complex systems theory and business
process modeling concepts to analyze deregu-
lation and business to business interaction in

the UK electricity industry, and the strategic
business and IT response of Electric Co, a large
electricity supply company. The relevance of this
study comes from its investigation of a novel
example of the shaping of a whole sector’s e-
business through regulatory law and thus we are
concerned with enterprise and inter-enterprise
systems not purely with ERP systems. We focus
on model-based business interaction and its effect
upon the business and consumer behaviors of a

 1479

Electronic Commerce Strategy in the UK Electricity Industry

whole country’s electricity sector. This sector is
a socio-technical system; so business processes
and consumer behaviors are not only shaped by
the regulator’s legally enforced business to busi-
ness process interaction model, but the opinions
of businesses and the public also influence how
the regulator updates its model. Thus business
behaviors, consumer behaviors and the model
interact to shape each other. By moving from
intra to inter-organizational business processes
we seek to demonstrate and explain the value
of models in e-business where the complexity
of interacting business systems involves many
thousands of parameters. We show how develop-
ments in technical standards and business process
management are related to inter-organizational
interaction and coordination.

IntroductIon

Networks of businesses are complex systems that
are joined by complex interrelations (Anderson,
1999). These interrelations take the form of busi-
ness processes that join the elemental businesses.
Business process modeling literature seeks to
describe business processes from different per-
spectives, according to different objectives or
goals. To do this, it uses modeling constructs such
Curtis, Kellner, and Over’s three constructs of
agent, role and artifact to do so (Curtis, Kellner,
& Over, 1992). This paper illustrates the use of
regulatory power over modeling methodology
sophistication. By moving from intra to inter-
organizational business processes it demonstrates
and explains the value of models in e-business
where the complexity of interacting business
systems involves many thousands of parameters
(Scheer & Habermann, 2000). The importance of
this study is that it moves away from the single
firm Enterprise Resource Planning (ERP) system
perspective. Here we focus upon enterprise and
inter-enterprise systems and not purely upon

ERP systems. Rather, this study focuses upon
model-based business interaction and its effect
upon the business and consumer behaviors of a
whole country’s electricity sector.

The relevance of this study comes from its
investigation of a novel example of the shaping
of a whole sector’s e-business through regula-
tory law. It is also an example of a collective
use of a simple modeling technology by highly
complex, heterogeneous and numerous groups
of stakeholders who heavily depend upon it to
mediate their interactions. Most interestingly it
is a socio-technical system; so not only are busi-
ness processes and consumer behaviors shaped
by this legally enforced model, but the opinions
of business and the public also influence how
the regulator updates the model. Thus business
behaviors, consumer behaviors, and the model
shape each other.

The business processes that embody business-
to-business (B2B) interaction can be decomposed
into sub-processes; and sub-processes into sub-
sub-processes ad infinitum (Rescher, 2000). For
example, the production process for a car can be
decomposed into the main production processes
of all the first tier suppliers to the car company,
whose brand appears on the front of the car.
These main production processes can be further
decomposed into those of second tier suppliers
and so on. Additionally, all the on site business
processes of all these companies can be also be
decomposed, seemingly, ad infinitum and so can
the business processes that are the interactions
between suppliers and customers. This has both
theoretical and practical implications.

theoretical Implications

The infinite decomposability of business processes
is a possible reason for why there is no theoretical
basis for business process model constructs. In the
literature, these constructs use supporting theories
from semiotics (Falkenberg et al., 1998; Stamper,
1987; Liu, 2000), Shannon’s Communications

1480

Electronic Commerce Strategy in the UK Electricity Industry

Theory (1948), Classification Theory (Parsons,
1996) and Ontology Theory (Wand & Weber,
2002; Green & Rosemann, 2000). Scheer’s ARIS
House Of Business Engineering, for example, is
one of many modeling architectures (Scheer &
Nüttgens, 2000); Hommes lists several hundred on
his Web site (Hommes, 2005). ARIS’ four levels
provide four useful perspectives for abstracting
salient real world properties. The first two levels,
(1) process design and (2) process control, are
process-centric (what happens) and its second two
levels, (3) inter-application workflow coordination
and (4) application used, are application-centric
(by whom/what). Also, these perspectives are
grouped into low and high specificity: levels (1)
and (2) are general designs whilst levels (3) and (4)
specify users (Scheer & Nüttgens, 2000). These
are all useful perspectives for abstraction but be-
cause process modeling has no underlying theory
other perspectives (e.g., regulatory, data quality,
or even environmental) could equally be included.
Such a theory may never be discovered because
at some level processes are not pre-definable and
their composition only becomes possible to know
during enaction (ibid, p. 375). Complex systems
are not modelable below a certain level of detail,
or past a certain point in time, because emergence
cannot be forecast (Checkland, 1981).

However, these are theoretical bases for the
communication or representation of the process
model constructs rather than for its generation.
The model constructs in the business process
modeling literature “merely list properties”
(Lindland, Guttorm, & Solvberg, 1994), thus
there is no way to judge the relative or absolute
quality of different lists of model constructs. If
processes are infinitely decomposable systems,
as asserted by the Process Philosophy literature
(Rescher, 2000), then an “atomic” process com-
ponent does not exist and business process models
can be compared to skyscrapers built upon mud.
Their foundations do not rest upon bedrock but
are deep enough to derive support from the mud
itself. In modeling terms we can say that the

model constructs only emulate properties of the
subject in the domain of the modeler’s concern.
The lack of a theory also removes the possibility
of a theory-derived heuristic.

Practical Implications

Secondly, businesses experience connection
problems in practice. The composition of busi-
ness processes from an immense number of
elemental sub-processes enables many different
configurations. This leads to many potential
configuration mismatches between businesses
(Scheer & Habermann, 2000). For example, car
parts delivered to an assembly plant could arrive
at the wrong time or in the wrong quantity, type,
specification or batch size. Instead of “wrong”
a more precise word is “unsynchronized”. The
delivered parts are not wrong for the deliverer but
they hold properties that do not synchronize with
the business processes that the receiver is enact-
ing. The complex nature of B2B systems, and the
business processes that join them, generates the
potential for unsynchronized interdependencies.
Synchronizing, or managing interdependen-
cies, requires an act of coordination (Malone &
Crowston, 1994) and one form of coordination
uses standards (Langlois & Savage, 2001).

The objective of this study is to understand
how and why the interdependencies (business
processes) and interactions between businesses
in a complex network can be managed, so as to
reduce prices through increased competition while
at the same time increasing interaction complexity,
in other words, this is a coordination problem.
Coordination involves business process compo-
sition and decomposition by all managers each
time they make managerial choices, for example,
choosing to incorporate one supplier’s process
output versus another’s. We view business process
coordination as the overall function of business
process composition and decomposition. We at-
tempt to do this by using theories from several
different disciplines but which are all designed

 1481

Electronic Commerce Strategy in the UK Electricity Industry

to make sense of complex systems of one type or
another. This includes design theory’s and systems
theory’s intriguing intersection at the concept of
“fit”. We also develop a type-structural-volume
flexibility model of inter-organizational interac-
tion, which is build up gradually throughout the
paper. It is grounded in the concepts of Requisite
Variety, Bounded Rationality, Scale Economies,
and Transaction Costs. It is illustrated using the
case both at sector and firm level and its implica-
tions are set out for regulators and practitioners
in our conclusion.

The contributions of our article apply both to
academics and business practitioners, and are in
its investigation of the use of business process
standards to mitigate the complexities B2B
interaction. In one such network, an electricity
market, we illustrate how one company uses a
business process standard at strategic manage-
ment, business process and technical levels. This
cross-disciplinary paper describes some of the
problems of inter-organizational human interac-
tion and how they have been solved by using a
business process model.

reseArcH MetHod

This paper illustrates a sector where very high
consumer churn rates have forced very high
volumes of business-to-business and business-
to-consumer interaction. The paper analyzes
how this produces data-exchange problems for
electricity suppliers and how these problems are
reduced by the regulator and then solved in detail
by one particular electricity supplier. This solu-
tion is explained with a conceptual framework
that is constructed using the theoretical concepts
of standards from Economics, fit from Design
Theory and Ashby’s Law of Requisite Variety
from Cybernetics. We apply this framework to
the context of modeling the business processes
that constitute the regulated interactions of the

main actors in the UK electricity industry. Then
we explore the practical implications of this by
showing how the sector model is used by one
electricity supplier to solve its own acquisition
interconnection problems. Current literature
does not adequately cover complex, high volume,
politically sensitive, and high frequency business
interactions across whole sectors.

We take an interpretive stance, because of
the subjective nature of human interaction, and
iterate around a hermeneutic circle, comparing
sectoral and organizational perspectives so as
to consider an interdependent whole joined by a
standardized interaction model (Klein & Myers,
1999). We use a qualitative approach because
our investigation is concerned with questions of
“how” and “why” rather than of “how many”. In
seeking to answer “how” and “why”-type ques-
tions we follow Yin’s recommendations (2003,
pp 5) and use a case study approach: “how can
a whole industry sector organizations be coor-
dinated?” and “why do electricity prices reduce
even when B2B interaction complexities seem
to be greatly increased?”, i.e., “how is it possible
that standardization increases flexibility and why
is this so?” A case approach is fitting because we
are concerned with contemporary phenomena
which we have no control over (ibid).

We are concerned with dynamic phenomena,
so we have used several different data collec-
tion methods (Eisenhardt, 1989). Most data
was obtained from interviews with members of
“Dataflow Software’s” board, marketing staff and
design teams. Dataflow described the history of
the use of modeling and modeling technology both
in the sector and in helping their client “Electric
Co”. They also provided us with technical product
information. Additionally, a full version of the
regulator’s industry business process model, the
Master Registration Agreement (MRA) process
diagrams were obtained from the MRA Service
Company (MRASCo) Web site serviced by
Gemserv Limited. Finally, other historical back-

1482

Electronic Commerce Strategy in the UK Electricity Industry

ground data relating to government-led change
in the sector was obtained from public Web sites
as referenced.

stAndArds for busIness-to-
busIness (b2b) InterActIon

Kindleberger distinguishes between two types
of standards: standards that create scale econo-
mies and standards that reduce transaction costs
(Kindleberger, 1983; Langlois & Savage, 2001).
Both types of standards act by reducing variety.
Standards create scale economies by reducing the
variety of problem types and solution types in a
particular domain, which increases the volume
of use of the remaining problem types and solu-
tion types. For example, consider a market with a
size of 100 widgets per year where four different
types of widgets are produced and consumed.
If the market’s customers change to a standard
consisting of two widget types then the average
volume of these two types could be expected be
approximately double the volume of any one of
the previous four solution types. This assumes an
equal demand for all types and neglects reduction
in demand from buyers who could only tolerate
a discontinued widget type. The higher volumes
permit economies of scale from longer produc-
tion runs and reduced stock costs that are brought
about by narrower product portfolios.

Transaction cost standards reduce the costs of
a transaction between two people, or organiza-
tions, by aligning expectations and increasing the
predictability of outcomes (Langlois & Savage,
2001). This acts to reduce the costs of the interac-
tion by limiting the interaction, in other words,
standards are a form of coordination (Schilling,
2000). Standards manage interdependencies by
limiting their values to a subset of all possible
values, for example, the use of standard shoe sizes
increases the predictability of a fit when we try
on a new pair of shoes in a shoe shop; so fewer
shoes need to be tried on.

Standards can be technical (for example the
Standard International units used in the physical
sciences and engineering) or behavioral (such as
taboos and traditions). Standards reduce “per-
ceived” variety by improving communication
precision, which leads to the increased alignment
of expectations. By reducing the variety that
has to be managed standards enable the variety
management “capacity” of boundedly rational
managers to be applied elsewhere (Newell, 1989).
Standards are applicable whenever there are op-
tions or choices. They can also reduce variety
when applied to the interdependencies between
businesses and thus can be used to synchronize
B2B processes. They reduce variety when applied
to multiple occurrences of the same process, or
even single instances, in a single business. For
example, businesses may have standard delivery
times; standard production processes may be
reproduced many times on a production line; and
a product specification is a design standard that
is created only once because redesigned prod-
ucts are separate, unique and have different part
numbers. Whether between businesses, between
process instances or in the enaction of one process
instance, all three examples contain options that
have to be decided between.

Standards limit the requirement for variety
management in a particular instance but this pro-
duces savings for either the producer (supply-side
scale economies) or the consumer (demand-side
transactions costs) only if the modular architec-
ture of the chosen standard fits the architecture
of the problem. Modules are components of a
system that are arranged according to a set of
rules, the system architecture (Schilling, 2000;
Parnas, Clements, & Weiss, 1985). The system
architecture is an abstraction of the full system
based upon the concept of loose coupling between
modules and tight coupling between sub-modular
components within modules. Loose coupling is
where the interdependencies between system ele-
ments are of low intensity (Weick, 1974; Orton &
Weick, 1990). It is an example of Herbert Simon’s

 1483

Electronic Commerce Strategy in the UK Electricity Industry

concept of near decomposability (Simon, 1969).
In systems every element is connected to every
other via interdependencies but the interdepen-
dencies between some elements are less intense
than between others. For example, couplings
are stronger within organizations than between
organizations (depending upon the observation
criteria). Thus organizations can be thought of
as modules within socio-economic systems. The
set of human rules or natural laws that govern the
coupling tightness of elemental interdependencies
is the architecture of the system. These same
rules, or laws, also govern the arrangement of
system modules.

In order for a standard to reduce variety, and
so produce either scale economies or reduced
transactions costs, there has to be fit. This concept
of fit is a match between context and structure
(Drazin & Van de Ven, 1985; Alexander, 1964). It
is the fit between the architectures of the problem
system and the solution system that join into a
larger system when the solution is implemented.
If the solution does not fully fit the problem then
it is sub-optimal. The solution system may not
address a subsystem in the problem system such
as a product portfolio containing purely desktop
PCs that fails to address a customer’s mobile
computing requirements. Another example would
be a human designed standard for shoe sizes
that must architecturally fit with the naturally
evolved architecture of human foot growth and
shoe use. Firstly, the architectural cover of the
standard must include the cover of most of the
human population. The subset of the population
not covered by the standard would amend it or just
not use it because it would not reduce variety for
them. This concept of cover applies to both the
hierarchical levels of the standard relative to the
population of foot sizes and shoe use (the solution
architecture) but also the span of the standard.
A system can be decomposed conceptually into
related subsystems and these subsystems can be
further decomposed into related sub-subsystems
and so on. The system, the subsystems and the

sub-subsystems, and so forth, exist upon three
different hierarchical levels. These are levels of
recursion like national economies, businesses and
departments; or departments, human bodies and
cells. In order to reduce variety a standard must
cover the appropriate hierarchical levels of the
subject to be standardized (e.g., the feet and foot
use). The span of a system relates to the sum of
the properties of its subsystems on any one level
(Simon, 1969). For a standard to fit it must be
applicable across all the hierarchical levels and
the full span of system properties that its users
find relevant. These hierarchical concepts are
similar to Allen, O’Neill, and Hoekstra’s grain
and extent (1984).

Secondly, the standard’s classification system
must reflect the modularity of the subject system.
In this example the architectural structure of the
standard’s classes must follow the architectural
structure of human feet. If the standard does not
reflect the modularity of the subject system, in
other words, if it includes classification bound-
aries in regions of tight coupling in the subject
system, then variety would not be reduced and
so choosing between classifications would not
be made easier. For example, a standard with a
classification system that specified sole size in-
dependently of upper shoe size would double the
variety of choice for the buyer by decomposing
a single class of “whole shoe size” into two sub
classes. If human shoe use required similar uppers
but with different soles then this added variety
would be requisite, in other words, there would
be enough solution variety to match the variety
of the problem (Beer, 1979). But humans tend to
change shoe uppers and shoe soles at the same
time so in human shoe use upper variety is tightly
coupled to sole variety and the problem variety
does not require a standard that decouples shoe
upper and shoe sole classifications. There may
also be a lack of fit if the standard includes too
few classification boundaries in regions of loose
coupling in the subject system. For example, we
tend to use shoes independently of clothes. Our use

1484

Electronic Commerce Strategy in the UK Electricity Industry

of foot coverings and body coverings are loosely
coupled, so clothes that incorporate foot coverings
are rare. Some examples of tight coupling between
foot coverings and body coverings are space suits,
certain types of wet suits and anglers’ waders.
In these three examples the purposes of the foot
coverings and body coverings are tightly coupled
and thus so is the construction of the covering.
The hierarchical level and the span granularity
at which the standard’s classification system best
reflects the modular architecture of the subject
system is a trade off between increased fit versus
increased variety.

We also use fit to assess the compatibility
between the industry process model and the
regulator’s objectives (i.e., does the market func-
tion? Is market efficiency improved?). There is
an architectural fit because although the industry
process model is merely an abstraction of all pos-
sible supplier-customer-regulator interactions it
includes enough of their fully set of behaviors to
allow each role to interact successfully.

cAse AnAlysIs of electrIc co
And dAtAflow softwAre

the uk electricity Market

In 1990, 12 regional electricity companies were
formed to supply business and domestic customers
in the UK. Each Regional Electricity Company
(REC) controlled a geographically defined mar-
ket. At the same time there were just three major
electricity generating companies: BNFL; Power-
gen; and National Power. Powergen and National
Power used fossil fuels to produce 80 percent of the
electricity and BNFL produced the remaining 20
percent using nuclear energy technology. Now we
have a situation where Credit Suisse First Boston
can trade on the future prices of electricity in the
electricity wholesale marketplace and a grocery
firm, Sainsbury, can supply electricity to a domes-
tic customer through cable owned by any of the

distribution companies, such as Scottish Power.
There is now competition at every stage of the
supply chain in the electricity market and a wide
variety of competitive strategies have emerged.
These range from large organizations attempting
to dominate a particular stage of the supply chain
to niche operators that focus on a very specific
customer set. A transition has occurred from a
highly regulated set of regional monopolies to
an open and competitive marketplace. For this
to happen in practice, in tandem with de-regula-
tion, individual companies have developed and
used advanced information systems and common
industry standards for information exchange. This
information exchange has in turn enabled the free
flow of information to support the rapid changes
in industry structure and interactions between
electricity suppliers and users that include large
corporate companies, small and medium sized
enterprises, and domestic users. The range of
participants now includes traders, generators,
distributors and suppliers.

Electric Co is one of the new breed of elec-
tricity companies that is competing in multiple
geographic regions, and is supplying electricity
to all types of customers from domestic to large
industrial users. A major part of its success in
competing to attract and retain new customers is
its advanced use of information systems that sup-
port both its internal business processes and the
exchange of market data with competitors. One of
its key technology partners is Dataflow Software
whose software forms an integral part of the IT
infrastructure of the industry as well as the com-
munication flows between Electric Co’s internal
systems and its economic partners, customers,
competitors and the industry regulator.

deregulation and new trading
Agreements

In March 2001 the UK government introduced
New Electricity Trading Arrangements (NETA) in
England and Wales (NAO, 2003). These arrange-

 1485

Electronic Commerce Strategy in the UK Electricity Industry

ments were designed to increase competition in the
electricity wholesale market, to reduce the price
of bulk electricity, and ultimately to reduce the
prices that the end users would have to pay. Prior
to this the arrangements for trading electricity,
known as the Pool, were thought to be uncom-
petitive and open to manipulation. The Office of
Electricity Regulation (OFFER) and the Office
of Gas Supply (Ofgas) were combined in 1999 to
form The Office of Gas and Electricity Markets
(Ofgem). In October 1997 the Minister for Science,
Energy and Industry asked OFFER to review the
way that electricity was traded in England and
Wales and suggest a number of improvements.
The areas of the review included reducing the
price charged to the user and improving choice,
quality and security of supply for electricity users
(Ofgem, 1997).

OFFER’s review of the Pool pointed to prob-
lems of over-regulation that limited the effect of
normal market forces such as competition in price
setting together with supply-side and demand-
side price influencing. The Pool, one of the first
examples of a wholesale electricity market in the
world, was limited by the complexity of its bidding
and price setting mechanism, the inflexibility of
its regulations and openness to manipulation of its
payment rules (NAO, 2003). The main proposal
from the review was that the trading of electricity
should become much more market-based. OFFER
recommended that the electricity market should
operate more like other commodity markets,
subject to special requirements for physically
balancing supply and demand in order to main-
tain the security and quality of electricity supply.
These special requirements came from the fact
that electricity is a commodity that is very difficult
and costly to store and whose supply cannot be
varied instantaneously but whose demand can. So
only balancing, rather than buffer stores, can be
used to stop frequent small power cuts caused by
high user demand volatility. In addition to this the
government required that users should be shielded
from short-term price volatility and the financial

instruments that are used within other commodi-
ties markets can also help with this.

These recommendations led to the current
trading arrangements known as NETA. With
NETA the value chain for the industry is now
divided up into two main marketplaces (see Figure
1). These are the wholesale marketplace and the
supply marketplace. The wholesale marketplace
is made up of the six main generators: Innogy,
London Electricity, Powergen, Centrica, Scottish
Power and Scottish & Southern Electricity. These
generators are vertically integrated into the supply
marketplace, in other words, they produce and
sell electricity to end customers. The six genera-
tors have evolved from very different starting
points. For example, Centrica was originally only
a supplier of electricity and had no generation
capabilities. Powergen started in the power gen-
eration field and has now moved into the supply
marketplace. Other companies in the wholesale
electricity marketplace are banks, which trade on
the price and availability of electricity just as they
do in other commodity markets. Many of the small
electricity generators have particular niches, for
example they may use green energy sources such
as hydroelectric and wind power. The supply, or
“retail”, electricity marketplace is made up of the
six large, vertically integrated generators, several
very large supply-only companies and tens of
smaller companies. These smaller companies are
frequently associated with well-known brands, or
extensive customer networks, from sectors such
as media, banking and food retail.

One significant outcome of deregulation was
market instability caused by artificially high retail
electricity prices normalizing under more natural
market conditions. This instability caused a sig-
nificant drop in the wholesale price of electricity,
which in turn led to financial problems for the two
electricity generation companies, British Energy
and TXU Energy. British Energy had to ask the
UK government for financial assistance and TXU
Energy sold its European subsidiary to Powergen.
However, the UK’s National Audit Office (NAO)

1486

Electronic Commerce Strategy in the UK Electricity Industry

has reported that overall “NETA has facilitated
lower wholesale prices”, a decrease of “over 20%
between the introduction of NETA in March 2001
and October 2002”. In the same period the NAO
reported that electricity prices for industrial and
commercial customers had fallen 18 percent.
Prices for domestic customers fell less than this
but still in line with the reductions in suppliers’
overall costs. Customers who switched suppliers
secured an average price reduction of 17 percent,
but greater price reductions for domestic custom-
ers have been prevented by increases in supplier’s
environmental costs and “the substantial costs of
processing changes of supplier” (NAO, 2003).

the challenge to electric co and
other electricity suppliers

From the viewpoint of the customer one of the
biggest changes caused by NETA is to enable
customers to change their electricity supplier
whenever they wish to do so. This has created
responsiveness to demand-side market pressures
and has vastly increased the number of custom-
ers who switch suppliers, which has produced
an associated increase in the economic costs of
market change, for example, customer churn: los-
ing existing customers and acquiring new ones.

The UK’s National Audit Office found that from
May 1999 to June 2000, “6.5 million customers
— one in four — had saved money by changing
supplier, and customers were changing at the rate
of 400,000 a month” (NAO, 2004). The right of
electricity users to easily change their supplier
and the resulting increase in customer churn has
forced Electric Co to develop systems that can
cope with large numbers of customer registrations
and deregistrations.

The Office of Gas and Electricity Markets (Of-
gem), the electricity regulator, specifies a series of
service level agreements that electricity suppliers
must meet in this new open marketplace. In this
industry Ofgem specifies how every organization
operates. This specification describes all business
processes and their input and outputs; the exchange
of information and the information’s meaning; and
the timescales of the exchange. The model of the
whole industry’s business processes is described in
the Master Registration Agreement (MRA) using
dataflow diagrams that are extremely complicated.
Over 96 detailed diagrams describe more than
21 main processes and many sub-processes that
contain main varied process steps.

The MRA process diagrams are managed
and maintained by the MRA Service Company
(MRASCo, 2003). The business processes are

Figure 1. Elements of the English and Welsh electricity industry value chain in 2003

electricity
generation

electricity
distribution

supply
company

domestic
retail

Tens of supply
companies fronted by
brands and actually
supplied by a small
number of electricity
supply companies

SME
customers

industrial &
commercial

organisations

Six main vertically
integrated generators,
using oil, coal and gas
plus many smaller
generators powered by
hydro-electric and wind
sources

wholesale
marketplace

supply
marketplace

Electricity flow

 1487

Electronic Commerce Strategy in the UK Electricity Industry

Figure 2. Overview diagram of the UK electricity industry key business processes (MRASCo, 2003)

C
u
s
to

m
e
r

d
e
te

c
ts

m

e
te

r
fa

u
lt

P
la

n
n
e
d
 O

u
ta

g
e

R
e
q

u
ir

e
m

e
n
t
fo

r
e
n
e
rg

is
a
ti
o
n
/d

e
-e

n
e
rg

is
a
ti
o
n

..
.

..
.

D
e
ta

il
s
 o

f
ir

re
g

u
la

ri
ty

R
e
s
o
lv

e

E
rr

o
n
e
o
u
s

T
ra

n
s
fe

r

A
1
9
9

F
3
4
4

F
2
0
9
2

..
.

M
a
n
a
g

e
 S

u
p
p
ly

 (
In

s
ta

ll
,
a
n
d

m
a
n
a
g

e
 M

e
te

r
O

p
e
ra

ti
o
n
s
)

F
3
2
0
7

F
5
9
3
8

F
3
3
2
1

F
3
8
6
0

P
re

p
a
re

 S
u
p
p
ly

Q

u
o
te

R
e
q

u
ir

e
m

e
n
t

fo
r

d
is

c
o
n
n
e
c
ti
o
n

C
o
S

 R
e
g

is
tr

a
ti
o
n
 f
o
r

C
o
M

C

F
a
il
u
re

s
 a

n
d
 E

c
e
p
ti
o
n
s

E
T

A

c
c
e
p
te

d
 -

re

-r
e
g

is
tr

a
ti
o
n

o
f
E

T

F
3
2
6

F
1
5
4
7

A
5
9
9

A
7
8
3

R
e
q

u
ir

e
m

e
n
t
to

V
is

it
 C

u
s
to

m
e
r'

s
S

it
e

In
s
tr

u
c
ti
o
n
 f
o
r

in
s
ta

ll
a
ti
o
n

M
a
ke

 C
u
s
to

m
e
r

A
p
p
o
in

tm
e
n
t

..
.

C
o
n
ta

c
t
N

o
ti
c
e

F
a
c
il
it
y

..
.

E
xi

s
ti
n
g

 M
e
te

r
R

e
m

a
in

s
D

e
-E

n
e
rg

is
e
d

..
.

A
1
0
6

C
u
s
to

m
e
r

A
b
o
rt

s
 C

o
S

F
3
4
5
2

F
1
5
5
2

F
1
1
0
3

F
3
3
5
4

F
3
8
9
3

R
e
a
d
in

g

D
a
ta

 C
o
ll
e
c
ti
o
n
 a

n
d
 P

ro
c
e
s
s
in

g
 o

f
M

e
te

r
R

e
a
d
in

g
s
 (

in
c
lu

d
in

g
 C

o
S

 r
e
a
d
in

g
)

F
3
5
7
7

M
a
n
a
g

e
 P

P
M

s

C
u
s
to

m
e
r

R
e
q

u
e
s
ts

 C
h
a
n
g

e

o
f
M

e
te

r

R
e
q

u
ir

e
m

e
n
t
to

c
re

a
te

 s
ke

le
to

n
re

c
o
rd

F
1
5
0
3

S
u
p
p
ly

F
a
u
lt

N
o
ti
fi
c
a
ti
o
n
 o

f
c
h
a
n
g

e
 o

f
D

A

C
o
S

 R
e
g

is
tr

a
ti
o
n
 f
o
r

C
o
M

C
 r

e
je

c
te

d

D
is

c
o
n
n
e
c
ti
o
n

re
q

u
e
s
t

P
o
s
s
ib

le
 s

a
fe

ty
p
ro

b
le

m
..
.

F
3
5
6
4

F
3
5
0
9

M
e
te

r
in

fo
rm

a
ti
o
n

..
.

F
3
4
2
4

F
5
9
3
7

F
3
5
1
2

A
g

re
e
d

S
u
p
p
ly

Q
u
o
te

P
o
s
s
ib

le
S

a
fe

ty
P

ro
b
le

m
(s

)

A
4
5
0

F
4
1
0
1

D
e
ta

il
s
 o

f
a
n

ir
re

g
u
la

ri
ty

 (
fr

o
m

"o
th

e
r

s
o
u
rc

e
s
")

R
e
g

is
te

r
M

P
A

N
 a

n
d

A
p
p
o
in

t
A

g
e
n
ts

 (
in

c

C
h
a
n
g

e
 o

f
A

g
e
n
t
a
n
d

g
e
n
e
ra

ti
o
n
 o

f
a
d
d
it
io

n
a
l/
n
e
w

 M
P

A
N

C

o
re

(s
))

F
2
2
2
3

M
a
n
a
g

e
 M

a
rk

e
t

D
o
m

a
in

 D
a
ta

A
9
1
5

F
1
7
8
7

R
e
p
o
rt

sS
u
p
p
li
e
r

re
q

u
ir

e
m

e
n
t
to

c
h
a
n
g

e
 t
a
ri

ff

F
3
4
3
2

R
e
je

c
ti
o
n
 o

f
S

ke
le

to
n
 R

e
c
o
rd

(s
)

C
u
s
to

m
e
r

re
q

u
e
s
ts

C

O
S

R
e
q

u
ir

e
m

e
n
t
to

 u
p
d
a
te

 r
e
g

is
tr

a
ti
o
n
 d

e
ta

il
s

R
e
q

u
ir

e
m

e
n
t
to

c
h
a
n
g

e
 f
u
n
c
ti
o
n
a
li
ty

S
u
p
p
ly

q
u
o
te

R
e
q

u
e
s
t

F
4
2
3
9

F
3
5
6

C
u
s
to

m
e
r

E
xp

e
ri

e
n
c
e
s
 S

u
p
p
ly

F

a
u
lt

F
4
2
6
7

F
3
5
0
8

A
1
0
0

..
.

M
e
te

r
Ir

re
g

u
la

ri
ti
e
s

C
o
S

 B
lo

c
ke

d

F
1
0
9
3

C
a
b
le

 I
n
s
ta

ll
a
ti
o
n
 a

n
d

N
e
tw

o
rk

 C
o
n
n
e
c
ti
o
n

F
1
0
9
6

F
5
1
5
9

R
e
a
d
in

g
s

F
3
5
5

F
4
2
5
3

R
e
q

u
ir

e
m

e
n
t

to
 E

n
e
rg

is
e

F
3
8
6
2

A
1
0
1

M
P

A
S

 R
e
fr

e
s
h
e
s
/R

e
s
e
n
d
s

a
n
d
 R

e
p
o
rt

in
g

A
2
2
2

N
o
ti
fi
c
a
ti
o
n
 o

f
te

rm
in

a
ti
o
n

F
3
7
3

F
1
9
3
0

D
U

o
S

 B
il
li
n
g

F
1
5
4
8

V
a
li
d
a
te

 a
n
d

A
g

g
re

g
a
te

 D
a
ta

a
n
d
 S

e
tt
le

(i

n
c
lu

d
in

g

S
c
o
tt
is

h

va
ri

a
n
ts

)
F

1
1
0
0

F
4
2
5
2

M
e
te

ri
n
g

P

o
in

t
D

a
ta

a
n
d

E
n
e
rg

is
a
ti
o
n

S
ta

tu
s

F
1
0
9
9

C
u
s
to

m
e
r

R
e
q

u
ir

e
m

e
n
ts

R
e
a
d
in

g
s

F
3
5
4

F
4
2
1
7

A
g

re
e
d
 C

o
S

R

e
a
d
in

g
(s

)

F
5
3
7
8

M
a
n
a
g

in
g

S

u
p
p
ly

 F
a
u
lt
s

a
n
d
 O

u
ta

g
e
s

R
e
je

c
ti
o
n
 o

f
d
e
-r

e
g

is
tr

a
ti
o
n
 o

f
M

P
A

N
 t
ra

n
s
fe

rr
e
d
 t
o
 C

R
A

F
2
0
6
1

M
e
te

r
P

ro
b
le

m
s
 a

n
d
 I
rr

e
g

u
la

ri
ti
e
s

F
3
3
2

F
3
7
2

..
.

R
e
q

u
ir

e
m

e
n
t
to

 d
is

c
o
n
n
e
c
t

M
P

S
e
tt
le

m
e
n
t

D
e
ta

il
s

F
1
9
4
0

N
e
w

P
re

m
is

e
s

A
1
0
9

M
in

im
is

e
 I
ll
e
g

a
l

A
b
s
tr

a
c
ti
o
n

F
5
3
7
9F
3
9
0

In
s
ta

ll
a
ti
o
n
/

R
e
p
la

c
e
m

e
n
t

re
q

u
e
s
t

C
u
s
to

m
e
r

D
e
ta

il
s
 o

n

K
e
ys

/C
a
rd

s
 a

n
d
 I
D

 C
a
rd

s

D
e
-r

e
g

is
tr

a
ti
o
n
 o

f
M

P
A

N
s
 t
ra

n
s
fe

rr
e
d
 t
o
 C

R
A

..
.

A
1
0
2

u
se

r
s

c
re

e
n

F
1
1
0
6

..
.

..
.

S
u
s
p
e
c
te

d

E
T

C
h
a
n
g

e
 o

f
M

e
a
s
u
re

m
e
n
t

C
la

s
s

A
1
0
4

F
3
4
2
7

C
o
S

 C
o
m

p
le

te
d

F
3
8
5
2

A
1
3
4

M
e
te

r
F

a
u
lt

A
8
0
9

R
e
q

u
e
s
t
fo

r
c
h
a
n
g

e
 o

f
a
g

e
n
t

C
o
n
s
u
m

p
ti
o
n
 D

a
ta

F
5
1
6
0

F
1
1
0
2

..
.

M
e
te

r
Ir

re
g

u
la

ri
ti
e
s

F
3
4
5
3

..
.

A
1
0
5

A
b
o
rt

e
d
 C

h
a
n
g

e
 o

f
S

u
p
p
li
e
r

D
e
-E

n
e
rg

is
e
,

E
n
e
rg

is
e
 &

D

is
c
o
n
n
e
c
t

F
4
1
1
2

F
3
5
1
1

..
.

F
3
3
0
7

R
e
q

u
ir

e
m

e
n
t
to

 c
h
a
n
g

e
m

e
a
s
u
re

m
e
n
t
c
la

s
s

C
o
n
fi
rm

 I
n
c
lu

s
io

n
 i
n

R
e
a
d
in

g
 S

c
h
e
d
u
le

s

A
1
0
8

..
.

1488

Electronic Commerce Strategy in the UK Electricity Industry

modeled in Enterprise Modeler by Enterprise
Modeler Solutions Limited. An overview of the
electricity industry’s key business processes is
shown in Figure 2. We use this to illustrate how
complicated the MRASCo model is rather than
for analysis purposes. Each change in supplier
starts a formal deregistration process in one sup-
plier and a formal registration process in another
supplier. Each deregistration and registration
process requires a complicated set of interrelated
activities to take place in a pre-defined format,
sequence and time. Although in concept this is
straightforward, in practice the data structures are
quite complicated and the high volumes of data ex-
changed exacerbate the information exchange and
internal process problems. Every month 400,000
customers change suppliers; so suppliers have to
process 9,600,000 deregistration and registrations
per year. On a process level the cost of this from
labor and potential errors is immense.

For example, each registration or deregistration
incurs labor costs from taking customer telephone
calls to maintaining the information systems that
process each transaction. The potential for damage
to the supply company’s reputation from errors
that reduce service levels is considerable because
the registration process will fix a customer’s first

impressions and a customer that has already
switched supplier will have few worries about
switching again. Even deregistration is danger-
ous to the suppler because a customer may try to
deregister in order to miss paying a bill. A sup-
plier that allows a customer to transfer to another
supplier with an outstanding debt may then find
it harder to get the customer to pay.

Within this overall framework, Ofgem define
what they call “Golden Threads”. These are all
the data flows and data processing operations
that need to take place in order to enact a specific
process, such as switching suppliers. The process
diagram for switching suppliers is just one of the
processes contained in MRA process diagrams
and it includes interaction and service level speci-
fications such as maximum times for the whole
user disconnection-reconnection process.

Electric Co is greatly helped by software
developed by Dataflow Software. For the parts
of Electric Co acquisitions that service Small to
Medium Sized Enterprises (SME) we can see
(in Figure 3) that Dataflow Software’s software
manages the flows of data from and to the Data
Transfer Service (DTS); between the SME parts
of Electric Co; and between Electric Co’s single
Customer Relationship Management (CRM)

Figure 3. The data flows for Electric Co’s SME businesses (Dataflow, 2004)

GateKeeper
validation

routing
splitting
storage

transaction database

SME part of
Electric Co

Automated
Flow

Management
Solution

Siebel CRM
system

billing
system

DataFlowEnterprise Platform

Data Flow
Workstation

SME
flows

Automated
Flow

Management
Solution

D
TS

All other
flows

XML interface over MQ link

Registration
flows

Dataflow Software Co
software

Business process
management system

Rest of
Electric Co

GateKeeper
validation

routing
splitting
storage

transaction database

SME part of
Electric Co

Automated
Flow

Management
Solution

Siebel CRM
system

billing
system

DataFlowEnterprise Platform

Data Flow
Workstation

SME
flows

Automated
Flow

Management
Solution

D
TS

All other
flows

XML interface over MQ link

Registration
flows

Dataflow Software Co
software

Business process
management system

Rest of
Electric Co

 1489

Electronic Commerce Strategy in the UK Electricity Industry

systems and multiple billing systems. The DTS is
an Information and Communications Technology
network, that is operated by Electralink, which
enables business-to-business data communica-
tions between any electricity supplier that is
connected to it (Electralink, 2004). Dataflow
Software’s GateKeeper software uses the DTS
and provides data validation, routing, splitting
and storage services together with a transaction
history database.

electric co’s business and It
strategy

Electric Co has grown rapidly since 1995 through
the acquisition of four large electricity suppliers
composed of two original Regional Electricity
Companies and two newer suppliers. Electric
Co had the architectural legacy problem shown
in Figure 4. Taking Electric Co’s SME business
as an example, we can see that each of the four
acquisitions had their own information systems
supporting their own SME businesses.

Upon acquisition Electric Co connected the
separate SME systems via the Data Transfer
Network. The DTN provided the interface for
internal message passing in the same way that it
was used as a medium for message passing to and

from systems that were external to Electric Co.
Whilst this did support business processes, such
as the registration and deregistration processes
examined above, the issues associated with in-
creased external data flows concerning customer
and supplier changes still needed to be resolved
for the internal business processes.

Dataflow Software’s IT solution strategy was
to use software to integrate the SME components
of the various legacy systems through a single
communications and validation point. The actual
software used was a product called Gatekeeper
Data Exchange, a part of their Dataflow Enterprise
Platform (Dataflow, 2004). Gatekeeper integrated
valid dataflows with different back office appli-
cations, such as Credit Checking, CRM, Billing,
and Registration, which run on different systems.
Gatekeeper was able to do this because it was de-
signed to use the governing industry data transfer
rules to translate between information systems in
different organizations and different systems in
the same organization. This allowed Electric Co
to consolidate its IT systems from a geographic
architecture to a product/market architecture. This
gives Electric Co the strategic benefits of being
able to operate as a single entity, and has led to
significant cost savings in IT expenditure.

It also improves the levels of customer service

Figure 4. Internal legacy system connection problem

1490

Electronic Commerce Strategy in the UK Electricity Industry

because the automation of business processes
and the associated data flows reduces errors and
increases the speed of information flows to and
from customers and competitors. This is a great
benefit to Electric Co, given the huge volume
of messaging associated with the customer
churn for all electricity suppliers. After using
the governing industry data rules to integrate
the dataflows transmitted between the different
industry organizations and their software appli-
cations Dataflow Software took the next logical
step and created their Enterprise Automated Flow
Management software. This software is able to
automatically enact key processes because of its
ability to process dataflows between the different
back office applications used in the industry. The
back-office software already obeys the governing
industry data rules and Gatekeeper integrates
valid dataflows. Dataflow Software were thus
able to create a set of Automated Applications for
customer registration and deregistration, and other
volume intensive business processes, that uses the
data held within back-office applications such as
Credit Checking, CRM, Billing and Registration.
Electric Co successfully integrates its SME busi-
ness using Dataflow Software’s solution and will
extend this competitive advantage to its Domestic
and Industrial & Commercial businesses.

AnAlysIs And dIscussIon

The Enterprise Automated Flow Management
software is an example of a Business Process
Management System (BPMS) (Aalst, Hofstede,
& Weske, 2003; Basu & Kumar, 2002; Smith &
Fingar, 2003; Sayal, Casati, Dayal, & Shan, 2002;
Hollingsworth, 2004). BPMS, e.g., Intalio’s N3
(Intalio, 2005), are distinct from ERP systems;
i.e., business process management is only one
component in some more sophisticated ERP sys-
tems. One example of this is SAP’s Netweaver,
which is only part of its larger ERP product offer
(SAP, 2005). BPMS are significant developments

of Workflow Management Systems (WFMS)
with a more developed process design, diagnosis,
and redesign functionality (Aalst et al., 2003).
Hollingsworth describes BPMS as supporting a
similar process design-execution-redesign cycle
via an evolution of WFMS and its convergence
with Enterprise Application Integration and
World Wide Web technologies (2004). Dataflow’s
BPMS called Gatekeeper Data Exchange uses a
model in the form of the governing industry data
rules to translate between information systems in
different organizations and different systems in
the same organization. As such it is not itself an
ERP system with a vast library of standard pro-
cesses options but rather it manages other system
components by manipulating the flows of data
between intra and inter-system components, i.e.,
it manages business processes which are enacted
by other entities. This differentiates it from ERP
systems, which normally span a single enterprise
rather than as in this case several quasi-integrated
acquisitions.

This BPMS includes middleware capabilities
but critically also contains process management
capabilities. Bernstein (1996) defines middleware
as “middleware services and/or frameworks”
and a middleware service as “a general purpose
service that sits between platforms and applica-
tions” (p. 89). The objectives of a business process
management system, and of process modeling,
are to facilitate human understanding and com-
munication, to support process improvement, to
support process management, to automate pro-
cess guidance and to automate execution support
(Curtis et al., 1992). Bernstein classes database
management software as a type of middleware,
but BPMS software also includes an internal
process model for manual or automated process
manipulation (Warboys, Kawalek, Robertson,
& Greenwood, 1999). BPMS software is reliant
on middleware for aspects of its execution but
it obviously constitutes much more in terms of
its functional scope and objectives. Smith et al

point out that the reengineering of business pro-

 1491

Electronic Commerce Strategy in the UK Electricity Industry

cesses and natural business process changes create
highly complex and unmanageable topologies
in the “point-to-point” solutions of middleware
companies (2002, p. 5). Only a process-centric ap-
proach, modeled on the actual business processes
concerned, can remove the need for redundant
and complex “layers” of higher and higher order
interface and protocol combinations.

This is a further contribution of BPMS to
business to business (B2B) interaction: (1) BPMS
operate through the direct human or machine
manipulation of process models and (2) help in-
tegrate human or machine actors that are joined
by business processes. Historically, middleware
has been used to facilitate B2B interaction but
each interaction between different software
applications running upon different hardware
platforms requires a different interface and
protocol combination, i.e., different middleware
(Bernstein, 1996). These interface and protocol
combinations have built up in layers in parallel
to the hierarchies of interacting platforms, e.g.,
computer to computer, LAN to LAN, WAN to
WAN, and so on . By focusing upon the business
processes model of the actual B2B interaction
BPMS bypass the layers of interface and protocol
combinations, which differ by hierarchical level as
well as by depending upon the interfacing party’s
hardware and software. This applies even more
strongly to human to human interactions which
are commonly less formal than technological
interactions. Given an adequate model a BPMS
can naturally execute across different systems
and across different organizations but, unlike
layers of interaction protocols, they are a direct
abstraction of the user’s focus of business concern
rather than a ‘fossilized’ record of the negotiation
between systems vendors.

The business process model at the heart of
Dataflow Software’s BPMS is a good fit with the
reality of business in this sector because it is based
upon the regulator’s behavioral standard for elec-
tricity supply companies; the governing industry
data rules in the MRA business process diagrams

(see Figure 2). The regulator enforces this behav-
ioral standard and so enforces a good fit between
the behavior of the BPMS and its environment. It
is this fit that enables the automation of many of
Electric Co’s business processes, which in turn
enables it to deal effectively with the complexity
of its environment. The usefulness of applying
the concept of fit to businesses interactions is
that it describes and explains the joining of two
roles into a single system of “role components”
while still preserving the role players’ identities
and supporting their business goals. Thus it is a
compatible interaction. This can be contrasted
with an incompatible interaction where either or
both party’s goals or even identities are not sup-
ported. Interaction compatibility is enforced in a
one-to-many “top-down” sense as opposed to be-
ing “organically” built up in a series of one-to-one
“bottom-up” negotiation processes. Interactions
between the electricity suppliers in our case fit
by design rather than by negotiation, i.e., forced
interaction fit allows cost effective high volume
data exchange between many agents

The regulator forces supplier-supplier inter-
action compatibility by defining a standard for
supplier-supplier interaction, e.g., the standard
includes the design of an electricity user’s cus-
tomer record and how and when this is exchanged
between suppliers. Such records contain all the
information that the new supplier needs in order
to do business with the user, e.g., billing, usage,
tariffs and customer requirements. The standard
is represented using simple dataflow diagrams.
This type of modeling notation does not provide
a natural architectural fit with the complex mar-
ketplace of electricity companies and users. For
example, it is static whereas the modeled subject
is dynamic; the number of hierarchical levels is
few in the model and infinite in the subject; and
the span of this behavioral standard does not
include organizations that support the suppliers.
Dataflow Software’s BPMS is a novel solution to
a frequent post-merger problem because it makes
used of predefined (regulated) interactions rules

1492

Electronic Commerce Strategy in the UK Electricity Industry

and because it primarily manages inter-organiza-
tional interactions rather than intra-organizational
interactions like most BPMS. We explore these
three points next.

Firstly we can see that the static nature of the
dataflow diagrams does not reflect the changing
regulatory nature of the marketplace. The regula-
tor attends to this by employing the MRA Service
Company to update and publicize changes to the
process standards as needed (MRASCo, 2003).
In this case the UK government, via Ofgem
the industry regulator, controls changes to the
behavioral standard. This is in contrast to other
industry standards whose definition is a com-
petitive change process between organizations
(Garud, Jain, & Kumaraswamy, 2002; Shapiro
& Varian, 1999).

Secondly, the finite number of hierarchical
levels in these dataflow diagrams does not reflect
the infinite decomposability of a complex subject
system such as the actual electricity marketplace
of a national economy. This is true for all models,
which are always abstractions of subjects. But
in order for it to be a useful abstraction it has
to abstract salient properties. In this case the
salient properties are the descriptions of how the
electricity suppliers must behave towards each
other, the electricity users and the regulator from
the perspective of data transferred. Modeling the
non-salient properties of this system, such as the
low level modeling of how they operate their busi-
nesses internally, is not required in this interac-
tion standard. If we view the whole marketplace
as our focal system then the standard achieves
architectural fit, whilst using a only limited
number of hierarchical levels by concentrating
upon behavioral outcomes between high-level
system elements (the market participants). The
marketplace participants are natural modules so
their internal complexities can be ignored with
little reduction in the accuracy of the model.

Thirdly, the span of this behavioral standard
does extend to specifications for organizations
that support the electricity suppliers such as

recruitment agencies, catering subcontractors,
consultants, builders and lawyers. The behavior
of the electricity suppliers is regulated but the
behavior of the organizations that they depend
upon to operate (in this constrained way) is
not. The reason for this is again saliency. By
concentrating on the behaviors of the electricity
suppliers the standard leaves the management of
these supporting organizations to them. These
supporting organizations could be regulated,
such as in a centrally planned economy, but the
support organizations affect the marketplace only
through the supply companies and as companies
are natural modules this can be ignored just like
internal complexities.

The Data Transfer Service (DTS) is another
standard that Electric Co uses in the implementa-
tion of its acquisitive growth strategy. The DTS
is an interconnectivity standard for data transfer
between Electric Co and other electricity sup-
pliers. It is an information infrastructure that
supports data transfer between all electricity sup-
pliers in this marketplace (Ciborra& Associates,
2001). For this reason Electric Co can also use
it to connect between the legacy systems of its
SME businesses. Thus the MRA is a behavioral,
or business process, standard and the DTS is a
interconnection technology standard.

conclusIon

The problem is that electricity supply companies
are legally required to exchange vast quantities of
customer data, which is costly. At the same time
as they are under intense competitive pressures
to reduce prices because of deregulation. The
solution is a simplification of B2B interaction
rules, which is embodied in the MRASCo model
and which produces practical implications that
Electric Co takes advantage of in the form of a
Business Process Management System (BPMS)
created by Dataflow Software.

 1493

Electronic Commerce Strategy in the UK Electricity Industry

Our theoretical argument is that human
interaction on the scale of a whole industry, its
consumers and its government can be standard-
ized in some characteristics in order to promote
flexibility in others, e.g., innovation-led consumer
price reductions. Standardization is operational-
ized as a very large but unsophisticated business
process model. The case phenomenon is market
adjustment to deregulation and the theoretical
basis of explanation is Ashby’s Law of Requisite
Variety applied to a network of boundedly ratio-
nal actors. As a whole the electricity suppliers
are flexible enough to reduce their prices from
pre-deregulation levels, even though they are
forced to interact with many different competi-
tors using limited resources. This is because the
complexity of supplier-supplier interactions is
also limited by a regulatory standard and so
flexibility is ‘reserved’ for price reductions rather
than for interaction.

Models are architectures abstracted from a
subject and standards are architectures projected
onto a subject. The regulatory standard in our case
fits even though its architecture is much simpler
than that of the subject system because the subject
system (the electricity marketplace participants)
is legally made to fit it. This reduces requisite
variety (interaction transaction costs) for all the
electricity suppliers not just (Electric Co). The
deregulation of the electricity marketplace can be
viewed as environmental flexibility demands that
can be categorized into three broad areas:

•	 Type flexibility — from the variety of dif-
ferent information types that is exchanged
between suppliers;

•	 Structural flexibility — from the variety of
other suppliers that suppliers have to connect
with ;

•	 Volume flexibility — from the amount of
information that is exchanged between sup-
pliers.

The regulatory standard limits type flexibility
requirements, because data types are standard-

ized, and the DTS limits structural flexibility
requirements because all suppliers connect via
the same DTS. Even volume flexibility is limited
because their service to the electricity users is
standardized, so user demand aggregates, which
smooths demand spikes. In this way the standard
reduces requisite variety for all the electricity
suppliers. For Electric Co, there are additional
benefits from automating business processes
whose variety is reduced to the extent that they
can be fully described by a business process
model that is based upon the business process
standard itself.

We have shown that the case phenomena
are linked to our conceptual framework as fol-
lows: (a) Standardization is used to explain the
savings to electricity suppliers by following a
common business process interaction model;
and (b) The concept of system architecture from
System Theory is used in conjunction with the
concept of architectural fit from Design Theory
to explain the prerequisites of such a model,
i.e., dynamic, level and span fit. Theoretically
we can see that this use of a whole industry
interaction model works because the Requisite
Variety of the sector’s inter-organizational busi-
ness processes is limited by legislation to those
behaviors contained in the model. This allows
Boundedly Rational electricity suppliers to
concentrate their limited flexibility upon a finite
subset of all competitor and consumer behaviors.
Thus electricity suppliers are left with enough
information processing capacity to reduce prices
via innovation as well as deal with a very high
consumer churn rate.

The most important benefit to Electric Co,
from using these information systems, is achieving
structural flexibility in compliance with industry
regulations. These systems have also enabled
Electric Co to grow its business and handle higher
volumes of customer information; whether new
customers have been won through competition
with rivals or acquisition of competitors.

1494

Electronic Commerce Strategy in the UK Electricity Industry

This paper draws upon multiple disciplines
to make several theoretical and management
contributions:

•	 it documents the changing environment of
the UK electricity industry and the chal-
lenges facing an electricity supply company
in terms of information management;

•	 it introduces, illustrates and explains a
simple but widely applicable type-struc-
tural-volume flexibility model for examining
business-to-business flexibility issues in
e-commerce;

•	 it describes and explains an application of
theoretical process modeling together with
actual IT applications to manage business
processes that cross between separate and
newly merged organizations. This demon-
strates an implementation of model-driven
process reconfiguration that is supported by
operationally integrating different software
application packages.

We have used a parsimonious framework based
on constructs from strategy, business process
modeling and IT systems architecture, to explain
an industry phenomenon of price reductions at the
same time as increasing interaction complexity.
We have also examined the implications of this
in the form of Electric Co’s strategic business and
strategic IT responses to deregulation; and dem-
onstrated the interrelationships between Electric
Co’s business strategy of growth by acquisition,
its complex regulatory environment and its use
of a business process management system to
implement its operational systems. The high level
strategy and the complexity of the operational
requirements are clearly related to each other
through the business process linkage.

The limitations of our approach are in its
focus upon one industry in one country and in
the enforcement of the business process model.
Firstly this implies a limit upon generalization;
a possible restriction upon the application of

our model for examining business-to-business
flexibility to this industry only. However, we
can generalise to theory and abstract useful and
insightful properties, as explained by Klein and
Myers (1999). This is dependent upon the quality
of our reasoning rather than purely on how repre-
sentative our chosen case is. In fact our reason-
ing, linking interaction rules to theory from the
domains of Economics, Cybernetics and Design,
implies that our findings could be generalized to
other B2B interactions (and, possibly, complexity
management as a whole) because the theoretical
framework itself is generalizable. So we suggest
that this model-based approach could be applied
to other B2B interaction problems and interac-
tion flexibility problems. Secondly, the regulatory
enforcement of the MRASCo model removes
from the electricity suppliers any choice in how
to interact other than to leave the industry. Thus
we can make no general comment upon how to
persuade many companies to follow a common
interaction framework.

AcknowledgMents

We would like to acknowledge the support of
the Engineering and Physical Sciences Research
Council (EPSRC) in funding our xxx blinded xxx
project. We would also like to thank the IJTHI
reviewers and the reviewers and attendees at ECIS
2004 for helping us improve this article; and the
staff and directors of “Dataflow Software” for
access.

references

Alexander, C. (1964). Notes on the synthesis of
form. Harvard University Press.

Allen, T. F. H, O’Neill, R. V., & Hoekstra, T. W.
(1984). Interlevel relations in ecological research
and management: Some working principles from

 1495

Electronic Commerce Strategy in the UK Electricity Industry

hierarchy theory (General Technical Report RM-
110, 11). USDA Forest Service. Rocky Mountain
Forest and Range Experiment Station, Fort Col-
lins, CO.

Anderson, P. (1999). Complexity theory and orga-
nization science. Organization Science, (10), 3.

Basu, A., & Kumar, A. (2002). Research com-
mentary: Workflow systems. Information Systems
Research, 13(1).

Beer, S. (1979). The heart of enterprise. John
Wiley & Sons.

Bernstein, P. (1996). Middleware. Communica-
tions of the ACM, 39(2).

Checkland, P. (1981). Systems thinking, systems
practice. Chichester: John Wiley & Sons.

Ciborra, C. (2001). From control to drift — The
dynamics of corporate information infrastruc-
tures. Oxford University Press.

Curtis, B., Kellner, M., & Over, J. (1992). Process
modeling. Communications of the ACM, 35 (9).

Dataflow. (2004). Retrieved from http://www.
Dataflow.com

Drazin, R., & Van de Ven, A. (1985). Alternative
forms of fit in contingency theory. Administrative
Science Quarterly, 30(4), 514-39.

Electralink. (n.d.). Retrieved September 27, 2004,
from http://www.electralink.co.uk

Eisenhardt, K. (1989). Building theories from
case study research. Academy of Management
Review, 14(4), 532-550.

Falkenberg, E., Hesse, W., Lindgreen, P., Nilsson,
B., Oei, J., Rolland, C., et al (1998). A framework
of information system concepts (The FRISCO
Report) (electronic version). IFIP.

Garud, R., Jain, S., & Kumaraswamy, A. (2002).
Institutional entrepreneurship in the sponsorship
of common technological standards: The case of

Sun Microsystems and Java. Academy of Man-
agement Journal, 45(1), 196-214.

Green, P. & Rosemann, M. (2000). Integrated
process modeling: An ontological evaluation,
Information Systems, 25(2), 73-87.

Hollingsworth, D. (2004). The workflow refer-
ence model: 10 years on. In L. Fischer (Ed.),
Workflow handbook, the workflow management
coalition. Retrieved August 12, 2004, from,
http://64.70.135.73/information/handbook04.
htm

Hommes, B. (2005). Retrieved February 21, 2005,
from http://is.twi.tudelft.nl/~hommes/scr3tool.
html

Intalio. (2005). LexisNexis success story. Re-
trieved February 12, 2005, from http://www.
intalio.com/customers/successes/resources/docu-
ments/LexisNexis-Success-Story.pdf

 Klein, H., & Myers, M.. (1999). A set of principles
for conducting and evaluating interpretive field
studies in information system. MIS Quarterly,
23(1), 67-93.

Kindleberger, C. (1983). Standards as public, col-
lective and private goods. Kyklos, 36(3).

Langlois, R., & Savage, D. (2001). Standards,
modularity, and innovation: the case of medical
practice. In R. Garud, & P. Karnøe (Eds.), Path
dependence and path creation (pp.149-168). Hill-
sdale: Lawrence Erlbaum. Retrieved August 13,
2004 from, http://www.sp.uconn.edu/~langlois/
medical.html

Lindland, O., Guttorm, S., & Solvberg, A. (1994).
Understanding quality in conceptual modeling.
IEEE Software, 11(2), 42-49.

Liu, K. (2000). Semiotics in information systems
engineering. Cambridge University Press.

Malone, T. W., & Crowston, K. (1994). The
interdisciplinary theory of coordination. ACM
Computing Surveys, 26(1), 87-119.

1496

Electronic Commerce Strategy in the UK Electricity Industry

MRASCo. (n.d.). Master Registration Agreement
(MRA) process diagrams. Retrieved August 1,
2004 from, http://www.mrasco.com

NAO. (2003). The new electricity trading ar-
rangements in England and Wales (Report by The
National Audit Office for the House of Commons).
London: The Stationery Office.

NAO. (2004). Retrieved July 5, 2005, from http://
www.nao.gov.uk/publications/electricity1.htm

Newell, A. (1989). Putting it all together. In D.
Klahr, & K. Kotovsky (Eds.), Complex informa-
tion processing: The impact of Herbert A. Simon.
Hillsdale, NJ: L.L. Erlbaum Associates.

Orton, J., & Weick, K. (1990). Loosely coupled
systems: A reconceptualization. Academy of
Management Review, 15(2), 203-223.

Ofgem. (1997). What are the new electricity
trading arrangements in England and Wales?
Office of Gas and Electricity Markets (Ofgem).
Retrieved April 18, 2005 from, http://www.ofgem.
gov.uk/elarch/retadocs/golive_explained.pdf

Parnas, D., Clements, P., & Weiss, D. (1985). The
modular structure of complex systems. IEEE
Transactions on Software Engineering, SE11(3),
259-266.

Parsons, J. (1996). An information model based
on classification theory. Management Science,
42(10), 1437.

Rescher, N. (2000). Process philosophy: A survey
of basic issues. University of Pittsburgh Press.

SAP. (2004). Business process management with
SAP netweaver. Retrieved February 12, 2005
from http://www.sap.com/solutions/netweaver/
pdf/BWP_NetWeaver_BPM.pdf

Sayal, M., Casati, F., Dayal U., & Shan, M-C.
(2002). Integrating workflow management sys-
tems with business-to-business interaction stan-
dards. In Proceedings of the 18th International
Conference on Data Engineering (ICDE’02) (p.
287).

Scheer, A., & Habermann, F. (2000). Making
ERP a success. Communications of the ACM,
43(4) 57-61.

Scheer, A., & Nüttgens, M. (2000). ARIS archi-
tecture and reference models for business process
management. In W. van der Aalst, J. Desel, & A.
Oberweis (Eds.), Business process management:
Models, techniques, and empirical studies. Lec-
ture Notes in Computer Science, 1806, 376.

Schilling, M. (2000). Towards a general modular
systems theory and its application to inter-firm
product modularity. Academy of Management
Review, 25(2), 312-334.

Shannon, C. (1948, July and October). A math-
ematical theory of communication. Bell System
Technical Journal, 27, 379-423 and 623-656.

Simon, H. (1969). The sciences of the artificial.
Cambridge, MA: MIT Press.

Smith, H., Neal, D., Ferrara, L., & Hayden, F.
(2002). The emergence of business process man-
agement. Computer Sciences Corporation.

Shapiro, C., & Varian, H. R. (1999). The art of
standard wars. California Management Review,
42(2) 8-32.

Smith, H., & Fingar, P. (2003) Workflow is just
a pi process. Computer Sciences Corporation.
Retrieved August 12, 2004, from http://www.
bpm3.com/picalculus

Stamper, R. (1987). Semantics. In R. J. Bolland, &
R. A. Hirschheim (Eds.), Critical issues in infor-
mation systems research. John Wiley & Sons.

van der Aalst, W. M. P., ter Hofstede, A. H. M., &
Weske, M. (2003). Business process management:
A survey. In W. P. M. van der Aalst, A. H. M.
ter Hofstede, & M. Weske (Eds.), Proceedings of
BPM 2003, Lecture Notes in Computer Science,
2678 (pp. 1-12).

Wand, Y., & Weber, R. (2002). Research com-
mentary: Information systems and conceptual

 1497

Electronic Commerce Strategy in the UK Electricity Industry

modeling — A research agenda. Information
Systems Research, 13(4), 363-376.

Warboys, B., Kawalek, P., Robertson, I., & Green-
wood, M. (1999). Business information systems:
A process approach. McGraw Hill.

Weick, K. (1974, March). Educational organiza-
tions as loosely coupled systems. Administrative
Science Quarterly, 21.

This work was previously published in International Journal of Technology and Human Interaction, Vol. 2, Issue 3, edited by
B. Stahl, pp. 38-60, copyright 2006 by IGI Publishing (an imprint of IGI Global).

1498

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.7
IT and Software Industry in

Vietnam
Yuko Iwasaki

Yokkaichi University, Japan

AbstrAct

Vietnam has been advancing toward a market
economy since 1986. Industrialization has pro-
gressed with a high rate of growth. One of the
factors of the economic growth of Vietnam has
been FDI. Japanese companies are among those
that have a strong interest in Vietnam. Japanese
companies are recently taking note of Vietnam’s
IT and software industries. Now, however, in-
terest is increasing in offshoring as a means for
developing in this sector.

IntroductIon

Vietnam has been advancing toward a market
economy since 1986. After the Asian currency
crisis in 1997, foreign direct investment (FDI)
decreased and the growth rate slowed down, but
since then, the country has followed a trend of
recovery and industrialization has progressed
with a high rate of growth.

One of the factors of the economic growth of
Vietnam has been FDI. Japanese companies are
among those that have a strong interest in Vietnam.

 1499

IT and Software Industry in Vietnam

Up until now, the manufacturing industry has been
at the center of Japanese companies’ investment
in Vietnam. However, Japanese companies are
recently taking note of Vietnam’s IT and software
industries. Now, interest is increasing in offshor-
ing as a means for developing in this sector.

In this chapter, the Vietnamese IT and software
industries are surveyed, and the relations between
Japan and Vietnam that have led to offshoring
are considered.

recent econoMIc
develoPMent

Since its adoption of the Doi Moi policy in 1986,
Vietnam has promoted a market economy while
also maintaining a socialist system. Due to the
effort of the Doi Moi policy, FDI increased up to
the first half of the 1990s, and high growth was
recorded. However, after the Asian currency crisis
of 1997, FDI decreased again, and the growth rate
became slow. Since then, the present tendency
has been maintained and the growth rate in 2005
showed a high 8.4% rate of growth with the prog-
ress of industrialization. Domestic demand was
strong, and exports also remained strong.

While the manufacturing and service sectors
expanded, the share of agriculture in the economy
continued to decline (although it is still a major
sector in terms of employment). Exports of
electric goods continued to drive growth. Good
performance was recorded.

FDI has been one of the factors of economic
growth since 2000. Recently, with the increasing
risks posed by the worsening business environ-
ment in China, Vietnam, with its low labor costs
and stable political climate, is highly appreciated
by investors anxious to spread their risks. Invest-
ment is increasing mainly in the manufacturing
industry. Major investors are Japanese companies
related to computers, electrical parts, automobile
parts, motorbikes, and printers. Also, the Viet-
namese government has improved businesses
conditions for foreign firms.

Vietnam enjoys an especially high estimate
among Japanese companies, whose direct invest-
ment in the country is increasing. In a medium-
term survey conducted by the Japan Bank for
International Cooperation (JBIC, 2005), Vietnam
was ranked fourth in the world as a promising site
for enterprise development (in approximately the
next 3 years). For the longer term (approximately
10 years), it was ranked third by Japanese com-
panies (Table 1).

Table 1. Promising countries and regions for overseas business operations over the medium and long
terms (Source: JBIC, 2005)

Rank Medium Term (next 3 years or so) Long Term (next 10 years or so)

1 China China

2 India India

3 Thailand Vietnam

4 Vietnam Russia

5 U.S.A. Thailand

6 Russia U.S.A.

7 South Korea Brazil

8 Indonesia Indonesia

9 Brazil South Korea

10 Taiwan Malaysia

1500

IT and Software Industry in Vietnam

Among the reasons given for this were the
cheap labor force, the country’s attractiveness as
a catcher for the risk, and its outstanding human
resources. On the other hand, problems still to
overcome include the insufficient infrastructure
and the inadequacies and lack of transparency in
the legal system.

As for its external economic relations, Vietnam
participates in such organizations of regional
integration as the Association of Southeast Asian
Nations (ASEAN), the ASEAN Free Trade Area
(AFTA), and the Asia Pacific Economic Coopera-
tion (APEC). Its affiliation with the World Trade
Organization (WTO) is expected to come about in
2006. Once Vietnam is affiliated with WTO, trade
liberalization and the opening of the domestic
market to foreign companies will be pursued.

In Vietnam, state-owned enterprises have so
far borne an important role in achieving national
prosperity through industrial development. How-
ever, with the current trend toward trade liberaliza-
tion seen in economic globalization, the affiliation
with WTO, and so on, competition with other
countries has become very severe. For Vietnam,
it is now vital to press on with the reform of state
enterprises and to strengthen its competitiveness
in the international market.

tHe level of It In vIetnAM

Vietnam is behind in its IT progress by any world
standard. For example, in The 2006 E-Readiness
Rankings (Economist Intelligence Unit), which
investigated the diffusion of IT and the state of
the fulfillment of businesses based on digital
environments in countries around the world,
Vietnam is placed at the very low level of 15th out
of the 16 Asian nations surveyed, and 66th among
68 nations worldwide. (In 2005, it was ranked 15th
out of 16 Asian nations and 61st among 65 nations
worldwide.) This is a report that summarizes
statistics on the diffusion of PCs (personal com-
puters) and the Internet, the use of IT by firms

and consumers, the digital response level of legal
facilities and educational organizations, and so
forth in various countries.

However, the diffusion of main and cellular
phones and the Internet is now picking up in
pace. Table 2 gives the diffusion of phones, the
Internet, and PCs in Vietnam and other Asian
countries. The data show the IT diffusion on an
upward trend for Asian countries. In Vietnam,
the diffusion of main phone lines was 18.8%
and that of mobile phones was 9.54% (in 2005).
The Internet user data of Vietnam and China
was behind ASEAN4 countries in 2000, but are
picking up. Vietnamese IT infrastructures have
improved rapidly, especially for main phones
and the Internet. However, most Internet users
are concentrated in Hanoi and Ho Chi Minh City
(approximately 70%). The Ministry of Posts and
Telecomatics continues to lower charges for In-
ternet and telecommunications services to expand
the number of Internet users.

It develoPMent In AsIA

Asian countries have played an important and
active role in IT development, especially in the
PC industry. The newly industrialized economies
(NIEs) and ASEAN countries showed rapid
growth in IT manufacturing and trading since
1980s. These economies have made significant
contributions to the global supply of IT products
and components. As products matured, their
production was relocated to low-cost areas.

During the last 10 years, China and India have
joined in IT development. China has become a
major production hub for IT products, and now
the IT software industry has developed in both
India and China. China’s software exports have
expanded rapidly. In 2005, China’s software
exports were valued at $3.6 billion, up from $7
million in 2001. Major export partners are Japan
(approximately 60%) and the Unites States and
Europe (20%).

 1501

IT and Software Industry in Vietnam

India is now a major IT software producer and
exporter in the world. IT development in India has
differed from that in the other Asian countries.
Highly trained scientific and technical personnel
from India have been migrating to the United
States since the 1960s, and many of them were
engaged in the development of computers and the
communications industry. The high-level skills
of India supplied qualified personnel to do jobs
on site (in the United States) at first. After that,

major IT producers set up subsidiary software
centers in India (Braum, 2001).

As mentioned, India has highly skilled IT
workers, and the business form of India is con-
verting from that of onshore to offshore. While
operating onshore means doing business in the
customer’s country (for example, in the United
States or Europe), offshoring means producing
software in India by Indian personnel. Lower
prices and high-level skills have made the Indian
software industry very competitive.

Table 2. IT indicators in Vietnam and Asian countries (Source: International Telecommunication Union
[ITU])

Main Telephone Lines per 100 Inhabitants Cellular Mobile Subscribers per 100 Inhabitants

2000 2005 2000 2005

Vietnam 3.23 18.81 1.00 9.54

China 11.18 26.63 0.35 29.90

India 3.20 4.51 6.58 8.16

Asia 9.73 15.77 6.63 23.22

Internet Users per 100 Inhabitants PCs per 100 Inhabitants

2000 2005 2000 2005

Vietnam 0.25 12.72 0.76 1.26

China 1.74 8.44 1.59 4.08

India 0.25 5.44 0.76 1.54

Asia 3.10 9.78 3.24 6.51

Main Telephone Lines per 100 Inhabitants Cellular Mobile Subscribers per 100 Inhabitants

ASEAN4 2000 2005 2000 2005

Indonesia 3.23 5.73 1.78 21.06

Malaysia 19.92 16.79 22.01 75.17

Philippines 4.00 4.16 8.44 39.5

Thailand 9.10 10.95 4.97 42.98

Internet Users per 100 Inhabitants PCs per 100 Inhabitants

ASEAN4 2000 2005 2000 2005

Indonesia 0.92 7.18 1.02 1.36

Malaysia 21.39 42.37 9.45 19.16

Philippines 2.01 5.32 1.93 4.46

Thailand 3.74 11.03 2.79 5.58

1502

IT and Software Industry in Vietnam

tHe MArket scAle of tHe
vIetnAMese It Industry

The market volume of the IT industry in Vietnam
in 2005 was $828 million ($630 million in hard-
ware and $190 million in software), an increase
of 20.9% compared with the year before. In 1996,
the market had only been worth $150 million,
rising to $300 million in 2000 (Table 3).

It-relAted PolIcy

The 2005 Plan for IT Use and Development was
announced as a national policy in 2001. This plan
proposed the following basic targets in order
to bring the country’s IT level up to the global
standard by 2005:

•	 The diffusion of IT across the whole of
Vietnam.

•	 4 to 5% of the population as Internet us-
ers.

•	 An annual growth rate of 20 to 25% in the
IT industry.

•	 The training of 50,000 IT specialists.

The putting in place of a telecom infrastruc-
ture was achieved ahead of the target. However,
the training of competent personnel fell short of
the target, not going above 20,000 employees. IT
specialists are in short supply in Vietnam.

The announcement followed in 2005 of the
Development Strategy for Information Commu-
nication Technology up to 2010 and of the Policy
Plan up to 2020. This strategy and plan will serve
as the foundation of Vietnam’s future IT policy.
In them, the most effective tool for national
information development and modernization,
and the importance of utilizing IT in economics
and industry were brought out (e-citizenship, e-
government, e-enterprises, e-transactions, and
e-commerce). Moreover, high priority was given
to the nurturing of an IT industry, especially the
software and information-content industries, as
a means of encouraging the creation and devel-
opment of an information society. The policy
also attaches importance to the laying of an IT
infrastructure and the training of component spe-
cialists. The targets up to 2010 and 2015 for the
promotion of IT use in economics and industry
are as follows:

•	 By 2010, the IT industry will be promoted
to the country’s top industry, with a year-
to-year growth rate of 20 to 25% and gross
annual earnings of $6 to 7 billion.

•	 Through promotion of the IT infrastructure,
the target for 2010 is to ensure 30 to 42
telephones per 100 people, 8 to 12 Internet
service accounts (30% of them broadband),
an Internet diffusion rate of 25 to 30%, and
personal computer ownership of 10 per 100
people.

Table 3. Trends of the market scale (millions USD; Source: Ho Chi Minh City Computer Association,
2006)

Year Total Hardware Software

2000 300 250 50

2001 340 250 60

2002 400 325 75

2003 515 410 105

2004 685 545 140

2005 828 630 178

 1503

IT and Software Industry in Vietnam

•	 By 2015, the diffusion of fixed telephones
will be lowered to 20 per 100 people, while
that of cellular phones will be raised to
30.

To ensure that the targets for 2010 and 2015
are attained, a range of definite measures have
been specified:

•	 Diffusion of IT knowledge.
•	 Promotion of practical uses for IT.
•	 Reinforcement of state’s IT administration

capacity.
•	 Ensuring of attractive conditions for foreign

capital.
•	 Increasing of quantity and quality of IT

labor.
• Strengthening of research and development

system.
•	 Enhancement of legal environment in sup-

port of IT.
•	 Domestic and international cooperation.
•	 Integration with international IT market,

especially for software and contents.

tHe softwAre Industry And
offsHorIng

Within the industry, one of the fields that the
government sees as very important is the soft-
ware industry. The value of the software industry
market in Vietnam in 2004 was $140 million.
This marked a spectacular increase from $75mil-
lion in 2002 and $105 million in 2003. 25% of
the profits in the software industry are obtained

from exports overseas. Vietnam started exports
of software in 1997.

offsHorIng

Behind the recent market expansion in Vietnam,
one factor that can be mentioned is an increase
in outsourcing (offshoring) for overseas products.
Offshoring is the entrusting of part of a system
development to a firm in another country (Fig-
ure 1). It has the advantage when using cheap and
plentiful workforces.

Inspired by the example of India, which
achieved rapid growth through offshoring from
America and Europe, moves have been made by
Vietnam to make use of its trained labor force to
build up a software industry. Firms have also in-
creased to about 600 by the end of 2005. Looking
at them regionally, about 30% of these firms are
located in Ho Chi Minh City or Hanoi. Corporate
competition is intensifying with the increase in
the number of companies. The following are some
examples of the main software companies.

•	 FTP Software (Hanoi)
•	 TMA Software (Ho Chi Minh City
•	 Paragon Solutions Vietnam (PSV; Ho Chi

Minh City)
•	 Silk Road (Ho Chi Minh City)
•	 Global Cybersoft (Ho Chi Minh City)

These companies have earned a name for
reliable quality by acquiring CMM (capability
maturity model) and CMMI (capability maturity
model integration) under a quality-control stan-

Figure 1. An example of offshoring (Source: Ministry of Economy, Trade, and Industry [MEIT], 2006)

	
Proposal

	
System	planning

	
System design

	
System manufacture

Operations and
maintenance

Firm placing
original order

Firm placing
original order

Partly entrusted to
overseas firm

Partly entrusted to
overseas firm

Firm placing
original order

1504

IT and Software Industry in Vietnam

dard code that objectively shows their capacity in
developing software. Vietnam enjoys the follow-
ing advantages in its software industry. First, its
labor costs are cheap (about 60 to 70% of the cost
in China), and the proportion of young people in
the population is high. Second, the will to study
is high and levels are excellent in the scientific
and math fields. The potential for competitiveness
in the software industry is ample.

However, there are few software companies
of a scale exceeding 100 employees, and a lot of
small and medium-sized enterprises exist. This
poses the problem of a shortage of outstanding
human resources in the industry as a whole. The
training of competent personnel will be a chal-
lenge for the future. The government is setting
preferential measures of taxation for the promotion
of the software industry.

The market value of offshoring in 2005 was
$70 million. In 2002 the market had only been
worth $20 million.

offsHorIng by jAPAnese
coMPAnIes

Offshoring by Japanese companies can be seen to
have increased rapidly in the past several years.
The scale of Japanese offshoring, which was ¥20
billion in 2002, rose to ¥48.9 billion and then
¥52.7 billion in 2004 (Table 4). The background
cause for this increase is that while the scale of
software development is growing, the shortage of
trained labor in Japan is serious, and in order to
cope with shortening development times and the
need for cost cutting, firms are therefore seeking
a cheep and abundant labor force overseas.

With their cheap and plentiful workforces,
India and China both make attractive offshoring
sites, but for firms in Japan, China is the country
most usually chosen on account of the geographi-
cal nearness and the fact there is a high level of
aptitude for mastering Japanese.

Table 4. The scale of offshoring by Japanese companies (millions of Yen; Source: Japan Information
Technology Services Industry Association [JISA], 2005)

2004 Share (%) Compared with 2003 (%)

China 33,241 63.1 +26.5

U.S.A. 5,147 9.8 +3.2

India 4,255 8.1 -32.6

Australia 3,133 5.9 +19.3

U.K. 2,126 4.0 +16.4

Philippines 2,117 4.0 -15.1

South
Korea

1,415 2.7 -24.4

France 548 1.0 -34.3

Canada 262 0.5 -57.5

Vietnam 216 0.4 +620.0

Others 237 0.4 -78.1

Total 52,697 100.0 +28.1

 1505

IT and Software Industry in Vietnam

The technical levels of companies in China
and India are improving with the increase in
the offshoring from Japan and the West. Points
particularly attended to by Japanese companies
when choosing an offshoring partner are the qual-
ity and quantity of technical workers available,
whether Japanese can be understood, and whether
the dealing prices are right. Although the volume
of business with Vietnam is still small, Japanese
companies are considering it as a new offshoring
site. The scale of offshoring in Vietnam in 2004
showed a rapid seven-fold increase compared
with the year before. Behind this growth lies
the fact that the Vietnamese software industry
recognizes Japan as an important market and has
expanded its business in that direction. In 2005,
the software association of Vietnam (Vietnam
Software Association, VINASA) announced its
5-year plan for the development of the software
industry (2006 to 2010). This plan sets a target of
$1 billion in annual sales for software by 2010,
with $400 million heading for Japan. Japanese
companies are keenly observing Vietnam as a
country where they can rely on finding excellently
skilled workers at low cost.

As we have seen, Vietnam’s purpose is chang-
ing to a market economy and introducing foreign
capital to promote the IT industry with the aim
of rapidly catching up with its nearby neighbors.
With affiliation with WTO scheduled for 2006,
this trend toward open markets and economic
reform will progress further. Furthermore, there
will also no doubt be improvement in the invest-
ment climate for foreign companies. For relations
between Japan and Vietnam with regard to IT,
while it is important to continue with the economic
relations built up in the past through official de-
velopment assistance (ODA) and FDI, it is also
especially vital that the Japanese government and
private firms should cooperate in the training of
Vietnamese personnel.

conclusIon

For the ordering company, offshoring has merits,
such as a reduction in development costs and the
shortening of development times. On the other
hand, for the country receiving orders, the gov-
ernment and private firms put more importance
on policies for the fostering of information tech-
nology industries, both for the sake of economic
growth and secure employment, and also for the
furtherance of the information society. The proof
of the effectiveness of this approach has already
been seen in India.

In offshoring activities of Japanese companies,
the values recognized with regard to China and
India are well-established, and the time is now
ripe to move on to the next stage. As a new loca-
tion for offshoring, firms are taking close note of
Vietnam, although many challenges exist in the
present development of Vietnamese enterprises.
One of the problems is a shortage of outstanding
human resources in the industry as a whole. The
training of competent personnel will be a chal-
lenge for the future. This will create a pool of
highly skilled personnel that will be a foundation
for the industry.

For Japan and Vietnam, which is still a de-
veloping country, it is important on both sides to
work for an expansion of business by building a
partnership for such aims as the training of IT
personnel.

references

Asia Development Bank (ADB). (2000). Asian
development outlook 2000 update. Retrieved
August 1, 2006, from http://www.adb.org/

Asia Development Bank (ADB). (2006a). Asian
development outlook 2006. Retrieved August 1,
2006, from http://www.adb.org/

1506

IT and Software Industry in Vietnam

Asia Development Bank (ADB). (2006b). Asian
development outlook 2006 update. Retrieved
August 31, 2006, from http://www.adb.org/

Asia Development Bank (ADB). (2006c). Key
indicators 2006. Retrieved August 1, 2006, from
http://www.adb.org/

Braum, P. (2001). Information and communica-
tion technology in developing countries of Asia.
Retrieved August 1, 2006, from http://www.adb.
org/

Center of the International Cooperation for Com-
puterization (CICC). (2005). Asia computerization
report (Vietnam). Tokyo.

Center of the International Cooperation for Com-
puterization (CICC). (2006). Asia computerization
report (Vietnam). Tokyo.

Erran, C., & Paul, T. (2005). Offshoring infor-
mation technology. Cambridge: Cambridge
University Press.

Ho Chi Minh City Computer Association. (2006).
Vietnam ICT outlook 2006. Retrieved August 1,
2006, from http://www.hca,org.vn/

Japan Bank for International Cooperation (JBIC).
(2005). Survey report on overseas business op-
erations by Japanese manufacturing companies.
JBICI Review, 13. Retrieved August 1, 2006,
from http://www.jbic.go.jp/english/research/re-
port/review/

Japan Information Technology Services Industry
Association (JISA). (2005). Survey of overseas
dealings in the computer software field 2005.
Retrieved August 1, 2006, from http://www.jisa.
or.jp/

Ministry of Economy, Trade, and Industry
(MEIT). (2006). 2006 white paper on interna-
tional economy and trade. Retrieved August 31,
2006, from http://www.meti.go.jp/

Ministry of Internal Affairs and Telecommunica-
tion. (2006). 2006 White paper on information
and communications in Japan. Retrieved August
31, 2006, from http://www.soumu.go.jp/menu_05/
hakusyo/index.html

This work was previously published in Information Technology and Economic Development, edited by Y. Kurihara, S. Takaya,
H. Harui, & H. Kamae, pp. 155-163, copyright 2008 by Information Science Reference (an imprint of IGI Global).

 1507

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.8
Utilizing Semantic Web and
Software Agents in a Travel

Support System
Maria Ganzha

EUH-E and IBS PAN, Poland

Maciej Gawinecki
IBS PAN, Poland

Marcin Paprzycki
SWPS and IBS PAN, Poland

Rafał Gąsiorowski
Warsaw University of Technology, Poland

Szymon Pisarek
Warsaw University of Technology, Poland

Wawrzyniec Hyska
Warsaw University of Technology, Poland

AbstrAct

The use of Semantic Web technologies in e-busi-
ness is hampered by the lack of large, publicly-
available sources of semantically-demarcated
data. In this chapter, we present a number of
intermediate steps on the road toward the Semantic
Web. Specifically, we discuss how Semantic Web

technologies can be adapted as the centerpiece
of an agent-based travel support system. First,
we present a complete description of the system
under development. Second, we introduce ontolo-
gies developed for, and utilized in, our system.
Finally, we discuss and illustrate through examples
how ontologically demarcated data collected in
our system is personalized for individual users.

1508

Utilizing Semantic Web and Software Agents in a Travel Support System

In particular, we show how the proposed ontolo-
gies can be used to create, manage, and deploy
functional user profiles.

IntroductIon

Let us consider a business traveler who is about
to leave Tulsa, Oklahoma for San Diego, Califor-
nia. Let us say that she went there many times
in the past, but this trip is rather unexpected and
she does not have time to arrange travel details.
She just got a ticket from her boss’ secretary and
has 45 minutes to pack and catch a taxi to leave
for the airport. Obviously, she could make all
local arrangements after arrival, but this could
mean that her personal preferences could not be
observed and also that she would have to spend
time at the airport in a rather unpleasant area
where the courtesy phones are located or spend
a long time talking on the cell phone (and listen
to call-waiting music) to find a place to stay, and
so forth. Yes, one could assume that she could
ask her secretary to make arrangements, but
this would assume that she does have a secretary
(which is now a rarity in the cost-cutting corporate
world) and that her secretary knows her personal
preferences well.

Let us now consider another scenario. Here,
a father is planning a family vacation. He is not
sure where they would like to go, so he spends
countless hours on the Web, going over zillions of
pages, out of which only few match his preferences.
Let us note here, that while he will simply skip
pages about the beauty of Ozark Mountains—as
his family does not like mountains, but he will
“have to” go over a number of pages describing
beach resorts. While doing this he is going to find
out that many possible locations are too expensive,
while others do not have kitchenettes that they
like to have—as their daughter has special dietary
requirements, and they prefer to cook most of
their vacation meals themselves.

What do we learn from these two scenarios? In
the first case, we have a traveler who, because of
her unexpected travel, cannot engage in e-business
as she does not have enough time to do it, while
she could definitely utilize it. Yes, when in the
near future airplanes will have Internet access,
she will possibly be able to make the proper ar-
rangements while traveling, but this is likely going
to be an expensive proposition. Furthermore, the
situation when a traveler is spending time on the
plane to make travel arrangements is extremely
similar to the second scenario, where the user is
confronted with copious volumes of data within
which he has to find few pertinent gems.

What is needed in both cases is the creation of
a travel support system that would work as follows.
In the first case, it would know personal prefer-
ences of the traveler and on their basis, while she
is flying and preparing for the unexpected business
meeting, would arrange accommodations in one
of her preferred hotels, make a dinner reservation
in one of her favorite restaurants, and negotiate a
“special appetizer promotion” (knowing that she
loves the shrimp cocktail that is offered there).
Upon her arrival in San Diego, results would be
displayed on her personal digital assistant (PDA)
(or a smart cell phone) and she could go directly
to the taxi or to her preferred car rental company.
In the second case, the travel support system
would act as an interactive advisor—mimicking
the work of a travel agent—and would help select
a travel destination by removing from consid-
erations locations and accommodations that do
not fit the user profile and personalizing content
delivery further—by prioritizing information to
be displayed and delivering one that would be
predicted to be most pertinent first. Both these
scenarios would represent an ideal way in which
e-business should be conducted.

The aim of this chapter is to propose a system
that, when mature, should be able to support the
needs of travelers in exactly the previously de-
scribed way. We will also argue that, and illustrate
how, Semantic Web technologies combined with

 1509

Utilizing Semantic Web and Software Agents in a Travel Support System

software agents should be used in the proposed
system. We proceed as follows. In the next section
we briefly discuss the current state of the art in
agent systems, Semantic Web, and agent-based
travel support systems. We follow with a descrip-
tion of the proposed system illustrated by unified
modeling language (UML) diagrams of its most
important functionalities. We then discuss how
to work with ontologically demarcated data in
the world where such resources are practically
nonexistent. Finally, we show how resource de-
scription framework (RDF) demarcated data is to
be used to support personal information delivery.
We conclude with a description of the current
state of implementation and plans for further
development of the system.

bAckground

There are two main themes that permeate the
scenarios and the proposed solution presented
previously. These are: information overload and
need for content personalization. One of the
seminal papers that addresses exactly these two
problems was published by Maes (1994). There
she suggested that it will be intelligent software
agents that will solve the problem of informa-
tion overload. In a way it can be claimed that it
is that paper that grounded in computer science
the notion of a personal software agent that acts
on behalf of its user and autonomously works to
deliver desired personalized services. This notion
is particularly well matching with travel support,
where for years human travel agents played exactly
the role that personal agents (PAs) are expected
to mimic. Unfortunately, as it can be seen, the
notion of intelligent personal agent, even though
extremely appealing, does not seem to materialize
(while its originator has moved away from agent
research into a more appealing area of ambient
computing).

What can be the reason for this lack of de-
velopment of intelligent personal agents? One of

them seems to be the truly overwhelming amount
of available information that is stored mostly in
a human consumable form (demarcated using
hypertext markup language (HTML) to make
it look “appealing” to the viewer). Even a more
recent move toward the extensible markup lan-
guage (XML) as the demarcation language will
not solve this problem as XML is not expressive
enough. However, a possible solution to this prob-
lem has been suggested, in the form of semantic
demarcation of resources or, more generally, the
Semantic Web (Berners-Lee, Hendler, & Lassila,
2001; Fensel 2001). Here it is claimed that when
properly applied, demarcation languages like RDF
(Manola & Miller, 2005), Web ontology language
(OWL) (McGuinness & Van Harmelen, 2005) or
Darpa agent markup language (DAML) (DAML,
2005) will turn human-enjoyable Internet pages
into machine-consumable data repositories. While
there are those who question the validity of opti-
mistic claims associated with the Semantic Web
(M. Orłowska, personal communication, April
2005; A. Zaslavsky, personal communcation, Au-
gust 2004) and see in it only as a new incarnation
of an old problem of unification of information
stored in heterogeneous databases—a problem
that still remains without general solution—we are
not interested in this discussion. For the purpose
of this chapter we assume that the Semantic Web
can deliver on its promises and focus on how to
apply it in our context.

In our work we follow two additional sources
of inspiration. First, it has been convincingly ar-
gued that the Semantic Web and software agents
are highly interdependent and should work very
well together to deliver services needed by the
user (Hendler, 1999, 2001). Second, we follow
the positive program put forward in the highly
critical work of Nwana and Ndumu (1999). In this
context we see two ways of proceeding for those
interested in agent systems (and the Semantic
Web). One can wait for all the necessary tools and
technologies to be ready to start developing and
implementing agent systems (utilize ontological

1510

Utilizing Semantic Web and Software Agents in a Travel Support System

demarcation of resources), or one can start to
do it now (using available, however imperfect,
technologies and tools)—among others, to help
develop a new generation of improved tools and
technologies. In our work we follow Nwana and
Ndumu in believing that the latter approach is
the right one. Therefore, we do not engage in
the discussion if concept of a software agent is
anything more but a new name for old ideas; if
agents should be used in a travel support system;
if agent mobility is or is not important, if JADE
(2005), Jena (2005), and Raccoon (2005) are the
best technologies to be used, and so forth.. Our
goal is to use what we consider top-of-the-line
technologies and approaches to develop and
implement a complete skeleton of an agent-based
travel support system that will utilize semantically
demarcated data as its centerpiece.

Here an additional methodological comment
is in order. As it was discussed in Gilbert et al.
(2004); Harrington et al. (2003); and Wright,
Gordon, Paprzycki, Williams, and Harrington
(2003) there exists two distinct ways of managing
information in an infomediary (Galant, Jakub-
czye, & Paprzycki, 2002) system like the one
discussed here (with possible intermediate solu-
tions). Information can be indexed—where only
references to the actual information available in
repositories residing outside of “the system” are
stored. Or, information can be gathered—where
actual content is brought to the central reposi-
tory. In the original design of the travel support
system (Angryk, Galant, Gordon, & Paprzycki,
2002; Gilbert et al., 2004; Harrington et al.,
2003; Wright et al., 2003) we planned to follow
the indexing path, which is more philosophically
aligned with the main ideas behind the Semantic
Web. It can be said metaphorically, that in the
Semantic Web everything is a resource that is
located somewhere within the Web and can be
found through a generalized resource locator. In
this case indexing simply links together resources
of interest. Unfortunately, the current state of the
Semantic Web is such that there are practically no

resources that systems like ours could use. To be
able to develop and implement a working system
“now” we have decided to gather information.
More precisely, in the central repository we will
store sets of RDF triples (tokens) that will represent
travel objects (instances of ontologies). We will
also develop an agent-based data collection system
that will transform Web-available information
into such tokens stored in the system.

Obviously, our work is not the only one in the
field of applying agents and ontologies to travel
support, however, while we follow many prede-
cessors, we have noticed that most of them have
ended on a road leading nowhere. In our survey
conducted in 2001 we have found a number of
Web sites of agent-based travel support system
projects that never made it beyond the initial
stages of conceptualization (for more details
see Paprzycki, Angryk, et al., 2001; Paprzycki,
Kalczyński, Fiedorowicz, Abramowicz, & Cobb,
2001 and references presented there). The situation
did not change much since. A typical example
of the state of the art in the area is the European
Union (EU) funded, CRUMPET project. During
its funded existence (between approximately 1999
and 2003) it resulted in a number of publications
and apparent demonstrations, but currently its
original Web site is gone and it is really difficult
to assess which of its promises have been truly
delivered on.

Summarizing, there exists a large number of
sources of inspiration for our work, but we proceed
with development of a system that constitutes
a rather unique combination of agents and the
Semantic Web.

system description

Before we proceed describing the system let us
stress that what we describe in this chapter is the
core of a much larger system that is in various
stages of development. In selecting the material to
be presented we have decided first, to focus on the
parts under development that are finished or almost

 1511

Utilizing Semantic Web and Software Agents in a Travel Support System

finished. This means that a number of interesting
agents that are to exist in the system in the future
and that were proposed and discussed in Angryk et
al. (2002); Galant, Gordon, and Paprzycki (2002b);
and Gordon and Paprzycki (2005) will be omit-
ted. Furthermore, we concentrate our attention on
these parts of the system that are most pertinent
to the subject area of this book (Semantic Web
and e-business) while practically omitting issues
like, for instance, agent-world communication (ad-
dressed in Galant, Gordon, & Paprzycki, 2002a;
Kaczmarek, Gordon, Paprzycki, & Gawinecki,
2005) and others.

In Figures 1 and 2 we present two distinct top
level views on the system. The first one depicts
basic “interactions” occurring in the system as
well as its main subsystems. It also clearly places
the repository of semantically demarcated data in
the center of the system. More precisely, starting
from right to left, we can see that content has been
divided into (a) verified content providers (VCP)
that represent sources of trusted content that are
consistently available and format of which is
changing rarely and not “without a notice” and (b)
other sources that represents all of the remaining
available content. Interested readers can find more

information about this distinction in Angryk et al.
(2002) and Gordon and Paprzycki (2005).

While the dream of the Semantic Web is a
beautiful one indeed, currently (outside of a mul-
titude of academic research projects) it is almost
impossible to find within the Web large sources of
clean explicitly ontologically demarcated content
(in particular, travel related content). This being
the case, it is extremely difficult to find actual data
that can be used (e.g., for testing purposes) in a
system like the one we are developing. Obviously,
we could use some of the existing text processing
techniques to classify pages as relevant to vari-
ous travel topics, but this is not what we attempt
to achieve here. Therefore, we will, for the time
being, omit the area denoted as other sources that
contains mostly weakly structured and highly
volatile data (see also Nwana & Ndumu, 1999, for
an interesting discussion of perils of dealing with
dynamically changing data sources). This area
will become a source of useful information when
the ideas of the Semantic Web and ontological
content demarcation become widespread.

Since we assume that VCPs carry content
that is structured and rarely changes its format
(e.g., the Web site of Hilton hotels), it is possible

Figure 1. Top level view of the system

CONTENT

VCP

other
sources

Content
Collection

Content
Management

Content
Delivery Content

Storage

User

User

User

User

1512

Utilizing Semantic Web and Software Agents in a Travel Support System

to extract from them information that can be
transformed into a form that is to be stored in
our system. More precisely, in our system, we
store information about travel objects in the
form of instances of ontologies, persisted in a
Jena (2005) repository. To be able to do this, in
the content collection subsystem we use wrapper
agents (WA) designed to interface with specific
Web sites and collect information available there
(see also Figure 2). Note that currently we have
no choice but to create each of the WAs manually.
However, in the future, as semantic demarcation
becomes standard, the only operation required
to adjust our system will be to replace our cur-
rent “static WAs” with “ontological WAs.” This
is one of the important strengths of agent-based
system design, pointed to in Jennings, 2001 and
Wooldridge, 2002.

As mentioned, the content storage is the
Jena repository, which was designed to persist
RDF triples (RDF is our semantic demarcation
approach of choice). The content management

subsystem encompasses a number of agents
(considered jointly as a data management agent
[DMA]) that work to assure that users of the
system have access to the best quality of data.
These agents, among others deal with: time sen-
sitive information (such as changes of programs
of movie theaters), incomplete data tokens, or
inconsistent information (Angryk et al., 2002;
Gordon & Paprzycki, 2005).

Content delivery subsystem has two roles. First
it is responsible for the format (and syntax) of
interactions between users and the system. How-
ever, this aspect of the system, as well as agents
responsible for it, is mostly outside of scope of
this chapter (more details can be found in Galant
et al., 2002a and Kaczmarek et al., 2005). Second,
it is responsible for the semantics of user-system
interactions. Here two agents play crucial role.
First, the personalization infrastructure agent
(PIA) that consists of a number of extremely
simple rule-based “RDF subagents” (each one
of them is a class within the PIA) that extend the

Figure 2. Top level use case diagram

 1513

Utilizing Semantic Web and Software Agents in a Travel Support System

set of travel objects selected as a response to the
original query to create a maximum response set
(MRS) that is delivered to the PA for filtering and
ordering. Second, the PA that utilizes user profile
to filter and hierarchically organize information
obtained from the PIA as the MRS. It is also the
PA that is involved in gathering explicit user
feedback (see section “RDF Data Utilization:
Content Personalization”) that is used to adjust
user profile.

In Figure 2 we represent, in the form of a UML
use case diagram, the aforementioned agents as
well as other agents that are a part of the central
system infrastructure. This diagram should be
considered together with the system visualization
found in Figure 1.

Since we had to abandon, hopefully temporar-
ily, other sources, in Figure 2 we depict only Web
sites and Web services that belong to the VCP
category. They are sources of data for the function
Data Collection that is serviced by WAs, index-
ing agents (IA), and a coordinator agent (CA).
The IA communicates with the DB agent (DBA)
when performing the Inserting tokens function.
Separately, the CA receives data requests from the
DMA. These data requests represent situations
when data tokens were found to be potentially
obsolete or incomplete (as a part of the Data
Management function) and a new token has to be
delivered by an appropriate WA to refresh/com-
plete data available in the system. The DMA and
the DBA are the only agents that have a direct
access to the Jena database. In the content deliv-
ery subsystem we have three functions specified.
The Travel Service Selection function is related
to User(s) querying the system (information flow
from the User to the central repository), while the
Response Delivery function involves operations
taking place between the time when the initial
response to the query is obtained from Jena and
when the final personalized response is delivered
to the user (information flow from the central
repository to the User). During this process the
PIA performs the Preparing MRS function. Let

us now discuss in some detail agents and their
interactions. Before we proceed let us note that
we omit a special situation when the system is
initialized for the very first time and does not have
any data stored in the Jena repository. While this
situation requires agents started in a specific order,
since it is only a one-time event it is not worthy
of extra attention. We therefore assume that there
is already data stored in the system and focus on
interactions taking place in a working system.

The WA interfaces with Web sites, mapping
XML- or HTML-demarcated data into RDF
triples describing travel objects (according to
the ontology used in our system [Gawinecki,
Gordon, Nguyen, Paprzycki, & Szymczak, 2005;
Gawinecki, Gordon, & Paprzycki, et al., 2005;
Gordon, Kowalski, et al., 2005]). It is created by
the CA on the basis of a configuration file. The
configuration file may be created by the system
administrator and sent to the CA as a message
from the graphical user interface (GUI) agent or
may be contained in a message from the DMA that
wants to update one or more tokens. Each com-
pleted token is time stamped and priority stamped
and send back to the CA. Upon completion of its
work the (or in the case of an error) WA sends an
appropriate message to the CA and self-destructs.
A new WA with the same functionality is created
by the CA whenever needed. Note that to simplify
agent management we create instances of WA for
each “job,” even though they may produce tokens
describing the same travel resource. For instance,
when one WA is working on finding information
about all Westin Hotels in Central Europe (task
assigned by the system administrator), another
WA may be asked to find information about
Westin Hotel in Warszawa (job requested by
the DMA). It is the role of the IA to assure that
the most current available token is stored in the
repository (see Figure 3). An UML statechart of
the WA is contained in Figure 3.

CA manages all activities of the content col-
lection subsystem. When started, it creates a
certain number of IA (specified by the system

1514

Utilizing Semantic Web and Software Agents in a Travel Support System

administrator—Servicing agent management
request function in Figure 4) and enters a listening
state. There are six types of messages that may
be received: (1) a self-destruction order received
from the GUI Agent (send by the system admin-
istrator)—resulting in the CA killing all existing
WAs and IAs first, and then self-destructing; (2)
message from the WA that it encountered an error
or that it has completed its work and will self-de-
struct—resulting in appropriate information being
recorded; (3) message from the WA containing
a token—to be inserted into the priority queue
within the CA; (4) message from one of the IAs
requesting a new token to be inserted into the
repository—which results in the highest prior-
ity token being removed from the priority queue
and send to the requesting IA. When the queue
is empty, a message is send to the IA informing
about this fact (as seen in Figure 5, IA will retry
requesting token after some delay); (5) message
from the DMA containing a request (in the form
of a configuration file) to provide one or more
tokens—resulting in creation of an appropriate
WA (or a number of WAs); and, finally, (6) mes-
sage from the GUI Agent ordering adjustment
of the number of IAs in the system. A complete
statechart of the CA is depicted in Figure 4.

IA is responsible for inserting tokens into the
central repository as well as initial pre-processing

of tokens to facilitate cleanness of data stored in
the system. For the time being the IA performs
the following simple checks: (1) time consistency
of tokens to be inserted—since it is possible that
multiple WAs generate tokens describing the same
travel resource (see above), the IA compares time
stamps of the token to be inserted with that in
the repository and inserts its token only when it
is newer; (2) data consistency—token to be used
to update/append information has to be consistent
with the token in the repository (e.g., the same
hotel has to have the same address); and (3) incon-
sistent tokens are marked as such and they are to
be deconflicted (Angryk et al., 2002). In the case
when the priority queue is empty, request will be
repeated after delay T. The statechart of the IA
is represented in Figure 5 (top panel presents the
overall process flow, while the bottom panel speci-
fies processes involved in servicing tokens).

Let us now briefly describe the next three
agents visible in Figure 2. The DBA represents
interface between the database (in our case the
Jena repository) and the agent system. It is cre-
ated to separate an agent system from an “outside
technology” in such a way that in case of changes
in the repository all other changes will be local-
ized to that agent, while the remaining parts of
the system stay unchanged.

Figure 3. Statechart of the WA

 1515

Utilizing Semantic Web and Software Agents in a Travel Support System

Figure 4. Statechart of the CA

Figure 5. Statechart of the IA

1516

Utilizing Semantic Web and Software Agents in a Travel Support System

In the current system the DMA is a simple one.
A number of agents of this type, responsible for
different travel objects, are created upon system
startup. Their role is to “traverse” the repository
to find outdated and incomplete tokens and request
new/additional ones to be generated to update/
complete information stored in the repository. To
achieve this goal DMAs generate a configuration
file of an appropriate WA and send them to the
CA for processing. In the future DMAs will be
responsible for complete management of tokens
stored in the repository to assure their complete-
ness, consistency, and freshness.

The PIA consists of a manager and a number
of “RDF subagents” (PIA workers in Figure 6).
Each of these subagents represents one or more of
simple rules of the type “Irish pub is also a pub”
or “Japanese food is Oriental food.” These rules
are applied to the set of RDF triples returned by
the initial query. Rule application involves query-
ing the repository and is expected to expand the
result set (e.g., if the user is asking for a Korean
restaurant then other Oriental restaurants are
likely to be included). The PIA subagents oper-

ate as a team passing the result set from one to
the next (in our current implementation they are
organized in a ring), and since their role is to
maximize the set of responses to be delivered to
the user no potential response is removed from
the set. Final result of their operation is the MRS
that is operated on by the PA. Action diagram of
the PIA is depicted in Figure 6.

A separate PA will be created for each user
and will play two roles in the content delivery
subsystem. First, it is the central coordinator—for
each user query it directs it from one agent to the
next, constantly monitoring processing progress.
Second, it utilizes user profile to filter and order
responses that are to be sent to the user. More
precisely, the user query, after being pre-processed
and transformed into an RDQL query (see Kacz-
marek et al., 2005 for more details), is being sent to
the DBA. What is returned is the initial response
consisting of a number of tokens that satisfy the
query. This response is being redirected (by the
PA) to the PIA to obtain the MRS. Then the PA
utilizes the user profile to: (1) remove from the
set responses that do not belong there (e.g., user

Figure 6. Action diagram of the PIA

 1517

Utilizing Semantic Web and Software Agents in a Travel Support System

is known to be adversely inclined toward Italian
food, and pizza in particular, and thus all of the
Italian food serving restaurants have to be ex-
cluded); (2) order the remaining selections in such
a way that those that are believed to be of most
interest to the user will be displayed first (e.g., if
user is known to stay in Hilton hotels, they will
be displayed first). The statechart diagram of the
PA is contained in Figure 7.

As we can see the PA behaves differently
depending if the user is using the system for the
first time or if it is a returning user. In the latter
case, the PA will attempt at gathering explicit
feedback related to the information delivered to
the user during the previous session. This will
be done through a generation of a questionnaire
that will be shown to the user, who may decide
to ignore it (see also Galant & Paprzycki, 2002).
Obtained responses will be used to adjust the
user profile. We can also see how the PA plays
the role of response preparation orchestrator by
always receiving responses from other agents and
forwarding them to the next agent in the processing
chain. We have selected this model of informa-
tion processing so that “worker agents” like the

DBA or the PIA know only one agent to interact
with (the PA). Otherwise, an unnecessary set of
dependencies would be introduced to the system
making it substantially more difficult to manage
(any change to one of these agents would have
to be propagated to all agents that interact with
it—while in our case only a single agent needs
to be adjusted).

replacing semantic web with
a semantic database

As noted before, currently the Semantic Web is
an attractive idea that lacks its main component—
large repositories of semantically demarcated (in
particular travel-related) data. This was one of
the important reasons to change the design of our
systems from data indexing into data gathering.
As a result we are able to create our own “mini Se-
mantic Web” (in the form of a semantic database)
and store there information that in the future will
allow us to extend our system beyond the basic
skeleton described here, and start experiment-
ing with its true projected functionalities—like
content personalization.

Figure 7. Statechart of the PA

1518

Utilizing Semantic Web and Software Agents in a Travel Support System

Let us describe how the HTML-demarcated
information available on the Web is turned into
semantic tokens representing travel objects in our
repository. Before proceeding let us discuss briefly
ontologies utilized in the system. As reported
in Gawinecki, Gordon, Nguyen, et al., 2005;
Gawinecki, Gordon, Paprzycki, et al., 2005; and
Gordon, Kowalski, et al., 2005, while there exists
a large number of attempts at designing ontologies
depicting various aspects of the world, we were
not able to locate a complete ontology of the most
basic objects in the “world of travel” such as a
hotel and a restaurant. More precisely, there exists
an implicit ontology of restaurants utilized by the
ChefMoz project (ChefMoz, 2005), but it cannot
be used directly as a Semantic Web resource, due
to the fact that data stored there is infested with
bugs that make its automatic utilization impossible
without pre-processing that also involves manual
operations (see Gawinecki, Gordon, Paprzycki,
et al., 2005 and Gordon, Kowalski, et al., 2005
for more details).

This being the case we have proceeded in
two directions. First, as reported in Gawinecki,
Gordon, and Paprzycki, et al. (2005) and Gor-
don, Kowalski, et al. (2005) we have reverse
engineered the restaurant ontology underlying
the ChefMoz project and cleaned data related to
Polish restaurants. Separately we have proceeded
with designing hotel ontology using a pragmatic
approach. Our hotel ontology is to be used to rep-
resent, manipulate, and manage hotel information
actually appearing within Web-based repositories
(in context of travel; i.e., not hotels as landmarks,
or sites of historical events). Therefore we have
studied content of the 10 largest Internet travel
agencies and found out that most of them describe
hotels using very similar vocabulary. Therefore
we used these common terms to shape our hotel
ontology and the results of this process have
been reported in Gawinecki, Gordon, Nguyen,
et al. (2005); Gawinecki, Gordon, Paprzycki, et
al. (2005); and Gordon, Kowalski, et al. (2005).
As an outcome we have two fully functional,

complete ontologies (of a hotel and of a restau-
rant) that are used to shape data stored in our
Jena repository.

In this context, let us illustrate how we trans-
form the VCP featured data into travel tokens. As
an example we will utilize the Web site belonging
to Hilton hotels (www.hilton.com). More precisely,
let us look at some of the information that is avail-
able at the Web site of Hilton Sao Paulo Morumbi
depicted in Figure 8.

As clearly seen, from this page we can extract
information such as the hotel name, address, and
phone numbers. This page would also have to
be interacted with, in case we planned to utilize
our travel support system to make an actual
reservation (which is only in very long-term
plans and out of scope of this chapter). To find
the remaining information defined by the hotel
ontology requires traversing the Web site deeper.
Therefore, for instance, the WA has to go to the
page contained in Figure 9, to find information
about hotel amenities.

As a result the following set of RDF triples (in
XML-based notation) will be generated:

<rdf:Description
rdf:about=“http://www.agentlab.net/travel/hotels/Hilton/

SAOMOHI”>
 <j .1:roomAmeni t rd f :resource=“ht tp: //. . . /hote l .

rdf#AccessibleRoom”/>
 <j.1:roomAmenity rdf :resource=“ht tp: //... /hotel.

rdf#AirConditioning”/>
 <j.1:roomAmenity rdf :resource=“ht tp: //... /hotel.

rdf#ConnectingRooms”/>
 <j.1:roomAmenity rdf :resource=“ht tp: //... /hotel.

rdf#Shower”/>
 <j.1:roomAmenity rdf :resource=“ht tp: //... /hotel.

rdf#CableTelevision”/>
 <j.1:roomAmenity rdf :resource=“ht tp: //... /hotel.

rdf#CNNavailable”/>
 <j.1:roomAmenity rdf :resource=“ht tp: //... /hotel.

rdf#Bathrobe”/>
 <j.1:roomAmenity rdf:resource=“http://.../hotel.rdf#Bathro

omAmenities”/>
 <j.1:roomAmenity rdf:resource=“http://.../hotel.rdf#Coffee_

TeaMaker”/>
 <j.1:roomAmenity rdf :resource=“ht tp: //... /hotel.

rdf#Hairdryer”/>
 <j.1:roomAmenity
 rdf:resource=“http://.../hotel.rdf#HighSpeedInternetC

onnection”/>
 <j.1:roomAmenity rdf :resource=“ht tp: //... /hotel.

rdf#InternetAccess”/>

 1519

Utilizing Semantic Web and Software Agents in a Travel Support System

Figure 8. Hilton Sao Paulo Morumbi main page

Figure 9. Hilton Sao Paulo Morumbi amenities page

1520

Utilizing Semantic Web and Software Agents in a Travel Support System

 <j.1:roomAmenity rdf:resource=“http://.../hotel.rdf#Iron”/>
 <j.1:roomAmenity rdf :resource=“ht tp: //... /hotel.

rdf#IroningBoard”/>
 <j.1:roomAmenity rdf :resource=“ht tp: //... /hotel.

rdf#Minibar”/>
 <j.1:roomAmenity rdf :resource=“ht tp: //... /hotel.

rdf#Newspaper”/>
 <j.1:roomAmenity rdf:resource=“http://.../hotel.rdf#Wake-

upCalls”/>
 <j.1:roomAmenity rdf:resource=“http://.../hotel.rdf#Two-

linePhone”/>
 <j.1:roomAmenity rdf :resource=“ht tp: //... /hotel.

rdf#VoiceMail”/>
 <j.1:roomAmenity
 rdf:resource=“http://.../hotel.rdf#TelephoneWithData

Ports”/>
 <j.1:roomAmenity rdf :resource=“ht tp: //... /hotel.

rdf#SpeakerPhone”/>
 <j.1:roomAmenity rdf :resource=“ht tp: //... /hotel.

rdf#SmokeDetektors”/>
 <j.1:roomAmenity rdf:resource=“http://.../hotel.rdf#Safe”/>

</rdf:Description>

These RDF triples represent a part of our
hotel ontology, but this time they became its in-
stance representing a given Hilton hotel (values
of various aspects of the hotel are filled-in). Our

WA will then continue traversing the hotel site
to find, for instance, information about fitness
and recreation as well as check-in and check-out
times. An appropriate page belonging to the same
hotel is depicted in Figure 10 while the resulting
set of RDF triples follows.

<rdf:Description
rdf:about=“http://www.agentlab.net/travel/hotels/Hil-

ton/SAOMOHI”>
 <j.1:recreationService
 rdf:resource=“http://.../hotel.rdf#FitnessCenter

Onsite”/>
 <j.1:recreationService
rdf:resource=“http://.../hotel.rdf#IndoorOrOutdoorCo

nnectingPool”/>
 <j.1:petsPolicy rdf:resource=”http://.../hotel.

rdf#NoPetsAlowed”/>
 <j.1:additionalDetail

Figure 10. Hilton Sao Paulo Morumbi fitness and recreation and check-in andcheck-out information

 1521

Utilizing Semantic Web and Software Agents in a Travel Support System

rdf:resource=“http://www.agentlab.net/travel/hotels/Hil-
ton/SAOMOHI/CheckIn-CheckOut”/>

</rdf:Description>

<rdf:Description
rdf:about=“http://www.agentlab.net/travel/hotels/Hil-

ton/SAOMOHI/CheckIn-CheckOut”>
 <j.1:detail>Check-in: 2:00PM, Check-out: 12:00PM</

j.1:detail>
</rdf:Description>

In this way the WA processes all necessary
pages belonging to the Hilton Sao Paulo Morumbi
and as a result obtains a set of RDF triples that
constitute its complete definition (from the point
of view of ontology utilized in our system). This
set of RDF triples is then time and priority level
stamped, packed into an ACL message and send
to the CA that inserts it into the priority queue—to
be later inserted, by the IA, to the semantic data-
base. Depending on the assignment the WA may
continue producing tokens of other Hilton hotels
or, if work is completed, it informs the CA about
this fact and self-destructs. In this way in our
system, by manually creating WAs for a variety of
travel information sources, we can collect real-life
data representing actual travel objects.

rdf data utilization: content
Personalization

Let us now discuss how the data stored in the
system is used to deliver personalized responses
to the user. While our approach to user profile
construction and utilization is based on ideas
presented in Burke (2002); Fink and Kobsa (2002);
Galant and Paprzycki (2002); Kobsa, Koenemann,
and Pohl (2001); Montaner, López, and De La Rosa
(2003); Rich (1979) and Sołtysiak and Crabtree
(1998), however utilization of these methods in the
context of ontologically demarcated information is
novel and was proposed originally in Gawinecki,
Vetulani, Gordon, and Paprzycki (2005).

To be able to deliver personalized content to the
user of the system, we have to be able to represent
the user in the system first—define user profile.
Furthermore, the proposed user profile has to be
created in such a way to simplify interactions in
the system. Since our system is oriented toward
processing of ontologically demarcated data, it is
very natural to represent user preferences in the
same way. Thus we adapted an overlay model of
user profile, where opinions are “connected” with
appropriate concepts in the domain ontology. This
approach is also called a student model, since it
has been found useful to describe knowledge of
the student about specific topics of the domain

Figure 11. Overlay model utilized to represent user profile

1522

Utilizing Semantic Web and Software Agents in a Travel Support System

(Greer & McCalla, 1994). Basic tenets of the
overlay model are depicted in Figure 11.

For instance, let us consider our hotel ontology
and assume that the user likes to stay in hotels that
have both a pool and fitness center. Both these
features are subclasses of the concept ameni-
ties. We can represent user interest by assigning
weight to each amenity (the larger the weight the
more important the given feature is to the user).
In case of our hypothetical customer, both pool
and exercise room will be assigned large weights,
while features that user is not particularly inter-
ested in (e.g., availability of ironing board—see
Figure 9) will be assigned small weight—the
lesser the interest is the closer to 0 the value
will be. In the case of features about which we
do not know anything about users’ preferences,
no value will be assigned (see Figure 11). Let us
observe that in this approach we are mimicking
the notion of probability—all assigned values are
from the interval (0, 1). This means that even in
the case of strong counter preference towards a
given feature we will assign value 0 (there are
no negative values available). Proceeding in this
described way, we will create a special instance
of hotel ontology, one that represents user-hotel-
profile. The following fragment of an instance
of hotel ontology (this time represented in an
N3 notation) depicts user (Karol) profile as it is
represented in our system:

:KarolOpinions a sys:OpinionsSet;
 sys:containsOpinion
 [sys:about hotel:Pool;
 sys:hasClassification sys:Interesting;
 sys:hasNormalizedProbability 0.89].
 [sys:about hotel:ExerciseRoom;
 sys:hasClassification sys:Interesting;
 sys:hasNormalizedProbability 0.84].
 [sys:about res:AirConditioning;
 sys:hasClassification sys:Interesting;
 sys:hasNormalizedProbability 0.89].
 [sys:about hotel:BathroomAmenities;
 sys:hasClassification sys:Interesting;
 sys:hasNormalizedProbability 0.73].
 [sys:about hotel:IroningBoard;
 sys:hasClassification sys:NotInteresting;
 sys:hasNormalizedProbability 0.11].
 [sys:about hotel:Iron,
 sys:hasClassification sys:NotInteresting;
 sys:hasNormalizedProbability 0.15].

The previous hotel profile of Karol, tells us that
he likes to stay in hotels with swimming pool and
exercise room, while the availability of an iron
and ironing board is inconsequential to him.

Obviously, somewhere in the system we have
to store, in some form, information about the user.
To assure consistency across the system, this is
done in the form of a simplistic user ontology.
Next, we present a fragment of such ontology:

:hasDress a rdf:Property ;
 rdfs:range :Dress ;
 rdfs:domain :UserProfileData.

:hasAge a rdf:Property ;
 rdfs:range :Age ;
 rdfs:domain :UserProfileData .

:hasWealth a rdf:Property ;
 rdfs:range :Wealth ;
 rdfs:domain :UserProfileData .

:hasProfession a rdf:Property ;
 rdfs:range :Profession ;
 rdfs:domain :UserProfileData .

Let us now assume that Karol is a 24-year-old
painter, who has enough money to feel rich and
whose dressing style is a natural one, then his
profile would be represented as:

:KarolProfile a sys:UserProfile;
 sys:hasUserID 14-32-61-3456;
 sys:hasUserProfileData :KarolProfileData;
 sys:hasOpinionsSet :KarolOpinions.

:KarolProfileData a sys:UserProfileData;
 sys:hasAge 24;
 sys:hasWealth sys:Rich;
 sys:hasDress sys:NaturalDress;
 sys:hasProfession sys:SpecialistFreeLancer.

Rather than keeping them separate, we com-
bine instances of user ontology with the previously
described user profile into a complete ontologi-
cal description—a comprehensive user profile.
This user profile is then to be stored in the Jena
repository.

One of the important questions that all rec-
ommender systems have to address is, how to
“introduce” new users to the system (Galant &
Paprzycki, 2002). In our system we use stereo-

 1523

Utilizing Semantic Web and Software Agents in a Travel Support System

typing (Rich, 1979). Obviously, we represent
stereotypes the same way we used to represent
user profiles, with the difference that instead
of specific values representing preferences of a
given user, we use sets of variables of nominal
(to represent categories—e.g., profession), ordinal
(e.g., low income, medium income, high income),
and interval (e.g., age between 16 and 22) types.
For values of nominal and ordinal types we have
established sets of possible values, while for the
values of interval types, we defined borders of
intervals considered in the system. Using results
of a survey and expert knowledge, we were able to
create restaurant-related stereotypes (one instance
of restaurant ontology of each identified stereo-
type). To illustrate such a case, here is a fragment
of artistic profile in the area of restaurants:

:ArtistStereotypeOpinions a sys:OpinionsSet;
 sys:containsOpinion
 [sys:about res:CafeCoffeeShopCuisine;
 sys:hasClassification sys:Interesting;
 sys:hasNormalizedProbability 1.0].
 [sys:about res:CafeteriaCuisine;
 sys:hasClassification sys:Interesting;
 sys:hasNormalizedProbability 0.75].
 [sys:about res:TeaHouseCuisine;
 sys:hasClassification sys:Interesting;
 sys:hasNormalizedProbability 0.9].
 [sys:about res:WineBeer;
 sys:hasClassification sys:Interesting;
 sys:hasNormalizedProbability 0.8].
 [sys:about res:WineList;
 sys:hasClassification sys:Interesting;
 sys:hasNormalizedProbability 1.0].
 [sys:about res:HotDogsCuisine;
 sys:hasClassification sys:NotInteresting;
 sys:hasNormalizedProbability 0.0].

In this stereotype we can see, among others,
that an artist has been conceptualized as a per-
son who likes coffee houses a bit more than tea
houses and is willing to eat in a cafeteria, likes
wine (a bit more than beer), but does not like hot
dogs (fast food). Other stereotypes have been
conceptualized similarly and their complete list
and a detailed description of their utilization can
be found in Gawinecki, Kruszyk, and Paprzycki
(2005).

When a new user logs onto the system he/she
will be requested to fill out a short questionnaire
about age, gender, income level, occupation,
address (matching user features defined by the
user ontology), as well as questions about travel
preferences. While the basic user ontology-based
data will be required, answering questions about
travel preferences will be voluntary. Personal data
collected through the questionnaire will be used
to match a person to a stereotype. More precisely,
we will calculate a distance measure between
user-specified characteristics and these appearing
in stereotypes defined in the system and find one
that matches his/her profile the closest. To achieve
this we will use the following formula:

()
ˆ ˆˆ ˆ

1

ˆ ˆ
1

ˆ ˆ,

k
f f f

Su Su
f

k
f f

Su
f

w d
d S u

w

=

=

δ
=

δ

∑

∑

Where: wf – weight of attribute, df
S,u – distance

between values of the attribute in the stereotype S
and user’s data u, δf

S,u – Boolean flag that informs
whether attribute f appears in both: stereotype’s
data (S) and user’s data (u).

To illustrate this, let us consider Karol, the
painter, again. In the Table 1 we present Karol’s
data and the artist stereotype data and show how
the closeness between Karol and that stereotype
is calculated.

The same process is then repeated comparing
Karol’s data against all other stereotypes to find
the one that fits him the best. In the next step this
stereotype is joined with his user data to become
his initial profile. In the case when he answers
any domain-specific questions (recall, that he
may omit them), this data will be used to modify
his user profile. For example, let us assume that
he has been identified as student stereotype, but
he has also specified that he does not like coffee
houses (while in the student stereotype coffee

1524

Utilizing Semantic Web and Software Agents in a Travel Support System

houses have been assigned a substantial positive
weight). Obviously, in his profile, this positive
value will be replaced by zero—as explicit per-
sonal preferences outweigh these specified in the
stereotype (see also Nistor, Oprea, Paprzycki, &
Parakh, 2002):

:KarolOpinions a sys:OpinionsSet;
 sys:containsOpinion
 [sys:about res:CafeCoffeeShopCuisine;
 sys:hasClassification sys:Interesting;
 sys:hasNormalizedProbability 0.0].

Observe that as soon as the system is opera-
tional we will be able to store information about
user behaviors (Angryk et al., 2003; Galant & Pa-
przycki, 2002; Gordon & Paprzycki, 2005). These
data will be then used not only to modify individual
user profiles, but also mined (e.g., clustered) to
obtain information about various group behaviors
taking place in the system. This information can
be used to verify, update, or completely replace
our initial stereotypes. Such processes are based
on the so-called implicit relevance feedback (Fink
& Kobsa, 2002; Kobsa et al., 2001). As described
earlier (see Figure 7) we will also utilize explicit
feedback based on user responses to subsequent
questionnaires. Currently as explicit feedback we
utilize only a single question: “Did you like our
main suggestion presented last time?” but a more
intricate questionnaire could also be used. Specifi-

cally, at the end of each user system interaction,
on the basis of what was recommended to the user,
a set of questions about these recommendations
could be prepared. When the user returns to the
system, these questions would be then asked to
give him/her opportunity to express his/her direct
opinion. Both implicit and explicit feedbacks are
used to adjust user profile (see also Gawinecki,
Vetulani, et al., 2005). Note here, that in most
recommender systems stereotyping is the method
of information filtering (demographic filtering);
thus making such systems rather rigid—in this
case individual user preferences cannot be prop-
erly modeled and modified (Kobsa et al., 2001).
In our system we use stereotyping only to solve
the cold-start problem—and modify them over
time—and thus avoid the rigidity trap.

User profile is utilized by the PA to rank and
filter travel objects. Let us assume that after
the query, the response preparation process has
passed all stages and in the last one the PIA agent
has completed its work and the MRS has been
delivered to the PA. The PA has now to compute a
temperature of each travel object that is included
in the MRS. The temperature represents the
“probability” that a given object is a “favorite” of
the user. This way of calculating the importance
of selected objects was one of the reasons for the
way that we have assigned importance measures
to individual features (as belonging to the interval

Table 1. Calculating closeness between user profile (Karol) and a stereotype (artist)

Attribute
(f)

Attribute
weight

(wf)

Data of artist stereotype
(comma means OR relation):

(S)

Karol’s Data:
(u)

Distance between
value of attribute:

(df
S,u)

Weighted
distance:
(wf* df

S,u)

Age 2 20-50 24 0.00 0.00

Wealth 4 Not Rich, Average Rich Rich 0.33 1.33

Dress 1 Naturally, Elegantly Naturally 0.00 0.00

Profession 2

Student/Pupil, Scientist/
Teacher, Specialist/
FreeLancer
Unemployed/WorkSeeker

Specialist/
FreeLancer 0.00 0.00

COMBINED
1.3(3) /
(2+4+1+2)=
0.14(6)

 1525

Utilizing Semantic Web and Software Agents in a Travel Support System

[0,1]). Recall here that the DBA and the PIA know
nothing about user preferences and that the PIA
uses a variety of general rules to increase the
response set beyond that provided as a response
to the original query.

To calculate the temperature of a travel object
(let us name it an active object) three aspects of
the situation have to be taken into account. First,
features of the active object. Second, user interests
represented in the user profile—if a given feature
has no preference specified then it cannot be used.
In other words, for each token in the MRS we will
crop its ontological graph to represent only these
features that are defined in user profile. Third,
features requested in user query. More specifically,
if given keywords appear in the query (represent-
ing explicit wishes of the user), for example, if the
query was about a restaurant in Las Vegas, then
such restaurants should be presented to the user
first. Interactions between these three aspects are
represented in Figure 12.

Here we can distinguish the following situ-
ations:

A. Features explicitly requested by the user that
appear in the active object as well as in the
user-profile;

B. Features requested by the user and appearing
in the active object;

C. Features not requested that are a part of the

Figure 12. Construction of final response: Interactions between features

user profile and that appeared in the active
object; and

D. Features that do not appear in the active
object (we are not interested in them).

Ratings obtained for each token in the MRS
represent what the system believes are user
preferences and are used to filter out these ob-
jects temperatures of which are below a certain
threshold and rank the remaining ones (objects
with highest scores will be displayed first). We
will omit discussion of a special case when there
is no object above the threshold. The MRS is
processed in the following way:

1. Travel objects are to be returned to the user
in two groups (buckets)

 a. Objects requested explicitly by the user
(via the query form) – Group I

 b. Objects not requested explicitly by the
user but predicted by the system to be
of potential interest to the user – Group
II

 Thus, for each active object we divide
features according to the areas depicted
in Figure 11. Objects for which at least
one feature is inside of either area A or B
belong to Group I, objects with all features
inside area C belong to Group II, while the
remaining objects are discarded.

1526

Utilizing Semantic Web and Software Agents in a Travel Support System

2. Inside of each bucket travel objects are sorted
according to their temperature computed in
the following way: for a given object O its
temperature

 temp(0) = ()

f O
temp f

∈
∑

 where temp(f) = 1 if f ∈ A ∪	B, or pn(f) if

f ∈ C, while temp(f)=temp(f) – 0.5. This
latter calculation is performed to implicate
that these features that are not of interest to
the user (their individual temperatures are
less than 0.5) reduce the overall temperature
of the object. Function pn (f) is a normalized
probability of feature f, based on the user
profile.

Let us consider Karol, who is interested in
selecting a restaurant. In his query he specified
that this restaurant has to serve Italian cuisine
and has to allow smoking. Additionally, we know,
from Karol’s profile, that he does not like coffee
(weight 0.1) and outdoor dining (weight 0.05).
Thus for the restaurant X:

:RestaurantX a res:Restaurant;
 res:cuisine res:ItalianCuisine;
 res:cuisine res:PizzaCuisine;
 res:cuisine res:CafeCoffeeShopCuisine;
 res:feature res:Outdoor.

the overall score will be decreased due to the
influence of Outdoor and CafeCoffeeShopCuisine
features, but will receive a “temperature boost”
because of the ItalianCuisine feature (explicitly
specified feature). However, the restaurant X it
won’t be rated as high as the restaurant Y:

:RestaurantY a res:Restaurant;
 res:cuisine res:ItalianCuisine;
 res:smoking res:PermittedSmoking.

which serves ItalianCuisine, where smoking is
also permitted. To be more specific, let us consider
these two restaurants and the third one described
by the following features:

:RestaurantZ a res:Restaurant;
 res:cuisine res:WineBeer;
 res:smoking res:PermittedSmoking.

Then Table 2 represents the way that tempera-
tures of each restaurant will be computed.

As a result, restaurants X and Y belong to the
first bucket (to be displayed to the user as they
both have features that belong to area B). However,

Table 2. Computing temperature of a restaurant

Restaurant N3 descriptions
(bold – requested by the user,

underlined – in the user profile;
could be conjunctive)

Calculations

:RestaurantX a res:Restaurant;
 res:cuisine res:Italiancuisine;
 res:cuisine res:PizzaCuisine;
 res:cuisine res:CafeCoffeeShopCuisine;
 res:feature res:Outdoor.

+0.5 (=1-0.5) requested; B
+0
-0.49 (=0.01-0.5) profile
-0.45 (=0.05-0.5) profile
= -0.44

:RestaurantY a res:Restaurant;
 res:cuisine res:Italiancuisine;
 res:smoking res:Permittedsmoking.

+0.5 (=1-0.5) requested; B
+0.5 (=1-0.5) requested; B
= 1

:RestaurantZ a res:Restaurant;
 res:cuisine res:WineBeer;
 res:smoking res:PermittedSmoking.

+0.3 (=0.8-0.5) not requested; profile; C
+0.5 (=1-0.5) not requested; profile; C
= 0.8

 1527

Utilizing Semantic Web and Software Agents in a Travel Support System

while restaurant Y has high temperature (1) and
definitely should be displayed, restaurant X has
very low temperature (-0.44) and thus will not
likely be displayed at all. Interestingly, restaurant
Z, which belongs to the second bucket (belongs to
area C), has an overall score of 0.8 and is likely
to be displayed. This example shows also the po-
tential adverse effect of lack of information (e.g.,
in the ChefMoz repository; but more generally,
within the Web) on the quality of content-based
filtering (at least done in a way similar to that
proposed previously). Simply said, what we do
not know cannot decrease the score, and thus a
restaurant for which we know only address and
cuisine may be displayed as we do not know that
it allows smoking on the premises (which would
make it totally unacceptable to a given user).

rdf data utilization: content
delivery

Let us now present in more detail how the deliv-
ery of content to the user is implemented as an
agent system. To be able to do this we need to
briefly introduce additional agents (beyond these
presented in Figure 2) and their roles (using Pro-
metheus methodology [Prometheus, 2005])—as
represented in Figure 13.

In addition to the PA (described in details in
Figure 7) and the DBA, we have also: (1) view

transforming agent (VTA) responsible for de-
livering response in the form that matches the
user I/O device; (2) proxy agent (PrA) that is
responsible for facilitating interactions between
the agent system and the outside world (need for
these agents as well as a detailed description of
their implementation can be found in Kaczmarek
et al. (2005); (3) session handling agent (SHA),
which is responsible for complete management and
monitoring of functional aspects of user interac-
tions with the system; and (4) profile managing
agent (PMA) which is responsible for (a) creating
profiles for new users, (b) retrieving profiles of
returning users and (c) updating user-profiles,
based on implicit and explicit relevance feedback.
Let us now summarize processes involved in
content delivery through a UML action diagram.
While rather complex, descriptions contained in
Figure 14 represent a complete conceptualization
of actions involved in servicing user request from
the moment that the user logs on to the system,
to the moment when he/she obtains response to
their query.

state of the system

As indicated earlier in this chapter, we have
concentrated on these features of our system
that are currently being implemented and close
to being ready, while omitting the features that

Figure 13. Content delivery agents and their roles

1528

Utilizing Semantic Web and Software Agents in a Travel Support System

we would like to see developed in the future.
While the interface to the system is still under
construction, it is possible to connect to it from a
browser. Furthermore, we have emulated WAP-
based connectivity. As of the day this chapter is
being written, we have implemented a function-
complete content collection subsystem consisting
of: (1) a number of hotel wrappers (WA) that allow
us to feed hotel data into the system; (2) CA and
IA agents that collaborate with the WAs to insert
data into Jena-based repository; and (3) an initial
version of the DMA and the PIA. For the CCS
we have semi-automatically cleaned-up subsets
of ChefMoz data, describing selected restaurants.
We have also a relatively complete content delivery
subsystem. In particular, (1) the PrA, the SHA, and
the VTA that facilitate user-system interactions
have been implemented and tested; (2) the PA is
working as described in this chapter (with the PIA
working in the case of restaurants only); (3) the
PMA has only limited capacity, it is capable of
creating and managing a single user profile; (4)
while the existing set of stereotypes involves only
restaurants. Let us briefly illustrate the work of
the system, by screen-shots of the query (Figure
15) and the response (Figure 16). The query was
a general query about restaurants in Greensboro,
NC; note the box that attempts at asking a question
about Bistro Sophia that was suggested to the user
in the previous session (Figure 16).

One of the biggest problems related to testing
our system is the fact that, being realistic, no user
would be interested in a system that only provides
a few hotel chains and restaurants (e.g., in Poland).
This being the case we can ourselves test features
of the system like: (1) is the user query handled
correctly, that is, do the returned results represent
the correct answer taking into account the current
state of the system; (2) do the WAs correctly deliver
and the CA and IAs accurately insert tokens into
the system; and (3) are agent communication and
interactions proceeding without deadlocks and
does the system scale. Unfortunately, it is prac-
tically impossible to truly test adaptive features

Figure 14. Content delivery action diagram

 1529

Utilizing Semantic Web and Software Agents in a Travel Support System

Figure 16. System response screenshot

Figure 15. System query screenshot

1530

Utilizing Semantic Web and Software Agents in a Travel Support System

of the system. Without actual users utilizing the
system to satisfy their real travel needs, all the
work that we have done implementing the system
cannot be practice verified.

This is a more general problem of the chicken-
and-egg type that is facing most of Semantic
Web research (regardless of its application area).
Without real systems doing real work and utilizing
actual ontologically demarcated data on a large
scale (to deliver what users need) it is practically
impossible to assess if the Semantic Web, the way
it was conceptualized, is the way that we will be
able to deal with information overload, or is it
just another pipe dream like so many in the past
of computer science.

future develoPMents

As described previously, it seems to be clear what
the future of the development of Semantic Web
technologies applied in context of e-business (or
in any other context) has to be. It has to follow
the positive program put forward by Nwana and
Ndumu (1999). The same way as agent systems
and a large number of systems utilizing Semantic
Web technologies have to be implemented and
experimented with. Furthermore, it is necessary to
develop tools that are going to speed up ontologi-
cal demarcation of Web content. Here, both the
content that is about to be put on the Web as well
as tools supporting demarcation of legacy content
need to be improved and popularized. Only then,
we will be able to truly assess the value proposi-
tion of the Semantic Web. Furthermore, since
software agents and the Semantic Web are truly
intertwined, the development of the Semantic Web
should stimulate development of agent systems,
while development of agent systems is likely to
stimulate development of the Semantic Web.

To facilitate these processes we plan to continue
development of our agent-based travel support
system. The first step will be to complete integra-
tion and testing of the aforementioned described

system skeleton. We will proceed further by: (1)
developing ontologies of other important travel
objects, for example, movie theaters, museums,
operas, and so forth; (2) fully developing and
implementing the PIA and the DMA infrastruc-
tures—according to the previously presented
description; (3) continuing implementing WAs
to increase the total volume of data available in
the system; (4) adding a geographic informa-
tion system (GIS) component to the system, to
allow answering queries like: which restaurant
is the closest one to that hotel?; (5) developing
and implementing an agent-based collaborative
filtering infrastructure; and (6) investigating the
potential of utilizing text processing technolo-
gies for developing new generation of adaptive
WAs.

references

Angryk, R., Galant, V., Gordon, M., & Paprzycki,
M. (2002). Travel support system: An agent based
framework. In H. R. Arabnia & Y. Mun (Eds.),
Proceedings of the International Conference on
Internet Computing (IC’02) (pp. 719-725). Las
Vegas, NV: CSREA Press.

Berners-Lee, T., Hendler, J., Lassila, O. (2001).
The Semantic Web. Scientific American. Re-
trieved May, 2001, from http://www.sciam.com/
article.cfm?articleID=00048144-10D2-1C70-
84A9809EC588EF21

Burke, R. (2002). Hybrid recommender systems:
Survey and experiments. User Modeling and
User-Adapted Interaction, 12(4), 331-370.

ChefMoz. (2005). ChefMoz dining guide. Re-
trieved November, 2004, from http://chefdmoz.
org

Darpa Agent Markup Language (DAML). (2005).
Language overview. Retrieved October, 2005,
from http://www.daml.org/

 1531

Utilizing Semantic Web and Software Agents in a Travel Support System

Fensel, D. (2001). Ontologies: A silver bullet for
knowledge management and electronic com-
merce. Berlin: Springer.

Fink, J., & Kobsa, A. (2002). User modeling for
personalized city tours. Artificial Intelligence
Review, 18, 33-74.

Galant, V., Gordon, M., & Paprzycki, M. (2002a).
Agent-client interaction in a Web-based e-com-
merce system. In D. Grigoras (Ed.), Proceedings
of the International Symposium on Parallel and
Distributed Computing (pp. 1-10). Iasi, Romania:
University of Iaşi Press.

Galant, V., Gordon, M., & Paprzycki, M. (2002b).
Knowledge management in an Internet travel
support system. In B. Wiszniewski (Ed.), Pro-
ceedings of ECON2002, ACTEN (pp. 97-104).
Wejcherowo: ACTEN.

Galant, V., Jakubczyc, J., & Paprzycki, M. (2002).
Infrastructure for e-commerce. In M. Nycz & M.
L. Owoc (Eds.), Proceedings of the 10th Confer-
ence Extracting Knowledge from Databases (pp.
32-47). Poland: Wrocław University of Econom-
ics Press.

Galant, V., & Paprzycki, M. (2002, April). Infor-
mation personalization in an Internet based travel
support system. In Proceedings of the BIS’2002
Conference (pp. 191-202). Poznań, Poland: Poznań
University of Economics Press.

Gawinecki, M., Gordon, M., Nguyen, N., Pa-
przycki, M., & Szymczak, M. (2005). RDF demar-
cated resources in an agent based travel support
system. In M. Golinski et al. (Eds.), Informatics
and effectiveness of systems (pp. 303-310). Ka-
towice: PTI Press.

Gawinecki, M., Gordon, M., Paprzycki, M.,
Szymczak, M., Vetulani, Z., & Wright, J. (2005).
Enabling semantic referencing of selected travel
related resources. In W. Abramowicz (Ed.),
Proceedings of the BIS’2005 Conference (pp.
271-290). Poland: PoznaD University of Econom-
ics Press.

Gawinecki, M., Kruszyk, M., & Paprzycki, M.
(2005). Ontology-based stereotyping in a travel
support system. In Proceedings of the XXI Fall
Meeting of Polish Information Processing Society
(pp. 73-85). PTI Press.

Gawinecki, M., Vetulani, Z., Gordon, M., & Pa-
przycki, M. (2005). Representing users in a travel
support system. In H. Kwaśnicka et al. (Eds.),
Proceedings of the ISDA 2005 Conference (pp.
393-398). Los Alamitos, CA: IEEE Press.

Gilbert, A., Gordon, M., Nauli, A., Paprzycki,
M., Williams, S., & Wright, J. (2004). Indexing
agent for data gathering in an e-travel system.
Informatica, 28(1), 69-78.

Gordon, M., Kowalski, A., Paprzycki, N., Pełech,
T., Szymczak, M., & Wasowicz, T. (2005). On-
tologies in a travel support system. In D. J. Bem
et al. (Eds.), Internet 2005 (pp. 285-300). Poland:
Technical University of Wrocław Press.

Gordon, M., & Paprzycki, M. (2005). Designing
agent based travel support system. In Proceedings
of the ISPDC 2005 Conference (pp. 207-214). Los
Alamitos, CA: IEEE Computer Society Press.

Greer, J., & McCalla, G. (1994). Student mod-
eling: The key to individualized knowledge
based instruction (pp. 3-35). NATO ASI Series.
Springer-Verlag.

Harrington, P., Gordon, M., Nauli, A., Paprzycki,
M., Williams, S., & Wright, J. (2003). Using soft-
ware agents to index data in an e-travel system.
In N. Callaos (Ed.), Electronic Proceedings of the
7th SCI Conference [CD-ROM, file: 001428].

Hendler, J. (1999, March 11). Is there an intelligent
agent in your future? Nature. Retrieved March,
2004, from http://www.nature.com/nature/web-
matters/agents/agents.html

Hendler, J. (2001). Agents and Semantic Web.
IEEE Intelligent Systems Journal, 16(2), 30-37.

JADE. (2005). (Version 3.4) [Computer software].
Retrieved from http://jade.tilab.com/

1532

Utilizing Semantic Web and Software Agents in a Travel Support System

Jena. (2005, March). A Semantic Web framework
(Version 2.4) [Computer software]. Retrieved from
http://www.hpl.hp.com/semweb/jena2.htm

Jennings, N. R. (2001). An agent-based approach
for building complex software systems. Commu-
nications of the ACM, 44(4), 35-41.

Kaczmarek, P., Gordon, M., Paprzycki, M., &
Gawinecki, M. (2005). The problem of agent-client
communication on the Internet. Scalable Comput-
ing: Practice and Experience, 6(1), 111-123.

Kobsa, A., Koenemann, J., & Pohl, W. (2001).
Personalized hypermedia presentation techniques
for improving online customer relationships. The
Knowledge Engineering Review, 16(2), 111-155.

Maes, P. (1994). Agents that reduce work and
information overload. Communications of the
ACM, 37(7), 31-40.

Manola, F., & Miller, E. (Eds.). (2005). RDF
primer. Retrieved from http://www.w3.org/TR/
rdf-primer

McGuinness, D. L., & Van Harmelen, F. (Eds.).
(2005, February 10). OWL Web ontology language
overview. Retrieved December, 2004, from http://
www.w3.org/TR/owl-features/

Montaner, M., López, B., & De La Rosa, J. L.
(2003). A taxonomy of recommender agents on
the Internet. Artificial Intelligence Review, 19,
285-330.

Nistor, C. E., Oprea, R., Paprzycki, M., & Parakh,
G. (2002). The role of a psychologist in e-com-
merce personalization. In Proceedings of the 3rd
European E-COMM-LINE 2002 Conference (pp.
227-231). Bucharest, Romania: IPA S. A.

Nwana, H., & Ndumu, D. (1999). A perspective
on software agents research. The Knowledge
Engineering Review, 14(2), 1-18.

Paprzycki, M., Angryk, R., Kołodziej, K.,
Fiedorowicz, I., Cobb, M., Ali, D., et al. (2001)
Development of a travel support system based
on intelligent agent technology. In S. Niwiński
(Ed.), Proceedings of the PIONIER 2001 Confer-
ence (pp. 243-255). Poland: University of PoznaD
Press.

Paprzycki, M., Kalczyński, P. J., Fiedorowicz, I.,
Abramowicz, W., & Cobb, M. (2001) Personalized
traveler information system. In B. F. Kubiak & A.
Korowicki (Eds.), Proceedings of the 5th Interna-
tional Conference Human-Computer Interaction
(pp. 445-456). Gdańsk, Poland: Akwila Press.

Raccoon. (2005). (0.5.1) [Computer software].
Retrieved November 2005, from http://rx4rdf.
liminalzone.org/Raccoon

Rich, E. (1979). User modeling via stereotypes.
Cognitive Science, 3, 329-354.

Prometheus. (2005). Prometheus methodology.
Retrieved from http://www.cs.rmit.edu.au/agents/
prometheus/

Sołtysiak, S., & Crabtree, B. (1998). Automatic
learning of user profiles—towards the personal-
ization of agent service. BT Technological Journal,
16(3), 110-117.

Wooldridge, M. (2002). An introduction to mul-
tiAgent systems. John Wiley & Sons.

Wright, J., Gordon, M., Paprzycki, M., Williams,
S., & Harrington, P. (2003). Using the ebXML
registry repository to manage information in an
Internet travel support system. In W. Abramowicz
& G. Klein (Eds.), Proceedings of the BIS2003
Conference (pp. 81-89). Poland: Poznań University
of Economics Press.

This work was previously published in Semantic Web Technologies and E-Business: Toward the Integrated Virtual Organiza-
tion and Business Process Automation, edited by A. Salam & J. Stevens, pp. 325-359, copyright 2007 by IGI Publishing (an
imprint of IGI Global).

 1533

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.9
Online Synchronous vs.
Asynchronous Software
Training Through the

Behavioral Modeling Approach:
A Longitudinal Field Experiment

Charlie C. Chen
Appalachian State University, USA

R. S. Shaw
Tamkang University, Taiwan

AbstrAct

The continued and increasing use of online train-
ing raises the question of whether the most effec-
tive training methods applied in live instruction
will carry over to different online environments in
the long run. Behavior Modeling (BM) approach
– teaching through demonstration — has been
proven as the most effective approach in a face-to-
face (F2F) environment. A quasi-experiment was
conducted with 96 undergraduate students who
were taking a Microsoft SQL Server 2000 course
in a university in Taiwan. The BM approach was
employed in three learning environments — F2F,
online synchronous and online asynchronous
classes. The results were compared to see which
produced the best performance, as measured
by knowledge near-transfer and knowledge far-
transfer effectiveness. Overall satisfaction with

training was also measured. The results of the
experiment indicate that during a long duration
of training no significant difference in learning
outcomes could be detected across the three
learning environments.

concePtuAl foundAtIons

The Internet’s proliferation creates a wealth of
opportunities to deploy alternative online learn-
ing environments to facilitate many users in their
learning processes. The information technology
(IT) skills training market represented 76% of the
entire online learning market in year 2000, ac-
cording to a Jupiter Research report (CyberAtlas,
2003). The worldwide corporate online learning
market may grow to $24 billion ($18 billion in the
U.S.) by 2006 with a compound annual growth

1534

Online Synchronous vs. Asynchronous Software Training through the Behavioral Modeling Approach

rate of 35.6% (IDC, 2002). The burgeoning on-
line learning/training market, and the increasing
training budgets of businesses and schools has
provided these key users of online training and
marketing tools with practical reasons, as well as
compelling research motives, to investigate the
effectiveness of training and education in differ-
ent online formats.

Online learning differs primarily from the
traditional face-to-face (F2F) learning in that it
is a user-centered, rather than instructor-centered,
learning mode. Other benefits of substituting
online learning for F2F learning include (1) self-
paced instruction; (2) the ability to incorporate
text, graphics, audio and video into the training;
(3) opportunity for high levels of interactivity; (4)
a written record of discussions and instructions;
(5) low-cost operation; and (6) access to a world-
wide audiences (Aniebonam, 2000). In addition,
online learning can remove a certain degree of
space and time limitations, speed up the learning
process for motivated learners, lower economic
costs of attending F2F classes and have higher
information accessibility and availability.

Although IT has changed the training and
educational approaches and environments, the
ultimate goal of learning has not changed, that is,
to transfer knowledge to students and allow them
to apply the acquired knowledge in real situations.
In the field of IT, the success of software train-
ing can be assessed with a trainee’s IT skills of,
and knowledge of the use of, particular software
to solve problems. Surprisingly, after attending
a training session, very few students know how
to properly apply the acquired knowledge and
skills to real situations. This raises an important
issue, that is, how to improve knowledge transfer
capability of learners in different online learning
environments.

The importance of knowledge transfer is self-
evident. However, the knowledge transfer process
does not occur naturally. There is a need to assist
learners in transferring their acquired knowledge
into future applications. One effective approach

to assisting the learning transfer process is “be-
havior modeling” (BM). This approach teaches
learners through demonstration and hands-on
experience. Simon, Grover, Teng, and Whitcomb
(1996) and Compeau and Higgins (1995) found
that in the field of information technology, BM
is the most effective approach compared to the
other two knowledge transfer approaches: explo-
ration — teaching through practice on relevant
example, and instruction — teaching software
characteristics.

Distance education is defined as “teaching
through the use of telecommunications technolo-
gies to transmit and receive various materials
through voice, video and data” (Bielefield &
Cheeseman, 1997, p. 141). In the same token,
Leidner and Jarvenpaa (1995) define distance
learning as “the transmission of a course from
one location to another” (p. 274). These defini-
tions provide an analogy to distance learning
in the field of information technology or online
software training. Online software training can
be the transmission of instructional IT program-
ming or contents to geographically dispersed
individuals or groups.

There are two general modes of online learn-
ing: synchronous and asynchronous modes. Each
mode can be marshaled with IT tools to deliver
software training. Case in point, audio and video
conferences are two types of online synchronous
training mediums. Online asynchronous training
mediums range from Web pages, file download, e-
mail, e-mail list, newsgroup, forum, chat, response
pad, whiteboard and to screen sharing. Built on
his personal distance training and education
experiences since 197 -+ 1, Horton (2000) sug-
gests that online synchronous and asynchronous
learning and training be designed for different
purposes. Incorporating synchronous learning
demands the control of schedule, time, people,
class size, video and audio equipment and place.
These factors constrain the possibility of reaching
large numbers of students at any given time and
in any given place.

 1535

Online Synchronous vs. Asynchronous Software Training through the Behavioral Modeling Approach

However, the BM approach for trainees can be
a problem in online asynchronous and synchro-
nous training. For instance, any demonstration
presented by a live instructor would need to be
replaced with a scripted or videotaped demonstra-
tion in asynchronous mode, and live transmission
or Webcam in synchronous mode. This raises
several important questions. Can the scripted, vid-
eotaped, live transmission or Webcam approach
still be as effective as the traditional classroom?
How receptive are students to different online
learning environments with differential degrees
of student-centered interaction compared to an
instructor-centered F2F environment? Most im-
portantly, it is an unknown but interesting ques-
tion to ask whether knowledge can be effectively
transferred in different online environments.
This research is to address these important issues
faced by any instructor who intends to apply the
BM approach in either online synchronous and
asynchronous environments.

behavioral Modeling and knowledge
transfer

Social learning theory is the basis of the behavior
modeling approach. Therefore, it is important to
assess the applicability of the theory and approach
in the online learning environment. Learning
outcomes can be measured by different types of
knowledge transfer and end-user satisfaction.

behavior Modeling in online
environments

Bandura (1977) proposed the Social Learning
Theory to explain the interactive learning process
between individuals and their social environment.
He asserted a series of social learning needs take
place to direct an individual from biological
and self-centered response to social and group
behaviors. Since the social learning process
takes place within a society, individuals learn to
establish their behavior models by observing and

imitating other individuals’ behaviors or through
the enforcement of the media and environment.
Online learning in different environments needs
to be delivered via different media. Different
online learning environments, therefore, may
have different degrees of enforcement to learners’
individual behaviors.

Learning by modeling or observing people’s
behaviors may be more effective than learning by
trial-and-error because the former approach can
avoid unnecessary mistakes and harm. Modeling
an instructor’s behaviors empowers students to (1)
learn new behavior from the instructor, (2) self-
evaluate their behaviors against the instructor’s
and (3) enforce students’ current behavior.

Learning by modeling takes place in four
sequential steps: (1) attention, (2) retention, (3)
motor reproduction and (4) motivation and rein-
forcement (Bandura, 1977). Enforcement forces,
such as the duration of training, praise, motivation
and attention of others, allows learning to move
along these four steps against counter forces. En-
forcement forces, such as retention enhancement
and practice, can contribute to better cognitive
learning (Yi & Davis, 2001).

Lewin (1951) argued that the effectiveness of
Behavior Modeling is a function of people inter-
acting within an environment. The BM approach
is different from learning by adaptation. The
former approach teaches through demonstration,
while the latter approach influences the behaviors
of learners by reward and punishment (Skinner,
1938). The BM approach was first applied in the
training of interpersonal communication and
management skills (Decker & Nathan, 1985).
Gist, Schwoerer and Rosen (1989) further ap-
plied the training to the context of information
technology.

BM may be readily employed in face-to-face
instruction, but cannot be easily simulated in
online asynchronous instruction, which lacks the
interactive immediacy necessary for optimally
effective instructor demonstration and correc-
tion. The richness of information media in online

1536

Online Synchronous vs. Asynchronous Software Training through the Behavioral Modeling Approach

synchronous instruction is another constraint and
may also have less enforcement force than F2F
instruction to the learning outcomes. For example,
in a live training class, the instructor is able to
demonstrate a software process and immediately
ask the students to repeat the activity under the
instructor’s close supervision. However, in an
online asynchronous situation where there is no
live instructor, the demonstration loses the benefit
of that immediate feedback. In the same token, in
an online synchronous situation bandwidth con-
straints and compromised reciprocity may under-
mine the enforcement force of the demonstration.
In both online environments, enforcement forces
can be further compromised with the missing of
“learning by doing,” another key element of F2F
BM training (McGehee & Tullar, 1978).

Therefore, there is a strong possibility that the
BM approach cannot be fully replicated in either
the online synchronous or asynchronous situation
and will not be as effective a method in online
training as in the traditional environment.

Knowledge Transfer

Knowledge transfer is the application of acquired
skills and knowledge into different situations. Un-
less the transferring process occurs, learning has
little value. The applied situations could be similar
or novel to the learning situation. Depending on
the situation, knowledge transfer can take place
in different formats. In general, there are four
different types of knowledge transfer.

Positive Transfer vs. Negative Transfer

Positive transfer of learning means that learning
in one situation stimulates and helps learning in
another situation. Negative transfer of learning
hinders the application of learning in one situation
to other situations. Positive learning experience
can be enhanced via analogy, informed instruction
(Paris, Cross & Lipson, 1984), tutorial (Morris,
Shaw & Perney, 1990) and so forth. Learning

effectiveness can be improved by triggering
positive learning and mitigating negative learn-
ing experience.

Near Transfer vs. Far Transfer

Salomon and Perkins (1988) argued that transfer
of learning could have a differential degree of
transfer. The effectiveness of near-transfer learn-
ing depends on the learner’s ability to solve prob-
lems similar to those encountered in the learning
context. For instance, learning how to add two
digit numbers allows learners to add three digit
numbers. Near-transfer learning occurs in two
similar situations and at a lower level. Therefore,
the level of learning is more easily acquired and
applied. In contrast, applying the acquired skills
and knowledge in two dissimilar and sometimes
novel situations is much harder to achieve. For
instance, a table tennis player can apply skills of
playing pinball to playing tennis. Although both
sports look similar on the surface, the techniques
to control pinballs and tennis balls are very dif-
ferent. The learning transfer is much harder to
be acquired and retained. Therefore, the transfer
is defined as far-transfer learning. Near-transfer
and far-transfer of knowledge seem to be the most
widely used measures of learning outcomes in
the field of information technology since learners
must utilize the knowledge learned in a comput-
ing environment.

Specific Transfer and General Transfer

Depending on learning content, there are two
different learning transfers: specific transfer and
general transfer (Bruner, 1996). The former refers
to the extension and association of habit and skills.
The latter refers to the transfer of principles and
attitudes that can be used to deepen the under-
standing of basic concepts.

 1537

Online Synchronous vs. Asynchronous Software Training through the Behavioral Modeling Approach

Lateral Transfer and Vertical Transfer

Gagne (1992) asserted that the transfer of learn-
ing includes lateral and vertical transfers. Lateral
learning is to apply one domain of knowledge to
another domain. Lateral learning does not fol-
low step-by-step instruction and is considered
as provocative learning. Vertical learning means
that a higher level of learning needs to be created
by integrating acquired skills, and experiences
with new situations. Vertical transfer of learning
is analytical and sequential.

Other Knowledge Transfer Theories

Theories related to knowledge transfer are not lim-
ited to the above mentioned ones. For instance, the
theory of identical elements asserts that the more
identical elements different learning contains, the
more efficient the transfer of learning (Thorndike,
1949). Baldwin and Ford (1988) proposed a gen-
eral training theory to classify three categories of
factors affecting transfer of training: (1) training
inputs, (2) training outputs and (3) conditions of
transfer. The situated learning theory argues that
individuals are affected by learning environment
when trying to solve practical problems. There-
fore, the interaction between learners and the
environment is an important factor that needs to
be taken into account when measuring the transfer
of learning. Finally, the theory of formal disci-
pline argues that knowledge transfer skills can be
acquired by training learner’s sensuality, such as
thinking, judgment, classification, imagination,
creation and so forth.

The objective of this study was to investigate
the impacts of the learning environment in online
and offline formats on the transfer of learning.
The situational changes rationalize the adoption
of situated learning theory. To accomplish this
objective, we sought to train end-user to learn
how to use Microsoft SQL server 2000 software.
Therefore, we adopted the near-transfer and far-

transfer measures of learning outcomes for our
information technology related experiment.

Hypotheses

Hypotheses are formulated to investigate whether
the BM approach is as effective in online syn-
chronous and asynchronous environments as
in the traditional face-to-face environment. We
measured learning outcomes by trainees’ perfor-
mances in near-transfer and far-transfer tasks,
as well as overall satisfaction levels. The study
also considered the importance of time variant.
Hence, training and performance measurement
were conducted over five weeks.

Knowledge Near-Transfer (KNT) Tasks

H1: End-users trained using F2F behavior mod-
eling perform near-transfer information
system tasks better than those trained in
asynchronous behavior modeling.

H2: End-users trained in F2F behavior modeling
perform near-transfer information system
tasks better than those trained in synchro-
nous behavior modeling.

H3: End-users trained in synchronous behavior
modeling perform near-transfer information
system tasks better than those trained in
asynchronous behavior modeling.

Knowledge Far-Transfer (KFT) Tasks

H4: End-users trained in F2F behavior model-
ing perform far-transfer information system
tasks better than those trained in asynchro-
nous behavior modeling.

H5: End-users trained in F2F behavior model-
ing perform far-transfer information system
tasks better than those trained in synchro-
nous behavior modeling.

H6: End-users trained in synchronous behavior
modeling perform far-transfer information

1538

Online Synchronous vs. Asynchronous Software Training through the Behavioral Modeling Approach

system tasks better than those trained in
asynchronous behavior modeling.

Overall Satisfaction

H7: End-users trained in synchronous behavior
modeling have a higher overall satisfaction
level than those trained in asynchronous
behavior modeling.

Research Design

This study applied Simon, Grover, Teng and
Whitcomb’s (1996) well-constructed software
training theory to experimentally test behavior
modeling training in three learning environ-
ments — F2F, online asynchronous and online
synchronous environments. In doing so, it should
be possible to detect the effects of the single
independent variable (training environment) on
training outcomes. The experiment was conducted
in a field setting that enabled the study to garner
greater external validity than would be the case
with a laboratory experiment. A field experiment
methodology has the merits of “testing theory”
and “obtaining answers to practical questions”
(Kerlinger & Lee, 2000). The exploratory nature
of the study requires that variables (e.g., training
environments and subject areas of study) under
investigation be manipulated.

Subjects Control

The setting for the field experiment was the Tam-
kang University in Taiwan. The experiment was
prompted by the need of 96 college sophomores,
who are Management Information Systems
(MIS) majors, to learn a Microsoft SQL Server
2000 software program in a database processing
course. The schedule agreed on with the faculty
at Tamkang University was to run the experiment
for an hour training each week for four weeks.
The author’s graduate assistant Ms. Lin helped
administer the experiment to collect the data. The

subject pool had a mean age of 22 years. Subjects
who participated in the structured experiment
had little database-related experience. Their in-
tellectual levels are relatively the same because
subjects scored the same range of scores in a na-
tional entrance exam. The national entrance exam
system has been adopted for more than 40 years
in Taiwan and is considered a relatively reliable
test. Subjects’ individual backgrounds should not
have influence on learning outcomes.

For the purposes of this study, subjects were
chosen if they lacked a theoretical and procedural
understanding of the particular subject area be-
ing tested. Participants were given a pretraining
questionnaire that includes important study units
on Microsoft SQL Server 2000. Two experts of
the domain administered the Delphi study to
finalize the study units and questionnaires. This
is to improve the content validity. The subjects
voluntarily answered whether they knew those
study units and answered their database-related
experiences. Based on their answers, a correla-
tion test of database and usage experience of the
target system showed no significant differences
among three experimental groups. Subjects of the
study may be considered representative of novice
end-users. Many studies (Ahrens & Sankar 1993;
Santhanam & Sein, 1994) support using students
as experimental subjects to represent the general
populations. Hence, all subjects’ questionnaires
were used for further data analysis. This segmenta-
tion was used to mitigate the effects of computer
literacy and experience on the findings, thereby
improving the internal validity of the study.

Training Treatments

Face-to-face BM (FBM) is instructor-centered
training while online Asynchronous BM (ABM)
and Synchronous BM (SBM) are learner-centered
training. Course materials used in online learning
environments were created to properly reflect the
key elements of a behavior modeling approach.
AniCam simulation software was used to record

 1539

Online Synchronous vs. Asynchronous Software Training through the Behavioral Modeling Approach

the demonstration of instruction. Hyperlink struc-
ture was used to help users assimilate nonlateral
conceptual, and procedural knowledge.

Feedback activities of behavior modeling
approach in online asynchronous environment
are supported with e-mail and hyperlinks. SBM
differs from ABM in providing feedback func-
tions via real-time discussion forums. Training
materials integrate key elements of behavior
modeling approach: (1) control of three differ-
ent learning environments, (2) demonstration of
the instructor, (3) continuous feedback (verbal
feedback in F2F and online synchronous environ-
ments; e-mail feedback in the online asynchronous
environment). Three training environments were
designed to maximize the effect of size on their
differences (Figure 1).

Training Procedures

The experimental study lasted for four weeks.
There was a 50 minute training session each week
for each class. Figure 2 shows the experimental
procedures used at each time period. The X’s,
Y’s and Z’s represent online asynchronous BM
training, online synchronous BM training and F2F
BM training methods, respectively. The subscripts
next to each alphabet indicate the ith observation

or training session, respectively. Before executing
experimental treatments (the pretest period O1),
the instructor asked the subjects to complete a
short questionnaire soliciting demographic in-
formation, database software-related experience
and attitudes towards learning in the subject’s
assigned online learning environment (Pretest).
Approximately one-third of the subjects pooled
received the same experimental treatment for four
straight weeks (Week1 to Week4). The assigning
process was random on the class basis. Random-
izing the execution of O4 and O5 in Week2 and
Week3 for Group A and Group B can help avoid
possible confounding results from the interactive
effects of the pretest of O1 and O3. This random-
ization process can further ensure that difference
in learning outcomes of O6 is not possibly due
to the sensitization of the participants after the
pretest and the interaction of their sensitization,
O4 and O5 (Kerlinger & Lee, 2000).

Before or after each training session, subjects
were asked to complete database design tasks us-
ing the MS SQL commands to assess their prior
knowledge in the trained subjects and immediate
learning outcomes that involve both near-transfer
and far-transfer knowledge. On week five, students
were evaluated again for their attitude changes
towards the e-learning sessions and performance

Figure 1. Differences of behavior modeling approach in three learning modes
Online Learning Environments Off-line Learning Environment

Asynchronous BM (ABM) Synchronous BM (SBM) Face-to-Face BM (FBM)
• Scripted demonstration

of step-by-step
instructions

• Deductive/inductive
complementary
learning

• Trainees choose one of
two relevant examples
to practice

• Without online
reference sources

• Trainee control

• Webcam-delivered
demonstration of step-
by-step instructions

• Deductive/inductive
complementary learning

• Instructor chooses
examples that are
relevant to trainees’
majors

• Without online reference
sources

• Trainer/trainee partially
control

• Demonstration of a live
instructor to learn step-by-
step

• Deductive/inductive
complementary learning

• Live instructor chooses
examples that are relevant
to trainees’ majors

• Without online reference
sources

• Trainer control

1540

Online Synchronous vs. Asynchronous Software Training through the Behavioral Modeling Approach

in near and far-transfer tasks (Post-test). The final
exam concludes the five-week training sessions.

Training materials were designed to integrate
key elements of the three training environments,
as illustrated in Figure 3. Course materials used
in the online asynchronous training session were
stored on the school’s server for students to learn
at their own pace after each training session was
completed. At the end of the experiment, students
were asked about their affect for their learning
environments.

Outcomes Measurement

Regardless of the teaching environment, computer
training is intended to instill in users a level of
competency in using the system and to improve
their satisfaction with the system. A user’s com-
petency in using a system is contingent upon the
user’s knowledge absorption capacity. Ramsden
(1988) finds that effective teaching needs to align
students with situations where they are encouraged
to think deeper and more holistically. Kirkpatrick
(1967) also suggests that learning effectiveness
needs to be evaluated by students’ reactions,
learning and knowledge transfer. The levels of
knowledge absorbed by students, Bayman and
Mayer (1988) suggest, may include syntactic,
semantic, schematic and strategic knowledge.
Mennecke, Crossland and Killingsworth (2000)
believe that experts of one particular knowledge
domain possess more strategic and semantic
knowledge than novices. Knowledge levels, as Si-

mon, Grover, Teng and Whitcomb (1996) suggest,
can be categorized as near-transfer, far-transfer
or problem solving. Near-transfer knowledge is
necessary for being able to understand software
commands and procedures. This type of knowl-
edge is important for a trainee to be able to use
software in a step-by-step fashion. Far-transfer
knowledge seeks to ensure that a trainee has the
ability to combine two or more near-transfer tasks
to solve more complicated problems.

Both the use of software and information
systems and the satisfaction levels of using them
are useful surrogates to properly measure the ef-
fectiveness of an information system (Ives, Olson,
& Baroudi, 1983). The end-user satisfaction level
has been widely adopted as an important factor
contributing to the success of end-user software
training. Since the study was to replicate Simon,
Grover, Teng and Whitcomb’s (1996) research in
a dissimilar environment, near-knowledge and
far-knowledge transfer, and end-user overall
satisfaction levels were adopted in this study to
measure training outcomes. Cronbach’s alpha
reliability for Simon et al.’s (1996) instrument
to measure satisfaction is r = 0.98. Users need to
use the Likert scale from one to five to answer
12 test items related to their satisfaction with the
use of online system.

data Analysis

Table 1 shows the means and standard deviations
for the scores at each treatment period. Table 2

Figure 2. Experimental procedures

GROUP Pretest Week1 Week2 Week3 Week4 Post-test

Group A O1 O2 X1 O3 X2 O4 X3 O5 X4 O6

Group B O1 O2 Y1 O3 O4 Y2 O5 Y3 Y4 O6

Group C O1 O2 Z1 O3 O4 Z2 O5 Z3 Z4 O6

Oi Questionnaire and Tests
Xi ABM (Online Asynchronous BM Training)
Yi SBM (Online Synchronous BM Training)
Zi FBM (F2F BM Training)

 1541

Online Synchronous vs. Asynchronous Software Training through the Behavioral Modeling Approach

shows F and P values of the dependent variables
(near-transfer and far-transfer task performances,
and overall satisfaction) across treatment groups
and in different times. Pretest scores (Q1, Q2 and
Q4) in varying weeks were used to tell apart stu-
dents with prior experiences and knowledge on the
studied topics. After learning in a weekly session,
students participated in a post-test. Their scores
(Q3 and Q5) were used for KNT effectiveness
comparison across training sessions. Scores of Q6
are KFT effectiveness and end-user satisfaction
levels. A cursory examination of means (Table
1) indicates that no patterns can be identified for
near-transfer performance from time Week1 to

Week5. Subjects in ABM performed better than
those in FBM, followed by SBM at Week1 while
at Week2 and Week3 the order was changed to
FBM>ABM>SBM and SBM>FBM>ABM, re-
spectively. The findings are not in agreement with
a consistent pattern as predicted by Hypotheses
H1 and H2. For KFT tasks, subjects in ABM
performed better than those in SBM, followed by
FBM. This is the reversed order of a pattern as
predicted by Hypotheses H3 and H4. The mea-
surement of overall satisfaction level somewhat
follows the predicted patterns of Hypotheses H5
and H6.

Figure 3. Delivery mechanisms of behavior modeling approaches

FBM (F2F Behavior
Modeling)

ABM (Asynchronous
Behavior Modeling)

SBM (Synchronous
Behavior Modeling)

Course
Materials

Instructor demonstrates the
use of software along with
PowerPoint slides

Covered three study subjects
within forty five minutes
each week

Course materials covered by
FBM was pre-recorded and
stored in a server.

No instructor was present to
assist the learning process of
students. Students learned at
their own path and completed
their study within forty five
minutes.

Instructor was present, but
broadcasted steaming video
from a broadcast room.

Instructor conducted the real-
time discussion with students
on a BBS station.

Information
Systems Tools

Instructor, PowerPoint,
and PC

AniCam, PowerPoint and
Acrobat Reader

AniCam, PowerPoint, Stream
Author v.2.5 (Authoring
Tool) and Acrobat Reader

Target System SQL Server2000 Personal
Edition

SQL Server2000 Personal
Edition

SQL Server2000 Personal
Edition

Pretest
Questionnaire

Learning Experience and
Style Questionnaires

Learning Experience and
Style Questionnaires

Learning Experience and
Style Questionnaires

The First Week
First Training Session
First Learning Outcomes
Test

First Training Session
First Learning Outcomes Test

First Training Session
First Learning Outcomes Test

The Second
Week

Second Training Session
Second Learning Outcomes
Test

Second Training Session Second Training Session
Second Learning Outcomes
Test

The Third
Week

Third Training Session Third Training Session
Second Learning Outcomes
Test

Third Training Session

The Fourth
Week

Comprehensive Test (Third
Learning Outcomes Test)

Comprehensive Test (Third
Learning Outcomes Test)

Comprehensive Test (Third
Learning Outcomes Test)

Post-test
Questionnaire

Measure End-User
Satisfaction

Measure End-User
Satisfaction

Measure End-User
Satisfaction

1542

Online Synchronous vs. Asynchronous Software Training through the Behavioral Modeling Approach

Table 1. Descriptive statistics - means (standard deviations)

ABM (N=40) SBM (N=26) FBM (N=30) Overall (N=96)

KNT (Week 1) 27.63 (5.77) 25.38 (7.06) 26.00 (7.24) 26.51 (6.61)

KNT (Week 2) 28.50 (3.43) 28.46 (3.09) 29.83 (0.91) 28.91 (2.83)

KNT (Week 3) 56.05 (14.06) 64.27 (17.52) 62.27 (12.71) 60.22 (14.98)

KNT (Week 5) 71.70 (16.21) 70.50 (19.78) 67.00 (17.27) 69.91 (17.49)

KFT (Post-test) 9.63 (1.33) 9.42 (1.63) 8.83 (2.15) 9.32 (1.72)

OS (Post-test) 38.10 (6.87) 39.38 (9.21) 38.61 (7.83)

Table 2. Performance on differentlLearning outcomes over five weeks

F p-value Power

KNT (Week 1) 1.035 0.359 0.337

KNT (Week 2) 2.415 0.095* 0.605

KNT (Week 3) 2.891 0.061* 0.677

KNT (Post-test) 0.634 0.532 0.246

KFT (Post-test) 1.913 0.153 0.517

OS (Post-test) 0.420 0.519 0.169

We took a closer look at the mean difference
at the significance level of 0.05. The study used
one-way ANCOVA to analyze the effects of be-
havior modeling approach on learning outcomes
over different time. Levene’s Test (1960) was
used to examine the variance homogeneity of
three groups. Its F-statistics showed that KNT
was 3.04 (p=0.053) at Week1, 13.01 (p=0.000)
at Week2, 1.71 (p=0.187) at Week3, and 0.47
(p=0.627) at the Post-test. In contrast, the F-sta-
tistics of Levene’s Test for KFT and OS were 7.64
(p=0.001) and 1.75 (p=0.191) at the Post-test. With
the exception of KNT at Week2 and KNF at the
Post-test, all dependent variables met the p > 0.05
criterion for assuring homogeneity of variances.
The heteroscedasticity of variances for these
two exceptions suggested that the statistical test
results may not be valid. As such, the following
discussion will ignore these two variances and
focus on KNT and OS. For other effects that show
significance, the study adopts the Scheffe post-test
to analyze data. In addition, Pearson Correlation

Analysis was used to assess the carry-over effects
of different training sessions.

ANCOVA was performed using the general
linear model approach; the results are presented
in Table 3. It shows that the treatment effects are
significant for KNT (Week2) and KNT (Week3)
with F-statistics of 2.415 (p=0.095) and 2.891
(p=0.061), confirming a univariate treatment ef-
fect of learning environments on the dependent
variable: KNT. However, the treatment effects
are not salient for other dependent variables: KFT
and OS. These lacks of effect may have been due
to small effect sizes.

Least-Squares Deconvolution (LSD) was
used to test cross-correlations for KNT (Week2)
and KNT (Week3). LSD is a cross-correlation
technique for computing average profiles. LSD
is very similar to most other cross-correlation
techniques, though slightly more sophisticated
in the sense that it cleans the crosscorrelation
profile from the autocorrelation profile (Donati,
2003). For KNT (Week 2), the LSD results indi-
cate that subjects in FBM perform better than

 1543

Online Synchronous vs. Asynchronous Software Training through the Behavioral Modeling Approach

those in ABM (p=0.051) and SBM (p=0.069).
This supported the Hypotheses 1 and 2. However,
Hypothesis 3 cannot be supported because the
mean difference between ABM and SBM is not
significant. For KNT (Week3), the LSD results
indicate that (1) subjects in FBM performed better
than those in ABM (p=0.083), and (2) subjects
in SBM performed better than those in ABM
(p=0.029). Hypotheses 4 and 6 are supported.
Worthy to be noted is that H4 is upheld but in the
reversed direction. This indicates that ABM is a
more effective method than FBM at improving
knowledge far transfer.

Four out of nine hypotheses in total are sup-
ported. Although not all hypothesized relation-
ships are fully supported, the results obtained
are interesting. The most intriguing result is that
although there is statistically-justified reason for
preferring FBM to ABM or SBM or software
training, the pattern of results is not persistent
in the long run. FBM resulted in better outcomes
than ABM and SBM at Week2, and than ABM
at Week3 for KNT. Although it never does so at
a statistically significant level, subjects in ABM
performed better than those in SBM, followed
by those in FBM for KNT (Post-test) and KFT
(Post-test). One interpretation of this is that either

Table 3. Results for training methods

Variable Hypothesis
Result in Correct

Direction?

Significant p-value? (n.s. - not

significant)

Week1 H1: FBM > ABM F n.s. (p=0.312)

H2: FBM > SBM T n.s. (p=0.729)

H3: SBM > ABM F n.s. (p=0.182)

Week2 H1: FBM > ABM T p=0.051

H2: FBM > SBM T p = 0.069

H3: SBM > ABM T n.s. (p=0.956)

Week3 H1: FBM > ABM T p=0.083

H2: FBM > SBM F n.s. (p=0.612)

H3: SBM > ABM T p = 0.029

Week4 H1: FBM > ABM F n.s. (p=2.71)

H2: FBM > SBM F n.s. (p=0.459)

H3: SBM > ABM F n.s. (p=0.787)

Post Test

(KFT)
H4: FBM > ABM F p=0.057

H5: FBM > SBM F n.s. (p=0.2)

H6: SBM > ABM F n.s. (p=0.639)

Post Test

(OS)
H7: SBM > ABM F n.s. (p=0.579)

1544

Online Synchronous vs. Asynchronous Software Training through the Behavioral Modeling Approach

ABM or SBM training is no worse than FBM train-
ing across all dependent variables. The pattern
of results for FBM suggests that trainers might
choose ABM or SBM, which should to be a less
costly alternative to FBM, without making any
significant sacrifices in either learning or trainee
reaction outcomes.

Another result of interest is that, with respect
to the three online asynchronous training meth-
ods, the pattern of results suggests that FBM
might be the best for KNT in the short term. Of
the nine hypotheses concerning relationships
between these methods, four are in the expected
direction, and significantly so. This indicates
that use of ABM or SBM may be a better – and
certainly no worse – software training strategy
in the long term.

Implications for research

This article studied the impact of training duration
on performance and trainee reactions. Trainees
were exposed to the same training methods with
different degrees of social presence for different
durations. These findings indicated that training
duration and social presence have little impacts
on learning outcomes. Despite this, the findings
here raise additional questions for research.

It may be more important to investigate the
impacts of information richness (Fulk, 1993)
features of online training media on training
outcomes. Future studies might vary the social
presence features of training media or their com-
bination with social presence features (e.g., with
instructor’s feedbacks versus discussion boards,
e-mail response or playback features). Information
richness may be a more influential factor affecting
the performance of training approaches.

It may also be useful to replicate the experimen-
tal equivalence of FBM, ABM and SBM methods
of software training with different software and
subjects. Since in the long term different treat-
ments have similar impacts on learning outcomes,
it may be practical to demonstrate the cost-based

advantage of ABM over SBM, and SBM over FBM
for software training in practical settings.

Another way to improve the reliability of
the study is to manipulate some useful blocking
variables. A series of comparative studies can be
conducted to assess the impact of individualism
as a cultural characteristic, computer self-efficacy,
task complexity (simple tasks vs. fuzzy tasks),
professional backgrounds and the ratio of the
training duration to the quantity of information
to be processed, among others.

Learning style may be an important factor
to consider in the online learning environment.
According to social learning theory, learners
interact with the learning environment to change
their behavior. Learning style is situational and
can vary with different learning environments.
Therefore, it is possible that the combination of
training methods, learning style and social pres-
ence information richness (SPIR) attributes may
jointly determine learning outcomes. This is not
the case for BM approach in F2F environment.
The self-paced online learning environment may
alter the assertion. Hence, it may be necessary
to conduct longitudinal studies of the influence
of learning style on learning performance and
trainee reaction.

Implications for Practice

The largest implication for practice is that ABM
and SBM may provide cost-effective substitutes
for FBM without significant reductions in training
outcomes in the long term. While it may still be
true that FBM is still the most effective approach
to improve KNT in the short term, ABM and SBM
have similar leverage in KFT in the short term
and KNT in the long term. Regardless of training
environments, trainees have same satisfaction
levels in the near- and long-term. These findings
strongly indicate that the cost issue is more im-
portant than learning effectiveness. When given
the options to decide which BM approach to take
in the long term, nonperformance issues (teacher

 1545

Online Synchronous vs. Asynchronous Software Training through the Behavioral Modeling Approach

and facility availability, trainee’s preferences,
location and convenience issues) have to be first
taken into account.

conclusIon

The success of an online training strategy de-
pends on its effectiveness in improving learning
outcomes. This study, built on well-accepted
frameworks for training research (Bostrom,
Olfman & Sein, 1990; Simon & Werner 1996),
examines the relative effectiveness of the behavior
modeling approach in online synchronous, online
asynchronous and face-to-face environments. The
results from this experiment provide an empirical
basis for the development of an online behavior
modeling strategy: (1) FBM is more effective
than ABM and SBM for knowledge transfer in
the short term (KNT), and (2) ABM and SBM are
as effective as FBM for knowledge transfer and
overall satisfaction in the long term (KFT).

What is learned from this study can be sum-
marized as follows: When conducting software
training, it may be almost as effective to use
online training (synchronous or asynchronous)
as it is to use a more costly face-to-face training
in the long term. In the short term face-to-face
knowledge transfer model still seems to be the
most effective approach to improve knowledge
transfer in the short term.

The limitation of this experimental study is that
it was conducted with a homogeneous group with
Taiwanese cultural and educational backgrounds.
Therefore, this study may be constrained with
the generalizability of its findings to different
cultural contexts.

Hofstede (1997) stated that the domains of
education, management and organization have
nurtured the values context that differs from one
country to another. Cultural influences have been
discerned in the study of Internet usage (Lederer,
Maupin, Sena & Zhuang, 2000; Moon & Kim,
2001; Straub, 1997) and Web site design (Chu,

1999; Svastisinha, 1999). Users from different
cultures have different perceptions about the
usefulness and ease of use regarding different
information systems (Straub, 1994). E-learning
systems may differ based on the cultural back-
grounds of the learners to improve their satisfac-
tion levels and cognitive gains. Benefits of the
congruence may include the improvement of (1)
global e-learning adoption rate and (2) learning
outcomes (attitude and cognitive gains). From
the perspective of research design (Kerlinger &
Lee, 2000), a cross-cultural study to replicate the
study with American or European subjects may
further validate and extend the generalizability
of the findings.

The study has accomplished its major goal; it
provides evidence as to the relative effectiveness
of the behavior modeling approach in different
learning environments for software training. This
research somewhat improves the generalizability
of theories on the behavior modeling approach in
different learning environments.

references
Ahrens, J. D., & Sankar, C. S. (1993). Tailoring
database training for end users. MIS Quarterly,
17(4), 419-439.

Aniebonam, M. C. (2000, October). Effective dis-
tance learning methods as a curriculum delivery
tool in diverse university environments: The case
of traditional vs. historically black colleges and
universities. Communications of the Association
for Information Systems, 4(8), 1-35.

Baldwin, T.T., & Ford, J.K. (1988). Transfer of
training: A review and directions for future re-
search. Personnel Psychology, 41, 63-105.

Bandura, A. (1977). Social learning theory. Mor-
ristown, NJ: General Learning Press.

Bayman, P., & Mayer, R. E. (1988). Using con-
ceptual models to teach BASIC computer pro-

1546

Online Synchronous vs. Asynchronous Software Training through the Behavioral Modeling Approach

gramming. Journal of Educational Psychology,
80(3), 291-298.

Bielefield, A., & Cheeseman, L. (1997). Technol-
ogy and copyright law. New York: Neal-Schuman
Publishers, Inc.

Bostrom, R. P., Olfman, L., & Sein, M. K. (1990).
The importance of learning style in end-user
training. MIS Quarterly, 14(1), 101-109.

Bruner, J. (1996). Toward a theory of instruction.
New York: Norton.

Chu, G.-L. (1999). The relationships between
cultural differences among American and Chinese
university students and the design of personal
pages on the World Wide Web. Unpublished doc-
toral dissertation, University of Georgia.

Compeau, D. R., & Higgins, C. A. (1995). Ap-
plication of social cognitive theory to training for
computer skills. Information Systems Research,
6(2), 118-143.

CyberAtlas. (2003). E-Learning market expanding
beyond IT training. Jupiter Research. Retrieve
July 28, 2006, from http://cyberatlas.internet.com/
markets/education/article/0,,5951_914901,00.
html

Decker, P. J., & Nathan, B. R. (1985). Behavior
modeling training. New York: Praeger.

Donati, J. (2003). Least-squares deconvolution
of Stellar Spectra. Retrieved July 28, 2006, from
http://webast.ast.obs-mip.fr/people/donati/multi.
html

Fulk, J. (1993). Social construction of commu-
nication technology. Academy of Management
Journal, 36, 921-950.

Gagne, R. M. (1992). Principles of instructional
design. New York: Holt, Rinehart and Winston,
Inc.

Gist, M. E., Schwoerer, C., & Rosen, B. (1989).
Effects of alternative training methods on self-

efficacy and performance in computer software
training. Journal of Applied Psychology, 74,
884-891.

Hofstede, G. (1997) Cultures and organizations:
Software of the mind. New York: McGraw-Hill.

Horton, W. (2000). Designing Web-based training:
How to teach anyone anything anywhere anytime.
New York: John Wiley & Sons.

IDC. (2002, September 30). While corporate train-
ing markets will not live up to earlier forecasts,
IDC suggests reasons for optimism, particularly
e-learning. Retrieved July 28, 2006, from http://
www.idc.com/getdoc.jhtml?containerId=pr2002_
09_17_150550

Ives, B., Olson, M., & Baroudi, S. (1983). The
measurement of user information satisfaction.
Communications of the ACM, 26, 785-793.

Kerlinger, F. N., & Lee, H. B. (2000). Founda-
tions of behavioral research. New York: Harcourt
Brace College Publishers.

Kirpatrick, D. L. (Ed.). (1967). Evaluation of
training: Training and development handbook.
New York: McGraw-Hill.

Lederer, A. L., Maupin, D. J., Maupin, M. P.,
Sena, M.P. & Zhuang, Y. (2000). The technol-
ogy acceptance model and the World Wide Web.
Decision Support Systems, 29, 269-282.

Leidner, D. E., & Jarvenpaa, S. L. (1995). The use
of information technology to enhance manage-
ment school education: A theoretical view. MIS
Quarterly, 19, 265-291.

Levene, H. (1960). In I. Olkin et al. (Eds.) Con-
tributions to probability and statistics: Essays in
honor of Harold Hotelling. (pp. 278-292). Stanford
University Press.

Lewin, K. (1951). Field theory in social science:
Selected theoretical papers. New York: Harper
and Row.

 1547

Online Synchronous vs. Asynchronous Software Training through the Behavioral Modeling Approach

McGehee, W., & Tullar, W. (1978). A note on
evaluating behavior modification and behavior
modeling as industrial training techniques. Per-
sonal Psychology, 31, 477-484.

Mennecke, B. E., Crossland, M. D., & Kill-
ingsworth, B. L. (2000). Is a map more than a
picture? The role of SDSS technology, subject
characteristics, and problem complexity on map
reading and problem solving. MIS Quarterly,
24(4), 601-627.

Moon, J., & Kim, Y. (2001). Extending the TAM
for a World Wide Web context. Information &
Management, 38, 217-230.

Morris, D., Shaw, B., & Perney, J. (1990). Helping
low readers in grades 2 and 3: An after-school
volunteer tutoring program. The Elementary
School Journal, 91, 133-150.

Paris, S. G., Cross, D. R., & Lipson, M. Y. (1984).
Informed strategies for learning: A program to
improve children’s reading awareness and com-
prehension. Journal of Educational Psychology,
7, 1239-1252.

Ramsden, P. (Ed.). (1988). Context and strategy:
Situational influences on learning. In Learning
strategies and learning styles. New York: Plenum
Press.

Salomon, G., & Perkins, D. N. (1988). Teaching for
transfer. Educational Leadership, 46(1), 22-35.

Santhanam, R., & Sein, M. K. (1994). Improv-
ing end-user proficiency: Effects of conceptual
training and nature of interaction. Information
Systems Research, 5(4), 378-399.

Simon, S. J., Grover, V., Teng, J. T. C., & Whit-
comb, K. (1996). The relationship of information
system training methods and cognitive ability to
end-user satisfaction, comprehension, and skill
transfer: A longitudinal field study. Information
Systems Research, 7(4), 466-490.

Simon, S. J., & Werner, J. M. (1996). Computer
training through behavior modeling, self-paced,
and instructional approaches: A field experiment.
Journal of Applied Psychology, 81(6), 648-659.

Skinner, B. F. (1938). The behavior of organisms:
An experimental analysis. New York: Appleton-
Century Company, Incorporated.

Straub, D. W. (1994). The effect of culture on IT
diffusion: E-mail and FAX in Japan and the U.S.
Information Systems Research, 5(1), 23-47.

Straub, D., Keil, M., & Brenner, W. (1997). Testing
the technology acceptance model across cultures:
A three country study. Information and Manage-
ment, 33, 1-11.

Svastisinha, R. W. (1999). Wahhn: Web-based
design. Wind and human comfort for Thailand.
Unpublished doctoral dissertation, University of
Southern California.

Thorndike, R. L. (1949). Personnel selection:
Test and measurement techniques. New York:
John Wiley & Sons.

Yi, M. Y., & Davis, F. D. (2001). Improving com-
puter training effectiveness for decision technolo-
gies: Behavior modeling and retention enhance-
ment. Decision Sciences, 32(3), 521-544.

This work was previously published in International Journal of Distance Education Technologies, Vol. 4, Issue 4, edited by S.
Chang, and T. Shih, pp. 88-102, copyright 2006 by IGI Publishing (an imprint of IGI Global).

1548

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.10
Rapid Insertion of Leading Edge

Industrial Strength Software
into University Classrooms

Dick B. Simmons
Texas A&M University, USA

William Lively
Texas A&M University, USA

Chris Nelson
IBM Corporation, USA

Joseph E. Urban
Arizona State University, USA

AbstrAct

Within the United States, the greatest job growth
is in software engineering and information
management. Open source software (OSS) is a
major technology base for enterprise application
development. The complexity of technologies
used by industry is often an obstacle to their use
in the classroom. In this chapter, a major software
development paradigm change that occurred in
about the year 2000 is explained. CS education
programs have been slow to adapt to the paradigm
change due to problems such as the tenure system,
inexperienced student laboratory assistants, lack
of leading-edge software tool support, lack of
software team project servers, unavailability of
help and mentoring services, and software unavail-

ability. This chapter explains how these problems
can be solved by creating an open source-based
shared software infrastructure program (SSIP)
sponsored by industry, but planned and imple-
mented by SSIP member universities at no cost
to member universities.

IntroductIon

Today students are saying no to computer sci-
ence (Frauenheim, 2004). CS faculty members
have panicked in what David Patterson (2005)
calls Chicken Little rumor mongering. He tells
everyone to stop whining about outsourcing. In
our opinion, CS faculty should panic and adapt
to a new software development paradigm. Pat-

 1549

Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms

terson makes an invalid implied assumption for
his article in that CS in some way is related to
information technology (IT) jobs in U.S. industry
(or, for that matter, that CS is useful to a software
engineer). He is correct to say that U.S. IT jobs
are increasing. Also, software engineering (SE)
degree programs and jobs are increasing. His
domino theory of job migration is not correct.
We agree with Patterson that U.S. programmers
should worry about both India and China. We do
not agree that either India or China will have to
worry much about the Czech Republic. Both India
and China have such large populations and low
wages that major CS job migration will mainly
be to these two countries. The middle processes
of a software product development software life
cycle (DSLC) may completely migrate from the
United States.

Every Fortune 1000 company with which we
are familiar takes advantage of low labor costs
in India and/or China. Unfortunately for CS, ap-
proximately 80% of high-paying CS jobs in the
past have been with Fortune 1000 companies. Jobs
that will remain in the United States will go to
students that are familiar with open standards, a
wide variety of solutions including open source
solutions, software development tools that sup-
port open standard visualization design models
and open source integrated development environ-
ments. In this chapter, open standards will be
defined as standards that are publicly available.
The Object Management Group (OMG) (2006) is
an example of an organization that was created to
produce open standards. OMG is an open mem-
bership, not-for-profit consortium that produces
and maintains computer industry open standards
for interoperable enterprise applications. OMG
membership includes virtually every large com-
pany in the computer industry and hundreds of
smaller ones. OMG’s most widely used standard is
described by the unified modeling language (UML)
specification. UML is used worldwide to model ap-
plication structure, behavior, architecture, business
process, and data structure. We use the term open

source software (OSS) to refer to software that
has Open Source Initiative (OSI) (2006) licenses.
Examples of OSS are Linux, Apache, Eclipse, and
Derby. We also include open-standard compliant
software that is provided free for classroom use to
universities. An example is IBM Rational Software
Architect (RSA).

The objective of this chapter is to explain how
leading-edge industrial-strength software can be
introduced into the university classroom by using
OSS, open standards, distance learning, and infra-
structure shared among cooperating universities.
In this chapter, we will describe the evolution of
software development during the 20th century,
the paradigm change at the beginning of the 21st
century, and the problems with existing university
information technology education. Then we will
describe a shared software infrastructure program
(SSIP) to rapidly introduce leading-edge industrial
software solutions into university classrooms at
no cost to SSIP member universities.

bAckground

Software education emerged during the last 50
years of the 20th century. During the mid-1900s,
computers were applied to create firing tables for
the military. Scientists programmed these com-
puters using computational algorithms. Computer
memories were small and expensive, and success-
ful software depended on efficient algorithms.
As computer use grew, universities began to
offer programming courses based on algorithm
methodology. The application of mathematical
science of algorithms to computers led to a new
field called computer science. As demand for
computer programmers grew, computer science
programs at U.S. universities grew in number. U.S.
universities had the computers, while universities
outside the United States and Europe did not have
access to computers. As the size and complexity
of computer systems continued to grow, one could
not rely on the theory of algorithms to provide

1550

Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms

acceptable solutions. At a 1968 NATO conference
in Europe (Naur & Randell, 1968), computer
professionals realized that the software for major
systems would have to be engineered based on
engineering science and practice. That is when
the term software engineering was introduced. In
1984, the U.S. Department of Defense created a
Software Engineering Institute at Carnegie Mel-
lon University (2006) to advance the practice of
software engineering.

Throughout the 1990s, the cost of comput-
ers continued to decline, and the capabilities
of computers increased. Computer cost was no
longer a barrier to the spread of computer-related
education programs to universities throughout
the world. This has been aided by the creation
and expansion of the World Wide Web (WWW)
over the Internet.

education Programs at the
beginning of the 21st century

Computer-related educational programs at the be-
ginning of the 21st century fall under the umbrella
term information technology, which includes
computer science, computer engineering, infor-
mation management, and software engineering.
Overall, the demand for information technology
knowledge workers worldwide is increasing. The
U.S. information technology education programs
hit hardest by use of off-shore contractors are
the science-based computer science programs.
Enrollment in U.S. computer science programs
is on the decline. These programs emphasize
the middle or coding process of the DSLC. The
coding process is the easiest to outsource from
high labor cost regions to off-shore low-labor cost
regions. All indications are that the computer
science down trend will continue. Demand for
computer engineering graduates remains strong.
The fastest growing demand is for information
management and software engineering graduates.
Software engineering and information manage-
ment programs teach students about all phases

of the DSLC. The U.S. Department of Labor
Statistics (2005) projects software engineers to
be one of the fastest growing occupations through
at least 2014. Major universities are beginning to
offer software engineering certificates, bachelor
degrees, and master degrees.

At the beginning of the new millennium, the
outlook for software engineers is strong. Dis-
tance learning technology is becoming common.
Software development is being practiced with
project members distributed around the globe.
Open source, open standards, and interoperable
software are being demanded by customers.
Software knowledge will continue to change and
expand at a very rapid rate.

MAIn focus of tHe cHAPter

university environments

At present, all students that come to the university
are computer literate and have their own comput-
ers. Many already know how to program and
are connected to the Internet. They are looking
for software knowledge that will qualify them
to find jobs in which they can create complex
software products. They are not finding this
software knowledge in most computer science
(CS) departments.

We now return to David Patterson’s problems.
As the president of the Association for Computing
Machinery (ACM), he has to be a cheerleader for
CS faculty who run around yelling that the sky is
falling. For most of the CS degree programs, the
sky is falling. Many of the CS degree programs are
in small liberal arts colleges and former teacher
colleges. These schools do not have the technical
background or faculty required to give students
the software knowledge that will be provided by
the increasing number of IT and SE degree pro-
grams. As CS job demands decline, CS programs
will continue to shrink with the faculty having
to face problems of dying programs unless they

 1551

Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms

adopt new methodologies to quickly introduce
into classrooms the latest software knowledge
required by industry

Woodie Flowers (2000), a mechanical engi-
neering professor at MIT, recently asked, “Why
should education change, we have been doing it
this way for 4,000 years?” He said that over the
next decade, educators will have to restructure
their curricula in order to accommodate the World
Wide Web. Change in the university moves at
glacial speed. Software knowledge is continu-
ally expanding and growing much faster than
the current education process can adapt to in
order to meet the needs of industry. Ways must
be found to upgrade software knowledge that
is taught to IT professionals graduating from
universities today.

The problem with education of the IT profes-
sional can be traced back to the first programmers.
The first IT professionals were scientists and
engineers who knew how to build and operate
the first computers. Many programmers were
mathematicians. When universities began to use
computers in the 1950s and 1960s, engineering
schools emphasized teaching hardware, science
schools emphasized teaching programming lan-
guages, and business schools emphasized business
applications. The science schools originally placed
programming languages courses in mathematics
departments. As time progressed, mathematicians
teaching programming languages separated from
the mathematics departments to create CS depart-
ments. Instead of teaching the latest software
knowledge, the mathematicians began to teach
what they knew best: computational mathemat-
ics and theory of algorithms. An algorithm is a
procedure for solving a mathematical problem in
a finite number of steps that frequently involves
repetition of an operation (Webster’s new Colle-
giate Dictionary, 1981). It can be shown that for
any problems other than toy problems, it is im-
possible to prove that complex software products
terminate in a finite number of steps. Thus, the
time spent teaching theory of algorithms is time

wasted. Tenured faculty members hired to teach
mathematical algorithms will probably continue
teaching algorithms until they retire. Since faculty
members decide which young faculty members
are hired and later tenured, they will probably
continue to hire computational mathematics and
algorithm specialists.

During the 1960s and 1970s, computers came
into common use in industry. People with almost
any background could be trained to operate the
computer applications in industry. With the advent
of the personal computer in the 1980s, the people
familiar with computers continued to expand.
With the commercialization of the Internet in the
1990s and the introduction of Internet browsers
and computer games, virtually everyone below
middle age used computers. Essentially every high
school graduate that enters a university today has
a computer that can be connected to the Internet.
They learn how to program in high school and
are usually familiar with some form of database
management system. They learn how to access
Internet servers through the use of browsers. If
they would like to become an IT professional,
they expect to learn the latest software knowledge
that industry demands. CS departments that hire
specialists in computational mathematics, theory
of algorithms, and computational complexity
theory will continue to lose students. Unless they
change, CS departments probably will be absorbed
eventually back into mathematics departments.
By working with industry, university IT programs
can teach the latest software knowledge to their
students who will then be in high demand when
they seek jobs in industry.

year 2000 Productivity Paradigm
change

During the latter part of the 20th century, the
demand for U.S. software developers continued
to exceed the supply. During the 1950s, 1960s,
1970s, and 1980s, computer hardware was ex-
pensive and many developing countries could not

1552

Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms

afford computers. Thus, if you wanted to become
an IT professional, you almost had to study in
the United States. As a result, virtually every
university created CS degree programs that were
advertised as the correct degree program for the
IT professional. The result is a huge oversupply of
PhD and Master’s degree graduates who learned
mathematics theory but obtained very little soft-
ware knowledge. During the 1990s, computer
costs continued to decline to where students and
universities even in the poorest countries could
afford computers. The Wall Street Journal pointed
out that the auto worker salary in Germany was
$33 per hour, while an auto worker in China earned
$0.98 cents per hour. The salary differential for
knowledge workers such as software developers
is similar. Leading up to the year 2000 was the
conversion of all legacy software in the United
States to handle a four-digit year instead of a two-
digit year built into existing software products.
There were not enough experienced program-
mers in the United States to handle the demand
for COBOL programmers. Companies turned
to the software houses in India to help with the
conversion. The large Fortune 1000 companies
were very pleased with the results, and after 2000,
they began to out source computer coding to off-
shore companies in India. Recently, the Chinese
commercial software industry, although lagging
behind India’s, has been undergoing major struc-
tural shifts that could make it the Asian industry
leader (Kshetri, 2005). Chinese developers are
making a major commitment to OSS. Large U.S.
companies are out-sourcing the middle processes
of the DSLC, while the upstream requirements
elicitation, requirements specification, and soft-
ware architecture processes and downstream ac-
ceptance testing and software product installation
will remain in the United States. CS educational
programs emphasize the middle DSLC processes,
while SE and information management programs
emphasize the upstream and downstream DSLC
processes. While the demand for IT workers in

the United States is increasing, the demand for
CS professionals is decreasing.

As mentioned earlier, CS faculty members
have begun to panic and grasp for schemes to
restore CS popularity. Former ACM President
David Patterson (2005) suggests expanding
student recruiting in high schools by ACM’s
new CS Teachers Association. He recognizes
that software knowledge continually changes
and places emphasis on keeping job skills up to
date. Former ACM President Peter Deming along
with Andrew McGettrick (Denning & McGet-
rick, 2005) point out that CS places too much
emphasis on coding and not enough emphasis
on other DSLC processes, including the use of
advanced software tools to support requirements
gathering, defect tracking, configuration manage-
ment, middleware services, advanced software
solutions, and software process visualization
tools. They recognize that emphasis placed on
analysis of algorithms and complexity theory
as the heart and soul of computing is a mistake.
Their solution is wrong. Recruiting of students is
not the solution to declining enrollments. What is
needed is emphasis on software knowledge that
today’s computer professional needs in order to be
competitive in the global marketplace. A solution
must be found to overcome the current problems
with CS programs.

cs education Program Problems

Major problems that must be corrected in order
for CS graduates to be attractive to employers
include tenure system, inexperienced laboratory
assistants, software tool support, software team
project servers, inadequate department support
personnel, help and mentoring services, and
available software.

The university tenure system is a type of union
for university faculty. It is almost impossible to
remove a tenured faculty member once tenure has
been granted. Tenure empowers faculty but does
not make them accountable. Tenured CS faculty

 1553

Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms

members who are specialists in computational
mathematics and algorithms will remain faculty
members for approximate 30 years between the
time tenure is granted and retirement. In most
cases, they will continue to teach computational
mathematics and algorithm theory even though
there is very little industrial or student interest
in these areas. Also, these subject areas are un-
necessary for an understanding of the software
knowledge required by the IT professional.

In universities with major research programs,
many of the funded graduate student teaching as-
sistants that oversee laboratories for software team
projects have never used any advanced software
tools used in industry to create software products.
Even though companies may provide these tools
to universities at no cost, the laboratory assistants
must understand them and be able to help and
mentor student teams in project courses.

Many software products can be used directly
out of the box. Software users expect to be able
to load a new software system and then begin to
immediately start using the system. Heavy-duty
software tools are not out-of-the-box. To set up
a software tool environment, a software tool ad-
ministrator must create directories and security
as well as initialize parameters in which the tools
in an environment work together. The typical
CS department does not have enough software
support staff or funds to hire additional staff to
administer a suite of advanced tools.

Student teams working on a capstone project
to create a software product must have access to
a server for testing the software product. Often
student projects crash servers during testing and
interfere with other people trying to use that same
server. Software projects need a server as a type
of sand box for operating their software product.
Normally, CS departments do not have the re-
sources to dedicate servers to student projects.

Many software vendors provide free training
and use of software tools to universities. But they
provide minimal help facilities to answer specific
questions that arise while trying to use the tools.

Students must be able to contact knowledgeable
people who will answer their questions in a timely
manner. When students are learning to use com-
plex software design and testing tools, they would
like access to a mentor to guide them. Ideally,
help and mentoring services should be available
24 hours a day, seven days a week (24/7).

As part of students gaining software knowl-
edge required by industry, students must have
easy access to software products and tools. Many
vendors will provide free software and licenses to
universities. Acquiring the software and licenses
to use the software can be a problem when uni-
versities are not paying for the software. There
needs to be a service to expedite the process of
acquiring software for classroom use at no cost
to universities.

By helping universities to quickly introduce
best software development practices, improved
processes, and advanced software tools, students
that graduate from these programs will gain
software knowledge that is in high demand by
industry. The goal of the SSIP is to set up an in-
frastructure shared among universities in which
universities can easily introduce the latest lead-
ing software knowledge into both undergradu-
ate and graduate classrooms without building a
costly infrastructure at each university. Member
universities will contribute software knowledge
infrastructure to the SSIP and will use the SSIP
as a resource to support their classes. Operation
of the SSIP is supported by industry sponsors at
no cost to universities. Eventually, the SSIP would
like to provide infrastructure to every interested
university in order to teach the latest leading-edge
software knowledge to their students.

shared software Infrastructure
Program (ssIP)

SSIP was created in spring 2005. Current indus-
trial sponsors of the program are AVNET, IBM,
and Intel. The program is sponsored by companies
who share a vision of integrated information flow

1554

Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms

within and among enterprises based on OSS, open

standards, and global interoperability. The SSIP will
support tools compliant with the OMG computer
industry specifications for interoperable enterprise
applications. Services provided by the SSIP will
be determined by the member universities that
use the SSIP Web site. Services and software
will be provided to member universities at no
cost to the universities. Costs of operating the
SSIP and developing the infrastructure will be
borne by sponsors.

Initial courses supported by the SSIP were
capstone software engineering courses that had a
software project in which teams of students devel-
op a software product starting with the customer
requirements and finishing with a demonstration
of a working product. Students are introduced to
a full set of computer-aided software engineering
(CASE) tools. CASE tools were introduced across
all phases of the DSLC. Each week a new tool
with open was introduced. For each tool, the SSIP
staff provided an overview, tool use examples,
and online tutorials, and suggested assignments
and a tool Web site. SSIP 34 Member Universities
for fall 2006 include the following:

• Arizona State University, Tempe, Arizona
• Auburn University, Auburn, Alabama
• California State University, Los Angeles,

California
• DePaul University, Chicago, Illinois
• Iowa State University, Ames, Iowa
• Louisiana State University, Baton Rouge,

Louisiana
• Marquette University, Milwaukee, Wis-

consin
• Mississippi State University, Mississippi

State, Mississippi
• Neumont University, South Jordan, Utah
• North Carolina State University, Raleigh,

North Carolina
• Pace University, New York City, New

York
• Purdue University, West Lafayette, Indiana

• Queens University, Kingston, Canada
• Rutgers University, New Brunswick/Pisca-

taway, New Jersey
• San Jose State University, San Jose, Cali-

fornia
• Sacramento State University, Sacramento,

California
• Southern Methodist University, Dallas,

Texas
• Texas A&M International University, Lar-

edo, Texas
• Texas A&M University, College Station,

Texas
• Texas A&M-Corpus Christi, Corpus Christi,

Texas
• Texas State University, San Marcos, Texas
• Texas Tech University, Lubbock, Texas
• University of Arizona, Tucson, Arizona
• University of Arkansas, Fayetteville, Ar-

kansas
• University of California – San Diego, San

Diego, California
• University of Houston -- Clear Lake, Hous-

ton, Texas
• University of Kentucky, Lexington, Ken-

tucky
• University of Missouri – Rolla, Rolla, Mis-

souri
• University of North Texas, Denton, Texas
• University of Oklahoma, Norman, Okla-

homa
• University of Tennessee at Chattanooga,

Chattanooga, Tennessee
• University of Tennessee at Knoxville, Knox-

ville, Tennessee
• University of Texas at Arlington, Arlington,

Texas
• University of Texas at Dallas, Dallas,

Texas

The current OSS tools supported by the SSIP
for the software engineering capstone courses are
the following:

 1555

Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms

• Apache: HTTP server and application
server

• CVS: Configuration management system
• Derby: Database management system
• Eclipse: Platform for building an integrated

development environment with plug-ins for
tools

• FireFox: Web browser
• Gantt Project: Project planning software
• Java: With supporting tools
• JRequire: Requirements engineering

tools
• Linux: Operating system
• Tomcat: Application server

At no cost to SSIP member universities, SSIP
sponsors are very helpful in closing the infor-
mation technology gap between software used
by industry and software used in classrooms at
universities. Avnet has agreed to provide computer
server hardware, and Intel has agreed to support
software and provide access to the Intel Software
College (2006) where students can learn how
to optimize and accelerate applications and to
enhance software design, anticipate and address
potential issues, and improve application perfor-
mance. They also provide online courses as well
as live and recorded Webcasts. IBM and IBM
Rational provide computer servers, operational
support, and the following software tools:

• ClearCase: Configuration management
system

• ClearQuest: Defect tracking and change
management system

• DB2: Database management system
• ProjectConsole: Visual project monitoring

tool
• PureCoverage: Code coverage tool
• Purify: Automatic error detection tool for

finding runtime errors and memory leaks
• Quantify: Performance analysis tool
• RequisitePro: Requirements tracking

tool

• Robot: Automated functional regression
testing tool

• RSA: Rational Software Architect visual
modeling tool

• SoDA: Report generation tool that supports
day-to-day reporting and formal documenta-
tion requirements

• Test Manager: Test management tool
• Websphere: Web server technologies
• SSIP distributes content using the SSIP

Web site located at the following URL:
http://ssi7.cs.tamu.edu/ssi/

For each software tool, the SSIP Web site
contains a short tool overview describing the tool
in terms easily understood by a student. There
are also online tutorials for how to use the tool
as part of the student team project. Use-cases are
used to describe the relationship of the user to the
sample application of the tool. Where available,
a WWW link points to the tool Web site. New
SSIP member universities are provided WWW
linkages to course Web sites for courses that use
SSIP content and services. The SSIP provides a
user help service to answer questions about any
of the tools. Where required, mentors are made
available to provide one-on-one tool use help.
SSIP servers are available for student project
teams to test their project software products. SSIP
user forums can be set up for member schools
to discuss all aspects of introducing the latest
software technology into classrooms.

Many of the CS education program problems
are solved by using the SSIP. Students that come to
the university today have their own personal client
computer that can connect to the Internet. They
can connect to computer servers for everything
needed in a university curriculum. The SSIP has
servers available to SSIP member universities to
support member university courses. By using OSS
and free software tools provided by industry, the
latest software solutions used by industry can be
introduced into classrooms at very little cost to
the SSIP member university.

1556

Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms

Tenured university faculty members who
control the courses taught can reduce the time it
takes to introduce into the classrooms the latest
advanced software solutions used by industry. In
the lecture part of a course, the faculty member
introduces software development theory, practice,
and processes. In the software project laboratory,
tools used to support software development are
introduced by distance learning through an SSIP
Web site. Examples showing the use of each
tool are provided. When additional assistance is
required, the SSIP operates a help desk and can
supply mentors.

The problem of inexperienced laboratory as-
sistance is solved by SSIP supplying services in
which students in the laboratory obtain all of the
knowledge that is necessary to learn and effec-
tively use software tools. As a result, laboratory
assistants spend most of their time managing the
student laboratory assignments and activities.

Software tools and support of the tools are
provided through the SSIP Web site. The goal is to
minimize the support staff that must be provided at
the local university. The cost of development tools
is minimized by use of OSS and by free software
provided by industrial sponsors. Interoperability
of applications developed by student software
development teams is assured by emphasizing
open standards.

Industry today is looking to hire students who
know how to be a productive team member. Often
universities are reluctant to let student projects use
department computer servers shared with other
applications for fear that the students will cause
the servers to fail. Student project teams need a
type of sand-box server on which the student team
can build a software product. Sand-box computer
servers are provided by the SSIP for use by SSIP
member universities.

Help desks and mentoring services are expen-
sive. Industry provides extensive help desk and
mentoring services to their customers at great
costs. Individual universities cannot afford to
provide these infrastructure services to students

for the wide variety of software tools needed to
support team software development projects in
order to create the latest software solutions. By
member universities sharing these services, the
SSIP can provide services to a large number of
universities at a low cost to SSIP sponsors and
at no cost to the universities. The SSIP can make
these services available 24/7.

Without outside help, universities have difficul-
ty making the latest software solutions available
to the students in the classroom. Three barriers
to availability are cost, training, and licensing.
An SSIP goal is to solve the availability problem
by providing open source or free software tools
at no cost to SSIP member universities, software
tool training classes by distance learning through
the SSIP Web site, and free licensing to SSIP
member universities.

The SSIP has been well received by member
schools. Leading-edge software knowledge is be-
ing introduced into university classes at no cost
to the university. We are very encouraged with
the SSIP success to date. We plan to continue to
take advantage of the existing environment in
which every student has his or her own Internet-
connected client computer on which the student
can access the latest software knowledge content
from Internet-connected SSIP servers.

conclusIon

With the beginning of the new millennium, soft-
ware development is in a state of change. Low-cost
client computers that can be interconnected by the
Internet are available worldwide. Software devel-
opment teams can be globally distributed around
the world. OSS tools can be used to create infra-
structures to help introduce industrial strength
software into university classrooms. The latest
software development process and practices along
with open standards can help university students
learn how to create enterprise-level interoperable
software solutions. The SSIP is an example of how

 1557

Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms

universities working with industry can cooperate
to share infrastructure to rapidly close the gap
between advanced software technology used by
industry and the software knowledge and skills
taught in the classroom.

references

Denning, P. J., & McGetrick, A. (2005). Recen-
tering computer science. Communications of the
ACM, 48(11), 15-19.

Flowers, W. (2000). Why change? Been doin’ it this
way for 4,000 years! In Proceedings of the ASME
Mechanical Engineering Education Conference,
Fort Lauderdale, Florida. Retrieved July 6, 2006,
from http://www.asmenews.org/archives/backis-
sues/may/features/educonf.html

Frauenheim, E. (2004). Students saying no to
computer science. ZDNet News. Retrieved July
6, 2006, from http://news.com.com/Students+s
aying+no+to+computer+science/2100-1022_3-
5306096.html

Intel Software College. (2006). Retrieved July
6, 2006, from http://or1cedar.cps.intel.com/soft-
warecollege/HomePage.aspx

Kshetri, N. (2005). Structural shifts in the Chinese
software industry, IEEE Software, 22(4), 86-93.

Naur, N., & Randell, B. (1968). Report on a
conference sponsored by the NATO SCIENCE
COMMITTEE, Garmisch, Germany.

Object Management Group. (2006). Retrieved
July 6, 2006, from http://www.omg.org

Open Source Initiative. (2006). Retrieved July 6,
2006, from http://www.opensource.org/

Patterson, D. (2005a). Stop whining about out-
sourcing! ACM Queue, 3(9), 63-64.

Patterson, D. A. (2005b). Restoring the popular-
ity of computer science. Communications of the
ACM, 48(9), 25-26.

Software Engineering Institute at Carnegie Mel-
lon University. (2006). Retrieved July 6, 2006,
from http://www.sei.cmu.edu/

U.S. Department of Labor Statistics. (2005). Oc-
cupational outlook handbook, 2006-2007 edition.
Retrieved July 6, 2006, from http://www.bls.
gov/oco/ococ267.htm

Webster’s new collegiate dictionary. (1981).
Springfield, MA: C. & C. Merriam Company.

key terMs

Capstone Project: Designed for students to
synthesize and integrate knowledge acquired
through course work and other learning experi-
ences.

Computer-Aided Software Engineering
(CASE) Tools: Software tools used to assist in
the development and maintenance of software.

Development Software Life Cycle (DSLC):
Includes the multiple phases during which defined
information technology work products are created
or modified as part of the software development
process. The last phase of development occurs
when the software product is placed into opera-
tion.

Interoperable Software: Software that oper-
ates with various kinds of software applications
and systems by agreeing on a common method
with which to communicate and exchange data
with one another.

Open Source: Refers to software that has Open
Source Initiative (OSI) (2006) licenses. Examples
of open source software are Linux, Apache,
Eclipse, Derby, and so forth. Also included is open
standard compliant software that is provided free

1558

Rapid Insertion of Leading Edge Industrial Strength Software into University Classrooms

to universities for classroom use. An example is
IBM Rational Software Architect (RSA).

Open Standard: Refers to standards that are
publicly available. The Object Management Group
(OMG) (2006) is an example of an organization
that was created to produce open standards.

Outsource: To send work that would normally
be done by employees in a company to workers
that are employed by an outside company.

Productivity Paradigm Change: The im-
provement of productivity by use of the Internet,
clients and servers connected to the Internet,

improved communication technologies, advanced
software tools, and outsourcing to low-cost labor
regions.

Shared Software Infrastructure Program
(SSIP): The goal of SSIP is to set up an infra-
structure shared among universities in which
universities can easily introduce the latest lead-
ing software knowledge into both undergraduate
and graduate classrooms without building costly
infrastructure at each university.

Software Tool: A software product that soft-
ware developers use to create, debug, or maintain
software.

This work was previously published in Handbook of Research on Open Source Software: Technological, Economic, and Social
Perspectives, edited by K. St.Amant, and B. Still, pp. 670-680, copyright 2007 by Information Science Reference (an imprint
of IGI Global).

 1559

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.11
The Migration of Public

Administrations Towards Open
Source Desktop Software:

Recommendations from Research and
Validation through a Case Study

Kris Ven
University of Antwerp, Belgium

Dieter Van Nuffel
University of Antwerp, Belgium

Jan Verelst
University of Antwerp, Belgium

AbstrAct

Several public administrations (PA) have ex-
pressed an increasing interest in open source
software in the past few years and are currently
migrating to open source software on the desktop.
Given the large impact such a migration has on the
organization, there is a need for learning from the
experiences of previous migrations. In this chap-
ter, we deduct a number of recommendations and
lessons learned from previous research conducted

on the migration of PAs to open source desktop
software. Next, we describe a case study on the
migration of the Brussels-Capital Region towards
OpenOffice.org, and compare their experiences to
these recommendations. In general, our results are
quite consistent with previous findings, but also
indicate that additional research is still required
in order to create a set of best practices—based
on empirical research—for the migration towards
open source software on the desktop.

1560

The Migration of Public Administrations Towards Open Source Desktop Software

IntroductIon

In the past few years, open source software has
become a viable solution for organizations, and
is being increasingly adopted. This increased
popularity has been enabled by the fact that open
source vendors (e.g., RedHat and SUSE) and
traditional software vendors (e.g., IBM and HP)
provide reliable support for open source solutions.
Studies indicate, however, that organizations are
primarily using open source software for server
applications (see e.g., Dedrick & West, 2003;
Lundell, Lings, & Lindqvist, 2006; Ven & Verelst,
2006; Wichmann, 2002). This can be explained by
at least two factors. First, open source software
has a strong tradition in developing server-side
applications. Given this background, most open
source projects are situated in horizontal domains
such as Internet applications, developer tools, and
technical tools (Fitzgerald, 2005). Thanks to the
maturity level of most well-known open source
server software (e.g., Apache and Linux), these
packages are widely diffused through organiza-
tions. Successful open source software for the
desktop has surfaced only recently with applica-
tions such as OpenOffice.org, Mozilla Firefox,
and Mozilla Thunderbird. Second, a migration
towards open source software on servers is far
less disruptive for members of an organization
than a migration at the desktop. In case a Web
server running Microsoft IIS is replaced by the
Apache Web server, or the operating system for
an ERP system is changed from Unix to Linux,
end users in the organization will not (or hardly)
be affected by this change. A migration from
Microsoft Office to OpenOffice.org will, however,
affect all end users in an organization, possibly
even impacting productivity.

Recently, there has been an increased interest
in migrations towards open source software on
the desktop. Interestingly, this trend is primarily
driven by public administrations (PA). In fact,
PAs can be considered pioneers in the adoption
of open source desktop software. At first sight,

this is actually quite remarkable. In the past, it
was frequently assumed that PAs are restricted
by their organizational structure, and thus limited
in their innovative behavior (Nye, 1999; Moon &
Bretschneider, 2002). Other studies have found
PAs to be surprisingly innovative with respect to
certain innovations (Bretschneider & Wittmer,
1993; Moon & Bretschneider, 2002). The use of
information technology is currently considered
to be an opportunity for PAs to improve their ef-
ficiency, as illustrated by the large number of recent
e-government initiatives. There are two important
drivers for the adoption of open source desktop
software in PAs. First, it has been suggested that
PAs should be conscious of their IT expenses, to
make efficient use of taxpayers’ money (see e.g.,
Applewhite, 2003; Brink, Roos, Weller, & van
Belle, 2006; Fitzgerald & Kenny, 2003; Waring
& Maddocks, 2005). Since the license costs for
open source software are either absent or at least
lower than for proprietary software, open source
software has often been touted as a means for
reducing overall software expenses. Since the
number of desktop licenses is far greater than
the number of server licenses, cost savings on
the desktop may be considerably larger. Second,
some authors argue that PAs should use open
standards in their communication with citizens,
to avoid that citizens need to buy a commercial
product for communicating with the PA (see e.g.,
Applewhite, 2003; Kovács, Drozdik, Zuliani, &
Succi, 2004b; Rossi, Scotto, Sillitti, & Succi,
2005). Other reasons for the adoption of open
source software by PAs include supporting the
local economy, increased flexibility and avoid-
ing vendor lock-in (see e.g., Drozdik, Kovács,
& Kochis, 2005; Kovács et al., 2004b; tOSSad,
2006; Waring & Maddocks, 2005).

Notwithstanding the advantages that open
source software can offer, the migration towards
open source software on the desktop will be dis-
ruptive for most users within a PA. Hence, special
attention should be paid to planning the migration
in order to minimize discomfort and disruptions

 1561

The Migration of Public Administrations Towards Open Source Desktop Software

for end users. Although the migration towards
open source desktop software is a relatively new
phenomenon, a number of academic studies have
already described case studies of migrations of
PAs towards open source software (mainly Ope-
nOffice.org and Linux). As a result, some lessons
can be learned from these migrations. Due to the
exploratory nature of this research, results of these
migrations are rather fragmented.

The purpose of this chapter is to integrate the
recommendations from various studies on the
migration of PAs towards open source software
on the desktop. Subsequently, we will report on
the migration of the Government of the Brussels-
Capital Region towards OpenOffice.org and com-
pare their approach to the recommendations made
in previous reports. The chapter is structured as
follows. First, we will provide a brief background
on migrations undertaken by PAs in Europe, and
the academic literature on this topic. Next, we will
derive a number of recommendations with respect
to the migration towards open source software on
the desktop. In the fourth section, we will present
the migration of the Brussels-Capital Region and
compare our results to the recommendations made
in previous research. Finally, we will discuss a
number of implications for practice and research,
and will offer our conclusions.

relAted InItIAtIves And
studIes

Open standards and open source software are
increasingly used by PAs in Europe. In fact, it has
been suggested that PAs will be one of the driving
forces behind open source software in Europe in
the next few years (González-Barahona & Robles,
2005). Indeed, several initiatives for studying the
adoption of open source software have been taken
at different levels in the European administration
(i.e., the European Community, national govern-
ments, regional governments, and municipalities).
In fact, most European countries have initiated

programs to study the advantages and drawbacks
of open source software in the PA (Canonico, 2005;
González-Barahona & Robles, 2005), or have
created policies with respect to the use of open
source software1. The interest of the European
Commission (EC) in open source software dates
back to 1999, when the European Working Group
on Libre Software2 was founded. Since then, there
has been increased commitment from the EC to
open source software. Most important in this
regard is the IDA (Interchange of Data between
Administrations) program, and its successor
IDABC3 (Interoperable Delivery of European
eGovernment Services to public Administrations,
Businesses and Citizens). The aim of the program
is to develop cross-European e-government ser-
vices towards citizens and businesses. As part of
the IDA program, the eEurope 2005 Action Plan4
was written. The document states that to ensure
interoperability, open standards will be used in
e-government services. Furthermore, the use of
open source software will be encouraged. Today,
the IDABC Web site offers much information
on migrations towards open source software in
PAs5. Similarly, several research projects on the
adoption and use of open source software are
funded by the EC (e.g., COSPA6, FLOSSPOLS7,
Calibre8 and tOSSad9).

In Europe, several PAs have already migrat-
ed—or are planning to migrate—to open source
software, including on the desktop. Several mi-
grations of PAs are known in Austria, the Czech
Republic, Finland, France, Germany, Spain, the
Netherlands, and the United Kingdom10. Although
these national initiatives vary from country to
country, many of the PAs seem to at least inves-
tigate the use of open source software (González-
Barahona & Robles, 2005). An illustrative sample
of these initiatives is listed in Table 1. Many other
initiatives are however known, especially concern-
ing the use of open source software on servers.
An example of a famous successful migration
is found in Extremadura in Spain. In order to
increase the IT literacy in this region—but faced

1562

The Migration of Public Administrations Towards Open Source Desktop Software

with a limited budget—it was decided to base the
project on open source software. This resulted
in the creation of a custom Linux distribution,
called gnuLinEx. Originally, this distribution was
intended for classroom use, but is used nowadays
in PAs as well (Vaca, 2005). On the other hand,
some of these migrations fail—or are delayed by
various problems—as illustrated with the migra-
tion of the city of Munich11 in Germany.

Several academic studies have been devoted
to investigating the difficulties encountered in
migrating towards open source software on the
desktop and to obtaining an overview of the use
of open source software by PAs. An overview of
these studies is shown in Table 2. Most of these
studies have used a qualitative, case study-based
approach to study the migration of various public
administrations. Their aim was to investigate the
feasibility of the transition, describe the migration
itself, and to highlight any difficulties experienced
during the transition, as well as recommend solu-
tions. Some authors have combined the qualitative
approach with an experiment to investigate the
usage patterns of OpenOffice.org in comparison
with Microsoft (MS) Office, to provide quanti-
tative data on the migration (Rossi et al., 2005;
Rossi, Russo, & Succi, 2006).

An important study in this field is the recent
FLOSSPOLS study (Ghosh & Glott, 2005), that
conducted a large-scale survey among 955 PAs
in 13 European countries. The study provides
insight into the perceived advantages of and
barriers to the use of open source software. The
study also provides an overview of the extent
and type of open source software that is being
used by European PAs. Results show that 49%
of PAs intentionally use open source software.
Interestingly, many PAs seem to be unaware of
their use of open source software. In about 29%
of the cases, open source software is being used
without the respondent being aware of the fact
that the software is open source. Results further
show that half of the respondents would find an
increase in open source software usage useful.
The use of open source software is still mainly
focused on servers, with only about 20% of the
organizations using OpenOffice.org to some
degree (Ghosh & Glott, 2005). The use of open
source software on the desktop seems, however,
to be somewhat higher than three years earlier, as
reported by the first FLOSS study (Wichmann,
2002). This study showed that only 6.9% of PAs
and businesses used open source software on the
desktop12 (Wichmann, 2002).

Table 1. Migrations of public administrations towards open source desktop software
Country Projects

Spain Extramadura region: Project to increase connectivity and IT literacy of the region. A
custom Linux distribution, gnuLinEx (http://www.linex.org), was created.

France
Gendarmerie Nationale: Migration towards OpenOffice.org and Mozilla Firefox on ±
80,000 desktops.

City of Paris: Migration towards OpenOffice.org and Mozilla Firefox on 17,000 desktops.

The
Netherlands

City of Haarlem: Migration of 2,000 desktops to OpenOffice.org.

City of Amsterdam: Currently conducting pilots to investigate the feasibility of migrating
towards OpenOffice.org.

City of Groningen: Decided to migrate 3,650 desktops to OpenOffice.org.

Germany City of Munich: Migration of 14,000 desktops to Linux.

Austria City of Vienna: Migration of 7,500 desktops to OpenOffice.org and Linux. A custom
Linux-distribution, Wienux (http://www.wien.gv.at/ma14/wienux.html), was created.

 1563

The Migration of Public Administrations Towards Open Source Desktop Software

recoMMendAtIons froM
PrevIous lIterAture

The studies that are described in the previous
section, have provided more insight into the mi-
gration process that was followed by a number of
PAs. Potential adopters of open source software
can draw important lessons from these studies
to avoid running into the same problems that
previous migrations already handled effectively.
Unfortunately, given the exploratory nature of
this research, the literature on this topic is rather

fragmented. Few attempts have been made to
integrate these results, although the COSPA and
tOSSad projects are currently working towards
this. Hence, our aim is to integrate the results
from the currently available empirical literature,
to provide a comprehensive overview of the
recommendations and “lessons learned” from
previous migrations.

Although ideally we would like to present a
number of guidelines or best practices, we feel
that this is currently not yet feasible because of a
number of reasons. First, this type of research is

Study Research design

Wichmann (2002) Large-scale survey as part of the FLOSS project to study the use of open source
software in organizations and PAs in Germany, UK, and Sweden.

Russo et al. (2003) Presents the results of a trial migration performed by the Province of Bolzano-
Bozen (Italy) in 10 local PAs.

Fitzgerald and Kenny (2003) Describes the migration of an Irish (public sector) hospital towards open source
software.

Zuliani and Succi (2004b) Reports on some lessons learned on the migration towards OpenOffice.org of 60
PAs in the Province of Bolzano-Bozen (Italy).

Kovács et al. (2004b); Kovács,
Drozdik, Zuliani, and Succi
(2004a)

Presents an overview of the advantages and challenges in migrating towards
open standards and open source software in the PA.

Zuliani and Succi (2004a) Provides the results of a migration towards OpenOffice.org of 60 PAs in
Bolzano-Bozen (Italy).

Ghosh and Glott (2005) Follow-up survey of the FLOSS project, investigating the use of open source
software in PAs in 13 European countries.

Drozdik et al. (2005)
Investigates the risks involved in migrating desktops completely to open
source software (i.e., OpenOffice.org and Linux), based on a PA in Törökbálint
(Hungary).

Rossi et al. (2005) Reports on an experiment on the transition from MS Office to OpenOffice.org,
studying the use of OpenOffice.org throughout 32 weeks.

Waring and Maddocks (2005) Reports on advantages and disadvantages of open source software for the UK
public sector, including the results of eight case studies.

COSPA (2005) Reports on the experiences of the migrations in seven European PAs, conducted
as part of the COSPA project.

Rossi et al. (2006) Reports on an experiment in a PA to compare the use of MS Office and
OpenOffice.org documents after migrating towards OpenOffice.org.

Brink et al. (2006)
Reports on three case studies in South African organizations who have migrated
towards open source software on the desktop. Two of the cases are situated in the
public sector.

Jashari and Stojanovski (2006) Survey of 14 municipalities in Macedonia to highlight the challenges and
obstacles to use open source software.

Table 2. Studies on the adoption of open source software by public administrations

1564

The Migration of Public Administrations Towards Open Source Desktop Software

Table 3. Recommendations and lessons learned from previous research

1. Analysis and Preparation

(a) Planning

• Prepare well for the migration by performing proper analysis and planning (Brink et al., 2006).

• Make a detailed business case for the migration, including the expected cost (IDA, 2003).

• Cost is (one of) the most important reasons for migrating to open source software (Zuliani & Succi, 2004a; Brink et al., 2006;
COSPA, 2005; Fitzgerald & Kenny, 2003; Waring & Maddocks, 2005).

• The migration will however imply important switching costs (e.g., training and migration), which may become a barrier
(Drozdik et al., 2005; Kovács et al., 2004b, 2004a; Waring & Maddocks, 2005; IDA, 2003).

• Consequently, the real cost savings (if present at all) are difficult to quantify (Drozdik et al., 2005; Russo et al., 2003; Wichmann,
2002; COSPA, 2005).

• Other factors such as quality and productivity may also be important (Zuliani & Succi, 2004a).

(b) Pilot Study

• The use of a pilot study is recommended (IDA, 2003; Brink et al., 2006).

2. Migrating towards Open Source Software

(a) Pace of Migration

• A “big bang” approach should be avoided since it increases the risk of the migration (IDA, 2003).

• When migrating to a fully open source desktop on Linux, users should first be migrated to open source desktop software such
as OpenOffice.org and Mozilla on MS Windows. In a second phase, MS Windows can be replaced by Linux (COSPA, 2005;
Drozdik et al., 2005).

• When replacing MS Office by OpenOffice.org, there should be a transition phase in which users have access to both office suites
to lower user resistance (Zuliani & Succi, 2004b; Zuliani & Succi, 2004a; COSPA, 2005). On the other hand, users are then likely
to expect the same behavior from OpenOffice.org as from MS Office (Drozdik et al., 2005).

(b) Top Management Support

• Top management support has been found to be critical during deployment (Brink et al., 2006; Fitzgerald & Kenny, 2003).

(c) Attitude of End Users

• It is important to create a positive attitude with end users before the migration, since personnel resistance is the most
important issue in the migration (Drozdik et al., 2005; Rossi et al., 2005; Zuliani & Succi, 2004b, 2004a).

• Personnel may perceive the transition negatively if they are satisfied with the current application that they may be using at
home as well (Russo et al., 2003; COSPA, 2005).

• It is important to consult and communicate with users in order to minimize discomfort for users (Drozdik et al., 2005; IDA,
2003).

• Users may fear becoming “deskilled” in using a non-industry standard, thereby decreasing their value on the labor market
(IDA, 2003; Fitzgerald & Kenny, 2003).

3. Training

• Although users with a good knowledge of MS Office tend to experience few problems with the transition to OpenOffice.
org (Kovács et al., 2004b; Kovács et al., 2004a; Russo et al., 2003), it is important that employees receive proper training to
improve user acceptance (Rossi et al., 2005; Brink et al., 2006; IDA, 2003; COSPA, 2005; Kovács et al., 2004b, 2004a).

• Training is also important because some functions in OpenOffice.org behave differently than in MS Office or have different
names (Jashari & Stojanovski, 2006; COSPA, 2005; Drozdik et al., 2005).

• Training should immediately precede (or follow) the migration, so that users can start practicing their skills in OpenOffice.org
(Zuliani & Succi, 2004b; Zuliani & Succi, 2004a; COSPA, 2005).

• Training should focus on generic capabilities in office productivity, i.e., functionalities that are used each day (Russo et al.,
2003; COSPA, 2005).

• The training approach can vary, e.g., face-to-face training, interactive tutorials over the Intranet and seminars (Russo et al.,
2003; Brink et al., 2006).

continued on the following page

 1565

The Migration of Public Administrations Towards Open Source Desktop Software

still exploratory, and there are still many varia-
tions in the adoption processes followed and in
the context in which the migration takes place,
leading to a more or less—depending on the
situation—successful migration. Second, and
more importantly, the studies that are currently
available are not likely to be representative for
all PAs. Studies in this domain tend not to report
how the cases in their sample were chosen. Hence,
the possibility cannot be excluded that the cases
were selected out of practical considerations (e.g.,
having access to the site), rather than based on
their theoretical relevance. Consequently, the
lessons learned that are presented here should
be considered preliminary, and the results of
future studies should be contrasted with this set
of recommendations.

Based upon previous studies, we derived a
set of recommendations and lessons learned in a
number of different areas. This set was derived

as follows: first, the literature was searched for
studies on the adoption of open source desktop
software by PAs. We restricted our search to
empirical studies in academic literature, discuss-
ing the experiences and results from migrations
in PAs. We also chose to include the IDA Open
Source Migration Guidelines (IDA, 2003) in the
literature study. Although this is not an academic
study, it was one of the first studies to provide
recommendations on how PAs should migrate
towards open source software. It has been re-
ported, however, that these guidelines are not very
often used in practice (Zuliani & Succi, 2004a).
The studies included in this literature study are
listed in Table 2. Next, the studies were analyzed
by one of the authors and any lessons learned or
recommendations were coded in the text. The initial
coding categories were based on several aspects
related to a migration process that are commonly
known to be relevant (e.g., training, analysis, and

4. Support

• A lack of external support for assisting in the migration can be a barrier, if the required knowledge is not available in-house
(Kovács et al., 2004b; Kovács et al., 2004a; Jashari & Stojanovski, 2006).

• It is important that users have access to several kinds of support, e.g., knowledge bases containing FAQs, guides, and
manuals; access to telephone and e-mail support; and access to a contact person (e.g., a product champion) in case of
questions (Zuliani & Succi, 2004b; Zuliani & Succi, 2004a; Brink et al., 2006; IDA, 2003).

5. Document Conversion

• The conversion of OpenOffice.org documents from and to MS Office format does not cause many issues in most cases,
although some incompatibilities may occur (e.g., wrong image size or margin settings) (COSPA, 2005; Drozdik et al., 2005;
Russo et al., 2003).

• However, when using complex documents with precise formatting or MS Office macros, conversion may become a very
labor-intensive task, and conversion incompatibilities may arise, especially if these files are frequently converted from MS
Office to OpenOffice.org format and vice versa (COSPA, 2005; Zuliani & Succi, 2004b, 2004a; Drozdik et al., 2005).

6. Functionality

• Perceptions towards the functionality offered by OpenOffice.org tend to vary. Some users report that OpenOffice.org offers
the same functionality as MS Office (Rossi et al., 2005; COSPA, 2005), while other users complain about missing features
(Rossi et al., 2005).

• In general, the functionalities of OpenOffice.org seem more than adequate for daily use, and a migration is possible with no or
few problems (Zuliani & Succi, 2004b; Rossi et al., 2005; COSPA, 2005).

• It should be noted, however, that depending on the use of OpenOffice.org, specific issues may arise (e.g., mail merge feature,
and differences in hard and soft line breaks) (Zuliani & Succi, 2004a; COSPA, 2005).

• Interoperability and compatibility with existing systems (e.g., databases and desktop applications) can be a problem in certain
situations (Kovács et al., 2004b; Kovács et al., 2004a; Zuliani & Succi, 2004a).

Table 3. continued

1566

The Migration of Public Administrations Towards Open Source Desktop Software

document conversion). Coding was flexible and
opportunistic, adding new categories when they
were encountered. This initial list of lessons learned
was subsequently reviewed, and data were further
integrated as necessary. The revised list was then
reviewed by a second author and some additions
were applied as required. The result of this analysis
is shown in Table 3. In total, six different areas
regarding the transition were identified, namely
analysis and preparation, migration, training,
support, document conversion, and functionality.
Each area contains a number of recommendations
and lessons learned from previous research.

cAse study In tHe brussels
PA

In this section, we will present the results of a
case study on the migration of the Government
of the Brussels-Capital Region in Belgium. The
Brussels-Capital Region consists of the 19 mu-
nicipalities of Brussels. The Government of the
Brussels-Capital Region consists of eight Minis-
tries, each having its own cabinet. The Brussels
Regional Informatics Center (BRIC), responsible
for the promotion and assistance of information
technology (IT) within the Government of the
Brussels-Capital Region, was responsible for
organizing the transition towards OpenOffice.
org. Our aim is to compare the approach taken
by BRIC to the list of lessons learned that was
compiled in the previous section. Due to space
limitations, we will focus exclusively on the areas
present in Table 3.

Methodology

A descriptive case study approach was used to
study the transition towards OpenOffice.org at
the Government of the Brussels-Capital Region.
The case study approach allowed us to study the
phenomenon in its real-life context (Benbasat,

Goldstein, & Mead, 1987; Yin, 2003). An em-
bedded case study design was used in order to
investigate the migration towards OpenOffice.org
at BRIC as well as at the ministerial cabinets of
the Brussels-Capital Region. Using the key infor-
mant method, we selected two informants within
BRIC, since the use of a single informant may
lead to unreliable results (Benbasat et al., 1987;
Phillips, 1981). Our informants were the director
of the IT department and the project leader who
was assigned to the OpenOffice.org project. Both
informants were highly involved in the migration
towards OpenOffice.org, and were responsible
for planning and coordinating the migration,
developing documentation, designing the training
sessions, and conducting user evaluations.

The primary mode of data collection consisted
of two face-to-face interviews which were con-
ducted by a two-person team. During the first
interview, important background information on
the transition was gathered. Based on this infor-
mation, the case study protocol was completed,
leading to the generation of a detailed set of
questions. During the second interview, detailed
information on the migration was gathered from
our informants. This interview was digitally
recorded for future reference. One researcher
of the team was primarily responsible for pos-
ing the interview questions, while the other was
responsible for taking notes and supplementing
the interview with additional questions. Using
different roles for each researcher also allowed
us to view the case from two perspectives and to
compare the impressions of both researchers af-
terwards (Eisenhardt, 1989; Yin, 2003). Additional
sources of evidence were internal documents of
BRIC, legislative texts, and secondary information
such as press releases. Extensive follow-up ques-
tions on the interview and recent developments
took place via e-mail. A draft copy of the case
study report, as well as a draft of this chapter,
was reviewed by our informants to increase the
validity of our findings.

 1567

The Migration of Public Administrations Towards Open Source Desktop Software

findings

Analysis and Preparation

Planning

The migration to OpenOffice.org in the Brussels
PA was driven by two political decisions. First,
a resolution was voted in which the use of open
standards and open source software was encour-
aged by the Brussels-Capital Region in order to
facilitate communication with its citizens. Con-
sequently, BRIC was required to consider at least
one open source alternative in each new project.
Second, following this resolution, the coalition
agreement of the Brussels-Capital Region in
2004 also stated that the use of open standards
and open source software would be encouraged
within the Brussels-Capital Region. Based upon
this coalition agreement, the Government of the
Brussels-Capital Region decided that open source
office software would be used by the ministerial
cabinets of the Brussels-Capital Region. OpenOf-
fice.org was, however, not mentioned by name
at that time. The migration involved installing
OpenOffice.org 1.1 on 400 workstations running
on MS Windows XP. In addition, four out of eight
servers of the ministerial cabinets were migrated
from MS Windows to Linux.

Preceding the migration, no formal TCO
analysis was carried out. Although the main
argument for migrating towards OpenOffice.org
was to facilitate communication with citizens,
cost savings realized by the migration were also
stressed, especially in public announcements.
License costs were cut back by 185,000 EUR
during the first year and 15,000 EUR in the sub-
sequent years (when a limited number of remain-
ing workstations will be migrated). On the other
hand, our informants confirmed that significant
hidden costs of training and support occurred.
Unfortunately, it was not possible to accurately
quantify these hidden costs.

Pilot Study

To verify the feasibility of a transition from MS
Office to OpenOffice.org, BRIC performed a pilot
project in March 2004. This pilot consisted of
migrating the workstations of BRIC personnel
to OpenOffice.org. The outcome of the pilot
project confirmed the feasibility of migrating
the ministerial cabinets. As soon as OpenOffice.
org 2.0 was available, BRIC again executed an
internal pilot study. In contrast to the prior pilot,
the aim was not only to prepare the upgrade
towards OpenOffice.org 2.0, but also to enable
BRIC to market the new version towards end us-
ers. They therefore invited the key users of each
cabinet (i.e., the cabinet clerk and the local IT
responsible) to participate in the pilot. Based on
these experiences and significant improvements
of OpenOffice.org 2.0 in comparison with version
1.1, it was decided in December 2005 to upgrade
the ministerial cabinets to OpenOffice.org 2.0.

Migrating Towards Open Source
Software

Pace of Migration

As a new Government of the Brussels-Capital
Region is elected every five years, the computer
equipment of the ministerial cabinets is updated
simultaneously. Because of efficiency reasons,
and to minimize discomfort for end users, BRIC
decided to have the migration towards OpenOf-
fice.org 1.1 coincide with the replacement of the
PCs. When the user’s workstation was replaced,
only OpenOffice.org was installed and MS Office
was no longer available to the user, except in a
limited number of cases in which the user required
advanced functionality of MS Excel or MS Access
(e.g., in the finance department). Concurrently,
the default data format for internal communi-
cation changed from MS Office to OpenOffice.
org format. This change did not pose any insur-

1568

The Migration of Public Administrations Towards Open Source Desktop Software

mountable problems thanks to the import/export
filters of OpenOffice.org. These filters enabled
opening and saving previously existing MS Of-
fice documents, or MS Office documents that are
sent from and to external users.

The decision to use a “big bang” approach was
motivated by a number of reasons. First, BRIC
judged that it would be more manageable to in-
stantaneously switch to OpenOffice.org without
temporarily installing MS Office. Furthermore,
it was expected that users with an initial negative
attitude towards OpenOffice.org would continue
using MS Office as long as it was still available
on their workstation. Finally, by changing the
default document format to OpenOffice.org,
BRIC wanted to encourage staff members to use
OpenOffice.org.

Top Management Support

Top management support has frequently been
shown to be positively related to the acquisition
and successful implementation of new technolo-
gies (see e.g., DeLone, 1988; Rai & Patnayakuni,
1996). As already mentioned, the migration to
OpenOffice.org was mandatory since it was a
political decision. Therefore, top management
(i.e., the Government of the Brussels-Capital
Region) was formally supporting the migration.
Given that the migration was mandated by law,
BRIC was endowed with a powerful mandate
while performing the migration. This helped in
countering possible user resistance. It should be
noted that some cabinet clerks were not in favor of
the migration towards OpenOffice.org. It is likely
that they have had an impact on the attitudes of
end users. Unfortunately, it was not possible to
empirically confirm this hypothesis.

Attitude of End Users

Within the ministerial cabinets, it could be ob-
served that users who showed an initial negative
attitude towards OpenOffice.org, remained rather

skeptical. This fact confirms the importance of
training and providing users with adequate infor-
mation before migration takes place. The fear of
becoming “deskilled” (Fitzgerald & Kenny, 2003)
did not seem to have occurred. According to our
informants, end users articulated no concerns
about moving away from the industry standard,
possibly reducing their value in the job market.

Training

According to the recommendations from previous
literature, users should be able to start practicing
with OpenOffice.org immediately after training.
However, this was not always possible because
of the narrow time frame in which the migration
took place. Nevertheless, all users obtained their
training within one week before or after their
workstation was migrated.

The training consisted of a voluntary training
course in the offices of BRIC and a CD-ROM.
During the course, the basic functionality of
OpenOffice.org Writer and Calc was explained.
The first sessions of this course were intended for
the key users of the different cabinets to enable
them to provide first-line support to their users.
Representatives of two out of eight ministerial
cabinets found the training too basic, and did
not encourage members of their cabinet to at-
tend the training sessions. Afterwards, a survey
among end users indicated that users who did
not attend the course reported more problems in
using OpenOffice.org.

It was observed that people tried to work in
the same manner as they were used to in MS
Office. This is however not always possible
because some functions in OpenOffice.org are
fundamentally different from their MS Office
counterpart. Therefore, short personal demon-
strations were organized during which BRIC
personnel illustrated the procedure to be used in
OpenOffice.org.

Although the general training session proved
to be useful, BRIC noticed that additional, focused

 1569

The Migration of Public Administrations Towards Open Source Desktop Software

training sessions would be required following the
upgrade to OpenOffice.org 2.0, due to functional
differences with OpenOffice.org 1.1. These ses-
sions will be organized as short workshops: each
session will focus on a particular functionality
that different groups of end users require (e.g.,
using the Mail Merge feature or working with
document templates). The workshops will also be
more practically oriented than the initial training
sessions.

Support

Three important sources of support are available
to end users in the ministerial cabinets. First-line
support for common problems can be provided
by the key users in each cabinet. Second, BRIC
itself provides end user support for OpenOffice.
org. Third, during the pilot study and training,
BRIC employees have built an extensive knowl-
edge base on OpenOffice.org. This knowledge
base—which is regularly updated by new ques-
tions formulated by end users—is sufficient to
solve most problems.

Part of the knowledge base consists of a CD-
ROM containing a manual, a FAQ list and the
OpenOffice.org installation files. This CD-ROM
was handed out to the participants of the training
session. The manual and FAQ list were based on
the documentation provided by the OpenOffice.
org communities. However, since the Brussels-
Capital Region is bilingual (with Dutch and French
being the official languages), documentation had
to be sourced from two different OpenOffice.
org localization communities. It then became
apparent that significant differences in quality
between these online communities exist. While
the French community is very vivid and provides
much information, the Dutch counterpart does
not produce the same quantity of documenta-
tion. This did lead to some difficulties, since
BRIC is required to provide (equivalent) training
material in both languages. Another indication
of the difference between the French and Dutch

community are delays in the release of upgrades.
For both OpenOffice.org 1.1 and 2.0, the French
localization was available much earlier than the
Dutch version. This has been criticized by some
end users as a disadvantage of working with open
source software.

Document Conversion

In general, few problems concerning document
conversion between MS Office and OpenOffice.
org were reported. However, in three specific
cases, some issues did occur. First, difficulties
arose when documents with extensive and com-
plex layout were exchanged with external parties.
When these documents were converted several
times back and forth between OpenOffice.org
and MS Office format, incompatibilities in layout
became unmanageable. As a result, it was decided
to exchange documents without formatting as
long as they needed revision. Once the final
version of the document had been approved,
the formatting was done either in OpenOffice.
org or in MS Office. The use of the PDF-format
was also promoted for documents requiring no
further revisions.

Secondly, the conversion of MS Office docu-
ment templates to OpenOffice.org posed some
problems, mainly because a number of incom-
patibilities exist between the two products, for
instance, with respect to margin settings. Since
the Brussels PA has a very rigorous style guide,
these templates had to be migrated very accu-
rately. As a result, BRIC only recently finalized
the OpenOffice.org templates.

A third issue, concerning the editing of leg-
islative texts, was again caused by very specific
format prescriptions. Since the Brussels-Capital
Region is bilingual, these texts have to be pub-
lished in two columns, one for each language.
Moreover, each paragraph has to start on the
same height as the corresponding paragraph in the
other language. Given that French paragraphs are
somewhat lengthier than the Dutch equivalents,

1570

The Migration of Public Administrations Towards Open Source Desktop Software

some adjustments in vertical spacing between
paragraphs must be made (see Figure 1). In MS
Word this layout was realized by using a table
with two columns and one row. OpenOffice.org
1.1, however, did not support multi-page table
cells. Hence, the layout had to be changed by
putting each paragraph in a different cell. When
a cell does not fit on a single page, it is moved
automatically to the next page. In OpenOffice.
org 2.0 this workaround has become obsolete,
since it is possible to use multi-page rows in the
new version13.

Functionality

Regarding functionality, several remarks can be
made. First, a number of end users did not consider
OpenOffice.org a fully fledged alternative to MS
Office. This was mainly caused by the absence of
certain features which are present in MS Office.
The fact that MS Excel and MS Access are still
used by a limited number of users, confirms that

OpenOffice.org does not yet support all advanced
features of MS Office. On the other hand, most
users do not experience any problems in their
daily tasks.

Furthermore, users reported problems con-
cerning the Mail Merge feature. When using
this feature to create a mailing based on an ad-
dress list in a database, OpenOffice.org creates
a new document for each addressee. To solve
this issue, a script was developed to merge the
separate files into one document. In OpenOffice.
org 2.0, however, this problem does not occur
anymore because the user can choose whether
to generate one large file or to generate separate
documents. It is therefore hoped that the improved
functionality of OpenOffice.org 2.0 will enhance
the perceived quality of OpenOffice.org by end
users. Nevertheless, a number of deficiencies are
still reported by users working with OpenOffice.
org 2.0. Although workarounds are possible for
most of these problems, these defects still have
a negative impact on the general perception of
OpenOffice.org.

The use of data sources by OpenOffice.org is
considered to be a mixed advantage and disad-
vantage. In contrast to MS Office, OpenOffice.
org allows a document to access more than one
data source. The implementation of these data
sources is, however, significantly different from
MS Office: while in MS Office the data source is
included in the document itself, OpenOffice.org
stores it in the user profile at the user’s workstation.
Thus, when exchanging the document between
users, the data source is lost. To solve this problem,
BRIC wrote a script to ensure that each user has
access to the commonly used data sources.

The perceived usability of OpenOffice.org 1.1
is also reported to be inferior compared to MS
Office. The most often heard critique is that the
look and feel of OpenOffice.org 1.1 feels outdated.
Again, OpenOffice.org 2.0 could provide a solu-
tion because its look and feel has been updated
considerably to resemble that of MS Office.

Figure 1. Formatting of legislative texts in MS
Office vs. OpenOffice.org

 1571

The Migration of Public Administrations Towards Open Source Desktop Software

discussion

In general, the findings in this case study are
consistent with the experiences and recommen-
dations from previous literature. The case study
illustrated that a migration towards OpenOffice.
org was possible within the Government of the
Brussels-Capital Region. Nevertheless, the case
study also confirms that there are a number of
important issues that should be paid attention to
when planning and performing the migration.

Following the recommendations from previous
literature, it can be observed that the documenta-
tion available and training given to end users are
very important. With respect to training, the case
study showed that in a first phase, the training can
focus on general office suite capabilities applied
to OpenOffice.org. Therefore, it serves as a revi-
sion course of skills that are also applicable to MS
Office. This is consistent with recommendations
made in previous literature (see, e.g., COSPA,
2005; Russo, Zuliani, & Succi, 2003). In a second
phase, however, it seemed useful to offer short,
focused training sessions on particular tasks in
working with OpenOffice.org. Both training and
documentation can positively influence the atti-
tude of end users. While the resistance of end users
is frequently a major problem (Rossi, et al., 2005;
Zuliani & Succi, 2004b), we feel that in this case
the acceptance was facilitated not only by strong
top management support, but also by the fact that
the adoption of OpenOffice.org was mandated by
law, giving end users no choice but to conform
with the transition. In terms of interoperability,
the document conversion facilities of OpenOffice.
org seemed to be sufficient in most cases (COSPA,
2005; Russo et al., 2003). However, advanced use
of OpenOffice.org, or specific applications (e.g.,
bilingual legislative texts) may lead to certain
issues (COSPA, 2005; Zuliani & Succi, 2004a).

Conducting a pilot test may help in identifying
potential issues that arise during implementation
within the specific context in which the migration
will take place. Although the decision to start
using OpenOffice.org was primarily politically
motivated, there was an emphasis on the cost sav-
ings realized by the transition. It must be noted,
however, that considerable effort was invested in
developing appropriate training, documentation,
and document templates.

One important difference with previous studies
is that the “big bang” approach taken by BRIC
did seem successful. Previous studies have rec-
ommended that a transition phase is planned in
which MS Office and OpenOffice.org are installed
concurrently on the users’ workstation (COSPA,
2005; Zuliani & Succi, 2004a, 2004b). Based on
the present study, we feel that there are situations
in which MS Office can be replaced immediately
with OpenOffice.org. While the transition period
enables users to continue using MS Office in case
they experience problems with OpenOffice.org,
the immediate migration towards OpenOffice.org
forces users to start using (and learning) OpenOf-
fice.org. By having to rely solely on OpenOffice.
org to complete office productivity tasks, users
might become familiar more quickly with the
functionality of OpenOffice.org, shortening the
learning period. It also encourages users to start
adopting the preferred OpenOffice.org methods,
instead of trying to work with OpenOffice.org in
the same way as with MS Office (Drozdik, et al.,
2005). Therefore, we feel a “big bang” migration
from MS Office to OpenOffice.org is feasible in
certain situations. On the other hand, if a PA would
decide to replace the MS Windows desktop with
Linux desktops, it seems better to use a phased
approach, as recommended in previous studies
(COSPA, 2005; Drozdik, et al., 2005) (see also
Table 3).

1572

The Migration of Public Administrations Towards Open Source Desktop Software

IMPlIcAtIons

This study has a number of implications for both
practice as well as research.

Implications for Practice

Several PAs have already decided to migrate
towards open source software based solutions
or have already completed their migration. It is
likely that, thanks to the encouragement of open
standards and open source software by the Eu-
ropean Commission, many other PAs will also
decide to migrate to open source software. The
results of currently ongoing research projects
such as COSPA, FLOSSPOLS, and tOSSad will
probably further help PAs to decide on the pos-
sible risks and advantages. The lessons learned
identified in this chapter should serve as a first step
towards developing research-based best practices
for the adoption of open source software on the
desktop. The presented overview can be of help
to PAs contemplating a migration. It will assist in
identifying possible barriers or issues that should
be anticipated in the project to avoid difficulties
during implementation. As a result, PAs can learn
from previous efforts of early adopters. We believe
that by promoting the sharing of experiences of
such migrations, future migrations can be handled
more effectively (both in time and financially).

Based on available research, we believe that
a migration towards open source software on
the desktop is possible, but is contingent on the
specific environment in which the migration will
take place. If the PA is using advanced features of
MS Office (e.g., the extensive use of macros), or
when interoperability with existing systems and
applications is important (e.g., database servers, or
proprietary tools written for MS Office), it will be
more difficult to migrate. Although workarounds
can be devised, this will imply additional costs,
and productivity may be negatively affected. We
believe, however, that as more organizations and
PAs decide to start using open standards and

open source software, software vendors will be
more likely to provide interoperability with open
source solutions14.

When the use of MS Office is mainly restricted
to basic functionality—which seems to be the case
in most PAs currently studied in literature—the
functionality of OpenOffice.org should suffice
in most cases. Nevertheless, PAs should consider
the issues raised in this chapter, and sufficient at-
tention should be paid to areas such as planning,
training, and support. Moreover, PAs should be
aware that specific requirements in their environ-
ments may lead to a number of issues that were
not previously encountered. For example, due to
the bilingualism in the Brussels PA, the imple-
mentation of tables in OpenOffice.org resulted
in changing the way documents were formatted.
This implied altering the daily work habits of end
users, which may prove to be very difficult. Hence,
having top management support—and possibly a
product champion—may be required to ensure that
new working practices are adopted. Furthermore,
the use of a pilot study may help in encountering
issues in the daily work habits of employees that
need to be resolved before migrating.

Our results may also be relevant to the open
source community. Results from previous stud-
ies, as well as the current study, indicate that one
of the main drivers for a migration towards open
source software is cost reduction. This is consis-
tent with literature on the organizational adoption
of open source software, which has shown that
the lower or non-existing license costs of open
source software is a major reason influencing the
adoption decision (see e.g., Dedrick & West, 2003;
Ven & Verelst, 2006). This is in contrast with
the attitude of the open source community that
tries to downplay the cost advantages, and tends
to emphasize other advantages such as having
access to the source code of the application, and
being allowed to modify it. Studies in this field
may offer the open source community a better
insight into the perceptions of organizations and
PAs, since it has been noted that the open source

 1573

The Migration of Public Administrations Towards Open Source Desktop Software

community in general has limited access to the
opinion of its customers (Fitzgerald, 2005). A
more profound insight into the main motiva-
tions of adopters of open source software may
lead the open source community (and especially
the open source vendors) to emphasize different
advantages of open source software. Similarly,
open source communities (especially projects
such as OpenOffice.org and Mozilla) may also
try to actively solicit feedback from PAs in order
to include missing features and further improve
functionality.

Implications for research

This study has a number of limitations. First,
given the fact that the migration of PAs towards
open source software on the desktop is a new
phenomenon, relatively little research has been
devoted to studying the migration process. Con-
sequently, our lessons learned are based on the
limited amount of studies that were available at
the time of writing. Furthermore, it is difficult
to assess the representativeness of these studies.
Second, we compared the lessons learned with a
single case study in the Brussels PA. Hence, the
external validity of this study cannot be ascer-
tained, and we therefore cannot generalize our
results to all PAs. Future research can therefore
study additional migrations that can be compared
to the issues raised in this chapter. By incorporat-
ing additional findings from different contexts, a
set of research-based best practices for the adop-
tion of open source software on the desktop may
be deducted. These may further help clarifying
the factors that influence a successful migration.
This study should be considered a first step in
this direction.

Another interesting avenue for further research
is to investigate to which degree the migration
process in PAs is different from the process in
enterprises. For example, PAs may be better suited
to motivate—or force—their users to make the
migration succeed. In the case of the Brussels

PA, the migration towards OpenOffice.org was
mandated by law, making it very difficult to resist
this change. It is likely that enterprises are not
capable of supporting the migration in such a
strong way. Second, it is possible that enterprises
generally make more advanced use of MS Office,
or use it in a more complex environment, making
the migration more difficult.

conclusIon

There has been an increased interest in open
source software by PAs in the past few years.
Some authors expect that this trend will continue
in the following years, making PAs a driving
force behind open source software in Europe
(González-Barahona & Robles, 2005). Lately,
much attention has been given to migrations
towards open source software on the desktop.
Given the apparent success of several attempts in
this direction, we expect that PAs will continue
to consider these migrations in the future. How-
ever, given the fact that a migration towards open
source software on the desktop is quite disruptive
for end users, it is important that guidelines are
available. The recommendations deducted from
previous research that are listed in this chapter
can be considered a first step in this direction.
By comparing the lessons learned from previous
migrations to a case in the Brussels PA, it was
noted that, in general, there was a good match
between the literature and the current case. Due
to the specific context of the case, we were able
to highlight a few issues that may be of interest
for future adopters. Furthermore, we feel that it
is important to conduct additional case studies
on the migration towards open source software
and compare the results to the recommendations
described in this chapter. This way, the recom-
mendations will be based on a substantial body
of knowledge, leading to a set of best practices
for the migration towards open source software
on the desktop.

1574

The Migration of Public Administrations Towards Open Source Desktop Software

trAdeMArk use

Microsoft Office and Microsoft Windows are
registered trademarks of Microsoft Corporation.
OpenOffice.org is a registered trademark of Team
OpenOffice.org e.V.

references

Applewhite, A. (2003). Should governments go
open source? IEEE Software, 20(4), 88-91.

Benbasat, I., Goldstein, D. K., & Mead, M. (1987).
The case research strategy in studies of informa-
tion systems. MIS Quarterly, 11(3), 368-386.

Bretschneider, S., & Wittmer, D. (1993). Organi-
zational adoption of microcomputer technology:
The role of sector. Information Systems Research,
4(1), 88-108.

Brink, D., Roos, L., Weller, J., & van Belle, J.-P.
(2006). Critical success factors for migrating to
OSS-on-the-desktop: Common themes across
three South African case studies. In E. Damiani,
B. Fitzgerald, W. Scacchi, M. Scotto, & G. Succi
(Eds.), IFIP International Federation for Infor-
mation Processing (Vol. 203, pp. 287-293, open
source system). Boston: Springer.

Canonico, P. (2005). Deploying open source
applications within the public sector domain:
Preliminary findings on potential organisational
benefits and drawbacks. In G. Mangia & R.
Mohr (Eds.), Proceedings of the German-Italian
Workshop on Information Systems (GIWIS 2005)
(pp. 85-92).

COSPA Project. (2005). Work package 4, deliver-
able 4.3—Experience report on the implemen-
tation of OS applications in the partner PAs.
Retrieved July 4, 2006, from http://www.cospa-
project.org/ download_access.php?file=D4.3-Ex-
perienceReportOnTheImplementationOfOS.pdf

Dedrick, J., & West, J. (2003). Why firms adopt
open source platforms: A grounded theory of in-
novation and standards adoption. In J. L. King &
K. Lyytinen (Eds.), Proceedings of the Workshop
on Standard Making: A Critical Research Frontier
for Information Systems (pp. 236-257).

DeLone, W. H. (1988). Determinants of success
for computer usage in small business. MIS Quar-
terly, 12(1), 50-61.

Drozdik, S., Kovács, G. L., & Kochis, P. Z. (2005).
Risk assessment of an open source migration proj-
ect. In M. Scotto & G. Succi (Eds.), Proceedings
of the First International Conference on Open
Source Systems (pp. 246-249).

Eisenhardt, K. M. (1989). Building theories from
case study research. Academy of Management
Review, 14(4), 532-550.

Fitzgerald, B. (2005). Has open source software
a future? In J. Feller, B. Fitzgerald, S. Hissam,
& K. Lakhani (Eds.), Perspectives on free and
open source software (pp. 93-106). Cambridge,
MA: MIT Press.

Fitzgerald, B., & Kenny, T. (2003). Open source
software in the trenches: Lessons from a large
scale implementation. In S. T. March, A. Massey,
& J. I. DeGross (Eds.), Proceedings of 24th In-
ternational Conference on Information Systems
(ICIS) (pp. 316-326).

Ghosh, R., & Glott, R. (2005). Free/libre and open
source software: Policy support (FLOSSPOLS)—
deliverable D3: Results and policy paper from
survey of government authorities. Retrieved
August 5, 2005, from http://flosspols.org/deliv-
erables/ FLOSSPOLS-D03 (MERIT, University
of Maastricht)

González-Barahona, J. M., & Robles, G. (2005).
Libre software in Europe. In C. Dibona, D. Cooper
& M. Stone (Eds.), Open sources 2.0 (pp. 161-188).
Sebastopol, California: O’Reilly.

 1575

The Migration of Public Administrations Towards Open Source Desktop Software

IDA—Interchange of Data between Administra-
tions. (2003). The IDA open source migration
guidelines. Retrieved October 23, 2003, from
http://europa.eu.int/idabc/servlets/Doc?id=1983

Jashari, B., & Stojanovski, F. (2006). Challenges
and obstacles: Usage of free and open source
software in local government in Macedonia. In
B. Özel, C. B. Çilingir, & K. Erkan (Eds.), Pro-
ceedings of tOSSad OSS2006 Workshop: Towards
Open Source Software Adoption: Educational,
Public, Legal, and Usability Practices (pp. 49-
55). Kocaeli, Turkey: Tübitak.

Kovács, G. L., Drozdik, S., Zuliani, P., & Succi,
G. (2004a). Open source software and open data
standards in public administration. In Proceedings
of the IEEE International Conf. on Computational
Cybernetics (ICCC2004) (pp. 421-428).

Kovács, G. L., Drozdik, S., Zuliani, P., & Succi,
G. (2004b). Open source software for the public
administration. In Proceedings of the 6th Computer
Science and Information Technologies (CSIT)
(pp. 1-8).

Lee, J.-A. (2006). Government policy toward open
source software: The puzzles of neutrality and
competition. Knowledge, Technology, & Policy,
18(4), 113-141.

Lundell, B., Lings, B., & Lindqvist, E. (2006).
Perceptions and uptake of open source in Swed-
ish organisations. In E. Damiani, B. Fitzgerald,
W. Scacchi, M. Scotto & G. Succi (Eds.) IFIP
International Federation for Information Process-
ing (Vol. 203, pp. 155-163, open source systems).
Boston: Springer.

Moon, M. J., & Bretschneider, S. (2002). Does the
perception of red tape constrain IT innovative-
ness in organizations? Unexpected results from
a simultaneous equation model and implications.
Journal of Public Administration Research &
Theory, 12(2), 273-291.

Nye, J. S. (1999). Information technology and
democratic governance. In E.C. Kamarck & J.
S. Nye (Eds.), Democracy.com? Governance in
a networked world. Hollis, NH: Hollis Publish-
ing (pp. 1-18).

Phillips, L. W. (1981). Assessing measurement
error in key informant reports: A methodologi-
cal note on organizational analysis in marketing.
Journal of Marketing Research, 18(4), 395-415.

Rai, A., & Patnayakuni, R. (1996). A structural
model for CASE adoption behavior. Journal of
Management Information Systems, 13(2), 205-
234.

Rossi, B., Russo, B., & Succi, G. (2006). A study
on the introduction of open source software in the
public administration. In E. Damiani, B. Fitzger-
ald, W. Scacchi, M. Scotto, & G. Succi (Eds.).
IFIP International Federation for Information
Processing (Vol. 203, pp. 165-171, open source
systems). Boston, MA: Springer.

Rossi, B., Scotto, M., Sillitti, A., & Succi, G.
(2005). Criteria for the non invasive transition
to openoffice. In M. Scotto & G. Succi (Eds.),
Proceedings of the First International Conference
on Open Source Systems (pp. 250-253).

Russo, B., Zuliani, P., & Succi, G. (2003). Toward
an empirical assessment of the benefits of open
source software. In J. Feller, B. Fitzgerald, S.
A. Hissam & K. Lakhani (Eds.), Taking stock
of the bazaar: Proceedings of the Third ICSE
Workshop on Open Source Software Engineering
(pp. 117-120).

tOSSad. (2006). F/OSS National Programme
Start-Up Roadmap Report. Retrieved June 28,
2006, from http://tossad.org/tossad/publica-
tions/ f_oss_national_programme_start_up_re-
port__1

1576

The Migration of Public Administrations Towards Open Source Desktop Software

Vaca, A. (2005). Extremadura and the revolution
of free software. In M. Wynants & J. Cornelis
(Eds.), How open is the future? Economic, social
& cultural scenarios inspired by free and open
source software (pp. 167-197). Brussels, Belgium:
VUB Brussels University Press.

Ven, K., & Verelst, J. (2006). The organizational
adoption of open source server software by Bel-
gian organizations. In E. Damiani, B. Fitzgerald,
W. Scacchi, M. Scotto, & G. Succi (Eds.), IFIP
International Federation for Information Process-
ing (pp. 111-122). Boston, MA: Springer.

Waring, T., & Maddocks, P. (2005). Open source
software implementation in the UK public sec-
tor: Evidence from the field and implications for
the future. International Journal of Information
Management, 25(5), 411-428.

Wichmann, T. (2002). FLOSS final report—Part
1: Use of open source software in firms and
public institutions—Evidence from Germany,
Sweden and UK. Retrieved September 8, 2003,
from http://www.infonomics.nl/FLOSS/report/
reportPart1_use_oss_in_firms_and_public_in-
stitutions.htm

Yin, R. K. (2003). Case study research: Design
and methods (3rd ed.). Newbury Park, California:
Sage Publications.

Zuliani, P., & Succi, G. (2004a). An experience
of transition to open source software in local
authorities. In Proceedings of E-Challenges on
Software Engineering.

Zuliani, P., & Succi, G. (2004b). Migrating public
administrations to open source software. In P.
Isaías, P. Kommers, & M. McPherson (Eds.). Pro-
ceedings of E-Society 2004 IADIS International
Conference (pp. 829-832). IADIS Press.

endnotes

1 For a thorough discussion of the concerns
involving the use of open source software
by PAs, see Lee (2006).

2 Although this group is currently inactive,
some information on it can still be retrieved
at http://eu.conecta.it

3 http://europa.eu.int/idabc
4 See http://europa.eu.int/information_soci-

ety/eeurope/2005/all_about/’action_plan/
index_en.htm

5 http://europa.eu.int/idabc/en/chapter/452
6 http://www.cospa-project.org
7 http://www.flosspols.org
8 http://www.calibre.ie
9 http://www.tossad.org
10 See IDABC “open source case studies”

(http://ec.europa.eu/idabc/en/chapter/470)
and news (http://ec.europa.eu/idabc/en/chap-
ter/491).

11 http://www.muenchen.de/Rathaus/refer-
ate/dir/limux/89256/

12 It must be noted that the results of these two
studies cannot be directly compared. The
first FLOSS study included commercial
businesses as well as PAs, and included
subjects from only 3 European countries.

13 The workaround is however still used, since
it is a better approach for formatting these
documents.

14 Actually, at the time of writing, Microsoft
has announced its support to an independent
open source project, developing an ODF
plug-in (Open Document Format) for MS
Word 2007 (http://odf-converter.source-
forge.net). Coincidently, this announcement
was issued a number of days after the Belgian
government announced that it would start
using the ODF-format exclusively from
September 2008. Other governments (e.g.,
the state of Massachusetts) have announced
similar initiatives, or are studying them.

This work was previously published in Emerging Free and Open Source Software Practices, edited by S. Sowe, I. Stamelos and
I. Samoladas, pp. 191-214, copyright 2007 by IGI Publishing (an imprint of IGI Global).

 1577

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.12
Issues and Aspects of Open
Source Software Usage and

Adoption in the Public Sector
Gabor Laszlo

Budapest Tech, Hungary

AbstrAct

This chapter introduces L-PEST model as the pro-
posed tool for better understanding the fields are
influenced by motivations and adaptation policy
on FLOSS of public authorities and governments.
Software usage in the public sector is a highly
complex topic. In the confines of this chapter the
selected case studies will show consideration to
the vastly different needs and capacities and the
different approaches and motivations towards the
utilization of FLOSS by governments and/or local
authorities. The primary objective of this chapter
is to identify and describe the actors associated
to the usage of FLOSS within and by the public
sector. This chapter has made an attempt to fill
this research gap and place the different actors
into one complex model. It is hoped the proposed
model assists better clarifying the intricate rela-
tionship between relevant factors. Nevertheless,
much more research work is needed in the years

to come. According to Michel Sapin, French
Minister in charge of Public Administration and
e-Government (2001), “The next generation e-gov-
ernment has two requirements: interoperability
and transparency. These are the two strengths
of open source software. Therefore, I am taking
little risk when I predict that open source software
will take a crucial part in the development of e-
Government in the years to come.”

IntroductIon

The digital economy transforms governments and
governments took on new roles in those areas of the
economy most affected by technological changes.
Governments play important roles in creating
the proper environment for ICT development,
and also have a significant leading role as users
of these technologies by creating new modes of
public’s behavior. Governmental functions and

1578

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

operations can be managed only by the extensive
use of ICTs and by using software applications
(Lanvin, 2003).

The world’s largest consumers of computer
software are usually governments and they thus
can have considerable influence on the software
market. Governmental usage of software can
impact on virtually all aspects of civil life: the
inclusion and participation of citizens in public life,
the transparency and openness of decision making,
and the elimination of the digital divide, digital
persistence, and digital literacy. The question of
which software is utilized by public administra-
tions is, therefore, of fundamental importance.
Free Software advocate Eben Moglen has said,
“Who controls the software, controls life.”1

In the early days of computing the common
software model was based on the open source mod-
el. Software and hardware were often combined in
a single package. The software was usually traded
in the form of source code and computer users
have shared their computer code. Many important
early programs, also with government funding,
were widely shared (Bessen, 2002).

Then, the late 1970s and early 1980s with the
appearance the consumer computing saw the
beginning of the commercialization of software
products based on the proprietary model. The
software that operates the hardware has become
as important as the hardware itself.

A significant difference between open source
and proprietary software is that the open source (as
it is called) software source code is freely available
to the user. In contrast, the proprietary software
vendors release their product only in binary form
and it is illegal for end users to decompile the
binary machine code to usable source code.

Free/libre open source software (or FLOSS as
it is commonly referred to) has gained enormous
momentum all over the world. While this move-
ment has been closely followed with attention
by many advocates and practitioners, academic
research on the subject has only started emerging.
These research projects have focused mainly on

individual motivations, knowledge sharing and
the user communities themselves.

The primary objective of this chapter is to
identify and describe the factors related to the
usage of open source software within and by the
public sector.

To achieve this objective, background is given
on the discussion about government roles and
policies towards open source software, as in the
selected case studies.

One of the strengths of this chapter is that it
presents a theoretical framework, a general model
of software usage at large within the public sec-
tor and the identified factors assigned to global
perspectives.

bAckground

ICTs have the capacity to play a valuable role in
improving the quality of life, particularly in health,
education, agriculture, and the environment. To
take one example, in the healthcare sector ICTs
enable the implementation of tele-health programs
in remote areas, allowing some health care to be
provided remotely, independent of person-to-
person contact. Further, improvements in medical
equipment are also a result of advances in ICTs.
In education, remote access to the knowledge
bases, e-libraries and even e-learning systems
and universities can deliver knowledge to rural
areas, where such opportunities for learning
would be unavailable without ICTs. Agriculture
and environmental issues can be better managed
by, for example, geographic information system
(GIS) and weather forecasts.

However, at the same time, there exists the
so-called digital divide, an umbrella term that is
commonly understood to mean the gap between
ICT haves and have-nots. Generally, the approach
to the question of the capacity of ICT to increase
standards of living and to that of the digital divide
has focused on two main issues.2 One focuses
mainly on actual connectivity—infrastructure

 1579

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

and access. Another approach beyond connec-
tivity is to consider the level of the ICT literacy
and skills of a particular population and as well,
consequently take into consideration political and
social cohesion aspects.

An improved economy can not alone eliminate
the gap, so governmental “intervention” is a pre-
requisite for overcoming the digital gap. Today,
governments, businesses, international groups,
and nongovernmental organizations (NGOs) have
undertaken numerous initiatives aimed at elimi-
nating this digital divide (http://www.bridges.
org/digital_divide). These initiatives have targeted
not just the consequences of economic differences
between countries and peoples and the relevant
differences in access to technologies, but also the
cultural capacity and political will necessary to
apply these technologies for effective develop-
ment. A nation’s intellectual capital and capacity
for innovation are based on its human capital,
which is why it is so important for governments
to make steps to strengthen the equality.

Wilson pointed to a four-sided social forma-
tion—a Quad—that has emerged at the heart of the
still-inchoate knowledge society. “Conceptually
‘quad’ refers to persistent four-sided networked
interactions of small groups of elites across four

sectors of the political economy—government,
private sector, research centers, and NGOs”
(Wilson, 2003, p. 6).

The Quad theory predicts causal relationships
between the architecture of the Quad and the
subsequent performance of the ICT sector. The
more robust the architecture of the Quad, the
better performance of the ICT sector as a whole.
The architecture and dynamics of the Quad
relationships are different in every country and
change time to time.

As a member and part of the Quad, the
government has a special obligation to protect
the integrity, confidentiality and accessibility
of public information, to protect the privacy of
its citizens, to educate the “next generation”, to
create jobs, and to preserve and make available
the national heritage (also in electronic format)
for the public and for the next generation. Other
important roles for the governments are to make
the country competitive in the globalized mar-
ketplace, and to carefully manage the budget
(Stanco, 2003).

MetHodology

This chapter provides an inductive general con-
ceptual model—based on known and publicly
available strategy documentation of various public
sector and government initiatives for promoting
or using FLOSS. The selection of key factors
is grounded in available research literature on
FLOSS and the above mentioned documentation
and case studies.

oPen governMent

The average citizen has limited access to impor-
tant government records, and what is available
is often incomprehensible. An open govern-
ment must be transparent and accountable and
information related to the decisions an open

Figure 1. The Quad (Source: Used with permis-
sion by E. J. Wilson)

Public
Sector

NGO Private

R&D

1580

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

government makes must be open to the public
and freely available. Access to government and
public information is regulated by law in many
countries. Perrit states:

Freedom of information issues are centrally im-
portant in countries around the world, and the
Internet’s World Wide Web offers the potential to
provide freedom of information at low cost. Achiev-
ing a sound information policy to promote open
government requires constant vigilance by those
who care about the goal. (Perrit, 1997, p. 397)

In the aftermath of 9/11 the relationship
between IT, governments and their citizens has
dramatically and radically changed. Security
has become the most important factor. Yet, in
the face of increased demands for security, for
many within societies, the demands of privacy
and trust remain paramount, thus giving rise to
conflict between governments and their citizenry.
Governments make greater efforts based on anti-
terrorism legislation3 to monitor their citizens’
activities, while simultaneously citizens demand
a greater ability to monitor the activities of his or
her government.

InItIAtIves for floss In
governMent work

E-government work and what is commonly un-
derstood as general government work are now too
closely intertwined to be realistically separated.
At the same time, public administrations have
special functions and operations which cannot
be adequately handled with proprietary software
applications on the market that are developed for
multiple purposes (Stanco, 2003). The moderate
opinions which stress that there is no need to
make a choice between FLOSS and proprietary
software vendors gather ground but the feasible
solution is mixing these software.

It seems likely that all governments use FLOSS

applications on some level, with or without open
source label—though perhaps without deliberate
policy. Whereas many governments have policies
or consideration towards FLOSS usage, the motiva-
tions may vary from cost reduction to security or
dependency issues and within the broader context
of policies to support such issues as equity or edu-
cation. However, FLOSS policies and legislation
as developed by national, regional or local govern-
ments around the World (USA, Canada, Australia,
many countries in Africa or in Europe) are more
often than not inadequate to support the viable
realization of such policy goals.

The Center for Strategic & International
Studies (2004) maintains—Government Open
Source Policies—a list of such initiatives that
were approved or proposed. This section high-
lights different approaches of adaptation and
policy considerations for the implementation of
FLOSS.

european union

In the recent years many open source-related
programs have been launched by the European
Union. Fields of development of FLOSS within the
EU include security, interoperability and e-par-
ticipation. The software usage and the interaction
between different systems is a complex approach.
Interoperability is one of the key factors. One
early Commission Working paper stressed the
need for interoperability of program for public
administration across the EU. It states that the
proposed interoperability framework “will be
based on open standards and encourage the use
of open source software.” “Interoperability, there-
fore, for both the public and enterprise sectors, is
at the heart of the eEurope 2005 Action Plan and
the achievement of the Lisbon goals” (Linking up
Europe, 2003, p. 5).

In the European Union, the public sector were
advised to avoid proprietary document formats,
known as lock-in. Using the open standards would
assure the desired interoperability and open stan-

 1581

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

dards would more greatly be supported by open
source software. Using interoperable systems
would guarantee equality among the citizens using
different kind software applications (Promotion
of Open Document Exchange Format, 2003).

On the other hand, notwithstanding the
above-mentioned initiatives, the relationship
between governments and open source is not
unambiguous.

extremadura

Extremadura was the poorest region of Spain,
lagging behind the rest of the country in both the
economic and technological field. Though short on
financial resources, the region set very high goals
for itself in its Regional Strategy on Information
Society in 1997. The policy lay “in the application
of technological innovation for the promotion of
freedom and equal opportunities, taking advan-
tage of and putting at the disposal of everyone,
what is nobody’s property: the knowledge gathered
by Humanity all through History.” Two formal
strategic objectives were put forth: “Accessibility
for all—the Internet as a public service” and “The
stimulation of technological literacy.”

Given the combination of Extremadura’s
strategic goals and the limited financial resources
available, the use of FLOSS was a logical choice.
The LinEx project, a combination of “Linux”
and “Extremadura,” was born of these strategic
initiatives. The objective of the Linex project was
to create a fully functional platform, based on
FLOSS, providing universal access of IS tools to
all citizens. While doing so, its aim was to provide
adaptability, economic benefits, and security to as
great a degree as possible, without losing sight of
actual feasibility. LinEx is specifically designed
for use in regional administration and schools.
Early on in the project, it was decided that LinEx
would not innovate the software itself, but rather
concentrate on localization of the software and
take care of the distribution. To avoid technical
problems during the initial phase of the project,

a Spanish company was hired. The region’s gov-
ernment ships the resulting software for free to
all of its citizens.

Extremadura was also simultaneously funding
a development center whose task was to create
accounting software, hospital applications and
agricultural applications (IDABC, 2003).

Munich

Coming after the switch to Linux in the servers
of the Bundestag in 2002, Germany’s interior
minister signed an agreement with IBM to offer
the German government offices deep discounts
on computer systems based on Linux (IBM signs
Linux deal with Germany, 2002). Soon afterward,
Germany’s third largest city government, Munich,
commissioned Client Study for the State Capital
Munich (UNILOG Integrata, 2003) comparing the
alternatives and assigning 6,218 (out of 10,000)
points to a Linux/OpenOffice migration, versus
5,293 to an upgrade of Microsoft Windows. Based
on this study the Munich municipal government
made a decision to adopt for their computer sys-
tems open source software. The Council of Munich
voted on May 2003 in favour of the adoption for its
desktop and notebook computers an open source
operating system and office applications. This
move, unprecedented in scale in the European
public sector, has been widely commented upon
and discussed since then.

Following a test phase conducted in coop-
eration with SuSE Linux and IBM, the Council
formally adopted on June 16, 2004 detailed
plans to manage the migration process, which
is expected to last until 2009. According to the
plan the migration was to be gradual, starting in
2004 with office desktop applications (OpenOf-
fice.org office suite and Mozilla Web browser
running on the existing Windows NT desktops),
and then moving to operating systems and more
specialized applications over a period of five years.
The municipal government of Munich released a
statement in September 2005 that the completion

1582

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

of migration phase one, scheduled to be completed
in 2005, had been pushed back to at least 2006.
The reasons were that Novell Inc. announced in
late 2003 the acquisition of SuSE and meanwhile
legal problems regarding a proposed EU patent
law. The chosen new Linux distribution was the
Debian (Grassmuck, 2005).

usA

The most famous report concerning FLOSS us-
age within the Department of Defense (DOD)
was released in 2003. “The goals of the study
are to develop as complete a listing as possible of
FOSS applications used in the DoD, and to collect
representative examples of how those applica-
tions are being used.” Over a two-week period
the survey identified a total of 115 FLOSS (in
the report named as FOSS) applications and 251
examples of their use. “The main conclusion of
the analysis was that FOSS software plays a more
critical role in the DoD than has generally been
recognized. FOSS applications are most impor-
tant in four broad areas: Infrastructure Support,
Software Development, Security, and Research”
(The MITRE Corporation, 2003, p. 2).

The Commonwealth of Massachusetts launched
a new policy regarding the planning, development,
and implementation of IT systems. “The goal of
the Commonwealth’s open initiatives is to ensure
that investments in information technology result in
systems that are sufficiently interoperable to meet
the business requirements of its agencies and to
effectively serve its constituencies” (Open Initia-
tives of Massachusetts, n.d.). The Massachusetts
case illustrates the technology based considerations
concerning software usage.

brazil

The Government National Institute of Information
Technology is charged with implementing open
source software in Brazil. They released the first
strategy planning document in 2003.

On the surface, the decision of the Brazilian
government was a simple cost cutting measure.
According to the National Information Technol-
ogy Institute, Brazilians spend $1.1 billion every
year on software licensing fees, and the federal
government was the nation’s biggest customer. The
government is paying around $500 to Microsoft
for license fees for every workstation. The gov-
ernment accounted for 6% of Microsoft’s 2003
Brazilian revenues of $318 million. Switching
to FLOSS would save millions of dollars (Kim,
2005). The decision to migrate to open source
software on a national scale was not simply a
matter of choosing one product over another.
Although the Brazilian government identified
economic reasons to migrate to open source
software, it was a political decision that validated
open source software as a movement. Through
numerous open source projects, the government
has tried to bridge the technology divide within
the Brazilian population. While in the European
Union the research experts recommend free
software licenses for software deriving from
public funds, Brazil has become the first country
to require any company or research institute that
receives government financing for the develop-
ment of software to license it as open-source,
meaning the underlying software code must be
free to all (Benson, 2005).

Peru

Peru passed a law encouraging the procurement
of free software by the government in September
2005. The bill was originally introduced in 2002.
A Peruvian congressman stated in his letter to
Microsoft: “The basic principles which inspire the
bill are linked to the basic guarantees of a state of
law, such as: the free access to public information
by the citizen; the permanence of public data; the
security of the state and citizens” (Greene, 2002).
This bill has as its aim to establish measures and
policies which will permit the acquisition of soft-
ware licenses by the public administration under

 1583

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

conditions of technology neutrality, and the free
concurrence and equal treatment of suppliers. The
technical evaluation of the software and hardware
required by the public administration will be
according regulations dictated by the National
Informatic System governing body. The bill of-
fers an excellent summary of the idea of neutral
software usage: “The entity will ensure that the
procurement answers to the principles of effective-
ness and technological neutrality, transparency,
efficiency, within the boundaries of austerity and
economizing of public resources” (Peruvian bill
translation, 2005). One essential item included
in the bill also stress the need for the education
of the employees and users of computer and IT
technology.

south Africa

One of the best-known case studies concerns the
South African government’s official strategy for
FLOSS. This was one of the first strategies, that
officially recognized the legitimacy of the adop-
tion of FLOSS within the public sector. The South
African strategy highlights that “the government
will implement OSS, where analysis shows it to
be the appropriate option. The primary criteria
for selecting software solutions will remain the
improvement of efficiency, effectiveness and
economy of service delivered by the government
to its citizens” (Using Open Source Software
in the South African Government, 2003, p. 24).
One of the main strengthens of this strategy is
the appreciation of the social benefits that could
include, but are not limited to, better education,
greater governmental transparency, more effec-
tive e-government services, and wider access to
governmental information.

china

China has been very aggressively promoting
Linux. The military has been one of the earliest
adopters of Linux. The Red Flag Linux was de-

signed for use in government offices, schools and
on home computers. Red Flag Linux, a Beijing-
based provider of Linux software and services, is
connected to the Chinese Academy of Sciences,
the central government’s top research institute.
The main reasons for the adoption of Linux
were political and the desire for independency
from Microsoft (Einhorn, 2003). Membership
in the World Trade Organization (WTO) and
access to its benefits are strongly affected by the
level of protection given to intellectual property
rights in a country (Wong, 2004). According the
Piracy Study (BSA, 2005), in the country there
is a high frequency of pirated software. Since
China became a full member of the World Trade
Organization, the government has been trying to
reduce software piracy within its country. This is
another strong reason why government agencies
and business are currently adopting the Linux
operating system on their desktop workplaces.

l-Pest Model

As is shown in the above selected case studies
there are many different approaches around the
world to using FLOSS within the public sector.
In this section a general model is introduced.
The L-PEST model is a theoretical creation. The
idea of the model reaches back to IDABC “The
Many Aspects of Open Source” (n.d.) material.
The original text summarized some of the various
reasons for choosing different organizations of
FLOSS. This idea was then extended, modified,
and put into a model based on the research by
the author. The author’s proposed L-PEST model
can give a broader picture as to the aspects of
software usage in the public sector. With further
and ongoing work, it can be applied to all kinds
of software as a comprehensive tool.

The key factors were derived from motivations
of governments within their environments, which
were revealed in the case studies. The five key
actors of the model—as shown on Figure 2—are:

1584

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

political, economic, social, and technical and all
around these fields the legal environment can be
founded. This structure maps real life.

Every actor has its own attributes, however
in some cases there are attributes with different
meanings. In this case, when an attribute could
be assigned to more than one field it was put into
the most characteristic actor (e.g., lock-in which
is based on the technical elements may well also
influence the economical aspect, or transparency
has quite a different meaning in economics than
in technology).

legal environment

The legal environment surrounds the model be-
cause it has an effect on the other four factors. It
has own attributes as well. The constitution deter-
mines the framework activity of the country; the
law determines the operation of society, while the
economy is influenced by the law of economics.
Acts regulate and ensure competition, and technol-

ogy is also regulated by industrial law (including,
patents, trademark, and copyright law).

Copyright is the most usual method of pro-
tection for software products. The copyright
automatically and implicitly protects all intel-
lectual creation, including computer software.4

“The copyright laws, by default, do not allow for
redistribution (nor even use) of software. The only
way that redistribution can be done is by granting
specific permission in a license (Working group
on Libre Software, 2000, pp. 20-21). A license is
a contract between the user and the licensor. The
licensing model of about FLOSS differs from the
proprietary software, but is based on same idea.
In fact, open source licenses are also enforce-
able because they use, in one form or another,
copyright law. Most open source licenses were
designed according to the United States law. Open
source (OSS) licenses are more permissive than
free software (FS) licenses.5

One of the main threats for open source may
be software patents—which are not currently

Figure 2. L-PEST model

 LLegal environment
Licensing
Liability
Piracy
PPolitical
Privacy
Digital persistence
Digital heritage
Open government
Public procurement

EEconomical
Cost reduction
Balance of the software

market and transparency
Innovation
Job creation
Dependency

SSocial
Freedom and equality
Education
Behaviour of software use
Digital divide

TTechnological
Quality
Functionality
Interoperability
Transparency
Support the standards
Lock-in
Security
Localization

 1585

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

common outside of the USA—but efforts to in-
troduce them are in progress worldwide, usually
lobbied for by large multinational corporations.
The issue of software patents6 divides even the
governments of countries and the parliaments
within them, as can be seen in many cases in
Europe. On the other hand, many companies
which have huge software patent portfolios in the
USA, such as IBM and Novell, open numerous
of their owned patents and put them at the OSS
developing community’s disposal. At the same
time, many companies adopt and encourage OSS
policy and business model.

Liability means that the software producers
are responsible for their own products, warranties,
and indemnifications. In reality almost all kinds of
software, even the proprietary kind, are shipped on
an “AS IS” basis, which means that the producer
wriggles out of any kind of responsibility. In many
countries, legislation does not allow the exclusion
or limitation of this kind of liability.

Software piracy is a problem all around the
globe and it can hurt a country in many ways.
A country with poor protection for intellectual
property rights is not as attractive to foreign inves-
tors. This is the reason why China, since joining
the World Trade Organization (which strongly
defends and pursues intellectual property rights
protection), has made enormous efforts to reduce
the prevalence of piracy within its borders. In a
developing country, piracy is much more preva-
lent than in the industrialized nations; however,
the greater dollar losses are incurred in the latter
situation (BSA, 2005).

Political Aspects

The political aspect is related to government’s
function and roles. They may be distinguished
between such roles as promoting social justice
and functions such as tax collection (Lanvin,
2003). The government’s role ensures the viable
environment for ICT development and also the
ICTs for Development. This can be summarized

as a National Information Strategy that was well
defined by the Library and Information Associa-
tion of New Zealand:

A National Information Strategy addresses
strategic issues to ensure that all citizens have
the opportunity to access and utilize a nation’s
knowledge wealth in a way that will enhance the
social, political and economic well-being of that
country. It states the government position on the
creation, management and use of information, and
sets direction for government action in support of
the strategic goals. (LIANZA, 2002, p. 7)

A national information strategy can be defined
in terms of political planning or political action
planning for development.

Privacy is a key factor in the interaction
between governments and citizens. Whatever
software is utilized by governments to control,
manage and transmit the citizenry’s personal data
must be transparent in order to protect the citizen’s
right to privacy (Stanco, 2003). For example, an
e-voting system without transparency leaves
organizations and governments at the mercy of
software providers.

The preservation of digital heritage and
digital content has become a major challenge
for society.

Digital persistence means continued accessi-
bility to the stored content, even as the technology
is changed—in this case for the governments’
and public administrations’ documentation. (It
also preserves the original documents, in the case
of national heritage.) It is in close relation with
lock-in and dependency that it will be introduced.
The secretary of administration and finance of the
Commonwealth of Massachusetts, stated:

Our public policy focus is to insure that public
records remain independent of underlying systems
and applications, insuring their accessibility over
very long periods of time. In the IT business a long
period of time is about 18 months. In government

1586

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

it’s over 300 years, so we have a slightly different
perspective. (Kriss, 2005)

economic Aspects

Within the scope of this chapter only several is-
sues can be highlighted. Governments sometimes
need to undertake intervention into the market on
behalf of common good. A high degree of market
transparency can result in disintermediation due
to the buyer’s increased knowledge of supply
pricing. Transparency is important since it is one
of the theoretical conditions, which reaches back
to Adam Smith’s invisible hands theory, required
for a free market to be efficient. Consequently,
it may well be true, that the government should
not intervene in the free market except to assure
neutrality and a level playing field for all types of
software. The governments should to be assur-
ing the neutral decision on software and public
procurement and choices on software products
should be made objectively, flexibly, and with a
focus on a range of factors.

One of the primary economic concerns is the
cost of software usage. Total cost of ownership
(TCO) shows the real cost of software utilization.
The purchased software will usually remain the
property of the supplier; the consumer pays for
the right to use the software. Total costs need be
divided into two main categories, direct and indi-
rect costs. The measurement is difficult because
the indirect costs are extremely difficult to assess
and measure (Wheeler, 2005). Another approach
to the issue of value and cost can be to focus on
the examination of return on investments (ROI).
Both methods are extremely sensitive to the set
of assumptions made by the individual or group
taking the measure.

Research and development (R&D) and other
innovation are more important than ever before.
In their role as a member of the Quad (see Figure
1), governments should undertake to stimulate
innovation. The economic benefits of such stimu-
lation, as in the case of job creation, for example,

are well known. There are numerous arguments
that R&D that is financed through public funding
should be released under FLOSS license. This
kind of license supports the sharing of scientific
results and dissemination of created information
and value—and “there is not need to reinvent
the wheel.” Many FLOSS licenses are business
friendly (Wong, 2004).

One of the major arguments in favor of FLOSS
is concern over the issue of dependency; that is,
the public becomes reliant on software suppliers.
In many instances, there are painfully few op-
tions as to software vendors. Beyond the issue of
economic costs incurred from near monopoly, the
question of dependency also speaks to the issues
of security and privacy protection.

social Aspects

The ICTs have a huge potential to make life better,
despite the consequences of the so-called digital
divide. The dual societal pursuits of freedom and
equality are furthered via the ability of citizens
to access the information and services of national
and municipal governments. The goal of open,
transparent government is dependent upon ever-
greater access that ICTs offer. Meanwhile, the
choices governments make as regards open or
proprietary software, and the value they place
on either, act as an example to the public, as well
as reflecting the governments’ position vis-à-vis
issues such as privacy and security.

Education, of course, also greatly impacts
on the economic development and potential of a
country. Governments, of course, play a major role
in creating a proper environment for education.
Digital literacy and elimination the digital divide
are close correlation with education. In educational
systems there are two major expenses related to
software: in using proprietary software, schools
must buy licenses for every single computer that
uses the software, while at the same time, the
school has to ensure the possibility that students
do not abuse its use after the class.

 1587

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

Many NGOs are not able to afford commer-
cial, non-pirated software. This is a compelling
reason to seriously consider FLOSS as a viable
option for NGOs. An excellent example of the
benefits of open source is the “Human Rights
Tool” open source software named Martus (http://
www.martus.org/). The developer uses the new
model of social entrepreneurship, which combines
market forces with philanthropic capital and en-
trepreneurial drive. Social entrepreneurship as a
focus of academic research has a relatively brief
history and as yet no research has been made on
the connection with FLOSS communities and
businesses.

technical Aspects

The measurable technical parameters are, among
others, the reliability, performance and scalability
of the systems. These parameters can be compared
using the same technical analyses (Wheeler,
2005). The quality of a software product is a con-
troversial field. Functionality of software means
the software functions fit the users demand and
requirements.

In technical context interoperability is used
to describe the ability of different software and
hardware form different vendors to exchange
data and utilize the same protocols and to operate
effectively together. If the competitors’ products
are not interoperable, the result may be monopoly.
To avoid the vendor lock-in, it may be prudent for
governments to take steps to encourage interoper-
ability in various situations.

Transparency refers to the fact that, when
software is developed, the original source code
is available (or not) to public (or user) review.
The government is responsible for storing a large
amount of data in name of the public. Lock-in
means that if the data is stored in closed format
using proprietary software, the information will
only with difficulty be available and retrievable
for many decades to come. Since FLOSS and open
standards make available the source code, the way

in which information is stored is publicly known,
or at least traceable. Lock-in can be only avoided
by using open standards. Moreover, lock-in may
also refer to education where the brand-specific
trainings confine the students and users.

Security is one of the main issues when
software is used by governments and public ad-
ministrations. Computing is crucial to the infra-
structure of countries. Nowadays the information
environment is extraordinary complex and fragile.
Modern society is increasingly vulnerable in its
technological and economical infrastructure,
in its telecommunications, its energy sources,
and its transportation. The infrastructure and
information systems can be attacked, destroyed,
disrupted, and corrupted by small groups or even
single individuals. It is not necessary to destroy
the infrastructure in its entirety, nor to attack it
physically via traditional means: it can be crippled
electronically, and virtually anonymously (Steele-
Vivas, 1996). This vulnerability is a reason why the
choice of software used is relevant and important.
This refers also to the political actions.

Countries where English is not commonly
spoken face a serious disadvantage when it comes
to the uptake and dissemination of ICTs. However
the translation is one of the major parts of localiza-
tion, moreover, localization involves the task for
adapting and customizing the products for local
users’ specific cultural and/or technical needs.

future trends

The consideration and utilization of FLOSS by
national and municipal governments will con-
tinue to grow in the coming years. One of the
main fields where FLOSS can best be utilized
is in the e-government services increasingly in
demand.

A related area where FLOSS can be adopted
is within Public Authorities, which are quite dif-
ferent in the each country and which therefore
require the flexibility of localization, which

1588

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

FLOSS affords. Another main issue where FLOSS
is already utilized with success regardless of cost
consideration is in healthcare, which is one of the
costliest segments within governmental services
around the world. FLOSS can also improve the
performance of healthcare services, whilst ensur-
ing both interoperability and patient privacy.

Around the world, governments are develop-
ing e-voting systems, but the resistance to these
systems by citizens link back to a lack of the
trustworthiness of closed systems, which can be
avoid by using freely available source code.

Countries in the developing world can gain the
possibility to use high-quality free software as
opposed to scaled-down versions of more costly
proprietary software.

conclusIon

Information and communication technologies
have drastically changed societies, influencing
the everyday activities of both individuals and
governments. The information society has be-
come a reality and acted as a call to action by
governments. Although much research has been
done on the use and consequence of FLOSS in
the public sector, not enough knowledge exists on
public sector and government policy options and
behaviour as regards the adoption of this software.
In addition, there are numerous negative percep-
tions and misunderstanding about FLOSS.

This chapter has made an attempt to give a
comprehensive overview of the different fields
and aspects relevant to governments and peoples
that are influenced by the choice of software that
governments make. Another aim has been to
delineate the relationship between these related
issues and factors. FLOSS touches upon multiple
areas as it was introduced in the paper, using
the L-PEST model. Beyond a well-known cost
consideration, the case studies and the proposed
model showed the FLOSS and open standards

could afford a workable social-economic-tech-
nological solution.

In using the model, it has become clear that
the utilization of and decisions regarding software
adoption, there are numerous factors that could,
and should have impact on software decisions.
Within networked societies, interconnectivity
was the first step, and nowadays interoperability
has gained emphasis. There are numerous argu-
ments that software application that is financed
through public funding should be released under
FLOSS license. It is not enough that this software
is freely available at no cost. With the freely
available source code there is the opportunity for
improved quality, while simultaneously avoid-
ing lock-in and the development for only one
platform. This can bolster the elimination of the
digital divide and help foster participation and
inclusion programs.

As it was introduced in the Quad theory, the
relationships between the Quad’s elements deter-
mine the performance of the information society
and development as a whole. The members of the
Quad are involved in the different categories of
the L-PEST model.

Much empirical and theoretical work is still
needed in this field and in reference to the presented
model as well as a better graphical representation
of the model. Future research will focus on a
detailed examination of motivations and a more
precisely defined analysis of every factor involved.
In reference to Wilson’s Quad model, it might be
interesting to investigate stakeholder analysis in
contrast of the Quad and L-PEST model.

Protagoras, Greek philosopher (c 485- c 410
BC) said: “There are two sides to every question.”
And this case there do exist disadvantages in the
utilization of FLOSS. It should be noted that the
advantages and disadvantages can be measured
and evaluated in relation to those incurred by using
proprietary software. This model has considered
general recommendations focusing on FLOSS
but also makes possible comparison between
proprietary and FLOSS software.

 1589

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

AcknowledgMent

The author wishes to thank Nora for her encour-
agement and patience throughout the duration of
research and writing process, Matthew Strauss
for his valuable feedback and improvement of
wording of the manuscript, and the anonymous
reviewers for their helpful comments and all
those who provided advice and suggestions on
earlier versions.

references

Benson, T. (2005, March 29). Free software’s
biggest and best friend. The New York Times,
p. C1.

Bessen, J. (2003). What good is free software?
In W. R. Hahn (Ed.), Government policy toward
open source software (pp. 12-33). Washington,
DC: AEI-Brookings Joint Center for Regulatory
Studies.

BSA. (2005). Piracy study. Retrieved January 8,
2006, from http://www.bsa.org/globalstudy/up-
load/2005-Global-Study-English.pdf

Einhorn, B. (2003). Why Gates opened windows
in China. Business Week Online. Retrieved De-
cember 12, 2005, from http://www.businessweek.
com/technology/content/mar2003/tc2003033_
6406_tc058.htm?tc

Grassmuck, V. (2005). LiMux: Free software for
Munich. In J. Karaganis & R. Latham (Eds.), The
politics of open source adoption (POSA) Version
1.0 (pp. 14-36). Social Science Research Council
[Electronic document]. Retrieved June 3, 2005,
from http://www.ssrc.org/wiki/POSA/index.
php?title=Main_Page

Greene, T. C. (2002). MS in Peruvian open-
source nightmare. The Register. Retrieved No-
vember 17, 2005, from http://www.theregister.

co.uk/2002/05/19/ms_in_peruvian_opensource_
nightmare/

IBM signs Linux deal with Germany. (2002). BBC
News. Retrieved December 2, 2005, from http://
news.bbc.co.uk/1/hi/business/2023127.stm

IDABC. (2003). FLOSS deployment in Extremad-
ura, Spain. Retrieved December 12, 2005, from
http://europa.eu.int/idabc/en/document/1637

Kim, E. (2005). F/OSS adoption in Brazil: The
growth of a national strategy. In J. Karaganis &
R. Latham (Eds.), The politics of open source
adoption (POSA) version 1.0 (pp. 53-59). Social
Science Research Council [Electronic document].
Retrieved June 3, 2005, from http://www.ssrc.
org/wiki/POSA/index.php?title=Main_Page

Kriss, E. (2005). Informal comments on open
formats. Mass.gov. Retrieved December 21,
2005, from http://www.mass.gov/eoaf/open_for-
mats_comments.html

Lanvin, B. (2003). Leaders and facilitators: The
new roles of governments in digital economies.
In S. Dutta, B. Lanvin, & F. Paua (Eds.), The
global information technology report 2002-
2003—Readiness for the networked world (pp.
74-83.). Oxford: Oxford University Press.

LIANZA (Library and Information Association
of New Zealand). (2002). Towards a national
information strategy. Retrieved October 10,
2004, from http://www.lianza.org.nz/text_files/
nis_7nov02.rtf

Linking up Europe: the Importance of Interoper-
ability for eGovernment Services. (2003). Com-
mission Staff Working Paper, Commission of the
European Communities. Retrieved October 22,
2005, from http://europa.eu.int/idabc/en/docu-
ment/2036/5583

Open Initiatives of Massachusetts. (n.d.) Mass.gov.
Retrieved December 6, 2005, from http://www.
mass.gov/open_initiatives

1590

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

Perritt, H. H., Jr. (1997). Open government. Gov-
ernment Information Quarterly, 14, 397-406.

Peruvian bill translation. (2005). Retrieved
January 8, 2006, from http://www.apesol.org/
news/199

Promotion of Open Document Exchange Format.
(2003). IDABC European eGovernment Services.
Retrieved November 28, 2005, from http://europa.
eu.int/idabc/en/document/3428/5890

Stanco, T. (2003). US: Testimony. Retrieved
October 1, 2005, from http://www.egovos.org/
Resources/Testimony

Steele-Vivas, R. D. (1996). Creating a smart
nation: Strategy, policy, intelligence, and infor-
mation. Government Information Quarterly, 13,
159-173.

The Center for Strategic & International Stud-
ies. (2004). Government open source policies.
Retrieved September 14, 2005, from http://www.
csis.org/media/csis/pubs/040801_ospolicies.pdf

The Many Aspects of Open Source. (n.d.). IDABC
European eGovernment Services. Retrieved
January 19, 2005, from http://europa.eu.int/id-
abc/en/document/1744

The MITRE Corporation. (2003). Use of free
and open source software (FOSS) in the U.S.
Department of Defense. Retrieved October 22,
2005, from http://www.terrybollinger.com/dod-
foss/dodfoss_pdf.pdf

UNILOG Integrata .(2003). Client study for the
state capital Munich. Retrieved January 5, 2006,
from http://hdl.handle.net/2038/490

Using open source software in the South African
government. (2003). Retrieved September 19,
2005, from http://www.oss.gov.za/docs/OSS_
Strategy_v3.pdf

Wheeler, D. A. (2005, November 14). Why open
source software / free software (OSS/FS, FLOSS,
or FOSS)? Look at the numbers! Retrieved De-

cember 12, 2005, from http://www.dwheeler.
com/oss_fs_why.html

Wilson, E. J., III. (2003). Forms and dynamics of
leadership for a knowledge society: The Quad.
Retrieved June 14, 2005, from http://www.cidcm.
umd.edu/wilson/leadership/quad2.pdf

Wong, K. (2004). Free/open source software.
Government policy. International Open Source
Network, Elsevier. Retrieved October 12, 2005,
from http://www.iosn.net/government/foss-gov-
ernment-primer/foss-govt-policy.pdf

Working group on Libre Software. (2000). Free
software/open source: Information society op-
portunities for Europe? Retrieved November 5,
2005, from http://eu.conecta.it/paper.pdf

key terMs

Dependency: In this context, dependency
means that the users are dependent on the soft-
ware vendor for products and services so that he
or she cannot move to another vendor without
substantial cost.

Interoperability: Means the ability of systems
to operate effectively together independently of
different software or hardware vendors.

Localization: Means more than simply
the translation of software; it refers to the cus-
tomization of the software for local needs and
demands.

Piracy/Copyright Infringement: The soft-
ware piracy refers to the duplication, distribution,
or use of software without the permission of the
copyright holder.

Return on Investment (ROI): Generally,
a ratio of the benefit or profit received from a
given investment to the cost of the investment
itself. This approach also focuses on the benefits
and the measurement of the value of making an
investment, not only the cost savings.

 1591

Issues and Aspects of Open Source Software Usage and Adoption in the Public Sector

Total Cost of Ownership (TCO): A financial
estimate for such things as (but not limited to)
computer software or hardware. TCO is commonly
used to support acquisition and planning decisions
for a wide range of assets that bring significant
maintenance or operating costs across a usable
life of several years or more. TCO analysis is not a
complete cost-benefit analysis. It pays no attention
to business benefits other than cost savings.

Transparency: Transparency involves open-
ness, communication, and accountability. In this
context it refers to the fact that, when software is
developed, the original source code is available
(or not) to public (or user) review.

Lock-In, Vendor Lock-In: In technical terms
it means that, if the data is stored in closed format
using proprietary software, the information will
only be available and retrievable with difficulty.
The term also refers to dependency of differ-
ent types of lock-in, such as when the users are
‘locked-in’ when trained for a specific technology
or the dependency of the specific vendor.

endnotes

1 “Who controls the software, controls life.
Well, it had better us. That’s the real political
meaning of the free software movement, ”
said Eben Moglen, professor of law, General
Counsel, Free Software Foundation at Open
Source Conference, May 2004, Toronto.

2 The digital divide has a number of defini-
tions and approaches. Examples can be found
at: Bridge the Digital Divide (http://www.
bridgethedigitaldivide.com/digital_divide.
htm) Digital Divide Network (http://www.
digitaldivide.net/)

3 Many governments passed anti-terrorism
laws, aimed at enhancing security and facili-
tated the capture of terrorists. Global Policy
Forum Web page (http://www.globalpolicy.

org/empire/terrorwar/liberties/libertindex.
htm) looks at cases where the “War on Terror-
ism” threatens civil liberties. The European
Union ratified controversial data retention
legislation (Directive 2006/24/EC) on the
retention of data generated or processed in
connection with the provision of publicly
available electronic communications ser-
vices or of public communications networks
and amending Directive 2002/58/EC). A
week later on, EU and US representatives
met for an informal high level meeting on
freedom, security, and justice where the US
expressed interest in the future storage of
information.

4 Creative Commons has built upon the
traditional copyright law based on the all-
rights-reserved concept to offer a voluntary
some-rights-reserved approach. The Cre-
ative Commons licenses provide a flexible
range of protections and freedoms for
authors, artists, and educators. http://www.
creativecommons.org

5 FLOSS licensing approach based on dif-
ferences between FS and OSS movement.
The free software licenses do not allow
closing”the source code while the permis-
sive (OSS) licenses permit the creation of
proprietary development. Philosophy on:
“Why Free Software” is better than “Open
Source” http://www.gnu.org/philosophy/
free-software-for-freedom.html; Free Soft-
ware licenses: http://www.fsf.org/licensing/;
Open Source licenses: http://www.open-
source.org/licenses/

6 More detailed reading on software patents
in the European Union and other involved
issues can be found at: Software Patents in
the EU (http://www.oreillynet.com/pub/a/
network/2005/03/08/softwarepatents.html)
and Software Patents vs. Parliamentary
Democracy (http://swpat.ffii.org/).

This work was previously published in Handbook of Research on Open Source Software: Technological, Economic, and Social
Perspectives, edited by K. St.Amant and B. Still, pp. 445-459, copyright 2007 by Information Science Reference (an imprint
of IGI Global).

1592

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.13
An Empirical Study on the

Migration to OpenOffice.org
in a Public Administration

Bruno Rossi
Free University of Bolzano-Bozen, Italy

M. Scotto
Free University of Bolzano-Bozen, Italy

A. Sillitti
Free University of Bolzano-Bozen, Italy

Giancarlo Succi
Free University of Bolzano-Bozen, Italy

AbstrAct

The aim of the article is to report the results of
a migration to Open Source Software (OSS) in
one public administration. The migration focuses
on the office automation field and, in particular,
on the OpenOffice.org suite. We have analysed
the transition to OSS considering qualitative
and quantitative data collected with the aid of
different tools. All the data have been always
considered from the point of view of the different
stakeholders involved, IT managers, IT techni-
cians, and users. The results of the project have
been largely satisfactory. However the results

cannot be generalised due to some constraints,
like the environment considered and the parallel
use of the old solution. Nevertheless, we think
that the data collected can be of valuable aid to
managers wishing to evaluate a possible transi-
tion to OSS.

IntroductIon

Open Source Software (OSS) and Open Data
Standards (ODS) emerged in recent years as a
viable alternative to proprietary solutions. There
are many cases in which the adoption of OSS has

 1593

An Empirical Study on the Migration to OpenOffice.org in a Public Administration

proven advantageous for companies deciding to
adopt it in replacement or in conjunction with
closed solutions. The limitation of these migra-
tions for our point of view is that they were very
often server-side oriented and not supported by
empirical evidence of the benefits of the new solu-
tion. In this sense, there are very few case studies
that report successful transitions on the desktop
side (ZDNet, 2005) and some are still underway
(Landeshauptstadt München, 2003; Stadt Wien,
2004). It is our opinion that the reason of the appar-
ent different results in the two fields is due to the
nature of OSS development (Feller & Fitzgerald,
2001) that leads to repercussions on the resulting
usability (Nichols & Twidale, 2003).

When comparing OSS and proprietary soft-
ware and when comparing software solutions
in general, it is impossible to get a global index
referring to quality in order to compare two solu-
tions (Fenton & Pfleeger, 1997).

If we consider the most important aspects under
which it is significant to analyse software, as:

• Reliability
• Performance
• Price
• Security
• Interoperability
• Usability
• Extendibility
• Functionalities
• Privacy protection

The categories have to be balanced with the
requirements of the environment and users in
which the solution is deployed. Where the aspects
of security, reliability, and extendibility are of key
importance, OSS has proven a valid solution, if not
superior to proprietary solutions. Where function-
alities, usability, and in general user interaction
acquires importance as on the client side, OSS
has yet to prove as a valid alternative. Price is a
controversial issue as there is the need not only
to evaluate the license price but also the software

maintenance and other costs inherited from the
migration. These considerations originated the
study we propose.

The purpose of the study is to evaluate in a
rigorous way the introduction of OSS in a working
environment, following the criteria of a controlled
experiment from the selection of the sample to the
evaluation of the results. We selected a sample of
22 users from different offices in the public ad-
ministration target of the experiment. We divided
the sample in two groups, one to be migrated, the
other to be used as a control group. The results
obtained seem to report that the initial reduction
of productivity is not as consistent as we thought,
also taking into account that half of the users
considered the introduced solution as offering
less functionality than the proprietary one.

stAte of tHe Art

There are many studies available evaluating the
Total Cost of Ownership (TCO) of OSS. The
original model derived from the work of the
Gartner Group in 1987 and has since then been
inserted in different models. The TCO model
helps managers by considering not only the cost
of purchase but also further costs as maintenance
or training.

All the studies are not unanimous as the sav-
ings that can be reached with the adoption of
OSS (Robert Frances Group, 2002; The Yankee
Group, 2005). One of the reasons is probably the
different weight given to costs and benefits that
are difficult to measure. Two of such measures
are, for example, the risks of lock-ins and the
development of local economies. The risks of
entering a mechanism of lock-in, for example, by
relying only on a single software supplier or stor-
ing massive amounts of data by means of closed
data standards are real and must be considered in
a TCO model evaluating a transition (Shapiro &
Varian, 1999). On the other side, the adoption of
OSS can be of benefit to local software companies

1594

An Empirical Study on the Migration to OpenOffice.org in a Public Administration

that can exploit the possibility given by the avail-
able source code and open data standards. Also in
this case, the amount of this kind of externality
is difficult to quantify.

Considering OSS, there are many projects
worth mentioning, we will name here two of the
most famous and see how they perform on the
market against proprietary solutions:

• the Apache Web server1

• the Mozilla Firefox Web browser2

Table 1 shows that the Apache Web server
detains almost 70% of the whole market share
(Netcraft Survey, 2005). As virus attacks of
the last years have proven (CERT, 2001), one of
the reason of such wide adoption is the security
proposed by the Apache architecture.

Table 2 shows the market share of the Mozilla
Firefox browser between January and April 2005.

As it can be seen also in this case the software is
gaining constant market shares in the last months.
The software is still behind in market shares but it
represents an important competitor for the market
dominator, Microsoft Internet Explorer.

These are surely two of the most popular OSS
that emerged during the last few years; there are
many more that can compete with proprietary solu-
tions. By looking at these and other examples, we
can conclude that OSS already could represent an
important alternative to proprietary software.

Another important consideration on OSS is
represented by the cases in which a large migra-
tion has been performed or is in the process of
being performed. Having a look at the different
case studies available for the migration to OSS,
we summarise the most famous during these
years in Table 3; three are European, while one
is U.S.-based.

Table 1. Web servers in September and October 2005 (Netcraft Survey, 2005)

Developer September 2005 Percent October 2005 Percent Change

Apache 49598424 69.15 52005811 69.89 0.74
Microsoft 14601553 20.36 15293030 20.55 0.19
Sun 1868891 2.61 1889989 2.54 -0.07
Zeus 584598 0.82 585972 0.79 -0.03

Table 2. Browsers market share (“Browser Market Share Study,” itproductivity.org, 2005)
Browser January 2005 (%) April 2005 (%)
Internet Explorer 84.85 83.07
Firefox 4.23 10.28
Mozilla 4.48 3.81
Netscape 3.03 0.92
AOL 2.20 0.85
MSN 0.58 0.67
Opera 0.34 0.41
Total 99.71 100.01

Table 3. Large scale migrations to OSS of public administrations
Region Clients to migrate Side Distribution
Extremadura 80,000 Desktop/Servers gnuLinex
Munich 14,000 Desktop Debian
Vienna 7,500 Desktop Wienux (Debian/KDE)
Largo, FL 900 Desktop/Servers Linux KDE 2.1.1

 1595

An Empirical Study on the Migration to OpenOffice.org in a Public Administration

One of the most remarkable deployments of
OSS on the desktop side is surely the one of the
Extremadura region in Spain, recently installing
80,000 Linux systems, 66,000 for the educational
system and 14,000 for administrative worksta-
tions. The local administration created their Linux
distribution called gnuLinex.3 According to their
IT department, the savings have been of the order
of €18M (ZDNet, 2005). Another case of success is
the one of the city of Largo, FL where the migration
has involved 900 clients; the savings have been
estimated at $300,000-$400,000 (Newsforge,
2002). The migration of the city of Munich and the
one of the city of Vienna are currently underway
(Landeshauptstadt München, 2003; Stadt Wien,
2004). As the delay of the Munich migration
seems to demonstrate, a transition to OSS is not
a process to underestimate. There are also cases
where the proprietary solution has been considered
as more convenient, like the city of Nürnberg,
where according to their own migration study
the transition from Windows 2000/Office 2000
to Windows XP/Office XP was considered €4.5M
cheaper than the transition to Linux/OpenOffice.
org (Stadt Nürnberg, 2004).

A final consideration on studies performed
on OSS usability. Of certain interest for our
study, albeit a little dated, is the experimentation
conducted by the Berkeley University in Novem-
ber-December 2001 (Everitt & Lederer, 2001),
comparing two different solutions in the office
automation field, namely Sun StarOffice Writer
5.2 and Microsoft Word 2000. Authors report
about an experiment on 12 users, regarding the
user interface integration. As a result of the study,
the two products were comparable, although the

Microsoft solution proved to be more satisfactory
and easier to use.

tHe study

Our study has been inserted into this framework;
the intention is to contribute to the field with a
solid and sound analysis of a real transition to
OSS on the client side, specifically the analysis
of a migration in the office automation field in
one public administration.

In particular the study related the introduction
of the OpenOffice.org4 suite. The suite offers com-
parable functions as the one offered by Microsoft
Office.5 It is composed of several applications, a
text-processor, a spreadsheet, software for presen-
tations, for drawing operations and for the creation
of formulae. The only functionality missing in
the version installed was the possibility to create
small local databases. In the organisation where
we performed the study, this was a feature rarely
employed by users and, in general, deprecated by
IT managers. We focused our analysis mainly on
word-processors and spreadsheets.

The experiment was performed on 22 users of
a public administration (PA) during the transition
to OSS. In the following sections we expose the
methodology adopted, the tools employed, and
the main results obtained from the qualitative
and quantitative data collected. The limitations
and possible future additional work is listed at
the end of the article. The overall sample of 22
users has been selected from three departments
of the PA under exam. Some constraints had to
be followed, for example, the fact that the head

Table 4. The selected sample and distribution among groups
Group Women Men Total Departments Notes
Group 1 6 3 9 3 Only using MS Office
Group 2 9 4 13 3 Using MS Office and OpenOffice.org
Total 15 7 22 3 -

1596

An Empirical Study on the Migration to OpenOffice.org in a Public Administration

of the different offices posed a limitation on the
number of the available workers per office. Table
4 represents the different groups, with two office
directors per each group as part of the sample.
The average age of participants to both groups was
uniform between groups and has not influenced the
results; users were selected from such departments
in a random way with the limitations described
previously. Regarding the protocol, the selection
of the experimental groups has been done in a
way to enable that the participants were, when
possible, in some way in relation with each other,
physically near and if possible coming from the
same organisational units, to take advantage of
possible network externalities that arise in terms of
document exchange and reciprocal help (Shapiro
& Varian, 1999).

One group experimented with the introduction
of OpenOffice.org (our treatment X, in Figure
1), while the other group was used as a control
group. The experimental design followed an ex-
perimental pretest-posttest control group design
(Campbell & Stanley, 1990).

A questionnaire has been submitted to both
groups before (O1) and after (O2) the introduction
of OpenOffice.org to evaluate the effects of the
experimentation on the attitude towards OSS. The
activities of both groups have been constantly
monitored by an automatic system for data col-
lection (Sillitti, Janes, Succi, & Vernazza, 2003)
that permitted the gathering of a series of objective
process data (the series of observations O3,i).

In some other cases where there has not been
the possibility to have a control group and a
proper randomisation of the sample, a “quasiex-
perimental” and a “one-shot” design have been
employed (Campbell & Stanley, 1990). We are
aware that in this way the results obtained are less
extendible to the general case and more subject
to exogenous effects.

tIMe evolutIon of tHe
eXPerIMent

The experiment lasted for 32 weeks; during the
first 10 only Microsoft Office was monitored and
the different system dependencies were collected.
OpenOffice.org was introduced in group 2 after
week 10 and during the 23rd week of experimen-
tation OpenOffice.org has been associated with
Microsoft Office formats .doc and .xls. The results
of the choice will be exposed in the subsequent
sections. Figure 2 shows a graphical representation
of the evolution of the experimentation.

In detail, the steps performed during the ex-
perimentation were the following:

Figure 1. Experimental design adopted

Figure 2. Evolution of the experiment expressed in weeks

 1597

An Empirical Study on the Migration to OpenOffice.org in a Public Administration

1. Selection of the participants to the experi-
ment;

2. Submission of the questionnaires on the
attitude towards OSS;

3. Motivational seminar on the reasons of the
experimentation;

4. Identification of the OpenOffice.org experi-
mental group and control group;

5. Analysis of the most used documents and
the possible software dependencies;

6. Installation of OpenOffice.org and transla-
tion in the OpenOffice.org format of the
most used documents and on a per request
basis;

7. Installation of the monitoring and data col-
lection system to define the situation before
the transition;

8. Training, performed on a single day, trying
to focus on the different approach proposed
by the new software; users were instructed
on how to perform the usual office automa-
tion tasks;

9. Start of the OpenOffice.org data collec-
tion;

10. Support given to users through an online
forum and a hotline;

11. Periodic verification meetings with users of
OpenOffice.org to identify possible prob-
lems;

12. Automatic start of OpenOffice.org with files
with Microsoft Office extension starting
from week 23;

13. Submission of the final questionnaires.

Two types of questionnaires have been sub-
mitted to users. The first one identical before
and after the experimentation, to understand
the attitude towards OSS and the effects of the
experimentation on such attitude; the second one
has been submitted only at the end, where all the
final results of the project have been collected and
more information for the replication of the experi-
ment have been determined. The Goal Question

Metrics (GQM) paradigm (Basili, 1995) was
employed in every phase of the project, from the
overall design to the creation of the questionnaires.
The GQM is a methodology that was developed
at the University of Maryland in the mid-1980s
that relates the goals of an organisation to a set
of questions. Questions are further associated to
a set of metrics. In this way it is always possible
to evaluate whether a goal has been reached and
what are the informational needs of a certain
goal are.

softwAre eMPloyed

The tools used during the experimentation were
useful to assess the evolution of the experiment and
in particular to gather quantitative and objective
data about the migration process. In particular,
two applications were employed for the ex-ante
analysis and one was continuously employed
during the transition to monitor the usage of the
proposed solutions.

• PROM (PRO Metrics), a noninvasive moni-
toring tool was used to evaluate the usage
of OpenOffice.org and Microsoft Office
during all the transition process (Sillitti
et al., 2003). Metrics of interest were the
number of documents handled and time
spent per single document. The software
has been running during all weeks of the
experimentation, permitting us to acquire
objective data on the experimentation.

• DepA (Dependency Analyser) has been
employed to evaluate at the beginning of
the project the existing dependencies of
Microsoft Office in terms of called and
calling programs (Rossi & Succi, 2004).
The program is a simple agent running on
workstations to determine the calls from
different applications, collecting in this way
information on the different interrelations

1598

An Empirical Study on the Migration to OpenOffice.org in a Public Administration

between applications. The program has been
running on client desktops for the first 10
weeks.

• FLEA (FiLe Extension Analyser) has been
used to perform a scan of the data standards
available on the users’ drives and analyse the
eventual presence of macros. The software
permits us to collect information on the type
of extension, date of creation, date of last
access, size of the file, and for particular ex-
tensions also information about the macros
contained. The scan was performed at the
beginning of the experimentation.

All tools deployed are not noninvasive in
order not to bias the results. From the final ques-
tionnaires emerged that users did not notice the
presence of any external software during the
experimentation.

dAtA AnAlysIs

In this section we report the results of the data col-
lection activities. In particular we can distinguish
the data collection across a temporal boundary
(ex-ante, during, and ex-post) and between quali-
tative and quantitative data.

The biggest effort during the project has
been to monitor constantly the users during the
experimentation. To gather objective data on the
migration, we used the PROM software. Data
collected included the time spent on documents
and the number of documents opened using

the selected office automation suite. A more
fine-grained analysis on the function utilised
has not been performed. During every phase of
the project, the quantitative data collected has
been backed with qualitative data coming from
interviews and questionnaires. As a side effect,
we noticed that the periodic meetings performed
with users caused a small increase in the usage
of the open source solution during the immediate
subsequent days.

We will briefly review all the data collected,
starting from the analysis of the existing situation,
performed at the beginning of the experimenta-
tion.

eX-Ante AnAlysIs

The aspects we analysed for an overview of the ex-
isting situation were concerned with the presence
of interoperability issues in the users’ environment
and the presence of possible dependencies in the
form of macros inside office automation docu-
ments. Macros are a series of commands inserted
in the form of code inside documents, to perform
a series of repetitive actions. They are generally
very common in office automation documents, to
permit the automation of repetitive tasks. As the
usage in OpenOffice.org of macros written for
Microsoft Office is not possible – at least at the
time the experimentation was carried out – this
is an interoperability issue. Macros need, in this
way, to be completely rewritten.

Table 5. Type of data collected during the experimentation
Ex-ante During Ex-post

Qualitative Interviews/questionnaires Periodic meetings for
feedback Interviews/Questionnaires

Quantitative

Collection of data standards
(FLEA),
Collection of dependencies
(DepA)

Monitoring of SW usage
(PROM)

Number of OOo files created during
the project.

 1599

An Empirical Study on the Migration to OpenOffice.org in a Public Administration

The number of templates in the preexisting
format represents another interoperability issue.
Our software for data collection granted us the
possibility to evaluate the number of this type of
documents, but not the complexity, another fac-
tor to take into account when there is the need
to migrate a document. The collection of such
data has to be crossed with interviews with the
IT personnel to evaluate the real relevance of the
macros discovered and the real necessity of the
conversion of templates.

The first step for performing the initial analysis
of the experimentation environment was the one
related to the presence of macros inside documents
and the distribution of the documents. Another
important issue was to find the number of tem-
plates available. This analysis has been performed
statically at the beginning of the project. In the
evaluation of macros impact, Microsoft Word and
Microsoft Excel documents of the participants to

the project were considered. Two different loca-
tions were considered:

• Users’ drives
• Network drives

In the last location, both normal documents
and templates were considered. Table 6 reports
a summary of the results. We found 25.810 Word
documents and 2.192 Excel documents. Among
these, only 2 Word documents (0.01%) and 49
Excel documents (2.24%) contained macros.
Moreover, our tool has identified a high number
of Excel documents protected by password (near
16% of the total). In this case, it is not possible to
determine whether they contain macros.

The second step has been the identification
of the software dependencies that existed in the
office automation environment. A dependency is
either a call to an external application (outgoing

Table 6. Number of documents and macros during the pretransition phase; LOC = Lines of Code, CNO
= Could Not Open

Location Microsoft Word Microsoft Excel
Files Macros LOC CNO Files Macros LOC CNO

Users’ driver 19144 2 12 - 1367 8 1070 14
Network driver 4484 - - - 816 43 21482 331
Network drives
(templates) 2182 - - - 9 3 10197 -

Figure 3. Number of incoming dependencies of Microsoft Word (left) and Microsoft Excel (right)

1600

An Empirical Study on the Migration to OpenOffice.org in a Public Administration

call) or a call from an external application to the
office automation suite (incoming call). As the
dynamic evaluation of the calls, two different
typologies have been considered:

• Applications that call Microsoft Word or
Excel (Figure 3)

In this category we discovered that 80% of the
times, Microsoft Word was called from explorer.
exe which means a normal start from its icon or a
file on the file manager. Furthermore, 12% of the
times it was called from the e-mail client Outlook.
Microsoft Excel was called 95% of the times by
explorer.exe and 4% of the times from Outlook
(for a total of 99% of the calls).

• Applications called from Microsoft Word
or Excel (Figure 4)

74% of the global calls have been towards
printer drivers. Almost 11% of the calls of Mi-
crosoft Word and Excel have been towards the
program to report problems in Microsoft applica-
tions, and about 6% for the help guide.

Further interviews with IT managers con-
firmed the situation outlined by data collection
tools. Globally, the system environment of the
experimentation was less turbulent than we had

thought initially. Templates, macros, and depen-
dencies collected were not so critical to increase
significantly the migration costs.

ongoIng eXPerIMent AnAlysIs

The experimentation has been monitored con-
stantly by PROM software. Figure 5 shows two
different measures of productivity, the percent-
age of documents opened by using OpenOffice.
org and the percentage of time spent within the
OpenOffice.org suite. As an example, a percentage
of 5% means that users spent in that week 95%
of the time using Microsoft Office.

From the data collected, we can notice, in
particular, two effects:

• As expected, the level of adoption of the new
software has been increased by the decision
to associate the Microsoft Office file formats
with OpenOffice.org. We expected to have
complaints and reports of incompatibilities
deriving from this decision. What happened
was instead that users learned when it was
convenient for compatibility reasons to adopt
one solution or the other.

• Even after 32 weeks of experimentation, the
time spent with OpenOffice.org was below
25% of the total time dedicated to the two
suites for office automation. Also to note
is the fact that the time and documents of
Figure 5 are inclusive of the Microsoft Office
documents opened with OpenOffice.org.

It is noteworthy that, during the experimenta-
tion, we did not benefit fully from the network
effect that can be raised by the growing number
of documents in one format and the subsequent
exchange between users (Shapiro & Varian,
1999). In a broader migration such effects can also
have an impact increasing the usage of the new
platform proposed. In our experimentation users
were in some way constrained in the adoption of

Figure 4. Number of outgoing dependencies for
Microsoft Word/Excel

 1601

An Empirical Study on the Migration to OpenOffice.org in a Public Administration

the new format, as they could not exchange the
documents with the users not participating in the
experimentation.

We also posed two questions to evaluate the
impact on productivity, according to the GQM
methodology.

a) Did the usage of OpenOffice.org caused
a reduction in the number of documents used
per day? We studied the correlation between
the number of documents used each day and
number of documents opened with OpenOffice.
org. A negative effect on the usage of OpenOf-
fice.org had to produce a negative impact on the
usage of the office automation documents and a
significant negative correlation between these
two variables; that is, the more documents are
handled with OpenOffice.org, the less they are
globally handled. The correlation in question
has been of -0.08, therefore we exclude that the
usage of OpenOffice.org has reduced the number
of documents handled daily.

b) Did the usage of OpenOffice.org caused
an increase in the time devoted to each docu-

ment? We studied the correlation between the
time spent managing all the documents and the
OpenOffice.org ones. A negative effect on the us-
age of OpenOffice.org has to create a significant
positive correlation; that is, it should be evident
that the more time spent with OpenOffice.org,
the more time is spent globally managing docu-
ments, as OpenOffice.org required more time to
accomplish the same tasks. This correlation has
been determined in -0.04, therefore it has to be
excluded that the usage of OpenOffice.org has
increased the global effort to handle documents.
The comparison with the control group confirmed
furthermore that the evolution of the usage of
documents among the test group and the control
group has been consistent, excluding the presence
of exogenous factors.

eX-Post AnAlysIs

At the end of the experimentation, the evaluation
of the attitude towards OSS and in general the

Figure 5. Increase in OpenOffice.org usage. On the X-axis there is the week of the project; OpenOffice.
org has been inserted during week 10; and the automatic association has been activated during week 23.
In blue the percentage of opened files using OpenOffice.org is represented and in orange the percentage
of average time devoted to OpenOffice.org among users that effectively used OpenOffice.org.

0%

5%

10%

15%

20%

25%

30%

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1602

An Empirical Study on the Migration to OpenOffice.org in a Public Administration

evaluation of the project has been performed.
We submitted one questionnaire to users in order
to evaluate their attitudes towards OSS and the
knowledge that was acquired after the transition.
We submitted also the same questionnaire to the
control group to ensure that no exogenous effects
biased the results. The questionnaire was desig-
nated to answer to the following two questions:

• What is the user perception of OSS at the
end of the experiment?

• Has the user modified his/her perception of
OSS at the end of the experiment?

All figures of this section represent the ex-ante
situation on the left and the ex-post situation on
the right. In this way it should be easier to evalu-
ate the change of users’ attitudes.

The first question that has been submitted was
whether the Open Source concept has become
more familiar after the experimentation. The

result in this case is quite obvious; at the end the
users had a clearer idea of the concept of OSS.
It may be surprising the initial number of users
claiming to know OSS, but this is due to the
preproject meetings with IT managers explaining
the reasons of the experimentation.

The second question enters the heart of the
matter, questioning about the perception of OSS.
In this case an interesting phenomenon has been
discovered. At the beginning one group had no
opinion on OSS (almost half of the interviewed).
At the end of the experiment, almost all users have
an opinion: those that were positive maintained
the same opinion and the uncertain were divided
into three groups almost of the same size, those
with a positive opinion, those with a negative one,
and those that had no opinion. Nevertheless, at
the end of the experiment only a small part of the
participants had a negative opinion on OSS.

The third question focuses on the importance
of the diffusion of the software in use. In this

Figure 6. Question 1 – How familiar are you with the expression Open Source Software? Possible
answers: (a) very well, (b) well, (c) neither nor, (d) not well, (e) not at all.

 Figure 7. Question 2 – How do you perceive the expression Open Source Software? Possible answers:
(a) as something negative, (b) as something positive, (c) neither positive nor negative.

 1603

An Empirical Study on the Migration to OpenOffice.org in a Public Administration

answer we have a strong movement towards a
bigger knowledge; for example, the category “very
important” has gone from 0 to almost 40%. The
experimentation in the usage of OpenOffice.org
has strongly increased the consciousness of the
participants on the importance of the usage of
well established software.

The fourth question poses the problem of the
direct substitution and asks the user how much
the user is reluctant to abandon the application
in use in favour of an OS solution. In this case
the user in favour maintained the same opinion,
while reluctant people became more reluctant;
also in this case users had a clearer idea of OSS
after the experimentation. More than half of the
interviewed users were still positive towards a
possible transition.

The fifth and sixth questions present a slightly
different nature. The aim is to find whether the
experimentation changed the perception on the

requirements of the software to be adopted and
used. Question 5 focuses on the factors to consider
when a new product is adopted and question 6 dis-
cusses the more important aspects of an efficient
usage. In both cases the role of the training and
support is evidenced as important, while other
aspects as security, privacy, and availability of
source code are considered less important. We
can conclude that the effect of the OpenOffice.
org introduction has increased the perception of
the importance of the training. From one side, this
can be obvious: the introduction of a new instru-
ment requires always a training period, especially
if it partially substitutes an old one. We must
also point out that all the interviewed people had
already performed their training with the office
automation tools some time before, therefore such
perception should already be present. It can be
concluded that OSS has additionally stimulated
the curiosity of participants, to the point to ask

Figure 8. Question 3 - How important is it that the application you use is established and widely used?
Possible answers: (a) very important, (b) important, (c) of moderate importance, (d) of little importance,
(e) not important.

 Figure 9. Question 4 – You are reluctant to give up the use of application software that you are using to
in favour of an OSS alternative! Possible answers: (a) totally agree, (b) agree, (c) neither, (d) disagree,
(e) totally disagree.

1604

An Empirical Study on the Migration to OpenOffice.org in a Public Administration

more questions about the tools used; such ap-
proach, if confirmed, can go in favour of people
who claim that the adoption of OSS brings more
“shared” knowledge.

The last question proposed before and after the
experimentation is a sort of summary and deals
with the motivations that the user would have to
use OSS. It is interesting to note that near OSS
supporters a new group emerged also absorbing
neutral users towards a more negative opinion.

Some questions about the overall evolution of
the migration have been submitted to users at the
end of the project. Two questions are interesting
for our evaluation of the migration, both related to
the functionalities of OpenOffice.org and the pos-
sible full migration to the new solution proposed.
We must point out that the experimentation has
been performed with version 1.1.3 of OpenOffice.
org; the latest release would, probably, obtain
better results.

Question 8 faces the problem of the choice
between the two proposed solutions in a general
way. It asks whether the functionalities offered by
the two suites are equivalent. Some users answered
that Microsoft Office offers more functionalities
than OpenOffice.org 1.1.3. In some way, the sur-
prise may be that half of the users considered the
set of functionalities offered equivalent.

Question 9 contextualises the problem. It tries
to evaluate the impact of a possible substitution of
Microsoft Office with OpenOffice.org. In this case
almost all the participants in the test considered
the migration as possible, even though the majority
sustained later that this operation requires some
effort and is not only a simple substitution.

A final evaluation of the experimentation has
been performed on the number of files generated
by the users adopting the new data standard
supplied by OpenOffice.org. Table 7 contains a
summary of all the different files created during

Figure 10. Question 5 – How important do you find the following factors when you use a new IT-plat-
form? Factors considered are: (a) support and training, (b) easiness of use, (c) interoperability, (d)
source code available, (e) functionalities, (f) security, (g) privacy.

Position Before the experiment After the experiment
1 Easiness of use Easiness of use

2 Functionalities Support and training

3

Support and training, interoperability,
security

Functionalities

4 Interoperability

5 Security

6 Privacy Privacy

7 Source code available Source code available

Figure 11. Question 6 – The biggest advantages you perceive with OSS are: Factors considered: (a) better
support and training, (b) it is easier to use, (c) stability, (d) better functionalities, (e) better security.

Position Before the experiment After the experiment
1 Easiness of use Easiness of use
2 Better functionalities, more stable Better support and training
3 Better functionalities, more stable4 Better support and training
5 Better security Better security

 1605

An Empirical Study on the Migration to OpenOffice.org in a Public Administration

Figure 12. Question 7 – Which motivations do you have to use Open Source Software? Possible answers:
(a) You believe it is right to support OSS initiatives, (b) You find that today’s market dominance of a single
software vendor is wrong, (c) other: specify, (d) I have no motivation to use Open Source Software.

.

Figure 13. Question 8 – How do you evaluate the functionalities of OpenOffice.org with respect to the
Microsoft Office ones? Possible answers: (a) widely superior, (b) superior, (c) equal, (d) inferior, (e)
widely inferior.

0%

10%

20%

30%

40%

50%

60%

70%

a b c d e

Figure 14. Question 9 – In this moment, if Microsoft Office is removed, are you still able to perform the
same tasks? Possible answers: (a) yes, (b) yes but with some problems, (c) no.

0%

10%

20%

30%

40%

50%

60%

70%

a b c

Table 7. Number of documents created during the experimentation

Writer documents Calc documents
Department 1 27 2
Department 2 223 34
Department 3 164 12
Total 414 48

1606

An Empirical Study on the Migration to OpenOffice.org in a Public Administration

the experimentation in the two different formats
proposed by the OpenOffice.org suite for text
processors and spreadsheets. Obviously this kind
of static analysis represents only a small subset of
the usage of the open solution, as users had also
the freedom to open Microsoft Office proprietary
formats using OpenOffice.org. For technical rea-
sons FLEA could not be employed in this type of
scan to give us more fine-grained data.

lIMItAtIons

This study represents the results of a single expe-
rience and such results cannot be systematically
generalised, as the essential comparative aspect
is missing. As already mentioned, the PA under
exam has imposed some constraints on the selec-
tion of the sample. The office automation field,
in particular, may not be fully comparable to
other desktop environments where open source
solutions are not as strong as OpenOffice.org.
Furthermore, this study does not focus on a com-
plete substitution of the old solution, rather on the
evaluation of the coexistence of both solutions. A
further step might be the evaluation of the effects
deriving from a complete migration.

conclusIon

The migration to OSS described in this article
has to be taken with care before generalising the
results to other similar cases. In particular the
migration has been restricted to the OpenOffice.
org platform and to the PA field. The migration
approach has been the more gradual as possible,
maintaining the proprietary solution in parallel
with the new one.

The results obtained from the experimentation
have been encouraging for the introduction of OSS
on the desktop-side. Data collected during the
experimentation shows that the usage of the new
platform increased during the whole period, reach-

ing at the end 25% of the total office automation
tasks. Proprietary software remained the preferred
solution for users. The impact on productivity
has been minimal also due to the similarities of
the software considered. Users acquired a better
understanding of OSS after the experimentation
and tended to have, in general, a positive vision
of the whole movement. Software used has been
considered adequate for the transition, although
a sort of lack of functionalities emerged from
the opinions of the users. More recent releases of
OpenOffice.org should solve these problems.

AcknowledgMent

We acknowledge Dr. Hellmuth Ladurner for his
precious help and support. Acknowledgments also
go to all the users involved, participants in the
experiment, technical personnel, and supervisors;
without their constant effort and their availability,
this study would not have been possible.

references

Basili, V. (1995). Applying the goal/question/met-
ric paradigm. Experience factory. In Software
quality assurance and measurement: A worldwide
perspective (pp. 21-44). International Thomson
Publishing Company.

Campbell, D.T., & Stanley, T.D. (1990). Experi-
mental and quasi-experimental design. Houghton
Mifflin Company.

CERT. (2001). Advisory CA-2001-19: Code Red
Worm. Retrieved June 15, 2006, from http://www.
cert.org/advisories/CA-2001-19.html

Everitt, K., & Lederer, S. (2001). A usability
comparison of Sun StarOffice Writer 5.2 vs. Mi-
crosoft Word 2000. Retrieved June 15, 2006, from
http://www.sims.berkeley.edu/courses/is271/f01/
projects/WordStar/

 1607

An Empirical Study on the Migration to OpenOffice.org in a Public Administration

Feller, J., & Fitzgerald, B. (2001). Understanding
Open Source Software development. Addison-
Wesley.

Fenton, N.E., & Pfleeger, S.L. (1997). Software
metrics: A rigorous and practical approach (2nd
ed.). PWS Publishing Company.

Gartner Inc. (2003). Distributed computing
chart of accounts. Retrieved June 15, 2006, from
http://www.gartner.com/4_decision_tools/model-
ing_tools/costcat.pdf

Landeshauptstadt München. (2003). Clientstudie
der Landeshauptstadt München. Retrieved June
15, 2006, from http://www.muenchen.de/aktuell/
clientstudie_kurz.pdf

Netcraft Survey. (2005). Retrieved June 15,
2006, from http://news.netcraft.com/archives/
web_server_survey.html

Newsforge. (2002). Largo loves Linux more than
ever. Retrieved June 15, 2006, from http://www.
newsforge.com/print.pl?sid=02/12/04/2346215

Nichols, D.M., & Twidale, M.B. (2003, January).
The usability of Open Source software. First
Monday, 8(1). Retrieved June 15, 2006 from http://
www.firstmonday.org/issues/issue8_1/nichols/

Robert Frances Group. (2002). Total cost of own-
ership for Linux Web servers in the enterprise.
Retrieved June 15, 2006, from http://www.rfgon-
line.com/subsforum/LinuxTCO.pdf

Rossi, B., & Succi, G. (2004). Analysis of depen-
dencies among personal productivity tools: A case
study. Undergraduate Thesis, Free University of
Bolzano-Bozen.

Shapiro, C., & Varian, H.R. (1999). Information
rules: A strategic guide to the network economy.
Harvard Business School Press.

Sillitti, A., Janes, A., Succi, G., & Vernazza, T.
(2003, September 1-6). Collecting, integrating and
analyzing software metrics and personal software
process data. In Proceedings of EUROMICRO
2003, Belek-Antalya.

Stadt Nürnberg. (2004). Strategische Ausrichtung
im Hinblick auf Systemunabhängigkeit und Open
Source software. Retrieved June 15, 2006, from
http://online-service.nuernberg.de/eris/agen-
daItem.do?id=49681

Stadt Wien. (2004). Open Source software am
Arbeitsplatz im Magistrat Wien. Retrieved June
15, 2006, from http://www.wien.gv.at/ma14/pdf/
oss-studie-deutsch-langfassung.pdf

The Yankee Group. (2005). 2005 North American
Linux TCO survey. Retrieved June 15, 2006, from
http://www.yankeegroup.com

ZDNet. (2005). Extremadura Linux Migra-
tion case study. Retrieved June 15, 2006, from
http://insight.zdnet.co.uk/software/linuxu-
nix/0,39020472,39197928,00.htm

endnotes

1 Apache Software Foundation, http://www.
apache.org

2 The Mozilla Firefox project, http://www.
mozilla.com/

3 gnuLinex, http://www.linex.org/
4 OpenOffice.org, http://www.openoffice.

org
5 Microsoft Office, http://www.microsoft.

com/office/editions/prodinfo/default.mspx

This work was previously published in International Journal of Information Technology and Web Engineering, Vol. 1, Issue 3,
edited by E. Damiani and G. Succi, pp. 64-80, copyright 2006 by Idea Group Publishing (an imprint of IGI Global).

1608

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.14
An Empirical Investigation into
the Adoption of Open Source

Software in Hospitals
Gilberto Munoz-Cornejo

University of Maryland Baltimore County, USA

Carolyn B. Seaman
University of Maryland Baltimore County, USA

A. Güneş Koru
University of Maryland Baltimore County, USA

AbstrAct

Open source software (OSS) has gained consid-
erable attention recently in healthcare. Yet, how
and why OSS is being adopted within hospitals in
particular remains a poorly understood issue. This
research attempts to further this understanding.
A mixed-method research approach was used to
explore the extent of OSS adoption in hospitals
as well as the factors facilitating and inhibiting
adoption. The findings suggest a very limited
adoption of OSS in hospitals. Hospitals tend to
adopt general-purpose instead of domain-specific
OSS. We found that software vendors are the
critical factor facilitating the adoption of OSS
in hospitals. Conversely, lack of in-house devel-

opment as well as a perceived lack of security,
quality, and accountability of OSS products were
factors inhibiting adoption. An empirical model is
presented to illustrate the factors facilitating and
inhibiting the adoption of OSS in hospitals.

IntroductIon

The open source software (OSS) phenomenon
has become an important area of interest in
information systems research due in part to the
large and fast-growing number of OSS users and
software products in a large variety of domains.
OSS is already being adopted and used as a soft-
ware platform in a number of fields other than

 1609

An Empirical Investigation into the Adoption of Open Source Software in Hospitals

healthcare (Dedrick & West, 2003; 2004; Norris,
2004; Waring & Maddocks, 2005), and it has the
potential to be equally promising for the hospital
industry (Fitzgerald & Kenny, 2004). Studying
OSS adoption in any domain can help reveal pat-
terns and phenomena that are applicable to adop-
tion in general, in addition to revealing insights
into the domain being studied. In particular, the
adoption and use of OSS in a hospital context
remains a poorly understood phenomenon; only a
handful of researchers have addressed the factors
inhibiting or facilitating such adoption. Such an
understanding is important in helping hospitals
make better decisions about whether and how
adoption of OSS could benefit them.

The first step in developing a better under-
standing is to explore the current state of OSS
adoption, and the factors inhibiting and influ-
encing it in hospitals. Such an exploration is the
goal of this study. Once this current state is well
described, it will be possible to seek answers to
higher-level questions about the pros and cons,
the costs and benefits, the advantages and disad-
vantages of OSS adoption in this domain, which
is the second goal.

Therefore, the present study is of considerable
interest for both practitioners and researchers. It
will provide hospitals and healthcare organizations
that are considering the adoption of OSS technolo-
gies with an understanding of how technological,
environmental and organizational factors affect the
adoption process. This way hospital IT practitioners,
or others attempting to introduce OSS technology
into hospitals, can prepare against the expected
barriers and can utilize the facilitators for success-
ful adoption. This research also provides scholars
with an empirical model for better understanding
facilitating and inhibiting factors, as well as provid-
ing the foundations for further research that may
validate and expand on the empirical model in other
healthcare organizations and other domains.

 The main objective of this investigation was
to explore and analyze the extent of OSS adoption
in hospitals, along with the factors influencing

or inhibiting this adoption process. Hospital IT
managers were chosen to represent the hospitals’
perspective on this topic. The following three
questions guided this investigation:

1. What are the types and names of OSS prod-
ucts that hospitals choose to adopt?

2. What is the extent of OSS adoption for these
products in hospitals?

3. What are the factors facilitating and inhibit-
ing the adoption of OSS in hospitals?

To research these questions, a survey and
interviews were used to acquire both breadth
and depth of understanding. The purpose of the
survey was to answer the first two questions—to
explore and characterize the types of OSS products
adopted in hospitals and to discover the extent
to which these products have been adopted. The
interviews were used to answer question three
to attain a deeper understanding of the factors
that are facilitating and inhibiting the adoption
of OSS in hospitals.

In the following sections of this article, we
first present the related work in this area. Then,
we introduce the methodology for our survey
and interview studies. After that, we present our
data analysis and results. Then, we introduce
our empirical model of the adoption of OSS in
hospitals. Finally, we present our conclusions and
the implications of our work.

lIterAture revIew

open source software Adoption in
Healthcare

Over the past few years, a small number of
researchers have focused on the study of the
potential advantages and risks of adopting and
implementing OSS in the healthcare domain.
Prior research encouraged the adoption and use of
OSS in healthcare organizations because of OSS’s

1610

An Empirical Investigation into the Adoption of Open Source Software in Hospitals

potential to both enhance healthcare delivery and
lower software acquisition costs (Carnall, 2000;
Kantor, Wilson, & Midgley, 2003; McDonald
et al., 2003; Valdes, Kibbe, Tolleson, Kunik, &
Petersen, 2004).

OSS could potentially be more reliable and se-
cure than proprietary software because its source
code can be inspected and reviewed (Carnall,
2000). Past research introduced and extended the
idea of OSS as a software development model
that could definitively improve clinical and re-
search software in the field of medical informat-
ics (Yackel, 2001). A paper by Kantor, Wilson,
and Midgley (2003) also presents the potential
benefits that OSS could provide in the area of
primary care. Kantor et al., also proposed that
the adoption of OSS would reduce the excessive
costs, the frequent turnover of vendors, and the
lack of common data standards that are afflict-
ing electronic medical records (EMR) systems
in primary care.

More recently, McDonald, Schadow, Barnes,
et al. (2003) also investigated the potential role
that the OSS model of software development may
have in the medical informatics area. They also
described a number of OSS products that have
been used in the medical informatics domain
over the years, including: OpenEMed, a patient
record system; OSCAR, a family practice office
management and medical record system; as well
as the internationally well-known VistA system,
a computer-base patient records system (CBPR)
developed in MUMPS (Massachusetts General
hospital Utility Multi-Programming System) by
the U.S. Department of Veteran’s Affairs (Brown,
Lincoln, Groen, & Kolodner, 2003; Longman,
2007). A more recent study by Valdes et al.
(2004) also pointed out that OSS could be an ef-
fective solution for the problems that distress the
healthcare industry such as high costs, business
failures and barriers of standardization (Valdes
et al., 2004). Other papers by Erickson, Langer,
and Nagy (2005), Scarsbrook (2007) and Nagy
(2007) supported the growth and adoption of OSS

in radiology because OSS may significantly lower
the entry cost for standards-compliant practices
in the healthcare industry. They also proposed
that OSS might allow rapid scientific advance-
ment due to the sharing of information and soft-
ware (Erickson et al., 2005; Scarsbrook, 2007).
Other authors such as DeLano (2005) presented
some reasons for the potential success of OSS
predicting that the pharmaceutical research and
development process may benefit from the OSS
development model.

open source software Adoption in
Hospitals

A case study of OSS adoption was conducted at
the Beaumont hospital in Ireland, where the IT
department, under limited financial resources,
made the decision to adopt OSS. Several OSS
products were adopted and implemented suc-
cessfully. The authors reported that there were
important initial start-up and future operational
costs when OSS products were preferred in the
hospital (Fitzgerald & Kenny, 2004).

Another study by Glynn, Fitzgerald and Exton
(2005) investigated the commercial adoption of
OSS using an innovation adoption theory frame-
work based on Tornatzky and Fleischer’s (1990)
model. They derived a framework that was then
used to investigate the adoption process of OSS
in the case of the Beaumont hospital (Fitzgerald
& Kenny, 2004).

The OSS products and processes were also seen
as promising in terms of enabling rapid evolution
and proliferation of applications in the medical
domain through their use of open standards and
higher degrees of interoperability (Raghupathi &
Gao, 2007). The authors argued that the devel-
opment processes in the Eclipse project (http://
eclipse.org) could improve scalability, prevent
vendor lock-ins, and reduce costs in the medical
information systems including electronic health
record and clinical decision support systems.

 1611

An Empirical Investigation into the Adoption of Open Source Software in Hospitals

Author(s) Major Factor Findings

Facilitators Inhibitors

A
do

pt
io

n
of

 O
pe

n
So

ur
ce

 S
of

tw
ar

e
in

 H
os

pi
ta

ls

Fitzgerald and

Kenny (2004)
•	 Limited financial resources

•	 Top management support

•	 Software functionality

•	 User’s past experience

•	 Lack of support from vendors

•	 Perception that OSS would threaten local proprietary

software companies

•	 Fear by users to become de-skilled

Gynn, Fitzger-

ald and Exton

(2005)

•	 Perception that the benefits of OSS

outweigh its disadvantages

•	 OSS-literate IT personnel

•	 Top management support

•	 Personal support for OSS ideology

•	 Network externalities

•	 The OSS champion example

•	 Perception of work under-valued if using OSS products

•	 Having to change operating model to OSS

•	 Fear by users to be de-skilled

•	 Lack of OSS champion example

•	 Lack of tolerance to technical problems with OSS

•	 Favorable arrangements with proprietary vendors

Holck, Larsen

and Pedersen

(2005)

•	 Limited financial resources

•	 Pressure to upgrade IT systems

•	 Top management support

•	 User’s past experience

•	 Government support

•	 Lack of reliable procurement models

	 Legal (licenses)

	 Technical (functionality, security, usability)

	 Corporate and business policy (vendor, customer

support, and software alliances)

A
do

pt
io

n
of

 O
pe

n
So

ur
ce

 S
of

tw
ar

e
in

 H
ea

lth
ca

re

To m a s Ya k e l

(2001)

•	 Access to real-world systems

•	 Reduction of bugs in medical sys-

tems

•	 Reduction of software ownership and

development cost

•	 Lack of a mature OSS beyond prototype phase

•	 High level of technical expertise required for OSS

•	 Proprietary mindset of the medical community

•	 Technology complexity of the medical domain

•	 Lack of OSS-IT personnel support, specifically for medi-

cal software applications

MacDonald et al.

(2003)

•	 Public policy encouraging that all

software developed by the government must

be released under an OSS license

•	 Information mechanisms to dissemi-

nate to the community about OSS develop-

ments and benefits

•	 Medical software currently in use is proprietary soft-

ware

•	 Leadership and top management in healthcare is risk

adverse

•	 Elimination of in-house personnel due to outsourcing

•	 Technology complexity of the medical domain

Hogarth and Turn-

er (2005)

•	 Reduction of software ownership and

development cost

•	 Disappearance of vendor lock-in

•	 OSS adherence to standards for com-

patibility and data interchange

•	 Lack of OSS-IT personnel support, specifically for medi-

cal software applications

•	 Technology complexity in the medical domain

•	 Success of mainstream applications might not translate

to clinical software

Kantor et a l .

(2003)
•	 OSS can reduce EMR ownership and

development cost

•	 Disappearance of the vendor lock-in

•	 OSS adherence to standards for com-

patibility and data interchange

Table 1. Main facilitators/inhibitors of OSS adoption

1612

An Empirical Investigation into the Adoption of Open Source Software in Hospitals

There are some recent studies focusing only
on the managerial and technical barriers to the
adoption of OSS (Holck, Larsen, & Pedersen,
2005). Past research on OSS and healthcare also
proposed that OSS would reduce the number of
bugs and failures in medical systems, as well as
reduce their overall cost (Yackel, 2001). A study
by Hogarth and Turner (2005) focused on creating
a catalogue of existing OSS clinical projects and
on determining metrics for their viability. The
authors mentioned that many of the factors that
are required to make a “successful and vibrant”
OSS community within the mainstream software
applications systems (e.g., Linux, Apache, etc.)
may not necessarily be applicable to the clinical
software applications systems.

Another study by Kantor, Wilson and Midgley
(2003) presented a set of potential advantages that
the adoption of OSS may provide with regards to
lowering the resistance of hospitals to the adoption of
electronic medical records (EMR). These included:
1) the potential of OSS to reduce EMR ownership
and software development costs, 2) the removal
of vendor lock-in, and 3) the adherence of OSS to
standards for the compatibility and data interchange
among systems.

In another study by Valdes, Kibbe, Tolleson, et
al. (2004) dealing with the barriers to the prolifera-
tion of electronic health records/electronic medical
records (EHR/EMR), the authors concluded that
OSS is a viable solution to the barriers of high
cost, business failure and standardization that the
healthcare industry is facing when adopting EHR/
EMR. The authors mentioned that, for example,
interconnectivity problems are more easily solved
when using OSS, since no technical information
can be hidden. They also added that OSS can help
alleviate the high costs associated with the adop-
tion and implementation of EHR/EMR (Valdes et
al., 2004). Although this article presents a good
case for the adoption of OSS solving the barri-
ers that EHR/EMR is facing, the authors do not
support their case with empirical data.

In summary, even though we have witnessed a
widespread, significant OSS research and industry
adoption of OSS, there are still few studies on
OSS adoption and use, especially in the hospital
industry. Only a handful of researchers have ad-
dressed the factors inhibiting or facilitating OSS
adoption in hospitals (Carnall, 2000; Kantor et
al., 2003; Valdes et al., 2004; Glynn, Fitzgerald &
Exton, 2005). Each of the aforementioned studies
in this section found that top management support,
limited financial resources, past experiences using
OSS-like systems, and the flexibility to modify,
combine, and tailor OSS are the most important
facilitating factors for the adoption of OSS within
a hospital scenario. The factors inhibiting adop-
tion range from the fear of IT personnel becoming
de-skilled by not using mainstream commercial
applications, the lack of OSS-literate IT person-
nel, the lack of other successful OSS examples in
the industry, to the lack of reliable procurement
models for the adoption of OSS. Finally, many of
the papers and studies reported are cases from
European countries, with healthcare systems that
are very different from that in the U.S. Table 1
presents only a summary of the facilitators and
inhibitors shown to influence the adoption of OSS
as found in the literature.

MetHodology

A mixed methods design was used in this research
to explore the extent of OSS adoption in hospitals
as well as to investigate the influencing and inhibit-
ing factors. The exploratory approach of this study
is warranted by the fact that, as of yet, the adop-
tion and use of OSS in U.S. hospitals has not been
accompanied by any theoretical grounding or by
empirical analysis that explains how or why OSS
products are being adopted and used. That is, thus
far, there are few existing conceptual frameworks
to guide a research effort in this area. Similarly,
there are no theoretical guidelines that have been

 1613

An Empirical Investigation into the Adoption of Open Source Software in Hospitals

empirically evaluated to support a rigorous un-
derstanding of the complex factors that inhibit the
adoption and successful implementation of OSS
technologies in hospitals. For these reasons, a
mixed methods approach using a grounded theory
perspective was selected over a confirmatory or
causal research design approach. Grounded theory
is a systematic, qualitative research procedure
used to develop an inductively grounded theory
that explains a process, an action, or interaction
about a phenomenon (Glaser & Strauss, 1967;
Glaser, 1978; 1999; Creswell, 1994; 2005; Strauss
& Corbin, 1998; Charmaz, 2006).

study desIgn

The data collection methods used in this research
are a survey and interviews, allowing both breadth
and depth of information concerning the adoption
of OSS in hospitals. We focused on Baltimore,
Washington and Northern Virginia (BWNV)
area hospitals instead of a nationwide area. This
allowed us to spend more time cultivating each
contact from the target population through initial
phone calls, and to obtain richer data in the form of
personal face-to-face and telephone exchanges.

First, a survey was used to gather data from a
wide variety of hospitals dispersed across a geo-
graphic area. This was done in order to explore
and characterize the extent and the types of OSS
products adopted by hospitals. Following the sur-
vey, semi-structured interviews were conducted
in-person and by telephone with IT managers in
order to attain deeper understanding of the factors
that facilitate or inhibit OSS adoption in hospi-
tals. Interviews are the quintessential qualitative
method for data collection and one of the most
widely used techniques for acquiring qualitative
data in order to collect impressions and opinions
about the particular research issue (Tashakkori
& Teddlie, 1998; Patton, 2002).

 The target population for the study consists of
hospital executives, directors and managers that

are involved in IT within BWNV area hospitals.
Although we selected the BWNV area largely
because of our own location, it is an appropriate
choice because it is one of the most diverse areas
in the U.S. socioeconomically, politically, and cul-
turally. The survey sample was selected from the
Healthcare Information and Management Systems
Society (HIMSS) from their electronic mailing
list database of chief information officers (CIO),
chief technology officers (CTO), vice presidents
(VP) (of information technology (IT), informa-
tion systems (IS) and management information
systems (MIS)), and directors and managers of
other IT departments within hospitals. HIMSS
was selected because it is a leading non-profit
organization dedicated to improving healthcare
through the application of information technology
(HIMSS, 2006). This research takes a key infor-
mant approach that allowed the responses of the IT
managers to represent those of the hospital being
surveyed. The use of managers as key informants
has been successfully applied in many IT studies
that involve organizations (Huff & Munro, 1985;
Gatignon & Robertson, 1989; Chau & Tam, 1997;
Eyler et al., 1999; Goode, 2005).

survey AdMInIstrAtIon

Prior to sending the survey invitation e-mail out,
an attempt was made to contact each of the IT
managers in the target population by telephone in
an effort to encourage participation and receive
a verbal commitment from them to complete the
survey. After the initial telephone contact, an
e-mail invitation letter was sent to the potential
respondents. The survey link was appended to the
bottom of the e-mail cover letter and upon click-
ing the survey link, the participant was directed
to the online survey (Appendix A).

Descriptive statistics, such as frequency
distributions, percentages, standard deviations,
confidence intervals, Chi-square and Fisher’s tests
were computed in order to analyze the survey

1614

An Empirical Investigation into the Adoption of Open Source Software in Hospitals

results. Moreover, to ensure better reporting and
complete description of our Web-based survey
results, we applied a checklist of recommenda-
tions from the Checklist for Reporting Results
of Internet e-Surveys (CHERRIES) (Eysenbach,
2004) (Appendix B).

IntervIews

The interview population consisted of the subset
of survey respondents who responded positively
to a survey item that specifically asked if they
were willing to share their thoughts and expe-
riences in an interview. A total of 11 survey
respondents initially agreed to be interviewed.
All such respondents were sent an e-mail letter
introducing the objectives of the interview and
asking to schedule a meeting. By the end of this
process, only five IT hospital managers ultimately
agreed to be interviewed. The other six manag-
ers, for reasons unknown, chose not to respond
to the many invitations by e-mail and telephone
to participate and were unreachable to be inter-
viewed. Each interview lasted 30-60 minutes and
was conducted between January and May 2007.
The interviews focused on the organizational,
technological, and environmental factors that
facilitated or inhibited the adoption of OSS at
their hospitals (Appendix C). Before conduct-
ing each interview, the participant was briefed
on the nature and purpose of the study. All the
participants were asked for their authorization to
be recorded during the interview and were asked
to sign an informed consent.

The interviews were coded and analyzed employ-
ing grounded theory consistent with the systematic
procedures recommended by Strauss and Corbin
(1998), namely open coding, axial coding and se-
lective coding. Coding is the process that dissects,
differentiates, combines, and discovers concepts and
relevant features from the data (Seaman, 1999). We
developed concepts and categories emerging from
the data using the line-by-line analysis as described

by Straus and Corbin (1998) and Glaser and Straus
(1967). The concepts and categories were generated
by our analysis of the data and validated applying
the constant comparative method. Each interview
was treated as an individual case. NVivo® was used
to assist the qualitative analysis process, to manage
data, to store the interview transcripts, and to help
in coding text (Bazeley & Richards, 2000).

results

survey results

This research finds that 23% (n=7) of the hospi-
tals within the survey sample have adopted OSS.
Conversely, 76% (n=23) of the hospitals indicated
that they have not adopted any type of OSS. All
of the hospital adopters of OSS reported having
general-purpose products. Among them, only 57%
(n=4) reported having adopted domain-specific
products. Table 2 presents descriptive statistics
profiling the hospitals in our survey sample.

Key findings from this research indicate that
hospitals are adopters of both general-purpose and
domain-specific products, but they have adopted
general-purpose products to a greater extent than
domain-specific products. General-purpose OSS
adoption in hospitals clusters mainly in databases,
desktop software, programming languages, and
operating systems, as well as Web development
tools and server products. Well-known OSS
products such as MySQL, Linux, Apache, Firefox,
PHP and Perl were the leading software products
that hospitals selected to adopt. The scale used
in the survey to indicate extent of adoption was
adapted following Fichman and Kemerer (1997)
and it ranges from unawareness (no knowledge of
OSS), to awareness, interest (actively learning),
evaluation/trial (acquisition and initiation of an
evaluation or trial version), commitment (use
for one or more deployment projects), limited
deployment (regular, but still limited, deploy-
ment and use), and general deployment stages (a

 1615

An Empirical Investigation into the Adoption of Open Source Software in Hospitals

Frequency

(n =30)

Percent

%

Hospital type

Healthcare system hospital 12 40.0

Hospital as a part of a multi-system network 11 36.7

Stand-alone hospital 5 16.7

Ambulatory care facility 1 3.3

Other 1 3.3

Number of beds in the hospital

<50 beds 1 3.3

101-200 Beds 2 6.7

201-300 Beds 6 20.0

301-400 Beds 4 13.3

401-500 Beds 2 6.7

>501 11 36.7

Not classified by beds 4 13.3

Hospital’s annual gross revenue

< $5M 1 3.3

$5M-$25M 3 10.0

$26M-$50M 3 10.0

$51M-$200M 2 6.7

$201M- $350M 8 26.7

$351M-$500M 2 6.7

> $501M 11 36.7

Table 2. Descriptive statistics of surveyed hospitals

continued on following page

stable and regular part of the IT infrastructure).
The survey results show that the vast majority of
general-purpose products are positioned from the
evaluation/trial stages to the limited deployment
stages. Well-known OSS products, for example,
MySQL, Linux, Apache, and Perl, are in the
limited deployment stages, whereas OSS desk-
top software applications, such as Firefox and
Mozilla, are in the evaluation/trial stages. The
extent of adoption of domain-specific products
is lower than that of general-purpose products.
The predominant adoption stages for all the
domain-specific OSS products are awareness to

interest. Domain-specific adoption occurs mainly
in the telemedicine, electronic medical records,
radiology, laboratory and pharmacy information
systems products.

Furthermore, the results of the survey provide
information about relevant contextual and struc-
tural characteristics of the hospitals that tend to
adopt OSS. These characteristics may have a
determinant effect on the adoption of OSS. First,
the majority of the adopting hospitals are very
large hospitals, with 500 beds or more. Second,
these hospitals tend to have high annual revenue,
more than $500 million. Third, hospital adopters

1616

An Empirical Investigation into the Adoption of Open Source Software in Hospitals

of OSS have a propensity to have a large number
of IT support staff. Finally, hospitals that have
adopted OSS also tend to have IT budgets that are
less than 3% of the hospital’s total budget.

Interview results

This study also identifies, through the interview
data, key categories that facilitate and inhibit
the adoption of OSS in the hospitals within the
sample. The interview data reveal that hospital
software vendors are the most critical factor influ-
encing the adoption of OSS in hospitals. Further,
hospitals rely heavily on software vendors for all
of their IT solutions. The results also show that
hospital software vendors enlarge their product
lines and the services they provide to hospitals
to include general-purpose and domain-specific
OSS products. In addition, IT managers have a

positive satisfaction level, in general, with the
software vendor services and products, and,
overall, have a good relationship with them. Table
3 presents a concise summary of the results of
the interviews.

The majority of the hospital IT managers
reported that lack of in-house development, and
a perceived lack of security, quality, and account-
ability of OSS products were the most significant
factors that inhibit the adoption of OSS in hospi-
tals. IT managers also identified the lack of medi-
cal informaticians, patient-privacy protection and
privacy legislation as major inhibitors to adopt
OSS, particularly domain-specific products.

Based upon our findings (from both the survey
and interviews), the following section presents an
empirical model describing the factors facilitating
and inhibiting the adoption of OSS in hospitals
and the relationships between them.

Annual IT operating budget

<2% 5 16.7

2.1-3.0% 15 50.0

3.1-4.0% 1 3.3

4.1-5.0% 5 16.7

5.1-6.0% 1 3.3

>8% 3 10.0

Type of IT personnel

In-house 27 90.0

Outsourced 3 10.0

Number of in-house IT staff employed full time

≤10 5 16.7

10-30 10 33.3

31-60 7 23.3

≥91 8 26.7

Years of experience of in-house IT staff

≤2 years 1 3.3

2-5 years 6 20.0

5-10 years 15 50.0

≥10 years 8 26.7

Table 2. Descriptive statistics of surveyed hospitals

 1617

An Empirical Investigation into the Adoption of Open Source Software in Hospitals

AdoPtIon of oss In HosPItAls:
An eMPIrIcAl Model

We have used Strauss and Corbin’s (1998) para-
digm to develop an empirical model describing
the adoption of OSS in hospitals, based on our
data. This empirical model helps us to develop
and propose connections between the factors that
emerged from our findings. Figure 1 presents the
empirical model that lays out the analysis of the
factors that emerged from our results and the
relationships between them.

The empirical model identifies temporal
and inferential, rather than causal, relationships
between the factors relevant to the adoption of
OSS in hospitals. For example, the mix of causal
conditions in a particular hospital at a particular
point in time (as defined by the level of in-house
development, the number of IT personnel, etc.)
sets the stage and shapes what happens when an
event occurs related to the core category (e.g.,
when a software vendor offers an open source
solution to the hospital). This core category then
directly influences the strategic actions (i.e.,

adoption or non-adoption of OSS) that lead to
the consequences. The contextual factors and
intervening conditions moderate and mediate the
strategic actions that are employed to bring about
certain consequences (Strauss & Corbin, 1998;
Creswell, 2005). So, in terms of the symbology
in Figure 1, an arrow from one construct to an-
other cannot be interpreted to mean that the first
construct in any way causes the second, but that
the mix of factors and actions described by the
first construct influence the mix of factors and
actions described by the second construct in any
particular instance. The constructs of the model
are described in more detail below.

causal conditions

Causal conditions, as the term is being used in our
empirical model, are factors that are identified as
influencing the core category. There is evidence
from our findings that all of these causal conditions
have an influence on whether or not a hospital is
open to an offer of OSS by a software vendor.

Core Categories Subcategories

1. Hospital IT human resources •	In-house software development

•	IT personnel

•	Medical informaticians

2. Hospital regulatory landscape •	Patient-privacy protection and privacy legislation

•	Lack of liability/accountability provided by OSS

3. Hospital software vendors •	Software vendor providers of OSS

•	Satisfaction level with software vendors

•	New software business models

4. Hospital organizational factors •	Hospital organizational culture

•	Hospital organizational structure

5. Hospital technological factors •	Perceived lack of quality

•	Perceived lack of security

6. International development of

OSS

•	Labor cost and qualified programmers

•	Type of healthcare systems

Table 3. Emerging code categories and subcategories of the adoption of OSS in hospitals

1618

An Empirical Investigation into the Adoption of Open Source Software in Hospitals

The subject of technical personnel in hospitals
came up often in our interview data (see “Inter-
view Results” and Table 3). Hospital IT managers
report that the lack of in-house development is
the rule rather than the exception; hospitals do
not develop their own software systems, and thus
they depend on software vendors for all their IT
operations and software needs. Managers also
mentioned that much of their IT staff personnel
are exclusively devoted to the on-site support of
IT systems provided by vendors. The degree to
which a hospital lacks in-house development activ-
ity, and IT personnel with technical development
skills influences how dependent they are on their
software vendors, and thus influences how they
would react to the offerings of their vendors. Such
a dependence would make a hospital more likely
to accept a technology solution from a vendor that
included OSS. A related causal condition is the
lack of personnel who possess an amalgamation
of medicine and information systems expertise
and thus who would be able to develop and main-
tain software systems tailored to hospitals and
healthcare organizations.

The perceived lack of general quality and
perceived lack of security of OSS products are
persistent themes that emerged from our data
analysis (these are described under the core cat-
egory “Hospital technological factors” in Table 3).
As one manager commented “OSS is not going to
have the same level of quality and not nearly the
same level of documentation and rigor you can
get from a corporate environment.” Another IT
manager opined that “the majority of the OSS are
probably of inferior quality because they are just
gifts that any research lab puts together and hands
out from a couple graduate students.” Managers
also perceive OSS as a high-risk product when it
concerns security. As one manager commented, “It
is not the fact that the OSS won’t be able to provide
the functionality that we need in the hospital. The
major concern is going to be how secure OSS is.”
Managers perceive OSS to be highly vulnerable
to attacks from hackers or other parties, which
may inhibit them from adopting OSS, even from
a vendor. These quality and security factors will
color a hospital’s openness to a vendor’s offer of
an open source solution.

Figure 1. Empirical model for the adoption of OSS in hospitals

Core category

· Hospital software
vendors

Strategic actions

· Adoption of OSS

Intervening conditions

· Patient-privacy
protection and privacy
legislation

· Type of health care
system

· International
development of OSS

Contextual factors

· Hospital type
· Hospital size
· Hospital IT budget
· Hospital organizational

culture
· Hospital organizational

structure
Consequences

· Reducing software
development and
implementation costs

· Avoiding vendor
lock-in

· Promoting common
data standards

· Increasing software
quality

· Increasing security

Causal conditions

· Lack of in-house
software development

· Lack of IT personnel
· Lack of medical

informaticians
· Lack of general quality
· Lack of security
· Lack of liability of OSS
· Satisfaction level with

software vendors

 1619

An Empirical Investigation into the Adoption of Open Source Software in Hospitals

The lack of accountability of OSS providers
is also a concern for the hospital IT managers
we interviewed. Having a vendor that can be
held liable or accountable if there is inadequate
or insufficient quality or security of the software
product strongly influences the decision to adopt
products from software vendors. As one IT man-
ager expressed: “the factor that caused us not
to adopt OSS is the support and accountability
that comes with writing a check to a commercial
software vendor.” The negative perceptions of
quality, security and lack of liability reinforce the
hospitals’ dependence on software vendors.

Finally, our findings report that IT manag-
ers have a positive satisfaction level, in general,
towards the products, support and services that
software vendors provide in their hospitals, as
noted in the interview results. This further re-
inforces the hospitals’ dependence on software
vendors.

In summary, these causal conditions all shape
and impact the core category, that is, they influ-
ence what happens when and if a vendor offers a
hospital a solution that includes OSS.

core category

The mix of causal conditions in a particular hospital
setting sets the stage for the “core category,” that is,
the hospital software vendors. While our survey did
not address the issue of software vendors, there was
unanimous consensus amongst all the hospital IT
managers interviewed that hospital software vendors
play a pivotal role in the adoption process of OSS
in hospitals, as discussed in the interview results.
IT managers identify hospital software vendors
who supply OSS products and services as the key
facilitators for the adoption of both general-purpose
and domain-specific OSS products. In terms of the
empirical model presented in Figure 1, the actions of
the software vendors is the trigger, or the gateway,
that creates the situation where a hospital must decide
to adopt or not adopt OSS. Such a decision does not
even arise except through the actions of a software

vendor, according to the findings of this study. As
one manager commented, “hospitals are so dependent
on vendors of hospital IT products that we are not
in the position to kind of ‘buck the rules’ and go it
alone for the adoption of OSS.”

However, sometimes this decision is not even
explicit. As one IT manager adopter of OSS
expressed, “we don’t have a conscious decision
to adopt OSS because our hospital outsources
a lot of our technical knowledge to vendors, so
the adoption of OSS is coming throughout the
vendor’s decisions for the most part.”

The hospitals’ decision to adopt OSS from soft-
ware vendors is linked to their belief that the OSS
offered this way has “a professional level of quality
control” that is greater than the OSS available from
other sources, such as the Internet. As one IT man-
ager who adopted vendor-supported OSS stated,
“I am very happy using OSS because, for me, the
best of two worlds is when vendors support an OSS
solution. I am willing to pay for OSS, because I
feel I have professional quality and control over the
software.”

contextual factors

Contextual factors are the “specific set of condi-
tions (patterns of conditions) that intersect di-
mensionally at this time and place to create a set
of circumstances or problems to which persons
respond through actions/interactions” (Strauss
& Corbin, 1998, p. 132). Our data, especially the
survey data presented in “Survey Results”, reveal
that several contextual factors are expected to
moderate the adoption of OSS in hospitals. The
combined qualitative and quantitative results of
this study provide evidence that the following
contextual factors may facilitate or inhibit the
adoption of OSS in hospitals: 1) hospital type, 2)
hospital size, 3) hospital IT budget, 4) hospital
organizational culture, and finally 5) hospital
organizational structure. These factors are dif-
ferent from the causal conditions listed earlier,
in that they are more general, static factors that

1620

An Empirical Investigation into the Adoption of Open Source Software in Hospitals

apply to the hospital as a whole and do not specifi-
cally form the hospital’s attitude towards OSS, or
towards the software vendor.

Depending on the hospital type (such as a
stand-alone hospital versus a multi-hospital net-
work, or a university hospital versus a private
hospital, and so on), the importance of IT adoption
within the hospital may differ. Different types
of hospitals seem to have different requirements
to adopt software. For example, a university
hospital may allow experimentation with new
software products while a private hospital in a
multi-hospital network may not allow any type
of experimentation. Such factors may have an
effect on the adoption of OSS by hospitals. Hos-
pital size is likely to be related to organizational
characteristics such as slack in resources or a
large professional workforce that can also have a
positive effect on the adoption of OSS in hospitals.
Hospital IT budget is another contextual factor
that emerged in our study as a meaningful factor
since hospitals with smaller relative IT budgets
(with 3% or less of the total hospital budget) have
a propensity to adopt OSS.

Other contextual factors within the hospital
such as organizational culture and organizational
structure can also have an effect on the adoption
of OSS. As one manager commented, “the or-
ganizational design of the hospitals has a major
influence on the adoption of software within
the hospital, I don’t want to use the word power
structure, but it is almost the political landscape
of the organization that influences the way we
adopt any technology.”

Our findings support the effect that all the
aforementioned factors have on the strategic ac-
tions (i.e., adoption or non-adoption) as depicted
in Figure 1 with regards to OSS adoption within
hospitals.

Intervening conditions

Intervening conditions are those conditions that
“mitigate or otherwise impact causal conditions”

(Strauss & Corbin, 1998, p. 131). The intervening
conditions identified in this study included: 1)
patient-privacy protection and privacy legisla-
tion, 2) type of healthcare system, and 3) inter-
national development of OSS. These intervening
conditions are factors, external to the immediate
hospital setting that may inhibit the adoption of
OSS in hospitals. IT managers we interviewed
(see Table 3) report that factors such as patient-
privacy protection and privacy legislation may act
as deterrents for the adoption of OSS in general,
especially with regards to the domain-specific OSS
products. For example, hospital IT managers were
reluctant to adopt domain-specific OSS products
because they perceived OSS as posing a threat to
patients’ privacy and confidentiality as well as to
HIPAA compliance mandates. Consequently, we
conclude that the aforementioned three interven-
ing conditions also mediate the adoption of OSS
in hospitals.

strategic Actions

Strategic actions are “purposeful or deliberated
acts that are taken to resolve a specific problem”
(Strauss & Corbin, 1998, p. 133). The interaction
outcome of the core category (hospital software
vendors) with the contextual factors and the in-
tervening conditions may result in a decision by
hospitals to make full use of a technology—in this
case OSS—as a plausible or implausible alterna-
tive to proprietary (closed source) or commercial
software products.

consequences

Consequences are the outcomes of the interaction
of the core category with the contextual factors,
intervening conditions and the strategic actions. The
outcomes of this empirical model are closely aligned
with the potential benefits of OSS claimed in the
literature reviewed in literature section of this article.
However, we can only speculate about the actual
consequences, as that part of the model is beyond

 1621

An Empirical Investigation into the Adoption of Open Source Software in Hospitals

the scope and objectives of this research. However,
investigating the consequences of OSS adoption in
hospitals is a vital area for future research.

IMPlIcAtIons

Implications for the literature

OSS has created a stir of interest in many disci-
plines ranging from computer science to sociology,
and a growing body of literature has emerged to
explain many aspects of OSS. However, no work
has investigated the adoption of OSS in hospitals.
The research presented here addresses this gap.

A number of respondents from the interviews
noted that the lack of IT personnel and the lack of
medical informaticians are inhibiting factors for
adoption of OSS by hospitals. This is consistent
with previous authors (Yackel 2001; MacDonald
et al., 2003; Fitzgerald & Kenny, 2004; Hogarth
& Turner, 2005; Waring & Maddocks, 2005)
who have noted the importance of IT personnel
with high levels of technical expertise required
in order to deal with OSS applications and the
technological complexity in the medical domain
that needs personnel that understand both medi-
cine and information systems.

In contrast to other studies claiming that the
reduction of ownership and development cost
is one of the main advantages of adopting OSS
in healthcare (Yackel, 2001; Kantor et al., 2003;
Fitzgerald & Kenny, 2004; Glynn et al., 2005; Hog-
arth & Turner, 2005; Holck, Larsen, & Pedersen,
2005), the findings from this research indicated
that cost factors are not a core, important category
for hospital IT managers when deciding to adopt
OSS. The IT managers in our study were found
to be more concerned about the quality, security
and liability issues surrounding OSS than about
the potential cost-benefit factors associated with
the adoption and use of OSS. This finding also
compares with a prior study by Goode (2005),

which also noted that managers see software with
high cost as an indicator of quality.

Prior research (Fitzgerald & Kenny, 2004; Glynn
et al. 2005; Holck et al. 2005; Waring & Maddocks,
2005) has noted the importance of top management
support for the successful adoption of technology
within organizations. Our findings, by contrast, show
that not only top management support is important
to the adoption of OSS by hospitals, but clinical
personnel within hospitals (e.g., physicians, nurses,
etc.) also exert a significant influence on the decision
to adopt not only OSS but any technology. Many IT
managers recognized the political influence of these
groups as a critical factor in how OSS would be used
in the future, even before getting to the technology
portion of the adoption of OSS by hospitals.

This study also shows that the hospital industry
is a very conservative industry when it concerns
adopting new technologies. Managers repeatedly
indicated the “conservative aspects and risk adverse”
behavior of the hospital industry to adopt not only
OSS but also any new technology. This finding is
consistent with MacDonald et Al. (2003) and Glynn
(2005) who also pointed out hospitals’ risk averse
behavior when adopting IT.

Finally, our core finding about the central
role of software vendors in the adoption deci-
sion in hospitals has some relationship to prior
literature. Some existing studies have indicated
that avoiding vendor lock-in is perceived to be an
advantage of adopting open source (Carr, 2003;
2004; Fink, 2003; Kantor et al., 2003; Fitzgerald,
2004; Goldman & Gabriel, 2005; Goode, 2005).
In contrast, in our study, the role of vendors
emerged quite differently. The role of vendors
as OSS adopters, who then transfer their adop-
tion decisions on to their client hospitals, has not
previously been described in the literature. This
finding describes vendors as innovating the way
they develop, distribute, support and maintain
software systems within hospitals. Prior studies
have not shown software vendors to be such key
enablers of OSS in the hospital industry.

1622

An Empirical Investigation into the Adoption of Open Source Software in Hospitals

Implications for future research

This research is unique within the field of OSS
and healthcare. That is, there is no study that has
been published to date presenting an empirical
model for the adoption of OSS in hospitals. This
model, grounded in empirical data collected from
surveys and interviews, identifies the factors and
relationships facilitating and inhibiting the adop-
tion of OSS in hospitals. This model provides the
basis for future testing of the interactions among
the key concepts proposed in this study. Further-
more, there are numerous significant issues for
researchers, including ourselves. Our findings,
while not highly generalizable due to the limita-
tions of the study, provide sufficient grounding
for future confirmatory studies.

In particular, a number of very interesting
propositions or hypotheses are suggested by our
empirical model, and by the survey and interview
data. Future research aimed at validating these hy-
potheses would be a significant contribution to the
field. Examples of such propositions include:

• Proposition: Adoption of OSS is more likely
to be found in hospitals that have in-house
technical staff with experience in software
development, OSS, and/or with medical
informatics.

• Proposition: Hospitals with an existing re-
lationship with a software vendor who offers
OSS solutions are more likely to adopt OSS.
The likelihood increases with the degree of
dependence on the vendor and the degree
of satisfaction with the vendor.

• Proposition: The adoption of OSS in a
hospital is more likely when there is a cen-
tralized IT strategy within the hospital.

• Proposition: The likelihood of a hospital’s
adoption of OSS is negatively correlated with
the IT manager’s perception of the general
quality and security of OSS products.

To further validate propositions such as those
above, as well as the whole empirical framework
derived from this study, the following future
research is planned:

1. Validation of the model by collecting data
from a large sample of hospitals, either in
the U.S. and/or internationally, would allow
for further conclusions about the causal
relationships and interactions suggested by
our empirical model.

2. A case study in a hospital setting to ana-
lyze the consequences of the adoption and
implementation of OSS.

3. Further empirical investigation into the rela-
tionship between hospital software vendors
and adoption of OSS.

Implications for Practice

The present research provides a better understand-
ing to hospital IT managers and practitioners
about the extent of OSS adoption in hospitals
in conjunction with the factors facilitating or
inhibiting this adoption process. Hospitals and
healthcare organizations that are considering
the adoption and implementation of OSS tech-
nologies need to understand how technological,
environmental and organizational factors affect
the adoption process. This way IT hospital practi-
tioners can prepare against the expected barriers
and can utilize the facilitators for successful OSS
technology adoption.

The first implication for practitioners is that,
contrary to theoretical and anecdotal expectations
about the cost-benefit advantages of OSS versus
proprietary or commercial-based software, the
findings from this research indicated that financial
factors are not deemed to be a core concern for
IT managers when deciding to adopt OSS. The
IT managers in our study were found to be more
concerned about the quality, security and liability

 1623

An Empirical Investigation into the Adoption of Open Source Software in Hospitals

issues surrounding OSS. This implies that, when
building a business case, or justification, for the
adoption of OSS, the analysis must take into
account issues related to quality, security, and
accountability with at least as much prominence
as cost-benefit issues.

The second implication for hospital IT prac-
titioners would be to involve all the stakeholders
within the hospital in the adoption decision-mak-
ing; for this particular point, our finding indi-
cated that physicians, nurses, and other clinical
personnel are key stakeholders to address in the
adoption process of not only OSS but any type
of technology introduced to a hospital. Thus the
receptivity to the idea and philosophy of OSS
must be assessed with these stakeholders, and
any ideas and concerns that might surface during
the assessment must be documented and taken
into account.

The third recommendation for hospitals that
are considering OSS is that they can start adopt-
ing OSS with a small pilot project in order to
test and experiment with the quality issues of
interest, as well as the costs and benefits, of OSS
to the hospital. In addition, it is very important
to collect data and metrics from the pilot project
and communicate the results to all the stakehold-
ers, including vendors, within the hospital. It is
important to mention that OSS is not “free,” and
never will be without a cost.

Another implication for practitioners who want
to promote the use of OSS within the hospital
and healthcare industry is for them to liaise with
hospital software vendors and the OSS com-
munity. Coordinating with hospital IT vendors
is important because, as our findings reported,
any tendency towards adoption of OSS in hospi-
tals is occurring because healthcare IT vendors
are embracing, providing, and maintaining OSS
products. Under this business model, hospital
software vendors are not only offering the software
to hospitals but also offering services for instal-
lation, customization, and maintenance of OSS
applications, either domain-specific or general-

purpose. Furthermore, there are good examples
of software partnerships amongst IT businesses,
open source communities, and researchers such as
Eclipse and even Linux (Capek, 2005; Goldman &
Gabriel, 2005; Zeller & Krinke, 2005) that can be
replicated in the hospital and healthcare industry.
Moreover, the hospital industry is probably the
most influential and powerful industry operating
today in the healthcare area. If this industry sees
the benefits from OSS, then partnerships between
IT businesses, OSS communities, and universities
could result in research, development and promo-
tion of OSS hospital products and policies that
further the evolution of the OSS movement, as
well as provide substantial benefits to the hospital
industry. Therefore, such partnerships could be a
potentially transforming development in promot-
ing and adopting OSS in hospitals.

lIMItAtIons of tHe study

Notwithstanding the important contributions of
the current study, it has its own shortcomings. For
example, our findings may not apply to the full
spectrum of U.S. hospitals. This research is explor-
atory in nature, so that the design, data collection
methods, and analysis were broad by design, and
not intended for confirmation. This research also
examined the adoption or non-adoption of OSS in a
limited geographical area and over a particular time
period, which makes any attempts to generalize the
results across hospitals in the U.S. difficult without
further empirical analysis and investigation.

Another limitation was the modest sample size
of response in the survey (n=30) and interviews
(n=5). Through the evolution of this study, it became
clear that IT managers in the hospital industry in
the BWNV area were less than enthusiastic about
discussing and sharing information about open
source adoption within their hospitals. Many at-
tempts to influence a higher rate of response and
interview participation were made, including initial
contacts, follow-up contacts, reminders, and even

1624

An Empirical Investigation into the Adoption of Open Source Software in Hospitals

financial incentives. While the small sample size
affects the ability to generalize results, it does not
affect what was the intent of the study, to explore
and identify relevant issues and factors for further
study. However, it is important to mention that these
are important limitations for any future similar study
because of the unwillingness of the managers and
executives to share their views on issues concern-
ing IT adoption.

Finally, another limitation of this research is that
the data appears not to represent all types of OSS
products. While it was not the intent of the study, it
is clear from the responses (in particular the types
of OSS that survey respondents report adopting) that
our respondents were referring primarily to large,
enterprise-level OSS applications (e.g., database
servers, Web servers, operating systems, etc.). This
limits our ability to extend our findings to the entire
spectrum of OSS products available to hospitals. It
also limits our ability to compare the results of this
study to prior research, which mostly addresses the
adoption of smaller, stand-alone, download-and-
install types of OSS applications.

conclusIon

This research identifies the factors that could lead
to more effective adoption of OSS by hospitals. In
addition, this research sheds light and broadens the
understanding of OSS adoption within hospitals
by offering to IT practitioners information on the
extent of that adoption currently.

Finally, the insight gained from this research
serves as a guide and foundation for future work to
investigate more determinants of OSS adoption in
hospitals and healthcare organizations. It is also the
researcher’s hope that this study will be the seminal
stone to pave the way for future studies on OSS adop-
tion and implementation in organizations, public and
private, national and international.

AcknowledgMent

The authors would like to thank Khaled El Emam,
Medha Umarji, Roy Rada, Katherine Stewart
Dongsong Zhang and Stephen Russell, as well as
the anonymous IJHISI reviewers for their edito-
rial insights. Additionally, we deeply appreciate
the time, interest, and participation of hospital
IT managers in the Baltimore-Washington area
surveyed and interviewed in this study.

references

Bazeley, P., & Richards, L. (2000). The NVivo
qualitative project book. London; Thousand Oaks,
CA: Sage Publications.

Brown, S., Lincoln, M., Groen, P., & Kolodner,
R. (2003). VistA—U.S. Department of Veterans
Affairs national-scale HIS. International Journal
of Medical Informatics, 69(2-3), 135-156.

Capek, P., Frank, S., Gerdt, S., & Shields. D. (2005).
A history of IBM’s open source involvement and
strategy. IBM Systems Journal, 44(2), 249-248.

Carnall, D. (2000). Medical software’s free future.
BMJ, 321(7267), 976.

Carr, N. (2003). IT doesn’t matter. Harvard Busi-
ness Review, 81(5), 41-49.

Carr, N. (2004). Does IT matter?: Information
technology and the corrosion of competitive ad-
vantage. Boston, MA: Harvard Business School
Press.

Charmaz, K. (2006). Constructing grounded
theory. London; Thousand Oaks, CA: Sage
Publications.

Chau, P., & Tam, K. (1997). Factors affecting
the adoption of open systems: An exploratory
study. MIS Quarterly: Management Information
Systems, 21(1), 1-20.

 1625

An Empirical Investigation into the Adoption of Open Source Software in Hospitals

Creswell, J. (1994). Research design: Qualitative
& quantitative approaches. Thousand Oaks, CA:
Sage Publications.

Creswell, J. (2005). Educational research: Plan-
ning, conducting, and evaluating quantitative
and qualitative research (2nd ed.). Upper Saddle
River, NJ: Merrill.

Dedrick, J., & West, J. (2003). Why firms adopt
open source platforms: A grounded theory of
innovation and standards adoption. Paper pre-
sented at the Proceedings of the Workshop on
Standard Making: A Critical Research Frontier
for Information Systems. Seattle, WA.

Dedrick, J., & West, J. (2004). An exploratory study
into open source platform adoption. Paper presented
at the Proceedings of the 37th Hawaii International
Conference on System Sciences.

DeLano, W. (2005). The case for open source
software in drug discovery. Drug Discovery
Today, 10(3).

Erickson, B., Langer, S., & Nagy, P. (2005). The
role of open source software in innovation and
standardization in radiology. Journal of the Ameri-
can College of Radiology, 2(11), 927-931.

Eyler, A., Mayer, J., Rafii, R., Housemann, R.,
Brownson, R., & King, A. (1999). Key informant
surveys as a tool to implement and evaluate physi-
cal activity interventions in the community. Health
Educ. Res., 14(2), 289-298.

Eysenbach, G. (2004). Improving the quality of
Web surveys: The checklist for reporting results of
Internet e-surveys (CHERRIES). J Med Internet
Res, 6(3), e34.

Fichman, R., & Kemerer, C. (1997). Object tech-
nology and reuse: Lessons from early adopters.
Computer, 30(10), 47-59.

Fink, M. (2003). The business and economics of
Linux and open source. Upper Saddle River, NJ:
Prentice Hall PTR.

Fitzgerald. (2004). A critical look at open source.
Computer, 37(7), 92-94.

Fitzgerald, & Kenny. (2004). Developing an infor-
mation systems infrastructure with open source
software. Software, IEEE, 21(1), 50-55.

Gatignon, H., & Robertson, T. (1989). Technology
diffusion: An empirical test of competitive effects.
Journal of Marketing, 53(1), 35-49.

Glaser, B. (1978). Theoretical sensitivity: Ad-
vances in the methodology of grounded theory.
Mill Valley, CA: Sociology Press.

Glaser, B. (1999). The future of grounded theory.
Qualitative Health Research, 9(6), 836-845.

Glaser, B., & Strauss, A. (1967). The discovery
of grounded theory; strategies for qualitative
research. Chicago, IL: Aldine Publishing Com-
pany.

Glynn, E., Fitzgerald, B., & Exton, C. (2005).
Commercial adoption of open source software:
An empirical study. Paper presented at the Pro-
ceedings of the 2005 International Symposium
on Empirical Software Engineering (ISESE’05).
Noosa Heads, QLD, Australia.

Goldman, R., & Gabriel, R. (2005). Innovation
happens elsewhere: Open source as business
strategy. Amsterdam; Boston, MA: Morgan
Kaufmann.

Goode, S. (2005). Something for nothing: Man-
agement rejection of open source software in
Australia’s top firms. Information and Manage-
ment, 42(5), 669-681.

HIMSS. (2006). HIMSS bylaws. Retrieved June
1, 2006, from http://www.himss.org/content/files/
himss_bylaws.pdf.

Hogarth, M., & Turner, S. (2005). A study of clini-
cal related open source software projects. Paper
presented at the American Medical Informatics
Association Conference (AMIA). Washington,
D.C.

1626

An Empirical Investigation into the Adoption of Open Source Software in Hospitals

Holck, J., Larsen, M., & Pedersen, M. (2005).
Managerial and technical barriers to the adop-
tion of open source software. Berlin-Heidelberg:
Springer.

Huff, S., & Munro, M. (1985). Information tech-
nology assessment and adoption: A field study.
MIS Quarterly, (December), 327-338.

Kantor, G., Wilson, W., & Midgley, A. (2003).
Open source software and the primary care EMR.
J Am Med Inform Assoc, 10(6), 616.

Longman, P. (2007). Best care anywhere: How
America’s most socialized healthcare system
became its finest: What the VA miracle means
for you and your country. Sausalito, CA: Poli-
PointPress.

McDonald, C., Schadow, G., Barnes, M., Dexter,
P., Overhage, J., Mamlin, B., et al. (2003). Open
source software in medical informatics—why,
how and what. International Journal of Medical
Informatics, 69(2-3), 175-184.

Nagy, P. (2007). Open source in imaging informat-
ics. Journal of Digital Imaging, 20(0), 1-10.

Norris, J. (2004). Mission-critical development
with open source software: Lessons learned.
Software, IEEE, 21(1), 42-49.

Patton, M. (2002). Qualitative research and
evaluation methods (3rd ed.). Thousand Oaks,
CA: Sage Publications.

Raghupathi, W., & Gao, W. (2007). An eclipse-
based development approach to health information
technology. International Journal of Electronic
Healthcare, 3(4), 433-452.

Seaman, C. B. (1999). Qualiative methods in
empircal studies of software engineering. Soft-

ware Engineering, IEEE Transactions on, 25(4),
557-572.

Scarsbrook, A. (2007). Open source software
for radiologists: A primer. Clinical Radiology,
62(2), 120-130.

Strauss, A., & Corbin, J. (1998). Basics of quali-
tative research: Techniques and procedures for
developing grounded theory (2nd ed.). Thousand
Oaks, CA: Sage Publications.

Tashakkori, A., & Teddlie, C. (1998). Mixed
methodology: Combining qualitative and quan-
titative approaches. Thousand Oaks, CA: Sage
Publications.

Valdes, I., Kibbe, D., Tolleson, G., Kunik, M.,
& Petersen, L. (2004). Barriers to proliferation
of electronic medical records. Informatics in
Primary Care, 12(1), 3-9.

Van Latum, F., Van Solingen, R., Oivo, M., Hoisl,
B., Rombach, D., & Ruhe, G. (1998). Adopting
GQM-based measurement in an industrial envi-
ronment. Software, IEEE, 15(1), 78-86.

Waring, T., & Maddocks, P. (2005). Open source
software implementation in the UK public sec-
tor: Evidence from the field and implications for
the future. International Journal of Information
Management, 25(5), 411-428.

Yackel, T. (2001). How the open source devel-
opment model can improve medical software.
Medinfo, 10, 68-72.

Zeller, A., & Krinke, J. (2005). Essential open
source toolset: Programming with Eclipse, JUnit,
CVS, Bugzilla, Ant, Tcl/Tk and more. Chichester,
England: John Wiley & Sons.

 1627

An Empirical Investigation into the Adoption of Open Source Software in Hospitals

APPendIX A. survey InstruMent
http://userpages.umbc.edu/~gimunoz1/Appendix%20A-%20Survey%20Instrument.pdf

http://userpages.umbc.edu/~gimunoz1/Appendix%20B-%20CHERRIES.pdf
APPendIX b. cHerrIes

APPendIX c. IntervIew guIde Protocol
http://userpages.umbc.edu/~gimunoz1/Appendix%20C-%20Interview%20Guide.pdf

This work was previously published in International Journal of Healthcare Information Systems and Informatics, Vol. 3, Issue
3, edited by J. Tan, pp. 16-37, copyright 2008 by IGI Publishing (an imprint of IGI Global).

1628

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.15
Open Source Software:

A Key Component of E-Health in
Developing Nations

David Parry
Auckland University of Technology, New Zealand

Emma Parry
University of Auckland, New Zealand

Phurb Dorji
Jigme Dorji Wangchuck National Referral Hospital, Bhutan

Peter Stone
University of Auckland, New Zealand

orgAnIzAtIon of tHIs ArtIcle

This article is organized around a number of sec-
tions. The introduction outlines the rationale of the
article and deals with some aspects of open source
software (OSS) that make it attractive for software
development in the health domain for low-income
countries. The methodology section then introduces
the framework of assessment that is being used. The
majority of this article describes a case study of a
project run by the authors in Bhutan in the obstetric
domain. Critical success factors for such a project
are then analyzed and some conclusions are drawn.
The discussion covers some of the issues that have

arisen from this experience, and articulates some
lessons learned.

IntroductIon

This project deals with the intersection of a number
of domains, as shown in Figure 1.

e-Health

E-health has become a popular term for the
transformation of healthcare that has occurred
through the use of electronic communications,

 1629

Open Source Software

in a conscious imitation of “e-business.” E-health
encompasses more than the traditional electronic
health record. It involves the use of information
and communications technologies in the widest
sense, including telemedicine, Web-based health
and mobile devices for healthcare. A definition
has been proposed, after comprehensive analysis,
in Pagliari et al. (2005):

E-health is an emerging field of medical informat-
ics, referring to the organization and delivery of
health services and information using the Internet
and related technologies. In a broader sense, the
term characterizes not only a technical develop-
ment, but also a new way of working, an attitude,
and a commitment for networked, global thinking,
to improve healthcare locally, regionally, and
worldwide by using information and communica-
tion technology.

This definition is actually adapted from a previ-
ous one in an editorial which discussed the scope
of “e-health” (Eysenbach, 2001). The globalized
and networked aspects are particularly important
in our case study—the emphasis is on communica-
tion and collaboration rather than distance

Health Information systems

Health information systems (HIS) often have three
main objectives: to improve patient care, improve
management and form part of a quality improve-
ment program. However, these objectives—as
described by Littlejohns, Wyatt and Garvican
(2003), are not always achieved. As part of a HIS
implementation there are often major changes
to workflow and practice, large expenditures on
hardware including computing and communica-
tions, and system integration, as well as software
development, training and implementation. Fail-
ures occur in HIS development often due to a lack
of understanding of the complexity of the project
(Littlejohns et al., 2003). Interestingly, OSS ap-
pears to answer some of these issues by providing
more stable—if less feature-rich—software, and
providing a generally larger pool of developers
and users than for proprietary software.

open source software

Open source software (OSS) has gained very
wide acceptance particularly in the Web server
community. Projects such as Apache (Mockus,

Figure 1. Research domains

1630

Open Source Software

Fielding, & Herbsleb, 2000) have involved large
scale participation, and dominant market share.
In the healthcare domain, Sourceforge.net lists 58
applications for download. Many of the applica-
tions are extremely specialized, but on the other
hand, some like the Web Interface Repository
server (WIRM), (Jakobovits, Rosse, & Brinkley,
2002) are effectively complete development
environments. This article will argue that suc-
cessful development and use of OSS in healthcare
requires a number of critical “success” factors,
and that these reflect both the nature of OSS
projects in the wider world and particular aspects
relevant to healthcare. OSS can be seen as part of
a wider movement that has been characterized
as innovation from the user community (Hippel,
2001). This emphasizes the point that OSS is not
just “free” but also is able to be modified by the
community that uses it.

develoPIng nAtIons And tHe
cAse of bHutAn

Health information systems are important for de-
veloping nations as well as industrialized ones. A
large review of the use of information technology
in primary care in developing countries (Tomasi,
2004) identified five main areas of application—
data processing in the healthcare system, decision
support, electronic data transmission, electronic
patient records and telemedicine. Many develop-
ing countries have low levels of trained clinical
staff, and this can increase the load on second-
ary and tertiary providers. In order to audit their
performance, and increase efficiency, electronic
records and workflow systems can reduce the
workload on the staff available.

Both of these aspects are particularly important
for developing nations for a number of reasons:

• Developing nations have extremely limited
health budgets, but the burden of disease on

individual households can be very large. For
example, up to 100% of household income
being spent on end-stage care for AIDS
patients in some nations in Africa (Russell,
2004).

• Developing nations often have a diverse
mixture of groups within them, and it cannot
be assumed that all citizens have a common
language. Even when a common language
exists, it may be spoken by a relatively small
percentage of the world’s population, and
commercial development of software using
that language may not be feasible.

• Infrastructure and resource constraints, in
particular for network connectivity, may
reduce the utility of high-performance sys-
tems routinely used in the west. For example,
PACS systems involving transmission of
large images via network connections may
not be practical, but memory stick-based
approaches may be feasible (Parry, Sood,
& Parry, 2006).

• Open source approaches allow the develop-
ment of expertise in multiple sites away from
large commercial organizations. Therefore,
they can encourage the upskilling of software
developers in smaller centers. This expertise
can be applied to the localization of standard
packages and the development of a solid base
for software support. In this aspect, both
the development and the use of open source
software can be beneficial in the education
sector. Developing nations often have large and
increasing numbers of young, educated people
available for project development. OSS tools
are attractive for teaching information systems
development because of cost, wide availability
of documentation and localized versions be-
ing available. For example, Debian translators
are available in over 80 l language versions
including Dzonga—the national language of
Bhutan.

• Commercial software suppliers may be re-
luctant to sell advanced software packages in

 1631

Open Source Software

developing nations because of the difficulty
of arranging support and the perceived threat
of piracy.

• Developing nations’ health systems often
have a complex collection of groups work-
ing within them including governments,
commercial organizations, local and inter-
national charities and international official
organizations. The requirement for reporting
and data analysis may well be more complex
than in industrialized nations.

• Infrastructure developed to support call-
center development or tourism, including
Internet and telecommunications technol-
ogy, is easily adapted to allow links between
nations. Because OSS tools are supported via
the Web, this approach avoids the reliance
on expensive and out-of-date paper manu-
als and development kits. OSS’s licensing
structure allows cross-national projects to
be completed much more easily.

• Mobile devices have particular promise for
e-health in developing nations (Iluyemi,
Fitch, Parry, & Briggs, 2007). Mobile OSS

development is a particularly active area
of research (Raento, Oulasvirta, Petit, &
Toivonen, 2005).

The case study in this article deals with the in-
tersection of a number of research domains, (Figure
1), which means that the choice of methodology for
analysis may be challenging. There have been some
recent papers on the use of OSS in health informa-
tion systems, focused mainly on developed country
applications (Kantor, Wilson, & Midgley, 2003;
McDonald et al., 2003). Interestingly, these papers
point out that the use of OSS in healthcare is not new
and that although perhaps small-scale, this work has
been consistently ongoing. However, these papers do
emphasize the potential gains to be had by the use of
0SS in healthcare both in terms of health providers
and also developers.

Because of the widely varying state of commu-
nications infrastructure in developing countries,
western models of development which emphasize
in-hospital systems linked by fixed line, high-
capacity networks may not be appropriate. In the
context of less developed countries, there have

Figure 2. Overall system plan

1632

Open Source Software

been a number of telemedicine projects, often
concerned with communication from centers
of excellence in western nations (e.g., Swinfen,
Swinfen, Youngberry, & Wootton, 2005), or
within developing countries (Deodhar, 2002),
but a shared approach to development is vital
(Wooton, 2001).

Methodology

In order to analyze a case study, some sort of
framework of analysis should be adopted. The
development project was actually quite complex
with elements of telemedicine; knowledge man-
agement and information processing included in
the overall design (see Figure 2).

A survey of telemedicine projects in India (Pal,
Mbarika, Cobb-Payton, Datta, & McCoy, 2005)
identified six critical success factors for telemedicine
success; these were used as practical and simple
measures that could be applied in this complex, yet
small-scale project. The success factors identified
were:

1. Set clear program objectives
2. Garner government support
3. Adapt user-friendly interfaces
4. Determine accessibility via telecommunica-

tions and Internet access
5. Implement standards and protocols
6. Measure cost-effectiveness and user satis-

faction

The case study will deal with these areas,
although the project is wider than a simple tele-
medicine project as it includes database develop-
ment and integration with the audit system, along
with Web-based protocols.

cAse rePort: e-HeAltH
suPPort for obstetrIc
servIces In bHutAn

Bhutan is a small Buddhist kingdom located in
the Himalayas, with a population of fewer than
700,000. Land transport is extremely slow because
of the geography—for example it takes three days
to travel across the country, a distance of around
300km. There is only one airport and no facility
for helicopter transport. Seventy percent of the
population live in rural areas with 30% more
than a one-hour walk from the nearest road head.
Bhutan has had major successes in increasing
life expectancy and improving healthcare, but
avoidable perinatal and maternal mortality and
morbidity remains an issue. Current figures for
Bhutan suggest an infant mortality rate of 67/1000
and a maternal mortality rate of 4.2/1000—com-
pared with New Zealand’s rates of 4/1000 and
0.07/1000 respectively (World Health Organiza-
tion, 2006a).

Large numbers of preventable neonatal deaths
continue to occur in the less developed countries.
However, recent work has suggested (Darmstadt
et al., 2005) that evidence- based interventions
in antenatal and intrapartum care could reduce
these rates by between 37% and 67%. These
interventions are not complex and are relatively
inexpensive. The overarching imperative is to
ensure appropriate care for pregnant women that
involves patient education and cooperation with
antenatal and intrapartum services. Although
there have been many studies on the use of e-
health in obstetrics and perinatology and in less
developed nations (Deodhar, 2002), there remains
relatively little work on the evaluation of these
systems. In particular, the outcome and integration

 1633

Open Source Software

of these systems into existing structures, and the
changes that occur because of their introduction
have not been studied, although the 1 to 45 cost
benefit ratio quoted in this study is impressive.

The World Health Organization has been
running a “Making Pregnancy Safer” Initiative
(World Health Organization) in order to reduce the
level of neonatal and maternal mortality. Previous
work in Bhutan had developed a protocol book for
emergency obstetric care (EmOC). Other coun-
tries using EMOC have recorded improvement in
outcomes, for example, Bangladesh (Islam MT,
2006) and Peru (Kayango et al., 2006). One of
the major lessons learned in these trials was that
a record of outcomes via a perinatal database, and
the wide dissemination and use of protocols are
vital for success. In general it is important that
all health workers caring for pregnant women use
health information that is based on clear evidence
from rigorous studies (Tita, Stringer, Goldenberg,
& Rouse, 2007). Surprisingly perhaps, the iden-
tification of appropriate procedures for dealing
with high-risk patients has been shown to be ef-
fective in reducing the demand for interventions
(Islam MT, 2006).

the bhutanese Health system

Healthcare is free in Bhutan, and is delivered via a
tertiary structure. The primary healthcare unit is the
“Basic Health Unit” (BHU), of which there are ap-
proximately 170 around the country. These units do
not always have medically qualified staff, but they run
outreach and clinic services and usually a number of
beds are available. Birthing services, run by nurses,
are sometimes available. District health units (around
30) will have at least one generalist medical officer;
some of these units have the capacity to perform
caesarean sections and ultrasound scanning. There
are three referral hospitals in the country which have
at least one obstetrician and theatre services. The
Jigme Dorji Wanchuck National Referral hospital
(JDWNRH) in the capital has four obstetricians and

is the tertiary referral unit for the whole country.
Because there is no general practitioner service,
patients have the opportunity to refer themselves
directly to hospital-based consultants even in cases
where primary care would be more appropriate. This
and the paucity of qualified obstetricians, results in
a large workload and the obstetricians are busy and
often difficult to contact for advice. A current project
is running to introduce the EmOC system to Bhutan,
and the protocols are being integrated with these to
provide seamless care.

Project description

The aim of the project described in this article was
to collaboratively develop a number of treatment
and/or diagnostic protocols to allow the clinical
staff to apply appropriate evidence-based care for
the major problems that would be dealt with by a
perinatal service. The role of the perinatal service
is described in Mascarenhas, Eliot and MacKenzie
(1992). Essentially, it provides care for mothers and
babies from conception to birth, and aims to reduce
the risks to mother and baby in this process, by ap-
propriate intervention and monitoring. In addition
to the staff applying the protocols in practice, the
aim is to raise awareness of the issues that affect
perinatal outcomes amongst others, for example,
referring to clinicians. The development of a col-
legial editing and review process involving clinical
staff in Bhutan and New Zealand was also seen as a
vital part of the project. The project also included the
development of a perinatal Web-based database to
allow for more effective management of the service
on a day-to-day basis and also allow for analysis of
clinical performance.

OSS occurs in a number of places in the system.
The perinatal database is written in PHP with a
mySQL database engine. Web page development
was done using open source tools, as was the XML
protocol development. However, proprietary products
were used for the operating systems and Web server
software in Bhutan, along with the Linux/Apache

1634

Open Source Software

setup for the Web server in New Zealand. In ad-
dition, standard proprietary products were used to
develop the protocols.

review of success factors

Clear Objectives

The objectives of the project were identified in
initial discussions and codified in the agreement
signed between the stakeholders. The objectives
included the development of a perinatal medicine
service, continuing support for this service and
standardization of treatment based on the best
possible evidence. An additional objective was
sustainability of the service. OSS supported this
by allowing low- or no-cost technical documenta-
tion and development tools to be made available
to local staff.

Government Support

The Royal Government of Bhutan (RGOB) is the sole
supplier of healthcare in the kingdom. The RGOB
runs a series of five-year plans which identify objec-
tives and priorities as well as sources of funding.
Plans developed by overseas providers are examined
and extensive negotiation takes place to ensure that

the country receives appropriate and sustainable
help that is consistent with the RGOB objectives.
This process began in the case of this project, two
years before the initiation, when representatives of
the funders—The Magee Family—met with other
stakeholders including government representatives,
clinical staff from New Zealand and Bhutan associ-
ated with the project, and UNICEF. This resulted in
a project agreement that was signed off in a formal
ceremony. The project composed a number of other
elements including funding for hardware and train-
ing of clinical workers in the perinatal medicine
area. Continuing involvement of the stakeholders
has been a great asset to the project. The RGOB
department of IT has been running a long-term
project to support OSS and is getting closer to the
development of a policy on its use (Bhutan Depart-
ment of Information Technology, 2007).

Adapt User-Friendly Interfaces

The user interface adopted was a standard Web
browser, whatever the source of the data—even
locally stored protocols would display in a browser.
The native protocols were stored as XML docu-
ments, which were then displayed in a human-
readable format via a Web browser. XML was
chosen for ease of updating—in that the editing

<Root_Element>
 <Name>Cord prolapse</Name>
 <Definition>
The cord that normally presents itself is within intact membranes. When the membranes rupture, the cord

prolapses. This is an emergency as cord compression and/or occlusion can cause fetal asphyxia.
 </Definition>
 <Keywords>
 <Keyword>Rupture of Membrane</Keyword>
 <Keyword>Prolapse</Keyword>
 </Keywords>
 <Diagnosis>
 <Diagnostic_step>Palpable cord on vaginal exam</Diagnostic_step>
 <Diagnostic_step>Observed cord protruding onto vulva</Diagnostic_step>
 </Diagnosis>
</Root_Element>

Figure 3. XML protocol fragment

 1635

Open Source Software

process could alter content without a great deal
of formatting issues and with the awareness that
other display methods such as voice responses or
mobile devices may be used in the future. As an
open standard, XML is very well suited to this
approach. The XML design is intended to be
expandable and able to represent both diagnostic
and therapeutic protocols.

A fragment of the XML representation is
shown in Figure 3. The initial outline was based
on the PubMED (may need to define this) schema,
but simplified to remove excessive bibliographic
elements. The XML documents identify the
responses to particular diagnoses or symptoms
which would be expected to be encountered com-
monly. The aim is to allow clinical staff, who may
be at a remote site, to identify what emergency
care is needed, whether the patient needs to be
referred or transferred and the degree of urgency
of that referral. Also, the protocol can identify
what additional tests or procedures need to be
performed.

Determine Accessibility

Although land transport is difficult, Bhutan is in
the process of increasing the availability of Inter-
net access. Apart from dial-up connections, there
are microwave links and recently the international
telecommunications union (ITU) e-post initiative
(International Telecommunications Union, 2006)
has recently been launched in Bhutan using very
small aperture (VSAT) satellite ground stations
for rural access to electronic communications, and
this may be useful for rollout to remote areas. OSS
tools are often very efficient in terms of file size,
and machine footprint (use of processor time and
memory) so they can be used in a wider range of
scenarios than might be possible for the latest pro-
prietary operating systems or applications.

Implement Standards

The protocols themselves were developed in a
standard format (Table 1), and as seen above,
implemented using XML. In addition to this, an
attempt was made to standardize the production
of the protocols so that candidate protocols from
other sources would go through an editorial pro-
cess and be routinely revised. This process was
formally followed using paper-based systems, but
electronic approaches allow instantaneous updat-
ing of the live protocol without fear of version
control issues and also allow a trail to be kept of
previous versions that can be linked to any events
linked historically to the implementation.

Measuring cost-effectiveness and user
satisfaction

This aspect is perhaps the most difficult part
of the project. As part of the process, proto-

Element Comment

Name Name of protocol

Definition

Keywords Used for searching

Diagnosis For diagnostic protocols

Diagnostic Step

Procedure For procedural protocols

Procedure Step

Audience Intended user, includes country and

location

Evidence A small selection of the supporting

evidence

Author Multiple authors possible

Last Update

Review Date

Table 1. Major elements of the protocol docu-
ment

1636

Open Source Software

cols will be regularly reviewed by stakehold-
ers. In addition, a perinatal database is being
implemented in order to record outcomes,
and assess performance against that expected
in the protocol, in particular, areas where the
protocols are not being followed, and whether
the protocols or behavior or both should be
modified. It is hoped that improvements in the
mortality and morbidity figures will also be
noticeable, because of the currently relatively
high rates of morbidity. Substitute measures,
such as adherence to protocol may also be
used. Finally, a rise in awareness of the general
maternity service and increased access to it by
women, only half of whom currently have an
attended birth, would be expected to accompany
improved outcomes among those who have
contact with the perinatal service.

Lessons Learned

Integration of protocols from diverse sources
was one of the major challenges facing the
team. Protocols were sourced from the National
Women’s Hospital Auckland, New Zealand, the
World Health Organization and EmOC protocols
in Bhutan.

Collaborative review of protocols was ex-
tremely important, as buy-in from clinical staff
is vital. However, the process of maintaining a
common electronic repository was technically
difficult as each of the reviewers tended to work
asynchronously using paper copies. The final ap-
proach used was to produce paper prototypes and
distribute them, collect back annotated versions
and then combine them in a final Word document.
This was then converted to XML. Development of
the perinatal database was restricted by the very
small numbers of users available to test and com-
ment on the system, and a wide user community,
which may only be available online, may well
increase the quality and speed of development..

dIscussIon And future work

There are some general issues that affect e-health
initiatives, and the use of OSS in the developing
world, in particular, connectivity, computing
resources and skills.

connectivity

Less developed nations have generally much lower
availability of fixed telephone lines. In addition,
geographic, economic and governmental issues
often conspire to make conventional dial-up access
less common than in western countries. However,
wireless and satellite solutions such as VSATS
including the international telecommunications
union (ITU) e-post initiative (International Tele-
communications Union, 2006) are overcoming
these issues. It is important to recognize that not
every nation’s infrastructure is developing in the
same way, and many nations may leapfrog to wire-
less solutions without the use of landline-based
solutions. However, high bandwidth solutions may
not be appropriate for developing countries. One
of the most successful e-health projects has been
the Swinfen Project, currently expanding in Iraq
(Swinfen et al., 2005). This project uses e-mail
in a store-and-forward model, between clinicians
in various countries. The prospects of advanced
tele-presence approaches being effective in routine
care seem slight because of issues concerning
quality of service, bandwidth and reliability of
connection. Even though the “trauma pod” and
other projects financed by the U.S. Department
of Defense are beginning to show results (Ro-
mano, Lam, Moses, Gilbert, & Marchessault,
2006), costs are likely to render this approach
problematic in other contexts.

computing

Devices such as the Simputer (The Simputer Trust,
2000) and the sub $100 laptop (OLPC, 2006)
promise much cheaper access to computing power.

 1637

Open Source Software

It should be emphasized that for e-health applica-
tions, the computing device can be fairly simple;
indeed mobile devices may become the preferred
means of access. Along with cost, the ability to
survive rough treatment, extremes of temperature
and humidity and long battery life—or even the
use of clockwork power in the case of the sub
$100 laptop—are more important in developing
countries than in the organization for economic
cooperation and development (OECD) member
countries. Parts supply and transport cost can
make the repair of computers extremely expensive.
However, organizations such as global assistance
for medical equipment (GAME) (http://www.
global-medical-equipment.org/whatwedo.html)
have established links between professional or-
ganizations in the developed and less developed
world. These approaches move beyond the ship-
ping of obsolescent equipment to an integrated
and well-thought and sustainable out collaboration
between donors and recipients.

skills and Information

At present, consumer e-health is of limited useful-
ness in the developing world. Low levels of literacy
and information literacy cause difficulties. However,
the fact that the vast majority of Web resources are
written in English and are U.S.-centric in terms of
organization of healthcare, availability of drugs and
medical devices and naming, makes even materials
designed for health consumers in the OECD countries
less useful for those in other nations. However, these
issues are much less important when the provision
of e-health services for medical professionals is
considered. Adapting general principles to specific
cases is a key skill of medical professionals. Indeed
the traffic is not all one-way; less developed nation
professionals often have skills that are no longer
available in more developed nations. Collaboration
in training of medical professionals, where trainees
from different nations are exchanged, can improve
the training in both systems. This can be supported

by the use of e-health tools such as Web sites, e-mail
and instant messaging.

Other skills required include the support of
the e-health infrastructure in terms of technical
support for computing devices and connectivity.
Fortunately, the requirement of tourists from west-
ern countries for Internet connectivity, wherever
they are, along with the burgeoning industries of
call centers and ‘off-shoring’ of software devel-
opment are providing a strong push for training
in these areas.

OSS use in education and training allows
nations with limited resources to devote more
funding to the human side of education, as well
as allowing projects that involve software local-
ization to advance quickly. Open source clinical
protocols may become important repositories of
clinical knowledge allowing rapid development
and input from experience, especially based on
standard electronic forms.

Another important aspect of skill transfer
and collaboration is the use of early warning
networks for disease surveillance such as the
Global Outbreak Alert and Response Network
(GORAN) that played a very large part in the early
detection of SARS (Heymann & Rodier, 2004).
Such networks link health workers throughout
the world and the transfer of information is by
no means one-way.

There remains a dearth of well-controlled stud-
ies of e-health initiatives in developing nations,
but the need for effective collaboration remains
paramount (Wooton, 2001). However, there are
a number of pointers to success:

1. The e-health system must be compatible
with existing organizational and cultural
structures. Some “western” assumptions
do not apply in less developed nations and
vice versa. For example, routine ultrasound
examination in early pregnancy has not been
shown to be effective in reducing mortality
in a Cochrane review (Neilson, 1998). How-

1638

Open Source Software

ever, an environment where mortality due
to unsuspected problems is much greater,
and the availability of on-demand scans is
lower, may give different results.

2. Collaboration and training between the pro-
fessionals involved is vital. This applies to
both clinical and technical staff. This may
in fact be the area of greatest benefit.

3. Ingenuity is more important than technology.
Store-and-forward e-mail may be of greater
utility than tele-presence.

4. Open source technology is particularly
suited to this area of work. Lower costs,
availability of technical skills, greater range
of customized languages and often lower
technology requirements make open source
approaches and especially Web-based open
source tools particularly attractive.

future reseArcH

Future work in this area will include greater use
of multicenter collaboration, both within existing
networks such as GORAN and GAME and outside
them. Lower bandwidth costs, and easier access
to high bandwidths will enable richer media to
be used, such as tele-sonography via store-and-
forward (Parry et al., 2006). Common health
problems are starting to afflict north and south:
aging populations, the rapid spread of new infec-
tious diseases and chronic conditions. Common
approaches to these issues, including the use of
low-cost assistive technology, and offshoring of
medical procedures such as radiology (Larson &
Janower, 2005), may be controversial, but at least
the discussion has started. There are enormous
potential benefits in the development of e-health
in collaboration with developing nations, and the
benefit to the people of world may be immense.
An additional benefit of the open source approach
may be an increased ability for IT specialists in
developed nations to assist people around the
world. As virtually every nation now has a Web

presence, the technical barriers to such collabora-
tion are much lower than they were even ten years
ago. It is hoped that further work will refine the
system sufficiently to allow the software to be
placed in a repository such as Sourceforge.net.
Furthermore, it is hoped that such an approach
will encourage increasing collaboration and de-
velopment in this area.

AcknowledgMent

This project would not have been possible without
the generosity of the Magee family and the hard
work of the representatives of UNICEF and the
Royal Government of Bhutan. Staff of Jigme
Dorji Wanchuck National Referral hospital, and
Thimphu assisted in a very wide range of roles
and continue to work on this project

references

Bhutan Department of Information Technology.
(2007). Bhutan’s journey towards open source.
Paper presented at the DebConf7, Edinburgh,
Scotland. https://penta.debconf.org/~joerg/
events/25.en.html.

Darmstadt, G., Bhutta, Z., Cousens, S., Adam, T.,
Walker, N., & Berni, L. (2005). Evidence-based,
cost-effective interventions: How many newborn
babies can we save?. The Lancet, 365(9463),
977-988.

Deodhar, J. (2002). Telemedicine by e-mail—ex-
perience in neonatal care at a primary care facil-
ity in rural India. Journal of Telemedicine and
Telecare, 8(Suppl 2), 20-21.

Eysenbach, G. (2001). What is e-health?. J Med
Internet Res, 3(2), e20.

Heymann, D., & Rodier, G. (2004). Global
surveillance, national surveillance, and SARS.
Emerging Infectious Diseases Journal, 10(2).

 1639

Open Source Software

Retrieved December 1, 2006, from http://origin.
cdc.gov/ncidod/EID/vol10no2/03-1038.htm.

Hippel, E. (2001). Innovation by user communi-
ties: Learning from open source software. MIT
Sloan Management Review, 42(4), 82.

Iluyemi, A., Fitch, C., Parry, D., & Briggs, J.
(2007). Health information system for commu-
nity-based health workers: A case for mobile
and wireless technologies. Paper presented at the
IST-Africa, Maputo Mozambique.

International Telecommunications Union. (2006).
Bhutan to be testbed for ITU’s e-post venture with
universal postal union. Retrieved April 20, 2006,
from http://www.itu.int/newsarchive/press_re-
leases/2002/10.html.

Islam MT, H. Y., Waxman R, Bhuiyan AB. (2006).
Implementation of emergency obstetric care train-
ing in Bangladesh: Lessons learned. Reproductive
Health Matters, 14(27), 61-72.

Jakobovits, R., Rosse, C., & Brinkley, J. (2002).
WIRM an open source toolkit for building bio-
medical Web applications. J Am Med Inform
Assoc, 9(6), 557-570.

Kantor, G., Wilson, W., & Midgley, A. (2003).
Open source software and the primary care EMR.
Journal of the American Medical Informatics
Association, 10(6), 616.

Kayango, M., Esquiche, E., Luna, M., Frias, G.,
Vega-Centeno, L., & Bailey, P. (2006). Strength-
ening emergency obstetric care in Ayacucho,
Peru. International Journal of Gynecology and
Obstetrics, 92, 299-307.

Larson, P., & Janower, M. (2005). The nighthawk:
Bird of paradise or albatross?. Journal of the
American College of Radiology, 2(12), 967-970.

Littlejohns, P., Wyatt, J., & Garvican, L. (2003).
Evaluating computerised health information
systems: Hard lessons still to be learnt. British
Medical Journal, 326(7394), 860-863.

Mascarenhas, L., Eliot, B., & MacKenzie, I.
(1992). A comparison of perinatal outcome, an-
tenatal and intrapartum care between England
and Wales, and France. Br.J.Obstet.Gynaecol.,
99(12), 955-958.

McDonald, C., Schadow, G., Barnes, M., Dexter,
P., Overhage, J., Mamlin, B., et al. (2003). Open
source software in medical informatics—why,
how and what. International Journal of Medical
Informatics, 69(2-3), 175-184.

Mockus, A., Fielding, R., & Herbsleb, J. (2000).
A case study of open source software develop-
ment: The Apache server. Paper presented at the
Software Engineering, 2000.

Neilson, J. (1998). Ultrasound for fetal assess-
ment in early pregnancy. Cochrane Database of
Systematic Reviews (4).

OLPC. (2006). One laptop per child. Retrieved
December 1, 2006, from http://laptop.org/.

Pagliari, C., Sloan, D., Gregor, P., Sullivan, F.,
Detmer, D., Kahan, P., et al. (2005). What is e-
health (4): A scoping exercise to map the field. J
Med Internet Res, 7(1), e9.

Pal, A., Mbarika, V., Cobb-Payton, F., Datta, P.,
& McCoy, S. (2005). Telemedicine diffusion in a
developing Country: The case of India. Informa-
tion Technology in Biomedicine, IEEE Transac-
tions on, 9(1), 59-65.

Parry, E., Sood, R., & Parry, D. (2006). Investiga-
tion of optimization techniques to prepare ultra-
sound images for electronic transfer [abstract].
Ultrasound in Obstetrics and Gynecology, 28(4),
487-488.

Raento, M., Oulasvirta, A., Petit, R., & Toivonen,
H. (2005). ContextPhone: A prototyping platform
for context-aware mobile applications, 4, 51-59.

Romano, J., Lam, D., Moses, G., Gilbert, G., &
Marchessault, R. (2006). The future of military
medicine has not arrived yet, but we can see it

1640

Open Source Software

from here. Telemedicine and e-Health, 12(4),
417-425.

Russell, S. (2004). The economic burden of illness
for households in developing countries: A review
of studies focusing on malaria, tuberculosis, and
human immunodeficiency virus/acquired im-
munodeficiency syndrome. Am J Trop Med Hyg,
71(2_suppl), 147-155.

Swinfen, P., Swinfen, R., Youngberry, K., &
Wootton, R. (2005). Low-cost telemedicine in
Iraq: An analysis of referrals in the first 15 months.
Telemedicine and Telecare, 11(Suppl 2), 113.

The Simputer Trust. (2000). Simputer(TM) -
Welcome. Retrieved December 1, 2006, from
http://www.simputer.org/.

Tita, A., Stringer, J., Goldenberg, R., & Rouse,
D. (2007). Two decades of the safe motherhood
initiative: Time for another wooden spoon award?.
Obstet Gynecol, 110(5), 972-976.

Tomasi, E., Augusto, L., & Maria de Fatima
Santos, M. (2004). Health information technology
in primary healthcare in developing countries:
A literature review. Bull World Health Organ,
82(11), 867-874.

Wooton, R. (2001). Telemedicine and develop-
ing countries—successful implementation will
require a shared approach. Telemedicine and
Telecare, 7(Suppl 1), 1-6.

World Health Organization. (2006a). Estimates
of child and adult mortality and life expectancy
at birth by country. Retrieved January 17, 2007,
from http://www.who.int/healthinfo/statistics/
mortlifeexpectancy/en/index.html.

World Health Organization. (2006b). Introduc-
tion to the ‘Making Pregnancy Safer’ initiative.
Retrieved October 1, 2007, from http://w3.whosea.
org/pregnancy/introf.htm.

This work was previously published in International Journal of Healthcare Information Systems and Informatics, Vol. 3, Issue
3, edited by J. Tan, pp. 1-15, copyright 2008 by IGI Publishing (an imprint of IGI Global).

 1641

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.16
Patchwork Prototyping with

Open Source Software
M. Cameron Jones

University of Illinois at Urbana-Champaign, USA

Ingbert R. Floyd
University of Illinois at Urbana-Champaign, USA

Michael B. Twidale
University of Illinois at Urbana-Champaign, USA

AbstrAct

This chapter explores the concept of patchwork
prototyping: the combining of open source soft-
ware applications to rapidly create a rudimentary
but fully functional prototype that can be used
and hence evaluated in real-life situations. The
use of a working prototype enables the capture
of more realistic and informed requirements than
traditional methods that rely on users trying to
imagine how they might use the envisaged system
in their work, and even more problematic, how
that system in use may change how they work.
Experiences with the use of the method in the
development of two different collaborative ap-
plications are described. Patchwork prototyping is
compared and contrasted with other prototyping

methods including paper prototyping and the use
of commercial off-the-shelf software.

IntroductIon

The potential for innovation with open source
software (OSS) is unlimited. Like any entity
in the world, OSS will inevitably be affected
by its context in the world. As it migrates from
one context to another, it will be appropriated
by different users in different ways, possibly in
ways in which the original stakeholders never
expected. Thus, innovation is not only present
during design and development, but also during
use (Thomke & von Hippel, 2002). In this chapter,
we explore an emerging innovation through use:

1642

Patchwork Prototyping with Open Source Software

a rapid prototyping-based approach to require-
ments gathering using OSS. We call this approach
patchwork prototyping because it involves patch-
ing together open source applications as a means
of creating high-fidelity prototypes. Patchwork
prototyping combines the speed and low cost
of paper prototypes, the breadth of horizontal
prototypes, and the depth and high functional-
ity of vertical, high-fidelity prototypes. Such a
prototype is necessarily crude as it is composed
of stand-alone applications stitched together with
visible seams. However, it is still extremely use-
ful in eliciting requirements in ill-defined design
contexts because of the robust and feature-rich
nature of the component OSS applications.

One such design context is the development
of systems for collaborative interaction, like
“cybercollaboratories.” The authors have been
involved in several such research projects, de-
veloping cyberinfrastructure to support various
communities, including communities of learners,
educators, humanists, scientists, and engineers.
Designing and developing such systems, however,
is a significant challenge; as Finholt (2002) noted,
collaboratory development must overcome the
“enormous difficulties of supporting complex
group work in virtual settings” (p. 93). Despite
many past attempts to build collaborative envi-
ronments for scientists (see Finholt for a list of
collaboratory projects), little seems to have been
learned about their effective design, and such en-
vironments are notorious for their failure (Grudin,
1988; Star & Ruhleder, 1996). Thus, the focus of
this chapter is on a method of effective design
through a form of rapid, iterative prototyping
and evaluation.

Patchwork prototyping was developed from
our experiences working on cybercollaboratory
projects. It is an emergent practice we found being
independently redeveloped in several projects;
thus, we see it as an effective ad hoc behavior
worthy of study, documentation, and formaliza-
tion. Patchwork prototyping is fundamentally a
user-driven process. In all of the cases where we

saw it emerge, the projects were driven by user
groups and communities eager to harness com-
putational power to enhance their current activi-
ties or enable future activities. Additionally, the
developers of the prototypes had no pretence of
knowing what the users might need a priori. As
a result, patchwork prototyping’s success hinges
on three critical components:

1. Rapid iteration of high-fidelity prototypes
2. Incorporation of the prototypes by the end

users into their daily work activities
3. Extensive collection of feedback facilitated

by an insider to the user community

In this chapter, we focus on how the method
worked from the developers’ point of view. It is
from this perspective that the advantages of us-
ing OSS are most striking. However, one should
bear in mind that the method is not just a software
development method, but also a sociotechnical
systems (Trist, 1981) development method: The
social structures, workflows, and culture of the
groups will be coevolving in concert with the
software prototype.

reQuIreMents gAtHerIng
In collAborAtIve softwAre
desIgn

Software engineering methods attempt to make
software development resemble other engineer-
ing and manufacturing processes by making the
process more predictable and consistent. However,
software cannot always be engineered, especially
Web-based applications (Pressman et al., 1998).
Even when application development follows the
practices of software engineering, it is possible
to produce applications that fail to be used or
adopted (Grudin, 1988; Star & Ruhleder, 1996).
A major source of these problems is undetected
failure in the initial step in building the system:
the requirements-gathering phase. This is the

 1643

Patchwork Prototyping with Open Source Software

most difficult and important process in the entire
engineering life cycle (Brooks, 1995).

In designing systems to support collaborative
interaction, developers are faced with several com-
plex challenges. First, the community of users for
which the cyberinfrastructure is being developed
may not yet exist and cannot be observed for one
to see how the users interact. In fact, there is often
a technological deterministic expectation that
the computational infrastructure being created
will cause a community to come into existence.
Even in the case where there is a community to
study, many of the activities expected to occur as
part of the collaboration are not currently being
practiced because the tools to support the activi-
ties do not yet exist. As a result, developers gain
little understanding about how the users will be
interacting with each other or what they will be
accomplishing, aside from some general expecta-
tions that are often unrealistic.

Gathering requirements in such an environment
is a highly equivocal task. While uncertainty is
characterized by a lack of information, which can
be remedied by researching an answer, collecting
data, or asking an expert, equivocal tasks are
those in which “an information stimulus may have
several interpretations. New data may be confus-
ing, and may even increase uncertainty” (Daft &
Lengel, 1986, p. 554). Requirements gathering is
one such situation in which the developers cannot
articulate what information is missing, let alone
how to set about obtaining it. The only resolution in
equivocal situations is for the developers to “enact
a solution. [Developers] reduce equivocality by de-
fining or creating an answer rather than by learning
the answer from the collection of additional data”
(Daft & Lengel, p. 554). As Daft and Macintosh
(1981) demonstrate, tasks with high equivocality
are unanalyzable (or rather, have low analyzability;
Lim & Benbasat, 2000), which means that people
involved in the task have difficulty determining
such things as alternative courses of action, costs,
benefits, and outcomes.

rAPId PrototyPIng

Rapid prototyping is a method for requirements
gathering that has been designed both to improve
communication between developers and users,
and to help developers figure out the usefulness or
consequences of particular designs before having
built the entire system. The goal of rapid proto-
typing is to create a series of iterative mock-ups
to explore the design space, facilitate creativity,
and get feedback regarding the value of design
ideas before spending significant time and money
implementing a fully functional system (Nielsen,
1993). There are several dimensions to prototypes.
One dimension is the range from low-fidelity to
high-fidelity prototypes (see Table 1; Rudd, Stern,
& Isensee, 1996). Low-fidelity prototypes have the
advantages of being fast and cheap to develop and
iterate. However, they are only able to garner a
narrow range of insights. Perhaps the most popular
low-fidelity prototyping technique is paper proto-
typing (Rettig, 1994). Paper prototypes are very
fast and very cheap to produce. They can also
generate a lot of information about how a system
should be designed, what features would be help-
ful, and how those features should be presented
to the users. However, paper prototypes do not
allow developers to observe any real-world uses
of the system, or understand complex interactions
between various components and between the user
and the system. Also, they do not help develop-
ers understand the details of the code needed to
realize the system being prototyped.

High-fidelity prototypes, on the other hand,
can simulate real functionality. They are usu-
ally computer programs themselves that are
developed in rapid development environments
(Visual Basic, Smalltalk, etc.) or with prototyp-
ing tool kits (CASE, I-CASE, etc). In either case,
these prototypes, while allowing programmers
to observe more complex interactions with users
and to gain understanding about the underlying
implementation of the system, are comparatively

1644

Patchwork Prototyping with Open Source Software

slow and expensive to produce and iterate (Rudd
et al., 1996). These costs can be offset somewhat
by incorporating these prototypes into the devel-
opment of the final system itself as advocated by
RAD (rapid application development; Martin,
1991). However, critics of RAD methods are
quick to point out the limited scalability of soft-
ware built using source code from prototypes
(Beynon-Davies, Carne, Mackay, & Tudhope,
1999). Typically low-fidelity and high-fidelity
prototypes are used in succession, with developers
increasing the fidelity of the prototypes as they
develop the specifications. Due to their high cost,
high-fidelity prototypes may only be built for a
select number of designs generated by low-fidel-
ity prototyping, which precludes the generation
of a series of disposable high-fidelity proofs of
concepts to test out alternative design ideas.

Another dimension to be considered in the
prototyping discussion is scope. Software can
be viewed as consisting of a number of layers,
from the user interface to the base layer, which
interacts with the underlying operating system
or platform. Horizontal prototypes encompass a
wide scope, spanning the breadth of a system but
only within a particular layer (usually the user
interface). Users can get a sense of the range of
the system’s available functions; however, the
functionality is extremely limited. This can help
both the user and the programmer understand
the breadth of the system without plumbing its
depths. Vertical prototypes, on the other hand,
take a narrow slice of the system’s functionality
and explore it in depth through all layers. This
allows users to interact with a particular piece of
the system, and gives the programmer a detailed

Table 1. Advantages and disadvantages of low- and high-fidelity prototyping (Source: Rudd et al., 1996,
p. 80)

Advantages Disadvantages

L
ow

-F
id

el
ity

• Lower development cost
• Can create many alternatives

quickly
• Evaluate multiple design concepts
• Useful communication device
• Address screen layout issues
• Useful for identifying market

requirements
• Proof of concept

• Limited error checking
• Poor detailed specification to code to
• Facilitator driven
• Limited utility after requirements

established
• Limited usefulness for usability tests
• Navigational and flow limitations
• Weak at uncovering functionality-

and integration-related issues

H
ig

h-
Fi

de
lit

y

• Complete functionality
• Fully interactive
• User driven
• Clearly defines navigational

scheme
• Use for exploration and tests
• Look and feel of final product
• Serves as a living specification
• Marketing and sales tool

• More expensive to develop
• Time consuming to create
• Inefficient for proof of concept

designs
• Not effective for requirements

gathering

 1645

Patchwork Prototyping with Open Source Software

understanding of the subtle issues involved in its
implementation (Floyd, 1984; Nielsen, 1993).

The high equivocality present when design-
ing collaborative systems makes it difficult to
apply rapid prototyping techniques effectively.
Because users may not be able to articulate what
they want or need, it helps to be able to collab-
oratively interact with high-fidelity systems in
order to test them in real-world situations and
see what requirements emerge. Without such an
experience, it is unlikely that any feedback the
developers get from the users, either through
direct communication or observation, will be
useful. Thus, low-fidelity prototypes are limited
in their power to elicit requirements as the users
have difficulty imagining how the system the
prototypes represent will work, what it could do
for them, or how they might use it. Also, since
the majority of tasks involved in collaboration
are quite complex and require multiple kinds of
functionality to complete, the users need to be
able to interact with the system as a whole and
with considerable depth of implementation, thus
requiring a prototype that is both horizontal and
vertical.

The economics of developing high-fidelity
prototypes that are both horizontal and vertical

in scope, however, are problematic. Even if the
developers were to build a series of high-fidelity,
vertical prototypes, they would end up having
built the equivalent of an entire system from
scratch just to have a functionally sufficient pro-
totype. Not only would it be expensive and time
consuming, but the functionality and robustness
would be minimal at best. Also, it is likely that
the work would need to be discarded and replaced
with something new since it is unlikely that the
design would be correct on the first, second,
or even third try. Thus, the typical methods of
prototyping are not sufficient, either because
developing all the code would be too expensive,
or the prototypes that are developed do not have
high enough fidelity.

The proliferation of production-scale OSS
systems has created a vast field of growing, reli-
able, usable, and feature-rich programs, a large
number of which support aspects of Web-based
collaboration. These programs can be easily
stitched together because the code is open and
modifiable. Furthermore, they can be treated
as disposable since one application can easily
be discarded and replaced with another. This
presents an opportunity for developers to rapidly
build and evaluate a high-fidelity prototype of a
collaborative environment comprising a patch-
work of multiple open source applications. Such
a prototype spans the breadth of a horizontal
prototype and the depth of a vertical prototype
within a single system.

orIgIns And eXAMPles of
PAtcHwork PrototyPIng

Patchwork prototyping is a rapid prototyping ap-
proach to requirements gathering that was emer-
gent from practice rather than designed a priori.
We have been involved with several groups that
were developing cyberinfrastructure to support
collaboration, and in each group we observed
ad hoc prototyping and development strategies

Figure 1. Horizontal and vertical prototypes
(Source: Nielsen, 1993, p. 94)

Horizontal Prototype

Full System

Ve
rt

ic
al

 P
ro

to
ty

pe

Breadth of system (features

D
ep

th
 o

f s
ys

te
m

(fu

nc
tio

na
lit

y)

1646

Patchwork Prototyping with Open Source Software

that were remarkably similar and that developed
entirely independent of each other. Upon making
these observations, we realized that there was a
core process at work in each of these projects that
could be abstracted out and described as a general
approach to requirements gathering for devel-
oping cyberinfrastructure. Because patchwork
prototyping evolved from practice, however, we
believe that it will be much easier to understand
our formal description of the approach after we
describe some of the relevant details of our expe-
riences. In this section, we describe two projects
with which we were involved and the relevant
dynamics of each project; in the following section,
we describe the patchwork prototyping approach
more abstractly.

Project Alpha: building a
cybercollaboratory for
environmental engineers

Project Alpha (a pseudonym used to preserve
anonymity) was devoted to building a cybercol-
laboratory for environmental engineers. At the
beginning, the project was intended to be a require-
ments-gathering project, and the goal was to build
a functional prototype of the cyberinfrastructure
that would be presented to the granting agency
as part of a larger proposal. The effort was a suc-
cess and now, more than a year after the project
began, the prototype is being converted into a
production-scale system. The cybercollaboratory
prototypes were largely designed and built over a
period of six months by a team of two developers,
with significant contribution to the design by a
team of around 12 to 13 other researchers (these
researchers, plus the two developers, we call the
design team), and some minor programming
contributions by undergraduates employed by
the project. By the end of the prototyping phase,
there was a community of users that included
60 to 70 active users out of approximately 200
registered users, 10 of which comprised a core

group of vocal users who provided significant
feedback on the design.

The Project Alpha prototype was constructed
on the Liferay portal server framework. In ad-
dition to using existing portlets, the developers
also wrapped other OSS applications in portlet
interfaces, enabling their rapid integration into the
prototype. A number of different OSS applications
were used, including the Heritrix Web crawler, the
Lucene search engine, and the MediaWiki wiki
system. Other applications were similarly inte-
grated but were not necessarily publicly available
OSS. Some were in-house applications developed
by other projects for which the developers had
source code. These applications were used to pro-
totype data mining and knowledge management
functionality in the cybercollaboratory.

The general process by which these tools were
incorporated was very ad hoc. The development
team might decide on prototyping a particular
function, or the programmers might get some
idea for a “cool” feature and would set about
integrating the feature into the system. This ap-
proach had several unexpected benefits. First,
minimal time was spent building portlets so that
when a version of the prototype was presented to
the design team, minimal effort was lost when
particular features or portlets were rejected as
being unsuitable. Second, it allowed the design
team to choose between several different portlets
that had essentially the same function but differ-
ent interfaces (i.e., were optimized for different
types of use). Third, it allowed the developers to
easily switch features off when the interface for
a portlet was too complex, or turn them back on
if they were requested by either the design team
or the active users. Fourth, the development com-
munity and the associated forums, mailing lists,
and Web sites surrounding the OSS applications
that were integrated into the prototype served
as excellent technical support (Lakhani & von
Hippel, 2002).

 1647

Patchwork Prototyping with Open Source Software

The fact that the prototype was fully functional
was critical to its success in eliciting requirements.
By using the prototypes over a period of 6 months,
the users were able to incorporate them into their
day-to-day work practices. This allowed them to
evaluate the utility of the tool in various contexts
of actual use. Without functionality, the developers
feel that it would have been impossible to effec-
tively gather requirements. However, it was also
vital that the users communicate their experiences
to the developers, both formally and informally. To
this end, the developers conducted several surveys
of the users, asking them about the prototype and
features they found useful. The developers also
used the prototype itself to solicit feedback. On
the front page of the prototype was a poll asking
users to vote for the features they liked the most.
Additionally, on every page of the prototype was
a feedback form that allowed users to send quick
notes about the system as they experienced it. The
users also communicated with the developers via
informal means such as e-mail and face-to-face
meetings. However, the most important method
of obtaining feedback was that one of the PIs in
the project acted as an intermediary, actively so-
liciting feedback from users as an insider to the
community of environmental engineers. The PI
position allowed the individual to receive more
feedback of higher quality and honesty than the
developers would have been able to collect on
their own.

To illustrate the process in more detail, we
describe how one particular piece of OSS was
integrated with the cybercollaboratory. The
developers wanted to allow users to be able to
collaboratively edit documents in the system. The
Liferay suite had a wiki system available that the
programmers enabled; however, users found that
tool to be too difficult to use, partly because of
the unintuitive markup syntax of the particular
wiki used, and partly because they had no tasks
that clearly lent themselves to the use of such a
tool. Later during the prototyping phase, some

members of the design team wanted to demon-
strate the usefulness of scenarios and personas
in facilitating requirements gathering, and from
prior experience suggested the use of a wiki. In
response to this request and the prior difficulties
in using the bundled tool, the developers installed
MediaWiki on the server and added a link from
the cybercollaboratory’s menu next to the existing
wiki tool pointing to the MediaWiki installation.
No time was spent trying to integrate the Liferay
and MediaWiki systems; each application had
separate interfaces and user accounts.

One benefit of using the MediaWiki system
was that it allows people to use the system without
logging in, thereby mitigating the need to inte-
grate authentication mechanisms. Users found
the MediaWiki system easier to learn and use,
and began using it exclusively over the in-built
Liferay wiki. The developers then decided to
embed the MediaWiki interface in the rest of the
cybercollaboratory and wrote a simple portlet that
generates an HTML (hypertext markup language)
IFRAME to wrap the MediaWiki interface. Each
step of integrating the MediaWiki installation took
only minimal effort on the part of the developers
(sometimes literally only a matter of minutes) and
generated insights about the role and design of a
collaborative editing tool in the cybercollabora-
tory. Among the design insights gained by the
developers is that the tool should be easy to use
with a simple syntax for editing. Also, the tool
should support alternate views of the data, offering
a unified view of all documents either uploaded
to the site’s document repository or created and
edited on the wiki. The users were able to see
how this tool could benefit their jobs, and that
shaped the requirements of the tool. As a result of
this process, the project is currently implement-
ing a new collaborative editing component. This
component will have features like integrated
authentication, group- and project-based access
control, and integration with other features (e.g.,
project views and wiki linking). Additionally,

1648

Patchwork Prototyping with Open Source Software

the new collaborative writing component will
deprecate redundant and confusing features like
in-wiki file uploads.

Project beta: building
collaborative tools to
support Inquiry-based learning

Project Beta is an ongoing research project aimed
at designing and building Web-based tools to sup-
port processes of inquiry as described by John
Dewey (Bishop et al., 2004). Initiated in 1997,
the project has embraced a long-term perspective
on the design process and produced a series of
prototypes that support inquiry-based teaching
and learning. In 2003 the project began exploring
the development of tools to support collaborative
inquiry within groups and communities. The cur-
rent prototype is the third major revision of the
collaborative cyberinfrastructure, with countless
minor revisions on going. Throughout the project’s
life span, several generations of programmers have
joined and left the development team. For a 30-
month stretch, the majority of programming was
sustained by a single graduate-student program-
mer. Between four and eight other researchers
filled out the design team.

The prototypes are available for anyone to use,
and the source code is also distributed under a
Creative Commons license. To date, the proto-
types have been used to support a large number
of communities of users ranging from water-
quality engineers to volunteers in a Puerto Rican
community library in Chicago, from researchers
studying the honeybee genome to undergradu-
ates in the social sciences. There are numerous
other groups using the system for any number
of purposes. Given this scenario, it is practically
impossible to design for the user community or
any intended use.

The prototypes were developed in the PHP pro-
gramming language on an open source platform
consisting of Apache, MySQL, and RedHat Linux.
In contrast to Project Alpha where the developers

initially did very little programming and primar-
ily used readily available tools, the developers of
Project Beta spent considerable effort building an
infrastructure from scratch, in part because the
developers were initially unaware of relevant OSS.
However, as the project progressed, several open
source tools were incorporated into the prototypes
including the JavaScript-based rich-text editors
FCKEditor and TinyMCE, the phpBB bulletin
board system, and MediaWiki.

To demonstrate the process in more detail, we
describe how one particular piece of OSS was
integrated with the prototypes. In the earliest ver-
sion of the cyberinfrastructure, users expressed
an interest in having a bulletin board system.
The developers selected the phpBB system and
manually installed copies of phpBB for each
community that wanted a bulletin board; the
bulletin board was simply hyperlinked from the
community’s home page. In the next iteration of
the prototype, the phpBB system was modified
to be more integrated with the rest of the proto-
type. Users could now install a bulletin board
themselves, without involving the developers, by
clicking a button on the interface. Furthermore,
the authentication and account management of
the bulletin board was integrated with the rest of
the prototype, eliminating the need for users to
log in twice. However, the full features of phpBB
were more than the users needed. They primarily
made use of the basic post and reply functions
and the threaded-conversation structure. Users
indicated that the overall organization of the board
system into topics, threads, and posts made sense
to them. In the most recent major revision of the
prototype, the phpBB system was replaced by a
simpler, more integrated homemade bulletin board
prototype that supported these basic features.
Had the development progressed in the opposite
order (i.e., building the simple prototype first,
then adding features), it is possible that develop-
ers could have wasted valuable time and energy
prototyping features that would only be discarded
later for lack of use.

 1649

Patchwork Prototyping with Open Source Software

generAlIzed APProAcH to
PAtcHwork PrototyPIng

Based on the experiences described above, we have
outlined a general approach to building patchwork
prototypes using OSS. While our experience
has been primarily with Web-based tools, and
this process has been defined with such tools in
mind, it is likely that a similar approach could
be taken with prototyping any kind of software.
Like other prototyping methods, this is designed
to be iterated, with the knowledge and experience
gained from one step feeding into the next. The
approach entails the following five stages:

1. Make an educated guess about what the
target system might look like.

2. Select tools that support some aspect of the
desired functionality.

3. Integrate the tools into a rough composite
4. Deploy the prototype and solicit feedback

from users.
5. Reflect on the experience of building the

prototype and the feedback given by users,
and repeat.

For the most part, these steps are relatively
straightforward. Making the first educated guess
about what the target system might look like
can be the hardest step in this process because
it requires the design team to synthesize their
collective knowledge and understanding of the
problem into a coherent design. In this first itera-
tion of the process, it is often helpful to use paper
prototypes and scenarios, but their function is
primarily to serve as communications devices
and brainstorming aids. The high equivocality
of the situation almost guarantees, however, that
whatever design they produce will be insufficient.
This is not a failure. It is an expected part of the
process, and the design will be improved on
subsequent iterations. The important thing is to
have a starting point that can be made concrete,

and not to spend too much time brainstorming
ideas. It is essential not to become bogged down
in controversies about how the software “ought”
to look, but rather to put together a prototype and
test it out with users in their everyday environ-
ments and let the users figure out what works,
what does not, and what is missing.

selection and Integration of tools:
The Benefits of Using open source
software

There are several important considerations to
keep in mind when selecting the tools. On first
glance, patchwork prototyping as a method does
not require OSS; the same general process could
theoretically be followed by using software that
provides APIs, or by creating prototypes through
adapting methodologies for creating production-
scale software systems such as COTS (commercial
off-the-shelf) integration (Boehm & Abts, 1999).
However, using OSS confers several important
advantages; in fact, we believe that patchwork
prototyping is only now emerging as a design
practice because of the recent availability of a
significant number of mature, production-scale
OSS systems.

Without access to source code, developers
are limited in how well they can patch together
different modules, the features they can enable
or disable, their ability to visually integrate the
module with the rest of the system, and their
ability to understand the underlying complexity
of the code needed to construct such systems on
a production scale. High-profile OSS is often of
high quality, which means that difficult design
decisions have already been made. Given that it
is built from the collective experiences of many
programmers, less effective designs have already
been tried and discarded. In fact, by using and
delving into human-readable (compared to that
generated by CASE tools, e.g.), open source code,
the developers can get a grounded understanding

1650

Patchwork Prototyping with Open Source Software

of how particular features can be implemented,
which can enable them to better estimate develop-
ment time and costs.

The Web-based nature of patchwork proto-
types affords several ways of integrating the
selected software into the prototype, ranging
from shallow to deep. Shallow integration con-
sists of either wrapping the tools in an HTML
frame to provide a consistent navigation menu
between the tools, or customizing the HTML
interfaces of the tools themselves to add hy-
perlinks. Most open source Web applications
use HTML templates, cascading style sheets,
and other interface customization features,
which make adding or removing hyperlinks
and changing the look and feel very easy. The
advantage of shallow integration is the ease and
speed with which the developer is able to cobble
together a prototype. A significant drawback
to shallow integration is that each application
remains independent.

Deeper integration usually requires writing
some code or modifying existing source code.
This may include using components or modules
written for the extension mechanisms designed
into the application or other modifications made
to the application’s source code. If the developers
cannot find precisely what they are looking for,
they can fashion the code they need by copying
and modifying similar extension code, or, in the
worst case, the developers will need to write new
code to facilitate the integration. However, the
amount of code needed is very little in compari-
son to the amount of code that would have been
required of the developers building a prototype
from scratch.

For any prototyping effort to be worthwhile,
the costs of creating the prototypes must be mini-
mal. OSS systems tend to be fully implemented,
stand-alone applications with many features and
capabilities that provide a wealth of options to play
with when prototyping to elicit requirements. The
minimal effort required to add features allows the
programmers to treat the features as disposable:

Because little effort was needed to implement
them, little effort is wasted when they are switched
off or discarded. That most OSS are free is also
important, both for budgetary reasons and because
the developers can avoid complicated licensing
negotiations. Additionally, most OSS have very
active development communities behind them
with members who are often eager to answer
the developer’s questions in considerable depth,
and do so for free, unlike the expensive technical
support that is available for commercial products.
All of this facilitates the requirements-gathering
process because iterations of the prototype can be
rapidly created with high functionality at mini-
mal cost, and with minimal effort and emotional
investment by the developers.

Deployment, Reflection,
and Iteration

During the deployment of the prototype, future
users integrate the cyberinfrastructure into their
work practices for an extended period of time and
explore what they can do with it collaboratively.
The collection of feedback on user experiences
allows requirements gathering that is not purely
need based, but also opportunity and creativity
based. By seeing a high-fidelity prototype of the
entire system, users can develop new ideas of how
to utilize features that go beyond their intended
use, and conceptualize new ways of accomplishing
their work. In addition, users will become aware
of gaps in functionality that need to be filled, and
can explain them in a manner that is more concrete
and accessible to the developers.

When reflecting on the collected feedback,
however, the design team must realize that
the prototype does not simply elicit technical
requirements; it elicits requirements for the col-
laborative sociotechnical system as a whole. The
existence of the prototype creates a technological
infrastructure that influences the negotiation of
the social practices being developed by the us-
ers via the activities the infrastructure affords

 1651

Patchwork Prototyping with Open Source Software

and constrains (Kling, 2000). The design team
must be aware of how various features affect the
development of social practice, and must make
explicit the type of interactions that are required
but are not currently realized. By allowing the

users to interact with the prototypes for extended
periods, collecting feedback on their experiences,
and paying attention to the social consequences
of the cyberinfrastructure, a richer understand-
ing of the sociotechnical system as a whole can

Paper Prototyping Patchwork Prototyping COTS/API Prototyping
Speed

Can iterate a prototype multiple
times in an afternoon

Can iterate a prototype in less than
a week

Can take weeks or months to
iterate a prototype

Monetary Costs

Cost of office supplies Free, or minimal cost of licenses if
in business setting

Purchasing and licensing software
can be expensive

Availability of Materials

Usually already lying around Large number of high-quality OSS
available for free download

Not all commercial systems have
APIs

Functionality
Nonfunctional High High

Accessibility

Anyone can prototype
systems using paper, including
nontechnical end users

Requires skilled programmers to
create patchwork prototypes

Requires skilled programmers to
integrate commercial software

Interface
Not polished, but can
provide a consistent and/or
innovative interface concept for
consideration

Not renowned for excellent
usability; assembled components
may be inconsistent

Individual elements may be high
quality and familiar; assembled
components may be inconsistent

Flexibility

High: can do anything with
paper

High: can modify source to create
any desired functionality

Low: restricted to what the API
allows, which may be limited

Disposability

High: little investment of time,
money, emotions

High: little investment of time,
money, emotions

Low: significant effort and money
can result in high emotional
investment

User Attachment

Low: users can see it is rough
and nonfunctional

Med. to High: upon using it, can
get attached to the system unless
iterated rapidly

High: cannot be iterated fast
enough to avoid attachment

Table 2. Comparison of patchwork prototyping with other methods

1652

Patchwork Prototyping with Open Source Software

emerge. Thus, reflection is a process of attending
to the consequences of the design for the broader
sociotechnical system, and integrating those con-
sequences into a holistic understanding of how
the system is evolving.

Iteration is essential to the rapid prototyping
approach. First, iteration allows for the exploration
of more features and alternatives. This can uncover
overlooked aspects of the system that might be
of use. This can also reinforce the importance or
necessity of particular features or requirements.
Furthermore, iteration provides the users with a
constant flow of new design possibilities, which
prevents them from becoming overly attached
to any single design, giving them the freedom
to criticize particular instances of the prototype.
Ultimately, it is impossible to reach complete
understanding of the system given its evolving
nature. However, by iterating the prototyping
process, the design space may narrow, identify-
ing a set of key requirements. At this point the
design is not complete, but work on a flexible
production-scale system can begin, and further
exploration of the design space can be continued
within that system.

strengtHs And lIMItAtIons

Patchwork prototyping addresses two major
problems that designers face when building new
sociotechnical systems. First, it allows the design
team to get feedback on the prototype’s use in
real-world situations. Users interact with the sys-
tem in their daily activities, which focuses their
feedback around task-related problems. In Project
Alpha, when members of the design team started
using the prototype, the feedback changed from
general praise or criticism of the appearance of
the interface to more detailed explanations of how
particular functionality aided or inhibited task
performance. Second, it reduces the equivocal-
ity of the design space. By creating a functional
prototype, discussions change from being highly

suppositional to being about concrete actions, or
concrete functionality.

Integration into the real-world context is
markedly different from other prototyping and
requirements-capture methods. Paper prototypes
are typically given to users in a laboratory setting
(Nielsen, 1993), thus all the tasks are artificial.
While this can give developers important design
insights, the drawback is that prototypes can
end up optimized for artificial tasks and not for
real-world use. More expensive methods such
as participatory design (Ehn & Kyng, 1991) and
ethnography (Crabtree, Nichols, O’Brien, Rounce-
field, & Twidale, 2000) try to incorporate real-
world use into the design process, the former by
bringing users into the design team, the latter by
observing users in their natural work environment.
However, when the technology that these methods
were used to design is introduced, it inevitably
changes the practices and social structures present
in the work environment, often in a way that cannot
be predicted. Patchwork prototyping overcomes
these limitations by being cheap and by provid-
ing real-time feedback on both users’ problems
with the software and the effects the software is
having on the broader work context.

The advantages of patchwork prototyping
can be seen when comparing it to other pro-
totyping techniques. In Table 2 we compare it
to paper prototyping and to prototyping using
COTS software. The advantages of patchwork
prototyping are that it has many of the benefits
of paper prototyping, including low cost and
ready availability of materials, yet provides the
high functionality of COTS/API prototyping; the
effort needed to create the prototypes and the
length of the iteration cycles lies somewhere in
between. Thus, while we see the method as being
yet another tool for developers and designers to
have in their toolbox, in many ways, it combines
the best of both worlds.

The patchwork prototyping approach is not
without limitations, however. Despite our hope
that the visibility of the seams between the ap-

 1653

Patchwork Prototyping with Open Source Software

plications would be interpreted by the users as an
indication that the prototype is a work in progress,
our experiences seem to indicate that the users
still view it as a finished product due to the fact
that it has real functionality. It is possible that such
interpretations can be overcome through social
means by emphasizing the fact that the system
is a prototype to all users who are encouraged
to test it. However, since none of the projects we
participated in did this, we have no idea whether
or not that would be sufficient. One thing that is
clear, however, is that visual coherence between
applications greatly facilitates the ease of use and
positive perceptions of the system as a whole. In
fact, in Project Alpha, it was realized that users
need different views of the component modules
and features depending on the context in which
they access the applications, and in some of those
views the distinctions between modules must be
totally erased.

Patchwork prototyping requires highly skilled
programmers to be implemented effectively.
Programmers must have significant experience
within the development environment in which the
OSS applications are coded; otherwise, they will
spend too much time reading code and learning
the environment, and the speed of implementation
will not be as fast. Also, OSS can have security
vulnerabilities that can compromise the server on
which they are hosted. Project Beta ran into this
problem when multiple installations of phpBB
succumbed to an Internet worm, bringing down
the prototype for several days. Third, patchwork
prototyping requires a long-term commitment
by users, and a motivated facilitator who is able
to convince the users to adopt the prototype
and incorporate it into their work practices. The
facilitator must collect feedback about the us-
ers’ experiences. Without willing users and the
collection of feedback, the prototyping process
will likely fail.

future trends

The use of patchwork prototyping is still in its
infancy. The relative ease with which patchwork
prototypes can be constructed means that the
method itself affords appropriation into new con-
texts of use. For example, one of the biggest costs
to organizations is buying software systems such
as enterprise management systems. Patchwork
prototyping offers a cheap and effective method for
exploring a design space and evaluating features.
Consequently, through prototyping, managers can
be more informed when shopping for software
vendors and can more effectively evaluate how
effective a particular vendor’s solution will be for
their company (Boehm & Abts, 1999).

Because users have to integrate the prototype
into their daily work practices, transitioning from
the patchwork prototype to the production-scale
system can be highly disruptive. One method of
avoiding this is having a gradual transition from
the prototype to the production-scale system by
replacing prototype modules with production-
scale modules. To do this, however, the prototypes
must be built on a robust, extensible, modular
framework because the latter component is not
easily replaced. If this model is used, the system
development process need never end. Prototypes
of new features can constantly be introduced as
new modules, and, as they mature, be transi-
tioned into production-scale systems. As more
developers and organizations support open source
development, the number and availability of OSS
applications will increase. As more modules are
written for particular open source, component-
based systems, the costs of doing patchwork
prototyping will further decrease, as will the
threshold for programming ability—perhaps to
the point where users could prototype systems
for themselves that embody specifications for
software programmers to implement.

1654

Patchwork Prototyping with Open Source Software

conclusIon

Patchwork prototyping is a rapid prototyping
approach to requirements gathering that shares
the advantages of speed and low cost with paper
prototypes, breadth of scope with horizontal
prototypes, and depth and high functionality with
vertical, high-fidelity prototypes. This makes it
particularly useful for requirements gathering
in highly equivocal situations such as designing
cyberinfrastructure where there is no existing
practice to support because it allows future users
to integrate the cyberinfrastructure into their work
practices for an extended period of time and ex-
plore what they can do with it collaboratively. It has
the benefit of allowing the design team to monitor
the sociotechnical effects of the prototype as it is
happening, and gives users the ability to provide
detailed, concrete, task-relevant feedback.

Patchwork prototyping is an excellent example
of how OSS can foster innovation. The affordances
of open-source code and a devoted development
team create opportunities to utilize OSS in ways
that go beyond the functionality of any particular
application’s design. The cases presented here
merely scratch the surface of a new paradigm of
OSS use. Further research is needed to understand
the specific features of technologies that afford
such innovative integration.

references

Beynon-Davies, P., Carne, C., Mackay, H., & Tud-
hope, D. (1999). Rapid application development
(RAD): An empirical review. European Journal
of Information Systems, 8(3), 211-223.

Bishop, A. P., Bruce, B. C., Lunsford, K. J.,
Jones, M. C., Nazarova, M., Linderman, D., et
al. (2004). Supporting community inquiry with
digital resources. Journal of Digital Information,
5(3). Retrieved from http://joko.tanu.edu/Articles/
v05/i03/Bishop

Boehm, B. W., & Abts, C. (1999). COTS inte-
gration: Plug and pray? IEEE Computer, 32(1),
135-138.

Brooks, F. P. (1995). The mythical man-mouth:
Essays on software engineering (Anniversary
ed.). Boston: Addison-Wesley.

Crabtree, A., Nichols, D. M., O’Brien, J., Rounce-
field, M., & Twidale, M. B. (2000). Ethnomethod-
ologically-informed ethnography and information
systems design. JASIS, 51(7), 666-682.

Daft, R. L., & Lengel, R. H. (1986). Organizational
information requirements, media richness and
structural design. Management Science, 32(5),
554-571.

Daft, R. L., & Macintosh, N. B. (1981). A tentative
exploration into the amount and equivocality of
information processing in organizational work
units. Administrative Sciences Quarterly, 26(2),
207-224.

Ehn, P., & Kyng, M. (1991). Cardboard comput-
ers: Mocking-it-up or hands-on the future. In J.
Greenbaum & M. Kyng (Eds.), Design at work
(pp. 169-196). Hillsdale, NJ: Laurence Erlbaum
Associates.

Finholt, T. A. (2002). Collaboratories. Annual
Review of Information Science and Technology,
36(1), 73-107.

Floyd, C. (1984). A systematic look at prototyping.
In R. Budde, K. Kuhlenkamp, L. Mathiassen, &
H. Zullighoven (Eds.), Approaches to prototyping
(pp. 1-18). Berlin, Germany: Springer-Verlag.

Grudin, J. (1988). Why CSCW applications fail:
Problems in the design and evaluation of organiza-
tional interfaces. In CSCW 88: Proceedings of the
Conference on Computer-Supported Cooperative
Work (pp. 85-93).

Kling, R. (2000). Learning about information
technologies and social change: The contribution

 1655

Patchwork Prototyping with Open Source Software

of social informatics. The Information Society,
16, 217-232.

Lakhani, K. R., & von Hippel, E. (2002). How
open source software works: “Free” user-to-user
assistance. Research Policy, 1451, 1-21.

Lim, K. H., & Benbasat, I. (2000). The effect of
multimedia on perceived equivocality and per-
ceived usefulness of information systems. MIS
Quarterly, 24(3), 449-471.

Martin, J. (1991). Rapid application development.
New York: Macmillan Publishing Co.

Nielsen, J. (1993). Usability engineering. San
Diego, CA: Morgan Kaufman.

Pressman, R. S., Lewis, T., Adida, B., Ullman,
E., DeMarco, T., Gilb, T., et al. (1998). Can In-
ternet-based applications be engineered? IEEE
Software, 15(5), 104-110.

Rettig, M. (1994). Prototyping for tiny fingers.
Communications of the ACM, 37(4), 21-27.

Rudd, J., Stern, K., & Isensee, S. (1996). Low vs.
high-fidelity prototyping debate. Interactions,
3(1), 76-85.

Star, S. L., & Ruhleder, K. (1996). Steps toward
an ecology of infrastructure: Design and access
for large information spaces. Information Systems
Research, 7(1), 111-134.

Thomke, S., & von Hippel, E. (2002). Customers
as innovators: New ways to create value. Harvard
Business Review, 80(4), 74-81.

Trist, E. L. (1981). The sociotechnical perspec-
tive: The evolution of sociotechnical systems as a
conceptual framework and as an action research
program. In A. H. van de Ven & W. F. Joyce (Eds.),
Perspectives on organization design and behavior
(pp. 19-75). New York: John Wiley & Sons.

key terMs

COTS Integration: The process by which
most businesses integrate commercial off-the-
shelf software systems in order to create a com-
puting environment to support their business
activities.

Equivocality: The name for a lack of knowl-
edge that cannot be mitigated simply by doing
research or gathering more information. In an
equivocal situation, decisions often need to be
made, definitions created, and procedures negoti-
ated by various (often competing) stakeholders.

Paper Prototyping: A rapid prototyping
method for creating low-fidelity prototypes using
pencils, paper, sticky notes, and other low-tech
materials that can be quickly iterated in order to
explore a design space. It is often used in inter-
face design.

Patchwork Prototyping: A rapid prototyping
method for creating high-fidelity prototypes out
of open source software that can be integrated by
users into their everyday activities. This gives us-
ers something concrete to play with and facilitates
a collaborative process of sociotechnical systems
development. It is ideal for highly equivocal de-
sign situations.

Rapid Prototyping: Rapid prototyping is
a method that involves creating a series of pro-
totypes in rapid, iterative cycles. Normally, a
prototype is created quickly, presented to users in
order to obtain feedback on the design, and then
a new prototype is created that incorporates that
feedback. This cycle is continued until a fairly
stable, satisfactory design emerges, which informs
the design of a production-scale system.

Sociotechnical System: Refers to the concept
that one cannot understand how a technology will
be used in a particular environment without un-

1656

Patchwork Prototyping with Open Source Software

derstanding the social aspects of the environment,
and that one cannot understand the social aspects
of the environment without understanding how
the technology being used shapes and constrains
social interaction. Thus, one can only understand
what is going on in an environment by looking at
it through a holistic lens of analysis.

Uncertainty: The name for a lack of knowl-
edge that can be addressed by obtaining more
information, such as by researching an answer,
looking it up in reference materials, or collect-
ing data.

This work was previously published in Handbook of Research on Open Source Software: Technological, Economic, and Social
Perspectives, edited by K. St.Amant & B. Still, pp. 126-140, copyright 2007 by Information Science Reference (an imprint of
IGI Global).

 1657

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.17
Evaluation of a Migration to

Open Source Software
Bruno Rossi

Free University of Bozen-Bolzano, Italy

Barbara Russo
Free University of Bozen-Bolzano, Italy

Giancarlo Succi
Free University of Bozen-Bolzano, Italy

AbstrAct

The chapter discusses the adoption and assimi-
lation process of open source software as a new
form of information technology. Specifically, the
case reports a general positive attitude towards
the widely used technology, the OpenOffice.
org suite for office automation. Nevertheless, it
shows the difficulties of the first early adopters
to lead the innovation process and push other
users. Different usage patterns, interoperability
issues, and, in general, the reduction in personal
productivity typical of the early phases of adop-
tion are also remarked. The aim of this chapter
is to give the reader an overview of the adoption
process by means of the analysis of quantitative
and qualitative data gathered during real world
experimentation, and to shed some light on how

empirical data can corroborate or challenge the
existing literature about open source software
and technology adoption.

IntroductIon

Open source software (OSS) and open data stan-
dards (ODS) have emerged in recent years as a
viable alternative to proprietary solutions. There
are many cases in which the adoption of OSS has
proved advantageous for companies deciding to
adopt it in replacement or in conjunction with
closed source software (CSS). Unfortunately, at
our knowledge, these studies often report only
about server-side migrations or give very little
empirical evidence of the benefits of the new
solution. Among case studies that report success-

1658

Evaluation of a Migration to Open Source Software

ful transitions on the desktop side we can surely
mention as pioneers the Extremadura, Munich,
and Vienna case studies (Marson, 2005; Lande-
shauptstadt München, 2003; Stadt Wien, 2004).
All these cases have in common the intention of a
large migration inside a single public administra-
tion (PA). Furthermore, the migration to OSS in
all these cases has been already performed or is
in the process of being deployed. We summarise
the most famous deployments in Table 1, three
are European, while one is U.S.-based.

One of the most remarkable deployments of
OSS on the desktop side is surely the one of the
Extremadura region in Spain, recently installing
80,000 Linux systems, 66,000 for the educational
system and 14,000 for administrative worksta-
tions. The local administration even created their
Linux distribution called gnuLinex1. According to
their IT department, the savings have been of the
order of €18M (Marson, 2005). Another case of
success is the one of the city of Largo, FL (USA)
where the migration has involved 900 clients;
the savings have been estimated in $300,000-
$400,000 (Miller, 2002). The migration of the city
of Munich and the one of the city of Vienna are
currently underway (Landeshauptstadt München,
2003; Stadt Wien, 2004). As the delay of the Mu-
nich migration seems to demonstrate, a transition
to OSS is not a process to underestimate. There

are also cases where the proprietary solution has
been considered more convenient, like the city of
Nürnberg, where according to their own migration
study, the transition from Windows 2000/Office
2000 to Windows XP/Office XP was considered
as €4.5M cheaper than the transition to Linux/
OpenOffice.org (Stadt Nürnberg, 2004).

Another case of interest that emerged recently
is the decision of the state of Massachusetts to
abandon closed data standards (CDS) in favour
of ODS, in particular to adopt the open docu-
ment format for office automation documents
exchange activities starting from January 2007
(Massachusetts State, 2005). According to the
Organization for the Advancement of Structured
Information Standards (OASIS) the purpose of
the format is “to create an open, XML-based
file format specification for office applications”
(OASIS, 2005). Following this case and the in-
creasingly requests coming from the European
Commission to reduce e-government barriers,
Microsoft decided to open the formats supported
by its office automation suite in the upcoming
months (Palmer, 2005).

The goal of this chapter is to provide an in-
sight on two different experimental migrations to
OSS inside European PAs. In particular, we don’t
consider a full migration, but the introduction of
OSS in the office automation field. Throughout

Region
Clients

to
migrate

Side Distribution

Extremadura 80000 Desktop/
Servers gnuLinex

Munich 14000 Desktop Debian

Vienna 7500 Desktop Wienux (Debian/
KDE)

Largo, FL 900 Desktop/
Servers Linux KDE 2.1.1

Table 1. Large deployments of OSS inside public administrations

 1659

Evaluation of a Migration to Open Source Software

a constant monitoring of the software employed,
we derive some indications on software usage that
can be useful to provide more information on the
migration process and the adoption of OSS.

In the next sections, we will provide first an
overview of the existing literature about tech-
nology adoption and then start reviewing the
experimentation details providing background
information about the two Public Administra-
tions involved. The last part will be devoted to
the discussion of the results.

technology Adoption and
Assimilation

Before entering the discussion about the experi-
mentation and the migration performed, an over-
view of the existing literature about technology
adoption and assimilation will be useful. This will
also provide a framework in which the results of
the experimentation will be inserted.

Technology adoption, diffusion and accep-
tance research bases its foundation on the early
work of Everitt Rogers, in the book titled Diffu-
sion of Innovations. Rogers (1995) interest lies
in studying the diffusion process that character-
ises technology adoption. In his seminal work,
technology adopters are categorised according
to the phase in which they make the adoption
decision. The main distinction is among innova-
tors, early adopters, early majority, late majority,
and laggards. In particular, the author models the
diffusion as an S-shaped curve characterised by
an initial adoption speed and a later growth rate.
The claim is that different technologies will lead
to different adoption patterns.

Interesting for our study are various factors
that affect the level of technology adoption inside
organisations, like the organisational age (Chat-
terjee, Grewal, & Sambamurthy, 2002), organisa-
tional size (Fichman, & Kemerer, 1997), industry
type (Chatterjee, Grewal, & Sambamurthy, 2002;
Fichman, & Kemerer, 1997), and sophistication of

the IT infrastructure (Armstrong, 1999; Chau &
Tam, 1997). To some extent, the evidence seems
to report that organisations that are younger, larger
and belong to certain industry types are more
willing to invest and adopt new technology. The
existence of a sophisticated IT infrastructure will
also lead to an easier adoption path.

Fur thermore, Fichman and Kemer-
er (1999) report two critical factors that in-
fluence the technology assimilation process:
knowledge barriers and increasing returns.
The first effect relates to the effort necessary to ac-
quire the necessary knowledge and skills to properly
adopt a certain technology. This effect leads to what
are known as knowledge barriers (Attewell, 1992;
Fichman & Kemerer, 1999). Being a new and still
somewhat unexplored field, we think that OSS is
subject heavily to knowledge acquisition barriers
that can in some way hinder its adoption.

As a second macro-level phenomenon, the
adoption of certain technologies is subject not
only to supply-side benefits due to economies of
scale (Shapiro & Varian, 1999) but also to a de-
mand-side effect called increasing returns effect
(Arthur, 1989). The effect leads to an increase of
utility in adoption for each successive adopter,
based on the number of previous adopters. Arthur
(1989) goes further in this analysis, claiming that
“[e]conomy, over time, can become locked-in
by ‘random’ historical events to a technological
path that is not necessarily efficient, not possible
to predict from usual knowledge of supply and
demand functions, and not easy to change by
standard tax or subsidy policies” (p. 2). In this
sense, it may not be possible to easily switch from
a certain technology once a certain critical level
of adoption has been reached.

Open source software and software in general
is one of the goods that are particularly sensible to
economies of scale, increasing returns and knowl-
edge barriers. To understand fully the adoption
process, all these effects have to be considered.

1660

Evaluation of a Migration to Open Source Software

bAckground InforMAtIon

Experimentation on the migration to OSS in the
office automation field has been performed in
two different European public administrations
(PAs). We will discuss briefly the background
details of the two public administrations involved
and for simplification purposes, we will refer to
the first public administration as PA1 and the
second as PA2.

PA1 is a large public administration, counting
globally over 5,000 employees. The budget allo-
cated for the ICT (information and communication
technology) services is high, but the experience
with OSS is still limited. The reason for the interest
in a possible migration to OpenOffice.org and in
general to other OS applications is threefold:

• Spare the money spent yearly to cover the
license costs.

• Reduce the effort needed to handle the
licenses.

• Provide a benefit to the local economy, by
means of the adoption of OSS.

PA2 is composed by a large number of municipal-
ities spread across the territory of its region. Nearly
all the municipalities in the consortium are small
and count on the average 50 desktop machines. The
maintenance is performed remotely by the central
IT (information technology) department. In this
case, the budget available for ICT services in such
small municipalities is low, but a great experience
in OSS has been built in recent years, mostly based
on server-side solutions. The objectives of a possible
migration to OSS are the following:

• Reduce the costs of ICT services in the long
term.

• Ensure the accessibility of generated docu-
ments also in the future, not relying on pro-
prietary data standards.

To summarise the characteristics of the the
PAs that took part to the experimentation, both
share a similar organisational size, while differ-
ences exist in prior OSS experience and budget
allocated for ICT services.

focus of cHAPter

experiment design

The experimentation performed has involved the
market leader Microsoft Office2 and OpenOffice.
org3, an OSS suite offering ODS support. The
decision to use these applications has been done in
accordance with the relevance of office automation
inside PAs (Drakos, Di Maio, & Simpson, 2003)
and the guidelines given by IDABC (Interoperable
Delivery of European eGovernment Services to
public Administrations, Businesses and Citizens)
for a gradual transition to OSS. One of the main
suggestions is to “introduce applications in a
familiar environment” (IDBAC Report, 2003, p.
23). The introduction of OpenOffice.org is seen
as a necessary step for a successive complete
migration to OSS.

To monitor the behaviour of users with both
solutions, we adopted the PRO Metrics (PROM)
software as a mean to collect and analyse software
metrics and personal software process data (Sil-
litti, Janes, Succi, & Vernazza, 2003), software
that permits to collect metrics on software usage in
a non-invasive manner. It allows the collection of
the measures of time spent on documents, name of
the document and other useful information about
the general software usage. To protect the privacy
of the users several measures were taken in ac-
cordance with the local union representatives:

• Data collected has been encrypted by means
of the strong AES algorithm (Pfleeger &
Pfleeger, 2002).

 1661

Evaluation of a Migration to Open Source Software

• Usernames were randomly generated.
• Data of single users were not given to single

PAs, the analysis presented has been only
given in aggregated form and with the aim
to provide an evaluation of the migration.

In Table 2, a comparison of both experimenta-
tions is performed.

The number of users involved in the experi-
mentation has been equivalent, both PAs decided
to install OpenOffice.org in order to evaluate the
possible future migration. The suite has been in-
stalled on a large number of workstations in both
PAs; however our study has been performed on a
smaller subset of users. The total events that are
reported in table refer to the smallest unit that the
data collection software details; a single event refers
to the application’s window release of focus.

This number details the amount of data that
have been collected during the experimentation.
The maturity row refers to the situation in which
the experimentation has been performed; PA2 was
already in a more advanced state of technology
adoption, offering the open solution for several
months prior to the experimentation. As a last
annotation, the details of username generation
have been slightly different between the two

installations, in PA2 the usernames have been
generated on a per machine basis, different users
working on a single workstation are mapped as
a single entity. This will result in higher docu-
ments per day or time per day per single username
compared to PA1, where the usernames map
directly to a single user. Nevertheless, the results
have not been influenced by this approach, since
the common practice in PA2 is to have a single
workstation per user.

The experimentation protocol followed the
same schema in both experimentations:

• Installation of OpenOffice.org; the version of
the suite installed is OpenOffice.org 1.1.3 in
both PAs; various versions of the Microsoft
Office suite were available on the target
systems

• Installation of the PROM agent to monitor
the software adoption level

• Training on the OpenOffice.org suite, mostly
performed to show how to perform the same task
in the new office automation environment

• A questionnaire on the attitude towards
Open Source Software submitted to users

• Support provided to users by means of
forums and hot-lines

Table 2. Comparison of both experimentations

PA1 PA2
Users experimenting 1486 1475
Total OOo installations ~4000 ~2000
Total MSO installations ~4000 ~2000
Days 30 40
Total events 1518150 1435553

Maturity Starting Ooo
introduction

Already using
Ooo

ID generation Per user Per machine

1662

Evaluation of a Migration to Open Source Software

Methodology and limitations

The methodology applied is mainly empirical;
the analysis is based on quantitative data col-
lected through a non-invasive software agent
and on qualitative data collected by means of
questionnaires. A full controlled experiment
could not be performed, as it would not have
been possible to control all exogenous factors
that could affect the final results (Campbell &
Stanley, 1990). For a controlled experiment,
but on a more limited number of users during a
migration to OSS (see Rossi, Scotto, Sillitti, &
Succi, 2005). A comparison of the functionalities
of Sun StarOffice Writer and Microsoft Office
Word4 can be found in (Everitt & Lederer, 2001).
Also in this case the comparison is on a limited
number of users, focusing on the functionalities
offered by both solutions and how users could
perform the same task. Researchers found that
“[w]hile overall ratings for both products were
comparable, participants were more comfortable
and satisfied with Microsoft Word and found it
easier to use than StarOffice Writer” (Everitt &
Lederer, 2001, p. 2).

In the following sections we will perform
first a comparison of the initial attitude of users
towards OSS, the comparison of the two solutions
by means of the quantitative data collected and in
the end evaluate possible interoperability issues
that can raise in case of a full migration.

Initial Attitudes toward oss

The experimentation has been supported by
qualitative data coming from one questionnaire
submitted to users; the aim of the questionnaire
was to evaluate the attitude of the users towards
OSS, as it can have a great impact on the successive
acceptance of OSS. The questionnaire has been
submitted in electronic format. We report here the
results that may be interesting to evaluate the at-
titude of users before entering the experimentation.
Data in this section refers to 282 users of PA1.

The first two questions related to the knowl-
edge of OSS, in particular the familiarity with the
concept and the general users’ perception. The
answers are represented in Figure 1.

 Surprisingly, more than 60% of the users that
filled the questionnaire depict themselves either as
very familiar or fairly familiar with the concept.
One of the reasons can be that users with more
attitude towards OSS were the ones that filled the
questionnaire earlier. The second question about
the perception of OSS leads to a group of users
neutral or positive towards the new concept; after
the experimentation it is possible that users acquire
a more sharp view on the subject; in this sense,
we should expect at that point, neutral users to
represent the minority.

The third question in Figure 2 further investi-
gates the knowledge of users in the field, we asked
whether users know OS products and whether
they can name at least one.
 Not surprisingly, the majority of users report no
application. The most known products are Ope-
nOffice.org and the Linux operating system.

In showing the results of the remaining ques-
tions, we divided the users in two categories, users
that had already an opinion on OSS and users that
don’t know the phenomenon. In this sense the
first category consisted of all users considering
themselves either as familiar or very familiar with
OSS (see Figure 1, Question A) and naming at least
one application (see Figure 2, Question C). For the
reader’s convenience, in the upcoming tables we
named these groups OSS and non-OSS users. In
Figure 3, the experimenters are questioned about
the purchasing criteria of software in general,
without particular reference to OSS.

In this case, users already with knowledge of
OSS seem to be more aware of the customisation
requirements of software inside PAs. The next
two questions are related to a full migration to
OSS. In Figure 4 users are posed in a situation of
a generalized introduction of OSS and its effects
on the organizational aspects of the PA.

 1663

Evaluation of a Migration to Open Source Software

Figure 1. PA1—Results of Question A

Very familiar Fairly familiar Sufficiently
familiar

Barely
familiar

Not familiar
at all

0,00%
2,50%
5,00%
7,50%

10,00%
12,50%
15,00%
17,50%
20,00%
22,50%
25,00%
27,50%
30,00%
32,50%
35,00%
37,50%

A. Are you familiar with the expression "Open Source Software"?

Negative Neutral Positive

0,00%
5,00%

10,00%

15,00%
20,00%
25,00%
30,00%
35,00%

40,00%
45,00%
50,00%
55,00%

60,00%
65,00%
70,00%

B. What is your perception of the expression "Open Source Software" ?

The results of Figure 4 are comparable across
both groups: the majority of users consider the
introduction of OSS as a chance of reorganization
of the IT department of the PA. Furthermore, 15%
of users consider the introduction as non important

in terms of organizational impact. The last ques-
tion in Figure 5 is very similar to the previous
one, but this time is related to the impact of the
migration on the single user.

1664

Evaluation of a Migration to Open Source Software

Figure 2. PA1—Results of Question C and Question D

Yes No
0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

50,00%

55,00%

60,00%

C. Do you know Open Source products?

OpenOffice Linux Mozilla Firefox Others

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

50,00%

55,00%

D. Could you mention at least one product?

Figure 3. PA1—Results of Question E

Note: Possible answers are (a) No, they should follow the same criteria; (b) Yes, they should take into ac-
count the peculiar needs of the PA; (c) I don’t know.

A B C

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

50,00%

55,00%

60,00%

65,00%

70,00%

75,00%

Non OSS
OSS

E. Do you think that purchase criteria regarding software in the PA should
differ from those of the private companies?

 1665

Evaluation of a Migration to Open Source Software

Figure 4. PA1—Results of Question K

Figure 5. PA1—Results of Question L

A B C D

0,00%
2,50%
5,00%
7,50%

10,00%
12,50%
15,00%
17,50%
20,00%
22,50%
25,00%
27,50%
30,00%
32,50%
35,00%
37,50%
40,00%
42,50%
45,00%
47,50%

K. The generalized introduction of Open Source
 software in your PA represents:

Non OSS
OSS

K. The generalized introduction of open source software in your PA
represents:

Note: Possible answers are (a) A chance for the reorganization of the IT structure; (b)A chance for the redefini-
tion of the organizational structure in a wide perspective; (c) A further load of work for the single units; (d) The
introduction will not be important.

A B C D

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

50,00%

55,00%

60,00%

L. The substitution of the daily used software with OSS

will cause for you:

Non OSS
OSS

L. The substitution of the daily used software with OSS will cause
for you:

Note: Possible answers: (a) More work in the short run, but advantages in the long run; (b) More work in the short
run and no advantages in the long run; (c) Less work; (d) More work.

1666

Evaluation of a Migration to Open Source Software

The results also in this case do not report a
large difference between the two groups, more
than half of the users are convinced that the
substitution will have a negative impact on the
workload in the short period, the advantages will
be evident only in the long period. Users of the
OSS group seem more conscious about the effort
that a migration causes.

Overall the results of the questionnaires report
users in general positive towards OSS. It would

be interesting as an additional study to evaluate
the impact of the experimentation on the users’
attitude, to see how the perception of users changes
after the influence of a full migration.

comparison of the solutions

Both softwares for office automation have been
running during the whole experimentation, users
were free to choose the solution more appropri-

Figure 6. PA1—Distribution of users across average documents (x-axis) and average time (y-axis)

(a) Microsoft Office documents handling

(b) OpenOffice.org documents

0 5 10 15 20 25 30 35 40

0

50

100

150

200

250

300

350

400

450

MSO Users distribution

Avg docs

Av
g

tim
e

m
in

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

120

140

160

180

OOo Users distribution

Avg docs

Av
g

tim
e

m
in

 1667

Evaluation of a Migration to Open Source Software

ate for the task to perform. A limitation on this
decision was given by the large number of files
already available in the original data format. More
of these interoperability details will be analyzed
in the apposite section.

From the analysis performed, we observed
that the average time spent with the new solution
tends to be minimal in PA1, where the software
has been introduced with the experimentation. In
PA2 instead, where the solution has been installed

for several months, daily average minutes per day
tend to be above 50 minutes per user.

The events generated have been aggregated
in two different kinds of measures, the average
number of documents worked per day by each user
during the whole period and the average time in
minutes spent on the documents. In Figures 6 and
7 we see the mapping of each user for PA1 and
workstation for PA2 in this space. In each figure
on the left the mapping is for Microsoft Office,

Figure 7. PA2—Distribution of users across average documents (x-axis) and average time (y-axis)

(b) OpenOffice.org documents

(a) Microsoft Office documents handling

0 2,5 5 7,5 10 12,5 15 17,5 20 22,5 25 27,5 30 32,5 35 37,5 4042,5 45 47,5 50 52,5 55 57,5

0
25
50
75

100
125
150
175
200
225
250
275
300
325
350
375
400
425

MSO Users distribution

Avg docs

Av
g

tim
e

m
in

0 5 10 15 20 25 30 35 40 45

0
25
50
75

100
125
150
175
200
225
250
275
300
325
350

OOo Users distribution

Avg docs

Av
g t

im
e

m
in

1668

Evaluation of a Migration to Open Source Software

while on the right the mapping is for OpenOffice.
org. Each point represents a user.

In PA1, 90% of all users lie in the space between
20 documents per day and 200 minutes per day spent
using Microsoft Office. In PA2 90% of all clients
lie between 24 documents and 240 minutes.

Regarding OpenOffice.org, 90% of PA1’s us-
ers lie between four documents and less than 60
minutes of usage. In PA2, as we should expect,
the usage is stabilized at higher levels, with the
limit of eight documents and 135 minutes that
encompasses 90% of the users.

From the temporal evolution of the software
usage, we note that the software usage is constant
in both PAs during the whole experimentation.
This is due to the short time frame we are ana-
lysing. At this stage of the experimentation, the
difference in usage of OpenOffice.org between
the two PAs is clearly evident.

Furthermore, the distribution of users across
time and documents gives a better idea of the
grouping of users. As a further step, the application
of clustering techniques in order to group users
according to further variables and in accordance
to their attitude, might also shed some lights on
the usage pattern of the different applications
(Duda, Hart, & Stork, 2001).

functionalities

A further study on the functionalities5 has been
performed in both PAs, the goal was to gather
information on how users evaluate the office
automation application’s features. Indeed, one of
the major critics to OSS on the desktop-side, is
its supposed lack of usability compared to CSS
(Nichols & Twidale, 2003). The aim of this sec-
tion is to evaluate the difference in functionalities
usage between the two applications and whether
from this distinction we can derive some indica-
tions about the usability.

In Figure 8, a first representation of the situation
in PA1 is plotted. Users are mapped according to
the average Microsoft Office functions per day
(x-axis) and average OpenOffice.org functions
per day (y-axis).

From the distribution of users in Figure 8, we can
notice that users tend to use daily more functions
in Microsoft Office. To further investigate this is-
sue, we then compared both situations normalizing
the functions used per time unit. To perform this
operation, we set-up the following metric:

1 []∑∑
f

n t

Figure 8. PA1—Functions per office automation software

0 100 200 300 400 500 600 700 800 900

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160

PA1 - Functions per office automation software

Avg MSO functions per day

Av
g

O
O

o
fu

nc
tio

ns
 p

er
 d

ay

 1669

Evaluation of a Migration to Open Source Software

where f is a single function, t is the time spent on
documents and n is the total number of users. By
using the time we can compare the results among
the two solutions. As a result of this formula, we
get the distribution results shown in Table 3.

The number of normalised functionalities used
is in general lower with Microsoft Office than
with OpenOffice.org; an explanation can be the
fact that users are more acquainted to shortcuts
in order to perform certain operations. On the
other side newcomers to OpenOffice.org have
yet to acquire the necessary confidence in the
functionalities offered.

These considerations cannot alone denote a
possible usability problem of OpenOffice.org.
However, they can indicate the difference in usage
of the new technology introduced, a difference
that will obviously reflect on users’ productivity
during the early phases of a migration.

future trends

Interoperability considerations

One of the strategies that a software vendor enter-
ing a market can exploit to emerge in a situation
where users are in a situation of lock-in, is to
provide higher compatibility with the standards
already offered on the market. This strategy has

its drawback in the fact that some performance
of the application has to be sacrificed in favour
of the compatibility, entering a mechanism of
trade-off (Shapiro & Varian, 1999).

In this sense, OpenOffice.org offers compat-
ibility also with the closed data standards of
the Microsoft Office suite. It is interesting in
the study proposed to see how users adopted
this compatibility feature. To gain a measure
of this interoperability issue, we computed as a
first step the number of Microsoft Office propri-
etary formats documents opened by means of
OpenOffice.org. Further data, as the time spent
with the documents opened with this method
and the number of users adopting the feature
also add detail to this analysis.

In Figure 9, data are reported for each day:
the number of foreign documents opened per day
(in white), the total time in minutes spent on the
documents opened (in black) and the number of
users adopting this solution at least once per day
(in grey). The Microsoft Office formats considered
are the ones handled by Microsoft Word, Excel
and Powerpoint, namely files with doc, rtf, xls,
and ppt extensions.

The results of this kind of analysis are not
encouraging; probably one of the reasons is that
users are not aware of this possibility. A mini-
mal number of users is adopting this feature in
his everyday work, to be precise only 10.90% of
OpenOffice.org users (17 out of 156) with 6.76%
of the global time spent in OpenOffice.org (nearly
nine hours out of 138 hours). This last aspect seems
to justify also that users tend to open documents
of the foreign format for viewing purposes only;
editing is seen as dangerous due to the different
application used.

The same analysis is represented in Figure 10
also for the second PA. In this case we see that
users more trained and adopting OpenOffice.
org for a longer time have a clearer idea of the
functionalities offered.

The same considerations of the previous group
report that 57.46% of OpenOffice.org users (447 out

Table 3. PA1—Results of functions calling between
Microsoft Office and OpenOffice.org

MSO OOo
Min 0,03 0.08
Max 5,45 5,45
Mean 0,41 1,71
Std. Dev 0,45 1,26

1670

Evaluation of a Migration to Open Source Software

of 778) used this feature, but only 2.26% of the time
spent in OpenOffice.org (nearly 78 hour over 3.594
hours). In this case the result confirms that users are
more aware of the interoperability features.

Another important interoperability issue in the
migration in the office automation field is due to
the different applications available in both suites.
While Microsoft Office offers a small personal

Figure 9. PA—Representation of the Microsoft Office documents opened by using OpenOffice.org

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140

Documents
Users
Total Time

Note: For each day the figure reports number of documents (in white), users adopting this feature at least once in
that day (grey) and the total time for the day spent in minutes on the documents after the opening (black). Exten-
sions considered are .doc and .rtf (Microsoft Word), .ppt (Microsoft Powerpoint) and .xls (Microsoft Excel).

Figure 10. PA2—Representation of the Microsoft Office documents opened by using OpenOffice.org

Note: For each day the figure reports number of documents (in white), users adopting this feature at least once in
that day (in grey) and the total time for the day spent in minutes on the documents after the opening (in black). Ex-
tensions considered are .doc and .rtf (Microsoft Word), .ppt (Microsoft Powerpoint) and .xls (Microsoft Excel.)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
0

50

100
150

200

250

300

350

400

450

500

550

600

PA2 - Microsoft Office documents opened with OpenOffice.org

Total docs
Users
Total Time

 1671

Evaluation of a Migration to Open Source Software

database application called Access, OpenOffice.
org in the version available to experimenters
doesn’t offer a comparable alternative6. In Figure
11 the use of Microsoft Access is reported, with
number of documents (in white), number of users
using the application in that particular day (in
grey) and total time spent by all users in hours
(in black). Time has been reported in hours to
facilitate the reading.

What can be seen is that the software is still
very used; nearly 30% of all Microsoft Office
users used at least once the application during
the experimentation period. If we consider only
users employing it for a period greater than five
days, the percentage drops to 15%. In this kind
of analysis we cannot perform a comparison
with PA2 as the software for data collection
installed was not configured to collect this kind
of information.

The results of this section report that a more
focused training on the interoperability features
offered by the OpenOffice.org suite can lead

to a broader diffusion of the suite. It is still to
understand the reasons of the lack of confidence
in editing documents in the other application
source format.

conclusIon

The results of both experimentations show that
open source software (OSS) can represent a viable
alternative to closed source software (CSS) even
on the desktop side. The analysis was focused on
four different levels of technology adoption, the
level of the users’ attitude towards OSS, level of
adoption and usage of both solutions during the
period, functionalities adopted and the interop-
erability issues. Where possible, all levels have
been considered for both PAs that participated to
the experimentation:

• The attitude was in general positive; us-
ers had a positive attitude before starting

Figure 11. PA1—Representation of the Microsoft Access documents handled by users

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

50

100

150

200

250

300

350

400

450

500

550

600

PA 1 - Microsoft Access usage per day

Documents
Users
Total time (h)

Note: For each day the figure reports number of documents (in white), users opening such a document at least once
in that day (in grey) and the total time for the day spent in hours on the documents after the opening (in black).

1672

Evaluation of a Migration to Open Source Software

the experimentation. However, we should
expect a change of the attitude at the end
of the experimentation. Neutral users will
probably join the groups of enthusiastic or
sceptics about OSS.

• The adoption and usage of both solutions
has seen the predominance of the market-
dominant Microsoft Office, although in the
experimentation where OpenOffice.org was
already introduced users started to use it in
everyday work. This is due also to network
effects in IT markets that have been exploited
by the early adopter PA of our study (Katz
& Shapiro, 1985). Implementing a strategy
of documents exchange in the new format
is a key decision to widen the diffusion of
the new application. The results obtained
show that the migration path will be more
difficult in absence of a proper strategy of
documents exchange.

• The analysis of the functionalities used
has shown that there are different patterns
between the groups of the two suites. The
group of Microsoft Office users has more
confidence in the software, performing
their task mainly through shortcuts. Such a
confidence is not present in OpenOffice.org
users. The results cannot be used to evaluate
the usability of OSS, however they do report
the reduction in productivity that is typical
of the early phases of software migration.

• The analysis on interoperability shows that
there are still interoperability issues, mainly
in the form of personal databases creation.
Furthermore, users don’t seem to evaluate
positively the compatibility with the foreign
format offered by OpenOffice.org. The strat-
egy to increase the diffusion of the software
by providing a greater level of compatibility
with the existing data standards doesn’t seem
to provide the results expected.

Overall, the data collected have granted the
possibility to evaluate the adoption levels of OSS

inside two different PAs. In the cases reported,
the initial levels of adoption are low and interop-
erability issues exist that can potentially hinder
OSS adoption.

note

This work has been partially supported by COSPA
(Consortium for Open Source Software in the
Public Administration), EU IST FP6 project nr.
2002-2164

references

Armstrong, C. P., & Sambamurthy, V. (1999).
Information technology assimilation in firms:
The influence of senior leadership and IT infra-
structure. Information Systems Research, 10(4),
304-327.

Arthur, W. B. (1989). Competing technologies,
increasing returns, and lock-in by historical events.
Economic Journal, 99, 116-131.

Attewell, P. (1992). Technology diffusion and
organizational learning. The Case of Business
Computing. Organization Science, 3(1), 1-19.

Campbell, D. T., & Stanley, T. D. (1990). Experi-
mental and quasi-experimental design. Boston:
Houghton Mifflin Company.

Chatterjee, D., Grewal, R., & Sambamurthy, V.
(2002). Shaping up for e-commerce: Institutional
enablers of the organizational assimilation of web
technologies. MIS Quarterly, 26(2), 65-89.

Chau, P., & Tam, K. (1997). Factors affecting the
adoption of open systems: An exploratory study.
MIS Quarterly, 21(1), 1-24.

Drakos, N., Di Maio, A., & Simpson, R. (2003).
Open source software running for public office
(Gartner Research Report AV-19-5251). Retrieved

 1673

Evaluation of a Migration to Open Source Software

December 2005, from www4.gartner.com/re-
sources/114500/114562/114562.pdf

Duda, R. O., Hart, P. E., & Stork, D. G. (2001).
Pattern classification. New York: John Wiley
& Sons.

Everitt, K., & Lederer, S. (2001). A usability com-
parison of Sun StarOffice Writer 5.2 vs. Microsoft
Word 2000. Retrieved November 2, 2005, from
http://www.sims.berkeley.edu/courses/is271/f01/
projects/WordStar/

Fichman, R. G., & Kemerer, C. F. (1997). The
assimilation of software process innovations: An
organizational learning perspective. Management
Science, 43(10), 1345-1363.

Fichman, R. G., & Kemerer, C. F. (1999). The
illusory diffusion of innovation: An examina-
tion of assimilation gaps. Information Systems
Research, 10(3), 255-275.

IDABC. (2003). The IDA open source migration
guidelines. Retrieved February 15, 2006, from
http://ec.europa.eu/idabc/servlets/Doc?id=1983

Katz, M. L., & Shapiro,C. (1985). Network ex-
ternalities, competition, and compatibility. The
American Economic Review, 75(3), 424-440.

Landeshauptstadt München. (2003). Clientstudie
der Landeshauptstadt München. Retrieved
February 2, 2006, from http://www.muenchen.
de/aktuell/clientstudie_kurz.pdf

Marson, I. (2005). Linux brings hope to Spain’s
poorest region. Retrieved January 10, 2006, from
ZDNetUK Web site: http://insight.zdnet.co.uk/
software/linuxunix/0,39020472,39197928,00.
htm

Massachussets State. (2005). Enterprise tech-
nical reference model. Retrieved on February
2, 2006, from http://www.mass.gov/portal/site/
massgovportal/menuitem.769ad13bebd831c/
14db4a11030468a0c?pageID=itdsubtopic&L

=4&L0=Home&L1=Policies%2c+Standards+
%26+Legal&L2=Enterprise+Architecture&L
3=Enterprise+Technical+Reference+Model+-
+Version+3.5&sid=Aitd

Miller, R. (2002). Largo loves Linux more than
ever. Retrieved February 2, 2006, from News-
forge Web site: http://www.newsforge.com/print.
pl?sid=02/12/04/2346215

Nichols , M., & Twidale, M. B. (2003). The usabil-
ity of open source software. First Monday, 8(1),
Retrieved July 6, 2006, from http://firstmonday.
org/issues/issue8_l/nichols/

Palmer, M. (2005). Microsoft to give Office
access to rivals. Retrieved February 2, 2006,
from Financial Times Online Web site: http://
news.ft.com/cms/s/e9f5c0f8-5ab7-11da-8628-
0000779e2340.html

OASIS—Organization for the Advancement of
Structured Information Standards. (2005). OASIS
Open Document Format for Office Applications
(OpenDocument). Retrieved December 5, 2005,
from http://www.oasis-open.org/home/index.php

Pfleeger, C. P., & Pfleeger, S. L. (2002). Security
in computing (3rd ed.). Upper Saddle River, NJ:
Prentice Hall.

Rogers, E. (1995). Diffusion of innovations. New
York: The Free Press.

Rossi, B., Scotto M., Sillitti, A., & Succi, G.
(2005). Criteria for the non invasive transition
to OpenOffice. In Proceedings of OSS2005,
Genova, Italy.

Shapiro, C., & Varian H. R. (1999). Information
rules: A strategic guide to the network economy.
Cambridge, MA: Harvard Business School
Press.

Sillitti, A., Janes, A., Succi, G., & Vernazza, T.
(2003, September 1-6). Collecting, integrating and
analyzing software metrics and personal software

1674

Evaluation of a Migration to Open Source Software

process data. In Proceedings of EUROMICRO
2003, Belek-Antalya, Turkey.

Stadt Nürnberg. (2004). Strategische Ausrichtung
im Hinblick auf Systemunabhängigkeit und Open
Source Software. Retrieved February 2, 2006,
from http://online-service.nuernberg.de/eris/
agendaItem.do?id=49681

Stadt Wien. (2004). Open Source Software am
Arbeitsplatz im Magistrat Wien. Retrieved Febru-
ary 15, 2006, from http://www.wien.gv.at/ma14/
pdf/oss-studie-deutsch-langfassung.pdf.

key terMs

Assimilation: Passive adoption of a new
practice or behaviour, generally resulting from
participating in activities where such behaviour
is used or is expected.

Data Standard: Denotes a standard to store
data in information science. The most impor-
tant classification is between open/closed data
standards according to the publishing of the
specification, although the exact classification is
still controversial.

Deployment: Use of an item on a relatively
large scale.

Lock-In: In economics, denotes a situation in
which a consumer cannot change his buying deci-
sion without incurring in high switching costs. For
example, a user may be bound to a certain software
provider for the services offered, by switching to
another provider he may incur in high switching
costs to change his system infrastructure.

Network Effect: In economics, denotes a
demand-side effect, by which the utility given

to a certain good increases with the number of
successive users adopting it. Information goods
are a typical example of good that manifest this
behaviour.

Migration: Transitioning from one particular
software package to another.

Office Automation: The set of software
necessary to provide the necessary integration
between the information system and the standard
office activities. The minimal set of instruments
includes a word-processor, a spreadsheet, software
for presentations, and a small personal database
application.

endnotes

1 GnuLinex, http://www.linex.org/
2 Microsoft Office, http://www.microsoft.

com/office/editions/prodinfo/default.mspx
3 OpenOffice.org, http://www.openoffice.

org
4 The study is dated November-December

2001 and refers in particular to the com-
parison between Sun StarOffice Writer 5.2
and Microsoft Word 2000.

5 As functionalities we intend the opening
of one window inside an application, as for
example—to remain in the office automation
field—the paragraph options or the Save As
screen. At the time of both experimentations
we could not collect more fine-grained data,
like the invocation of keyboard shortcuts that
gives us the exact correspondence with the
functions used in a program.

6 Starting from version 2.0 OpenOffice.org
offers also the Base component to provide
simple database functionalities.

This work was previously published in Handbook of Research on Open Source Software: Technological, Economic, and Social
Perspectives, edited byK. St.Amant & B. Still, pp. 309-326, copyright 2007 by Information Science Reference (an imprint of
IGI Global).

 1675

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.18
Open Source Software

Adoption:
Anatomy of Success and Failure

Brian Fitzgerald
Lero – Irish Software Engineering Research Centre and University of Limerick, Ireland

AbstrAct

Current estimates suggest widespread adoption
of open source software (OSS) in organizations
worldwide. However, the problematic nature of
OSS adoption is readily evidenced in the fairly
frequent reports of problems, unforeseen hold-ups,
and outright abandonment of OSS implementation
over time. Hibernia Hospital, an Irish public sector
organization, have embarked on the adoption of
a range of OSS applications over several years,
some of which have been successfully deployed
and remain in live use within the organisation,
whereas others, despite achieving high levels of
assimilation over a number of years, have not
been ultimately retained in live use in the or-
ganization. Using a longitudinal case study, we
discuss in depth the deployment process for two
OSS applications – the desktop application suite
whose deployment was unsuccessful ultimately,
and the email application which was successfully
deployed. To our knowledge, this is the first such

in-depth study into successful and unsuccessful
OSS implementation.

IntroductIon

Open source software (OSS) has elicited a great
deal of research interest across a range of disci-
plines since the term was introduced in 1998. Much
of this research, however, has focused inward on
the phenomenon itself, studying the motivations
of individual developers to contribute to OSS
projects, or investigating the characteristics of
specific OSS products and projects, for example.
Far less has been done in looking outward at the
process of OSS adoption and implementation in
organizations. The need for rigorous research
into this process is important for several reasons:
Firstly, recent estimates suggest widespread
adoption of OSS: A survey of public adminis-
trations in 13 European countries reported that
78% were using open source (Ghosh and Glott,

1676

Open Source Software Adoption

2005). Similarly, a large-scale survey in the US
estimated that 87% of organizations were using
open source software (Walli et al., 2005). How-
ever, these surveys did not distinguish between
primary adoption (the initial decision to adopt at
the organizational level) and secondary OSS adop-
tion (the actual implementation process which
involves adoption by individuals throughout the
organization). Primary and secondary adoption
have been identified as quite different scenarios
(Gallivan, 2001; Zaltman et al., 1973). This distinc-
tion and the problematic nature of OSS adoption
is readily evidenced in the fairly frequent (and
somewhat controversial) reports of problems,
unforeseen hold-ups, and outright abandonment of
OSS implementation over time (e.g. Birmingham
City Council (Thurston, 2006); Crest Electronics
(Turner, 2005); Scottish Police (Niccolai, 2005),
Newham Council (McCue, 2004).

Here we present the case of Hibernia Hospital,
an Irish public sector organization, who embarked
on the adoption of a range of OSS applications.
Some of these applications have been success-
fully deployed and remain in live use within the
organisation, whereas others, despite achieving
high levels of assimilation over a number of years,
have not been ultimately retained in live use in the
organization. Using a longitudinal case study, we
discuss in depth the deployment process for two
OSS applications—a desktop application suite
whose deployment was ultimately unsuccessful
and abandoned, and an email application which
was successfully deployed. To our knowledge,
this is the first such study into successful and
unsuccessful OSS implementation,although there
have been several studies of OSS adoption (e.g.
Lundell et al., 2006; Rossi et al., 2006; Ven et al.,
2006; Zuliani and Succi, 2004).

As a starting point, we drew on Gallivan’s
(2001) process framework for studying secondary
adoption of technology. This framework extends
the classical diffusion of innovation theory of
Rogers (1962-2003) by drawing on critiques of
this theory (e.g. Fichman, 1992; Fichman and

Kemerer, 1999; Moore and Benbasat, 1991). Our
goal in this study was not to test a factor model
of OSS deployment but rather to provide a rich
description of the process of successful and unsuc-
cessful OSS adoption in a single organizational
context, with a focus more on theory development
rather than theory testing.

Furthermore, researchers have identified a
tendency in traditional innovation adoption re-
search towards a pro-innovation bias (Fichman,
2004; Rogers, 2003). As a result, innovation is
invariably seen as beneficial and positive for all
participants, and, indeed, more has been written
about successful adoption than rejection. Thus,
our study here of the successful and failed adop-
tion of OSS products can provide useful insights
and contrasts which can contribute to theory
development in this area.

The remainder of the paper is structured as
follows. In section 2, we discuss the process model
approach adopted here and present the conceptual
framework we use in the study. Following this,
section 3 discusses the research approach adopted.
Section 4 presents the adoption process trajectories
for both OSS applications in Hibernia. Following
this, in section 5 we discuss this deployment using
the framework derived in Section 2. Finally, the
conclusions and the implications of the study for
a theory of OSS deployment are discussed.

concePtuAl groundIng

Process versus factor research
Models

Process and factor approaches have been identi-
fied as alternative but complementary approaches
to research (e.g. Markus and Robey, 1988; Mohr,
1982). Briefly summarising, factor research is
concerned with identifying predictor and outcome
variables. These are cast as independent and de-
pendent variables and the research focus tends
towards rigorous measurement of the variables

 1677

Open Source Software Adoption

and statistical analysis of the relationship between
them. The variables are assumed to be causally
related with the predictor/independent variable
accounting for variation in the outcome/dependent
variable. However, such research cannot provide
any in-depth explanation as to how and why the
variables may be related (Newman and Robey,
1992). Process model research, on the other hand,
seeks to elaborate the story of the underlying
dynamics which reveals how and why outcomes
are reached over time. In this study, given the lack
of research on organizational adoption of OSS,
successful or otherwise, a process model which
could afford increased understanding of signifi-
cant OSS adoption events was important.

While process and factor models are acknowl-
edged as complementary, researchers have warned
against combining into a single model (Markus
and Robey, 1988; Newman and Robey, 1992;
Mohr, 1982). This argumentation is based on the
fact that the models differ in form and operate a
different model of causality. That is rather than
a ‘push type’ causality of factor models where
the levels of the independent variables cause the

levels of the dependent variables, in the process
model approach, outcomes are implied by preced-
ing events—a ‘pull-type’ causality.

Notwithstanding this argument, several
researchers have combined process and factor
models to good effect (Gallivan, 2001; Sambamur-
thy and Poole, 1992; Shaw and Jarvenpaa, 1997).
Indeed, combining factor and process models has
been advocated when the focus is on understand-
ing the adoption events and the factors that pro-
mote or constrain adoption outcomes (Gallivan,
2001; Shaw and Jarvenpaa, 1997). Therefore a
somewhat hybrid model was followed here in that
an overall conceptual framework of innovation
adoption was identified, primarily as a conceptual
lens to theoretically ground the study (Klein and
Myers, 1999) and also as a means of bounding the
study focus (Newman and Robey, 1992).

Innovation Adoption research

In a review of technology diffusion research, Fich-
man (1992) proposes a 2x2 matrix of innovation
adoption contexts where the axes are locus of

Organizational

High knowledge
burden/High user
interdependencies

Individual

C
lass of T

echnology

Locus of Adoption

Low knowledge
burden/Low user
interdependencies

Traditional
Adoption

Knowledge
Burden

Organizational
Mandate

Organizational
Mandate and
Knowledge Burden

Figure 1. IT diffusion classification matrix (from Fichman, 1992; Gallivan, 2001)

1678

Open Source Software Adoption

innovation adoption (individual or organization)
and class of technology to be adopted (low user
interdependencies and knowledge burden versus
high user interdependencies and knowledge bur-
den). The model is presented in Figure 1.

Fichman argues that the assumptions under-
pinning traditional innovation adoption models
hold best for the lower-left quadrant in Figure 1.
In our study, we focus on organizational adop-
tion of open source which is best characterised
by organizational mandate to use the technol-
ogy and also extensive knowledge required to
overcome barriers to implementation and use.
This is represented by the upper-right quadrant
in Figure 1.

 Such a characterisation of OSS as a technol-
ogy subject to organizational mandate, high user
interdependencies and high knowledge burden is
justifiable for a number of reasons. Firstly, the OSS
products that we focus on in this study include
desktop and email application platforms. Both of
these represent horizontal infrastructure systems
in widespread use within organizations. As such
they would be subject to the IT governance policy
within an organization, and use of these systems
would typically be organization-wide.

Furthermore in terms of knowledge burden,
Fichman and Kemerer (1999) argue that IT as-
similation may be hindered by knowledge barriers
due to the learning required to obtain the neces-
sary deep knowledge and skills to successfully
deploy complex technologies. These knowledge
barriers cause deployment to be a risky venture
for an organization, but it may still undertake
deployment so as to be in a position to avail of
benefits at the appropriate time.

These issues are especially pertinent in the
case of OSS. Given the fact that OSS is quite a
new phenomenon, there is no well-established and
codified base of knowledge that can guarantee
successful deployment. OSS adoption represents
a significant risk and a fundamental change in
how software is acquired and maintained (Ager-
falk and Fitzgerald, 2008). For example, there is

usually no vendor to market an OSS product and
verify that the product meets required function-
ality. Nor is there the automatic provision of the
guaranteed maintenance contract that comes with
the acquisition of proprietary software. These is-
sues represent a considerable knowledge burden
for organizations that embark on the process of
OSS adoption.

A conceptual framework for the
Innovation Adoption Process

Gallivan (2001) draws on a wide range of inno-
vation adoption research, including Rogers dif-
fusion of innovation, Davis’ (1989) TAM model
and, particularly the Theory of Planned Behavior
(Ajzen, 1985) to propose a process framework
specifically addressing secondary adoption and
organizational assimilation of technology (see
Figure 2).

This framework operates at quite a high-level
in identifying issues relevant to the IT adoption
process. Here we briefly discuss the components of
the framework and how they are relevant in an open
source context. Later, we use this framework to
structure our discussion of the deployment process
for the various OSS applications in Hibernia.

Managerial Intervention

Managerial intervention refers to the actions taken
and resources made available by management to
expedite secondary adoption. Gallivan identifies
issues such as voluntariness of adoption, training
and support here. Voluntariness has also been
proposed as a significant factor in other innova-
tion research (Moore and Benbasat, 1991), and
the issue of organizational mandate in relation
to OSS adoption was discussed above.

Management support is undoubtedly critical
for radical, high-risk initiatives such as OSS
deployment since it contravenes the traditional
model where ongoing support is legally guaran-
teed by a vendor. Indeed, management support

 1679

Open Source Software Adoption

is likely to become even more important in the
future as OSS adoption moves out of the domain
of invisible infrastructure systems to more visible,
high-profile applications.

subjective norms

Subjective norms have to do with individual beliefs
about how relevant peers and co-workers expect
them to behave in relation to the technology.
This can lead to greater effort to learn about and
adopt an innovation or even cause abandonment
of a technology. This issue has resonances with
attributes of the innovation, such as compatibility
and image, discussed below.

From a values and norms perspective, the
ideology represented by OSS may have signifi-
cant implications. The importance of ideological
values has been illustrated in several studies of
OSS. For example, Stewart and Gosain (2006)
identify how adherence to an overarching OSS

community ideology facilitates team effective-
ness. Similarly, the protracted and heated dis-
pute over several years among the Linux kernel
development community concerning the use of
a proprietary version control system (BitKeeper)
represented an ideological crisis for many in that
community, and certainly influenced the choice
of adoption and non-adoption of the technology
(Shaikh, 2006).

facilitating conditions:
Attributes of the Innovation and
organization

Much prior research on innovation adoption has
focused on attributes of the technology and the
organization. Rather than discuss exhaustively
the range of attributes that have been identified,
a number of attributes are briefly presented here
and we discuss how they are relevant to an OSS
context.

Managerial Intervention

Subjective Norms

Facilitation Conditions

Assimilation Stage

Mandatory v. voluntary
usage
Training and support

Expectations of peers,
managers, subordinates,
professional network

Attributes of the Innovation
Organizational Attributes

Secondary
Adoption

Awareness/Interest
Evaluation/Trial

Abandonment
General Deployment
Limited Deployment

Figure 2. Secondary adoption process (adapted from Gallivan, 2001)

1680

Open Source Software Adoption

Attributes of the Innovation

Rogers (2003) identifies five key perceived attri-
butes of an innovation that influence the outcome
of the adoption process:

• Relative advantage: the extent to which an
innovation is perceived as being better than
its precursor.

• Compatibility: the degree to which an in-
novation is perceived as being consistent
with the existing values, norms, needs and
past experiences of potential adopters.

• Complexity: the degree to which an innova-
tion is perceived as difficult to understand
and use.

• Trialability: the degree to which an innova-
tion can be experimented with.

• Observability: the degree to which the re-
sults of an innovation are visible to others.

In short, Rogers suggests that innovations will
diffuse more quickly and successfully when they
are readily trialable, of high relative advantage,
compatible with the status quo, not too complex
to use, and where use is readily observable to
others. These attributes have been confirmed
in many studies. Additional attributes, such as
image and voluntariness, have been identified
(Moore and Benbasat, 1991), and indeed some
attributes have been found to overlap—relative
advantage and compatibility, for example (Moore
and Benbasat, 1991; Carter & Belanger, 2006).
While Rogers’ work is applicable to innovation in
general, in the specific category of IT adoption,
the technology assessment model (TAM) has
been proposed by Davis (1989) with two central
attributes—perceived usefulness and perceived
ease of use. These are subsumed by the Rogers
attributes of relative advantage and complexity
respectively.

These attributes are readily apparent in the
context of OSS. In terms of relative advantage,
compatibility and complexity, for example, many

OSS products have been purposefully designed to
replicate proprietary counterparts. There should
therefore be a sense of familiarity thus mitigating
adoption problems in relation to these attributes.
On the other hand, the observability of OSS use
is less obvious due to the strategy of replicating
proprietary software. For example, it is very dif-
ficult to tell the difference between MS Word,
Excel and Powerpoint and the respective Ope-
nOffice counterparts, Writer, Calc and Impress,
merely by looking at users working online on
these applications.

Given that acquisition of OSS products is usu-
ally extremely straightforward, often as simple as
a zero-cost download from a web site, trialability
is greatly facilitated in the specific case of OSS.
Indeed, many OSS implementations up to now
have been deployed by technologically-literate
IT personnel who have not sought organizational
approval to acquire the products.

In Rogers’s work, image is considered to be
subsumed in relative advantage, but Moore and
Benbasat concur with previous studies which have
shown image to be a separate factor (Tornatzky
and Klein, 1982). Image is defined as the degree to
which an innovation can enhance one’s image or
social status. This has emerged as a complex issue
in relation to open source. Studies of the motiva-
tion of OSS developers reveal that the intrinsic
satisfaction of belonging to a meritocratic com-
munity where talented developers can progress to
become core developers is a powerful force (e.g.
Kuk, 2006; Lakhani and Wolf, 2006). Similarly,
from a user perspective, public administrations,
particularly in Europe, have been enthusiasti-
cally seeking to deploy open source, seeing it as
a positive initiative which frees them from the
constraints of a proprietary software industry.
However, other reports have found that developers
do not necessarily embrace open source (Zach-
ary, 2003), and equally, from a user perspective,
there may be resistance to the use of open source
products (van Reijswoud, 2005).

 1681

Open Source Software Adoption

Organizational Attributes:
Absorptive Capacity

Fichman (1992) recommends that theoretical
frameworks of traditional innovation research
be complemented by additional perspectives,
including absorptive capacity (Cohen and
Levinthal, 1990). Absorptive capacity refers to
an organization’s ability to recognise the value
of new information, absorb it and subsequently
leverage it productively. An absorptive capacity
perspective has been used by Daniel et al. (2006)
to study OSS development group performance in
relation to knowledge acquisition and transfer.
However, absorptive capacity certainly seems
relevant for OSS adoption more generally. The
ever increasing number of OSS applications ap-
pearing in the marketplace represents a signifi-
cant knowledge challenge to be overcome—for
example, the knowledge of what applications
exist, which ones are most viable, how well they
are supported, what functionality they offer, how
they may be integrated with other OSS or propri-
etary applications. Indeed, developers in the past
have referred to the “exhilarating succession of
problem-solving challenges” when installing OSS
products (Sanders, 1998). Furthermore, given that
there is no tried and tested roadmap indicating a
clear series of steps to guarantee successful de-
ployment, organizations cannot expect to have the
type of lengthy experience with OSS deployment
that could guarantee success. Thus, the process of
OSS implementation is clearly one where absorp-
tive capacity may play a crucial role.

secondary (Individual) Adoption
Process

Gallivan suggests this component to address
the details of the organizational implementa-
tion process whereby individuals throughout
the organization adopt the innovation. This is
taken to include when and how the innovation
is adopted, what obstacles are encountered and

how these influence the outcome and the degree
of organizational assimilation.

level of oss Assimilation

Given that technology acquisition and deploy-
ment represent different assimilation events, the
level or degree of assimilation can be viewed as
a staged process from awareness/interest through
to general deployment. The following, adapted
from Fichman & Kemerer (1997), indicate the
range of OSS assimilation levels experienced
over time in Hibernia.

• Awareness/Interest: Key decision makers
in organization aware of OSS and actively
committed to learning more

• Evaluation/Trial: Organization has ac-
quired specific OSS products and has initi-
ated evaluation or trial

• Limited Deployment: Organization has
established a program of regular but limited
use of OSS products

• General Deployment: Organization is us-
ing OSS products for at least one large and
mission critical system

• Abandonment: Organization has discon-
tinued live use of OSS products

reseArcH APProAcH

At a high level, research epistemologies may be
classified as positivist, interpretivist or critical
(Chua, 1986), although Klein and Myers (1999)
recognise that classifying individual research
studies is not always straightforward. To the
extent that positivist research involves quantifi-
able measures, formal hypothesis testing and the
pursuit of statistical generalization, this research
study is not primarily a positivist one. Likewise
given that critical research seeks to elucidate the
negative and discriminatory conditions inherent
in the status quo, this study does not follow a criti-

1682

Open Source Software Adoption

cal approach. Interpretivist research assumes the
social construction of reality through language
and shared meanings, and explicitly recognises
the importance of a deep understanding of the
context in all its inherent complexity. This re-
search is largely compatible with these assump-
tions and our epistemology is thus closest to the
interpretivist one. However, this classification
should be tempered with our use of a high-level
conceptual framework to ground the research, and
to which we also link our findings. Nevertheless,
Klein and Myers (1999) recommend the use of a
conceptual framework in interpretivist research
for such a purpose.

We sought to develop a rich understanding
and insight based on a deep analysis of a single
case context—what has been termed a “revelatory
case” (Yin, 1994). This is also relevant given that
there are undoubtedly political and social factors
at play in IT assimilation (Fichman & Kemerer,
1999), which are difficult to elucidate in survey
research, for example. Also, by definition postal
surveys usually only elicit information from a
single key informant (or perhaps two) in an or-
ganisation. Thus, there is merit in investigating the
view of multiple stakeholders in a particular case
context, particularly for the complex secondary
adoption process (Fichman, 1992; Gallivan, 2001;
Rogers, 2003). Also, just as quantitative research
highlights findings that are of greatest statistical
significance, in qualitative research, the aptness
of a respondent’s quote can memorably highlight
the essence of the research.

Given that the OSS implementation process in
Hibernia was not uniformly successful, we chose
to focus on two example implementations—the
desktop application suite which was unsuccess-
fully deployed and the email suite which was
successful, thus representing ‘extreme cases’
(Miles and Huberman, 1994). Both applications
are broadly similar—they are applicable to users
throughout the organization, and there are strong
proprietary alternatives in each case. Furthermore,
by limiting our study to a single case context,

certain factors are controlled to some extent—or-
ganizational attributes, for example. This makes
it easier to isolate the salient elements influencing
the success or failure of the process.

data collection and Analysis

In terms of data collection, a number of sources
were drawn on (see Table 1). Over a three-year
period, a series of formal face-to-face interviews,
and more informal telephone interviews and
meetings, were conducted with IT staff, key users
and relevant management. In addition, interviews
were conducted with external consultants from
local firms who provided technical support for
Hibernia’s OSS implementation, and also with
external experts who were familiar with overarch-
ing IT policy issues in the hospital sector. Formal
interviews were generally of one to two-hour
duration. These interviews were complemented
by comprehensive reviews of documents and
presentations, and fortnightly project workshops
of half-day duration over a 12-month period. Fur-
thermore, in the context of a collaborative funded
research project between the author’s university
and Hibernia, there was prolonged and extensive
access and interaction with the relevant personnel.
Thus, clarification and refinement of emergent
issues happened frequently through informal
interviews and meetings with key personnel.

While the initial primary adoption of OSS in
Hibernia was a straight-forward organizational
decision, it soon became obvious that the sec-
ondary adoption of specific OSS applications by
individuals throughout the organization would
not be straightforward. Given this, we drew on
the conceptual framework (Figure 2) which had
been specifically designed to investigate sec-
ondary adoption (Gallivan, 2001). Data analysis
occurred over two phases. Firstly, all the data
gathered over the entire duration of the study was
analysed from the high level perspective of the
conceptual framework. Examples of issues which
related to managerial intervention, subjective

 1683

Open Source Software Adoption

norms, organizational attributes, and attributes
of the innovation were identified. Following this,
in a second coding phase, the specific details
which underpinned the high-level constructs
were identified thereby elaborating the high-level
constructs of the framework. The method of
constant comparison (Glaser and Strauss, 1967;
Miles and Huberman, 1994) was used here as
both cases of successful and unsuccessful OSS
deployment were also drawn on to help isolate
the most salient issues.

While generally guided by an interview proto-
col which specified the specific topics of research
interest, interviews were conducted in a reflexive
manner, in that it was accepted that responses to
certain questions could stimulate new awareness
and interest in particular issues which could then
require additional probing. This strategy is also
recommended by Eisenhardt (1989) who labels it

“controlled opportunism”. This probing was also
a feature of the informal interviews and meetings
which followed the formal interviews.

reliability and validity Issues

Research reliability is concerned with the con-
sistency with which research results can be
replicated. A frequent criticism of interpretivist
research is that due to its subjective nature, rep-
lication is problematic. While acknowledging
that interpretivist analysis would not expect all
researchers to interpret the findings in exactly
the same way, it is important that the research
process be transparent and accessible to others.
To help address research reliability, Yin (1994)
recommends the use of a case study database and
protocol. This strategy has been operationalised in
other interpretivist case studies (e.g. Kirsch, 2004)

Activity Criteria

22 interviews in Hibernia
and with relevant external
experts

Interviews with 17 IT staff, OSS users and management in
Hibernia over the period Feb 2003 to Nov 2006

Interviews with three consultants from three local organisa-
tions providing support to Hibernia (Feb 2004, Jun 2004)

Interviews with two Government and Health Board person-
nel about general OSS implementation policy issues in the
health sector in Ireland (Nov 2004 and Jun 2005)

Fortnightly half-day work-
shops

In context of a joint research project, half-day OSS imple-
mentation workshops held fortnightly in the period Mar
- Dec 2004

Informal meetings/inter-
views

Frequent informal interviews/meetings with relevant staff
refine/clarify issues in the period Feb 2003 to Nov 2006

Project Documentation Various reports and presentations relevant to the OSS
implementation process

Feedback presentations Findings were presented at three workshops attended by
relevant staff

Table 1. Data sources

1684

Open Source Software Adoption

and we followed a similar approach here. A case
study database was established which contained
the raw field notes, transcribed interviews, and
coding of this data according to our conceptual
framework. The case study protocol specifies the
criteria for selecting the case applications, the
choice of whom to interview, and the interview
protocol in terms of broad interview questions.

Research validity is concerned with whether
the actual research in practice matches what it
purports to be about. In interpretive research this
is primarily concerned with the “truth value” of
the research (Miles and Huberman, 1994).

Construct validity deals with the extent to
which the constructs as operationalized relate to
the research phenomenon being studied. In this
study, given the lack of research on OSS adoption,
and our goal of theory development, construct
validity was important. Yin (1994) describes
three tactics to deal with construct validity: the
use of multiple sources of evidence, the establish-
ment of a chain of evidence, and key informants
reviewing draft findings. In this case, the col-
lection of data on the same phenomenon from
multiple interviewees both within and external
to Hibernia, together with information gleaned
from project documents and presentations, helped
address the multiple sources of evidence criterion.
In relation to the chain of evidence criterion, this
was addressed through the establishment of a case
study database, the rigorous analysis and coding
of data according to the conceptual framework,
illustration of the theoretical constructs with
quotes from interviewees who fulfilled a variety
of roles in the implementation, and the process
description of the deployment trajectory over time.
Finally, key informant review and feedback was
addressed in several workshops in the context
of a joint research project on OSS implementa-
tion in Hibernia, and also several draft reports
and presentations on the topic were reviewed by
Hibernia staff.

External validity is concerned with the extent
to which a study’s findings can be generalised.

One of the limitations of this study might appear
to be the fact that it is based on a single case and
thus there is limited scope for generalization.
However, Lee and Baskerville (2003) identify a
fundamental and long-standing misapplication of
generalization whereby researchers have solely
focused on statistical sampling-based generaliz-
ability from a sample to a population, and have
sought to overcome the perceived problem of at-
tempting to generalize to other settings beyond the
current one. Following this conventional model,
researchers have suggested increasing sample size
or number of case study organizations, but Lee
and Baskerville argue cogently for the ultimate
futility of this flawed strategy. They propose
an overarching framework that proposes four
distinct categories of generalizing, only one of
which corresponds to statistical sampling-based
generalization. One of the other categories in their
framework, that of generalizing from empirical
description to theoretical statements, is more
applicable to our research study. This view of
generalizing from thick description to theoretical
concepts, specific implications and rich insight
is also recommended as a strategy by Walsham
(1993) and Klein and Myers (1999, p.75) who
argue for such a theoretical link as being key to
distinguish “interpretive research…from just an-
ecdotes”. In this study, the findings were analysed
and integrated using the theoretical framework
derived from Gallivan (2001).

oss AdoPtIon In HIbernIA
HosPItAl

Hibernia Hospital, which began as a merger of
two of the oldest hospitals in Ireland, operates in
a public sector environment, employing around
3,000 staff directly, which would make it quite a
large organization by Irish standards. Similar to
many other organizations worldwide, Hibernia’s
IT budget had undergone a significant contraction
since 2000 in the wake of the increased budget

 1685

Open Source Software Adoption

in the lead up to the Y2K. For example, in 2003,
Hibernia faced an overall budgetary shortfall of
€17 million. Further compounding this issue, was
the fact that Hibernia would face an annual expen-
diture in the region of €1 million just to achieve
compliance with the licensing conditions in the
proprietary software products in use. It was clear
that this level of funding would not be available.
Thus, Hibernia was faced with the choice of either
reducing the overall level of service to cope with
cost restrictions, or embarking on some radical in-
novation in implementing less costly alternatives.
Consequently, it began to investigate what could
be found in the open source market-place. The IT
staff in Hibernia undertook an extensive phase
of desk research into various OSS products over
a six-month period. The quality of the exchanges
on SourceForge and Slashdot were sufficient to
convince the IT Manager that OSS was worth
investigating further. Some direct experimenta-
tion with downloaded OSS programs was then
sufficient to convince him that the risk involved
was acceptable.

StarOffice Desktop Suite

StarOffice is available from Sun Microsystems
who were also the driving force behind OpenOf-
fice. Some proprietary software is bundled with
StarOffice, which prevents it being offered on the
same terms as the pure open source, OpenOf-
fice, with which it shares a common code base.
Hibernia decided to implement StarOffice, as
Hibernia could then purchase support from Sun.
This was considered important to mitigate the risk
in embarking on a radical new initiative such as
OSS deployment.

In February 2002, Hibernia began the roll-
out of Sun’s StarOffice 5.2 desktop suite. This
deployment was very problematic for users and the
technical staff. However, this was felt to be largely
due to problems in that version of StarOffice. In
September 2002, StarOffice 6.0 was deployed with
some support from Sun. However this was also

troublesome. The IT Manager wanted to pursue a
thin client strategy based around the concept that
all applications should be downloaded from the
network where practical. The StarOffice package
was initially loaded onto a single Linux server,
but this became overwhelmed, and it was then
clustered to sustain a dual server strategy. Despite
this, users continued to lose network connections
in an unpredictable fashion. This inevitably in-
creased frustration and tension amongst the entire
workforce who were dependent on these tools.
The IT Manager conceded that:

“we stuck with the network solution too long. It
was only after a series of ferocious encounters with
users—and with my own staff—that I recognised
that we had to shift”.

StarOffice was reinstalled on the desktop in-
stead for those who wanted it, which did improve
the situation somewhat according to technical
staff, In November 2003, Hibernia installed
StarOffice 7.0. This solved many of the exist-
ing problems, to the extent that the IT Manager
could report that there were no open bug reports
in Hibernia for StarOffice 7.0. Nevertheless, the
users’ perception of the StarOffice system appears
to have been damaged irreparably.

Further compounding the problems was the
fact that when Hibernia started StarOffice imple-
mentation in 2002, there was very little by way
of training material. Thus, a lot of material had
to be prepared internally which increased the
workload for IT staff and trainers.

Even though the move to StarOffice was
mandated, not everyone was obliged to migrate.
The CEO, although a committed supporter who
mandated the move to OSS, did not become a
StarOffice user. In addition to this, Hibernia
comprises many largely autonomous units which
behave independently and raise research funds to
support their activities. Across these units about
120 users chose to ignore the overall move to
StarOffice. Typically, these users had sufficient

1686

Open Source Software Adoption

funds to remain independent of central IT sup-
port. However the IT Manager informed them
that this would have consequences in that they
would have to assume responsibility themselves
for ensuring that the hardware which they use
is upgraded, and provide resources for future
maintenance upgrades, etc.

email Platform

Prior to the move to OSS, Hibernia’s email system
was a proprietary one with a 500-user license limit.
This limit had been reached and the IT Manager
had to refuse recurring requests for new email
accounts. Hibernia initially adopted the SuSE
eMail application which was an open source
email platform supported by Novell following
acquisition of SuSE Linux. Given that there was
no upper limit on the number of user email ac-
counts with the SuSE eMail application, Hibernia
sought to satisfy increased user demand for extra
email accounts. However, when it reached about
700 user email accounts, the SuSE eMail system
became prone to frequent problems of hanging
and crashing. Hibernia had paid a consultant a
once-off fee to implement the SuSE application
initially. As with StarOffice, Hibernia sought to
establish a support contract for SuSE eMail with
Novell. However, the IT Manager reported that
Novell at the time did not appear to be interested
in offering an ongoing support contract for SuSE
eMail. In the absence of a solution to the prob-
lems with SuSE eMail, Hibernia began to look
for an alternative open source email platform.
A multi-product open source email platform
was established, comprising the Postfix mail
transport agent, OpenLDAP directory access
protocol service, SpamAssassin mail filter, and
the SquirrelMail email client. After some initial
teething problems with integration, this mixed
architecture emerged as an extremely stable and
scaleable email solution. Given that there were
no license-imposed constraints on the number of

users, Hibernia initiated a policy whereby all staff
were entitled to an email account. Hibernia’s IT
staff were also able to add functionality to re-route
emails to mobile phones and user PDAs. This,
together with the impressive filtering capability
of SpamAssassin, caused the email platform to
be received very favourably by the general user
base. At present, Hibernia supports more than
3,000 email accounts. Also, the system scope has
been expanded to incorporate certificate-based
external email access for about 350 authorised
users. Overall, the IT Manager believes that “it
would be unthinkable and completely unaccept-
able” to revert to a 500-user license again.

dIscussIon of oss AdoPtIon In
HIbernIA HosPItAl

Here we discuss the different implementation
trajectories for both open source applications
within Hibernia using the conceptual process
framework derived above.

Managerial Intervention

Mandatory versus Voluntary Usage

As already mentioned, the decision to move to
OSS was given full support by the CEO, largely
on the basis that there was no other choice given
the cuts in the IT capital budget. Thus, the use
of StarOffice was seen as mandatory. This had
significant negative implications. Firstly, as the
Secretary Manager put it:

We did not think that StarOffice had been given
to us as a bonus. Rather we felt that Microsoft
Office had been taken away.

However, even in the case of StarOffice, as
already mentioned, a number of users who had
sufficient resources were able to opt out of the mi-
gration. Also, one department who dealt primar-
ily with fund-raising from external stakeholders

 1687

Open Source Software Adoption

argued for the need to remain with the proprietary
system due to having to liaise with these external
agencies who solely used proprietary software.

On the other hand, this issue of mandatory us-
age did not arise in the case of the email platform
suite. Hibernia was offering an additional service
in terms of email access to those who sought it and
who had not been able to get email access in the
past. Thus, the email platform was implemented
in the context of voluntary user demand rather
than there being any perception of mandatory
usage by management.

training and support

The Secretary Manager was critical of the process
by which StarOffice was initially implemented.
There was no effective buy-in process in her
opinion. A small pilot group which included just
one secretary comprised the initial trial. This
was inadequate given that the most active users
of StarOffice would be the cohort of secretaries
in Hibernia. The Secretary Manager suggested
that

StarOffice was sold as the same thing as Micro-
soft Office. A two-page brochure was provided
and it was suggested that no training would be
needed really.

However, even though StarOffice and MS Of-
fice are largely functionally equivalent, menus are
constructed differently and terminology is slightly
different. Thus, commonly-used options such
as Print Preview or Track Changes are labelled
differently or are in different sub-menus, with
different key-stroke short-cuts. This contributed
to a greater feeling of unfamiliarity and incom-
patibility than is probably warranted given the
similarities between the applications.

Given these problems with the deployment
of earlier versions of StarOffice, a widespread
training and awareness program was created to

ensure that the user community could be briefed
on the new features in StarOffice version 7.0.
While this could certainly address user percep-
tions in relation to issues of complexity, relative
advantage and compatibility, it was not enough to
overcome the very negative perceptions associated
with StarOffice in Hibernia—this despite the fact
that Hibernia have no unresolved problem reports
for StarOffice 7.0.

While there was no specific training or extra
support in the case of email, any differences
between the original proprietary application and
the subsequent OSS application have not been
perceived as problematic. However, since the
user base from email climbed from 500 to over
3,000, the vast majority of the users did not have
an existing email application in their work context
which they had learned and now needed to unlearn.
Also, the fact that there are no alternative email
applications elsewhere in Hibernia with which
unfavourable comparisons could be drawn helps
to minimise this as a problem.

subjective norms

In the case of StarOffice, the user base perceived
usage as mandatory for those who did not have
the resources to maintain an alternative. This led
to feelings of resentment which were quick to
emerge when problems became apparent. Inter-
estingly, rather than being seen as renegades who
failed to comply, the departments and users who
were able to remain on the proprietary platform
were envied by their colleagues. The Secretary
Manager described it:

You meet people and hear that they are using
Microsoft, and immediately you ask them how
they managed to do that.

One of the key complaints from the administra-
tive staff in Hibernia who moved to the StarOffice
platform was that they feared being de-skilled

1688

Open Source Software Adoption

in relation to their employment prospects if they
didn’t have skills in popular proprietary applica-
tions. In fact, users readily admitted that they
would have preferred not to have switched from the
proprietary desktop systems to OSS. Additionally,
there was further resentment in some quarters to
the move to OSS systems, in that some staff appear
to feel somewhat ‘short-changed’ and believe their
work is under-valued if they are asked to use OSS
systems which cost less that those being used by
their counterparts in hospitals elsewhere using
proprietary systems.

Attributes of the Innovation

The discussion above identified several innova-
tion attributes that have been found in previous
research to influence innovation adoption. Here
we discuss the ones most salient to the OSS adop-
tion in this study—image, relative advantage,
trialability and observability.

Image

Perhaps the most significant issue for StarOffice
was the fact that it quickly gained a negative image,
and despite improvements in newer versions of
the software, this negative image persisted. One
user admitted that when StarOffice was proposed,
there was a widespread perception that this was
a cheap and antiquated package from “Jurassic
Park” which would have limited functionality.
This user was genuinely surprised to hear that
StarOffice was a modern application which was
actively being developed. This negative view
was confirmed by an Informatics Nurse who
suggested that StarOffice ran into “bad publicity
from the outset”.

There was a fairly widespread perception
within Hibernia that it is prone to disadvantage
due to its being on the North side of Dublin, an
area traditionally perceived as being disadvan-
taged (at least by those who are from there), and
that StarOffice was just another example of this

disadvantage working against them. Indeed, in
typical Northside Dublin fashion, users have
coined the succinct and disparaging term, “Star
Bleedin’ Office”, to refer to the system.

Significant in this perception was the fact that
no other hospital in Ireland had chosen to imple-
ment an open source desktop. The Secretary Man-
ager suggested that the budget-cutting rationale
behind the implementation of StarOffice caused it
to be perceived as a “poor man’s Microsoft”, and
as a result there was a pre-conceived expectation
that it would be problematic.

The negative effect of StarOffice was even
suggested to underpin an increased level of absen-
teeism and stress-related sick leave, according to
the Occupation Health department. While, there
was no rigorous analysis of employee absences to
support this, there was a belief that the stress of
moving to StarOffice had been a factor in many
stress-related and work leave/absences. It will
be interesting to see if the level of stress-related
absences also increases when Hibernia revert to
a proprietary platform.

The StarOffice image has become quite notori-
ous within Hibernia, to the extent that at meetings
to discuss new IT projects, managers have been
heard to express the hope that it would not be
“another StarOffice”. Also, the negative image of
StarOffice extended beyond Hibernia. One user
described emailing an attachment, which had
been saved in StarOffice’s proprietary format by
default, to a colleague externally. This colleague
couldn’t open the attachment, and emailed a
response saying that the attachment was in that
“StarOffice gobbledy-gook”.

In sharp contrast, the email platform has no
such similar baggage of negative image. While
there were problems during the implementation of
SuSE eMail, these were quickly overcome when
an alternative email system was implemented.
Also, these problems only manifested themselves
when more than 200 additional users had been
given email access. Thus, there was no sense in
which the user service had been disimproved in

 1689

Open Source Software Adoption

any way. This has resonances with the relative
advantage issue discussed next.

Relative Advantage

Clearly, the initial problems with StarOffice
caused users to perceive their original proprietary
system as better. There were several problems,
particularly with Impress, the StarOffice equiva-
lent of MS PowerPoint. An Informatics Nurse
described it:

“I have seen people crying because of Impress.
One day I was working on a presentation which
I was due to give at 8:30 the following morning.
At 5:30pm I checked it and it had become just
one blank sheet. I had to go home and recreate it
from memory in PowerPoint”.

Interestingly, the Informatics Nurse also re-
called losing several chapters of her thesis when
using MS Word in the past, but there was a sense
in which she felt less vulnerable about that. The IT
Manager also recalled giving a seminar on OSS
at an IT conference attended by several hundred
delegates, and his Impress presentation stalled.
It was not a happy experience, and certainly, the
software which supports people publicly present-
ing, is not one where problems will be tolerated to
say the least. This issue is interesting since only a
very small number of actual users would need to
deliver presentations, and thus the problems expe-
rienced due to the use of Impress were not all that
widespread overall. Nevertheless, users seemed to
very readily empathise with the negative scenario
of problems with a public presentation.

While StarOffice and MS Office are more or
less equivalent functionally, there are some dif-
ferences, and these were were cited in some cases
as a reason for not migrating to StarOffice. For
example, the Finance Department cited the row
number limit in StarOffice Calc which is less than
that of MS Excel, as a reason for not migrating.

However, when things settled, particularly

following the installation of StarOffice 7.0, a
number of benefits became evident in the OSS
solution. For example, one of the benefits has been
the capacity of StarOffice to exploit its in-built
XML capabilities. This is a very powerful feature
of the application which enables documents to be
structured in such a way that processing logic is
built into different sections of the document, i.e.
an on-line HR form request, for example, which
is then automatically routed to the HR department
for processing. This is a significant new feature
and provides additional functionality over what
was previously offered in Hibernia’s proprietary
desktop applications.

Also, the StarOffice suite contained an option
to create PDF output, which was not available in
the MS Office implementation in Hibernia. This
was mentioned as a positive benefit by several
interviewees. While the Impress application was
clearly the most notable problem point, there was
support for the other StarOffice applications.
Indeed, an interviewee expressed a distinct prefer-
ence for StarOffice’s Calc over MS Office Excel
spreadsheet software. However, such perceptions
did not scale into an overarching perception of
the relative advantage of StarOffice over the
proprietary system it replaced.

In the case of email, Hibernia was able to
satisfy additional requests for email accounts,
thus offering an improved service. While there
were significant problems around the use of SuSE
eMail, these were very short-lived as Hibernia was
able to overcome them quite quickly by imple-
menting an alternative OSS email suite. Again,
these problems only occurred after more than
200 additional email accounts had been added, so
there was no real perception that the OSS system
was operating at a disadvantage. This option of
replacing StarOffice was not possible, and even
though the problems were ironed out in subsequent
installations of StarOffice, it was still perceived
as StarOffice and viewed with suspicion.

Also, there were differences with the StarOf-
fice scenario in that users were not aware of al-

1690

Open Source Software Adoption

ternative email applications in simultaneous use
in other departments. Furthermore, users did not
typically have an alternative email application at
home, which was frequently the case where MS
Office was installed on home computers.

Trialability

Trialabilty was a very salient issue in Hibernia’s
OSS deployment. At the initial stage, Hibernia’s
IT staff were able to download and experiment
with several OSS applications of potential interest.
Given the budget situation, the fact that this was
a zero-cost exercise was important. Also when
Hibernia experienced problems with the SuSE
eMail implementation, IT staff were again able
to experiment with a range of alternative OSS
email applications and quickly implement a very
successful and scaleable email solution.

This mode of OSS implementation has contin-
ued. When selecting an online e-learning system,
Hibernia trialed a number of OSS e-learning
systems before selecting the one which appeared
to meet their needs best.

Interestingly, this easy trialability appears to
have implications for the training and support
process in that there was less attention paid to it. If
it had been a high cost initiative it would certainly
have had a higher profile within the organization
and, as a consequence, more attention would have
been paid to implementation issues such as pilot
testing, training and support. The IT Manager
summarised the dilemma:

“If you have a product which costs €1 million—it
may seem appropriate to spend €500K on consult-
ing. However if the product costs nothing—then
spending €500K somehow seems to be a more
difficult decision to take—yet the saving is still
€1 million”.

Hibernia have learned this lesson and, for
example, created a more comprehensive user

awareness and training package to support the
implementation of StarOffice 7.0.

Observability

Rogers suggests that the extent to which results of
an innovation are observable to others will affect
its rate of diffusion. However, given that Hibernia
wanted to achieve as smooth a transition as pos-
sible, the goal was to minimise and downplay the
observability of the differences between StarOf-
fice and MS Office to try ensure they would be
perceived identically. This is often not difficult in
an OSS context since applications have typically
been designed to replicate the functionality of
proprietary systems. Thus, rather than trying to
publicly triumph the use of StarOffice as progres-
sive and something to be enthusiastically yearned
for, the emphasis was on downplaying the issue
of observability. Given the negative image that
has come to be associated with OSS in Hibernia,
there is a conscious move to not identify IT ap-
plications as open source. Thus, the issue was not
highlighted in the case of the email application.
Similarly, when Hibernia implemented an OSS
e-learning system subsequently, the fact that the
systems being trialed were open source was de-
liberately downplayed as much as possible.

organizational Attributes:
Absorptive capacity

Hibernia’s absorptive capacity in relation to
open source adoption was extremely important.
The IT Manager accepted that the initial roll-out
of StarOffice had been poorly conceived, and
Hibernia had learned from that for subsequent
implementations of OSS. Clearly, there was an
element of risk in proceeding on the OSS path,
since ongoing product support would not be pro-
vided in the usual way. Thus, there was a need
for a complete rethink of the support strategy. In
the past Hibernia had always purchased support

 1691

Open Source Software Adoption

from a competent third-party provider. While
with OSS this option still existed to some extent,
there was a significant difference in expectation
associated with OSS, as support was essentially
derived from a series of bulletin boards, comple-
mented with external consultancy initially until
Hibernia became competent.

Also, it helped that a number of key staff—par-
ticularly in the computer operations department—
rapidly adapted to the new OSS environment, and
the IT Manager described the operations team
as the “leaders in the overall adoption of OSS”.
The bulk of the overall OSS search selection and
implementation was actually carried out by the
hospital staff. This necessarily involved a process
of learning/experimentation. As the staff confi-
dence and familiarity with OSS products grows,
the learning cycles were correspondingly short-
ened. It also helped that Hibernia already had a
strong experience of UNIX applications to draw
on. So the transition was not as radical as it would
have been if staff experience was simply based
on GUI-enabled systems administration. In the
words of the Linux Systems Administrator, “We
are not afraid of the command line interface”.

Evidence of increased absorptive capacity in
relation to open source is readily evident in the
email application deployments. When Hibernia
encountered insurmountable problems in relation
to the open source SuSE eMail application, IT
staff quickly sourced an alternative suite of email
applications. This integration of an entire suite
of disparate open source email applications into
a single integrated email platform represented a
significant technological challenge, from iden-
tifying suitable applications in the first place,
to integrating them into an overall working ap-
plication.

conclusIon

Table 2 summarises the differences in the de-
ployment process for both the OSS desktop and

email applications within Hibernia. Rather than
elaborating the individual issues here, we will
focus more holistically on interaction among the
framework elements, as this had a significant
influence on OSS implementation. Following
this we discuss the implications of the study for
research and practice, and discuss the limitations
of the study.

Firstly, we focus on trialability and absorptive
capacity as these served primarily to facilitate
OSS adoption in this study. Trialability of OSS
ensured that Hibernia could experiment with OSS
applications in the first place and be reasonably
confident that the OSS applications available could
meet their needs. Also, when problems occurred
as in the case of the initial OSS email imple-
mentation, an alternative could be found which
solved the problem. However, while trialability
certainly facilitates the primary adoption of OSS,
it is absorptive capacity which ensures that the
best OSS candidates are selected and successfully
integrated and implemented, thereby facilitating
successful secondary adoption.

However, other interlinked elements, such as
voluntary versus mandatory adoption and image
of the innovation, manifest themselves in such a
way as to impede the assimilation of OSS within
Hibernia.

Firstly, by being perceived as mandatory due
to the necessity of cost-cutting, the adoption of
StarOffice was inevitably perceived as reactive.
Then when it emerged that some ‘more privileged’
users could opt out of the move, this two-tier
scenario significantly contributed to the negative
image bestowed upon StarOffice. When problems
occurred, these served to fuel a disproportionately
negative perception of StarOffice, despite the fact
that it offered certain extra functionality, and
that a steady state with no open bug reports was
eventually reached following the implementation
of StarOffice 7.0. Interestingly, the email appli-
cation shared a similar deployment trajectory in
that it too faced problems initially, which likewise
were subsequently overcome, and also there were

1692

Open Source Software Adoption

StarOffice Desktop Email Platform
Managerial Intervention

- Mandatory v voluntary
usage

Usage seen as mandatory for those who
could not afford to maintain proprietary
alternative.

Access to email application provided
upon request, thus usage not perceived
as mandatory.

- Training and support

Differences between OSS and propri-
etary systems downplayed. Low level
of training initially using in-house
developed material.

No specialised training necessary.
No incumbent proprietary system to
unlearn.

Subjective Norms
Mandatory usage for users who could
not afford to maintain proprietary led to
StarOffice being perceived as inferior.
Staff fear of being deskilled if using
OSS, and also that work undervalued if
using ‘cheap’ OSS.

More than 2500 additional users
requests for email accounts were
satisfied. Thus, uniformly perceived as
beneficial.

Those who opted out of the move to
StarOffice envied rather than resented.

Also no alternative email system with
against which unfavourable compari-
sons could be drawn.

Innovation Attributes

- Image

StarOffice seen as cheap and antiquated
“Jurassic Park” option for the disadvan-
taged. Widespread negative image of
StarOffice both within and external to
Hibernia.

Email access seen by many as a new
privilege which hadn’t been available
in the past.

- Relative Advantage

Problems and instability led to StarOf-
fice being perceived as inferior. Impress
problems particularly cited.
Benefits of StarOffice not widely ap-
preciated.

Email a new application for the major-
ity, thus no relative comparison. Also,
problems with intermediate SuSE
email quickly resolved, and new func-
tionality (routing of email to PDAs)
appreciated.

- Trialability
Trialability important, but limited due
to lack of alternative OSS desktop
suites.

Trialablity critical as Hibernia experi-
mented with a number of OSS email
applications.

- Observability
StarOffice and MS Office appear
identical on casual observation. Thus,
OSS usage is not readily apparent and
observable.

Downplayed due to negative image as-
sociated with OSS. Not a major issue
as no alternative email application in
use to compare against.

Organization Attributes

- Absorptive Capacity

Important as OSS represents new model
of software acquisition, implementation
and support.

Prior learning evident in implementa-
tion of StarOffice 7.0.

Very relevant in this case as the first
OSS email application had to be
replaced by a suite of individual OSS
email applications in a novel mixed
architecture.
High knowledge burden in selecting
right applications to include in this
architecture and configuring to work
successfully together.

Table 2. OSS deployment within Hibernia

 1693

Open Source Software Adoption

advantages in the OSS email system over the
original proprietary system. However, the critical
difference appears to be that the move to email
was not seen as a top-down mandate, rather us-
ers could request an email account. Furthermore,
there was no cohort using an alternative system
who might be perceived as privileged.

The issue of observability was interesting in
the Hibernia OSS adoption process. It would not
be obvious at a casual glance wthether a user
was using StarOffice or MS Office. In the case of
email, the fact that the vast majority of users got
access to email for the first time within Hibernia
would have highlighted the observability issue,
in that users were emailing who had not done so
before. Thus, this was quickly evident and led to
more requests for email accounts. However, due
to the negative image of open source that arose
from the StarOffice experience, Hibernia sought
to downplay the fact that proposed applications,
such as e-learning, were open source.

Implications for research

The study identifies several issues and streams
of research which could be further elaborated. To
our knowledge, it is the first rigorous analysis of
successful and unsuccessful OSS adoption. Our
focus on a single case context is also noteworthy as
certain important factors inevitably differ across
organizations in a multiple case study context, thus
making it more difficult to interpret the actual
influence and role of individual elements. The
study illustrates how a hybrid process variance
model can shed light on the innovation adoption
process, and in particular, illustrating the complex
interaction between the various elements.

The link between trialability and actual de-
ployment of OSS was significant in this study,
particularly in the case of email. This also seems
to be borne out in OSS adoption more generally.
Onetti and Capobianco (2005) report a case
study of a software company who offered both
traditional proprietary and OSS products. The

company found that the ratio of prospects who
eventually become actual customers was mark-
edly higher in the case of OSS. Funambol found
that in contrast to its traditional sales process for
proprietary software, when contacted about OSS
products, the prospective customers had already
downloaded and actually trialed the OSS product,
and were far more likely to become customers
paying for support. This altered the business
flow from “sales push” to “user pull” (Onetti and
Capobianco, 2005).

The Hibernia study also supports the conten-
tion by Fichman (1992) and Gallivan (2001) that
innovations which involve organizational mandate
and high knowledge require the integration of
new metaphors and constructs into the research
model. The high knowledge burden in successfully
deploying OSS supports the view that absorptive
capacity is an important issue, and this facet could
be further elaborated to potential good effect.
Another potentially promising perspective iden-
tified by Fichman (1992) is that of critical mass
theory (Markus, 1987). This was clearly an issue
in this study as the cohort of users who opted out
of the move to StarOffice served to weaken the
critical mass, whereas the increased number of
users who received email accounts worked in the
opposite direction.

The critical mass issue is linked to the issue
of network externality effects. Some technologies
become more valuable through the increasing re-
turns to adoption that arise from the incremental
contribution of other adopters. The basic argu-
ment is that for some technologies, the potential
benefits are greatest when the entire ecosystem
of users, suppliers and mediating institutions are
in place to fully leverage the deployment of the
technology. These increasing returns can arise
through positive network externality effects (Katz
& Shapiro, 1986), which are readily apparent in
OSS, as the phenomenon is fundamentally predi-
cated upon drawing sufficient voluntary interest
from a worldwide network of talented hackers
with complementary skills to produce industry-

1694

Open Source Software Adoption

quality software products (Feller et al., 2008).
Furthermore, the commercial business model
of open source is frequently based on creating a
lucrative service and support market by leverag-
ing the zero purchase cost to create a large base
of potential customers.

It is also abundantly clear that in the case of
OSS a focus on secondary adoption is important.
As already mentioned, estimates of OSS adop-
tion by organizations vary greatly. However, it is
certainly the case that there could be a marked
gap between the initial acquisition of OSS and
its eventual large-scale secondary adoption by
a critical mass of individual users. Indeed, the
essential characteristics of OSS render it very
prone to such an assimilation gap: The widespread
media coverage leads to high awareness of the
concept, while its zero cost results in a very low
barrier to initial acquisition. However, the new-
ness of the phenomenon, the manner in which it
transgresses traditional software support options,
and the lack of any tried and tested approach
which could guarantee successful implementa-
tion—these all serve to exacerbate the potential
assimilation gap between initial acquisition and
widespread adoption.

Again, related to this are two elements which
were found to be extremely influential in this
study—voluntariness of adoption and image of
the innovation. While these factors have been
identified in some prior research (e.g. Moore and
Benbasat, 1991), the issues, and in particular the
inter-relationship between them, have not been
studied in detail. Voluntariness of adoption is
linked to critical mass as organizational mandate
can decree that a technology be universally ad-
opted. However, this has implications for how the
innovation will be perceived especially by those
who feel compelled to use it, thereby affecting the
image of the innovation. Furthermore, in previous
research, image is assumed to have a positive ef-
fect—the use of the innovation is expected to be
image-enhancing. In this study, it was certainly
the case that innovations are not always seen

as conveying a positive image and universally
welcomed by those who are expected to use
them—the fear of deskilling and the perception
of work being undervalued, for example, This has
resonances with Fichman’s (2004) critique of the
dominant paradigm which typically assumes that
technology innovation is universally welcomed
and perceived as beneficial by all stakeholders.
This was certainly not the universal perception
from the outset in Hibernia.

Implications for Practice

The study also has a number of implications for
organizations who are embarking on OSS adop-
tion. At a higher-level, an open question in prior
research has been whether IT implementation
should follow a ‘big bang’ or phased approach,
as successful implementations have been re-
ported with both approaches (Fichman, 2004).
This is also an open question for OSS migration
with researchers recommending both ‘big bang’
approaches (Ven et al., 2006) and phased pilot
approaches (Zuliani and Succi, 2004). The find-
ings of this study would support the ‘big bang’
approach for each individual OSS application,
primarily to avoid the situation where opting out
of migration is seen as the preserve of those more
privileged, thereby creating image and relative
advantage problems subsequently.

This is also related to the issue of whether an
organization treats OSS adoption as a mandatory
or voluntary initiative. If mandatory, then it is
important that OSS is not perceived as a low-
cost ‘second-rate’ alternative, thereby relegating
it to an inferior status which individual adopters
seek to avoid.

Trialability is more or less a given in OSS,
thus ensuring that the initial experimentation
with OSS is facilitated. However, the zero cost
trialability of OSS should not cause organizations
to downplay the importance of implementation
issues such as pilot tests, training and support.
Also, in the absence of any comprehensive ven-

 1695

Open Source Software Adoption

dor support and marketing, absorptive capac-
ity becomes critical. Identifying potential OSS
solutions in the first place is not a trivial issue.
Generally, there are no vendors who can answer
questions on the suitability and functionality
of the software or provide details on reference
implementation sites. Similarly, porting OSS
to new platforms and integrating OSS systems
with other proprietary and OSS systems is far
from trivial, as is ongoing support. In this study,
some expert consultancy was sourced locally to
help with initial implementation issues, but these
abilities were acquired in-house over time.

limitations of study

One of the possible limitations of this research is
that it is a single case study, although we would
argue that this should be tempered by the fact
that this also afforded an in-depth insight into
the process, and also allowed for the keeping
constant of potentially confounding factors. Of
more importance perhaps is the fact that the orga-
nization is a public sector one, and there could be
important differences in the OSS adoption process
for organizations in other industry sectors.

Also, this study focused on desktop and email
applications, both of which are highly visible mass-
market applications with strong market-leading
proprietary alternatives. By contrast, less visible
back-office infrastructure applications such as
servers running Linux, Apache, Samba, and the
like, may operate differently. Our experience
would suggest that the OSS is already dominant
in that sector. Similarly, the Hibernia experi-
ence would suggest that OSS can be a perfectly
acceptable solution for niche applications such
as e-learning, particularly when these systems
are introduced without having any incumbent
system to replace.

Overall, one can conclude that OSS is a very
viable alternative for organizations. The main
problems arise in the implementation process,
rather than arising due to problems of a technical

nature, as the latter are usually ironed out very
quickly. Indeed, the acid test is perhaps the fact
that despite any problems with StarOffice, Hiber-
nia operated effectively as a hospital throughout
this period.

AcknowledgMent

I would like to acknowledge in particular the
helpful feedback from Geoff Walsham, and also
the suggestions of the Editor and two anonymous
reviewers. This work has been financially sup-
ported by the Science Foundation Ireland (SFI)
award to Lero—the Irish Software Engineering
Research Centre, and the EU FP6 project OPAALS
and EU FP 7 project NEXOF-RA.

references

Agerfalk, P and Fitzgerald, B (2008) Outsourcing
to an Unknown Workforce: Exploring Opensourc-
ing as a Global Sourcing Strategy, MIS Quarterly,
Vol 32, No. 3, pp. 385-410.

Ajzen, I. (1985), From Intentions to Actions: A
Theory of Planned Behavior, in Action Control:
From Cognition to Behavior, ed. Julius Kuhl and
Jeurgen Beckmann, New York, NY: Springer,
pp.11-39.

Carter, L and Belanger, F (2006) The Influence
of Perceived Characteristics of Innovating on
e-Government Adoption, Electronic Journal of
E-Government, Vol 1, No 2.

Chua, W. (1986) Radical Developments in Ac-
counting Thought. Accounting Review, 61, 601.

Cohen, W. M. & Levinthal, D. A. Absorptive
Capacity: A New Perspective on Learning and
Innovation, ASQ, 35 (1990), 128-152.

Daniel, S, Agarwal, R and Stewart, K (2006) An
absorptive capacity perspective on OSS devel-

1696

Open Source Software Adoption

opment group performance, 27th International
Conference on Information Systems, Milwaukee
Dec 2006.

Davis, F. (1989) Perceived Usefulness, Perceived
Ease of Use, and User Acceptance of Informa-
tion Technology, MIS Quarterly, Volume 13, pp.
319-340.

Eisenhardt, K. (1989) Building theory from case
study research, Academy of Management Review,
14(4), 532-550

Feller, J, Finnegan, P, Fitzgerald, B and Hayes, J
(2008) From peer production to productization:
a study of socially-enabled business exchanges
in open source service networks, Information
Systems Research, Vol 19, No. 4.

Fichman, R.G. (1992). Information Technology
Diffusion: A Review of Empirical Research,” in
J.l. DeGross, J.D. Becker, and J.J. Elam (Eds.),
13th International Conference on Information
Systems, Dallas, TX, pp. 195-206.

Fichman, R. G., (2004) “Going Beyond the
Dominant Paradigm for IT Innovation Research:
Emerging Concepts and Methods”, Journal of the
Association for Information Systems, 5(8)

Fichman, R. G., and Kemerer, C. F. The Assimi-
lation of Software Process Innovations: An Or-
ganizational Learning Perspective, Management
Science (43:10), 1997, pp. 1345-1363.

Fichman, R.G. and Kemerer, C.F., (1999) “The
Illusory Diffusion of Innovation: An Examina-
tion of Assimilation Gaps,” Information Systems
Research, 10(3), 255-275.

Gallivan, M (2001) Organizational adoption
and assimilation of complex technological in-
novations: development and application of a new
framework, Data Base, Vol 32, No 3, pp. 51-85.

Ghosh, R and Glott, R (2005) Results and policy
paper from survey of Government authorities,
Technical report, MERIT, University of Maas-

tricht, Free/Libre and Open Source Software:
Policy Support.

Glaser, B. & Strauss, A. (1967) The Discovery of
Grounded Theory,, Aldine, Chicago.

Kaplan, B. and Duchon, D. (1988) Combin-
ing qualitative and quantitative methods in IS
research: a case study, MIS Quarterly, 12(4),
571-587.

Katz, M.L., and Shapiro, C. “Technology Adoption
in the Presence of Network Externalities,” Journal
of Political Economy (94:4) 1986, pp 822-841.

Kirsch, L. (2004) Deploying common systems
globally: the dynamics of control, Information
Systems Research, Vol. 15, No. 4, pp. 374-395.

Klein, H.K., and Myers, M.D. (1999) A Set of
Principles for Conducting and Evaluating Inter-
pretive Field Studies in Information Systems, MIS
Quarterly, Vol. 23, No. 1, pp.67-93.

Kuk, G. (2006) Strategic Interaction and Knowl-
edge Sharing in the KDE Developer Mailing List,”
Management Science, (52:7), pp 1031-1042

Lakhani, K. and Wolf, B. (2005) Motivation and
Effort in Free/Open Source Software Projects: The
Interplay of Intrinsic and Extrinsic Motivations,
in Feller, J, Fitzgerald, B, Hissam, S, and Lakhani,
K. (2005) (Eds) Perspectives on Free and Open
Source Software, MIT Press, Cambridge.

Lee, AS and Baskerville, RL (2003). General-
izing Generalizability in Information Systems
Research. Information Systems Research, 14
(3), 221-243

Lundell, B, Lings, B and Lindqvist, E (2006)
Perceptions and uptake of open source in Swedish
organizations, in Damiani, E, Fitzgerald, B, Scac-
chi, W and Succi, G (2006) Open Source Systems,
Springer-Verlag, New York, pp. 155-164.

Markus, M.L. (1987). Toward a ‘Critical Mass’
Theory of Interactive Media: Universal Access,

 1697

Open Source Software Adoption

Interdependence and Diffusion, Communications
Research, Vol. 14, pp. 491-511.

Markus, M.L., and Robey, D. (1988). Information
Technology and Organizational Change: Causal
Structure in Theory and Research, Management
Science, Vol. 34, No. 5, pp. 583-598.

McCue, (2004) London council ditches
Linux plans, http://news.zdnet.co.uk/soft-
ware/0,1000000121,39118909,00.htm, last ac-
cessed on 8 Jan 2007.

Miles, M. and Huberman, A. (1994) Qualitative
Data Analysis: A Sourcebook of New Methods,
Sage, Beverley Hills.

Mohr, L.B. (1982). Explaining Organizational
Behavior, San Francisco, CA: Jossey-Bass.

Moore, G.C., and Benbasat, I. (1991) Develop-
ment of an Instrument to Measure Perceptions of
Adapting an Information Technology Innovation,
Information Systems Research, Vol. 2, No. 3, pp.
192-222.

Newman, M., and Robey, D. (1992) A Social-
Process Model of User-Analyst Relationships,
MIS Quarterly, Vol. 16, No. 2, pp. 249-265.

Niccolai, J (2005) Scottish police pick Windows
in software line-up, InfoWorld, http://www.
infoworld.com/article/05/08/11/HNscottishpo-
lice_1.html, last accessed 20 Dec 2006

Onetti, A & Capobianco, F (2005) Open source and
business model innovation. the Funambol case,
in Scotto, M and Succi, G (Eds) Proceedings of
First International Conference on Open Source
(OSS2005), Genoa, 11-15 July 205, pp. 224-227.

Rogers, E. (1962) Diffusion of Innovations, The
Free Press, NY.

Rogers, E. (2003) Diffusion of Innovations (5th
ed), The Free Press, NY.

Rossi, B, Russo, B and Succi, G (2006) A study
of the introduction of OSS in public administra-

tion, in Damiani, E, Fitzgerald, B, Scacchi, W and
Succi, G (2006) Open Source Systems, Springer-
Verlag, New York, pp. 165-172.

Sambamurthy, V., and Poole, M.S. (1992) The
Effects of Variations in Capabilities of GDSS
Designs on Management of Cognitive Conflict
in Groups, Information Systems Research, Vol.
3, No. 3, pp. 225-251.

Sanders, J. (1998) Linux, open source, and
software’s future, IEEE Software, Vol. 15, No.
5, pp. 88-91.

Shaikh, M (2006) Version Control Software in
the Open Source Process: A Performative View
of learning and Organizing in the Linux Col-
lectif, Unpublished Thesis, London School of
Economics.

Shaw, T., and Jarvenpaa, S.L. (1997). Process
Models in Information Systems, IFIP WG8.2
Working Conference on Information Systems
and Qualitative Research, May 31-June 3, Phila-
delphia, PA.

Stewart, K and Gosain, S (2006) The impact of
ideology on effectiveness in open source software
development teams, MIS Quarterly, Vol 30, No
2, pp. 291-314.

Thurston, R. (2006), Criticism mounts over Bir-
mingham’s Linux project, last accessed on 15 Jan
2007 at: http://www.zdnet.com.au/news/software/
soa/Criticism_mounts_over_Birmingham_s_
Linux_project/0,130061733,339272293,00.htm

Tornatzky, L. and Klein, K. (1982) Innovation
Characteristics & Innovation Adoption Imple-
mentation: A Meta-Analysis of Findings, IEEE
Transactions on Engineering Management, Vol.
EM-29, pp. 28-45.

Turner, A (2005), Linux misses Windows of
opportunity, last accessed on 15 Jan 2007 at
http://www.theage.com.au/articles/2005/09/26/
1127586780339html?from=top5

1698

Open Source Software Adoption

Van Reijswoud, V (2005) OSS for development:
myth or reality? last accessed 17 Jan 2007 at
http://www.calibre.ie/events/limerick/docs/cali-
bre_Reijswoud_presentation.pdf

Ven, K, Van Nuffel, D and Verelst, J (2006) The
introduction of OpenOffice.org on the Brussels
Public Administration, in Damiani, E, Fitzger-
ald, B, Scacchi, W and Succi, G (2006) Open
Source Systems, Springer-Verlag, New York, pp.
123-134.

Walli, S, Gynn, D and von Rotz, B (2005) The
Growth of Open Source Software in Organiza-
tions, available at http://www.optaros.com/en/
publications/white_papers_reports (last accessed
31 Jul 2006)

Walsham, G. (1993) Interpreting Information
Systems in Organizations, Wiley, UK.

Yin, R. (1994) Case Study Research: Design and
Methods, 2nd Ed, Sage Publications, California.

Zachary, G (2003) Ghana, Information Technol-
ogy and Development in Africa, http://www.cspo.
org/products/articles/BlackStar.PDF (Current 11
Aug 2006)

Zaltman, G., Duncan, R., & Holbeck, J. (1973),
Innovations & Organizations, New York: Wiley
& Sons.

Zuliani, P and Succi, G (2004) Migrating public
administrations to open source software, Proceed-
ings of e-Society IADIS International Conference,
Avila, Spain, 2004.

This work was previously published in the International Journal of Open Source Software & Processes, edited by S. Koch,
Volume 1, Issue 1, pp. 1-23, copyright 2009 by IGI Publishing (an imprint of IGI Global).

 1699

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.19
Media Centric Knowledge
Sharing on the Web 2.0

Marc Spaniol
Max Planck Institute for Computer Science, Germany

Ralf Klamma
RWTH Aachen University, Germany

Yiwei Cao
RWTH Aachen University, Germany

AbstrAct

The success of knowledge sharing heavily de-
pends on the capabilities of an information sys-
tem to reproduce the ongoing discourses within
a community. In order to illustrate the artifacts
of a discourse as authentic as possible it is not
sufficient to store the plain information, but also
to reflect the context they have been used in.
An ideal representation to do so is non-linear
storytelling. The Web 2.0 in its “bi-directional”
design therefore is an ideal basis for media centric
knowledge sharing. In this article we present a
novel solution to this issue by non-linear story-
telling in the Virtual Campfire system. Virtual
Campfire is a social software that allows a modular
composition of web services based on a Light-
weight Application Server in community engine

called LAS. Hence, Virtual Campfire is capable
of fully exploiting the features of the Web 2.0 in
a comprehensive community information system
covering web-services for geo-spatial content
sharing, multimedia tagging and collaborative
authoring of hypermedia artifacts.

IntroductIon

The development of information systems for com-
munities of practice (Lave & Wenger 1991; Nonaka
& Takeuchi 1995; Wenger 1998) in different ap-
plication domains is a challenging issue for several
reasons. Principles like legitimate peripheral
participation, group knowledge, situated learning,
informality and co-location have to be taken seri-
ously in the design of the community engine. For

1700

Media Centric Knowledge Sharing on the Web 2.0

that reason, the community engine has to reflect
the social learning processes taking place, which
differ from community to community. Even more,
the information systems need a careful design
of the digital media and the related communica-
tion/collaboration tools in order to reflect the
discursive hypermedia knowledge contained in
text, pictures, videos etc. Furthermore, communi-
ties are usually not able to express their needs in
the very beginning of information system usage.
Thus, the communities have to gain experiences
“on their own” while applying the technologies
in use. In addition, multimedia technologies and
the Web 2.0 are rapidly developing, thus creating
new requirements on hardware and software. In
combination with a trend for multidisciplinary
work and research novel approaches for flexible,
evolving, adaptable, and interoperable community
engines are required. Social software for technol-
ogy enhanced learning therefore need to reflect
the nature of the underlying community processes
and their discourses. Consequently, the question
is: How to design and orchestrate community
information systems in order to fully exploit the
features of the Web 2.0?

In order to meet these requirements we have de-
veloped in recent years a Lightweight Application
Server [LAS] for community information system,
which is capable of supporting communities by
multimedia services on the basis of the multimedia
content description interface MPEG-7. On top of
it, Virtual Campfire is a community information
system that allows a modular composition of web
services for media centric knowledge sharing on
the Web 2.0.

In this paper we first introduce a theoretical
framework for working and learning in media-
supported communities of practice. After that,
we introduce concepts of knowledge sharing on
the Web 2.0 and explain how these technologies
help to create, manage and share knowledge in
communities. Then we present Virtual Campfire
and its core modules in a scenario of non-linear
multimedia storytelling. Here, our social software

is applied in a community of professionals for cul-
tural heritage management. The paper closes with
a summary and an outlook on further research.

A MedIA centrIc knowledge
MAnAgeMent tHeory

Snow differentiates between two different trends
in collaboration and learning within scientific
communities (Snow 1959). First, the ‘linear type’
of learning that is goal-oriented and transmis-
sion-centered. This means, old information in
scientific communities is being replaced by new
one as soon as this appears. Second, there is a
‘non-linear type’ of learning. This type is media
centric and reflects the nature of the ongoing
discourse. It doesn’t replace old information
but keeps it and might be applied in a different
context later on. Here, information is not simply
transmitted for learning, but it is presented based
on the underlying theory in use. Our collab-
orative research center on “Media and Cultural
Communication” (cf. http://www.fk-427.de) has
given us a detailed insight into the importance of
proper media support in knowledge sharing. The
description and [loose] classification of medial
artifacts is probably the most important part of
the methodological perception process to make
social software work. This means that a continu-
ous perception of activities in communities of
practice is necessary for them in order to gain
new knowledge. The question therefore is: How
to resemble working practices in communities of
practice by means of social software?

A media-specific theory developed in the
center helped us understand digital media support
for discourses in the cultural sciences. It is based
on the following three media operations (Jäger &
Stanitzek 2002; Fohrmann & Schüttpelz 2004):

• Transcription is a media dependent operation
to make media collections more readable.

 1701

Media Centric Knowledge Sharing on the Web 2.0

• Localization means an operation to transfer
global media into local practices. We dis-
tinguish between formalized localization
within information systems [in digital com-
munity media] and practiced localization [in
communities of practice] among humans.

• The term of [re-] addressing describes an
operation that stabilizes and optimizes the
accessibility in global communication.

In the following, we will now synthesize these
media specific operations with learning processes
of communities of practice. The result is a media
centric re-formulation of the previously introduced
media operations on knowledge creation and
social learning processes adopted from Nonaka
and Takeuchi (Nonaka & Takeuchi 1995) and
Wenger (Wenger 1998).

Figure 1 brings together both approaches in
media centric theory of learning and in commu-
nities of practice. It combines the two types of

knowledge, tacit and explicit knowledge (Nonaka
& Takeuchi 1995; Polanyi 1985), and the process
within knowledge creation and learning processes
with the media theory developed in our collabora-
tive research center including its media specific
operations [transcription, formalized as well as
practiced localization, and [re-] addressing]. In
the upper section we focus on actions performed
by humans. Starting with an individual who has
internalized some media-specific knowledge
there are two ways to communicate with others.
On the one hand, there is an option to present this
information to others by human-human interac-
tion in practiced localization, which allows the
content’s socialization within the communities
of practice and vice versa which is equivalent to
the development of a shared history. On the other
hand, individuals may also perform a human
transcription of their knowledge by generating
new medial artifacts. This operation brings us
into the lower section where digital community

Figure 1. Media centric theory of learning in communities of practice

1702

Media Centric Knowledge Sharing on the Web 2.0

media are processed. The externalized artifacts
of an individual are now further processed by the
information system. This is done by formalized
localization of the medial artifacts. In contrast to
its high-level transcription by an individual, here,
a technical computer supported recombination of
medial artifacts takes place. As a result, the set
of medial artifacts from various data types are
combined within the information system. The final
[semi-] automatic addressing closing the circle is
the context depending presentation of the medial
artifacts or a cross-medial concatenation. From
then on, the process might be repeated infinitely
oscillating between tacit and explicit knowledge
on the epistemological axis and between indi-
viduals and the communities of practice on the
ontological axis.

In order to make knowledge sharing a success
for any kind of community of practice, inde-
pendent of size or domain of interest, a generic
community engine for social software is needed.

That is exactly the point where social software is
being applied in order to support the formalized
localization process. While the previous media
centric theory is based on the distinction between
tacit or procedural and explicit or declarative
knowledge, the importance of storytelling be-
comes visible after a further distinction between
semantic and episodic knowledge (Tulving 1978;
Ullman 2004) has been undertaken. In Figure 2
we depict a hierarchy of knowledge types with
examples on the individual and community level.
While semantic knowledge represents semiotic
and conceptual knowledge such as documenta-
tion in organizational charts, business process
definitions and so forth, episodic knowledge is
knowledge about experiences such as episodes and
narratives, e.g. war stories. This distinction is also
being debated. Nevertheless, our claim is that a
combination of semantic and episodic knowledge
can be used more effectively in organizations.
While situational context may be lost by external-

Figure 2. Individual and community/organizational levels of knowledge processing [Adapted from (Non-
aka & Takeuchi 1995) with refinements on declarative knowledge done by (Ullman 2004)]

 1703

Media Centric Knowledge Sharing on the Web 2.0

izing stories, outreach and impact of stories may
be enhanced by this process. Documentation as
a means of semantic knowledge can further be
classified as verbal [linguistic data] and non-verbal
[e.g. visual image, video, and diagram].

The Digital Storytelling Association [DSA]
defines storytelling as follows: “Digital Story-
telling uses digital media to create media-rich
stories to tell, share and to preserve. Digital stories
derive their power through weaving images, mu-
sic, narrative and voice together, thereby giving
deep dimension and vivid color to characters,
situations, and insights” (DSA 2002). This illus-
trates that storytelling can be used not only for
entertainment, but also for sharing knowledge.
It intertwines semantic knowledge, i.e. already
reified concepts of communities stored as docu-
ments, by linking it with the narrative experiences
gained from episodic knowledge (Tulving 1978).
Thus, storytelling can be seen as an approach to
developing learning histories (Roth & Kleiner
1999) by creating knowledge hyper stories (Roy-
rvik & Bygdas 2002). Consequently, storytelling
is an important aspect for knowledge sharing and
learning in communities of practice (Wenger
1998). Therefore, telling, sharing and experiencing
stories are common ways to knowledge creation
in communities of practice.

However, in the Web 2.0 (O’Reilly 2005) the
power of storytelling has not been fully explored,
yet. Particularly the opportunities of social soft-
ware in combining contextualized knowledge
with multimedia support in stories, is thus far
marginally exploited. For that purpose we will
introduce the key concepts of the Web 2.0 in the
following.

knowledge sHArIng on tHe
web 2.0 – tHe Power of
storIes

While the Internet in general and the especially
the web is assumed to be one of the really big

media revolutions like the invention of book
printing by Gutenberg in the 15th century, the
wheel is still spinning. After only roughly 15
years of existence, the now so-called Web 1.0 is
replaced by the Web 2.0, a term coined by Tim
O’Reilly. Projects like Wikipedia let users become
knowledge prosumers [consumer and producer
“in parallel”] of wikis, replacing old-fashioned
content management systems in organizations.
Interoperability between content and services
is realized by syndications tools [RSS]. In order
to highlight the differences between the “new”
and the “old” Web paradigms, we introduce the
core Web 2.0 knowledge management presented
in O’Reilly’s seminal article (O’Reilly 2005). We
will not repeat all features of the Web 2.0 here, but
put forward the power of stories for knowledge
sharing on the Web 2.0.

Participation instead of publishing. “Data are
the new Intel Inside” is one of the slogans in the
Web 2.0 (O’Reilly 2005), but communities get
even more focus than data itself does. From del.
icio.us, flickr, youTube, to mercora which are col-
lections for bookmarks, photos, videos and music,
the communities can subscribe to or rank the
bookmarks’ masters, photographers, video makers
or DJs. Thus, social networks are built up to get
a bundle of information instead of a single piece
of information. In the information world, one can
get whatever information he wants, when he finds
the right community. Social navigation, social rec-
ommendation and social filtering techniques are
even more important in a multimedia web, while
classical information retrieval techniques deliver
only limited support. Remix (cf. http://www.ma-
novich.net/IA/index.html) of existing content is a
technique which can easily be applied on existing
Web 2.0 multimedia repositories like flickr and
youTube. In the fact, digital storytelling can only
happen within communities of story tellers and
the audience. Storytelling as a community activity
is based on participation, not necessarily similar
to classical storytelling approaches but more to
a many-to-many approach.

1704

Media Centric Knowledge Sharing on the Web 2.0

Syndication instead of stickiness. Lately,
Web 2.0 is also featured as a kind of attitude
with which people handle the web. More and
more web sites support RSS instead of plac-
ing a button labeled with “Set this page to your
home page”. It has become natural and a kind of
fashion to integrate third-party web services like
google, yahoo and del.icio.us etc. Web services
and syndication will be even more important in
ubiquitous contexts when learners need support
based on their location, their connectivity, their
device capabilities and their usage context. Con-
tent has to be adapted to the various unreliable or
unpredictable contexts of the learners instead of
delivering the same content to every learner in
every situation. For storytelling this implies more
possibilities but also more care about media sets
for stories. We already know that the narratives
for mobile TV are much shorter than narratives
in home TV where story parts e.g. in telenovelas
are told in half hour rhythms. But based on ad-
aptation strategies we have to prepare different
media sets and even different narratives (Franz
& Nischelwitzer 2004) for telling the same story
in a different context.

Wikis instead of content management. Control
freaks are worrying about the principal open-
ness of the new social software applications like
many wikis, but it turned out that participation
is increased just by those low barriers. Even if
inappropriate content is uploaded or created or
existing content is modified or even vandalized,
the communities have some self-repair strategies
in place which are more flexible than any tech-
nological approach to protecting content. When
these repair strategies do not work anymore, the
community may have a problem by itself and
will disappear eventually. This openness ac-
cepts various types of multimedia. It is possible
to reuse multimedia, which takes advantage of
well-rated community media. Open standards are
widely employed but also here simple standards
are preferred over complex ones. Storytelling in
the Web 2.0 will depend on community strategies

to maintain their media. Stories will evolve over
time, but even the disruption of stories by other
users has to be dealt with by the communities in
the Web 2.0.

Folksonomies instead of taxonomies. Web
2.0 often uses tagging technologies to categorize
multimedia content. For multimedia content-based
retrieval techniques are of limited use, since they
only work efficiently enough on a limited amount
of materials, and even with large collections,
only a limited number of retrieved materials has
a high ratio in terms of precision and recall. Tags
can inform multimedia retrieval and vice versa.
Even if users misuse tagging and create false or
misleading tags for multimedia content, content
based retrieval techniques can be used to validate
retrieval results based on simple keyword search.
Multimedia and Web 2.0 technologies have to
converge for storytelling on the Web 2.0. We need
tagging technologies for retrieving interesting
stories but we also need some kinds of emergent
semantics for multimedia stories which are based
on the content.

Contextualized Storytelling. Digital media
allows fast creation, sharing and consumption
of interactive content. What makes digital media
most suitable for storytelling is the ability to re-
combine various media types, making stories more
effective and interactive. Web-based systems are
the ultimate step in the evolution of storytelling by
making interactive multimedia contents not only
available 24/7, but also allowing community-wide
distribution.

As demonstrated in the concepts above, the
Web 2.0 allows more and more knowledge to be
created, managed and shared by communities
themselves. Because Web 2.0 technologies were
not intended specifically for digital storytelling,
many challenges are raised by the readiness
of communities to accept these technologies.
However, already on the “classical” Web the
power of storytelling was well recognized. There
exist a lot of virtual communities like Fray.com
(cf. http://fray.com/is/) whose content is solely

 1705

Media Centric Knowledge Sharing on the Web 2.0

built of personal stories shared by the commu-
nity members. Software like MemoryMiner (cf.
http://www.memoryminer.com/) is capable of
facilitating the authoring of digital stories even
for non-experienced computer users. In oral his-
tory research web archives like the shoa archive
(cf. http://www.shoahproject.org/) or the Densho
project (cf. http://www.densho.org/) were created
to preserve generational knowledge. In the context
of corporate learning storytelling is also known
and used (Nonaka & Takeuchi 1995; Davenport
& Prusak 1998, Brown & Duguid 2000). A very
comprehensive collection of resources is available
on the Internet (cf. http://tech-head.com/dstory.
htm). For the sake of clarity, we will now introduce
and compare existing storytelling and analyze
their capabilities for knowledge sharing on the
Web 2.0.

storytelling environments reviewed

There are many software tools and models for
storytelling available on the Web. However,
most of them are commercial products and do
not incorporate any Web 2.0 methodologies.
Even more, most of them aim at creation of fic-
tion instead of sharing knowledge. Our overview
will focus on these systems that are most suitable
for sharing semantic and episodic knowledge in
communities.

Dramatica is a comprehensive framework
suitable to create multimedia stories (Phillips
and Huntley 2001). However, it does not allow
any kind of non-linearity. In Dramatica a story
represents a particular model called the “story
mind”. It is left to the creativity of the authors
to express their episodic knowledge as a linear
story so that dedicated aspects of the story are
filled with content. Dramatica is also capable of
supporting semantic knowledge. Because of its
mostly individual conception, Dramatica does
not provide many Web 2.0 features.

Adaptive Digital Storytelling [Adaptive
DST] is a computer-based form of narration that

tries to integrate basic principles of narratives
and dramatic art into interactive digital stories
(Franz and Nischelwitzer 2004). Adaptive DST
subdivides episodic knowledge into selected- and
must-phases, and specifies their interdependen-
cies. Another key concept in Adaptive DST is
the option to manipulate the story a-priori. Here,
a variation of a story can be generated based
on pre-defined tags used to specify the level of
information a user wants to obtain. Based on a
4-ary classification scheme users can select from
a superficial to a fine-grained story adaptation.
Thus, non-linearity is only supported to a certain
extent. The existing “core story” might not be
changed completely in its outcome, but might
be altered depending on the user’s interest in the
topic. While the concept is applicable to knowl-
edge sharing on scholarly level, in general, it is
doubtful that such a labor-intense, and mostly
unguided creation process might be applicable
in a community, or at a larger scale. Even more,
Adaptive DST does not support collaboration
features for Web 2.0 technologies.

Storylining Suspense and Story Engine
are closely related systems for the creation and
consumption of non-linear multimedia stories.
While Storylining Suspense is an approach to a
new authoring method for interactive storytelling
(Schneider et al. 2003), Story Engine is used to
capture episodic knowledge by narrating interac-
tive non-linear stories [e.g. created by Storylining
Suspense] (Braun 2004). The focus in Storylining
Suspense is on authoring of non-linear stories
based on a set of morphological functions defined
by Vladimir Propp (Propp 1958). These functions
are mapped within the system based on a scene
model thus creating variants of a story based on
the underlying model and the user’s interaction.
Additionally, there are options to store semantic
knowledge about multimedia contents, but it is
left open, whether these contents are available
only to support the creation process or will be ac-
cessible upon consumption as well. Thus, despite
their client/server structure, Storylining Suspense

1706

Media Centric Knowledge Sharing on the Web 2.0

and Story Engine are suited only on a limited
scale for multi-authoring and, consequently, the
Web 2.0.

Hypermedia Novel [Hymn] is a new story-
telling approach that extends the classical nar-
ration concept of Graphic Novel (Heiden et al.
2001). Hymn is a modular concept that allows
the creation and consumption of hypermedia
stories. The main concept of Hymn is the so-
called narration module which can be accessed
by an authoring tool. A narration module captures
the episodic knowledge and stands for a scene

within a story. These modules may be linked with
other narration modules thus defining the story
graph. Because of its openness in creating and
sharing knowledge Hymn incorporates Web 2.0
methodologies. Despite its clear graph oriented
narration structure, Hymn does not seem to ap-
ply any theoretical concepts. The “Hymnplayer”
is a conventional web-browser using the Java
Media Framework. Here, different media might
be visualized but there is currently no support
to store and retrieve semantic knowledge within
media related metadata.

Table 1. Storytelling environments and methodologies compared

Dramatica
Adaptive
Digital

Storytelling

Storylining
Suspense &
Story Engine

Hypermedia
Novel

Digital
Storytelling
Cookbook

and
Travelling

Companion
[DSC]

Movement
Oriented
Design
[MOD]

Storytelling
in

Virtual
Campfire

Story concept n.a.
Must &
should

dependencies

Morphological
functions

Extended
Graphic
Novel

Community
“heuristics”

Motivation,
Exigency and

Structure

Motivation,
Exigency

and
Structure

Adopted from
 M

O
D

Semantic
Knowledge

Verbal & non
verbal Available Available n.a. n.a. Verbal & non

verbal
Verbal &

non verbal
Episodic

Knowledge ??? Linear Linear & non-
linear

Linear &
non-linear n.a. Linear &

non-linear
Linear &
non-linear

Product Type Commercial

Viewer:
Public
Editor:

Commercial /
Proprietary

???
Viewer:
Public

Editor: ???

Not
implemented

Not
implemented Research

Validation Advices only n.a.
Automatic
consistency

checks
n.a. Not

implemented
Not

implemented

Automatic
validation
of MOD

compliance

W
eb

 2
.0

fe

at
ur

es Creation Individual Individual Individual Community
wide

Not
implemented

Not
implemented

Community
wide

Sharing n.a. Proprietary
Webserver

Integrated
Story Engine

Proprietary
Webserver

Not
implemented

Not
implemented

Affiliated
Community
Webserver

 1707

Media Centric Knowledge Sharing on the Web 2.0

The Digital Storytelling Cookbook and
Travelling Companion [DSC] is considered to
be a handbook for the creation of digital stories
based on the “heuristics” gathered in a com-
munity of users associated with the center for
digital storytelling (Lambert 2003; Center for
Digital Storytelling 2005). For that purpose, the
DSC breaks down episodic knowledge of digital
stories into subcomponents and gives practical
advices how to make stories out of user experi-
ences. Besides some practical advices on how to
find ideas about stories there are seven theoreti-
cal elements specified which should be fulfilled
in a good story. However, there are no concepts
described suitable to process media related se-
mantic knowledge. On the technical level, the
DSC only gives hints on how to use proprietary
software. A common technical platform to create
and share stories has not yet been developed. For
that reason, DSC can not be considered as Web
2.0 software. In general, the DSC is suitable to
support digital storytelling in various areas of
application without going into details.

The Movement Oriented Design [MOD]
paradigm (Sharda 2005) is a new methodology
for the creation of linear and non-linear multi-
media stories. Its core idea is to bring different
theories, models and tools under one roof. Thus,
it integrates features from Dramatica (Phillips
and Huntley 2005) as well as the Aristotelean
Poetic (Aristotels 2000). The result is a novel
methodology and formalism in order to create
multimedia stories by combining three facets
of stories: Motivation [verbal and non-verbal
knowledge], Exigency [semantic knowledge] and
Structure [episodic knowledge]. Thus, the MOD
methodology is a comprehensive framework for
the creation of non-linear digital stories. However,
a prototypical implementation is missing yet.
Consequently, MOD can not be considered as a
Web 2.0 implementation.

In the previous subsections we have introduced
several implementations and methodologies
applied in the area of storytelling. As we have

pointed out, current approaches are not suitable to
combine Web 2.0 features with a comprehensive
methodological concept to process semantic and
episodic knowledge. Table 1 gives a condensed
overview on these approaches by highlighting
their key features. For the sake of a comparison
among these features, our approach of a Storytell-
ing in Virtual Campfire, which contains the theo-
retical concepts of MOD [cf. (Spaniol et al. 2006)
for details], is included. Thus, Virtual Campfire is
a social software that allows a modular composi-
tion of web services for media centric knowledge
sharing. We will now introduce the core modules
in a scenario of non-linear multimedia storytell-
ing applied in a community of professionals for
cultural heritage management.

vIrtuAl cAMPfIre – socIAl
softwAre APPlIed

Despite the huge number of social software on
the web, users face many problems when trying
to apply these technologies for more sophisticated
means of knowledge sharing than the simple
tagging of pictures (e.g. http://flickr.com/) or
exchange of bookmarks (e.g. http://del.icio.us/).
However, what is really needed is to orchestrate
services like these in an arbitrary manner. There-
fore, our approach here is to go one step further
by making multimedia contents available to others
by interoperable multimedia metadata standards
like MPEG-7 (ISO 2003; Kosch 2003). In order
to allow community members browsing multi-
media artifacts, collections and thus any kind of
hypermedia, we use MPEG-7 for the capturing of
explicit knowledge. For the purpose of combining
interoperability and server side computations,
Virtual Campfire is based on Lightweight Ap-
plication Server [LAS] for MPEG-7 Services in
community engines. Thus, we will first introduce
the basic concepts of LAS before describing the
core services applied in Virtual Campfire.

1708

Media Centric Knowledge Sharing on the Web 2.0

lAs: A lightweight Application
server for social software

LAS is a platform independent Java implemen-
tation of a lightweight middleware platform for
service oriented architectures [SOA] developed
at our chair for the purpose of providing network
services which can be shared among various
tools supporting the work of communities in
practice. The LAS Java API and its concepts are
used to build the server’s functionality and thus
allow arbitrary server extensions by three basic
element types: Connectors, components and ser-
vices. Figure 3 shows a simplified diagram of the
LAS architecture and the interrelations between
server elements described in the following. A
connector realizes the server side for client-server
communication using a particular protocol, e.g.
HTTP or SOAP. Components encapsulate func-
tionality for common tasks shared by services
or other components. Services define the actual
functionality that LAS offers to its clients. Public
service methods are available to clients through
one of the connectors inside a session context.
Service methods can be invoked by clients using

a connector client for any of the available com-
munication protocols [HTTP/SOAP]. Access to
service methods as well as to arbitrary secured
objects is controlled on server side by an inter-
nal security management that is based on users,
groups and roles. Access rights can be defined
on different levels of granularity, i.e. per-service,
per-service-method or per-method-signature.
Therefore, a client simply connects to the LAS
using one of the available connector clients and
invokes LAS service methods remotely, possibly
involving secured objects.

semantic zapping services:
exploration of Multimedia contents

Semantic Zapping Services in Virtual Campfire
tries to bridge the gap between “folksonomy-style”
high-level semantic knowledge about multimedia
and purely technical low-level content descrip-
tions. These services are intended to support
collaboration in communities by the exchange of
multimedia contents and their low and high-level
semantic descriptions. In order to ensure interop-
erability among the contents described multimedia

Figure 3. Simplified LAS architecture

 1709

Media Centric Knowledge Sharing on the Web 2.0

metadata standards are being incorporated. In this
aspect, the Dublin Core [DC] metadata standard
(Dublin Core Metadata Initiative 1999) has been
a step forward, as it is an easy to understand and
concise method for media annotations. Neverthe-
less, DC is not suitable for temporal and media
specific annotations of multimedia contents. For
that reason, we try to overcome these limitations
by a combination of the loose classifications in
DC with more sophisticated description elements
for time based media in MPEG-7. Thus, our Se-
mantic Zapping Services are based on an excerpt
of the extensive MPEG-7 multimedia metadata
standard. Even more, we provide services for a
semi-automatic conversion from DC to MPEG-7
while an affiliated FTP server is used for an auto-
mated up- and download of multimedia artifacts
by the community to the common repository.
Consequently, the Semantic Zapping Services of
Virtual Campfire allow the community members

to search and browse for multimedia contents
described by MPEG-7.

collaboration services: Authoring of
Multimedia contents

Externalization of knowledge in Virtual Camp-
fire is supported by annotating, tagging and
sharing multimedia contents within the com-
munity. Contrary to a conventional categoriza-
tion system, multiple concepts are used for one
piece of information. Other than Flickr.com [cf.
http://flickr.com) all metadata generated in Virtual
Campfire is MPEG-7 compliant and generated
using MPEG-7 LAS service methods. For that
purpose, Virtual Campfire offers two types of
tagging: keyword- and semantic tagging (cf. fig-
ure 4). Keyword tagging enables users to assign
a set of plain keywords to an image like it can be
done in Flickr. From the technical point of view,

Figure 4. Keyword and semantic tagging of multimedia contents

1710

Media Centric Knowledge Sharing on the Web 2.0

keyword tagging is covered by the methods of
MultimediaContentService. Semantic tagging
goes a step further by allowing users to define
semantic entities and to assign semantic entity
references to an image. These are more expres-
sive than plain keywords, because they carry
additional semantics. For example one could not
derive from a plaintext keyword “Buddha”, that
it describes an agent, while for semantic tagging,
“Buddha” has been modeled as a semantic entity
of type agent. Semantic entities are defined using
methods of SemanticBasetypeService. Semantic
references are assigned to images using methods
of MultimediaContentService.

Similarly, retrieval is based on the multimedia
descriptions. For retrieval by plain keyword tags
users can formulate keyword search expressions
as propositional logic formulae using keywords
as atomic propositions. For example, the key-
word search expression “Buddha and Bamiyan
and not(Destroyed or Taliban)”would retrieve

all images having been assigned the keywords
Buddha and Bamiyan, but none of the two key-
words Destroyed or Taliban. The above concepts
are transferable to the more expressive semantic
tagging, which can be easily realized on the basis
of the MPEG-7 services.

storytelling services:
re-contextualization of episodic
knowledge

For re-contextualization of episodic knowledge
Virtual Campfire provides dedicated Storytelling
Services. In order to help even an “untrained” user
in creating useful stories (from a structural point
of view), the MOD paradigm is being applied as a
theoretical basis (cf. Section 3). For that purpose
two dedicated user interfaces are available for the
Storytelling Services: An editor and a player. The
editor allows users to create new or edit already
existing multimedia stories. The player is used for

Figure 5. A non-linear story created in Virtual Campfire

 1711

Media Centric Knowledge Sharing on the Web 2.0

the consumption of existing multimedia stories.
Besides the explicit knowledge contained in the
multimedia contents themselves the high-level
semantic tags are accessible. These contents can
thereafter be temporally arranged as they de-
pend on a certain context they belong to. When
creating a story the author can now create paths
covering different problematic aspects along the
contents. Thus, the problems addressed depend
on the path selected and lead consequently to dif-
ferent results in a story. Figure 5 shows the editor
consisting of three main elements [from left to
right]: Storyboard, plot and semantic annotations.
The plot in the middle represents the declarative
knowledge captured in a story. It is rendered as a
tree hierarchy, which allows the further decom-
position into sub-problems. In addition, problems
addressed in a multimedia story can be linked to
related multimedia contents. The storyboard on
the left hand side shows a visualization of episodic
knowledge as paths between content elements. In
addition, the decomposition of stories according
to MOD paradigm into begin (B), middle (M),
and end (E) is shown. Finally, on the right hand
side, additional semantic annotations can be
added to any multimedia element. Thus, users
may express verbal-knowledge being associated
with non-verbal knowledge.

conclusIon And outlook

With the further development of the Web 2.0 and
social software (in particular) digital storytelling
becomes a central knowledge sharing and learn-
ing technology again. Especially, in situations
where direct interaction is not possible, the new
social software application offers the possibility
to share multimedia materials in a community-
centered style. Like the creation of new knowledge
is a discursive and multistage process, the user
requirements are rapidly changing and several
new features need to be integrated into commu-
nity information systems. In contrast to existing

implementations the methodology and architec-
ture Virtual Campfire is more flexible to assess the
community needs over time and to integrate the
community members in the development process.
Even more, the multimedia services of Virtual
Campfire based on MPEG-7 provide interoper-
ability and exchangeability of learning contents.
Thus, the usage of LAS simplifies the community
support process for the communities of practice
drastically and on the same time offering more
influence on the development process. However,
the direct support of computer scientists and
community designers is still needed. In future,
graphical editing support for community web
sites could leave even more responsibility on the
community side.

Another topic of ongoing research is the
assessment and analysis of stories. Since the
stories are created by communities we need
community-centered assessment tools beyond
the level of simple rating tools. Our stories are
related to a problem-solving space created by a
hierarchical presentation of problems. Non-linear
digital stories components have to cover at least
all sub-problems in the problem space. This can
be tested automatically by some algorithmic ap-
proach while the emotional movement of learners
and their problem-solving skills are much harder
to test. This is clearly interdisciplinary research
which can be performed in an organizational or
psychological framework.

AcknowledgMent

This work was supported by German National Sci-
ence Foundation (DFG) within the collaborative
research centers SFB/FK 427 “Media and Cultural
Communication”, within the research cluster
established under the excellence initiative of the
German government “Ultra High-Speed Mobile
Information and Communication (UMIC)” and
by the 6th Framework IST programme of the EC
through the Network of Excellence in Professional

1712

Media Centric Knowledge Sharing on the Web 2.0

Learning (PROLEARN) IST-2003-507310. We
thank our colleagues Nalin Sharda and Georgios
Toubekis for the inspiring discussions. In addi-
tion, we thank our students D. Renzel, H. Janßen,
M. Pienkos, P. M. Cuong, D. Andrikopoulos and
A. Hahne for the implementation of the Virtual
Campfire services.

references

Andrienko, N. and Andrienko, G. (2005). Explor-
atory Analysis of Spatial and Temporal Data -- A
Systematic Approach. Springer.

Aristoteles (2000). “Poetics” (translated by S. H.
Butcher). http://classics.mit.edu/Aristotle/poetics.
html, {25.7.2006}.

Braun, N. (2004). “Kontrolliertes Erzählen von
Geschichten mit integrierten, Videobasierten
Hyperstories”. In: R. Keil-Slawik, H. Selke, and
G. Szwillus (eds.), Mensch & Computer 2004:
Allgegenw¨artige Interaktion, Oldenbourg. pp.
157–167.

Brown, J.S. and Duguid, P. (2000). The Social
Life of Information. Harvard Business School
Press. Boston, MA.

Center for Digital Storytelling (2005). Homep-
age, http://www.storycenter.org/index1.html,
{25.7.2006}.

Cox, S. and Daisey, P. et al. (eds.) (2005). OpenGIS
Geography Markup Language (GML) Encoding
Specification. Open Geospatial Consortium,
Inc.

Davenport, T. and Prusak, L. (1998). Working
Knowledge: How Organizations Manage What
they Know, Cambridge, MA, Harvard Business
School Press.

Digital Storytelling Organization (DSA). (2002).
“Defining Digital Storytelling”. http://www.
dsaweb.org/01associate/ds.html {25.7.2006}.

Dublin Core Metadata Initiative (1999). “Dublin
core metadata element set, version 1.1: Refer-
ence description”. Technical report, Dublin Core
Metadata Initiative. http://dublincore.org/docu-
ments/dces/ {25.7.2006}.

Franz, K. and Nischelwitzer, A. (2004). “Adap-
tive Digital Storytelling: A Concept for Narra-
tive Structures and Digital Storytelling build on
Basic Storytelling Principles, Adaptive Story
Schemas and Structure Mapping Techniques”. In
L. Zimmermann (ed.): Multimedia Applications
in Education Conference (MApEC) Proceedings.
Graz. pp. 28-33.

Fohrmann, J. and Schüttpelz, E. (eds.) (2004).
“Die Kommunikation der Medien”. Niemeyer,
Tübingen (in German).

Gröger, G., Kolbe, T. H. and Czerwinski, A. (eds.)
(2006). Candidata OpenGIS CityGML Implemen-
tation (City Geography Markup Language). OGC
06-057r1. Open Geospatial Consortium, Inc.

Heiden, W., Frühling, C. and Deuer, H. (2001).
“Hypermedia Novel - Hymn. A New Storytell-
ing Paradigm”. Proceedings of CAST ‘01. pp.
345-348.

ISO. (2002). “Information technoloy – Multimedia
content description interface – Part 8: Extraction
and use of MPEG-7 descriptions”. Technical Re-
port ISO/IEC TR 15938-8: 2002(E).

ISO (2003). “Information Technology – Multi-
media Content Description Interface – part 5:
Multimedia description schemes”. Technical
Report ISO/IEC TR 15938-5:2003.

Jäger, L. and Stanitzek, G. (eds.) (2002). “Tran-
skribieren - Medien/Lektüre”. Wilhelm Fink
Verlag, Munich (in German).

Kosch, H. (2003). Distributed Multimedia Da-
tabase Technologies Supported by MPEG-7 and
MPEG-21. Auerbach Publication.

 1713

Media Centric Knowledge Sharing on the Web 2.0

Kraak, M.-J. and Ormeling, F. (2003). Cartogra-
phy. Pearson Education Limited, England.

Lambert, J. (ed.) (2003). “Digital Storytelling
Cookbook and Travelling Companion”. Digital
Diner Press, 4.0 edition, (Excerpt).

Lave, J. and Wenger E. (1991). Situated Learning:
Legimate Peripheral Participation. Cambridge
University Press, Cambridge, UK.

Lynch, K. (1960). The Image of the City. The
MIT Press.

Martínez, J.M., Gonzández, C., García, C. and
de Ramón, J. (2002). “Towards Universal Ac-
cess to Content using MPEG-7”. Multimedia ’02.
December 1-6, Juan-les-Pins, France.

Nonaka, I. and Takeuchi, H. (1995). “The Knowl-
edge-creating Company”. In: Oxford University
Press, Oxford.

O’Reilly, T. (2005). “What Is Web 2.0 - Design
Patterns and Business Models for the Next
Generation of Software”. http://www.oreillynet.
com/pub/a/oreilly/tim/news/2005/09/30/ what-is-
web-20.html {3.7.2006}

Phillips, M. A. and Huntley, C. (2001). “Dra-
matica—A New Theory Of Story”. Screenplay
Systems Inc., 4th edition, 2.

Polanyi, M (1985). “Implizites Wissen”. Suhr-
kamp, Frankfurt/Main (in German).

Propp, V. (1958). “Morphology of the Folktale”.
International Journal of American Linguistics,
24(4, Part II).

Roth, G. and Kleiner, A. (1999). “Car Launch:
The Human Side of Managing Change”. Oxford
University Press, New York.

Royrvik, E.A. and Bygdas, A.L. (2002). “Knowl-
edge Hyperstories — The Use of ICT Enhanced
Storytelling in Organizations”. 3rd European
Conference on Organizational Knowledge, Learn-
ing and Capabilities. Athens, Greece. http://www.
alba.edu.gr/OKLC2002/Proceedings/pdf files/
ID260.pdf {2.10.2006}.

Schneider, O., Braun, N. and Habinger G. (2003).
“Storylining suspense: An authoring environment
for structuring non-linear interactive narratives”.
In WSCG, http://wscg.zcu.cz/wscg2003/Papers_
2003/I53.pdf {25.7.2006}.

Sharda, N. (2005). “Movement Oriented Design:
A New Paradigm for Multimedia Design”. Inter-
national Journal of Lateral Computing (IJLC),
1(1):7–14, 2005.

Snow, C. P. (1959). “The Two Cultures”. Cam-
bridge University Press, Cambridge.

Spaniol, M., Klama, R., Sharda, N. and Jarke, M.
(2006). “Web-Based Learning with Non-Linear
Multimedia Stories”, 5th International Conference
on Web-based Learning (ICWL 2006), July 19-21.
Penang, Malaysia.

Tulving, E. (1978). “Episodic and semantic
memory”. In E. Tulving and W. Donaldson (Eds.),
Organization of Memory, New York: Academic
Press, pp. 381-403.

Ullman, M. T. (2004). “Contributions of memory
circuits to language: the declarative/procedural
model”. Cognition, 92:231 – 270.

Wenger, E. (1998). “Communities of Practice:
Learning, Meaning, and Identity”. Cambridge
University Press, Cambridge, UK.

This work was previously published in Knowledge Networks: The Social Software Perspective, edited by M. Lytras, R. Tennyson,
& P. Ordonez de Pablos, pp. 46-60, copyright 2009 by Information Science Reference (an imprint of IGI Global).

1714

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.20
Towards an Integrated Model of
Knowledge Sharing in Software

Development:
Insights from a Case Study

Karlheinz Kautz
Copenhagen Business School, Denmark

Annemette Kjærgaard
Copenhagen Business School, Denmark

AbstrAct

This article adds to the discussion on knowl-
edge management (KM) by focusing on the
process of knowledge sharing as a vital part
of KM. The article focuses on the relationship
between knowledge, learning, communication,
and participation in action, and the role of social
interaction and technical media in the knowledge
sharing process. We develop an initial theoretical
framework of knowledge sharing on the basis of
a literature study. Drawing on an empirical study
of knowledge sharing in a software development
company, we discuss what supports and what
hinders knowledge sharing in software develop-
ment. Finally, we use this knowledge to improve
the theoretical framework.

IntroductIon

The KM literature is extensive, but the discussion
on how to manage knowledge in organisations
is far from over, and new proposals as well as
lessons learned are continually being suggested.
However, the published literature, especially in the
information systems field, is largely grounded in
a view that considers knowledge as an objective
commodity which can be collected, represented
symbolically and processed like information
(Dahlbom & Mathiassen, 1993; Tsoukas, 1998).
The literature consequently shows a certain
preoccupation with information technology (IT)
and technical solutions while it reflects a limited
view of individual and organisational knowledge-
related processes (Swan, Scarbrough, & Preston,

 1715

Towards an Integrated Model of Knowledge Sharing in Software Development

1999). The practice of KM is frequently reduced
to the implementation of new IT-based systems,
and important organisational aspects, in particular
human and social issues, are overlooked. There
are, however, exceptions in the literature which
reviews KM success and critical success factors
(Jennex & Olfman, 2005, 2006). Like Kautz
and Thaysen (2001), those who emphasise the
important but not privileged role of IT provide
a balanced discussion of technical issues related
to KM.

This article takes this debate into account and
is based on a broader perspective of knowledge
and KM. Our focus is on understanding especially
the process of knowledge sharing as a vital part
of KM and on the relationship between knowl-
edge, communication, and participation in action
through either social interaction or technical media
in the knowledge sharing process.

By studying the knowledge sharing process
in a Danish software development company, we
provide an insight into how developers draw from
organisational memory (Walsh & Ungson, 1991)
to share knowledge in a learning context. We
discuss the use of social interaction and technical
media in the communication process and provide
conclusions on how different forms of knowledge
are shared through the two types of media.

Our focus is primarily on the role of people
in the knowledge sharing process, but we also
include empirical findings on how people use
technology to share knowledge.

The article is structured as follows. The next
section introduces the concepts of knowledge,
learning and communication which inform our
understanding of knowledge sharing. The third
section presents our research approach and setting.
Our empirical findings are described in the fourth
section and discussed in the fifth section. Finally
in the sixth section, we present our conclusions
and the challenges for future research.

tHeoretIcAl bAckground

We begin by exploring the concepts on which
we build our initial theoretical understanding in
order to present how we utilise them in this study.
Knowledge sharing is a bilateral process in which
knowledge is exchanged between individuals and
groups (Comas & Sieber, 2001). Knowledge is the
outcome of a complex process, a part of which
is the gathering and processing of information.
This has been described by Kolb (1984) and oth-
ers as a learning process. Learning is significant
for the attainment of knowledge, and thus also
for the sharing of knowledge. Information is
communicated among people with the aid of a
shared language, body language, and actions
(Fiske, 1990; Nielsen, 1994) and participation
in action and practice builds the foundation for
learning (Wenger, 1998). This happens through
social interaction and in some cases with the aid
of technical media (Thompson & Walsham, 2001).
Communication and participation in action are
thus also significant for the sharing of knowledge.
In the following we revisit the concepts of knowl-
edge, learning communication, and participation
in action and their relationship and importance
for knowledge sharing in more detail.

knowledge

Many definitions of knowledge have been pre-
sented in the literature. Although they differ in
scope and orientation, they seem to agree upon
the fact that knowledge is a complex multifaceted
concept which can be understood from different
perspectives (Cook & Brown, 1999; Kautz &
Thaysen, 2001). From a hermeneutic perspective,
knowledge is not a commodity which can be col-
lected under controlled conditions and bought or
sold on a market (Dahlbom & Mathiassen, 1993).
On the contrary, it is subjective enlightenment, a
personal property which is grounded in human
cognition of things and relations in the world

1716

Towards an Integrated Model of Knowledge Sharing in Software Development

(Nielsen, 1994) and it affords actions (Cook &
Brown, 1999).

Nonaka (1994) and Nonaka and Takeuchi
(1995) build their model of the dynamics of
knowledge creation with its conversion processes
socialisation, externalisation, internalisation, and
combination, which is a prerequisite for knowledge
sharing according to Polanyi (1966), in particular
under his concept of tacit knowledge. However,
the commonly used sharp distinction between
explicit knowledge which can be captured and
codified into manuals, procedures, and rules
and is easy to disseminate, and tacit knowledge,
which cannot be easily articulated and thus only
exists in people’s hands and minds, and manifests
itself through their action, has not been made by
Polanyi (Stenmark, 2000). As Stenmark argues,
Polanyi (1966) sees explicit and tacit knowledge
as intrinsically interrelated and mutually consti-
tuted, and views tacit knowledge as the backdrop
against which all understanding is distinguished.
All knowledge thus has a tacit dimension, and
tacit knowledge is the cultural, emotional, and
cognitive background of which humans are only
marginally aware. This is supported by Tsoukas
(1996), who argues that explicit and tacit knowl-
edge are inseparably linked, and that they cannot
be treated as two separate types of knowledge.

Against this background, the mechanical
conversion model as a background for knowledge
creation and sharing appears to be an inadequate
description of the underlying processes. We follow
Cook and Brown (1999), who apply the concepts
of explicit and tacit knowledge in the form origi-
nally intended by Polyani (1966). Acknowledging
the codifiable nature of explicit knowledge which
can be transmitted through formal, systematic
language, and tacit knowledge, which is rooted in
action and difficult to formalise and communicate,
they do not promote one distinct kind of knowledge
as an ideal for knowledge. Instead they emphasise
the importance and necessity of different forms
of knowledge. They distinguish between explicit

and tacit knowledge, but also between individual
and group knowledge, thereby creating four ba-
sic knowledge forms: (1) explicit individual, (2)
explicit group, (3) tacit individual, and (4) tacit
group knowledge. They see these four forms as
distinct forms of knowledge all with equal stand-
ing. All four forms are relevant to describe and
understand knowledge and knowledge sharing in
organisations. In addition to the four knowledge
forms, Cook and Brown introduce the concept of
knowing, which is the part of an action or practice
which deals with the way knowledge is used in in-
teraction with the social and physical world. Shar-
ing their broader perspective on knowledge, our
theoretical framework includes three dimensions
of knowledge based on Cook and Brown’s (1999)
work: explicit/tacit knowledge, individual/group
knowledge and knowledge/knowing.

We thus understand explicit knowledge as
knowledge which is codifiable and can be ex-
pressed directly through language. This means
that explicit knowledge is structured and ordered
such that it can be described and discussed through
speech, scripts, drawings, and other signs and
symbols. Tacit knowledge is knowledge which
cannot directly be codified, but which can (only)
be expressed indirectly through language and
action. Tacit knowledge is a “feel” or sense for
something or “to be able to do something without
being able to explain why” (Brown & Gray, 1995,
p. 78). Tacit knowledge is not hidden or inacces-
sible —tacit knowledge simply cannot be codified
or expressed directly.

Individual knowledge is knowledge held by an
individual that is applied in the individual’s ac-
tions, while group knowledge is knowledge held by
a group and applied in the group’s actions. Group
knowledge is created through the cooperation of
the group’s members and is part of the group’s
practice (Brown & Gray, 1995). Group knowledge
includes knowledge about how the group works,
its social rules, the group’s memory about earlier
actions, and knowledge about the group’s tasks.

 1717

Towards an Integrated Model of Knowledge Sharing in Software Development

Not necessarily all members of the group possess
the whole group’s knowledge; it is the group as
a whole that possesses the group’s knowledge,
and it is the group as a whole that applies this
knowledge (Cook & Brown, 1999).

Each of the four types of knowledge presented
by Cook and Brown (1999) is associated with a
set of knowledge forms (see Figure 1). Explicit
individual knowledge is expressed in concepts,
rules, equations, and interrelations. This is, for
example, knowledge in the form of concepts about
the design of a product or a specific procedure
to follow. Tacit individual knowledge can be
expressed in a person’s skills in applying tools or
routines for the performance of a particular task
(Comas & Sieber, 2001). Explicit group knowledge
consists of shared stories about previous successes
or failures and of metaphors used for establishing
a common understanding of a problem or a task.
And finally, tacit group knowledge is related to
organisational culture in the form of genres which
guide the thoughts and actions of organisational
members.

The four types of knowledge can be seen as
constituting organisational memory in different
forms. According to Walsh and Ungson (1991),

organisational memory is both an individual
and organisational level construct. Although
the definition of organisational memory is far
from uniform, it is generally agreed upon that
organisational memory consists of mental and
structural artefacts which have a consequential
affect on performance (Walsh & Ungson, 1991).
In its most basic sense, organisational memory
refers to stored information from an organisation’s
history which can be brought to bear on present
decisions.

We have knowledge to carry out an action, but
at the same time we can have knowledge indepen-
dently of whether we carry out the action or not.
Knowledge is something we possess irrespective
of action. Thus knowledge is a tool which can be
used in action, but which in itself is not action.
The four forms of knowledge created by the di-
mensions of explicit—tacit and individual—group
are thus not sufficient to describe the knowledge
which is expressed through practice (Cook &
Brown, 1999).

Every time someone carries out an action, a
combination of many different types of knowledge
is used. Each type of knowledge contributes to the
action in a way in which the other types cannot. The

Individual Group

Explicit

Tacit

Genres

Concepts, rules,
equations, and
interrelations

Stories,
metaphors,
and phrases

Skills and
feels for

concepts,
rules, equations,
and
interrelations

Knowing

Figure 1. Types of knowledge related to knowing based on Cook & Brown (1999)

1718

Towards an Integrated Model of Knowledge Sharing in Software Development

part of the action which focuses on the application
and combination of explicit and tacit knowledge
in interaction with the social and physical world
is referred to as “knowing” by Cook and Brown
(1999). As they put it, “Knowing is to interact
with and honour the world using knowledge as a
tool” (p. 389). Knowing has a focus on how we
use our knowledge in practice. Knowing is not
something we have, but something we do, and
therefore a part of the actual action.

Figure 1 shows the different forms of knowl-
edge related to the process of knowing.

Having argued for a three-dimensional un-
derstanding of knowledge, we now focus on the
concept of learning and how this contributes
to our understanding of the knowledge sharing
process.

learning: knowing as a learning
Process

Learning is the process in which we acquire
knowledge based on the communication of in-
formation and the participation in action. The
learning process is thus an antecedent of having
knowledge and is important for the sharing of
knowledge.

Kolb (1984) has developed a theory of learning
according to which learning is based on experi-
ence, and takes place through learning cycles. The
learning process is a cognitive process in which
individuals process new information or actions on
the background of existing information or actions.
In this process—depicted in Figure 2—informa-
tion called abstract conceptualisation is obtained
though speech and script, or indirectly through
action and practice, when it is called concrete
experience; thereafter information is processed
actively through active experimenting or re-
flectively through reflection and/or observation.
This means that abstract concepts and concrete
experience are tested actively in practice or are
reflected upon. The result of this process is new
knowledge.

This learning theory can be related to Cook
and Brown’s (1999) understanding of knowledge
and knowing (Comas & Sieber, 2001). A mutual
interplay exists between knowledge and knowing:
knowing means that we use our knowledge in new
ways, or that we make use of our knowledge in
new ways through practice, and thus discover new
interrelations or gain a new understanding of our
knowledge. Kolb’s (1984) learning cycle, which
is based on experiential learning, complements

 Abstract
Conceptualisation

 Active
Experimenting

 Concrete
Experience

 Reflective
Observation

Figure 2. Kolb’s (1984) learning cycle

 1719

Towards an Integrated Model of Knowledge Sharing in Software Development

Cook and Brown’s comprehension of knowing, as
it can explain those aspects of knowing which deal
with the creation of new knowledge. Comas and
Sieber postulate that the four different stages of the
learning process indirectly reflect the presence of
different states of knowing, and argue that moving
through the cycle contributes to what Cook and
Brown have called productive inquiry.

There is, however, a difference between the
four types of knowledge and how they relate to
learning. The learning process depends on the
types of knowledge involved, but also on different
ways of learning (Nielsen & Kvale, 1999). This
is a part of our theoretical framework and it will
be discussed next.

The concept of scholastic learning describes
the (part of) learning which takes place through
verbal and textual instruction detached from prac-
tice (Nielsen & Kvale, 1999). This comprises the
communication of information which represents
explicit knowledge, and as such, concepts, rules,
equations, and interrelations are acquired through
scholastic learning. This involves learning through
concrete institutionalised education, for example,
through courses, seminars, or literature studies,
but also through verbal and textual instruction
among colleagues at the workplace.

Learning of tacit knowledge occurs through
active participation in practice as well as general
learning in day-to-day life. Wenger (1998) presents
a social theory of learning in which participation
in practice forms the basis for learning. When
people work closely together, share a practice,
a vocabulary to talk about the practice, and an
understanding about the practice, tacit knowledge
in the form of skills, proficiency, routines, and
shared genres is more easily shared (Wenger,
1998; Wenger & Snyder, 2000). Practice learning
takes place in communities of practice which are
particular areas of activity or bodies of knowledge
which a community has organised itself around. It
is a joint enterprise inasmuch as it is understood
and continually renegotiated by its members who

are linked to each other through their involvement
in common activities (Wenger, 1998).

Over time, a community of practice builds up
an agreed set of communal resources, a shared
repertoire which consists of tangible as well as
intangible aspects such as procedures, politics,
rituals, and values (Wenger, 1998; Wenger, Mc-
Dermott, & Snyder, 2002).

While scholastic learning is primarily about
receiving, processing, and “absorbing” informa-
tion, practice learning is primarily a question of
becoming part of a community (Brown & Gray,
1995).

Individual learning can occur through scho-
lastic as well as practice learning, and it is an
individual’s learning of explicit and tacit knowl-
edge. Individual learning denotes the acquisition
of knowledge which an individual (him/herself)
uses in and for his or her actions. An example
is knowledge in the form of concepts about the
design of a product, or skills in the application of
tools or routines for the performance of particular
tasks (Comas & Sieber, 2001).

Group learning is learning of tacit and explicit
knowledge on a group level. Group learning can
also occur through scholastic as well as practice
learning. Through group learning, the group
acquires knowledge which it uses for its actions.
This comprises knowledge in the form of rules
for how a task is to be solved, shared stories about
successes and failures, routines for how the group
distributes tasks, and genres for particular meet-
ings and documents.

Communities of practice (Lave & Wenger,
1991; Wenger 1998) are a prominent example of
group learning, being groups of individuals who
work together over a period of time. The individu-
als in these groups may carry out the same job or
cooperate on a shared assignment, but they do not
have to be a formal or identifiable group (Brown
& Gray, 1995). Individuals in communities of
practice are bound together through a shared
practice and understanding of this practice, and

1720

Towards an Integrated Model of Knowledge Sharing in Software Development

they develop shared knowledge about the practice
(Brown & Gray, 1995).

communication and Active
Participation in Action: knowledge
sharing through social Interaction
or technical Media

Knowledge sharing is a process in which knowl-
edge is exchanged between individuals and
groups (Comas & Sieber, 2001). The access to
and exchange of information is necessary for
the acquisition of knowledge (Kautz & Thaysen,
2001), and communication is therefore important
for the sharing of knowledge.

We take as a starting point Fiske (1990), who
argues that communication can basically be under-
stood as the exchange of information. Fiske relies
on Lasswell’s (Severin & Tankard, 1997)—Who
(says) What (to) Whom (in) What Channel (with)
What Effect—and Shannon and Weaver’s (1949)
rather general and simplistic models of commu-
nication, but emphasises that the communication
process takes place with the aid of a shared oral
and written language, body language, or action.
In this model a sender or communicator chooses,
combines, and presents data in such a way that it
represents the information which he or she wants
to communicate. A receiver recognises and takes
information in by interpreting the transmitted data
on the background of existing knowledge, other
information, context, culture, and the rules and
pragmatics of the language.

Communication can take place as a dialogue,
meaning that the roles of sender and receiver
change continuously during the communication,
or as a monologue, in which case the roles of
the sender and the receiver are fixed throughout
the communication session. The roles of sender
and receiver of information in the communica-
tion process can be held by individuals and by
formal or informal groups. Formal groups are
groups which are linked to business processes or

organisational units and which have been defined
by an organisation’s management (Brown & Gray,
1995). Informal groups are groups which are con-
nected with informal business processes or built
by people who congregate outside or across the
formal organisational units.

The differences between how individuals or
groups exchange knowledge have an impact upon
how and which information can be communicated.
Information can not only be found in speech, but
is also expressed through body language and ac-
tion. An individual can obtain information which
is embedded in actions and body language by
participating in someone else’s work. This means
that information has different formats, is more or
less structured, and is stored in different ways,
which all have an influence on how information
can be communicated.

Knowledge sharing takes place through
inter-subjective and/or technology-facilitated
communication (Thompson & Walsham, 2001).
Inter-subjective communication takes the form
of social interaction, while technology-facilitated
communication comes about through technical
media. There is a difference between which type
of information can be most suitably exchanged and
provided through social interaction and technical
media (Thompson & Walsham, 2001).

Social interaction as the exchange of informa-
tion face-to-face between people comprises, for
example, formal or informal meetings, verbal
presentations, and teaching sessions. In social
interaction, information is communicated through
speech, body language, or actions; hence, social
interaction enables the exchange of informa-
tion linked to both explicit and tacit knowledge
(Nielsen & Kvale, 1999). Explicit knowledge can
be codified, and it can thus be expressed verbally
(or textually) in a shared language. Tacit knowl-
edge cannot be codified and it can therefore not
be expressed verbally or textually; body language
and actions are thus important for the learning
of tacit knowledge (Nielsen & Kvale, 1999). This

 1721

Towards an Integrated Model of Knowledge Sharing in Software Development

indicates that social interaction is suitable for the
communication of complex, less structured, and
nonformalised information because it provides
different possibilities for communicating a mes-
sage. This happens through the application of a
combination of a shared language and speech,
body language, and actions which can supplement
each other. Social interaction in itself cannot store
information, and thus the storing of the exchanged
information through social interaction is depen-
dant on the individuals’ or the group’s capability
to “store” across time and place.

Technical media are technologies, especially
information and communication technologies,
which support the exchange of information in the
whole or in parts of the communication process.
These can, for example, be telephones, databases,
electronic documents, or e-mails. Technologies
can “transport” communicated information
between the involved parties and simultane-
ously support the storage of data (Thompson &
Walsham, 2001). Technology thereby provides the
possibility of making information available across

time and space. Technology can also contribute
to changes in the format or structure of informa-
tion in the form of categorisation of documents,
composition of document indices, or conversion
of analogue sound to a data file. This improves
the communication in relation to a situation where
technology is not applied.

Technical media are suitable for the com-
munication of codified information (Thompson
& Walsham, 2001) as most technical media are
based on verbal and textual communication. Some
technologies, such as video, can also reproduce
information expressed through body language and
action. Technical media are suitable for well struc-
tured, well defined, and formalised information
such as technical specifications or measurement
results. Technical media primarily support the
communication of information related to explicit
knowledge, and they can only indirectly, and to a
limited extent, support communication of infor-
mation related to tacit knowledge (Thompson &
Walsham, 2001). Different strategies are used to
access that information depending on the type of

Communication of
 Information
 and
Active Participation
 in Action
 through
Social Interaction or

Technical Media

 Stories,
metaphors, and
 phrases

Concepts, rules,
equations, and
interrelations

Skills and
feel for
concepts,
rules, equations,
and interrelations Genres

Knowing

Learing Process

Group

Group scholastic
 learning

Group practice
 learning

Individual practice
learning

Individual scholastic
learning

Individual

Explicit

Tacit

Figure 3. An integrated model of knowledge, learning, communication and participation in action

1722

Towards an Integrated Model of Knowledge Sharing in Software Development

knowledge and the background of those who use
the medium (Smolik, Kremer, & Kolbe, 2005).

An Initial theoretical Model for
knowledge sharing

In summary, in this section we have presented
our understanding of knowledge, learning,
communication, and participation in action as
constituting knowledge sharing via different
types of media. In Figure 3 we have integrated
these concepts as a step towards a unified model
of knowledge sharing.

In the model, learning occurs through scholas-
tic or practice learning, and the learning process
is the process which determines how individuals
and groups acquire different types of knowledge
through the communication of information and
participation in practice. The model thus shows
how knowledge, organisational memory, and
learning are related, and how they influence each
other as prerequisites for knowledge sharing. We
will use the framework to analyse the relationship
between ways of learning and types of knowledge
as prerequisites for knowledge sharing in our case
organisation, and take it up again later and discuss
it in relation to our findings, which resulted in a
refinement of the theoretical framework.

 We use this model to discuss our empirical
findings. In the next section we present the research
approach and setting of our empirical study of
knowledge sharing in software development as
a prelude to the presentation of the findings in
the KNOWLEDGE SHARING IN THE CASE
ORGANISATION section.

reseArcH APProAcH And
settIng

The ontological and epistemological assumptions
of our work are informed by the interpretive
paradigm. The objective of our research was to
study and understand the organisational members’

knowledge sharing processes within their work
and organisational context. In line with Andersen
(1999), we chose a case study approach in order
to study the process of knowledge sharing in its
organisational context. To ensure the validity of
our work we largely followed Klein and Myers’s
(1999) seven principles for interpretive field
research and Eisenhardt’s (1989) seven steps for
case study research.

Given the resources available to our study, we
concentrated on a single case study of knowledge
sharing in a large Danish IT company. This ap-
proach might be criticised for only generating
a local empirical theory which might not be
generalisable, but as argued by Hughes and
Jones (2003), it contributes to the existing body
of knowledge by providing a detailed account
of empirical findings. By limiting the study to a
single organisation, we were able to examine the
case in more detail to understand more thoroughly
the interrelationships of separate data, which was
our research objective.

The research setting was a Danish subsid-
iary of a global provider of telecommunication
systems. At the time of the study (in 2002), the
Danish subsidiary was 23 years old and it had
been acquired by the American parent company 6
years earlier. The company’s customers are fixed
network, mobile network and cable operators who
reside in more than 80 countries.

The Danish subsidiary concentrates on the
development of new products. The company’s
products consist of hardware and embedded soft-
ware which provide the product functionality and
management software to access, calibrate, and
monitor the products’ functions. This is mirrored
in the organisation of the company’s research and
development (R&D) department, which consists
of three divisions (access, calibration, and moni-
toring) which perform the detailed specification
and actual development tasks. In addition, the
company has a product management department;
a product planning and specification department;
and a finance department. The company has 420

 1723

Towards an Integrated Model of Knowledge Sharing in Software Development

employees of whom 180 are directly involved in
product development.

In agreement with company management and
also because of resource restrictions, we agreed to
focus our investigation of the knowledge sharing
process on one organisational unit—the division
of embedded software. The embedded software
division consists of some administrative staff, a
manager, three project leaders, two team leaders,
and 27 staff members. With its position between
different departments and divisions, embedded
software appeared to be most appropriate and
representative for our purpose in light of the
resources available for the investigation.

The company was interested in participating
in our research study due to increased competi-
tion in the market, they had decided to focus on
employees’ knowledge, learning, and communi-
cation both within and across the organisational
units with the aim of increasing productivity and
quality in the product development process.

The product development process is organ-
ised in programmes consisting of projects. The
company has about three large and 5-10 minor
programmes running at any one time, consisting of
multiple projects of varying length from 6 months
to 2 years. The projects are typically carried out
in and by the different divisions. The company’s
development process can be characterised as prod-
uct-oriented, sequential, and document focused.
The process consists of an analysis and design
phase, a development phase, a test phase, and a
product installation and introduction phase.

A planning team consisting of experienced
employees from different departments is respon-
sible for the overall definition of a programme.
A so-called core group of project leaders and
technical experts performs a feasibility study
and produces product and document reviews at
the end of each development phase. Finally, a
core team which consists of the project leaders
of the different divisions in R&D is responsible
for conducting and completing the actual projects
and products. The development work is performed

by the individual divisions and their developers
and is coordinated by the project leaders in and
across the three divisions and beyond.

The developers in the division were our pri-
mary unit of investigation. Within the category
individuals and groups within the division under
investigation, we differentiated between develop-
ers in the division, developers who worked on the
same tasks, developers who shared a two-staff
office, project groups, subproject groups, infor-
mal groups, and experience (exchange) groups.
Individuals and groups related to other units were
roughly distinguished into individuals in other
divisions and departments affiliated with the
same project or product, other departments and
divisions in the Danish subsidiary, or individuals
and groups in other countries.

We collected data through 13 semi-structured
interviews with eight developers, our primary
group of interest, and one project leader in the
unit under investigation. We also interviewed four
employees from other divisions and departments.
We also performed one group interview with
management personnel and two one-workday-
long observations where we followed a member
of management and a developer. Finally, we
have included secondary material in the form
of the different kinds of documents used in the
organisation.

All interviews were taped, and a summary
listing relevant issues from each interview was
written. During and after the interviews we pro-
duced rich pictures inspired by the Soft Systems
Methodology (Checkland & Scholes, 1990) to
depict our understanding of the situation with
regard to knowledge sharing in the organisation.
These rich pictures constructed the basis for the
data analysis and were so useful that we only
had to return to the tape recording for further
consultation in one case.

To analyse the data we used a combination
of common sense interpretation, inspired by the
Soft Systems Methodology, and theoretical inter-
pretation which related the data to our theoretical

1724

Towards an Integrated Model of Knowledge Sharing in Software Development

framework (Andersen, 1999). For all interviews
and observations we identified and coded sen-
sible units of expressions. These statements were
then linked to one or more categories which we
deduced from our theoretical framework, and by
comparing all statements within each category
and across categories, a number of recurring
subjects emerged, and over 100 issues critical
for knowledge sharing in the case organisation
were identified. The three main categories, which
will also be used in the subsequent in-depth de-
scription, were (1) knowledge sharing through
social interaction, (2) knowledge sharing through
technical media, and (3) (the) different kinds of
knowledge (which are) shared.

This allowed for an in-depth understanding
and discussion of knowledge sharing in the case
organisation, revealing what kind of interaction
and which media provide possibilities for sharing
different kinds of knowledge. It also revealed what
impact the identified issues had on the sharing of
knowledge, and it ultimately led to a refinement
of our theoretical framework.

knowledge sHArIng In tHe
cAse orgAnIsAtIon

We explore the case study to identify how the
software developers draw upon organisational
memory to share knowledge. As part of our re-
search question, we investigate how knowledge
sharing in software development unfolds in social
interaction and via technical media. Our findings
provide some interesting insights on these mat-
ters and present a more detailed account of the
kinds of knowledge which are shared. Another
interesting finding concerns how and when the
developers rely on formal or informal contacts
in the knowledge sharing process. Finally, the
findings show a difference in the unfolding of
the knowledge sharing process according to
individual or group action.

When we refer to knowledge sharing as un-
folding through social interaction, we relate to
the subjects’ knowledge sharing through formal
interaction in formal meetings, informal interac-
tion in informal meetings; seminars and courses;
presentations; exchange of experience groups;
personal networks; and in the offices shared by
two or more people.

When we refer to knowledge sharing as un-
folding through technical media, we cover the
subjects’ knowledge sharing by the use of the
organisation’s document handling system (DHS),
the file server, the error reporting system, the
version control system, the project management
system, e-mail, electronic discussion groups,
Internet, intranet, video, whiteboards, paper
documents, and literature.

When we refer to kinds of knowledge, we
cover the subjects’ shared knowledge of technical
specifications (particularly requirement specifi-
cations and design documents); general project
information and technical standards; information
about who knows what about previous projects
or old products; and information about technical
problems and improvement of products.

We then provide a more detailed analysis of
how knowledge sharing unfolded between in-
dividuals and in and between groups, and what
kinds of knowledge are shared. We identify criti-
cal issues related to each of the categories and
provide some suggestions regarding how some
of these issues can be solved. As limitations of
space preclude a full description of our analysis,
we have chosen two subjects from each of the
categories to illustrate our findings.

knowledge sharing through social
Interaction: formal Meetings and
Personal networks

Social interaction in the case study took place
through formal meetings and personal networks
which are now discussed.

 1725

Towards an Integrated Model of Knowledge Sharing in Software Development

Formal Meetings

The members of the case study organisation
participate in various formal meetings dealing
with the communication of the status of projects
and problems through verbal and textual com-
munication. These formal meetings provide the
opportunity for the acquisition of explicit indi-
vidual and group knowledge. Explicit individual
knowledge is shared in the form of coordination,
communication of status, and discussions of tasks.
Explicit group knowledge is shared in the form
of (communication of) management attitudes and
opinions; definition of rules; and (communica-
tion of) stories about good and bad projects. The
formal meetings are also used as “pathfinders” to
those developers who hold individual knowledge
about, for example, concepts and rules, or who
have specific skills. In this way the formal meet-
ings provide the individuals with the possibility of
obtaining knowledge about where they can obtain
further knowledge. Active participation in formal
meetings also provides the opportunity for acqui-
sition of knowledge about the genres which are
related to formal meetings and the acquisition of
individual skills about how meetings are run.

The following issues were identified in relation
to the formal meetings:

• The information communicated through
project meetings is arbitrary. This shows
that the developers are not sure that the
information they need, or which would be
helpful to them, is communicated through
meetings. It contributes to the project meet-
ings having less value for the developers,
and it indicates that the developers are not
sure about the genres which are related to
formal meetings, or that they lack skills to
utilise formal meetings. The study does not
provide any evidence that the developers are
trained to use formal meetings. The develop-
ers therefore communicate to a higher degree
through informal meetings which are “held”

as the need for particular information arises,
or through personal networks. Information
about the same subject is thus communicated
through many different forms of social
interaction and through different technical
media. This in itself does not have to be a
problem as a certain amount of redundancy
increases the chance that everyone will re-
ceive the desired or necessary information,
but it is problematic when it confuses the
developers.

• There are no project meetings between
divisions, and coordination across divi-
sions rarely happens in formal meetings.
These issues indicate that communication
between the divisions is generally poor, and
that it is limited to taking place through the
project leaders’ personal networks. This
reinforces the organisational divide between
the developers in the different divisions and
creates a barrier which does not support com-
munication or insights into other developers’
work. The communication and the exchange,
which happen across the departments and is
necessary for the developers, instead comes
about through personal networks or written
information. The communication between
divisions is much more difficult than within
a division because one has to be much more
precise, as the developers cannot assume
that the receiver of their information has
the same background knowledge.

Personal Networks

Personal networks are personal relationships
between the developers. These are used to com-
municate information and to instruct each other.
Communication of information through personal
networks is verbal and textual and provides the
opportunity for scholastic learning of explicit
knowledge. This is true for both individual and ex-
plicit group knowledge because personal networks
are directed towards communication of concrete

1726

Towards an Integrated Model of Knowledge Sharing in Software Development

problems, discussions of different possibilities for
solutions, and informal education of the individual
developer. This knowledge takes the form of
concepts and rules related to projects, products,
and other technical matters which the developers
need for the performance of their work. Good
and bad experiences are communicated for this
purpose, and phrases are used which are defined
by the groups in the organisation. This happens,
for example, through informal meetings, which
are the links for, and which make the networks
visible. The developers communicate informa-
tion through informal meetings, and at the same
time they can identify other developers’ personal
networks and thereby build and extend their own
personal networks.

The developers become actively involved
and participate in each others’ practice through
personal networks, and in so doing they have the
opportunity to acquire the genres which are related
to personal networks. In addition, the networks
give the developers the opportunity to acquire
skills in how personal networks can be used, and
skills related to the topics which are communi-
cated. This happens, for example, through the
two-staff offices, which facilitate the developers’
participation in the same practice. It is common
practice in the company that an experienced de-
veloper shares an office with a less experienced
developer to help him or her to achieve skills
and learn genres. This includes helping the less
experienced ones by pointing them in the right
direction when it comes to searching for informa-
tion. This occurs in communication about how
things work, and where what information can be
found, as well as in the form of stories and rules
related to work in the divisions.

The following issues were identified in relation
to personal networks:

• The poorer the formal meetings and the
technical specifications, the more the de-
velopers use their personal networks. This

shows that personal networks are pivotal for
communication in the division because many
other forms of social interaction and tech-
nical media are not adequate and detailed
enough for the developers to communicate
all the desired or necessary information.

• The developers gain a “feel” through the
personal network for what is important
and whom they should go to in order to
prioritise resources and tasks. These is-
sues show the importance of the personal
networks; they bind other forms of social
interaction and technical media together,
and they satisfy the need for communication
which is not covered through other social
interactions and technical media.

• Developers depend on personal networks,
which are strongest within the division,
but more experienced developers have
networks which span divisions. This issue
shows that the developers are dependant on
their personal networks to be able to perform
the work for which they need information
from previous projects. This dependency
on the personal networks and on the most
experienced developers can be problematic
when the developers, who have comprehen-
sive knowledge of previous projects and old
products, leave the organisation and take
their knowledge with them.

• Personal networks save time. This shows
that personal networks are faster to use than
searching in documents. The developers can
find what they are looking for faster through
their personal networks than through other
forms of social interaction or technical
media.

• A good personal network takes time to
build. These issues show that personal net-
works are created through the developers’
daily work, and that a good network takes
many years to build up. This is because the
developers work on the same projects and

 1727

Towards an Integrated Model of Knowledge Sharing in Software Development

with the same colleagues over a long period
of time. This contributes to those develop-
ers who have broad and comprehensive
networks having a lot of information at their
disposal, while others with lesser networks
have less information. This indicates that not
all developers have comprehensive personal
networks, which results in less communica-
tion of information and less opportunity for
the acquisition of new knowledge for these
developers.

Some Conclusions on Knowledge
Sharing through Social Interaction

The analysis of the examples of social interaction
shows that social interaction through verbal and
textual communication provides the possibility for
scholastic learning of explicit knowledge. Beyond
this, the active participation in action in the form
of social interaction provides the opportunity to
acquire those genres which are related to social
interaction and the acquisition of the individual
skills for how social interaction can be applied, and
the skills related to the topics and themes which
are communicated. The investigation shows that
the individuals and groups in the investigated divi-
sion communicate through social interaction, and
social interaction thus provides the opportunity
to share knowledge in the division.

This finding is interesting, as the analysis also
shows that social interaction is not facilitated in
a structured way, and that formal forms of social
interaction in general are not prioritised. This
creates problems, as the developers are uncer-
tain about which information is communicated
through which type of social interaction, and the
findings show that this results in a high degree of
arbitrariness with respect to which information
is communicated through which form of social
interaction, for example, in courses, presentations,
experience groups, or personal networks.

knowledge sharing through
technical Media: the document
Handling system and the file server

In our case study company, documents used to
share knowledge are stored on two kinds of tech-
nical media: the DHS and the file server.

The Document Handling System

The DHS provides the opportunity for textual
communication. By far the largest part of all
technical specifications, analysis documents, and
project-related documents is stored in the DHS.
This comprises feature plans, functional and ob-
ject models, and iteration plans, but also how-to
documents, technical standards, and presenta-
tions. The documents are used by the individual
developers in their work as they describe what and
how something should be or has been done. The
documents are also directed towards groups as
they provide the framework and the scope for the
groups’ collective work. The verbal and textual
communication through the DHS offers the op-
portunity for individuals and groups to acquire
explicit knowledge.

Active participation in the form of interaction
with and use of the DHS provides the possibility for
the developers to gain skills in use of the system
to acquire the genres related to it. This comprises
which documents are stored in the system, how the
documents are structured and categorised, how
search functions are applied, and how keywords
and indices are linked to documents.

• Not all documents are stored in the DHS,
and as a consequence not all necessary
documents are accessible to all developers.
This issue is related to the fact that the DHS
is regarded as being for documents which
are directly related to projects or the prod-
uct development process. Other documents

1728

Towards an Integrated Model of Knowledge Sharing in Software Development

which do not comprise formal or project-de-
fining information, such as descriptions of
“private” ideas for solutions, experience or
general descriptions of problems, are often
stored on other media, among others the
file server. Only what the individual devel-
oper thinks has to be version-controlled is
stored in the DHS. The developers have to
search for information in many places and
to supplement information from the DHS
with information from, for example, the
file server or their personal networks. This
indicates that developers need to have a good
overview of the information and have to
make an extra effort to gather the quantity
and the quality of information they need for
their work.

• The DHS is slow and hard to use, the search
functions are poor, and distribution lists
are not used to the necessary degree; it is
difficult to find the right documents; there
is a lack of abbreviations and designa-
tions, and the information structure in
the system is strictly hierarchical. These
issues indicate that the actual functionality
and the information structure in the DHS
hinder the developers’ use of the DHS and the
communication of information. This limits
the developers’ chances of sighting all docu-
ments and finding all relevant information
for a particular task. The strict information
structure does not mirror the individuals’
and the groups’ problem-oriented way of
working. Communication of information in
the DHS is based on the partition between
projects and divisions instead of being based
on the structure of the working processes,
problems, and solutions.

• Not all departments are equally engaged
in using the system. This issue reinforces
and even increases the problems related
to the developers’ limited possibilities of
accessing all documents and finding all

relevant information for a particular task.
Although the DHS is the official place for
storing and distributing documents, some
departments use other technical media, for
example databases for technical specifica-
tions.

• Many developers use the system only to
the extent to which it has an impact on
their communication with other divi-
sions, or when demanded as part of the
formal work process. This indicates that
some divisions provide their documents to
developers in other divisions only to a very
limited extent, and that the division only has
an insight into other divisions’ documents
to a limited extent. The lack of insight into
each others’ work makes the communica-
tion of information across divisions difficult
and hinders the sharing and exploitation of
explicit knowledge. In the case where the use
of the DHS is bypassed to the advantage of
other technical media, this also has an influ-
ence on the acquisition of tacit knowledge
related to the use of the DHS, especially the
individual skills related to using the DHS
for the storage of technical specifications.
This is also true of the acquisition of genres
related to the DHS. Information about genres
is communicated though the documents
in the DHS. When the same information
is communicated through different forms
of social interaction and technical media,
meaning that different genres are used for
the same themes, this can lead to a situation
where the same information gains different
meanings.

The File Server

The file server is primarily used for informal
documents such as technical notes, proposals for
technical designs, intermediate and temporary
versions of documents, standards, product de-

 1729

Towards an Integrated Model of Knowledge Sharing in Software Development

scriptions, third party documents, and so forth,
which are not directly or ultimately related to
the projects or the product development process.
Apart from these documents the file server also
contains binary files in the form of programs and
video recordings. This shows that the file server is
used for textual and verbal—in the form of video
recordings—communication, which provides the
opportunity for acquisition of explicit knowledge
related to the information that is stored on the
server. Interaction with and use of the file server
provides the opportunity for the developers to ac-
quire skills in the use of the file server and genres
related to it. These are implicitly determined by
the developers and deal, for example, with which
documents and files are to be stored on the server;
how they are and should be structured; and which
search functions can and should be applied.

The following issues were identified in relation
to the file server:

• The file server is used to store files which
should be stored in the DHS. This problem
is related to the fact that the DHS is regarded
as being for documents which are directly
linked to the projects or to the product
development process. Nevertheless, some
older documents have not been transferred
to the DHS and are stored on the server.
This includes, for example, own ideas and
experiences; technical notes; proposals for
technical designs; designs; intermediate and
temporary versions of documents; standards;
product descriptions; third party docu-
ments; and so forth, which are not directly
or ultimately related to the projects or the
product under development. This indicates
that information which relates to the same
subject is stored and communicated through
different technical media: for example,
own experience and proposals for technical
designs are stored on the file server, while
technical specifications related to the same

product are stored in and communicated
through the DHS. This results in a situation
where the developers have to gather infor-
mation from different places, depending on
whether the information is categorised as
formal or informal, or whether the infor-
mation relates to newer or older products.
This means that the developers must have
a good overview of the information and
extra time to gather the necessary quantity
and quality of information. As information
has an impact on the learning process and
ultimately the acquisition of knowledge,
the use of the file server hinders the sharing
of explicit knowledge, as it functions as a
ragbag and as it provides the opportunity to
store information in places other than the
DHS.

• The developers’ and the divisions’ use
of the file server is very different. Some
developers never use it; others use it often
or store and find much useful information
there. The divisions also structure files dif-
ferently on the server, and this is an obstacle
to the sharing of knowledge. The different
use of the file server makes the communica-
tion of information through this technical
medium look arbitrary and dependant on
individuals. The different use of the file
server holds the risk that the developers do
not communicate the same information, and
thus that the information accessible to the
other developers becomes different. There is
a risk that those developers who do not use
or do not have knowledge of the information
on the file server do not acquire knowledge
of the same concepts or stories. This then
decreases their later capabilities to act. The
developers’ different uses of the file server
lead to differences in the extent to which
the developers acquire skills related to the
file server and knowledge of the file server
as a genre. This includes skills related to

1730

Towards an Integrated Model of Knowledge Sharing in Software Development

the use of the file server to store and work
with technical standards or the handling of
video recordings or other binary files on the
server. It also includes the genres related
to the file server, for example the form in
which information in a technical standard
is communicated through the medium.

• It is difficult to find information on the
file server; the developers have to know
where the information is stored to find it.
The problem with access to information on
the file server is emphasised by this issue.
This is due to the fact that the file server has
limited search functions which only cover
searching based on file names, and that the
directory structures and naming are very
“anarchistic.” This means that the develop-
ers have to have considerable knowledge
of the file server and its contents to be able
to search for information there. Informa-
tion about the file server is communicated
through personal networks, but the personal
networks take a long time to build up and
seldom cross division boundaries. It is thus
difficult for new employees and developers
in other divisions to find relevant informa-
tion on the server.

Some Conclusions on Knowledge
Sharing Through Technical Media

All these issues deal with access to information.
As information is the basis of the developers’
acquisition of knowledge, access to and gathering
of information are necessary for the acquisition
and sharing of knowledge. The analysis shows that
the issues identified in relation to the developers’
use of technical media to communicate have a
negative influence on the sharing of knowledge
between individuals and groups in the company
division which was investigated.

sharing different kinds of
Knowledge: Technical Specifications
and Information about “who knows
what”

Finally, we shift focus from communication of
information and participation in action through so-
cial interaction or technical media and emphasise
what kinds of knowledge are actually shared, and
we concentrate here on technical specifications
and on information about “who knows what.”

Technical Specifications

Technical specifications comprise feature plans;
device transport and management specifications;
overview and detailed function and object speci-
fications; and hardware specifications. They are
the basis for the acquisition of explicit knowledge,
and the developers actually use specific techni-
cal specifications for product development. The
technical specifications are directed towards the
individual developer’s work and at the same time
define the rules and phrases for the collective, joint,
and shared development work. They thereby form
the basis for the sharing of explicit knowledge
between individuals as well as groups.

The developers, who have been in the division
for a long time, can understand and use technical
specifications better than others. This indicates
that through their daily work, the developers
acquire skills and genres in utilising technical
specifications. Active participation in action pro-
vides the opportunity for the acquisition of tacit
knowledge. This means that the developers’ use of
technical specifications contributes to their skills
in utilising technical specifications. Their skills
related to the topics that the technical specifica-
tions deal w i t h , a n d provide possibilites to the
acquisition of genres that are related to technical
specifications.

However, not all developers understand the
documents equally well. When they do not under-

 1731

Towards an Integrated Model of Knowledge Sharing in Software Development

stand the documents they contact the developers
who originally produced the documents and ask
them what they were trying to describe and ex-
press. This shows that the developers need certain
skills and knowledge of the applied genres to be
able to use the information which is provided in
the technical specification.

The following issues were identified in relation
to the use of technical specifications:

• The developers find it difficult to gain an
overview of what has been agreed on, and
which of the changes in the specifications
have been carried out; changes are some-
times carried out before they are agreed
upon and approved; not all changes are
documented and reviewed. These problems
show that communication about changes or
updates to specifications and documenta-
tion is sometimes difficult or defective.
Acquisition of knowledge is based on the
information which the receiver obtains. Ac-
cess to and exchange of information is thus
necessary for the acquisition of knowledge.
The developers’ different and nonupdated
information basis therefore has an impact
on the explicit knowledge they acquire, and
ultimately on their possibilities of action.

• The change management tool is not used
to receive information on updated techni-
cal specifications; the document handling
system is sometimes bypassed and e-mail
is used instead. These issues show that the
communication of these documents and
information on updated technical specifica-
tions takes place through many “routes” and
different technical media. This indicates that
the developers are not secure in and certain
about the genres which are connected to
these technical media, for example, the
specifications are communicated through
the DHS, but updates to these documents
are communicated through the error report-
ing system, while both types of informa-

tion should be communicated through the
DHS.

• Sometimes feature plans are not finished
when a project starts, which results in
guessing and rough estimates; there is no
possibility of tracing all features through
the whole product development process
including the final test of the product.
These issues indicate that the quality of the
information which the developers use in their
work is insufficient. As noted earlier, access
to and exchange of information is necessary
for the acquisition of knowledge, and when
information is not available, acquisition of
knowledge is impeded or hindered.

• The hardware specifications are diffi-
cult for the developers in the division to
understand. The hardware division uses
different standards and a different version
of the control system; hardware specifica-
tions are formulated in a ‘slangy’ way and
are not written in pedagogical form; the
schedule seldom leaves the developers an
opportunity to dig deeply into the hardware
specifications.

These issues also indicate that insufficient
information, and information which is difficult
to understand, as well as lack of time, hinder the
sharing of explicit knowledge and the developers’
possibilities of action.

Information on “Who Knows What”

Information on “who knows what” includes in-
formation about which employees and colleagues
have which skills, and knowledge about projects,
products, and technologies. As this information
is directed towards the individual developer’s
seeking of information and simultaneously defines
rules for who the developer should turn to, this
information is the basis for explicit individual
and group knowledge.

1732

Towards an Integrated Model of Knowledge Sharing in Software Development

Active participation in action provides the
possibility of acquisition of tacit knowledge.
This means that the developers’ utilisation of
personalised knowledge contributes to the skills
in utilising these skills and in skills to actually
find the colleagues in question, and to the ac-
quisition of the genres which are related to the
skills and to these people. The study shows that
the developers use a lot of time finding out who
knows what, and that they do not always succeed.
The developers find that knowledge about who
knows what comes with time, when they become
familiar with other developers.

The following issues were identified in relation
to knowledge about “who knows what”:

• Many developers lack insight into who
has what information and skills; the
developers often only know the skills
of those they work or have worked with
in projects. These issues show that many
developers have limited knowledge of their
associates. However, for development of
the technical skills it is important to know
whom to ask in the organisation, while
formal education is less important. The lack
of knowledge of colleagues can thus have a
negative impact on the access to and com-
munication of information, and ultimately
on knowledge sharing, as the developers do
not have an overview of what information
can be found where, and this is even more
problematic given that it is most important to
know who to ask as part of the development
of the skills which the developers require to
perform their tasks.

• The project leaders know who has knowl-
edge; the division’s “catalogue of compe-
tences” has become too voluminous to be
updated; it is difficult to find information
about who works in which project. These
issues show that the project leaders are
prominent as those who know who has what
knowledge. The overview over who has what

information and which skills, and therefore
the access to other people’s information and
capabilities, depends on a relatively small
number of people. The division’s catalogue
of expertise is no longer updated, and there-
fore is of very limited help in this respect.
The developers instead use their personal
networks to obtain this information. The
difficulties in localising information and
skills of other developers are reinforced
through the fact that the developers have
difficulty finding overviews of who works
in which project.

• The developers do not know what other
developers and colleagues need to know.
At the same time as they do not find desired
or necessary information, the developers do
not know what others need to know. This
hinders the distribution of information to
developers who might benefit from it.

Some Conclusions on Sharing of
Different Kinds of Knowledge

In summary, the analysis of technical specifica-
tions and information about “who knows what” as
exemplars of different kinds of knowledge shows
that the identified issues can be detrimental to the
sharing of knowledge in the case organisation, as
this knowledge is difficult to find, and in part also
hard to understand. The developers instead use
their personal networks to acquire the knowledge
they need. However, as personal networks take
time to build, this solution works best for those
employees who have been with the company for
long time.

dIscussIon

The study has shown that the integrated model
can explain the relationship between the commu-
nication of information, participation in action,
the learning process, and knowing the different

 1733

Towards an Integrated Model of Knowledge Sharing in Software Development

types of knowledge. It thus presents an appropriate
basis for a detailed understanding of knowledge
sharing. The empirical data provide examples of
how different forms of knowledge are shared in
social interaction and by using different media.

Our study shows that when there are problems
with the communication of information such as
missing information, poor access to information,
or poor quality of information, this determines
the extent to which explicit knowledge can be
acquired. Similarly, if active participation and
learning in practice are hampered or function
poorly, this determines the extent to which tacit
knowledge can be acquired.

Our work is based on the assumption that a
number of different dimensions and perspectives
have to be taken into account in order to create a
comprehensive understanding of the knowledge
sharing process.

Other authors such as Cook and Brown (1999);
Comas and Sieber (2001); Kolb (1984); and Nielsen
and Kvale (1999) only deal with the relationship
between two dimensions such as communication
of information and knowledge, or knowledge and
learning, or they consider and describe the di-
mensions as different perspectives on knowledge
sharing. We take all these different dimensions
and perspectives into account.

Cook and Brown (1999) identify types of
knowledge and knowing which can exist in an
organisation and the relationship between them.
They consider knowing primarily as productive
inquiry. They do neither relate them to the concept
of learning or to the importance of communica-
tion of information. Comas and Sieber (2001)
discuss managing knowing by describing the
relationship between experiential learning and
knowing. They argue that managing knowing
can be described as an experiential process, and
they thus emphasis knowing primarily as a learn-
ing process. They do not, however, draw on the
importance of what precedes this process, namely
communication of information, and the actual
situation in which learning takes place. Kolb’s

(1984) learning cycle also concentrates primarily
on the learning process with a focus on individual
learning which ignores the group dimension of
learning and knowledge. Kolb also emphasises
how information is gathered and processed in
the learning process, but does not deal with what
happens before in the form of communication of
information. He thus ignores the problems which
can arise when obtaining information.

Nielsen and Kvale (1999) identify scholastic
learning and practice learning as well as the ex-
plicit knowledge and tacit knowledge to which
these ways of learning contribute, but they do
not clearly deal with the individual and group
dimensions of knowledge and learning. We take
all these issues into account.

Finally, our understanding of communication
is distinct from the original models (Fiske, 1990)
by being explicitly directed towards our focus
on knowledge and learning processes, and by
viewing communication not as a technical, de-
contextualised process, but as a social process
which takes place in a context. We thus emphasise
the concepts of social interaction and technical
media instead of the technical term channel, and
we do not use the terms sender and receiver, but
stress the concepts individual and group in rela-
tion to communication.

In summary, our theoretical framework thus
contributes to research within the field of knowl-
edge sharing by integrating different areas related
to knowledge sharing.

The theoretical framework does however not
clearly show how communication in the form
of verbal and textual communication and ac-
tive participation in practice contribute to the
acquisition of knowledge through scholastic and
practice learning. Kolb’s (1984) learning cycle
can contribute to many types of knowledge. His
learning cycle and the different types of knowl-
edge focus on the individual’s learning and the
related cognitive process which, Kolb argues,
can be dominated by a particular way of learning
and type of knowledge. How far multiple learn-

1734

Towards an Integrated Model of Knowledge Sharing in Software Development

ing cycles can take place simultaneously in the
same situation is not evident from Kolb’s theory.
Comas and Sieber (2001) describe the relation-
ship between experience or experiential learning
and knowing, but they do not take a position on
either, whether or if so, how many learning cycles
take place at one time. Cook and Brown (1999),
however, argue with respect to the relationship
between tacit and explicit knowledge that these
are separate types of knowledge, but that one is
or can be used as support to acquire the other. We
now provide examples from our study and discuss
how different types of knowledge contribute to
the acquisition of other types of knowledge, how
this can be conceptualised as multiple learning
cycles, and the consequences this has for our
framework.

the relationship between Individual
and group knowledge

A number of developers in our study explained that
they discussed technical problems and solutions
with other developers using, for example, personal
networks and experience groups. We found that the
developers had a shared repertoire of phrases for
particular types of technical specifications. This
indicates that the developers’ individual explicit
knowledge about, for example, how technological
solutions are specified contributes to the group’s
use of phrases concerning technical specifica-
tions, and thus to explicit group knowledge, about
specific types of technical specifications.

We also found that the developers primarily
store formal documents, that is, documents which
are a defined part of the development process or
which are somehow related to projects and prod-
ucts, in the DHS. These documents are placed in
a strict hierarchical structure which is ordered ac-
cording to departments, products, and/or projects.
This indicates that the developers’ skills—tacit
individual knowledge of skills and “feel” for
which documents should be stored in the DHS,
and where—contributes to the genre, tacit group

knowledge with respect to which documents are
communicated through the system and how they
are communicated.

The study also showed that new developers are
trained in use of the system through courses and
apprenticeship learning. This indicates that the
genre tacit group knowledge related to the DHS
contributes to the development of the individual
developer’s skills in relation to the use of these
genres. Figure 4 depicts these relationships.

the relationship between explicit
and tacit knowledge

The relationship between explicit and tacit knowl-
edge is depicted in Figure 5. A number of the

Figure 4. The relationship between individual and
group knowledge

Figure 5. The relationship between explicit and
tacit knowledge

 1735

Towards an Integrated Model of Knowledge Sharing in Software Development

developers said that on the basis of books, presen-
tations, and courses they use their understanding
of concepts and interrelations to experiment in
practice and thereby acquire new skills. This indi-
cates that the individual developers apply explicit
knowledge in practice—practice learning which
contributes to the acquisition of tacit knowledge
in the form of skills. The study also shows that
developers who are experts in a particular field
tell other developers about how a specific task
should be carried out. This can happen through
presentations, experience groups, and personal
networks, thereby giving other developers the
opportunity to gain explicit knowledge about
the action related to solving the task in question.
This indicates that the developers reflect upon
their tacit knowledge and explicate related actions
and activities, which they communicate to other
developers through scholastic learning.

The study also shows that the project manage-
ment system which was previously used to plan
projects is now only used for general project
planning and time registration. According to
the respondents it ought to be possible to extract
estimates for new projects directly from the
system, but because the projects are dissimilar,
these estimates are hard to use. We also found that
some developers had ceased to register time in
the system. This indicates that stories—explicit
group knowledge—about the deficiencies of the
project management system make the developers
interpret the information which is communicated
through the system in an unfavourable way. They
have thus developed a concept of the system
which has become tacit group knowledge. The
study also shows that the developers reflect over
their use of the document handling system as a
form of communication in the company which
only functions poorly. This contributes to stories
among the developers about how their work is
made cumbersome by the system, and that neces-
sary documents are hard to find. This shows that
the groups reflect on their tacit knowledge and
explicate actions related to this knowledge which

contribute to the acquisition of stories and phrases
in the groups related to the use of genres.

the relationships between tacit
Individual and explicit group
knowledge and explicit Individual
and tacit group knowledge

The relationships between tacit individual and ex-
plicit group knowledge and explicit individual and
tacit group knowledge are depicted in Figure 6.

We observed how one developer, through
use of his skills, developed a browser tool which
other developers found useful. It became part
of the development toolbox and contributed to
the stories and phrases which the members of
this group of developers told about useful tools.
This shows that developers, through their skills
and thus their individual tacit knowledge and its
explication in related actions, contribute to the
group’s stories and phrases, and thus their explicit
group knowledge.

The study also provided examples of how
success stories about how to solve a specific task
were sometimes transformed into how-to docu-
ments, for example how to program in C, which
other developers could use to acquire new skills.
This indicates that a group’s stories enter into

Figure 6. The relationships between tacit indi-
vidual and explicit group knowledge and explicit
individual and tacit group knowledge

1736

Towards an Integrated Model of Knowledge Sharing in Software Development

individual practice learning which contributes to
the development of the individual group member’s
skills, in this case C programming.

Our findings show that the developers’ under-
standing of the importance of standards for the
development work makes them perceive what is
communicated as a standard as being specifi-
cally important. This indicates that concepts or
rules related to the use of a particular form of
communication contribute to the development
of genres. The study also shows that when devel-
opers observe others communicating, they gain
knowledge about how, for example, one conducts
a presentation or a formal meeting. This indicates
that the developer’s acquaintance and application
of genres contributes to the developers’ individual
understandings of the concepts, rules, and inter-
relations which are related to genres.

Knowing as Multiple Learning Cycles

We have shown above how different types of
knowledge contribute to the learning of different
types of knowledge by drawing from our case
study to show how the developers have knowl-

edge which they apply to acquire new knowledge.
Figure 7 summarises the relationship between
the different types of knowledge and indicates a
cyclic connection between them.

The various and different learning situations
can also be understood as multiple cycles which
can take place simultaneously—in other words,
the developers constantly use knowledge to learn
in order to create new knowledge. How this relates
to the different types of knowledge is shown in
Figure 8.

Figure 7. The relationships between different
types of knowledge

Genres

Tacit

Explicit

Skills and feel
for concepts,
rules, equations, and
interrelations

Concepts,
rules, equations, and
interrelations

Individual Group
 Stories,
metaphors, and
 phrases

Figure 8. The relationships of different types of knowledge as multiple learning cycles

 1737

Towards an Integrated Model of Knowledge Sharing in Software Development

 According to Cook and Brown (1999), learn-
ing is a process in which an individual or a group
processes new information on the basis of existing
knowledge which can then be used as a basis for
action. The result of the learning process is new
knowledge. Following Kolb’s (1984) understand-
ing of the learning process and the relationship
between different ways of learning and different
types of knowledge as expressed in our initial
theoretical framework, and relating and compar-
ing these to the relationship of different types of
knowledge illustrated as multiple learning cycles
and summarised in the preceding paragraph, the
following becomes evident:

Tacit knowledge is acquired through practice
learning, but when, for example, the developers
explain how a task is solved, they reflect upon tacit
knowledge. The situation where a developer ex-
plains to other developers what he or she has done
is scholastic learning. It is not the tacit knowledge

itself which becomes explicit through scholastic
learning, but the developers acquire new explicit
knowledge. This is not the same as being able to
solve a particular task. If other developers want
to achieve the same tacit knowledge, this can only
happen through practice, that is, they themselves
must apply the explicit knowledge in practice and
participate actively in carrying out the task.

Explicit knowledge can contribute to the
acquisition of tacit knowledge through appli-
cation in practice and through participation in
practice learning. At the same time, tacit knowl-
edge contributes to the acquisition of explicit
knowledge through reflection and participation
in scholastic learning. Tacit knowledge and
explicit knowledge thus supplement each other
through ref lection and application in practice
(see Figure 9). This can be understood as a
detailed description of knowing as a learning
process. Taking scholastic learning as a starting

 Tacit
knowledge

 Reflection

Scholastic
 learning

 Explicit
Knowledge

 Application
 of explicit
knowledge in
 practice

Practice
learning

Figure 9. Learning of explicit and tacit knowledge through scholastic and practice learning

1738

Towards an Integrated Model of Knowledge Sharing in Software Development

point, explicit knowledge will always precede
an eventual acquisition of tacit knowledge.
Taking practice learning as a starting point,
tacit knowledge will always precede an even-
tual acquisition of explicit knowledge. It is a
question of whether one starts with scholastic
or with practice learning.

the consolidated Model

The overall relationship between participation in
action, communication, learning, and knowledge
as the starting point for our theoretical framework
was illustrated in Figure 3. On the basis of the
study, we have brought together and integrated the
theoretical framework’s models for knowledge,
learning, communication and participation in
action, and amended them with the evidence for
multiple learning cycles explained previously. As
a result, the theoretical framework and the study’s
outcome can be presented in a model of sharing

knowledge, where communication consists of
verbal and textual communication and active par-
ticipation in action. Learning comprises learning
through scholastic learning, practice learning and
multiple learning cycles, and knowledge consists
of explicit and tacit individual and explicit and
tacit group knowledge.

 The model for the sharing of knowledge
shows that verbal and textual communication
of information through social interaction and/or
technical media contribute to individual and group
scholastic learning, which thereby contribute to
explicit individual and group knowledge. The
model also shows that participation in action
through social interaction and/or technical media
contributes to individual and group practice learn-
ing, which thereby contribute to tacit individual
and group knowledge. The model for the sharing
of knowledge shows in addition how multiple
learning cycles and knowing contribute to the
acquisition of knowledge.

Tacit

Individual practic
learing

Skills and
feel for
concepts,
rules, equations,
and interrelations

 Stories,
metaphors, and
 phrases

Concepts, rules
equations, and
interelations

Individual scholastic
learning

Explicit

Individual Group

Group scholastic
 learning

Genres

Group practice
 learning

Multiple
Learing
Cycles

 Verbal or Textual
Communication of
 Information

Active Participation
 in Action

 through
Social Interaction
 or
Technical Media

driven by

and

Figure 10. The consolidated model

 1739

Towards an Integrated Model of Knowledge Sharing in Software Development

conclusIons And future
reseArcH

In the research presented here, we have applied
Cook and Brown’s (1999) multiple forms of
knowledge to an empirical example in software
development, emphasising how these forms of
knowledge are shared in communication via
social interaction or different types of technical
media.

Our work resulted in a model of knowledge
sharing which can be used to understand and ul-
timately improve knowledge sharing in practice.
Although some concrete advice for improving
knowledge sharing could be derived from our
analysis, the theoretical framework and our study
do not describe how the results of the analysis and
identified areas for improvements can be trans-
formed into concrete organisational or technical
improvements, or which strategies organisations
should use to improve the sharing of knowledge.
Furthermore, we do not include concrete guide-
lines for the design of information technology
and technical media.

Problems related to the technical media lead
to limited access to and quality of information.
The developers in the case organisation thus use
or supplement them with social interaction or
other technical media which enable them to gain
access to the information or actions which are a
prerequisite for their learning processes, and the
acquisition of knowledge which is necessary for
them to carry out their tasks. How an optimal
balance between social interaction and technical
media might look has to be decided from case to
case, and is again not part of our framework, but
it could be constructed with the aid of Hansen,
Nohria, and Tierney’s (1999) work on codification
and personalisation strategies. In this context it
is necessary for future research to investigate
the relationship between the different types of
knowledge in more detail in order to clarify how
this relationship can be used to improve the shar-
ing of knowledge.

Finally, the study shows that personal networks
play a specific role in the sharing of knowledge, as
they link other forms of communication together
and compensate for the information which is
not communicated through these other forms of
communication. The framework does not explain
all phenomena related to personal networks with
regard to knowledge sharing, and future research
based on the framework should thus aim to extend
the framework in this respect.

AcknowledgMent

With acknowledgments to Dorte Boejstrup and
Mads E. Bock, who worked as research assistants
on this project during their master’s theses.

references

Andersen, I. (1999). The apparent reality—On
knowledge production in the social sciences
(3rd ed.) [in Danish]. Copenhagen, Denmark:
Samfundslitteratur.

Brown, J. S., & Gray, E. S. (1995). The people
are the company. Retrieved January 11, 2005,
from http://www.fastcompany.com/magazine/01/
people.html

Checkland, P., & Scholes, J. (1990). Soft systems
methodology in action. Toronto, Canada: John
Wiley and Sons.

Comas, J., & Sieber, S. (2001). Connecting knowl-
edge management and experiential learning to
gain new insights and research perspectives. In
Proceeding of the ECIS 2001, Bled, Slowenia.

Cook, S. D. N., & Brown, J. S. (1999). Bridging
epistemologies: The generative dance between
organisational knowledge and organisational
knowing. Organisational Science, 4, 381-400.

1740

Towards an Integrated Model of Knowledge Sharing in Software Development

Dahlbom, B., & Mathiassen, L. (1993). Comput-
ers in context—The philosophy and practice of
systems design. Cambridge, UK: Blackwell.

Eisenhardt, K. M. (1989). Building theories from
case study research. Academy of Management
Review, 14(4), 532-550.

Fiske, J. (1990). Introduction to communication
studies (2nd ed.). London: Routledge.

Hansen, M. T., Nohria, N., & Tierney, T. (1999).
What is your strategy for managing knowledge?
Harvard Business Review, 77(2), 106-116.

Hughes, J., & Jones, S. (2003). Reflections on the
use of grounded theory in interpretive informa-
tion systems research. In Proceedings of the ECIS
2003 Conference, Naples, Italy.

Jennex, M. E., & Olfman, L. A. (2005). Assessing
knowledge management success. International
Journal of Knowledge Management, 1(2), 33-
49.

Jennex, M. E., & Olfman, L. A. (2006). A Model
of knowledge management success. International
Journal of Knowledge Management, 2(3), 51-
68.

Kautz, K., & Thaysen, K. (2001). Knowledge,
learning and IT Support in a small software
company. Journal of Knowledge Management,
5(4), 349-357.

Klein, H., & Myers, M. (1999). A set of principles
for conducting and evaluating interpretive field
studies in information systems. MIS Quarterly,
23(1), 67-93.

Kolb, D. A. (1984). Experiential learning—Ex-
perience as source of learning and development.
New Jersey: Prentice Hall.

Lave, J., & Wenger, E. (1991). Situated learning:
Legitimate peripheral participation. Cambridge,
UK: Cambridge University Press.

Nielsen, J. (1994). Ways to Knowledge [in Danish].
In M. Brorup, L. Hauge, & U.L. Thomsen (Eds.).
Pieces of psychology (pp. 65-86). Copenhagen,
Denmark: Gyldendah.

Nielsen, K., & Kvale, S. (1999). Master-appren-
ticeship learning: Learning as social practice [in
Danish]. Copenhagen, Denmark: Hans Reitzel.

Nonaka, I. (1994). A dynamic theory of organisa-
tional knowledge creation. Organisation Science,
5(1), 14-37.

Nonaka, I., & Takeuchi, H. (1995). The knowl-
edge-creating company. Oxford, UK: Oxford
University Press.

Polanyi, M. (1966). The tacit dimension. London:
Routledge.

Severin, W., & Tankard, J. (1997). Communication
theories (4th ed.). New York: Longman.

Shannon, C., & Weaver, W. (1949). The mathemati-
cal theory of communication. Urbana: University
of Illinois Press.

Smolnik, S., Kremer, S., & Kolbe, L. (2005).
Continum of context explication: Knowledge
discovery through process-oriented portals. In-
ternational Journal of Knowledge Management,
1(1), 27-46.

Stenmark, D. (2000). Leveraging tacit organi-
sational knowledge. Journal of Management
Information Systems, 17(3), 9-24.

Swan, J., Scarbrough, H., & Preston, J. (1999).
Knowledge management—The next fad to forget
people. In Proceedings of the ECIS 1999, Copen-
hagen, Denmark.

Thompson, M., & Walsham, G. (2001). Learning
to value the Bardi tradition: Culture, communica-
tion, and organisational knowledge. In Proceeding
of the ECIS 2001, Bled, Slowenia.

 1741

Towards an Integrated Model of Knowledge Sharing in Software Development

Tsoukas, H. (1996). The firm as a distributed
knowledge system: A constructionist approach
[Winter special issue]. Strategic Management
Journal, 7, 11-25.

Tsoukas, H. (1998). The word and the world: A
critique of representationalism in management
research. International Journal of Public Admin-
istration, 21(5), 781-817.

Walsh, J. P., & Ungson, G. R. (1991). Organisa-
tional memory. Academy of Management Review,
16, 57-91.

Wenger, E. (1998). Communities of practice:
Learning, meaning, and identity. Cambridge,
UK: Cambridge University Press.

Wenger, E. C., McDermott, R., & Snyder, W.
M. (2002). Communities of practice—A guide
to managing knowledge. Boston: Harvard Busi-
ness School.

Wenger, E. C., & Snyder, W. M. (2000). Com-
munities of practice: The organisational frontier.
Harvard Business Review, 78, 139-145.

This work was previously published in the International Journal of Knowledge Management, edited by M. Jennex, Volume 3,
Issue 2, pp. 91-117, copyright 2007 by IGI Publishing (an imprint of IGI Global).

1742

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.21
Digital Library Structure and

Software
Cavan McCarthy

Louisiana State University, USA

IntroductIon

Digital libraries (DL) can be characterized as the
“high end” of the Internet, digital systems which
offer significant quantities of organized, selected
materials of the type traditionally found in librar-
ies, such as books, journal articles, photographs
and similar documents (Schwartz, 2000). They
normally offer quality resources based on the
collections of well-known institutions, such as
major libraries, archives, historical and cultural
associations (Love & Feather, 1998). The field
of digital libraries is now firmly established as
an area of study, with textbooks (Arms, 2000;
Chowdhury & Chowdhury, 2003; Lesk, 1997);
electronic journals from the US (D-Lib Maga-
zine: http://www.dlib.org/) and the UK (Ariadne:
http://www.ariadne.ac.uk/); even encyclopedia
articles (McCarthy, 2004).

bAckground

Digital libraries require appropriate presentation
and careful logical organization to make them
easily accessible, but arrangements typical of
Web systems are inadequate for them. The classic
Web structure, where random links can be created
between any pair of pages, is not appropriate to
highly organized data. The other classic arrange-
ment is the tree or directory structure often found
in computerized systems, where the user starts
from a “trunk” or “root directory” and goes to a
branch, then a subdivision of that branch. This is
effective for individual images, but is inadequate
for navigating sequential pages, as in a digital
library system presenting lengthy texts. Before
discussing the different software solutions avail-
able, it is useful to review the principle types
of digital material currently offered by digital
libraries.

 1743

Digital Library Structure and Software

dIgItAl lIbrAry MAterIAls

At this time digital library resources can be
divided into three categories: images, texts and
other resources:

Images

Image access is used for individual visual re-
sources, such as photographs, posters, drawings,
etc. The classic procedure uses a series of three
types of image. Scanning produces a high-quality
archive image, which is then used to generate an
access image, for general public use. Finally, a
small thumbnail image is produced, for quick ref-
erence (Boss, 2001; Lee, 2001). In more detail:

Archive Image

A high-quality image, scanned directly from the
original, destined for long-term preservation.
Normally an uncompressed TIF (Tagged Image
File Format) image is used here; TIFs offer the
highest quality images and a resolution of 600
dpi (dots per inch) is standard. As scanning is
an expensive operation, which exposes original
materials to possible damage, the archive image
will be carefully preserved. It must always exist
at the system level, but is not necessarily avail-
able to the end-user. TIF files occupy significant
server space and imply lengthy download times.
Another factor is that some DL will want to sell
their own hard-copy prints of quality images.

Access Image or Working Image

A quality image, adequate for consultation and
serious study by digital library users. This is
normally a high-quality JPG (Joint Photographic
Experts Group) image, generated from the archi-
val TIF. JPG files are widely used on the Internet
and offer quality spatial and color reproduction
and a high compression ratio. For DL purposes
JPG images will often be generated at a resolu-

tion of 300 dpi; a size of 640x480 pixels is also
common.

Thumbnail Image

A small reference image, which gives the user a
general idea of the Access image, before down-
loading that image. Typically a medium to low
quality JPG, generated from the Access image,
but about one-tenth of its size, and commonly
produced at a resolution of 72 dpi. GIF format
(Graphic Interchange Format) can also be used for
thumbnails (Arizona, 2000; Western, 2003).

text

Multi-page text documents, such as books, or jour-
nal articles require special procedures. Numerous
options are possible and the principle alternatives
for input, simple text presentations and pagination
will be examined in turn; the earliest procedures
will be discussed first.

Text Input

Manual keyboarding was originally adopted by
Project Gutenberg, the first significant text-orient-
ed digital library (http://promo.net/pg/), founded
in 1971. This is a laborious process which severely
limits productivity, and is now rarely used.

OCR (Optical Character Recognition) software
is now routinely used to scan text into digital
libraries. OmniPage Pro (http://www.scansoft.
com/omnipage/) or the Russian software ABBYY
(http://www.abbyy.com/) are frequently cited in
the digital library context. OCR text requires
careful revision, because even 99.99% accuracy
means that there will be one mistake every couple
of pages, but only a person fully conversant with
the literature will be able to identify errors at
this level. Many digital library texts are older
books whose ornate type faces or soiled pages
can generate additional OCR errors.

1744

Digital Library Structure and Software

Simple Text Presentations

“Plain-vanilla” ASCII texts were the original basis
of Project Gutenberg (http://promo.net/pg/). These
TXT files can be used by a variety of computing
platforms, but are suited to a word processing,
rather than an Internet environment.

HTML text is now firmly established for tex-
tual work in digital libraries, including Project
Gutenberg. All Internet users are familiar with
HTML, files need not be much larger than TXT
files, it is easy to present crisp black text on white
background, text size can be quickly adjusted on
computer screens, HTML can be indexed, readers
can easily take extracts from the text, and, within
the constraints of ethics and plagiarism, manipu-
late them and insert them in other documents.

The entire text, without page divisions, is nor-
mally delivered by Project Gutenberg as an ASCII
or HTML file. Entire chapters or lengthy blocks of
text are supplied by other digital libraries, such as
Bartleby.com (http://www.bartleby.com/), another
pioneering system, which has been offering free
copies of classic books since 1963.

Disadvantages of HTML are that it does not
necessarily communicate the original text in
an integral manner: the “look and feel” may be
different, transcription errors may occur and it
may not accurately reproduce a combination of
text and images.

Paginated Text

Pagination is typical of the traditional book, and
most sophisticated digital library software now
creates easily-navigated page-by-page sequences.
The reader wants above all to go to the next page,
also to go back a page when necessary, using ap-
propriate icons or buttons.

JPG images reproduce individual pages ex-
actly, without scanning or transcription errors,
making them suitable for research. JPGs are
widely used on the Internet and are easy to gener-
ate, download, and print; they are also appropriate

for mixed text and images. But small size text,
older typefaces and brown, mottled or foxed paper
may reduce legibility, while readers cannot easily
take extracts from a JPG document.

Adobe Acrobat’s PDF (Portable Document
File) format offers advantages similar to JPGs,
such as quality reproduction of the original in
relatively small files, excellent enlargement of the
text and easy combination of text with images.
Content producers can adjust the security set-
tings within Acrobat to constrain the end user’s
interaction with the document. The digital library
needs to purchase Adobe Acrobat (http://www.
adobe.com/products/acrobat/main.html) to create
PDFs, but end-users can easily download the free
Adobe Reader.

Digital libraries offering access to texts there-
fore have two principle possibilities, text, typically
delivered in HTML, or page images, which typi-
cally use JPGs. In fact, these are not alternatives,
they are complementary approaches. The image
offers a reliable reproduction of the text, while
HTML may be easier for the end-user. Intellectual
property and copyright issues may also impact
the decision to present either HTML text or im-
ages. Even if only images are made available to
the end-user, it will be necessary to create a text
version in order to generate an index. Word-by-
word indexing is a major advantage offered by
digital libraries, which cannot be matched by
traditional libraries.

For examples of sophisticated paginated
access, browse the 8,500-volume Making of
America collection from the University of Michi-
gan at http://www.hti.umich.edu/cgi/t/text/text-
idx?tpl=browse.tpl&c=moa&cc=moa. This uses
DLXS software, discussed in more detail below.
The Digital Quaker Collection (http://esr.earlham.
edu/dqc/) contains full text and page images of
over 500 Quaker works from the 17th and 18th
centuries, generated using eXist software (see
below for details).

The three-level imaging sequence, Archive,
Access, and Thumbnail, described in Image ac-

 1745

Digital Library Structure and Software

cess above, is of lesser relevance to text systems.
It is still possible to use TIF format to produce
the Archive copy, because this creates a high
quality preservation file in a non-commercial
format. But the TIF will rarely be available to
the reader in a text-based system. TIF files are
slow to download and text, even with images, can
be reproduced adequately using JPGs or PDFs.
Thumbnail images of a series of book pages will
normally appear identical to the reader, thus add-
ing little to the digital library, and are therefore
often omitted.

Location within physical books is not a prob-
lem; it is easy to see when half the text has been
read, or to flip back to the table of contents. In
digital books readers need a clear indication of
location in relation to the text as a whole, via page
numbering or by a link to a table of contents or
chapter list. If the text has notes or references, it
will be necessary to link to them, then jump back
to the main text. It will also be necessary to link
to a full bibliographic citation.

other resources

Collections of maps and aerial photographs need
to offer spatially-oriented access, so that users
can pan or zoom. For an example, see the col-
lection of 50,000 old aerial photographs of the
State of Georgia, USA, at http://dbs.galib.uga.
edu/gaph/html/. Collections of 3-dimensional
objects may need to be viewed from various
angles. See http://www.lunaimaging.com/in-
sight/featuretour/multiview.html for an example
using Luna Imaging software (discussed in more
detail below). Sound and moving images are still
relatively rare in digital libraries, for examples
see History and Politics Out Loud: a searchable
archive of politically significant audio materials
from NorthWestern University, USA (http://www.
hpol.org/) or the Internet Archive at http://www.
archive.org/movies/index.html.

Metadata

Digital resources need to be adequately described.
Historical photographs, for example, are only
useful if location, date, subject, etc., have been
identified and input to the system. This additional
information is known as metadata and must be
added by trained professionals. There are various
types of metadata:

• Descriptive metadata: creator, title, subject,
etc.

• Structural metadata: information on the
internal organization of the digital resource,
such as the chapters in a book.

• Administrative metadata: management
information, including technical informa-
tion, such as scanning resolution, hardware
and software used, also rights management
information and restrictions on use.

Access

Initial access to a digital library is through a
gateway, which needs to be attractive and easy
to use. Many digital libraries, especially those
sponsored by educational institutions, offer free
and immediate access to their materials. Com-
mercial digital libraries, such as e-journal and paid
e-book collections, embed security procedures,
such as IP recognition or password control, into
their gateways. Once in the digital library, the
user is normally offered a choice between browse
and search access.

• Browse access or directory-based systems
take the user to a menu of choices, such as
an alphabetically organized list of authors
or titles, a categorized list by subject, geo-
graphic location, specific collection, etc.
Menus can be nested, subdividing broad
subjects. This is the easiest access to orga-

1746

Digital Library Structure and Software

nize (it can even be created manually), and
is offered by almost all digital libraries,
normally from the opening page.

• Search access involves software, which is
used to create an index. The user queries the
index via a search box, usually a prominent
feature of the digital library.

See, for example, The American Memory col-
lections of the Library of Congress, which offer
both browse access (via a “Collection Finder”)
and search access prominently from the opening
page (http://www.memory.loc.gov).

Boolean search (AND, OR, NOT) is common
in digital libraries. For a sophisticated search of
the documents of the Chicago Women’s Liberation
Union, see http://cwluherstory.master.com/texis/
master/search/?q=CWLU&s=SS&cmd=Options.
This uses indexing software from Master.com
(http://www.master.com/texis/master/app/home.
html). A help file will often be available, to famil-
iarize the user with search techniques, which can
vary considerably between systems. The State Li-
brary of New South Wales offers a good example at
http://www.sl.nsw.gov.au/search/guide.cfm. The
user will also want to know exactly what is being
searched: is it the full text of the document? Or
the text of the document, but excluding common
words? Or the search may be limited to metadata
elements, such as author, title and abstract. This
is not always clearly stated. Whatever the pa-
rameters, the use of a computer-produced index
implies a higher level of automated support than
the browse or directory systems cited previously.
Search access is therefore not quite as common
as directory access.

Efficient retrieval implies both types of access.
These are also the principal options for retriev-
ing information from the WWW: browse access
is available from directory-based systems such
as that which forms the basis of Yahoo! and the
Open Directory, while search is offered by search
engines, such as Google.

dIgItAl lIbrAry softwAre

It is possible to create small-scale digital collec-
tions by hand, using standard HTML editing or
open-source software. But, due to the complex-
ity and variety of the field, purpose-designed
software is now in common use. In alphabetical
order, principle options are:

contentdm digital Media
Management software suite

A high-performance storage and retrieval soft-
ware for multimedia collections which is rapidly
gaining acceptance (http://contentdm.com/index.
html). Developed at the University of Washing-
ton, it is offered to libraries, museums, and non-
profit archives by OCLC, the major supplier of
bibliographic data to libraries (http://www.oclc.
org/contentdm/default.htm). Collections relevant
to regional studies include the Louisiana Digital
Library (http://www.lsu.edu/diglib) and Early
Las Vegas from the University of Nevada, Las
Vegas (http://www.library.unlv.edu/early_las_ve-
gas/index.html).

dlXs

Offered by the University of Michigan Digital
Library eXtension Service. It is a comprehen-
sive suite of software tools, especially suited to
indexing and presenting multi-page documents
(http://www.dlxs.org/). It has already been men-
tioned as the basis for Michigan’s The Making
of America collection with approximately 8,500
books and 50,000 journal articles from the antebel-
lum period through reconstruction (http://www.
hti.um ich.edu/cgi/t/text/text-idx?tpl=browse.
tpl&c=moa&cc=moa). A further 3,000 books
are in the Wright American Fiction collection
1851-1875 (http://www.letrs.indiana.edu/web/w/
wright2/).

 1747

Digital Library Structure and Software

dspace

A “Durable Digital Depository,” designed to
capture, distribute and preserve the intellectual
output of universities and similar institutions
(http://dspace.org/). A joint project of MIT Librar-
ies and the Hewlett-Packard Company, the original
DSpace can be searched at https://dspace.mit.
edu/index.jsp; full-text is in PDF. An open-source
software, DSpace can be freely downloaded from
http://sourceforge.net/projects/dspace/ (Atwood,
2002; Carnevale, 2003).

eXist

An open source XML database created in Ger-
many (http://exist.sourceforge.net or http://exist-
db.org/). It was used for one of most ambitious
digitization projects of recent years, The Proceed-
ings of the Old Bailey, 1674 to 1834 (http://www.
oldbaileyonline.org/). This offers access to the
largest body of texts detailing the lives of non-
elite people ever published, accounts of over
100,000 criminal trials held at London’s central
criminal court.

greenstone digital library software

An open source software suite, developed in
New Zealand at the University of Waikato (http://
www.greenstone.org/). It automatically creates
organized collections of digitized documents
with a standardized interface, with automatic
full-text indexing, listing of titles, etc. (Witten
& Bainbridge, 2002). It handles large collections
of documents, in a variety of formats, works on
a server or desktop, and exports to CD-ROM.
It is used for the New Zealand Digital Library
(http://www.nzdl.org/), notable for humanitar-
ian and UN collections in a variety of languages
and scripts, including Chinese and Arabic. It is
distributed free under GNU Public License, and
can be downloaded from http://www.greenstone.
org/english/download.html. All texts in Project

Gutenberg can be searched via Greenstone at
http://public.ibiblio.org/gsdl/cgi-bin/library.
cgi?a=p&p=about&c=gberg.

Hyperion digital Media Archive

A tool for organizing, full-text indexing, stor-
ing and accessing of non-book holdings in a
digital format (http://www.sirsi.com/Sirsiprod-
ucts/hyperion.html). It was produced by Sirsi, a
Huntsville, Alabama, company which supplies
automated cataloging and circulation systems to
libraries of all types. An important application
is the Civil Rights in Mississippi Digital Archive
of resources on race relations, created by the
University of Southern Mississippi (http://www.
lib.usm.edu/~spcol/crda/).

Insight Image Management
and delivery system

Produced by Luna Imaging, a joint enterprise of
the J. Paul Getty Trust, California, and Eastman
Kodak (http://www.luna-imaging.com/). This
high quality imaging software, notable for its
powerful zoom capability, is used for works of art,
photographs and maps. An example is the David
Rumsey Historical Map Collection (http://www.
davidrumsey.com/), which features over 8,000
maps and won a Webby Award in 2002.

olive ActivePaper Archive software

Permits historical newspapers to be scanned from
the originals, or from microfilm, creating fully
searchable digital collections. Readers are able to
click on any article, photograph or advertisement,
which is then enlarged and presented in a separate
window. For a sample, see the Missouri Historical
Newspapers Collection (http://newspapers.um-
system.edu/archive/Skins/Missouri/navigator.
asp). OCLC, the major supplier of bibliographic
data to libraries, offers Olive to libraries (http://
www.oclc.org/middleeast/en/olive/about/); Olive

1748

Digital Library Structure and Software

Software is a Denver company (http://www.
olivesoftware.com/home.html).

future trends

The following future developments can be forecast
with confidence:

• More standardization: the current period
is one of experimentation, but standardized
solutions will rapidly become established.
Cross-system searching and access will be
major considerations in the future.

• More access to audio, film and video:
resources are still thin in this area, but
more sophisticated software and increased
bandwidth will make much more material
available.

conclusIon

Digital libraries will have a bright future in a world
which is ever more reliant on electronic access
to information to guarantee social integration,
progress and the end of the digital divide. The
increasing availability of special purpose software
will facilitate digital library production. Open
source software such as Greenstone, which is
available free of charge, will be of great value for
regional community digitization projects.

references

Arizona State Library, Archives and public re-
cords. (2000). Digitization guidelines. Retrieved
September 9, 2004, from http://www.lib.az.us/
digital/dg_a4.html

Arms, W. Y. (2000). Digital libraries. (Digital
Libraries and Electronic Publishing). Cambridge,
MA: MIT Press.

Atwood, S. (2002). MIT’s Superarchive: A digital
repository will revolutionize the way research
is shared and preserved. Technology Review,
104(12). Retrieved September 9, 2004, from
http://www.technology review.com/articles/at-
wood1202.asp

Boss, R, W. (2001). Imaging for libraries and in-
formation centers. Library Technology Reports,
37(1), 1-59.

Carnevale, D. (2003). Six institutions will help
fine-tune a popular new archiving program. The
Chronicle of Higher Education, 49(23), 36. Re-
trieved September 9, 2004, from http://chronicle.
com/free/2003/01/2003013001t.htm

Chowdhury, G. G., & Chowdhury, S. (2003).
Introduction to digital libraries. New York: Neal-
Schuman Publishers.

Lee, S. D. (2001). Digital imaging: A practical
handbook. New York: Neal-Schuman Publish-
ers.

Lesk, M. (1997). Practical digital libraries: Books,
bytes, and bucks. (The Morgan Kaufmann Series
in Multimedia Information and Systems). San
Francisco: Morgan Kaufmann Publishers.

Love, C., & Feather, J. (1998). Special collections
on the World Wide Web: A survey and evalua-
tion. Journal of Librarianship and Information
Science, 30(4), 215-222.

McCarthy, C. (2004). Digital libraries. In Hossein
Bidgoli, The Internet encyclopedia (vol. 1, A-F,
pp. 505-525). New York: John Wiley & Sons.

Schwartz, C. S. (2000). Digital libraries: An
overview. Journal of Academic Librarianship,
26(6), 385-393.

Waters, D. J. (1998). What are digital libraries?
CLIR Issues (4). Retrieved September 9, 2004,
from http://www.clir.org/pubs/issues/issues04.
html#dlf

 1749

Digital Library Structure and Software

Western states digital imaging best practices,
Version 1.0. (2003). (41 p). Denver: Western States
Digital Standards Group; University of Denver;
Colorado Digitization Program. Retrieved Sep-
tember 9, 2004, from http://www.cdpheritage.org/
resource/scanning/documents/WSDIBP_v1.pdf

Witten, I. H., & Bainbridge, D. (2002). How to
build a digital library. San Francisco: Morgan
Kaufmann Publishers.

key terMs

ASCII: American Standard Code for Infor-
mation Interchange-Codification system used to
convert simple text to computer readable form.

Digital Library: Provides the resources, in-
cluding the specialized staff, to select, structure,
offer intellectual access to, interpret, distribute,
preserve the integrity of, and ensure the persis-
tence over time of collections of digital works so

that they are readily and economically available
for use by a defined community or set of com-
munities (Waters, 1998).

JPEG: Joint Photographic Experts Group-
Specification for reproduction of digital images,
widely used on the Internet.

Metadata: Data about data,surrogates or
descriptions of data, key words or codes used as
systematic keys to the content of digital objects,
such as Web pages or digital images.

OCR: Optical Character Recognition-Soft-
ware that recognizes text and converts it to a form
in which it can be processed by computer.

PDF: Portable Document Format-Method
of document reproduction, generated by Adobe
Acrobat Systems, notable for quality reproduction
of both text and accompanying images.

TIFF: Tagged Image File Format-High quality
image reproduction format, typically generates
large files used for archival purposes.

This work was previously published in Encyclopedia of Developing Regional Communities with Information and Communica-
tion Technology, edited by S. Marshall, W. Taylor & X. Yu, pp. 193-198, copyright 2006 by Information Science Reference (an
imprint of IGI Global).

1750

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.22
Comparing Four-Selected Data

Mining Software
Richard S. Segall

Arkansas State University, USA

Qingyu Zhang
Arkansas State University, USA

IntroductIon

This chapter discusses four-selected software for
data mining that are not available as free open-
source software. The four-selected software for
data mining are SAS® Enterprise MinerTM, Mega-
puter PolyAnalyst® 5.0, NeuralWare Predict®
and BioDiscovery GeneSight®, each of which
was provided by partnerships with our univer-
sity. These software are described and compared
by their existing features, characteristics, and
algorithms and also applied to a large database
of forest cover types with 63,377 rows and 54
attributes. Background on related literature and
software are also presented. Screen shots of each
of the four-selected software are presented, as are
future directions and conclusions.

bAckground

Historical background

Han and Kamber (2006), Kleinberg and Tardos
(2005), and Fayyad et al. (1996) each provide
extensive discussions of available algorithms for
data mining.

Algorithms according to StatSoft (2006b)
are operations or procedures that will produce
a particular outcome with a completely defined
set of steps or operations. This is opposed to
heuristics that according to StatSoft (2006c) are
general recommendations or guides based upon
theoretical reasoning or statistical evidence such
as “data mining can be a useful tool if used ap-
propriately.”

The Data Intelligence Group (1995) defined
data mining as the extraction of hidden predictive

 1751

Comparing Four-Selected Data Mining Software

information form large databases. According to
The Data Intelligence Group (1995), “data mining
tools scour databases for hidden patterns, find-
ing predictive information that experts may miss
because it lies outside their expectations.”

Brooks (1997) describes rules-based tools as
opposed to algorithms. Witten and Frank (2005)
describe how data mining algorithms work
including covering algorithms, instance-based
learning, and how to use the WEKA, an open
source data mining software that is a machine
learning workbench.

Segall (2006) presented a chapter in the previ-
ous edition of this Encyclopedia that discussed
microarray databases for biotechnology that
included a extensive background on microarray
databases such as that defined by Schena (2003),
who described a microarray as “an ordered ar-
ray of microscopic elements in a planar substrate
that allows the specific binding of genes or gene
products.” The reader is referred to Segall (2006)
for a more complete discussion on microarray
databases including a figure on the overview of
the microarray construction process.

Piatetsky-Shapiro (2003) discussed the chal-
lenges of data mining specific to microarrays,
while Grossman et al. (1998) reported about
three NSF (National Science Foundation) work-
shops on mining large massive and distributed
data, and Kargupta at al. (2005) discussed the
generalities of the opportunities and challenges
of data mining.

Segall and Zhang (2004, 2005) presented
funded proposals for the premises of proposed
research on applications of modern heuristics and
data mining techniques in knowledge discovery
whose results are presented as in Segall and Zhang
(2006a, 2006b) in addition to this chapter.

software background

There is a wealth of software today for data mining
such as presented in American Association for Ar-
tificial Intelligence (AAAI) (2002) and Ducatelle

(2006) for teaching data mining, Nisbet (2006) for
CRM (Customer Relationship Management) and
software review of Deshmukah (1997). StatSoft
(2006a) presents screen shots of several softwares
that are used for exploratory data analysis (EDA)
and various data mining techniques. Proxeon Bio-
informatics (2006) manufactures bioinformatics
software for proteomics the study of protein and
sequence information.

Lazarevic et al. (2006) discussed a software
system for spatial data analysis and modeling.
Leung (2004) compares microarray data mining
software.

National Center for Biotechnology Information
(NCBI) (2006) provides tools for data mining in-
cluding those specifically for each of the following
categories of nucleotide sequence analysis, protein
sequence analysis and proteomics, genome analy-
sis, and gene expression. Lawrence Livermore
National Laboratory (LLNL) (2005) describes
their Center for Applied Scientific Computing
(CASC) that is developing computational tools
and techniques to help automate the exploration
and analysis of large scientific data sets.

MAIn tHrust

Algorithms of four-selected
software

This chapter specifically discusses four-selected
data mining software that were chosen because
these software vendors have generously offered
their services and software to the authors at
academic rates or less for use in both the class-
room and in support of the two faculty summer
research grants awarded as Segall and Zhang
(2004, 2005).

SAS Enterprise MinerTM is a product of SAS
Institute Inc. of Cary, NC and is based on the
SEMMA approach that is the process of Sampling
(S), Exploring (E), Modifying (M), Modeling (M),
and Assessing (A) large amounts of data. SAS

1752

Comparing Four-Selected Data Mining Software

Enterprise MinerTM utilizes a workspace with a
drop-and-drag of icons approach to constructing
data mining models.

SAS Enterprise MinerTM utilizes algorithms
for decision trees, regression, neural networks,
cluster analysis, and association and sequence
analysis.

PolyAnalyst® 5 is a product of Megaputer
Intelligence, Inc. of Bloomington, IN and con-
tains sixteen (16) advanced knowledge discov-
ery algorithms as described in Table 1 that was
constructed using its User Manual by Megaputer
Intelligence Inc. (2004; p. 163, p. 167, p.173, p.177,

p. 186, p.196, p.201, p.207, p. 214, p. 221, p.226,
p. 231, p. 235, p. 240, p.263, p. 274.).

NeuralWorks Predict® is a product of Neu-
ralWare of Carnegie, PA. This software relies
on neural networks, According to NeuralWare
(2003, p.1):

“One of the many features that distinguishes
Predict® from other empirical modeling and
neural computing tools is that is automates much
of the painstaking and time-consuming process
of selecting and transforming the data needed to
build a neural network.”

Data Mining Algorithm Underlying Algorithms

1. Discriminate
1. (a.) Fuzzy logic for classification
1. 1. (b.) Find Laws, PolyNet Predictor, or Linear

Regression
2. Find Dependencies 2. ARNAVAC [See Key Terms]
3. Summary Statistics 3. Common statistical analysis functions
4. Link Analysis (LA) 4. Categorical, textual and Boolean attributes
5. Market and Transactional Basket Analysis 5. PolyAnalyst Market Basket Analysis
6. Classify 6. Same as that for Discriminate
7. Cluster 7. Localization of Anomalies Algorithm
8. Decision Forest (DF) 8. Ensemble of voting decision trees

9. Decision Tree 9. (a.) Information Gain splitting criteria
 (b.) Shannon information theory and statistical
significance tests.

10. Find Laws 10. Symbolic Knowledge Acquisition Technology
(SKAT) [See Key Terms]

11. Nearest Neighbor 11. PAY Algorithm
12. PolyNet Predictor 12. PolyNet Predictor Neural Network
13. Stepwise Linear Regression 13. Stepwise Linear Regression

14. Link Terms (LT) 14. Combination of Text Analysis and Link
Analysis algorithms

15. Text Analysis (TA) 15.Combination of Text analysis algorithms
augmented by statistical techniques

16. Text Categorization (TC) 16. Text Analysis algorithm and multiple
subdivision splitting of databases.

Table 1. Description of data mining algorithms for PolyAnalyst® 5

 1753

Comparing Four-Selected Data Mining Software

NeuralWorks Predict® has a direct interface
with Microsoft Excel that allows display and
execution of the Predict® commands as a drop-
down column within Microsoft Excel.

GeneSightTM is a product of BioDiscovery,
Inc. of El Segundo, CA that focuses on cluster
analysis using two main techniques of hierarchi-
cal and partitioning both of which are discussed
in Prakash and Hoff (2002) for data mining of
microarray gene expressions.

Both SAS Enterprise MinerTM and PolyAna-
lyst® 5 offer more algorithms than either Gen-
eSightTM or NeuralWorks Predict®. These two
software have algorithms for statistical analysis,
neural networks, decision trees, regression analy-
sis, cluster analysis, self-organized maps (SOM),
association (e.g. market-basket) and sequence
analysis, and link analysis. GeneSightTM offers
mainly cluster analysis and NeuralWorks Predict®
offers mainly neural network applications using
statistical analysis and prediction to support these
data mining results. PolyAnalyst® 5 is the only
software of these that provides link analysis al-
gorithms for both numerical and text data.

Applications of the four-selected
software to large database

Each of the four-selected software have been
applied to a large database of forest cover type
that is available on the same website of the Ma-
chine Learning Repository at the University of
California at Irvine by Newman et al. (1998) for
which results are shown in Segall and Zhang
(2006a, 2006b) for different datasets of numeri-
cal abalone fish data and discrete nominal-valued
mushroom data.

The forest cover type’s database consists of
63,377 records each with 54 attributes that can be
used to as inputs to predictive models to support
decision-making processes of natural resource
managers. The 54 columns of data are composed
of 10 quantitative variables, 4 binary variables
for wilderness areas, and 40 binary variables

of soil types. The forest cover type’s classes
include Spruce-Fir, Lodgepole Pine, Ponderosa
Pine, Cottonwood/Willow, Aspen, Douglas-Fir,
Krummholz, and other.

The workspace of SAS Enterprise MinerTM
is different than the other software because it
uses icons that are user-friendly instead of only
using spreadsheets of data. The workspace in
SAS Enterprise MinerTM is constructed by using
a drag-and-drop process from the icons on the
toolbar which again the other software discussed
do not utilize.

Figure 1 shows a screen shot of cluster analysis
for the forest cover type data using

SAS Enterprise MinerTM . From Figure 1 it can
be seen using a slice with a standard deviation
measurement, height of frequency, and color of
the radius that this would yield only two distinct
clusters: one with normalized mean of 0 and one
with normalized mean of 1. If different measure
of measurement, different slice height, and dif-
ferent key for color were selected than a different
cluster figure would have resulted.

A screen shot of PolyAnalyst® 5.0 showing
the input data of the forest cover type data with
attribute columns of elevation, aspect, scope,
horizontal distance to hydrology, vertical distance
to hydrology, horizontal distance to roadways,
hillshade 9AM, hillshade Noon, etc. PolyAnalyst®
5.0 yielded a classification probability of 80.19%
for the forest cover type database.

Figure 2 shows the six significant classes of
clusters corresponding to the six major cover
types: Spruce-Fir, Lodgepole Pine, Ponderosa
Pine, Cottonwood/Willow, Aspen, and Douglas-
Fir. One of the results that can be seen from Figure
2 is that the most significant cluster for the aspect
variable is the cover type of Douglas-Fir.

NeuralWare Predict® uses a Microsoft Excel
spreadsheet interface for all of its input data and
many of its outputs of computational results. Our
research using NeuralWare Predict® for the forest
type cover data indicates an accuracy of 70.6%
with 70% of the sample for training and 30% of

1754

Comparing Four-Selected Data Mining Software

Figure 1. SAS Enterprise MinerTM screen shot of cluster analysis

Figure 2. PolyAnalyst® 5.0 screen shot of cluster analysis

 1755

Comparing Four-Selected Data Mining Software

Figure 3. NeuralWare Predict® screen shot of complete neural network training (100%)

Figure 4. BioDiscovery GeneSight® screen shot of hierarchical clustering

1756

Comparing Four-Selected Data Mining Software

the sample for test in 2 minutes and 26 seconds
of execution time.

Figure 3 is a screen shot of NeuralWare
Predict® for the forest type cover data that in-
dicates that an improved accuracy of 79.2% can
be obtained using 100% of the 63,376 records
for both training and testing in 3 minutes 21
seconds of execution time in evaluating model.
This was done to investigate what could be the
maximum accuracy that could be obtained using
NeuralWare Predict® for the same forest cover
type database for comparison purposes to the
other selected software.

Figure 4 is a screen shot using GeneSight® soft-
ware by BioDiscovery Incorporated. That shows
hierarchical clustering using the forest cover data
set. As noted earlier, GeneSight® only performs
statistical analysis and cluster analysis and hence
no regression results for the forest cover data set
can be compared with those of NeuralWare®
Predict and PolyAnalyst®. It should be noted
that from Figure 4 that the hierarchical clustering
performed by GeneSight® for the forest cover
type data set produced a multitude of clusters
using the Euclidean distance metric.

future trends

These four-selected software as described will
be applied to a database that already has been
collected of a different dimensionality. The
database that has been presented in this chapter
is of a forest cover type data set with 63,377
records and 54 attributes. The other database is
a microarray database at the genetic level for a
human lung type of cancer consisting of 12,600
records and 156 columns of gene types. Future
simulations are to be performed for the human
lung cancer data for each of the four-selected data
mining software with their respective available
algorithms and compared versus those obtained
respectively for the larger database of 63,377
records and 54 attributes of the forest cover type.

conclusIon

The conclusions of this research include the fact
that each of the software selected for this research
has its own unique characteristics and properties
that can be displayed when applied to the forest
cover type database. As indicated, each software
has it own set of algorithm types to which it can
be applied. NeuralWare Predict® focuses on
neural network algorithms, and Biodiscovery
GeneSight® focuses on cluster analysis. Both SAS
Enterprise MinerTM and Megaputer PolyAnalyst®
employ each of the same algorithms except that
SAS has a separate software SAS TextMiner®
for text analysis. The regression results for the
forest cover type data set are comparable for
those obtained using NeuralWare Predict® and
Megaputer PolyAnalyst®. The cluster analysis
results for SAS Enterprise MinerTM, Megaputer
PolyAnalyst®, and Biodiscovery GeneSight® are
unique to each software as to how they represent
their results. SAS Enterprise MinerTM and Neu-
ralWare Predict® both utilize Self-Organizing
Maps (SOM) while the other two do not.

The four-selected software can also be com-
pared with respect to their cost of purchase.
SAS Enterprise MinerTM is the most expensive
and NeuralWare Predict® is the least expensive.
Megaputer PolyAnalyst® and Biodiscovery
GeneSight® are intermediate in cost to the other
two software.

In conclusion, SAS Enterprise MinerTM and
Megaputer PolyAnalyst® offer the greatest di-
versification of data mining algorithms.

AcknowledgMent

The authors want to acknowledge the support pro-
vided by a 2006 Summer Faculty Research Grant
as awarded to them by the College of Business
of Arkansas State University. The authors also
want to acknowledge each of the four software
manufactures of SAS, Megaputer Intelligence,

 1757

Comparing Four-Selected Data Mining Software

Inc., BioDiscovery, Inc., and NeuralWare, for
their support of this research.

references

AAAI (2002), American Association for Artifi-
cial Intelligence (AAAI) Spring Symposium on
Information Refinement and Revision for Decision
Making: Modeling for Diagnostics, Prognostics,
and Prediction, Software and Data, retrieved from
http://www.cs.rpi.edu/~goebel/ss02/software-
and-data.html.

Brooks, P. (1997), Data mining today, DBMS, Feb-
ruary 1997, retrieved from http://www.dbmsmag.
com/9702d16.html.

Data Intelligence Group (1995), An overview
of data mining at Dun & Bradstreet, DIG White
Paper 95/01, retrieved from http://www.thearling.
com.text/wp9501/wp9501.htm.

Deshmukah, A. V. (1997), Software review:
ModelQuest Expert 1.0, ORMS Today, December
1997, retrieved from http://www.lionhrtpub.com/
orms/orms-12-97/software-review.html.

Ducatelle, F., Software for the data mining course,
School of Informatics, The University of Edin-
burgh, Scotland, UK, retrieved from http://www.
inf.ed.ac.uk/teaching/courses/dme/html/soft-
ware2.html.

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P.
(1996), From Data Mining to Knowledge Discov-
ery: An Overview. In Advances in Knowledge
Discovery and Data Mining, eds. U. Fayyad, G.
Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy,
1–30. Menlo Park, Calif.: AAAI Press.

Grossman, R., Kasif, S., Moore, R., Rocke, D., &
Ullman, J. (1998), Data mining research: opportu-
nities and challenges, retrieved from http://www.
rgrossman.com/epapers/dmr-v8-4-5.htm.

Han, J. & Kamber, M. (2006), Data Mining:
Concepts and Techniques, 2nd edition, Morgan
Kaufman, San Francisco, CA.

Kargupta, H., Joshi, A., Sivakumar, K., & Yesha,
Y. (2005), Data mining: Next generation chal-
lenges and future directions, MIT/AAAI Press,
retrieved from http:///www.cs.umbc.edu/~hillol/
Kargupta/ngdmbook.html.

Kleinberg, J. & Tardos, E., (2005), Algorithm
Design, Addison-Wesley, Boston, MA.

Lawrence Livermore National Laboratory
(LLNL), The Center for Applied Scientific Com-
puting (CASC), Scientific data mining and pattern
recognition: Overview, retrieved from http://www.
llnl.gov/CASC/sapphire/overview/html.

Lazarevic A., Fiea T., & Obradovic, Z., A software
system for spatial data analysis and modeling,
retrieved from http://www.ist.temple.edu?~zoran/
papers/lazarevic00.pdf.

Leung, Y. F.(2004), My microarray software
comparison – Data mining software, September
2004, Chinese University of Hong Kong, retrieved
from http://www.ihome.cuhk.edu.hk/~b400559/
arraysoft mining specific.html.

Megaputer Intelligence Inc. (2004), PolyAnalyst
5 Users Manual, December 2004, Bloomington,
IN 47404.

Megaputer Intelligence Inc. (2006), Machine
learning algorithms, retrieved from http://www.
megaputer.com/products/pa/algorithms/index/
php3.

Moore, A., Statistical data mining tutorials, re-
trieved from http://www.autonlab.org/tutorials.

National Center for Biotechnology Information
(2006), National Library of Medicine, National
Institutes of Heath, NCBI tools for data min-
ing, retrieved from http://www.ncbi.nlm,nih.
gov/Tools/.

1758

Comparing Four-Selected Data Mining Software

NeuralWare (2003), NeuralWare Predict® The
complete solution for neural data modeling: Get-
ting Started Guide for Windows, NeuralWare,
Inc., Carnegie, PA 15106

Newman, D.J. & Hettich, S. & Blake, C.L. & Merz,
C.J. (1998). UCI Repository of machine learning
databases, Irvine, CA: University of California,
Department of Information and Computer Sci-
ence, http://www.ics.uci.edu/~mlearn/MLRe-
pository.html

Nisbet, R. A. (2006), Data mining tools: Which
one is best for CRM? Part 3, DM Review,
March 21, 2006, retrieved from http://www.
dmreview.com/editorial/dmreview/print_action.
cfm?articleId=1049954.

Piatetsky-Shapiro, G. & Tamayo, P. (2003),
Microarray data mining: Facing the challenges,
SIGKDD Exploration, vo.5, n.2, pages 1-5, Decem-
ber, retrieved from http://portal.acm.org/citation.
cfm?doid=980972.980974 and http://www.broad.
mit.edu/mpr/publications/projects/genomics/Mi-
croarray_data_mining_facing%20_the_chal-
lenges.pdf.

Prakash, P. & Hoff, B. (2002) Microarray gene
expression data mining with cluster analysis
using GeneSightTM, Application Note GS10, Bio-
Discovery, Inc., El Segundo, CA, retrieved from
http://www.biodiscovery.com/index/cms-filesys-
tem-action?file=AppNotes-GS/appnotegs10.pdf.

Proxeon Bioinformatics, Bioinformatics software
for proteomics, from proteomics data to biologi-
cal sense in minutes, retrieved from http://www.
proxeon.com/protein-sequence-databases-soft-
ware.html.

SAS® Enterprise MinerTM, SAS Incorporated,
Cary, NC, retrieved from http://www.sas.com/
technologies/analytics/datamining/miner.

Schena, M. (2003). Microarray analysis, New
York, John Wiley & Sons, Inc.

Segall, R.S. (2006), Microarray databases for
biotechnology, Encyclopedia of Data Warehous-
ing and Mining, John Wang, Editor, Idea Group,
Inc., pp. 734-739.

Segall, R. S, & Zhang, Q. (2004). Applications of
modern heuristics and data mining techniques in
knowledge discovery, funded proposal submitted
to Arkansas State University College of Business
Summer Research Grant Committee.

Segall, R. S. & Zhang, Q. (2005). Continuation of
research on applications of modern heuristics and
data mining techniques in knowledge discovery,
funded proposal submitted to Arkansas State
University College of Business Summer Research
Grant Committee.

Segall, R.S. & Zhang, Q. (2006a). Applications
of neural network and genetic algorithm data
mining techniques in bioinformatics knowledge
discovery – A preliminary study, Proceedings
of the Thirty-seventh Annual Conference of the
Southwest Decision Sciences Institute, Oklahoma
City, OK, v. 37, n. 1, March 2-4, 2006.

Segall, R. S. & Zhang, Q. (2006b). Data visualiza-
tion and data mining of continuous numerical and
discrete nominal-valued microarray databases for
biotechnology, Kybernetes: International Journal
of Systems and Cybernetics, v. 35, n. 9/10.

StatSoft, Inc. (2006a). Data mining techniques,
retrieved from http://www.statsoft.com/textbook/
stdatmin.html.

StatSoft, Inc. (2006b). Electronic textbook, re-
trieved from http://www.statsoft.com/textbook/
glosa.html.

StatSoft, Inc. (2006c). Electronic textbook, re-
trieved from http://www.statsoft.com/textbook/
glosh.html.

Tamayo, P. & Ramaswamy, S. (2002). Cancer
genomics and molecular pattern recognition,
Cancer Genomics Group, Whitehead Institute,

 1759

Comparing Four-Selected Data Mining Software

Massachusetts Institute of Technology, retrieved
from http://www.broad.mit.edu/mpr/publications/
projects/genomics/Humana_final_Ch_06_23_
2002%20SR.pdf.

Witten, IH & Frank E. (2005). Data mining: Prac-
tical machine learning tools and techniques with
Java implementation, Morgan Kaufman.

key terMs

Algorithm: That which produces a particular
outcome with a completely defined set of steps
or operations.

ARNAVAC: An underlying machine lan-
guage algorithm used in PolyAnalyst® for the
comparison of the target variable distributions
in approximately homogeneously equivalent
populated multidimensional hyper-cubes.

Association and sequence analysis: A data
mining method that relates first a transaction and
an item and secondly also examines the order in
which the products are purchased.

BioDiscovery GeneSight®: A program for
efficient data mining, visualization, and reporting
tool that can analyze massive gene expression data
generated by microarray technology.

Data Mining: The extraction of interesting
and potentially useful information or patterns from
data in large databases; also known as Knowledge
Discovery in Data (KDD).

Link Analysis (LA): A technique used in
data mining that reveals and visually represents
complex patterns between individual values of
all categorical and Boolean attributes.

Link Terms (LT): A technique used in text
mining that reveals and visually represents
complex patterns of relations between terms in
textual notes.

Market and transactional basket analysis:
Algorithms that examine a long list of transactions
to determine which items are most frequently pur-
chased together, as well as analysis of other situ-
ations such as identifying those sets of questions
of a questionnaire that are frequently answered
with the same categorical answer.

Megaputer PolyAnalyst® 5.0: A powerful
multi-strategy data mining system that imple-
ments a broad variety of mutually complementing
methods for the automatic data analysis.

Microarray Databases: Store large amounts
of complex data as generated by microarray ex-
periments (e.g. DNA)

NeuralWare NeuralWorks Predict®: A
software package that integrates all the capabili-
ties needed to apply neural computing to a wide
variety of problems.

SAS® Enterprise MinerTM: Software that that
uses an drop-and-drag object oriented approach
within a workspace to performing data mining
using a wide variety of algorithms.

Symbolic Knowledge Acquisition Technol-
ogy (SKAT): An algorithm developed by Mega-
puter Intelligence and used in PolyAnalyst® 5.0
that uses methods of evolutionary programming
for high-degree rational expressions that can ef-
ficiently represent nonlinear dependencies.

WEKA: Open-source data mining software
that is a machine learning workbench.

This work was previously published in Encyclopedia of Data Warehousing and Mining, Second Edition, edited by J. Wang, pp.
269-277, copyright 2009 by Information Science Reference (an imprint of IGI Global).

1760

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.23
Dimensions of UML

Diagram Use:
A Survey of Practitioners

Brian Dobing
University of Lethbridge, Canada

Jeffrey Parsons
Memorial University of Newfoundland, Canada

AbstrAct

The UML is an industry standard for object-ori-
ented software engineering. However, there is
little empirical evidence on how UML is used.
This article reports results of a survey of UML
practitioners. We found differences in several
dimensions of UML diagram usage on software
development projects including; frequency, the
purposes for which they were used, and the roles
of clients/users in their creation and approval.
System developers are often ignoring the “use
case-driven” prescription that permeates much
of the UML literature, making limited or no use
of either use case diagrams or textual use case
descriptions. Implications and areas requiring
further investigation are discussed.

IntroductIon

The unified modeling language (UML) emerged
in the mid-1990s through the combination of
previously competing object-oriented analysis
and design (OOAD) approaches (Booch, 1994;
Jacobson, Christerson, Jonsson, & Overgaard,
1992; Rumbaugh, Blaha, Premerlani, Eddy
et al., 1991), along with other contributions to
modeling complex systems (e.g., Harel, 1987).
Control over its formal evolution was placed
in the hands of the Object Management Group,
which recently oversaw a major revision to UML
2.0. The UML became widely accepted as the
standard for OOAD soon after its introduction
(Kobryn, 1999) and remains so today (Evermann
& Wand, 2006). A large number of practitioner

 1761

Dimensions of UML Diagram Use

articles and dozens of textbooks have been devoted
to articulating various aspects of the language,
including guidelines for using it. More recently,
a substantial body of research on the UML has
emerged, ranging from proposals for extending
the language (Moore, 2001; Odell, Van Dyke, &
Bauer, 2000) to ontological analysis of its model-
ing constructs (Evermann & Wand, 2001a, 2001b)
to analysis of the language’s complexity (Siau &
Cao, 2001, 2002; Siau, Erickson, & Lee, 2005)
and experiments that evaluate various aspects of
the effectiveness of UML models (Burton-Jones
& Weber, 2003, Burton-Jones & Meso, 2006).

The UML was not developed based on any
theoretical principles regarding the constructs
required for an effective and usable modeling
language for analysis and design; instead, it arose
from (sometimes conflicting) “best practices” in
parts of the software engineering community
(Booch, 1999; Booch, Rumbaugh, & Jacobson,
1999). This resulted in a language containing
many modeling constructs, which has thus been
criticized on the grounds that it is excessively
complex (DeJong, 2006; Dori, 2002; Kobryn,
2002). But, at the same time, the UML has also
been criticized for lacking the flexibility to handle
certain modeling requirements in specific domains
(Duddy, 2002). As a consequence, the UML has
evolved to allow for the definition of “profiles” that
have enabled domain specific languages (Cook,
2000; DeJong, 2006).

While the UML is intended to be “largely
process-independent,” some of the key originators
recommend a use case-driven process (e.g., Booch
et al., 1999, p.33). A majority of UML books since
then have endorsed this view, and most contain at
least some further prescriptions for applying the
language in modeling (Larman, 2005; Schneider
& Winters, 2001; Stevens & Pooley, 2000). As
would be expected with a best practices approach,
their prescriptions sometimes differ. While some
accept the original view that only use case narra-
tives (or, more simply, use cases) be used to verify
requirements with users (Jacobson, Ericsson, &

Jacobson, 1994), others explicitly or implicitly
indicate that other UML diagrams can be used
for this purpose, for example activity diagrams
“can be safely shared with customers, even those
unfamiliar with software engineering” (Schneider
& Winters, 2001, p.67).

There are also differences in guidelines for
using the language, and use case narratives in
particular (Dobing & Parsons, 2000). This is not
surprising since the official UML 2.0 documenta-
tion provides no guidance on Narrative format,
stating only that “use cases are typically specified
in various idiosyncratic formats such as natural
language, tables, trees, etc” (Object Management
Group, 2005, p.574).

Finally, when the use case-driven approach
is used, concerns have been raised about the
potential communication disconnect (Dobing &
Parsons, 2000) that can occur when use cases are
the primary communication tool among analysts
and the clients or users on the project team while
class diagrams play that role amoung analysts
and programmers. While use case narratives
have been found to be the most comprehensible
artifact for managers, users and domain experts,
they are the least comprehensible for designers
and programmers (Arlow & Neustadt, 2004) when
they require knowledge of the organizational con-
text that programmers do not have. Conversely,
class diagrams are highly comprehensible by
programmers, but not clients or users (Arlow &
Neustadt, 2004).

In view of these issues, it would not be surpris-
ing to find a variety of practices followed by UML
practitioners. We believe understanding current
practice can make an important contribution to
both theoretical and applied research on UML.
From a theoretical perspective, understanding
how the language is used can support or challenge
theoretical analyses of UML capabilities and
deficiencies (Evermann & Wand, 2001a, 2001b).
From a practical perspective, usage patterns can
inform best practices.

1762

Dimensions of UML Diagram Use

However, to our knowledge, only two surveys
have addressed the extent to which UML dia-
grams are used in practice (Grossman, Aronson,
& McCarthy, 2005; Zeichick, 2002), and neither
examined why analysts choose to use some dia-
grams and ignore others. (We are defining “UML
diagram” to include use case narratives, even
though they are generally used to describe use
cases in text form.) This is particularly surprising
in view of the explosion of academic interest in
UML. Our research seeks to address this issue
by surveying UML use in practice.

Our objective was to study three key dimen-
sions of UML diagram usage: how often each
diagram was being used, the reasons why ana-
lysts chose to use or avoid them (emphasizing
their role in facilitating team communication),
and the roles of clients/users in their creation
and approval. Such an understanding can also
support the development of theory to explain
observed usage patterns. From a practical point
of view, understanding how the language is used
can help support its evolution. For example, if
certain parts of the language are not widely used
or seen as useful, further research is needed to
understand why this is so, and may lead to evolu-
tion or elimination of those parts.

reseArcH MetHodology

The research began with participation in a local
UML user group, along with mostly informal
interviews of about a dozen UML practitioners
(none belonging to that user group and most in
different cities) and some of their clients. Their
approaches to using UML all differed to some
degree from each other, some substantially. Some
of the differences can be attributed to situational
factors. For example, one project began with the
database, and the associated class diagram, al-
ready in place. In other projects, analysts took a
use case-driven approach and relied on someone
else to do the class diagram later. Some clients

wrote most of the use cases themselves, while
others reviewed them.

The level of use case modeling varied, even
in systems of roughly the same size, from a small
number (less than 20) of relatively short use cases
to much larger sets of detailed use cases and sce-
narios (usually defined as paths through a use case
illustrating its application to particular instances)
that attempted to capture very complex rules and
regulations. The use of other UML diagrams de-
pended on the analyst’s knowledge of how to use
them, client requests (e.g., one client insisted on
at least one activity diagram for every use case),
system domain, and other factors. Some learned
the UML by starting with only a few of the dia-
gram types while others took a more ambitious
approach and attempted to use them all.

To get a broader picture of UML usage, a Web
survey was developed based on the preliminary
interviews and a literature review. The survey
contained 38 questions, many with multiple parts
(e.g., a list of possible reasons for not using a
particular UML diagram). Both the survey and
this article use UML 1.5 terminology, such as
“collaboration diagrams” rather than the newer
“communication diagrams.” The original survey
was first reviewed by colleagues and then pretested
with two people involved in the interviews and
one who had not been. Minor wording changes
were made to several questions as a result. The
pretest data were retained because the changes
made were consistent with what these subjects
had in mind.

The survey was intended for the population of
analysts familiar with object-oriented techniques
and UML in particular. To obtain a sample of
such analysts, the OMG was contacted and they
agreed to support the project. Their members
were informed by email of the survey and the
OMG endorsement. A link to the survey was also
provided from the main OMG Web page. OMG
members were encouraged to share the link with
others using the UML in their organizations. Sub-
sequently, an invitation to participate in the survey

 1763

Dimensions of UML Diagram Use

was posted to the comp.object Usenet newsgroup.
No participation incentive was offered. Some
limitations of this approach are discussed later.
However, other researchers in this area (e.g., John-
son & Hardgrave, 1999; Grossman et al., 2005)
have used similar methods due to the difficulty
of finding more representative samples.

results

Almost 2,700 hits on the survey site were recorded
during the survey period from March 21, 2003
to March 31, 2004. About half (1,369) provided
no response to any item. After eliminating these
responses along with test data, minimal responses,
meaningless or invalid responses, and inappropri-
ate respondents (primarily students), there were
284 usable responses. While these criteria are
difficult to define precisely, invalid responses
were easily identified in practice based on either
meaningless numerical entries (e.g., 1 for all
entries including budget, number of classes, etc.)
or comments that showed the response was not

serious. Any response that had meaningful com-
ments was included, no matter how incomplete.
The 284 analyzed responses either contained data
on UML diagram usage (182) or reasons why the
UML was not being used (102). Of the 182 analysts
using UML diagrams, most (171) responded that
they were using the UML while 11 indicated they
were using some UML diagrams in conjunction
with other modeling approaches.

demographic data

The survey gathered some data on respondent
experience in IT, but did not ask about age, gender
or nationality. Table 1 shows that respondents
have a wide range of experience in the IT field,
reporting up to 45 years and 200 projects. UML
experience is understandably less. In all cases,
the minimum value reported was zero except
for years of experience in IT (two years) and all
IT projects (three). While respondents report
more project experience with UML than other
object-oriented approaches, it represents less
than a quarter of their projects and about a third

Mean Me-
dian Max Std

Dev N

Yrs Experience IT 15.1 14.0 45 9.2 96
Yrs Experience OO
Prog 8.4 7.5 25 5.1 95

Yrs Experience
OOAD 7.4 6.0 25 4.7 95

Yrs Experience
UML 4.7 5.0 10 2.4 101

Yrs Experience OO
DB 2.5 0.5 20 4.1 84

All IT Projects 27.0 15.0 200 32.6 93
No. of UML Projects 6.2 4.0 51 7.0 168
Other OO Projects 4.0 2.0 50 7.6 127

Table 1. Respondent experience in years and projects

1764

Dimensions of UML Diagram Use

of their years of experience. The figures reported
for years of experience with OOAD include both
UML and non-UML experience.

The survey also asked in what type of industry
the respondent was primarily employed, either as
a direct employee or as a consultant. Respondents
could select only one industry. Of the respondents
using the UML who provided their industry type,
47 percent were in software development, 13
percent in financial services, and 8 percent each
in education, aerospace and defense, and health
care and pharmaceuticals. About 44 percent also
indicated they were associated with their industry
through a consulting firm.

The survey asked respondents, “How large are
the typical object oriented and/or UML projects
you have worked on?” Table 2 shows the results,
with budgets in U.S. dollars (with euros and Ca-
nadian dollars taken at par). The use cases and
classes measures reflect both the size of the project
and the extent to which these diagrams were used
and exclude responses where they were not used
at all. The inclusion of a few very large reported
project sizes skewed the means, so the medians
are also reported.

overall uMl diagram usage

Table 3 shows the relative usage of UML analysis
diagrams, with our results compared to others
(Grossman et al., 2005; Zeichick, 2002). To keep
our survey to a reasonable length, we only asked
about use case narratives and UML diagrams
covering system structure and behavior that are
used to document system functionality. This
excluded the object diagram, which is closely
related to the class diagram, and the component
and deployment diagrams, used in application
architecture modeling. Respondents were asked,
“What proportion of the object-oriented/UML
projects that you have been involved with have
used the following UML components?” The five-
point usage scale was: None, <1/3, 1/3 – 2/3, >
2/3 and All. The question asked about diagrams
used in projects rather than personally by the
respondent because the initial interviews found
that team members often specialized in one or a
few diagrams (e.g., focusing on use case narra-
tives or the class diagram).

Although UML is often presented as being
used with a use case-driven approach in the

Budget
(in thou-
sands)

Per-
son
Years

Lines
Of Code

Use
Cases

Class-
es

Mean 5,342 57.5 478,910 88 1311
Median 1,000 6.5 50,000 35 150
Maxi-
mum 75,000 3 000 5,000,000 800 25,000

Std Dev 12,000 297 1,050 000 137 4 215
N 71 118 64 75 95

Table 2. “Typical” project sizes

 1765

Dimensions of UML Diagram Use

UML literature, and in particular by the unified
process (Jacobson et al., 1999), only 44 percent
of respondents report that use case narratives are
used in two-thirds or more of their projects. Over
a third of the respondents say their projects never
use them, or use them less than a third of the time
(15 percent and 22 percent, respectively). Class
diagrams were the most frequently used, with 73
percent of respondents using them in two-thirds
or more of their projects. Use case narratives
were ranked fourth, behind sequence diagrams
and use case diagrams. Only three percent of re-
spondents report that their projects never use class
diagrams, while collaboration diagrams have the
highest non-usage rate of 25 percent. The number
of respondents to this question varied from 152
(Statechart) to 172 (class diagram).

Our results are reasonably consistent with
other studies (Table 3), except for a much lower

use case narrative usage in our study compared
to Grossman et al. (2005) and a possibly related
lower use of use case diagrams than in Zeichick
(2002). In all three studies, collaboration diagrams
were found to be the least frequently used. The
differences may be attributable to question word-
ing; for example, Grossman et al. (2005) simply
asked if the diagram was being used rather than in
what percentage of projects. The usage data in all
three studies are based on respondents rather than
projects. Due to the low correlations (maximum
of 0.2) between UML experience and diagram
usage, weighting usage by the respondent’s
number of UML projects increases the averages
only slightly.

Most projects made only partial use of the
seven UML diagram types studied (Table 4). Of
the 135 respondents who reported project usage
levels for all seven UML diagrams studied, 51

UML
Diagram

Usage1

Never
Used
(per-
cent)

>2/3
usage
(per-
cent)

>1/3
usage
(per-
cent)

G2

(per-
cent)

Z3

(per-
cent)

class 4.19** 3 73 87 93 75
use case
 diagram 3.56** 7 51 72 NA 89

sequence 3.51 8 50 75 89 75
use case
 narrative 3.25 15 44 63 93 NA

activity 2.87** 22 32 55 60 52

statechart 2.82** 19 29 53 63 52
collabora-
tion 2.54** 25 22 42 50 37

Table 3. UML diagram usage

1 Usage is measured on a scale from 1 (Never Used) to 5 (Used on All Projects)
2 From Grossman et al. (2005)
3 From Zeichick (2002)
*,** Significantly different from use case narrative mean, ** p<=0.01, * p<0.05 (t-test)

1766

Dimensions of UML Diagram Use

percent reported that five or more of them were
used in at least a third of their projects while 21
percent reported five or more used in at least
two-thirds of their projects.

Usage rates of the different UML diagram
types were all positively correlated with each
other, from an r2 of 0.64 between use case narra-
tives and use case diagrams to 0.16 between use
case narratives and Statechart diagrams. Thus,
there is apparently no general tendency for projects
to use certain diagrams at the expense of others
(which would result in a negative correlation).
For example, given that sequence diagrams and
collaboration diagrams are “semantically close”
so that “only minor visual information may be
lost” when transforming one to the other (Selonen,
Koskimies, & Sakkinen, 2003, p.45), one might
expect to find that projects use either the collabo-
ration diagram or the sequence diagram but not
both. However, among our respondents, usage of
the two was correlated at 0.38 (p < 0.01). There
were 24 respondents (out of 153) who reported
that all their projects use collaboration diagrams
and 19 of the 24 reported always using sequence
diagrams as well.

In contrast, of the 50 always using sequence
diagrams in their projects, 18 used collaboration

diagrams less than one-third of the time (and 11
of these never used them). While 87 respondents
reported a higher usage level for sequence than
for collaboration diagrams, only 12 reported the
opposite. Analysts clearly prefer using sequence
diagrams but many apparently value depicting
the same information in different ways for dif-
ferent purposes. Their isomorphic nature also
means that sequence and collaboration diagrams
share underlying data, so the incremental cost of
producing both (after committing to either one)
is low with some UML tools.

uMl diagram usage Patterns

The survey collected demographic data about
respondents, their organizations, use of tools, and
types of systems being built. Not all respondents
completed these sections so the sample sizes for
this analysis are somewhat smaller. Differences
that are not reported were statistically insignifi-
cant.

Organization Size

There are a number of significant positive rela-
tionships between organization size measures and
the use of UML diagrams. Comparing organiza-
tions above to those at or below $10 million in
annual revenue, the former are significantly more
likely to use use case narratives (p=0.001), use
case diagrams (p=0.02) and sequence diagrams
(p=0.02) and they use an average 4.75 diagram
types compared to 3.65 for smaller organizations
(p=0.01). Comparing usage by organizations with
50 or more IT employees to those with fewer, the
former are more likely to use sequence diagrams
(p=0.01) and activity diagrams (p=0.03). However,
those with more employees use only slightly more
use case narratives and total number of diagram
types. Both points used to divide the samples were
chosen to create roughly equal subsamples so they
are somewhat arbitrary. Moreover, the two size
measures are not independent (r=0.72).

UML Dia-
gram

Types Used

>1/3 Proj-
ects

(percent)

>2/3 Proj-
ects

(percent)
0 6 13
1 4 14
2 8 13
3 10 23
4 21 16
5 16 10
6 19 3
7 16 8

Table 4. Number of UML diagram types used

 1767

Dimensions of UML Diagram Use

Project Size

Larger projects might be expected to make wider
use of UML diagram types, but this is generally
not the case. A similar analysis using the five
project size measures (Table 2) found that re-
spondents reporting larger than average budgets
reported more use of use case narratives and
more diagram types used over a third of the time
(p<0.05). Larger projects based on person-years
also reported greater use of use case narratives
(p<0.05). However, no other comparisons were
significant.

UML Tools

The availability of UML tools is also related to
the use of UML diagram types. Those with tools
are significantly more likely to use class diagrams
(p=0.02) and sequence diagrams (p<0.001) with
usage levels higher for all remaining diagram types
as well (none significant). Respondents from larger
organizations might be expected to have better
access to tools and they do, but only slightly so
this does not explain why larger organizations are
using more diagram types. Correlations between
the organization size measures (annual revenue
and number of employees) and spending on tools
are also low (0.25 and 0.29, respectively, neither
significant) even though tool cost is typically partly
dependent on the number of installations.

organizational uMl usage

Overall usage of the UML in an organization could
affect practices within individual projects. For
example, analysts (and presumably organizations)
could begin learning the UML by focusing on a
subset of diagrams (Ambler, 2002, pp.46-47). The
survey data do not permit any direct testing to
determine whether individual analysts are taking
this approach. However, respondents from orga-
nizations using the UML in 40 percent or fewer
of their projects use an average of 2.4 diagram

types two-thirds of the time or more. Those from
organizations using the UML in over 40 percent of
projects average a significantly greater (p = 0.02)
3.3 diagram types and are also making signifi-
cantly (p = 0.03) more use of sequence diagrams
(3.84 usage level compared to the 3.51 average in
Table 3 and 3.23 level for those using the UML
40 percent of the time or less). Usage levels of all
the remaining diagram types are very similar to
those reported in Table 3 for both groups.

respondent experience

There are generally weak relationships between
respondent experience and their projects’ UML
diagram usage. Experience measures (Table 1)
were correlated with use of each UML diagram
type (Table 3). The strongest relationships involved
Statechart diagrams and years of experience in
object-oriented analysis and design (0.45, p<0.01)
and years of experience with UML (0.35, p<0.01).
Class diagram usage also correlated significantly
(p<0.01) with these two experience measures
at 0.36 and 0.40 respectively, and with years of
object-oriented programming (0.31). No other
correlations between experience measures and
diagram type usage exceeded 0.30 (and thus they
explained less than 10 percent of the observed
variance).

Industry

The survey provided 15 possible industrial clas-
sifications, with all but one receiving 12 or fewer
responses (insufficient to be useful in analysis).
The 46 respondents working in the software
development industry, who do not always have
identifiable clients in the same sense as those
working in other organizations, had somewhat (but
not significantly) lower use of use case narratives,
sequence diagrams and activity diagrams.

In our initial informal interviews, consultants
were always described (by themselves and by
others) as enthusiastic proponents of use case

1768

Dimensions of UML Diagram Use

narratives and the use case-driven philosophy.
While we expected similar results from the
survey, instead consultants reported lower use
case narrative usage than non-consultants (but
not significantly, p=0.07). However, consultants
were significantly more likely (p=0.04) to use
collaboration diagrams.

system type

Respondents were asked to indicate the application
area(s) in which their systems were being built.
The seven choices (with the number of responses
in parentheses) were e-commerce (90), adminis-
trative (71), embedded (36), manufacturing (28),
customer relationship management (26), data min-
ing (21) and mobile commerce (17). There were
also 58 who provided “other” categories, although
many used this option to further describe one of
the existing categories. Building software tools
(6) was the most common selection not listed in
the survey.

Use case narratives were used most by those
developing customer relationship management
(3.57) and e-commerce systems (3.48), and least by
those developing embedded systems (2.64). (The
numbers shown use the same five-point scale as in

Table 3.) T-test significance levels were 0.01 and
0.001, respectively, after excluding respondents
who selected both the system types being com-
pared. However, embedded system projects had
the highest reported usage of sequence diagrams
(3.56), while customer relationship management
had the least (2.14) (p<0.005). Activity diagrams
were used most in development of manufacturing
systems (3.12) and least in embedded (2.58), but
this difference was not significant.

Respondents were also asked to identify the
proportion of their object oriented/UML projects
that would be consider new systems, complete
replacements of existing systems, or enhance-
ments to existing systems. Most entered per-
centages that totaled 100, but others entered the
number of each type and these were converted
to percentages. There were 154 usable responses,
averaging 56 percent new, 20 percent replacement
and 24 percent enhancements. Table 5 computed
the usage of each UML diagram (computed as in
Table 3) for those who reported at least 50 percent
of their projects were of that type; there were 96
responses for new systems, 23 for replacement
projects and 34 for enhancement projects. (Some
responses were split 50/50 between two types
and were counted twice while others were split

UML Dia-
gram

New
System

Replace-
ment

System

Enhance-
ment

of System
class 4.19 4.82 4.38
use case
diag 3.62 3.90 3.56

sequence 3.55 3.95 3.43
use case narr 3.08 3.82 3.23
activity 2.99 2.95 2.69
statechart 2.87 2.75 2.63
collabora-
tion 2.59 2.95 2.45

Table 5. UML diagram usage by project type

 1769

Dimensions of UML Diagram Use

more evenly among all three types and were not
counted at all.) Most notable is the greater use
of class diagrams and use case narratives when
developing replacement systems.

Information Provided by uMl
diagrams

There are a number of reasons for using multiple
diagram types to describe system functional-
ity, beginning with the possibility that different
diagrams convey different information. To in-
vestigate this, the survey asked which diagrams
provide new information beyond that contained
in use case narratives. The use case narratives
were chosen as the benchmark because a use
case-driven approach had been endorsed by much
of the early UML literature. Both the interviews
and a literature review (Dobing & Parsons, 2000)
showed that use case narratives varied widely in
level of detail, so simply knowing that use case
narratives are being employed does not answer
the question of how much information they con-
tain. In contrast, the level of redundancy across
other pairs of diagrams is largely determinable
from their syntax. The question used a five-point

scale from “No New Info” to “All New Info,” with
“Some New Info” as the midpoint (3). This item
was only seen by those whose projects had used
both use case narratives and the other diagram in
question so there were fewer respondents, from 89
(collaboration diagram) to 125 (class diagram).

Table 6 shows that the diagram of highest value
for conveying new information not already contained
in the use case narratives was the class diagram, with
a score of 3.51 on the five-point scale, and 86 percent
of respondents believe it offers at least some new
information (at least 3 on the 5-point scale). The use
case diagram was least useful in providing additional
information, which is not surprising given its role
is to depict the use cases and their relationships to
actors and to each other.

Stronger relationships were expected between
the belief that a UML diagram provides additional
information beyond the use case narrative and the
usage level of that diagram. For activity diagrams,
the correlation was 0.42 (p<0.01). However, other
correlations of this type were all weak (i.e., none
exceeded 0.30, so none explained more than 10
percent of the variance).

There was also a strong correlation (0.77) be-
tween the beliefs that collaboration and sequence

UML Dia-
gram

New
Informa-

tion1

Some – All New
Information (

percent)
class 3.51** 86
use case 2.42** 48
sequence 3.37** 78
activity 2.89** 63
statechart 3.38** 79
collabora-
tion 2.98** 67

1 New information is measured on a scale from 1 (No New Information) to 5 (All New Information)
*,** Significantly different from class diagram mean, ** p<=0.01, * p<0.05 (t-test)

Table 6. New information (not in use case narratives) from UML diagrams

1770

Dimensions of UML Diagram Use

diagrams provide new information beyond use case
narratives, the highest correlation found among all
pairs of diagrams. This could be attributed to the
isomorphic relationship between collaboration and
sequence diagrams (i.e., that they convey similar
information but in different ways).

role of uMl diagrams

Table 7 examines reasons for including each UML
diagram in a project, with the focus on communi-
cation within the project team. Each respondent
who reported using a particular diagram at least
a third of the time was asked about four possible
purposes. As expected, use case narratives had
the highest score for “Verifying and validating
requirements with client representatives on the
project team” at 4.00 (on a 5-point scale). The use

of other diagrams for this purpose was higher than
expected, based on interview responses and our
review of the UML literature. These high levels
of client involvement show that use of the more
technical diagrams of the UML is not limited to
the technical members of the development team.
The survey also included a single item that asked,
“How successful has the UML been in facilitat-
ing communication with clients?” The items used
a five-point scale from Not to Very Successful.
The mean was 3.28 with 25 percent choosing the
lowest two levels.

Of those respondents who reported using a
particular diagram at least a third of the time,
Table 8 shows the percentage who rated them
from “Moderately Useful” to “Essential” for four
different purposes. The results show higher than
expected levels of usefulness for all UML dia-

UML
Diagram

Client
Valida-

tion1

Imple-
ment2

Docu-
ment3 Clarify4

use case
 narrative 4.00** 3.62†† 3.15†† 3.52††

activity 3.50** 3.43†† 3.35†† 3.50††

use case
 diagram 3.36** 3.06†† 2.90†† 3.17††

sequence 2.91** 3.71†† 3.76†† 4.14††

class 2.90** 4.06†† 4.18†† 4.35††

statechart 2.63** 3.51†† 3.35†† 3.74††

collabora-
tion 2.62** 3.25†† 2.96†† 3.40††

1 Verifying and validating requirements with client representatives on the project team
2 Specifying system requirements for programmers
3 Documenting for future maintenance and other enhancements
4 Clarifying understanding of application among technical members of the project team
** Significantly different from use case narrative mean,
** p<=0.01 (t-tests)
†,†† Significantly different from class diagram mean,†† p<=0.01, † p<0.05 (t-tests)

Table 7. Roles for UML diagrams

 1771

Dimensions of UML Diagram Use

grams in “Verifying and validating requirements
with users.” Only Statecharts, at 49 percent, were
under the 50 percent level.

The other three purposes listed are more related
to communication within the project team, among
analysts, programmers and maintenance staff.
For these three purposes, the class diagram was
considered most useful with the use case diagram
least useful (but all diagram types were rated as
at least “moderately useful” by over 60 percent
of respondents). As noted earlier, the use case
diagram provides an overview of the project while
programming tends to focus on implementing
particular functionality. In Table 8, the useful-
ness levels reported for sequence diagrams are all
significantly higher (p<0.01) on the three project
team communication measures than those for the
isomorphic collaboration diagram.

These reported levels of client involvement
with the full range of UML diagrams exceed those
generally recommended in the literature and, in

particular, seem inconsistent with the dominant
use case-driven philosophy. Concerns have been
raised about a potential disconnect that could
result from relying on use case narratives when
working with clients and class diagrams when
working with technical team members (Dobing
& Parsons, 2000). The survey results confirm
that use case narratives are indeed the primary
diagram for communication with clients and class
diagrams for communication within the techni-
cal members of the team. However, all diagrams
received at least “moderately useful” ratings from
over 50 percent of respondents across all forms of
communication (Table 8), except using Statechart
diagrams for communication with clients which
was 49 percent. In particular, use case narratives
are widely used among the technical members of
project teams. This suggests that the disconnect
problem may well have been addressed in practice,
if not in the UML literature.

UML
Diagram

Client
Valida-

tion1

Imple-
ment2

Docu-
ment3 Clarify4

use case
 narrative 87 79 68 74

activity 77 81 73 80
use case
 diagram 74 62 61 66

sequence 62 84 85 92
class 57 89 92 93
statechart 49 79 71 82
collabora-
tion 51 70 62 74

1 Verifying and validating requirements with client representatives on the project team
2 Specifying system requirements for programmers
3 Documenting for future maintenance and other enhancements
4 Clarifying understanding of application among technical members of the project team

Table 8. Percent of respondents who believe each UML diagram is at least moderately useful

1772

Dimensions of UML Diagram Use

Those who reported that their projects used
a particular diagram less than a third of the time
(including not at all) were asked why they were
not using it more often. There were fewer respon-
dents for these questions, ranging from only 8 for
class diagrams to 59 for collaboration diagrams.
Table 9 shows the percentage of respondents who
selected each possible reason. Respondents were
encouraged to select all reasons that applied so row
totals exceed 100 percent. A lack of understand-
ing by analysts was the primary factor among the
few not using class diagrams (50 percent). Similar
concerns were expressed by 48 percent of respon-
dents about activity diagrams. Leading concerns
for the remaining diagrams were over how useful
they are (Statechart), their value (sequence and
use case diagrams and narratives) and the degree
of redundancy (collaboration, presumably with
respect to sequence diagrams).

client Participation

Client participation has long been considered
crucial to successful system development. The

survey asked about the client’s role in relation to
each of the UML diagram types being studied.
Respondents were able to select more than one
(e.g., they could report that clients helped to de-
velop use case narratives, reviewed some or all of
them upon completion and had formal approval
authority). The results are summarized in Table
10. For example, 76 percent of respondents who
used use case narratives reported that clients
were involved in their development. When UML
diagram types are ranked on the level of client
participation, the order is very similar (with only
class and collaboration diagrams transposed)
to “comprehensibility” rankings for managers,
users and domain experts (Arlow & Neustadt,
2004, p.91).

The results show that clients were most likely to
be involved in developing, reviewing and approv-
ing use case narratives and the use case diagram.
Of the remaining diagrams, activity diagrams are
probably the easiest for clients to understand and
almost half the analysts report some involvement
by clients in their development, consistent with the
comment above by Schneider and Winters (2001).

UML Dia-
gram

Not well
under-

stood by
analysts

Not
useful

for most
projects

Insufficient
value to

justify cost

Infor-
mation

captured
redundant

Not use-
ful with
clients

Not useful
with pro-
grammers

class 50 13 13 25 25 25

sequence 32 23 36 14 23 23
use case
 narrative 29 26 37 29 11 26

use case
 diagram 32 32 42 19 29 42

statechart 35 42 28 12 28 33

activity 48 23 35 35 14 25

collab’tion 27 32 24 49 29 24

Table 9. Reasons for not using some UML Diagrams (% responses)

 1773

Dimensions of UML Diagram Use

While clients were less likely to be involved in
developing the class diagram, just over half were
involved in reviewing this widely used diagram.
The wide range of client involvement practices in
our interviews and survey results is not unexpected
given that most organizations have relatively
limited experience with the UML.

Not surprisingly, clients were least likely to
be involved in developing or reviewing Statechart
diagrams. The fact that about one quarter to a
third were involved in these tasks may reflect
the technical sophistication of some clients in the
survey sample, since the composition of OMG
membership includes many large companies in
the computer industry.

Respondents were also asked about possible
difficulties that had occurred which “could be
attributed to the UML.” They could check any
or all of the five categories listed. User interface
concerns were checked most frequently (36 per-
cent), followed by roles and responsibilities of
particular users (21 percent), security (18 percent),
data requirements (18 percent), and system capa-
bilities and functionality (13 percent).

respondents not using the uMl

Some limited analysis was also done based on
the 102 responses from those not using the UML.
Software development was also the largest or-
ganization type for this group (31 percent) with
education second (25 percent). These respondents
were less experienced than the UML practitioners
(averaging 8.1 years IT experience and 16.3 IT
projects vs. 15.1 years and 27.0 projects for UML
practitioners). The sample selection method sug-
gests this group is probably more knowledgeable
about the UML (and more interested in it) than
the average non-practitioner. The primary reasons
given by those not using the UML or any object-
oriented approach were a lack of people familiar
with the UML (51 percent) and a lack of suitable
projects (16 percent). Of those whose organiza-
tions were using an object-oriented approach but
not the UML, 55 percent cited a lack of people
familiar with the UML while 23 percent said
they had no suitable projects, 17 percent said it
was too complex, 17 percent said it was not yet
standardized or accepted and 15 percent indicated

UML Dia-
gram

De-
velop
(%)

Review
(%)

Ap-
prove
(%)

N

use case narr 76 63 54 78
use case diag 57 69 46 77
activity 47 60 19 57
sequence 37 52 16 87
class 33 53 20 103
collaboration 38 48 13 48
statechart 28 36 20 61

Table 10. Client participation

1774

Dimensions of UML Diagram Use

their tools were not compatible with the UML.
Respondents could select more than one answer
so the percentage total exceeds 100 percent.

dIscussIon And
recoMMendAtIons

This is the first survey we are aware of investigat-
ing not only how but why UML diagrams are used
or not used in systems analysis. We found varia-
tions on all three of the major dimensions studied,
including frequency of use for each diagram type,
the purposes for which they were being used,
and the role of clients/users in their creation and
approval. While the UML is “unified” in that it
brought together elements from disparate model-
ing notations, considerable variations remain in
its use that are somewhat inconsistent with the
notion of the UML as a “unified” language in the
sense of implying coordinated and cohesive use
of diagram types within a development project.
Moreover, we found that use of only a subset of
UML diagrams on a project is widespread. The
data also show a variety of reasons why certain
UML diagrams are not used.

The findings of this research can be useful in
a number of ways. First, information on UML use
can provide valuable input in the evolution of the
standard. For example, on the issue of complexity,
the language could be simplified by eliminating
collaboration diagrams. Based on our findings,
collaboration diagrams are used less often, deemed
to be less useful, and appear to offer little ad-
ditional value in relation to sequence diagrams.
Statechart diagrams are also used less often than
most and seem to be less useful most of the time,
but are rated highly for providing new informa-
tion in some situations (e.g., real-time systems)
and have low redundancy. Admittedly, both these
diagrams also have some strong supporters. As one
interview subject said about Statecharts, “When
they are useful, they are very useful.”

Second, some projects do not follow a use
case-driven approach with over a third of the re-
spondents saying they use them less than a third
of the time. At the same time, there is limited
empirical evidence to support the proposition that
use case narratives are a more effective way to
communicate with clients than are the other UML
diagrams. Research is also needed to determine
an appropriate level of granularity and level of
detail for use case narratives.

Third, more attention may be needed on the is-
sue of how clients or users can be better prepared to
participate in development and review of artifacts
beyond use case narratives. We found that the use
of diagrams other than use case narratives among
clients or users was higher than expected based on
the extant prescriptive literature on ‘how to use’
the language. The UML practitioner literature
generally seems to assume that UML diagrams,
except for use case diagrams and narratives, are
too complex or technical to be understood by
clients. However, our results show that clients
frequently approve, review, and even help develop
all of the UML diagrams. The views of clients
and intended users of systems on the usability and
usefulness of UML have received little attention
from researchers (including this study). Nor has
much consideration been given to how to prepare
clients for this level of involvement.

Fourth, research is needed to understand which
UML diagrams can best facilitate communication
between clients and analysts, particularly as the
use of the UML to support agile modeling grows
(Ambler, 2002). In addition, work might be needed
to modify these diagrams (e.g., by simplifying or
otherwise changing the syntax and grammar of
the diagram type) to enable them to support com-
munication and verification more effectively.

Fifth, as noted earlier, 36 percent of respon-
dents agreed that they had experienced “dif-
ficulties … [with user interfaces] that could be
attributed to the UML.” User interfaces have
become much more complex over the past decade

 1775

Dimensions of UML Diagram Use

with the use of both visual programming and
Web environments, complicating development
using any methodology or notation. Based on
accompanying comments, respondents would
welcome better ways to integrate user interface
design with UML modeling. One approach is to
distinguish between “system” and “essential” use
case narratives (Constantine & Lockwood, 1999),
where essential use cases are independent of
technology (and user interfaces) while system use
cases include these details. Currently, the UML
has no standards for use case narratives (OMG,
2005) or system use cases in particular, which
might explain why many respondents experienced
user interface issues that they could attribute to
the UML. Another approach is to use prototyp-
ing or other screen design tools in conjunction
with the UML. One respondent noted that, “It is
easier for clients to understand the functionality
of software through user interface sketches” while
another said that clients had difficulty validating
use case narratives “without any draft of the [user
interface].” The principle that system analysis
should be technology independent long precedes
the development of the UML and is widely ac-
cepted among leading writers in the field but, as
several respondents pointed out, some difficulties
can arise when applying this principle in practice.
Another respondent noted difficulties in creating a
vocal interface, pointing out that not all interfaces
are purely visual. There are some very interesting
research opportunities in this area.

Respondents provided fewer comments on
other difficulties with the UML. Concerns about
security are to be expected but no suggested
solutions were mentioned. One difficulty with
database design is that many respondents were
using a relational, rather than object-oriented,
DBMS. Difficulties identifying the “roles and
responsibilities of particular users” suggest that
there may be problems mapping the UML “ac-
tor” to specific individuals or job descriptions.
There are some strong parallels with this issue
and user interfaces; at least some clients prefer

to work with more concrete designs that clearly
show who does what rather than with more ab-
stract approaches that take a higher level view.
More research is needed on how clients can more
effectively validate designs.

Finally, there have been numerous attempts
to evaluate UML from a theoretical standpoint
including assigning ontological semantics to UML
constructs (Evermann & Wand, 2001a; Opdahl
& Henderson-Sellers, 2001) and assessing the
complexity of the UML (Siau & Cao, 2001, 2002;
Siau et al., 2005). In cases such as these, theoreti-
cal conclusions can be substantiated or refuted by
empirical data on usage. To illustrate, some UML
constructs appear to have no ontological coun-
terpart and such constructs may not be suitable
for conceptual modeling (Evermann & Wand,
2001a). We then might expect that diagrams that
have more such constructs would be less useful
and less used in conceptual modeling. In terms
of this study, this would correspond to less use
of such diagrams/constructs for verifying and
validating requirements with users. Our study did
not examine use at the level of constructs within
diagrams, but future empirical studies might do
an analysis at that level of detail (perhaps for a
single diagram type).

survey resPondent
cHArActerIstIcs: ProfIle And
lIMItAtIons

Given the lack of any defined population of UML
practitioners from which to obtain a random
sample, we chose to survey primarily OMG mem-
bers and those who use its Web site. This may
have produced biased responses. However, given
that the goals of this research were to examine
how UML practitioners (the target population)
were using the language, rather than the extent
to which it is being used in software develop-
ment in general, the participation of the OMG
seemed appropriate. While respondents may not

1776

Dimensions of UML Diagram Use

be representative of all UML practitioners, they
can be considered leading edge adopters. UML
experience was naturally low when this survey
was conducted, with medians of five years and four
projects. As such, respondents might not be typical
of the eventual set of UML practitioners (which
could become the majority of system developers
if object-oriented system development and the
UML become more widely accepted). Based on
other research in technology adoption, albeit in
different areas (e.g., Brown & Venkatesh, 2003),
early adopters might approach the UML quite
differently from those who come later.

In addition, there are some obvious limitations
with using a convenience sample. The number
of people who received or read the invitation to
participate is unknown because of the possibility
of it being forwarded. Visitors to the OMG site
need not be members, so the results should not
be considered as a survey of OMG’s membership
even prior to inviting readers of the comp.object
Usenet newsgroup. It is also likely that some people
found the survey through search engines, since
the survey was, for some time, the top result of
a Google search on “UML survey.” Despite the
lack of control over respondents, reviewing the
comments and contact information suggests that
the group as a whole does belong to the target
population and are reasonably diverse on a range
of demographic measures. Moreover, whether
they worked for OMG member companies or
found the survey by other means, the respondents
clearly were very interested in the UML, and can
reasonably be considered leading edge practitio-
ners. Whether respondents are representative of
the target population of all analysts who use the
UML is unknown.

A majority of respondents opted to remain
anonymous so they could have submitted two
or more responses, but there was no reason for
them to do so and there are no obvious patterns
of duplicate responses. It is also conceivable that
results could be skewed by heavy participation
by a single organization. However, responses

came from a wide variety of organization types
and sizes and there were no bursts of unusual
activity levels. Among those who did provide
an email address, no company domain had more
than one response except for email providers (15
from Yahoo! accounts, five from Hotmail, etc.).
So there is no evidence to suggest the results were
manipulated by any individual or group.

The survey took a use case-driven approach,
consistent with a majority of the books written on
the UML up to the time of this survey. However,
only 44 percent of respondents reported using
use case narratives in at least two-thirds of their
UML/object-oriented projects. Measuring the
value of the information provided by different
UML diagrams by comparing them to use case
narratives therefore seems insufficient and new
measures are needed.

The measures used for project size were also
problematic. Low numbers of classes and use
case narratives used in some “typical” projects
probably reflect limited usage of those diagram
types rather than the real size of the project, and
many projects are not using them at all. Some
unrealistically low budgets (which were coded
as missing data) were perhaps intended to be
in thousands of dollars while others appear to
exclude salaries. On the other hand, some larger
budgets might have included training and tool
acquisition costs that do not reflect project size.
Lines of code is commonly used as a measure
of project size, and was used here because of its
simplicity. However, respondents may or may
not have included shared code, comments, etc.
and programming style can also affect code size.
Low correlations among these size measures also
suggest a lack of reliability. Budget and number of
classes correlated at 0.65 while person-years and
lines of code correlated at 0.44 (both with p<0.01).
But the next largest correlation is only 0.25.

Measures of user/client involvement have
a long history in the IS literature. This survey
measures only the perspective of IT professionals
rather than the clients themselves. In the earlier

 1777

Dimensions of UML Diagram Use

interviews, there were several cases of strong
disagreement between the clients and analysts on
their roles and even on appropriate use of some
UML diagram types. There can also be differences
in what ‘client’ means across different organiza-
tions and situations. Are clients those sponsoring
the system or does this term also include the
intended direct users? Some external consultants
might view the IT Department that hires them as
the client, while those developing commercial
software may have certain types of clients in mind
but have limited interaction with them.

conclusIon

The UML has rapidly become the de facto stan-
dard for object-oriented systems development.
However, this survey suggests there is no stan-
dard approach to using the UML within a group
of arguably leading edge practitioners. There is
considerable variation in use of diagrams across
projects and in the role clients/users play in the
development of UML models. Clearly, in view of
the popular interest in the UML, further research
is needed to better understand UML use in order
to gain insight on how it can be effectively used to
support systems development. The results of this
survey suggest several aspects of UML adoption
and use that need to be studied.

AcknowledgMent

The authors would like to thank the Object Man-
agement Group, and Richard Soley in particular,
for their support of our research. Thanks also to
Dinesh Batra and other anonymous reviewers for
their helpful suggestions and comments. Fund-
ing for this research was provided by the Natural
Sciences and Engineering Research Council of
Canada.

references

Ambler, S. (2002). Agile modeling: Effective
practices for extreme programming and unified
process. New York: John Wiley.

Arlow, J., & Neustadt I. (2004). Enterprise pat-
terns and MDA: Building better software with
archetype patterns and UML. Boston: Addison-
Wesley.

Booch, G. (1994). Object-oriented analysis and
design with applications (2nd ed.). Redwood City,
CA: Benjamin/Cummings.

Booch, G. (1999). UML in Action. Communica-
tions of the ACM, 42(10), 26-28.

Booch, G., Rumbaugh, J., & Jacobson, I. (1999).
The unified modeling language user guide. Read-
ing, MA: Addison Wesley.

Brown, S., & Venkatesh, V. (2003). Bringing
non-adopters along: The challenge facing the
PC industry. Communications of the ACM, 46(4),
76-80.

Burton-Jones, A., & Meso, P. (2006). Conceptu-
alizing systems for understanding: An empirical
test of decomposition principles in object-oriented
analysis. Information Systems Research, 17(1),
101-114.

Burton-Jones, A., & Weber, R. (2003). Properties
do not have properties: Investigating a question-
able conceptual modeling practice. Proceedings
of the 2nd Annual Symposium on Research in Sys-
tems Analysis and Design, St. John’s, Canada.

Constantine, L.L., & Lockwood, L.A.D. (1999).
Software for use. Reading, MA: Addison-Wes-
ley.

Cook, S. (2000). The UML family: Profiles, pref-
aces, and packages. In Proceedings of UML 2000
- The Unified Modeling Language. Advancing the

1778

Dimensions of UML Diagram Use

Standard, Lecture Notes in Computer Science,
Vol. 1939, (pp. 255-264). Springer.

DeJong, J. (2006). Of different minds about mod-
eling. SD Times, June 15. Retrieved from http://
www.sdtimes.com/article/special-20060615-
02.html.

Dobing, B., & Parsons, J. (2000). Understand-
ing the role of use cases in UML: A review and
research agenda. Journal of Database Manage-
ment, 11(4), 28-36.

Dori, D. (2002). Why significant UML change
is unlikely. Communications of the ACM, 45(11),
82-85.

Duddy, K. (2002). UML2 must enable a fam-
ily of languages. Communications of the ACM,
45(11), 73-75.

Evermann, J., & Wand, Y. (2001a). Towards on-
tologically based semantics for UML constructs.
Proceedings of the 20th International Confer-
ence on Conceptual Modeling, (pp. 354-367).
Yokohama, Japan.

Evermann, J., & Wand, Y. (2001b). An Ontological
Examination of Object Interaction in Conceptual
Modeling. Proceedings of the 11th Workshop on
Information Technologies and Systems, (91-96).
New Orleans, Louisiana,

Evermann, J., & Wand, Y. (2006). Ontological
modeling rules For UML: An empirical assess-
ment. Journal of Computer Information Systems,
46(5) 14-29.

Grossman, M., Aronson, J., & McCarthy, R.
(2005). Does UML make the grade? Insights from
the software development community. Informa-
tion and Software Technology, 47(6), 383-397.

Harel, D. (1987). Statecharts: A visual formal-
ism for complex systems. Science of Computer
Programming, 8(3), 231-274.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999).
The unified software development process. Read-
ing, MA: Addison-Wesley.

Jacobson, I., Christerson, M., Jonsson, P., &
Overgaard, G. (1992). Object-oriented software
engineering: A use case driven approach. Read-
ing, MA: Addison-Wesley.

Jacobson, I., Ericsson, M., & Jacobson, A. (1994).
The object advantage: Business process reengi-
neering with object technology. Reading, MA:
Addison-Wesley.

Johnson, R., & Hardgrave, B. (1999). Object-ori-
ented methods: current practices and attitudes.
Journal of Systems and Software, 48(1), 5-12.

Kobryn, C. (1999). UML 2001: A standardization
odyssey. Communications of the ACM, 42(10),
29-37.

Kobryn, C. (2002). Will UML 2.0 be agile or
awkward? Communications of the ACM, 45(1),
107-110.

Larman, C. (2005). Applying UML and patterns:
An introduction to object-oriented analysis and
design and iterative development (3rd ed.). Upper
Saddle River, NJ: Prentice Hall.

Moore, A. (2001). Extending UML to enable the
definition and design of real-time embedded sys-
tems. Crosstalk: The Journal of Defense Software
Engineering, 14(6), 4-9.

Odell, J., Van Dyke, P., & Bauer, B. (2000).
Extending UML for agents. Proceedings of the
Agent-Oriented Information Systems Workshop
at the 17th National conference on Artificial Intel-
ligence, (3-17). Austin, Texas,

Object Management Group. (2005). Unified
modeling language: Superstructure, Version
2.0.Retrieved from http://www.omg.org/technol-
ogy/documents/formal/uml.htm.

 1779

Dimensions of UML Diagram Use

Opdahl, A.L., & Henderson-Sellers, B. (2001).
Grounding the OML metamodel in ontology.
Journal of Systems and Software, 57, 119-143.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy,
F., & Lorensen, W. (1991). Object-oriented model-
ing and design. Englewood Cliffs, NJ: Prentice
Hall.

Schneider, G., & Winters, J. (2001). Applying
use cases: A practical guide (2nd ed.). Boston:
Addison-Wesley.

Selonen, P., Koskimies, K., & Sakkinen, M. (2003).
Transformations between UML diagrams. Jour-
nal of Database Management, 14(3), 37-55

Siau, K., & Cao, Q. (2001). Unified modeling
language (UML)—a complexity analysis. Journal
of Database Management, 12(1), 26-34.

Siau, K., & Cao, Q. (2002). How complex is the
unified modeling language? Advanced Topics in
Database Research, 1, 294-306.

Siau, K. Erickson, J., & Lee, L.Y. (2005). Theo-
retical vs. practical complexity: The case of
UML. Journal of Database Management, 16(3),
40-57.

Stevens, P., & Pooley, R. (2000). Using UML:
Software engineering with object and components.
Reading, MA: Addison-Wesley.

Zeichick, A. (2002). Modeling Usage Low;
Developers Confused About UML 2.0, MDA,
SD Times, July 15. Retrieved from http://www.
sdtimes.com/article/story-20020715-03.html.

This work was previously published in the Journal of Database Management, edited by K. Siau, Volume 19, Issue 1, pp. 1-18,
copyright 2008 by IGI Publishing (an imprint of IGI Global).

1780

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.24
Enterprise Resource Systems

Software Implementation
Ganesh Vaidyanathan
Indiana University, USA

AbstrAct

Enterprise resource planning systems are complex
yet single, integrated software programs that runs
off a single database so that the various depart-
ments can easily share information and commu-
nicate with each other. The integrated approach
can have a tremendous payback if companies
implement the software correctly. This chapter
illustrates the implementation steps as followed
by major corporations in the United States, and
provide an insight into the practical implementa-
tion issues. A business case for such systems is
introduced in this chapter as well. The chapter
provides seven ERP issues and elaborates these
issues in the context of implementation. The
implementation details during conceptualization,
design, implementation, go-live, and operation
stages are provided with a note to practitioners
on ERP implementation.

IntroductIon

Enterprise resource planning (ERP) software at-
tempts to integrate all departments and functions
across a company onto a single computer system
that can serve all those different departments’
particular needs (Koch 2002). Each of those de-
partments typically has its own computer system
optimized for the particular way that the depart-
ment does its work. But ERP combines them all
together into a single, integrated software program
that runs off a single database so that the various
departments can more easily share information
and communicate with each other. That integrated
approach can have a tremendous payback if com-
panies install the software correctly.

Typically, when a customer places an order, that
order begins a mostly paper-based journey from
in-basket to in-basket around the company, often
being keyed and re-keyed into different depart-
ments’ computer systems along the way. These
activities cause delays and errors. Meanwhile, no

 1781

Enterprise Resource Systems Software Implementation

one in the company truly knows what the status
of the order is at any given point because there is
no way for the finance department, for example,
to get into the warehouse’s computer system to
see whether the item has been shipped. ERP can
replace the old standalone computer systems in
accounting, human resources, manufacturing,
and warehouse with single unified software.
This results in integrated software that is linked
together so that someone in finance can look into
the warehouse module to see if an order has been
shipped. Most vendors’ ERP software is flexible
enough to install certain modules without buying
the whole package.

Enterprise systems that encompass all depart-
mental processes can often be complex and in-
terdependent. Highly interdependent technology
solutions such as ERP are used by firms to enhance
the efficiency and ease of in-house capabilities.
The use of ERP is characterized by high levels of
task interdependence (Sharma and Yetton 2003).
To implement such highly complex and inter-
dependent systems is often a daunting process.
Implementing an enterprise-wide application like
an ERP system to help run a business is a costly
and complex process and is like implementing a
civil engineering endeavor or sizable construction
project (Hawksworth 2007). A certain amount of
planning, discipline and wisdom are required to
complete implementation on schedule to meet the
requirements of a firm.

Many of the current ERP literature share imple-
mentation experiences from various companies.
While some of them attempt to explain why the
ERP implementation is difficult and what needs
to be done to achieve desirable results, others
present various models of implementation stages
and different implementation methodologies
(Moon, 2007). The contributions of this chapter
to researchers and practitioners include:

a. Illustration of the implementation steps as
followed by major corporations in the United
States, and

b. Provision of an insight into the practical
implementation issues, and

c. Introduction to a business case for ERP
systems.

This chapter details the implementation issues
of ERP systems and provides an insight into the
practical aspects of such implementation. The next
section provides seven ERP issues and elaborates
these issues in the context of implementation. The
following section describes ERP software and the
ERP implementation scheme during conceptu-
alization, design, implementation, go-live, and
operation stages of implementation. The chapter
concludes with a note to practitioners on ERP
implementation.

wHAt cAn erP do?

ERP is an enterprise software package. With ERP,
it is possible to keep track any transaction in an
enterprise in real-time. ERP allows managers to
process business information more effectively to
support sound decision making. ERP solutions
cover all of the core operations necessary to run
successful small and midsize businesses, includ-
ing accounting and banking, customer and vendor
management, purchasing and sales, logistics and
production, as well as reporting and analysis.

The benefits of ERP systems have been
researched extensively in literature. Gefen and
Ragowsky (2007) examined associations between
the business characteristics of manufacturing
firms and their perceived benefits from ERP sys-
tem investments at both enterprise and a specific
IT module level and found that the perceived
value for ERP investments was consistently
better explained at the specific IT module level.
Ranganathan and Brown (2006) found that ERP
projects with greater functional scope (two or
more value-chain modules) or greater physical
scope (multiple sites) result in positive, higher
shareholder returns. ERP systems replace com-

1782

Enterprise Resource Systems Software Implementation

plex and sometimes manual interfaces between
different systems with standardized, cross-func-
tional transaction automation (Hendricks et al.,
2005). Information integration using ERP can
replace functionally oriented and often poorly
connected legacy software, resulting in savings
in infrastructure support costs (Hendricks et al.,
2005). Other business benefits include:

• Improved productivity: ERP engages
and connects users within and beyond the
enterprise, including customers, suppliers,
and partners. An intuitive, role-based portal
environment gives the system wide access
to a single, consistent view of the business.
Higher levels of efficiency and collaboration
may be achieved and as a result firms can
respond to new competitive threats, and
proactively meet customer needs.

• Increased insight: ERP improves deci-
sion-making by giving managers a clear
understanding of activities across functions.
They can retrieve the right information at the
right time to address problems and pursue
new opportunities.

• Enhanced governance: ERP provides
comprehensive functionality for corporate
governance, enabling the firm to comply
with Sarbanes-Oxley and International
Accounting Standards. ERP also integrates
corporate reporting, analysis, and compli-
ance with underlying business processes
and transaction systems.

• Improved flexibility: ERP provides a scal-
able and adaptable solution that seamlessly
integrates end-to-end processes with the
ability to add other external solutions that
may include customer relationship man-
agement, supply chain management, and
product life-cycle management.

• Reduced costs: ERP enables firms to man-
age IT costs by leveraging the investments
they have already made.

• Increased visibility: ERP solutions provide
real-time visibility across the entire enter-
prise, so firms can streamline their supply
chain, bring products to market faster, get
more out of procurement, and eliminate
duplication of effort.

erP IMPleMentAtIon Issues

Companies that install ERP do not have an easy
time of it. To implement ERP right, the ways that
they do business need to change and the ways
people do their jobs need to change too. And that
kind of change does not come without pain. The
important thing is not to focus on how long it
will take but rather to understand why the firms
need ERP and how they will use it to improve
their business.

cost

Meta Group recently did a study looking at the total
cost of ownership (TCO) of ERP, including hard-
ware, software, professional services and internal
staff costs. The TCO numbers include getting the
software installed and the two years afterward,
which is when the real costs of maintaining, up-
grading and optimizing the system for business
are felt. Among the 63 companies surveyed (Ketbi
et al. 2002)—including small, medium and large
companies in a range of industries—the aver-
age TCO was $15 million (the highest was $300
million and lowest was $400,000). The nature
of ERP implementations are such that there are
usually unforeseen and unexpected occurrences
that increase the overall costs (Al-Mudimigh et
al., 2001). In summary, the cost of implementing
ERP remains quite high (Wu et al., 2007).

schedule

The criticality of schedule and budget overruns as
risk factors in ERP implementation projects has

 1783

Enterprise Resource Systems Software Implementation

been rated to be high by all companies regardless
of their size (Laukkanen, 2007). The time and ef-
fort to implement is likely to be underestimated
in the case of implementing ERP systems. ERP
systems come in modules and do not have to be
implemented entirely at one time; many companies
follow a phase-in approach in which one module
is implemented at a time. Some of the most com-
monly installed modules are sales and distribution
(SD), materials management (MM), production
and planning, (PP), and finance and controlling
(FI) modules. The average length of time for a
“typical” implementation is more than a year and
can use more than 150 consultants. Corning, Inc.
rolled out ERP in ten of its diversified manufac-
turing divisions in five to eight years (Stedman
1998). The length of implementation is affected
to a great extent by the number of modules being
implemented, the scope of the implementation
(different functional units or across multiple
units spread out globally), the extent of custom-
ization, and the number of interfaces with other
applications.

customization

ERP packages are very general in nature and need
to be configured to a specific type of business.
The customization is very tedious and takes a long
time, depending on the specific requirements of the
business. Customized development can provide a
better fit with the operational procedures of a firm,
yet often results in a system that is more risky
to implement and more complicated to maintain
and upgrade (Gebauer and Lee, 2008). An ERP
system like SAP is so complex and general that
there are more than 8000 switches that need to
be set properly to make it handle the business
processes in a way a company needs. The more
customization needed, the longer it will take to roll
out the software and the more it will cost to keep
it up-to-date. The length of implementation time
could be cut down by keeping the system “plain
vanilla” and reducing the number of “bolt-on” ap-

plication packages that require custom interfaces
with the ERP system. However, the downside
to this “plain vanilla” approach may or may not
completely match business requirements.

Some companies undertake costly custom-
izations to automate its processes on its ERP
system—only to learn that the “plain-vanilla”
version of the software performed certain func-
tions much better. Companies even pull the plug
partway into an ERP project because of functional
or even philosophical problems. A technological
mistake often made in SAP implementations,
says Graham McFarlane, director of Western
Management Consultants, is that organizations
modify the software more than they should,
rather than modifying their business processes
(Hilson, 2001). The Military Sealift Command
(MSC) successfully implemented Oracle’s ERP
solution. One rule they cite for achieving ERP
success is that agencies must find an ERP package
that mirrors their business practices as closely as
possible, then resolve to implement the package
without significant modifications. MSC managers
made a key decision to minimize the risk of ERP
implementation by taking a “vanilla” approach.
They committed to installing the software as it
was packaged, without any modifications. The
MSC put together 1,000 requirements the optimal
software would fulfill. There were only 11 areas
where their processes didn’t match the software
and the commander made the decision to modify
MSC processes to fit the Oracle software (Dean,
2001).

Management commitment

Management commitment for information sys-
tems (IS) projects has been researched extensively
(Aloini et al., 2007, Aladwani 2002, Ravichandran
and Rai 2000). They found empirically that man-
agement commitment this work can make human,
monetary, and other important resources avail-
able for the IS project leading to a conducive and
superior problem solving environment as well as

1784

Enterprise Resource Systems Software Implementation

increase the likelihood of IS product quality and
efficiency. Top management must consider the
strategic implications of implementing an ERP
solution (Davenport 1998). Management must
also ask several questions before embarking on
the project. Does the ERP system strengthen the
company’s competitive position? How might it
erode the company’s competitive position? How
does ERP affect the organizational structure
and the culture? What is the scope of the ERP
implementation -- only a few functional units or
the entire organization? Are there any alternatives
that meet the company’s needs better than an ERP
system? If it is a multinational corporation, the
management should be concerned about whether
it would be better to roll the system out globally
or restrict it to certain regional units? Manage-
ment must be involved in every step of the ERP
implementation. Handing over the ERP project to
the IS department may result as a risk to the entire
company’s survival because of the ERP system’s
profound business implications. The top manage-
ment must not only fund the project but also take
an active role in leading the change. The success
of a major project like an ERP implementation

completely hinges on the strong, sustained com-
mitment of top management. This commitment
when percolated down through the organizational
levels results in an overall organizational com-
mitment. An overall organizational commitment
that is very visible, well defined, and felt is a sure
way to ensure a successful implementation (Bingi
et al., 1999).

Integration

The system integration between existing infor-
mation systems and ERP system is a technical
problem which might complicate the entire
ERP project (Liang and Lien, 2007). Firms have
amassed multiple software that are either legacy
systems or current add-ons. Different functions of
the company have bought or developed different
applications and are used to the software. Figure
1 illustrates before and after ERP implementation
software integration in a business. Various func-
tions of the firm and possible software associated
with each one of the functions and how ERP can
be integrated with some of the software are shown
in the figure. Some of this software can be replaced

Firm

Purchasing MACPAC
Proc-D

Sales &
Marketing

Siebel

Production MRP IIHuman
ResourcesPeopleSoft

Finance
&

Acct.
Walker

EngineeringCAD/CAM
PDM

DB

DB

DBDB

DB

DB

A. Before ERP Integration
B. After ERP Integration

ERP

Purchasing

Sales &
Marketing

ProductionHuman
Resources

Finance
&

Acct.

Engineering
CAD/CAM
PDM

DB

DB

Figure 1. Integrated ERP software in a firm

 1785

Enterprise Resource Systems Software Implementation

by the newly proposed system and some of them
can be integrated into the software. The databases
(DB) of individual software, for instance product
data management (PDM) database, can be inte-
grated with ERP database as well. In this case,
ERP serves as a backbone, and all the different
software are bolted on to the ERP software. There
is third-party software, middleware, which can
be used to integrate software applications from
several vendors to the ERP backbone. Middleware
vendors concentrate only on the most popular
packaged applications and tend to focus on the
technical aspects of application interoperability
rather than linking business processes. Many
times, organizations have to develop their own
interfaces for commercial software applications
and the homegrown applications. Integration
software also poses other kinds of problems when
it comes to maintenance. It is a nightmare for
information systems group to manage this soft-
ware whenever there are changes and upgrades
to either ERP software or other software that is
integrated with the ERP system.

Until the end of 1996, for example, Dell
Computer Corp. planned to roll out SAP’s full
R/3 suite, but it stopped after implementing only
the HR modules. Jerry Gregoire, who joined
the company as CIO that year, saw that a single
software monolith would not be able to keep pace
with Dell’s extraordinary corporate growth—the
company grows by a billion dollars every six to
eight weeks. Instead Gregoire designed a flexible
middleware architecture to allow the company to
add or subtract applications quickly and selected
software from a variety of vendors, including
Glovia International LLC, to handle finance and
manufacturing functions (Slater, 1999).

reengineering

Reengineering existing business processes to
the best business process standard is one of the
activities in ERP implementation. ERP systems

are process oriented; therefore only in a process-
based organization they can completely express
their integration potentiality (Guido and Pierluigi,
2008). ERP systems are built on best practices that
are followed in the industry. One major benefit
of ERP comes from reengineering the company’s
existing way of doing business. In this case, all
the processes in a company conform to the ERP
software and as a result the cost and benefits of
aligning these processes with an ERP model could
be very high. Since ERP systems such as SAP were
built on a foundation of process best practices, it
is probably easier and less expensive to change
processes to adapt to SAP than the other way
around. Many companies have reported good suc-
cess from combining a SAP implementation with
a reengineering project (Bingi et al., 1999).

The concept of reengineering traces its origins
back to management theories developed as early
as the nineteenth century. The purpose of reen-
gineering is to make all of a firm’s processes the
best-in-class. In reengineering, there is one best
way to conduct tasks.

Initiatives like Business Process Reengineer-
ing (BPR) and ERP promise radical improvements
in relatively short periods of time. Processes,
organization, structure and information technolo-
gies are the key components of reengineering.
In implementing ERP, both business processes
and information technology are combined into
integrated software. This automates business
processes across the enterprise and provides
an organization with a well designed and man-
aged information system. Companies like IBM,
Texas Instruments, American Express, Johnson
& Johnson, Chrysler, Ford, Shell oil and many
others have achieved major reengineering suc-
cesses. Many organizations have successfully
implemented ERP systems and reported huge
benefits. Yet many research studies estimate that
at least 90 % of ERP implementations end up late
or over budget and several failure stories are cited
(Jarrar et al., 2000).

1786

Enterprise Resource Systems Software Implementation

consultants and other resources

Consultants are most often used as implementation
partners at two to ten times the cost of the ERP
software for the initial implementation (Karimi
et al., 2007). The client, the management, must
be involved in the consulting recruitment process.
Simply trusting the consulting firm or not un-
derstanding what the consultants know is a risk.
The more layers between the project manager and
consulting company, the more the consultant’s
rates are reduced means that the consultants are
willing to work for the lower rate and are usually
the least knowledgeable.

sAP: erP softwAre

SAP the company was founded in Germany in
1972 by five ex-IBM engineers. SAP stands for
Systeme, Andwendungen, Produkte in der Daten-
verarbeitung which - translated to English - means
Systems, Applications, Products in Data Process-
ing. SAP AG is now the third largest software
maker in the world, with over 17,500 customers
(including more than half of the world’s 500 top
companies). There are more than 50,000 instal-
lations of SAP, in over 120 countries, with more
then 10 million users! SAP today is available in
46 country-specific versions, incorporating 28
languages including Kanji and other double-byte
character languages. SAP R/3 is delivered to a
customer with selected standard process turned
on, and many other optional processes and features
turned off. At the heart of SAP are about 10,000
tables which control the way the processes are
executed. Configuration is the process of adjusting
the settings of these tables to get SAP to run the
way companies want it to. Functionality included
is truly enterprise wide including: Financial Ac-
counting (e.g. general ledger, accounts receivable
etc), Management Accounting (e.g. cost centers,
profitability analysis etc), Sales, Distribution,

Manufacturing, Production Planning, Purchasing,
Human Resources, Payroll, etc.

SAP is an integrated client/server software ap-
plication. The features of SAP are as follows:

• Centralized database (ORACLE)
• Planning functions like Material Resource

Planning
• Reporting functions
• Business workflow to simulate the busi-

ness
• Development workbench that uses a lan-

guage called ABAP (Advanced Business
Application Programming)

• Implement Management Guide (IMG) used
to configure the system

• An integration of finance, accounting, pro-
duction planning, logistics, sales, material
management, plant maintenance, human
resources, etc.

sAP database

The SAP repository or the data dictionary serves
primarily as a tool to enter, manage, delete and
evaluate company information. The rules for
structuring this information are consistent with
the concepts of the relational data model using
tables and fields. The data repository is active at
all times and therefore the information is always
up-to-date and available to all authorized users at
all times. The SAP repository is built on a table
structure. A database most often contains one
or more tables. Each table is identified by a name
(e.g. “Customers” or “Orders”). Tables contain
records (rows) with data. As shown the Figure
2, there are four different tables for configura-
tion, control, master data and transaction data.
System configuration tables are tables that define
the structure of a system. An example of this
type of table is one that defines the peripherals
such as printers. To customize the system, the
other three tables are used. Control tables define

 1787

Enterprise Resource Systems Software Implementation

functions that guide the users their activities. For
example, a control table might be designed such
that a material master data is entered before a
purchase order is accepted. Control tables con-

tain the structure or the process of the company.
These tables contain data such as which plants are
related which products, which sales organizations
are related which products, etc. Master data tables

System
Configuration
Tables

Control
Tables

Master
Data
Tables

Transaction
Data
Tables

Figure 2. SAP table structure

 FI (Financial Accounting)
• General ledger
• Book close
• Tax
• Accounts receivable
• Accounts payable
• Consolidation
• Special ledgers

CO (Controlling)
• Cost elements
• Cost centers
• Profit centers
• Internal orders
• Activity based costing
• Product costing

MM (Materials Management)
• Requisitions
• Purchase orders
• Goods receipts
• Inventory management
• BOMs

SD (Sales & Distribution)
• RFQ
• Sales orders
• Pricing
• Picking
• Packing
• Shipping

CA (Cross Applications)
• WF – workflow
• BW – business warehouse
• Office – for email
• Workplace
• Industry solutions
•CRM, PLM, SRM, APO etc

PP (Production Planning)
• Capacity planning
• Master production
scheduling
• Material requirements
planning
• Shop floor

AM (Asset Management)
• Purchase
•Sale
•Depreciation
•Tracking

HR (Human Resources)
• Employment history
• Payroll
• Training
• Career management
• Succession planning

QM (Human Resources)
• Planning
• Execution
• Inspections
• Certificates

Figure 3. SAP modules

1788

Enterprise Resource Systems Software Implementation

define customers, vendors, materials, equipment,
etc. Customer master data might include customer
name, address, contact information, etc. This
table might also be related to other tables that
represent the location of warehouse or repair shops
that support the customer. Transaction data table
represents the daily operations data such as sales
orders, invoices and shipments. SAP modules are
shown in Figure 3.

business case for erP
Implementation: It strategy

Companies implement ERP for many reasons.
Y2K (Year 2000) was a costly fix for many
companies and many of them resorted to ERP as
a strategy as an easy, less costly to fix the Y2K
problem. However, these companies found out
that the reality was that ERP takes more time,
more difficult to install, and cost as much if not
more. As a result of the cost and time involved
with the ERP implementation, a business case is
needed. The thought process of IT department
in many of the organizations can be generalized
as below in Figure 4 (Norris et al. 1998). Figure 4
shows the four main components in this thought

process. Information is gathered to be consumed
and this information is managed by applications.
The applications have to be created and managed
by technology. Technology has to be managed by
IT organization with its roles and responsibilities,
and governance. As Norris et al. (1998) points out
IT organizations need to answer the following
questions on information:

1. What is the information?
2. Where does this information come from?
3. How do we create information from data?
4. How does information get distributed?
5. How does information get consumed?

The answers the above questions lead to the
software applications. This is the level that us-
ers of IT and developers of IT deal with most of
the time. Here the following questions need to
be answered:

1. What applications does the company cur-
rently use to collect, collate, compute, and
transform to useful information, store,
distribute, and retrieve data?

management

Management principles,
processes, roles,

governance

Technology

techniques, and tools

Figure 4. IT thought process in a company (Adapted from Norris et al., 1998)

 1789

Enterprise Resource Systems Software Implementation

2. Is there a better application software avail-
able to carry out these tasks in a more ef-
ficient, less time-consuming, less resource-
consuming and less expensive way?

3. Is there software available as Complete-Off-
The-Shelf (COTS)?

4. By using this software, could the company
redirect resources into other areas of the busi-
ness in which it can establish and maintain
competitive advantage?

Then the decision on hardware begins es-
pecially on technology platforms, techniques,
servers, tools, etc. Each company has a different
perspective on each one of these objects. For
example, SAP is platform independent and has
as a company provided an open-architecture
presence which is an advantage for corporations.
Finally, the questions to be answered for the IT
organization are as follows:

1. What management principles will govern
IT organization?

2. What processes for system development,
operations, support and maintenance are
used?

3. What are the roles and responsibilities of
all the individuals in the organization?

4. What is the relationship as in power structure
between the IT organization and the business
units?

This thought process need to be followed before
the implementation of SAP which will ensure
smooth implementation. Once an IT strategy
has been developed, and once an ERP solution
is determined to be right, a company is ready to
build a business case. Business case involves
analysis of cost and benefits and determining the
payback period for the expenses incurred for the
implementation and getting the approvals from
leadership.

Norris et al. (1998) shows how the complexity
of the implementation, as well as the project risk

and cost, increases as a company moves out on
the continuum of the degree of business process
change and up along the continuum of organiza-
tional change. As the level of business process
change is increased, the level of organizational
change necessary to carry it out must also increase.
The key to successful implementation is assertive
control over the project’s scope and over the degree
of business process changes to be undertaken.
Clear objectives and justification (Weston, 2001),
evaluation and selection (Van Everdingen et al.,
2000), alignment between the ERP package and
business strategies and requirements (Somers
and Nelson, 2003) as part of the business case are
critical to the success of implementation. To build
a cost-based business case for ERP, firms need to
extract savings that depend on ERP alone from
the total savings to be had from ERP together
with other sources. Wagle (1998) proposed five
steps that include:

1. Create a base case of year-by-year savings
from cost cuts that could be made without
the ERP system in place.

2. Create an ERP case of year-by-year savings
that could be made with ERP. This should
include savings that do not depend on ERP
as well as those that do.

3. Subtract the base-case savings (step 1) from
the ERP-case savings (step 2) on a year-by-
year basis, and calculate the net present value
(NPV) of the residual cash flow. A positive
NPV will indicate that the firm should prob-
ably proceed with the deployment of ERP.

4. If step 3 produces a positive NPV, conduct
a sensitivity analysis to ensure that the
business case is strong enough to withstand
slippage and cost overruns.

5. Back-allocate all ERP system deployment
costs to individual business units so that they
can factor them into their planning. Ensure
each unit is held responsible for producing
the promised savings.

1790

Enterprise Resource Systems Software Implementation

To summarize, the following factors need to
be considered for the business case:

1. The decision must be driven by the business
considerations, not merely the desire for new
technology

2. Firms need to extract savings that depend
on ERP alone from the total savings to be
had from ERP together with other sources

3. ERP system will not solve business process
and organizational dynamic problems.

4. ERP implementation cannot be delayed
until the company is able to use to its fullest
ability.

sAP IMPleMentAtIon stePs

Botta-Genoulaz et al. (2005) in their survey of
research literature note that recent research is on
ERP post-implementation issues, customization of
ERP projects, and the sociological issues of ERP

systems, and return on investment of ERP systems.
Implementation should depend on the size of the
company (Mabert et al., 2003) and industrial sec-
tor (Wu and Wang, 2003). The roadmap to ERP
or SAP is shown in the figure 5. The roadmap
consists of five key functions that include:

• Project Preparation
• Business Blueprint
• Realization
• Final Preparation
• Go Live and Support

Each one of these functionalities has various
steps. The following figure shows the implementa-
tion steps for enterprise software. The design and
implementation phase consists of the following
functionalities:

• Establishing hardware and SAP settings
• Establishing the key master data

ERPERP

ERPERP Project
Preparation

business
blueprint

ERPERP

Project
realization

ERPERP

Project
final
Preparation

go-live
And
support

Figure 5. SAP implementation roadmap

 1791

Enterprise Resource Systems Software Implementation

• Establishing the processes and functions
inside the organization

• Implementing Reports, Interfaces, Conver-
sions and Enhancements (RICE)

• Testing the system
• Training the users
• Go-Live
• Post production maintenance and support

The reason that ERP system implementations
are time-consuming and costly is because of
the complex nature of the implementation and
the dynamics of the implementation involving
with the organization. The basic functionalities
described above may be expanded and is shown
in Table 1.

Project Preparation

The purpose of this activity is to start detailed
planning for the project. There are many basic

issues to resolve at this early stage to ensure the
project’s success. The principal elements that
determine how the ERP project is accomplished
will be established in this phase. These activi-
ties set the groundwork for project kickoff, and
provide a baseline of information to be referenced
throughout the implementation. For all project
team members to operate in an effective man-
ner, it is necessary that project standards and
procedures are established at the beginning of
the project, and then communicated to all team
members. Project planning is an ongoing cycle
and should be constantly refined. Even when the
project plan is created, it must be made clear that
project planning is a continual, rolling process. As
the project progresses, fewer revisions are neces-
sary. In the SAP Business-to-Business Procure-
ment system, requirement coverage requests for
non-production materials or services are directly
processed further, and purchase orders are placed.
If data is missing for purchase orders, the Materi-

Project
Preparation

Setup
System
Environment

Train
Project
Team

Define
Functions &
Processes

Design
Interfaces
Enhancements

Conceptual
Design
Check

Establish
Global
Settings

Establish
Company
Structure

Establish
Master
Data

Establish
Functions &
Processes

Create
Interfaces

Create
Reports

Establish
Archiving
Management

Create
Enhancements

Create
Forms

Perform
Final Test

Convert
Data

Create
Go-Live
Plan

Create
User
Documents

Setup
Production
Environment

Train Users

Establish
System
Administration

Transfer
Data to

Production

Application
System
Check

Production
System
Check

Conceptual
Design

Design and
Implementation Go-Live Operation

Figure 6. SAP implementation model

1792

Enterprise Resource Systems Software Implementation

Project Preparation Business Blueprint

Initial Project Planning
Project Management Business Blueprint
Phase

Project Procedures
Organizational Change Management Blue-
print

Create Training Plans Technical Design Planning

Project Kickoff Establish Development System Environment
Quality Management Project Preparation
Phase Design Training Plans
 Organizational Structure Definition
Realization Business Process Definition
Project Management Realization Business Process Definition - Final
Organizational Change Management Real-
ization

Quality Management Business Blueprint
Phase

Create Training Materials

Baseline Configuration and Confirmation
Develop System Test Plans Final Preparation

Establish Quality Assurance Environment Project Management Final Preparation Phase
Establish Production Environment Deliver End User Training
Final Configuration and Confirmation System Management
Prepare and Coordinate ABAP Develop-
ment Conduct System Tests
Develop Conversion Programs Detailed Project Planning

Develop Application Interface Programs Cutover

Develop Enhancements Quality Management Final Preparation Phase
Create Reports
Create Forms
Establish User Role and Authorization
Concept Go Live and Support
Establish Data Archiving Production Support
Final Integration Test Ongoing KPI Management

Quality Management Realization Phase Project End

Table 1. Basic functionalities in SAP implementation

als Management functions are used to complete
them. The follow-on documents for the purchase
orders are also created in the SAP Business-to-

Business Procurement system (confirmation,
goods receipt / service entry and invoice). This
phase also includes defining end user training and

 1793

Enterprise Resource Systems Software Implementation

documentation strategy. This includes analyzing
and developing the training and documentation
strategy with the overall implementation strategy
and project plan.

The results of this activity are:

• Project Plan (Work Plan, Budget Plan, Re-
source Plan).

• Project management standards and proce-
dures.

• ERP implementation strategy.
• Approved project organization
• Configuration standards
• End user training and documentation strat-

egy
• Testing strategy
• Post-implementation support strategy
• Design of the company’s system landscape,

including its setup and maintenance strat-
egy

• Official start of the project, presentation of
the input mentioned above, explanation for
any issues or questions about the project
from the kickoff meeting participants.

• All project team members have attended
Level 1 courses and have an introduction
to ERP, navigation skills, and knowledge
of major integration points of the system.

• The formal sign-off of Phase 1.

business blueprint

The purpose of this activity is as follows to cre-
ate the Business Blueprint, which is a detailed
documentation of the results gathered during re-
quirements workshops. Furthermore, the Business
Blueprint documents the business process require-
ments of the company. This phase also establishes
a proper cycle of project management activities to
ensure that the implementation project is on target.
It determines all project planning, controlling and
updating activities. It also identifies where changes
in the relationship between business processes and
the organizational structure need to be managed,

in consultation with departmental management.
The same work package is also in the subsequent
phases. It is also defined now what content the
customer needs, what user populations and needs
that content will serve, and how the content will
be structured. Also, definitions of enhancement
contexts that customers need to create and main-
tain their own materials are completed. In general,
the idea is to start with a single context and then
create additional contexts based on the first one.
The relationships between enhancement contexts
are called enhancement chains. Description of
processes and sub-processes that are particular to
the following business processes such as training
management, performance assessment, and web
content management are also completed in this
phase. At this time, all user master records with
roles and responsibilities along with authorizations
for the project team members are also created.

The business process definitions create the
Business Blueprint. In case of a rollout most of
the company requirements should already be
determined and mapped to the corresponding
ERP software settings. The Business Blueprint
serves as the conceptual master plan, and eventu-
ally becomes a detailed written document. This
document shows the business requirements in
detail, and serves as the basis for organization,
configuration and, if necessary, development
activities. End User Requirements Document,
Current Data Warehouse and Information Access
Environment Document, Master Data/Transac-
tion Data Requirements Document, Data Map-
ping Document, Data Access Recommendations
Document, and Data Management Requirements
Document are also completed.

The outputs of this activity are:

• Regularly scheduled project status meet-
ings

• Updated Project Plan
• Definition of end user roles and responsibili-

ties
• Quality Reviews

1794

Enterprise Resource Systems Software Implementation

• Content Requirements document, which
identifies user populations, existing informa-
tion, and new information requirements.

• A business blueprint
• The technical infrastructure (network,

system, and front-end environment) is
documented

• A signed Business Requirements Analysis
Document to include Completed business
process questions, Completed CI template,
Completed KPI template

realization

The purpose of this phase is to implement business
and process requirements based on the Business
Blueprint. The objectives are final implementation
in the system, an overall test, and the release of
the system for production (live) operation. The
project team also receives relevant knowledge.
All testing is completed in order to implement
the completely functional system

result

The outputs of this activity are:

• Implementation of all necessary enhance-
ment contexts, enhancement releases, and
enhancement context chains

• The data extraction is configured.
• Configured and tested ERP system.
• Tested programs to migrate into the QA

environment
• ERP system meets the business application

requirements as defined in the Business
Blueprint.

Project final Preparation

The purpose of this phase is to perform the estab-
lished cycle of project management activities to
keep the implementation project on target. This

determines all project planning, controlling and
updating activities, and identifies changes between
business processes and the organizational struc-
ture. Project management and consulting manage-
ment must work closely together to guarantee that
the project stays on schedule. Also, technical and
performance tests will be conducted to verify that
the production environment is ready and can be
supported for productive operation. These tests
should be performed in the actual production
environment or in an environment that closely
represents the actual environment. At this time,
the move from a pre-production environment to
live production operation will be done. In addition,
it is important to monitor system transactions and
overall performance. During the process of going
live, there are two critical periods. In the first
few days, the team must execute the production
support plan and check the results. Any issues or
problems that occur in this period must be resolved
as quickly as possible. Following the first few
days of live operation, monitoring issues for the
long term, particularly with reference to system
performance, capacity and functions should be
addressed.

The results of this activity are:

• All roles and responsibilities defined with
proper backups in place

• All procedures and responsibilities docu-
mented and signed off

• The entire technical infrastructure is tested
and validated, including failure scenarios
and disaster recovery.

• The configuration of the system and the
procedures defined for the technical envi-
ronment are tested and validated.

• A stress test is carried out successfully. Its
result determines the validity of the planned
go-live date.

• All ERP system aspects and support orga-
nization is approved, and the production
system is released.

 1795

Enterprise Resource Systems Software Implementation

• The output of this activity is the formal
sign-off of Phase 4.

conclusIon

A brief ERP implementation procedure using the
SAP implementation documentation as well as is-
sues regarding ERP implementations are detailed
in this chapter. ERP implementations in the recent
years have raised a number of questions regarding
its success. Many companies regard ERP as their
one and only savior and many others despise that
ERP as a single system has brought them to their
knees. Regardless, many more companies, small
to medium size companies in particular, are begin-
ning to invest in ERP. An industrial practitioner
from such small to medium companies needs to
understand how to implement ERP. This study
provides the necessary tools and background for
the industrial practitioner to implement not only
ERP systems but implement the next generation
of enterprise applications as well.

references

Aladwani, A. M. (2002). An Integrated Perfor-
mance Model of Information Systems Projects.
Journal of Management Information Systems,
19 (1), 185-210.

Al-Mudimigh, A., Zairi, M., & Al-Mashari, M.
(2001). ERP software implementation: an integra-
tive framework. European Journal of Information
Systems, 10(4), 216-226.

Aloini, D., Dulmin, R., & Mininno, V. (2007).
Risk management in ERP project introduction:
Review of the literature. Information & Manage-
ment, 44(6), 547-567.

Bingi, P., Sharma, M., & Godla, J. 1999. Critical
issues affecting an ERP implementation. Informa-
tion Systems Management, 16(3), 7-14.

Capaldo, G., & Pierluigi, R. (2008). A method-
ological proposal to assess the feasibility of ERP
systems implementation strategies. Proceedings
of the 41st Hawaii International Conference on
System Sciences, Waikoloa, Hawaii, January
7-10, 401-401.

Davenport, T. (1998). Putting the Enterprise into
the Enterprise System. Harvard Business Review,
74(4), 121-131.

Dean, J. (2001). Weathering the ERP Storm.
Government Executive, July 1, 2001

Gebauer, J., & Lee, F. (2008). Enterprise system
flexibility and implementation strategies − Align-
ing theory with evidence from a case study. Infor-
mation Systems Management, 25(1), 71 – 82.

Gefen, D., & Ragowsky, A. (2005). A multi-level
approach to measuring the benefits of an ERP
system in manufacturing firms. Information
Systems Management, 22(1), 18–25.

Hawksworth, M. (2007). Six steps to ERP imple-
mentation. IFS White Paper, IFS.

Hendricks, K. B., Singhal, V. R., & Stratman, J.
K. (2007). The impact of enterprise systems on
corporate performance: A study of ERP, SCM,
and CRM system implementations. Journal of
Operations Management, 25(1), 65-82.

Hilson, G. (2001). Human factor plays big role in
IT failures. Computing Canada, 27(6).

Jarrar, Y. F., Al-Mudimigh, A., & Zairi, M. (2000).
ERP implementation critical success factors-the
role and impact of business process management.
Proceedings of the 2000 IEEE International
Conference on Management of Innovation and
Technology, 1, 122 – 127.

Karim, J., Somers, T. M., & Bhattacherjee, A.
(2007). The impact of ERP implementation on
business process outcomes: A factor-based study.
Journal of Management Information Systems,
24(1),101–134.

1796

Enterprise Resource Systems Software Implementation

Ketbi, O. A., Azaizeh, A., Carrico, W., Cook,
R., & Cooke, D. (2002). 2002 Industry Stud-
ies: Advanced Manufacturing. Report Number:
A105624, Industrial Coll of the Armed Forces,
Washington, D.C.

Botta-Genoulaz, V., Millet, P. A., & Grabot, B.
(2005). A survey on the recent research literature
on ERP systems. Computers in Industry, 56,
510–522.

Koch, C. (2002). The ABCs of ERP. CIO Maga-
zine, March 7, 2002.

Laukkanen, S., Sarpola, S., & Hallikainen, P.
(2007). Enterprise size matters: objectives and
constraints of ERP adoption. Journal of Enterprise
Information Management, 20(3), 319–334.

Liang, S., & Lien, C. (2007). Selecting the optimal
ERP software by combining the ISO 9126 stan-
dard and fuzzy AHP approach. Contemporary
Management Research, 3(1), 23-44.

Mabert, V. A., Soni, A. K., & Venkataramanan,
M. A. (2003). The impact of organization size on
enterprise resource planning (ERP) implementa-
tions in the U.S. manufacturing sector. Omega ,
31, 235-246.

Moon, Y. B. (2007). Enterprise resource planning
(ERP): A review of the literature. International
Journal of Management and Enterprise Develop-
ment, 4(3), 235-264.

Norris, G., Wright, I., Hurley, J., Dunleavy, J., &
Gibson, A. (1998). SAP: An Executive’s Com-
prehensive Guide. John Wiley & Sons, Inc., New
York, NY.

Ranganathan, C., & Brown, C. V. (2006). ERP
investments and the market value of firms: To-
ward an understanding of influential ERP project
variables. Information Systems Research, 17(2),
145-161.

Ravichandran. T., & Rai. A. (2000). Quality
management in systems development: An orga-
nizational system perspective. MIS Quarterly,
24(3), 381-416.

Sharma, R., & Yetton, P. (2003). The contingent
effects of management support and task inter-
dependence on successful information systems
implementation. MIS Quarterly, 27(4), 533-555.

Slater, D. (1999). How to choose the right ERP
software package. CIO, February 16, 1999.

Somers, T. M., & Nelson, K. G. (2003). The
impact of strategy and integration mechanisms
on enterprises system value: empirical evidence
from manufacturing firms. European Journal of
Operational Research, 146, 315-38.

Stedman, C. (1998). Global ERP rollouts pres-
ent cross-border problems. Computerworld, 32
(47), 10.

Van Everdingen, Y., Van Hillegersberg, J., &
Waarts, E. (2000). ERP adoption by European
midsize companies. Communications of the ACM,
43(4), 27-31.

Wagle, D. (1998). The case for ERP systems. The
McKinsey Quarterly, 2, 130-138.

Weston, F. C. (2001). ERP implementation and
project management. Production and Inventory
Management Journal, 42(3/4), 75-80.

Wu, J. H., & Wang, Y. M. (2003). Enterprise
resource planning experience in Taiwan: An
empirical study and comparative analysis. 30th
Annual Hawaii International Conference on
System Science (HICCS ’03), Big Island, Hawaii,
January 6-9.

Wu, L., Ong, C., & Hsu, Y. (2008). Active ERP
implementation management: A Real Options
perspective. Journal of Systems and Software,
81(6), 1039-1050.

 1797

Enterprise Resource Systems Software Implementation

key terMs

Customization: Customization refers to modi-
fications to the original software that is typically
not supported by the software vendor and those
needed by the customer because of their unique
business processes.

Enterprise Resource Planning (ERP):
Software systems for business management that
integrates functional areas such as planning,
manufacturing, sales, marketing, distribution,
accounting, finances, human resource manage-
ment, project management, inventory manage-
ment, service and maintenance, transportation,
and e-business.

Enterprise Systems: Enterprise systems are
software that provides solutions to an integrated
business organization.

Implementation: Implementation consists of
defining a project, putting together project teams,
reengineering of existing business processes,
customizing the software to reflect new business
processes, testing the software in organizational
environment such that the software is usable for
the organizational users.

Integration: ERP software integration is the
process of integrating ERP systems with other en-
terprise information resources or systems within
an enterprise.

Management Commitment: Management
commitment is direct participation by the highest
level executives in a specific and critically impor-
tant aspect or program of an organization.

This work was previously published in Handbook of Research on Enterprise Systems, edited by J. N.D. Gupta, S. K. Sharma &
M. A. Rashid, pp. 245-261, copyright 2009 by Information Science Reference (an imprint of IGI Global).

1798

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 4.25
Teaching Operations

Management with
Enterprise Software

R. Lawrence LaForge
Clemson University, USA

AbstrAct

Enterprise systems technology is used to en-
hance the teaching of operations management
through development and operation of a virtual
manufacturing enterprise. An ongoing, real-time
simulation is conducted in which operations man-
agement issues in the fictitious factory must be
addressed on a daily basis. The virtual manufac-
turing enterprise is integrated into an operations
management course to facilitate understanding of
the dynamic and interrelated nature of operations
planning and control in a complex manufacturing
environment. Enterprise software supports the
primary learning objective of understanding how
operations management decisions affect customer
service, capacity, inventory, and costs.

IntroductIon

This chapter presents an approach to teaching
operations management (OM) with enterprise
systems technology. The approach described here
is based on the premise that the topics taught in
operations management courses are dynamic and
interrelated. Therefore, the teaching and learning
of operations management should address not
only the content of each specific topic, but also the
dynamic interrelationships among the topics.

The integration of OM topics is extremely
difficult to accomplish in a traditional classroom
setting. There are several excellent OM textbooks
available in the market, and they generally provide
information needed to study the content of OM
topics such as aggregate sales and operations
planning, master production scheduling, mate-
rial planning and control, capacity planning and
control, and production activity control. However,

 1799

Teaching Operations Management with Enterprise Software

textbooks are a static medium that cannot cap-
ture the dynamic interrelationships between and
among the topics. The topics in an OM textbook
must necessarily be presented in sequential fash-
ion organized by chapter or unit, and conventional
testing typically focuses on the content (issues,
concepts, tools, techniques) related to each topic.
True insights into the connections among the top-
ics are extremely difficult or impossible to glean
from even the best textbooks.

As an example of the interrelationship of op-
erations management issues, consider the topics
of aggregate planning and production activity
control. Aggregate sales and operations planning
deals with the company’s overall strategy for
meeting anticipated demand of broadly-defined
product families over a planning horizon of 12-18
months. Production activity control, on the other
hand, deals with day-to-day (or hour-to-hour)
scheduling and sequencing issues for internal shop
orders to make component parts or assemblies
needed for specific products. The two topics are
at extreme ends of the continuum and are invari-
ably covered in completely different sections of
the typical OM text, but they are in fact highly
interrelated. While we might be tempted to seek
sophisticated algorithms and models to help with
complex scheduling issues that occur on a daily
basis, it may be that our day-to-day scheduling
issues are the result of poor overall planning at
the product family level.

The previous argument suggests that conven-
tional classroom lectures, textbook readings, and
end-of-chapter exercises are necessary but not
sufficient to gain insights needed to understand
operations management. This chapter describes
an ongoing project in which the desired syn-
ergy is addressed by the introduction and use of
enterprise-wide system (ES) technology in the
operations management classroom.

The objectives of this chapter are to raise the
level of awareness regarding the need for active
learning approaches to operations management,
to describe in detail an approach to teaching OM

with enterprise technology, and to discuss lessons
learned that may be of benefit to other scholars
and teachers interested in this approach.

bAckground

The practice and teaching of operations manage-
ment has been impacted significantly by advance-
ments in information technology (Manetti, 2001;
Rondeau & Litteral, 2001). The development of
material requirements planning (MRP) systems
in the 1970’s revolutionized thinking about how
to manage materials in a manufacturing environ-
ment. This provided an alternative to economic
lot size models that assumed that demand for all
inventory items was independent, and it promoted
more of a systems perspective to materials man-
agement. This was followed by manufacturing
resource planning (MRPII) systems that provided
additional functionality related to capacity plan-
ning, limited financial analysis, and “what-if”
planning. More recent enterprise resource plan-
ning (ERP) systems aim to link together the vari-
ous functional areas of operations, accounting,
finance, customer relationship management, and
human resources. ERP systems can be enhanced
with advanced planning system (APS) modules
for obtaining near-optimal scheduling, manufac-
turing execution system (MES) modules for shop
floor control, and/or supply chain management
(SCM) modules designed to integrate planning
and execution with suppliers and customers.

A key aspect of this evolution is integration.
Organizations have made significant investments
in hardware, software, and training to install,
maintain, and use enterprise-wide systems de-
signed to better integrate their activities (Hitt, Wu,
& Zhou, 2002; Mabert, Soni, & Venkataramanan,
2000). It is logical to assume that collegiate schools
of business would also value, and seek to achieve,
higher levels of integration in the topics taught in
the curriculum (Cannon, Klein, Koste, & Magal,
2004; LaForge & Busing, 2000).

1800

Teaching Operations Management with Enterprise Software

In operations management, the objective of
topic integration could be pursued in two ways.
One way is to seek greater insights into the in-
terrelationships of topics taught in a given OM
course. Another way is to focus on the impact of
operations management decisions on other func-
tional areas in the organization such as account-
ing, finance, marketing, and human resources or
on inter-organizational issues with suppliers and
customers. That is, the goal could be integration
within a given course and/or integration across
courses. This chapter provides details on the first
approach, which has been implemented under the
assumption that one must achieve a high level of
understanding of operations management issues
before assessing their impact on other areas.
However, the chapter also includes a discussion
of efforts to achieve “across course” integration,
which builds on the application of enterprise
software in the operations management course
described next.

tHe oPerAtIons MAnAgeMent
course

The section describes an operations management
course that has been enhanced by the use of
enterprise software. The course is an advanced,
undergraduate course in operations planning
and control taken by primarily by management
majors at Clemson University. The course top-
ics are aggregate sales and operations planning,
master production scheduling, material planning
and control, capacity planning and control, and
production activity control. The textbook used in
the course is a primary study reference for the Cer-
tified in Production and Inventory Management
(CPIM) examinations offered by APICS — The
Society for Operations Management. Traditional
classroom activities such as textbook readings,
lectures, end-of-chapter exercises, and testing of
content are involved.

A primary learning objective of the course is
to understand and appreciate the dynamic interre-
lationships among the course topics. As discussed
earlier, the traditional classroom activities are
necessary to establish content knowledge of each
major topic, but do not address the integration
of the OM activities in a meaningful way. The
issue of integration of OM topics in the course is
addressed in the same way that a manufacturing
company would address the issue of integration
of key OM activities in its facilities — through
the introduction of information systems technol-
ogy. The technology is used to create and operate
a virtual manufacturing enterprise in which the
OM issues under study are carried out simultane-
ously on a daily basis. The virtual manufacturing
enterprise is the focal point for active learning
opportunities that address the integration issues
and learning objectives. Table 1 shows details
from the course syllabus regarding the body of
knowledge and learning objectives.

In the following section, the virtual manu-
facturing enterprise is described in terms of four
components necessary to create and maintain it.
This will be followed by a detailed description
of how the virtual enterprise is used to address
the learning objective.

the virtual Manufacturing enterprise

The virtual manufacturing enterprise can be
described by the four components shown in
Figure 1. These elements consist of the body of
knowledge, manufacturing database, enterprise
software, and enterprise information. The follow-
ing sections explain the four components of the
virtual manufacturing enterprise and address key
issues in developing each component.

body of knowledge

The most important component of this approach
to teaching operations management is a clear

 1801

Teaching Operations Management with Enterprise Software

Table 1. Syllabus information for the OM course

Teaching Oper at ions Management wit h Ent er pr ise Sof t war e 141

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission
of Idea Group Inc. is prohibited.

Table 1. Syllabus information for the OM course

Management 402
Operations Planning and Control

Clemson University

NATURE OF THE COURSE:

This course examines important concepts and procedures involved in managing the operations of a business
enterprise. All class meetings take place in the Manufacturing Management Laboratory. This laboratory provides
access to a realistic simulation of a business operation utilizing a state-of-the-art enterprise resource planning
(ERP) system that is widely used in industry.

Students will study important concepts, issues, and procedures of an operations planning and control system,
and then put this knowledge to work in a virtual manufacturing enterprise that is supported by the ERP system.
Class meetings will be a combination of lecture and student participation. The basic concepts and procedures
will be presented through instructor lecture, reading assignments, and class/homework exercises. The concepts
will be reinforced through “hands on” experience with the ERP system and the virtual enterprise. Particular
attention will be paid to the interaction of planning/control activities, and how decisions made at one level of
the planning process affect output and performance at lower levels.

A model manufacturing company — Orange Office Products — is used to illustrate many of the topics in the
course. Orange Office Products is a fictitious manufacturer of office furniture equipment that was developed
specifically for use in this course. The database for Orange Office Products has been installed on the ERP
system, providing live information about products, inventory levels, plant capacity, manufacturing orders,
purchase orders, and much more.

Orange Office Products is an ongoing, real-time simulation of a manufacturing operation. The database changes
daily to reflect the activities of the company. Students in Management 402 will observe and participate in many
of these important operations management activities.

MAJOR TOPICS IN THE COURSE:

1. Overview of Planning and Control Systems
2. Material Planning and Control
3. Production Activity Control
4. Aggregate Sales & Operations Planning
5. Master Production Scheduling
6. Capacity Planning

OBJECTIVES OF THE COURSE:

Students who complete this course should be able to:

1. Explain the basic components of an operations planning and control system;
2. Understand the interrelationships among planning and control activities in a business operation, and

their impact on customer service, inventory, capacity, and costs.
3. Develop, apply, and interpret the results of basic procedures for inventory planning, capacity manage-

ment, shop floor control, aggregate production planning, and master scheduling;
4. Understand and appreciate the importance of operations management and the role of information tech-

nology in modern planning and control systems.

continued on

1802

Teaching Operations Management with Enterprise Software

statement of the body of knowledge to be taught.
All other components of the virtual manufactur-
ing enterprise, and all other activities, should be
undertaken with the objective of addressing or
supporting the body of knowledge in some way.
This is important because without a clear state-
ment of the body of knowledge, one may fall into
the trap of teaching what a software package does

rather than teaching what the curriculum says. As
shown in Table 1, the body of knowledge for the
OM course described here consists of concepts,
issues, and tools for performing the previously-
mentioned topics of aggregate sales and operations
planning, master production scheduling, material
planning and control, capacity planning and con-
trol, and production activity control.

OBJECTIVES OF THE COURSE:

Students who complete this course should be able to:

1. Explain the basic components of an operations planning and control system;
2. Understand the interrelationships among planning and control activities in a business operation, and

their impact on customer service, inventory, capacity, and costs.
3. Develop, apply, and interpret the results of basic procedures for inventory planning, capacity manage-

ment, shop floor control, aggregate production planning, and master scheduling;
4. Understand and appreciate the importance of operations management and the role of information tech-

nology in modern planning and control systems.

Table 1. Syllabus information for the OM course (continued)

Figure 1. Components of the virtual manufacturing enterprise

Enterprise
Software

Enterprise Information
• Organization

Chart
• Job Descriptions
• Operating Policies

A Virtual Manufacturing
Enterprise for Teaching
Operations Management

Body of

Knowledge

Manufacturing
Data Base

• Products
• Parts
• Bills of

Material
• Work Centers
• Routings

 1803

Teaching Operations Management with Enterprise Software

Manufacturing database

The database provides needed details of products,
parts, bills of material, routings, work centers, cus-
tomers, and suppliers. These details are essential
for developing a realistic enterprise model capable
of capturing the issues in the body of knowledge.
While realism is needed, this does not mean that
the database must consist of hundreds of products
and thousands of parts. Realism in the database
can and should be achieved through complex in-
terrelationships among the elements, not through
sheer size. Experience here suggests that size of
the database is not as important as well conceived
connections among the elements.

An original database for a fictitious manufac-
turing enterprise was created for the operations
management course in this project. The decision
to create an original database, rather than use
sample data provided by the software vendor, was
made to allow complete control over the size of
the data set and the interacting components that
result in operations management issues addressed
in the course.

The fictitious manufacturer produces metal-
based office furniture products. This environment
was chosen because the products are common
items that are easy to conceptualize for students
with little or no practical experience in operations
management. The database contains technical
descriptions of five standard office furniture
products that are manufactured in a make-to-stock
environment: (a) three-shelf adjustable book case,
(b) three-drawer file cabinet, (c) two-drawer work
desk, (d) standard desk chair, and (e) one-shelf
credenza. In addition to manufacturing details, a
chart of accounts and other financial information
were created to facilitate use of the virtual enter-
prise in accounting and other business courses,
as discussed later in the chapter.

The inventory portion of the manufacturing
database consists of 45 total items, including the
five finished products. Twenty-two of the items are

manufactured in house, while 23 are purchased
from suppliers. The manufactured items typically
consist of metal parts (handles, frames, brackets,
shelf units, etc.), while the purchased items include
raw sheet metal, hardware, paint, packaging ma-
terials, wooden parts, and accessories.

Bills of material were created to link the items
needed to make each product. These documents
are multi-level in nature, reflecting a process
that flows from purchased materials to manu-
factured parts to assemblies to final products.
Several items are common to different products,
including handles, shelf units, and a major drawer
assembly.

The manufactured items in each bill of mate-
rial are made in a production facility consisting
of nine distinct work centers. A routing file was
created for each manufactured item that identi-
fies the work center sequence required and the
standard setup time and standard run time per
unit for processing the item. Multiple operations
are required to make each manufactured item.
Defined shift lengths dictate the available capacity
of each work center.

The database supports the body of knowledge
by being small enough to allow manual calcula-
tion and tracking of some issues, but large enough
to capture complex interrelationships impacted
by operations management decisions. The major
challenge in creating the manufacturing database
was establishing parameter values (routing steps,
standards for setup times and run times, work
center capacities, planned lead times, etc.) that
result in shop loads that introduce meaningful op-
erations management issues to students. Capacity
planning modules in the enterprise software assist
in this issue by providing projected workloads
for a given configuration of parameter values,
facilitating adjustment of planning parameters
as necessary. Development of the database is
an ongoing activity, allowing the introduction
of new parts, revised routings, adjusted planned
lead times, and various other issues.

1804

Teaching Operations Management with Enterprise Software

enterprise resource Planning
software

Introduction of enterprise resource planning
software into an academic course obviously re-
quires an answer to the following question: What
software should be used? In this context, software
should be viewed as the enabling technology that
allows issues in the body of knowledge to “come
to life” in a dynamic and realistic way. The func-
tionality needed in the software is defined by the
body of knowledge. Ideally, software selection
should focus on systems that implement gener-
ally-accepted methods to address and integrate
issues under study. That is, the software should
be consistent with the methods described in the
text and established in the curriculum. What the
software does is give life to the issues and help
create a dynamic and meaningful context for
studying them.

Realistically, other issues come into play in
the software selection decision. Costs associ-
ated with hardware, implementation, training,
and maintenance must be considered. With the
budget constraints and limited technical support
that exist at many universities, these issues must
be carefully weighed to ensure that the system
can be sustained. However, the compatibility of
the software with the body of knowledge must
be the overriding consideration. It would be in-
defensible to introduce a software system into the
curriculum simply because it was available or easy
to maintain without regard to the value it adds to
pre-established learning objectives for the subject
matter in the course or curriculum. The teaching
approach should not be software specific.

Fortunately, there are many software options
available that are consistent with generally-ac-
cepted practices in operations management. In
addition, many software vendors have special
pricing arrangements, or make free donations
of software and support, for educational institu-
tions using their products in the curriculum. Over

the twenty years in which the project described
here has been under development, four different
software systems, each from a different vendor,
have been utilized.

Current enterprise software system support for
this project comes from the Microsoft Dynam-
ics Academic Alliance. This alliance not only
provides software, but also support, training, and
opportunities to interact with faculty at other in-
stitutions. Specifically, the activities in the virtual
manufacturing enterprise are supported by the
Manufacturing Series of Microsoft Dynamics
GP 9.0. The system runs on a Dell PowerEdge
Server 2600, with the client applications avail-
able through the Clemson University network
to smart classrooms and laboratories throughout
the campus.

enterprise Information

This component of the virtual manufacturing
enterprise refers to a description of the enter-
prise in sufficient detail to establish the context
in which the simulated company operates. This
background information is important for students
to get the feel of a realistic enterprise. In addition
to background information on the company, this
material also includes defined roles in the virtual
manufacturing enterprise that relate to the body
of knowledge, as well as policies and operating
procedures. Details of this information will be
presented later in the chapter.

oPerAtIng tHe vIrtuAl
MAnufActurIng enterPrIse

The virtual enterprise is operated in a continuous,
real-time mode without regard to the starting and
ending dates of academic terms. The calendar in
the enterprise system is maintained so that the
factory is closed on academic holidays and other
“down time” in the academic calendar. However,

 1805

Teaching Operations Management with Enterprise Software

the database is never reset back to initial condi-
tions. In this manner, the virtual manufacturing
enterprise is, in every sense, a going concern.

Daily decision making and transaction pro-
cessing are required in the virtual manufacturing
enterprise just they are in a real company. The
virtual factory operates in real-time mode in that
daily decisions must be made on matters related
to accepting customer orders, shipping products,
updating operating plans, managing materials,
allocating capacity, and implementing scheduled
work activity. A number of random events can be
incorporated into the virtual factory that must be
considered in the daily decision making, such as
actual customer demand, vendor performance,
and unexpected down time in work centers. Daily
transaction processing is required to report all de-
cisions, activities, and events affecting the virtual
enterprise and keep the database up to date. Each
day materials and products are moving through the
virtual factory from receipts of raw materials, and
processing of manufacturing and customer orders.
At any time that an inquiry is made into the
information system, the user sees current dates
related to all activities. In short, the system is live
and operated on a day-to-day basis.

The previous operational decisions were made
to achieve the realism needed for meaningful ac-
tive learning tasks that capture the dynamic inter-
relationships among the operations management
topics taught in the course. Without such realism,
only static inquiries into the system would be pos-
sible. While important to achieving the learning
objectives of the course, this realism comes with
a price. There is an “overhead” associated with
operating the virtual enterprise in the form of
instructor or graduate assistant time needed to
perform the daily decision making and transaction
processing necessary to keep the database current.
To minimize the overhead of the daily routine,
all activities are periodically evaluated to ensure
that they add value with regard to accomplishing
the learning objectives.

New features or issues that could be incor-
porated into the operation of the virtual factory
are considered by weighing the potential value
added to student learning against the additional
overhead required to implement and maintain
the new feature. For example, should routines be
added to introduce uncertainty into all activities
of the factory (e.g., processing times, lead times,
customer demand, machine availability), or will
uncertainty in final customer demand introduce
enough uncertainty to create a meaningful sce-
nario? In this project, uncertainty in final customer
demand suffices, but that may not necessarily be
the case in other situations with more experienced
students in graduate programs, or in courses with
different learning objectives.

usIng tHe vIrtuAl enterPrIse
to AcHIeve tHe leArnIng
objectIves

The virtual enterprise is integrated into the op-
erations management course in two ways that
are described in detail in the following sections.
First, activities are described for integrating the
virtual factory into routine class activities. Next,
a major project is described in which selected
students assume managerial roles in the virtual
enterprise and participate in daily decision mak-
ing and transaction processing.

class Activities using the virtual
Manufacturing enterprise

Students in the operations management course
are seated at a work station and have access to the
live ERP system during all class sessions. This
enables the instructor to enhance traditional class-
room instruction with the live system, providing
a meaningful context for the course topics. The
virtual manufacturing enterprise enhances, but
does not replace, traditional classroom activities

1806

Teaching Operations Management with Enterprise Software

such as lectures, discussion, and problem solving.
After basic concepts and methods for a particular
topic, such as material planning, have been ad-
dressed, students access data in the live system
to explore key issues within the context of the
virtual enterprise.

There are generally three objectives in using
the virtual factory and enterprise software in the
manner described above to enhance traditional
classroom instruction: (1) identifying key con-
cepts or issues, (2) verifying outputs of planning
functions, and (3) understanding dynamic inter-
relationships.

Identifying key concepts or Issues

This provides a meaningful context for key con-
cepts in the text that might appear to students to
be abstract, and it facilitates more meaningful
discussion of the issues. Rather than memorize
a concept or definition, students have an oppor-
tunity to see practical implications of the issue.
For example, material planning activities in the
MRP module of the system rely on user-supplied
parameters referred to as planned lead times.
Memorizing the definition of “planned lead time”
is one thing, but coming to grips with the fact that
MRP-based planning cannot begin until we enter
these numbers, understanding what one must do
to establish reasonable values for this planning
parameter, and realizing the implications of using
“bad” numbers are much more valuable lessons
for operations management students.

verifying outputs of Planning
functions

This enables students to test their knowledge
of planning methods with live data in the ERP
system. With a carefully constructed database
that is realistic in connecting the various ele-
ments but small in size, students can manually
verify some outputs of the system. For example,

the MRP record for a purchased item in the
database may show a planned order release on
the current date for certain quantity of the item.
This means that we should launch a purchase
order today to the supplier of the item for the
specified quantity. Without the planned purchase
order, we will not have sufficient quantity of the
item to meet projected requirements for the item
in the future. While most ERP training would
focus on the transaction processing necessary to
create and release the purchase order, the focus
here is on the planning logic that resulted in the
order recommendation in the first place. Why is
the system telling us to do this?

Operations management students who have
studied the basic logic of material requirements
planning should be able to answer the above
question by accessing relevant data from the live
system (current master production schedule, bills
of material, planned lead times, available inven-
tory, and open orders), and applying the same
MRP logic used to work end-of-chapter problems
in the text. Successful completion of this exercise
goes beyond simply accessing information in a
computer system — it requires knowledge of
how that information has been generated and,
therefore, provides insights into the usefulness
and potential limitations associated with the
information. Further, because the virtual factory
operates on a real time calendar and is updated
daily, students can test their skills repeatedly
since the numbers are constantly changing with
new conditions in the factory.

understanding dynamic
Interrelationships

This is a key learning objective and is facilitated
by the live system in which the various operations
planning and control activities are taking place
simultaneously. Some key links between planning
activities can be examined in classroom sessions
in which changes are introduced into the system.

 1807

Teaching Operations Management with Enterprise Software

Table 2. Using the virtual manufacturing enterprise for class activities

Identifying Key Concepts and Issues

Using the live system to access data and discuss issues related to:

• Importance of planned lead times
• Impact of ordering policies
• Importance of inventory record accuracy
• Meaning and use of “floor stock”
• Impact of standard queue times in scheduling
• Differences between backward and forward scheduling

Verifying Outputs of Planning Functions

Applying standard methods in the textbook to verify data in the live
system related to:

• Projected available inventory
• Available to promise
• Order recommendations in material requirements planning
(MRP)
• Rescheduling messages for open orders
• Operation due dates for scheduled manufacturing orders
• Projected work center loads

Understanding Dynamic Interrelationships

Using the live system to assess cause-and-effect relationships, such
as:

• Changes in the material plan needed to accommodate a special
customer order
• Capacity needed for a change in the master production schedule
• Effect of reducing planned lead times on shop capacity
• Impact of shop downtime on meeting the master production
schedule
• Effect of reducing setup times on shop capacity
• Impact of different scheduling approaches in the shop
• Material planning actions needed to overcome scrap on the pro-
duction floor

1808

Teaching Operations Management with Enterprise Software

For example, a change in the master production
schedule of a finished product could be made dur-
ing a class session to accommodate an unusually
large customer order. This in turn will trigger a
series of changes in material plans, capacity needs,
and work center schedules that are explainable,
tractable, and predictable. Working through these
changes gives students insights into the dynamics
of operations management that are not possible in a
traditional setting. These are extremely important
insights that help students understand trade-offs
involved in balancing customer service objectives
with inventory and capacity issues.

Table 2 provides additional examples of the
use of the virtual manufacturing enterprise and
ERP system to enhance class activities.

class Project in the virtual
Manufacturing enterprise

In the first half of the semester, all daily decision
making and transaction processing necessary to
run the virtual factory are done by the instructor
and graduate assistant assigned to the project.
During this period, students in the operations
management course are engaged with the enter-
prise system through the class activities described
above, but are limited to inquiry capabilities and
have no decision making or transaction processing
authority in the system.

At approximately mid semester, selected
students take an active role in the daily manage-
ment of the virtual enterprise as part of a course
project. In the target OM course, selection is
based on student performance, motivation, and
career interest. Participating students perform all
project activities during special laboratory hours
held outside of the normal class meeting time,
and must agree that a formal assessment of their
performance in the project will become their final
examination grade in the course. In this manner,
the participants substitute an active learning
project that addresses all course concepts for the
traditional cumulative final examination.

The student roles relate to the body of knowl-
edge in the course. The three major roles related to
the target course are master production scheduler,
inventory planner, and work center manager.
Multiple students can occupy each of these roles
at the same time. In addition, roles are defined
for the plant manager, materials manager, and
production manager. The plant manager role
is performed by an assigned graduate assistant
with significant work experience in operations
management, while the materials manager and
production manager are undergraduate students
enrolled in a special independent study course
who completed the target operations manage-
ment course in a previous semester (and therefore
previously served as master production scheduler,
inventory planner, or work center manager). Brief
job descriptions of each of these key roles are
provided in Table 3.

The student roles require content knowledge of
operations management topics acquired through
traditional classroom activities. It is for that rea-
son that assigned student roles go into effect near
the midpoint of the semester, at which time the
student team replaces the instructor and graduate
assistant in the daily decision making and trans-
action processing necessary to keep the system
live and current.

Enterprise policies are published that provide
general guidelines for student activity in the vir-
tual manufacturing enterprise and specific rules
for assigned roles. General policies apply to all
student participants and deal with communication
and reporting responsibilities. Rules for specific
roles place requirements and responsibilities on
students as they deal with unexpected situations
in performing their assigned duties. For example,
work center managers may schedule overtime in
their assigned work center in a given day, but only
if they submit a request at least one day in advance
with appropriate justification and receive ap-
proval from the plant manager. Master production
schedulers may make any changes in the master
schedule they feel necessary, but changes in the

 1809

Teaching Operations Management with Enterprise Software

Table 3. Key OM roles in the virtual manufacturing enterprise

Plant Manager (graduate assistant)

Responsible for all activities of the Virtual Manufacturing Enterprise.

Materials Manager

Coordinates activities to provide material needed to meet the master production schedule.
Monitors material needs and order status, anticipates problem situations, and coordinates
activities to solve problems in a timely fashion. Serves in a supervisory position and does
not perform daily transactions related to materials management.

Production Manager

Coordinates shop floor activities required to meet the master production schedule. Monitors
work in process, order priorities and capacity at each work center. Anticipates problem
situations and coordinates activities to solve problems in a timely fashion. Serves in a
supervisory position and does not perform daily transactions related to shop activity.

Master Production Schedulers

Develop and maintain the master production schedule for assigned end items. Receive
and enter customer orders, adjust master schedule quantities as needed to meet demand
and finished goods inventory targets, receive completed finished goods into inventory,
process sales shipments to customers, and track customer service levels. Responsible for all
decision making and transaction processing related to the master production schedule.

Inventory Planners

Initiate and monitor actions to obtain needed assemblies, components, and materials to
meet the master production schedule. Responsible for all decision making and transac-
tion processing to order, schedule/reschedule dues dates, and receive assigned inventory
items.

Work Center Managers

Responsible for managing assigned work centers to meet manufacturing plans. Manage
work center capacity, establish and execute daily job schedules, and coordinate operations
with related work centers. Responsible for decision making, transaction processing, and
reporting requirements in the assigned work area.

1810

Teaching Operations Management with Enterprise Software

very near term must be justified in writing since
these changes affect material and capacity plans
that have already been implemented. The master
production schedulers must be able to explain the
impact of changes they propose. These and other
policies force students to use the information
system to plan ahead, anticipate problems, and
communicate with each other.

During the second half of the semester, all
decision making and transaction processing are
conducted by the student team. Factory condi-
tions resulting from these decisions provide the
data used in the classroom activities during the
second half of the semester as described in the
previous section.

Weekly factory performance metrics are com-
puted and posted in a public place so that factory
performance can be viewed by all students and
observers, whether or not they are direct partici-
pants in the project. These metrics include total
sales shipments, customer service level (percent
of customer orders shipped on time and complete),
overtime hours worked in the facility, work in
process inventory, finished goods inventory, and
total inventory. Factory performance for several
previous semesters is available so that students can
see their performance relative to previous classes
and to periods in which the instructor and graduate
assistant were managing the factory. The formal
performance assessment of each student at the
conclusion of the project includes both individual
performance and factory performance.

Project results continually show that successful
management of the virtual factory requires more
than simple content knowledge of operations
management tools and techniques presented in
textbooks. The dynamics of the virtual enterprise
require students to deal with uncertainties and
ambiguities, to make decisions in real time, and
to coordinate their activities and understand how
their roles and operations management decisions
are interrelated. Successful completion of the
project requires not only technical competence
in operations management and expertise in using

enterprise software, but also teamwork, commu-
nication, and leadership.

overall effectiveness of the
Approach

There are a number of indicators that the use of
enterprise software to teach OM as described
above is effective. Three indicators discussed
below include the success of former students,
continuing support from the business community,
and external recognition from academic and
professional societies.

Student participants in the project have been
well received in the job market, and many report
that their hands-on experience with enterprise
systems was a major factor in attracting interest
from potential employers. Many former students
hold positions of major responsibility in manu-
facturing firms, and have supported the program
through donations and testimonials.

In the twenty years that the project has been
under development, over $1.5 million in hardware,
software, and support services has been donated
by industrial partners and supporters. The proj-
ect began in the mid 1980s with assistance from
IBM, who provided MAPICS II software run-
ning on an IBM System 36 minicomputer. The
project evolved with later versions of MAPICS
designed for the AS400 series of IBM computers.
Various software packages such as JOBSCOPE
and FACTOR have been donated and utilized
in the manufacturing simulation as the project
evolved. Recent support from Microsoft Busi-
ness Solutions has facilitated more of a total
enterprise approach that integrates the virtual
factory with accounting courses at Clemson, as
described in the “Future Trends” section below.
This continuing and evolving industrial support
is an indicator of the relevance of the approach,
and has enabled the project to stay on the cutting
edge of information technology.

The project has also received significant
external recognition through formal awards

 1811

Teaching Operations Management with Enterprise Software

from academic and professional societies and
business organizations, including the Decision
Sciences Institute, the Academy of Business, and
Microsoft Business Solutions, as well as special
recognition from the Carnegie Foundation for
the Advancement of Teaching and the Council
for the Advancement and Support of Education
(CASE). In addition, instructors in the project
have won numerous teaching awards from campus
student groups.

future trends

Integration of topics in the business curriculum
is likely to be more important in the future as
firms continue to rely on enterprise systems to
link activities and processes internally and with
external suppliers and customers. Enterprise
systems are a potentially important resource for
collegiate schools of business because they facili-
tate meaningful integration in the curriculum. As
the operations management project described in
this chapter continues to evolve, efforts have been
undertaken to utilize the virtual manufacturing
enterprise in other business courses as well.

The first step in this process involves various
accounting courses at Clemson University. Daily
operational decision making and transaction pro-
cessing in the virtual manufacturing enterprise
generate accounting data that are examined and
processed in a number of different accounting
courses. Introductory accounting courses use
the ongoing live model to illustrate business
events that are discussed in accounting texts,
while intermediate accounting students work
on financial problems that occur in the virtual
enterprise and develop accounting adjustments
as needed. This provides opportunities for ac-
counting instructors to address issues involving
asset purchases, accounts receivable write-offs,
mortgage loan amortizations, and other problems,
all in a dynamic environment created by the virtual
manufacturing enterprise.

A logical extension of these activities is the
development of courses that combine teams of
management, accounting, and other business
students working together to manage the virtual
enterprise. This type of across-course integra-
tion could be the wave of the future in business
schools, and it will likely blur the boundaries
between traditional courses in functional areas
of business such as operations, accounting, fi-
nance, marketing, and human resources. Such
activities require careful planning to ensure that
the body of knowledge in each functional area is
clearly identified, the learning objectives are clear,
and student participants have sufficient content
knowledge to engage in their assigned role in the
virtual enterprise and benefit from the experience.
The enterprise system technology to accomplish
this is readily available — the challenge is for
business schools to develop meaningful ways to
employ it.

conclusIon

An approach to teaching operations manage-
ment has been presented in which enterprise
software brings to life key issues in managing
the production operations of a business. A key
feature of the approach is the realism created by
using enterprise software to operate the virtual
factory in an ongoing, real-time mode in which
various operations management issues related
to customer service, inventory, scheduling, and
capacity occur simultaneously. The approach
provides a way to enhance understanding of op-
erations management topics, as well as a vehicle
for students to better understand the integration
of operations management with other functional
areas of business such as accounting, finance,
and marketing. An important by-product of the
approach is the hands-on experience students
receive with enterprise software that is widely
used in the business world.

1812

Teaching Operations Management with Enterprise Software

references

Cannon, D. M., Klein, H. A., Koste, L. L., &
Magal, S. R. (2004). Curriculum integration us-
ing enterprise resource planning: An integrative
case approach. Journal of Education for Business,
80(2), 93-101.

Hitt, L. M., Wu, D. J., & Zhou, X. (2002). Invest-
ment in enterprise resource planning: Business
impact and productivity measures. Journal of
Management Information Systems, 19(1), 71-98.

LaForge, R. L., & Busing, M. E. (1998). The use
of industrial software to create experiential learn-
ing activities in operations management courses.

Production and Operations Management, 7(3),
325-334.

Mabert, V. A., Soni, A., & Venkataramanan, M.
A. (2000). Enterprise resource planning survey of
U.S. manufacturing firms. Production & Inven-
tory Management Journal, 41(2), 52-58.

Manetti, J. (2001). How technology is transforming
manufacturing. Production & Inventory Manage-
ment Journal, 42(1), 54-64.

Rondeau, P. J., & Litteral, L. A. (2001). Evolution
of manufacturing planning and control systems:
from reorder point to enterprise resources plan-
ning. Production & Inventory Management
Journal, 42(2), 1-7.

This work was previously published in Enterprise Systems Education in the 21st Century, edited by A. Targowski, pp. 138-151,
copyright 2007 by Information Science Publishing (an imprint of IGI Global).

Section V
Organizational and
Social Implications

This section includes a wide range of research pertaining to the social and organizational impact of
software applications. Chapters introducing this section analyze open source software communities,
while later selections discuss organizational modeling and the analysis of user interfaces. The inqui-
ries and methods presented in this section offer insight into the implications of software applications
at both a personal and organizational level, while also emphasizing potential areas of study within the
discipline.

1814

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.1
Open Source Software

Communities
Kevin Carillo

Concordia University, Canada

Chitu Okoli
Concordia University, Canada

IntroductIon

Open source software (OSS) development has
continued to appear as a puzzling and enigmatic
phenomenon and has drawn increasing attention
as its importance has grown. Relying upon an
alternative way to develop and to distribute soft-
ware, open source communities have been able
to challenge and often outperform proprietary
software by enabling better reliability, lower
costs, shorter development times, and a higher
quality of code (Raymond, 2004). Behind the
software is a mass of people working together in
loose coordination, even portrayed as a rowdy
marketplace (Raymond, 2001, p. 1):

No quiet, reverent cathedral-building here—
rather, the Linux community seemed to resemble
a great babbling bazaar of differing agendas and
approaches … out of which a coherent and stable
system seemingly emerges only by a succession
of miracles.

More precisely, the people behind open source
projects have been defined as: “Internet-based
communities of software developers who vol-
untarily collaborate in order to develop software
that they or their organizations need” (von Krogh,
2003, p. 14). In contrast to the sacred cathedral-
like software development model that gave birth
to most commercial and proprietary systems, such
bazaar-like communities seem to have based their
success on a pseudo-anarchic type of collabora-
tion and developers’ interaction (Raymond, 2001).
However, in spite of the apparent disorganization
of these bazaars, a closer look distinguishes com-
mon values and norms that rule them, specific roles
that can be identified, similar motives shared by
people, and practices that follow patterns. This
article highlights key aspects of what forms the
communities that support these projects.

 1815

Open Source Software Communities

Definition of Open Source Software

The basic definition of OSS as expressed by the
Open Source Initiative (www.opensource.org)
goes beyond the notion of free code. It encom-
passes broader issues such as distribution and
licensing that stipulate free exchange and modi-
fication rights of source code (OSI, 1997):

• Free redistribution of source code
• Free redistribution of compiled (binary)

programs
• Derived works must be permitted
• Integrity of the author’s source code
• No discrimination against persons or

groups
• No discrimination against fields of endeavor

(e.g., commercial and military uses must be
permissible)

• Mandatory distribution of open source
license

• License must not be specific to a product
• License must not restrict other software’s

licenses
• License must not restrict redistribution to a

particular delivery technology

A Brief HiStOry Of tHe Open
SOurce pHenOmenOn

During the 1960s and 1970s, scientists and engi-
neers in academic and corporate laboratories freely
shared, exchanged and modified the software they
produced. However, by the early 1980s, software
was increasingly shifting from its original shared
nature to becoming increasingly commercialized,
with licenses that forbade the free sharing of
source code. In 1983, Richard Stallman left MIT
to found the Free Software Foundation (FSF) with
the principle aim of defining and diffusing legal
mechanisms and conceptual principles of “free
software” (Hars & Ou, 2001; West & Dedrick,
2001). “Free” here refers to freedom, the liberty

to do whatever desired with the software. Hence,
free software in the open source sense is distinct
from “freeware”, which is software sold at no price.
In fact, one of the explicit rights given to users
of “free software” is the right to sell it commer-
cially. It is noteworthy that most OSS is freeware
(provided at no charge), but most freeware is not
open source (the source code is not provided, and
users are forbidden from modifying the program
code even if they could).

Stallman’s publication of the GNU Manifesto
(1985) allowed him to communicate his ideological
insights about the nature of software (von Krogh,
2003), and he convinced developers to join him in
the GNU Project, whose primary goal was—and
still is—the creation of a Unix-like free operating
system. (“GNU” is a recursive acronym meaning,
“Gnu’s Not Unix”.) Accompanied by the con-
tinuous improvements of networking capabilities
and of the Internet, this major step signaled the
beginnings of open source practices organized
through the formation of virtual communities.
In 1989, the Free Software Foundation released
the GNU General Public License (GPL) in order
to ensure the preservation of certain freedoms
in the copies and derivative works of a piece of
software. The GPL assures these freedoms via the
copyleft mechanism, which permits free copying,
modification, and distribution of software, with
the condition that any distributed derivative works
explicitly accord others the same rights.

In 1991, Linus Torvalds, a 21-year-old Finnish
programmer, created Linux, a kernel for a Unix-
based operating system that uses the operating
system tools created by the GNU Project. Since
then, this multi-user/multitasking platform has
met tremendous success and is known for being
powerful, fast, efficient, stable, reliable, and scal-
able (Edwards, 1998). In 1999, a survey estimated
that the GNU/Linux operating system (popular
known simply as “Linux”) was the operating sys-
tem of more than 30% of Internet server sites. A
recent release of the kernel (Linux 2.2.10) credits
190 key developers, though the total number of

1816

Open Source Software Communities

contributors was estimated to be around 1,200
(Dempsey, Weiss, Jones, & Greenberg, 2002;
Stewart & Ammeter, 2002).

In 1998, Bruce Perens and Eric Raymond of
the Open Source Initiative pointed out that the
mistrust of many traditional firms towards the GPL
was in Stallman’s term “free”, which is not very a
attractive idea to the business world (von Krogh,
2003)—conventional wisdom says that you get
what you pay for. Thus, they tried to refocus what
they rebranded as the “open source” software
movement by primarily focusing on the economic
and engineering superiority of the “open source”
approach to software development, in contrast to
FSF’s more philosophically antagonistic approach
towards “source-hoarding”. In response to their
positive marketing, the term “open source” has be-
come the preferred terminology for this approach.
Other major open source projects have followed
Linux’s success, including the Apache Web server
(started in 1995) and the Mozilla Internet suite
project (started in 1999 when Netscape released
its Communicator suite as open source; Mozilla
released the Firefox Web browser and Thunderbird
e-mail client at the end of 2004).

prOfile Of Open SOurce
cOmmunitieS

Lee and Cole (2003, p. 51) defined a virtual com-
munity as “a cyberspace supported by computer-
based information technology, centered upon
communication and interaction of participants
to generate member-driven contents, resulting
in a relationship being built up.” OSS develop-
ment communities have been defined as groups
of loosely connected programmers, who use the
Internet as a medium for collaboratively devel-
oping, improving, and disseminating software
(O’Reilly, 1999), and are recognized as a par-
ticular genre of virtual community (Ljungberg,
2000) and as virtual organizations (Crowston
& Scozzi, 2002), which are characterized by:

group members with a shared interest or goal;
geographical distribution; and use of information
and communication technology to communicate
and manage interdependencies (Ahuja & Carley,
1998). They have been classified as communities
of transaction (Hagel & Armstrong, 1997) and as
“task- and goal-oriented” communities; that is,
“communities striving to achieve a common goal
by way of cooperation” (Stanoevska-Slabeva &
Schmid, 2001).

ideology and Values

One of the main emphases in OSS communities is
the social interaction among participants through
electronic communication. Rheingold (1993, p.
5) defines virtual communities as “social aggre-
gations that emerge from the Net when enough
people carry on public discussions long enough,
with sufficient human feeling, to form webs of
personal relationships in cyberspace”. This defini-
tion highlights the creation of relationships among
people. As a consequence, the participants of an
OSS community share a set of common values,
and they adhere to the same ideology: the OSS
culture.

The most commonly accepted view of OSS
communities’ culture has been proposed by
Raymond (2001) in his landmark paper, “The
Cathedral and the Bazaar”, where he characterizes
it as a “gift culture”, as opposed to an “exchange
culture”. Exchange cultures are based on scarcity
whereas gift cultures rely on abundance. Ray-
mond argues that in gift cultures, social status is
determined “not by what you control, but by what
you give away”. Bergquist and Ljungberg (2001)
have empirically demonstrated that such giving
values and behaviors enable social relationships
to be created and maintained in virtual environ-
ments. Assuming any ideology is a common set
of shared norms, values and beliefs among the
members of a community, Raymond’s view of OS
communities can be characterized by the features
listed in Table 1 (Stewart & Gosain, 2001).

 1817

Open Source Software Communities

Furthermore, another dimension that may
be added to the OSS ideology is the hostility
towards commercial software. The intensity var-
ies from one community to another one, from a
fundamentally hostile view of commercialized
software (almost universally expressed towards
Microsoft Corporation, currently the largest
commercial software enterprise) to a moderate
view that accepts the symbiotic nature and coex-

istence of open source and proprietary software
(Ousterhout, 1999).

An organizational culture approach elicits
further insights about the rules governing OS
communities. Schein’s (1984) framework posits
that the culture of organizations can be understood
by examining their artifacts, values and core as-
sumptions. Sharma et al. (2002) have applied this

Norms

	 Taboo against forking projects

	 Distributing changes without cooperation of moderators frowned

upon

	 Removing a person’s name from project history, credits or maintainers

list is not done without explicit consent

Values

	 The best craftsmanship wins

	 All information should be free

	 You don’t become a hacker by calling yourself a hacker—you become

a hacker when other hackers call you a hacker

	 Non-trivial extensions of function are better than low-level patches

and debugging

	 Work that makes it into a big distribution is better than work that does

not

Beliefs 	 With enough eyeballs all bugs are shallow

	 Practice is better than theory

Ideologues
	 Stallman

	 Raymond

Language,

Symbols

	 “Distros”

	 “Suits”

	 Free Software Foundation

	 Copyleft

	 Open source licenses

Narratives

	 The Halloween Papers

	 The Cathedral and the Bazaar

	 Slashdot, Freshmeat, Sourceforge

Table 1. Ideologies and values of open sources software communities (Stewart &Gosain, 2001)

1818

Open Source Software Communities

framework to OSS, with the results summarized
in Table 2.

Researchers in the area of virtual communities
have pointed out the overall importance of trust.
For instance, Carver (1999, 114) affirms, “People
are drawn to virtual communities because they
provide an engaging environment in which other
people … create an atmosphere of trust and real
insight”. Trust is considered as a core assump-
tion of the OSS ideology, considering that core
developers need to work closely with one another
as they implement different but interrelated code
segments (Sharma et al., 2002). As a result, it was
found that trust among group members in OSS
project groups plays an essential role in facilitating
development success (Stewart & Gosain, 2001).
Thus, OS development processes have to be man-
aged through trust-based relationships in order to
ensure OSS project success and quality.

participants’ profiles and roles

It has been common to characterize OSS commu-
nity members as anarchistic crackers operating on
the fringes of society, a stereotype that has been
soundly dispelled by recent surveys (Fitzgerald,
2004). Several surveys have identified consistent
traits among OSS community members. Over
95% of members are male. The average age is

around 30, with a majority of people between 20
and 30. 20% of members are students and over
50% of people have IT jobs. Most developers
have a bachelor’s (or equivalent) degree, many
have a master degree, and under 10% have a
PhD degree (Ghosh, Glott, Krieger, & Robles,
2002; Hars & Ou, 2001; Lakhani, Wolf, Bates,
& DiBona, 2002).

OS developers tend to participate in a limited
number of projects—an average of just two or three
each (Dempsey et al., 2002). Developers modify
the program source code and make important
decisions concerning any future development.
Non-developers are valuable in reporting bugs,
and in suggesting feature enhancements. Although
it is common to think of OSS participants as will-
ing, independent enthusiasts, on deeper analysis
it is evident there is a certain kind of hierarchy
inherent in any project (Glass, 2003).

cOncluSiOn

OSS communities are an important type of virtual
community today, where members convene online
with the common goal of producing software that
is valuable both to developers and for the general
public. While most OSS communities do not
explicitly restrict membership (except perhaps to

Table 2. OSS organizational culture (Sharma et al., 2002)

Artifacts 	 Elect ronic communicat ion

Values

	 Alt ruism

	 Reciprocity

	 Gif t Giving

	 Reputat ion

	 Fairness

	 Shared r isks and ownership

Core Assumptions 	 Trust

	 Loyalty

 1819

Open Source Software Communities

the inner core of developers), they are particular
in their membership criteria, which by its nature
requires considerable skills in computer program-
ming and software development. However, as
we have discussed, there is also plenty of room
for non-developer user members who contribute
ideas and directions valuable to projects, such as
identifying bugs and suggesting new features.
As the open source movement continues to grow
both as a software development methodology
and as a philosophical/social/political approach
to intellectual property, OSS communities will
have an increasingly important role in the soft-
ware industry.

referenceS

Ahuja, M.K., & Carley, K.M. (1998). Network
structure in virtual organizations. Journal of
Computer-Mediated Communication, 3(4). Re-
trieved from http://www.ascusc.org/jcmc/vol4/is-
sue4/ahuja.html

Bergquist, M., & Ljungberg, J. (2001). The power
of gifts: Organizing social relationships in open
source communities. Information Systems Jour-
nal, 11(4), 305-320.

Carver, C. (1999). Building a virtual community
for a tele-learning environment. IEEE Commu-
nications Magazine, 37(3), 114-118.

Crowston, K., & Scozzi, B. (2002). Open source
software projects as virtual organizations: Com-
petency rallying for software development. IEE
Proceedings Software, 149(1), 3-17.

Dempsey, B.J., Weiss, D., Jones, P., & Green-
berg, J. (2002). Who is an open source software
developer? Communications of the ACM, 45(2),
pp. 67-72.

Edwards, J. (1998). The changing face of freeware.
IEEE Computer, 31(10), 11-13.

Fitzgerald, B. (2004). A critical look at open
source. IEEE Computer, 37(7), 92-94.

FSF. (1985, May 17). The GNU Manifesto. Re-
trieved December 2004, from http://www.gnu.
org/gnu/manifesto.html

Ghosh, R.A., Glott, R., Krieger, B., & Robles,
G. (2002). Free/libre and open source software:
Survey and study. Brussels: Report of the FLOSS
Workshop on Advancing the Research Agenda
on Free/Open Source Software, European Com-
mission.

Glass, R.L. (2003). Practical programmer: A so-
ciopolitical look at open source. Communications
of the ACM, 46(11), pp. 21-23.

Hagel, J., & Armstrong, A. (1997). Net gain:
Expanding markets through virtual communi-
ties. Cambridge, MA: Harvard Business School
Press.

Hars, A., & Ou, S. (2001, January 3-6). Working
for free? Motivations of participating in open
source projects. Paper presented at the 34th Hawaii
International Conference on System Sciences,
Island of Maui, Hawaii.

Lakhani, K.R., Wolf, B., Bates, J., & DiBona, C.
(2002). The Boston Consulting Group hacker sur-
vey. Boston Consulting Group and Open Source
Developers Network.

Lee, F.S.L., Vogel, D., & Limaya, M. (2003).
Virtual community informatics: A review and
research agenda. JITTA: Journal of Information
Technology Theory and Application, 5(1), pp.
47-61.

Ljungberg, J. (2000). Open source movements
as a model for organising. European Journal of
Information Systems, 9(4), 208.

O’Reilly, T. (1999). Lessons from open-source
software development. Communications of the
ACM, 42(4), pp. 33-37.

1820

Open Source Software Communities

OSI.The open source definition. Retrieved Decem-
ber, 2004, Retrieved from http://www.opensource.
org/docs/definition.php

Ousterhout, J. (1999). Free software needs profit.
Communications of the ACM, 42(4), pp. 44-45.

Raymond, E.S. (2001). The cathedral and the
bazaa: Musings on Linux and open source by
an accidental revolutionary. Sebstapol, CA:
O.Reilly.

Raymond, E.S. (2004). Up from alchemy [open
source development]. IEEE Software, 21(1), 88-
90.

Rheingold, H. (1993). The virtual community:
Homesteading on the electronic frontier. New
York: HarperPerennial.

Schein, E.H. (1984). Coming to a new awareness
of organizational culture. Sloan Management
Review, 25(2), 3-16.

Sharma, S., Sugumaran, V., & Rajagopalan, B.
(2002). A framework for creating hybrid-open
source software communities. Information Sys-
tems Journal, 12(1), 7-25.

Stanoevska-Slabeva, K., & Schmid, B.F. (2001,
January 3-6). A typology of online communi-
ties and community supporting platforms. Paper
presented at the Proceedings of the 34th Annual
Hawaii International Conference on System Sci-
ences (HICSS-34),January 3-6, 2001 (Vol. 7, p.
7010).

Stewart, K.J., & Ammeter, T. (2002, December
15-18). An exploratory study of factors influencing
the level of vitality and popularity of open source
projects. Paper presented at the 23rd International
Conference on Information Systems, Barcelona,
Spain.

Stewart, K.J., & Gosain, S. (2001, December 16-
19). An exploratory study of ideology and trust in
open source development groups. Paper presented

at the 22nd International Conference on Informa-
tion Systems, New Orleans, Louisiana.

von Krogh, G. (2003). Open-source software
development. MIT Sloan Management Review,
44(3), 14.

West, J., & Dedrick, J. (2001, January 3-6).
Proprietary vs. open standards in the network
era: An examination of the Linux phenomenon.
Paper presented at the 34th Hawaii International
Conference on System Sciences, Island of Maui,
Hawaii.

Key termS

Free Software: An earlier name for open
source software, emphasizing the liberties given
to end users and developers of derivative works.
There is no requirement that the software be
distributed at no charge; thus, distinct from
freeware.

Freeware: Software provided at no charge to
the user. Might be open source or proprietary;
that is, the developer only permits redistribution
and use, with no modifications permitted. In fact,
most open source software is freeware, but most
freeware is not open source.

GNU General Public License: The first and
still the most radical open source software license,
created for the GNU Project. Requires that all
derivative works be equally free (in the open
source sense); that is, all derivative works must
provide the full source code and must permit free
use, modification, and redistribution.

GNU Project: (Stands for, “Gnu’s Not Unix”)
Established by Richard Stallman in 1983 under the
auspices of the Free Software Foundation. Its goal
was, and still is, to create an open source Unix-
based operating system. This goal was realized in
1991 by Linus Torvald’s creation of Linux.

 1821

Open Source Software Communities

Linux: A Unix-based open source operating
system designed for Intel-based microcomputers.
The kernel was created in 1991 by Linus Torvalds,
and it was added on to the GNU Project to form
what is properly called the GNU/Linux operat-
ing system.

Mozilla Project: A project formed in 1998
when Netscape released its Internet tools suite for
open source development. Released its flagship
Firefox Web browser and Thunderbird e-mail
client at the end of 2004. The Sunbird calendar
component is currently under development.

Open Source Software: Software whose
source code is liberally made available for use,
modification, creation of derivative works, and
redistribution.

The Cathedral and the Bazaar: Paper by
Eric Raymond (most recent version in 2001) that
contrasts the “Cathedral” software development
approach of a closed hierarchy (e.g. for proprietary
software and most open source software such as
the earlier GNU Project) with the “Bazaar” ap-
proach of loose collaboration with light central-
ized moderation (as was used for the Linux and
Fetchmail open source projects).

This work was previously published in Encyclopedia of Virtual Communities and Technologies, edited by S. Dasgupta, pp.
363-367, copyright 2006 by Information Science Reference (an imprint of IGI Global).

1822

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.2
Beyond Development:

A Research Agenda for Investigating
Open Source Software User

Communities

Leigh Jin
San Francisco State University, USA

Daniel Robey
Georgia State University, USA

Marie-Claude Boudreau
University of Georgia, USA

ABStrAct

Open source software has rapidly become a popu-
lar area of study within the information systems re-
search community. Most of the research conducted
so far has focused on the phenomenon of open
source software development, rather than use. We
argue for the importance of studying open source
software use and propose a framework to guide
research in this area. The framework describes
four main areas of investigation: the creation of
OSS user communities, their characteristics, their
contributions and how they change. For each area
of the framework, we suggest several research
questions that deserve attention.

IntroductIon

In recent years, the open source software (OSS)
development movement has captured the atten-
tion of both information systems practitioners
and researchers. The “open community model”
is one that involves the development and support
of software by volunteers with no or limited
commercial interest. This model differs from
proprietary software development, and with other
open source business models such as corporate
distribution, sponsored open source and second-
generation open source (Watson, Boudreau, York,
Greiner, & Wynn, in press). The open community
model is appealing to many because of its appli-
cation of community principles of governance
over commercial activities (Markus, Manville,
& Agres, 2000; von Hippel & von Krogh, 2003).
By describing open source as a “movement,” we

 1823

Beyond Development: A Research Agenda for Investigating Open Source Software User Communities

reflect the broader excitement about the implica-
tions of community governance processes in a
knowledge economy (Adler, 2001).

Open source has rapidly become a popular
area of study within the information systems (IS)
research community, as evidenced by the appear-
ance of special tracks for OSS within conferences
and special issues of journals. For example, the
Americas Conference on Information Systems
sponsored an “Open Source Adoption and Use”
minitrack, and the Hawaii International Confer-
ence on System Sciences offered a minitrack
on “Open Source Software Development.” On
the journal side, Management Science invited
submissions to a special issue on “Open Source
Software” in 2004. Also, Journal of Database
Management announced a special issue on “Open
Source Software.”

Although these calls for OSS research do
not limit contributions, the vast majority of the
research conducted so far has focused on OSS
development rather than use (Fitzgerald & Kenny,
2003). The interest in open community develop-
ment reflects a desire to explain the counterintui-
tive practice of treating commercially valuable
products as public goods rather than proprietary
products for sale. Likewise, the development
and maintenance of complex software products
by communities of expert volunteers has piqued
interest into the incentives for developers. As a
consequence of the primary focus on OSS devel-
opment, little research has yet been conducted on
OSS use, especially by non-technical users.

The neglect of OSS use may be attributed to
two false assumptions about OSS projects. First, it
is known that people often become OSS develop-
ers because they intend to use the product being
developed. To echo Raymond’s (2001) frequently
quoted expression, OSS developers are users with
an “itch to scratch,” so they are willing to devote
time and expertise to develop software solutions
to their own problems as users. Thus, it is com-
monly assumed that there is no distinction between
OSS developers and users (Feller & Fitzgerald,

2000). Following this line of argument, we might
conclude that no special research agenda for OSS
use is needed because OSS use is redundant with
OSS development.

However, this argument and its underlying
assumption can be challenged on the grounds that
OSS use by technically experienced developers
differs from OSS use by technically naïve users.
Verma, Jin, and Negi (2005) argued that techni-
cal developers and non-technical users have very
different interpretations of OSS’s ease of use.
Non-technical users may experience difficulty
in using OSS products because OSS developers
are motivated to improve functionality rather
than usability (Nichols & Twidale, 2003). Thus,
even though all OSS developers are likely also to
be users, the distinction between developers and
non-technical users remains important.

The assumption can also be challenged by
statistics showing the rapid rise in the number
of OSS users, the vast majority of whom have no
interest or capability to contribute to modifications
of the source code (Fitzgerald & Kenny, 2003). For
widely distributed OSS such as Linux, it makes no
sense to assume that more than a small percentage
of users could possibly become developers (von
Hippel & von Krogh, 2003). Clearly, users vastly
outnumber developers in larger OSS projects. As
OSS development becomes increasingly targeted
toward productivity and entertainment applica-
tions, the relative proportion of non-technical
users can be expected to increase.

The second assumption dissuading research
on OSS use is that the OSS movement is unique
solely because of the way software is developed,
but that its use is similar to any other type of
software. Given the abundance of IS research that
is focused on the adoption and use of software
applications, one might assume that no special
research program is needed for OSS use.

This assumption can be challenged by examin-
ing some differences between OSS and proprietary
software. Users of OSS are typically confronted
by a fundamentally different type of technical

1824

Beyond Development: A Research Agenda for Investigating Open Source Software User Communities

support than that found with proprietary soft-
ware. Rather than relying on a vendor’s customer
support, users of OSS generally need to search
for community resources for help for installing,
learning and using their freely acquired software.
OSS users are likely to receive such help through
participation in user groups or mailing lists that
are supported by volunteers, similar to the com-
munities supporting OSS development (Golden,
2005; Lakhani & von Hippel, 2003; Raymond,
2001). Given these distinctive features of OSS
products and support, we do not agree with the
assumption that OSS use is the same as propri-
etary software use.

These arguments justify research into OSS use.
In this article, we adopt a community perspective
on OSS use, which is explained in the following
section. We then present a framework that in-
cludes four main areas of investigation: creation
of OSS user communities, their characteristics,
their contributions and how they change. For
each element of the framework we pose several
research questions.

A cOmmunity perSpectiVe On
OSS uSe

The term “community” was introduced into the
English language in the 14th century from Latin
to refer to a group of people living in a common
geographical location. Between the 17th and 19th
centuries the meaning of community was ex-
tended to describe people who shared common
characteristics, interests or identities – even if
they were not geographically close (Cole, 2002;
Williams, 1973). As the 21st century begins, people
have grown more accustomed to participating in
virtual communities that are enabled by Internet
technology and the World Wide Web (Rheingold,
2000). Virtual communities differ from colocated
communities by offering a wider range of options
for participation and by allowing community size
to grow, unconstrained by physical space. As Cole

(2002) noted, virtual communities can be more
heterogeneous: “each [community] is unique in
the combination of institutional arrangements,
educational content, forms of Internet commu-
nication, and participant goals that it embodies”
(p. xxvi). Moreover, individual members may
tailor their virtual communities to satisfy personal
preferences (Wellman, 2001).

The power of collaboration within geographi-
cally dispersed communities is demonstrated by
the making of the first edition of the Oxford English
Dictionary, one of the earliest examples of an open
community project (Watson, Boudreau, Greiner,
Wynn, York & Gul, 2005). The dictionary, which
took about 70 years to complete, was compiled
primarily from definitions submitted by thousands
of volunteers fluent in the English language. In
his book, The Professor and the Madman, Win-
chester (1998) reported that an insane American
prisoner became the most prolific contributor to
the original compilation of the Oxford English
Dictionary. This story illustrates two principles
that also sustain modern OSS communities:
everyone is welcome to contribute regardless of
personal circumstance, and value can be produced
through community effort.

OSS development largely depends upon the
ability of developers to contribute as members
of virtual communities (Markus et al., 2000;
Lakhani & von Hippel; 2003; Raymond, 2001).
Given that much OSS development transpires in
online communities, we expect that OSS use also
relies on virtual communities for software acquisi-
tion, implementation, maintenance and support.
For example, Lakhani and von Hippel (2003)
suggested that successful OSS projects were
capable of delivering high quality field support
– mundane but necessary tasks – to users through
voluntary effort. Field support primarily involves
experienced users answering questions posted by
novice users through an archived mailing list.
Indeed, a highly organized system of OSS user
groups has grown around major OSS products.
Taking Linux user groups (LUGs) as an example,

 1825

Beyond Development: A Research Agenda for Investigating Open Source Software User Communities

in July 2005 there were 846 registered LUGs in
108 countries, including 299 in the United States
(http://www.linux.org/groups).

Despite the importance of electronically me-
diated interaction within OSS communities, we
do not assume that OSS user communities are
exclusively virtual. Indeed, one of the naïve as-
sertions about OSS development is that software
can be developed by a community of complete
strangers who interact only through electronic
media. To the contrary, experienced OSS partici-
pants have opportunities to attend conferences
and regular meetings held in physical places. For
example, the O’Reilly Open Source Convention
and LinuxWorld Conferences are popular venues
for OSS developers to meet and exchange ideas.
Research on Linux user groups (Jin, Robey, &
Boudreau, 2006) reveals that the Silicon Valley
LUG holds face-to-face meetings at least monthly
and organizes InstallFests, where new users can
bring in their computers and allow experienced
volunteers to install Linux, diagnose problems
and repair configurations. The LUG of Davis,
California, sponsors a Linux Emergency Relief
Team, staffed with experts who may even travel
to users’ homes to service their Linux systems (Jin
et al., 2006). According to Moen (2003), LUGs
are vital to the Linux movement, taking on many
of the same roles that a regional office does for a
large organization:

LUGs’ role in Linux advocacy cannot be overes-
timated, especially since wide-scale commercial
acceptance of Linux is only newly underway. While
it is certainly beneficial to the Linux movement
each and every time a computer journalist writes
a positive review of Linux, it is also beneficial
every time satisfied Linux users brief their friends,
colleagues, employees, or employers.

The following research agenda focuses on
questions about the creation, characteristics,
contributions and change in OSS user commu-
nities. There is no direct empirical rationale for

dividing the agenda into these four categories
because research on OSS user communities is just
beginning. Rather, the research agenda reflects a
progression through different phases of an OSS
community over its life cycle. Creation is the
beginning, characteristics describe the makeup
of the community, contribution describes the
major functions performed, and change describes
later growth. The four phases are associated
with different kinds of issues, which we offer as
researchable topics. Because the life of a com-
munity is not biologically limited, our agenda
shows that communities may repeat the cycle as
they change.

The agenda is proposed at a high level due to
the novelty of the phenomenon and the paucity of
existing research efforts. By restricting our atten-
tion to a community perspective, we purposefully
omit consideration of individual and organiza-
tional influences on OSS use. However, we believe
that a community perspective on OSS research is
valuable because it has played such a prominent
role in research on OSS development.

A reSeArcH AgenDA

Figure 1 identifies the four main areas where
research into OSS user communities should be
undertaken: creation (C1), characteristics (C2),
contributions (C3) and change (C4). As shown,
these areas are related sequentially, beginning
with creation. It is also shown that change not
only completes the cycle but potentially begins
a new cycle.

c1: creation of OSS user
communities

The creation of an OSS user community requires
potential members to learn about OSS as an
alternative to proprietary software and in-house
development, to engage in community activities
and to respond to incentives for starting or joining

1826

Beyond Development: A Research Agenda for Investigating Open Source Software User Communities

a user community. The research questions below
address these three important issues.

C1-1: How do new users, especially
technically disadvantaged users, learn
about OSS alternatives to proprietary
software?

This issue is interesting because, compared to
proprietary software, open-community software
projects lack specialized teams to market the
product and to promote it through mass media.
Although the notion of gift culture is well estab-
lished within the OSS development community,
users are likely to be suspicious of the opportunity
to receive software as a free gift. Although OSS
has made news headlines and gained immense
exposure on the Internet, a nontechnical user
would still be expected to have difficulty installing
and using a new operating system such as Linux.
Indeed, many new users are introduced to OSS
through personal friends, whom they trust and rely
upon for support when they encounter problems.

The role of the broader OSS user community in
introducing new users to OSS products stands as
an important research question.

C1-2: How are OSS user communities
created?

Creating and sustaining a software user commu-
nity requires resources such as meeting places,
newsletters, and Web hosting services. Traditional
software user groups are often sponsored by
vendors, who provide considerable benefits to
both users and themselves (Buckner, 1996). On
the one hand, users may benefit from discounted
prices negotiated with the vendors and the chance
to suggest improvements in the software’s next
release. On the other hand, vendors receive a low
cost marketing opportunity and obtain feedback
on the usability of their products.

Because software vendors are rarely involved
in open-community OSS user groups, their cre-
ation depends on a group of enthusiasts sharing the
same passion for the software. These enthusiasts

Figure 1. Research areas

C2: Characteristics of OSS User
Communities

C2-1: What is the structure of OSS user
community?
C2-2: How do user communities coordinate
their physical and virtual activities?

C4: Change and Evolution of OSS
User Communities

C4-1: How will OSS user communities
change as they grow larger and more
successful?
C4-2: How will the character of OSS user
communities change over time?

C1: Creation of OSS User Communities
C1-1: How do new users, especially technically disadvantaged
users, learn about OSS alternative to proprietary software?
C1-2: How are OSS user communities created?
C1-3: What are the incentives for participating in OSS user
communities?

C3: Contributions by Members of OSS User
Communities

C3-1: What do OSS users contribute to the community by
using free software?
C3-2: What do OSS users contribute to the community beyond
their use of free software?
C3-3: What contributions can OSS user communities make to
other users?

 1827

Beyond Development: A Research Agenda for Investigating Open Source Software User Communities

may be among the original developers, motivated
to increase the software’s user base. Alternatively,
these enthusiasts may be pure users who believe
in the principles behind OSS, therefore promoting
its use and maximizing the benefits of their own
use. Large companies may also be the principal
instigators of OSS user groups. If an OSS product
is used extensively within a company, creation of
a user group for that product provides free train-
ing opportunities for the company’s employees.
Large technology companies with a stake in an
OOS product may also support OSS user groups
indirectly by providing meeting space or donating
Web hosting services. Companies providing such
support may enhance their reputations within the
OSS community, which in turn may improve their
opportunities to recruit talented new members.

Although we acknowledge that OSS user
groups are important components of OSS
communities, the creation of other community
components should not be overlooked. Special
interest groups and forums may be established
by universities, government agencies and other
organizations. Although their activities may be
less visible to the public, they may generate ad-
ditional resources, such as training provided by
the sponsoring organizations.

C1-3: What are the incentives for
participating in OSS user communities?

Because users may obtain OSS freely, with no
obligation to contribute to development, their
use of the software is likely to be based primarily
on cost and quality considerations (Fitzgerald &
Kenney, 2003). The incentives for community
participation, however, differ from the incentives
for using OSS (Wang, 2005). For developers who
incur substantial private costs by investing their
own resources into development, incentives in-
clude not only the ability to use the software but
also benefits related to reputation and learning.
It is conceivable that users may also obtain such

benefits, gaining reputations as skilled implement-
ers who are helpful to novice users.

It has been argued that the true benefit for
using open source software goes beyond its low
initial cost and involves a user’s long-term control
over information technology. By contrast, users
of proprietary software become dependent on
software that remains inside the vendor’s black
box. With no ability to change the source code,
users of proprietary software lose control and
subject themselves to a monopoly relationship with
their vendor (Moen, 2000). OSS may provide an
incentive by restoring the user’s control.

It is also likely that OSS user groups offer more
value than user groups organized by proprietary
software vendors. Vendor-sponsored user groups
often charge membership fees and use their meet-
ings to promote new products. These commercial
interests may interfere with the activities of OSS
user groups. For the more technically inclined,
OSS user groups offer solutions in the form of
code modifications that address specific problems
of individual users. By contrast, vendors are more
likely to avoid solutions involving code modifi-
cation and focus on software configuration or
settings, which may or may not solve the user’s
problems. As stated by Moen (2003), OSS user
groups are ready and willing to modify source
code on the spot:

Traditional groups must closely monitor what
software users redistribute at meetings. While
illegal copying of restricted proprietary software
certainly occurred, it was officially discouraged
– for good reason. At LUG meetings, however, that
entire mindset simply does not apply: Far from
being forbidden, unrestricted copying of Linux
should be among a LUG’s primary goals.

Outside geopolitical forces could also provide
powerful incentives for OSS user community
participation. When a U.S. company refused
to develop a Portuguese language version of
its software for a company studying rain forest

1828

Beyond Development: A Research Agenda for Investigating Open Source Software User Communities

biodiversity in Brazil, the Brazilians turned to
an inexpensive OSS solution. The OSS software
not only delivered the functionality that the com-
pany needed, but also provided all prompts in the
Portuguese language (Hall, 2002). Consequently,
the Brazilian government became a strong ad-
vocate of the OSS movement, as explained by a
Brazilian representative at the LinuxWorld 2004
conference:

The question is . . . how the universities can have
better tools to teach their students, how govern-
ment can save millions or billions of dollars each
year and still be able to use all kinds of technol-
ogy. Our government decided that OSS is a good
idea; it is something to be supported. In fact, we
are the biggest user of OSS in Latin America. We
have something around now, eight or ten million
users of OSS.

Understanding the creation of OSS user

communities requires attention to many issues
pertaining to users learning about OSS products;
the creation of specific mechanisms, such as user
groups, to support user activities, and incentives
for wide participation. Because these issues are
raised at the community level of analysis, answers
cannot be obtained by looking at individual deci-
sions to join and contribute to user communities.
Studies of OSS user communities may draw
insights from OSS development communities,
but it should not be assumed that use is the same
as development. For these reasons, our research
agenda focuses specifically on the creation of
OSS user communities.

c2: characteristics of OSS user
communities

Like all communities, OSS user communities are
likely to be differentiated by the roles that different
members play. It is also important to recognize the
relationships between user and developer com-
munities. Indeed, it may be desirable to consider

users and developers as subcommunities within
an OSS project. The questions below address
issues related to the characteristics of OSS user
communities.

C2-1: What is the structure of an OSS
user community?

An OSS community is built around a specific
OSS project, with shared interests of improving
and using the software. As more people become
interested in using the software, the community
grows and differentiates into various roles. For
example, Ye, Kishida, Nakakoji, and Yamamoto
(2002) defined eight roles in OSS communities:
(1) project leader, (2) core members, (3) active
developers, (4) peripheral developers, (5) bug
fixers, (6) bug reporters, (7) source code readers
and (8) passive users.

Although helpful in defining the characteristics
of an OSS community, the roles defined by Ye et
al. (2002) appear most suitable as a description
of an OSS development-oriented community
(Jin, Verma, & Negi, 2005). Of the eight roles
identified, only the last three include users, while
the first seven describe developers. According to
Jin et al. (2005), an OSS development-oriented
community is “exclusively dedicated to develop,
support, and maintain a single or multiple open
source project(s)” (p. 16522). An OSS user-ori-
ented community, by contrast, is typically created
by users for users to “promote the use of OSS
products” (Jin et al., 2005, p. 16523). The primary
activities of OSS user-oriented communities are
attracting new members to adopt OSS products
and educating existing members about the best
use practices for OSS products. Linux user groups
are excellent examples of OSS user-oriented com-
munities. Other examples include the perl mongers
community, BSD User Groups, and MYSQL User
Groups. While developers could be involved in
an OSS user-oriented community, the roles that
its members play would differ from those played
in an OSS development-oriented community.

 1829

Beyond Development: A Research Agenda for Investigating Open Source Software User Communities

Based on our participation in various LUGs, the
following roles of OSS user oriented community
are evident: (1) founder/officer, (2) meeting and
facilities coordinator, (3) public relations officer,
(4) Installfest coordinator, (5) mailing list/Web site
administrator, (6) face-to-face meeting attendees
and (7) mailing list subscribers.

Depending on the size of a particular user-
oriented community, some of these roles could
be combined and performed by one person. An
important issue deserving research attention is
the way members assume these roles and the
relationships among the various roles. Such re-
search could contribute to more effective designs
for community structure.

C2-2: How do user communities
coordinate their physical and virtual
activities?

Given that OSS development communities operate
both physically and virtually, it is an important
question to understand how they use these dif-
ferent arenas of community life. Theories of
virtual organizing have pointed to the possibility
for virtual and physical activities to reinforce,
complement, compensate and produce synergies
with each other (Robey, Schwaig & Jin, 2003).
At one level, OSS virtual activities allow devel-
opers to access and modify source code, access
necessary archives, and interact through mail-
ing lists, Internet Relay Chat channels, and Web
logs. At another level, OSS physical activities are
important for forging social ties and clarifying
communications (Jin et al., 2006). Moen (2003)
emphasized that LUGs’ socializing function was
effective for members to become acculturated into
the Linux user community:

By “socializing”, here I mean primarily sharing
experiences, forming friendships, and mutually-
shared admiration and respect. In other words,
acculturation turns you from “one of them” to “one
of us.” ... LUGs are often much more efficient

at this task than are mailing lists or newsgroups,
precisely because of the former’s greater inter-
activity and personal focus.

Besides the socializing benefit from face-to-
face meetings, physical activities like InstallFests
can be effective for advanced users to tailor their
help to new users’ particular needs. Because new
users bring their computers to InstallFests, OSS
experts can demonstrate software installation,
diagnose problems, and even conduct hands-on
training individually with new users.

Understanding the characteristics of OSS user
communities requires attention to the roles played
by members and the mechanisms for coordinating
community action. Again, such matters cannot
be undertaken from an individual or even small
group perspective. The virtual nature of OSS user
communities makes their potential size practically
unlimited. Yet, research on the characteristics of
OSS communities needs to understand their vir-
tual nature without losing sight of the importance
of their face-to-face, physical activities.

c3: contributions by members of
OSS user communities

In the OSS development literature, much is made
of the voluntary gifts donated by skilled design-
ers for the creation of a public good (Fitzgerald
& Kenney, 2003). Indeed, communities are likely
to fail if such contributions are not made. The fol-
lowing questions are posed with the same issue
in mind for the OSS user community.

C3-1: What do OSS users contribute to
the community by using free software?

If contributions are not made by users, OSS users
assume the status of free riders who simply take
from the community without paying back. Para-
doxically, free ridership by OSS users is actively
encouraged rather than discouraged. Because the

1830

Beyond Development: A Research Agenda for Investigating Open Source Software User Communities

number of OSS users is a measure of a project’s
success, users are not pressured to contribute as
developers do (von Hippel & von Krogh, 2003).
Indeed, their most important contribution may
simply be their use of the OSS product.

For example, one of the goals of the Firefox
team (a popular OSS Internet browser) is to acquire
ten percent of the browser market share. Accord-
ing to one of the team’s leaders, “It really doesn’t
matter how great your technology is. If nobody’s
using it, then you are not achieving that mission of
bringing back choice” (personal communication,
2005). Although most users may never contribute
toward product improvement, they are valuable
to the success of the Firefox project because their
usage adds to Firefox’s market share. Indeed, some
software projects have found an OSS strategy to
be an effective solution for acquiring a customer
base before pursuing more commercial objectives.
Onetti and Capobianco (2005) found a positive
correlation between the number of downloads
generated on a Sourceforge OSS project site and
the number of new clients interested in purchas-
ing the product’s commercial license. As more
users download and use an OSS product, the
more credible and successful the project becomes,
potentially attracting even more new users.

C3-2: What do OSS users contribute to
the community beyond their use of free
software?

As Raymond (2001) pointed out, some of the most
successful OSS projects are created by the most
talented software developers. Because the OSS
community tends to attract people with extensive
technical backgrounds, there is a risk that result-
ing products would reflect the “geek” culture and
be less useful to ordinary users. For example, the
user interfaces of OSS tend to be command-line
driven, making their installation and configuration
technically demanding. It is conceivable that less
technical users might contribute to development by

making OSS projects easier to install, configure,
use and maintain.

In the case of the Firefox browser project,
project leaders not only encouraged contribu-
tions from nontechnical users but also valued
them as vital assets to the project’s success.
Instead of contributing code, nontechnical users
contributed artistic skills to design the logo and
images, marketing skills to help spread the word
about Firefox, and even monetary contributions
to help place an advertisement in The New York
Times (McHugh, 2005). Whether such participa-
tion would be welcomed on other projects remains
uncertain, so the issue presents a good research
opportunity to study the impact of less technical
users on the development process.

C3-3: What contributions can OSS user
communities make to other users?

Fitzgerald and Kenney (2003) reported an interest-
ing case of an Irish hospital using OSS software
for a number of internal operations. Although the
hospital’s IT staff had no intention of ever con-
tributing modifications to the software’s source
code, they had begun to offer the applications,
which they had tailored for themselves, to other
health care organizations free of charge. In this
manifestation of community spirit, one user was
giving back to the community of other users. The
study suggests that users may add further value
by making OSS programs fit specific industry
needs. While these contributions may not earn
great reputations, they may provide value for the
user community. Future research is warranted
on the practice of users making vertical appli-
cations more useful for other users, in contrast
to the traditional focus in OSS development on
horizontal infrastructure systems (Fitzgerald &
Kenny, 2003).

Studying contributions is important because
communities are held together by such contribu-
tions. The research questions posed above guide
these potential research opportunities.

 1831

Beyond Development: A Research Agenda for Investigating Open Source Software User Communities

c4: change and evolution
of OSS user communities

It is clear that OSS user communities are new
phenomena that have only become significant
economically in the last half decade. We expect
the nature of OSS communities to change, perhaps
rapidly, as software development and use practices
evolve. This, in turn, will affect the creation of
new communities, as our cyclical representation
in Figure 1 suggests. The following questions
address the evolution and change of OSS user
communities.

C4-1: How will OSS user
communities change as they grow
larger and more successful?

Although core developers initiate and contribute
the major portion of source code (e.g., 80% in the
case of the Apache project (Mockus, Fielding, &
Herbsleb, 2002)), the largest growth in community
size comes from supporting roles like bug fixers,
bug reporters and users. Core developers may
even recede in importance as a project stabilizes
and does not require major revision. Thus, users
may assume more prominent stature in mature
communities, partly from their endorsement of
a particular OSS project.

Communities are sensitive in the longer run
to the free ridership phenomenon because at-
tempts to control free ridership involve increased
monitoring costs that eventually outweigh the
rewards from contributions (von Hippel & von
Krogh, 2003). Because free ridership is viewed
positively in OSS development communities, it
would be useful to study whether growth will
strengthen the community or whether growth can
ultimately erode feelings of community solidarity.
In other words, will the trust that characterizes
a community form of governance (Adler, 2001)
disappear as community size increases?

One could also argue that size may not be
the most important factor promoting community

change. The expansion of low cost communication
channels allows OSS users to reach out globally
and stay connected. Thus, the cost of monitoring
members could remain low despite growth. In
addition, increasing user community size could
distribute monitoring costs across more members.
Simultaneously, community trust could be rein-
forced at more local levels through the events and
social activities discussed earlier. These potential
effects of changing size could be studied as part
of a research program on community change.

C4-2: How will the character of OSS
user communities change over time?

As OSS communities grow and prosper, com-
mercial interests may be expected to appear and
taint the gift culture characterizing open commu-
nities. Firms such as RedHat emerged quickly to
create value by improving software distribution
and by adding supplementary services such as
installation, support and training. JBoss promoted
its application server software as “professional
open source,” charging users for the expertise
and services of key developers (Watson et al.,
2006). User groups associated with these and other
commercial open source companies may come to
resemble proprietary software user groups more
than the open communities described earlier. Such
changes would potentially affect the character of
OSS user communities currently operating under
volunteer arrangements.

Although user communities affected by
commercial open source companies may lose
free access to developer expertise, ultimately
less experienced users may benefit more from
subscribing to paid services at different levels of
support. In addition, companies like JBoss have
operated community forums in which indepen-
dent developers can still contribute free advice.
In such cases, commercial and noncommercial
interests co-exist in the community. One benefit
to the commercial interest is that community
forums become fertile recruiting grounds for

1832

Beyond Development: A Research Agenda for Investigating Open Source Software User Communities

new developers. As a JBoss representative at the
JavaOne 2005 conference explained:

There are individuals on our forums that don’t
work for us. They answer questions. We actually
try to get a ranking system of who answer the most
questions, so it gives us an idea of who we can
hire for support. So the forums might turn into a
recruiting ground for us.

As the interests of commercial software de-

velopers and open source communities become
reconciled, the line between the OSS user com-
munity and closed source user communities
may blur. As more enterprises adopt Linux, for
example, users have become more interested
in running both Linux and Windows platforms
(Adelstein, 2004). The OSS user community could
attend to the needs of these ambidextrous users
by addressing issues related to usability, hardware
and software compatibility.

Alternatively, OSS user communities may
try to preserve their character to some degree.
For example, although the Firefox team had little
marketing budget, they tapped into the resources
of the OSS community to launch a promotional
campaign. They were able to raise $200,000 from
about 10,000 donors in 10 days to pay for a two-
page print advertisement in The New York Times.
In addition, the Firefox team worked closely with
international OSS communities to achieve the
simultaneous launch of Firefox in 14 languages.
Firefox’s experience illustrates that communities
can remain powerful without having to co-opt
commercial interests.

Although the nature and direction of change
in OSS user communities cannot be predicted
with certainty, it seems inevitable that changes
will come, probably rapidly. However, there are
probably no easily identifiable drivers of com-
munity change. Researchers investigating change
in OSS user communities should approach this
area with an appreciation for the complexity of
organizational and institutional change. This

recommendation lies beyond our present scope,
but it remains an important consideration.

cOncluSiOn

The framework offered in this article is designed
to stimulate a new direction in OSS research, one
that focuses primarily on software use rather than
software development. Although development
has attracted the bulk of research interest to date,
many important issues pertain to OSS use. OSS
users far outnumber OSS developers, and as OSS
products become more popular, the number of OSS
users will continue to increase. We have identified
many of the issues that make OSS different from
the use of proprietary and in-house developed
software and posed our research questions ac-
cordingly. Our research agenda emphasizes the
community perspective that has attracted such
interest in OSS development research. We believe
that many valuable insights can be generated by
a focus on OSS user communities.

Beyond the present agenda, we may speculate
on the impact of OSS user communities as a model
for industries besides software. Although market
research and customer relationship management
are time-honored ways for companies to feel the
pulse of their customers, the phenomenon of OSS
user communities suggests that a more active role
for customers might be valuable. For example,
Threadless.com holds a weekly competition, in
which anyone who wishes can upload T-shirt art-
work to the company’s Web site. Online shoppers
can then vote for their favorite designs. Threadless.
com prints the winning graphics on limited-edi-
tion t-shirts, which are available for purchase at
the Web site. Winners are awarded cash or store
credits. By 2005, threadless had attracted over
40,000 design submissions (Luman, 2005). This
experience offers innovative ideas for community
participation in electronic commerce.

In conclusion, the study of OSS user com-
munities offers the potential to learn not only

 1833

Beyond Development: A Research Agenda for Investigating Open Source Software User Communities

about OSS projects but also about communities
in general. The research agenda proposed in this
article suggests many avenues for investigating
OSS user communities. Given that there is little
extant research on any of the questions raised in
this article, our objective is to stimulate thinking
about important research areas rather than to
summarize findings. Hopefully, the IS research
community will begin systematic investigation
of the research questions posed here.

referenceS

Adler, P. (2001). Market, hierarchy, and trust: The
knowledge economy and the future of capitalism.
Organization Science 12(2), 215-234.

Adelstein, T. (2004). Desktop linux: New linux
users changing the face of community. Retrieved
July 27, 2006, from http://www.desktoplinux.
com/articles/AT3791991696.html

Buckner K. (1996). Computer user groups: The
advantage of successful partnership. International
Journal of Information Management, 16(3), 195-
204.

Cole, M. (2002) Virtual communities for learning
and development – A look to the past and some
glimpses into the future. In K. Ann Renninger &
W. Shumar (Eds.), Building virtual communities:
Learning and change in cyberspace. Cambridge:
Cambridge University Press.

Feller, J., & Fitzgerald, B. (2000). A framework
analysis of the OpenSource software development
paradigm. In Proceedings of the International
Conference of Information Systems (pp. 21, 58-
69).

Fitzgerald, B., & Kenny, T. (2003). OpenSource
software the trenches: Lessons from a large-scale
OSS implementation. In Proceedings of the In-
ternational Conference on Information Systems
(pp. 24, 316-326).

Golden, B. (2005). Succeeding with OpenSource.
Boston: Addison-Wesley.

Hall, J. (2002, September 6). Free software in
Brazil. Linux Journal, 101.

Jin, L., Robey, D., & Boudreau, M. C. (2006).
Exploring the hybrid community: Intertwining
virtual and physical representations of Linux
user communities. In Proceedings of the Admin-
istrative Science Association of Canada, Banff,
Canada.

Jin, L., Verma, S., & Negi, A. (2005). Profil-
ing OpenSource: A use perspective across
OpenSource communities in the US and India.
In Proceedings of the 36th Annual Meeting of
the Decision Sciences Institute, San Francisco,
California.

Lakhani, K. R., & von Hippel, E. (2003). How
OpenSource software works: “Free” user-to-user
assistance. Research Policy, 32(6), 923.

Luman, S. (2005, June). OpenSource Software.
Wired Magazine, p. 68.

Markus, M. L., Manville, B., & Agres, C. E.
(2000). What makes a virtual organization work?
Sloan Management Review, 42, 13-26.

McHugh, J. (2005, February). The Firefox explo-
sion. Wired Magazine, pp. 92-96.

Mockus, A., Fielding, R. T., & Herbsleb, J. D.
(2002). Two case studies of OpenSource software
development: Apache and Mozilla. ACM Transac-
tions on Software Engineering and Methodology,
11(3), 309-346.

Moen, R. (2000). Eric Raymond’s tips for effective
OpenSource advocacy. Retrieved July 28, 2006,
from http://www.itworld.com/AppDev/344/LW-
D000913expo00/pfindex.html

Moen, R. (2003). Linux user group HOW TO.
Retrieved July 28, 2006, from http://www.linux.
org/docs/ldp/howto/User-Group-HOWTO.html

1834

Beyond Development: A Research Agenda for Investigating Open Source Software User Communities

Nichols, D. M., & Twidale, M. B. (2003).The
usability of OpenSource software. First Monday,
8(1).

Onetti, A., & Capobianco, F. (2005). OpenSource
and business model innovation: The Funambol
case. In M. Scotto & G. Succi (Eds.), In Proceed-
ings of the 1st International Conference on Opens
Source Systems (pp. 224-227).

Raymond, E. (2001). The cathedral and the
bazaar: Musings on Linux and OpenSource by
an accidental revolutionary. Sebastopol, CA:
O’Reilly & Associates.

Rheingold, H. (2000). Virtual community: Home-
steading on the electronic frontier. Cambridge:
The MIT Press.

Robey, D., Schwaig, K., & Jin, L. (2003). Inter-
twining material and virtual work. Information
and Organization, 13(2), 111-129.

Verma, S., Jin, L., & Negi, A. (2005). OpenSource
adoption and use: A comparative study between
groups in the US and India. In Proceedings of the
11th Annual Americas Conference on Information
Systems (pp. 960-972).

von Hippel, E., & von Krogh, G. (2003) Open-
Source software and the “private-collective” in-
novation model: Issues for organization science.
Organization Science, 14(2), 209-223.

Wang, J. (2005). The role of social capital in
OpenSource software communities. In Proceed-
ings of the 11th Annual Americas Conference on
Information Systems (pp. 937-943).

Watson, R. T., Boudreau, M. C., Greiner, M.,
Wynn, D., York, P., & Gul, R. (2005). Governance
and global communities. Journal of International
Management, 11, 125-142.

Watson, R. T., Boudreau, M. C., York, P., Greiner,
M., & Wynn, D. (in press). The business of Open-
Source. Communications of the ACM.

Wellman, B. (2001). Physical place and cyberplace:
The rise of personalized networking. International
Journal of Urban and Regional Research, 25(2),
227-252.

Williams, R. (1973). Keywords. Oxford: Oxford
University Press.

Winchester, S. (1998). The professor and the
madman: A tale of murder, insanity, and the
making of the Oxford English Dictionary. New
York: HarperCollins.

Ye, Y., Kishida, K., Nakakoji, K., & Yamamoto, Y.
(2002). Creating and maintaning sustainale Open-
Source software communities. In Proceedings
of International Symposium on Future Software
Technology 2002 (ISFST ‘02), Wuhan, China.

This work was previously published in Information Resources Management Journal, Vol. 20, Issue 1, edited by M. Khosrow-
Pour, pp. 68-80, copyright 2007 by IGI Publishing (an imprint of IGI Global).

 1835

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.3
Social Network Structures in

Open Source Software
Development Teams

Yuan Long
Colorado State University-Pueblo, USA

Keng Siau
University of Nebraska-Lincoln, USA

ABStrAct

Drawing on social network theories and previous
studies, this research examines the dynamics of
social network structures in open source software
(OSS) teams. Three projects were selected from
SourceForge.net in terms of their similarities
as well as their differences. Monthly data were
extracted from the bug tracking systems in order
to achieve a longitudinal view of the interaction
pattern of each project. Social network analysis
was used to generate the indices of social struc-
ture. The finding suggests that the interaction
pattern of OSS projects evolves from a single hub
at the beginning to a core/periphery model as the
projects move forward.

IntroductIon

The information system development arena has
seen many revolutions and evolutions. We have
witnessed the movement from structured devel-

opment to object-oriented (OO) development.
Modeling methods, such as data flow diagram
and entity relationship diagram, are facing new
OO modeling languages, such as the unified
modeling language (UML) (see Siau & Cao,
2001; Siau, Erickson, & Lee, 2005; Siau & Loo,
2006) and OO methodologies, such as unified
process (UP). The latest development includes
agile modeling (see Erickson, Lyytinen, & Siau,
2005), extreme programming, and OSS develop-
ment. While many of these changes are related
to systems development paradigms, methodolo-
gies, methods, and techniques, the phenomenon
of OSS development entails a different structure
for software development teams.

Unlike conventional software projects, the
participants of OSS projects are volunteers. They
are self-selected based on their interests and ca-
pability to contribute to the projects (Raymond,
2000). In addition, the developers of OSS projects
are distributed all around the world. They com-
municate and collaborate with each other through
the Internet, using e-mails or discussion boards.

1836

Social Network Structures in Open Source Software Development Teams

Therefore, effective and efficient communication
and collaboration are critical to OSS success.
However, little empirical research has been
conducted to study the underlying interaction
pattern of OSS teams, especially the dynamics
of the social network structures in OSS develop-
ment teams. To fill this gap, this study examines
the evolvement of social structure in OSS teams.
The study contributes to the enhancement of the
understanding of OSS development, and provides
foundation for future studies to analyze the an-
tecedents and consequences of social networks
in the OSS context.

The remainder of the paper is structured as
follows. First, prior studies on social network
structures in OSS teams are reviewed. Second,
theories related to social structure and social
network theory are discussed. Third, the research
methodology is presented, and the research results
are reported. Next, discussions of the results, the
limitations, and the implications are provided.
The paper concludes with suggestions for future
research.

literAture reVieW

The phenomenon of OSS development has attract-
ed considerable attention from both practitioners
and researchers in diverse fields, such as computer
science, social psychology, organization, and
management. Because of the multifaceted nature
of OSS, researchers have investigated OSS phe-
nomenon from varied perspectives. For example,
focusing on technical perspective, researchers
studied issues such as OSS development method-
ology (e.g., Jørgensen, 2001) and coding quality
(e.g., Stamelos, Angelis, Oikonomu, & Bleris,
2002). Based on social psychology, researchers
investigated individual motivation (e.g., Hann,
Robert, & Slaughter, 2004), new developers (Von
Krogh, Spaeth, & Lakhani 2003), the social net-
work (e.g., Madey, Freeh, & Tynan, 2002), and
the social structure (e.g., Crowston & Howison,

2005). In terms of organizational and managerial
perspective, researchers examined knowledge
innovation (e.g., Hemetsberger 2004; Lee & Cole
2003, Von Hippel & von Krogh, 2003) and the
governance mechanism (e.g., Sagers 2004).

An OSS development team is essentially a
virtual organization in which participants inter-
act and collaborate with each other through the
Internet. Compared to conventional organizations,
the structure of virtual organizations is decentral-
ized, flat, and nonhierarchical (Ahuja & Carley
1999). However, some researchers challenge the
belief (e.g., Crowston & Howison 2005; Gacek
& Arief, 2004;; Mockus, Fielding, & Herbsleb,
2000; Mockus, Fielding, & Herbsleb, 2002; Moon
& Sproull, 2000). They argue that the social
structure of OSS projects is hierarchical rather
than flat, like a tree (Gacek & Arief, 2004) or an
onion (Crowston & Howison, 2005). The social
structure of OSS teams directly influences the
collaboration and the decision-making process
and further affects the overall performance of the
teams as well as individuals’ perception of belong-
ing and satisfaction. Therefore, one wonders what
form of social structure might be present in the
OSS development and what type of structure will
emerge—centralized or decentralized, hierarchi-
cal or nonhierarchical, onion-like or tree-like, or
a combination of the above depending on certain
specific situations?

A social network, as stated by Krebs and
Holley (2004), is generally built in four phases,
each with its own distinct topology (as shown in
Figure 1).

1. scattered clusters,
2. single hub-and-spoke,
3. multihub small-world network, and
4. core/periphery.

Most organizations start from isolated and
distributed clusters (Krebs & Holley, 2004). Then
an active leader emerges and takes responsibility
for building a network that will connect the sepa-

 1837

Social Network Structures in Open Source Software Development Teams

rate clusters. However, this single-hub topology is
fragile. With more participants entering the group,
the leader changes his/her role to a facilitator and
helps to build multiple hubs, which is stage three.
The core/periphery model, the last stage, is the
most stable structure. In the core/periphery model,
the network core encompasses key group members
who are strongly connected to each other, while
the periphery contains members who are usually
weakly connected to each other as well as to the
core members. With the general network building
phases in mind, one can argue that OSS projects
may follow the same four stages (i.e., scattered
clusters, single hub-and-spoke, multihub small-
world network, and core/periphery model). But is
that true for OSS projects? How does the social
structure of OSS teams evolve over time?

Our research addresses the following two
questions:

1. What is the social structure of OSS
teams?

2. How does the social structure evolve over
time?

tHeOreticAl fOunDAtiOn

Social Structure and Social
interaction

Social structure, as suggested by Schaefer and
Lamm (1998), refers to the way in which society
is organized into predictable relationships. Social
structure can be considered in terms of three
aspects—actors, their actions, and their interac-
tions. The social actor is a relatively static concept
addressing issues such as roles, positions, and
statuses. Individual actors are embedded in the
social environment and, therefore, their actions
are largely influenced by the connections between
each other. Social interaction is generally regarded
as the way in which people respond to one another.
These interaction patterns are to some extent in-
dependent of individuals. They exert a force that

Stage 1. Scattered Clusters

Stage 2. Single Hub-and-Spoke

 Stage 3. Multi-Hub Small World Network Stage 4. Core/Periphery Network

Figure 1. Four phases of social structures (from Krebs and Holley 2004)

1838

Social Network Structures in Open Source Software Development Teams

shapes both behavior (i.e., actions) and identity
(i.e., actors) (Schaefer & Lamm, 1998).

Research on social interaction focuses on how
individuals actually communicate with each other
in group settings. These studies address issues
such as the interaction patterns, the underlying
rules guiding interaction, the reasons accounting
for the way people interact, and the impacts of
the interaction patterns on the individual behavior
and the group performance. These issues begin by
questioning what might be the interaction pattern
in a specific social setting and that addresses our
research question—understanding social interac-
tion of OSS project teams.

Social network theory

Social network theory focuses on studying ac-
tors as well as their relationships in specific
social settings. Network theory is analogous to
systems theory and complexity theory. It is an
interdisciplinary theory stemming from multiple
traditional fields, including psychology, which
addresses individuals’ perception of social
structure; anthropology, which emphasizes social
relationships; and mathematics, which provides
algorithms (Scott, 2000).

Based on the view of social network, the world
is composed of actors (also called nodes) and ties
between them. The ties can represent either a spe-
cific relationship (such as friendship and kinship)
between a pair of actors or define a particular ac-
tion which an actor performs. Different kinds of
ties specify different networks and are typically
assumed to function differently. For example,
the ties in a family network are distinctive from
those in a working network, and the centrality
in the “who loves whom” network obviously has
different meaning than the centrality in the “who
hates whom” network.

Social network theory is based on the intui-
tive notion that the social interaction patterns are
essential to the individuals who reflect them.
Network theorists believe that how individuals

behave largely depends on how they interact with
others and how they are tied to a social network.
Furthermore, besides individual behavior, net-
work theorists believe that the success or failure of
societies and organizations often depends on the
internal interaction pattern (Freeman, 2004).

Besides the theoretical essence, social net-
work theory is also characterized as a distinctive
methodology encompassing techniques for data
collection, statistical analysis, and visual repre-
sentation. This approach is usually called social
network analysis and will be discussed in the
research methodology section. This paper draws
on the social network theory to study the interac-
tion pattern of OSS development project.

reSeArcH metHODOlOgy

Social network Analysis

Social network analysis is used in our study to
investigate the interaction pattern of the OSS
development process. Social network analysis
focuses on uncovering the interaction pattern
of interdependent individuals (Freeman, 2004).
Through a structural analysis of a social network
diagram, a map depicting actors as well as the
ties that connect them, social network analysis
can reveal the patterns of relationships and the
relative position of individuals in a specific so-
cial setting. This approach has been effectively
used in organizational research, social support,
mental health, and the diffusion of information
(Freeman, 2004).

Social network analysis is used in our study
for two primary reasons. First, the purpose of
social network analysis fits our research objec-
tive. Social network analysis aims to analyze the
relationship among a set of actors instead of their
internal attributes. Our research aims to reveal
the interaction pattern of OSS project teams.
Therefore, social network analysis is helpful in
answering our research questions.

 1839

Social Network Structures in Open Source Software Development Teams

Second, the rich interactive data extracted
from OSS projects presents a “gold mine” for
social network analysis. Social network analysis
is grounded in the systematic analysis of empirical
data. However, there is usually a lack of conve-
nient and objective resources from which to draw
the links (i.e., relationships) among actors. Most
OSS projects have online mailing lists, forums,
and tracking systems that are open to public, thus
providing a rich set of longitudinal data. Based on
these public data, researchers are able to capture
input data sets for social network analysis.

longitudinal Data

Because we are interested in studying how the
interaction pattern of OSS projects evolves over
time, cross-sectional observations of interac-
tion networks are not sufficient. Cross-sectional
observations of social networks are snapshots of
interactions at a point in time and cannot provide
traceable history, thus limiting the usefulness of
the results. On the other hand, longitudinal ob-
servations offer more promise for understanding
the social network structure and its evolvement.
In this study, we extracted longitudinal data on
OSS projects.

case Selection

OSS projects were selected from the SourceForge1,
which is the world’s largest Web site hosting OSS
projects. SourceForge provides free tools and ser-
vices to facilitate OSS development. At the time of
the study, it hosted a total of 99,730 OSS projects
and involved 1,066,589 registered users (This data
was retrieved on May 4, 2005). Although a few
big OSS projects have their own Web sites (such
as Linux), SourceForge serves as the most popular
data resource for OSS researchers.

Following the idea of theoretical sampling
(Glaser & Strauss, 1967), three OSS projects
were selected from SourceForge in terms of their
similarities and differences. Theoretical sampling

requires theoretical relevance and purposes
(Orlikowski, 1993). In terms of relevance, the
selection ensures that the interaction pattern of
OSS projects over time is kept similar. Therefore,
the projects that are selected have to satisfy two
requirements. First, the projects must have con-
siderable interaction among members during the
development process. All three projects had more
than 10 developers, and the number of bugs re-
ported was more than 1,000. Second, since we are
interested in the interaction over time, the projects
must have a relatively long life. In our case, all
three projects were at least three years old.

In addition to similarities, differences are
sought among cases because the study aims
to study interaction patterns of various OSS
projects. Therefore, the three projects differ on
several project characteristics, such as project
size, project type, and intended audience. These
differences enable us to make useful contrasts
during data analysis.

The Table 1 summarizes the three projects
with a brief description.

Data collection and Analysis

Social network analysis can be divided into the
following three stages (Borgatti, 2002).

1. Data collection. In this stage, researchers
collect data, using surveys and question-
naires, or from documents and other data
resources, and generate input data sets for
social network analysis.

2. Statistical analysis. Based on mathematics
algorithms, this stage generates network
indices concerning group structure (such
as centralization and density) as well as
individual cohesion (such as centrality and
bridges).

3. Visual representation. This stage employs
network diagrams to show the interaction
structure as well as the position of specific
actors.

1840

Social Network Structures in Open Source Software Development Teams

First is the data collection. The data were col-
lected in April 2005 from SourceForge.net. Data
were extracted from the bug tracking system of
each project. We chose the bug tracking system
as the primary data resource for three reasons.
First, open source software is characterized as
peer review of open codes. Raymond (1998)
proposed the “Linus’ law” in his well-known
essay The Cathedral and the Bazaar— “Given
enough eyeballs, all bugs are shallow.” Therefore,
the bug system can be viewed as the representa-
tive of open source spirit. Second, compared to
other development activities, such as patch post-
ing and feature request, the bug-fixing process is
the most active procedure to illustrate the close
collaboration between developers and users as
well as among developers themselves. Finally,
the bug tracking system provides rich data that
record the interactive process.

A Web spider program, which is based on
the work of Crowston and Howison (2005) with
necessary revision, was used to download the bug

tracking Web pages from the project Web site.
After that, a Web parsing program was developed
to analyze the Web pages. The interaction data
was extracted from the bug tracking Web pages
month-by-month, starting from the date the project
was registered until the date the data was down-
loaded for this study. The output of this stage is
a social matrix describing the interaction among
users. Figure 2 shows an example of such a social
matrix for an OSS project. In the matrix, each row
or column represents a distinctive participant,
which is identified by a unique SourceForge user
identity. The values of cells indicate the degree of
the interaction between each pair of participants,
which is counted by the amounts of messages that
participant A (i.e., row A) replied to participant
B (i.e., column B).

Second is the statistical analysis. Our study fo-
cuses on two important and distinctive properties
of network structure—group centralization and
core/periphery fitness. Ucinet, which was devel-

Net-SNMP Compiere ERP + CRM J-boss

Description

Net-SNMP allows
system and network
managers to monitor
and manage hosts and
network devices.

Compiere is a smart
ERP+CRM solution
covering all major business
areas—especially for small-
medium enterprises.

JBoss is a leading open
source Java application
server. After Linux and
Apache, it is the third
major open source project
to receive widespread
adoption by corporate IT.

Similarities

Bug reports
(more than
1,000 bugs)

1,361 1,695 2,296

Development
duration (more
than 3 years)

55 months (registered
on 10/2000)

47 months (registered on
6/2001)

50 months (registered on
3/2001)

Differences

Software type Internet, network man-
agement Enterprise: ERP+CRM J2EE-based middleware

Group size
(number of
developers)

Small (14) Median (44) Large (75)

Intended audi-
ence

Developers, system
administrators Business Developers, system

administrators

Table 1. Summary of three projects

Note: Data was retrieved in April 2004 from SourceForge.net.

 1841

Social Network Structures in Open Source Software Development Teams

oped by Borgatti, Everett, and Freeman (2002),
was used to calculate these two properties.

Group centralization, as suggested by Was-
serman and Faust (1994), refers to the extent to
which a network revolves around a single center.
A typical case of centralized structure is a “star”
network. Group centralization can be viewed as
a rough measure of inequity between individual
actors, and the variability and dispersion of the
interaction pattern.

The other property is core/periphery fitness. It
measures the extent to which the network is close
to a perfect core/periphery structure. The core/pe-
riphery structure depicts a dense, connected group
surrounded by a sparse, unconnected periphery.
The opposite structure is clique, which represents
a structure of multiple subgroups, each with its
own core and peripheries (Borgatti, 2002).

Finally is the visual representation. We used
Ucinet (Borgatti et al., 2002) to draw the interac-
tion networks for each of the three projects.

reSeArcH reSultS

Snapshots of the three projects

Monthly data were extracted from the bug track-
ing system of each project. To illustrate the trend
of interaction pattern, we provide three snapshots
for each project (see Figures 3-5)2.

Table 2 summarizes the relevant network
characteristics of each project. In addition to the
group centralization and core/periphery fitness,
we also report other network characteristics, such
as density, average distance, and distance-based
cohesion. Density depicts how “close” the network
looks, and it is a recommended measure of group
cohesion (Blau, 1977; Wasserman & Faust 1994).
The value of density ranges from 0 to 1. Average
distance refers to average distance between all
pairs of nodes (Borgatti, 2002). Distance-based
cohesion takes on values between 0 and 1—the
larger the values, the greater the cohesiveness.

Looking at the statistical results and the net-
work plots, we can observe the following.

First, the evolvement of interaction patterns
of the three projects reveals a general trend. As

The total nuber of actors

SF IDs of all the actors

Jcbowman replied to
ydirson 6 times

dl N=11 format=fullmatrix

Lables:
cmsavage dteixeira jcbowman jsber-bnl m-a rapr rtprince sf-robot svenn xbursam ydirson

Data:
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
5 1 0 2 1 0 0 0 1 1 6
0 0 3 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 1 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 3 0 0 0 0 2 0 0 0

Figure 2. An example of the social matrix for an OSS project

1842

Social Network Structures in Open Source Software Development Teams

shown in the network plots (i.e., Figures 3-5), the
interaction pattern develops from a centralized
one with a single (sometimes dual) hub with
several distributed nodes, to a core/periphery
structure that has a core (a group of core develop-
ers) together with several hangers-on (periphery).
Intense interactions exist within the core (among
several core developers) and between each core
member and his/her periphery. However, only
loose relationships exist among peripheries. This
pattern suggests a layer structure (i.e., core with
its periphery) instead of a complete flat one with
equal positions across all the members.

Second, although the interaction patterns of
the three projects share some commonalities, their
exact shapes are different. The shape of Net-SNMP
(as shown in Figure 3) is more like a typical core/
periphery compared to the other two. Compiere
(as shown in Figure 4) keeps two cores, and the
shape looks like a dumbbell. Jboss (as shown in
Figure 5), which is the largest project among the
three, maintains a more complex structure that

shows multiple layers instead of just one core with
the rest as peripheries (e.g., Net-SNMP)

Third, as time goes by, the group centraliza-
tion decreases across the three projects, showing
a trend that moves from a centralized structure to
a decentralized structure irrespective of project
sizes (The three projects with different project
sizes are shown in Table 1), project types, and
intended audience.

Fourth, the indices of core/periphery fitness
of each project fluctuate slightly but maintain a
relatively high value (larger than 0.5 on average).
However, no observable trend was found across
projects.

Fifth, since each project has a relatively large
group (i.e., more than 100 actors including all the
registered users), the values of density are rela-
tively low with little variation. Therefore, density
is not appropriate for comparing the projects.

From the snapshots, we observed the follow-
ing trend. First, the OSS interaction network
evolves into a core/periphery structure. Second,

Net-SNMP Compiere JBoss

Group centraliza-
tion
(%)

1st. 9.420 15.624 4.931

2nd. 3.071 2.294 4.45

3rd. 2.316 1.288 4.12

Core/periphery
fitness

1st. 0.674 0.774 0.485

2nd. 0.654 0.796 0.477

3rd. 0.651 0.765 0.501

Density

1st. 0.0235 0.0584 0.0073

2nd. 0.0109 0.0610 0.0039

3rd. 0.0072 0.0571 0.0026

Average distance

1st. 2.546 2.711 3.438

2nd. 2.794 2.302 3.281

3rd. 2.917 2.278 3.239

Distance-based
cohesion

1st. 0.181 0.198 0.118

2nd. 0.143 0.253 0.147

3rd. 0.141 0.279 0.136

Table 2. Three snapshots for each project

 1843

Social Network Structures in Open Source Software Development Teams

April 2002 October 2003

April 2005

Figure 3. Interaction patterns of Net-SNMP

Figure 4. Interaction patterns of compiere CRM+ERP

 April 2005

 Jan. 2004Sep. 2002

group centralization decreases over time. Third,
core/periphery fitness stays relatively stable. To
verify our observations, we used longitudinal

data generated from the bug tracking systems
to analyze the evolvement of interaction pattern
(discussed in the following section).

1844

Social Network Structures in Open Source Software Development Teams

July 2002 November 2003

April 2005

Figure 5. Interaction patterns of JBoss

group centralization and
core/periphery fitness

Table 3 shows the values of both group centraliza-
tion and core/periphery fitness over time based on
the monthly interaction data. For each figure, the
Y-axis indicates the social structure indices (i.e.,
group centralization or core/periphery fitness), and
the X-axis reflects the time dimension.

Two primary observations can be made based
on the statistical analysis.

First, the group centralization shows a decreas-
ing trend across the three projects. This observa-
tion indicates that as OSS projects progress, the
social network structure evolves from centralized
to decentralized and then stabilizes. Also, the
three figures suggest no substantial differences
in the trend among the three projects.

Second, the core/periphery index is maintained
at a relatively stable level for each project over
time. In addition, the average fitness value stays

relatively high for each project (larger than 0.5),
indicating a closeness to a perfect core/periphery
structure.

Besides a holistic view of network structure
for OSS projects, the results also reveal other
interesting findings. For example, by examining
the core members over time, we found a relatively
stable core for each project. The cores are usu-
ally project developers and administrators. This
observation further demonstrates the existence of
strong and stable core as well as loose hangers-on
in OSS projects.

DiScuSSiOn

This research uses the longitudinal data of three
OSS projects selected from SourceForge to study
the social network structures of OSS teams. The
purpose of this study is to investigate the evolve-
ment of interaction patterns of OSS project teams.

 1845

Social Network Structures in Open Source Software Development Teams

The research results suggest a decrease of group
centralization over time and a tendency of core/
periphery structure in OSS project teams.

The network plots (as shown in Figures 3-5)
indicate a layer structure instead of a flat one as
suggested by earlier literature. The interaction
pattern evolves from a single hub to a core/pe-
riphery structure. As the number of participants
increases, a core with only one person (who may
be the starter/initiator of the project) cannot satisfy
the increasing requirements of development and
communication. Therefore, other developers or
active users join the core to serve as key mem-
bers of the project. This results in a more stable
structure, and the project is less dependent on a
single leader.

With the growth of a software project, more
people are attracted to the project. The original
leader may not be able to solve all the technical
problems encountered in the development pro-
cess. Each key member has his/her specialty, is

responsible for solving relevant problems, and
has his/her own periphery in the network plot.
Although there are multiple peripheries in the
project, collaboration among key members in the
project is vital. This phenomenon of distribution
and collaboration can be viewed as a critical
success factor of OSS development. And the
evolvement is vividly demonstrated in our social
network analysis.

In a way, the social structure of OSS projects is
both centralized and decentralized. On one hand,
it is centralized in the sense that there is a core that
consists of key members. These key members are
responsible for various issues encountered during
the development process. On the other hand, it
is decentralized in the sense that the decision or
communication core is not concentrated on one
or two members but a group of key members.

Like any other research, this research has its
share of limitations. First, the cases were only
selected from SourceForge.net. Although Source-

 Group centralization

Core/periphery fitness

Net-
SNMP

Compiere

JBoss

Table 3. Group centralization and core/periphery fitness based on longitudinal data

1846

Social Network Structures in Open Source Software Development Teams

Forge is the world’s largest Web site hosting open
source software, there are also some other similar
Web sites. Therefore, the total number of OSS
projects in SourceForge cannot be viewed as the
whole population. However, as we argued before,
SourceForge is probably the best data collection
site for this research.

Second, the bug tracking system was chosen as
our data resource. The selection of bug tracking
system as our research setting and data resource
may have had an effect on the outcome and results.
Besides the bug tracking forum, there are other
forums that also provide space for participants
to communicate with one another, such as mail-
ing lists and feature requests. However, as we
highlighted earlier, the bug systems are the most
active forum, providing rich interaction data. The
bug tracking systems also represent the spirit of
open source software development. Examining
the interaction data from other forums can be one
of our research extensions in the future.

Third, because our research objective is to
investigate interaction pattern, we chose projects
that have a relatively large number of developers,
a large number of bug reports, and relatively
long history. Although we tried to involve dif-
ferent types of projects (i.e., different project
sizes, project types, and intended audience),
these three cases may not be representatives of
OSS projects, for example, small projects with
only one or two developers and few interactions.
Increasing the sample size and including various
types of OSS projects is one of our future research
directions.

implicAtiOnS AnD
cOncluSiOn

This paper examines the interaction patterns of
OSS teams. The research findings suggest that
the interaction structure starts from a single hub
and evolves to a core/periphery model. We argue
that the social structure of OSS teams is both

centralized and decentralized. It is centralized in
the sense that there exists a relatively stable core
that consists of a group of key developers. It is
also decentralized because of distributed decision
making among key developers and the broad col-
laboration between developers and users as well
as among developers themselves.

The paper presents the evolvement of the social
structure of OSS projects from a longitudinal
perspective. It also provides empirical evidence
of the change of interaction patterns from a
single hub to a core/periphery model. Moreover,
the paper utilizes social network analysis as the
research method. This approach has been shown
in this research as an effective tool in analyzing
the social structure in OSS teams.

Social structure is an important variable for
understanding social phenomenon. Open source
software, with its open and unique nature, at-
tracts researchers to ask a series of questions.
For example, how do participants of OSS projects
interact and collaborate with each other? What
factors facilitate the interaction and the collabo-
ration? And further, how does the collaboration
affect project performance of OSS teams? Social
network analysis is a good approach to investi-
gate these questions. This research represents a
pioneering effort in this direction.

referenceS

Ahuja, M., & Carley, K. (1999). Network structure
in virtual organizations. Organization Science,
10(6), 741-747.

Blau, P. M. (1977). Inequity and heterogeneity.
New York: Free Press.

Borgatti, S. (2002). Basic social network concepts.
Retrieved from http://www.analytictech.com/net-
works/basic%20concepts%202002.pdf

Borgatti, S. P., Everett, M. G., & Freeman, L.
C. (2002). Ucinet for Windows: Software for

 1847

Social Network Structures in Open Source Software Development Teams

social network analysis. Harvard, MA: Analytic
Technologies.

Crowston, K., & Howison, J. (2005). The social
structure of free and open source software devel-
opment. First Monday, 10(2).

Erickson, J., Lyytinen, K., & Siau, K. (2005). Agile
modeling, agile software development, and ex-
treme programming: The state of research. Jour-
nal of Database Management, 16(4), 88-100.

Freeman, L. C. (2004). The development of social
network analysis: A study in the sociology of sci-
ence. Vancouver, Canada: Empirical Press.

Gacek, C., & Arief, B. (2004). The many meanings
of open source. IEEE Software, 21(1), 34-40.

Glaser, B. G., & Strauss, Anselm L., (1967). The
Discovery of Grounded Theory: Strategies for
Qualitative Research, Chicago, Aldine Publish-
ing Company

Hann, H., Robert, J., & Slaughter, S. (2004). Why
developers participate in open source software
projects: An empirical investigation. In Twenty-
Fifth International Conference on Information
Systems, (pp. 821-830). Washington, DC: .

Hemetsberger, A. (2004). Sharing and creating
knowledge in open-source communities: The
case of KDE. The Fifth European Conference
on Organizational Knowledge, Learning, and
Capabilities in Innsbruck, Austria.

Jørgensen, N. (2001). Putting it all in a trunk:
Incremental software development in the free-
BSD open source project. Information Systems
Journal, 11, 321-336.

Krebs, V., & Holley, J. (2004). Building sustain-
able communities through network building.
Retrieved from http://www.orgnet.com/Build-
ingNetworks.pdf

Lee, G. K., & Cole, R. E. (2003). From a firm-based
to a community-based model of knowledge cre-

ation: The case of the Linux kernel development.
Organization Science, 14(6), 633-649.

Madey, G., Freeh, V., & Tynan R. (2002). The
open source software development phenomenon:
An analysis based on social network theory (AM-
CIS2002). Dallas, TX.

Mockus, A., Fielding, R. T., & Herbsleb, J. D.
(2000). A case study of open source software
development: The Apache server. ICSE 2000.

Mockus, A., Fielding, R. T., & Herbsleb, J. D.
(2002). Two case studies of open source software
development: Apache and Mozilla. ACM Transac-
tions on Software Engineering and Methodology,
11(3), 309–346.

Moon, J. Y., & Sproull, L. (2000). Essence of
distributed work: The case of Linux kernel. First
Monday, 5(11).

Orlikowski, W. J. (1993). CASE tools as organi-
zational change: investigating incremental and
radical changes in systems development. MIS
Quarterly, 17(3), 309-340.

Raymond, E. S. (1998). The cathedral and the
bazaar. First Monday, 3(3), Retrieved January ,
2005, from http://www.catb.org/~esr/writings/ca-
thedral-bazaar/cathedral-bazaar/

Sagers, G. W. (2004). The influence of network
governance factors on success in open source
software development projects. In Twenty-Fifth
International Conference on Information Systems
(pp. 427-438). Washington, DC:

Schaefer, R. T., & Lamm, R. P. (1998). Sociology
(6th ed.). McGraw-Hill.

Scott, J. (2000). Social network analysis. A hand-
book (2nd ed.). London: SAGE Publications.

Siau, K., & Cao, Q. (2001). Unified modeling
language—A complexity analysis. Journal of
Database Management, 12(1), 26-34.

1848

Social Network Structures in Open Source Software Development Teams

Siau, K., Erickson, J., & Lee, L. (2005). Theo-
retical versus practical complexity: The case of
UML. Journal of Database Management, 16(3),
40-57.

Siau, K., & Loo, P. (2006). Identifying difficulties
in learning UML. Information Systems Manage-
ment, 23(3), 43-51.

Stamelos, I., Angelis, L., Oikonomu, A., & Bleris,
G. L. (2002). Code quality analysis in open-source
software development. Information Systems
Journal, 12(1), 43-60.

Von Hippel, E., & Von Krogh, G. (2003). Open
source software and the „private-collective“ in-
novation model: Issues for organization science.
Organization Science, 14, 209-223.

Von Krogh, G., Spaeth, S., & Lakhani, K. R.
(2003). Community, joining, and specialization
in open source software innovation: A case study.
Research Policy, 32(7), 1217-1241.

Wasserman, S., & Faust, K., (1994). Social Net-
work Analysis: Methods and Applications. New
York: Cambridge University Press.

enDnOte

1 The Web address for SourceForge is www.
sourceforge.net.

2 The three time stamps for Net-SNMP are
4/2002, 10/2003 and 4/2005; for Compiere
are 9/2002, 1/2004 and 4/2005; and for Jboss
are 7/2002, 11/2003 and 4/2005.

This work was previously published in Journal of Database Management, Vol. 18, Issue 2, edited by K. Siau, pp. 25-40, copy-
right 2007 by IGI Publishing (an imprint of IGI Global).

 1849

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.4
The Impact of Ideology on the

Organizational Adoption of
Open Source Software

Kris Ven
University of Antwerp, Belgium

Jan Verelst
University of Antwerp, Belgium

ABStrAct

Previous research has shown that the open source
movement shares a common ideology. Employees
belonging to the open source movement often ad-
vocate the use of open source software within their
organization. Hence, their belief in the underlying
open source software ideology may influence the
decision making on the adoption of open source
software. This may result in an ideological—rather
than pragmatic—decision. A recent study has
shown that American organizations are quite
pragmatic in their adoption decision. We argue
that there may be circumstances in which there
is more opportunity for ideological behavior. We
therefore investigated the organizational adoption
decision in Belgian organizations. Our results
indicate that most organizations are pragmatic in
their decision making. However, we have found
evidence that suggests that the influence of ide-
ology should not be completely disregarded in
small organizations.

IntroductIon

The free software movement—led by Richard
M. Stallman—has always taken an ideological,
political view on software. Adherents to the free
software movement advocate that all software
should be free, in the sense that it should be free
to read, modify, and distribute. The open source
movement on the other hand was created in order
to facilitate the introduction of free software in
organizations and takes a more pragmatic stance in
its efforts to market open source software (OSS).
Previous research has shown that the open source
movement is characterized by a shared, underly-
ing ideology (e.g., Ljungberg, 2000; Bergquist &
Ljungberg, 2001). Lately, an increasing number of
developers are hired by commercial organizations
to work on OSS projects. These developers may
or may not share the OSS ideology. Nevertheless,
many adherents to the open source movement still
feel connected to the OSS ideology. Moreover,
commercial organizations still need to find a bal-
ance between their commercial objectives and the

1850

The Impact of Ideology on the Organizational Adoption of Open Source Software

traditional values of the open source movement
(Fitzgerald, 2006).

Many organizations have already adopted
OSS, especially mature server software such as
Linux and Apache. Research on the organiza-
tional adoption of OSS has shown that its use
was frequently a bottom-up initiative, suggested
by technical employees within the organization
who are an adherent to the open source movement
(Dedrick & West, 2003; West & Dedrick, 2005;
Lundell, Lings, & Lindqvist, 2006). In some
cases, decision makers could also be considered
an adherent to the open source movement. These
employees will take on the role of boundary span-
ners in their organization, bringing the organiza-
tion in contact with new innovations (Tushman &
Scanlan, 1981). West and Dedrick (2005) have
found in their study on American organizations
that although such employees try to ensure that
an open source alternative is considered in the
decision making, the final decision is made on
pragmatic grounds (i.e., based on characteristics
of the software such as cost, reliability, and func-
tionality), and not based on ideological feelings
towards OSS. The organizations included in their
study are rather large,1 which may have had an
impact on their results.

We argue that it is useful to perform a similar
study in a context in which there is more oppor-
tunity for ideological behavior. We expect that
this might be the case in smaller organizations.
In order to investigate whether decision making
in small organizations is ideological, we have
conducted 10 case studies in Belgian organiza-
tions to investigate the organizational adoption
of OSS. The article is structured as follows. We
will start by discussing the theoretical background
of this study. Next, we will discuss our research
design. Subsequently, we will present the results
of our study, focusing on three organizations that
used fairly ideological decision making. This is
followed by a discussion of our findings. Finally,
we will offer our conclusions.

tHeOreticAl BAcKgrOunD

OSS ideology

Numerous definitions have been proposed in lit-
erature for the term “ideology.” Usually, the term
is used in a pejorative meaning. Such use implies
that an ideology is based on false beliefs of real-
ity. Several authors however recommend against
using such a perspective (e.g., Hamilton, 1987).
The definition of ideology that we will use in this
article is proposed by Hamilton (1987, p. 38):

“An ideology is a system of collectively held
normative and reputedly factual ideas and beliefs
and attitudes advocating a particular pattern of
social relationships and arrangements, and/or
aimed at justifying a particular pattern of conduct,
which its proponents seek to promote, realise,
pursue or maintain.”

This definition is non-judgmental, and as
a result we do not make any pronouncements
with respect to the correctness of the beliefs,
values, and norms that characterize an ideology.
Hence, acting according to an ideology will not
necessarily have negative consequences for the
organization.

Previous research has described several ideo-
logical principles of the open source movement
(e.g., Markus, Manville, & Agres, 2000; Ljung-
berg, 2000; Stewart & Gosain, 2006). This ideol-
ogy has been shown to enhance the effectiveness
of the OSS community (Stewart & Gosain, 2006).
Stewart and Gosain (2006) identified a number
of underlying norms, beliefs, and values of the
open source movement (see Table 1). These norms,
beliefs, and values are proposed as the tenets of
the OSS ideology.

The tenets listed in Table 1 are used to describe
the attitudes of developers within the OSS com-
munity. We argue however that some of the OSS
beliefs and values (i.e., tenets 4–15 in Table 1)
can also be shared by technical employees and
decision makers in organizations. Hence, it is
interesting to investigate whether decision mak-

 1851

The Impact of Ideology on the Organizational Adoption of Open Source Software

ers who share these ideological ideas of the open
source movement make an ideological—rather
than pragmatic—decision. Although the study
of West and Dedrick (2005) has shown that de-
cision making on OSS is pragmatic, we believe
that this may be different in small organizations.
Some authors have pointed out that decision
making with respect to IT in small organizations
is often the responsibility of a single individual
(Harrison, Mykytyn, & Riemenschneider, 1997;
Riemenschneider, Harrison, & Mykytyn, 2003).
We argue that the impact of the OSS ideology
will be greater if a single decision maker—who
can be considered an OSS advocate—is present
in the organization. In such situations, the adop-
tion decision may be ideological since personal
traits and beliefs of the decision maker are more
likely to impact the final decision than in larger
organizations.

mindful innovation

Nowadays, many things require the attention of
managers, making their attention a scarce resource
(Hansen & Haas, 2001; Swanson & Ramiller,
2004). One of the consequences is that much in-
novation in organizations is actually driven by
bandwagon phenomena, in which organizations
mimic the adoption behavior of other organiza-
tions and do not properly evaluate alternatives
(Abrahamson, 1991; Swanson & Ramiller, 2004).
Recently, the bandwagon phenomenon has been
framed into the broader context of mindful innova-
tion (Swanson & Ramiller, 2004; Fiol & Connor,
2003). The concept of mindfulness originated in
psychology and denotes a state of an individual
involving: (1) openness to novelty; (2) alertness
to distinction; (3) sensitivity to different contexts;
(4) implicit, if not explicit, awareness of multiple
perspectives; and (5) orientation in the present
(Sternberg, 2000). Decision makers in organi-

OSS Norms OSS Beliefs OSS Values

(1) Forking—There is a norm
against forking a project,
which refers to splitting the
project into two or more proj-
ects developed separately.
(2) Distribution—There is a
norm against distributing code
changes without going through
the proper channels.
(3) Named Credit—There
is a norm against remov-
ing someone’s name from a
project without that person’s
consent.

(4) Code Quality—Open
source development methods
produce better code than
closed source.
(5) Software Freedom—Out-
comes are better when code is
freely available.
(6) Information Freedom—
Outcomes are better when
information is freely available.
(7) Bug Fixing—The more
people working on the code,
the more quickly bugs will be
found and fixed.
(8) Practicality—Practical
work is more useful than
theoretical discussion.
(9) Status Attainment—Status
is achieved through commu-
nity recognition.

(10) Sharing—Sharing infor-
mation is important.
(11) Helping—Aiding others is
important.
(12) Technical Knowledge—
Technical knowledge is highly
valued.
(13) Learning—There is a
value on learning for its own
sake.
(14) Cooperation—Voluntary
cooperation is important.
(15) Reputation—Reputation
gained by participating in open
source projects is valuable.

Table 1. Tenets of open source ideology (Stewart & Gosain, 2006, pp. 294–295)

1852

The Impact of Ideology on the Organizational Adoption of Open Source Software

zations who are mindful have a “watchful and
vigilant state of mind” (Fiol & Connor, 2003).
An organization that innovates mindfully with IT
will therefore not take generalized claims about
advantages for granted, but will critically examine
their relevance and validity in the organization-
specific context (Fiol & Connor, 2003). Mindless
innovation, on the other hand, is characterized by
“…acting on automatic pilot, precluding atten-
tion to new information, and fixating on a single
perspective” (Fiol & Connor, 2003; Weick, Sut-
cliffe, & Obstfeld, 1999).2 Such innovation may
result in making premature decisions based on
beliefs that do not necessarily accurately reflect
reality (Butler & Gray, 2006). Hence, a dogmatic
belief in the OSS ideology may lead to mindless
adoption, in which no proprietary alternatives
are considered.

Swanson and Ramiller (2004) note that bound-
ary-spanning activities are important for mind-
ful organizational decision making, in order to
obtain information on the innovation. We argue
that in the case of OSS, this information may be
ideologically colored. As a result, the presence of
boundary spanners in the adoption of OSS may
actually lead to ideological (mindless) behavior
instead, especially if decision makers share the
OSS ideology. There are at least two factors that
can facilitate ideological behavior in such context.
First, decision structures in small organizations
tend to be less formal (bureaucratic) than in large
organizations. Fiol and Connor (2003) argue that
underspecified decision structures may encourage
further mindless behavior, if decision making was
mindless to begin with. Second, Swanson and
Ramiller (2004) point out that although personal
mindfulness with respect to innovation does not
necessarily equate to organizational mindfulness,
it will definitely have an impact on it.

ideology vs. pragmatism

In order to investigate whether decision making in
organizations exhibits ideological characteristics,

we need to determine how ideological behavior can
be identified. Based on the work of Stewart and
Gosain (2006), we determine whether decision
makers and other employees shared some of the
beliefs and underlying principles (tenets) of the
free and open source movements (see Table 1),
and did not properly assess their relevancy for
the organization. For example, proponents may
argue that software should be free (similar to
the views of the FSF), may have a negative at-
titude towards proprietary software, or may be
convinced that OSS delivers software of a higher
quality (Stewart & Gosain, 2006; Ljungberg,
2000). Consequently, decision makers may have
a strong preference for using OSS, without (prop-
erly) considering proprietary alternatives. Such
decision making may result in a less than optimal
solution for the organization. In fact, decision
makers are in that case rather mindless in their
decision making. Mindless organizations will pay
little attention to the organization’s specifics or
to studying new innovations. This will result in
making decisions on “autopilot,” using a single
perspective (Swanson & Ramiller, 2004; Fiol &
Connor, 2003). This means that the beliefs of
the OSS ideology are taken for granted, without
considering their suitability in the organization-
specific context.

On the other hand, we consider an organization
to be pragmatic in its decision making when the
organization does not exhibit any of the tenets
of the OSS ideology, or when decision makers
do not take any claims of the OSS ideology for
granted, but carefully examine their implica-
tions in the organization-specific context. Such
organizations are mindful in their decision mak-
ing. This means that decision makers base their
decision on the characteristics of the innovation
itself and consider how well the innovation fits
within the organization. Pragmatic decision mak-
ers will probably consider both proprietary and
OSS alternatives, outweigh the benefits of all
alternatives, and choose the best solution based
on factors such as cost and product features. In

 1853

The Impact of Ideology on the Organizational Adoption of Open Source Software

this case, no favoritism towards using OSS should
be present.

It must be noted that ideological and prag-
matic decision making is not a black and white
phenomenon. In practice, we expect organizations
to exhibit some ideological and some pragmatic
characteristics. This is consistent with Geuss
(1994), who remarks that an ideology is generally
not only composed of the beliefs and values that are
shared by all members of a group. Consequently,
not all adherents to the open source movement
will share all values proposed by the OSS ideol-
ogy. This is similar to the statement of Ljungberg
(2000) who suggests that developers vary in their
adherence to the OSS ideology. Hence, there are
many shades of gray in this classification. In
this article, we will discuss decision making in
three organizations in our sample which clearly
exhibited ideological behavior.

reSeArcH DeSign

To investigate whether decision making is ideo-
logical or pragmatic, we studied the organizational
adoption of OSS in Belgian organizations. In this
study, decision makers were questioned about
the reasons for using OSS and their attitudes
towards the open source movement. Based upon
the information obtained from these organiza-
tions, we were able to determine whether their
decision making was either pragmatic or rather
ideological.

Scope

We decided to focus mainly on the adoption of
open source server software. We use the term
open source server software to refer to both
open source operating systems (such as Linux
and FreeBSD) and other OSS for server use (for
example, the Apache Web server or the Bind
name server). This choice is motivated by the fact
that this type of OSS is generally considered to

be stable and mature, and is already in use by a
significant number of organizations. A similar
research approach has been undertaken by other
researchers (e.g., West & Dedrick, 2005). On
the other hand, we also gathered information on
other OSS that was being used in the organiza-
tions (such as desktop software, development,
and networking tools).

methodology

We used the exploratory case study approach
to study the organizational adoption decision
on open source server software. The case study
approach is well suited to study a contemporary
phenomenon in its natural setting, especially when
the boundaries of the phenomenon are not clearly
defined at the start of the study (Yin, 2003; Ben-
basat, Goldstein, & Mead, 1987). We conducted
a series of in-depth face-to-face interviews with
informants from 10 Belgian organizations to
identify the factors that influence the decision to
use open source server software as well as their
attitudes towards the open source movement.
Organizations were selected from the population
of all Belgian organizations and were sampled on
the basis of two criteria: the size of the organiza-
tion measured by the number of employees and
the sector in which the organization operated.
Organizations were only included in our sample
if they were using open source server software
at the time of our study. Informants within each
organization were selected using the key informant
method. Since the use of a single informant has
been shown to give inconsistent results (Phillips,
1981), we tried to speak to both a senior manager
(e.g., the IT manager) and a technical person (e.g.,
the system administrator) whenever possible.

The interviews took place between July and
November 2005. An overview of the cases in our
study is shown in Table 2. As can be seen from this
table, the organizations in our sample are consider-
ably smaller than those in the study of West and
Dedrick (2005).3 In each organization, we have

1854

The Impact of Ideology on the Organizational Adoption of Open Source Software

conducted a single interview during which all
informants in the organization were present. The
interviews were semi-structured, and the format
was revised after each interview to incorporate
new findings (Benbasat et al., 1987). In the first
part of the interview, informants were asked to
freely discuss their reasons for adopting OSS. In
the second part of the interview, we probed for
specific factors that were found relevant in previ-
ous studies, as well as the informants’ perceptions
of the free and open source movements. Each
interview lasted 45-90 minutes, was recorded
and transcribed verbatim. In order to increase the
validity of our findings, informants were sent a
summary of the interview and were requested to
suggest any improvements if necessary. Follow-up
questions were asked by telephone or via e-mail.
The transcripts were coded and then further ana-
lyzed using procedures to generate theory from
qualitative data, as described in the literature (e.g.,
Benbasat et al., 1987; Eisenhardt, 1989; Dubé &
Paré, 2003). Various data displays were used to
visualize and further analyze the qualitative data
(Miles & Huberman, 1994; Eisenhardt, 1989).

empiricAl finDingS

The dominant attitude towards OSS in seven or-
ganizations in our sample was pragmatism. These
organizations did not exhibit any of the tenets
of the OSS ideology, or their decision makers
considered how the advantages of OSS could be
realized in their organization. Consequently, these
organizations could be considered pragmatic (and
mindful) in their decision making with respect to
the adoption of OSS. The most commonly cited
advantages—and reasons for the adoption—of
OSS were cost and reliability. In general, deci-
sion makers tended to consider both proprietary
and OSS alternatives, and based their decision on
the cost and functionality offered by the various
alternatives. Some organizations even explicitly
mentioned that they made a pragmatic adoption
decision. These seven organizations did not have
a preference for using OSS over proprietary
software, except OrganizationB where a slight
preference for OSS was present. Although they
would accept a minor workaround in order to be
able to use OSS, this effort should be limited. Or,
as expressed by an informant:

Name Sector Employees Informants Extent of
adoption

OrganizationA Audio, video, and telecommunications 11 2 moderate

OrganizationB Machinery and equipment 749 2 extensive

OrganizationC Telecommunications 1346 1 limited

OrganizationD Publishing and printing 31 1 extensive

OrganizationE Food products and beverages 204 2 moderate

OrganizationF Research and development 152 2 extensive

OrganizationG Information technology 583 1 moderate

OrganizationH Chemicals 4423 1 moderate

OrganizationI Education 3303 3 limited

OrganizationJ Publishing and printing 12 1 extensive

Table 2. Overview of the organizations in our study

 1855

The Impact of Ideology on the Organizational Adoption of Open Source Software

We are not going to program around something,
because we really want to use that [open source]
component. But if there is a little workaround, we
will certainly take it.

The other six organizations were quite agnostic
about using OSS. One informant in OrganizationF
expressed this as:

[The fact that the software is open source] does
not really matter for a company.

Some of the technical employees who served as
informants in our study had a background in OSS.
Although some indicated that they did suggest the
use of OSS when appropriate, they did not try to
force its use and remained pragmatic. Neverthe-
less, many OSS development and networking tools
(e.g., Nagios, Eclipse, and Maven) were being used
by the organizations in our sample.

The results obtained from these seven orga-
nizations are quite consistent with the results
obtained by West and Dedrick (2005). On the
other hand, we observed a different behavior in
the three very small organizations in our sample
(OrganizationA, OrganizationD, and Organi-
zationJ) consisting of less than 50 employees.
In those organizations, we were able to detect
several characteristics of ideological behavior.
In the remainder of this section, we will discuss
these three cases in more detail.

OrganizationA

OrganizationA specialized in telecommunication
devices. It originally started as a research and de-
velopment company. Initially, all projects within
the organization aimed to gather knowledge and
experience in order to develop the initial product.
Developers were free in their decision making
on which products to incorporate into the final
product. Consequently, decision making was
significantly influenced by the personal experi-
ence of developers.

Our informants indicated that at the time
of the organization’s founding, many employ-
ees—including the organization’s founders and
the CIO—shared the same background, were very
familiar with Linux, and shared the philosophi-
cal ideas of the open source movement. These
employees had a “firm conviction” in OSS:

The firm conviction was coming from a number
of people who said: ‘It must be [OSS], we do not
want anything else!’…The choice for using OSS
was…just a conviction, rather than the result of
a comparative assessment.

As a result, most software that was used in the
organization was OSS. During package selection,
no objective evaluation of (proprietary) alterna-
tives was performed. Although some proprietary
software was used, this was either on demand of a
customer, or the software was eventually replaced
by an OSS alternative.

The choice for OSS at that time was primarily
motivated by the lower or non-existing license
cost, the fact that there was more confidence in
OSS, and the fact that OSS provides access to the
source code. Our informants however admitted
that these reasons were influenced by the philo-
sophical view towards OSS and that this view
on OSS dominated the adoption decision. They
were for example aware that using OSS includes
additional costs (e.g., packaging and updates),
which makes it less clear whether OSS really of-
fers a cost advantage. Such considerations were
however not taken into account at that time.

Another factor that has influenced the deci-
sion is the avoidance of vendor lock-in. The open
source movement generally depicts Microsoft as
their common “enemy.” This feeling was also
present in the organization at that time. Vendor
lock-in with Microsoft was feared, partly due to
negative experiences in the past. The adoption
decision appeared to be anti-Microsoft oriented.
As expressed by one informant:

1856

The Impact of Ideology on the Organizational Adoption of Open Source Software

If you mentioned Microsoft, things exploded!

The organization also initiated its own OSS
project. It consisted of a Java virtual machine
for embedded devices. This project was started
to try to benefit from the OSS community model
(cf. tenets 4–15). This project was in fact quite
successful, and the organization took the role of
project maintainer. In the course of time, the proj-
ect became less interesting for the community (as
the product further matured) and participation of
the community declined. The software is however
still used in the organization’s products.

As illustrated, the choice for using OSS was
quite ideological in the early years of the organi-
zation. Interesting to note is that over the years,
several employees of the organization who were
adherents to the open source movement, and who
advocated the use of OSS, left the organization.
As a result, the choice for OSS became much
more pragmatic. Another factor that may have
influenced this evolution is that the organization
finished its software products, gradually became
less of an R&D organization, and other goals such
as efficiency started to become more important.

At the time of our study, a slight preference for
OSS still existed. One informant stated:

Our choice will in the first place go to open source
or Linux, but less fanatical than in the past.

Furthermore, the organization seemed to be
less willing to take risks in using OSS, or to invest
additional effort to get OSS working. This was
expressed by an informant as:

I think we are looking rather quickly towards open
source products. But if it looks that it will deliver
us more worries than it yields advantages, we will
not doubt to use a commercial product.

Hence, the organization will only consider
using OSS if the product complies with the
requirements. The “firm conviction” that was

present in the organization has now faded away.
The choice for OSS is now mainly based on the
potential cost advantages.

Nevertheless, it appears that the organization
still felt connected to the principles of the open
source movement. When asked whether the or-
ganization contributed back any modifications
they made to OSS, one informant appeared to
feel guilty about not contributing:

…we did contribute quite little, rather naughty,
isn’t it?

He further noted that the organization tried
to participate in OSS projects in other ways, for
example by filling in bug reports or by participat-
ing in mailing lists (cf. tenets 10–15).

OrganizationD

OrganizationD was active in the publishing and
printing sector. The organization had a single
person responsible for decision making on IT,
and had no internal IT staff. The organization
used OSS on a variety of systems (i.e., one In-
ternet gateway, two file servers, and one intranet
server). The organization also had 3 LAMP
(Linux–Apache–MySQL–PHP) servers, running
custom-developed software for time registration.
Finally, three desktops were equipped with the
Linux operating system in the offices, and an
additional 11 PCs function as terminals for the
time registration system. The main reason for
choosing OSS was to reduce vendor lock-in and
maximize the freedom of the IT infrastructure.
Consequently, the decision maker investigated
OSS solutions without considering proprietary
alternatives. Other reasons for using OSS were an
increased control over the software, cost advan-
tages, and an increased flexibility. These factors
are consistent with the advantages proposed by
the OSS community. We were able to detect a few
additional ideological characteristics, although
they were not that strong.

 1857

The Impact of Ideology on the Organizational Adoption of Open Source Software

Our informant indicated that his extensive
personal experience with Linux influenced his
decision to start using OSS within the organiza-
tion:

Following [new evolutions] is not enough: you try
out software, and free software has the advantage
that it is much easier to try out. And of course,
since you have tried it yourself, it did influence
the [organizational] decision.

His decision to start using OSS within the
organization was also influenced by some nega-
tive experiences with proprietary software in
the past (including vendor lock-in). For example,
some proprietary application the organization was
using contained a bug which the vendor refused
to resolve. As a result, our informant tried to
remain in full control over his IT infrastructure.
He therefore wanted to maximize the degree of
freedom in the IT infrastructure, not only by
using open standards, but by using OSS as well:
“I wanted to go a step further: not only by using
open standards, but also by using open source
applications to have full insurance” (cf. tenets
5–6). He felt that by having access to the source
code of OSS, he had maximum control over his
applications.

The organization was remarkably commit-
ted to its pursuit of freedom. This commitment
has moved the organization to start its own OSS
project, namely a time registration system for
employees. Existing software either did not satisfy
all requirements, or was too expensive and did
not allow for customizing the software. Hence,
the software needed to be custom developed. The
decision maker did not want to become dependent
on an external organization—not even on the
external programmer who develops the software.
Instead of performing in-house development or
closing an escrow agreement, the organization
has chosen a different path. The organization has
hired a programmer from an external organiza-
tion to develop the software, and our informant

decided to release the software under an OSS
license (the GPL) to ensure that the software
would remain completely free (cf. tenet 5). This
way, the organization aimed to remain in control
over the application, avoid vendor lock-in, and be
allowed to make modifications to the software
at a later time. The software is being developed
as a cooperation between our informant (who is
mainly responsible for the analysis) and the paid
external programmer. It was the intention of our
informant to eventually share this application
with other organizations in the same sector. He
strongly valued the ability to cooperate with other
organizations, and hoped that he would be able to
leverage the OSS development model (cf. tenets
4–15) and to receive comments, bug fixes, and
maybe even new code submissions.

Interestingly, he was the only informant in
our sample who deliberately used the term free
software.4 He preferred this term since—in his
experience—the term OSS is misused by some
vendors to refer to software of which the source
code is available, but whose license is still pro-
prietary and does not offer the same freedom
as OSS licenses. He felt that the Dutch term for
free software did not suffer from the confusion
in English, and that it better articulated the spirit
of the open source movement (cf. tenet 5).

OrganizationJ

The most prominent form of ideological behavior
was found in OrganizationJ. Our informant was
the IT and business manager of the organization,
who was the only one responsible for the IT infra-
structure. No internal IT staff was present. The
complete IT infrastructure of the organization
was based on OSS. This included two important
servers: an intranet server running ERP software
and an Internet server running the e-commerce
site of the organization. Recently, all desktops in
the organization were migrated from MS Windows
to Linux. The desktops consisted of lightweight
terminals which booted from a server. All appli-

1858

The Impact of Ideology on the Organizational Adoption of Open Source Software

cations ran on the server, which placed very low
demands on the desktop itself. All administration
could be performed on the server. The desktops
were running the XFCE desktop environment and
OpenOffice.org was used as the office suite.

Our informant had a technical background
and was an experienced programmer. In fact, he
developed his own e-commerce application and
was currently rewriting his own ERP software.
His personal experience with Linux dates back
from 1999. Based on this personal experience,
he decided to migrate his Unix-based server to
Linux when he was experiencing difficulties with
that server.

Similar to our informant in OrganizationD,
the IT manager wanted to remain in control of his
IT infrastructure (cf. tenets 5–6). Consequently,
he tried to make exclusive use of open standards.
Moreover, he stated that he only considered us-
ing OSS (except for one PC running Microsoft
Windows on which specific banking software was
installed that is unavailable for Linux). He also did
not want to pay for software, hence he did not use
any of the commercial Linux distributions.

Similar to the other two organizations, our
informant indicated that his organization had
bad experiences with proprietary vendors in the
past. In fact, when migrating the server that ran
the ERP software, the organization faced huge
switching costs when transferring the software
from the Unix-based system (developed by a
small company) to Linux. He was also suspicious
of proprietary software, because it could contain
hidden features. This prevented him from having
total control over the software. OSS was believed
to be more secure, thanks to the availability of
the source code: “I think there are thousands, ten
thousands or millions of people who use and study
it, so I don’t have to worry” (cf. tenets 4 and 7).

As a result, he had a rule that proprietary
software should not be used under Linux. Pro-
prietary software was simply not considered
as an alternative during decision making. This
non-pragmatic decision making can be illus-

trated with two examples. First, the organization
recently acquired a new printer/copier. Although
the manufacturer provided drivers for Linux, they
were proprietary; and the source code of the driv-
ers was not provided. Consequently, the drivers
were not installed on the Linux desktops. This
means that default Postscript and PCL drivers
were used. If specific features would be required,
the IT manager stated that he would rewrite the
drivers, based on the Postscript definition. He
motivated his choice as follows:

Nothing is installed from which the source code is
not available: I need control.…[The manufacturer
of the printer] will probably have no bad intentions,
probably, but nowadays you never know.

Second, when the IT manager decided that the
ERP software needed replacement, he reviewed
some OSS alternatives. One of the reasons why
Compiere was not properly examined as an alter-
native, was that it required the Oracle database
server.5

The IT manager also started a small OSS
project. It consisted of a Perl module to create
OpenOffice.org documents. He also indicated
that he valued the OSS development model. Two
important advantages of this model were the
peer review process (see supra) and that it offers
more continuity. Although his ERP software was
using a graphical library that was maintained by
a single person, he was not afraid of becoming
too dependent. If the maintainer would quit, our
informant was convinced that other people would
take over the project. Otherwise, he would still
have access to the source code of the library and
make any required changes himself (cf. tenets 5
and 14).

DiScuSSiOn

As can be gathered from our findings, ideologi-
cal or pragmatic decision making is not a binary

 1859

The Impact of Ideology on the Organizational Adoption of Open Source Software

variable. Instead, decision making will exhibit
both ideological as well as pragmatic character-
istics, which places the organization’s decision
making on a continuum between both extremes.
In practice, most organizations clearly use a
pragmatic decision-making process with respect
to the use of OSS. Nevertheless, we were able to
detect rather ideological decision making in three
small organizations in our sample. The degree
of ideology varied between these three cases. A
summary of the ideological characteristics in the
decision-making process of these organizations
is shown in Table 3.

identifying ideology

There were clear distinctions between the seven
organizations that we labeled “pragmatic” and the
three we identified as “ideological.” First, within
the three latter organizations, there was a clear
push behind—or favoritism towards—using OSS.
This was caused by the fact that decision makers
were adherents to the open source movement
and wanted to use OSS as much as possible, or
even exclusively. Their personal experience and
background was a major factor in this decision.
The other seven organizations did consider OSS
as one of the alternatives, but would not give
preferential treatment to OSS.

Second, the tenets of the OSS ideology were
only present in the three organizations. Among

Table 3. Ideological characteristics in the decision making of organizations in our sample

OrganizationA:
• Employees, including the organization’s founders, shared the philosophical and cultural
views of the OSS movement.
• A strong anti-Microsoft sentiment was present.
• Vendor lock-in was feared.
• The organization started its own OSS project to benefit from the OSS development model.
• All software that was used had to be OSS.
• The adoption decision was based on a “firm conviction” in OSS, not on an objective evalu-
ation of alternatives.

OrganizationD:
• The IT manager strives to maximize the freedom in the IT infrastructure by using open
standards and OSS.
• Extensive personal experience of the IT manager with Linux influenced the organizational
adoption decision.
• The organization started its own OSS project to ensure that the software would remain
totally free.
• Driven to OSS by negative experiences (including vendor lock-in) with proprietary soft-
ware in the past.
• The IT manager uses the term “free software.”

OrganizationJ:
• The IT manager does not want to pay for software, including application software.
• The switch to Linux was influenced by personal experience with Linux.
• All software that was used had to be OSS.
• Proprietary printer drivers were not used, even if this means that a work-around must be
devised.
• Commercial software is not trusted because the source code is not available.
• Driven to OSS by negative experiences (including vendor lock-in) with commercial soft-
ware in the past.
• The OSS development model is valued, because thousands of developers are reading the
source code, correcting bugs, and ensuring the continuity of the project.
• The complete IT infrastructure was migrated to OSS.
• The IT manager started his own OSS project.

1860

The Impact of Ideology on the Organizational Adoption of Open Source Software

the tenets that were most prominently present were
software freedom (tenet 5), information freedom
(tenet 6), and cooperation (tenet 14).6 These tenets
are indeed central to the OSS ideology. The other
seven organizations were rather agnostic about
the values and beliefs of the open source move-
ment and considered the OSS character irrelevant
during decision making.

Third, several of the factors that influenced the
adoption decision are consistent with the advan-
tages put forward by the open source movement.
Evidently, this is not sufficient to claim that these
organizations shared the OSS ideology. However,
there are indications (particularly in Organiza-
tionA and OrganizationJ) that the perceptions with
respect to these adoption factors are influenced
by the belief in the OSS ideology, and that their
relevancy in the organization-specific environ-
ment were not or insufficiently evaluated. This
indicates mindless decision making.

Finally, these three organizations were the
only ones in our sample that initiated their own
OSS projects. OrganizationA and OrganizationD
clearly indicated that by starting their own OSS
projects they wanted to try to leverage the OSS
community model. This indicates a belief in the
underlying principles of the open source move-
ment (cf. tenets 10–15). If organizations would
not be convinced of the advantages of the OSS
development model, it seems likely that they would
not initiate an OSS project and they would simply
develop the software in-house. Nevertheless, prin-
ciples such as sharing (tenet 10) and cooperation
(tenet 14) were deemed quite important by the
three organizations.

The previous four points demonstrate that
the three organizations discussed in this article
exhibited some form of ideological behavior. It is
however not trivial to identify ideological tenets
in organizations, since the ideas and beliefs of
the OSS ideology are not explicitly formulated,
as is often the case with ideologies (Hamilton,
1987). A second difficulty is that the presence
of one of these characteristics by itself does not

automatically lead to ideological decision making.
A good example is the avoidance of vendor lock-
in. All three organizations indicated having had
bad experiences with proprietary vendors in the
past and wished to minimize vendor lock-in. The
desire to avoid vendor lock-in can be a pragmatic
reason for choosing OSS. It may however also lead
to a situation in which the decision maker—based
on negative experiences with some vendors in the
past—only wants to use OSS without considering
proprietary alternatives, leading to an ideological
position towards OSS. Similarly, the list of char-
acteristics in Table 3 is not exhaustive, and there
may be other indicators of ideological behavior. A
third issue is that there may be “instances where
actors, genuinely or otherwise, do not interpret
their behavior in terms of any commitment to a
set of beliefs but as simply pragmatic, but where
it is clear to the observer that it is, in fact, in
conformity with such a set of beliefs” (Hamilton,
1987, p. 21). Nevertheless, the evidence presented
in this article and the impression of the decision
makers obtained during the interview allowed us
to identify ideological characteristics in the deci-
sion making of these three organizations. These
characteristics had a clear impact on the adoption
decision on OSS, resulting in a strong favoritism
towards OSS. The attitude in these three organiza-
tions was fundamentally different from the other
seven organizations in our sample.

limitations

This study has a number of limitations. First,
we used a qualitative approach consisting of 10
case studies. Although we have found that small
organizations may engage in ideological decision
making, a large-scale quantitative study could
provide more insight into the generalizability of
this result.

Second, we only included organizations that
have adopted OSS. Future research may provide
more insight into the attitudes of non-adopters.
We can make a meaningful distinction between

 1861

The Impact of Ideology on the Organizational Adoption of Open Source Software

two groups of non-adopters. On the one hand,
there can be organizations that have considered
using OSS, but decided not to adopt. The experi-
ences of these organizations may provide more
insight into the main drawbacks of using OSS.
On the other hand, there are organizations that
did not consider OSS as one of the alternatives.
Such organizations may have negative perceptions
towards OSS and did not further investigate them.
For example, organizations may be convinced that
OSS costs more in maintenance or is unreliable.
Similarly, organizations may also have unverified
ideas with respect to proprietary software. They
may believe that using proprietary software is less
expensive or may place more trust in a closed,
proprietary software model. In the most extreme
case, organizations may even only consider using
software from one specific vendor. In either case,
decision making will not be mindful, as not all
alternatives are being considered.

Another interesting avenue for future research
is to investigate whether decision making on OSS
will become less ideological. Since the adoption
of OSS is still a relatively recent phenomenon,
less information is available on OSS than on
proprietary software. It can be expected that as
time passes, more information on an innovation
becomes available, and decision makers will be
able to make better informed choices. On the
other hand, Swanson and Ramiller (2004) point
out that later adoption can also be driven by diffu-
sion itself, making later adoption not necessarily
more mindful than early adoption.

A final topic for further investigation con-
cerns situations in which the decision to start
using OSS is triggered by the mere availability
of OSS, rather than a concrete problem situation
that gives rise to a search, evaluation, and deci-
sion-making process. This process resembles the
garbage can model of decision making (Cohen,
March, & Olsen, 1972). Hence, future research
could investigate the applicability of this theory
in situations in which decision makers share the
OSS ideology.

cOncluSiOn

The contribution of this article is that we were
able to identify ideological characteristics in the
decision making on OSS in very small organiza-
tions. This result further elaborates on the study
of West and Dedrick (2005), who did not detect
such behavior in their sample. We argue that
while medium to large businesses are likely to be
pragmatic in their decision making, the influence
of ideological beliefs should not be completely
disregarded in small organizations.

Although a minority of organizations in our
sample has exhibited ideological behavior, it is
remarkable that all three very small organizations
in our sample—with a single decision maker—did
to some degree. If that decision maker can be
considered an open source advocate—which
was definitely the case in OrganizationA and
OrganizationJ—it is more likely that personal
beliefs and values of the decision maker have an
impact on the final decision making. Hence, the
adoption decision with respect to OSS is more
likely to be ideological. This is consistent with
the observation of Fiol and Connor (2003) who
argue that mindlessness in combination with the
absence of formal procedures will further enable
mindlessness. In larger organizations, decision
making is more likely to be pragmatic, since
there are more decision makers and procedures
involved in the OSS adoption decision.7 Ideologi-
cal decision making is however not necessarily a
static phenomenon. Since it appears that ideologi-
cal decision making is closely related to a single
decision maker, the situation may change if that
person leaves the organization, or if other deci-
sion makers join the organization. This could be
observed in OrganizationA.

The definition of ideology we have used in this
article is non-judgmental. Consequently, we do not
want to make any claims with regard to whether
the organizations have made a wrong decision in
choosing for OSS. We have found no evidence to
suggest that the decision has had a negative impact

1862

The Impact of Ideology on the Organizational Adoption of Open Source Software

on the organizations. In fact, OrganizationA actu-
ally seemed to be able to innovate by using OSS
and proved to be quite successful. On the other
hand, it could be established that OrganizationA
(at the time of founding) and OrganizationJ were
not sufficiently mindful in their decision. These
organizations only considered using OSS and
did not properly investigate alternatives. Such
mindless behavior always entails the risk that the
organization does not properly reflect on whether
the innovation is suitable within the organization,
resulting in a less-than-optimal solution for the
organization (Swanson & Ramiller, 2004). A
mindful organization that adopts OSS should not
take the claims proposed by the OSS ideology for
granted. Instead, it should investigate the implica-
tions of using OSS in the organization-specific
environment. This is important since this situ-
ational context can be complex, rendering some
claims irrelevant for the organization.

Swanson and Ramiller (2004) however point
out that notwithstanding the risks, mindless deci-
sion making can have its merits for organizations.
This can be the case when the rewards are likely
to outweigh the risks, or when time limitations
do not allow for a thorough decision-making pro-
cess. Hence, mindless decision making can be a
valid strategy for routine decisions and does not
necessarily imply ideological decision making.
However, we were able to exclude this possibility
in the three small organizations in our sample
by investigating the background of the deci-
sion-making process. In all three organizations,
the adoption of OSS constituted an important
change that concerned the replacement of existing
proprietary software or the use of a new type of
software. Therefore, no similar evaluation of OSS
was previously undertaken, and decision making
was indeed ideological.

referenceS

Abrahamson, E. (1991). Managerial fads
and fashions: The diffusion and refection of
innovations. Academy of Management Review,
16(3), 586–612.

Benbasat, I., Goldstein, D.K., & Mead,
M. (1987). The case research strategy in studies
of information systems. MIS Quarterly, 11(3),
368–386.

Bergquist, M., & Ljungberg, J. (2001). The power
of gifts: Organizing social relationships in open
source communities. Information Systems Jour-
nal, 11(4), 305–315.

Butler, B.S., & Gray, P.H. (2006). Reliability,
mindfulness, and information systems. MIS
Quarterly, 30(2), 211–224.

Cohen, M.D., March, J.G., & Olsen, J.P. (1972). A
garbage can model of organizational choice. Ad-
ministrative Science Quarterly, 17(1), 1–25.

Dedrick, J., & West, J. (2003). Why firms adopt
open source platforms: A grounded theory of in-
novation and standards adoption. In J.L. King &
K. Lyytinen (Eds.), Proceedings of the Workshop
on Standard Making: A Critical Research Frontier
for Information Systems (pp. 236–257), Seattle,
WA.

Dubé, L., & Paré, G. (2003). Rigor in information
systems positivist case research: Current practices,
trends, and recommendations. MIS Quarterly,
27(4), 597–635.

Eisenhardt, K.M. (1989). Building theories from
case study research. Academy of Management
Review, 14(4), 532–550.

Fiol, C.M., & Connor, O.J. (2003). Waking up!
Mindfulness in the face of bandwagons. Academy
of Management Review, 28(1), 54–70.

Fitzgerald, B. (2006). The transformation of
open source software. MIS Quarterly, 30(3),
587–598.

 1863

The Impact of Ideology on the Organizational Adoption of Open Source Software

Geuss, R. (1994). Ideology. In T. Eagleton (Ed.),
Ideology (pp. 260–278). Essex, UK: Longman
Group.

Hamilton, M.B. (1987). The elements of the
concept of ideology. Political Studies, 35(1),
18–38.

Hansen, M.T., & Haas, M.R. (2001). Competing
for attention in knowledge markets: Electronic
document dissemination in a management consult-
ing company. Administrative Science Quarterly,
46(1), 1–28.

Harrison, D.A., Mykytyn, P.P. Jr., & Riemensch-
neider, C.K. (1997). Executive decisions about
adoption of information technology in small
business: Theory and empirical tests. Information
Systems Research, 8(2), 171–195.

Ljungberg, J. (2000). Open source movements
as a model for organizing. European Journal of
Information Systems, 9(4), 208–216.

Lundell, B., Lings, B., & Lindqvist, E. (2006). Per-
ceptions and uptake of open source in Swedish
organizations. In E. Damiani, B. Fitzgerald,
W. Scacchi, M. Scotto, & G. Succi (Eds.), IFIP
international federation for information process-
ing: Volume 203 open source systems (pp. 155–
163). Boston: Springer.

Markus, M.L., Manville, B., & Agres,
C.E. (2000). What makes a virtual organiza-
tion work? Sloan Management Review, 42(1),
13–26.

Miles, M.B., & Huberman, A.M. (1994).
Qualitative data analysis: An expanded source-
book (2nd ed.). Thousand Oaks, CA: Sage.

Phillips, L.W. (1981). Assessing measurement
error in key informant reports: A methodological
note on organizational analysis in marketing. Jour-
nal of Marketing Research, 18(4), 395–415.

Riemenschneider, C.K., Harrison, D.A. & Myky-
tyn, P.P. Jr. (2003). Understanding IT adoption
decisions in small business: Integrating current

theories. Information & Management, 40(4),
269–285.

S t e r n b e r g , R . J . (2 0 0 0) . I m a g e s o f
mindfulness. Journal of Social Issues, 56(1),
11–26.

Stewart, K.J., & Gosain, S. (2006). The impact
of ideology on effectiveness in open source soft-
ware development teams. MIS Quarterly, 30(2),
291–314.

Swanson, E.B., & Ramiller, N.C. (2004). Innovat-
ing mindfully with information technology. MIS
Quarterly, 28(4), 553–583.

Tushman, M.L., & Scanlan, T.J. (1981). Char-
acteristics and external orientations of boundary
spanning individuals. Academy of Management
Journal, 24(1), 83–98.

Weick, K.E., Sutcliffe, K.M., & Obstfeld, D.
(1999). Organizing for high reliability: Pro-
cesses of collective mindfulness. In R.I. Sutton &
B.M. Staw (Eds.), Research in organizational
behavior (vol. 21, pp. 81–123). Greenwich, CT:
JAI Press.

West, J., & Dedrick, J. (2005). The effect of
computerization movements upon organizational
adoption of open source. Proceedings of the Social
Informatics Workshop: Extending the Contribu-
tions of Professor Rob Kling to the Analysis of
Computerization Movements, Irvine, CA.

Yin, R.K. (2003). Case study research: Design and
methods (3rd ed.). Newbury Park, CA: Sage.

enDnOteS
1 These organizations had on average 41,885

employees (25,529 when only counting the
unit studied in the organization).

2 The term “mindless” generally has a pe-
jorative meaning, such as “unintelligent.”
In academic literature however, the term
is used to refer to automatic or inattentive
behavior (e.g., Swanson & Ramiller, 2004;

1864

The Impact of Ideology on the Organizational Adoption of Open Source Software

Fiol & Connor, 2003; Butler & Gray, 2006;
Sternberg, 2000). We use the term “mind-
less” in the second sense. Hence, we do not
wish to imply any negative connotations.

3 The organizations in our case studies have
on average 1,081 employees.

4 Actually, the Dutch equivalent was used,
namely “vrije software,” which is similar in
meaning as the French term libre software
and refers to “freedom” rather than “free of
charge.”

5 Other reasons were that it used Java (which
the IT manager did not like very much), and
the fact that he preferred using custom-de-
veloped software that fits his business.

6 This may indicate that these organizations
preferred to cooperate with other organiza-
tions within the same industry in order to
extend their own capabilities, rather than
to outsource development to an external
firm.

7 On the other hand, Fiol and Connor (2003)
have noted that formal procedures may also
lead to mindlessness (i.e., when decision
makers follow procedures without critically
considering them).

This work was previously published in Journal of Database Management, Vol. 19, Issue 2, edited by K. Siau, pp. 58-72, copy-
right 2008 by IGI Publishing (an imprint of IGI Global).

 1865

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.5
Volunteers in Large Libre

Software Projects:
A Quantitative Analysis Over Time

Martin Michlmayr
University of Cambridge, UK

Gregorio Robles
Universidad Rey Juan Carlos, Spain

Jesus M. Gonzalez-Barahona
Universidad Rey Juan Carlos, Spain

ABStrAct

Most libre (free, open source) software projects
rely on the work of volunteers. Therefore, at-
tracting people who contribute their time and
technical skills is of paramount importance, both
in technical and economic terms. This reliance
on volunteers leads to some fundamental man-
agement challenges: Volunteer contributions are
inherently difficult to predict, plan, and manage,
especially in the case of large projects. In this
chapter we present an analysis of the evolution
over time of the human resources in large libre
software projects, using the Debian project, one
of the largest and most complex libre software
projects based mainly in voluntary work, as a
case study. We have performed a quantitative
investigation of data corresponding to roughly
seven years, studying how volunteer involvement

has affected the software released by the project,
and the developer community itself.

IntroductIon

Volunteer contributions are the basis of most libre1
software projects. However, the characteristics,
and the way of working of volunteers, can be quite
different from those of employees who are the
main force behind traditional software develop-
ment. Volunteers can contribute with the amount
of effort they want, can commit for the time period
they consider convenient, and can devote their
time to the tasks they may prefer, if the context
of the project makes that possible (Michlmayr &
Hill, 2003). But even in this apparently difficult
environment, many libre software projects have
produced systems with enough quality and func-
tionality to gain significant popularity. Therefore,

1866

Volunteers in Large Libre Software Projects: A Quantitative Analysis Over Time

the fairly unstructured collaboration of volunteers
has been demonstrated as a viable software de-
velopment strategy, even if it is associated with
certain challenges related to project management
and quality (Michlmayr, 2004). In this chapter we
explore how these voluntary contributions evolve
over time in one of the largest libre software
projects, Debian.

For our purposes, we will define volunteers as
those who collaborate in libre software projects
in their spare time, not profiting economically in
a direct way from their effort. Volunteers can be
professionals related to information technologies,
but in that case their activity in the libre software
project is not done as a part of their professional
activity. Although the vast majority of partici-
pants in libre software projects comply with our
definition, it is important to note that there are
also non-volunteers, that is, paid people (normally
hired or contracted), who produce libre software.
German has studied paid employees from vari-
ous companies in the GNOME project (German,
2004). He notes that they are usually responsible
for less attractive tasks, such as project design
and coordination, testing, documentation, and
bug fixing. Also, “[m]ost of the paid developers
in GNOME were, at some point, volunteers. Es-
sentially for the volunteers, their hobby became
their job.”

The involvement of volunteers, of course,
raises new economic and business model issues
that have to be taken into account in commercial
strategies around libre software. Collaboration
from volunteers is difficult to predict, but if it is
given, it may add value to a software system in
very economic terms for a software company.

The structure of this chapter will be as follows.
In the second section we discuss the nature and,
in particular, the tasks performed by volunteers,
paying special attention to those who contribute
to Debian, the case study investigated in this
chapter. Following this section, a set of research
questions regarding volunteer participation will
be raised. The primary goal of this chapter is to

answer these questions based on quantitative data.
The methodology for retrieving the quantita-
tive data used in this study is first given. In this
section, we also propose a number of measures
that will allow us to answer the questions. The
results we have obtained as part of this study will
be presented and commented on in depth for the
Debian project. Finally, conclusions, applicability
of the methodology, and further research will be
discussed.

tHe DeBiAn prOJect AnD itS
VOlunteerS

Debian is an operating system completely based
on libre software (Monga, 2004; O’Mahony, 2003).
It includes a large number of applications, such
as the GNU tools and Mozilla, and the system is
known for its solid integration of different software
components. Debian’s most popular distribution,
Debian GNU/Linux, is based on the Linux kernel.
Ports to other kernels, such as Hurd and FreeBSD,
are in development.

One of the main characteristics of the Debian
distribution is that during the whole life of the proj-
ect it has been maintained by a group of volunteers,
which has grown to a substantial number. These
individuals devote their own time and technical
skills to the creation and integration of software
packages, trying to supply users with a robust
system which provides a lot of functionality and
technical features.

Following our definition of volunteers, all
maintainers in Debian are volunteers. Some em-
ployers of people who act as Debian maintainers
in their spare time permit their staff to devote
some of their time to Debian during work hours.
Nevertheless, the majority of work by most Debian
maintainers is performed in their spare time. In
contrast to some projects, such as the Linux kernel
and GNOME, there are no Debian maintainers
who are paid to work on the system fulltime, even
though a number of organizations have a com-

 1867

Volunteers in Large Libre Software Projects: A Quantitative Analysis Over Time

mercial interest in Debian and contribute varying
degrees of manpower (and other resources) to the
project. For example, a number of regions in Spain
have their own operating systems based on Debian;
HP made Debian more suitable for large telecom
customers, and Credativ provides commercial
services for Debian and similar systems.

There are several tasks that volunteers can
do in Debian: maintaining software packages,
supporting the server infrastructure, develop-
ing Debian-specific software, for instance, the
installation routine and package management
tool, translating documentation and Web pages,
and so forth. From all these tasks, we will focus
in this chapter on package maintainers, whose
task it is to take existing libre software packages
and to create a ready-to-install Debian package.
Debian maintainers are also called Debian devel-
opers, although their task is really not to develop
software but to take already developed software
for the creation of a Debian package. This, of
course, does not mean that a Debian maintainer
may not develop and maintain software, but this
is not usually the case: the original author (or
developer), known as the ‘upstream’ developer,
and the Debian maintainer, are usually, but not
necessarily, not the same person.

Besides its voluntary nature, the Debian project
is unique among libre software projects because
of its social contract (Debian Social Contract,
2006). This document contains not only the pri-
mary goals of the Debian project, but also makes
several promises to its users. Additionally, there
are a number of documents Debian maintainers
have to follow in order to assure quality, stabil-
ity, and security of the resulting distribution. In
particular, Debian’s Policy document ensures that
the large number of volunteers working indepen-
dently will produce a well-integrated system rather
than merely an aggregation of software packages
which do not play together very well (Garzarelli
& Galoppini, 2003).

There has recently been some interest in
studying how the voluntary status of Debian

members affects the quality of the resulting
product. Managing volunteer contributors is as-
sociated with certain problems that “traditional”
software development usually does not confront
(Michlmayr & Hill, 2003). It is known that there
are some intrinsic problems when the devel-
opment process is carried out in a distributed
fashion (Herbsleb et al., 2001). The situation in
Debian and similar projects is even more com-
plex because the development process is not only
distributed but also largely based on volunteers.
This can lead to certain challenges, such as the
unpredictability of the level of their involvement
(Michlmayr, 2004).

To some degree, the volatility of voluntary
contributors can be limited by the introduction of
more redundancy, such as the creation of main-
tainer teams. The creation of teams and commit-
tees for specific purposes, such as management,
or for complex tasks has been already reported
in other libre software projects (as for instance,
German’s work on the GNOME project [2004]).

reSeArcH OBJectiVeS AnD
gOAlS

Related research has been very active in study-
ing the static picture of a libre software project
community over the last years, as can be seen
from studies performed on Apache and Mozilla
(Mockus et al., 2002), FreeBSD (Dinh-Trong &
Bieman, 2005) or GNOME (Koch & Schneider,
2002), leading to models that discuss onion-like
structures of libre software projects (Crowston &
Howison, 2005). The main goal of this chapter is
to introduce the time axis in these kinds of stud-
ies, focusing most notably on the contribution of
volunteers.

We have therefore set up a list of research ques-
tions which we would like to answer for several
large libre software projects. In the case of Debian,
we have additional information that permits us
to link the work done by a volunteer with a piece

1868

Volunteers in Large Libre Software Projects: A Quantitative Analysis Over Time

of software, so we can, for example, study what
has happened to packages from volunteers who
have left the project. In the following, the set of
questions that we are raising will be answered in
detail for the Debian project.

The specific questions we aim to answer with
this chapter are the following:

a. How many volunteers does the project
have, and how does this number change
over time? This will provide us with some
basic data, useful when working with subse-
quent questions. When we started the study,
we expected a steady increase of volunteers
over time, as it is already known that the
number of packages included in the system
has been growing in that way (Gonzalez-
Barahona et al., 2004). In addition, we will
try to find out if the work ratio (measured
as activity or output per developer) has
increased over time or not.

b. How many volunteers from previous re-
leases remain active? We want to measure
the volatility of the volunteers in large libre
software projects. That is, do volunteers join
the project and work on it for short periods
of time, or, on the contrary, do they stay
for many years? Specifically, we want to
calculate the half-life of contributors of the
project. The half-life is defined as the time
required for a certain population of main-
tainers to fall to half of its initial size. This
figure could be easily compared with other
libre software projects and, of course, with
statistics from companies from software
and other industries.

c. What is the activity of volunteers who
remain in subsequent releases? Answer-
ing this question will allow us to know if
“older” volunteers strengthen their contri-
butions as time passes, contributing more
to the project, or whether they become less
active. There are two possible hypotheses
one could propose. On the one hand, those

volunteers who have been involved for a
long time may be very experienced and
therefore more efficient in their work than
less experienced developers. On the other
hand, young developers may have more
time or energy to devote to the project and
therefore contribute more. Both theories are
possible and mutually compatible.

d. What happens to packages maintained
by volunteers who leave the project? Our
intention is to see if we can find a regenera-
tion process in libre software projects that
allows them to survive the loss of some of
their human resources.

 Since Debian maintainers are volunteers,
they may quit the project at almost any time,
leaving their packages unmaintained. There
are two possible outcomes regarding the
future of those packages: First, they can be
taken over (adopted) by another maintainer.
Alternatively, if nobody is interested in
adopting them, they will eventually be re-
moved from the archive and excluded from
future stable releases. Such removals of
unmaintained packages are part of Debian’s
Quality Assurance effort. Our intention was
to know how this inherent characteristic of
the voluntary contributors affects Debian,
and how this is damped down by other (pos-
sibly new) maintainers.

e. Are more “important” and commonly
used packages maintained by more expe-
rienced maintainers? It can be interesting
to know whether packages which are con-
sidered crucial for the functioning of the
system are maintained primarily by volun-
teers who have more experience. For this,
we have considered the most used packages
as the targets of the study. We have defined
as crucial packages those which are usually
installed on every system, as, for instance,
the base system which in the case of the
Debian GNU/Linux operating system is
composed, among others, of the Linux kernel

 1869

Volunteers in Large Libre Software Projects: A Quantitative Analysis Over Time

and the GNU tools. This does not necessarily
mean, of course, that crucial packages are
more difficult to maintain than other pack-
ages, but as they are used by all users of the
system and the rest of the software heavily
depends on their proper functioning, these
packages have to be maintained with special
care. Data about the importance of each
package will be obtained from the Debian
Popularity Contest2 that tracks how many
people have installed a given package.

metHODOlOgy AnD SOurceS
Of DAtA

Debian consists of four parallel versions (stable,
testing, unstable, experimental) which can be
downloaded from the Internet. The focus of this
study is on the stable versions from Debian 2.0
onwards, up to version 3.1, which provide good
snapshots of the history of the distribution. These
releases comprise a period of time from July 1998
to June 2005. There have been releases of Debian
before 1998 (Lameter, 2002), but they have not
been taken into consideration for this study since
the sources of data we have used in this study
were not available for them. For each release, we
have retrieved the corresponding Sources.gz file
(see next section) from the Debian archive. We
have then extracted information about packages
and their maintainers from this file and stored the
results in a database. After that, we performed
some semi-automatic cleaning and massaging
of the data that will be explained in more detail
below. Final results were obtained through queries
to the database, and correlations that have been
implemented by another set of scripts.3

In addition to the analysis of official releases,
we have enriched the findings by additionally
taking a more fine-grained data source into ac-
count. While releases are only done occasion-
ally, in the case of Debian with years between
releases, uploads to the Debian archive are done

on a continuous basis. We have analyzed the
activity related to these uploads to clarify some
of the findings of the paper on which this chapter
is based (Robles et al., 2005). The estimations
of the size of the releases have been done using
a software that counts source lines of code and
avoids double-counting the code included in vari-
ous packages (this methodology is described in
detail (Gonzalez-Barahona et al., 2001)), using
previously published data (Gonzalez-Barahona
et al., 2004), except for release 3.1, which was
calculated specifically for this study. The data
related to the importance of packages has been
retrieved from the Debian Popularity Contest (see
section on this topic).

Debian Sources file

Since version 2.0, the Debian repository contains
a Sources.gz file for each release, listing infor-
mation about every source package in it. Every
source package contains the name and version,
list of binary packages built from it, name and
e-mail address of the maintainer, and some other
information which is not relevant for this study.
As an example, see an excerpt of the entry for the
mozilla source package in Debian 2.2 below. It
can be seen how it corresponds to version M18-3,
provides four binary packages, and is maintained
by Frank Belew.

[...]
Package: mozilla
Binary: mozilla, mozilla-dev, libnspr4, libnspr4-dev
Version: M18-3
Priority: optional
Section: web
Maintainer: Frank Belew (Myth) <frb@debian.org>
Architecture: any
Standards-Version: 3.2.0
Format: 1.0
Directory: dists/potato/main/source/web
Files: 57ee230b97ccc69444ccccd0bc66908a 719

mozilla_M18-3.dsc

1870

Volunteers in Large Libre Software Projects: A Quantitative Analysis Over Time

532934635ad426255036ee070bad03c8 28642415
mozilla_M18.orig.tar.gz

3adf83de7e74bf940ee02c0deca20372 18277 mozil-
la_M18-3.diff.gz

[...]

Debian popularity contest

The Debian Popularity Contest is an attempt to
map the usage of Debian packages. Its main goal
is to know what software packages are actually
installed and used. Information from the Popu-
larity Contest is used by Debian, for example, to
decide which software to put on the first CD.

The system functions as follows: Debian us-
ers may install the popcon package, which sends
a message every week with the list of packages
installed on the machine as well as the access time
of some files which may give hints regarding the
last usage of these packages. Of course, privacy
issues are considered in a number of ways: Upon
installation, users are explicitly asked if they
want to send this information to Debian, and the
server which collects the data anonymizes it as
much as possible.

The resulting statistical information of all users
participating in this scheme is publicly available
on the Web site of the project. For every package,

it includes the number of machines on which it
is installed (inst), the number of machines which
make regular use of that package (vote), the num-
ber of machines with old versions of the package
(old), the number of recent updates (recent), the
number of machines where not enough informa-
tion is available (no-file), and the maintainer of
the package. Below is an excerpt of the available
data, in this case the top ten packages ordered by
installations as of December 4, 2004. The first
66 packages are installed on all machines, with
6881 installations.

Debian Developer Database

From June 1999 onwards, Debian has held a da-
tabase (http://db.debian.org) with data related to
members of the project. Some information, such
as the full name and user name, can be retrieved
publicly through the Internet. This database also
contains information about the digital keys used
by a developer. Debian makes use of digital sig-
natures through the use of the tools PGP (Pretty
Good Privacy) and GPG (GNU Privacy Guard)
to approve uploads to their software archive. The
use of digital signatures provides two guarantees.
First, the signature will show that the package
comes from a trusted source, that is, from an of-

rank name inst vote old recent no-files (maintainer)

1 adduser 6881 6471 94 316 0 (Adduser Development)

2 debianutils 6881 6517 50 314 0 (Clint Adams)

3 diff 6881 6425 261 195 0 (Santiago Vila)

4 e2fsprogs 6881 5448 825 608 0 (Theodore Y. Ts’o)

5 findutils 6881 6449 233 199 0 (Andreas Metzler)

6 grep 6881 6436 126 319 0 (Ryan M. Golbeck)

7 gzip 6881 6558 245 78 0 (Bdale Garbee)

8 hostname 6881 6112 715 54 0 (Graham Wilson)

9 login 6881 6407 56 418 0 (Karl Ramm)

10 ncurses-base 6881 56 143 6 6676 (Daniel Jacobowitz)

Table 1. Debian Popularity Contest statistics

 1871

Volunteers in Large Libre Software Projects: A Quantitative Analysis Over Time

ficial Debian developer whose PGP or GPG key
is stored in the Debian keyring and this developer
database. Second, by verifying the signature on
the package, it can be ensured that the package
has not been tampered with during the process
of uploading it to the Debian archive.

package uploads

While the main data source of this chapter is
the Sources.gz files from the last official Debian
releases, we have additionally taken uploads to
the archive into account to answer some of the
research questions with more detail. As mentioned
above, Debian’s archive is separated into various
branches. The official releases are known as the
stable branch, whereas Debian’s development tree
is known as “unstable.” Even though it is said that
the development tree is usually fairly stable, it is
where major development occurs and as such,
major bugs are introduced from time to time.

When an upload is made to unstable, a sum-
mary of the changes is automatically sent to a
mailing list known as “debian-devel-changes.”
By extracting data from the archives of this list,
the uploads made to the Debian archive over the
last few years can be studied. The archive of this
mailing list starts towards the end of August 1997.
Because August is not complete, we use the data
starting with September, since having data for
full months allows for better comparisons. We
then divided the whole time period into periods
of three months each, leading to 34 periods which
cover 8.5 years (102 months), from September
1997 leading up to February 2006. In total, slightly
more than 181,500 uploads have been observed in
this period, leading to a mean number of uploads
of around 1,800 each month.

The method used to extract this information
is as follows: first, the archives of the “debian-
devel-changes” mailing list are downloaded from
Debian. These are then parsed, leading to one mes-
sage for each upload. These messages are signed
by the developer’s PGP or GPG key as described

above. The information from these digital signa-
tures is then used to map each upload to a unique
user id corresponding to the developer who made
the upload. The mapping from PGP or GPG key
to user name is obtained from Debian’s developer
database and missing entries for old developers
are manually supplemented. After this informa-
tion is obtained, information about the developer
(user name) and the date of each upload is stored
in a database together with the message id from
the posting stored in the archive.

The extraction of this data leads to fairly pre-
cise results but there are some limiting factors.
First of all, it is important to take into account
that uploads are not a measure of effort. We use
the data as an indication of activity of a developer
but the information is not rich enough to give
specific information about how much effort was
involved with a specific upload. Second, for the
last few years Debian had the concept of “spon-
sorship,” whereby an official Debian developer
would upload a package created by a prospec-
tive developer (who is not part of Debian yet and
whose GPG key is therefore not recognized).
In such cases, the main effort was done by the
prospective developer but the signature shows
the name of the official Debian developer. Since
we are concerned with activity of developers and
not with effort, this is not an obstacle but it has
to be considered during the interpretation of the
data. Finally, while the archive software used
by Debian now sends automatic notifications of
new uploads to the “debian-devel-changes” list,
this was done manually in the past. Therefore,
data from the past can be slightly unreliable. For
example, we observed a number of messages
which were not signed by PGP or GPG. Out of
about 185,000, we have only detected about three
thousand uploads for which no information about
the developer could be extracted automatically.
We believe that these are not significant and that
data from uploads greatly enriches the findings
from studies using the Source.gz file from official
Debian releases.

1872

Volunteers in Large Libre Software Projects: A Quantitative Analysis Over Time

eVOlutiOn Of tHe numBer Of
DeBiAn mAintAinerS

The information of the evolution of the number
of Debian maintainers will provide us with some
basic data useful when working with subsequent
research questions. When we started the study,
we expected a steady increase of maintainers over
time, as it is already known that the number of
packages included in the system has been growing
linearly (Gonzalez-Barahona et al., 2004). In fact,
we expected the packages-to-maintainer ratio to
be nearly constant, since it seems reasonable to

consider that volunteers devote similar amounts
of effort over time, which would lead to a constant
number of packages per maintainer.

Figure 1 shows on the left side the evolution
of the number of Debian maintainers for the lat-
est five stable releases. As we have expected, the
number of Debian individual maintainers has been
growing over time. Debian 2.0 (July 1998) was put
together by 216 individual maintainers, while the
number of maintainers for later releases are 859 for
3.0 (July 2002) and 1,314 for 3.1 (June 2005). This
shows a growth of about 35 percent every year.
The right side of the figure shows the cumulative

1200

1000

800

600

400

200

1997
0

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Figure 1. Number of maintainers over time. The left chart is based on Debian releases while the right
one is based on continuous uploads.

 1873

Volunteers in Large Libre Software Projects: A Quantitative Analysis Over Time

number of developers who have made uploads to
Debian (starting as of September 1997 and finish-
ing with February 2006). This chart gives more
precise information as to the growth over time but
it does not include some information which the
other chart captures. As mentioned above, only
official Debian developers are considered and
therefore the numbers are lower than in the chart
on the left side which considers all maintainers
of packages in Debian, regardless of their official
status. The more detailed information the chart
on the right conveys is very interesting, though.
A remarkable stagnation of the growth can be
observed. This is because the New Maintainer
process, Debian’s admission process, was stopped
for several months at the end of 1999. The growth
continues in the middle of 2000 and, interest-
ingly enough, the pause in the admission of the
developers did not have any significant effect on
the overall growth of the project.

Based on the data from official releases, we
have conducted a small statistical analysis; the
results are shown in Table 2. The ratio of packages
per maintainer (see column “Pkg/Maint”) grows
over time, contrary to our initial hypothesis. The
growth of packages is actually bigger than that of
volunteers who contribute to the project. There are
some possible explanations for this finding. First, it
is possible that improvements of the development
tools or in the practices employed have led to an
increase in the efficiency of developers. Second,
due to increased interest in libre software, the
development speed in general has accelerated
and volunteers are more committed.

Interesting enough, the median does not vary
(with the exception of Debian 3.0) over time in
these last years. Half of the maintainer popula-
tion does not have more than three packages to
maintain. Furthermore, the mode shows that the
most frequent situation is a maintainer who is in
charge of one package. In brackets we can find
the number of developers who actually maintain
only one package, which is around one forth of
the total population of Debian maintainers.

The next three values (the standard deviation,
the Gini coefficient,4 and the maximum number
of packages maintained by a single maintainer)
strengthen the idea that the distribution of work
tends to be distributed in a more unequal way,
with a small number of maintainers maintain-
ing more and more packages while the number
of packages the vast majority is in charge of
does not change much. Compared to other libre
software applications and, in general, to other
studies which have looked at the distribution
of work in libre software projects (Ghosh &d
Prakash, 2000; Koch & Schneider, 2002; Hunt
& Johnson, 2002; Mockus et al., 2002; Ghosh et
al., 2002), we can see that, unlike other projects,
Debian is far away from a Pareto distribution.
In terms of the Gini coefficient, Debian shows
values from roughly 0.5 to 0.6 while studies of
the activity in CVS repositories of other projects
have found Gini to be in the range between 0.7
and 0.9 (Robles, 2006).

Finally, in Figure 2 we see the number of indi-
vidual developers making uploads to the Debian

Date Release Maint Packages Pkg/Maint Median Mode Std. Dev Gini Max

Jul 98 2.0 216 1,101 5.1 3 1 (52) 5.8 0.492 50

Mar 99 2.1 296 1,559 5.3 3 1 (76) 6.5 0.521 55

Aug 00 2.2 453 2,601 5.7 3 1 (122) 7.4 0.535 69

Jul 02 3.0 859 5,119 6.0 4 1 (208) 8.2 0.539 79

Jun 05 3.1 1,314 7,989 6.1 3 1 (386) 9.1 0.577 127

Table 2. Statistical analysis of the growth in number of Debian maintainers

1874

Volunteers in Large Libre Software Projects: A Quantitative Analysis Over Time

archive for each three month period. A significant
growth in the number of contributors can be seen
in the first few years of the observed period. Since
roughly the beginning of 2001, a fairly constant
number of individuals makes contributions to
Debian. There are about 550 unique contributors,
even if they change over time.

The first column gives the date of the release
specified in the second one. “Maint” is the number
of maintainers that maintain at least a package,
“Packages” the number of total packages for
that release, “Pkg/Maint,” the mean number of
packages per maintainer, “Median” the median
number of packages, “Mode” gives the most
frequent contribution in number of packages
and in brackets the number of maintainers who
contribute to it, “Std. Dev,” the standard deviation
of our sample,” “Gini” the Gini coefficient, and
“Max” the maximum number of packages that a
unique maintainer is responsible for.

trAcKing remAining DeBiAn
mAintAinerS

At the time of the release of Debian 2.0 in July
1998 there were 216 voluntary developers con-
tributing to Debian. We have studied how the
involvement of these 216 contributors to Debian
2.0 has changed over time. Table 3 gives an
overview of the number of contributors from the
original group left at each release, as well as the
number of packages maintained by them. As the
figure shows, the number decreases steadily, with
only 117 of the original 216 contributors (54.2%)
still possessing ownership of a package in June
2005. Based on these figures, we concluded in a
previous paper that the half-life value had not been
reached after six and a half years and estimated
that the half-life value would be around 7.5 years
(or 90 months) (Robles et al., 2005).

Taking the more fine-grained information
from uploads into account, we can now revise
these findings. Taking package ownership as
an indication for activity is error prone, since it

650

600

550

500

450

400

1997-01 1998-01 1999-01 2000-01 2001-01 2002-01 2003-01 2004-01 2005-01 2006-01

350

300

250

200

150

100

Figure 2. Mean number of developers making uploads per each three month period

 1875

Volunteers in Large Libre Software Projects: A Quantitative Analysis Over Time

has been shown that a number of “maintainers”
are actually inactive and do not maintain their
packages (Michlmayr, 2004). It can take several
months or longer until the situation is resolved,
in particular if maintainers are busy but do not
want to admit to themselves that they do not ac-
tually have enough time anymore. Uploads are
therefore a much better measure in this case since
they show activity. While this measure does not
show the effort done by a maintainer it shows that
they are still active, which is the question being
asked here.

Based on data from uploads, we can see that
as of the three-month period starting in June
1998, only 187 out of the original 216 contributors
(which still possess packages in the release done
in July 1998) are still active. Taking these 187
developers as the new population, we find that
the group reaches their half-life in the periods
between June and September 2004. This leads to
a half-life value of less than 78 months (6.5 years).
This is in line with the originally estimated value
of 7.5 years, a slight over-prediction due to the fact

that it takes some time until inactivity is reflected
in the maintainer field of a package. The value
obtained from this population is also in line with
those obtained from other populations observed
as part of the investigation of uploads to Debian,
as can be seen in Figure 3. They all show a half-
life of between 75 and 90 months.

It would be interesting to perform further
analysis about which factors influence how
long volunteers remain active. There is already
evidence that some volunteers face feelings of
burn-out (Hertel et al., 2003), but further studies
into human-resource management and motiva-
tion in libre software projects could have positive
effects on extending the half-life of volunteer
contributions.

The number of packages for which these de-
velopers are responsible is also interesting. The
initial number of packages maintained by the
216 contributors of Debian 2.0 was 1,101. The
corresponding number of packages in Debian
2.1 (around nine months later) for the develop-
ers remaining rose to 1,351 and then to 1,457 for

Figure 3. Half-life of Debian maintainers: How populations shrink over time. The horizontal line at 0.5
shows when a population reaches half-life

1

0.9

0.8

0.7

0.6

0.5

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

0.4

0.3

1876

Volunteers in Large Libre Software Projects: A Quantitative Analysis Over Time

Debian 2.2, where the maximum number of pack-
ages was achieved. Then it decreased to 1,305 for
Debian 3.0, and in the last Debian version it had
similar figures as in their first release, although
now with half of the maintainers.

This data shows that there has been a continu-
ous increase in the mean number of packages that
maintainers are responsible for. While the number
of packages per maintainer was slightly above
five for the 2.0 release, this number has grown
to nine packages per maintainer in release 3.1. It
also seems that the mean value keeps on growing,
although at a lower pace, and that it has a tendency
towards a value around nine as we can see from the
last two releases. Given the large amount of time
between the last two releases, we can assume that
this observed pattern is stable. We have already
discussed possible explanations for this behavior
with the data about the evolution in number of
Debian maintainers (see Table 2).

Regarding the involvement of maintainers,
we can see from the median that there is a gen-
eral shift towards maintaining more packages,
as the median value starts with three packages
and raises up to five for Debian 2.2 and Debian
3.0. The mode, on the other hand, shows that the
number of maintainers who only maintain one
package decreases over time more quickly than the
number of total maintainers (the total number of
maintainers drops from 216 to 117, a drop of 46%,
while the number of maintainers who maintain
only one package decreases from 52 to 20, a 62%
drop; this means that the number of maintainers
with more than one package shrinks from 164
to 97, which is only 34% less, almost half of the
drop for maintainers in charge of a single pack-
age). The cause for this may be twofold: On one
hand those maintainers could have left the project,
and on the other they could have gotten more
involved in it by maintaining more packages. In
any case, maintaining one package could be seen
as a “hot” zone in which nobody stays for a long
time and where a decision has to be taken: to get
more involved in the project or to leave.

The standard deviation and the Gini coefficient
give an idea of the distribution of work. Both values
show that there is tendency to have a less equally
distributed load of work. Of particular interest is
the Gini coefficient, which starts at almost 0.5
and grows up to 0.574. The maximum number of
packages that a single maintainer is in charge of
grows consequently, from 50 packages in Debian
2.0 to 83 in Debian 3.1. It should be noted that
the maximum number of packages of the first
three Debian versions under study correspond
to a different person than the last two.

inVeStigAting mAintAiner
experience

In the previous paragraphs we tracked maintain-
ers from Debian version 2.0 over time to see how
their contributions evolved. In the following we
are going to do the opposite; we will take the last
Debian release (Debian 3.1) and will try to track
when maintainers first started participating in
the project. This will allow us to have a measure
of experience in the project. Maintainers who
entered in the same release will be grouped and
analyzed together.

Figure 4 shows when currently active main-
tainers got involved in the project. For every
maintainer of a package in the latest release,
we have investigated in which release their first
contribution can be found. In addition to the 117
developers who have made steady contributions
since July 1998 (release 2.0), 55 participants got
involved before Debian 2.1, and 106 arrived with
Debian 2.2. In the last two stable releases, 384 and
652 new maintainers have been identified.

The evolution of the number of packages per
maintainer given in Table 4 provides evidence
about the impact of experience on the number
of packages maintained. We can see that for the
first three versions considered, the values range
around 9.0 up to 11.5 packages per maintainer,
while in the last two the number of packages

 1877

Volunteers in Large Libre Software Projects: A Quantitative Analysis Over Time

Date Release Maint Packages Pkg/Maint Median Mode Std. Dev Gini Max

Jul 98 2.0 216 1,101 5.1 3 1 (52) 5.8 0.492 50

Mar 99 2.1 207 1,351 6.5 4 1 (38) 7.3 0.501 55

Aug 00 2.2 188 1,457 7.8 5 1 (33) 9.2 0.515 69

Jul 02 3.0 147 1,305 8.9 5 2 (20) 10.6 0.540 65

Jun 05 3.1 117 1,055 9.0 4 1 (20) 12.1 0.574 83

Table 3. Packages maintained by the Debian 2.0 maintainers

Figure 4. First stable release to which Debian 3.1 maintainers have contributed

Debian

Debian

Debian

Debian

Debian

Date Releale Maint Packages Pkg/Maint Median Mode Std. Dev Gini Max

Jul 98 2.0 117 1,055 9.0 4 1 (20) 12.1 0.574 83

Mar 99 2.1 55 631 11.5 6 5 (8) 15.1 0.544 81

Aug 00 2.2 106 1,008 8.8 6 1;2
(16) 9.7 0.515 55

Jul 02 3.0 384 2,835 7.2 5 1 (63) 9.5 0.511 121

Jun 05 3.1 652 2,221 4.0 2 1 (246) 7.4 0.570 106

Table 4. First release as maintainer for maintainers in Debian 3.1

is lower. In general, the tendency is that older
maintainers have more packages than those who
joined later. The exceptions are maintainers who
joined with Debian 2.1. For this version, we can
see a statistical distortion in the mode as it has a
value of 5 while the values for all other versions
is 1 (or 1 and 2 in the case of Debian 2.2).

With regard to the median value, we can see
that it is also higher for more experienced main-
tainers, although in this case it is not that clear as
we have seen with the mean number of packages.
The different behavior of the last two releases is

interesting: While Debian 3.1 has a median of two
with many (up to 246) maintainers only in charge
of one package, those maintainers who entered in
Debian 3.0 and who are still active, have a median
value of five and a smaller proportion of them
maintain a single package. Again, this supports
our previous conclusion that maintaining a single
package is only a temporary situation.

The standard deviation of the sample does not
give us much information in this case. Maybe it
stresses the distorted behavior of Debian 2.1 with
such a high value; interestingly enough it shows

1878

Volunteers in Large Libre Software Projects: A Quantitative Analysis Over Time

that the data is more homogeneous as we come
nearer to Debian 3.1. This is an expected effect,
as “younger” maintainers should have a similar
(smaller) involvement while “older” ones may vary
more. Nonetheless, the Gini coefficient does not
necessarily support this finding as the values show
no clear tendency over time (the highest value is for
Debian 2.0 followed closely by Debian 3.1). This is
also the case for the maximum number of packages
maintained by a single person which fluctuates
from version to version without any predictable
direction. In any case, we can see that very active
maintainers enter any time in the project, some of
them with a surprisingly high involvement. For
instance, from July 2002 to June 2005 one new
maintainer became in charge of 106 packages!
Obviously, the effort needed for the maintenance
of a package can vary widely. Further exploration
is needed to estimate the effort associated with
the maintenance of these packages.

pAcKAgeS Of mAintAinerS WHO
left tHe prOJect

When maintainers leave the project, their packages
become unmaintained (the Debian project uses
the expression “orphaned”). These packages may

be taken up by others (“adopted” in the Debian
jargon), or they will not be present in the next
stable release. In Table 5 the ratios and numbers
of orphaned and adopted packages between any
pair of the studied releases are shown.

The table should be read as follows: The first
column shows the number of packages, 15, for
which their maintainers have left the project (col-
umn “Orphaned”) and that have been adopted,
14, by other (possibly new) maintainers (column
“Adopted”) from Debian 2.0 to Debian 2.1. This
means that the percentage of orphaned packages
that have been adopted is 93.3% (column “Adopt/
Orph”), so in this case few packages got lost. The
last two columns help situating the amount of
orphaned packages we are talking about, giving
the share of orphaned packages in comparison to
the total number of packages for each release.

Looking at the rest of the rows in the table,
we can see that the percentage of adopted pack-
ages is very high: more than 60% for all releases
considered. This happens even for releases with
a very high portion of orphaned packages (for
instance, between version 2.0 and 3.1). In other
words, even though maintainers who left Debian
between July 1997 and June 2005 were responsible
for 35.0% of the packages in Debian 2.0, 65.7%
of these packages can still be found in version

Table 5. Orphaning and adoption of packages

Release 1 Release 2 Orphaned Adopted Adopt/Orph Orph/Total1 Orph/Total2

2.0 2.1 15 14 93.3% 1.3% 1.0%

2.0 2.2 61 40 65.6% 5.5% 1.5%

2.0 3.0 231 171 74.0% 21.0% 4.5%

2.0 3.1 385 253 65.7% 35.0% 4.8%

2.1 2.2 47 31 66.0% 3.0% 1.8%

2.1 3.0 302 220 72.8% 19.4% 5.9%

2.1 3.1 516 332 64.3% 33.1% 6.5%

2.2 3.0 281 207 73.7% 10.8% 5.5%

2.2 3.1 685 433 63.2% 26.3% 8.6%

3.0 3.1 685 435 63.5% 13.4% 8.6%

 1879

Volunteers in Large Libre Software Projects: A Quantitative Analysis Over Time

3.0. We can thus affirm that Debian counts on a
natural “regeneration” process for its voluntary
contributors and that there is a high probability
that the packages of a maintainer who leaves the
project will be adopted by others.

Another interesting fact is that the ratio of
adopted to orphaned packages is decreasing in
later releases. This means that the number of or-
phaned packages grows more quickly than that of
adopted, i.e., there are some packages missing in
every new release. If a package is unmaintained
and falls off the next release, it will probably not
enter a future one. In this study we have only
considered removed packages from maintainers
who left the project, but it is likely that some
software will also be abandoned by maintain-
ers who still remain active and are therefore not
covered by this study.

In any case, it should be noted that users are left
unsupported when a package (maybe providing a
unique functionality) from a previous release is
not present in subsequent ones. It may therefore
be beneficial to establish mechanisms to ensure
that only packages which can be supported in the
long term will not be introduced in the first place,
or that at least that they be introduced only in a
section of the Debian repository which is clearly
marked as being less supported.

experience AnD impOrtAnce

We have used data from the Debian Popularity
Contest (presented in detail in the section Debian
Popularity Contest) to find out whether more
“important’ packages are maintained by more
experienced volunteers. Table 6 shows the data
corresponding to installations and use of pack-
ages by developers which are still in the project,
and which were already present in the studied
releases. In it we can see, for instance, that Debian
2.0 and 3.1 have 117 common maintainers, who
are responsible for 1,091 packages which have
been installed 1,305,907 times and 576,991 that
are regularly used.

The CMaint column shows how many main-
tainers Debian 3.1 had in common with the release
in the first column, while the CPkg shows the
number of packages maintained by them. Columns
Installations and Votes give the sum of the pack-
ages installed and voted (used regularly) for those
packages maintained by common maintainers.
The last two columns show the ratios of both to
common maintainers.

If we take the number of installations per main-
tainer and the number of regularly used packages
per maintainer (“Votes/Maint’) we can answer
the question we proposed in the section Research
Objectives and Goals. According to our hypoth-
esis, these ratios decrease over time, which would
mean that more experienced volunteers maintain
packages which are installed and used more often.
In fact, this can be observed through all Debian

Release CMaint CPkg Installations Votes Inst/Maint Votes/Maint

2.0 121 1,091 1,305,907 576,991 10792.6 4768.5

2.1 176 1,722 1,584,413 673,236 9002.3 3825.2

2.2 290 2,730 2,217,199 885,448 7645.5 3053.3

3.0 683 5,565 3,923,753 1,405,322 5744.9 2057.6

3.1 1315 7,989 5,248,869 1,711,496 3991.5 1301.5

Table 6. Installations and regular use of packages

1880

Volunteers in Large Libre Software Projects: A Quantitative Analysis Over Time

releases. An alternative (or complementary) ex-
planation to our initial hypothesis is that many
of the essential components of the Debian system
were introduced in the first releases, and that new
packages are mostly add-ons and software that
are not installed and used that often.

cOncluSiOn AnD furtHer
WOrK

We have conducted a quantitative study of the
evolution of the Debian maintainership over the
last six-and-a-half years. We have retrieved and
analyzed publicly available data in order to find
out how Debian handles the volatility of the vol-
unteers who made it happen.

Some of the most interesting findings are:

• Both the number of Debian maintainers and
the number of packages per maintainer grow
over time.

• The number of maintainers from previous
releases who remain active is very high,
with an estimated half-life of around 6.5
years (78 months). Slightly less than half
of the maintainers from Debian 2.0 still
contribute to the current release after more
than 7 years.

• Developers tend to maintain more and more
packages as they gain experience in the
project.

• However, this does not mean that maintain-
ers who have been in the project for more
time maintain more packages than newer
maintainers. In fact, in the latest release,
the highest packages per maintainer ratio is
shown by those entering the project around
the year 2000.

From these facts, it can be said that Debian
maintainers tend to commit to the project for
long periods of time. However, there is a wor-
risome trend towards a higher and higher ratio

of packages per maintainer, which could imply
scalability problems as the number of packages
in the distribution increases, if the project doesn’t
admit a proportional number of developers.

Another issue on which we have focused is
what happens to those packages that were main-
tained by developers who left the project. Most
of them are taken over by other maintainers, so
that we can state that a natural “regeneration”
exists. Based on the data we have researched,
those packages which are not adopted by other
maintainers in the next release, and are therefore
not present in it, are unlikely to be re-introduced
in future releases.

Finally, we have also found that more experi-
enced maintainers are responsible for packages
which are installed more often and used more
regularly.

In addition to the new insights gained in this
investigation, we have proposed a number of
further studies to elaborate on the findings of the
present chapter. In particular, team maintenance
and its impact on the quality of packages would
be interesting to research. It is also not clear why
there is an increase in the ratio of packages per
maintainer. Possible explanations are that better
tools and practices lead to more efficiency, or that
with the success of libre software, new volunteers
show more motivation and commitment, but more
data is needed before these explanations can be
conclusive.

From a more general point of view, this study
explores the behavior of volunteers in libre soft-
ware projects and provides some answers as to why
these kinds of voluntary contributions are capable
of producing such large, mature and stable systems
over time, even when the project has no means for
forcing any single developer to do any given task
and when members may leave the project during
important development phases. It is impossible
to infer the behavior of volunteer developers just
from the study of a single project, but given the
size and relevance of the Debian project, at least
some conclusions can be exposed as hypotheses

 1881

Volunteers in Large Libre Software Projects: A Quantitative Analysis Over Time

for validating in later research efforts.
One of them is the stability of volunteer work

over time. The mean life of contributors in the
project is probably longer than in many software
companies, which would have a clear impact
on the maintenance of the software (it is likely
that developers with experience in a module are
available for its maintenance over long periods
of time). Another one is that volunteers tend to
take over more work with the passing of time if
they remain in the project: In other words, they
voluntarily increase their responsibilities in the
project. Whether this is because it is easier for
them because of their experience, or because they
devote more effort to the project, is for now an
open question. Yet a third one is the stability of the
voluntary effort when some individuals leave the
project: Most of their work is taken over by other
developers. Therefore, despite being completely
based on volunteers, the project organizes itself
rather well with respect to drop-outs, which is
an interesting lesson about how the project can
survive in the long term.

As a final summary, we have found that given
that there are no formal ways of forcing a developer
to assume any given task, voluntary efforts seem
to be more stable over time, and more reliable with
respect to individuals leaving the project than we
had initially expected.

AcKnOWleDgment

The work of Martin Michlmayr has been funded
in part by Google, Intel, and the EPSRC. The
work of Gregorio Robles and Jesus M. Gonza-
lez-Barahona has been funded in part by the
European Commission under the CALIBRE CA,
IST program, contract number 004337. We would
also like to thank the anonymous reviewers for
their extensive comments.

referenceS

Crowston, K., & Howison, J. (2005). The social
structure of free and open source software devel-
opment. First Monday, 10(2).

Debian Social Contract. (2006). Debian social
contract. Retrieved from http://www.debian.
org/social_contract

Dinh-Trong, T. T., & Bieman, J. M. (2005). The
FreeBSD project: A replication case study of
Open Source development. IEEE Transactions
on Software Engineering, 31(6), 481-494.

Garzarelli, G., & Galoppini, R. (2003). Capability
coordination in modular organization: Volun-
tary FS/OSS production and the case of Debian
GNU/Linux.

German, D. (2004). The GNOME project: A case
study of open source, global software develop-
ment. Journal of Software Process: Improvement
and Practice, 8(4), 201-215.

Ghosh, R. A., Glott, R., Krieger, B., & Robles, G.
(2002). Survey of developers (Free/libre and open
source software: Survey and study). Technical
report, International Institute of Infonomics, Uni-
versity of Maastricht, The Netherlands. Retrieved
from http://www.infonomics.nl/FLOSS/report

Ghosh, R. A., & Prakash, V. V. (2000). The or-
biten free software survey. First Monday, 5(7).
Retrieved from http://www.firstmonday.dk/is-
sues/issue5_7/ghosh/

Gonzalez-Barahona, J. M., Ortuno Perez, M. A.,
de las Heras Quiros, P., Centeno Gonzalez, J., &
Matellan Olivera, V. (2001). Counting potatoes:
The size of Debian 2.2. Upgrade Magazine,
II(6), 60-66.

Gonzalez-Barahona, J. M., Robles, G., Ortuno
Perez, M., Rodero-Merino, L., Centeno Gonza-
lez, J., et al., (2004). Analyzing the anatomy of
GNU/Linux distributions: Methodology and case

1882

Volunteers in Large Libre Software Projects: A Quantitative Analysis Over Time

studies (Red Hat and Debian). In S. Koch (Ed.),
Free/open source software development (pp. 27-
58). Hershey, PA: Idea Group Publishing.

Herbsleb, J. D., Mockus, A., Finholt, T. A., &
Grinter, R. E. (2001). An empirical study of global
software development: Distance and speed. In
ICSE ‘01: Proceedings of the 23rd International
Conference on Software Engineering (pp. 81-
90).

Hertel, G., Niedner, S., & Herrmann, S. (2003).
Motivation of software developers in open source
projects: An Internet-based survey of contribu-
tors to the Linux kernel. Research Policy, 32(7),
1159-1177.

Hunt, F., & Johnson, P. (2002). On the Pareto dis-
tribution of open source projects. In Proceedings
of Open Source Software Development Workshop,
Newcastle, UK.

Koch, S., & Schneider, G. (2002). Effort, coopera-
tion and coordination in an open source software
project: GNOME. Information Systems Journal,
12(1), 27-42.

Lameter, C. (2002). Debian GNU/Linux: The
past, the present and the future. Retrieved from
http://telemetrybox.org/tokyo/

Michlmayr, M. (2004). Managing volunteer activ-
ity in free software projects. In Proceedings of
the USENIX 2004 Annual Technical Conference,
FREENIX Track, Boston (pp. 93-102).

Michlmayr, M., & Hill, B. M. (2003). Quality
and the reliance on individuals in free software
projects. In Proceedings of the 3rd Workshop on
Open Source Software Engineering, Portland,
OR (pp. 105-109).

Mockus, A., Fielding, R. T., & Herbsleb, J. D.
(2002). Two case studies of open source software
development: Apache and Mozilla. ACM Transac-
tions on Software Engineering and Methodology,
11(3), 309-346.

Monga, M. (2004). From bazaar to kibbutz: How
freedom deals with coherence in the Debian
project. In Proceedings of the 4th Workshop on
Open Source Software Engineering, Edinburg,
Scotland, UK.

O’Mahony, S. (2003). Guarding the commons:
How community managed software projects to
protect their work. Research Policy, 32, 1179-
1198.

Robles, G. (2006). Empirical software engineering
research on libre software: Data sources, meth-
odologies and results. PhD thesis, Universidad
Rey Juan Carlos.

Robles, G., Gonzalez-Barahona, J. M., & Michl-
mayr, M. (2005). Evolution of volunteer partici-
pation in libre software projects: Evidence from
Debian. In Proceedings of the 1st International
Conference on Open Source Systems, Genoa,
Italy (pp. 100-107).

enDnOteS

1 In this chapter we will use the term “libre
software” to refer to any software licensed
under terms compliant with the Free
Software Foundation definition of “free
software,” and the Open Source Initiative
definition of “open source software,” thus
avoiding the controversy between those two
terms.

2 http://popcon.debian.org
3 All the code used has been released as

libre software, and can be obtained from
http://libresoft.dat. escet.urjc.es/index.
php?menu=Tools

4 The Gini coefficient is a normalized mea-
sure of inequality; values near 0 point out
equal distributions while values close to 1
are indicative for high inequalities.

This work was previously published in Emerging Free and Open Source Software Practices, edited by S. Sowe; I. Stamelos;
and I. Samoladas, pp. 1-24, copyright 2007 by IGI Publishing (an imprint of IGI Global).

 1883

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.6
Applying Social Network
Analysis Techniques to

Community-Driven Libre
Software Projects

Luis López-Fernández
Universidad Rey Juan Carlos, Spain

Gregorio Robles
Universidad Rey Juan Carlos, Spain

Jesus M. Gonzalez-Barahona
Universidad Rey Juan Carlos, Spain

Israel Herraiz
Universidad Rey Juan Carlos, Spain

ABStrAct

Source code management repositories of large,
long-lived libre (free, open source) software proj-
ects can be a source of valuable data about the
organizational structure, evolution, and knowl-
edge exchange in the corresponding development
communities. Unfortunately, the sheer volume of
the available information renders it almost unus-
able without applying methodologies which high-
light the relevant information for a given aspect
of the project. Such methodology is proposed in
this article, based on well known concepts from
the social networks analysis field, which can be
used to study the relationships among develop-
ers and how they collaborate in different parts

of a project. It is also applied to data mined from
some well known projects (Apache, GNOME,
and KDE), focusing on the characterization of
their collaboration network architecture. These
cases help to understand the potentials of the
methodology and how it is applied, but also shows
some relevant results which open new paths in
the understanding of the informal organization of
libre software development communities.

IntroductIon

Software projects are usually the collective
work of many developers. In most cases, and
especially in the case of large projects, those

1884

Applying Social Network Anaylsis Techniques to Community-Driven Libre Software Projects

developers are formally organized in a well de-
fined (usually hierarchical) structure, with clear
guidelines about how to interact with each other,
and the procedures and channels to use. Each
team of developers is assigned certain modules
of the project, and only in rare cases do they
work outside that realm. However, this is usu-
ally not the case with libre software1 projects,
where only loose (if any) formal structures are
acknowledged. On the contrary, libre software
developers usually have access to any part of the
software, and even in the case of large projects,
they can move freely to a certain extent from
one module to other, with only some restric-
tions imposed by common usage in the project
and the rules on which developers themselves
have agreed to.

In fact, during the late 1990s some voices
started to claim that the success of some libre
software projects was rooted in this different
way of organization, which was referred to as
the “bazaar development model,” described by
Eric Raymond (1997) and later complemented
by some more formal models of nonhierarchical
coordination (Elliott & Scacchi, 2004; Healy &
Schussman, 2003). Some empirical studies have
found that many libre software projects cannot
follow this bazaar-style model, since they are
composed of just one or two developers (Healy
& Schussman, 2003; Krishnamurthy, 2002), but
the idea remains valid for large projects, with
tens or even hundreds of developers, where coor-
dination is obviously achieved, but (usually) not
by using formal procedures. These latter cases
have gained much attention from the software
engineering community during the last years, in
part because despite apparently breaking some
traditional premises (hard-to-find requirement
studies, apparently no internal structure, global
software development, etc.) final products of rea-
sonable quality are being delivered. Large libre
software projects are also suspicious of breaking
one of the traditional software evolution laws,
showing linear or even superlinear growth even

after reaching a size of several millions of lines
of code (Godfrey & Tu, 2000; Robles, Amor,
Gonzalez-Barahona, & Herraiz, 2005a). The laws
of software evolution state that the evolution of a
system is a self-regulating process that maintains
its organizational stability. Thus, unless feedback
mechanisms are appropriately introduced, the ef-
fective global activity tends to remain constant,
and incremental growth declines. The fact that
several studies on some large libre software
projects show evidence that some of these laws
are disobeyed may be indicative of an efficient
organizational structure.

On the other hand, the study of several large
libre software projects has shown evidence about
the unequal distribution of the contributions of
developers (Dinh-Trong & Bieman, 2005; Koch &
Schneider, 2002; Mockus, Fielding, & Herbsleb,
2002). These studies have identified roles within
the development community, and have discovered
that a large fraction of the development work is
done by a small group of about 15 persons, which
has been called the “core” group. The number
of developers is around one order of magnitude
larger, and the number of occasional bug report-
ers is again about one order of magnitude larger
than that of developers (Dinh-Trong & Bieman,
2005; Mockus et al., 2002). This is what has
been called the onion structure of libre software
projects (Crowston, Scozzi, & Buonocore, 2003).
In this direction, it has also been suggested that
large projects need to adopt policies to divide
the work, giving rise to smaller, clearly defined
projects (Mockus et al., 2002). This trend can be
observed in the organization of the CVS2 reposi-
tory of really large libre software projects, where
the code base is split into modules with their own
maintainers, goals, and so forth. Modules are
usually supposed to be built maintaining the inter-
relationships to a minimum, so that independent
evolution is possible (Germán, 2004a).

In this article, a new approach is explored in
order to study the informal structure and organi-
zation of the developers in large libre software

 1885

Applying Social Network Analysis Techniques to Community-Driven Libre Software Projects

projects. It is based on the application of well
known social networks analysis (SNA) techniques
to development data obtained from the versioning
system (CVS). According to the classical Con-
way’s law, organizations designing systems are
constrained to produce designs which are copies of
their communication structures (Conway, 1968).
Following this line of reasoning, the relation-
ships among modules will be studied, and the
dual case of those among developers. Our target
is the advancement of the knowledge about the
informal coordination structures that are the key
to understanding how these large libre software
projects can work in the apparent absence of
formalized structures, and where the limits are
of those ways of coordinating and exchanging
information. We have designed a methodology
following this approach, and have also applied
it to some well known projects. Although the
aim of our approach is mainly descriptive, not
proposing novel models for project evolution or
agent behavior, just trying to describe in as much
detail as possible the organizational structure of
libre software projects, our work is illustrative of
the power of the SNA techniques. To attain this
goal, our approach is similar to that presented
in Madey, Freeh, and Tynan (2002) and Xu, Gao,
Christley, and Madey (2005): we consider libre
software projects as complex systems and char-
acterize them by using mathematical formalisms.
As a result, some interesting facts related to the
organizational structure of libre software projects
have been uncovered.

The remainder of this article is organized
as follows. The next section contains a basic
introduction to SNA, and how we intend to ap-
ply its techniques to the study of libre software
projects based on the data available in their CVS
repositories. The third section specifies in detail
the methodology for such a study, followed by the
fourth section with a brief introduction to a set
of classical social network analysis parameters.
After that, the fifth section presents the main
characteristics of the networks corresponding to

the three projects used as case examples: Apache,
GNOME, and KDE. This serves as an introduc-
tion to the more detailed comments on several
aspects of those projects, presented in the sixth,
seventh, eighth, ninth, and tenth sections. The
final section offers some conclusions, comments
on some related work, and discusses further lines
of research.

ApplicAtiOn Of SnA tO
liBre SOftWAre prOJectS

The study and characterization of complex sys-
tems is a fruitful research area, with many inter-
esting open problems. Special attention has been
paid recently to complex networks, where graph
and network analysis play an important role. This
approach is gaining popularity due to its intrinsic
power to reduce a system to its single components
and relationships. Network characterization is
widely used in many scientific and technological
disciplines, such as neurobiology (Watts & Stro-
gatz, 1998), computer networks (Albert, Barabási,
Jeong, & Bianconi, 2000), or linguistics (Kumar,
Raghavan, Rajagopalan, & Tomkins, 2002).

Although some voices argue that the software
development process found in libre software
projects is hardly to be considered as a new de-
velopment paradigm (Fuggetta, 2003); without
doubt, the way it handles its human resources
differs completely from traditional organiza-
tions (Germán, 2004b). In both cases, traditional
and libre software environments, the human factor
is of key importance for the development process
and how the software evolves (Gîrba, Kuhn, See-
berger, & Ducasse, 2005), but the volunteer nature
of many contributors in the libre software case
makes it a clearly differentiated situation (Robles,
González-Barahona, & Michlmayr, 2005b).

Previous research on this topic has both at-
tended to technical and organizational points
of view. Germán used data from a versioning
repository in time to determine feature-adding

1886

Applying Social Network Anaylsis Techniques to Community-Driven Libre Software Projects

and bug-correcting phases. He also found evidence
for developer territoriality (software artifacts that
are mainly, if not uniquely, touched by a single
developer) (Germán, 2004a).

The intention of other papers has been to
uncover the social structure of the underlying
community. The first efforts in the libre software
world are due to Madey et al. (2002), who took
data from the largest libre software projects reposi-
tory, SourceForge.net, and inferred relationships
among developers that contributed to projects
in common. A statistical analysis of some basic
social network parameters can also be found by
López, Gonzalez-Barahona, and Robles (2004)
for some large libre software projects. Xu et al.
(2005) have presented a more profound topological
analysis of the libre software community, joining
in the same work characteristics from previous
papers: data based on the SourceForge platform
and a statistical analysis of some parameters
with the goal of gaining knowledge on the topol-
ogy of the libre software phenomenon. This has
also been the intention of González-Barahona,
López-Fernández, and Robles (2004), where a
structure-finding algorithm was used to obtain
the evolution in time of the organization of the
Apache project. Wagstrom, Herbsleb, and Carley
(2005) propose to use the knowledge acquired
from analyzing libre software projects with SNA
for the creation of models that help understand the
underlying social and technical process.

metHODOlOgy

The first problem to solve when using SNA is
getting the information to construct the network
to analyze. One especially interesting kind of
data sources is the records maintained by many
computer-based systems. For instance, Guimera,
Danon, Diaz-Guilera, Giralt, and Arenas (2003)
analyze informal networking on organizations
using tracks of e-mail exchanges. Therefore,
from the many kinds of records available about

the activity of a libre software project, those pro-
vided by the CVS system where source code is
stored have been the ones chosen. Those records
offer information about who modified the code,
and when and how, in many cases from the very
beginning of the project, in some cases over a
total period of time above 10 years.

The information in the CVS repository of a
project includes an accurate and detailed picture
of the organizational structure of the software,
and of the developers working on it. When two
developers work on the same project module, they
have to exchange (directly or maybe indirectly)
information and knowledge to coordinate their
actions and produce a working result. It seems
reasonable to assume that the higher their con-
tributions to the module, the higher the strength
of their informal connection.

Based on this assumption, a specific kind of
social network has been considered, those called
affiliation networks. They are characterized by
showing two types of vertices: actors and groups.
When the network is represented with actors as
vertices, each one is usually associated with a
particular person, and two of them are linked
together when they belong to the same group.
When the network is represented with groups as
vertices, two groups are connected when there is,
at least, one actor belonging, at the same time, to
both groups. In our case, actors will be identified
as developers, and groups as software modules.
The “belong to” relationship will be in fact “has
contributed to.” This approach will result in a
dual view of the same organization: as a network
of modules linked by common developers, and
as a network of developers linked by common
modules. Similar approaches have been used for
analyzing other complex organizations, like the
network of scientific authors (Newman, 2001a,
b) or the network of movie actors (Albert &
Barabasi, 2002).

To finish the characterization of our networks,
weighted edges are being considered. This means
that it is not only taken into account whether a

 1887

Applying Social Network Analysis Techniques to Community-Driven Libre Software Projects

node has some relationship with any other, but also
the strength of that relationship. In our case, the
weight will be related to the size of contributions
to common modules (in the case of developers) and
to the size of contributions by common developers
(in the case of modules). It should be noted that
from the methodological point of view, the use
of weights is a major contribution of this article
in comparison with previous works describing
SNA techniques applied to libre software (Madey
et al., 2002; Wagstrom et al., 2005; Xu et al.,
2005). As we will see in this article, the use of
weights is indicated as the distribution of work
follows a very unequal distribution, in the range
of a Pareto distribution3 (Ghosh & Prakash, 2000).
Our assumption at this point is that considering a
link between two major contributing developers
that equals the one between two random chosen
developers, introducing an important bias in the
results regarding the distribution of work observed
in libre software environments.

Once we have identified how we want to use
SNA for libre software projects, a well defined
methodology is proposed in order to apply those
ideas to any libre software with a public CVS
repository. The process begins by downloading
the relevant information from the CVS reposi-
tory.4 This information includes, for each commit
(modification in a file in the repository): the date,
the identifier of the developer (commiter), and the
number of lines involved. Using all those records,
the following networks are defined for character-
izing the organization of the project:

• Modules network. Each vertex represents a
particular software module (usually a direc-
tory in the CVS repository) of the project.
Two modules are linked together by an
edge when there is at least one commiter
who has contributed to both. Those edges
are weighted using a degree of relationship
between the two modules, defined as the total
number of commits performed by common
commiters.

• Commiters network. In this case, each
vertex represents a particular commiter
(developer). Two commiters are linked by
an edge when they have contributed to at
least one common module. Again, edges are
weighted by a degree of relationship defined
as the total number of commits performed
by both developers on modules to which
both have contributed.

The definition being used for the degree of
relationship is an attempt to measure the closeness
of two vertices. The higher this parameter, the
stronger the relationship between those vertices.
In this sense, cost of relationship between any two
vertices can also be defined as the inverse of their
degree of relationship. In this sense, the cost of
relationship defines a distance between vertices:
the higher it is, the more difficult it is to reach one
of them from the other. More formally, given a
(connected) graph G and a pair of vertices i and j,
we define the distance between them as dij=∑ e∈Ps
cr , where e are all the edges in the shortest path
Ps from i to j, and cr is the cost of relationship of
any of those edges.

parameters

Once the networks are constructed based on the
previous definitions, and the degrees and costs
of relationship have been calculated for linked
nodes, standard SNA concepts can be applied in
order to define the following parameters of the
network (the interpretation of the main implica-
tions of each parameter is also offered):

• Degree. The degree, k, of a vertex is the
number of edges connected to it. In SNA,
this parameter reflects the popularity of a
vertex, in the sense that most popular vertices
are those maintaining the highest number
of relationships. More revealing than the
degree of single vertices is the distribution

1888

Applying Social Network Anaylsis Techniques to Community-Driven Libre Software Projects

degree of the network (the probability of
a vertex having a given degree). This is
one of the most relevant characterizations
because it provides essential information to
understand the topology of a network (and if
longitudinal data is available, the evolution of
the topology). For example, it is well known
that a random network follows a Poisson’s
distribution, while a network following
a preferential attachment growth model
presents a power law distribution (Albert &
Barabasi, 2002). In our context, the degree
of a commiter corresponds to the number of
other commiters sharing modules with that
committer, while the degree of a module is
the total number of modules with which it
shares developers.

• Weighted degree. When dealing with
weighted networks, the degree of a vertex
may be tricky. A vertex with a high degree
is not necessarily well connected to the net-
work because all its edges may be weak. On
the other hand, a low degree vertex may be
strongly attached to the network if its entire
links are heavy. For this reason the weighted
degree of a vertex, w, is defined as the sum
of the weights of all the edges connected
to it. The weighted degree of a vertex can
be interpreted as the maximum capacity to
receive information of that vertex. It is also
related to the effort spent by the vertex in
maintaining its relationships.

• Clustering coefficient (Watts & Strogatz,
1998). The clustering coefficient, c, of a
vertex measures the transitivity of a net-
work. Given a vertex v in a graph G, it can
be defined as the probability that any two
neighbors of v are connected (the neighbors
of v are those vertices directly connected to
v). Hence

 c(v)=
2E(v)

k v (k v-
 (1)

 where kv is the number of neighbors of kv
and E(v) is the number of edges between
them. The intuitive interpretation of the
clustering coefficient is somehow subtle. If
the total number of neighbors of v is kv, the
maximum number of edges than can exist
within that neighborhood is kv (kv -1)/2 .
Hence, the clustering coefficient represents
the fraction of the number of edges that really
are in a neighborhood. Therefore it can be
considered as a measurement of the tendency
of a given vertex to promote relationships
among its neighbors. In a completely ran-
dom graph, the clustering coefficient is low,
because the probability of any two vertices
being connected is the same, independ-
ently on them sharing a common neighbor.
On the other hand, it has been shown that
most social networks present significantly
high clustering coefficients (for instance,
the probability of two persons being friends
is not independent from the fact that they
share a common friend) (Albert & Barabasi,
2002; Watts, 2003).

 From an organizational point of view, the
clustering coefficient helps to identify hot
spots of knowledge exchange on dynamic
networks. When this parameter is high for a
vertex, that vertex is promoting its neighbors
to interact with each other. Somehow it is
fostering connections among its neighbor-
hood. High clustering coefficients in net-
works are indicative for cliques. Besides, the
clustering coefficient is also a measurement
of the redundancy of the communication
links around a vertex.

• Weighted clustering coefficient (Latora &
Marchiori, 2003). The clustering coefficient
does not consider the weight of edges. We
may refine it by introducing the weighted
clustering coefficient, cw, of a vertex, which
is an attempt to generalize the concept of
clustering coefficient to weighted networks.

 1889

Applying Social Network Analysis Techniques to Community-Driven Libre Software Projects

Given a vertex v in a weighted graph G it
can be defined as:

 cw(v)= ∑
i≠j∈NG(v)

wij
1

k v (k v -
 (2)

 where NG(v) is the neighborhood of v in G (the

subgraph of all vertices connected to v), wij is
the degree of relationship of the link between
neighbor i and neighbor j (wij=0 if there are
no links), and kv is the number of neighbors.
The weighted clustering coefficient can be
interpreted as a measurement of the local
efficiency of the network around a particular
vertex, because vertices promoting strong
interactions among their neighbors will have
high values for this parameter. It can also be
seen as a measurement of the redundancy
of interactions around a vertex.

• Distance centrality (Sabidussi, 1996).
The distance centrality of a vertex, Dc, is a
measurement of its proximity to the rest. It
is sometimes called closeness centrality as
the higher its value the closer that vertex is
(on average) to the others. Given a vertex v
and a graph G, it can be defined as:

 Dc(v)= 1
∑t∈G

 (3)

 where dG(v,t) is the minimum distance from
vertex v to vertex t (i.e., the sum of the costs
of relationship of all edges in the shortest
path from v to t). The distance centrality
can be interpreted as a measurement of the
influence of a vertex in a graph because the
higher its value, the easier for that vertex to
spread information through that network.
Observe that when a given vertex is “far”
from the others, it has a low degree of re-
lationship (i.e., a high cost of relationship)
with the rest. So, the term ∑t∈GdG(v.t) will
increase, meaning that it does not occupy a
central position in the network. In that case,
the distance centrality will be low.

 Research has shown that employees who
are central in networks learn faster, perform
better, and are more committed to the orga-
nization. These employees are also less likely
to turn over. Besides, from the point of view
of information propagation, vertices with
high centrality are like “hills” on the plain,
in the sense that any knowledge is put on
them is rapidly seen by the rest and spreads
easily to the rest of the organization.

• Betweenness centrality (Anthonisse, 1971;
Freeman, 1977). The betweenness centrality
of a vertex, c, is a measurement of the number
of shortest paths traversing that particular
vertex. Given a vertex v and a graph G, it
can be defined as:

 Bc(v)= ∑
σst

 (4)

 where σst(v) is the number of shortest paths
from s to t going through v, and σst is the
total number of shortest paths between s and
t. The betweenness centrality of a vertex
can be interpreted as a measurement of the
information control that it can perform on a
graph, in the sense that vertices with a high
value are intermediate nodes for the com-
munication of the rest. In our context, given
that we have weighted networks, multiple
shortest paths between any pair of vertices
are highly improbable. So, the term σst(v)
/σst takes usually only two values: 1, if the
shortest path between s and t goes through
v, or 0 otherwise. So, the betweenness cen-
trality is just a measurement of the number
of shortest paths traversing a given vertex.

 In the SNA literature vertices with high
betweenness centrality are known to cover
“structural holes.” That is, those vertices
glue together parts of the organization that
would be otherwise far away from each
other. They receive a diverse combination
of information available to no one else in the
network and have therefore a higher prob-

1890

Applying Social Network Anaylsis Techniques to Community-Driven Libre Software Projects

ability of being involved in the knowledge
generation processes.

High values of the clustering coefficient are
usually a symptom of small world behavior. The
small world behavior of a network can be analyzed
by comparing it with an equivalent (in number
of vertices and edges) random network. When a
network has a diameter (or average distance among
vertices) similar to its random counterpart but,
at the same time, has a higher average clustering
coefficient, it is defined as a small world. It is well
known (Watts, 2003) that small world networks

are those optimizing the short and long term
information flow efficiency. Those networks are
also especially well adapted to solve the problem
of searching knowledge through their vertices.

Table 1 summarizes the various SNA param-
eters that have been presented in this section,
their meanings, and the information they provide.
These parameters, and their distributions and
correlations will characterize the corresponding
networks. From their study, a lot can be learned
about the underlying organization and structure
that those networks capture. An attempt to il-
lustrate this is found in the following sections

Table 1. Summary of the SNA parameters described in this article, their meaning and their interpreta-
tion

Parameter Meaning Interpretation

Degree of relationship Common activity among two entities
(measured in commits) How strong the relationship is

Cost of relationship Inverse of the degree of relationship Gives the cost of reaching one vertex from
the other

Degree Number of vertices connected to a
node Popularity of a vertex

Distribution degree Probability of a vertex having a given
degree

Topology of the network (Poisson or power
law distributions)

Weighted degree Degree considering weights of the links
among vertices

Maximum capacity to receive information
for a vertex. Effort in maintaining the
relationships

Clustering coefficient
Fraction of the total number of edges
that could exist for a given vertex that
really exist

Transitivity of a network: tendency of a vertex
to promote relationships among its neighbors.
Helps identifying hot spots of knowledge
interchange in dynamic networks

Weighted clustering
coefficient

Generalization of the clustering coefficient
concept to weighted networks

Local efficiency of the network around a
vertex. Redundancy of interactions around
a vertex

Distance centrality Measurement of the proximity of a vertex
to the rest

Gives the influence of a vertex in a graph. The
higher the value the easier it is for the vertex to
spread information through the network

B e t w e e n n e s s
centrality

Number of shortest paths traversing a
vertex

Measurement of the information control.
Higher values mean that the vertex is an
intermediate node for the communication of
the rest. Vertices with high values are known
to cover “structural holes”

Small world

Diameter (or average distance among
vertices) similar but higher average
clustering coefficient than random
network

Optimizes short and long term information
flow efficiency. Especially well adapted to
solve the problem of searching knowledge
through their vertices

 1891

Applying Social Network Analysis Techniques to Community-Driven Libre Software Projects

by studying several cases on real libre software
projects.

cASe StuDieS: ApAcHe, KDe,
AnD gnOme

Apache,5 KDE, and GNOME are all well known
libre software projects, large in size (each one
well above the million of lines of code), in which
several subprojects (modules) can be identified.
They have already been studied from several
points of view (Germán, 2004a; Koch & Sch-
neider, 2002; Mockus et al., 2002). Here, they
will be used to show some of the features of
our proposed methodology for applying SNA to
software projects.

The use of versioning systems is fortunately the
case for most large libre software projects. Some
approaches on how to gather information from ver-
sioning repositories, in particular CVS (Germán,
2004a; Germán & Hindle, 2006; Zimmermann
& Weißgerber, 2004; Zimmermann, Weißgerber,
Diehl & Zeller, 2005), have been presented, and
are used in this study. Therefore, focus is set on
what to do once that information is available, and
not on how to gather it.

Tables 2 and 3 summarize the main parameters
of both. In the case of commiter networks the
GNOME case has been omitted.

By comparing the data in both tables some
interesting conclusions can already be drawn. It
may be observed, for instance, that the average
number of commiters per module is greater in KDE
(12.5) than in Apache (4.3), meaning more people
being involved in the average KDE subproject. It
can also be highlighted that the average degree on
the commiters networks is in general larger than
in the modules ones. This is especially true for
KDE, which rises from a value of 21.4 in the latter
case to 225 in the former. In the case of Apache
it only raises from 14.2 to 31.1. Therefore, we
can conclude that in those cases, commiters are
much more linked than modules. The percentage
of modules linked gives an idea of the synergy
(in form of sharing information and experience)
in a network as many modules have commiters
in common. It can be assumed that this happens
because of the technical proximity between
modules. Regarding our case studies, KDE and
GNOME show percentages near 30%, while the
average Apache module is only linked to 8% of
the other modules in the versioning system. So,
Apache is specially fragmented in several module

P r o j e c t
name

M o d u l e s
(Vertices) Edges % of edges (avg)

Apache 175 2491 14.23 8.13

KDE 73 1560 21.37 29.27

GNOME 667 121,134 181.61 27.23

Table 2. Number of vertices and edges of the module networks in the Apache, GNOME, and KDE proj-
ects

Table 3. Number of vertices and edges of the commiter networks in the Apache and KDE projects

Project name Edges Commiters per
module

Avg Number of
edges

Apache 751 23,324 4.3 31.06

KDE 915 205,877 12.5 225.00

GNOME 869 N/A 1.3 N/A

1892

Applying Social Network Anaylsis Techniques to Community-Driven Libre Software Projects

families that have no commiters in common. KDE
and GNOME have a higher cohesion, while there
is more dispersion in Apache.

In the following sections some specific aspects
of all those networks will be studied, with the
idea of illustrating both how the methodology is
applied and which kind of results can be obtained
from it.

Degree in tHe mODuleS
netWOrK

Table 4 shows that the number of modules for
Apache (175), KDE (73), and GNOME (667)
differ significantly. These projects are similar in
software size (at least in order of magnitude), so
the number of modules depends mainly on the
various strategies that the projects follow when
creating a new module. KDE has a structured
CVS; applications that belong together are usually
grouped into one module (so, for instance, there
exists the kdenetwork module for many network
applications or the koffice module for the various
office suite programs). Apache has modules at
the application level. Finally, GNOME follows a
more chaotic approach, resulting in many more
modules. Almost every application, even compo-
nents (there are almost a dozen different GIMP
add-ons with their own module) can be found to
be a module in themselves.

The most popular characterization of network
degree is the distribution degree P(k), which
measures the probability of a given vertex hav-
ing exactly k edges. However, the representation
of P(k) in networks of a small size like ours is

usually messy.6 In these cases, the specialized
literature prefers to use an associated parameter
called the cumulative distribution degree, CP(k),
which is defined as CP(k) = ∑k

∞ P(i) and is usually
represented in a log-log scale.

Figure 1 shows the cumulative distribution
degree for our three networks. As it can be ob-
served, all of them present a sharp cut off, which is
a symptom of an exponential fall of the distribution
degree tail. From a practical point of view, this
means that none of our networks follow a power
law distribution. This is quite a remarkable find-
ing, because the specialized literature has shown
that most social networks present power laws for
this parameter. This implies that the growth of the
network does not follow the traditional random
preferential attachment law. Thus, it is difficult
to come to any conclusions at this point; maybe
by using a weighted network approach, as shown
later, we could infer more information about the
network topology.

Starting with the degree of the vertices, an
analysis of assorts of the networks can also be
carried out. The assorts measure the average de-
gree of neighbors of vertices having a particular
degree. For this reason it can also be called the
degree-degree distribution.

Figure 2a represents this parameter for our
networks. As can be observed, all three networks
are elitist, in the sense that vertices tend to con-
nect to other vertices having a similar degree
(“rich” with “rich” and “poor” with “poor”). This
is especially clear in the case of GNOME, where
the curve approaches a linear equation with slope
1. Apache project deviates slightly from that
behavior, showing some higher degree modules
connected to other modules of a lower degree.

The previous analysis assumes unweighted
networks. If weighted edges are considered
now, similar conclusions are obtained. Figure 2b
represents the cumulative weighted distribution
degree of the networks. Comparing this picture
with Figure 1, it may be remarked that the sharp
exponential cut-offs have disappeared. This is

Project name <d> / <rd> <cc> / <rcc>

Apache 2.06 / 1.47 0.73 / 0.19

KDE 1.31 / 1.11 0.88 / 0.65

GNOME 1.46 / 1.10 0.87 / 0.54

Table 4. Small world analysis for the module
networks

 1893

Applying Social Network Analysis Techniques to Community-Driven Libre Software Projects

Figure 1. Cumulative degree distribution for Apache (∇), KDE (+), and GNOME (⋅)

especially clear in the case of GNOME, where
the curve tail can be clearly approximated by a
power law. The interpretation for this finding is
that the growth of that network could be driven by
a preferential attachment law based on weighted
degrees. This means that the probability of a new
module to establish a link with a given vertex is
proportional to the weighted degree of that vertex.
That is, the commiters of new modules are, with
high probability, commiters of modules which
are well connected (have high weighted degree)
in the network. It should be noted that the use of
weights has given a more realistic picture.

From Figure 1, it can be remarked that the
sharp cut offs for Apache and KDE are close to
each other. This means that the maximum num-
bers of relationships in both projects are similar.
Nevertheless, observing Figure 2b, it can be seen
that the KDE tail is clearly over the Apache tail.
This fact implies that KDE weighted links are, on
average, stronger than those of Apache. This can
be quantitatively verified: we have calculated the
average edge weight for the three projects obtain-

ing 1,409.27 for Apache, 11,136.82 for KDE, and
7,661.18 for GNOME.

If multiplied, the average edge weight and the
number of modules, the figures obtained are the
total amount of commits performed by developers
that contribute to at least two modules: 105,695
for Apache, 812,988 for KDE, and 5,110,007 for
GNOME. This gives an idea of the modularity
of the modules as a lower number of commits is
indicative for developer work being more focused
on a low number of modules. While the figures for
Apache are not surprising (we have already noticed
with previous parameters that is a high level of
structure in the Apache project), the difference
between KDE and GNOME is astonishing. The
organization of the KDE CVS repository yields
in more independent modules than the ones found
in the one for GNOME.

1894

Applying Social Network Anaylsis Techniques to Community-Driven Libre Software Projects

Figure 2. Assortativity (degree - degree distribution) for Apache (), KDE (+) and GNOME (⋅). Cumula-
tive weighted degree distribution for Apache (∇), KDE (+) and GNOME (⋅)

(a) Assortativity

(b) Cumulative weighted degree

 1895

Applying Social Network Analysis Techniques to Community-Driven Libre Software Projects

cluStering cOefficient in tHe
mODuleS netWOrK

For the analysis of the clustering coefficient, we
have represented its distribution in Figure 3a.

In Table 4 the average distance <d> among
vertices are represented, together with the average
clustering coefficients <cc> for our three net-
works and their equivalent random counterparts
(<rd> is the random average distance and <rcc>
is the random average clustering coefficient). As
can be observed, the three networks satisfy the
small world condition, since their average dis-
tances are slightly above those of their random
counterparts; but the clustering coefficients are
clearly higher.

As can be observed, the average random
clustering coefficients for KDE and GNOME are
very close to the real ones, due to the high density
of those networks. This could be an indication
of over-redundancy in their links. That would
mean that the same efficiency of information
could be obtained with fewer relationships (i.e.,
eliminating many edges in the network without
significantly increasing the diameter or reduc-
ing the clustering coefficient). In this sense, the
Apache network seems to be more optimized. To
interpret this fact, the reader may remember that
links in this network are related to the existence
of common developers for the linked modules.
It should be noted that redundancy is probably
a good characteristic of a libre software project
as it may lose many developers without being
affected heavily. It may be especially interesting
to have over-redundancy in projects with many
volunteers, as in those environments, turnover
may be high. Future research should focus on
investigating whether over-redundancy is a good
or bad parameter in the case of libre software
projects. On the other side, how much of this
redundancy is due to the taking of a static pic-
ture of the project should be researched; it may
well be that the redundancy we have observed is
the result of different generations of developers

working on the same file in different periods
of time.

Some interesting conclusions can also be
obtained by looking at the weighted clustering
coefficient. In Figure 3b we can observe the aver-
age weighted clustering coefficient as a function
of the degree of vertices (the weighted degree-
degree distribution). As we have already noticed,
the KDE and GNOME networks have a similar
local redundancy, which is higher than the one of
Apache. High redundancy implies more fluid in-
formation exchanges in the short distances for the
first two projects. Besides, the weighted clustering
coefficient lowers with the degree in all cases,
according to a power law function. We can infer
that highly connected vertices cannot maintain
their neighbors as closely related as poorly con-
nected ones. This happens typically in most social
networks because the cost of maintaining close
relationships in small groups is much lower than
the equivalent cost for large neighborhoods.

DiStAnce centrAlity in tHe
mODuleS netWOrK

The analysis of the distance centrality of vertices
is relevant because this parameter measures how
close a vertex is to the rest of the network. In
Figure 4a, the distance centrality distribution for
our three networks can be observed. They follow
multiple power laws, making higher values of the
parameter most probable. This is an indication of
well structured networks for the fast spread of
knowledge and information.

We can also analyze the average distance
centrality as a function of the degree (average
distance centrality-degree distribution), which is
shown if Figure 4b. It can be observed that in all
three cases the average distance centrality grows
with the degree following, approximately, a power
law of low exponent. This means that, in terms of
distance centrality, the networks are quite demo-
cratic, because there is not a clear advantage of

1896

Applying Social Network Anaylsis Techniques to Community-Driven Libre Software Projects

Figure 3. Clustering coefficient distribution for Apache (∇), KDE (+) and GNOME (⋅). Average
weighted clustering coefficient as a function of the degree of vertices for Apache (∇), KDE (+) and
GNOME (.)

(a) Clustering coefficient distribution

(b) Average weighted clustering coefficient

 1897

Applying Social Network Analysis Techniques to Community-Driven Libre Software Projects

Figure 4. Distance centrality distribution for Apache (∇), KDE (+), and GNOME (⋅); Average distance
centrality as a function of the degree of vertices for Apache (∇), KDE (+), and GNOME (⋅)

(a) Distance centrality distribution

(b) Average distance centrality

1898

Applying Social Network Anaylsis Techniques to Community-Driven Libre Software Projects

well connected nodes compared to the rest. Curi-
ously enough, the Apache and GNOME curves
are quite similar, while the KDE one is clearly an
order of magnitude over the rest. This could be
an effect of the lower size of this network, but is
also an indication of an especially well structured
network in terms of information spread. So, even
if KDE showed to be more modular as has been
seen for a previous parameter, its structure seems
to maximize information flow.

BetWeenneSS centrAlity in
tHe mODuleS netWOrK

The distance centrality of a vertex indicates how
well new knowledge created in a vertex spreads
to the rest of the network. On the other hand,
betweenness centrality is a measurement of how
easy it is for a vertex to generate this new infor-
mation. Vertices with high betweenness central-
ity indexes are the crossroads of organizations,
where information from different origins can be
intercepted, analyzed, or manipulated. In Figure
5a, the betweenness centrality distribution for
our three networks can be observed. In the same
way, this was the case for distance centrality, as it
grows following a multiple power law. Neverthe-
less, there is a significant difference between the
distributions of these two parameters. Although
the log-log scale of the axis of Figure 5a does not
allow visualizing it, the most probable value of
the betweenness centrality in all three networks
is zero. Just to show an example, only 102 out
of 677 vertices of the GNOME network have a
nonzero betweenness centrality. So, the distance
centrality is a common good of all members of
the network, while the betweenness centrality is
owned by reduced elite. This should not be sur-
prising at all, as projects usually have modules
(i.e., applications) which have a more central
position and attract more development attention.
Surrounding these modules, other minor modules
may appear.

This fact can also be visualized in Figure 5b,
where we represent the average betweenness
centrality as a function of the degree. It can be
clearly seen that only vertices of high degree have
nonzero betweenness centralities.

cOmmiter netWOrKS

The analysis of commiter networks draw similar
conclusions to those shown for module networks,
and therefore they are not going to be commented
on in detail. For instance, the cumulative degree
distribution for the two commiter networks is
shown in Figure 6a, which has clearly the same
qualitative properties than for this parameter for
the module networks shown in Figure 1. The same
holds true for the commiter cumulative weighted
degree distribution depicted in Figure 6b, or for the
average degree as a function of degree, depicted
in Figure 7a, where it can be noticed how both
networks maintain the elitist characteristic also
observed in the case of modules.

An interesting feature of commiter networks
can be seen in Figure 7b. The average weighted
degree of authors remains more or less constant
for low values of the degree. Nevertheless, in the
case of KDE, it increases meaningfully for the
highest degrees. The implication is that commiters
with higher degrees not only have more relation-
ships than the rest, but also their relationships are
much stronger than the average. This indicates
that authors having higher degrees are more in-
volved in the project development and establish
stronger links than the rest. At the same time, as
we observed in Figure 7a, they only relate to other
commiters that are involved in the project to the
same degree as they are. If this behavior is found
in other large libre software projects, it could be a
valid method to identify the leading “core” group
of a libre software project. On the other hand, the
Apache project seems to promote a single category
of developers, given that the weighted degree does
not depend so clearly on the degree of vertices. It

 1899

Applying Social Network Analysis Techniques to Community-Driven Libre Software Projects

Figure 5. Betweenness centrality distribution for Apache (∇), KDE (+) and GNOME (⋅). Average be-
tweenness centrality distribution for Apache (∇), KDE (+) and GNOME (⋅)

(a) Betweenness centrality distribution

(b) Average betweenness centrality distribution

1900

Applying Social Network Anaylsis Techniques to Community-Driven Libre Software Projects

Figure 6. Cumulative degree distribution for Apache (∇) and KDE (+); Cumulative weighted degree
distribution for Apache (∇) and KDE (+)

(a) Cumulative degree distribution

(b) Cumulative weighted degree distribution

 1901

Applying Social Network Analysis Techniques to Community-Driven Libre Software Projects

Figure 7. Degree - degree distribution for Apache (∇) and KDE (+); Average weighted degree as a
function of the degree for Apache (∇) and KDE (+)

(a) Degree - degree distribution

(b) Average weighted degree as a function of degree

1902

Applying Social Network Anaylsis Techniques to Community-Driven Libre Software Projects

may be also that because of the fragmentation of
the Apache project in many families of modules,
it is easy to developers to reach a point where
they do not have the possibility to get to know
more developers.

Table 5 digs into the small-world properties
of commiter networks. As we can observe, both
networks can still considered to be small world.
The Apache case is especially interesting, because
an increase in the average distance is observed.
This characteristic plus the large value of the clus-
tering coefficient may indicate that the network
is forming cliques.

cOncluSiOnS, leSSOnS
leArneD, AnD furtHer WOrK

In this article an approach to the study of libre
(free, open source) software projects has been
presented, based on the quantitative and quali-
tative application of social networks analysis to
the data retrieved from source code management
repositories. Since most libre software projects
maintain such repositories, and allow for public
read-only access to them, this analysis can be
repeated for many of them. However, given its
characteristics, it will be most useful for large
projects, well above the hundreds of thousands
of lines of code and dozens of developers.

We have designed a detailed methodology
which applies this SNA-based approach to the
study of CVS data, and which can be automated.
It starts by downloading the required information
from CVS, and produces as an output several
graphs and tables which can be interpreted to gain

knowledge about the informal organization of the
studied project. It is important to highlight a set
of parameters in the output that are suitable for
characterizing several aspects of the organization
of the studied project, which makes it possible to
gain a lot of insight on how a group of developers
is managing coordination and information flow
within the project. In addition, it has been shown
that the introduction of weights in the relation-
ships gives more realistic information about the
projects under study.

It has also been shown how our methodology
is applied to some important and well known
projects: KDE, Apache, and GNOME. Although
these studies are sketched just as case examples,
some relevant results can also be extracted from
them. For instance, it has been shown how all
the networks that have been studied fulfill the
requirements to be a small world. This has im-
portant consequences on their characterization,
since small worlds have been comprehensively
studied and are well understood in many respects.
We have also not only found that the growth of
the studied networks cannot be explained by ran-
dom preference attachment (something that could
be previously suspected). Moreover, it matches
pretty well the pattern of preference attachment
related to the weight (amount of shared effort) of
links. Some other relevant results are the elitist
behavior found in these projects with respect to
the connectivity of modules and developers, which
are indicators of an over-redundancy of links, and
of a good structure for the flow of knowledge,
and the absence of centers of power (in terms of
information flux). All of these conclusions should
be validated by studying more projects, and by
analyzing with detail their microimplications be-
fore being raised to the category of characteristics
of libre software projects, but that so far are good
lines of further research.

There are some other studies applying simi-
lar techniques to libre software projects. For
instance, Crowston and Howison (2003) sug-
gests that large projects are more modular than

Project name <d> / <rd> <cc> / <rcc>

Apache 2.18 / 1.60 0.84 / 0.08

KDE 1.47 / 1.10 0.86 / 0.52

Table 5. Small world analysis for commiter net-
works

 1903

Applying Social Network Analysis Techniques to Community-Driven Libre Software Projects

small ones. However, to our knowledge the kind
of comprehensive analysis shown in this article
has never been proposed as a methodology for
characterizing libre software projects and their
coordination structure. In fact, after using it in
the study of some projects, we believe that it has a
great potential to explore informal organizational
patterns, and uncovering nonobvious relationships
and characteristics of their underlying structure
of coordination.

referenceS

Albert, R., & Barabasi, A.-L. (2002). Statistical
mechanics of complex networks. Reviews of
Modern Physics, 74, 47–97.

Albert, R., Barabási, A.-L., Jeong, H., & Bianconi,
G. (2000). Power-law distribution of the World
Wide Web. Science, 287.

Anthonisse, J. (1971). The rush in a directed graph
(Tech. Rep.). Amsterdam: Stichting Mathemas-
tisch Centrum.

Conway, M. (1968). How do committees invent?
Datamation, 14(4), 28–31.

Crowston, K., & Howison, J. (2003). The social
structure of open source software development
teams. In Proceedings of the ICIS.

Crowston, K., Scozzi, B., & Buonocore, S. (2003).
An explorative study of open source software
development structure. In Proceedings of the
ECIS, Naples, Italy.

Dinh-Trong, T.T., & Bieman, J.M. (2005). The
FreeBSD project: A replication case study of
open source development. IEEE Transactions on
Software Engineering, 31(6), 481–494.

Elliott, M., & Scacchi, W. (2004). Mobilization of
software developers: The free software movement
(Tech. Rep.). Retrieved June 16, 2006, from http://
opensource.mit.edu/papers/elliottscacchi2.pdf

Freeman, C. (1977). A set of measures of centrality
based on betweenness. Sociometry, 40, 35-41.

Fuggetta, A. (2003). Open source software: An
evaluation. Journal of Systems and Software,
66(1), 77–90.

Germán, D. (2004a). An empirical study of fine-
grained software modifications. In International
Conference in Software Maintenance.

Germán, D. (2004b). Decentralized open source
global software development, the GNOME experi-
ence. Journal of Software Process: Improvement
and Practice, 8(4), 201-215.

Germán, D.M., & Hindle, A. (2006). Visualiz-
ing the evolution of software using softChange.
Journal of Software Engineering and Knowledge
Engineering, 16(1), 5-21.

Ghosh, R.A., & Prakash, V.V. (2000). The Orbiten
free software survey. 5(7). Retrieved from http://
www.orbiten.org/ofss/01.html

Gîrba, T., Kuhn, A., Seeberger, M., & Ducasse, S.
(2005). How developers drive software evolution.
In Proceedings of the International Workshop on
Principles in Software Evolution (pp. 113–122),
Lisbon, Portugal.

Godfrey, M.W., & Tu, Q. (2000). Evolution in open
source software: A case study. In Proceedings of
the International Conference on Software Main-
tenance (pp. 131–142), San Jose, California.

González-Barahona, J.M., López-Fernández, L.,
& Robles, G. (2004). Community structure of
modules in the Apache project. In Proceedings of
the 4th Workshop on Open Source Software.

Guimera, R., Danon, L., Diaz-Guilera, A., Giralt,
F., & Arenas, A. (2003). Self-similar community
structure in a network of human interactions.
Physical Review E 68, 065103(R).

Healy, K., & Schussman, A. (2003). The ecology
of open-source software development. (Tech.
Rep.). University of Arizona.

1904

Applying Social Network Anaylsis Techniques to Community-Driven Libre Software Projects

Koch, S., & Schneider, G. (2002). Effort, coopera-
tion and coordination in an open source software
project: GNOME. Information Systems Journal,
12(1), 27–42.

Krishnamurthy, S. (2002). Cave or community?
An empirical investigation of 100 mature open
source projects. First Monday, 7(6).

Kumar, R., Raghavan, P., Rajagopalan, S., & Tom-
kins, A. (2002). The Web and social networks. IEEE
Computer, 35(11), 32–36.

Latora, V., & Marchiori, M. (2003). Economic
small-world behavior in weighted networks. Euro
Physics Journal, B32, 249-263.

Lopez, L., Gonzalez-Barahona, J.M., & Robles,
G. (2004). Applying social network analysis to the
information in cvs repositories. In Proceedings of
the International Workshop on Mining Software
Repositories, 26th International Conference on
Software Engineering, Edinburg, Scotland.

Madey, G., Freeh, V., & Tynan, R. (2002). The open
source development phenomenon: An analysis
based on social network theory. In Proceedings of
the Americas Conference on Information Systems
(AMCIS2002) (pp. 1806–1813), Dallas, Texas.

Mockus, A., Fielding, R.T., & Herbsleb, J.D.
(2002). Two case studies of open source software
development: Apache and Mozilla. ACM Transac-
tions on Software Engineering and Methodology,
11(3), 309–346.

Newman, M.E.J. (2001a). Scientific collaboration
networks: I. Network construction and fundamen-
tal results. Physical Review, E64, 016131.

Newman, M.E.J. (2001b). Scientific collaboration
networks: Ii. Shortest paths, weighted networks,
and centrality. Physical Review, E64, 016132.

Raymond, E.S. (1997). The cathedral and the
bazar. First Monday, 3(3).

Robles, G., Amor, J.J., Gonzalez-Barahona, J.M.,
& Herraiz, I. (2005a). Evolution and growth in

large libre software projects. In Proceedings of the
International Workshop on Principles in Software
Evolution (pp. 165–174), Lisbon, Portugal.

Robles, G., González-Barahona, J.M., & Mi-
chlmayr, M. (2005b). Evolution of volunteer
participation in libre software projects: Evidence
from Debian. In Proceedings of the 1st Interna-
tional Conference on Open Source Systems (pp.
100–107), Genoa, Italy.

Robles, G., Koch, S., & Gonzalez-Barahona, J.M.
(2004). Remote analysis and measurement of libre
software systems by means of the cvsanaly tool.
In Proceedings of the 2nd ICSE Workshop on
Remote Analysis and Measurement of Software
Systems (RAMSS), 26th International Conference
on Software Engineering, Edinburg, Scotland.

Sabidussi, G. (1996). The centrality index of a
graph. Psychometrika, 31, 581-606.

Wagstrom, P.A., Herbsleb, J.D., & Carley, K.
(2005). A social network approach to free/open
source software simulation. In Proceedings of
the 1st International Conference on Open Source
Systems (pp. 100–107), Genoa, Italy.

Watts, D.J. (2003). Six degrees. New York: W.W.
Norton & Company.

Watts, D.J., & Strogatz, S. (1998). Collective
dynamics of small-world networks. Nature, 393,
440-442.

Xu, J., Gao, Y., Christley, S., & Madey, G. (2005).
A topological analysis of the open source software
development community. In Proceedings of the
38th Hawaii International Conference on System
Sciences, Hawaii.

Zimmermann, T., & Weißgerber, P. (2004). Pro-
cessing CVS data for fine-grained analysis. In
Proceedings of the International Workshop on
Mining Software Repositories (pp. 2–6), Edin-
burg, Scotland.

 1905

Applying Social Network Analysis Techniques to Community-Driven Libre Software Projects

Zimmermann, T., Weißgerber, P., Diehl, S., &
Zeller, A. (2005). Mining version histories to
guide software changes. IEEE Transactions on
Software Engineering, 31(6), 429–445.

enDnOteS
* This work has been funded in part by the

European Commission, under the CALIBRE
CA, IST program, contract number 004337.
Israel Herraiz has been funded in part by
Consejeria de Educación of Comunidad de
Madrid and European Social Fund under
grant number 01/FPI/0582/2005.

1 In this paper the term “libre software” will
be used to refer to any software licensed
under terms that are compliant with the
definition of “free software” by the Free
Software Foundation, and the definition of
“open source software” by the Open Source
Initiative, thus avoiding the controversy
between those two terms.

2 Concurrent Version System (CVS) is the
source code management (also known as ver-
sioning) system used in most libre software
projects, although lately a new generation
of tools, including for instance Subversion,
are gaining popularity. In those projects, the
CVS repository is usually freely readable
over the Internet.

3 A Pareto distribution is known to be given
when the 20% most active is responsible for
80% of the output.

4 For downloading this information we
have used the CVSAnalY tool described
in Robles, Koch, and Gonzalez-Barahona
(2004).

5 Throughout this article, references to Apache
cover all projects lead by the Apache Founda-
tion and not just the HTTPd server, usually
known as the Apache Web server.

6 Social network analysis has been applied
to networks with hundreds of thousands,
sometimes millions of vertices. In this sense,
our network is of a small size even if we are
handling large libre software projects.

This work was previously published in International Journal of Information Technology and Web Engineering, Vol. 1, Issue 3,
edited by E. Damiani; and G. Succi, pp. 27-48, copyright 2006 by IGI Publishing (an imprint of IGI Global).

1906

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.7
Open Source Software

Business Models and Customer
Involvement Economics

Christoph Schlueter Langdon
Center for Telecom Management, University of Southern California, USA

Alexander Hars
Inventivio GmbH, Bayreuth, Germany

ABStrAct

This chapter is focused on the business economics
of open source. From a strategic perspective, open
source falls into a category of business models
that generate advantages based on customer and
user involvement (CUI). While open source has
been a novel strategy in the software business,
CUI-based strategies have been used elsewhere
before. Since the success of e-commerce and e-
business, CUI-based strategies have become far
more prevalent for at least two reasons: Firstly,
advances in information technology and systems
have improved feasibility of implementation of
CUI strategies and secondly, CUI-based econom-
ics appear to have often become a requirement
for e-business profitability. This chapter pres-
ents a review of CUI-based competition, clearly
delineates CUI antecedents and business value
consequences, and concludes with a synopsis of
managerial implications and a specific focus on
open source.

IntroductIon

Open source software applications and source code
are developed cooperatively in an Internet-based
peer-to-peer network or community of programmers
(Hars, 2002). Some call the open source development
process, therefore, also as peer-to-peer production
(Wikipedia.org, 2006). The open source model
has caught the attention of business strategists and
financial analysts (and executives and shareholders
of software firms), because open source developers
devolve most property rights to the public, including
the right to use, redistribute and modify the software
free of charge. Some industry observers argue that
this approach will emerge as the prevalent way to
design and write software; others have been more
cautious seeing open source as a niche model (Hars
& Ou, 2001; The Economist, 2006).

Open source is new and old at the same time.
It is a new concept in the software industry. How-
ever, the attractiveness of open source is rooted
in mechanisms and economics that have fueled

 1907

Open Source Software Business Models and Customer Involvement Economics

business success in many other areas before. From
a business strategy perspective open source fits
into a broader category of business models based
on customer and user involvement (CUI) that can
provide superior economics.

A very visible example of this category of
business models is Ikea, the Swedish furniture
maker and retailer. Among consumers Ikea is
known for its stylish yet affordable furniture.
Among some business strategists and researchers
Ikea is a prominent example of the economics of
customer involvement, which has emerged as a
key source of competitive advantage, particularly
in the e-commerce area. Broadly speaking cus-
tomer or user involvement describes a strategy
that emphasizes engaging customers and user in
business operations.

BAcKgrOunD

“ikea economics”

In the case of the Swedish furniture maker and
retailer, Ikea, customer involvement is integral to
doing business and creating economic advantage.
Ikea customers are involved in business opera-
tions in that they pick their purchase off the Ikea
warehouse shelf, drive it home and assemble it
themselves.

Figure 1 depicts a two-tier industry system
following Porter’s value chain schematic (Porter,
1985). A product has to be developed, made, dis-
tributed, sold, and delivered. In the case of Ikea
outbound logistics or delivery and final assembly
are “outsourced” to the customer (see Figure 1).
This saves Ikea cost compared to the competition
that sells assembled pieces, which are bulky and,
therefore, have to be home delivered. Furthermore,
because Ikea furniture is assembled at the final
destination, a customer’s home, products can be
shipped in flat boxes without negative space, which
further saves handling and storage cost throughout
the entire supply chain and channel system. But

the advantage of customer involvement doesn’t
stop here with merely lower cost. Customer in-
volvement economics can be an enabler of other
economic advantages. In the Ikea example, the
cost advantage due to customer involvement is
used or leveraged by splitting savings with the
customer, effectively lowering product prices,
often below the price of the competition. The lower
sticker price makes stylish design affordable for
a larger market, which increasing Ikeas market
potential. This larger footprint, in turn, allows
Ikea to benefit from another economic advantage,
the one that has been the main economic engine
of mass production, namely scale economies.
In other words, at Ikea customer involvement
has worked as a starter to ignite an economies
of scale engine. This combination of customer
involvement economics and scale economies have
helped Ikea become the world’s largest furniture
maker and retailer with 221 stores in 34 countries
as of Spring 2006 (http://franchisor.ikea.com,
3/31/06). It also turned its founder, Ingvar Kam-
prad, into a multi-billionaire. Forbes magazine
recently estimated Mr. Kamprad’s fortune at $28

Figure 1. Open source and Ikea: Two examples
of customer and user involvement

product
Development,

production

product
Development,

production
Distribution,

Delivery
Distribution,

Delivery

ikea
• Outbound logistics

- Customers take
purchase home

- Products are packed
in flat boxes, which
saves handling and
storage cost

• Final product assembly

Open Source
• Systems requirements

specification
• Systems architecture

design
• Code generation
• Versioning, testing and

debugging
• Maintenance, updates

industry Value System
and customer & user involvement

1908

Open Source Software Business Models and Customer Involvement Economics

billion—trailing only Microsoft co-founder Bill
Gates, U.S. investor Warren Buffett and Mexican
industrialist Carlos Slim (Forbes, 2006).

theory of customer and
user involvement (cui)

The literature defines customer involvement as
the extent to which a customer is engaged as a
participant in business operations, specifically in
service production and delivery, including, for
example, order processing and account manage-
ment (Schlueter Langdon, 2003a, 2006). A first
research construct has been developed and inte-
grated into a broader theoretic model (see Figure
2; Schlueter Langdon, 2003a, 2006).

The customer involvement construct and its
definition are rooted in several streams in the
literature: “customer integration” and “customer
relationship management” in marketing, “co-pro-
duction” and “service encounter management” in
service operations research, and “citizen partici-
pation” in the public policy literature.

In 1980, Whitaker introduced the notion of
“co-production” in public service delivery in the
field of public policy management (1980). At the
same time Hakansson appears to have introduced
the notion of a “customer integration strategy”

within the context of marketing strategies in in-
dustrial markets, defining it as the ability to adapt
to specific customer needs to increase business
benefits (Hakansson, 1980, p. 370).

Brown, Raymond, and Bitner (1994) have first
explicitly used the phrase “customer involvement”
in their categorization of research on service en-
counters. Brown et al. divided research on service
encounters into three primary types, the second
of which is focused “on customer involvement
in service encounters and the customer’s role in
service production and delivery” (1994, p. 34).
Chase (1978) first discussed a customer’s role in
the service delivery process. This perspective has
been expanded in the service operations literature
to also consider the customer as a partial employee
(Czepiel, 1990; Bowen, 1986; Kelley, Donnelly,
& Skinner, 1990; Mills & Moberg, 1982; Mills
& Morris, 1986).

In the marketing literature Sheth and Parvati-
yar posited that “relationship marketing attempts
to involve and integrate customers, suppliers, and
other infrastructural partners into a firm’s develop-
ment and marketing activities. Such involvement
results in close interactive relationships with […]
customers […]” (Sheth & Parvatiyar, 1995, p.
399). Furthermore, “consumers are increasingly
becoming co-producers. […] In many instances,

Figure 2. Theoretic customer and user involvement model

AntecedentsAntecedents customer/user
involvement

customer/user
involvement Business ValueBusiness Value

competitive
environment
competitive
environment

Organizational
context

Organizational
context

• Technology
• Operational and

management processes
• Customer/user behavior
• …

• Higher productivity
• Better product fit
• Higher customer

satisfaction
• Higher loyalty
• …

 1909

Open Source Software Business Models and Customer Involvement Economics

market participants jointly participate in design,
development, production, and consumption of
goods and services” (Sheth & Parvatiyar, 1995,
p. 413). Gruen, Summers, and Acito (2000, p. 36)
called this phenomenon “co-production.”

The notion of customer integration is presented
in the marketing literature as an extension of
manufacturer-distributor relationships (Ander-
sen & Narus, 1984, 1990). The theory base that
underlies the marketing literature on manufac-
turer-distributor relationships and, therefore, the
argument that customer involvement can enhance
business value (see Figure 2) is a synthesis of ex-
change theory (Kelley & Thibaut, 1978; Thibaut
& Kelley, 1959) and transaction cost economics
(Williamson, 1975, 1985). Exchange theory states
that parties transfer resources in relationships
to enhance self-interest, while transaction cost
economics reveals conditions under which certain
organizational choices can maximize self-interest
in the exchange relationship.

Specifically, the literature points to several
consumer and seller benefits from tight customer
integration. Lovelock and Young (1979) discussed
the customer as source for increasing a service
firm’s productivity. Sheth and Parvatiyar (1995)
indicate that consumers benefit from products and
services that suit their needs better and sellers
from higher customer satisfaction. Higher cus-
tomer satisfaction in turn is positively related with
customer loyalty and market share (Anderson,
Fornell, & Lehmann, 1994; Anderson, Fornell,
& Rust, 1997).

mAin fOcuS Of tHe cHApter

customer and user involvement and
Business Value categories

Since the success of the Internet in business, CUI-
based strategies have become more prevalent.
For one, advances in information technology and
many open standards have increased informa-

tion systems capabilities at lower cost to make
CUI-based strategies feasible. For another, CUI
economics are often required in the first place in
order to make e-business operations profitable,
because in electronic commerce companies have
become expected to do more for less.

Analysis based on industrial organization
theory clearly highlights this more-for-less di-
lemma. Tracking value chain activities, such as
product search, reveals that the Internet-enabled
change in the interaction between a consumer
(demand side) and vendor (supply side) has led
to an extension of the traditional value system
(Schlueter Langdon & Shaw, 2000, 2002). In
electronic commerce vendors are often doing more
than in traditional commerce. Online vendors are
supporting activities, which consumers have to
perform manually in traditional channel systems.
For example, instead of driving to multiple stores,
walking up and down the aisles to search for a
product and find a low price, shoppers can enter
key words and at the push of a button, they can
evaluate competing price quotes. Doing more is
costly as online sellers resort to “softwarization,”
the wholesale automation of business transactions
and processes using information systems (Schlu-
eter Langdon, 2003b, 2003c). While labor cost
may be saved, online vendors have to invest in the
design, building and implementation of sophis-
ticated information systems, and they continue
to spend money on operations, maintenance and
updates. The cost of selling goods online may be
cheaper but consumers also expect lower sticker
prices online. In order to turn a profit, online
vendors often rely on CUI economics. Table 1
provides a systematic overview of major, generic
CUI business value categories.

High customer involvement may allow for
mass-customization of products and services
using customer data or user profiles, which, in
turn, may facilitate both—lower cost and higher
revenue. To take a real-world example, Dell can
leave customization of products (e.g., choice of
microprocessor) and product bundling (e.g., PC

1910

Open Source Software Business Models and Customer Involvement Economics

with ink jet or laser printer) to individual prefer-
ences, which can increase up-/cross-selling op-
portunities and customer satisfaction (see Table
1). At the same time Dell can save inventory
cost and write-offs, because customers trigger
of manufacturing and assembly activities (see
Table 1). Instead of Dell pushing products into the
market, customers are pulling the product through
the system, turning a made to stock system into
a made-to-order flow.

CUI is not limited to specific industries, such
as consumer products (Ikea and Dell). The auto
industry has discovered CUI economics as a
source of business advantage. For example, BMW,
the German maker of luxury cars, has designed
information systems so that European buyers can
custom-design their own cars with any change
possible until five days before production. As a
result, 80% of European BMW buyers custom-
design their vehicles and most last minute changes
of orders are reportedly upgrades to bigger en-
gines and more luxurious interiors, which tend
to be more lucrative for the firm (Business Week,
2003). Another CUI example in the auto indus-

try is the emerging area of vehicle relationship
management (VRM). Automakers have begun to
install black boxes into vehicles that often work
similar to flight tracking devices in airplanes. The
box is valuable in two ways. Firstly, it provides
vehicle usage data, which is a function of vehicle
model, the driver and its environment. Secondly,
it provides a new, interactive channel system with
every customer. The data and the channel can be
exploited to better manage customer and vehicle
relationships, hence VRM. Vehicle usage data can
be exploited for diagnostics purposes to improve
uptime. The new channel can be used to interact
with customers to improve buyer satisfaction and
loyalty. All it takes to unlock the value is user
participation.

In the software industry open source software
has emerged as an important implementation of
CUI economics. Many applications are created by
an open source community. Figure 1 illustrates
that all essential software development activities
of requirements specification, architecture design,
code generation, debugging and testing as well

Cost Revenue

Customer or user operates business process activities

• Company saves employee time and expense
• Likely higher fixed cost for IS that can be

operated by many customers instead of a few
employees only

• Goods can be purchased anytime and from
anywhere
-> Higher quality, better product fit
-> Better customer data

Higher quality, better fit

• Less inventory in entire channel system
• Less slow moving and obsolete items
• Less discounts

• Customer likes the feeling of being in control
-> Higher customer satisfaction

• Monopolistic competition pricing opportunities

Higher customer satisfaction

• Lower churn saves customer acquisition cost
• Positive word of mouth may save marketing

expenses

• Higher loyalty
• Higher lifetime customer value

Better customer data or “profiles” (behavior, wants and needs)

• Data mining improves accuracy of targeting
customers and saves marketing and sales cost

• Lower marketing research cost

• Up-selling opportunities
• Better next generation product
• User lock-in and higher switching cost

Table 1. Major, generic CUI business value categories

 1911

Open Source Software Business Models and Customer Involvement Economics

as ongoing maintenance are left to a community
of users.

future trenDS

Discussion and managerial
implications

In open source software advantages accrue along
all three major dimensions of business perfor-
mance: cost, time and quality. Figure 3 reveals
how an average IT implementation project using
open source software compares with a project
that is being built traditionally. Results are based
on a convenience sample of expert assessments.
The business value parameters have been defined
at a very high level: cost measures project cost
including maintenance, time measures initial
implementation as well as downstream modifica-
tions, and quality rates the degree of excellence
and customer satisfaction.

In terms of cost, open source saves at least the
profit or profit margin associated with a brand
name product, brand name systems integration
service and brand name maintenance contract.
(The software business “has an exceedingly high

gross [profit] margin of 90%, […] a net profit
margin of 27%. This shows that its marketing
and administration costs are very high, while its
cost of sales and operating costs are relatively
low (McClure, 2004).)

Open source can save time, because documen-
tation is public and exposed to public scrutiny,
just like the source code itself (Hars, 2002).
Furthermore, customer support is not limited to a
vendor’s office hours or a particular maintenance
subscription level but open source documenta-
tion and expertise tends to be available online
and anytime.

Quality can be better, firstly, because of trans-
parency of the process and secondly, because of
transparency of qualification and achievements
of contributors (Hars, 2002). This mirrors a
key lesson of a free market system, namely that
transparency tends to increase buyer value. Also,
problems are fixed when a problem exceeds users’
willingness to cope and not when decided by a
vendor’s corporate strategy or business policy.

Figure 3 summarizes the assessment of our
convenience sample of experts, which includes
senior developers and architects, and information
technology executives of Fortune 500 compa-
nies (chief information officers, CIOs, and vice
presidents).

Figure 3 compares an open source implemen-
tation with a traditional, branded solution along
the aforementioned and defined business value
categories of cost, time and quality. Results reflect
a consensus among our experts that open source
software beats a traditional solution in any cat-
egory. The extent of this advantage can vary. First,
there is variability within each category. Consider
cost: some experts see an OSS implementation at
50% of the cost of a traditional solution. Others
see it more at 75%. Second, there is variability
across business value dimensions. Higher qual-
ity appears to be the most significant advantage,
followed by lower cost.

By nature, a high level comparison, such as
the one presented in Figure 3, is constrained and

Figure 3. CUI business value assessment: The
open source example

100%

50%

Traditional

Open Source

cost time Quality

200%

1912

Open Source Software Business Models and Customer Involvement Economics

implications are limited. First, this comparison
is limited to an implementation that utilizes open
source software instead of a commercial package
(e.g., installing, configuring, integrating, testing,
and maintenance). It does not include the writ-
ing of application source code. Furthermore, the
comparison is focused on situations in which open
source is a true alternative. Second, the business
value parameters—cost, time, and quality—can
be interdependent and, therefore, difficult to iso-
late. For example, in order to speed up a project
the quality of the code may be compromised;
to save money less qualified engineers are used
who need more time to write the code, and so on.
Expert interviews were conducted in a way that
such effect would be additive to the assessments
presented in Figure 3. Third, an average project
is considered and, therefore, results aim to reflect
a central tendency, which is useful as a guideline
but it obscures the variance in size and complex-
ity of information systems projects. Furthermore,
the distribution may be skewed and in this case
average values can be easily misinterpreted.

It is understood that a specific evaluation would
require a dedicated analysis in order to properly
compare alternatives quantitatively. In order to
conduct such analysis, a multi-step approach
would have to be devised. Figure 4 depicts an

exemplary business intelligence analytics sche-
matic derived from research theory (Schlueter
Langdon, 2005, 2007).

Central to any business value assessment—and
open source is no exception—is the identification
of a causal model that underlies everything that
follows (see Figure 4, phase two: qualitative as-
sessment -> conceptual model). A causal model
represents the most relevant variables and a set
of logical relationships between them. It prevents
confusing cause and consequences. The business
practice of jumping straight into a spreadsheet
to calculate a conclusion is a common mistake.
No patient would accept treatment without prior
diagnosis. By the same token, any reliable and
robust business value assessment requires careful
separation of independent and dependent vari-
ables as well as moderating effects grounded in
theory and best practice. While medical doctors
are trained extensively to administer diagnosis-
based treatment many managers jump straight to
actions, often based on gut instinct only. If key
variables and cause-result relationships cannot
be clearly identified and delineated on a single
sheet of paper then it is not plausible that jump-
ing to some spreadsheet-based calculation would
suddenly solve the problem.

Figure 4. Business model evaluation method

• Review of
scenarios

• Identification of
questions

• Examination of
data

Business
Scenarios

• Strategic
analysis

• Understanding
causalities:
independent/
dependent
variables,
mediating/
moderating
effects

Qualitative
Assessment

Quantitative
estimation

System
construction
=> Computational

model

=> Conceptual
model

© 2005-06 Pacific Coast Research Inc.

rollout

Formal modeling
=> Formal model

Experimental
strategy and
laboratory
experiments
=> Estimates

• Dashboard
construction

• Data integration/
warehouse

=> Descriptive
analysis

=> Decision
support system

 1913

Open Source Software Business Models and Customer Involvement Economics

At the conceptual modeling stage for assessing
CUI benefits it is important to:

• Understand under which circumstances
customer involvement can create benefits:

	 What are specific customer involvement
antecedents?

	 What are key moderating effects (see
Figure 2)?

	 Avoid reinventing the wheel and instead
use existing theory, best practice and
literature in information systems, man-
agement and marketing, for example.

• Understand how to leverage CUI econom-
ics:

	 Can CUI be leveraged to generate other
advantages (see Table 1)?

	 Would it take partners to increase ad-
vantages?

• Understand how an incumbent business
model may become vulnerable to CUI-based
competition from either old rivals or new
entrants or both.

Once a model has been designed it can be
implemented. Typically, this means constructing
a spreadsheet (see Figure 4, phase three: quan-
titative estimation -> estimates). This is also an
opportunity to verify measurements concepts
before collecting the required data. Finally, results
would have to be evaluated.

cOncluSiOn

Aforementioned issues can only be exemplary.
Experience suggests that it is often mislead-
ing to suggest a generic solution. The business
model evaluation method presented in Figure 4
distinguishes between major analytical phases. It
would have to be adapted, modified and specified
for a given decision problem. However, while
actual outcomes may vary, Figure 3 suggests that
an open source solution may in any case be an

economical choice. This outcome coincidences
with the observation that brand name software
vendors increase the attractiveness of products
that compete with open source packages and/or
even offer products in an open source way.

AcKnOWleDgment

The manuscript has benefited from thoughtful sug-
gestions and comments of the many contributors
and anonymous reviewers of the Special Interest
Group on Agent-Based Information Systems
(SIGABIS) of the Association for Information
Systems (AIS, www.agentbasedis.org). The au-
thors particularly acknowledge discussions with
and advice from Steve Davis, Omar El Sawy,
Mark Hayes, Jörg Heilig, Bob Josefek, Ann
Majchrzak, Steffen Neumann, Kim Spenchian,
and Ed Trainor.

referenceS

Anderson, E. W., Fornell, C., & Lehmann, D.
R. (1994, July). Customer satisfaction, market
share, and profitability. Journal of Marketing,
56, 53-66.

Anderson, E. W., Fornell, C., & Rust, R. T. (1997).
Customer satisfaction, productivity, and profit-
ability. Marketing Science, 2, 129-145.

Anderson, J. C., & Narus, J. A. (1984). A model
of the distributor’s perspective of distributor-
manufacturer working relationships. Journal of
Marketing, 48, 62-74.

Anderson, J. C., & Narus, J. A. (1990). A model
of distributor firm and manufacturer firm working
relationships. Journal of Marketing, 54, 42-58.

Bowen, D. E. (1986). Managing customers as hu-
man resources in service organizations. Human
Resource Management, 25(3), 371-383.

1914

Open Source Software Business Models and Customer Involvement Economics

Brown, S. W., Raymond, P. F., & Bitner, M. J.
(1994). The development and emergence of ser-
vice marketing thought. International Journal of
Service Industry Management, 5(1), 21-48.

Business Week. (2003, June 9). BMW’s labor
practices are cutting-edge, too. Retrieved August
6, 2003, from http://www.businessweek.com

Chase, R. (1978, November-December). Where
does the customer fit in a service operation?
Harvard Business Review, 138-139.

Czepiel, J. A. (1990). Service encounter and service
relationships: Implications for research. Journal
of Business Research, 20(1), 13-21.

The Economist. (2006, March 18). Open, but not
as usual. Special Report: Open-source business,
73-75.

Forbes. (2006). The world’s billionaires. Re-
trieved March 31, 2006, from http://www.forbes.
com/billionaires

Gruen, T. W., Summers, J. O., & Acito, F. (2000,
July). Relationship marketing activities, commit-
ment, and membership behavior in professional
associations. Journal of Marketing, 64, 34-49.

Hakansson, H. (1980). Marketing strategies in
industrial markets: A framework applied to a
steel producer. European Journal of Marketing,
14(5,6), 365-378.

Hars, A. (2002). Open source software. WISU,
4, 542-551.

Hars, A., & Ou, S. (2001). Working for free? Mo-
tivations for participating in open source projects.
International Journal of Electronic Commerce,
6(2), 25-39.

Kelley, H. H., & Thibaut, J. W. (1978). Interper-
sonal relations: A theory of interdependence.
New York: John Wiley & Sons.

Kelley, S. W., Donnelly, J. H., & Skinner, S. K.
(1990). Customer participation in service produc-

tion and delivery. Journal of Retailing, 66(3),
315-335.

Lovelock, C. H., & Young, R. F. (1979, May-June).
Look to consumers to increase productivity.
Harvard Business Review, 168-178.

McClure, B. (2004, April 28). The bottom line on
margins. Investopedia.com. Retrieved March 31,
2006, from http://www.investopedia.com

Mills, P. K., & Morris, J. H. (1986). Clients as
partial employees of service organizations: Role
development in client participation. Academy of
Management Review, 11(4), 726-735.

Mills, P. K., & Moberg, D. J. (1982). Perspectives
on the technology of service operations. Academy
of Management Review, 7(3), 467-78.

Porter, M. E. (1985). Competitive advantage:
Creating and sustaining superior performance.
New York: The Free Press.

Schlueter Langdon, C. (2007). Instrument valida-
tion for strategic business simulation. In V. Sugu-
maran (Ed.), Application of agent and intelligent
information technologies (pp. 108-120). Hershey,
PA: Idea Group Publishing.

Schlueter Langdon, C. (2003a). Linking IS
capabilities with IT business value in channel
systems: A theoretical conceptualization of
operational linkages and customer involvement.
In Proceedings of WeB December 2003, Seattle,
WA (pp. 259-270).

Schlueter Langdon, C. (2003b, June). IT matters.
In Does IT Matter? An HBR Debate. Harvard
Business Review, 16. Retrieved from www.hbr.
org

Schlueter Langdon, C. (2003c). Information
systems architecture styles and business interac-
tion patterns: Toward theoretic correspondence.
Journal of Information Systems and E-Business,
1(3), 283-304.

 1915

Open Source Software Business Models and Customer Involvement Economics

Schlueter Langdon, C. (2005). Assessing eco-
nomic feasibility of e-business investments [White
Paper Version 3.0]. Redondo Beach, CA: Pacific
Coast Research.

Schlueter Langdon, C. (2006). Designing infor-
mation systems capabilities to create business
value: A theoretical conceptualization of the role
of flexibility and integration. Journal of Database
Management, 17(3), 1-18.

Schlueter Langdon, C., & Shaw, M. J. (2000).
The online retailing challenge: Forward integra-
tion and e-backend development. In Proceedings
of ECIS July 2000 Conference, Vienna, Austria
(pp. 1025-1028).

Schlueter Langdon, C., & Shaw, M. J. (2002).
Emergent patterns of integration in electronic
channel systems. Communications of the ACM,
45(12), 50-55.

Sheth, J. N., & Parvatiyar, A. (1995). Relationship
marketing in consumer markets: Antecedents
and consequences. Journal of the Academy of
Marketing Science, 23(4), 255-271.

Thibaut, J. W., & Kelley, H. H. (1959). The social
psychology of groups. New York: John Wiley &
Sons.

Williamson, O. E. (1975). Markets and hierar-
chies: Analysis and antitrust implications. New
York: The Free Press.

Williamson, O. E. (1985). The economic institu-
tions of capitalism. New York: The Free Press.

Whitaker, G. (1980, May-June). Co-production:
Citizen participation in service delivery. Public
Administration Review, 240-242.

Key termS

Business Intelligence Analytics: Summa-
rizes models and methods used to analyze data
for the purpose of helping executives make better,
more precise decisions.

Business Model: Describes how profit is
generated; captures business logic by separating
independent/dependent variables and mediat-
ing/moderating effects.

Co-Production: Has evolved to describe a
situation in which people outside paid employ-
ment, such as customers, contribute to business
value-added.

Customer and User Involvement: Describes
the extent to which a customer is engaged as a
participant in business operations, specifically
in service production and delivery, including,
for example, order processing and account man-
agement.

Customer Relationship Management
(CRM): A broad term to cover concepts, methods,
and procedures, and enabling information tech-
nology infrastructure that support an enterprise
in managing customer relationships.

IT Business Value: Captures the business
value derived from investments in information
technology components and systems. Generic IT
business value categories include cost, revenue,
and quality.

Peer-to-Peer Production: Describes work
performed and organized through the free co-
operation of equals.

This work was previously published in Handbook of Research on Open Source Software: Technological, Economic, and Social
Perspectives, edited by K. St. Amant; and B. Still, pp. 522-531, copyright 2007 by Information Science Reference (an imprint
of IGI Global).

1916

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.8
Investing in Open Source

Software Companies:
Deal Making from a Venture

Capitalist’s Perspective

Mikko Puhakka
Helsinki University of Technology, Finland

Hannu Jungman
Tamlink Ltd., Finland

Marko Seppänen
Tampere University of Technology, Finland

ABStrAct

This chapter studies how venture capitalists invest
in open source-based companies. Evaluation and
valuation of knowledge-intensive companies is a
challenge to investors, and while many methods
exist for evaluating traditional knowledge-inten-
sive companies, the rise of open source companies
with new hard-to-measure value propositions such
as developer communities brings new complex-
ity to deal-making. The chapter highlights some
experiences that venture capitalists have had
with open source companies. The authors hope
that the overview of venture capital process and
methodology as well as two case examples will
provide both researchers and entrepreneurs new
insights into how venture capitalists work and
make investments.

IntroductIon

In the traditional view, the evolution of a technol-
ogy-based new company is seen through separate
consecutive stages. Business is based on creating
tangible real assets; and in the end, the value of
a company is also based on real assets. First, the
technology is developed, which is followed by
setting up the organization. Once the organization
has reached a sufficient scale, internationaliza-
tion is started. Finally, the value of the company
is estimated with potential venture investment
or through realization either through an initial
public offering (IPO) or a trade sale.

However, due to the increased complexity of
products and services, time-to-market tends to
lengthen. In order to maintain sufficient resources
until the company reaches profitability, external
financing is needed. The time needed to turn a

 1917

Investing in Open Source Software Companies

company’s cash flow positive varies considerably.
A long product development phase and slow mar-
ket penetration prolong the period of negative cash
flow. Simultaneous internationalization drains
resources at an even higher rate. Since start-ups
do not usually have collateral to secure bank
loans, equity financing is the most evident form
of financing. Venture capital funding is usually
sought in order to get business development sup-
port in addition to plain financing.

New business ideas are increasingly more
knowledge intensive, driven in part by the ap-
plication of ICT as an enabling technology across
industrial sectors. Also, the nature of business
has changed: times-to-market are faster, devel-
opment stages are no longer consecutive but can
be simultaneous or even skipped, and companies
are born global. Distinct from yesterday’s indus-
trial companies, today’s knowledge-intensive
companies’ values are not based on their real
assets but rather on their intangible assets such
as knowledge, networks, and brand. Needless
to say, intangible assets are considerably more
challenging to value. The previous is even truer
in the case of open source software (OSS) com-
panies, since part of their business (and value)
relies on open source (OS) communities in which
people contribute their time and knowledge vol-
untarily into projects. Contributions are real but
take place without formal contracts or incentive
mechanisms, and people can easily abandon the
community.

Furthermore, OSS companies that build their
businesses on OS products (e.g., Google, JotSpot)
have huge savings in time and licensing fees;
they get to market faster and cheaper. This sets
even greater challenges for those valuating OSS
companies. In theory, these free contributions
should yield in higher valuations. On the other
hand, the uncertainties involved should have the
opposite effect.

The mission of this study is to compare tra-
ditional IT companies and their valuations and
evaluations to those of OSS companies from the

viewpoint of the venture capitalist. This is further
divided into several subquestions:

• What are the special issues to be taken into
account when evaluating OSS companies?

• Do venture capitalists assign a positive,
negative, or no value to OSS companies
and their communities when compared to
traditional IT companies?

• Is there hype around OS?

Data for recent valuations of OSS and tra-
ditional IT companies were gathered from the
VentureOne database. VentureOne (2005) is one of
the leading venture capital research firms offering
information on the venture capital industry. To
better understand the investment decisions made
and valuations paid for OS companies, and in
order to get insights into what are the specialties
in evaluation of OSS companies, two case studies
were carried out. When designing the case study,
based on the authors’ initial understanding of the
issues at hand, a pattern of interview questions was
constructed. In addition to these semistructured
interviews, data were gathered from publicly
available sources. The interviewees were key
managers of the case companies. Both of the cases
present seed/early-stage venture capitalists that
have been active in investing in OS companies.
In addition, the case studies were backed up with
several interviews with venture capitalists and
entrepreneurs as well as feedback gathered from
Internet online communities (for the questionnaire
used, see Puhakka & Jungman, 2005).

BAcKgrOunD

earlier research on evaluation
and Valuation theory

Venture capitalists evaluate their investment op-
portunities based on certain criteria. It is widely
accepted that the three key investment decision

1918

Investing in Open Source Software Companies

criteria are management team, market projec-
tions, and product (Tyebjee & Bruno, 1981, 1984;
MacMillan, Siegel, & Narasimha 1985).

In addition, venture capitalists have prefer-
ences, such as a venture’s stage of development,
its location, its industry or technology, and size of
the investment required, which vary among one
another (Seppä, 2000). These criteria and prefer-
ences are related to evaluation of an investment
opportunity: does the venture have potential? Is
it worth our time and money? Does it fit our in-
vestment strategy? Venture capitalists base their
evaluation on business plans, meetings with the
entrepreneurial team, and various researches.

Only after positive results from evaluation is
it time to think about the value of the company.
The process of valuation resembles business ne-
gotiation. Herein, “valuation means the process
of placing a monetary value on an investment
opportunity” (Seppä, 2003, p. 6). Venture capital
valuations are not as straightforward as public
market valuations or share prices. “Because of
the fluctuations in the supply and demand of
venture capital, investment valuations are not
always determined according to the rules of ef-
ficient markets” (Seppä, 2003, p. 11). Valuation
also can refer to venture capital funds’ periodic
valuations of investments (Association Française
des Investisseurs en Capital [AFIC], British Ven-
ture Capital Association [BVCA], & European
Private Equity and Venture Capital Association
[EVCA], 2005).

Valuation of high-tech companies by venture
capitalists theoretically has been studied exten-
sively (e.g., Lockett, Wright, Sapienza, & Pruthi,
2002; Seppä, 2003). The value of a new venture is
derived by discounting predicted future cash flows
to the present. The discounting factor depends on
the probability of returns. Even if a company has
significant potential future cash flows, the risk of
failure decreases its net present value.

Different methodologies exist in the valuation,
but all aim at answering the same question: what
is the present value of expected future earnings

or the exit value of a company? The methods
fall into the following four categories (Lockett
et al., 2002):

1. Liquidation value-asset-based methods
2. Discounted cash-flow-based methods
3. Options-based valuation methods
4. Rule-of-thumb valuation methods (compara-

tor valuations)

The concepts of present value and net present
value (NPV) form the basis for the valuation of
real assets and investment decision-making. Es-
sentially, the method makes a comparison between
the cost of an investment and the net present value
of uncertain future cash flows generated by the
venture. There are at least four major steps in a
discounted cash flow for a proposed venture.

First, assuming that the venture is all equity
financed (i.e., all necessary capital is provided by
the shareholders), forecasts are needed for what
the expected incremental cash flows would be to
the shareholders if the venture were accepted.

Second, an appropriate discount rate should be
established that reflects the time value and risks
of the venture, which, therefore, can be used for
the calculation of the present value of expected
future cash flows. The concept of present value
includes the notion of the opportunity cost of
capital. The appropriate discount rate, or the cost
of capital, first must compensate shareholders
for the foregone return they could achieve on
the capital market by investing in some risk-free
assets. It also has to compensate them for the risk
they are undertaking by investing in this project
rather than in a risk-free financial asset. Thus,
the cost of capital is determined by the rate of
return investors could expect from an alternative
investment with a similar risk profile. Fortunately,
the rich menu of traded financial assets provides
venture fund managers with the opportunity to
estimate the right price.

Third, based on the value additives of present
values, the NPV of the venture is to be calculated.

 1919

Investing in Open Source Software Companies

Once the cash flow forecasts are finalized and
the appropriate discount rate is established, the
calculation of the venture’s NPV is a technical
matter. When all future cash flows that need
to be discounted arrive at their present values,
and by adding them to the present value of the
necessary capital outlay, the NPV of the venture
is achieved.

Finally, a decision has to be made whether to
go ahead with the venture or not. As the company
proceeds toward profitability, the likelihood of
success grows, and the value of the company
grows. Thus, it can be argued that every step
a company takes toward its goals increases its
value.

Exit valuations of technology companies are
dependent on the prevailing market situation.
Because the presumed exit valuation is the most
important measure when considering the value of
a company at the last venture capital round before
an IPO, it is obvious that exit valuations have
significant effects on valuations at all investment
rounds, although the effect diminishes toward the
founding stage. Due to dramatic changes in exit
valuations (e.g., during 1999-2000), there has been
a wide variation in valuations at various venture
capital rounds as well.

Hype and uncertainties
Vitiate the theory

Every now and then, things get out of hand. In the
1990s, it was argued that revenues and earnings
were neither sufficient nor relevant ways to put
value to emerging e-businesses or dot-coms that
had no revenues and actually no existing mecha-
nisms of extracting payments from customers. A
way to assign value to a member in a Web com-
munity was proposed: a so-called “lifetime value
of a customer” or a “price-to-eyeball multiple,”
an estimate of how much on average a customer
would end up paying to a company (Valliere &
Peterson, 2004).

Emerging OS companies face a similar chal-
lenge since part of their businesses (and values)
relies on OS communities in which people con-
tribute their time and knowledge voluntarily.
Contributions are real but take place without
formal contracts or incentive mechanisms, and
people can easily abandon the community. The
question rises how one should value community
contributions like these. The International Private
Equity and Venture Capital Valuation Guidelines
(AFIC, BVCA, & EVCA, 2005) provide no aid
on this. On the other hand, venture capitalists
certainly have some views, since there are already
several cases in which they have invested in OS
companies.

Every venture capital (VC) investment is
difficult to value due to the high degree of uncer-
tainty in the performance. The valuation of OS
companies is even more challenging, as there is
yet neither history nor guidelines due to the un-
certainties, for example, in the following:

• Profitability of business model
• Revenue streams
• Market acceptance
• Community commitment
• Competitive reactions
• Quality of software
• New General Public License (GPL) version

in 2007

The list includes similar uncertainties that
were involved in the dot-com bubble (Valliere &
Peterson, 2004). Indeed, one can see the signs of
hype in OS as well. Signs of hype surround certain
companies (company hype), the OS market (mar-
ket hype), and the activity of other investors as a
group (investor hype) (Valliere & Peterson, 2004).
In 2005, OS was getting increasing attention in
the press, and venture capitalists were announc-
ing OS strategies. However, it is too early to say
whether this will lead to unreasonable valuations
of OS companies.

1920

Investing in Open Source Software Companies

mAin fOcuS Of tHe cHApter

Done Deals and given Valuations

So far, the OS experience has not been a happy one
for venture capitalists. According to the research
firm VentureOne, some $714 million was invested
in 71 OS companies in 1999-2000, and most of
those projects collapsed (VentureOne, 2005).
One of the biggest successes that is left of those
experiences is RedHat Inc., which went public
in 1999 and makes money selling enhancements
and maintenance services to corporations using
Linux OS operating systems. However, it still has
some ways to go before reaching $200 million
in revenues (RedHat, 2005) and is a relatively
mild success with market value less than $5,000
million and earnings per share (EPS) of $0.33
(NASDAQ, 2005). So this is certainly no Google
with market value just under $70,000 million
(EPS $5.02) or eBay with market value just under
$60,000 million (EPS $0.78) (NASDAQ, 2005)
that aggressive venture capitalists often use as a
reference as companies they want to fund as the
“next big thing.”

The biggest success so far with OS ventures,
as they traditionally have been viewed, has been
IBM’s Linux service business that the company
has grown as a separate emerging business op-
portunity unit and has managed to grow it from
$0 to more than $2 billion in revenues in just 5
years. Still, there is no public record on how much
IBM has invested in this venture to realize that
growth (IBM, 2005).

Several studies have pointed out that Linux,
Apache, and MySQL, for example, have reached
the maturity in which the technology or code
is comparable or even superior to the existing
proprietary ones. Furthermore, for example,
Firefox has managed to take the market by storm
extremely quickly without any significant market-
ing budget. In other words, early evidence seems
to point to the OS approach, at least some cases,
as an efficient way to develop technology and take

that to market. However, at least the experiences
from the first round financings of OS companies
indicate that it is not necessarily the best way to
do business.

After a few years of trying to figure out
whether money can be made by OS companies,
the answer from venture capitalists seems again
to be a reluctant yes. Twenty OS businesses raised
$149 million in venture money in 2004 in the
United States alone (VentureOne, 2005). There
are no numbers available for the rest of the world,
but in Europe, several investments took place.
Looking at that total, it would seem that most of
the investments are still on a seed or first-round
level (compared to an average level on various
rounds of realized investments); if distributed
evenly among companies, the amount would be
$7.45 million.

case: Bluerun Ventures

BlueRun Ventures was originally launched as
Nokia Venture Partners in 1998 with $150 million
initial invested capital from Nokia Corporation.
Even with money from Nokia, it was designed
right from the start to act independently of its only
investor. It raised a second fund of $500 million in
2000, which then already included other investors
besides Nokia, such as Goldman Sachs.

In 2005, Nokia Venture Partners raised its
third fund of $350 million and changed its name
to BlueRun Ventures. Today, BlueRun Ventures
has offices in nine locations globally and man-
ages $1 billion making investments into IT,
mobile, and consumer technologies at seed- and
early-stage levels (BlueRun Ventures, 2005). In
looking at OS investment opportunities, the key
issue identified by BlueRun Ventures is a strong
community close to the company. In their view,
OS is a transformation force that is forcing a unit
price down and the only realistic counterforce
to big incumbent companies such as Oracle or
BEA systems.

 1921

Investing in Open Source Software Companies

Still, they consider the market being at an early
stage of deployment since after the bubble there
have been no notable initial public offerings by
OS companies. From the investment point of view,
they consider two uncertainties in OS: the size of
the market and the fragile business attachment of
dealing with a community.

BlueRun Ventures has quite a bit of experi-
ence dealing with OS companies and has looked
at about a hundred companies from 2002 to 2005.
However, in early 2006, it had just completed its
first investment in this space. Seed and early-stage
investments are tricky, as typically there is very
little or no historical numbers to look at. As the
company’s partner noted, it really is not a science
but rather a very subjective opinion of opportuni-
ties. The questions are typically, “Do I like this
opportunity? How much money is needed to make
it happen? Does it fit with the funds strategy?”
After that, the actual valuation is actually based
on negotiations, which rely more on people skills
than anything else (A. Kokkinen, personal com-
munication, November 11, 2005).

From BlueRun Ventures’ perspective, valua-
tions in the long run should be the same for both
traditional and OS startups. However, the nature
of seed-investments is different since communi-
ties in a way have taken care of development
that is typically done with seed money, resulting
in a technology but not in protected intellectual
property rights (IPRs).

As the market is still developing, BlueRun
Ventures has not been able to identify any OS-
dedicated venture funds, even though it expects
several of those to be formed. A prerequisite
for an OS fund may be that first there should be
four to five initial public offerings, which would
give enough evidence to the managers of funds
in order to go to their investors and propose an
OS fund (A. Kokkinen, personal communica-
tion, November 11, 2005). How this will turn out
remains to be seen. Either OS will remain part of
existing funds’ investment targets, or OS-dedi-
cated funds will be seen in the future. The latter

would obviously result in more sophisticated ways
of evaluating OS; otherwise, the competition for
investors’ money will continue to be played out
between traditional software companies and OS
companies in mutually accepted terms.

case: nexit Ventures

Nexit Ventures is a Finnish-based traditional
venture capital company. It raised its Euro 100
million fund in 2000, which was later reduced to
Euro 66.3 million. The investors are private insti-
tutions with 50% of their commitments outside
Finland. The initial focus was seed and early-
stage companies both in the Nordic and North
America; later this was modified to early- and
later-stage companies in the same geographical
regions. The technology focus of mobile and wire-
less communication, from core components and
enabling middleware to applications and services,
has remained the same.

Nexit Ventures does not consider a pure OS
company to be a viable investment opportunity.
Rather, it sees the OS approach of collaborative
effort to solve various issues to be an enabler
for various things of potentially great value. For
example, Apple’s iPod makes it easy for con-
sumers to utilize music downloaded from Web,
whether the music is from legitimate sources or
not. Still, the idea was that the closer one gets to
the core of OS (the community), the harder it is
to make money. Nexit Ventures considers OS be
at every level of deployment from early adoption
to maturity; it just is not always very visible, and
there are legal uncertainties.

From Nexit Ventures’ point of view, it is
somewhat isolated in Finland about what is taking
place globally (a bit paradoxical, as most things
are said to take place on the Internet), and it has
not yet seen a rise of OS-based businesses, often
referred as Web 2.0 companies. There has been
little discussion on the public media, especially
compared to the United States. In the United
States, where valuations are very high again,

1922

Investing in Open Source Software Companies

due diligence in follow-up rounds is quite weak,
according to Nexit Ventures, as there is pressure
to do hard sought deals.

Regardless, looking at opportunities and
valuating them, Nexit Venture’s comments cor-
roborate those of BlueRun Ventures. The markets
for venture capital investments are imperfect and
always will be. Therefore, the valuations are not
made with transparent scientific methods but
rather are results of negotiations. In other words,
it can be argued that the potential of one’s busi-
ness idea opens the door to negotiations with
the venture capitalist, but the valuation that will
take place with the investment is determined “by
one’s skills as a negotiator, that are impossible
to quantify or to break down into a scientific
model” (A. Tarjanne, personal communication,
November 30, 2005).

future trenDS

It might be that in the end, the biggest successes to
financing community come from and to companies
that are not really OS companies as such but rather
use OS components to build new businesses; for
example, Google, which, like most Web companies,
was built on top of OS). From $1 million initial
seed capital in 1998 and an injection of $25 mil-
lion growth capital in 1999, the company realized
the value to its investors in 2004 by going public,
and by spring 2005, it had surpassed the Finnish
pride Nokia with more than $80 billion in market
capitalization, compared to just less than $80 bil-
lion for Nokia (Google, 2005).

As stated earlier, lareg amounts of money are
invested into OS businesses, and we expect dedi-
cated OS funds to be formed in the near future.
The key driver will be successful exits from OS
investments. However, the first bets (i.e., seed
round investments) to potential future successes
have just been made, and how successful those
will be can only be known in the coming years.
Once we can get significant amounts of data, in-

teresting quantitative comparisons can be made
between investments in OSS and traditional IT
companies.

cOncluSiOn

Venture capitalists do not seem to put special
value on OS companies. However, some of them
recognize that there are distinctly different ele-
ments in evaluating OS companies. For instance,
expected cash flows are likely to be bigger in
businesses built on OS software than in similar
traditional software companies, due to the savings,
for instance, in licensing fees. Concurrently, the
uncertainties in OS should increase the discount
rate (see Figure 1).

In interviewing the selected experts and look-
ing at the selected cases, it seems that rather than
putting effort into further understanding valuation
methodologies, entrepreneurs should seek help in
learning better negotiation skills. However, in the
academic world, more complex approaches have
been taken in valuating a company. It might be

Figure 1. Potential cash flow and risk measured by
discount rate of the companies using OS or propri-
etary software (Source: Adapted from W. Cardwell,
personal communication, November 15, 2005)

Discount rate

OSS
company

company
Proprietary

P
ot

en
tia

l c
as

h
flo

w
 (r

ev
en

ue
 m

in
us

 c
os

ts
)

Proprietary
company

OSS
company

 1923

Investing in Open Source Software Companies

appropriate to ask whether the academics are re-
ally serving the industries if these methodologies
are not actually used by the people in the venture
capital industry.

The good news for entrepreneurs looking to
launch new OS ventures is that money is avail-
able, and investors are making their bets again
on OS. Still, the basic dilemma remains: while
the venture capitalist is looking to become a
shareholder as cheaply as possible, the entre-
preneur, of course, is trying to retain as much
ownership as possible. This would not be an
issue if there were a transparent, objective way
to estimate the value of the venture. However, as
one interviewee said, this is not likely to happen,
as the venture capital market remains imperfect.
Unfortunately, there are many unknown factors
affecting the present value of a startup that have
to be estimated, and thus, objectivity is hard to
maintain.

AcKnOWleDgment

The authors wish to express their gratitude to
interviewed investors and other persons who
have expressed their valuable opinions in vari-
ous forums. An earlier version of this chapter
(Puhakka & Jungman, 2005) was presented at
the eBRF 2005 Conference in Tampere, Finland,
September 26-28, 2005, and published in the
Conference Proceedings, Frontiers of e-Business
Research (FeBR 2005).

referenceS

Association Française des Investisseurs en Capi-
tal (AFIC), British Venture Capital Association
(BVCA), & European Private Equity and Venture
Capital Association (EVCA). (2005). International
private equity and venture capital valuation
guidelines. Retrieved September 16, 2005, from
http://www.privateequityvaluation.com

Lockett, A., Wright, M., Sapienza, H., & Pruthi,
S. (2002). Venture capital investors, valuation
and information: A comparative study of the
U.S., Hong Kong, India and Singapore. Venture
Capital, 4(3), 237-252.

MacMillan, I. C., Siegel, R., & Narasimha, P. N.
S. (1985). Criteria used by venture capitalists to
evaluate new venture proposals. Journal of Busi-
ness Venturing, 1, 119-128.

NASDAQ. (2005). The NASDAQ stock market.
Retrieved February 14, 2006, from http://www.
nasdaq.com

Nexit Ventures. (2005). Nexit Ventures Web site.
Retrieved November 28, 2005, from http://www.
nexitventures.com

Puhakka, M., & Jungman, H. (2005). Evaluation
and valuation of open source software companies:
A venture capitalist’ perspective. In M. Seppä,
M. Hannula, A.-M. Järvelin, J. Kujala, M. Ruoho-
nen, & T. Tiainen (Eds.), Frontiers of e-business
research 2005 (pp. 855-865). Tampere, Finland:
Tampere University of Technology & University
of Tampere.

RedHat Inc. (2005). RedHat Inc. Web site. Re-
trieved December 3, 2005, from http://www.
redhat.com

Seppä, M. (2000). Strategy logic of the venture
capitalist. Jyväskylä Studies in Business and Eco-
nomics 3. Jyväskylä: University of Jyväskylä.

Seppä, T. (2003). Essays on the valuation and syn-
dication of venture capital investments. Doctoral
dissertations. Helsinki University of Technology,
Helsinki, Finland.

Tyebjee, T., & Bruno, A. (1984). A model of ven-
ture capitalist investment activity. Management
Science, 9, 1051-1066.

Tyebjee, T., & Bruno, A. (1981). Venture capi-
tal decision making: Preliminary results from

1924

Investing in Open Source Software Companies

three empirical studies. Wellesley, MA: Babson
College.

Valliere, D., & Peterson, R. (2004). Inflating the
bubble: Examining dot-com investor behaviour.
Venture Capital, 6(1), 1-22.

VentureOne. (2005). VentureOne Web site. Re-
trieved September 16, 2005, from http://www.
ventureone.com

Key termS

Evaluation: Subjective and qualitative assess-
ment of an investment opportunity.

Proprietary: Belonging to or controlled by
an individual or organization that has the ability
to share that item (in this case, software code)
with others.

Seed Company: Company in a stage of re-
search, assessment, and development of an initial
concept before reaching the start-up phase (FVCA
Yearbook, 2004).

Startup Company: Company in a product
development stage requiring further funds to
initiate commercial manufacturing and sales
(FVCA Yearbook, 2004).

Valuation: Process of placing a monetary
value on an investment opportunity (Seppä,
2003).

Venture Capital: Equity investments made
for the launch, early development, or expansion
of a business (EVCA, 2005, www.evca.com).

This work was previously published in Handbook of Research on Open Source Software: Technological, Economic, and Social
Perspectives, edited by K. St. Amant; and B. Still, pp. 532-540, copyright 2007 by Information Science Reference (an imprint
of IGI Global).

 1925

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.9
Open Source Software:
A Developing Country View

Jennifer Papin-Ramcharan
The University of the West Indies – St. Augustine Campus, Trinidad and Tobago

Frank Soodeen
The University of the West Indies – St. Augustine Campus, Trinidad and Tobago

ABStrAct

This chapter presents issues that relate to devel-
oping countries’ use of open source software
(OSS) and the experience of these countries with
OSS. Here the terms open source software (OSS),
free/libre and open source software (FLOSS)
and free software (FS) are used interchangeably.
It describes the benefits of FLOSS including its
superior quality and stability. Challenges to FLOSS
use particularly for developing countries are de-
scribed. It indicates that despite the greater benefits
to developing countries of technology transfer of
software development skills and the fostering of
information and communication technology (ICT)
innovation, the initial cost of acquiring FLOSS
has been the key motivation for many developing
countries adopting FLOSS solutions. It illustrates
this by looking at the experience of a university
in a developing country, The University of the
West Indies, St. Augustine Campus in Trinidad
and Tobago. Strategies for developing countries
to benefit “fully” from FLOSS are presented in-
cluding the implementation of formal organized
programmes to educate and build awareness of

FLOSS. The authors hope that by understanding
some of the developing country issues that relate
to OSS, solutions can be found. These countries
could then fully benefit from OSS use, resulting in
an increase in size of the global FLOSS develop-
ment community that could potentially improve
the quality of FLOSS and indeed all software.

IntroductIon

Open source software (OSS) is understood by
many to mean software or computer programs
where the source code is distributed and can be
modified without payment of any fee by other
programmers. The term OSS first came into use
in 1998 and is attributed to Eric Raymond (Feller
& Fitzgerald, 2002). The Open Source Initiative
(OSI) has been formed to promote the use of OSS in
the commercial world (www.opensource.org/).

The terminology related to software that is
released with its source code and is modifiable
and distributable without payment and then de-
veloped by a group of users or community can be
confusing. For example the literal meaning of open

1926

Open Source Software: A Developing Country View

source implies access to the source code, without
necessarily implying permission to modify and
distribute. Also, the Free Software Foundation
(FSF) (founded in 1985) which predates the OSI
refers to these programs not as OSS but as free
software (www.fsf.org/). The term free software
was created by Richard Stallman where free refers
to the freedoms to use, modify, and distribute the
programs and does not have anything to do with
the cost of acquiring the software. Therefore,
free software does not necessarily mean zero
cost, and open source does not just mean access
to the source code.

The differences between free software and
OSS have been well documented (Fuggetta,
2003). Stallman (2002) gives details about these
differences at www.gnu.org/philosophy/free-soft-
ware-for-freedom.html. What really then defines
software as OSS? Generally, OSS is a software
product distributed by license, which conforms to
the Open Source Definition1. The best known of
these licenses are the GNU General Public License
(GPL) and the Berkeley Software Distribution
(BSD) license. Unlike traditional commercial
or proprietary software (e.g., Microsoft Word,
Windows XP, or Internet Explorer), these licenses
permit OSS to be freely used, modified, and re-
distributed. The source code for these programs
must also be freely accessible.

The term free/libre open source software
(FLOSS) is used to refer to both free and open
source software and was first coined in 2002
by Rihab Ghosh in a study undertaken for the
University of Maastricht (Ghosh, Glott, Kreiger,
& Robles, 2002). Libre here is the French word
for liberty making clear the free as in freedom
and not free as in “no cost.” It is also common to
use the term FOSS (free/open source software)
for such programs.

Many countries do not have the luxury of
debating the philosophical differences between
the OSS or free software movement and so are
content to use the all encompassing term of
FLOSS (see e.g., www.floscaribbean.org/). For

the purposes of this discussion the terms Free
Software, Open Source Software and FLOSS are
used interchangeably2.

The development of FLOSS has often been
contrasted to that of proprietary software. FLOSS
has primarily been developed by individuals who
volunteer their time to work on FLOSS projects.
Normally, modified versions of the source code
are posted on the Internet and are available for
free to anyone who wants to use or modify it
further. Thus a community of developers is cre-
ated all working on modifications, bug fixing, and
customizations of the initial code. An extensive
explanation and analysis of OSS development can
be found in Feller and Fitzgerald (2002).

The number of open source software projects
can be gleaned by visiting http://sourceforge.
net/index.php where there are over a hundred
thousand such projects registered to date. Thus,
FLOSS is not a fad or fringe phenomenon. It is
important to note that FLOSS has penetrated major
markets in countries worldwide. Indeed, some
open source products like Linux and Apache are
market leaders globally, and major ICT companies
like IBM, Sun, and Oracle have adopted the open
source model (Bruggink, 2003). In some coun-
tries, governments have even made the decision
to support the use of FLOSS (Brod, 2003; Evans
& Reddy, 2003).

Because of its free cost and its freedoms,
FLOSS should be an obvious choice for wide-
spread use in developing countries. In fact, these
countries should be virgin territory for FLOSS
deployment. What do the developing countries
themselves say and what has been their experi-
ence? This chapter presents the point of view
and experience of developing countries with
FLOSS.

 1927

Open Source Software: A Developing Country View

BAcKgrOunD

Developing countries

As is well-known, the term developing country ap-
plies to most African, Latin American, Caribbean,
and Asian countries, as well as some countries in
the Middle East and Eastern Europe. The defini-
tion of a developing country is generally based on
that country’s annual per capita income. Indeed,
developing countries are most often defined
following the World Bank classification (World
Bank, 2006). According to the World Bank, the
developing country’s annual per capita Gross
National Income (GNI) can range from:

• US$875 or less (low income)
• US$ 876-3,465 (middle income)
• US$ 3,466-10,725 (upper middle income)

Thus developing countries are not as homo-
geneous a group as some may think. Yet there
are some common problems in all developing

countries. For example, many such countries have
unreliable electricity supplies (Ringel, 2004). Ad-
ditionally, ownership of computers and access to
the Internet is low when compared to developed
countries (Table 1).

In simple terms, how useful is FLOSS with-
out hardware or electricity or trained and skilled
personnel? The vision of developing countries
being able to leapfrog from the use of propri-
etary software into using FLOSS and benefiting
from all its “freedoms” must be tempered with
these realities (Steinmueller, 2001). This chapter
presents many of these realities as they relate to
FLOSS in developing countries. If the problems
with FLOSS in developing countries could be
solved, then such countries could fully participate
in FLOSS development. This would increase the
size of the global FLOSS development community
thereby creating the potential for an increase in
the quality of FLOSS and software in general.

Table 1. Telecommunications infrastructure for Internet access; comparison of selected countries for 2002
(Source: United Nations Statistics Division-Millennium Indicators [ITU estimates] from http://unstats.
un.org/unsd/mi/mi_series_list.asp rounded to the nearest whole number)

Countries Telephone Lines and Cellular
Subscribers/100 Population

Personal
Computers/100

Internet
Users/100

Trinidad and Tobago 53 8 11

United Kingdom 143 41 42

United States 114 66 55

Singapore 126 62 50

Sweden 163 62 57

Venezuela 37 6 5

Brazil 42 8 8

Chile 66 12 27

China 33 3 6

Guyana 19 3 14

India 5 1 2

Nigeria 2 1 0

1928

Open Source Software: A Developing Country View

Benefits of flOSS

The benefits of FLOSS are well-documented in
the literature particularly by Raymond (2002).
These benefits include:

• Free or small cost of acquisition; future
upgrades are free

• Flexibility of its license vs. restrictive li-
censes of proprietary software; the General
Public License (GPL) used to license most
open source software is much more flex-
ible than the End-User License Agreement
(EULA) of proprietary counterparts, giving
more freedom to users to customize and
to install on as many computers as needed
without incurring added costs

• Superior quality and stability of FLOSS;
because the source code is open to full and
extensive peer review, open source software is
known for its superior quality and stability

• Effectiveness as a teaching tool vs. closed
proprietary software; users of FLOSS learn
team work; importance of intellectual prop-
erty protection and ethical use of software
in addition to programming skills (Rajani,
Rekola, & Mielonen, 2003)

• Potential as a solution to the software crisis;
the “software crisis” refers to “software tak-
ing too long to develop, costing too much,
and not working very well when delivered”
(Feller & Fitzgerald, 2000, p. 58)

• Reduces the dependence of public admin-
istration and international governments in
particular on specific software providers
(Fuggetta, 2003); according to Nolle (2004),
internationally, where Microsoft is viewed
with more alarm than it is in the United
States, FLOSS is seen as a defense against
U.S. and Microsoft domination

• Stimulates innovation; FLOSS encourages
the mastering of the technology of software
by enabling the development and expres-

sion of creativity in the modification of the
software by its users

• Improves commercial software
• Develops and enables applications that lever-

age local knowledge; because it can be freely
modified, FLOSS is easier to translate, or
localize (Bruggink, 2003)

• Fosters the creation of local software in-
dustry and entrepreneurs; the potential
exists for the creation of local companies
and small businesses supplying services
associated with FLOSS in training, support,
customization, and maintenance (Ghosh,
2003; Rajani, et al., 2003)

flOSS challenges

There are those who question most of the stated
benefits of FLOSS particularly its claim to be in-
novative (Boulanger, 2005; Evans & Reddy, 2003;
Fuggetta, 2003). Those on the side of proprietary
software suggest that FLOSS is less secure, not
as high in quality, stable, or dependable as its
advocates insist. The very model of development
of FLOSS that results in its best qualities can also
lead to concerns about lack of support (Lai, 2006),
security, and possible intellectual property viola-
tions by incorporating FLOSS into proprietary
software (Kramer, 2006).

 Compatibility concerns are also common.
For example, although most FLOSS runs on both
Microsoft Windows and Mac OSX, some run only
on the Linux operating system. FLOSS may not
come with as complete documentation and ready
support as proprietary alternatives. Fees may have
to be paid for substantial technical support. It
should also be noted that there are fewer trained
people available to provide technical support
since most ICT training programmes prepare
students to work with the most commonly used
proprietary software packages, such as those from
Microsoft (Bruggink, 2003). Additionally, FLOSS
may require more learning and training time as
well as skill to deploy and maintain. Large scale

 1929

Open Source Software: A Developing Country View

migration from proprietary software installations
to FLOSS can be problematic, particularly if there
is a lack of practical experience and support and
ready information on migration issues (Bruggink,
2003; Van Reijswoud & Mulo, 2005).

Cost as the main driver for the adoption of
FLOSS in developing countries cannot be ig-
nored. Ghosh (2003) demonstrates this vividly by
comparing license fees for proprietary software
with the income per capita of selected countries.
He concludes that in developing countries, “even
after software price discounts, the price tag for
proprietary software is enormous in purchasing
power terms.” This is further supported by the
Free and Open Source Software Foundation for
Africa (FOSSFA) (as cited in May, 2006) who
report that countries in sub-Saharan Africa each
year pay around US$24 billion to (mainly U.S.-
based) software companies for the rights to use
proprietary software.

Thus FLOSS provides an opportunity for de-
veloping country institutions to find cost effective
solutions in many areas that could include elec-
tronic governance to online health and learning.
But there is an even greater benefit of FLOSS to
these countries. Following the old adage that it is
better to teach a man to fish than to give him fish,
there is some appreciation that OSS can be even
more beneficial to developing countries because it
can be a vehicle for technology transfer of software
development skills, thus building local IT capacity
and stimulating innovation (Camara & Fonseca,
2006; Ghosh, 2003). Yet, for many end-users and
even institutions in these countries, the choice
is not between FLOSS and proprietary software
but between FLOSS and cheap pirated software.
When faced with this choice there is very little
incentive to consider FLOSS (Heavens, 2006).

Furthermore, limited Internet access and
bandwidth may not allow regular interacting
with FLOSS online communities for updates,
documentation and help with problems (Heavens,
2006). In addition, jobs in the IT industry in these
countries are often confined to large companies

that place a high premium on skills in traditional
proprietary software (e.g., Microsoft Certifica-
tion and experience). Also for those uninformed
about FLOSS in developing countries, there is
much skepticism about its use since “free” is
often equated with poor quality and expensive
software with high quality and reliability. This is
confirmed by Gregg Zachary (as cited in Fitzgerald
& Agerfalk, 2005) in his personal communication
about unsuccessful attempts to introduce FLOSS
projects in Ghana.

Are these difficulties peculiar to some devel-
oping countries? As a contribution to the FLOSS
debate it may be useful to present the experience
of a major university in a developing country.

experience in tHe WeSt inDieS

the university of the
West indies (uWi)

The University of the West Indies (UWI) was first
established in 1948, as a college with a special
relationship with the University of London to
serve the British territories in the Caribbean area.
There are three UWI Campuses, in three differ-
ent West Indian islands: Mona in Jamaica, Cave
Hill in Barbados and St. Augustine in Trinidad
and Tobago.

flOSS at the university of the West
indies – St. Augustine campus

The St. Augustine campus of the UWI is located
in the middle income developing country of
Trinidad and Tobago. Rampersad (2003) gives a
succinct description of FLOSS in Trinidad and
Tobago and reports that “Proprietary software is
used most in Trinidad and Tobago, and as such,
Microsoft and its many applications have a strong
grip on the IT market.” The University of the West
Indies just like other employers of IT personnel
in Trinidad and Tobago places high value on

1930

Open Source Software: A Developing Country View

proprietary software certification (e.g., MCSE).
Additionally, agreements have been made with
computer manufacturers like Dell for the supply
of computers campus wide and these are naturally
shipped with proprietary software.

It is therefore not surprising that, like many
similar developing country institutions, the UWI,
St. Augustine campus has no formal institutional
policy for the use or deployment of FLOSS. In-
dividual IT personnel and other staff members
at UWI who become aware of FLOSS solutions
have tried using these in their various departments
or units. The main motivation for this has been
the cost of FLOSS versus proprietary software
particularly when licensing per-seat costs are
considered in deploying software in large com-
puter labs. The FLOSS software used so far at
the university is shown in Table 2.

Were the other vaulted outcomes of FLOSS use
in developing countries experienced at the UWI?
Modification of source code, customization, and
so forth, implies that there exists a certain level
of programming skills locally. In Trinidad and
Tobago, practical computer programming skills
are in very short supply and so FLOSS is some-
times seen as just a cheap alternative to the high
cost of proprietary software, nothing more.

Also, as is the case with most developing
countries, UWI has a small IT staff fully engaged
at any time on a multiplicity of projects. There is
often no time to invest in modifying source code.

A good example of how limited resources can af-
fect the progress of FLOSS projects in particular
is UWI, St. Augustine’s Institutional Repository
Project which is based on the open source DSpace
software (www.dspace.org). The initial impetus
for the implementation of an institutional reposi-
tory at the UWI, St. Augustine campus was a need
to expose the unique Caribbean resources housed
in the West Indian collection of the library to the
world via digitization.

DSpace was acquired in 2004 and was installed
first on a test server at the UWI Main Library in
early 2005. Yet the installation is still “ongoing”
since it involves a steep learning curve for the
staff charged with the technical implementation.
Knowledge and skills in Linux, Apache, Tomcat,
and Java programming required for a successful
DSpace repository deployment are not readily
available. Thus, progress on implementation of
the repository has been slow (Papin-Ramcharan
& Dawe, 2006). Like most developing countries
which do not have in place a well developed IT
infrastructure and highly skilled IT personnel, it
has been found that the true total cost of owner-
ship (TCO) of DSpace as a FLOSS institutional
repository solution has been high.

future trenDS

It seems clear that the initial cost of acquiring
FLOSS has been the key motivation for many
developing countries adopting FLOSS solutions. It
is also clear that there are greater benefits that can
be derived from FLOSS in terms of encouraging
the development of local IT skills, the creation of
jobs locally to support FLOSS, and the eradication
of piracy of proprietary software. Independence
from being hostage to a single proprietary vendor
is also beneficial to such countries.

The benefits to a country and its citizens from
FLOSS adoption can possibly be viewed along
a spectrum. Some countries which are relatively
new to FLOSS will take time to fully exploit its

Table 2. FLOSS used at UWI St. Augustine

FLOSS Type

Linux Operating System

Open Office/Star Office Productivity Software

PHP, PERL Middleware

MySQL Database

Moodle Courseware

DSpace Institutional Repository

Apache Web Server

 1931

Open Source Software: A Developing Country View

potential, whereas those that are farther along
will work on higher value FLOSS activities like
customization. Eventually, developing country
users could move from being just consumers of
FLOSS to being equal participants in the global
community by becoming initiators and creators
of FLOSS projects (i.e., FLOSS developers).
Further along the spectrum, local jobs and small
businesses could be created to sell FLOSS support
and maintenance services.

It also seems likely that for developing coun-
tries and others, there probably will never be a
FLOSS-only or proprietary-only market. The
future will be about choice, where both FLOSS
and proprietary software will co-exist and deci-
sions to acquire software will not be based on
philosophy alone but follow the standard criteria
used to select any software package.

cOncluSiOn

The literature while emphasizing that FLOSS
is obviously a cost effective solution for devel-
oping countries also extols its higher benefits.
These include: its technology transfer potential,
the creation of jobs, fostering of innovation and
creativity, the reduction in piracy of proprietary
software, the independence achieved from be-
ing hostage to a single proprietary vendor, and
the ability to localize software products to local
languages and conditions. These outcomes will
not be achieved for most developing countries
unless there are enhanced supporting mechanisms
to foster FLOSS use. These can emanate from
international agencies like those of the UN and
World Bank whose interest lie (for example) in the
sustainable development of developing countries.
The mechanisms could include:

• Formal organized programmes to educate
and build awareness of FLOSS in developing
countries; this should not just be targeted to

IT personnel but to common users, govern-
ments, and other decision makers

• International agencies working presently
to upgrade ICT skills and infrastructure in
developing countries should work closely
with the FLOSS “movers and shakers” to
ensure that training is provided in these
countries on commonly used FLOSS with
emphasis on programming skills.

• Sponsoring agencies that support nongov-
ernmental organizations (NGO) or other
community organizations should require
that FLOSS be considered for use in their
operations and projects.

• Procurement agencies of governments and
other bodies should be educated about FLOSS
so that it can be seen as a viable alternative
when procurement decisions are made.

• Examination and other education bodies
must be encouraged in an organized and tar-
geted manner to change the computer studies
and science programmes in these countries
from being mostly Microsoft-centric to
include the study and use of FLOSS.

referenceS

Boulanger, A. (2005). Open-source versus
proprietary software: Is one more reliable and
secure than the other? IBM Systems Journal,
44(2), 239-248.

Brod, C. (2003). Free software in Latin America:
Version 1.2. Retrieved August 18, 2006, from
http://www.brod.com.br/file_brod//helsinki.pdf

Bruggink, M. (2003). Open source software:
Take it or leave it? International Institute for
Communication and Development (IICD) Report.
Retrieved July 6, 2006, from http://www.ftpiicd.
org/files/research/reports/report16.pdf

Camara, G., & Fonseca, F. (2006). Information
policies and open source software in developing

1932

Open Source Software: A Developing Country View

countries. Journal of the American Society for
Information Science and Technology (JASIST)
(pre-print version). Retrieved August 26, 2006,
from http://www.dpi.inpe.br/gilberto/papers/ca-
mara_fonseca_jasist.pdf

Evans, D. S., & Reddy, B. J. (2003). Government
preferences for promoting open-source software:
A solution in search of a problem. Michigan Tele-
communications and Technology Law Review,
9(2). Retrieved August 22, 2006, from http://www.
mttlr.org/volnine/evans.pdf

Feller, J., & Fitzgerald, B. (2000). A framework
analysis of the open source development paradigm.
In Proceedings of the 21st ACM International
Conference on Information Systems, Brisbane,
Queensland, Australia (pp. 58-69). Atlanta, GA:
Association for Information Systems .

Feller, J., & Fitzgerald, B. (2002).Understanding
open source software development. Reading, PA:
Addison Wesley.

Fitzgerald, B., & Agerfalk, P. J. (2005, January 3-
6). The mysteries of open source software: Black
and white and red all over? In R. H. Sprague (Ed.),
Proceedings of the 38th Hawaii International Con-
ference on System Sciences, Big Island, Hawaii
[CD-ROM]. Los Alamitos, CA: IEEE Computer
Society Press.

Fuggetta, A. (2003). Open source software––An
evaluation. The Journal of Systems and Software,
66, 77-90.

Ghosh, R. A. (2003, December). Licence
fees and GDP per capita: The case for open
source in developing countries. First Mon-
day, 8(12). Retrieved August 20, 2006, from
http://firstmonday.org/issues/issue8_12/ghosh/
index.html

Ghosh, R. A., Glott, R., Kreiger, B., & Robles,
G. (2002). Free/libre and open source software
study: FLOSS final report. International Institute
of Infonomics, University of Maastricht. Retrieved

August 16, 2006, from http://www.flossproject.
org/report/

Heavens, A. (2006, July 10). Ubuntu in Ethiopia: Is
free such a good deal? [Blog post]. Meskel square.
Retrieved August 13, 2006, from http://www.
meskelsquare.com/archives/2006/07/ubuntu_in_
ethiopia_is_free_such_a_good_deal.html

Kramer, L. (2006, April). The dark side of open
source. Wall Street & Technology, 43-44.

Lai, E. (2006). Lack of support slowing spread
of open-source applications. Computerworld,
40(8), 20.

May, C. (2006). The FLOSS alternative: TRIPs,
non-proprietary software and development.
Knowledge, Technology & Policy, 18(4), 142-
163.

Nolle, T. (2004). Time to take open source seri-
ously. Network Magazine, 19(4), 82-83.

Papin-Ramcharan, J., & Dawe, R. A. (2006). The
other side of the coin for open access publish-
ing—A developing country view. Libri, 56(1),
16-27.

Rajani, N., Rekola, J., & Mielonen, T. (2003). Free
as in education: Significance of the free/libre and
open source software for developing countries:
Version 1.0. Retrieved August 6, 2006, from
http://www.itu.int/wsis/docs/background/themes/
access/free_as_in_education_niranjan.pdf

Rampersad, T. (2003). Free- and open-source
software in Trinidad and Tobago. Linux Journal.
Retrieved August 22, 2006, from http://www.
linuxjournal.com/article/6619

Raymond, E. S. (2002). The cathedral and the
bazaar. In The cathedral and the bazaar, 23.
Retrieved July 18, 2006, from http://catb.org/~esr/
writings/cathedral-bazaar/cathedral-bazaar/

Ringel, M. (2004). The interlinkage of energy
and poverty: evidence from India. International
Journal of Global Energy Issues, 21(12), 2746.

 1933

Open Source Software: A Developing Country View

Stallman, R. (2002). Free software, free society:
Selected essays of Richard M. Stallman (J. Gay,
Ed.). Boston: Free Software Foundation.

Steinmueller, W. E. (2001). ICTs and the possi-
bilities for leapfrogging by developing countries.
International Labour Review, 140(2),193-210.

Van Reijswoud, V., & Mulo, E. (2005, March 14-
15). Free and open source software for develop-
ment myth or reality? Case study of a university
in Uganda. Paper presented at a seminar on Policy
Options and Models For Bridging Digital Divides
Freedom, Sharing and Sustainability in the Global
Network Society, University of Tampere, Finland.
Retrieved August 22, 2006, from http://www.
globaledevelopment.org/papers/Artikel%20OSS-
UMUv2%5B1%5D.1.pdf

World Bank. (2006). Data and statistics:
Country classif ication. Retrieved August
24, 2006, from http://web.worldbank.org/
WBSITE/EXTERNAL/DATASTATISTICS/
0,,contentMDK:20420458~ menuPK:64133156
~pagePK:64133150~piPK:64133175~theSitePK
:239419,00.html

Key termS

Developing Countries: Developing countries
are those that have an annual per capita income
(Gross National Income [GNI]) between US$875
and US$10,725.

Free/Libre Open Source Software (FLOSS):
Used to refer to both free and open source software
making no distinction between them.

Free Software (FS): Computer programs that
are not necessarily free of charge but give access
to the source code and permit users the freedom
to freely use, copy, modify, and redistribute.

Open Source Software (OSS): Software that
meets the terms of the Open Source Definition
(www.opensource.org/docs/definition.php). To
be open source, the software must be distributed
under a license that guarantees users the right to
read, redistribute, modify, and use freely.

Proprietary Software (PS): Software that
is normally owned by a company that typically
restricts access to the source code to protect the
company’s intellectual property. The software
is distributed as the “compiled” source code or
executable code (the binary form of the program).
Its use, redistribution, or modification is prohib-
ited or severely restricted (e.g., Microsoft Word,
Norton Antivirus).

Source Code: The list of instructions that make
up a computer program written in a high level
programming language (like C, Java or PHP) that
humans can read, understand and modify.

Total Cost of Ownership (TCO): The full cost
of deploying, maintaining and using a system (or
software) over the course of its lifespan.

enDnOteS

1 Open Source Definition, Version 1.9. Re-
trieved July 15, 2006, from http://www.
opensource.org/docs/definition.php

2 It is important that FLOSS is not confused
with terms like freeware and shareware.
These terms are usually used to describe
software which is available at no cost, but
its source code usually is closed. Internet
Explorer is one example of freeware that is
proprietary.

This work was previously published in Handbook of Research on Open Source Software: Technological, Economic, and Social
Perspectives, edited byK. St. Amant; and B. Still, pp. 93-101, copyright 2007 by Information Science Reference (an imprint
of IGI Global).

1934

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.10
Open Source and Outsourcing:

A Perspective on Software Use and
Professional Practices Related to

International Outsourcing Activities

Kirk St.Amant
Texas Tech University, USA

ABStrAct

This chapter examines the role of open source
software (OSS) in international outsourcing
practices that involve the transfer of knowledge
work from one nation to another. Included in this
examination are discussions of the benefits and
the limitations of OSS use in outsourcing. The
chapter also presents organization-specific and
industry-wide strategies for effective OSS use
in outsourcing situations. The chapter then con-
cludes with a discussion of areas of international
outsourcing where OSS might have important
future applications or effects. The purpose of
such an examination is to provide readers with
the knowledge and the insights needed to make
effective decisions related to the use of OSS in
international outsourcing situations.

IntroductIon

International outsourcing now includes the dis-
tribution of knowledge-based work to employees

in other countries. Much of this work, however,
requires the use of software either to perform
a task or to provide the technologies that allow
clients and outsourcing providers to interact.
Conventional “proprietary” software can, how-
ever, be prohibitively expensive to outsourcing
employees in developing nations.

Open source software (OSS) might offer a
solution to this problem, for OSS is often free to
use and is relatively easy to modify or to update.
Yet open source software also brings with it a
new series of problems related to product consis-
tency, user support, and digital piracy. While the
relationship between outsourcing and software
(particularly OSS) has been known for some
time, it has received relatively little attention in
terms of social and economic implications both
for those who outsource work and for those who
perform outsourced work. Knowledge of these
issues, however, is essential to understanding
both current and future outsourcing practices and
the socio-economic development of nations that
engage in outsourcing.

The purpose of this chapter is to provide readers
with a foundational knowledge of how OSS use

 1935

Open Source and Outsourcing: A Perspective on Software Use and Professional Practices

could affect international outsourcing practices.
After reading the chapter, individuals will un-
derstand the relationship between software and
outsourcing practices in terms of the opportunities
and the limitations it creates for client companies
and for outsourcing employees in developing na-
tions. This chapter also presents strategies organi-
zations can employ to use OSS more effectively in
international outsourcing situations. The chapter
then concludes with an overview of how global
computing and OSS use is poised for significant
growth and the implications this growth could
have for different organizations.

BAcKgrOunD

the growth of international
Outsourcing

In international outsourcing — or offshoring
— situations, companies in one nation transfer
the responsibility for completing a task to work-
ers in another country (Bendor-Samuel, 2004).
Originally, this transfer of responsibility focused
on manufacturing and the production of physical
products such as clothing or footwear. The global
spread of online media, however, has given rise to a
new kind of international outsourcing that involves
the export of knowledge-based work. Known as
business process outsourcing — or BPO — this
practice encompasses everything from computer
programming to call center staffing and medical
transcription. While such BPO practices have
existed on a relatively limited scale to date, they
are poised to expand rapidly in the future.

The push to adopt BPO has to do with the per-
ceived benefits related to such practices. Perhaps
the most publicized of these benefits is savings
related to the cost of skilled labor. Much of today’s
knowledge work is being outsourced to skilled
employees in developing nations — employees
who can perform most technical tasks for far less
than what counterparts in industrialized nations

would charge. For example, gaming developers
in Russia earn roughly $100 U.S. a week, while
middle managers in mainland China earn roughly
$9,000 a year (Weir, 2004; Nussbaum, 2004).

Such wage-based savings, however, are not
the only advantage related to offshoring. Rather,
proponents of outsourcing note it also offers the
benefits of

• Improved quality of service: Research
indicates overseas outsourcing employees
often provide better quality service than
“domestic” workers who perform the same
jobs (Reuters, July 182004; Farrell, 2004;
Hagel, 2004). Certain call centers in the
Philippines, for example, take 25% less
time to handle incoming calls and receive
higher rates of caller satisfaction than do
U.S. counterparts (Hagel, 2004).

• Effective management practices: Because
managers are paid less in developing nations,
organizations can easily justify the use of
more in-country managers to oversee out-
sourcing activities (Nussbaum, 2004; Hagel,
2004). This increase means managers have
more time to answer employee questions and
to provide employee training — factors that
contribute to the improved quality of work
or service perceived by many consumers
(Hagel, 2004; Lewis, 2003; Hagel, 2004).

• Reduced employee turnover: Secure em-
ployment is often rare in many developing
nations, and outsourcing jobs tend to be
among the better paying ones. Therefore,
outsourcing workers in developing nations
tend to stay with employers for longer periods
of time (Reuters, July 18, 2004; Farrell &
Zainulbhai, 2004). As a result, these long-
term employees tend to have more experi-
ence performing their jobs while reducing
the need for and the cost of new employee
training.

• Reduced production time: By using online
media to distribute work to employees in

1936

Open Source and Outsourcing: A Perspective on Software Use and Professional Practices

different nations and time zones, organiza-
tions can keep operations going 24 hours
a day, seven days a week. Such continual
production means that processes and prod-
ucts can be completed more quickly than if
done exclusively in one country (Friedman,
1999; Baily & Farrell, 2004; Bierce, 1999;
“America’s pain,” 2003).

• Increased access to international markets: In
many developing nations, marketplace suc-
cess is often a matter of knowing someone
in that region (Rosenthal, 2001). Companies
that provide outsourcing services can pro-
vide such an “in,” as well as provide advice
on how one should proceed with business
interactions in a particular nation or region
(Rosenthal, 2001).

The manifold benefits of offshoring have
prompted many companies to adopt it as a part
of their core business strategy. At present, it ac-
counts for $10 billion U.S. in worth and engages
the services of some 500,000 workers in India
alone (Baily & Farrell, 2004; Rosenthal, 2004b).
Moreover, some researchers believe offshoring
will grow by 20% a year through 2008, and by
2015, some 3 million business processing jobs
will be performed by outsourcing employees
(Rosenthal, 2004b; Baily & Farrell, 2004). Some
critics expect this number to be much higher and
claim at least 5 million international outsourc-
ing jobs will emerge in the next five to 10 years
(Garten, 2004).

The perceived benefits of international out-
sourcing have resulted in such practices spread-
ing to a number of countries and to a variety of
industries. French companies, for example, have
begun working with French-speaking developing
nations such as Senegal and Morocco on a variety
of outsourcing projects, and these relationships
have met with good results (Reuters, July 18,
2004). Similarly, German firms have begun
exploring outsourcing relationships with Easter
European nations, while the Netherlands has

begun using call centers located in South Africa
where Dutch-based Afrikaans is spoken (Farrell,
2004; “Sink or Schwinn,” 2004; Baily & Farrell,
2004; Rosenthal, 2004c). Additionally, markets
in Spain, combined with the growth in the U.S.
Spanish-speaking population, have meant more
work is now outsourced to Mexico and to Latin
America (Rosenthal, 2004a). Even India, the one
time center for international outsourcing, is now
outsourcing work to China and to Sri Lanka,
where it can be done for less money (Reuters,
September 2, 2004).

The majority of BPO practices, however, are
reliant on software. Aspects related to software
use can thus affect if and how organizations
realize the advantages related to the offshoring
of knowledge work. For this reason, decision
makers in the public and the private sectors need
to understand the differences between propri-
etary and open source software — as well as the
limitations and advantages of each — in order to
make informed choices related to international
outsourcing. Only through such informed deci-
sion-making can organizations benefit from the
advantages related to offshoring.

mAin tHruSt Of tHe cHApter

Software, cost, and international
Outsourcing Activities

Software is essential to international BPO prac-
tices for two key reasons. First, it provides the
mechanism for sharing materials and for interact-
ing with others online (e.g., browsers and email
systems). Without the software needed to engage
with others quickly, easily, and directly via the
Internet, many of the cost, time, and quality ben-
efits associated with the international-outsourc-
ing of knowledge work would not exist. Second,
production-related software (e.g., Microsoft Word
or Adobe Illustrator) is essential to performing
most knowledge-based programming, customer

 1937

Open Source and Outsourcing: A Perspective on Software Use and Professional Practices

support, and IT tasks efficiently and effectively.
Again, without the software needed to perform
tasks, the time, cost, and quality benefits of inter-
national outsourcing cannot be realized.

Unfortunately, the makers of software products
have traditionally produced proprietary programs
that require individuals to purchase them in order
to perform a given activity. The for-profit nature
of proprietary software has, however, made it
unavailable to large segments of the world’s
population — particularly in developing nations
where high purchase prices are often associated
with such materials (Warschauer, 2003). This
restriction, in turn, affects online access and thus
outsourcing activities in those regions.

One solution to this situation would be for
companies to supply prospective international
outsourcing providers with free or inexpensive
software products that would allow them to
participate in outsourcing activities. Such an ap-
proach, however, would contribute to a second
major software problem — copyright violation.
In many developing nations, copyright laws are
often weak (if not non-existent) or governments
show little interest in enforcing them. As a result,
many developing nations have black market busi-
nesses that sell pirated versions of software and
other electronic goods for very low prices (Balfour,
2005). Such software piracy reduces consumer
desire to purchase legitimate and more costly
versions of the same product, and thus affects a
company’s profit margins within that nation. In
fact, global software piracy in 2004 accounted for
some $33 billion U.S. in lost profits (“One third,”
2005). Further compounding this problem is the
fact that it is often difficult for companies to track
down who is or was producing pirated versions of
software products in order to stop that offender.
Thus, while the distribution of cheap or free digi-
tal materials can help contribute to outsourcing
activities, that same strategy can undermine an
organization’s ability to sell its products abroad.
Open source software (OSS) can offer a solution
to this situation.

Open Source Software and
international Outsourcing

Software, in essence, is programming code — or
source code — that tells a computer’s operating
system how to perform a certain action (Still,
2004). The source code of Microsoft’s software
program Word, for example, tells the related
operating system how to transfer keystrokes
into letters on a page and how to edit or to print
that page. In theory, if an individual knows what
programming/source code is needed to make a
computer perform such activities, then that indi-
vidual can simply retype that source code into
his or her operating system, and the computer
will respond as desired — the exact same way
the original software would.

Accordingly, if and individual can see how
someone else programmed software to work (see
the underlying source code), all that person needs
to do is copy that programming/source code,
and he or she no longer need to buy the related
software. Rather, that person can now achieve the
same action on his or her own. For this reason,
many software companies “close” their source
code in order to prevent users from seeing the
underling programming that allows the software
to work (Still, 2004). In these situations, users
need to work through an interface that allows
them to activate certain commands indirectly
within a software program’s underlying source
code. Closed software that prevents users from
seeing the underlying code is know as proprietary
software, for only the creator of that software is
allowed to open or to see and to copy or to ma-
nipulate the underlying source code.

Open source software is a polar opposite in
terms of access to source code/programming. That
is, the developer of a piece of software creates it
in manner that is “open” and permits any and all
users to access, copy, and modify the underlying
source that allows software to work (Still, 2004).
A classic example of such open source program-
ming is the HTML coding that allows Web pages

1938

Open Source and Outsourcing: A Perspective on Software Use and Professional Practices

to be displayed on browsers. The coding of these
pages is open for anyone to review and copy; all
the user needs to do is view a page’s underlying
source code by using the “View source” — or
related option — in his or her browser.

This openness means individuals do not
necessarily need to buy open source software in
order to use it. Rather, they can directly access
and copy the underlying source code in electronic
format, or they can re-code/re-type the program-
ming code and create a free copy of the related
software. Such openness also means individuals
can alter the underlying source code to make a
software program perform different functions.
So, in theory, a copy of the underlying source
code from one kind of software could be modi-
fied into a variety of programs — each of which
performs a different task. Updating software,
moreover, becomes a matter of copying new/up-
dated code versus purchasing the newest version
of a product.

In the case of international outsourcing, OSS
can provide individuals with access to affordable
software that allows them to work within out-
sourcing relationships. Moreover, the flexibility
permitted by OSS means outsourcing workers
could modify the software they use to perform
a wide variety of tasks and reduce the need for
buying different programs in order to work on
different projects. As the software it is produced
by the outsourcing employee and not the client,
concerns related to copyright and proprietary
materials are no longer stumbling blocks to
outsourcing relationships. Thus, it is perhaps no
surprise that the use of OSS is growing rapidly in
many of the world’s developing nations (“Open
source’s,” 2003).

the problems of Open Source
Software in international
Outsourcing

While the free and flexible nature of open source
software allows it to contribute greatly to inter-

national outsourcing situations, OSS also brings
with it limitations that could affect the success of
BPO relationships. First, because OSS is open for
the user to modify as he or she sees fit, it is easy
for each individual to use the same programming
foundation/source code to develop a different
kinds of non-compatible software or other digital
products. Such divergence is know as forking code,
for each programmer can take a different “fork” in
the programming “road,” and such forking code
has long been considered a major problem in OSS
use (Still, 2004). These prospects for divergence
mean international outsourcing situations are open
to a variety of problems related to compatibility.
Such problems include

• Employees might generate software or other
materials that the related client company
cannot use due to compatibility issues.

• Software products might not work as de-
sired or work in unexpected ways/ways
not compatible with the client company’s
intentions.

• Employees working on different parts of
the same project might produce component
parts that cannot be integrated into the same
whole or do not work together correctly or
as intended within that same whole due to
compatibility issues.

• Addressing compatibility issues either
among international work groups or between
offshoring workers and clients could take
more time and cost more than if the product
had been produced domestically.

Thus, the freedom that allows one individual
to operate software might also prevent others
from making use of digital materials. Addition-
ally, any or all of these factors could contradict
the advantages of reduced cost, quicker produc-
tion time, and increased quality that encourage
organizations to use international BPO.

Some OSS companies, such as LINUX, have
successfully addressed the problem of forking

 1939

Open Source and Outsourcing: A Perspective on Software Use and Professional Practices

code through focused oversight processes that
govern programming practices (Hamm, 2005).
The result has been successful and relatively
stable software products that work effectively
with other systems. The same kind of manage-
ment, oversight, and standardization, however,
becomes more complicated in an international
outsourcing situation where a variety of employees
can be working in different nations and different
time zones

A second problem involves the kind of tech-
nical support available to OSS users — both
outsourcing employees and consumers using OSS
products. Because no individual or organization
really owns an open source software product, there
is often no formal or standardized mechanism for
providing technical support to OSS users. Rather,
technical support often comes in the form of a
loose network of OSS programmers/developers
who interact informally — and sometimes hap-
hazardly — in online contexts such as chat rooms
or listservs (Still, 2004). The idea is that a user
who is experiencing software difficulty posts a
query to one of these online forums and waits
for a member of that forum to read the posting
and respond to it.

A major problem in such an informal system
is that technical support/answers are not readily
available. Rather, individuals who experience
“glitches” related to time-sensitive OSS projects
could find themselves missing or offsetting dead-
lines as they wait for some random programmer to
respond to a request for help. Unfortunately, such
a response could take anywhere from minutes to
days depending on who is reading what lists or
who is posting when. In the fast-paced environ-
ment of global business, such delays could have a
major effect on production schedules, profits, and
access to international markets. These delays also
counteract one of the key benefits of and reasons
for using international outsourcing — quicker
production times.

Equally problematic is the fact that such sup-
port systems are open for anyone to respond to,

regardless of a person’s technical skills or under-
standing of the situation (Still, 2004). Thus, the
quality of the advice related to such a support
system can be haphazard, inconsistent, or even
wrong. Moreover, different individuals might offer
varying suggestions/solutions to the same situa-
tion. Thus, requests for assistance could introduce
the similar problem of forking/diverging source
code into situations where different individuals
encounter problems when working on the same
project. As a result of these limitations, materi-
als created using OSS could be incompatible,
inconsistent, or even non-functional depending
on the kind of “help” one received.

Finally, open source software creates inter-
esting and often unintended problems related to
copyright. Most proprietary operating systems
(e.g., Microsoft Windows) and proprietary soft-
ware programs (e.g., Microsoft Windows Media
Player) work by opening digital materials loaded
into a computer system. That is, Windows Me-
dia Player opens the video files on a DVD or the
audio files on a CD so that individuals may view
or listen to films or music stored on those DVDs
or CDs. This approach means the individual is
able to access materials while maintaining the
copyright related to such items.

Open source software allows users to access
the same kinds of files in a very different way.
Rather than simply opening files located on a
DVD or CD, OSS programs often automatically
make a copy of such digital products, store that
copy on the hard drive of the user’s computer, and
then open that copied file so the user can view or
can listen to it (Zoellick, 2001). This automatic
copying process, known as ripping, means that
users of OSS materials automatically violate
copyright just by trying to access or to use certain
digital products. These unauthorized copies are
available for anyone with access to the related
computer — an important problem in outsourcing
situations where more than one employee often
uses the same terminal for work. Such ripped
copies, moreover, can easily be replicated and

1940

Open Source and Outsourcing: A Perspective on Software Use and Professional Practices

sold in black market exchanges — a situation of
particular importance as such illegal activities are
well established and difficult to monitor in many
of the world’s premier outsourcing locations (e.g.,
the People’s Republic of China). As a result, the
copyright — or piracy — problems OSS could
solve in terms of misuse of proprietary software
could affect different products should

• The original client company needs to provide
outsourcing employees with proprietary
digital materials in order to perform certain
outsourced tasks.

• The original client company sells OSS
products resulting from outsourcing work to
different customers who can now use such
products to make illegal copies of digital
materials.

Thus, the use of OSS in BPO can be a double
edged sword. Yet, the use of OSS in international
outsourcing is a situation that must be addressed
if organizations wish to succeed in the global
business environment of the 21st century. For this
reason, organizations must find ways to strike a
balance between OSS’s benefits and detriments
in offshoring situations. Such a balance can be
established through the development and the
use of various organizational and industry-wide
practices and policies.

Strategies for using OSS effectively
in international Outsourcing

While OSS use in outsourcing creates a com-
plicated situation, these complications can be
addressed successfully through approaches that
create standards for design and for use. What fol-
lows are ten strategies that can create an effective
foundation for using OSS in international BPO.

• Strategy 1: Create a programming standard
all outsourcing employees will use when
working with OSS. By creating and shar-

ing standards for how one should program
with OSS, organizations that outsource
activities can provide overseas workers with
guidelines that impose consistency on the
programming process. These guidelines
would instruct outsourcing OSS users on
what programming choices to make during
different points in an overall process. Such
instructions would help reduce the prospects
of forking code and increase compatibility
across employees.

Standards should also be created to address
the coding of comments — or the bits of verbal
explanation that appear within the coding of a
program. These comments allow users and clients
to know why a particular programming decision
was made and to know the effects that decision
could have on the operation of the related digital
product. By creating standards for when and for
how to create such comments, companies that use
outsourcing create a built-in mechanism for re-
viewing materials produced by overseas workers.
To make sure that such standards are followed by
outsourcing employees, the related client company
should suspend all or part of final payment until
it has had time to review the final product, and its
related comments, in order to confirm standards
were followed. While such monitoring could
initially slow production, as outsourcing employ-
ees become aware of the fact their work is being
monitored, they will spend more time adhering
to standards. In so doing, these employees will
create a better product. Thus, over the long term,
the time spent monitoring OSS processes would
decrease while the quality of products would
increase. The increase in quality resulting from
such practices would therefore eventually offset
any initial slowdown in production caused by the
introduction of monitoring procedures.

• Strategy 2: Require outsourcing workers
to identify themselves as OSS users and
require those users to complete organiza-

 1941

Open Source and Outsourcing: A Perspective on Software Use and Professional Practices

tional training programs in standard OSS
practices. Such identification and training
— which can be completely online — would
allow organizations to provide outsourcing
workers with instruction in how to follow a
particular organization’s standards for OSS
use and coding. It would also allow compa-
nies to identify which standards seem most
problematic for individuals (via automati-
cally reviewed online tests). Organizations
could then provide follow-up online training
to help individuals address their particular
problem areas related to OSS. Initial ex-
penses dedicated to the development and the
delivery of such training can contribute to
increased later profits in the form of more
efficient, more effective, and more standard
uses of OSS by outsourcing employees.

• Strategy 3: Develop an organizational sup-
port mechanism for helping outsourcing
OSS users. To make sure that outsourcing
employees using OSS get consistent and
accurate answers to technical questions,
organizations should develop their own OSS
online support lists or Web sites. Such Web
sites would be free access, but they would
require individuals to enter a username and
password (supplied by the organization)
to gain access to such resources. Such a
measure would cut down on non-employees
taking advantage of this resource and thus
diverting attention away from the help given
to an organization’s actual workers.

This resource would be staffed by employees
who have a high degree of proficiency in OSS
use, and these “help” persons would be “on call”
24 hours a day to accommodate queries from
outsourcing employees in different nations and
time zones. These help employees would also be
given access to an online database of the kinds of
projects being worked on by different outsourc-
ing employees. Help workers could then use this
information to determine the prospective problems

(and related best solutions) affecting different out-
sourcing workers. Such help workers would also
record all comments and suggestions in a central
online database that would cross-reference those
suggestions with the names of all outsourcing
workers involved in the same project. Such cross-
listing would allow other help providers to offer
consistent advice (and germane suggestions) to all
outsourcing employees working on a project.

• Strategy 4: Establish a peer-mentoring
program for outsourcing workers who use
OSS. The effective use of OSS in a business
environment is part understanding program-
ming processes and part understanding the
culture and the goals of the organizations
using those programs. For this reason, the
more outsourcing workers know about an
employing organization’s culture, goals, and
objectives, the more effectively they can
use OSS to engage in processes or develop
products that address those factors (Clement,
1994; Tan, 2000; Sandholm, 2004). That is,
if the outsourcing employee knows how a
given OSS product will fit into a company’s
objectives, that employee will have a better
idea of how to program to meet those objec-
tives (Clement, 1994; Tan, 2000; Sandholm,
2004). Similarly, if the outsourcing employee
is aware of the importance of copyright and
proprietary products to a company, that em-
ployee is less likely to make unauthorized
copies — either inadvertently or intention-
ally.

By pairing outsourcing employees with a
peer mentor from the client company, organiza-
tions provide such outsourcing employees with
someone who can provide an introduction to the
organization’s culture and its objectives. This
mentor could make the outsourcing employee feel
more a part of the overall organization. Such a
peer could also familiarize outsourcing employees
with company standards for OSS use and copyright

1942

Open Source and Outsourcing: A Perspective on Software Use and Professional Practices

policy (as well as the consequences for violating
such a policy). In so doing, the mentor creates a
mechanism for accountability, for the outsourcing
employee is no longer a “faceless” worker who
exists as a mere payroll number.

Such a peer mentor should also have a back-
ground in OSS so he or she can provide the
outsourcing worker with advice on how to best
address a particular programming/software situ-
ation. The mentor could similarly introduce the
outsourcing employee to corporate training ma-
terials and support services and review program-
ming work to check its quality. Work with such
a peer mentor could be made an essential part of
the training process associated with outsourcing
workers. The mentor’s evaluation of that worker’s
progress could likewise serve as an important
resource when making the decision to continue
using a particular outsourcing employee.

• Strategy 5: Create protocols for sharing or
for forwarding work among international
outsourcing employees. In many cases, work
that is outsourced to one overseas employee
is shared or forwarded to another interna-
tional outsourcing employee working on
the same process (Freedman, 1999). Within
such contexts, effective information sharing
is essential, for the more time it takes an
individual to determine what a predecessor
has done and expects that individual to do,
the less efficient the international outsourc-
ing process is. For this reason, outsourcing
employees need to use a standard mechanism
for listing what they have done/how they’ve
used or programmed OSS so colleagues can
understand this work.

Outsourcing employees also need to provide
standard directions on how the recipient of that
information should use OSS to continue with work
on that project. By developing standards ways of
reporting such information to colleagues, orga-
nizations decrease the chances that confusion or

a programming inconsistency will occur. These
comments should also be shared with/downloaded
to a database controlled by the client company.
This database can help organizations anticipate or
backtrack to locate prospective problems related
to OSS use in outsourcing. Such a database should
also be accessible to any individuals providing
help in such outsourcing situations. The informa-
tion in this database could allow help providers
to better understand and address prospective
problems encountered by one of more of the
outsourcing employees working on forwarded
materials (Strategy 3).

• Strategy 6: Require all international out-
sourcing relationships to be long-term
contracts. Many of the disaster stories
associated with international outsourcing
occurred because of short-term relation-
ships (Goolsby, 2004). In such relationships,
neither party feels particularly invested in
the long-term success of the other, so the
desire to conform to standards or respect
copyright is low. Moreover, such short-term
relationships often mean that the employ-
ment of the outsourcing worker ends just as
he or she finally begins to understand and
feel comfortable with a client’s expecta-
tions. By requiring international outsourc-
ing employees who use OSS to contract for
longer times, client organizations can retain
experienced employees who are accustomed
to working according to a company’s OSS
programming guidelines.

Such long-term relationships also improve
accountability in outsourcing, for outsourcing
employees are more likely to conform to program-
ming standards and to respect copyright if they
wish to maintain long-term business relations
with the client (Atwood, 2004). Thus, long-term
contracts enhance accountability in international
outsourcing situations. Within such long-term
relations, client companies should conduct regular

 1943

Open Source and Outsourcing: A Perspective on Software Use and Professional Practices

audits of outsourcing employee work to make
sure programming and comment guidelines are
being followed and that the copyright of materi-
als is respected.

• Strategy 7: Hire in-house (domestic)
employees who are proficient in OSS or
train in-house (domestic) employees to be
proficient in OSS. Such employees will be
essential to an organization, for they can
serve as the peer mentors and the trainers
of international outsourcing workers. They
can also serve as the individuals who provide
online support to outsourcing employees and
as the individuals who will audit OSS work
in long-term contract situations.

By having trained OSS employees in house,
organizations can rapidly respond to a variety of
OSS crisis situations, easily develop new OSS
coding practices, and readily share information
about new OSS processes. Organizations can
also adapt mentoring, training, support, and
auditing activities to conform to new computing
and business developments. Finally, such in-
house employees can help client organizations
understand different developments in, successes
of, and problems related to OSS when used in an
international outsourcing context.

• Strategy 8: Develop a list of “copyright-
friendly” outsourcing locations and refer to
this list whenever considering international
outsourcing. To protect materials from pi-
racy, organizations need to make sure they
send such materials to nations that will
acknowledge and enforce copyright laws
and treaties. Such laws and treaties would
provide organizations with a method for
stopping such piracy if it happens in another
nation and provide a method of recourse
for curbing sales of and profits made from
pirated materials. For these reasons, organi-
zations can benefit from regularly updated

listings that overview what international out-
sourcing destinations offer the best copyright
protections. Such listings should include the
following information:

• If a convention or a treaty on copyright
protection exists between the nation of
the client organization and that of the out-
sourcing employee; a sample listing of such
copyright-based treaties involving the Unites
States can be found at www.copyright.gov
— the Web site for the U.S. government’s
Copyright Office

• What laws a particular nation has to guar-
antee copyright protection and how enforce-
able those laws are, for some nations have
copyright agreements that are either not
enforced or enforced haphazardly (Doyle,
2004; Orr, 2004)

• How the client organization should file a
grievance or petition according to a particu-
lar convention or treaty, or according to the
laws of a certain nation

• With which government agencies — both
in the client organization’s own nation and
the outsourcing employee’s nation — such
a grievance or petition should be filed

• What actions to expect in response to filing
such a grievance and if any losses can be
recovered according to international agree-
ments or national laws

By consulting such a listing in advance of
distributing work to overseas outsourcing work-
ers, companies can reduce the risks that copyright
violations will occur through restricting the distri-
bution of materials only to employees in nations
that provide effective copyright protection.

• Strategy 9: Develop an industry standard
for OSS use. While an individual corporate
standard can address compatibility issues
related to one organization, the OSS-based
products created by that organization might
be used by other companies within an overall

1944

Open Source and Outsourcing: A Perspective on Software Use and Professional Practices

industry. At this level, the compatibility of
OSS products again becomes an issue. To
avoid compatibility problems across overall
industries, the members of those industries
should work together to develop an indus-
try-wide standard for how to code, record
comments, offer help, and record suggested
solutions to programming problems. These
standards could then be shared via an online
database available to all members of a given
industry. As computer programming prac-
tices are continually evolving, such a site
should also have a “recent developments”
section in which member organizations share
new information and practices, innovations,
or responses to previously unconsidered
problems. Industry members should also
meet regularly (annually or bi-annually) to
share experiences and to update the related
standards for OSS use in international out-
sourcing practices.

• Strategy 10: Establish and maintain an
industry-wide database of individuals and
organizations that have violated copyright
or violated coding standards in international
outsourcing relationships. Several outsourc-
ing experts have noted that the fear of lost
employment — and thus lost money — is
one of the few ways to force international
outsourcing workers to comply with industry
standards and procedural (legal) guidelines
(Atwood, 2004). The problem with interna-
tional outsourcing is that an individual might
violate the standards or the guidelines of one
organization without fear. That is, individu-
als could think they can simply go to work
for a different organization and that new
employer would be unaware of an outsourc-
ing worker’s past. In this situation, the fear
of reprisal through lost income remains low
as the international outsourcing employee
can easily move on to other clients.

To counter this practice, organizations within
an industry should establish a list of outsourcing
offenders who have either failed to conform to
OSS programming guidelines or who have used
OSS to violate copyright. The idea would be to
create an easy-access registry (e.g., a Web site) in
which companies could record the names of the
outsourcing providers with which they worked.

Included in such a registry would be a list-
ing of who the violator is, what the nature of the
violation was, what the client did in response to
this violation, and what results came from this
action. Such a registry could help companies
avoid working with “disreputable” outsourcing
providers as well as offer effective strategies for
addressing violations that occur in outsourcing
relationships. These industry-wide registries
mean that a large number of companies might
now avoid “suspect” outsourcing providers and
greatly affect their profits by creating a boycott
situation. This fear of boycott could be a power-
ful incentive for outsourcing providers to abide
by data processing practices required by client
organizations (Atwood, 2004). Such a site should
also allow users to provide a synopsis of the ef-
fectiveness with which they felt an outsourcing
provider performed work.

For such a registry to be effective and open
to the widest range of users, it should be online
and allow users to perform internal searches for
different outsourcing providers. It should also
be updated regularly. Perhaps the best organiza-
tion to oversee such a registry would be industry
oversight bodies or the chamber of commerce or
the Better Business Bureau in states where a large
number of companies engage in international
outsourcing.

These registries would need to provide users
with effective instructions on how to report con-
cerns and locate data on outsourcing providers.
They would also need to provide different kinds
of information to different companies depending
on the size of the company (small business or mul-
tinational conglomerate) and the related industry.

 1945

Open Source and Outsourcing: A Perspective on Software Use and Professional Practices

Such registries could also be made effective by
having frequently asked questions (FAQ) sheets
or online help functions that facilitate use and
provide information on how to address problems
related to international outsourcing.

Each of the afore-mentioned strategies is
crucial to maintaining consistency and protect-
ing ownership in outsourcing situations involv-
ing OSS. This list, however, is by no means
comprehensive. Rather, it is a starting point that
addresses some of the more fundamental aspects
of OSS use in international outsourcing. For this
reason, organizations might wish to address new
developments in or particular uses of OSS in
international outsourcing relationships.

future trenDS

At present, international OSS use might seem to
be a peripheral topic related to a limited number
of activities. Certain trends in business practices
and international markets, however, indicate that
organizations need to explore their OSS practices
now, in order to prepare for and effectively ad-
dress these trends.

the projected Demand for
computing and it use in
international Outsourcing

Among the areas expected to experience the
greatest growth in BPO are finance, accounting,
and medicine, and all of these areas of growth
have one thing in common — data processing that
involves computers and information technology.
Many managers and bankers in the United States,
for example, see international outsourcing as an
effective way to address different accounting
practices — particularly those related to informa-
tion technology (IT). This push is in part due to
the Sarbanes-Oxley Act of 2002 — section 404 of
which requires chief executive officers and chief
financial officers of public companies to review

their internal controls over financial transactions
(“404 tonnes,” 2004). The costs and time asso-
ciated with all of the data crunching related to
such activities are massive,1 and IT could greatly
help with the compiling of information and the
coordination of related activities. One way to curb
costs, maximize time, and focus on computing in
processing would be to outsource such activities.
After all, the outsourcing of accounting and of IT
work is not new and could address a lack of needed
and costly domestic employees in both IT and in
auditing2 (“Relocating the back office,” 2003).
Given the costs related to such activities and the
fact that more complex accounting practices are
being outsourced, it seems reasonable to expect
that some section 404 activities would be prime
candidates for international outsourcing.

New U.S. healthcare legislation also seems
poised to increase the international outsourcing
related to IT work and data processing. The driv-
ing force behind this trend is the Health Insurance
Portability and Accountability Act (HIPAA),
which requires that all of an individual’s medi-
cal information be placed in electronic format so
it can be easily shared via computer systems
(Goolsby, 2001b; Goolsby, 2001c). Under HIPAA,
print medical records must be processed into a
digital format — a task that is time consuming,
costly, and monotonous — and maintained via
an IT system for sharing such information. The
projected result of such processing is massive
IT costs for all health care organizations such
as hospitals (Goolsby, 2001a; Goolsby, 2001c).
These factors make HIPAA-related tasks, such
as medical transcription and IT development
and oversight, ideal candidates for international
outsourcing. They also make the development
and the monitoring of related IT systems prime
areas for international outsourcing, especially
as most healthcare providers are relatively new
to such systems and their operations (Goolsby,
2001a; Salkever, 2004; “Sink or Schwinn,” 2004).
As so much of this financial and medical related
work involves computers, it would be safe to as-

1946

Open Source and Outsourcing: A Perspective on Software Use and Professional Practices

sume that some — or many — of the outsourcing
employees working on such projects would be
using OSS. For this reason, the development of
standard OSS practices becomes essential, not
only to achieving organizational objectives, but
to meeting legal requirements.

the Value of OSS in international
marketing

OSS also has important implications for how busi-
nesses access markets in developing nations. Until
quite recently, the majority of individuals within
these regions had little or no access to the online
environment. That factor of access, however, has
changed markedly in recent years, due in large part
to a mixture of public and private sector programs
designed to increase global Internet use. In China,
for example, the number of Internet users grew
from 2.1 million in 1999 to a projected 96 million
by the end of 2004, and some experts expect this
number to balloon to over 200 million users by
2007 (“Wired China,” 2000; “China’s coming,”
2004). In Africa, the United Nations and private
companies have undertaken initiatives to increase
online access across the continent, and Africa’s
number of dial-up Internet connections has grown
by some 20% in the past two years while the sales
of laptop computers remain strong in this part of
the world (“Tapping in to Africa,” 2000; Kalia,
2001; Reuters, 2002; “Laptop sales,” 2004).

In Latin America, Brazil has seen its number
of online users grow by 430,000 in recent months,
and Global Crossings Ltd. has recently completed
a project that uses fiber optics to give, “multina-
tional companies the ability to communicate with
Latin America as efficiently as with any other
region” (“Active Internet users,” 2004; “Tying
Latin America together,” 2001, p. 9). Addition-
ally, the number of individuals going online in
Eastern Europe is expected to climb from 17%
to 27% by 2006, and laptop sales in the region
remain strong (“IDC research,” 2003; “Laptop
sales,” 2004).

As a result of these developments, companies
can now use online media to market goods, supply,
and services, and even sell and distribute digital
products on an unprecedented scale in the devel-
oping world. This concept of scale, moreover, is
no small matter, for the poor in many developing
nations have a large combined purchasing power.
The collective buying power of Rio de Janeiro’s
poorest residents, for example, is estimated to be
some $1.2 billion (“Beyond the digital divide,”
2004). The value of such aggregate overseas mar-
kets is perhaps the reason that certain companies
have started developing online communication
technologies that could provide the “less well off”
citizens of the world with affordable online access
(“Beyond the digital divide,” 2004; Kalia, 2001).
They have also begun developing inexpensive
hubs for online access in nations such as India,
Ghana, Brazil, and South Africa (Warschauer,
2003; “Beyond the digital divide,” 2004).

Interaction via the Internet and the Web, how-
ever, requires the use of software (e.g., a browser)
that allows a wide range of individuals to navigate
the online environment. For this reason, the only
way companies would be able to effectively tap
these poorer overseas markets would be through
the use of free or inexpensive open source soft-
ware. If, however, each prospective consumer in
developing nations used a different kind of OSS
to interact online, then the ability of companies to
tap those markets in a mass, and thus a profitable,
manner is lost. The development of standards in
OSS programming and use provides a mecha-
nism for avoiding such problems. Moreover, by
introducing such standards early on and to the
more technologically savvy individuals engaged
in international outsourcing, organizations can
improve the chances that such standards will either
“trickle down” or spread throughout an overall
region. Thus, the development of international
OSS standards has important financial implica-
tions that can extend far beyond international
outsourcing.

 1947

Open Source and Outsourcing: A Perspective on Software Use and Professional Practices

cOncluSiOn

International outsourcing offers a variety of cost,
time, and quality advantages to those organiza-
tions that use it effectively. In relation to the
international outsourcing of knowledge work,
such effectiveness often involves access to and
uses of software. While open source software
can provide a distinct advantage in international
outsourcing situations, such uses of OSS must
be guided by both client companies and overall
client industries. Fortunately, uses of OSS in
international outsourcing are still relatively new.
For this reason, organizations have some time
to develop the standards, protocols, resources,
and relationships essential to effective OSS use
in outsourcing contexts. The ideas presented in
this chapter provide the reader with a foundation
for exploring such developments. By understand-
ing, employing, and building upon these ideas,
organizations can improve the success with which
they engage in international outsourcing practices
both today and in the future.

referenceS

404 tonnes. (2004, December 16). The Economist.
Retrieved December 27, 2004, from ht tp://
www.economist.com/displaystory.cfm?story_
id=3503931

Active Internet users by country, August 2004.
(2004, September 22). ClickZ. Retrieved October
6, 2004, from http://www.clickz.com/stats/big_
picture/geographics/article.php/3410261

Atwood, M. (2004). The art of governance. Out-
sourcing Center. Retrieved December 27, 2004,
from http://www.outsourcing-requests.com/cen-
ter/jsp/requests/print/story.jsp?id=4616

Baily, M. N., & Farrell, D. (2004, July). Explod-
ing the myths of offshoring. The McKinsey
Quarterly. Retrieved November 11, 2004, from

http://www.mckinseyquarterly.com/article_print.
aspx?L2=7&L3=10&ar=1453

Balfour, F. (2005, February 7). Fakes! Busi-
nessWeek Online. Retrieved May 31, 2005,
from http://www.businessweek.com/@@ISY-
AAIQQjU40VAkA/magazine/content/05_06/
b3919001_mz001.htm

Bendor-Samuel, P. (2004). Lou Dobbs: Here’s
why you’re wrong! Outsourcing Center. Retrieved
December 20, 2004, from http://www.outsourc-
ing-requests.com/center/jsp/requests/print/story.
jsp?id=4565

Beyond the digital divide. (2004, March 13).
The Economist: Technology Quarterly Supple-
ment, 8.

Byrnes, N. (2005, January 1). Green eyeshades
never looked so sexy. BusinessWeek Online.
Retrieved January 5, 2005, from http://www.
businessweek.com/@@na*EhYQQxu80VAkA/
magazine/content/05_02/b3915041_mz011.htm

China’s coming of age online. (2004, Novem-
ber 16). eMarketer. Retrieved November 17,
2004, from http://www.emarketer.com/Article.
aspx?1003139&printerFriendly=yes

Clement, R. W. (1994). Culture, leadership, and
power: The keys to organizational change.
LookSmart. Retrieved March 3, 2005, from
http://www.findarticle.com/p/articles/mi_m1038/
is_n1_v37/ai_149

Doyle, J. F. (2004). Avoiding outsourcing pitfalls.
Outsourcing Center. Retrieved December 12,
2004, from http://www.outsourcingrequests.
com/center/jsp/requests/print/story.jsp?id=4626

Farrell, C. (2004, November 22). Giving thanks
for offshoring. BusinessWeek Online. Retrieved
December 30, 2004, from http://www.busi-
nessweek.com/pring/bwdaily/dnflash/nov2004/
nf20041122_7377_dbb013

1948

Open Source and Outsourcing: A Perspective on Software Use and Professional Practices

Farrell, D., & Zainulbhai, A. S. (2004). A richer
future for India. The McKinsey Quarterly.
Retrieved August 16, 2004, from http://www.
mckinseyquarterly.com/article_page.aspx?ar=1
440&L2+7&L3=10&srid=6&g

Friedman, T. L. (1999). The Lexus and the olive
tree. New York: Farrar, Strass and Giroux.

Garten, J. E. (2004, June 21). Offshoring: You
ain’t seen nothin’ yet. BusinessWeek Online.
Retrieved December 30, 2004, from http://busi-
nessweek.com/print/magazine/content/04_25/
b3888024_mz007.htm

Goolsby, K. (2001a). Healthcare’s biggest chal-
lenge. Outsourcing Center. Retrieved December
12, 2004, from http://www.outsourcing-requests.
com/center/jsp/requests/print/story.jsp?id=1660

Goolsby, K. (2001b). How to get ready for HIPPA.
Outsourcing Center. Retrieved December 12,
2004, from http://www.outsourcing-requests.
com/center/jsp/requests/print/story.jsp?id=1686

Goolsby, K. (2001c). Perspectives on HIPPA.
Dallas, TX: Outsourcing Center.

Goolsby, K. (2004). The disgruntled employee: A
holistic model addressing behaviors in outsourc-
ing. Outsourcing Center. Retrieved May 6, 2005,
from http://www.outsourcing-requests.com/cen-
ter/jsp/requests/print/story.jsp?id=4631

Hagel, J. III. (2004). Offshoring goes on the
offensive. The McKinsey Quarterly. Retrieved
November 1, 2004, from http://www.mckinsey-
quarterly.com/article_page.aspx?ar=1406&L2=1
&L3=106&srid=11

Hamm, S. (2004, September 27). Tech’s future.
BusinessWeek, 82-89.

Hamm, S. (2005, January 31). Linux, Inc.
Businesweek Online. Retrieved May 2, 2005,
f rom ht tp://www.businessweek.com/@@
p3fqe4UQ4k80VAkA/magazine/content/05_05/
b391 8001_mz001.htm

IDC research: Net usage up in Central and East-
ern Europe. (2003, February 19). NUA Internet
Surveys. Retrieved June 23, 2003, from http://
www.nua.com/surveys/index.cgi?f=VS&art_
id=905358723&rel=true

Kalia, K. (2001, July/August). Bridging global
digital divides. Silicon Alley Reporter, 52-54.

Laptop sales continue to climb in third world.
(2004, August 20). eMarketer. Retrieved October
27, 2004, from http://www.emarketer.com/Article.
aspx?1003006 &printerFriendly=yes

Lewis, W. W. (2003). Educating global workers.
The McKinsey Quarterly. Retrieved November
10, 2004, from http://www.mckenseyquarterly.
com/article_page.aspx?ar=1357&L2=7&L3=10

Malik, R. (2004, July). The new land of oppor-
tunity. Business 2.0, 72-79.

Nussbaum, B. (2004, September 20). Is outsourc-
ing becoming outmoded? BusinessWeek Online.
Retrieved October 11, 2004, from http://www.
businessweek.com/print/bwdaaily/dnf lash/
sep2004/nf20040920_0654.htm?cha

One third of all software in use still pirated, major
study finds. (2005, May 18). IDC. Retrieved May
31, 2005, from http://www.idc.com/getdoc.jsp?
containerId=prUS00150505

Orr, G. R. (2004). What executives are asking about
China. The McKinsey Quarterly. Retrieved Octo-
ber 6, 2004, from http://www.mckinseyquarterly.
com/article_pring.aspx?L2=7&L3=8&ar=1478

Relocating the back office. (2003, December 11).
The Economist. Retrieved December 20, 2003,
from http://www.economist.com/displaystory.
cfm?story_id=2282381

Reuters: Internet use increasing in Africa. (2002,
October 1). NUA Internet Surveys. Retrieved June
25, 2002, from http://www.nua.com/surveys/in-
dex.cgi?f=VS&art_id=905358408&rel=true

 1949

Open Source and Outsourcing: A Perspective on Software Use and Professional Practices

Reuters. (2004, July 18). France outsources,
Senegal calls. Wired. Retrieved September
20, 2004, from http://www.wired.com/news/
print/0,1294,64262,00.html

Reuters. (2004, September 2). Outsourcing’s next
big thing – Malaysia? News.Com. Retrieved Sep-
tember 7, 2004, from http://news.com.com/2100-
1011-5344618.html.

Rosenthal, B. E. (2001). Business risk. Outsourc-
ing Center. Retrieved December 21, 2004, from
http://www.outsourcing-requests.com/center/jsp/
requests/print/story.jsp?id=1685

Rosenthal, B. E. (2004a). How real estate choices
affect offshoring decisions. Outsourcing Center.
Retrieved December 12, 2004, from http://www.
outsourcing-requests.com/center/jsp/requests/
print/story.jsp?id=4718

Rosenthal, B. E. (2004b). META predicts off-
shoring will continue to grow at 20 percent clips
through 2008. Outsourcing Center. Retrieved
December 27, 2004, from http://www.outsourc-
ing-requests.com/center/jsp/requests/print/story.
jsp?id=4714

Rosenthal, B. E. (2004c). Why the U.S. and UK
are calling South African call centers. Outsourc-
ing Center. Retrieved December 12, 2004, from
http://www.outsourcing-requests.com/center/jsp/
requests/print/story.jsp?id=4717

Salkever, A. (2004, July 7). Racing to cure sickly
medical security. BusinessWeek Online. Retrieved
December 30, 2004, from http://www.business-
week.com/print/technology/content/jul2004/
tc2004077_9847_tc_171

Sandholm, L. (2004). Strategic responses for
customer satisfaction. Sandholm Associates.
Retrieved March 1, 2005, from http://www.sand-
holm.se/artiklar/stratrespforcustasais.html

Sink or Schwinn. (2004, November 11). The
Economist. Retrieved December 6, 2004, from

http://www.economist.com/printedition/Printer-
Friendly.cfm?Story_ID=3351542

Still, B. (2004). An open source primer. In K. St.
Amant & P. Zemliansky (Eds.), Internet-based
workplace communications: Industry and aca-
demic applications (pp. 278-298). Hershey, PA:
Information Science Publishing.

Tan, V. S. L. (2000, August 26). Lessons from
culture change. New Straits Times. Retrieved
February 26, 2005, from http://adtimes.nstp.com.
my/jobstory/aug26a.htm

Tapping in to Africa. (2000, September 9). The
Economist, 49.

Tying Latin American together. (2001, Summer).
NYSE Magazine, 9.

Warschauer, M. (2003). Technology and social
inclusion: Rethinking the digital divide. Cam-
bridge, MA: MIT Press.

Weir, L. (2004, August 24). Boring game?
Outsource it. Wired. Retrieved September
20, 2004, from http://www.wired.com/news/
print/0,1294,64638,00.html

Wired China. (2000, July 22). The Economist,
24-28.

Zoellick, B. (2001). CyberRegs: A business guide
to Web property, privacy, and patents. Boston:
Addison-Wesley Professional.

enDnOteS

1 General Electric, for example, spent some
$30 million in extra payments to auditors to
review such documents, while J. P. Morgan
Chase has 130 full-time employees work-
ing on this project, and PriceWaterhouse
Coopers has spent some $40 million in
training 9,000 U.S. employees to perform
these functions (404 tonnes, 2004).

1950

Open Source and Outsourcing: A Perspective on Software Use and Professional Practices

2 There do not appear to be enough trained
U.S. auditors available to meet current de-
mands, and as a result, this lack of supply

has driven up U.S. auditor pay by some
10-20% (Byrnes, 2005).

This work was previously published in Outsourcing and Offshoring in the 21st Century: A Socio-Economic Perspective, edited
by H. Kehal, pp. 229-247, copyright 2006 by IGI Publishing (an imprint of IGI Global).

 1951

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.11
How to Create a Credible

Software Engineering
Bachelors Program:

Navigating the Waters of Program
Development

Stephen Frezza
Gannon University, USA

Mei-Huei Tang
Gannon University, USA

Barry J. Brinkman
Gannon University, USA

ABStrAct

This chapter presents a case study in the develop-
ment of a Software Engineering (SE) Bachelor’s
Degree program. It outlines issues in SE program
development, various means to address those
issues, and explains how the issues were ad-
dressed in the initial and ongoing development
of an undergraduate SE program. By using SEEK
and SWEBOK as requirements sources to define
what an undergraduate software engineer needs
to know, the authors walk through the creation of
a sample curriculum at a small, comprehensive

university in the United States. Both the current
and initial curricula are presented. The article
discusses many items to consider in the process
of planning and launching a new BSSE program,
such as accreditation, curriculum guidelines,
sources of information, and potential problems.

IntroductIon

Software Engineering is one of the newer engi-
neering disciplines to emerge. Starting with the
coining of the ‘Software Engineering’ term in 1968

1952

How to Create a Credible Software Engineering Bachelors Program

(Naur, 1969), there has been continual growth in
interest in software engineering education. Ini-
tially, these efforts were primarily at the graduate
level, serving software engineering practitioners
with undergraduate degrees in Computer Science,
Computer Engineering or other related fields. In
1998, in recognition of the needs of bachelors-level
computing graduates, the Computer Society of the
Institute for Electrical and Electronic Engineers
(IEEE-CS) and the Association for Computing
Machinery (ACM) established the Joint Task
Force on Computing Curricula 2001 (CC2001) to
undertake a major review of curriculum guide-
lines for undergraduate programs in computing
(Diaz-Herrera, 2004). This and other efforts (EA,
2007; CEAB, 2006; ABET, 2005) added official
recognition of the need for the establishment
of effective undergraduate programs preparing
students to become software engineers.

The underlying assumption is that creat-
ing a new degree program for a relatively new
discipline (Software Engineering), in a profes-
sional area (Computing) that already has several
well-established disciplines (Computer Science,
Computer Engineering, Information Systems, etc.)
necessarily comes with a number of significant
development risks. This chapter takes the form
of an extended experience report, in the hope of
presenting an overview of these risks, and practical
means to mitigate them. This work is primarily
based on the authors’ experience in developing
a software engineering undergraduate program
leading to a Bachelor of Science degree in Software
Engineering (BSSE) at a small comprehensive
university in the United States (Frezza, 2006). Ef-
fort has been made to generalize this experience,
and include questions and issues encountered in
other SE program development efforts, as well as
raising issues that may be more critical in other
organizational settings.

iSSueS in Se prOgrAm
DeVelOpment

Developing a new undergraduate program, par-
ticularly one like Software Engineering that does
not have long-established definitions can be (and
for us was) a delicate business. Among the key
stakeholders for a new SE program, the require-
ments for what belongs in such a major may not
be well understood, or easily communicated. In
all, our program development effort was similar
to many of our software development experiences,
in that the requirements management activities
were significant, messy, and working to resolve
them early proved worthwhile. Our undergradu-
ate software engineering program, at the time
of writing, has been developed, launched, gone
through several on-going outcomes reviews, and
we are currently preparing our first accreditation
self-assessment.

Based on our reflection on the issues we
encountered, and our post-design assessments,
some of the key issues we’ve found in developing
a new SE program include:

•	 Organization: Determining where the
program is housed or sponsored within the
institution

•	 Vision: Defining the style, or professional
focus of the program

•	 Accreditation: Applying international and
national standards to ensure program qual-
ity

•	 Curriculum: Designing the academic plan
for students to meet or exceed the vision,
and

•	 Finding help: Locating contacts to support
program development

Organization

Determining where an SE program is housed
is important to its success. The issue centers on

 1953

How to Create a Credible Software Engineering Bachelors Program

faculty ownership of the program, and administra-
tive support for the students. Many SE programs
are organized in the same academic housing as
Computer Science programs, but this is not uni-
versally the case. At issue is the blend of CS, IS,
and Engineering courses currently available, and
ability to work with the faculty delivering these
courses to be effective for the new program. While
Software Engineering is normally classified as
a computing sub-discipline, in many institutions
computing disciplines may be in multiple depart-
ments scattered across multiple schools, or not.
The character and ability of the various depart-
ments and schools to collaborate (e.g., School
of Engineering vs. School of Arts and Science,
etc.) may not be easily navigated, and can delay
program introduction.

The housing issue for a program is significant,
as it can affect issues related to shared course
content, accreditation, funding, hiring, tenure, and
a plethora of other subtle and inter-related aca-
demic issues, not the least of which is the culture
of the faculty leading the program. Mismatches
can adversely affect program development, but
more especially student learning and faculty
retention issues.

While many programs are initially housed
in an existing department structure, in several
instances, sponsoring departments have been
cross-department, or even cross-college ar-
rangements. In some cases these more complex
structures, created to launch the SE program,
were later replaced. Factors that can affect com-
plex administrative structures include growing
enrollments, competition, budgets and funding,
faculty issues and other sustainability factors.
In some schools, the more complex structures
proved workable, and have been maintained (e.g.,
Drexel). The common theme is the ability to gain
sufficient institutional agreement for offering SE
course and related program content.

In our case, this negotiation of where to house
the program led to delaying the program launch

by about a year. Our initial proposal was to run
the new SE program with a systems orientation
from the Electrical and Computer Engineering
(ECE) department. What was at issue was the
nature of software engineering – few faculty
having significant experience beyond embed-
ded software development, or exposure to the
significant and world-wide efforts to define
software engineering as a discipline (Bourque,
2000). Locating authoritative guidelines as to
what a software engineering undergraduate
program should include was significant to this
negotiation. Even with these guidelines, identify-
ing the nature of our new SE program, and where
it should be developed/housed was by no means
a simple process.

Addressing this housing issue led to sev-
eral surveys and presentations, using materials
from conferences (Diaz-Herrera, 2001), ABET
program-specific criteria (ABET, 2005), the
Certified Software Development Professional
(CSDP) effort (McConnell, 1999; IEEE CS, 2001),
SWEBOK drafts (Abran, 2004), and the SE2004
drafts (Diaz-Herrera, 2004) to define software
engineering for students, faculty and adminis-
trators. In particular, SE2004, SWEBOK, and
ABET proved to be the most useful, and served
as authoritative guidelines for our proposal de-
velopment. At the end of these discussions, even
though the program proposal originated from our
ECE department, the strong computing focus of
the SE program was deemed more suitable to be
housed in the Computer and Information Science
(CIS) department offering our computer science
(CS) and management information systems (MIS)
degree programs.

As the CIS department was housed in the
same school as ECE, no administrative objec-
tions were encountered. The new task was to
redevelop the program vision and program details
with a team of primarily CIS faculty in a way
that would succeed when the new program was
launched and managed from the CIS department.

1954

How to Create a Credible Software Engineering Bachelors Program

The decision to house the program in a different
department meant ECE relinquishing control on
the proposal, the proposal champion working with
a new department chair and new faculty partners.
The benefit of this redevelopment work was the
promise of building consensus around a shared
vision from those who would ultimately deliver
the program.

Vision

Following a well-documented SE best practice,
identifying a coherent vision was a useful start-
ing point, and our experience confirmed that
it is a key factor for success in developing a
Software Engineering undergraduate program.
Within the vision for an academic program,
one of the most fundamental issues is the ju-
dicious selection of the type, or character of
the program that is desired. Notwithstanding
other sources, at least six application models
for software engineering have been identified
(Jones, 2003):

•	 Military: Applications built according to
military or US Department of Defense stan-
dards. This may include weapons systems,
but also logistics and non-military systems
that use military standards.

•	 Systems: Applications developed to control
hardware devices such as computers, air-
craft, telephone switches, and other physical
devices and products, including embedded
systems.

•	 Commercial: Applications for lease or sale
to external customers, occasionally referred
to as ‘shrink-wrap’ software. This category
includes many personal computer applica-
tions, but also includes larger mainframe
applications.

•	 Outsourced: Applications developed for a
specific client company under a contract.
Because of contractual obligations and the
possibility of litigation, outsourced projects

have some additional activities in compari-
son to in-house development.

•	 Management Information Systems (MIS):
Applications built to control major business
functions such as accounting, marketing,
sales, and personnel. This category includes
many traditional mainframe applications,
but also the more recent client-server, multi-
tiered and web-based applications.

•	 End-user development: Small applications
that various kinds of knowledge work-
ers—such as accountants, engineers, or
project managers—build for personal use.

In developing a vision for a specific program,
casting the nature of the program may be decided
by other factors, such as faculty availability,
skills, and influences from local and regional
employers. These can, and should influence what
a specific SE program graduate should be able
to do. However, this ‘local’ approach can easily
ignore the other external ‘requirements’ for a
credible program.

There exist broad and relatively well-devel-
oped, and reasonably authoritative guidelines for
what software engineers need to know (See the
Defining the BSSE Graduate and What Software
Engineers Need to Know subsections that follow).
However, the context in which these skills are
developed is also important, as these different
application models have differences that can be
significant in program delivery. These differences
will typically show up in the determination of
the content of required upper-level courses and
elective courses.

Developing a vision is important in that the
vision statement, once agreed to, serves as a useful
guide in helping to sell the program to different
academic and administrative stakeholders, as
well as a useful reference during program design.
Like most business exercises in vision, develop-
ing this as a shared vision, rooted in the realistic
limitations of the organization will help reduce
the risk of failure.

 1955

How to Create a Credible Software Engineering Bachelors Program

In our case, the decision to house the program
in the CIS department led to a new shared vi-
sion for our SE program. The initial ECE-based
proposal was based on a systems focus. With
CIS faculty participation, the revised program
proposal focused on delivering skills and knowl-
edge for the outsourced and MIS categories.
These represented trade-offs among the program
developers, recognizing that the outsourced/MIS
view would have distinctly different courses and
flavor from the systems view. While different
from the initial vision, this was a vision that was
both legitimate, and would work well within the
exiting department and course structures then in
place. The tradeoffs allowed the new proposal to
parallel the CS program more closely, but with
the recognition that software engineering con-
cepts needed to be integrated into courses taken
jointly by CS and MIS students. Ultimately, this
has proven to be useful in our situation, as the
integration of software engineering concepts into
early courses was easily negotiated, and continues
to be well received.

Accreditation

In the US and many other countries, the use of the
term “Engineering” in a program or degree title is
necessarily accompanied by the requirement for
some form of national accreditation which serves
to ensure program quality. In the United States,
ABET, Inc. (ABET, 2007) is responsible for the
specialized accreditation of educational programs
in applied science, computing, engineering, and
technology. In Canada, the Canadian Engineer-
ing Accreditation Board (CEAB), serves as the
accreditation body for engineering programs
(CEAB, 2006), while Engineers Australia (EA)
is responsible for this service in Australia (EA,
2007). This is an important initial consideration
for creating a new program, because the nature of
engineering accreditation generally brings with
it required documentation processes, criteria and
even academic culture that may be foreign to the

institution or sponsoring department. Taking the
time to become familiar with the processes and
documentation needed is important, and in some
instances may require hiring consultants to review
academic proposals.

At the time of writing, 13 such programs were
accredited in the United States (ABET, 2006),
12 in Canada (CEAB, 2006), and 18 in Australia
(EA, 2007). To give a sampling of the breadth
of universities that have chosen this route, these
universities are listed in Figure 1. In our case, the
goal was to create a program that would warrant
including Gannon University in the list.

While not all programs require national ac-
creditation, international guidelines exist (such as
SE2004) to help ensure the quality of Software
Engineering undergraduate programs. In our case,
accreditation was a process new to the sponsoring
department, but not to the school. Experience in
applying the ABET criteria was easy to find, and
the use of the EAC accreditation criteria (ABET,
2005) and the related SE2004 volume served as
significant drivers in assessing the quality of the
program proposal. This validation of the curricu-
lum development process was extremely valuable
in describing software engineering to program
stakeholders, and served as a very useful means of
assessing changes to the program (Frezza, 2006).
These processes as we applied them are described
in more detail in the pages that follow.

curriculum Development

Ultimately one of the most critical portions of the
program delivery is the curriculum employed by
the program. The curriculum development process
includes the development of the program objec-
tives, as well as courses and course objectives.
In most institutions, these are developed within
the framework of institutional standards, as well
as existing computing, mathematics, engineering
and other courses that would also be taken by
SE students. This key issue is discussed in much
more detail in sections which follow.

1956

How to Create a Credible Software Engineering Bachelors Program

Sources of Help and Advice

As in most engineering endeavors, one of the
most useful sources of development information
comes from others who have developed similar
products (Kelley, 1999). These resources are
particularly useful for helping to understand is-
sues, avoid issues, or also experience to resolve
issues as they are encountered in your program
development. This is also a significant source
of external expertise that can be used to help
validate the program, such as a ‘blue-ribbon’ or
other external panel that can validate or provide
guidance to program development.

In our case, finding help in the form of the
Working Group on Software Engineering and
Education, and the more recent Software Engi-

neering Program Leaders Association (SEPLA)
proved to be extremely useful for helping find
and share materials to explain the SE profes-
sion to various constituents (faculty, students,
administrators), as well as provide useful market
data and comparison programs. Various SEPLA
members also volunteered, and provided input on
various program proposals. The SEPLA listserv
is available at sepla@listserv.butler.edu.

In our experience, the faculty development
wherein we used authoritative guidelines to
define Software Engineering for ourselves was
absolutely essential. The need for this education
came initially in response to addressing our orga-
nization issues. Our Accreditation goal dictated
that ABET criteria needed to be considered,
but the more extensive international guidelines

uS (ABET) canada (CEAB) Australia (EA)

Auburn University University of Calgary Australian National University

Clarkson University Carleton University Curtin University of Technology

Embry-Riddle Aeronautical University, Daytona
Beach Concordia University Flinders University

Fairfield University-School of Engineering Lakehead University Griffith University Nathan Campus

Florida Institute of Technology McMaster University La Trobe University (Bundoora
campus)

University of Michigan-Dearborn University of New Brunswick Monash University

Milwaukee School of Engineering University of Ottawa Murdoch University

Mississippi State University University of Waterloo RMIT University

Monmouth University University of Western Ontario Swinburne University of Technology

Pennsylvania State University, Behrend College École de technologie
supérieure University of Canberra

Rochester Institute of Technology Laval The University of Melbourne

University of Texas at Arlington Polytechnique The University of Newcastle

University of Texas at Dallas The University of New South Wales

The University of Queensland

The University of Western Australia

University of Southern Queensland

University of Sydney

University of Technology, Sydney

Figure 1. Accredited software engineering related programs in the U.S., Canada, and Australia (current
as of Sept. 2007)

 1957

How to Create a Credible Software Engineering Bachelors Program

(SWEBOK and SE2004) were more informa-
tive. The process of blending these viewpoints
helped establish detailed ‘requirements’ for our
BSSE program, as well as establish agreement
on these requirements. This analysis work was
crucial to the success of the program proposal
process, and became central to developing the
program outcomes, expectations, and ultimately
its detailed design. Our particular blending is
summarized in the Defining the BSSE Graduate
and the What Software Engineers Need to Know
sections that follow.

While the authoritative sources (ABET,
SE2004 and SWEBOK) are all aimed at differ-
ent target audiences, the definitions of software
engineering they provide for these audiences are
important. These definitions all speak directly
to what the expectations would be for our BSSE
graduates after the program was established,
hopefully accredited, and they were well into
their careers. Because the definitions were exter-
nal, they carried significantly more weight than
the viewpoint of any particular faculty member.
These definitions, once blended, became central
to developing the shared vision for our BSSE
program as the program was developed, and has
since continued to support outcomes assessment
and program enhancement.

Defining tHe BSSe grADuAte

For the purposes of creating a quality, accredit-
able program, it is essential to define the desired
knowledge and skills possessed by the BSSE
graduates. One of the more useful forms for
defining the desired knowledge and skills are
the “outcomes” for the program. Outcomes re-
late to broadly defined skills, knowledge, and
behaviors that students should acquire as they
progress through the program (Wankat, 1993).
If a graduate achieves all the program outcomes,
this indicates that the student meets the program’s

stated educational objectives and is equipped to
function as expected of a BSSE graduate.

To create an accreditable SE program, the
program design must meet the established edu-
cational objectives and program criteria for a
BSSE program. There are at least two primary
sources for these objectives and criteria which
define the minimal knowledge and skills for
a BSSE graduate. In the US, the Engineering
Accreditation Commission (EAC) provides two
categories of objectives and criteria that apply
to the design of engineering programs (ABET,
2005).The first category, the EAC Program
Educational Objectives, is a broader set which
applies to all engineering programs. The second
category provides each engineering discipline
a unique set of program criteria specific to the
discipline.

While these objectives and criteria are de-
finitive for accreditation in the U.S., they do not
provide as much detail as the SE2004 guidelines
(Diaz-Herrera, 2004). The difficulty is that when
comparing the SE2004 Student Outcomes (Diaz-
Herrera, 2004) with the related EAC Program
Educational Objectives (ABET, 2005) and EAC SE
Program Criteria (ABET, 2005), there are notice-
able gaps among them (Frezza, 2006). However,
the superset of related SE skills indicates that a
program should provide at least the following
outcomes (Frezza, 2006):

•	 Show mastery of the software engineering
knowledge and skills, and professional issues
necessary to begin practice as a software
engineer

•	 Demonstrate the ability to appropriately
apply science, discrete mathematics, em-
pirical techniques, probability and statistics
and relevant topics in computer science and
supporting disciplines to the development
of complex software systems

1958

How to Create a Credible Software Engineering Bachelors Program

•	 Work as an individual and as part of a multi-
disciplinary team to develop and deliver
quality software artifacts

•	 Reconcile conflicting project objectives,
finding acceptable compromises within
limitations of cost, time, knowledge, exist-
ing systems and organizations

•	 Design appropriate solutions in one or more
application domains using software engi-
neering approaches that integrate ethical,
social, legal and economic concerns

•	 Understand professional and ethical respon-
sibility

•	 Demonstrate an understanding of and apply
current theories, models, and techniques that
provide a basis for problem identification
and analysis, software design, development,
implementation, and documentation

•	 Demonstrate an understanding and appre-
ciation for the importance of negotiation,
effective work habits, leadership, and good
communication with stakeholders in a typi-
cal software development environment

•	 Learn new models, techniques and tech-
nologies as they emerge and appreciate the
necessity of such continuing professional
development

•	 Obtain knowledge of contemporary issues
•	 Receive and internalize a broad education

necessary to understand the impact of en-
gineering solutions in a global, economic,
environmental, and societal context

These program outcomes, which arguably must
be met for a U.S.-based program, provide a use-
ful definition of what the BSSE graduate should
know and be able to do. Although important for
defining and continually improving program
effectiveness, the outcomes by themselves don’t
provide adequate detail about the specifics for
“software engineering knowledge and skills”.
What specifically should we teach students? What
should the courses contain? SE fortunately has

other sources that define more specifically what
students must know and be able to do.

WHAt SOftWAre engineerS
neeD tO KnOW

In order to craft a credible Software Engineering
curriculum that also paves the way to students’
success in the workforce, we need to understand
what knowledge students are expected to pos-
sess. Not only does this include knowledge that
students fresh out of college are expected to know,
but also knowledge that these students after a few
years in the workforce are expected to hold. There
are two primary sources for these requirements,
SE2004 (Diaz-Herrera, 2004) and SWEBOK
(Abran, 2004), addressing aforementioned types
of knowledge respectively.

•	 SE2004 (Software Engineering 2004):
defines the body of knowledge that every
software engineering degree graduate fresh
out of college needs to know as the Soft-
ware Engineering Education Knowledge
(SEEK).

•	 SWEBOK (Guide to the Software Engi-
neering Body of Knowledge): character-
izes the contents of software engineering
discipline, i.e., the knowledge needed for
the practice of software engineering after
four years in the workforce.

Both of these documents carry with them ex-
tended development processes and improvements.
In addition, both development efforts included
significant efforts to ensure that the documents,
and thus the educational patterns that might
emerge from them, were not US-centric. The
SE2004 effort, in particular, has been translated
into Russian to support curricular development
efforts in Central and Eastern Europe (Pavlov,
2006). At the time of this writing, new curriculum

 1959

How to Create a Credible Software Engineering Bachelors Program

pilots based on SE2004 have been started in over
30 Central and Eastern European universities
(Sobel, 2007).

Se2004

The Joint Task Force on Computing Curricula
sponsored by the IEEE Computer Society and
the Association of Computing Machinery Joint
Task Force developed Software Engineering 2004
(SE2004) as curriculum guidelines for under-
graduate degree programs in software engineering
(Diaz-Herrera, 2004). SE2004 defines a detailed
set of knowledge expected of a BSSE graduate as
the Software Engineering Education Knowledge
(SEEK). SEEK is designed as a guide to support
the development of undergraduate software en-
gineering education curricula.

SEEK defines 10 education knowledge areas
(KAs), each of which is recognized as a significant
part of the body of knowledge that every bach-
elors-level software engineering graduate needs
to know. A short description for each of the ten
knowledge areas defined by SEEK (Diaz-Herrera,
2004) are listed below:

1. Software evolution. “Software evolution is
the result of the ongoing need to support the
stakeholders’ mission in the face of changing
assumptions, problems, requirements, archi-
tectures, and technologies.” (Diaz-Herrera,
2004)

2. Software process. “Software process is con-
cerned with knowledge about the description
of commonly used software life-cycle pro-
cess models and the contents of institutional
process standards; definition, implementa-
tion, measurement, management, change
and improvement of software processes;
and use of a defined process to perform the
technical and managerial activities needed
for software development and maintenance.”
(Diaz-Herrera, 2004)

3. Software verification and validation.
“Software verification and validation uses
both static and dynamic techniques of system
checking to ensure that the resulting program
satisfies its specification and that the program
as implemented meets the expectations of
the stakeholders.” (Diaz-Herrera, 2004)

4. Software quality. “Software quality is a
pervasive concept that affects, and is af-
fected by all aspects of software develop-
ment, support, revision, and maintenance.
It encompasses the quality of work products
developed and/or modified … and the quality
of the work processes used to develop and/or
modify the work products.” (Diaz-Herrera,
2004)

5. Software design. “Software design is
concerned with issues, techniques, strate-
gies, representations, and patterns used to
determine how to implement a component
or a system. The design will conform to
functional requirements within the con-
straints imposed by other requirements such
as resource, performance, reliability, and
security.” (Diaz-Herrera, 2004)

6. Software management. “Software manage-
ment is concerned with knowledge about the
planning, organization, and monitoring of all
software life-cycle phases.” (Diaz-Herrera,
2004)

7. Computing essentials. “Computing es-
sentials includes the computer science
foundations that support the design and
construction of software products.” (Diaz-
Herrera, 2004)

8. Software modeling and analysis. “Mod-
eling and analysis can be considered core
concepts in any engineering discipline,
because they are essential to documenting
and evaluating design decisions and alterna-
tives. Modeling and analysis is first applied
to the analysis, specification, and validation
of requirements.” (Diaz-Herrera, 2004)

1960

How to Create a Credible Software Engineering Bachelors Program

9. Mathematical and engineering funda-
mentals. “The mathematical and engineer-
ing fundamentals of software engineering
provide theoretical and scientific underpin-
nings for the construction of software prod-
ucts with desired attributes.” (Diaz-Herrera,
2004)

10. Professional practice. “Professional Prac-
tice is concerned with the knowledge, skills,
and attitudes that software engineers must
possess to practice software engineering
in a professional, responsible, and ethical
manner.” (Diaz-Herrera, 2004)

Each knowledge area (KA) is further divided
into smaller modules called units. The left column
in Figure 2 lists the SEEK knowledge areas in
light grey shades, and the knowledge units (KUs)
defined for each KA in italics.

Each knowledge unit defined in SEEK is fur-
ther divided into topics. Some topics are designated
as ‘essential’, and constitute the core knowledge
which is considered required for anyone to obtain
a software engineering undergraduate degree.
In its current (2004) revision, SE2004 defines
240 topics as essential that software engineers
graduating from credible programs need to know
(Diaz-Herrera, 2004). A summary of the number
of units, topics, essential topics, and contact hours
for essential topics are listed in Table 1.

The topic-level detail outlined in Table 1 can be
a two-edged sword for program design. With the
rigorous application of the topic-level information,
those developing new software engineering pro-
grams may well find that the credit hours needed to
cover the ‘essential’ units would be well beyond the
ability to offer a program within most University
constraints. Similarly, this ‘essential’ detail can
be too detailed for effective course planning, and
can obscure what units are more essential than
others, particularly in the context of making a
program unique to an institution (Frezza, 2003).
Conversely, the detail facilitates definition of what
is meant by particular knowledge units, and thus

strongly facilitates measuring the completeness
of a program, and clarity in communicating what
constitutes a BSSE degree.

Besides the undergraduate education knowl-
edge defined by SEEK, we also need to know
about what kinds of knowledge are needed for the
practice of software engineering in the workforce.
The guide to the Software Engineering Body of
Knowledge (SWEBOK) does just that.

SWeBOK

The IEEE Computer Society established a baseline
for the body of knowledge and recommended
practices for the field of software engineering in
the Guide to the Software Engineering Body of
Knowledge (SWEBOK) (Abran, 2004). SWEBOK
characterizes the contents of software engineer-
ing discipline, i.e. the knowledge needed for the
practice of software engineering after four years
in the workforce, into ten Knowledge Areas
(KAs). Each knowledge area is further divided
into subareas, and each subarea is further divided
into topics and subtopics. The right column in
Figure 2 lists the SWEBOK knowledge areas in
light grey shades, and the knowledge subareas
defined for each KA in italics.

The KAs for both SEEK and SWEBOK are
highlighted in light grey shades in Figure 2. The
double arrowed lines given in Figure 2 outline
the similarities, the dashed lines outline partial
coverage, while KAs without links indicate
the differences between SEEK and SWEBOK
KAs. As you can see from the figure, for the
first six SEEK knowledge areas (KA) each has
a very related KA in SWEBOK as indicated
by the double arrowed lines. Typically the KA
in SWEBOK has a broader coverage in topics
than the corresponding SEEK KA. However, the
SEEK knowledge units listed in light grey are not
covered by its knowledge area’s corresponding
SWEBOK KA, but are covered by the SWEBOK
KA to which it is linked with solid lines. For
example, SEEK unit Software Configuration

 1961

How to Create a Credible Software Engineering Bachelors Program

Figure 2. SE2004 SEEK knowledge areas and units vs. SWEBOK knowledge areas and subareas

1962

How to Create a Credible Software Engineering Bachelors Program

Management in Software Management KA is
covered by SWEBOK Software Configuration
Management KA. SEEK unit Product Assurance
in Software Quality KA is covered by SWEBOK
subarea Software Design Quality Analysis and
Evaluation in Software Design KA.

In addition to the closely related SEEK and
SWEBOK KAs mentioned above, two SWEBOK
KAs, each having significant overlap with but
only partially covering its corresponding SEEK
KA, are shown in dashed lines. SWEBOK KA
Software Requirements only covers requirements
related units in SEEK KA Software Modeling
and Analysis, while Software Construction
covers construction related units in Computing
Essentials.

Noticeable unit differences between SEEK
and SWEBOK are highlighted in reverse diagonal
shades. Both Mathematical and Engineering Fun-
damentals and Professional Practice SEEK KAs
do not have corresponding SWEBOK KAs due
to the educational nature and curricula develop-
ment purpose of SEEK. As the SWEBOK focuses
on the boundary of software engineering, hence
non-software engineering-specific knowledge,
such as the fundamental background required to

acquire software engineering specific knowledge,
was intentionally left out.

Another noticeable difference is in the SWE-
BOK Software Engineering Tools and Methods
KA as highlighted in dark grey shades. The
Software Engineering Tools subarea is embodied
inside the Software Evolution, Software Process,
Software Verification and Validation, Software
Quality, Software Design, Software Management,
Computing Essentials, Software Modeling and
Analysis, Mathematical and Engineering Fun-
damentals and Professional Practice topics in
SEEK, as highlighted in dark grey shades.

Both SEEK and SWEBOK define the specific
knowledge and skills required of a software en-
gineer. For undergraduate software engineering
graduates fresh out of college, the knowledge they
attain comes from the courses they complete in
their curricula, hence curricula plays an important
role in deciding what knowledge students will
posses when they graduate. While both SEEK
and SWEBOK are designed as a guide/foundation
for software engineering curricula development,
SEEK is especially designed for undergraduate
software engineering curricula development
with detailed topics defined, and an expectation

SEEK Knowledge Area Units Topics Essential
Topics

Essential
Contact Hours

Computing Essentials 4 42 37 172

Mathematical and Engineering
Fundamentals 3 22 19 89

Professional Practice 3 17 17 35

Software Modeling and Analysis 7 42 33 53

Software Design 6 37 31 45

Software Verification and
Validation 5 30 28 42

Software Evolution 2 13 9 10

Software Process 2 14 13 13

Software Quality 5 28 25 16

Software Management 5 31 28 19

Total 42 276 240 494

Table 1. Summary of SEEK knowledge areas, units and topics

 1963

How to Create a Credible Software Engineering Bachelors Program

that accredited programs will reflect this set of
knowledge and skills in their program.

SEEK provides description for each KA, but
no descriptions are provided for the units and
topics defined. This kind of set up could be hard
for syllabus development as the contents which
should be included for the name provided for
units and topics could be open for interpretation.
With no reference materials provided, it could be
difficult for faculty to find suitable textbooks or
materials to cover the desired topics. On the other
hand, SWEBOK provides detailed description
and interesting discussion for each KA, subarea,
topic and subtopic defined as well as links to
books and articles.

StArting tHe prOceSS

The practical process of developing a vision for
a specific instance of a Software Engineering
program includes a number of concerns to be
addressed, such as focus, style, leadership, and
the requirements derived from the institutional
strengths, weaknesses and opportunities. The
experience of the authors is that of developing a
program within the context of existing computing
and engineering programs within the sponsoring
institution, so issues concerning the creation of new
academic structures will only be by inference.

project leadership

The immediate starting point is necessarily one
of leadership – who will lead the project to define
and launch the program. While this may seem
trite, clearly defining the academic stakeholders
is critically important, as the risks of not involving
appropriate representation from related academic
departments early in the program development are
real, and have proven to be stumbling blocks to
SE program development. As with any success-
ful project, establishing executive sponsorship at
various levels is key, as is communication with the

executive sponsors and other stakeholders. One
mechanism for supporting ongoing validation,
communication and development of the program
is a steering committee.

An effective program development steer-
ing committee should follow effective patterns
within the institution, and typically is formed
from department chairs, experienced faculty,
external advisors, and anyone else deemed
appropriate to the institution. This commit-
tee, whether formal or informal in its makeup,
should necessarily include persons who have the
authority to formally propose a new program
within the institution. In some cases, this process
may require cross-college cooperation, and thus
may also include either academic deans or their
representatives.

The steering committee should at minimum
approve program development decisions, but
may (as in our situation) be significantly more
active in the development of the program details.
Among these, determining the expected style of
the program was a significant set of decisions.
For example, in our case, the deliberate choice
was to not require co-ops, and to not focus on one
particular SE style, such as embedded systems,
but rather allow styles and domains to be student-
selected via the use of technical electives.

In our development process, the project started
with one faculty project leader, and eventually
formed a development committee after the hous-
ing (which department) issue was settled. In the
case of Butler University in Indiana, the housing
department was clear, and they developed an ex-
ternal advisory board consisting of local software
industry leaders which helped significantly in
crafting the program and building internal cred-
ibility (Henderson, 2003).

capitalizing on institutional
Strengths

Each educational institution has its own set of
distinguishing characteristics, including things

1964

How to Create a Credible Software Engineering Bachelors Program

like the faculty, teaching style(s), history, physical
location, etc. Part of the success of a new program
is its ability to realize these characteristics within
the program in ways that strengthen the program,
its appeal to students and its effectiveness for
graduates.

In many cases, these institutional strengths are
easily recognized, and involve institution-wide
structures to support them. These structures can
take on many forms: core curricula, freshmen
sequences, service learning, marketing, develop-
ment, alumni services, cooperative arrangements,
etc. While many of these academic and non-aca-
demic features may also act as constraints, they
are also what bring the institutions’ unique stamp
to the new program. Clearly identifying and cel-
ebrating these institutional strengths are signifi-
cant for marketing the program, both internally
and externally. Performing a formal Strengths,
Weaknesses, Opportunities and Threats (SWOT)
analysis may be useful.

One of the more common SE program devel-
opment questions that hinges upon institutional
strengths is that of requiring cooperative employ-
ment placements as part of the academic program.
In some institutions, such as Rochester Institute
of Technology (RIT) and Drexel University, this
is an institutional strength, and is required of
most programs. In other schools, required co-
ops are common, and institutional support is
readily available. Yet this is not the case in most
institutions – neither the culture nor the academic
structures support co-ops, so the decision to in-
clude a required co-op placement as part of the
program design may involve significantly more
cost to the program.

In our case, similar to that of Butler University,
we developed our BSSE program in a ‘liberal
arts’ institution, where the general education
requirements included 36 semester hours of
general education, and provides a significant
institutional ‘stamp’ to the program. Similarly,
there was no institutional support for required
co-op placements, and despite the attraction of

such an arrangement, it was deemed unfeasible
by the development steering committee.

One of the more important institutional limita-
tions to be negotiated is the availability of faculty
resources; some institutions are very risk-adverse,
and consequently are very reluctant to invest in
new faculty positions for new programs until the
enrollment proves the need. Other institutions are
more accepting of risk, and are more tolerant of
investment that will help distinguish a program,
and ensure its early success.

In our case, after creating the initial academic
plan, we projected the faculty resources needed
to develop and sustain the new program. With an
enrollment estimate, the request took the form
of one new faculty member the year after the
program launch, and another faculty member two
years after launch if enrollment met or exceeded
the estimates.

curriculum cOnStructiOn
AnD DeSign

Students gain and build knowledge and skills
from the courses they take while in college.
Curriculum dictates what courses students in a
specific program should take and the sequence
of taking them. Hence curriculum plays an im-
portant role in determining what knowledge and
skills students should possess when they graduate
with a bachelor’s degree. On the other hand, each
course students take has a specific set of course
objectives that students completing the course are
expected to accomplish; curriculum also plays
a determining role in what program outcomes
will be achieved through the course outcomes.
Furthermore, curriculum is the place where each
institution showcases its strength, uniqueness and
special program focus. So what courses should
be included in an institution’s BSSE curriculum?
There is no one easy answer for that.

For the purpose of creating an accreditable pro-
gram, where graduates meet or exceed expected

 1965

How to Create a Credible Software Engineering Bachelors Program

program outcomes, in our experience, there are
several factors to consider during the curriculum
design and construction process.

1. Institutional/university strength and
constraints

Each university/educational institution has its
unique set of characteristics as discussed in the
Capitalizing on Institutional Strengths subsec-
tion. No matter what the characteristics are, some
(such as faculty, teaching style(s) and co-op ar-
rangement) are great for marketing as the unique
strength of the institution while others (such as
core curricula, co-op requirement and freshmen
sequences) can be considered as constraints for
curriculum development.

In our case, our university mandates 36 credit
hours of general education which ensures that
every graduate achieves the university outcomes
(Frezza, 2003). Although the number of credits
required is mandated, every program does have
the autonomy of restricting course(s) that students
can select from each category to better suit the
needs of each program. Furthermore, our SE
program does not have co-op requirement which
opens up credit hours for curriculum. On the other
hand, if a co-op arrangement is instituted by the
university, the number of credit hours required
for the co-op arrangement would be a constraint
for curriculum design.

An area where this can be significant is that of
total credit hours – in our case, the Computer Sci-
ence and other Engineering programs all require
over 130 semester credits, so this afforded a bit of
room in creating courses for the SE program. Many
schools have very specific credit constraints that
can make this more difficult, e.g., in the United
States, many schools have 128 credit limits for
bachelors degree programs. As in our case, using
related programs in the school (such as EE or CS)
as patterns can prove to be effective. Many of
the patterns these existing programs have, such
as when they take general education courses,

the patterns for lab courses and lab credits, the
patterns for co-ops, the patterns for common and
discipline-specific courses can prove to be useful.
In our case we used the CS degree as the pattern,
and reused as many of these courses as possible;
by replacing some advanced mathematics courses
with SE courses, this allowed us to create a pro-
gram with essentially the same number of credit
hours as the CS program.

2. SE program hosting department/college
constraints

In addition to university/institutional constraints,
program hosting department/college may have
its own set of requirements (such as maximum
reuse of faculty and existing courses offered,
existing prerequisite structure, capstone project
requirement, departmental outcomes, maximum
number of credits required in a program) that
need to be fulfilled.

In our case, the SE hosting department, CIS,
expects the new SE program to be compatible
with the existing CIS computing programs:
computer science and management information
systems. This is not only for the economic ben-
efits of shared courses and faculty resources but
also allows students to switch majors early in the
program without much impact on required time
to earn the degree (Frezza, 2003). Such a require-
ment leads to the mapping/compatibility analysis
of existing CIS course offerings, prerequisite
structure and the SE program vision. Since the
SE program focuses on the outsourced and MIS
categories, the CIS faculty felt the strong need
of solid programming, systems, networking and
computing background for SE students which
in turn leads to the reuse of a great number of
existing CIS courses. Specifically, SE and CS
program students have almost identical courses
for the first two years. However, such an arrange-
ment also limits the number of credits available
for Software Engineering specific courses that
can be offered.

1966

How to Create a Credible Software Engineering Bachelors Program

In addition, every CIS department graduate
is expected to complete a capstone project and
achieve a set of departmental outcomes. The
capstone project, which integrates ethics and
project management with a multi-disciplinary two
semester long team project, mandates six credit
hours of the senior year schedule. Although the
set of departmental outcomes are not in the form
of credit hours, it requires careful traceability
analysis on the mappings of course outcomes to
departmental outcomes. The analysis result could
start the process of redefining current course
content and outcomes, as well as creating new
courses and the responsibility (assignment of
departmental outcomes) of new courses.

3. Defined SE program outcomes

Besides the hosting departmental/college out-
comes that need to be achieved, every SE program
that hopes to be accredited should also fulfill the
outcomes defined by its accreditation body. As
discussed in the Accreditation subsection and
Defining the BSSE Graduate section, every SE
program needs to define its own set of program
outcomes that can be related to the outcomes
required by the accreditation body and specified
in SE2004 (Diaz-Herrera, 2004). Both depart-
mental outcomes and the defined SE outcomes
will serve as targets for the courses designed into
the BSSE curriculum.

In our case, we combined the generic CIS de-
partmental outcomes with specific SE outcomes
that then defined the BSSE program outcomes.
A gap analysis was performed on the mapping of
BSSE program outcomes to the eleven outcomes,
the superset of ABET EAC, EAC SE and SE2004
outcomes, described in Defining the BSSE Gradu-
ate section. The result is shown in Table 2. The
analysis goal was to make sure that every Gannon
BSSE outcome maps to at least one generic SE
outcome and every generic SE outcome maps to
at least one Gannon BSSE outcome.

4. Outcomes to Courses: Applying ABET,
SEEK and SWEBOK

The outcomes only convey what objectives should
be achieved by the courses prescribed in a BSSE
curriculum but not courses should be offered. One
of the important goals in the design and construc-
tion of courses is to build up students’ knowledge
and skills through the curriculum. Both SE2004
and SWEBOK, described in What Software En-
gineers Need to Know section, define Knowledge
Areas (KAs) and topics that are important to a
software engineer. By identifying Knowledge Ar-
eas (KAs), Knowledge Units (KUs) and topics that
need to be covered by courses, assigning them to
courses, defining course outcomes, and mapping
course outcomes to BSSE program outcomes,
this not only ensures that every BSSE program
outcome is covered by one or more courses, but
also ensures that the important (essential) topics
hand-picked by the SE program committee are
covered by one or more courses. While most
ABET program outcomes (A-K) and program
criteria were well covered, issues regarding the
minimal standards for science, mathematics, and
the application of SE to some discipline needed
specific inclusions in the program designs under
consideration.

In our experience, SWEBOK proved to be
invaluable in helping to define Knowledge Areas,
subareas and topics to be covered by courses.
Although SWEBOK is not designed specifically
for undergraduate curriculum development and
accreditation, we found it provided easy to under-
stand, and more in-depth description of knowledge
areas and topics than SE2004. In addition, it also
provided useful references in building syllabi for
new courses.

Since SE2004 SEEK and SWEBOK de-
fined very similar Knowledge Areas (KAs), as
discussed in What Software Engineers Need
to Know section, it was not difficult for us to
identify Knowledge Areas (KAs) that need to be

 1967

How to Create a Credible Software Engineering Bachelors Program

g
annon Softw

are engineering
(B

SSe) program
 outcom

es
2006-7

Show mastery of the software engineering knowledge
and skills, and professional issues necessary to begin

practice as a software engineer

Ability to appropriately apply science, discrete
mathematics, empirical techniques, probability and

statistics and relevant topics in computer science and
supporting disciplines to the development of complex

software systems

Work as an individual and as part of a multi-disciplinary
team to develop and deliver quality software artifacts

Reconcile conflicting project objectives, finding
acceptable compromises within limitations of cost,

time, knowledge, existing systems and organizations

Design appropriate solutions in one or more application
domains using software engineering approaches that
integrate ethical, social, legal and economic concerns

Understanding of professional and ethical responsibility

Demonstrate an understanding of and apply current
theories, models, and techniques that provide
a basis for problem identification and analysis,

software design, development, implementation, and
documentation.

Demonstrate an understanding and appreciation for
the importance of negotiation, effective work habits,

leadership, and good communication with stakeholders
in a typical software development environment.

Learn new models, techniques and technologies as
they emerge and appreciate the necessity of such

continuing professional development.

Knowledge of contemporary issues

Broad education necessary to understand the impact
of engineering solutions in a global, economic,

environmental, and societal context

1. A
pply problem

 solving strategies
to softw

are developm
ent

x
x

x

x

2. Interface w
ith business and

analytical professionals to solve
softw

are or system
s developm

ent
problem

s

x
x

3. C
om

prehend ethical decisions and
their ram

ifications as professionals.
x

x
x

x
x

4. D
em

onstrate effective verbal,
w

ritten, and listening com
m

unication
skills as required for professional,
group, and team

 interactions

x
x

x

5. D
em

onstrate the ability to continue
in professional developm

ent and
expansion of their professional
interests

x
x

x
x

x

6. M
aintain a com

prehension of
the changing technology and its
ram

ifications
x

x

7. R
ealize and m

anage high quality
sw

 developm
ent lifecycle processes

in one or m
ore application dom

ains
x

x
x

x
x

x

8. A
pply discrete m

athem
atics

and abstract structures to system

developm
ent

x
x

9. A
pply quantitative m

easures in the
evaluation of softw

are com
ponents

and system
s

x
x

x
x

Table 2. Mapping of Gannon BSSE program outcomes to generic SE outcomes

1968

How to Create a Credible Software Engineering Bachelors Program

covered by courses in SE curriculum. SE2004
SEEK defined very detailed topics for each KA,
more specifically topics that are designated as
essential should be covered by an accreditable
SE curriculum. In an ideal world, we should be
able to assign every essential topic or even non-
essential ones defined in SEEK to courses in
our SE curriculum. In reality, we had to operate
under institutional and departmental constraints;
those are 36 credits of general education require-
ment, remaining compatible to existing CS and
MIS programs (maximum reuse of existing CIS
courses), six credits of capstone project, and 135
maximum credits for the SE program.

Our program development model started with
using an existing program (in this case, Computer
Science) as the basis for the formulation. Instead
of assigning all essential and even non-essential
SEEK topics, KUs and KAs to whatever courses
that we imagined as important for SE curriculum,
we started with mapping these topics, KUs and
KA’s to existing computer science courses, related
discipline and general education course contents.
After such a mapping exercise, we were able to find
the topics, KUs, KAs and even BSSE outcomes
not covered by existing courses. This enabled us
to revisit existing course contents and outcomes,
and even allowed us the opportunity to reshape
or redirect the contents and outcomes of existing
courses, as well as facilitate the discussion to
remove courses to make room for SE courses.

The mappings created were managed in a
spreadsheet, much like requirements traceability
lists, and showed that the ‘requirements’ coverage
was incomplete. So there remained the question
of whether we could cover the rest of essential
topics, KUs and KAs reasonably by redesigning
existing course offerings or whether new courses
should be designed to serve this purpose.

In our case, we were not able to reasonably
cover most of the essential topics, KUs, KAs and
even BSSE outcomes by redesigning existing
courses. Seven new SE specific courses: Software
Engineering Seminar, Requirements and Proj-

ect Management, Formal Methods in Software
Development, Software Architecture, Software
Testing and Quality Assurance, Human Interface
Design and Maintenance, and Personal Software
Process, totaling 19 credits, were created and
offered by the CIS department. The initial cur-
riculum is presented in Figure 3, and the current
(2007-8) curriculum is listed in Figure 4. Each SE
student also needs to pick an application domain,
consisting of nine credit hours of existing courses
from various departments, to focus on. The math
department also agreed to offer a new course
– Discrete Math 2 for our SE students. Even with
the creation of these new courses, we still could
not cover all the essential topics in SEEK due to
the constraint of the maximum of 135 credits. The
detailed examples of the mapping process can be
found in (Frezza, 2003) and (Frezza, 2006).

Figure 3 presents the 135 credits initially
proposed for the BSSE curriculum. These are
organized by type, such as current Engineering
and Computer and Information Science courses
(51 credits), new Software Engineering courses
(19 credits), Application Domain courses (9
credits), new and existing mathematics courses
(15 credits), existing Science courses (8 credits),
and existing liberal studies (general education)
courses (36 credits).

5. New courses or reuse existing courses

In an ideal world where unlimited resources
(faculty, budget, number of credits, etc.) are
available, and no constraints are imposed for
curriculum development, all new courses can be
created specifically for an SE program. However,
in reality, where multiple constraints exist and
academic political issues are abundant, it’s not
always possible to create all the new courses a
new SE program needs. In such a situation, a
gap analysis on the mapping of existing course
contents to SEEK topics, KUs, KAs and defined
BSSE program outcomes could serve as the start-
ing point for the discussion of redirecting current

 1969

How to Create a Credible Software Engineering Bachelors Program

course contents, negotiating whether and what
new courses to create, and where and how to run
the new courses.

The discussions about old, revised and new
courses were at times heated – for example, a more
‘systems’ or ‘engineering’ flavor to the course
would have introduced discrete mathematics in
the context of digital design, and then followed
up with formal discrete mathematics course to fill
out the KA. However, the ‘MIS’ vision prevailed,
(and the desire to parallel the Computer Science
program closely), and a Discrete Mathematics 1,
followed by a Discrete Mathematics 2 combina-
tion was agreed upon, followed up by a Formal
Methods in Software Development course, offered
by our department. For each of these courses, ap-
propriate KA’s were assigned to the mappings, as
well as the subproject of getting our colleagues
in the Math Department to support the approach.
Such tradeoffs were not insignificant, but were
guided by the needs as expressed in the trace-
ability spreadsheet. The spreadsheet framed the
problem; our particular resolution to the program
vision (information systems) and organization
issues (CIS department) guided the debate.

Similar issues surfaced around addressing the
‘Computer Organization’ requirements within
the Computing Foundations KU, which could be
implemented with a ‘microprocessors course’ or a
‘computer architecture course’ – neither of which
would come from our department. Here the trace-
ability showed the need for, and coverage within
the spirit and letter of the requirements – but a
choice/decision needed to be made. In this case,
the previous ‘Discrete 1 vs. Digital Logic’ decision
drove the issue. Only the ‘Computer Architecture’
remained as a viable choice, both because of the
desire to parallel the CS program, and the fact
that the architecture course accepted the Discrete
Mathematics 1 course as a prerequisite – whereas
the microprocessor course did not.

In our case, the seven new SE specific courses
fell logically on the shoulders of the hosting
department, CIS, due the focus and skills of the

department and faculty. We were able to negotiate
with Math department to offer the new Discrete
Math 2 course due to its strong mathematics
content. For domain related courses, we decided
to reuse existing courses offered by various de-
partments to offer students more domain specific
knowledge. Our current Software Engineering
curriculum is presented in the Change Manage-
ment section below.

Once the BSSE curriculum is developed, it is
just a proposal – it serves as the guide and core
for getting the agreement to launch the program,
and ultimately for attracting students, staffing and
running the courses that make up the program
and continuing to improve the program to serve
students’ needs.

Selling tHe prOgrAm

During the early stages of conceiving and
constructing the program, support must be ob-
tained on several levels in order to reasonably
proceed, and, ultimately, to launch a successful
program.

understanding the Student market

One initial question which must be answered is
whether there is and will be work for BSSE gradu-
ates. If this question is answered in the negative,
there is little chance for program success since it
will be extremely difficult to attract students to
a program with bleak job prospects. According
to the United States Bureau of Labor Statistics
(U.S. Department of Labor, 2006a), computer
software engineers in the United States held
about 800,000 jobs in 2004. They are employed
in a wide variety of industries, with employers
ranging from startup companies to established
industry leaders.

According to Bureau projections, computer
software engineer will be one of the fastest-grow-
ing occupations through 2014 as businesses adopt

1970

How to Create a Credible Software Engineering Bachelors Program

Figure 3. Initial Gannon BSSE curriculum (as designed 2004)

 1971

How to Create a Credible Software Engineering Bachelors Program

and integrate new computer-based technologies.
Jobs openings will be created both through em-
ployment growth and from the need to replace
workers who retire or otherwise leave the oc-
cupation. Consulting opportunities for computer
software engineers also should continue to grow.
Growth in the field will come from rapidly evolv-
ing technologies as well as new software needs
driven by information security concerns.

With growing internationalization of soft-
ware development, some countries will see more
software development contracted out abroad.
However, jobs in software engineering are less
prone to being sent abroad because the occupa-
tion requires innovation and intense research and
development. Most companies prefer to keep this
function in-house whenever practical.

Since the BSSE is a relatively new major, it is
often difficult to obtain accurate statistics which
isolate the major. This is true when discussing
starting salaries. Some basic information is avail-
able from the National Association of Colleges
and Employers web site (National Association of
Colleges and Employers, 2007) (more detailed
information is available to members). This press
release lists the average starting salary offer to
recent bachelor’s graduates in Management In-
formation Systems/Business Data Processing as
$46,966. The average offer for Computer Science
graduates is listed as $52,177. The press release
does not distinguish between types of job, nor
does it list Software Engineering as a category
of degree.

The United States Bureau of Labor Statistics
(U.S. Department of Labor, 2006b), lists median
salary data for computer software engineers in the
United States, but the data is for the profession.
As discussed below, most practicing software
engineers do not have a degree in Software En-
gineering, so the data applies to anyone working
as a software engineer, not just to those with a
Software Engineering degree.

Given the promising employment outlook,
a follow-up question is whether students are

enrolling in BSSE programs. If we build it, will
they come?

As with employment trends, it is difficult to
obtain accurate enrollment statistics which apply
specifically to the Software Engineering major.
The Digest of Education Statistics, 2005 (National
Center for Education Statistics, 2005), lists 163
students receiving a Bachelor’s degree in Com-
puter Software Engineering in 2003-04, while
the 2004 Digest (National Center for Education
Statistics, 2004), lists 121 students receiving a
Bachelor’s degree in Computer Software Engi-
neering in 2002-03. These are the most recent
official statistics generally available as of this writ-
ing. While these statistics indicate solid growth
in the number of bachelor’s degrees granted, the
number of SE graduates is still extremely small
when compared with the number of software
engineers needed.

It is also difficult to obtain statistics for
software engineering as a career preference. For
example, the Post-Secondary Planning Survey
Analysis, conducted by the National Research
Center for College and University Admissions
(NRCCUA) Career-Choice Preferences lists
“Computer Sciences,” “Information Technology,”
and several Engineering choices, but “Software
Engineering” is not included as a separate choice
(NRCCUA, 2007). The SAT survey of intended
majors of college bound students in 2007 includes
only the broad categories of “Computer and In-
formation Sciences and Support Services” and
“Engineering” (The College Board, 2007).

Based on the above numbers, it can be con-
cluded that most practicing software engineers do
not have a degree in Software Engineering, but
rather in Computer Science or some other related
discipline. The question is whether a traditional
Computer Science degree program best prepares
a student for today’s typical software engineering
jobs and future career need not be addressed; there
is room for and need for both majors.

With promising employment and enrollment
outlooks, a final general question is whether

1972

How to Create a Credible Software Engineering Bachelors Program

the market is already flooded with new BSSE
programs. The brief, simple answer is “no” (or
at least it was in 2002 and still is at the time of
writing).

In 2003, there were 21 known programs in the
United States offering some type of bachelor’s
degree in Software Engineering, with more being
proposed (Bagert, 2003). As of January 1, 2007,
there are at least 34 known BSSE programs in the
U.S. 13 of which are accredited by ABET (ABET,
2006). Based on these numbers and the projected
need for Software Engineers, it seems that many
more programs with a Software Engineering
focus are needed.

Building Additional Support

Once these initial questions are answered, support
to proceed must be obtained from several groups.
First, the affected faculty must support the pro-
gram. If housed in a Computer Science program,
one adjustment will be a shift in the focus of some
upper division courses. The basics of program-
ming, database, networking, operating systems,
and computer architecture will be taught in both
majors. However, Computer Science majors will
then study topics such as analysis of algorithms,
comparative programming languages, compilers,
and formal languages. Software Engineers, on the
other hand, with study topics such as software
design and test, software architecture, require-
ments, project management, quality assurance,
and human interface design.

For some faculty, this will be an issue. It will be
seen as a move from a set of courses with technical,
well-defined content to a set of courses with a more
subjective content. If co-located with a Computer
Science program, the split in focus and teaching
assignment for upper division courses may fall
naturally along the strengths and interests of the
faculty and be seen as a positive. If not, some
accommodation will need to be made for and by
the faculty. This can often be accomplished by
judicious distribution of the core set of courses.

Regardless of initial reaction, recent downward
trends in enrollment in Computer Science pro-
grams should provide motivation for faculty to
support a program which will likely lead to an
increase in enrollment.

Once the faculty is behind the concept of a
Software Engineering program, the university
administration must be convinced that launch-
ing the program is a good idea. While there are
several factors involved, the overriding issue with
the administration is likely to be economic: will
the new program make money or lose money? For
a university, the business case will boil down to
whether revenue from increased enrollment will
offset increased costs. The overall impact of the
program proposal was the creation and staffing
of seven new courses in software engineering; if
offered annually, as was the plan, this defined the
need for a new faculty member. In our case, we
developed our proposal to feature launching the
program first, and then adding the new faculty
member in the second year in order to offset the
economic impact.

Cost increase can vary greatly depending
on factors discussed in preceding sections. If
the program is housed in a department such as
Computer Science, there can be much reuse of
courses and faculty. As such, there will likely
be little additional cost when the program is first
launched. As the program moves into its third and
fourth years, new upper division courses must
be developed and taught. Part of this cost can be
shifted by eliminating or reducing the frequency
of current courses which are under-enrolled.
Other costs are more than offset by the increase
in enrollment.

A further advantage to the university is the
visibility of offering a cutting-edge program. This
will help attract both students and faculty. It will
also bolster the overall image of the university. In
our case, adding the SE program led to a change in
the CS+SE enrollment trends – what had been on
significant decline grew slightly and stabilized.

 1973

How to Create a Credible Software Engineering Bachelors Program

Finally, to be successful, the program must be
attractive to both students and their parents. One
major point, of course, is that Software Engineer-
ing is a promising career. The field provides an
adequate number of jobs and good salaries. A
degree in Software Engineering provides the right
skill set for a student entering the job market, and
degree in Software Engineering distinguishes
the graduate from a graduate with a Computer
Science degree. This can be highlighted by the
admissions department as well as in any market-
ing provided by the university. One criticism of
adding Software Engineering was the question of
impact on Computer Science enrollment. In our
case, there has been an impact on CS enrollment
(and MIS for that matter). We have ‘lost’ students
to SE from these programs, but we also found
many new students who would have otherwise not
applied to the university. For our (rather small)
program, this has been averaging about 50% for
the four years we have accepted students to the
SE program. Over this period, about half of the
new students who join the BS-SE would not have
joined the university. For our department, this has
resulted in a slight decline in CS undergraduates,
but more recently it has also seen an increase in
CS applicants, as well as a qualitative difference in
those students who join the CS program – they are
increasingly joining because they are genuinely
interested in CS topics and approaches.

Finally, the entry in the university catalog for
the new program becomes more important than
for more established programs. In addition to
just being a listing of required courses and their
content, the catalog entries server as a marketing
tool. A good entry will highlight the potential of
the career path, the promise of the department to
the students to deliver the appropriate courses and
material, and the commitment of the university
to support the new program.

lAuncHing tHe prOgrAm

Based on the plan initially proposed to and then
approved by the university (Frezza, 2003), Gannon
was able to launch the SE major with little impact
on courses or faculty for the first two years. Based
on the assessment of Gannon’s strengths and those
of the various departments as well as a review of
requirements imposed by the policies of both the
university and college, the courses taken by SE
majors in the first two years were already offered
within the university. These courses consisted of
Liberal Arts core courses taken by all Gannon
students, CIS core courses already offered and
taken by the CS and MIS majors at the university,
and introductory science courses already offered
to several majors. The only exception to this is
the Discrete Math 2 course taken second semester
of sophomore year. The Math department was
willing to develop and offer this course in the
necessary time frame. By design, the first two
years of the program had little immediate impact
on course delivery or teaching load – only one
new one-credit course was needed. Our internal
goal of trying to reuse as many of the existing
Computer Science curriculum courses and se-
quences as possible had the significant benefit
of our being able to launch the program prior to
searching for new faculty.

Adding new faculty

Adding a new faculty member to the department
proved to be significantly easy for our situation,
as one of the proponents of the program (who was
CSDP qualified), by mutual agreement, essentially
transferred from the Electrical and Computer
Engineering department. Finding a second quali-
fied faculty member was not as easy. Finding a
potential faculty member with a good academic

1974

How to Create a Credible Software Engineering Bachelors Program

background, worthwhile industry experience, an
appropriate commitment to teaching and scholar-
ship, who fits in the university/department culture
and has not already taken on a higher-paying job
in industry is a tall order.

While our experience has been somewhat
limited, some of the problem areas have included
recruitment of junior faculty; getting the right
match for credentials, experience and fit have
proven to be difficult. The typical Computer
Science Ph.D. may not have any interest in ‘core’
software engineering topics; whereas Ph.D.’s from
Engineering or Information Science disciplines
may not have any significant software develop-
ment background. In any case, many typical Ph.D.s
do not have either experience or education in SE
‘special topics’ areas such as project management,
software maintenance or even requirements.

Additional issues abound when searching for
seasoned faculty members – while they often have
more project and teaching experience, they also
have the potential for more (and more complex)
issues in areas such as benefits and tenure. Such
issues are often institutional, and flexibility may
not be available.

course pilots

This particular facet of our program design did not
eliminate the need for additional staffing, however.
Based on our assessments, we would need a new
faculty member in the second year of the program
to teach the first round of the new SE courses,
and if enrollment took off, in year three or four
we would need another faculty member to help
with the additional sections that would be needed
in the introductory sequence. These points were
very important to painting the financial picture
to the university about the distribution of costs
and risks in launching the program. Financially,
the big impact would be in years two and four;
academically, the real impact would begin in the
third year of the program; a change-management
plan was needed.

The plan was to hire a new (additional) SE-
qualified faculty member in year two, and ad-
ditionally to offer all of the new junior-level SE
courses in advance. This latter plan was part of a
(pedagogical) risk-management strategy so that
the new faculty member and other department
faculty members could pilot the new SE courses
prior to the first wave of SE students entering
the courses. The expanded department faculty
would then offer each of the new SE courses one
year in advance of the first wave of SE students
– with three semesters containing significant
piloting of courses.

For the fall (piloting semester five) of their
junior year, SE majors were scheduled to take
three upper division SE-specific courses: Software
Design and Test, Personal Software Process,
and Formal Methods in Software Development.
Of these, only one was new, as Software Design
and Test was already a course offered and re-
quired of our CS majors and Personal Software
Process was offered to our 1st-year graduate
students. Hence neither of these courses needed
significant modifications for the undergraduate
BSSE population. The Formal Methods course
was a different story – it was new to our faculty
and needed to be developed and offered. Finding
educational resources and faculty development
seminars to support this course proved to be dif-
ficult. Developing this course offering required
identifying and making decisions on course topics,
approaches, tools, methodologies and textbooks
that would work for our students.

During the next spring (piloting semester
six), the impact intensified. The SE majors were
scheduled to take two more new courses in the
following year, so Requirements and Project
Management, and Software Architecture, which
were developed and offered in their pilot forms,
knowing the regular group of majors would regis-
ter in the following year. This additional workload
was covered by the new faculty member.

The third year of the program (pilot for Semes-
ter seven) required the development and offering

 1975

How to Create a Credible Software Engineering Bachelors Program

of two new undergraduate courses, both offered
in the first semester: Software Testing and Qual-
ity Assurance, and Human Interface Design and
Maintenance. These courses, along with the first
regular offerings of the three fifth-semester SE-
specific courses accounted for the additional time
provided by the faculty hired at the beginning of
the second year of the program.

In addition to the courses and faculty needed,
two other factors needed to be considered. First,
the university Admissions department needed to
be involved in the process. The program needed
to be advertised as much as possible, and admis-
sions needed to understand the requirements for
admission to the program. They also needed to
place the incoming SE students in the proper
courses for the freshman year.

Finally, the issue of transfer students, both in-
ternal and external, needed to be addressed. Since
the program was phased-in over four years, for the
first two years, we would be unable to accept up-
per division transfers (unless they were willing to
stay an extra year) since the upper division courses
were not available during those first two years.
We did, in fact, accept one sophomore transfer
the first year of the program and he was able to
graduate with just one additional semester.

cHAnge mAnAgement

One important issue to address early in the pro-
gram development is to plan for change. This
begins with outcomes and measurement. We
were fortunate that many of the processes that
we required in this area were already largely in
place. The CIS department already had outcomes
defined for the CS and MIS majors and some
measurement tools in place.

Further, the Electrical Engineering and Me-
chanical Engineering departments were ABET
accredited. Concurrently with the launching of
the SE major, the CIS department was prepar-
ing for ABET accreditation for the two existing

majors, and the EE and ME departments were
preparing to renew their accreditation. To aid
in this process, an online course evaluation tool
was prepared to gather information specifically
required by the ABET process. (A university-wide
course evaluation instrument had been in use for
all courses for several years, but it did not gather
all information required by ABET.) This tool was
used from the beginning of the SE program.

Even though we are only about to begin our
fourth year of the program, and the first time
the senior level courses will be offered, we have
already made changes to the program. First, we
realized that we had a hole in coverage in the op-
erating systems area. To address this issue within
faculty time and budget constraints, we added
the full Operating Systems course to the list of
required courses. To make room, we dropped an
Introduction to Engineering course which had
only partial content relevant to our needs. We
moved the relevant content into pieces of existing
courses where they fit the best.

One of the core Liberal Studies requirements
is a basic business course. Many of our majors
chose either Microeconomics or Macroeconom-
ics. After two years of the program, we saw an
opportunity to provide a business course more
directly applicable to the SE majors. As such,
we co-developed a course (Project Economics)
with the business school which provides basic
economics theory as well as the application of the
theories in a project setting. This course is now
the designated business course for SE majors.

Our current Software Engineering Curriculum
(2007-8) is listed in Figure 4. Diagonal shading
indicates reused Computer and Information Sci-
ence courses. The darker grey shading indicates
new courses developed for the Software Engi-
neering major by the Computer and Information
Science department. One of the seven originally
proposed new Software Engineering courses (See
Figure 3), the Software Engineering Seminar, was
offered two times and it was determined that the
course was not serving the needs of our software

1976

How to Create a Credible Software Engineering Bachelors Program

Figure 4. Current software engineering curriculum (2007-8)

engineering students. Therefore, it was removed
from the curriculum. As noted in a previous sec-
tion, Discrete Math 2 was developed by the Math
department for our software engineering program.

The remaining courses required for the software
engineering major, including the application do-
main courses, are coded in Figure 4 as indicated
by the shading key. These courses were already

 1977

How to Create a Credible Software Engineering Bachelors Program

offered by various departments within the uni-
versity, with the exception of Project Economics
discussed above.

cOncluSiOn

This article does not address the relative merits
of the education provided by a traditional Com-
puter Science program compared with a Software
Engineering program. It does seem that there is a
need to provide the type of Software Engineering
curriculum discussed in the article and that the
curriculum can be provided along with, rather
than instead of, a more traditional Computer
Science curriculum. Programs have been and can
be introduced at institutions with diverse size,
diverse overall focus, diverse program style, and
diverse strengths.

This article discusses many items to consider
in the process of planning and launching a new
BSSE program. Further, obtaining program ac-
creditation is highly desirable, in some cases
necessary. Understanding the steps required by the
appropriate accrediting body to obtain accredita-
tion is mandatory at some point in the program’s
lifecycle. Understanding the steps very early and
accounting for them during program planning will
help smooth the journey to accreditation.

referenceS

ABET Engineering Accreditation Commission
(EAC) (2005). Criteria for Accrediting Engineer-
ing Programs, Effective for Evaluations during
the 2006-7 Accreditation Cycle. Baltimore, MD.
Retrieved May 28, 2007, from http://www.abet.
org/forms.shtml.

ABET (2006). List of Accredited Programs in
Software Engineering, October 1, 2006. Retrieved
May 28, 2007, from http://www.abet.org/ABE-
TWebsite.asp#area

ABET (2007). Home Page, Retrieved May 28,
2007, from http://www.abet.org/index.shtml

Abran, A., & Moore, J. (Eds.). (2004). Guide to
the Software Engineering Body of Knowledge,
2004 Version, IEEE Computer Society Press.
Available at http://www.swebok.org.

Bagert, D., & Ardis, M. (2003, November). Soft-
ware Engineering Baccalaureate Programs In
The United States: An Overview. Proceedings of
the Frontiers in Education Conference (FIE’03).
Boulder, CO.

Bourque, P., Dupuis, R., Abran, A., Moore, J., &
Tripp, L. (2000, August). Developing Consensus
on the Software Engineering Body of Knowledge.
Proceedings of the 2000 World Computer Con-
gress, Beijing, China. Available at http://www.
gelog.etsmtl.ca/publications/pdf/535.pdf

Canadian Council of Professional Engineers, Ca-
nadian Engineering Accreditation Board (2006).
CEAB Accreditation Criteria and Procedures.
Ottawa, Ontario, Canada. Retrieved October
26, 2007, from http://www.engineerscanada.
ca/e/files/report_ceab.pdf

Diaz-Herrera, J. L., Hilburn, T., Hislop, G., Lutz,
M., MacNeil, P.E., & McCracken, M. (2001, Oc-
tober). Software Engineering Education Should
Be Presented as A: Science, B: Engineering, C.
Technology, D. None of the above, E. All of the
above, Other. Proceedings of the Frontiers in
Education Conference (FIE’01), Reno, NV.

Diaz-Herrera, J. L., & Hilburn, T. (Eds.). (2004).
Software Engineering 2004 Curriculum Guide-
lines for Undergraduate Degree Programs in
Software Engineering A Volume of the Comput-
ing Curricula Series. Available at http://sites.
computer.org/ccse

Engineers Australia (2007). Australian Profes-
sional Engineering Programs Accredited by Engi-
neers Australia. Last updated 6 September 2007.
Retrieved November 11, 2007 from http://www.

1978

How to Create a Credible Software Engineering Bachelors Program

engineersaustralia.org.au/education/program-
accreditation/accredited-programs/accredited-
programs_home.cfm

Frezza, S., Sasi, S., & Seol, J. (2003, November).
Report from the Trenches: Applying the SEEK
to BSSE Program Development. Proceedings of
the Frontiers in Education Conference (FIE’03).
Boulder, CO.

Frezza, S. T., Tang, M-H., & Brinkman, B. J.
(2006). Creating an Accreditable Software En-
gineering Bachelor’s Program. IEEE Software,
23(6), 27-35.

Henderson, P., Linos, P., & Tinsley, E. (2003).
Crafting an Undergraduate Software Engineer-
ing Program in a Liberal Arts Environment.
Unpublished extended abstract, Butler University,
Indianapolis, IN.

IEEE Computer Society (2001). The Certified
Software Development Professional Program,
Available at http://www.computer.org/portal/
pages/ieeecs/education/certification.

Jones, C. (2003). Variations in Software Develop-
ment Practices. IEEE Software, 20(6), 22-27.

Kelley, R. E. (1999). How to be a Star Engineer,
IEEE Spectrum. 36(10), 51-58.

McConnell, S., & Tripp, L. (1999). Professional
Software Engineering: Fact or Fiction? IEEE
Software, 16(6), 13-18.

National Association of Colleges and Employers
(2007). Higher Starting Salary Offers Reflect
Positive Trend in Job Market for New College
Graduates. Press Release. Retrieved May 28,
2007, from http://www.naceweb.org/press/dis-
play.asp?year=2007&prid=256

National Center for Education Statistics (2004).
Institute of Education Sciences, U. S. Department
of Education. Digest of Education Statistics,

2004. Retrieved May 28, 2007, from http://nces.
ed.gov/programs/digest/

National Center for Education Statistics (2005).
Institute of Education Sciences, U. S. Depart-
ment of Education. Digest of Education Statistics,
2005. Retrieved May 28, 2007, from http://nces.
ed.gov/programs/digest/

National Research Center for College and Univer-
sity Admissions (2007). Post-Secondary Planning
Survey Analysis, 2007-2008 Edition. Retrieved
November 15, 2007, from http://www.nrccua.
org/downloads/reports/survey_analysis.pdf

Naur, P. & Randell, B. (Eds.) (1969). Software
engineering: Report of a conference sponsored
by the NATO Science Committee, Garmisch,
Germany, 7–11 October 1968, Brussels, Scientific
Affairs Division, NATO.

Sobel, A. E. K., Bagert, D. J., Frezza, S. T., &
Pavlov, V. L. (2007, October). Panel - Assessing
The Impact of the SE2004 Curriculum Guidelines,
presented at the Frontiers in Education Conference
(FIE’07), Milwaukee, WI.

The College Board (2007). 2007 College Bound
Seniors, Total Group Profile Report. Retrieved No-
vember 15, 2007, from http://www.collegeboard.
com/prod_downloads/about/news_info/cbsenior/
yr2007/national-report.pdf

U. S. Department of Labor, Bureau of Labor Sta-
tistics (2006a). Occupational Outlook Handbook
(OOH), 2006-07 Edition. Retrieved May 28, 2007,
from http://www.bls.gov/oco/

U. S. Department of Labor, Bureau of Labor
Statistics (2006b). Occupational Employment and
Wages. May 2006. Retrieved May 28, 2007, from
http://www.bls.gov/oes/current/oes151032.htm

Wankat, P. & Oreovicz, F. (1993). Teaching Engi-
neering, Upper Saddle River, NJ: McGraw Hill.

This work was previously published in Software Engineering: Effective Teaching and Learning Approaches and Practices,
edited by H. Ellis, S. Demurjian, & J. Naveda, pp. 298-325, copyright 2009 by Information Science Reference (an imprint of
IGI Global).

 1979

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.12
Facilitating eLearning with

Social Software:
Attitudes and Usage from the Student’s

Point of View

Reinhard Bernsteiner
University for Health Sciences, Medical Informatics and Technology, Austria

Herwig Ostermann
University for Health Sciences, Medical Informatics and Technology, Austria

Roland Staudinger
University for Health Sciences, Medical Informatics and Technology, Austria

ABStrAct

This article explores how social software tools can
offer support for innovative learning methods and
instructional design in general, and those related
to self-organized learning in an academic context
in particular. In the first section, the theoretical
basis for the integration of wikis, discussion fo-
rums, and Weblogs in the context of learning are
discussed. The second part presents the results of
an empirical survey conducted by the authors and
explores the usage of typical social software tools
that support learning from a student’s perspective.
The article concludes that social software tools

have the potential to be a fitting technology in a
teaching and learning environment.

IntroductIon

One major task of higher education is to train
students for the requirements of their future work
by applying and adapting their knowledge to spe-
cific workplace-related requirements and settings.
Due to the ongoing pressure on enterprises to cut
costs, the periods of vocational adjustment in a
company will become shorter and shorter.

1980

Facilitating eLearning with Social Software

On the one hand, the rising pressure of innova-
tion and fast-paced development in the economy
results in increased demand for continuous
employee training. On the other, growing global
competition forces enterprises to use available
resources very economically so that employee
training is considered to be necessary and desired
even though it is conducted under considerable
time and cost pressure (Köllinger, 2002).

According to these goals, the settings of the
education must be changed adequately: “While
most of higher education still ascribes to tradi-
tional models of instruction and learning, the
workplace is characterized by rapid changes
and emergent demands that require individuals
to learn and adapt in situ and on the job without
the guidance of educational authorities” (Sharma
& Fiedler, 2004, p. 543).

In the field of higher education, it has become
an important goal to develop “digital literacy”
and educate learners as competent users and par-
ticipants in a knowledge-based society (Kerres,
2007), but it can be assumed that there is a new
generation of students, the “digital natives,” who
are accustomed to digital and Internet technology
(Prensky, 2001a, 2001b).

Oblinger and Oblinger (2005) characterize
next-generation students (called “n-gen,” for Net
generation) as digitally literate, highly Internet
savvy, connected via networked media, used to
immediate responses, preferring experiential
learning, highly social, preferring to work in
teams, craving interactivity in image-rich envi-
ronments, and having a preference for structure
rather than ambiguity.

According to a study conducted by Lenhart
and Madden (2005), half of all teens in the USA
may be considered “content creators” by using
applications that provide easy-to-use templates
to create personal Web spaces.

Classical face-to-face learning is seen as
rigid and synchronous, and it promotes one-way
(teacher-to-student) communication. Thus, it

is not surprising that more and more students
are opting for Web-based education as a more
flexible and asynchronous mode (Aggarwal &
Legon, 2006).

The higher education system should provide
answers to this new generation of students who
enter the system with different backgrounds and
skills. They are highly influenced by social net-
working experiences and are able to create and
publish on the Internet (Resnick, 2002).

Educators and teachers therefore have to con-
sider the implications of these developments for
the future design of their courses and lectures.

In 2002, a new term, “social software,” entered
the stage to refer to a new generation of Internet
applications. One focus of this new generation is
the collaboration of people in sharing information
in new ways such as through social networking
sites, wikis, communication tools, and folkson-
omies (Richter & Koch, 2007).

Wikis, Weblogs, and discussion forums will
play a central role in the new context, so the areas
of application and possibilities will enlarge enor-
mously. It can be assumed that this will also have
considerable influence on learning and the usage
of these instruments as learning tools.

This article presents the results of an empiri-
cal survey in order to highlight the benefits of
the above-mentioned Web-based social software
tools from the student’s point of view; 268 first-
semester students, all in the first term of their
studies at Austrian universities from different
study programs, took part in this survey. The
students were asked to use one or more of these
tools as a learning tool. Participation in this survey
was voluntary.

The presentation of the results of this survey
is divided into three parts: first, the use of the
tools by the students (before they started their
studies); second, the experiences the students had
made with the tools during the study; and third,
the potential future usage.

 1981

Facilitating eLearning with Social Software

The article concludes with a discussion of
the results of this survey in contrast with other
empirical studies already published. Also, the
limitations of this survey and ideas for further
research are pointed out.

tHeOreticAl frAmeWOrK

This part refers to the necessary theoretical
background required for the following empiri-
cal study, especially the areas of social software
and learning.

Social Software

The term social software emerged and came into
use in 2002 and is generally attributed to Clay
Shirky (2003). Shirky, a writer and teacher on the
social implications of Internet technology, defines
social software simply as “software that supports
group interaction.”

Another definition of social software can
be found in Coates (2005), who refers to social
software as “software that supports, extends, or
derives added value from human social behav-
iour.”

Users are no longer mere readers, audiences,
or consumers. They have the ability to become
active producers of content. Users can act in
user and producer positions and they can rapidly
change the position.

Nowadays the term social software is closely
related to “Web 2.0.” The term Web 2.0 was in-
troduced by Tim O’Reilly (2005), who suggested
the following definition:

Web 2.0 is the network as platform, spanning all
connected devices; Web 2.0 applications are those
that make the most of the intrinsic advantages of
that platform: delivering software as a continually
updated service that gets better the more people
use it, consuming and remixing data from mul-
tiple sources, including individual users, while

providing their own data and services in a form
that allows remixing by others, creating network
effects through an “architecture of participation,”
and going beyond the page metaphor of Web 1.0
to deliver rich user experiences.

Web 2.0 technologies such as blogs, wikis,
podcasts, and RSS feeds or discussion forums
have been dubbed social software because they
are perceived as being especially connected and
allow users to develop Web content collaboratively
and publicly (Alexander, 2006).

Until now, the Internet (Web 1.0) has one big
disadvantage: It is easy to get information in it,
but it is quite complicated and inconvenient to act
as an author and take part in the development of
content. Web 2.0 should enable all Internet users
to actively take part in the further development of
the Internet. Everyone should be able to contribute
easily. The focus of Web 2.0 is on the behaviour
of the user. It should empower people to commu-
nicate, collaborate, contribute, and participate.

This growing phenomenon is very interesting
and ought to be examined carefully in order to
understand how the Web is evolving and how this
continuously regenerative cycle of performance
and technological innovation empowers “learning
by sharing” (Thijssen & Vernooij, 2002).

Based on the key principle of the architecture
of participation, social software can be seen as
part of Web 2.0. Wikis, Weblogs, and discussion
forums are tools that are seen as social software
applications and were selected for further research
and the empirical study presented below.

related empirical research

Institutions in the field of higher education have
made efforts to introduce various IT-supported
learning tools in the daily routine of students and
lecturers (Aggarwal & Legon, 2006; Dooley &
Wickersham, 2007; Duffy & Bruns, 2006; Evans
& Sadler-Smith, 2006; McGill, Nicol, Littlejohn,
Grierson, Juster, & Ion, 2005).

1982

Facilitating eLearning with Social Software

Published results of the usage of Weblogs in
the Prolearn project (http://www.prolearn-project.
org) have shown that a large majority of respon-
dents considers personalization and adaptation
of the learning environment as important and
crucial factors. Learning should be individualized
to become more effective and efficient. Personal-
ization is a key element of the learning process,
and specific problems need specific solutions as
students differ greatly in their backgrounds and
capabilities.

Learning materials are typically too general
in order to cover a very wide range of purposes
and personal learning needs. Compared to clas-
sical learning, personalization can be the most
important added value that e-learning can offer.
With it, education can be optimised and adjusted
to various working conditions and needs because
students have different goals, interests, motivation
levels, learning skills, and endurance (Klamma
et. al., 2006).

Chao (2007) explored the potential uses of
wikis in the field of software engineering (38
participants), especially for software project team
collaboration and communication. Overall, 25
students agreed and 1 student disagreed (2 were
neutral) that the wiki is a good tool for project col-
laboration. Concerning the applications of wikis,
more than 23 students found that a wiki is a good
tool for maintaining a group diary, managing user
stories (project requirements), and project track-
ing and reporting. While a majority of students
found that a wiki is a good tool for updating a
project plan, managing acceptance tests, tracking
defects, and developing user documents, there
were also a significant number of students who
disagreed.

First results using wikis for collaborative writ-
ing (about 40 participants) also reported similar
results. In this study, students used wikis to write
articles partly together with the lecturer.

After early problems with using the software
and writing contributions in the wiki, students

were able to write articles by themselves or in
teams. The motivation among students was on
different levels, so the lecturer had to increase
it during lessons. Other students, however, were
highly motivated and were creating the content
and adding them to the wikis (Bendel, 2007).

constructivism and learning:
presentation of the learning model

A constructivist point of view focuses on the
learning process by looking at the construction of
knowledge by an individual. As a consequence,
there is a recommendation to align learning en-
vironments, especially in the academic context,
and associated complex learning objectives with
constructivist learning principles (Du & Wag-
ner, 2005; Jonassen, Mayes, & McAleese, 1993;
Tangney, FitzGibbon, Savage, Mehan, & Holmes,
2001). Learning is not seen as the transmission
of content and knowledge to a passive learner.
Constructivism views learning as an active and
constructive process that is based on the current
understanding of the learner. Learning is embed-
ded in a social context and a certain situation
(Schulmeister, 2005).

The constructivist approach shifts learning
from instruction and design centered to learner-
centered learning and teaching. The role of the
educator changes from directing the learner to-
ward supporting and coaching the learner.

Baumgartner (2004) has suggested three dif-
ferent prototypical modes of learning and teach-
ing. These three different modes of learning and
teaching can be neutral or specific so they can
be applied across all subject domains. Therefore,
each teaching model can be used to teach, for
example, sociology subjects as well as to teach
technical sciences. Learning can be portrayed
as an iterative process that can subsequently be
subdivided into different phases, which are sum-
marized in Figure 1.

 1983

Facilitating eLearning with Social Software

In particular, these three different prototypical
modes for learning encompass the following.

learning and teaching i:
transferring Knowledge

At the starting point, the learner needs to be
provided with abstract knowledge to lay the
theoretical foundations and to understand relevant
signposts, road markings, and orientation points.
This kind of factual knowledge is static and has
little value by itself in real and complex situations.
It merely serves as a shortcut to prevent pitfalls
and to help to organize the student’s learning
experiences.

The knowledge of the student is based on
knowledge possessed by the teacher. Students
have to learn what teachers ask them to learn.
The teacher has the responsibility to make the
knowledge transfer as easy as possible.

learning and teaching ii:
Acquiring, compiling, and
gathering Knowledge

In this section of the individual learning career,
the student actually applies the abstract knowledge
and gathers his or her own experiences. In order
to limit the action and reflection possibilities, the
learner interacts within a somewhat restricted,
artificial environment, which is reduced in
complexity and easy to control by the teacher.
To provide feedback, the learning environment
is designed to include relevant devices where
students can deposit their interim products and
teachers can inspect them.

The emphasis in this model lies on the learn-
ing process of the student. Teachers try to help
the students overcome wrong assumptions and
wrong learning attitudes, and assist in the reflec-
tion process of the subject domain.

Figure 1. Prototypical modes of learning and teaching (Baumgartner, 2004)

1984

Facilitating eLearning with Social Software

learning and teaching iii:
Developing, inventing, and
onstructing Knowledge

Teacher and learner work together to master
problems. This model includes problem generation
and/or invention. The environment is constructed
in such a way that it represents, at least in certain
aspects, reality or reality in a constrained form.
This model includes two-way communication on
equal terms, using either linguistic representations
or other adequate kinds of language.

Teaching III has strong links to constructivism.
From a constructivist point of view, learning is
considered as an active process in which people
construct their knowledge by relating it to their
previous experiences in complex and real situa-
tions in life. In their practical lives, people are
confronted with unique, unpredictable situations
whose inherent problems are not readily observ-
able (Baumgartner, 2004).

Students should be enabled to invent new
things, and produce or generate new knowledge.
Consequently, learning and teaching at universi-
ties in most cases can be assigned to the require-
ments presented in Learning and Teaching II and
III. In order to achieve this goal, a special learning
environment must be provided.

consequences for it-Supported
learning and teaching

Computer software can be used for all three
models, ranging from programmed instruc-
tion (Learning/Teaching I) to problem-solving
software (Learning/Teaching II), to complex
simulations and/or so-called micro worlds (Learn-
ing/Teaching III). It is said that the inherent
nature of the Internet brings the real world into
the classrooms, and with its hyperlink structure
it clearly advocates the model of Teaching III
(Baumgartner, 2004).

The use of the Internet, especially through its
social software, gains importance because it can
contribute to exceed the limits of classical teach-
ing models. By adapting learning and teaching
models to the new technical possibilities, the
roles of learner and teacher are becoming more
indistinct because the learner can take a central
part in the design and arrangement of the learning
process (Kerres, 2006).

Systems that support learners with respect
to the Learning Model III are called personal
learning environments (PLEs). PLEs are mostly
Web-based applications and are based on learning
management systems (LMSs; Seufert, 2007).

PLEs are personal and open learning environ-
ments, and they are suitable for cross-linking
content and people. Learners can use PLEs to
manage individual learning progress. They are
ideally available for lifelong learning and are
supported by the following processes.

• setting up individual learning goals
• planning and controlling one’s own learn-

ing concerning the content as well as the
learning process

• combining formal and informal learning
activities

• communicating with peers during the learn-
ing process

• establishing social networks or communities
of practice

• using Web-based services, for example,
syndication

• verifying the learning process with respect
to the learning goals

Unlike an LMS, which is usually related to one
special institution or to one special course, a PLE
is focused on the individual learner. A PLE should
combine a broad mixture of different resources
and subsystems in a “personally-managed space”
(Attwell, 2006).

 1985

Facilitating eLearning with Social Software

In the previous decade, learning management
systems were developed that moved toward enter-
prise-level applications, “but the wealth of new,
user-friendly, tools in the Web 2.0 environment
suggests that the all-in-one monolithic e-learning
systems may be entering a phase of obsolescence
by the ongoing development of the web” (Craig,
2007).

Social software applications have the poten-
tial to cope with these requirements (Brahm,
2007).

DeScriptiOn AnD
clASSificAtiOn Of SOciAl
SOftWAre tOOlS

In the following section, three social software
tools—Weblogs, discussion forums, and wi-
kis—are described in more detail and the tools
are compared. Students were able to select these
tools during the empirical study.

Weblog

A Weblog, a compound of Web and logbook, usu-
ally just called “blog,” is a Web site that contains
new articles or contributions in a primarily chrono-
logical order, listing the latest entry on top.

Primarily, a Weblog is a discussion-oriented
instrument especially emphasizing two functions:
RSS feeds and trackback. RSS feeds, also called
RSS files, can be read and processed for further use
by other programs. The most common programs
are RSS readers or RSS aggregators that check
RSS-enabled Web sites on behalf of the user to
read or display any updated contribution that can
be found. The user can subscribe to several RSS
feeds. Thus, the information of different Web sites
can be retrieved and combined. Preferably, news
or other Weblogs are subscribed to.

Trackback is a service function that notifies
the author of an entry in a Weblog if a reference
to this contribution has been made in another
Weblog. By this mechanism, a blogger (person
who writes contributions in a Weblog) is im-
mediately informed of any reactions to his or
her contribution on other Weblogs (Hammond,
Hannay, & Lund, 2004).

forum

A discussion forum or Web forum is a service
function providing discussion possibilities on
the Internet. Usually, Web forums are designed
for the discussion of special topics. The forum
is furthermore subdivided into subforums or
subtopics. Contributions to the discussion can be
made and other people may read and/or respond
to them. Several contributions to a single topic
are called a thread.

The application areas of the two instruments,
Weblogs and forums, are quite similar. The most
essential differences between Weblogs and discus-
sion forums can be described as follows:

• A forum is usually located on one platform
while many bloggers develop their own,
individual environments. They connect
their Weblogs via RSS feeds and trackback
functions.

• Through the integration of RSS files and
trackback functions, a discussion process
can be initiated and continued, crossing the
boundaries of the bloggers’ own Weblogs
without authors having to observe other
Weblogs.

• Weblogs tend to be more people centered
whereas forums are more topic focused.
Through the use of Weblogs, learner-specific
learning environments can be constructed
without interfering with the learning envi-
ronments of others (Baumgartner, 2004).

1986

Facilitating eLearning with Social Software

Wiki

A WikiWikiWeb, shortly called wiki, is a hyper-
text system for storing and processing information.
Every single site of this collection of linked Web
pages can be viewed through a Web browser.
Furthermore, every site can also be edited by
any person. The separation between authors and
readers who write their own text, and change
and delete it is obsolete as also third parties can
carry out these functions (Augar, Raitman, &
Zhou, 2004).

learning Activities Supported by
Social Software

The integration of different social software tools
offers support in the following learning activi-
ties:

• Learning from different perspectives: The
integration supports the exchange of ideas
as well as finding like-minded people. Fur-
thermore, social software tools simplify the
process of establishing connections between
people of the same or similar interests.
Simultaneously, its open and expandable
philosophy supports going beyond the
thinking in groups (of a common interest) by
supporting diversity and bringing together
different perspectives and backgrounds
(Efimova & Fiedler, 2004; Schulmeister,
2004).

• Synergies of self-organized and joint learn-
ing: Social Software tools provide a personal
learning area for their authors. However,
this does not force a general learning flow
or learning style. Learners are not alone
and can profit from the feedback of a com-
munity in order to examine and enhance the
development of their own ideas (Böttger &
Röll, 2004; Efimova & Fiedler, 2004; Fiedler,
2004).

• Digital apprenticeship: Through reading
other wikis, forums, or Weblogs regularly,
beginners are enabled to learn from experts.
At the same time, they can actively partici-
pate in discussions beyond geographic or
thematic borders (Efimova & Fiedler, 2004;
Fiedler, 2004).

• Support for the development of the ability to
learn (learning to learn): Through the publi-
cation of one’s own thoughts and reflections,
content is made available for assessment as
well as for further development, thereby im-
proving self-observation and self-reflection
skills. The knowledge change of the learner
will be improved (Baumgartner, 2005).

• Support for reflexive writing: The simple but
efficient and rather robust encoding standard
usually used in social software allows for the
explicit modeling of content flows, feedback
loops, and monitoring procedures of various
kinds, thus supporting an ongoing reiterative
process of explication and reflection (Fiedler,
2004).

integration of Social Software tools
and the learning and
teaching modes

Baumgartner (2004) has integrated different
types of content management systems in relation
to the most suitable learning and teaching mode.
He clearly states that the boundaries are overlap-
ping and that every tool, in one way or another,
could be used for every teaching model. Figure
2 presents the integration of the social software
tools and the learning and teaching modes.

Weblogs and forums can be defined as discus-
sion-oriented tools because the discourse and
exchange of ideas related to a certain topic is the
preeminent aim. Weblogs offer the possibility to
support all three phases of the learning process.
However, the main focus can be assigned to
Modes II and III.

 1987

Facilitating eLearning with Social Software

Based on the multitude of interaction pos-
sibilities, wikis can be attached to Teaching III
(Baumgartner, 2004). Additional functions were
added to Weblog tools that go beyond the scope
of the central use of Weblogs; for example, longer
articles can also be stored. Through the creation
of directories, a structured collection of links can
be implemented.

Through the additional linking of Weblogs,
wikis, and forums, there is the possibility to de-
velop a personal knowledge collection (Kantel,
2003).

empiricAl SurVey

The purpose of this survey was to determine
if the integration of Web-based social software
tools (wikis, discussion forums, and Weblogs)
are suitable to foster learning from the student’s
point of view.

Aim of the Survey and
methodology

Scrutinizing the possibilities and constraints of
social software tools (wikis, discussion forums,
and Weblogs) as personal learning environments,
students at Austrian universities were asked to use

one or more of the offered tools for their research,
homework, and documentation purposes. In most
cases, the collaboration of students was required
to perform the assigned tasks.

The students were asked to use the tools for one
course only during the winter term of 2006. Fur-
thermore, there was no obligation for the students
to use a tool at all; they were just encouraged to
do so. Students were also offered the possibility
to use two or three tools; the selection was up to
the students.

The courses were organized as blended-learn-
ing courses so they included on-campus lessons
and off-campus work in which the students could
work face-to-face or using the social software
tools.

More than 90% of the students attending the
courses took part in this survey. In order to give
the participants an impression of the functional-
ity and usage of the tools, short presentations of
the tools were made by an instructor before the
students made their choice.

At the end of the testing phase—after 4 weeks
of using the tools—selected students reported their
experiences with the tools used. Students who
had decided not to use the tools in the first place
got an impression about the usage, advantages,
and disadvantages of the tools from their fellow
students. Following these short presentations, a

Figure 2. Prototypical modes and social software tool

1988

Facilitating eLearning with Social Software

questionnaire was completed that provided the ba-
sic findings for further inspection and research.

A total of 268 first-semester students of differ-
ent Austrian universities in five selected courses
took part in this survey. The majority of the par-
ticipants were between 18 and 20 years old. The
portion of female students was about 17%.

According to a survey conducted by Seybert
(2007) concerning gender differences in com-
puter and Internet usage by young people (aged
between 16 and 24), there is no gap between
men and women in Austria. The proportion of
women and men (in the relevant age class) that
use a computer (almost) once a day is 72% the
same. A study by Otto, Kutscher, Klein, and Iske
(2005) indicates that there is a positive correlation
between a formal educational background and
the usage of the Internet in Germany: “Beside
socio-cultural resources like family background,
peer structures and social support in general, the
formal educational background turns out to be the
main factor for explaining differences in internet
usage” (p. 219). As a consequence, for the analysis
of the results of this survey, no distinction between
male and female students was made.

Table 1 presents the distribution of the par-
ticipants concerning the degree programs the
students are attending.

For the further analysis of the results, no
distinction according to degree programs will
be made.

The questionnaire asked each participant ques-
tions about her or his subjective impression of the
application of the tools. It included 5-point Likert
scales for rating constructs such as eligibility,
perceived quality, or enjoyment.

The study was conducted to find answers
about the:

• usage of social software before the study
started,

• selection of the offered tools,
• perceived quality of the contributions and

the support for learning,

• applicability of the instruments to support
communication and community building,

• correlation of the usage for private and
educational purposes of the tools,

• fun factor in using the instruments, and
• potential future usage.

The results of the study are presented in three
parts:

• Part 1: Analysis of the usage of wikis, dis-
cussion forums, and Weblogs of the students
before the study was started

• Part 2: Experiences made with the tools
during the study

• Part 3: Potential future usage of the tools

part 1:
tool Selection and prestudy usage

Due to the fact that the students could select the
tools on their own, the Table 2 shows the results
of this selection process.

According to Table 2, the combination of wikis
and discussion forums is the most selected com-
bination of tools (42.9%), followed by wikis only
(23.1%) and discussion forums only (22.4%). In the
end, only five students (1.9%) did not take part in
the study; they did not select a tool, although they
first had the intention to do so. Only one student
used Weblogs only. Generally, Weblogs were not
used very intensively by the participants.

Distribution

Management & Law 17%

Management & IT 31%

Management & Industrial
Engineering 22%

Mechanical Engineering, Electronics 30%

Table 1. Distribution of students regarding degree
program

 1989

Facilitating eLearning with Social Software

Table 3 shows the usage of the tools by the
participants before they took part in the study.
It indicates that wikis (76%) and discussion fo-
rums (78%) are currently the most widely used
tools. Weblogs are only used by 11% of the asked
students.

The results clearly show that the Weblog hype
had not yet reached the surveyed students. Due
to the fact that only about 11% of the students
are currently using Weblogs, the results for this
instrument are not published for the first part of
the analysis. When it comes to the potential future
usage of the instruments, Weblogs are taken into
consideration again.

The following section presents the results for
statements used in analyzing the usage in more
detail.

Tables 4 and 5 present the current usage of
the tools for private and educational purposes.
First, the statement “I often use wikis or forums
for private purposes” was presented.

Table 5 presents the results for the statement
“I often use wikis or forums for educational
purposes.”

A huge majority (90%) stated that they use
wikis for educational purposes and about two
thirds (68%) used wikis for private purposes.
Wikis are therefore more intensively used for

Percent Number

Only one tool selected

Wikis only 23.1% 62

Discussion forums only 22.4% 60

Weblogs only 0.4% 1

More than one tool selected

Wikis and discussion forums 42.9% 115

Wikis and Weblogs 1.9% 5

Discussion forums and Weblogs 0.7% 2

Wikis, discussion forums, and Weblogs 6.7% 18

No tool selected

No tool selected 1.9% 5

Table 2. Tools selected by the students

Wiki Forum Weblog

Yes 76% 78% 11%

No 24% 22% 89%

Table 3. Students already using the tools

Wiki Forum

I totally agree 33% 33%

I generally agree 35% 29%

Neither...nor (neutral) 9% 9%

I slightly disagree 16% 17%

I disagree 8% 12%

Table 4. Usage for private purposes

Wiki Forum

I totally agree 57% 22%

I generally agree 33% 29%

Neither...nor (neutral) 3% 12%

I slightly disagree 8% 24%

I disagree 1% 12%

Table 5. Usage for educational purposes

1990

Facilitating eLearning with Social Software

educational purposes than for private purposes,
whereas the usage of forums is exactly the op-
posite: They are more used for private purposes
than for education.

The responses of the students concerning these
statements were that wikis are foremost considered
as a source of serious information, whereas forums
are ideal for getting hints or clues to problems be-
cause of their privacy. Questions about computer
problems, computer games, leisure activities, and
so forth were mentioned. A repetition of this im-
age can be identified when the disagreement with
the statement is analyzed; 29% of the students
do not or rarely use forums for private purposes
compared to 36% for education.

part 2:
experiences made During the Study

This section presents the results of the study
concerning experiences with the usage of the
tools during the study.

Quality and Support for Learning

The following refers to statements concerning the
quality of the contributions of wikis and discussion
forums and their support for learning.

The results of the statement “The quality of
contributions in wikis or forums is in general
good” are presented in Table 6. The contributions
of wikis are evaluated to be much better than
those of forums.

The surveyed pupils had the opportunity to
give reasons for their assessment concerning the
quality of contributions via additional qualita-
tive feedback. The following summarizes the
addressed reasons.

One reason for the excelling grade for the qual-
ity of wikis is the “Wikipedian community.” The
term wiki is often seen as a synonym for the free
online encyclopedia Wikipedia (http://www.wiki-
pedia.org). Wikipedia is widely used for a great
variety of tasks, including research on all topics

needed for educational and private purposes.
In contrast to the good evaluation of the

contributions of wikis, the open architecture of
wikis was also mentioned. In most cases, this
open architecture allows everyone to edit entries,
which results in the uncertainty of whether the
knowledge presented is correct or not. The quality
of contributions in discussion forums was rated
rather mediocre. Forums are primarily used for
technical problems, especially computer-related
problems; to get in contact with experts on certain
topics, and to get information on online games.

The next statement, “The usage of wikis or
forums leads to misunderstandings and confu-
sion,” is about the clarity of the contributions.

Only a minority think that the contributions
are not clear and may lead to misunderstand-
ings. In this case, wikis are also rated better than
forums.

The next statements addressed the support of
these instruments for learning. Table 8 summa-
rizes the results for the statement “When reading
contributions in wikis or forums, it is easier for
me to acquire the learning contents.”

More than half of the students express that read-
ing contributions in wikis is helpful for learning,
whereas only about 8% think that it is not helpful.
Compared to forums, wikis were again much better
evaluated, especially considering the big difference
from the negative evaluations of forums.

Table 9 presents the learning support achieved
by writing contributions. (“When writing contri-
butions in wikis or forums, it is easier for me to
acquire the learning contents.”)

A different picture emerges in the statistics
when comparing the evaluation of how writing
an article or post supports the learning process.
Here, forums take the lead when it comes to posi-
tive assessment. In both cases, there was a large
number stating that writing is neither positive nor
negative. The majority of the students read rather
than wrote, while more students wrote in forums
than in wikis.

 1991

Facilitating eLearning with Social Software

Applicability for Communication and
Community Building

The statement was formulated as follows: “Wikis
or forums are appropriate to support communi-
cation.”

The results clearly demonstrate that discussion
forums are made for communication whereas wi-
kis are rather seen as a kind of reference book or
encyclopedia, as already mentioned above.

The results of the next statement, “Wikis or
forums support the setup of communities,” can
be seen in Table 11.

Opinions about the applicability of wikis to
establish a community is split. About 35% say
that wikis are supportive of building a community
compared to 25% who said that wikis do not support
community building. The support of forums to build
a community is rated much better: 50% indicated
that forums are well suited to build a community.
These results were to be expected because they
confirm the nature of the instruments.

fun factor in using the
instruments

In surveying whether students gain pleasure (“I
enjoy using wikis or forums”), wikis again came
out on top.

A majority enjoy using wikis (62%) and forums
(56%). Considering the percentage of students
who said that there is no (“I disagree”) or little
(“I slightly disagree”) fun when using these in-

struments, wikis (6%) are much better rated than
forums (18%).

part 3: potential future usage of the
tools

The third section of the empirical study deals
with the potential usage by students who had not
used the instruments before the study. Students
gained knowledge and experiences by using the
tools during the study by themselves or on the
basis of the reported experiences made by their
fellow students.

The first statement, “I will use wikis, forums,
or Weblogs for educational purposes in the future,”
yielded the results in Table 13.

According to this study, wikis will have a
bright future and will be used often for educa-
tional purposes, whereas forums will be used less
often. About 54% of the surveyed students had
the intention of using wikis more or less often in
the future. About 16% did not think that they will
use wikis often in the future and 30% are not yet
sure if they will use this instrument.

The results for forums and Weblogs indicate
no clear trend, but forums were rated slightly
higher than Weblogs; 39% of the students stated
that they can imagine using forums in the future
for their education compared to 36% for Weblogs.
At the other end of the scale, 45% did not have the
intention to use forums (40% for Weblogs).

The statement “I will use wikis, forums, or
Weblogs for private purposes in the future” leads
to similar results.

Wiki Forum

I totally agree 38% 10%

I generally agree 52% 31%

Neither...nor (neutral) 10% 41%

I slightly disagree 2% 15%

I disagree 0% 4%

Table 6. Perceived quality of contribution

Wiki Forum

I totally agree 2% 4%

I generally agree 6% 18%

Neither...nor (neu-
tral) 29% 37%

I slightly disagree 34% 27%

I disagree 29% 14%

Table 7. Clarity of contributions

1992

Facilitating eLearning with Social Software

From this point of view, wikis are again the
leading instrument, followed by forums and then
Weblogs.

It must be said that the responses to this set
of statements represented feelings, attitudes, and
opinions about instruments that had not yet been
used by the asked participants. The purpose of
posing these statements was to gain insight into
the mind-set in regard to these instruments.

DiScuSSiOn

The results clearly show that wikis are currently
the most often used instrument and furthermore
have the greatest potential as a tool for learning
and knowledge management in the field of learn-
ing; these findings are in line with other empirical
studies (Bendel, 2007; Chao, 2007).

Other studies (McGill et al., 2005; Nicol &
MacLeod, 2004) report that a shared workspace
helps to support collaborative learning; the pos-
sibility of being able to access and contribute to

the development of resources at any time and
from any location was especially appreciated by
the students.

The survey at hand made a distinction between
reading and writing contributions to wikis and
discussion forums. The results show that 59%
of students said reading contributions in wikis
is helpful for learning (stating “I totally agree”
and “I generally agree”) while only 21% stated
that writing in wikis is helpful for learning.
Reading contributions in forums helped 29% of
the participants, whereas writing in forums was
helpful to 26%. This survey supports the general
statement that a shared workspace that supports
a constructivist and learner-centered approach is
helpful for learning.

The pedagogical value in the context of learn-
ing is described in several publications (Babcock,
2007; Hurst, 2005). Weblogs can foster the estab-
lishment of a learning and teaching environment
in which students and teachers experience a
greater degree of equality and engagement. Du
and Wagner (2007) published results of a study

Wiki Forum

I totally agree 23% 8%

I generally agree 36% 21%

Neither...nor (neutral) 32% 31%

I slightly disagree 5% 25%

I disagree 3% 15%

Wiki Forum

I totally agree 8% 7%

I generally agree 13% 19%

Neither...nor (neutral) 45% 34%

I slightly disagree 14% 22%

I disagree 19% 17%

Table 8. Reading contributions helps to acquire
contents

Table 9. Writing contributions helps to acquire
contents

Wiki Forum

I totally agree 9% 39%

I generally agree 33% 37%

Neither...nor (neutral) 29% 17%

I slightly disagree 15% 4%

I disagree 15% 3%

Wiki Forum

I totally agree 10% 28%

I generally agree 25% 32%

Neither...nor (neutral) 39% 23%

I slightly disagree 15% 11%

I disagree 10% 6%

Table 10. Applicability for communication

Table 11. Support for community building

 1993

Facilitating eLearning with Social Software

of an information systems undergraduate course
(31 participants). This study indicated that the
performance of students’ Weblogs was a signifi-
cant predictor for learning outcomes, while tradi-
tional coursework was not. Moreover, individuals’
cognitive construction efforts to build their own
mental models and social construction efforts to
further enrich and expand knowledge resources
appeared to be two key aspects of constructivist
learning with Weblogs. According to this study,
there is a potential benefit of using Weblogs as a

knowledge construction tool and a social learn-
ing medium.

According to the survey at hand, Weblogs are
not yet widely used, and their potential seems to
be limited. It can be assumed that these limited
prospects will change when the penetration of
Weblogs into the daily routine of the students
increase—for private as well as for educational
purposes.

To avoid possible pitfalls about the application
of these instruments in the context of learning,
some social and psychological issues must be
taken into consideration (Kreijns, Kirschner, &
Jochems, 2003). Social interaction is essential
for members of a team to get to know each other,
commit to social relationships, develop trust, and
develop a sense of belonging in developing a learn-
ing community. The size and the composition of
the learning communities seem to be important
factors in how interaction and communication
within the learning community will take place
(Dooley & Wickersham, 2007). There are also
many unresolved issues, like the provision of the
technology and the services, intellectual property
rights and digital rights management, the security
of data, access restrictions to the content, and
information ethics (Attwell, 2006; McGill et al.,
2005; Sharma & Maleyeff, 2003).

cOncluSiOn

The aim of this contribution was to investigate
the experiences of students using social software
tools in the context of learning. Wikis, Weblogs,
and discussion forums are typical social software
tools and were used for this survey.

The results clearly show that wikis and dis-
cussion forums can support learning and col-
laboration. The usage of Weblogs in this study
was limited and hence no statements about their
applicability can be made. In order to assure a
successful implementation of these tools, social
and psychological issues must be taken into con-
sideration as well.

Wiki Forum

I totally agree 26% 19%

I generally agree 36% 37%

Neither...nor (neu-
tral) 31% 26%

I slightly disagree 5% 14%

I disagree 1% 4%

Wikis Forums Weblogs

I totally agree 18% 16% 13%

I generally agree 36% 23% 23%

Neither...nor (neutral) 30% 16% 24%

I slightly disagree 9% 12% 13%

I disagree 7% 33% 27%

Table 13. Future usage in educational context
(current nonusers)

Table 12. Fun Factor in using the instruments

Wikis Forums We-
blogs

I totally agree 11% 14% 9%

I generally agree 36% 23% 22%

Neither...nor (neutral) 30% 25% 24%

I slightly disagree 14% 7% 16%

I disagree 9% 32% 28%

Table 14. Future usage in private context (cur-
rent nonusers)

1994

Facilitating eLearning with Social Software

The results of this study are the basis for the
introduction of social software into education
to help students set up individual learning envi-
ronments. These learning environments should
support lifelong learning.

There are likely to be other unplanned con-
sequences of the intensive use of the Internet in
general and social software especially. Further
research is needed to explore possible problems
and solutions.

The results of the empirical survey indicate
that a long-term study in combination with the
further development of social software tools may
be promising.

referenceS

Aggarwal, A. K., & Legon, R. (2006). Web-based
education diffusion. International Journal of
Web-Based Learning and Teaching Technolo-
gies, 1(1), 49-72.

Alexander, B. (2006). Web 2.0: A new wave of
innovation for teaching and learning? Educause
Review, 41(2), 32-44.

Attwell, G. (2006). Personal learning environ-
ment. Retrieved May 17, 2007, from http://www.
knownet.com/writing/weblogs/Graham_Attwell/
entries/6521819364

Augar, N., Raitman, R., & Zhou, W. (2004, Decem-
ber 5-8). Teaching and learning online with wikis.
In R. Atkinson, C. McBeath, D. Jonas-Dwyer,
& R. Phillips (Eds.), Beyond the Comfort Zone:
Proceedings of the 21st ASCILITE Conference,
Perth, Western Australia. Retrieved May 17,
2007, from http://www.ascilite.org.au/confer-
ences/perth04/procs/contents.html

Babcock, M. (2007). Learning logs in introductory
literature courses. Teaching in Higher Education,
12(4), 513-523.

Baumgartner, P. (2004). The Zen art of teaching.
Communication and Interactions in eEducation.
Retrieved May 17, 2007, from http://bt-mac2.fer-
nuni-hagen.de/peter/gems/zenartofteaching.pdf

Baumgartner, P. (2005). Eine neue lernkultur
entwickeln: Komptenzbasierte ausbildung mit
blogs und e-portfolios. In V. Hornung-Prähauser
(Ed.), ePortfolio Forum Austria: Proceedings of
the ePortfolio Austria 2005, Salzburg, Austria
(pp. 33-38).

Baumgartner, P., Häfele, H., & Maier-Häfele, K.
(2004). Content management systeme in e-edu-
cation: Auswahl, potenziale und einsatzmöglich-
keiten. Innsbruck, Austria: Studienverlag.

Bendel, O. (2006). Wikipedia als methode und
gegenstand der lehre. In K. Hildebrand (Ed.),
HMD: Praxis der wirtschaftsinformatik: Vol.
252. Social software (pp. 82-88). Heidelberg,
Germany: dpunkt-Verlag.

Böttger, M., & Röll, M. (2004, December 15-17).
Weblog publishing as support for exploratory
learning on the World Wide Web. In P. Isaias, K.
Demetrios, & G. Sampson (Eds.), Cognition and
Exploratory Learning in Digital Age (CELDA
2004): Proceedings of the IADIS International
Conference, Lisbon, Portugal. IADIS Press.

Brahm, T. (2007). Social software und personal
broadcasting: Stand der forschung. In S. Seufert
& D. Euler (Eds.), Ne(x)t generation learning:
Wikis, blogs, mediacasts & Co. Social software
und personal broadcasting auf der spur (pp. 20-
38). SCIL Arbeitsbericht.

Chao, J. (2007). Student project collaboration us-
ing wikis. In Proceedings of the 20th Conference
on Software Engineering Education & Training
(pp. 255-261). Washington, DC.

Coates, T. (2005). An addendum to a definition of
social software. Retrieved March 4, 2007, from
http://www.plasticbag.org/archives/2005/01/an_
addendum_to_a_definition_of_social_software

 1995

Facilitating eLearning with Social Software

Craig, E. (2007). Changing paradigms: Managed
learning environments and Web 2.0. Campus-
Wide Information Systems, 24(3), 152-161.

Dooley, K. E., & Wickersham, L. E. (2007).
Distraction, domination and disconnection in
whole-class online discussions. Quarterly Review
of Distance Education, 8(1), 1-8.

Du, H. S., & Wagner, C. (2005). Learning with
Weblogs: An empirical investigation. In Proceed-
ings of the 38th Annual Hawaii International
Conference on System Sciences (HICSS’05):
Track 1 (p. 7b). Washington, DC: IEEE Computer
Society.

Du, H. S., & Wagner, C. (2007). Learning with We-
blogs: Enhancing cognitive and social knowledge
construction. IEEE Transactions on Professional
Communication, 50(1), 1-16.

Duffy, P. D., & Bruns, A. (2006). The use of blogs,
wikis and RSS in education: A conversation of
possibilities. In Proceedings of the Online Learn-
ing and Teaching Conference 2006, Brisbane,
Australia (pp. 31-38).

Efimova, L., & Fiedler, S. (2004, March 24-26).
Learning webs: Learning in Weblog networks.
In P. Kommers, P. Isaias, & M. B. Nunes (Eds.),
Web based communities: Proceedings of the
IADIS International Conference 2004, Lisbon,
Portugal (pp. 490-494). IADIS Press. Retrieved
May 17, 2007, from https://doc.telin.nl/dscgi/ds.py/
Get/File-35344

Evans, C., & Sadler-Smith, E. (2006). Learn-
ing styles in education and training: Problems,
politicisation and potential. Education + Training,
48(2/3), 77-83.

Fiedler, S. (2004). Personal Webpublishing as a
reflective conversational tool for self-organized
learning. In T. Burg (Ed.), BlogTalks (pp. 190-216).
Retrieved May 7, 2007, from http://seblogging.cog-
nitivearchitects.com/stories/storyReader$963

Hammond, T., Hannay, T., & Lund, B. (2004,
December). The role of RSS in science publish-
ing: Syndication and annotation on the Web.
D-Lib Magazine. Retrieved April 20, 2007, from
http://www.dlib.org/dlib/december04/hammond/
12hammond.html

Hurst, B. (2005). My journey with learning logs.
Journal of Adolescent & Adult Literacy, 49(1),
42-46.

Jonassen, D. H., Mayes, T., & McAleese, R. (1993,
May 14-18). A manifesto for a constructivist ap-
proach to uses of technology in higher education.
In T. M. Duffy, J. Lowyck, D. H. Jonassen, & T.
Welsh (Eds.), Xpert.press: Vol. 105. Designing En-
vironments for Constructive Learning: Proceed-
ings of the NATO Advanced Research Workshop
on the Design of Constructivist Learning Envi-
ronments Implications for Instructional Design
and the Use of Technology, Leuven, Belgium (pp.
231-247). Berlin, Germany: Springer.

Kantel, J. (2003). Vom Weblog lernen: Community,
peer-to-peer und eigenständigkeit als ein modell
für zukünftige wissenssammlungen. Retrieved
March 12, 2007, from http://static.userland.com/
sh4/gems/schockwellenreiter/blogtalktext.pdf

Kerres, M. (2006). Web 2.0 and its implications
to e-learning. In T. Hug, M. Lindner, & P. A.
Bruck (Eds.), Micromedia & E-Learning 2.0:
Gaining the Big Picture: Proceedings of Micro-
learning Conference 2006, Innsbruck, Austria.
University Press.

Kerres, M. (2007). Microlearning as a challenge
for instructional design. In T. Hug & M. Lindner
(Eds.)‚ Didactics of microlearning. Münster,
Germany: Waxmann. Retrieved March 10, 2007,
from http://mediendidaktik.uni-duisburg-essen.
de/files/Microlearning-kerres.pdf

Klamma, R., et al. (2006). Social software for pro-
fessional learning: Examples and research. In B.
Kinshuk, R. Koper, P. Kommers, P. Kirschner, D.
Sampson, & W. Didderen (Eds.), Advanced Learn-

1996

Facilitating eLearning with Social Software

ing Technologies: ICALT 2006, Los Alamitos,
CA (pp. 912-917). IEEE Computer Society.

Köllinger, P. (2002). Report e-learning in
deutschen unternehmen: Fallstudien, konzepte,
implementierung (1. Aufl.). Düsseldorf, Germany:
Symposion.

Kreijns, K., Kirschner, P., & Jochems, W. (2003).
Identifying the pitfalls for social interaction in
computer-supported collaborative learning envi-
ronments: A review of the research. Computers
in Human Behaviour, 19, 335-353.

Kutscher, N., Klein, A., & Iske, S. (2005). Dif-
ferences in Internet usage: Social inequality and
informal education. Social Work & Society, 3,
215-233.

Lenhart, A., & Madden, M. (2005). Teen content
creators and consumers. In Pew Internet Project
Data Memo. Retrieved June 21, 2007, from http://
www.pewinternet.org/pdfs/PIP_Teens_Con-
tent_Creation.pdf

Lewinson, J. (2005). Asynchronous discussion
forums in the changing landscape of the online
learning environment. Campus-Wide Information
Systems, 22(3), 162-167.

McGill, L., Nicol, D., Littlejohn, A., Grierson,
H., Juster, N., & Ion, W. J. (2005). Creating
an information-rich learning environment to
enhance design student learning: Challenges
and approaches. British Journal of Educational
Technology, 36(4), 629-642.

Nicol, D. J., & MacLeod, I. A. (2005). Using a
shared workspace and wireless laptops to improve
collaborative project learning in an engineering
design class. 44(4), 459-475.

Oblinger, D., & Oblinger, J. (2005). Is it age or
IT: First steps towards understanding the Net
generation. In D. Oblinger & J. Oblinger (Eds.),
Educating the Net generation. Educause. Re-
trieved June 12, 2007, from http://www.educause.
edu/educatingthenetgen/

O’Reilly, T. (2005). Web 2.0: Compact definition?
Retrieved May 17, 2007, from http://radar.oreilly.
com/archives/2005/10/web_20_compact_defini-
tion.html

Otto, H.-U., Kutscher, N., Klein, A., & Iske, S.
(2005). Social inequality in the virtual space: How
do young people use the Internet? Results from
empirical research about online use differences
and acquiring patterns of young people. Retrieved
January 16, 2008, from http://www.kib-bielefeld.
de/externelinks2005/Social_Inequality%20KIB.
pdf

Prensky, M. (2001a). Digital natives, digital im-
migrants: Part 1. Retrieved April 13, 2007, from
http://www.marcprensky.com/writing/Prensky
-Digital Natives, Digital Immigrants-Part1.pdf

Prensky, M. (2001b). Digital natives, digital im-
migrants: Part 2. Retrieved April 13, 2007, from
http://www.marcprensky.com/writing/Prensky
-Digital Natives, Digital Immigrants-Part2.pdf

Resnick, M. (2002). Rethinking learning in the
digital age. In G. S. Kirkman, P. K. Cornelius, J.
D. Sachs, & K. Schwab (Eds.), Global information
technology report 2001-2002: Readiness for the
networked world (pp. 32-37). New York: Oxford
University Press.

Richter, A., & Koch, M. (2007). Social software:
Status quo und zukunft (Tech. Rep. No. 2007-
01). Fakultät für Informatik, Universität der
Bundeswehr München. Retrieved June 1, 2007,
from http://www.unibw.de/wow5_3/forschung/
social_software/

Schulmeister, R. (2004). Diversität von stud-
ierenden und die konsequenzen für elearning.
In D. Carstensen & B. Barrios (Eds.), Kommen
die digitalen medien in die jahre? Medien in
der wissenschaft (Vol. 29, p. 133-144). Münster,
Germany: Waxmann.

Schulmeister, R. (2005). Lernplattformen für
das virtuelle lernen: Evaluation und didaktik (2.
Aufl.). München, Germany: Oldenbourg.

 1997

Facilitating eLearning with Social Software

Seufert, S. (2007). Ne(x)t generation learning:
Was gibt es neues über das lernen? In S. Seufert
& D. Euler (Eds.), Ne(x)t generation learning:
Wikis, blogs, mediacasts & Co. Social software
und personal broadcasting auf der spur (pp. 2-
19). SCIL Arbeitsbericht.

Seybert, H. (2007). Gender differences in the use
of computers and the Internet. Retrieved Janu-
ary 15, 2008, from http://epp.eurostat.ec.europa.
eu/portal/page?_pageid=1073,46587259&_
dad=portal&_schema=PORTAL&p_product_
code=KS-SF-07-119

Sharma, P., & Fiedler, S. (2004, June 30-July
2). Introducing technologies and practices for
supporting self-organized learning in a hybrid
environment. In K. Tochterman & H. Maurer
(Eds.), Proceedings of I-Know ’04, Graz, Austria
(pp. 543-550).

Sharma, P., & Maleyeff, J. (2003). Internet edu-
cation: Potential problems and solutions. 17(1),
19-25.

Shirky, C. (2003). Social software and the politics
of groups. Retrieved May 3, 2007, from http://
shirky.com/writings/group_politics.html

Tangney, B., FitzGibbon, A., Savage, T., Mehan,
S., & Holmes, B. (2001). Communal constructiv-
ism: Students constructing learning for as well
as with others. In C. Crawford, D. A. Willis, R.
Carlsen, I. Gibson, K. McFerrin, J. Price, & R.
Weber (Eds.), Proceedings of Society for In-
formation Technology and Teacher Education
International Conference 2001 (pp. 3114-3119).
Norfolk, VA: AACE.

Thijssen, T., & Vernooij, F. (2002). Breaking
the boundaries between academic degrees and
lifelong learning. In T. A. Johannessen (Ed.),
Educational innovation in economics and busi-
ness: Vol. 6. Teaching today: The knowledge of
tomorrow (pp. 137-156). Dordrecht, The Nether-
lands: Kluwer Academic.

This work was previously published in International Journal of Web-Based Learning and Teaching Technologies, Vol. 3, Issue
3, edited by L. Esnault, pp. 16-33, copyright 2008 by IGI Publishing (an imprint of IGI Global).

1998

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.13
Continuous Curriculum

Restructuring in a Graduate
Software Engineering Program

Daniela Rosca
Monmouth University, USA

William Tepfenhart
Monmouth University, USA

Jiacun Wang
Monmouth University, USA

Allen Milewski
Monmouth University, USA

ABStrAct

The development, maintenance and delivery of a
software engineering curriculum present special
challenges not found in other engineering disci-
plines. The continuous advances of the field of
software engineering impose a high frequency of
changes reflected in the curriculum and course
content. This chapter describes the challenges of
delivering a program meeting the needs of industry
and students. It presents the lessons learned during
21 years of offering such a program, and dealing
with issues pertaining to continuous curriculum
and course content restructuring, the influence of
the student body on the curriculum and course
content. The chapter concludes with our recom-

mendations for those who are seeking to create
a graduate program in software engineering,
with a special note on the situations where an
undergraduate and graduate program will need
to coexist in the same department.

IntroductIon

The objective of this chapter is to prepare those
who are seeking to introduce a graduate program
in software engineering (SE) for the challenges
they will face. Towards that end, the lessons
learned during 21 years of offering such a program
at Monmouth University will be presented. As it
will be demonstrated, the development, main-

 1999

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

tenance and delivery of a software engineering
curriculum present special challenges not found
in other engineering disciplines.

This chapter describes the challenges of deliv-
ering a program that meets the needs of industry
and students in a highly dynamic field. The evolu-
tion of the curriculum induced by the domain’s
continuous advances and evolution in industry
practice will be presented. The special meaning
of continuous course content development in
software engineering will be argued through is-
sues pertaining to dated textbooks, ever-changing
programming languages, operating systems, and
software tools. The chapter will also present our
experience in dealing with the diversity of the
student body, and its influence on the curriculum
and course content. The chapter will conclude with
our recommendations for constructing a similar
program, with a special emphasis on situations
where an undergraduate and graduate program
in software engineering will need to coexist in
the same department.

BAcKgrOunD

Although software engineering was recognized as
a field in 1968 at the NATO sponsored conference
on the subject (Naur, 1968), it took universities and
colleges a significant amount of time to respond
to that fact. It was not until 1986 that Monmouth
University (MU) started a graduate program dedi-
cated to software engineering, which was offered
by its Computer Science Department. In 1995
Monmouth created the first Software Engineering
Department in United States. Now it is one of the
pioneer universities offering a bachelor’s degree
in software engineering.

One motivation for creating a separate soft-
ware engineering program and department was
the awareness of the skills that industry would
like students to have upon graduation, which are

not stressed by most computer science curricula.
These skills include teamwork, communications,
time management, engineering problem solving,
quantitative and qualitative process management,
reuse, requirements management, system archi-
tecture, testing and project management.

As one of the few universities with extensive
and comprehensive experience in offering soft-
ware engineering programs, we have learned
much about providing such a program. With more
and more undergraduate software engineering
programs appearing, we feel it is beneficial to
other institutions for us to share the problems
encountered and lessons learned over the past 21
years. A summary of the problems encountered
and the lessons learned are presented here:

•	 Continuous curriculum restructuring.
One can expect to revisit the overall curricu-
lum of the program every four to five years,
in order to accommodate changes in industry
practice and educational expectations. This
is reflected also in the historical investiga-
tion of the graduate software engineering
curriculum reported in (Duggins, 2002).

•	 Continuous course content restructuring.
It is critically needed due to the dynamics
of the field. The continuous development
of course content implies also a continuous
development of course projects, and dealing
with dated textbooks, ever changing operat-
ing systems, programming languages and
software tools.

•	 Hiring and retaining faculty. The need for
new faculty to have a record of sustained
scholarly accomplishments and industrial
experience enforces great restrictions on the
number of available candidates, as it was also
notified by Glass (2003). Retaining faculty
is complicated by the fact that in addition
to performing their normal teaching duties
SE faculty must continually keep up with
changes in the field as a whole.

2000

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

•	 Influence of the diversity of the student
body on the curriculum and course
content. Issues raised by a diversity of
educational backgrounds, employment
status, educational goals, and communica-
tion skills introduce challenges that need to
be dealt with by any software engineering
program.

The remainder of the chapter discusses in
detail the topics presented above. It begins with
the presentation of the curriculum evolution over
the history of our program. Then it discusses
various issues involved in the continuous changes
of the software engineering course content. The
subsequent section outlines our experience in
hiring and retaining the faculty, followed by a
presentation of the student body influence of the
diversity of the curriculum and course content.
The chapter concludes with the presentation of our
recommendations for those interested in starting
a graduate program in software engineering, and
future trends of the MU program. This discus-
sion will emphasize the accommodation of an
undergraduate and graduate program in software
engineering in the same department.

cOntinuOuS curriculum
reStructuring

Over its short history, software engineering (SE) as
a field has been a moving target. We have observed
the introduction of the capability maturity model,
the unified modeling language, personal and team
software process, and corporate adherence to ISO
Standards emerge as major forces within software
engineering organizations. We have observed
important changes in analysis and design with
transitions from structured analysis and design
,to object-oriented analysis and design. Even the
architectures being released today have shifted

from client-server architectures to distributed
architectures with the current trend being focused
on service-oriented architectures.

A curriculum that addresses the skills and
practices required by professionals in this field
must continuously reinvent itself over time. The
curriculum of Software Engineering changes
with a frequency on the order of twice a decade
as opposed to decades for engineering (Clough,
2005) and sciences (Stryer, 2003), in general. Just
about every aspect of the software engineering
curriculum is susceptible to change over a de-
cade. In order to accommodate industry’s needs
and to keep pace with the advances of software
engineering as a field, we have added or dropped
courses, and added new tracks and programs. The
decisions were made in the context of creating
and maintaining a balance between the theory,
technology and practical aspects of software
engineering.

Changing the curriculum can not be performed
in an ad hoc manner. We follow a well-defined
process. First, the faculty discusses the need for
change based on feedback from industry, stu-
dents, and current publications. The acquisition
of feedback is a continuous process that is assisted
through an industry advisory board, alumni
surveys, student exit interviews, student learn-
ing outcomes assessment, periodical evaluation
of the program by an external reviewer who is a
prominent figure in software engineering educa-
tion, and attendance at professional meetings.
We have established a set of learning outcomes
that we monitor on a regular basis and we take
into consideration when the need for a significant
curriculum change is required.

Next, the program director writes a proposal
identifying the new curriculum, and any additional
courses that might be required. This effort includes
writing a complete syllabus for each course that is
introduced, modifying existing syllabi for courses

 2001

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

with significant content changes, and a justifica-
tion for each course that is dropped.

The proposal is put forth to the faculty in the
department for comments. Comments include
challenges to the changes in course content and
discussion of the overall package. The syllabi
for the various courses may undergo several
iterations.

Once the proposal is approved within the
department, the proposal is sent to the chairs
meeting within the school. Often times, changes
to the software curriculum may require changes
in the course content of other departments (e.g.,
computer science and the business school).
If significant push-back arises from the other
departments within the school, the proposal is
reconsidered by department.

At the school chairs meeting it can be decided
that a stronger business case is required. An exter-
nal body typically develops this business case. It is
either a survey developed by an independent firm,
or by an external industrial advisory committee.
The business case reflects the needs and state of
industry, which will attract new students.

After the eventual suggestions for change are
incorporated into the proposal, it is submitted
to the university graduate studies committee.
Here the curriculum is evaluated in terms of its
consistency with the University Policies applied
to graduate programs. This includes establishing
maximum class sizes, the number of contact hours,
assignment of lab fees, and other factors.

Next we present the evolution of the Monmouth
University’s Graduate Software Engineering Cur-
riculum. This evolution shows a gradual transition
from a software engineering program created
inside a Computer Science department, towards
a program with engineering courses that span the
entire software lifecycle. It incorporates the results
of a strong collaboration between academia and
industry (Powell, 1997).

the initial curriculum (1986)

The initial software engineering curriculum at
Monmouth University consisted of 30 credits,
with 6 core courses and 4 electives (see Figure
1). The core courses covered in detail only the
implementation (in Ada) and project manage-
ment aspects of the software lifecycle, due to the
limited availability of faculty with an appropriate
background. The curriculum looked more like “a
computer science curriculum with an engineering
flavor” (Dart, 1997), covering classic computer
science courses such as algorithms, operating
systems, computer architecture and database
management systems.

Students’ practical training was accomplished
in a 3-credit practicum course. This course con-
sisted of a team project to develop a software
system from initial requirements to the final,
tested and documented product. The early cur-
riculum was biased more on theoretical aspects
(notice the heavy concentration on mathematical
foundations of SE), with less exposure to specific
SE technology and practice, as was very early
recommended in (Ford, 1987).

1991 curriculum changes

This curriculum added a number of SE courses,
including formal methods, formal specifications,
software process and SE environments (see Figure
2). However, it still had a bias towards computer
science, offering an artificial intelligence course,
4 courses of mathematical foundations and formal
methods, and 4 courses in network technology,
due to our geographic location in an area domi-
nated by the telecommunications industry. It was
similar to the First MSE model curriculum (Ardis,
1989a; Ardis 1989b) that recommended a set of
10-12 courses, which comprised 6 core courses,
3 or more electives and a two-semester practicum

2002

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

Figure 2. 1991 curriculum

Core Courses
(6 Courses = 18 Credits)
SE 501 Mathematical Foundation of Software Engineering I
(3 credits)
SE 505 Programming-in-the-large (3 credits)
SE 510 Computer Network Design (3 Credits)
SE 516 Software Engineering I (3 credits)
SE 518 Project Management (3 credits)
SE 525 System Project Implementation (3 credits)
Elective Courses
(4 Courses = 12 Credits)
SE 502 Mathematical Foundation of Software Engineering II
(3 Credits)
SE 506 Programming-in-the-small (3 credits)
SE 509 Programming Languages (3 Credits)
SE 511 Protocol Engineering (3 Credits)
SE 512 Algorithms Design and Analysis (3 Credits)
SE 514 Computer Architecture (3 Credits)
SE 515 Operating Systems Implementation (3 Credits)
SE 517 Software Engineering II (3 Credits)
SE 519 Database Management (3 Credits)

Figure 1. 1986 curriculum

 2003

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

project. However, due to the lack of qualified
faculty, the core courses offered were not able to
cover the entire software lifecycle.

1995 curriculum changes

In 1995 the curriculum was substantially changed
to include 36 credits, with 10 core and 2 elective
courses (see Figure 3), in order to comply with
the Software Engineering Institute model cur-
riculum (Ardis, 1989) and the 1991 Computing
Curriculum guidelines (Tucker, 1991; Ford 1991).
That curriculum covered the entire software
lifecycle in detail, by offering 3 new courses,
specifically in requirements, implementation
and reuse, and testing and quality. A former

elective, software systems security, became a
core course.

Having such a heavy core, this curriculum
offered little f lexibility for learning aspects
of SE that students would be most interested
in. Another major change was ref lected in the
introduction of several new courses that would
form 6 credit elective specialization tracks: in
distributed software systems, software manage-
ment, information systems, and real-time sys-
tems. These tracks were introduced as a response
to the needs and feedback from the local industry,
and government collaborators (Powell,1997). The
curriculum change was made possible by hiring
faculty with both theoretical background and
working experience in industry, supplemented

Figure 3. 1995 curriculum

2004

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

with a substantial help from adjunct faculty with
expertise in specialized areas of SE.

1996 curriculum changes

In 1996 minor changes were made in the cur-
riculum. It remained a 36-credit program, with
9 core and 3 elective courses, which offered a bit
more flexibility than the previous program. The
curriculum covered all the aspects of the software
lifecycle. The capstone course was either a 3-credit
practicum, or 6-credits of thesis research. The
introduction of a thesis option was made possible
by attracting faculty with the desire to engage in
research activities.

1998 curriculum changes

The 1998 curriculum represented another major
change by providing for much more flexibility
in a 36 credit program, with 5 core, 5 elective
courses, and a 6-credit practicum or a 6-credit
thesis (see Figure 4).

The recognition of the importance of exposure
to practical experience in a software engineering
program has lead to the increase of the practicum
project from 3 to 6 credits, and to the introduction
of term projects in most of the courses in the cur-
riculum. This is similar to the recommendations of
the First MSE curriculum (Ardis,1989) of offering
a two semester practicum and as much as 30% of
the program be dedicated to project work.

The MU curriculum continued to follow the
software life-cycle model, as opposed to the CMU
Model (Garlan, 1995), which emphasized teaching
“cross-cutting principles of software develop-
ment” throughout the curriculum. As such, the
CMU Model offered five core courses organized
around modeling, methods of development, man-
agement, analysis and architecture. Also, they
included a software development studio for the
development of practice skills, during the entire
duration of the program.

The 1998 MU curriculum has added a new
course, The Process of Engineering Software,
which largely follows Watts Humphrey’s Personal
Software Process (PSP) principles (Humphrey,
2005). The introduction of this course was justi-
fied by the need for graduates who are aware
and have the necessary skills for predictably
producing high quality systems, in a timely and
cost effective manner, using reusable components
as much as possible in their work. In spite of the
hard work necessary for the manual input of the
data for the various forms and templates involved
in the PSP, students have given us very positive
feedback about the usefulness of the principles
learned in this course. For alleviating the cleri-
cal work related to the manual input of data, we
created a semi-automated tool to support the
PSP process (Rosca, 2001). This tool was the
result of a two-semester practicum project of
one group of students.

Two of the former core courses, math-
ematical foundations of SE, and principles of
SE, have been transformed into preparatory
(bridge) courses (see Figure 4). Together with
three other programming courses the “bridge”
program is offered for students with an under-
graduate major other than computer science,
computer engineering, electrical engineering,
or information systems. After taking the 15
credit preparatory courses and a one-semester
project course, students can receive a certificate
in software development if they don’t wish to
pursue a Master’s program.

The elective courses included in this cur-
riculum were necessary for completing a chosen
specialization track, such as organizational
management, telecommunications, embedded
systems, and information systems. These 15-
credit tracks were much more comprehensive
than their counterparts in the 1995 curriculum.
They comprise courses from other disciplines
such as business, electrical engineering and

 2005

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

Figure 4. 1998 curriculum

2006

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

computer science. However, students have been
able to select elective courses across tracks if
they didn’t want to pursue a specialization. A
brief description of the specialization tracks is
given next.

The Organisational Management track pre-
pares students to become software development
managers or specialists in software process im-
provement. Topics of study include process im-
provement, quality management, organisational
development and management, risk management
and project planning and management.

The Telecommunications track prepares
students to become specialists in telecommu-
nications. Topics of study include networks,
software systems security, and evaluation of
telecommunications systems.

The Embedded Systems track prepares
students to become specialists in embedded
systems development. Topics of study include
specification and analysis of embedded real-time
systems requirements, design and implementa-
tion of embedded real-time software systems,
performance evaluation of embedded real-time
software systems, and development of real-time
components.

The Information Management track prepares
students to become chief information officers or
specialists in information systems integration and
development. Topics of study include informa-
tion technology management, specification and
analysis of information systems, evaluation of
information systems, and development of infor-
mation systems software components.

2002 curriculum change

In 2002, the only curriculum change was the
addition of a new specialization track: the
Management of Software Technology, offered
in collaboration with the Monmouth University
School of Business. The idea of this track grew

out of the recognition that industry is outsourcing
increasing amounts of software development.
This track prepares students to be chief tech-
nology officers or specialists in the acquisition
of software systems for businesses. Topics of
study include assessing the impact that software
can have on organizations, the development of
requirements for system acquisition via purchase
or outsourcing, the assessment of software tech-
nologies with regard to organizational needs,
and implementing a controlled introduction of
technology into an organization.

All the knowledge areas of the Software
Engineering Body of Knowledge (SWEBOK)
project (Bourque, 2004) can be identified in this
curriculum.

cOntinuOuS DeVelOpment Of
cOurSe cOntent

Technologically, the computing field has un-
dergone significant changes that have forced
alterations in the material taught within Soft-
ware Engineering courses. Since the inception
of our SE Master’s program, we have witnessed
the widespread adoption of Object-Orientation
(along with massive changes in techniques and
methodologies), the phenomenal explosion of the
World Wide Web, the emergence of Java, and the
move of security requirements from corporate to
consumer platforms, just to name a few of these
changes. Therefore, the material covered within
a curriculum that addresses the technological un-
derstanding required by professionals in this field,
needs to be continuously updated over time.

This problem emerges in several different
forms. In particular,

•	 Continuous course content changes
•	 Dated textbooks

 2007

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

•	 Operating system/programming language
biases

•	 Continuous development of course proj-
ects

Each of these areas is discussed in greater
detail in the paragraphs that follow.

course content changes

One can expect to have to revise course material
every year. This is necessary to accommodate
technological changes and to incorporate new in-
dustrial practices. For example, since the inception
of our program we have changed the programming
languages taught in class from Ada, to C++ and
Java; in the requirements engineering course
object-oriented analysis methods were added to
the structured analysis methods (Rosca, 2000);
in the design course a transition was made from
structured design to object-oriented design, com-
ponent-based design, and architectural design. In
the testing course we have added segments on
testing applications that are constructed using
commercial off-the-shelf (COTS) components,
using automated testing and test management
tools. For project management more content was
gradually introduced on the use of scheduling
tools, such as MS project, risk simulators, like
Risk+, and discussion of the use of buffer tasks
in the planning of software development projects
(McDonald, 2000). The burden of this continuous
course creation or updating could be alleviated
in the future by the curricular materials offered
by the SWENET project (Lutz, 2003), created by
the professionals in the SE community for the use
of the community, at large.

The continuous revisions of course material
constitutes a significant amount of work on the
part of the faculty. In as little as three years, the
changes within the field are significant enough
that many courses have to be totally redesigned.
The adoption of UML and its subsequent evolu-

tion has forced revisions in design diagrams,
the vocabulary used to describe designs, and
introduce new best practices.

Dated textbooks

As technology changes and software engineering
evolves, the ability of texts to keep up with these
changes is severely stressed. An instructor will
find himself or herself utilizing three or four texts
in order to properly cover a topic area. Books will
seemingly contradict each other, only because
they were published two years apart. Often, a
book that is only three years old will contain
many concepts that have been already superseded
or renamed. Many excellent textbooks have not
been updated to use current representations, such
as UML2, for example.

This forces faculty continuously research new
and updated prints. The faculty has to take into
consideration student feedback on the useful-
ness of the recommended textbooks. Some new
textbooks might be already dated at the time of
their publication.

Operating System/programming
language Biases

Few topics seem to generate as much debate as
the selection of which operating system (OS)
or programming language should be the lingua
franca for course work. It seems that everyone
has an opinion or a realistic need to learn one
environment over another. The selection of one
environment over the other has significant impacts
on the tools available for use by the instructor, the
knowledge that the instructor has to bring into
the classroom, and the equipment that must be
maintained. In our case, over the years we have
migrated from UNIX platforms, to Windows, and
to dual-boot machines that run both Windows
and Linux. Most of the students are familiar with
both operating systems, since different instruc-

2008

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

tors favor one OS over the other. They appreciate
the flexibility offered by the dual-boot machines
available in our labs.

The programming language debate is a little
more problematic than OS preferences. Many of
the students at the graduate level have jobs in
which they work in C++, Java, or C#. The students
often insist that the programming language that
they use in the workplace be utilized in their
courses. The problem is that choice of program-
ming language can significantly impact what is
appropriate content for a course. Designing C++
programs utilizes different patterns than those
used in designing Java programs, since C++
programs must necessarily and explicitly manage
memory. Historically, the choice of programming
language has been made largely based on inputs
from the market and external program reviewers.
For example, at the time this paper was written,
most courses use Java, with the exception of the
real-time systems course which still uses C and
C++.

continuous Development of course
projects

Faculty, students, and industry have universally
recognized the need for hands-on experience
(Ellis, 2000). Without practical training, students
and industry complain that the material will be
too theoretical and that graduates would have
trouble applying the theory to real world projects.
This has led us to incorporate projects into the
majority of courses taught in the program, while
maintaining a balance between the theoretical
and practical aspects of the courses. The type
of projects has changed over the years: we have
started with stand-alone systems, to continue
with distributed, web-based, service-oriented
systems.

The program culminates with a two semester
practicum, where students work in groups on
all phases of a real-world project, starting with

requirements elicitation, design, implementation,
and testing. Unlike the course offered at University
of Southern California by B. Boehm (Boehm,
2006), in our practicum there are no lectures,
because it is assumed that students have already
covered all software engineering core courses
in the curriculum. Students need to follow a
well defined software process, producing all the
necessary documentation that covers the product
life-cycle. Although the process is not prescribed
by the instructor, as in (Germain, 2003), most of the
students follow a heavy–weight type of process,
such as UPEDU (Robillard, 2001). The students
practice teamwork and communication skills,
while working on a large-scale project proposed
by a real client. The clients are either from our
campus, or companies from the area surrounding
the university. They are asked to provide com-
ments and evaluate the deliverables, in addition
to the instructor. The type of project proposals we
get from the industry partners points us to areas
that need to be covered by the curriculum.

The course/term projects are administered at
the beginning of the semester, and have a couple
of milestones spread along the semester. The
instructors check the documents and/or software
applications delivered at each milestone and
provide feedback to the students. The instructors
provide the project statements. The members of
the project teams are either established by the
students, when they are not new to the program,
or when no preferences are expressed, the in-
structor makes the choices. The teams have the
authority to choose their leaders, and the role of
each member.

The introduction of projects into a Software
Engineering course encompasses its own set of
difficulties. While a simple program for shuf-
fling cards may suffice to teach students about
algorithms and data structures in a programming
course, software engineering has to deal with
much larger problems in order to demonstrate the
value and need for an engineering process. The

 2009

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

result is that projects have to be big, but not so big
that they cannot be performed within the confines
of the course. Because the project has to be big,
it has to be structured such that the students can
incrementally develop it as the course unfolds.

As the course content, technology and available
tools change, the course projects need to change
too. We have found that the size issue can some-
times be addressed by partially completing the
project before presenting it to the students. This
might require the development of a set of require-
ments before introducing a larger project into a
software design course, providing some economic
or financial analyses before introducing a project
into a software project management course, or
developing requirements and code before intro-
ducing a project into a testing course. In any case
such a strategy requires that the instructor spend
significant time doing the background work and
documenting the results of that work so that the
students can make good use of it as they proceed
with the next steps. This way the students are
encouraged to concentrate on tasks for a specific
project that are unique to the course in which the
project is being used.

Hilburn (2006), who wants to develop a com-
prehensive case study along with education mate-
rial that can be used throughout the curriculum,
proposes another alternative. This way, students
will use the output of one course project work
in subsequent courses, and will be able to better
understand the connections between the topics
taught in different courses. Again, this approach
requires more work for faculty while making it
more difficult to adapt courses to technological
advances.

DifficultieS AttrActing AnD
retAining fAculty

Software Engineers, even in difficult economic
times, are a highly sought after commodity.

It is extremely challenging for any software
engineering program to both attract and retain
their faculty, in USA or around the globe (Grant,
2000). We noticed that the stability of the faculty
makes a program more attractive to prospective
students.

It is very difficult to attract appropriate fac-
ulty, as it has been observed by Glass (2003). In
particular, faculty members usually are acquired
from computer science backgrounds and/or from
industrial practice. The problem with faculty
from computer science backgrounds is that their
backgrounds are in computer science rather than
software engineering. The problem with acquir-
ing faculty from industry is that often they do not
have documented credentials (a PhD degree) and
a documented trace of their scholarly work.

With the need to continuously update course
content and curricula, to keep up or advance the
state of the field, the load on a faculty member
in software engineering tends to be significantly
greater than in some other academic areas. Given
that it is very difficult to hire faculty with the ap-
propriate academic and industrial backgrounds,
many of the hires are often non-tenure track. We
are very fortunate to be positioned in a strong
high tech industry area, with a steady supply of
teachers with a very good industry experience,
who are seeking to augment their income, are
between jobs, or are retired.

A real solution for the administration is to
provide competitive salaries and support consult-
ing or research activities. This enables faculty to
make up any shortfalls in salary and keep abreast
of the industry needs and practices. With respect
to this issue, MU offers faculty one day a week to
spend on research or consulting activities. Also,
MU has been successful in hiring excellent faculty
with a PhD degree in areas other than computer
science, with a strong industrial experience in
software development.

We are aware that this solution might not be
easy to implement at many universities, therefore

2010

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

we are suggesting another venue for attracting
and retaining faculty: the creation of a research
center or institute on campus. This way faculty
with complementary expertise can collaboratively
work on interesting, complex projects and create
rich opportunities for research and publications.
This allows faculty to keep current with the state
of research and practice, feed this information into
a curriculum that is up-to-date (Boehm, 2000),
reduce the teaching load, and build a cohesive
faculty community. MU has created the Rapid
Response Institute, where faculty from the SE
department works together with faculty and stu-
dents from around the campus on research and
applications for Homeland Security.

DiVerSity Of tHe StuDent
BODy

In the 21-year history of the software engineer-
ing program at MU we have observed increas-
ing diversity within the student population. The
diversity spans several dimensions: educational
background, employment status, educational
goals and native language. The successful program
must address all these dimensions of diversity.

educational Backgrounds

Consistent with the origins of the program, many
students in the graduate program achieved un-
dergraduate degrees in computer science. These
students have strong programming skills, but very
seldom have the engineering discipline that em-
phasizes understanding the problem to be solved,
or the process to be followed. These students tend
to immediately start coding once they receive a
problem to be solved. Students asked on more
than one occasion why it was necessary to design
a program when they could write one faster.

We also have a large population of students that

are coming into the graduate program from other
engineering and non-engineering disciplines.
These students usually are much more accepting
of engineering processes, but have relatively weak
programming skills and minimal knowledge about
how computers function. To accommodate them
we have had to incorporate a set of preparatory
courses to provide the programming skills and
computer knowledge necessary to succeed in
the program.

Our program has already started receiving
a new group of students. These students have
undergraduate degrees in software engineering
and already have a good understanding of engi-
neering practices balanced with programming
skills. At this point, our program had to address
increasingly more advanced software engineer-
ing topics that may be beyond the knowledge
of the other two groups of students. A detailed
discussion of this topic is deferred to in the Future
Trends section.

employment Status

The employment status of students has significant
impact on the program. It affects how long students
are in the program, the effort that they put into
assignments, their willingness to accept course
material, and when classes are offered. It should
be noted that (with a few exceptions) students
entering into the program full-time usually find
work at the end of their first year and become
part-time students. The majority of our student
population attends school part-time with full-
time employment in the software industry. Most
of our classes are offered in the early evening to
accommodate them.

The fact that the average student is employed
full-time and attends classes part-time means that
they may be in the program for as long as 8 years.
In fact, the population of students is much more
stable than the curriculum. Some students have

 2011

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

graduated on curriculums that have been replaced
twice since they enrolled in the program.

Employment in the software industry has sig-
nificant impact on the willingness of some students
to accept the concepts taught in the classroom.
These students have already acquired work habits
that are not consistent with best practices. Students
often state that they don’t perform a particular
engineering practice at work and that they don’t
see a need for it. Of course, many of these same
students talk about how their projects at work
tend to be chaotic. Other students report the dif-
ficulties they’ve encountered in trying to practice
in their conservative organizations what they’ve
learned in class. Either case tends to undermine
the instructor in presenting new material in the
classroom. Here is one of the situations where
the instructor’s industrial experience plays an
important role in both selecting the material to
be taught and in responding to student concerns
regarding the usefulness of the topics learned in
the real world.

Employed students also tend to focus on what
they immediately need to succeed in today’s work-
place. There is often an insistence on learning a
product (such as Oracle or Sybase) rather than the
concepts (i.e., database principles). This emphasis
on skill rather than knowledge runs counter to
the goals of the program that are the develop-
ment of software engineers who can lead their
organizations into the future. We have included
some of these products into our classrooms, but
the main goals of the courses remain to teach the
engineering principles of the field, which can be
applied to a large number of products.

Students who are not employed in the industry
have problems prioritizing the material being
taught or placing it in the context of delivering a
product. If they are required to know C++, they
assume that all employers develop code in C++.
They are often surprised when they get a job
and discover that they will have to learn a new

programming language. Students are occasion-
ally concerned that courses cover many different
methods and approaches to achieve a given goal
rather than emphasize one method. They have to
be taught to understand that the knowledge and
skill they acquire in school will have to blend into
whatever organization they join, and that they
need to engage in a lifelong learning process that
is inevitable in this dynamic field.

educational goals

It would be nice if all students entered the program
with the desire and goal of becoming a software
engineer and delivering a specific kind of product.
However, the educational goals of the students
range from wanting to know all about software
and engineering, to the other extreme where
they only want to get the credentials that will
allow them to earn a higher salary. Our student
body appears to be driven by a small number of
educational goals, as we were able to derive from
their application packages, advising sessions and
an alumni survey. These are:

•	 Get the business and process knowledge that
will allow them to manage software projects
and people.

•	 Get the skills and knowledge that will allow
them to be more productive in their chosen
career.

•	 Start a career in which they can have a
significant income

•	 Get a job in the software field that does not
involve a lot of coding.

The major impact of these goals concerns the
subject areas that interest the student. We have
had to tailor our curriculum to respond to these
different goals. We find a significant fraction of
the students are very interested in the process,
project management, and organizational man-

2012

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

agement courses. Others find that the courses on
requirements and software testing give them an
entry point into a part of the software business that
does not appear to require major coding efforts.
Finally, the courses that emphasize specific types
of software systems (real-time, information, and
embedded systems) attract those students that are
interested in gaining the particular knowledge
and skills that will allow them to master their
chosen field of work.

communications Skills

There is significant diversity among our students
in terms of their communication skills. However,
communication skills are critical in software en-
gineering, being considered as important as the
technical skills (Teles, 2003; Lethbridge 2000).
The average software engineering student will
probably produce more documents and make
more public presentations than the average Eng-
lish major. Communications have to be precise,
unambiguous, complete, logically sound and well
structured. Oral presentations have to convey
complex information under time constraints.
Students have to learn to gauge how much in-
formation is to be conveyed. This requires that
they judge what their audience can be expected
to know and what must be presented. Although
typical undergraduate general education programs
attempt to teach these skills most students who
enter our graduate program require additional
coaching and training in this area.

International students are often at a disadvan-
tage due to the fact that English is their second
language. This affects their writing ability where a
weakness in vocabulary often prevents them from
expressing themselves clearly and succinctly. It
also undermines their confidence in public speak-
ing due to concerns about their command of the
language and fears that others will not understand
them because of their accents. It can also severely

limit their participation in class discussions.
International students are not the only ones

with problems in communications. Many of the
students, particularly those with computer science
backgrounds, are not used to writing technical
documents. While they may be good at writing
code, they often have difficulties in expressing
themselves succinctly in a written document.

The most direct approach to dealing with sig-
nificant changes in the student population has been
to adapt the curriculum and individual courses to
meet the changing needs of our students. Employed
students are encouraged to express their perspec-
tives on the material so that their experiences can
be shared with students that have yet not entered
the field. In some classes, programming assign-
ments can be written in Java or C++ depending
upon the student’s choice.

Another change has been the incorporation
of more term papers into course work to allow
students to get greater experience in writing.
Papers are graded on technical content, structure,
adherence to topic, and on the use of language.
Corrections are suggested and students have a
chance to resubmit corrected work. With respect
to verbal communications, students are required
to make oral presentations of their term projects.
This way, until they reach the capstone project,
students would have had the opportunity to ex-
ercise their communications skills several times.
We have also observed significant progress in
the communication skills and self-confidence of
students when we created multicultural teams,
and encouraged informal peer-mentoring. As
one of our external program reviewers observed,
the oral communications skills of students sig-
nificantly improved when they were repeatedly
videotaped, and discussed the strengths and
weaknesses of their recorded presentations with
the instructor.

 2013

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

guiDAnce On StArting AnD
mAnAging prOgrAmS

Based on the experience described above in
starting and managing Monmouth University’s
software engineering program we would offer
the following advice to academic departments
that are considering a similar program:

1. Conduct research to determine the most
current curriculum recommendations from
the IEEE, ACM and other sources.

2. Find out, by participating in national groups
and committees that develop those recom-
mendations, what likely future changes
might take place.

3. Enlist the academic institution’s industrial
advisory boards to determine how the gen-
eral recommendations need to be tailored
to suit the needs of local industry. The part-
nership with the local industry will bring
multiple benefits, such as a good source
of real world projects for courses, student
placement for summer internships, industry
guest lecturers for courses or a research
seminar.

4. Form a Task Force with professors from both
SE and CS departments to make sure the
two departments will not conflict each other.
Also invite an external reviewer who can
offer concrete guidance, based on personal
experiences in building such a program at
another university.

5. Recruit full-time faculty who are competent
to teach the required variety of courses and
who have industrial experience in applying
software engineering techniques in real
work environments. Don’t expect this to be
an easy task. You might need to manage the
program initially with significant help from
part-time faculty.

6. Expect that the curriculum will need to
change with time to accommodate both
changes in the discipline as well as changes
in the needs of local employers.

7. Define a set of students learning outcomes
that you will continuously monitor, and use
the results to evaluate the need for improve-
ments.

8. Periodically seek accreditation from a na-
tional board, or at least solicit a thorough
review from an external evaluator, who
is a prominent figure in the field. These
efforts will ensure the quality of your cur-
riculum.

9. If you intend to advertise your program to
international students, make sure that you
educate student’s expectations regarding
the research oriented or practical training
oriented nature of the program.

10. If you intend to offer the program over
multiple campuses, or on-line, you need
to secure the equipment, technology and
instructors qualified and willing to teach
distance learning courses. Don’t expect this
to be an easy task, the instructor’s effort to
teach these courses might be considerably
higher than teaching face-to-face courses.

future trenDS

Having looked at the past, it is now appropriate to
look to the future for our program. In particular,
we recognized a need for another set of changes.
The introduction of an undergraduate software
engineering program had profound consequences
on the graduate program, forcing severe changes
in its curriculum. The redesigned curricula should
allow the new graduates of the bachelor’s degree
in software engineering to have the opportunity
of extending their knowledge and skills to new
frontiers. In particular, we believe that while in

2014

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

the undergraduate program students should focus
on the application level software development, at
the graduate level they should focus on the en-
terprise and global levels. Also, we expect these
students to show originality in the application of
their knowledge and pursue research to push the
boundaries of knowledge in the SE area of their
choice (similar to the UK program reported in
(Edwards, 2003)).

With this respect, in 2007 we modified our
graduate program, such that the students with a
bachelor’s degree in SE will be required to take
5 core courses, 6 elective courses and a two-
semester thesis. Up to 9 credits of core courses
can be waived if equivalent courses have been
completed as part of the students’ Bachelor of
Science in software engineering program. This
would make our SE graduate program similar in
structure to masters programs in electrical engi-
neering, mechanical engineering, etc. throughout
the United States (see Figure 5).

In particular, we moved a bridge course into a
core course: former SE501 (Mathematical Foun-
dations) is combined with former SE561(Formal
Methods) into a new and augmented core course,
SE561(Mathematical Foundations of Software En-
gineering). This course will include mathematical
methods that a software engineer needs to master,
such as graph theory, formal languages, logic,
sets theory, etc.

Former SE565 and SE570, the requirements
and design courses, have been changed to cover
techniques at the global and enterprise levels
of software development. Former SE575, the
software verification and validation course, has
been changed to cover verification, validation
and maintenance techniques and tools. Former
SE580 course will cover the team software
process (Humphrey,1999) due to the recognition
that the graduates will need to work in teams for
most of their careers, and the feedback received
from graduates.

We have also made some changes in the
bridge courses of our curriculum by adding two
bridge-courses, SE510 (Object-oriented Analysis
and Design) and SE515 (Disciplined Software
Development). We strongly believe that all our
students should know the basic analysis and de-
sign methods by the time they enter the graduate
program. This would allow us to teach advanced
methods for software analysis and design in the
corresponding core courses (SE565 and SE570),

instead of spending a considerable amount of
time teaching basic knowledge. Also, we are
strong believers of the engineering principles
emphasized by a disciplined approach to devel-
oping programs, such as the Personal Software
Process (PSP). We would like all our students to
be familiar with these engineering techniques at
the individual level, to be able to leverage them
at the team level in the software process core
course (SE580). This course will also introduce
principles of agile software development.

We removed Operating Systems Concepts
(CS505) from the curriculum since the material
was covered in several other software engineer-
ing courses. We revised SE504 (Principles of
Software Engineering) to focus on structured
analysis and design methods while presenting the
breadth of software engineering principles. This
emphasis would allow us to focus on the modern
object-oriented methods in the core analysis and
design classes.

In the electives courses, we added a course
on Secure Web Services Design (SE611) to de-
velop a sequence of courses on security, together
with SE610 (Software Systems Security). This
sequence will cover both the theoretical and
practical aspects of software systems security,
given the ubiquity of security issues in today’s
systems.

Another future trend that we believe will
induce major changes in the way we deliver
our program will be determined by the increas-

 2015

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

ingly mobile characteristic of the majority of our
students, whom are working full-time and take
the courses part-time. To allow them maximum
flexibility, we might need to change our delivery
mode to include more distance learning, maybe in
the way The Open University in UK does (Quinn,
2006). At the moment we are experimenting with
offering “hybrid courses” that are a combination
of a traditional, face-to-face delivery, and distance
learning that uses online curricular materials.
This delivery mode saves students the travel time
to campus, and also allows them to keep up to

speed when they travel for business. Students are
required to come to campus every other week, to
meet with the instructor for a face-to-face class.
If their grade falls below a certain threshold, they
are required to come to class every week. This is
a new approach for us, and we don’t have enough
data yet for a thorough evaluation.

Another issue, that is beyond the scope of this
paper though, is the awareness of the influence
that the licensing of software engineers shall have
on the design of the curriculum. However, the
directions and discussions that are taking place

Figure 5. 2007 curriculum

2016

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

with regard to licensing have to be followed so
that appropriate changes can be implemented in
the curriculum.

cOncluSiOn

This chapter has presented the main problems and
lessons learned from one of the oldest programs in
software engineering in the USA. The evolution
of the graduate curriculum over its 21 years of
existence has been shown as an example for other
colleges and universities considering the addition
of a software engineering degree. We expect this
evolution to continue in the future, as the SE field
is a constant moving target.

We have argued that the continuous update
of the course content has a special meaning in
software engineering, due to the dynamics of
the field. With this respect, we have shown the
impact of the advances in the field on the textbooks
used, the need for continuous reevaluation of the
chosen programming language, operating system,
or software tools used in class.

The chapter has shown the difficulties we
have experienced in attracting and retaining the
faculty over the years, due to the need of the
new faculty to have both a record of scholarly
accomplishments and industrial experience. The
emphasis here is on the conjunction of these two
requirements, which sets great restrictions on the
pool of available candidates.

We explained how various issues related to
the diversity of the student body influence the
curriculum and course content. As such, the
educational backgrounds, employment status,
educational goals, and communications skills
of the student body are challenges any software
engineering program has to solve.

Based on our experience in dealing with these
problems, we have offered some recommendations
for those interested in starting a similar program,
with an emphasis on the curriculum and course

content issues that arise where an undergraduate
and graduate program in software engineering
coexist in the same department.

As a measure of success of our continuous
efforts to improve, we have seen the program
enrollment increasing steadily over the years.
This is not a reason to rest, since the SE field will
continue to evolve, and we will have to respond
to new challenges.

referenceS

Ardis, M., & Ford, G. (1989). 1!989 SEI Report on
Graduate Software Engineering Education (Tech.
Rep. CMU/SEI-89-TR-21), Software Engineering
Institute.

Ardis, M., & Ford,G. (1989). SEI Report on Gradu-
ate Software Engineering Education, Proceedings
of the Software Engineering Education Confer-
ence, Springer-Verlag.

Boehm, B. (2006). Learning by Doing: Real-
client Software Project Courses, ASEE Tutorial
2006, Retrieved from http://db-itm.shidler.hawaii.
edu/cseet2006/Boehm%20ASEET.pdf .

Boehm, B., Kaiser, G., & Port, D. (2000). A
Combined Curriculum Research and Curriculum
Development Approach to Software Engineer-
ing Education, Workshop on Developing Un-
dergraduate Software engineering Programs,
Proceedings of CSEE&T 2000, 310-311

Bourque, P., & Dupuis, R. (2004). Guide to the
Software Engineering Body of Knowledge – Final
Version, SWEBOK, Feb. 2000, Retrieved from
http://www.swebok.org/

Clough, G.W. (2005). Educating the Engineer of
2020: Adapting Engineering Education to the New
Century. Washington, D.C.: National Academies
Press, Retrieved from http://www.nap.edu.

 2017

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

Dart, P., Johnston, L., Schmidt, C., & Sonenberg,
L. (1997). Developing an Accredited SE Program,
IEEE Software, Nov/Dec, 66-70.

Duggins, S.L., & Thomas, B.B. (2002). An Histori-
cal Investigation of Graduate Software Engineer-
ing Curriculum, Proceedings CSEE&T, 78-87.

Ellis, H., McKim, J.C., & Younessi H. (2000).
Issues Affecting Graduate and Postgraduate
Software Engineering Curricula, Workshop on
Developing Graduate and Postgraduate Software
Engineering Courses, Proceedings of CSEE&T
2000, 190

Ford, G. (1991). 1991 SEI Report on Graduate
Software Engineering Education, Technical Re-
port CMU/SEI-91-TR-2, Software Engineering
Institute, Carnegie Mellon University

Ford, G., Gibbs, N., & Tomayko, J. (1987).
Software Engineering Education: An Interim
Report from the Software Engineering Institute,
Technical Report CMU/SEI-87-TR-8, Software
Engineering Institute,

Garlan, D., Brown, A., Jackson, D., Tomayko, J.,
& Wing, J. (1995). The CMU Master of Software
Engineering Core Curriculum, Proceedings of
CSEE&T 1995, 65-86, Springer Verlag.

Germain, E., & Robillard, P. (2003). What Cogni-
tive Activities are Performed in Student Projects?,
Proceedings of CSEE&T 2003, 224-231

Glass, R. (2003). A Big Problem in Academic Soft-
ware Engineering and a Potential Outside-the-Box
Solution, IEEE Software, July/August,94-96.

Grant, D. (2000). Undergraduate Software En-
gineering Degrees in Australia, Proceedings of
CSEE&T 2000, 308-309

Hiburn, T., Towhidnejad, M., Nangia, S., & Shen,
L. (2006). A Case Study Project for Software Educ-
taion, Proceedings FIE 2006, M1F1-M1F5.

Humphrey, W. (1999). Introduction to the Team
Software Process, Addison Wesley.

Humphrey, W. (2005). A Discipline of Software
Engineering, Second Edition, Addison Wesley.

Lethbridge, T. (2000). What Knowledge is Impor-
tant to a Software Professional?, IEEE Computer,
33(5), 44-50.

Lutz, M.J., Hilburn, T.B., Hislop, G., McCraken,
M., & Sebern, M. (2003). The SWENET Project:
bridging the gap from bodies of knowledge to
curriculum development, Proceedings FIE 2003,
vol.3, S3C-7.

McDonald, J. (2000). Teaching Software Project
Management in Industrial and Academic Environ-
ments, Proceedings of CSEE&T, 151-160.

Naur, P., & Randall, B. (eds) (1968). Software
Engineering: A report on a Conference Sponsored
by the NATO Science Committee, NATO.

Powell, G., Diaz-Perrera, J., & Turner, D. (1997).
Achieving Synergy in Collaborative Education.
IEEE Software, Nov/Dec, 58-65.

Quinn, B., Barroca, L., Nuseibeh, B., Fernan-
dez-Ramil, J., Rapanotti, L., Thomas, P., &
Wermelinger, M. (2006). Learning Software
Engineering at a Distance, IEEE Software, No-
vember/December, 36-43.

Robillard, P, Krutchen, P., & d’Astous, P. (2001)
YOOPEEDOO (UPEDU): A Process for Teach-
ing Software Process, Proceedings of CSEE&T
2001,18-26

Rosca D. (2000). An Active/Collaborative Ap-
proach in Teaching Requirements Engineering,
Proceedings of FIE’00, T2C9-12

Rosca, D., Li, C., Moore, K., Stephan, M., &
Weiner, S. (2001). PSP-EAT – Enhancing a Per-
sonal Software Process Course, Proceedings of
FIE’01, T2D18.

2018

Continuous Curriculum Restructuring in a Graduate Software Engineering Program

Stryer, L. (2005). Bio2010: Transforming Un-
dergraduate Education For Future Research Bi-
ologists Washington, D.C.: National Academies
Press, Retrieved from http://www.nap.edu.

Teles, V.M., & Oliveira C. (2003). Reviewing the
Curriculum of Software Engineering Undergradu-
ate Courses to Incorporate Communication and
Personal Skills Teaching, Proceedings CSEET
2003, 158-165.

Tucker, A (Editor) et al.(1991). Report of the ACM/
IEEE-CS Joint Curriculum Task Force. Retrieved
from http://www.acm/education/curr91/homep-
age.html

This work was previously published in Software Engineering: Effective Teaching and Learning Approaches and Practices,
edited by H. Ellis, S. Demurjian, & J. Naveda, pp. 278-297, copyright 2009 by Information Science Reference (an imprint of
IGI Global).

 2019

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.14
The Influence of

Computer-Based In-Class
Examination Security Software

on Students’ Attitudes and
Examination Performance

Lori Baker-Eveleth
University of Idaho, USA

Daniel M. Eveleth
University of Idaho, USA

Michele O’Neill
University of Idaho, USA

Robert W. Stone
University of Idaho, USA

ABStrAct

Expectancy theory is applied to the use of soft-
ware that secures the testing environment of
in-class examinations. This security software
prohibits students from viewing unauthorized
material during an examination. The empirical
study collected 60 student questionnaire responses
completed after using the security software.
These responses were used to develop measures
for a model derived from expectancy theory.
Using structural equation modeling, the model
was estimated twice for two different variables.

These dependent variables were student attitude
towards the security software and the student’s
examination grade. The empirical results in-
dicated that student attitudes were positively
impacted by self-efficacy, outcome expectancy,
and the software’s ease of use. However, student
grade was not influenced by any measures in the
model. It is concluded that the security software
is neutral with regard to student performance,
while there are manageable actions faculty can
take to positively impact student attitude towards
security software.

2020

The Influence of Computer-Based In-Class Examination Security Software

IntroductIon

Declining technology prices and a drive to in-
novate in the learning environment create an
opportunity to incorporate computer technology
into the classroom. An example of these types of
opportunities is the use of laptop computers to
facilitate learning and classroom activities. The
mobility of laptops provides a number of teach-
ing and learning advantages. One such advantage
that has not been fully explored is using laptops
to evaluate and assess student examination
performance by having students complete their
examinations using laptops.

When using laptops on examinations, one chal-
lenge for instructors is how to provide a secure
examination environment. A secure environment
restricts students from accessing notes on their
laptop hard drives or the Internet as well as pro-
hibiting communication with other students via
e-mail and instant messaging. Another challenge
for both faculty and students is how to make sure
that the technology has no impact on a student’s
grade. If a student takes an examination in a
traditional way, using paper and a pencil, there
may be test anxiety, poor handwriting or writing
hand cramps, but the testing method (i.e., paper
and pencil), does not affect performance on the
examination. Using technology to automate the
process of the examination provides advantages
(i.e., typed text and no poor handwriting and hand
cramping) but adds an additional dilemma, that
is, what happens if the technology fails during the
examination or if an inadvertent key stroke by the
student leads to the loss of typed text? Further-
more, the laptop could crash, the power could go
out forcing battery backup, or the software ap-
plication could fail. All these events could affect
student performance and the student’s grade on
the examination. It is important to know if using
computer technology for assessment has an effect
on this important outcome.

Another advantage of using laptops for ex-
aminations is to better prepare students entering

the workforce. An important skill needed by
today’s graduates is confidence in technology
ability. Confidence in one’s ability can make the
difference in a student being hired quickly for a
management position or struggling to find an en-
try-level position. Any positive experiences using
technology in novel environments can help build
students’ confidence levels regarding technology
and its use. In other terminology, these students’
confidence and its role in many behavioral and
affective outcomes is described by self-efficacy
and outcome expectancy (Henry & Stone, 2001;
Jenkins & Garvey, 2001). In general, self-effi-
cacy is the individual’s perception of possessing
the requisite abilities to successfully perform a
specific task (Bandura, 1977; 1982; 1986). Out-
come expectancy is a companion to self-efficacy
reflecting the individual’s perception regarding
the result or gain from successful completion of
these tasks. In this context, the expectations of
self-efficacy and outcome expectancy provide a
well-established theory by which to understand
the impacts of laptop-completed examinations on
student performance and attitudes.

The research presented below focuses on how
the use of computers by students to complete
examinations in a secure environment impacts
their performance and attitudes as predicted by a
model based on expectancy theory. The remainder
of the article is organized into sections to present
the details of this examination of self-efficacy
theory and its impact on student performance.
First, a discussion of the theoretical model based
on self-efficacy theory is presented. Second, the
methodology used in the research is discussed.
Finally, the empirical results are examined fol-
lowed by conclusions and directions for future
research.

literAture reVieW

The model used to guide the use of laptops on ex-
aminations and the corresponding use of security

 2021

The Influence of Computer-Based In-Class Examination Security Software

software is rooted in expectancy or self-efficacy
theory. The theory (Bandura, 1982; 1986) links
an individual’s cognitive state to a variety of
affective and behavioral outcomes, along with
perceptions of future outcomes (i.e., loss of control,
low self-confidence, low achievement motivation)
(Staples, Hulland, & Higgins, 1998). Self-efficacy
theory has in the past been used to explain user
reactions to information technologies (Meier,
1985; Bandura, 1986; Baronas & Louis, 1988;
Martinko, Henry, & Zmud, 1996; Potosky, 2002;
Hasan, 2003; Havelka, 2003). Recent research on
computer self-efficacy investigated the influence
of demographic predictors (e.g., academic major,
gender, computer-related experience) on business
students’ self-efficacy (Havelka, 2003). Signifi-
cant differences in self-efficacy ratings resulted
for information systems and economics majors
compared to management majors and those who
had greater than five years’ experience working
with computers. Gender differences did not result
in reported self-efficacy differences.

According to self-efficacy theory, expectations
in large part determine affect and behavioral re-
actions in numerous situations. Bandura (1986)
further separated expectations into two distinct
types, self-efficacy and outcome expectancy. An
individual’s belief that he or she possesses the
skills and abilities to successfully accomplish a
specific task represents self-efficacy. Further-
more, an individual’s persistence to learn a task
impacts his or her perceptions of future outcomes,
which in turn influences self-efficacy. Outcome
expectancy, on the other hand, is an individual’s
belief that by accomplishing a task, a desired
outcome is attained. Self-efficacy and outcome
expectancy have separate impacts on behavior and
affect. However, self-efficacy typically has a larger
effect than outcome expectancy (Bandura, 1986)
and generally self-efficacy has a direct impact on
outcome expectancy (Stone & Henry, 2003).

The work of Bandura (1982; 1986) was adapted
for application to the adoption and use of informa-
tion technology. Based on self-efficacy theory,

four constructs are proposed as directly impact-
ing self-efficacy and outcome expectancy in this
environment of students using security software
and laptops to complete examinations. These
variables are watching others use the security
software, direct experiences using this software,
faculty support in its use, and ease of the security
software’s use. The resulting modified model used
in this research is displayed in Figure 1.

tHe empiricAl StuDy

A paper-and-pencil questionnaire was adminis-
tered to students enrolled in what is commonly
referred to in a business school as the ‘Junior-
level Business Core’ or the ‘Common Body of
Knowledge’ in order to collect the sample. This
course is team taught by five faculty members.
In two sections of the course, students completed
an examination using their laptops and software
that provided a secure testing environment. The
security software allows students to use word
processing documents and spreadsheet templates
on the examination, but prevents students from
performing other actions such as accessing hard
drives, the Internet, and instant messaging, or
e-mailing others in search of answers to examina-
tion questions. The examination was developed
by the faculty in a manner that required students
to review a spreadsheet template and respond to
all examination questions by typing answers in a
word processing document. This is because all the
examination questions were essay questions.

Sample Data

A total of 107 students were enrolled in these
two sections of the business core. There were 63
students enrolled in the morning section and 44
students in the afternoon section. The particular
examination was administered during a common
time to 98 students. Of the nine students who did
not take the examination, five were excused due

2022

The Influence of Computer-Based In-Class Examination Security Software

to illness and four had conflicts with the com-
mon time and were given the examination in a
traditional hand-written format at another time
and location.

The 98 students who used the security software
to complete the examination were given the op-
portunity to complete the questionnaire five days
following the experience, but prior to receiving
their examination scores or grade. A verbal re-
minder to return the questionnaire was provided
during class prior to the grade being released.
No additional reminders were provided due to
concerns over latency effect and attribution of
examination performance; that is to say, no other
reminders were provided due to the concern that
too much time had elapsed between using the
security software and the students responding
to the questionnaire. In such a case, the students’
responses might not reflect their immediate per-
ceptions after using the software. Furthermore,
if students received their examination grades
before completing the questionnaire and if their
grade was different than what they perceived as
appropriate, they could attribute their unexpected
performance, either better or worse, to the security

software. Thus, limited in-class reminders to com-
plete the questionnaire were made to hopefully
obtain responses that best reflected students’ true
perceptions of the software. Furthermore, it was
made clear that completing the questionnaire or
not completing the questionnaire would have no
impact on the student or their grade. Of the 98
students that took the examination with laptops,
62 students responded to the questionnaire, with
60 students fully completing the questionnaire,
producing a 61% response rate.

characteristics of the
respondents

The characteristics of the sample respondents
are shown in Table 1. The average GPA of 3.06
appears high, but it is the case that all students
enrolled in the course must have completed several
qualifying courses and obtained a minimum GPA
among these courses. These requirements prohibit
some students, who tend to have lower GPAs, from
enrolling in the course. The average age of the
respondents was 22.2 years. Both genders were
represented with 40% females and 60% males.

Watching
Others

Experience

Faculty Support

Ease of Use

Outcome
Expectancy

Self-Efficacy

Attitude/
Grade

Figure 1. The theoretical model

 2023

The Influence of Computer-Based In-Class Examination Security Software

The percentage of students in each major ranged
from a high of 28.33% in Marketing to 3.33% in
both Production Operations Management and the
Professional Golf Management program.

non-response Bias

For any research that depends on data collected
using a questionnaire, non-response is a concern.
To examine the possible presence of non-response
bias, the sample characteristics were compared
to the corresponding values at the college level.
The logic of using the college demographics is

that the students in the college form the popula-
tion from which the sample was drawn. Any
potential non-response bias would be reflected
in differences in the demographics between the
sample and the population. Table 1 also displays
the demographic values for the college and the
corresponding statistic testing the significance of
the difference between the sample and the popu-
lation values. All these tests were two-tailed and
no meaningful differences between the sample
and the population demographics were found at
a 5% significance level. Based on the comparison
of these demographic variables, it is concluded

Characteristic Sample College Population Test Statistic

t-Statistic

Average GPA 3.06 2.98 1.25 a

Average Age (years) 22.2 21.6 1.68 a

z-Statistic

Gender: 0.26 b

 Female 40.00% 39.00%

 Male 60.00% 61.00%

Chi-Square Statistic

Major: 13.89c

 Marketing 28.33% 22.20%

 Information Systems 11.67% 12.60%

 Finance 11.67% 11.60%

 Management & Hu-
man Resources 16.67% 14.00%

 Production Opera-
tions Management 3.33% 5.60%

 Professional Golf
Management 3.33% 0.70%

 Accounting 20.00% 16.20%

 Economics-Finance 5.00% 6.10%

 Other/Undeclared N/A 9.00%

Number of Observations 60 837

Table 1. Data characteristics

a t-Statistic = two-tailed
b z-Statistic = two-tailed
cdf = 8

2024

The Influence of Computer-Based In-Class Examination Security Software

that non-response bias does not present a problem
for the sample.

meASureS AnD tHeir
pSycHOmetric prOpertieS

The work of Stone and Henry (2003) was modified
and adapted to develop the questionnaire items
used to measure the constructs in the model. For
all measures, students were asked the extent to
which they agreed or disagreed with each of the

items and were presented with the ordered answer
choices of strongly disagree, disagree, neutral,
agree, or strongly agree. The questionnaire was
pre-tested by 11 students who had completed the
course a year earlier and were familiar with the
examination security software. Using the feedback
from these students regarding the intent and read-
ability of the questions, four items were deleted
from the questionnaire.

Each measure used in the model and the
questionnaire items forming them are shown in
Table 2. Also shown in Table 2 are the Cronbach’s

Measures and Indicants Cronbach’s Alpha

Experience Using the Software 0.77

For each of the following factors, indicate the extent to which you agree or disagree
that it helped your use of the software:

Going through a short practice exercise with the software during class.

Going through a sample exam during class.

Watching Others Using the Software 0.90

Watching my teammates working on the software helps me understand how to use it.

Watching my peers practice working on the software helps me successfully use it.

Outcome Expectancy 0.85

I find it easy to recover from errors encountered while using the software.

I find it easy to get the software to do what I want it to do.

Helps me complete the exam faster.

Ease of System Use 0.74

I often become confused when using the software.

I make errors frequently when using the software.

Attitudes Towards the Software 0.93

Completing exams using the software is the way I prefer to work on exams.

I would like to use the software for all my exams.

I wish all my classes would use the software on exams.

Faculty Support 0.80

The faculty team:

Encourages us to use the software.

Seems to value the software.

Self-Efficacy 0.89

I know enough to successfully use the software.

I fully understand how to complete an exam using the software.

Table 2. Items and measures reliabilities

 2025

The Influence of Computer-Based In-Class Examination Security Software

Alphas for each measure. These values ranged
from a low of 0.74 for the measure ease of system
use to a high of 0.93 for the measure attitudes
towards the software. These values indicate that
all the measures have acceptable levels of reli-
ability and therefore satisfy composite reliability
(Nunnally, 1978).

In order to examine the measures for the
psychometric property of discriminant validity, a
series of correlations were performed. Analyzing
one questionnaire item at a time, the item was
removed from its measure and correlated with
its own modified measure and all other measures
in the study. If the item satisfies discriminant
validity, it correlates more highly with its own
modified measure than with all other measures.
The process was repeated for each questionnaire
item in the model. This is the approach to evaluate
discriminant validity proposed by Campbell and
Fiske (1959). For this particular study, a total of 112
of these correlations were computed. Only one of
these correlations violated discriminant validity.
This violation was for an item measuring Outcome
Expectancy that correlated more highly with a
measure for Attitudes towards the Software. As
a result, it is concluded that discriminant valid-
ity is satisfied (Campbell & Fiske, 1959). Based
on the desirable composite reliability and these
discriminant validity results, it is concluded that
the measures used in the empirical study display
satisfactory psychometric properties (Rainer &
Harrison, 1993). As a result, we can be confident
that the items and measures perform reason-
ably well in measuring the intended underlying
constructs.

mODel AnAlySiS

Because the model was relatively complex com-
pared to the sample size, the questionnaire items
were summed to form the measures of the model’s
constructs. The hypothesized paths among the
measures were estimated using structural equa-

tions modeling as performed by covariance
analysis of linear structural (CALIS) equations
in PC SAS version 9.1. The estimation was done
using maximum likelihood. Two models were
estimated that differed only by the dependent
variable. The model was estimated once using the
dependent variable attitudes towards the software
and once again using as the dependent variable
student grade on the examination.

Summary statistics for the fit between the
model and the data from the estimation of both
models are reported in Table 3. The model using
attitudes towards the software as the dependent
variable had a goodness of fit index of 0.99 (ad-
justed for degrees of freedom it was 0.93). The
root mean square residual was 0.02 while the
chi-square statistic (four degrees of freedom) was
2.15 and insignificant at a 5% level. The normed
chi-square statistic was 0.54. Bentler’s compara-
tive fit index was 1.00 while the incremental fit
indexes ranged from 0.88 to 1.13. A couple of these
values indicate an “over-fitting” of the model to
the data, which is most likely due to the relatively
complex model and small sample size.

For the model using student examination
grade as the dependent variable, the goodness
of fit index was 0.98 (adjusted for degrees of
freedom it was 0.86). The root mean square
residual was 0.04. The chi-square statistic (four
degrees of freedom) was 4.03 and not statistically
significant at a 5% level. The normed chi-square
statistic was 1.01. Bentler’s comparative fit index
was 0.99 and the incremental fit indexes ranged
from 0.48 to 0.99.

In summary, even though these statistics
provided mixed findings regarding the goodness
of fit between the model and the data, the values
were sufficient to conclude the fit was acceptable
(Hair, Anderson, Tatham,& Black, 1992). This
acceptability judgment was based on the fact
that more of these summary statistics meet the
generally accepted cutoff values than not. Thus,
the variations found in the data were consistent
with those implied by the theoretical model, and

2026

The Influence of Computer-Based In-Class Examination Security Software

it was concluded that the data “fit” the model
reasonably well.

The estimated structural model using Attitudes
towards the Software as the dependent variable is
presented in Figure 2. Ease of system use had a
meaningful impact on student attitudes through
outcome expectancy. Self-efficacy had a direct
impact on Attitudes towards the software as well
as an impact through outcome expectancy. Results
for the model using student grade as the dependent
variable are shown in Figure 3. Neither self-ef-
ficacy nor outcome expectancy had meaningful
impacts on the grade. However, ease of use and
self-efficacy did have meaningful impacts on
outcome expectancy.

DiScuSSiOn

The expectancy model was applied to students
completing examinations in class using laptops
loaded with software that provided a secure test-
ing environment. The features of this security
software were described earlier in the article. The
intent of the research was to identify those actions
impacting not only student attitudes towards the
software, but also student performance on the
examination as measured by grade.

The most interesting empirical result comes
from comparing evidence from the two estimated
models. Student attitudes towards the security
software are positively impacted by self-efficacy
and outcome expectancy, as well as ease of use
via outcome expectancy. When the model was
estimated using examination grade as the depen-
dent variable, none of the other variables in the
model had either a direct or indirect impact on this
grade. The interpretation of these results is that the
examination security software did not influence
student examination performance as measured by
grade and ease of use, self-efficacy, and outcome
expectancy positively impacted student attitudes
towards the software. The result is intuitively
appealing because it indicates that students have
positive attitudes toward the examination security
software yet the software is neutral with respect
to student examination performance.

cOncluSiOn

The presented research examines an increasingly
common situation in education, the use of com-
puter-based examinations and the resulting need
for software that secures the testing environment.

Statistic Value

Goodness of fit index 0.99

Adjusted goodness of fit index 0.93

Root mean square residual 0.02

Chi-square (4 degrees of freedom) 2.15

Normed chi-square 0.54

Bentler’s comparative fit index 1.00

Bentler & Bonett’s non-normed fit index 1.13

Bentler & Bonett’s normed fit index 0.98

Bollen non-normed fit index 0.88

Bollen normed fit index 1.02

Statistic Value

Goodness of fit index 0.98

Adjusted goodness of fit index 0.86

Root mean square residual 0.04

Chi-square (4 degrees of freedom) 4.03

Normed chi-square 1.01

Bentler’s comparative fit index 0.99

Bentler & Bonett’s non-normed fit index 0.99

Bentler & Bonett’s normed fit index 0.90

Bollen non-normed fit index 0.48

Bollen normed fit index 0.99

 Table 3. Fit of the models

Dependent variable: Attitudes toward software Dependent variable: Examination grade

 2027

The Influence of Computer-Based In-Class Examination Security Software

The empirical study shows student attitudes to-
wards the software are positively influenced by
several factors, yet student performance on the
examination as measured by grade is not. The
software providing a secure testing environment
is neutral with regard to examination performance
and yet student attitudes can be positively influ-
enced. In a larger sense, these attitudes and the
confidence from successfully using such software
may translate into greater confidence regarding

technology in general. As mentioned early, such
skills may help these students secure an entry-
level position upon graduation.

As more colleges and universities move toward
mobile computing environments there will be
additional opportunities to assess student per-
formance using computer-based examinations.
It is encouraging that student performance is
not hindered by use of such software. Is this not
what is desired from such software? The variables

Figure 2. The model with student attitude as the dependent variable

Watching
Others

Experience

Faculty Support

Ease of Use

Outcome
Expectancy

Self-Efficacy

Attitude

* Significant at a 5% level

** Significant at a 1% level

0.44**

0.11

0.11

0.11

0.30**

-0.08

0.18

0.04

0.07

0.70**

0.18*

Watching
Others

Experience

Faculty Support

Ease of Use

Outcome
Expectancy

Self-Efficacy

Grade

0.03

-0.09

0.44**

0.11

0.11

0.11

0.30**

0.11

0.18

0.04

0.07

* Significant at a 5% level

** Significant at a 1% level

Figure 3. the model with student grade as the dependant variable

2028

The Influence of Computer-Based In-Class Examination Security Software

positively impact student attitudes towards the
software yet the software does not artificially help
or hinder a student’s performance. Future research
in this area should look at other variables that may
influence self-efficacy and outcome expectancy, as
well as examine additional variables influencing
student performance.

referenceS

Bandura, A. (1977). Self-efficacy: Toward a unify-
ing theory of behavioral change. Psychological
Review, 84(2), 191-215.

Bandura, A. (1982). Self-efficacy mechanism
in human agency. American Psychologist, 37,
122-147.

Bandura, A. (1986). Social foundation of thought
and action: A social cognitive theory. New Jersey:
Prentice-Hall, Inc.

Baronas, A. & Louis, M. (1988). Restoring a
sense of control during implementation: How
user involvement leads to system acceptance.
MIS Quarterly, 12(1), 111-123.

Campbell, D. & Fiske, D. (1959). Convergent
and discriminant validation by the multitrait-
multimethod matrix. Psychological Bulletin,
56, 81-105.

Hair, J. Jr., Anderson, R., Tatham, R., & Black, W.
(1992). Multivariate data analysis with readings.
New York: MacMillan Publishing Company.

Hasan, B. (2003). The influence of specific
computer experiences on computer self-efficacy
beliefs. Computers in Human Behavior, 19(4),
443-450.

Havelka, D. (2003). Predicting software self-ef-
ficacy among business students: A preliminary

assessment. Journal of Information Systems
Education, 14(2), 145.

Henry, J. & Stone, R. (2001). The role of computer
self-efficacy, outcome expectancy, and attribu-
tion theory in impacting computer system use.
Journal of International Information Manage-
ment, 10(1), 1-16.

 Jenkins, A. & Garvey, R. (2001). Developing
human potential at work. Futures, 33, 461-467.

Martinko, M., Henry, J., & Zmud, R. (1996). An
attributional explanation of individual resistance
to the introduction of information technologies in
the workplace. Behaviour & Information Technol-
ogy, 15(5), 313-330.

Meier, S. (1985). Computer aversion. Computers
in Human Behavior, 1(2), 71-179.

Nunnally, J. (1978). Psychometric methods, 2nd

ed. New York: McGraw-Hill.

Potosky, D. (2002). A field study of computer ef-
ficacy beliefs as an outcome of training: The role
of computer playfulness, computer knowledge,
and performance during training. Computers in
Human Behavior, 18(3), 241-255.

Rainer, R., Jr. & Harrison, A. (1993). Toward
development of the end user computing construct
in a university setting. Decision Sciences Journal,
24(6), 1187-1202.

Staples, D., Hulland, J., & Higgins, C. (1998). A
self-efficacy theory explanation for the manage-
ment of remote workers in virtual organizations.
Journal of Computer-Mediated Communication,
3(4), 1998.

Stone, R. & Henry, J. (2003). The roles of computer
self-efficacy and outcome expectancy in influ-
encing the computer end-users’ organizational
commitment. Journal of End User Computing,
15(1), 38-53.

This work was previously published in International Journal of Information and Communication Technology Education, Vol.
4, Issue 2, edited by L. Tomei, pp. 1-13, copyright 2008 by IGI Publishing (an imprint of IGI Global).

 2029

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.15
Integrated Software

Testing Learning Environment
for Training Senior-Level

Computer Science Students

Daniel Bolanos
Universidad Autonoma de Madrid, Spain

Almudena Sierra
Universidad Rey Juan Carlos, Spain

ABStrAct

Due to the increasingly important role of software
testing in software quality assurance, during the
last several years, the utilization of automated
testing tools, and particularly those belonging
to the xUnit family, has proven to be invaluable.
However, as the number of resources available
continues increasing, the complexity derived
from the selection and integration of the most
relevant software testing principles, techniques
and tools into an adequate learning environment
for training computer science students in software
testing, increases too. In this chapter we intro-
duce a experience of teaching Software Testing
for a senior-level course. In the elaboration of

the course a wide variety of testing techniques,
methodologies and tools have been selected and
seamlessly integrated. An evaluation of students
performance during the three academic years that
the course has been held show that students’ at-
titudes changed with a high or at least a positive
statistical significance.

IntroductIon

In this chapter we present a complete methodology
for software testing training in the context of a
laboratory course for senior-level computer sci-
ence students. The intent of this work is to provide
educators with a set of guidelines to effectively

2030

Integrated Software Testing Learning Environment

instruct computer science students on software
testing. The goal is not only to incorporate specific
software testing skills into students’ curricula,
but also to prepare the student with skills for
independent lifelong learning on the topic. The
designed course spans the whole software testing
lifecycle, and includes teaching recommendations
to address students’ common difficulties and
misconceptions, as well as techniques to evaluate
Students’ performance for every stage.

During three academic years (2003-2006,
note that results for the ongoing academic year
are not currently available) we have developed
and improved a software testing learning envi-
ronment that has been used to train senior-level
students in the Department of Computer Science
of Universidad Autonoma de Madrid (Spain).
In this environment, students are instructed
about the elaboration of the test plan, test cases
design, testing automation by means of specific
tools, reporting and interpreting test results and
maintenance related issues. All of these tasks are
carried out over a complete pre-existent software
system that has been specifically developed for
this purpose.

To evaluate the effectiveness of the approach
we have carried out attitudinal surveys to stu-
dents during the three years that the course has
been offered. These surveys provided us with
inestimable information about students’ progress
and perception on several aspects of the course.
This information was used to find out which ele-
ments of the course were perceived by students
as most useful, most difficult or most personally
rewarding; and, of course, to improve the learning
environment along the academic years. We have
found that, thanks to their immersion in this test-
ing environment, students understood the crucial
importance of software testing across the software
lifecycle. Also, they incorporated a complete
testing methodology and a broad set of software
testing tools into their previous knowledge.

The chapter is divided into the following sec-
tions: a background section in which previous

work on the topic is discussed and compared
to the proposed approach, a description of the
software testing learning environment including
teaching recommendations and a description of
the students’ performance evaluation method, an
evaluation of the effectiveness of the approach
and a final section with the conclusions and
future work.

BAcKgrOunD

Due to the increasingly important role of software
testing in software quality assurance, during the
last years, the use of testing frameworks that
assist the developer during the testing process,
and particularly the use of those belonging to
the xUnit family, has proven to be invaluable.
The production of high-quality and bug-free
software products and solutions has gained a
crucial importance in the software development
industry, always focused to meet the needs of its
increasingly more demanding end-users. In the
last few years, many software testing techniques
and methodologies have emerged to address
these challenges, some of them influenced by
agile (Beck, K. et al., 2001) and particularly by
Extreme Programming (XP) (Beck, K., 2000).
These techniques provide a wide set of principles,
practices and recommendations for all the tasks
involved in the software testing process, from test
case design to automation of functional tests. In
this context, an overwhelming number of testing
frameworks and tools have been developed and
are available (many of them under open-source
licenses) with the purpose of aiding the developer
in testing every particular system aspect written
in any programming language imaginable.

However, as the number of resources and
techniques available continues increasing and
demonstrating new benefits, the complexity de-
rived from the selection and integration of the most
relevant software testing principles, techniques
and tools into an adequate learning environ-

 2031

Integrated Software Testing Learning Environment

ment for training computer science students in
software testing, increases too. Though several
interesting experiences have been reported, to
collecting and integrating all of these continuously
evolving sources of knowledge and experience
into a methodology to effectively teach software
testing, remains an unresolved issue. As we will
see later on in this section, many experiences of
taking software testing to the classroom have
been reported. They are focused in a number of
testing related topic like for example extreme
programming, unit testing or pair programming.
However, it seems like there have not been any
experience of collecting and integrating the most
relevant and successful techniques into the same
course.

There have been numerous experiences
bringing Extreme Programming principles
to the classroom (Astrachan, O. Duvall, R.C.
& Wallingford, E. 2001; Edwards, S. 2003;
Kaufmann, R. & Janzen, D. 2003; Melnik, G.
& Maurer, F. 2002; Mugridge, R. 2003; Müller,
M. & Hagner, O. 2002; Müller, M. & Tichy, W.
2001; Reichlmayr, T. 2003; Shukla, A. & Wil-
liams, L. 2002; Tinkham, A. & Kaner, C. 2005)
as well as other less specific like (Collofello, J. &
Vehathiri, K., 2005) and (Astrachan, O., Duvall,
R.C., & Wallingford, E., 2001). For example, in
(Shukla, A., & Williams, L., 2002) a complete
report of an undergraduate course on software
testing focused on Test-Driven Development
(also known as TDD and considered one of the
most important aspects of Extreme Program-
ming) is presented. The course was held dur-
ing three academic years and, despite positive
results in terms of students performance, a
main problem was identified. The problem lies
in the counterintuitiveness of TDD due to the
fact that, according to this technique test cases
need to be written before the code to test. This
problem is especially significant in graduate and
nearly-graduate students (for whom the course
presented in this chapter is intended) who have

already become established in the traditional
“write the code and then test it” software test-
ing strategy. In general, in the vast majority of
these experiences a special need for coaching and
support for students has been detected due to the
novelty of the topic and the large number of new
concepts it involves. For this reason we decided
to design an integrated learning environment in
which students’ progress is monitored through
individualized tutoring during laboratory classes
and the use of a centralized software repository
where they store the work as they progressively
complete it. In this respect the adoption of pair
programming as the collaborative paradigm for
the course has brought us the possibility of taking
advantage of the benefits it provides to students
when facing radically new software development
related concepts and scenarios.

Pair programming is a software develop-
ment model at the core of XP and is a kind of
“collaborative programming”. It consists of two
programmers (two students), working side-by-
side at one computer collaborating on the same
design, algorithm, code or test. One person is the
“driver”, i.e. has control of the pencil/mouse/key-
board and is writing the design or code. The other
person, the “observer,” continuously and actively
examines the work of the driver identifying tac-
tical and strategic deficiencies in it (Williams,
L., Kessler, R. A., Cunningham, W., & Jeffries,
R. 2000). Despite cases of study (Müller, M., &
Tichy, W. 2001) where pair programming has
been shown to suffer from some waste of time
and from an unclear division of work, we have
chosen pair programming as the collaborative
model during the laboratory course due to the
following reasons:

•	 Pair pressure: pair programmers put pres-
sure on each other. This is a form of positive
pressure that leads students to keep each
other focused and on-task (Williams, L. A.,
& Kessler, R. R. 2000).

2032

Integrated Software Testing Learning Environment

•	 Pair programming has been shown to be
beneficial independent of the developers’
experience (Cockburn, A., & Williams, L.
2001). Note that our students do not have
experience in formal software testing.

•	 Pair programming improves the success and
morale of the students and increases satisfac-
tion in the process (McDowell, C., Werner,
L., Bullock, H., & Fernald, J. 2003).

•	 Pair programming increases confidence in
the programming solutions

•	 Students are much less reliant on the teach-
ing staff. When one partner doesn’t know/
understand something the other almost
always does, therefore the teaching work-
load is reduced and lab consultation hours
are very calm (McDowell, C., Werner, L.,
Bullock, H., & Fernald, J. 2002; Williams,
L., & Kessler, R. 2000).Pair programming
is much more productive when developers
face unfamiliar problems than when facing
familiar ones (Lui, K.M., & Chan, K. C.C.
2003). This is the case we are considering
since students have no previous knowledge
about the software system to test, nor expe-
rience using the testing tools introduced in
the course.

tHe SOftWAre teSting
leArning enVirOnment

the course

The software testing course has been held during
the second semester of the last three academic
years (2003-2006) as a laboratory course in the
senior-level Software Engineering subject at the
Department of Computer Science of Universidad
Autonoma de Madrid (Spain). At the beginning
of the course students have intermediate Java
programming skills and more than 100 hours of
theoretical-practical software engineering train-

ing plus specific theoretical instruction in software
testing fundamentals. This instruction comprised
basically the following topics:

•	 Test design techniques: black box and white
box.

•	 Integration strategies in structured program-
ming languages: top-down, bottom-up, and
sandwich.

•	 Integration strategies in object oriented
programming languages.

•	 Test cases design.
•	 Testing across the software development

lifecycle: unit, integration, system, accep-
tance, and regression testing

•	 Risk management during the test process.
•	 Test plan document elaboration guide-

lines.

Table 1 summarizes the most relevant features
of the course.

The first day of the course students are grouped
in pairs and informed about the work to do:

•	 Test plan documentation: scope, description
of the integration strategy and techniques
selected, assignment of responsibilities
and resources, schedule, milestones, risk
management, completion criteria, etc.

•	 Test development: test procedures, test
scenarios, test cases and test source code.

•	 Test execution: execution of the software
following the plans and reporting of failures
and errors detected.

•	 Test reporting: final conclusions about the
results obtained from the executed tests.

During the explanation teachers emphasize
aspects related with the testing automation level,
code coverage, test cases design and maintenance.
Finally students are informed about the course
evaluation procedures.

 2033

Integrated Software Testing Learning Environment

System to be tested

A complete system has been developed by teachers
with the sole purpose of being tested. The main
advantage of this is that students have the same
starting point what makes students’ performance
evaluation more straightforward. Due to the
strict time constraints of the course as well as the
broad software developing experience students
acquired in previous years, we have not seen the
necessity of spending time instructing students
on development issues.

The developed system presents a very interest-
ing set of features that makes the testing process
very interesting from an educational point of view:
multithreading, HTTP interface, file input/output,
private methods, exception handling, XML docu-
ments generation and parsing, external configura-
tion, etc. The system consists of 7 Java classes
and about 1700 lines of code. However, no more
than 200 lines shared out between a few selected
methods are used for testing purposes. In order
to delimit the range of results that can be poten-
tially obtained from the testing process, as well
as facilitating students’ performance evaluation
and making the testing process more rewarding,
several failures affecting different parts of the

system have been deliberately introduced. These
failures have been carefully selected with the
intention of being detected using different test-
ing techniques and strategies: black box, white
box (grey box), unit testing, integration testing,
functional testing, etc. Note that for obvious rea-
sons the different failures introduced vary each
academic year.

The system to be tested is named Road Infor-
mation Server (RIS) and its aim is to serve XML
documents via HTTP containing information
about roads: traffic flow, presence of accidents
in the road, weather forecast, etc. This informa-
tion is taken by this module from the output of
a hypothetical system named Road Observation
and Information Providing System (ROIPS) from
a data file (note that the format of this file is the
only thing students need to know about the ROIP
system) that acts as an interface between both
systems. The RIS system is continuously read-
ing the data from that file and generating XML
documents containing the information requested
via HTTP (GET method) by the clients. Since the
information is published using HTTP the simplest
way to interact with the system is from a conven-
tional browser (this feature enables students to
easily interact with the system). Figure 1 shows
the system to be tested and its environment.

Number of students 150 students divided into 5 groups with an average of 15 pairs of
students and a dedicated teacher per group.

Qualification required Last year undergraduate computer science students.
Programming language Java JDK 1.5

Testing tools JUnit 4.0, JFunc, HttpUnit, XMLUnit, JTestCase, JUnitReport,
JUnitAddOns, and others.

Software configuration management tools SVN 1.3 + TortoiseSVN
Software execution and deployment Ant 1.6.5

Evaluation procedure

Oral presentation.
Formal written report including the Test Plan, test cases
design and test execution results and interpretation.
Software generated quality and completeness (only the
software present in the repository is evaluated)
Practical examination.

•
•

•

•
Duration 8 Weeks

Table 1. Summary of course details

2034

Integrated Software Testing Learning Environment

elaboration of the test plan

Once the students understand the goals of the
course and get familiarized with the system to
test, they must start elaborating the test plan. This
document is required to be formatted as a technical
report, this point is the special interest because
students are very close to finish their degree and
need to be prepared for dealing with the docu-
ment formatting standards used in the software
development industry. This document must be
realistic and include a schedule and milestones
adjusted to the course length.

unit testing

Unit testing is one of the core practices of XP and
consists of taking each class of an object oriented
software system and testing it in isolation. Students
are encouraged to select a bottom-up testing ap-
proach, i.e. testing the classes of the system first
and then testing the sum of its classes. On such
an approach, integration testing becomes much
easier. Teachers also encourage students to put
special emphasis on unit testing due to the fol-
lowing reasons:

•	 Unit testing implicitly involves a sort of
documentation that provides students with
a better understanding of modules, require-
ments and API’s.

•	 Good unit tests are fundamental when doing
regression tests.

Since Java is the programming language
selected for the course, the tool selected to assist
the unit testing process can’t be other than JUnit.
Many issues concerning test cases design and the
right way to test an object in isolation need to be
covered for an in-depth understanding of unit
testing. In the following subsections we describe
these issues in detail, providing some teaching
recommendations obtained from our experience

holding the course. However, note that some
aspects, like test cases design, are not uniquely
correlated with unit testing.

Test Cases Design

The first step when doing unit testing is to design
the test cases, black box and white box techniques
are both suitable for this purpose. Black box con-
sists of testing whether the output of a function
or method, given certain inputs, conforms to its
functional specification. White box consists of
analyzing the source code in order to guide the
selection of test data. In this respect, students
need to have good enough Java programming
skills to throughfully understand the execution
flow present in the methods’ source code. It is
important to balance the pairs when creating
them at the beginning of the course; students
with less Java programming skills must be paired
with the more experienced ones. Test data must
be appropriately selected to achieve an adequate
coverage over the code to test. Students have to
decide which coverage (statement, edge, branch
or path) to use when testing each method and
justify the decisions made. Also, students have
to create flow graphs for each method and depict
on them special situations derived from excep-
tion handling when it is the case. Note that only
6 methods of the whole system are selected to be
tested, so the workload is assumable.

We have encountered difficulties among stu-
dents to understand and appropriately set-up the
context in which a method for a given test case must
be called. There is a trend to conceive a method
as an execution entity which results are only
determined by the input parameters regardless
the context in which the method is invoked. This
problem is especially notorious when designing
test cases under the white-box perspective. For
this reason we have selected some methods which
results are strongly influenced by events like the
presence of a file in the file-system or the inner-

 2035

Integrated Software Testing Learning Environment

state of the object in which the method is defined.
Another important issue is to make students take
into account all the factors involved in setting-up
the method invocation context and to check all
the observable results of its execution.

Testing in Isolation

Maybe the most difficult aspect when doing unit
testing is to completely isolate a class from its col-
laborative classes. Usually an object makes use of
other objects to carry out certain tasks beyond its
own functionality. Obviously, the execution results
(and so that the test results) of methods belonging
to that object are going to be strongly determined
by the inner-state of the object. Usually it is very
difficult to set up domain state on such a way that
it exposes the features to be tested. Even if we
can do it, the written test will be probably very
complex and difficult to understand and main-
tain. We can avoid these problems using Mock
Objects (Mackinnon, T., Freeman, S., & Craig,
P. 2000) that are a substitute implementation to
emulate or instrument other domain code (in
particular the collaborative classes). They should
be simpler than the real code, not duplicate its

implementation, and allow the developer to set
up private state to aid in testing. Mock Objects
are very useful, but to create them by hand may
be tedious, therefore, students use a tool named
JMock. JMock automatically generates the mock
classes’ source code from the original classes and
presents a very intuitive interface with a very plain
learning curve. In addition to the generation of the
Mock Objects, a preliminary refactoring process
is typically required, consisting in creating the
factory methods in which the original objects
will be replaced by mock objects. In the Source
code listing 1, it is shown an example of a factory
method that instantiates a collaborative class.

public class TargetClass() {

 protected CollabClass factory-

Method(){

 return new CollabClass();

 }

 ...

}

Source Code Listing 1
Following this procedure, it is possible to test
objects that inherit from the target class and over-

Figure 1. Diagram of the system to be tested and its environment

2036

Integrated Software Testing Learning Environment

ride the factory method to replace the instantiation
of the collaborative object with the instantiation
of the mock one. This can be seen in the Source
code listing 2.

public void testTargetClassMethod {

// instantiation using mock objects

TargetClass targetInstance = new Tar-

getClass() {

 protected CollabClass

 factoryMethod {

 return new CollabClass();

 }

 }

 // test something

}

Source Code Listing 2
We have found that is very important to carefully
select the code examples to which students must
apply the Mock Objects technique so they can see
a tangible benefit derived from its use. This way,
applying Mock Objects becomes a very rewarding
task rather than a nuisance. Otherwise they tend to
consider the solution too complex in comparison
to the problem to solve and it discourages them.

Testing Private Methods

Some TDD purists suggest that principles of en-
capsulation should never be violated for testing an
object. Testing private methods (note that in the
Java language as well as in other object oriented
languages there are several access modifiers.
In this respect, the qualifier private must not be
interpreted literally but as “not belonging to the
public interface of the class”) means that you
have to change your tests every time you change
your private methods, and this becomes a bar-
rier to refactoring and agile development. The
reason is that, typically, private methods contain
implementation details of the objects and there-
fore are more prone to suffer changes during the

software maintenance process. We can consider,
in the context of white-box testing technique, that
a private method is implicitly tested by means of
testing the public methods that use it. However,
sometimes it is not easy to obtain an acceptable
coverage following this strategy. In these cases
we may need to test private methods directly,
so we include such an exercise in the laboratory
course. The problem here is that private methods
can’t be called outside the class where they are
defined and obviously the test code can’t belong
to the class to test. The best solution is to by-pass
the Java Virtual Machine (JVM) encapsulation
mechanism by using the Java Reflection API.
This can be done using the classes included in
the java.lang.reflect package or by means
of the JUnit-addons library (available under an
open source license). As can be seen in the Source
code listing 3, calling a private method with the
later is straightforward:

SomeClass returnValue = (SomeClass)Pr

ivateAccessor.invoke(

 instanceToTest,

 “methodToTest”,

 new Class[]{ Class1, Class2},

 new Object[]{ param1, param2});

Source Code Listing 3
As a laboratory exercise, some private methods
are selected; students must decide which of them
should be tested and include the observed advan-
tages and disadvantages of the decision taken in
the documentation produced.

Testing Exceptions

Exceptions are a mechanism to handle unex-
pected or atypical situations during the execu-
tion of a program. Exception management code
is responsible for the detection and handling of
system conditions that could potentially lead to
failure. As any other part of a software system,

 2037

Integrated Software Testing Learning Environment

they must be tested. However this is probably
one of the aspects of an object oriented pro-
gramming language, which testing procedure
has never been covered in detail in the available
bibliography. There are a few recommendations
on the topic; even frameworks like JUnit pro-
vide helper tools. However, we have observed
a lack of an in-deep analysis in which students
can rely to successfully proceed in most of the
possible scenarios.

When testing exceptions, students use to con-
sider them as an if-else block of code, where
the if corresponds to the try sentence and the
else corresponds to the catch sentence. This
way, the testing procedure would consist in defin-
ing two test cases, one for each possible execution
path. Nevertheless, there are a fair number of
non trivial questions that arise among students
when taking this procedure to practice. Should
all the exceptions be tested following the same
procedure? Should all the potentially thrown
exceptions be tested? If not, what is the criteria
to decide which of them should not? In the rest
of this section we will try to shed some light on
these questions.

The goal is to verify that exceptions are gener-
ated only when it’s due, following this consider-
ation it makes sense to classify them as expected
or unexpected. Note that this classification does
not attend to the exception itself but to the nature
of the test cases designed for testing it.

Expected Exceptions

Expected exceptions refer to test cases in which
the method-under-test execution context is set-up
so an exception must be thrown. Testing them
consists of invoking the throwing method with
“exceptional” data and checking that the excep-
tion is actually thrown via an assertion. Testing
this kind of exceptions can be done in JUnit 4.x
using the annotation @Test(expected=Ex
pectedException.class) when defining

the test method. However, it presents a clear
shortcoming, checking that the right exception
has been produced is up to the framework and
no extra verifications over the exception object
itself can be done since it is not available in the
test method. For simplicity and generality the
procedure shown in the Source code listing 4 has
been proposed to students:

public void testSomeMethod () {

 try{

 i n s t a n c e T o T e s t .

methodToTest(params);

 fail(“An exception was expected”);

 } catch (ExpectedException e){

 // Execution control must reach

here

 }

}

Source Code Listing 4
With these code sentences we ensure that a failure
will occur if the exception ExpectedExcep-
tion is not raised when invoking the method to
test with the adequate parameters. We have ob-
served among students a common misconception
of expected exceptions. Sometimes, they include
some test cases in which the concept of expected
exceptions is extended to “testing the Java plat-
form”. For example, test cases are written which
result in a method invoked over a non initialized
object that produces a NullPointerExcep-
tion raised by the JVM. This kind of test cases
doesn’t make any sense because testing the JVM
is obviously out of the scope of the test plan.

Unexpected Exceptions

Unexpected exceptions correspond to those
unpredicted situations for which the system can
not suggest any solution. This kind of exceptions
is easy to test since JUnit automatically catches
exceptions thrown by test methods and report

2038

Integrated Software Testing Learning Environment

them as errors (note the non trivial distinction
between errors and failures in JUnit). While for
unchecked exceptions (those who inherit from
RuntimeException) nothing needs to be
done, checked exceptions have to be declared in
the throws clause of the test method definition.

public void testSomeMethod () throws

SomeCheckedException {

 // test something

}

Source Code Listing 5

Improving Maintainability

Nowadays, most of the activity and economic
benefits of software enterprises come from main-
tenance related tasks. In fact, commonly in the
vast majority of software projects, the maintenance
life-cycle is much longer than the development
one and so is the volume of resources dedicated
to it. The interesting point here is that the larger
the number of resources needed, the larger the
potential for cost-effectiveness improvement and
so must be the effort in teaching good practices
on this topic.

During a maintenance stage in which the pro-
duction code is being altered, regression tests need
to be done with a very high periodicity and have
to be as much automated as possible so they can
be ran at a reasonable cost in resources. For this
reason, it is necessary to train students in good test-
ing practices that guarantee the production of not
only maintainable test software but test software
with a highly automated that can be effectively
used in regression. In addition to some general
recommendations, like minimizing the coupling
between test code and production code and using
auto-deployment scripts, students are trained in
the use of an open source tool named JTestCase.
This tool is very helpful assisting in the test cases
design and execution tasks; it is basically a JUnit

extension library that allows the test cases data
to be separated from the test cases source code.
This separation is provided by using XML data
files to store test cases data in a very structured
and readable fashion. To enhance maintainability
even further, different XML files must be used
to store test data belonging to different classes.
JTestCase also provides the API methods required
to load this data into memory from the test code
during the testing process. The main advantages
that led us to recommend students the use of this
library are two:

•	 It is possible to enlarge the test cases data set
with only adding a new test case description
to the XML files, and without modify and
having to recompile the test source code.

•	 Developers who design test cases data sets
don’t need to know about the source code
of the methods to test. Therefore a clear
separation between the test cases design
and execution roles is established.

Nevertheless, this library also presents some
drawbacks we needed to deal with when designing
the laboratory exercises in order not to increase
excessively their complexity. For example, storing
the parameters data of the methods to test in the
XML files when they are instances of complex
data types or user defined classes, may result in
a very complex and tedious task (because they
are not directly supported by the syntax JTest-
Case provides). Although this problem may be
overcome using the JICE library, we considered
it does not worth the time students spend to learn
a new tool.

Another recommendation we do is to use the
XML documents generated as part of the test
cases design documentation (XML files are read-
able by both humans and machines) and therefore
avoid duplicated information that is always hard
to maintain.

 2039

Integrated Software Testing Learning Environment

Reporting and Interpreting Test Results

Once the test cases execution has been carried out
using the corresponding Ant script, a fair amount
of information summarizing the errors and failures
detected is generated. The correct interpretation
and understanding of this information is a key
issue to locate and solve adequately the software
defects found during the testing process. JUnit
includes support for the presentation of test cases
execution results in textual (standard output in the
command window) or graphical form. However,
in real applications for which thousands of test
cases are typically developed, these methods of
presenting the information are unreadable and
impractical. To cope with this problem we have
instructed students in the use of the JUnitReport
tool, which allows the generation of hypertext
browsable documents in HTML format containing
the execution results for every particular executed
test case. This tool is able to merge the individual
XML files generated by the <junit> Ant task,
and apply a stylesheet on the final document.
JUnitReport is provided with the Ant release as
an additional task but installation of external third
party libraries is required. One important thing
to point out is that both <junit> and <junitreport>
tasks must be written in different targets inside the
Ant script so the test case execution and results
reporting tasks are not interdependent.

Another fundamental topic that must be cov-
ered is the correct interpretation of the obtained
results. Usually, JUnit makes a distinction between
errors and failures, however, this distinction is
artificial, unuseful and usually a source of mis-
understandings among students. This distinction
does not provide clear information about the source
of the software defects found. While failures relate
to assertion methods that have not been satisfied,
i.e. defects in the production code, errors reflect
unanticipated situations that occurred during the
test cases execution and could be caused by both
defects in the production code or in the test code.

This issue must be covered at the beginning of the
course when the JUnit tool is introduced.

Integration Testing

Integration tests are centered on the collaboration
of classes in a system. Once the different classes
have shown to work well in isolation, is necessary
to verify that they also work well when combined.
When doing unit testing over a target class, stu-
dents do a little refactoring process to replace
domain objects with mock objects through the
use of factory methods. After that, mock objects
must be replaced progressively by the original
ones. This can be done straightforward using the
approach presented in (Wick, M., Stevenson, D.,
& Wagner, P. 2008). Students have to replace the
factory method of the original target class with a
new factory method that returns the actual object
with which students wish to integrate. Note that
this approach allows a step-by-step integration,
i.e. if we replace factory methods one by one, we
are adding the original classes to the integration
test one-by-one. In comparison with unit tests,
integration tests are more difficult to implement
due to the complexity of setting up the domain in
the right state to test a specific behavior. In inte-
gration tests lots of objects are involved while in
unit tests only a few mock objects, plus the target
object, are involved. Moreover, mock objects state
is very easy to set up comparatively. Due to these
difficulties, we have found that students need
extra support and instruction to make integration
testing successfully.

Functional Testing

The final step is to make functional tests over
the system as a whole. For this purpose students
are provided with a brief Software Requirements
Document in which, for example, the syntax of
the HTTP requests served by the system and
the format of the XML documents returned are

2040

Integrated Software Testing Learning Environment

described. The goal is to make automated tests
to verify that the system behavior meets the
software requirements. Making functional tests
from scratch over a distributed application with
the only help of JUnit (note that despite its name
JUnit is not exclusively attached to unit testing.)
is a hard task. To cope with this difficulty we
have introduced in the learning environment two
interesting JUnit extension libraries (these two
libraries as well as all the tools included in the
learning environment described in this chapter
are free-available open source tools) that facilitate
this work: HttpUnit and XMLUnit. Note that
despite their names, XMLUnit and HttpUnit are
not unit testing tools but functional testing tools;
nevertheless the “unit” prefix is an easy way to
make these tools easily recognizable as belong-
ing to the JUnit family. In one hand HttpUnit
simplifies the interaction with a Web application
by hiding all the HTTP protocol details from
the developer. This tool basically emulates the
functionality of a Web browser allowing the test
code to navigate a Web application and retrieve its
contents as a user would do by clicking links and
reviewing documents using a conventional Web
browser and the mouse. Once the test code is able
to retrieve documents from the system, the next
step is to validate the contents and structure of
the documents retrieved to ensure they follow the
specification contained in the Software Require-
ments Document. For this purpose, HttpUnit can
be used in combination of XmlUnit. While the
former is able to parse and validate the contents
of HTML documents (like the title of the page,
tables and forms present in it and even the cor-
rectness of the script code) the later is able to do
XML documents validation.

Another interesting point when making func-
tional tests is the possibility of allowing multiple
failures, i.e. to allow more than one assert method
to fail inside the same test method. JUnit typically
stops the execution of a test method and continues
with the execution of the next one when the first
failure occurs. While this is convenient in the

particular case of unit testing, in which after a
failure happens the state of the object under test
is potentially unpredictable, in functional tests is
common to design a test case so it carries out a
set of higher level operations that are often uncor-
related. In these cases, one failure may not affect
the normal execution of the following operations
and, since functional testing is usually a very
time-consuming task, to be able to continue the
testing process can save a lot of execution time.
There is a specifically designed tool to overcome
this drawback of JUnit when applied to functional
tests, its name is JFunc and was also incorporated
to the testing environment.

In the following points we summarize some in-
teresting issues we have observed during the three
academic years the course have been held.

•	 The process of incorporating functional test-
ing tools to the course involves a relatively
long learning curve if is not accompanied
by the adequate examples and instruction.

•	 Once the tools are effectively applied to the
functional testing process, students realize
the simplicity of the test code produced and
the extensibility and generality of the solu-
tion. After an initial guided research effort
followed by a posterior independent research
effort, they incorporate to their curriculum
a set of state-of-the-art functional testing
tools that clearly improve the quality and
the level of automation of the tests, as well
as are very helpful in regression.

•	 Sometimes students need extra support to
distinguish between the aspects of a Web
document that must be tested and those
that must not. While the contents and or-
ganization of the information contained
are important, aspects like presentation and
Web design elements are obviously out of
the scope.

•	 The system to test produces dynamic docu-
ments, this is an interesting point because
some dynamic contents we deliberately in-

 2041

Integrated Software Testing Learning Environment

cluded, like time-stamps or auto-increment
values, are by nature nearly impossible to
test. In these cases, students are instructed to
eliminate the validation of those values from
the overall contents validation process.

Taking Advantage of Software Management
Configuration Tools (SMC Tools)

Nowadays SMC tools are essential to track the
evolution of the software under development and
also represent the basic support for the collabora-
tive work model of every software development
team. For this reason, and in order to make the
working environment as real as possible, we have
considered a key issue to incorporate the use of a
repository along the course. The version control
system selected is SVN Subversion v1.3 (Subver-
sion, 2000). This tool was originally created to
replace CVS (Concurrent Version System) and
presents some advantages over it, among them, its
usage simplicity. Students interact with SVN by
means of a Windows client named TortoiseSVN,
which is integrated in the Windows Explorer con-
textual menu. The repository can also be accessed
for reading purposes through a standard WEB
browser using Apache authentication. Working
with the repository using TortoiseSVN is a very
easy task and only a few commands (import,
checkout, commit …) and a basic knowledge
about the work-cycle is necessary for students to
get started. Each pair of students has a folder in
the repository and a login/password to access it.
The first day of the course students import the
baseline software system to the corresponding
work folder in the repository. At the end of every
day in the course or after a major change has been
made over the software contained in the local
working folder, students are required to commit
the changes to their personal folder in the reposi-
tory. One common problem we have found is that
some students can’t clearly differentiate between
software elements that must be stored in the reposi-
tory (only those that evolve across the software

life-cycle and can’t be generated from others, as is
the case of a .class file generated from a .java file)
and those that must not. This concept is important
because making a clear distinction between both
kinds of elements prevents filling the repository
with unuseful and redundant content and saves
time in the interaction with it. For this purpose
students are encouraged to define a “clean” task in
the Ant script that allows deleting the compilation
process results (binary files like .class and .jar)
before committing to the repository.

 The repository is also, indirectly, an excellent
mechanism for teachers to track students’ progress
and detect misconceptions in the early stages of
the course, when these problems are more likely
to happen and easier to deal with. We will cover
this topic in more detail in the next point.

Students’ performance evaluation

Students’ performance evaluation along the course
is based on the following:

•	 Oral presentations in which each student
explains and defends the decisions made and
justify the obtained results. A key aspect is
the adequate defense of the testing process
completion criteria and the testing tech-
niques and strategies selected. Also students
are required to make suggestion about how to
improve the learning environment and how
other parts of the system that remain out of
the scope of the test plan could be tested.

•	 A formal written report including the Test
Plan, test cases design as well as test execu-
tion results and interpretation: The goal is
to get students used to write formal docu-
ments as close as possible to those used in
real-world software companies.

•	 Software generated quality and complete-
ness: At the end of the course, the test
software contained in the students’ folder
in the repository is examined and evaluated
in terms of readability, completeness, level

2042

Integrated Software Testing Learning Environment

of automation achieved, coverage over the
production code, maintainability, etc. An
existing tool designed for measuring the
coverage achieved over the production code,
which name is Cobertura (Cobertura, 2005),
has been utilized for automatically measur-
ing the coverage of students’ generated test
code and to compare it to the target coverage
they described in the Test Plan. Another
interesting point is the use of the repository
to obtain feedback for evaluation purposes.
By looking at the changes-log in the reposi-
tory, it is possible to observe which versions
of which software elements and when were
committed to the repository. This is very
helpful for evaluating up to which extent
the schedule students wrote in the Test
Plan was met. This is an important issue
because a last-year computer science student
must demonstrate enough experience to
accurately estimate time and resources to
accomplish a task.

•	 A practical examination, in which the student
is tested on skills that indicate a good level
of understanding and handling of the tools
used. In this respect students use to perform
very well and, when asked, they show to be
very capable of applying the tools to new
scenarios.

In the vast majority of the cases students
performed very well in the oral presentations and
in the practical examination. Interestingly some
students went beyond the scope of the course and
incorporated new tools to the testing process,
like it is the case of performance analysis tools.
However after carefully examining the change-log
of the working folder in the repository for each
pair of students, it seems like some of them have
troubles estimating the time needed to accomplish
each task. We attribute it to the lack of experi-
ence taking to the practice the testing techniques
introduced. We expect to get better performance
in this respect in the following.

The final results indicate that about 85% of
students (as an average of the three years in
which the course has been held) completed the
course satisfactory, being the average grade 7.5
out of 10. This percentage is very similar to the
number of students who actually completed all
the exercises comprised on the course. This, lead
us to the conclusion that the learning environment
success is guaranteed whenever the teachers get
students enough involved on it.

eVAluAting tHe effectiVeneSS
Of tHe ApprOAcH

To evaluate the impact of the course on students
learning and attitudes we carried out a series of
surveys. Surveys took place at the beginning
and at the end of the course that has been held
during the last three academic years. Despite the
voluntary nature of the surveys, 93% of an aver-
age of 150 students per year completed them. It
is important to note that students knew that their
answers to the questions would have no effect in
their grades. The purpose of the surveys was to
evaluate whether students attitudes over relevant
software testing topics covered during the course,
changed accordingly with our previously stated
hypotheses.

The attitude evaluation survey was designed in
a similar fashion to the one presented in (Sitara-
man, M., Long, T.J., Weide, B.W., Harner, E.J. &
Wang, L. 2001). The survey consists on 18 state-
ments. Each of them must be marked by students
with one of six choices: strongly disagree (1),
disagree (2), moderately disagree (3), moderately
agree (4), agree (5) and strongly agree (6); where
the number in brackets is the score associated to
each choice. Table 2 contains 6 of the 18 sentences
that compose the attitudinal survey. Note that
each sentence is labeled with a word (“positive”
or “negative”) that refers to the expected trend for
the sentence’s results when comparing surveys at
the beginning and end of the course.

 2043

Integrated Software Testing Learning Environment

Table 3 summarizes results from the sentences
contained in Table 2. These results are obtained
from 134 students of the course that was offered
in the 2005-2006 academic year. The first col-
umn indicates the number of the sentence. The
second and third columns indicate the average
agreement scores for each sentence in the sur-
veys taken at the beginning and at the end of the
course respectively. The fifth column shows the
P-value derived from one-sided paired t-tests on
the raw data. These values are used to determine
the statistical significance, which is contained in
the sixth column.

cOncluSSiOn AnD
future WOrK

Looking at the overall results for the 2005-2006
course’s surveys, we see that students’ attitudes
changed with a high or at least a positive statistical

significance for 15 out of 18 sentences. Moreover,
results associated to the sentences designed to
evaluate the effectiveness of pair programming
confirm initially stated hypotheses always with
high statistical significance.

At the beginning of the course students are
skeptical about the benefits of a formal software
testing process when they realize the amount
of work and time that such a process demands.
However, we have found that the software testing
environment presented here, change students’
perception about the value of software testing to
improve software reliability. Students see how to
test an almost real application and we observe it
really encourages them. During the years in which
the course has been held, pair programming has
demonstrated to be an effective collaborative
work model, especially when two students with
very different skills are grouped into the same
pair. In this case, both members’ skills converge
to be at least equal to the higher one at the end

1. To put a special effort in ensuring the software design quality plays a fundamental role in facilitating the software testing process.
(positive)

1. Software testing is an effective and powerful way to increase software reliability. (positive)

1. Software testing process starts when all the source code is written and it is always the last stage of the software development life-
cycle. (negative)

1. Software testing is a very time consuming process. (positive)

1. Software testing is a very repetitive and tedious task; however, no special skills are required to get satisfactory results. (negative)

1. The best results you can find out once the software testing process is done, is that neither errors nor failures were found. (negative)

Table 2. Attitudinal survey questions and expected trends

Sentence Before After Difference P-Value Significant?

1 3.3 5.1 +1.8 < 0.01 High

2 4.5 5.3 +0.8 0.02 Yes

3 3.9 2.8 -1.1 < 0.01 High

4 4.1 4.5 +0.4 0.2 No

5 5.1 2.3 -2.8 <0.01 High

6 5.3 2.6 -2.7 <0.01 High

Table 3. Summary of attitudes changes

2044

Integrated Software Testing Learning Environment

of the course. After the training, students work
was evaluated in terms of completeness, effec-
tiveness, maintainability and level of automa-
tion, results show that more than 85 percent of
students performed above the required level. This
evaluation also shows that students usually have
difficulties when doing integration tests. They
don’t know how to start the integration and how
to progressively select new classes to be added
to the integration test. Coaching is much needed
at this point. Final evaluations also show that
students are generally satisfied with their work
and consider the methodology experimented to
be useful in the long term.

Our current work and intention for the future
is to update and enhance the learning environ-
ment by incorporating into it the most relevant
software testing related trends and techniques
among those that are continuously arising in
the software testing world. In particular, we are
currently working to incorporate into the course
testing of database access and new ways to identify
test anti-patterns.

referenceS

Astrachan, O., Duvall, R.C., & Wallingford, E.
(2001). Bringing Extreme Programming to the
Classroom. Presented at XPUniverse Confer-
ence’01, 2001.

Beck, K. et al. (2001). Agile Manifesto. Retrieved
March 30th 2007, from http://agilemanifesto.
org/

Beck, K. (2000). Extreme Programming Ex-
plained: Embrace Change. Addison Wesley.

Cobertura. (2005). Retrieved from http://cober-
tura.sourceforge.net/

Cockburn, A., & Williams, L. (2001) The costs and
benefits of pair programming. In G. Succi and M.
Marchesi (Eds.), Extreme Programming examined
(pp. 223-243).Boston: Addison-Wesley.

Collofello, J. & Vehathiri, K. (2005). An Environ-
ment for Training Computer Science Students on
Software Testing. Paper presented ad Frontiers
in Education, 2005. FIE ‘05. 19-22 Oct. 2005,
T3E-6- T3E-10.

Edwards, S. (2003). Using Test-Driven Develop-
ment in the Classroom: Providing Students with
Automatic, Concrete Feedback on Performance.
Paper presented at International Conference on
Education and Information Systems: Technol-
ogy and Applications EISTA 2003, Orlando,
FL, 2003.

Kaufmann, R., & Janzen, D. (2003). Implications
of test-driven development: a pilot study. Paper
presented at 18th annual ACM SIGPLAN confer-
ence on Object-oriented programming, systems,
languages, and applications (OOPSLA 2003),
Anaheim, CA, 2003.

Lui, K.M., & Chan, K. C.C. (2003). When Does a
Pair Outperform Two Individuals?, Lecture Notes
in Computer Science, Volume 2675, 225–233.

Mackinnon, T., Freeman, S., & Craig, P. (2000).
Endo-Testing: Unit Testing with Mock Objects.
Presented at eXtreme Programming and Flexible
Processes in Software Engineering - XP2000.

McDowell, C., Werner, L., Bullock, H., & Fernald,
J. (2002). The Effects of Pair-Programming on
Performance in an Introductory Programming
Course. Presented at 33rd SIGCSE technical-
symposium on Computer science education.
2002, 38-42.

McDowell, C., Werner, L., Bullock, H., & Fernald,
J. (2003). The impact of pair programming on
student Performance, perception and persistence.
Presented at Int.Conf. on Software Engineering
(ICSE2003), 2003, 602-607.

Melnik, G., & Maurer, F. (2002) Perceptions
of Agile Practices: A Student Survey.” Paper
presented at Agile Universe/XP Universe 2002,
Chicago, IL, 2002.

 2045

Integrated Software Testing Learning Environment

Mugridge, R. (2003). Challenges in Teaching Test
Driven Development. Paper presented at XP 2003,
Genova, Italy, 2003.

Müller, M., & Hagner, O. (2002). Experiment about
test-first programming Software, IEE Proceedings
vol. 149, pp. 131-136.

Müller, M., & Tichy, W. (2001). Case study: ex-
treme programming in a university environment.
Paper presented at Software Engineering, 2001.
ICSE 2001. Proceedings of the 23rd International
Conference on, Toronto, Ontario, 2001.

Reichlmayr, T. (2003). The agile approach in
an undergraduate software engineering course
project. Paper presented at Frontiers in Educa-
tion, 2003. FIE 2003. 33rd Annual, Boulder,
CO, 2003.

Shukla, A., & Williams, L. (2002). Adapting ex-
treme programming for a core software engineer-
ing course. Paper presented at 15th Conference
on Software Engineering Education and Training,
2002. (CSEE&T 2002), Covington, KY, 2002.

Sitaraman, M., Long, T.J., Weide, B.W., Harner,
E.J. & Wang, L. (2001). A formal approach to
component-based software engineering educa-
tion and evaluation. Paper presented at 23rd
International Conference on Software Engineer-
ing. ICSE 2001.

Subversion. (2000). Retrieved from http://subver-
sion.tigris.org/

Tinkham, A., & Kaner, C. (2005). Experiences
Teaching a Course in Programmer Testing. Paper
presented to Agile Conference, 2005. 24-29 July
2005, 298- 305.

Wick, M., Stevenson, D., & Wagner, P. (2008). Us-
ing Testing and JUnit Across the curriculum. Pre-
sented at 36th SIGCSE technical symposium on
Computer science education, 2005, 236–240.

Williams, L., Kessler, R. A., Cunningham, W., &
Jeffries, R. (2000). Strengthening the Case for Pair-
Programming, IEEE Software, 17(4), 19-25.

Williams, L. A., & Kessler, R. R. (2000). The
Effects of‘Pair-Pressure’ and ‘Pair-Learning’
on Software Engineering Education. Presented at
13th Conference on Software Engineering Educa-
tion and Training, March 2000, 59-65.

Williams, L., & Kessler, R. (2000). Experiment-
ing with industry’s pair programming model
in the computer science Classroom. Journal of
Computer Science Education, 10(4).

This work was previously published in Software Engineering: Effective Teaching and Learning Approaches and Practices,
edited by H. Ellis, S. Demurjian, & J. Naveda, pp. 233-249, copyright 2009 by Information Science Reference (an imprint of
IGI Global).

2046

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.16
European National

Educational School Authorities’
Actions Regarding Open

Content and Open Source
Software in Education

Riina Vuorikari
European Schoolnet (EUN), Belgium

Karl Sarnow
European Schoolnet (EUN), Belgium

ABStrAct

This chapter provides an overview into policies
in the area of e-learning that ten European coun-
tries, all members of European Schoolnet, have
taken regarding open content and free and open
source software (FOSS) to be used to support and
enhance learning. Additionally, it elaborates on
European Schoolnet’s initiatives to support open
learning resources exchange in Europe. European
Schoolnet (EUN) promotes the use of informa-
tion and communication technologies (ICT) in
European schools, acting as a gateway to national
and regional educational authorities and school
networks towards Europe. A variety of actions
have been initiated by a number of European

educational authorities from analysis and feasi-
bility studies to the development of educational
software based on open source as well as open
educational content.

IntroductIon

European Schoolnet is a network of 27 national
educational authorities in Europe in the area of
compulsory education (K-12). European Schoolnet
provides insight into the educational use of infor-
mation and communications technologies (ICT)
in European schools for policy-makers and educa-
tion professionals. This goal is achieved through
communication and information exchange at all

 2047

European National Educational School Authorities’ Actions Regarding Open Content

levels of school education using innovative tech-
nologies, and by acting as a gateway to national
and regional school networks.

In recent years, European Schoolnet and a
number its members have, little by little, begun
a trend towards awareness building, piloting,
development, and the rolling-out of open source
software programs for schools, as well as inves-
tigating open content as a possible addition to a
more conventional content provision.

This chapter introduces some of these policy-
level actions; however, it cannot be regarded as an
exhaustive summary of policy initiatives in the
field of ICT and education. There are two main
focuses for the chapter, the policy initiatives and
EUN initiatives.

First, the chapter introduces a number of
emerging initiatives lead by ten EUN member
countries in the area of open source and content
for education. Initiatives are categorized in four
main sections: awareness raising of Free Open
Source Software (FOSS), development of LMS
and learning platforms, promotion of the use of
Linux on desktops and educational servers, and
finally, the promotion of open content. The fol-
lowing countries are featured: Estonia, Spain, and
Slovenia as an example of countries basing part of
their policy initiatives and actions on open source
development; Belgium’s Flemish Community and
the Netherlands, which run major campaigns to
raise awareness of the FOSS issues; Ireland and
Finland, as well as France, with smaller scale
policy initiatives to familiarize schools with alter-
native solutions; and finally the UK and Lithuania
carrying out feasibility studies with FOSS.

The second part presents two European
Schoolnet’s recent initiatives in this regard:
Xplora, which promotes science education in
Europe, and secondly, the EUN’s Learning Re-
sources Exchange, which promotes the use and
reuse of educational content across Europe. The
latter introduces the implementation of a digital
rights management framework and briefs on the
current development of a learning toolbox to sup-

port collaborative learning based on open source
development.

BAcKgrOunD

European Schoolnet (EUN) was funded in 1996
with the mandate of the Council of the European
Union. The members of European Schoolnet
represent national and regional educational au-
thorities such as the Ministry of Education (MoE)
or National Board of Education. Its mission is
twofold: on the one hand, EUN works closely
with national and regional policy-makers and
shapers by setting up special interest commit-
tees, involving them in transfer of best practices,
and in e-learning research and development. On
the other hand, EUN works directly with a large
network of European schools through special
online events organized in collaboration with a
variety of stakeholders.

European Schoolnet is committed in follow-
ing open standards in e-learning research and
development that it conducts in the field, partner-
ing up with different stakeholders from public,
private, and industry partners. This has resulted
in services that allow multiple players’ access to
the field. Furthermore, the use and development
of open source software in education is becom-
ing more of a concern in different EUN member
countries, whereas the promotion of interoper-
able content-based services, such as federations
of learning resources repositories, has long been
in the centre of EUN’s attention. It is important
to note that the members of EUN all lead their
own policies based on their national policymak-
ing, and that EUN only has an advisory role for
its members.

Apart from reporting on European Schoolnet’s
partners on their national initiatives, this review
will also extend to other national policymakers
whenever the information was made available.
Mostly, this review relies on contributions from
European Schoolnet’s partners.

2048

European National Educational School Authorities’ Actions Regarding Open Content

eun’S memBerS ActiOnS
in tHe QueSt fOr eDucAtiOnAl
OpenneSS in SOftWAre AnD
cOntent

A number of European Schoolnet’s partners have
explicit roles in promoting the use and develop-
ment of open source software as an alternative
choice for schools. A review on a selection of
partners acting upon this challenge is provided in
this section presenting the Ministry of the Flemish
Community, Education department in Belgium,
Kennisnet in the Netherlands, Becta in the UK,
Tiger Leap foundation in Estonia, the Ministry
of Education and Sport in Slovenia, the National
Centre for Technology in Education in Ireland,
National Board of Education in Finland, and the
Ministry of Education and Science of the Republic
of Lithuania. Additionally, some development is
reported from Spain and France.

The actions, initiatives, and policies that
countries have undertaken in this regard vary

throughout Europe. Table 1 presents the main
action areas, which can be classified as follow-
ing; awareness building and distribution of open
source software for schools, feasibility studies
regarding the deployment of open source soft-
ware and/or open content, initiatives or pooling
resources in the area of software development
of learning management systems (LMS) and
learning platforms, development or localization
of GNU/Linux distributions for schools’ use in
native languages, and finally, in the area of open
content. The list presented in this report does not
cover equally all the European countries and is
not exhaustive by any means; rather, it serves the
purpose to highlight some of the good practices
and initiatives.

estonia: tiger leap foundation
(tiigrihüppe Sihatusutus)

In 2004 in Estonia, the Tiger Leap Foundation
(TLF) initiated a project for distribution and

Country
Awareness

building/FOSS
distribution

Feasibility
studies

Common
development of

software

Development
of GNU/

Linux
Open

content

Flemish
Community of
Belgium

x x

Estonia x x x x

Finland x

France x x x

Ireland x

Lithuania x

Netherlands x x x

Slovenia x x x x

Spain x x x

UK x x

Table 1. Main action areas of a number of EUN member countries in FOSS and open content

 2049

European National Educational School Authorities’ Actions Regarding Open Content

promotion of freeware in schools. The project
aims at releasing a Linux distribution that is
suitable for schools, preparing training materi-
als, and training teachers. Furthermore, since
the spring 2005, TLF only supports projects that
will be released under general public license for
the code; as for the content, a creative commons
license will be required.

A number of Estonian educational open source
software applications have been developed, with
the financial support of TLF in collaboration with
Tallinn University (TU). The development of vir-
tual learning environment VIKO started in 2001.
Schools do not have to set up their own server,
VIKO is offered as a free service by Tallinn Uni-
versity. Furthermore, KooliPlone, a Plone-based
content management system for school Web sites
is developed in TU.

Another large-scale development of a learning
management system, called IVA, was supported
by Estonian Ministry of Education and Science,
the Estonian Information Technology Foundation,
and Hansapank, the largest bank in Estonia. IVA
is also developed in TU, based on Zope and an
existing educational platform called Fle3. It has
Estonian, Russian, and English user interfaces,
and is currently used by more than 2,000 users
in TU.

Additionally, Estonia being a country rep-
resenting a small market, the government has
funded the translation of OpenOffice’s spell-check
program in Estonian.

Slovenia: Actions by the ministry of
education and Sport

Slovenian Ministry of Education and Sport has a
focus on three main areas providing basic tools,
didactic tools, and promoting open source for
teachers, headmasters, and pedagogical special-
ists.

To the category of providing basic tools, the
Ministry includes Linux, OpenOffice.org, CMS,
LMS, as well as some distance learning services.

First of all, all new computers in schools, which
are co-financed by the Ministry of Education and
Sport, have a dual boot for Windows and Linux,
and have OpenOffice.org installed for both op-
erating systems. The Linux distribution is called
Pingo and is provided in Slovene. Pingo has been
developed by a local association, called Lugos,
with the Fedora Linux 3 open source community
in Slovenia. For the last two years, the Ministry
of Education and Sport, the Ministry of Infor-
mation Society and the (governmental) Centre
for Informatics have financed the localization
in Slovene language. Currently, a tender to co-
finance the localization for the next two years is
under preparation.

Another example of learning management
and learning content management system that is
available free of charge for academic institutions
is E-CHO, developed by the Faculty of Electrical
Engineering, University of Ljubljana. It enables
simple course creation, extensive content manage-
ment, and it supports entire learning process.

Secondly, in the area of basic teacher training,
among other ICT skills, the programs include the
use of Windows Office as well as OpenOffice.
org. The Ministry financed an expert group that
supports schools with open source software, such
as some CMS and LMS, and support books have
been distributed to schools about the use of Linux
and OpenOffice.org. Moreover, the Ministry
with National Education Institute and Center for
Vocational Training promotes the use of open
source software among teachers, headmasters,
and didactic specialists.

As for didactic tools and open content, the
Ministry finances teacher training in the area of
open source didactic materials (i.e., open content).
It has also co-financed some new open content
didactic material on the Web for the use in class-
rooms, with some support given for teachers in
training to use this material. As well, the Ministry
will co-finance, in the future, creation of didactic
material that is not open source, but can be used
freely by schools.

2050

European National Educational School Authorities’ Actions Regarding Open Content

To promote the use of open source and open
content, the Slovenian Ministry of Education and
Sports has started the portal OKO. This project
is with the intention to make the introduction of
open source and free educational software into
education environments faster and more efficient.
The OKO project was started in 2003.

Spanish initiatives

Spain has had some regional policy initiatives to
promote the use of open source, and especially
Linux use, in school servers and desktop. Prob-
ably, the region of Extremedura is the best-known
large-scale example in Spain, where the local
information strategy is based on the use of free
and open source software. The local authorities
decided to boost development in the region, which
is prone to high unemployment, by delivering over
150 000 cd-roms containing a localized Linux
distribution, Linex, along with dedicated office
software. It has been distributed in different ways.
In Extremadura, schools are immersed into using
Linux; it has been deployed on around 70,000
desktop PCs and 400 servers in schools. Some
other communities in Spain who have decided
to do so are at least Andalucia, Madrid, and Va-
lencia. In two of them, the school’s workstations
are delivered with a dual boot configuration, so
that the users have the option to work either on
Linux or Windows, and can familiarize themselves
with two different operating systems. In the com-
munity of Galicia, new computers to schools are
delivered with Linux installed.

Belgium: the ministry of the flemish
community, education Department

The Ministry of the Flemish Community, Educa-
tion Department in Belgium has an explicit role
in promoting the use of open source software
as an alternative choice for schools. In 2004,

the former minister of Education, Ms. Marleen
Vanderpoorten, commissioned an advisory on
the issue, which led to a vision and a proposed
action plan.

In 2005, a large campaign was organized to
introduce free and open source software in Flem-
ish schools, aiming to highlight its educational
possibilities. In this campaign, a publication, a CD,
and an educational tools database were drafted
and a conference was organized.

By means of the publication “free software
in the education,” a practical guide for the use
of FOSS and open educational tools is spread
amongst all schools. Besides general information
on the “what and how” of FOSS, one finds de-
scriptions of a number of interesting open source
applications. In association with the educational
portal Klascement, an educational tools database
was developed for these applications. This is
also the general campaign Web site. Moreover,
a conference was organized addressing FOSS
and open educational tools, targeting audiences
such as teachers, headmasters, and ICT co-co-
ordinators.

The Education Department in Flanders has
created didactic sheets on the use of educational
freeware and open content, based on the primary
education curriculum topics. The didactic sheets
have been published as a book, “ICT on the
menu,” and are searchable in a database through
the portal. The scenarios are a helpful means to
make the ICT integration in primary education
more concrete. In 2005, a similar project was
developed for secondary education. This time,
the work was carried out by teachers from the
secondary ENIS schools. The result is a publi-
cation, both on paper and online, called “Digital
resources for secondary education.” In 2006, a CD
was published, with open learning tools and open
source educational software that is currently under
a validation process by the European Network of
Innovative Schools (ENIS).

 2051

European National Educational School Authorities’ Actions Regarding Open Content

the netherlands: Open Source and
Open Standards in education (OSS
in het onderwijs)

Since 2003 in the Netherlands, the government has
brought open standards and open source into the
central focus of its attention. A variety of initia-
tives have been set up to work on cross-sectoral
issues that touch upon open standards, as well as
open source development. As for the education,
there are initiatives, programs, and actions taken
to foster the efforts in the field and to muster the
common efforts.

The program “OSS in het onderwijs,” trans-
lated as open source and open standards in educa-
tion, is a joint initiative between Kennisnet, ICT
op School, and a government-wide program called
OSSOS, the Program for Open Standards and
Open Source Software. Additionally, to involve
a diversity of partners in the field of education,
an association called EduStandaard has been set
up. The association aims to manage the standards
that are used in the Dutch educational field, com-
prising stakeholders such as publishers, schools
and so forth.

Kennisnet promotes a program to improve
the use of open standards for content. A central
point for “OSS in het onderwijs” is a Webspace
where the Dutch education community can dis-
cuss open source and open standards aiming at
both the novices and experts. The main focus is
on primary and secondary education, but also on
the field of vocational training. The program is
informative, aiming at offering alternative solu-
tions for schools that have an independent budget
to spend on educational technologies. The program
targets mainly the IT coordinators, administrators,
and teachers who are responsible for IT set-ups in
schools, but also at teachers who use computers
and ICTs in their lessons.

One powerful means to transfer good practices
and ideas of the use of FOSS in education are the
case studies that can be found at the Web site of
“OSS in het onderwijs”. These case studies are

simple descriptive interviews with practitioners on
topics such as how to use GIMP for manipulating
images, and so forth.

”OSS in het onderwijs” has also prepared an
info package, on a CD, that focuses on the use
of open standards in all processes in school that
can involve the use of information technologies
from administrative tasks to using applications
for learning purposes, gathering content about the
student for portfolios, as well as other actions for
creation, exchange, and alteration of the content.
The idea was to identify all actions and propose
alternatives where closed systems or standards are
used. This aims at better overall interoperability
within schools’ information systems. The CD was
released in the end of 2005. In the same spirit, a
booklet on open source software was created in
2004 for schools. These information packages can
be requested from the Web site, but they are also
handed out at local ICT conferences.

The program “OSS in het onderwijs” can
help schools to implement open source, not
only in advisory terms, but they can make small
amounts of money available to pay for a third-
party programmer or consultant to, for example,
find compatibility solutions between an existing
system and the new one based on open source and
standards. On the Web site, there is also a FOSS
helpline for schools to help them to solve small-
scale problems. In this regard, the program tries
to match the need that schools have for support
with existing supply in the market. On the Web
site, one can find an overview of companies with
experience of FOSS and education.

”OSS in het onderwijs” has been running for
3 years, 2005 being the final year with a big push,
the continuation for the next year is still unsecured.
A conference, with 1-day education track on the
topics, was held in December 8 2005.

france: Distribution of fOSS

In France, the National Centre of Pedagogical
Documentation (SCEŔE ́N-CNDP) has led a

2052

European National Educational School Authorities’ Actions Regarding Open Content

working group that evaluated some 30 educa-
tional open source software packages, with an
emphasis on multiplatform usage. The software,
and accompanying educational guidelines for
its use in the classroom, was made available for
schools, in the format of a CD, through a network
of regional centers, at minimum charges, in 2004.
The CD has had a good success, and its distribu-
tion continues.

On the school server level, advances have
been made to introduce GNU/Linux for school
servers. An initiative, SIIEE (service intranet-in-
ternet in educational establishments and schools),
has deployed about 15, 000 Linux-based servers
throughout the country.

Furthermore, some regional French authori-
ties have also embraced FOSS. For example, the
Pays du Soissonnais has declared as its ambition
to become an axle of excellence in open source,
making it part of its regional policy, grouping a
variety of local actors together to find ways to
benefit from open source. The Region of Picardie
participates in the initiative; already since 2004,
each school receives earmarked money to be spent
on open source software to buy services or to hire
someone to do the work locally. Partially, the idea
behind this initiative is to boost local economy
(Picardie ranks high for unemployment), but the
objective is also to use public money for the public
good. Picardie, as a region, also has a high profile
on free and open source software, and participates
actively in the annual trophy competition for the
best educational software.

finland: informing about education-
al fOSS

In 2006, the National Board of Education in Fin-
land launched an initiative to gather an information
package for schools about the use of open source
software and content for educational purposes.
The aim is to distribute information on how open
source software can be used to support educational
purposes for creating educational content, as well

as for school administrational matters, but also
to clarify the basic terminology to be used in the
area. The target audience is teachers, the ICT
coordinators, and school heads. The information
is gathered in collaboration with local experts in
the field, as well as practitioners who have been
using and adapting FOSS solutions in their schools
and educational establishments.

Another type of interesting initiative can
be reported from Finland, although it does not
directly receive any educational attention. To
make open source development rooted into a
variety of sectors within society, including educa-
tion, a sustainable plan for services and support
should be in place. The Finnish Centre for Open
Source Software (COSS) aims to help its build-
ing. COSS started at the beginning of 2004 with
basic funding, granted by Finland’s Ministry of
the Interior, to help to build an ecosystem within
business, research, and education. Currently, the
Häme Centre of Expertise, as a partner of COSS,
is responsible for developing open source based
business in the field of e-learning. It could be
contemplated that this type of idea and innovation
feeding across sectors has a positive value for the
uptake of open source software in educational
establishments, as they will have local businesses
to rely upon for the support, sale, and delivery of
these e-learning services.

ireland: Star Office for all irish
Schools

In late 2004, the National Centre for Technology
in Education (NCTE), the Irish Government
agency established to provide advice, support,
and information on the use of ICT in education,
concluded a licensing and distribution agreement
with SUN Microsystems to provide all Irish
schools with Star Office, an office suite based on
open source OpenOffice.org. The offer was made
to schools in a joint move by the NCTE and SUN
Microsystems.

 2053

European National Educational School Authorities’ Actions Regarding Open Content

To help schools appreciate the opportunity
and to explore the implications of taking up Star
Office, or substituting the commonly used MS,
schools were notified and local information ses-
sions were organized for school representatives.
These sessions were well attended and, following
participation, the take up has been significant to
date. Schools receive a free CD that allows un-
limited copying for staff and students.

Prior to the large-scale offer of Star Office in
2004, the NCTE carried out a number of evalua-
tions of Star Office in a number of schools in order
to assess the appropriateness of this software for
schools. The outcome of these trials proved very
positive. Star Office was identified as being a rel-
evant and very useful software tool, particularly
for schools at primary level.

the uK: evaluation on Open Source
Software in Schools

In May 2005, the British Educational Communi-
cations and Technology Agency (Becta), released
an evaluation on the use of open source software
within a number of schools. In the UK, some
previous government studies have suggested
that the use of FOSS within the UK public sector
can provide a viable and credible alternative to
propriety software, and lead to significant cost
savings.

The study, funded by the Department for Edu-
cation and Skills, had three main aims: to examine
how well the open source software approach
works, compared with proprietary offerings, in
supporting delivery of the school curriculum
and administration; to compare the total cost of
ownership (TCO) of using FOSS within school
environments against that of non-open-source
solutions; and to highlight examples of successful
school-based open source implementations.

The report, “Open Source Software in Schools:
A study of the spectrum of use and related ICT
infrastructure costs,” demonstrates that although
the implementation of FOSS in schools needs

careful planning and support, it can offer a cost-
effective alternative to proprietary software. For
the ways forward with FOSS, the report examines
cost-effective models of support in OSS schools;
best practice in licensing solutions; successful
implementation to run the school’s servers to
provide school-wide facilities, operating systems,
and administrative PCs, and FOSS applications
on classroom and administrative PCs.

According to Becta’s chief executive, Owen
Lynch, Becta believes that software used in
schools should be of a high quality and adhere
to open standards, enabling compatibility and
interoperability between products. Becta will now
be undertaking more extensive research across a
wider range of institutions to allow further analysis
of these issues.

lithuania: research Study and
recommendations for Actions in
Open Source in education

The Ministry of Education and Science of the
Republic of Lithuania commissioned a study in
2004 to further investigate the possibilities of
open source software in education in Lithuania.
The global fight against the use of illegal soft-
ware and piracy, and the openness of the source
code to guarantee more transparency and ease of
localization, were mentioned in the goals of the
study as important to go forward with.

The conclusions of the study outlined the
following; open source software has an indirect
positive impact on the economy of education
through the emergence of a competitor to com-
mercial software, forcing a reduction in the price
of commercial software and translations into
the languages of small nations spoken by few
people.

The study furthermore proposed some actions
both at the state level and ministerial level. The
state level proposal included, among others, the
following: it is necessary to ensure the adaptation
and localization of general purpose open source

2054

European National Educational School Authorities’ Actions Regarding Open Content

software at the state level; it is necessary to take
care of the cultural and linguistic quality of open
source software; the promotion and support for
open source software could help solve the problem
of the legality of software.

At the ministerial level of the Ministry of
Education and Science, the proposed actions
included analyses of localization of educational
Linux distributions and open source virtual
learning environments to determine which one
would be appropriate to be localized and used in
Lithuanian schools. As to introducing FOSS in
education, the following was proposed: higher
schools’ training educators should introduce
their students to both commercial software and
equivalent open source software necessary for
teaching and learning; at school, students should
be introduced to general purpose software of
both types: commercial software necessary for
teaching and learning, as well as to equivalent
open source software. Furthermore, to assure the
quality of localization, an interesting proposal
was made: a course on localization of software
for some students specializing in information
technologies and philology.

eurOpeAn ScHOOlnet’S
prOJectS DeAling WitH Open
cOntent AnD Open SOurce

This section presents the Xplora project, which
promotes science education in European schools,
and briefly presents the work that EUN carries
out in the area of learning resource exchange
(LRE), where digital learning resources and/or
their metadata are exchanged between educational
repositories.

xplora, Distributing Science for
education in its true Way: Openly

Xplora, the European Science Education Gate-
way, is operated by European Schoolnet. Xplora

portal is supported by the PENCIL project, a
project funded by the European Commission’s
Directorate General for Research as part of Sci-
ence and Society.

Xplora offers science teachers tools, infor-
mation, and resources to help them to conduct
engaging science lessons that make students at-
tracted to science. Commonly, with 30+ students
in classes, science teaching is somewhat blocked
by poorly equipped school laboratories. Among
the resources that Xplora offers are the usual
Web-based tools like online games, downloadable
materials, and guides to software that is usable
in science lessons.

Xplora portal also offers new tools that have
not been used in the classroom before. Among
these tools are the Web experiments or remote
controlled experiments (RCL), in which real
experiments are shared via the Internet. Such
experiments do not only solve the problem of
the true way of science teaching by experiments,
but it also opens new pedagogical concepts for
science classes. These Web experiments deliver
results that students have to process in order to
get a lab report.

using Software: A Key Skill in
Scientific research

Participating in science education today means
extensively using software. For instance, for the
Web experiments where, in many cases, students
get the result of an experiment as an image, the
image analysis is a fundamental task. The main
tasks for students in science education are (1)
create a lab report with mathematical expres-
sions, chemical formulas, Feynman diagrams,
images, tables, and graphs; (2) analyze images,
for example, measure length, angles, area, and
intensity; (3) calculate results, for example, nu-
merical processing, creating graphs, regression,
and curve fitting; (4) create animations; (5) run
simulations; (6) create and play with mathemati-

 2055

European National Educational School Authorities’ Actions Regarding Open Content

cal models, and (7) use CAS software to verify
results of calculations.

While office suites text-processing software
is useful and broadly applicable to be used in
schools, it is, in many cases, not sufficient for spe-
cific science tools. One of the examples is simple
text editing. For science lab reports, a text writer
must be able to handle mathematical equations,
chemical formulas, and Feynman diagrams, just
to mention the most exotic pitfalls.

Many of the open source software packages
have origins in scientific environments. Thus,
there are many applications that can be used for
science teaching in classroom, with some prior
training. Xplora recommends the use of the fol-
lowing software packages, displayed in Table 2,
for science teaching. On the portal, one can find
articles and short descriptions for their usage.

xplora-Knoppix, making Science
Accessible for Schools

To ease some of the organizational problems
that schools face in terms of software avail-
ability, installation, and access in general, the
Xplora team developed a live bootable DVD
called Xplora-Knoppix. It is a based on the Linux
Debian distribution, and completely contained
on a self-booting DVD. As this Knoppix version
is especially mastered for Xplora, the team has
added software applications needed for science
education (Table 2), as well as a number of edu-
cational materials from the Xplora repository.
The Xplora-Knoppix has multilingual support.
This concept ensures easy access to scientific
tools for education. Being open source software,
it can be given away freely and copied as many
time as needed.

Xplora produced 600 DVDs to be given freely
to schools. Moreover, the ISO image of the DVD is
freely downloadable from the Internet and can be
used to produce the copies needed for the students.
This DVD is occasionally updated. Additionally,
Xplora has partnered with a company that sells

the Xplora-Knoppix DVD for the production plus
shipping cost.

eun content Services in pipeline

Since 2000, European Schoolnet has lead EU-
funded projects to give better access to digital
educational resources for teachers and learn-
ers across Europe. The CELEBRATE project
(2002-2004) provided the first large-scale dem-
onstration and evaluation of learning object (LO)
interoperability and the use of LOs in schools at
a European level.

In 2004, a survey of 13 Ministries of Educa-
tion participating in European Schoolnet also
indicated that they wished to take forward the
vision of learning resource exchange (LRE) based
on the architecture demonstrated in the project.
Furthermore, many communicated that LOs are
increasingly seen as an important, and in some
cases, a key component in the content develop-
ment strategies of Ministries of Education. Also,
the majority expressed interest in open source
content development strategies where “learning
object economy” was created for open source and
commercial content to coexist.

EUN continues its work towards an enhanced
architecture for learning resources in Europe.
EUN will continue to lead the development of
the LRE based on a brokerage system architec-
ture (of which the code for the brokerage system
is licensed under the LGPL) involving a variety
of stakeholders, from content providers, both
public and commercial, to end users in European
schools.

A set of more tailored services will be offered
to the members of LRE, such as federated searches,
learning resource exchanges, and digital rights
management. It is envisaged to support multiple
digital rights expression languages, and permit
content providers to select the level of digital rights
management that best fits their needs in terms of
intellectual property protection. This requires a
proper digital rights management (DRM). The

2056

European National Educational School Authorities’ Actions Regarding Open Content

Table 2. Open source software with open source-like licenses for use in science teaching
Name of

software
URL Description Application

OpenOffice.org http://www.openof-

fice.org

The Open Source office software for

scientific text processing, database ap-

plications, graphics creation.

Lab reports.

Calculation of results

Creation of simple charts

LyX http://www.lyx.org Scientific text processor software,

making use of LaTeX properties. Full

support of mathematical expressions

and all Postscript output from scientific

programs.

Lab reports with even the equations, and output

of all X11.

Xfig http://xfig.org Vector drawing program with a large

and extendable parts library.

Preparation of schematic drawings (experimen-

tal setups) for lab reports.

Grace http://plasma-gate.

weizmann.ac.il/

Grace/

Data analysis program Plots diagrams of every complexity. Good soft-

ware for creating regression and line fit.

GIMP http://www.gimp.

org

Graphics program to analyze images Image analysis (length, angle)

ImageJ http://rsb.info.nih.

gov/ij/

Image analysis program Analysis of intensity distribution in an image.

Xdrawchem http://xdrawchem.

sourceforge.net/

Program to draw chemical structures Report on chemistry lab exercises.

OpenRasmol http://www.

openrasmol.org/

Program to visualize 3d molecules Chemistry classroom use and creating images

for reports.

Feynman http://rpmfind.

net/linux/RPM/

suse/9.0/i386/suse/

i586/feynman-1.00-

581.i586.html

A program to create Feynman graphs Particle physics teaching.

Ghemical http://www.uku.

fi/~thassine/ghemi-

cal/

A molecular modeling software package Chemistry teaching in high schools

Gcompris http://www.ofset.

org/gcompris

A software package for the kids For elementary schools. Many different applica-

tions around elementary schools teaching

KDE Edu http://edu.kde.org/ The KDE Education project Many educational software packages mainly

focusing on lower-level education.

 2057

European National Educational School Authorities’ Actions Regarding Open Content

objective is to design and implement a DRM
framework that takes into account requirements
from all stakeholders; thus, supporting available
DRM standards like ODRL and Creative Com-
mons.

European Schoolnet supports the use of Cre-
ative Commons licenses within its services, and
has already implemented an integrated interface
for its users to choose an option of Creative Com-
mons license for the resources that they submit
to various EUN projects.

Open Source learning toolbox to
Support collaborative learning

European Schoolnet’s research into the use of
learning environments confirms that a number
of its members flavor the development of open
source VLEs. Moreover, many expect the next
generation of new learning platforms to facilitate
the adoption of more learner-centered and col-
laborative pedagogical approaches. However, the
same survey and subsequent observations suggest
that these high expectations are not yet being met.
Most teachers are still using VLEs as little more
than a “digital distribution” space, somewhere to
upload, store, and distribute content, and to issue
assignments to students.

EUN, among the CALIBRATE project part-
ners, will lead the development of a VLE that brings
together two quite distinct and somewhat opposing
methodologies for pedagogical affordance; the
first comes from a background of social construc-
tivist pedagogies and collaborative knowledge
building, whereas the second has a background in
SCORM and LCMSs. By drawing on both these
approaches, a new open source toolbox will be
built using the existing code from Future Learn-
ing Environment 3 (FLE3) based on Plone/Zope.
The VLE will offer a richer feature set that will
be developed with the help of practicing teachers.

cOncluSiOn

Currently in the European educational policy and
practices landscape, the existing open content
and free and open source software initiatives are
rather dispersed on a local, national, and Euro-
pean level, as well as being spread throughout all
educational levels and systems. It is challenging
to get a comprehensive overview on the state of
the art being available, as well as capitalizing on
the transfer of knowledge gained in one context.
However, as this report clearly summarizes,
European Schoolnet and its members are more
and more focusing on the issues around open
source and content development. It must be
stated, though, that these activities still remain
somewhat marginalized in discussions, country
reports, and conferences; they rarely receive the
limelight that they merit.

When it comes to actions taken by European
Ministries of Education and other national edu-
cational authorities, it seems like they are keen to
explore the advantages that open source software
and content can offer to education. According to
the interviews conducted for this chapter, it can
be stated that 10 out of 25 EU member states have
taken policy-level actions in e-learning to better
exploit the use of FOSS in education. In this report,
we looked at five different categories where at-
tention is given: awareness raising of FOSS as an
alternative solution for e-learning tools; feasibil-
ity studies regarding the use of FOSS to support
education, both in teaching and administration;
development of learning platforms based on FOSS;
localization of GNU/Linux desktops to be used in
schools; and finally, open content as an alternative
means for digital content provision. It appears that
the featured countries have taken actions in all
these areas, some in all, whereas others in one
or two. Moreover, some of the countries seem to
have ventured into the area of FOSS just to find

2058

European National Educational School Authorities’ Actions Regarding Open Content

out more about it, whereas the others have embed-
ded FOSS into their policy-making strategies and
initiatives in a more integrated way.

This chapter attempts to report on these de-
velopments, rather than going further to analyze
them in details. Many interesting questions have
been raised regarding these policy-level initiatives,
more importantly, what are the synergies between
grass-root actions in schools and the policy and
decision-makers responsible for these initiatives,
their continuation, their accountability, and so
forth? Are these policy-initiatives a response to
the demand in the field, or do they support the
further uptake of FOSS in education?

It seems that it would be important to bring
these somewhat disparate, but very pertinent na-
tional and regional initiatives into the European
level to better help the transfer of good practices
and to learn from one another. Furthermore, peer-
learning possibilities on the policy level should
be better exploited in this area, as have been done
in other areas of ICT implementations.

Xplora carries out important work promot-
ing science in education in European schools.

The multiple ways to distribute software that is
suitable for scientific studies allows schools a
better access to the core of science: participate
by practicing it.

Finally, the work EUN has carried out in pub-
lishing the Insight Special Reports has given a
more prominent voice for FOSS in education, and
been an important source of information for EUN’s
members and audiences on national levels.

The area of open content seems to be rather
well accepted concept among EUN’s partners.
Thus, creating infrastructure and facilitating the
content exchange of learning resources in schools
is one of EUN’s core areas where significant
work is conducted to facilitate the coexistence
of open and “closed” content. For example, the
implementation of digital rights management
framework is a step towards the coexistence of
multiple stakeholders in the field of educational
content. Also, some important work will be carried
out in the context of EU-founded projects such as
where the development and implementation of an
open source collaborative “learning toolbox” for
schools is being done.

 2059

European National Educational School Authorities’ Actions Regarding Open Content

AppenDix i: internet SeSSiOn: inSigHt, OBSerVAtOry fOr neW
tecHnOlOgieS AnD eDucAtiOn

http://insight.eun.org

Insight is a service focusing on e-learning in schools in Europe. It is provided by European Schoolnet
(EUN) in collaboration with its consortium members.

interaction

We publish news, reports, and analysis on e-learning policies, school innovation, and information
communication technology (ICT) in education. In the section of Insight Special Reports, three relevant
reports are found dealing with FOSS for Education in Europe. http://insight.eun.org/ww/en/pub/insight/
misc/specialreports.htm

2060

European National Educational School Authorities’ Actions Regarding Open Content

AppenDix ii: uSeful urlS

• Links Related to Introduction and Background

LRE: http://lre.eun.org
EUN: http://www.eun.org; http://www.europeanschoolnet.org/
CELEBRATE: http://celebrate.eun.org
CALIBRATE: http://calibrate.eun.org

• Links Related to Estonia

Tiger Leap Foundation: http://www.tiigrihype.ee/eng/arhiiv_1.php?uID=49
VIKO: http://www.htk.tlu.ee/viko/, IVA http://www.htk.tpu.ee/iva/

• Links Related to Slovenia

OKO http://oko.edus.si
E-CHO, developed by the Faculty of Electrical Engineering, University of Ljubljana http://dl.ltfe.org

• Links Related to Spain

Article on the use of FOSS in education:
http://insight.zdnet.co.uk/software/linuxunix/0,39020472,39197928,00.htm
Brings hope to Spain's poorest region:
http://news.zdnet.co.uk/

• Links Related to Belgium

The Flemish advice on FOSS in education, is available in English at http://www.ond.vlaanderen.
be/ict/english/

Portal Klascement: http://vrijesoftware.klascement.net

ICT on the menu: http://www.klascement.net/ictophetmenu

Digital resources for secondary education: http://digitaalso.klascement.net, ENIS: http://enis.eun.
org

• Links Related to The Netherlands

Kennisnet http://www.kennisnet.nl
In the section “voorbeeldprojecten,” one can find short descriptions of different case studies OSSOS,
Open Standards and Open Source Software in Government in English http://www.ososs.nl/index.
jsp?alias=english

 2061

European National Educational School Authorities’ Actions Regarding Open Content

ICT op School http://www.ictopschool.net,
Dutch association for a wide range of stakeholders in e-learning standards http://www.edustandaard.
nl/
Kennisnet on content: http://contentketen.kennisnet.nl/
Conference announcement: http://www.ossos.nl/article.jsp?article=1820

• Links Related to France

Information on FOSS for education at http://logiciels-libres-cndp.ac-versailles.fr/
press release about the CD http://logiciels-libres-cndp.ac-versailles.fr/IMG/CP_Logiciels_libres.
pdf
information about the school server program SIIEE: http://www.solutionslinux.fr/fr/conferences_de-
tail.php?id_conference=64
Region of Picardie: http://www.cr-picardie.fr/article.php3?id_article=374

• Links Related to Finland

Finnish Centre for Open Source Software http://www.coss.fi/en/
EduCoss http://educoss.org/

• Links Related to Ireland

Irish news on Star Office http://www.ncte.ie/NewsandEvents/Newsletter/d2413.HTML.html, press
release in pdf-format: http://www.ncte.ie/documents/pressreleaseforStaroffice.pdf

• Links Related to The UK

Open Source Software in Schools: A study of the spectrum of use and related ICT infrastructure costs
– Project report http://www.becta.org.uk/corporate/publications/documents/BEC5606_Full_re-
port18.pdf
Open Source Software in Schools: A case study report http://www.becta.org.uk/corporate/publica-
tions/documents/BEC5606_Case_Study_16.pdf
Using Open Source Software in Schools: Information sheet http://www.becta.org.uk/publications/
documents/BEC5606_Information_Sheetrev.pdf
Previous UK Government studies include: Office of Government Commerce [2004] “Open Source Software
Trials in Government: Final report” http://www.ogc.gov.uk

• Links Related to Lithuania

The Ministry of Education and Science of the Republic of Lithuania, Centre of information technolo-
gies of education, Institute of mathematics and informatics: Report of the research study open source in
education http://www.ipc.lt/english/apie/skelbiami_dok/2004/Open Source in Education. Abstract
of Research Study.doc

2062

European National Educational School Authorities’ Actions Regarding Open Content

• Links Related to Xplora

http://www.xplora.org

Web experiments: http://www.xplora.org/ww/en/pub/xplora/megalab/web_experiments.htm
Xplora Knoppix DVD http://www.europeanschoolnet.org/ww/en/pub/eun/news/news_headlines/1107.
htm, Linux-cd.info: http://linux-cd.info/

• Links Related to Learning Resources Exchange

http://lre.eun.org
CALIBRATE http://calibrate.eun.org
FLE3 http://fle3.uiah.fi

 2063

European National Educational School Authorities’ Actions Regarding Open Content

AppenDix iii: fOr furtHer reADing

Flosse Posse: Free and open source for education: http://flosse.dicole.org

Insight policy brief: VLEs, open standards and open source in European schools

Insight special report: Software patents - a potential hindrance of ICT in education http://insight.eun.
org/ww/en/pub/insight/misc/specialreports.htm

Insight special report: Why Europe needs free and open source software and content in schools

Naeve, A., Nilsson, M., Palmér, M., & Paulsson, F. (2005). Contributions to a public e-learning platform:
Infrastructure, architecture, frameworks, and tools. International Journal of Learning Technology,
1(3), 352-281.

Open source for education in Europe: Research and practice: http://www.openconference.net/index.
php?cf=3

Possible Titles for Papers/Essays

• Examples on How the Support from Local Authorities Can Effect the Good Practices in the Field:
Case Studies of Foss Implementations on the Regional and National Level

• Examples on Efficient Grass Root FOSS Actions in Education, and How It Has Had an Effect on
Local Policy Making (look for examples where national and regional policy and decision makers
have created support systems for FOSS in education, and try to find whether it has had an effect
on the larger-scale uptake)

• Attitudes of Local and Regional Educational Authorities Towards FOSS in Education
• Future Scenarios for Adapting and Rooting FOSS in Regional, National, and European Level

Policy Making in Education
• If I Were a Local Educational Policy Maker, What Would I Do for FOSS in Education?

This work was previously published in Open Source for Knowledge and Learning Management: Strategies Beyond Tools, edited
by M. Lytras and A. Naeve, pp. 245-265, copyright 2007 by IGI Publishing (an imprint of IGI Global).

2064

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.17
Enhancing Skills of Application

Software via Web-Enabled
Problem-Based Learning

and Self-Regulated Learning:
An Exploratory Study

Pei-Di Shen
Ming Chuan University, Taiwan

Tsang-Hsiung Lee
National Chengchi University, Taiwan

Chia-Wen Tsai
Ming Chuan University, Taiwan

ABStrAct

The computer software education in vocational
schools in Taiwan can hardly be deemed as ef-
fective. To increase students’ learning motivation
and develop practical skills, innovative learning
designs such as problem-based learning(PBL) and
self-regulated learning (SRL) are on trial in this
specific context. We conducted a series of quasi-
experiments to examine effects of these designs
mediated by a web-based learning environment.
Two classes of 106 freshmen in a semester course
at Institute of Technology in Taiwan were chosen

for this empirical study. Result sreveal that effects
of web-enabled PBL, web-enabled SRL, and their
combinations, on students’ skills of application
software have significant differences. The impli-
cations of this study are alsodiscussed.

IntroductIon

Professionals with a vocational degree represent
a major portion of the work force in Taiwan. Vo-
cational education is highly competitive in that
it must attract enough student enrollments in the

 2065

Enhancing Skills of Application Software via Web-Enabled Problem-Based Learning

face of a continually decreasing birthrate and a
rapidly increasing number of schools. Students in
these schools tend to have lower levels of academic
achievement. They spend more time on part-time
jobs and do not get involved in their schoolwork
adequately. They also care less about their grades.
Teaching in such a context, particularly teaching
the curriculum of application software, is a great
challenge to most educators.

No one doubts the guiding principles of prac-
tical applications in the vocational education in
Taiwan (Tai, Chen, & Lai, 2003). However, most
teaching and learning efforts in this area have
been devoted to helping students pass written
tests, and, thus, receiving awards or official
certificates. Schools, facing the high pressure of
market competition, often emphasize the propor-
tion of students awarded such certificates before
they graduate instead of quality education. This
materialistic aim puts students’ attention less
on mastering application software and more on
preparing for tests through memorization. Conse-
quently, a student who has passed the examination
may still be unable to apply what was learned in
school, and worse, lack motivation to learn more
in the future.

The courses in application software tradition-
ally emphasize memorization by applying short,
disjointed, lack-of-context examples. There is a
wide gap between what is learned in school and
what is required in the workplace (Wu, 2000).
In this regard, the computer software education
in vocational schools in Taiwan can hardly be
deemed as effective. In order to increase students’
learning motivation and develop practical skills,
problem-based learning (PBL) is considered to
be the most appropriate. PBL uses real-world,
simulated, contextualized problems in practice
to motivate, focus, and initiate content learning
and skill development (Boud & Feletti, 1991;
Bruer, 1993; Williams, 1993). We believe that PBL
could help low-academic-achievement students
to develop practical skills of application software
through online courses.

Web-based instruction seems to be an ideal
learning environment because students can access
an almost-unlimited amount of information and ap-
ply it in multiple ways (Kauffman, 2004). However,
implementing e-learning for low-academic-achieve-
ment students inevitably runs high risks. For instance,
Internet addiction is quite common among low-aca-
demic-achievement students. When students enter
the traditional classroom, they are used to logging
on to MSN Web Messenger and checking their e-
mail first. Many students like to chat with each other
frequently via MSN Web Messenger, even though
they are in the same classroom. They might browse
shopping Web sites, even while a teacher is lecturing
in the classroom. Thus, the teacher has to disconnect
the network several times in his classroom to focus
students’ attention. It is even more difficult for stu-
dents to concentrate on online learning because of
this addiction to the Internet and a lack of on-the-spot
teacher monitoring. To respond to this challenge, we
propose an approach that can help students regulate
their learning in a better way.

Success in online courses often depends on
students’ abilities to successfully direct their own
learning efforts (Cennamo, Ross, & Rogers, 2002).
It is very critical to develop students’ self-regula-
tion of learning before providing online courses
to them. In web-based learning environments,
physical absence of an instructor and increased
responsibility of learners to effectively engage
in learning tasks may present difficulties, par-
ticularly those with low self-regulatory skills
(Dabbagh & Kitsantas, 2005). Student motivation
may benefit from Web-based instruction with
self-regulated learning (SRL) strategies. Students
in the online environment, equipped with SRL
competence, become more responsible for their
learning and more intrinsically orientated (Chang,
2005). So self-regulation is important, particularly
while learning in World-Wide-Web-supported
environments (Winnips, 2000).

Although researchers have consistently shown
that self-regulation helps high achievers reach
their potential (Risemberg & Zimmerman, 1992),

2066

Enhancing Skills of Application Software via Web-Enabled Problem-Based Learning

it also makes a difference between failure and
success for low achievers (Borkowski & Thorpe,
1994). However, there has been relatively little
empirical research on students’ SRL with such
complex technology-based learning environments
(Azevedo & Cromley, 2004). Therefore, this study
applies SRL in this study to help vocational school
students (particularly the low achievers) concen-
trate on their learning, leave time for learning
after their part-time jobs, and furthermore, take
responsibility for their learning.

There are few studies that have discussed
effective online teaching methods for low aca-
demic achievers. In this area, the restructuring
and translation of traditional computer software
courses into e-learning has seldom been docu-
mented. Thus, this study redesigns a course in
application software to integrate innovative teach-
ing methods and learning technologies to help
students learn and apply what they have learned.
This study specifically explores potential effects
of Web-based PBL and SRL on the development
of low-academic-achievement students’ skills in
using packaged software.

AutHentic ASSeSSment

The traditional teaching approach regarded learn-
ers as passive recipients of information. Memori-
zation of the content lectured by the teacher was
the main goal of the instructional process. The
assessment approach that accompanied this in-
structional approach was mainly operationalized
by the so-called objective test, often standardized
and with a true/false or a multiple-choice item
format. Such assessments mostly do not seem
to assess higher-order cognitive skills, such as
problem solving, critical thinking, and reasoning
(Segers, Dochy, & De Corte, 1999).

However, the objective tests are often given,
even in computer software education. They could
not evaluate students’ practical skills, but also limit

the potential application. Two innovative and prac-
tical teaching methods are applied in this study, so
the traditional measurement is not appropriate to
assess students’ learning, particular in computer
software education. More appropriate assessment
methods for PBL would include reports, practi-
cal examinations, construction of concept maps,
peer assessment, or oral presentations (Sonmez &
Lee, 2003). In this regard, we measure students’
skills of application software according to the
correctness and completeness of their problem
solving and artistry of their design instead of
the memorization. The way we assess students’
improvement in skills of application software is
described in the “Measures” section.

prOBlem-BASeD leArning

Problem-based learning (PBL) is a teaching
method that may engage students in authentic
learning activities by using challenging problems
in practice as a starting point, stimulus, and focus
for learning (Barrows & Tamblyn, 1980; Boud,
1985; Barrows, 1985, 1986; Walton & Matthews,
1989; Boud & Feletti, 1991). PBL promotes student
learning based on the need to solve problems. It
not only emphasizes the learning in the subject
area, but also provides opportunities for students
to practice and apply knowledge and learned
skills.

Davis and Harden (1999) indicate that PBL
is one of the most effective teaching methods in
recent 30 years. The probable reason is that the
learning environment of PBL includes all kinds
of factors currently known which can improve
efficiency of learning, such as activity, coopera-
tion, feedback, adaptability, and accountability.
Albanese and Mitchell (1993) reveal that PBL
helps students more in knowledge construction
and reasoning skills compared with the traditional
teaching approach. PBL may help students achieve
learning goals, such as professional reasoning;

 2067

Enhancing Skills of Application Software via Web-Enabled Problem-Based Learning

integration of scientific, academic, and profes-
sional knowledge; and lifelong learning skills
(Dunlap, 2005).

Many Researchers examine PBL’s positive
impact on knowledge and skill acquisition and
transfer, problem solving, attitudes and opinions
about courses and programs, measures of per-
formance, and self-directed learning (Norman
& Schmidt, 1992; Albanese & Mitchell, 1993;
Berkson, 1993; Vernon & Blake, 1993; Colliver,
2000; Davies, 2000). Furthermore, Polanco,
Calderón, and Delgado (2004) point out that stu-
dents in PBL groups attain significantly higher
scores than students in a course from a control
group composed of physics, mathematics and
computer science.

In the domain of Information Science, Green-
ing, Kay, Kingston, and Crawford (1996) consider
that upper-level university students should have
developed many key competencies. However, dur-
ing teaching, they actually find many third-year
students not having acquired necessary competen-
cies from information science curriculum. PBL,
as an alternative teaching method, demonstrates
that it helps to improve students’ key competen-
cies. Yip (2001) points out that PBL can enhance
competencies, both in professional and informa-
tion systems education.

PBL is a flexible approach. It has demonstrated
its working well with both small teams and large
groups. However there might be disagreement
whether PBL will be as effective, or even pos-
sible, for online learning. In this regard, Chanlin
and Chan (2004) examine the effects of PBL in a
Web-based approach. Results reveal that students
in the PBL treatment group perform better than
those from the control group. Therefore, it can
be summarized that, in a Web-enabled learning
environment, the effects of problem-based learn-
ing on students’ skills of application software are
positive, and higher than those without PBL.

Self-regulAteD leArning

Zimmerman and Schunk (1989) define SRL in
terms of self-generated thoughts, feelings, and
actions, which are systematically oriented towards
attainment of students’ own goals. SRL is also
defined as a learner’s intentional efforts to man-
age and direct complex learning activities and is
composed of three primary components, namely
cognitive strategy use, meta-cognitive processing,
and motivational beliefs (Kauffman, 2004).

Yang (1993) finds that students who are high
self-regulatory skill users, as measured by a
preexisting index, score significantly higher than
their counterparts, low self-regulatory skill users,
regardless of the level of control. Characteristics
attributed to self-regulated persons coincide
with those attributed to high-performance, high-
capacity students, as opposed to those with low
performance (or learning disabilities), who show
a deficit in these variables (Roces & González
Torres, 1998; Zimmerman, 1998; Reyero &
Tourón, 2003).

Zimmerman and Martinez-Pons (1986) point
out that students’ frequency of self-regulated strat-
egy use predicts a substantial amount of variance
in their achievement test scores. Nota, Soresi, and
Zimmerman (2004) indicate that the cognitive
self-regulation strategy of organizing and trans-
forming proves to be a significant predictor of
the students’ course grades in mathematics and
technical subjects of high school, their subsequent
average course grades, and examinations passed
at the university.

As for the effects of SRL on computer software,
Bielaczyc, Pirolli, and Brown (1995) incorporate
self-explanation and self-regulation strategies in
the attainment of the cognitive skill of computer
programming. They find that their treatment group,
which incorporates the self-regulation strategies
of self-monitoring and clarifying comprehension

2068

Enhancing Skills of Application Software via Web-Enabled Problem-Based Learning

failures in conjunction with self-explanation strat-
egies, outperforms a control group that did not
have the benefit of instruction in these strategies.
Their study implies that, in addition to knowledge
acquisition strategies, students benefit from the
incorporation of strategies which allow them to
plan, monitor, and evaluate their understanding
and strategy use (Bielaczyc, Pirolli, & Brown,
1995). In a similar vein, this study provides us
an insight that SRL is appropriate to be applied
in computer software education.

Researchers have consistently shown that
self-regulation helps high achievers reach their
potential (Risemberg & Zimmerman, 1992). It also
makes a difference between failure and success
for low achievers (Borkowski & Thorpe, 1994).
Young (1996) identifies that low self-regulatory
skill users are found to perform significantly lower
in computer-based instruction that applied learner
control of the sequencing. It is believed that SRL
is effective to the low achievers, not only through
face-to-face instruction, but also in computer-
based or technology-based instruction. Learners
who report more extensive use of SRL strategies
show higher academic achievement than learners
who use self-regulated learning strategies less
often (Zimmerman & Martinez-Pons, 1986). In
the same study, students’ achievement could be
predicted with 93% accuracy from reported use
of SRL strategies.

Web-enabled learning environment is an in-
teractive network system consisting of a variety
of functions to support a virtual classroom to
enhance the quality of teaching and learning ac-
tivities (Poon, Low, & Yong, 2004). Students can
access information at their convenience, are free
to work at their own pace, and can revisit informa-
tion that they find confusing and/or interesting
(Lehman, Kauffman, White, Horn, & Bruning,
2001). Nevertheless, providing students with op-
portunities to integrate their knowledge through
Web-enabled instruction may not be effective if
they lack the skills needed to regulate their learn-
ing. Thus, strategies that prepare students for the

rigors of learning at a distance and increase the
probability of retention and success must be put
into practice (Chang, 2005). Winnips (2000) sug-
gests that self-regulation is particularly important
when learning in World-Wide-Web-supported
environments. In other words, it is even more
critical for students to transform into self-regu-
lated learners in Web-enabled learning. Previous
studies have established that self-regulated skills
can help foster learning from any instructional
method (Weinstein, 1989; Zimmerman, 1990;
Lindner & Harris, 1993; Ertmer, Newby, & Mac-
Dougall, 1996). To sum up, in the Web-enabled
learning environment, effects of self-regulated
learning on students’ skills of application software
are positive and performance higher than those
without SRL.

prOBlem-BASeD leArning AnD
Self-regulAteD leArning

In PBL, students work in collaborative groups
to identify what they need to learn in order to
solve problems. They engage in self-directed
learning (SDL), apply knowledge they acquire
to the problems, and reflect on what they have
learned and the effectiveness of the strategies
they have employed. That is, PBL is well-suited
to help students become active learners as it situ-
ates learning in real-world problems and makes
students responsible for their learning (Hmelo-
Silver, 2004). PBL helps prepare students for
lifelong learning by developing students’ ability
for self-directed learning and their meta-cognitive
awareness (Dunlap, 2005).

PBL is a task-based approach that teachers
can apply to support development of SRL. If PBL
activities are designed carefully with teachers who
provide appropriate modeling and scaffolding,
they facilitate and necessitate SRL. PBL provides
opportunities for self-directed learning by offer-
ing students choice, control of what to work on,
how to work, and what products to generate. PBL

 2069

Enhancing Skills of Application Software via Web-Enabled Problem-Based Learning

facilitates SRL because it places responsibility on
the students to discover information, to coordinate
actions and people, to monitor understanding, and
to reach goals (Paris & Paris, 2001).

Hmelo-Silver (2004) points out that students’
approaches to learn from problems are different
qualitatively because of their degree of self-regu-
lation. Ertmer et al. (1996) conducts a qualitative
study of how veterinary students learned from
problems. Low self-regulated learners have dif-
ficulty in adapting to the kind of learning required
in problem-based instruction. They fluctuate ac-
cording to their perception of the value of learn-
ing from problems. High self-regulated students
value learning from problems and tend to focus
on the problem analysis and reflection process.
In contrast, low self-regulated students tend to
focus on fact acquisition. Furthermore, the results
of Ertmer et al. suggest that low self-regulated
students may have difficulty in dealing with SRL
demands of a PBL curriculum.

Combined training with self-regulatory
and problem-solving strategies is effective for
enhancing self-regulatory competences in solv-
ing mathematical problems (Perels, Gürtler, &
Schmitz, 2005). However, there are very few
studies that discuss the effects of PBL and SRL
simultaneously, particularly through teaching
Web sites. According to the literature reviewed ,
it is believed that the learning effect will be even
stronger when teachers arouse students’ interest,
lead them to apply their skills and knowledge
to solve problems, and encourage them to self-
regulate their learning.

In this research, we hypothesize that students
focusing on the aspects of problem-based learning
variant with self-regulated learning would gain more
development on the skills of application software than
students studying the task without these co-existing
treatments. We also hypothesize that learning effects
of PBL and non-SRL group or non-PBL and SRL
group are better than non-PBL and non-SRL group.
That is, highest increase of development in skills of
applying packaged software is expected in conditions

wherein students are confronted with the situation of
simulated problems and with self-regulated or self-
directed learning style without teachers’ pressure.
Therefore, we propose the following: in a Web-en-
abled learning environment, the effects of PBL and
SRL intervention on students’ skills of application
software are positive, and higher, than those without
the combined intervention.

metHODS

participants

Participants in this study are 106 fresh students
taking a compulsory course of ‘Packaged Software
and Application’ in an institute of technology in
Taiwan. None of them major in the field of infor-
mation or computer technology. However, in an
institution for technological/vocational education,
practical applications of technology are guiding
principles (Tai, et al, 2003). Students are expected
to spend more time and efforts in mastering a
variety of technological skills, as compared to
those in universities in Taiwan.

course Setting

The course under study is a semester-long, two-
credit-hour class, targeted at first-year college
students from different majors. Students solve a
series of authentic tasks by applying Microsoft Of-
fice (including Word, Excel, and PowerPoint).

experimental Design and procedure

In this study we explore whether students in the
“Packaged Software and Application” course
enhance their skills of application software via
e-learning. Based on feedback from earlier re-
search, we have re-designed the course and con-
ducted a series of quasi-experiments to examine
the effects of web-enabled PBL, SRL, and their
combinations.

2070

Enhancing Skills of Application Software via Web-Enabled Problem-Based Learning

The experimental design is a 2 (PBL vs. non-
PBL) × 2 (SRL vs. non-SRL) factorial pretest-
post-test design (see Figure 1). Students from
four groups solve the same task but in different
learning conditions. Participants are randomly as-
signed to one of the four experimental conditions
in such a way that each condition contains 24 to
30 students. The PBL and SRL group (C1, n=30),
PBL and non-SRL group (C2, n=25), non-PBL and
SRL group (C3, n=24) are experimental groups,
while non-PBL and non-SRL group (C4, n=27) is
the control group. The sample size in this study
is large enough to be tested in statistics.

The course design in the present study consists
of three subsequent modules: the Word module,
the Excel module, and the PowerPoint module. A
skill test is administered after the completion of
each module. The first test is held during midterm
examination (eighth week). The second test is held
in the 13th week and the final one in the 16th week.
A schedule of teaching of modules and skill tests is
depicted in Figure 2.

In the beginning of a course, students are en-
couraged to adapt and learn via a course Web site.
Teaching during this period is through a traditional
classroom. A teacher records every session of the
lecture first and then converts these lectures into
a HTML file with flash, video, and voice. These
HTML files are then loaded into the course Web site.
Students can preview and review the course sessions
on this course Web site. After three weeks, most of
the coursework is moved onto the Web site. We help
students to adapt to learning through the net and
try lessen down a feeling of isolation. Within these
three weeks, we adjust students’ learning gradually
and smoothly.

pBl treatment

A teacher creates interesting, challenging, and
authentic problem situations. In the first Word

Figure 1. Expected effects of variation in instruc-
tional methods

Week 8:
A Word
Test

Week 16:
A PowerPoint
Test

Word Module
(8 weeks)

Excel Module
(5 weeks)

PowerPoint
Module

(3 weeks)

Week 1:
Participants
are divided
into 4 groups
and pretested

Week 13:
An Excel
Test

Week 3:
The course is
completely
moved to the
website

Figure 2: Schedule of three modules and skill tests

 2071

Enhancing Skills of Application Software via Web-Enabled Problem-Based Learning

module, students are required to apply for a
job as Marketing Assistant in an online-game
company. They are required to design and then
build autobiographies and resumes by applying
skills of application software that they have just
learned. In the Excel module, students play roles
as if they are employed by this same software
company, and a marketing manager asks them
to compare expenses resulting from different
distribution channels. They have to survey and
then complete a worksheet with some graphs to
contrast differences between channels. Addition-
ally, they must come up with a recommendation
regarding the best combination of channels. In
the last module of PowerPoint, they are promoted
as Marketing Managers of higher rank. They are
asked to develop a business proposal for a new
online game. They have to present this proposal
with visual aids to convince the managing director
to enter in to a market. Therefore, a persuasive
PowerPoint presentation is built at this stage.

A teacher demonstrates first how they could
approach the situation and solve the problem with

the help of a Web-based multimedia application.
In addition to the teaching of skills of application
software, similar situations and related applica-
tions are also discussed in the class. Latter, the
teacher guides students in constructing their own
models of problem-solving.

Srl treatment

There is a SRL group in each class. Two SRL
groups from the PBL class and non-PBL class are
gathered in a classroom and a two-hour lecture is
delivered discussing how to manage study time
and regulate their learning. The lecture is given
in an after-school course. Content of this SRL
course is composed of following four processes
addressed by Zimmerman, Bonner and Kovach
(1996), that is,

• Self-evaluation and monitoring,
• Goal-setting and strategy planning,
• Strategy implementation and
 monitoring

Group Teaching Activities Learning Activities

C1 A teacher…

• demonstrates how to solve authentic problems and

discusses its potential applications.

• teaches SRL skills and urges students to study

regularly.

Students…

• take on authentic tasks and learn by problem solving.

• practice SRL and record learning behaviors every week.

C2 Teaching activities are the same as C1 but without

SRL lectures.

Students experience authentic situations and solve the problems

without extra requirements of SRL.

C3 A teacher…

• converts his traditional way of teaching without

any modification into an online format.

• teaches SRL skills and urges students to study

regularly.

Students…

• receive traditional computer software course through inter-

net.

•practice SRL and record learning behaviors every week.

C4 Teaching activities are the same as C3 but without

SRL lectures.

Students experience traditional style of teaching and do not deal

with extra requirements of SRL, although teaching is conducted

via Internet.

Table 1. Teaching and learning activities in different experimental groups

2072

Enhancing Skills of Application Software via Web-Enabled Problem-Based Learning

• Monitoring of the outcome of
 strategy.

Students are taught how to implement these
four processes to become more regulated learn-
ers.

In addition to the two-hour lecture, students in
SRL groups are required to prepare and read the
textbook regularly before classes, and to review
or practice the skills of application software they
have learned after school. They are also required
to record their learning behavior every week.
Data is recorded on the course Web site instead
of their notebooks in order to prevent falsifica-
tion of records. A teacher cursorily examines
students’ records.

Treatments in four groups are illustrated and
compared in Table 1.

measures

To examine levels of change manipulated by
variations in experimental conditions, we first
measured students’ skills of application software
as a baseline before they entered the class. In the
first week, students complete three Word docu-
ments as a pretest. We choose Microsoft Word
for the pretest because almost every student in
Taiwan learns Word before he learns any other
software package.

The pretest grades show that computer skills
of almost all are low. None of the participants
are able to answer any of the pretest questions
correctly. This confirms that all participants in
the four groups had a little knowledge or a skill
of software package. The difference in students’
skills of application software at the beginning
stage among the four groups was not statistically
significant. Therefore, we assume that the students
have equal or no computer skills before they take
this course. In addition, none of them had any
experience in taking a Web-based course. We
then evenly and randomly divided the students
into the four experimental groups.

Later, skill tests are administered at the end of
each module. In this study, we applied two prac-
tical and authentic teaching methods. It is very
important to measure students’ practical skills in
problem solving rather than the memorization.
In this regard, the lecturer simulated practical
problems for students to solve to evaluate their
enhancement of skills of application software.
For example, students are required to complete a
worksheet with some graphs and tables to compare
the market share with all competitors. They have
to apply several functions to compute the numerals
and sort them. Students’ grades come from their
correctness and completeness of problem solving,
and the artistry of their designs. Students will get
high grades if they completely solve the problems
with exquisite designing.

Before testing, students are assigned random
seats. All students are tested at the same time.
Every test consists of five to seven questions. A
teacher grades and records the results immediately
after each test. A surrogate representing skills in
application software is averaged from the scores
of these three tests. Finally, the enhancement of
skills in application software of a module is the
result of one’s grade minus pretest grade. We test
differences in the enhancement of the skills of
application software under different conditions.

results

To examine levels of change manipulated by
variants in experimental conditions, we first
measured students’ skills using application
software as a baseline. The pretest confirmed
that all participants from four groups had a
little or no knowledge and skills in packaged
software. The difference in students’ skills of
application software at the beginning stage
among four groups was not statistically sig-
nificant. In addition, none of them had any
experience in taking a Web-based course. We
then randomly divided the students into four
experimental groups.

 2073

Enhancing Skills of Application Software via Web-Enabled Problem-Based Learning

Independent sample t-test was used to compare
improvement of grades between PBL and non-
PBL teaching methods. As shown in Table 2, the
improvement in students’ grades for Word, Excel
and PowerPoint modules in PBL class (67.09) was
on an average higher than that in the non-PBL class
(56.75). This is also true if one takes the test scores
of each module into account separately. Therefore,
effects of Web-based PBL on students’ skills of
application software are positive, and higher than
those who do not receive PBL.

Results from Table 3 show that the average
grade for Word, Excel and PowerPoint modules
in SRL group (66.01) is higher than that in the
non-SRL group (58.08). This is also true if one
takes test scores of each module into account
separately. Thus, the effects of web-based SRL

on students’ skills in using application software
are positive, and higher than those without SRL
intervention.

Finally, data from Table 4 shows that combina-
tion of PBL and SRL intervention a group results
in the highest grades among four groups. The im-
provement of skills using application software in
C1 is significantly higher than C3 and C4, and also
higher than C2, though insignificant. Therefore,
we conclude that the effects of Web-based PBL
and SRL intervention on students’ skills in using
application software are positive, and higher than
those who do not receive PBL or/and SRL.

For those teachers who wish to stick to
traditional methods of teaching, directly trans-
forming their teaching material into electronic
form may not be a fruitful approach. Students

N Mean S. D. F t-value df P

Word PBL 55 64.29 11.063 2.604 3.147 104 .002**

 non-PBL 51 56.84 13.269

Excel PBL 55 64.98 17.948 24.992 3.809 104 <.001**

 non-PBL 51 46.43 30.943

PowerPoint PBL 55 72.00 11.617 .029 2.186 104 .031**

 non-PBL 51 66.98 12.016

Average PBL 55 67.09 9.779 5.430 4.722 104 <.001**

 non-PBL 51 56.75 12.673

Table 2. Independent samples t-test: Improvement of grades

N Mean S. D. F t-value df P

Word SRL 54 63.11 11.647 .102 2.018 104 .046**

 non-SRL 52 58.21 13.325

Excel SRL 54 62.37 23.770 2.483 2.554 104 .012**

 non-SRL 52 49.50 28.021

PowerPoint SRL 54 72.54 12.462 .222 2.649 104 .009**

 non-SRL 52 66.52 10.831

Average SRL 54 66.01 11.305 .769 3.473 104 .001**

 non-SRL 52 58.08 12.195

Table 3. Independent samples t-test: The improvement of grades

2074

Enhancing Skills of Application Software via Web-Enabled Problem-Based Learning

from the controlled group (C4) received lowest
grades among four groups, and differences in
grades among them are significant (see Table
4). It is suggested that teachers should redesign
their courses and then adopt new instructional
methods and technologies to fully exploit
benefits of deploying Web-based learning
environments.

DiScuSSiOn

This study provides valuable insights and sheds
some lights on new, effective practices that can be
used by schools (particularly vocational schools),
scholars, and teachers planning to implement or
presently engaged in implementing e-learning
environments. The implications of this study
consist of three-fold:

Firstly, the PBL teaching method was found
to play a consistently positive role in enhancing
students’ skills of using application software
(see Table 2). There are significant differences
between PBL and non-PBL classes, either in case

of individual module tests or in an average of the
three module tests. It was demonstrated that PBL
is good for computer software education in gen-
eral and e-learning in particular. Teachers could
redesign their courses by simulating meaningful
and interesting business situations, and, thus,
engaging students’ imaginations and interest to
solve challenging problems.

Secondly, evidence also supports that the sec-
ond teaching method based on SRL also enhances
students’ skills of using application software (see
Table 3). There are significant differences between
SRL and non-SRL groups on three tests and in
average. Interestingly, as we focused on the varia-
tion of P-value related to each module, it became
clear that the effects of SRL increased over time.
This suggests that the effects of SRL among low
achievers can be significantly improved, even by a
limited amount of intervention, such as two-hour
lecture regarding SRL at the beginning of teaching
program and later by students’ monitoring their
own learning.

Finally, this study found some support for the
effectiveness of a combination of instructional

Dependent

Variable (I) Group (J) Group

Mean Difference

(I-J) Std. Error Sig.

Average Scheffe 1 2 5.862 2.910 .262

 3 8.436(*) 2.943 .047

 4 17.064(*) 2.851 .000

 2 1 -5.862 2.910 .262

 3 2.574 3.071 .872

 4 11.202(*) 2.983 .004

 3 1 -8.436(*) 2.943 .047

 2 -2.574 3.071 .872

 4 8.628(*) 3.015 .048

 4 1 -17.064(*) 2.851 .000

 2 -11.202(*) 2.983 .004

 3 -8.628(*) 3.015 .048

Table 4. One-way ANOVA (Analysis of Variance): Average of the improvement of grades.

 2075

Enhancing Skills of Application Software via Web-Enabled Problem-Based Learning

methods. As shown in Table 4, results show that
the effects of a combination of PBL and SRL
intervention on students’ skills of application
software are positive and higher than those who
do not receive PBL or/and SRL, although the
difference between C1 and C2 is not statistically
significant.

This study contributes to e-learning practices
in three different ways: (a) this study specifies how
teachers can engage students in improving learn-
ing under authentic conditions. At the same time,
teachers help students to regulate their learning by
applying PBL and SRL instructional methods in
a Web-based learning environment; (b) this study
is one of the first attempts to explore learning ef-
fects of various combinations of PBL, SRL, and
Web-based learning; and (c) this empirical study
provides evidence that skills of low academic
achievers, for using application software can be
improved through e-learning.

Teachers face tremendous challenges in
implementing e-learning among relatively low
academic achievers. For example, Internet addic-
tion is common, and it is not immediately clear
how to focus students’ attention and improve their
learning in a Web-based environment without
teachers’ on-the-spot monitoring. This study
proposes an effective approach in this kind of
e-learning environment.

referenceS

Albanese, M. A., & Mitchell, S. (1993). Prob-
lem-based learning: A review of literature on its
outcomes and implementation issues. Academic
Medicine, 68(1), 52–81.

Azevedo, R., & Cromley, J.G. (2004). Does train-
ing on self-regulated learning facilitate students’
learning with hypermedia? Journal of Educa-
tional Psychology, 96(3), 523-535.

Barrows, H. (1985). How to design a problem-
based curriculum for the preclinical years. New
York: Springer.

Barrows, H. (1986). A taxonomy of problem-
based learning methods. Medical Education,
20(6), 481-486.

Barrows, H., & Tamblyn, R. (1980). Problem-
based learning. New York: Springer.

Berkson, L. (1993). Problem-based learning: Have
the expectations been met? Academic Medicine,
68(1), 79-88.

Bielaczyc K, Pirolli P., & Brown A. (1995).
Training in self-explanation and self-regulation
strategies: investigating the effects of knowledge
acquisition activities on problem solving. Cogni-
tion and Instruction, 13(2), 221–252.

Borkowski, J. G., & Thorpe, P. K. (1994). Self-
regulation and motivation: A life-span perspective
on underachievement. In D. H. Schunk & B. J.
Zimmerman (Eds.), Self-regulation of learning
and performance (pp. 45-73). Hillsdale, NJ: Law-
rence Erlbaum Associates.

Boud, D. J. (1985). Problem-based learning in
perspective. In D. J. Boud, (Ed.), Problem-based
learning in education for the professions (pp.
13-18). Sydney: Higher Education Research and
Development Society of Australasia.

Boud, D., & Feletti, G. (1991). The challenge of
problem based learning. London: Kogan Page.

Bruer, J. T. (1993). Schools for thought: A science
of learning in the classroom. Cambridge, MA:
MIT Press.

Cennamo, K. S., Ross, J. D., & Rogers, C. S.
(2002). Evolution of a Web-enhanced course:
Incorporating strategies for self-regulation. Edu-
cause Quarterly, 25(1), 28-33.

Chang, M. M. (2005). Applying self-regulated
learning strategies in a Web-based instruction - An

2076

Enhancing Skills of Application Software via Web-Enabled Problem-Based Learning

investigation of motivation perception. Computer
Assisted Language Learning, 18(3), 217-230.

Chanlin, L. J., & Chan, K. C. (2004). Assessment
of PBL design approach in a dietetic Web-based
instruction. Journal of Educational Computing
Research, 31(4), 437-452.

Colliver J. A. (2000). Effectiveness of problem-
based learning curricula: Research and theory.
Academic Medicine, 75(3), 259-266.

Dabbagh, N., & Kitsantas, K. (2005). Using
Web-based pedagogical tools as scaffolds for
self-regulated learning. Instructional Science,
33(5–6), 513–540.

Davies, P. (2000). Approaches to evidence-based
teaching. Medical Teacher, 22(1), 14-21.

Davis, M. H., & Harden, R. M. (1999). Prob-
lem-based learning: A practical guide. AMEE
Education Guide, 15, http://www.amee.org/index.
asp?tm=43

Dunlap, J. C. (2005). Changes in students’ use
of lifelong learning skill during a problem-based
learning project. Performance Improvement
Quarterly, 18(1), 5-33.

Ertmer, P. A., Newby, T. J., & MacDougall, M.
(1996). Students’ approaches to learning from
case-based instruction: The role of reflective
self-regulation. American Educational Research
Journal, 33(3), 719-752.

Greening, T., Kay, J., Kingston, J. H., & Crawford,
K. (1996). Results of a PBL trial in first-year com-
puter science. The 2nd Australasian Conference
on Computer Science Education (pp. 201-206).
New York: ACM Press.

Hmelo-Silver, C. E. (2004). Problem-based learn-
ing: What and how do students learn? Educational
Psychology Review, 16(3), 235-266.

Kauffman, D. F. (2004). Self-regulated learning
in Web-based environments: Instructional tools

designed to facilitate cognitive strategy use, meta-
cognitive processing, and motivational beliefs.
Journal of Educational Computing Research,
30(1 & 2), 139-161.

Lehman, S., Kauffman, D., White, M., Horn,
C., & Bruning, R. (2001). Teacher interac-
tion: Motivating at-risk students in Web-based
high school courses. Journal of Research on
Computing in Education, 33(5), http://www.
iste.org/inhouse/publications/jrte/33/5/lehman-
s.cfm?Section=JRTE_33_5

Lindner, R. W., & Harris, B. (1993). Teaching
self-regulated learning strategies. In M.R. Si-
monson & K. Abu-Omar, (Eds.), Proceedings of
selected research and development presentations
at the annual conference of the Association for
Educational Communications and Technology
(pp. 641–654). Ames, IA: Instructional Resources
Center, Iowa State University.

Norman, G.., & Schmidt, H. (1992). The psycho-
logical basis of problem-based learning. Academic
Medicine, 67(9), 557-565.

Nota, L., Soresi, S., & Zimmerman, B. J. (2004).
Self-regulation and academic achievement and re-
silience: A longitudinal study. International Jour-
nal of Educational Research, 41(3), 198–251.

Paris, S. G.., & Paris, A. H. (2001). Classroom
applications of research in self-regulated learning.
Educational Psychologist, 36(2), 89-101.

Perels, F., Gürtler, T., & Schmitz, B. (2005).
Training of self-regulatory and problem-solving
competence. Learning and Instruction, 15(2),
123-139.

Polanco, R., Calderón, P., & Delgado, F. (2004).
Effects of a problem-based learning program on
engineering students’ academic achievements in
a Mexican university. Innovations in Education
& Teaching International, 41(2), 145-155.

 2077

Enhancing Skills of Application Software via Web-Enabled Problem-Based Learning

Poon, W. C., Low, K. L. T., & Yong, D. G. F. (2004).
A study of Web-based learning (WBL) environ-
ment in Malaysia. The International Journal of
Educational Management, 18(6), 374–385.

Reyero, M., & Tourón, J. (2003). El desarrollo del
talento: La aceleración como estrategia educativa
[The development of talent: Acceleration as an
educational strategy]. A Coruña: Netbiblo.

Risemberg, R., & Zimmerman B. J. (1992). Self-
regulated learning in gifted students. Roeper
Review, 15(2), 98-101.

Roces, C., & González Torres, M. C. (1998).
Capacidad de autorregulación del aprendizaje
[Ability to self-regulate learning]. In J. A. Gon-
zález Pienda & J. C. Núñez (Eds.), Dificultade-
sde aprendizaje escolar (pp. 239-259). Madrid:
Pirámide/Psicología.

Segers, M., Dochy, F., & De Corte, E. (1999).
Assessment practices and students’ knowledge
profiles in a problem-based curriculum. Learning
Environments Research, 2(2), 191–213.

Sonmez, D., & Lee, H. (2003). Problem-based
learning in science, http://www.eric.ed.gov/ER-
ICWebPortal/recordDetail?accno=ED482724

Tai, C. F., Chen, R. J., & Lai, J. L. (2003). How
technological and vocational education can pros-
per in the 21st century? IEEE Circuits & Devices
Magazine, 19(2), 15-51.

Vernon, D., & Blake, R. (1993). Does prob-
lem-based learning work? A meta-analysis of
evaluative research. Academic Medicine, 68(7),
550-563.

Walton, H., & Matthews, M. (1989). Essentials
of problem-based learning. Medical Education,
23(6), 542-558.

Weinstein, C. (1989). Teacher education students’
preconceptions of teaching. Journal of Teacher
Education, 40(2), 53-60.

Williams, S. M. (1993). Putting case-based learn-
ing into context: Examples from legal, business,
and medical education. Journal of Learning Sci-
ences, 2(4), 367-427.

Winnips, K. (2000). Scaffolding-by-design: A
model for WWW-based learner support, En-
schede: University of Twente Press.

Wu, T. Y. (2000). Integrative curriculum plan-
ning in technological and vocational education
in Taiwan, Republic of China. http://www.eric.
ed.gov/ERICWebPortal/recordDetail?accno=E
D450230

Yang, Y. (1993). The effects of self-regulatory
skills and type of instructional control on learning
from computer-based instruction. International
Journal of Instructional Media, 20(3), 225-241.

Yip, W. (2001). Utilisation of the problem-based
learning approach facilitated by information tech-
nology to teach information on systems develop-
ment. http://citeseer.ist.psu.edu/535807.html

Young, J. D. (1996). The effect of self-regulated
learning strategies on performance in learner
controlled computer-based instruction. Educa-
tional Technology Research and Development,
44(2), 17-27.

Zimmerman, B. J. (1990). Self-regulated learn-
ing and academic achievement: An overview.
Educational Psychologist, 25(1), 3-17.

Zimmerman, B. J. (1998). Developing self-regula-
tion cycles of academic regulation: An analysis of
exemplary instructional model. In D. H. Schunk
& B. J. Zimmerman (Eds.), Self-regulated learn-
ing: From teaching to self-reflective practice (pp.
1-19). New York: Guilford.

Zimmerman, B. J., Bonner, S., & Kovach, R.
(1996). Developing self-regulated learners: Be-
yond achievement to self-efficacy. Washington,
DC: American Psychological Association.

2078

Enhancing Skills of Application Software via Web-Enabled Problem-Based Learning

Zimmerman, B. J., & Martinez-Pons, M. (1986).
Development of a structured interview for assess-
ing student use of self-regulated learning strate-
gies. American Educational Research Journal,
23(4), 614-628.

Zimmerman, B. J., & Schunk, D. H. (1989).
Self-regulated learning and academic achieve-
ment: Theory, research, and practice. New York:
Springer-Veri

This work was previously published in International Journal of Distance Education Technologies, Vol. 6, Issue 3, edited by Q.
Jin, pp. 69-84, copyright 2008 by IGI Publishing (an imprint of IGI Global).

 2079

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.18
Globalising Software
Development in the

Local Classroom
Ita Richardson

University of Limerick, Ireland

Sarah Moore
University of Limerick, Ireland

Alan Malone
Siemens Corporate Research, USA

Valentine Casey
University of Limerick, Ireland

Dolores Zage
Ball State University, USA

ABStrAct

In the dynamic global economy that exists today
the operation and structure of organisations have
had to adapt to the reality of the information
revolution which has taken place. This has been
the case within the software industry where
global software development (GSD) has become
a popular strategy and software development has
become a globally sourced commodity. Given

the requirement for graduates to operate in this
type of environment, we as educators considered
how our teaching methods could be developed
and enhanced to instil GSD competencies within
our graduates. We provided students with the
opportunity to take part in a learning experience
that transcended geographical and institutional
boundaries, giving them first-hand experience
of working within globally distributed software
teams. Two separate projects were undertaken.

2080

Globalising Software Development in the Local Classroom

One was with Siemens Corporate Research which
was part of a larger project. The focus of this
project was the shadowing of the development
of an actual geographically distributed software
product. The second project was carried out in
collaboration with Ball State University, and
the focus of this endeavour was virtual team
software testing. Extensive qualitative research
was undertaken on the data provided by the
students. We identified three specific forms of
learning which had taken place: (1) pedagogical,
(2) pragmatic, and (3) the achievement of specific
globally distributed competencies. Our findings
would confirm that mimicking real-work settings
creates the possibility of giving rise to the range
of learning benefits that are associated with truly
problem-based learning environments.

IntroductIon

This chapter explores the reality of the software
industry today, which is becoming more virtual
and globally distributed in its methods of opera-
tion. It discusses the educational implications of
these strategies and how they impact graduates.
It looks at what measures can be taken to prepare
students to operate in this dynamic and virtual
environment. It outlines two projects in which
masters students participated in that transcended
geographical and institutional boundaries. The
projects and the students’ experiences were
researched and analysed. The results, which are
presented here, demonstrate the benefits associ-
ated with utilising a hands-on, truly problem-
based learning environment.

glOBAl SOftWAre
DeVelOpment

GSD has given rise to the implementation of new
types of development teams and project structures
within organisations. In many software develop-

ment organisations, teams are no longer local, but
operate within a virtual team environment. As a
result they are fundamentally different in their
structure and modus operandi to those of a single
site team. For educationalists, the emergence of
new team and organisational structures require
that graduates from software engineering courses
be made familiar with these new methods of
operation.

The number of organisations employing vir-
tual,1 team-based globally distributed software
development strategies continues to increase
(Powell, Piccoli, & Ives, 2004). GSD in essence
allows distributed teams to split up the tasks of
a project and distribute them as separate jobs
(Grinter. Herbsleb, & Perry, 1999). This allows
development decisions about each project task to
be made with a degree of independence (Herb-
sleb & Grinter, 1999). However, managing this
type of team is not a straightforward endeavour.
Some of the difficulties encountered include the
problems of understanding requirements and the
testing of systems (Toaff, 2002). These difficulties
are compounded by cultural and language dif-
ferences, lack of communication, distance from
the customer, different process maturity levels,
testing tools, standards, technical ability, and
experience. These issues are further augmented
by the lack of “trust-building” communication
techniques. Trust is important for software de-
velopment teams to work together successfully,
and it is harder to establish trust within virtual
teams than it is with local teams (Robey, Khoo,
& Powers, 2000), rising from the fact that face-
to-face communication methods that can build
trust are generally not present in a distributed
team (Pyysiainen, 2003). Equally, established
trust gained from co-located experiences can de-
teriorate over time in a distributed setting (Casey,
2007). To address these substantial issues, project
management must change from the traditional to
the virtual for a GSD strategy to be successfully
implemented.

 2081

Globalising Software Development in the Local Classroom

making gSD Work

As the GSD team is dispersed across geographical
locations, it operates differently to the co-located
team. Regardless of the strategy implemented,
distance is responsible for the introduction of
barriers and complexity. These directly impact on
the management and operation of the GSD team.
However, other related factors also come into play.
Coordination, visibility, communication, and co-
operation are all negatively impacted by distance,
and if their impact is not identified and correctly
managed, they can produce further barriers and
complexity within a project (see Figure 1).

Effective coordination is a key element in the
success of a geographically distributed software
development project. This includes undertaking
realistic project planning and risk evaluation given
the specific requirements of the GSD environment.
Work must be partitioned between sites based
on the technical needs of the project and on the
capabilities and experience of the team members
at different geographical locations. Furthermore,
there is a requirement for the effective utilisation
of technology across sites and between team
members. Procedures should be put in place to
facilitate and monitor the level of cooperation

between team members in all locations. These
should also allow for the identification and ad-
dressing of problems if and when they arise.

Visibility is another important factor in the
successful operation of the global team. It is
important for management to ensure that roles
and responsibilities are clearly articulated. Each
team member should be informed of work product
requirements and due dates. This requires effec-
tive reporting schedules and a visible reporting
strategy. There is a requirement for continuous
visibility into the team’s activities and operation
at all locations. Team members should also be
aware of the management structure within the
team across all sites.

Communication issues should not be allowed
to become a barrier to the successful operation
of a distributed software development team. This
necessitates the development and implementation
of a common vocabulary for all aspects of the
project. Effective communication tools, which
are utilised and understood by all team members,
should be provided. Communication between
remote team members is normally electronic
and asynchronous in nature with limited oppor-
tunities for synchronous contact, depending on
the time zone difference between locations. The

Figure 1. Factors in virtual development (Source: Casey, 2007)

2082

Globalising Software Development in the Local Classroom

global team normally operates in a multicultural
and multilingual environment, which may cross
organisational boundaries (DeSanctis, Stauden-
mayer, & Wong, 1999).

Cooperation within global teams is essential
to achieve a successful implementation of a GSD
strategy. In distributed teams there are limited
opportunities for one-to-one contact between
remote colleagues. Project managers need to
consider how team relationships can best be de-
veloped and fostered. The specific implications of
cultural diversity on the project operation must be
ascertained, monitored, and addressed. All team
members should be given cultural training. The
identification of a relevant subject matter expert
(SME) is important, and team members should
be informed who this is. Once identified the SME
must be willing and able to provide the required
support to local and remote colleagues.

eDucAting tHe grADuAte

One of our tasks as software engineering educators
is to produce graduates for the software market,
and with the increase in GSD worldwide, it is
incumbent on us as educators to provide these
graduates with a background that allows them
to work in the global environment.

To operate in the global environment students
need to be aware of the factors involved in GSD.
Through research carried out by the authors
(Casey, 2007; Casey & Richardson, 2005), spe-
cific competencies that are needed have been
identified. From the perspective of the graduate,
these can be broadly divided into two categories:
(1) competencies required by both the software
developer and manager and (2) those required
more significantly by the software development
manager (see Table 1).

competencies required by the
Software Developer and
Software manager

When working in the global environment,
communication and language takes on greater
importance than when working in a local team.
English has become the international business
language and is extensively used in GSD teams.
However, many co-workers will not have English
as their first language, therefore, misunderstand-
ings can occur, as there may be different dialects
of English and/or a number of regional accents in
use (Kiel, 2003). A further consideration is the
use of communication tools which must be done
correctly and in such a way that it benefits and
not hinders the project. Global teamwork is often

Software Developer and Manager Software Development Manager

Communication and language Visibility and coordination

Use of communication tools True cost of GSD

Culture Technology transfer and knowledge management

Temporal issues Roles, responsibilities, and competencies management

Cooperation Partitioning of work

Software process Management of fear and trust

Use of process tools Motivation

Reporting schedule “Teamness”

Risk management

Table 1. Competencies required by the software graduate

 2083

Globalising Software Development in the Local Classroom

carried out through asynchronous communication
tools like e-mail (Boland & Fitzgerald, 2004).
This is not the environment in which graduates
or locally experienced software developers are
used to working—they need to learn and under-
stand how to use language, communication, and
communication tools efficiently and effectively
in the global development team.

 An advantage of having a variety of cultures
involved in one team is diversity and bringing
diversity together to work toward a common
goal can increase the innovation within a project
(Ebert & De Neve, 2001). However, those work-
ing within global software teams must learn to
understand and appreciate cultural diversity.
Cultural differences include values, language, ap-
proach to authority, concepts of space, regard for
material goods, and time keeping (Carmel, 1999;
McDonough, Kahn, & Barczak, 2001). Cultural
differences, unless understood by all involved,
can have a negative impact on the operation of
the global team.

Those working on GSD teams should also
have an appreciation of the temporal issues that
may arise. A strategy which has been employed in
establishing global teams has been to have team
members in two or three time zones around the
globe. For individuals working on such teams,
this requires them to ensure that their working
hours overlap somewhat with their remote col-
leagues (Casey & Richardson, 2004; McDonough,
Kahn, & Barczak, 2001). Furthermore, responses
to communications need to be made in a timely
manner. Response delays can cause frustration
and decreased motivation among team members.
These difficulties can be exasperated if the per-
son required is remotely situated (Herbsleb &
Grinter, 1999).

As mentioned previously, cooperation is
required for a global team to be successful. An
advantage for GSD is that, given the diversity of
global teams, the acquired mix of skill sets and
life experiences within a team can result in im-
proved coordination among GSD team members

(Ebert & De Neve, 2001). However, geographical
distance reduces the level of informal contact that
can help build better working relationships, and
consequently, support cooperation (Herbsleb,
Mockus, Finholt, & Ginter, 2000). In the global
environment, and without this level of informal
contact, software developers need to develop
cooperation between themselves and local and
remote team members. They need to be able to
modify their locally focused competencies to work
successfully in the global environment.

With the increase in use, internationally, of
software processes and the implementation of
models such as the CMMI2sm and ISO15504 among
others, software developers are becoming more
au fait with the implementation of processes.
However, processes in the global environment
are typically different to those in the local co-site
operation. They need to be set up with global
information flow, global reporting, and the ef-
fective division of labour in mind. For example,
if a wiki3 is being used, project members need
to continually keep it updated as they will not
have the informal contact which, often in the
local situation, allows team members to know
what is happening on a project. Process tools can
help local teams in managing processes such as
configuration management, risk management,
and testing. In the global environment, they can
ensure that even though team members are not
discussing issues on a face-to-face informal basis,
processes can be efficiently controlled. Along with
the technical use of such tools, team members
need to understand the tools’ effectiveness and
requirements.

As mentioned previously, visibility of project
activities is important. Culture has an effect on
whether overruns in project tasks are reported.
Furthermore, teams may be set up so that the
project manager is based in one location only.
To ensure visibility and to minimise difficulties
arising through differences across global teams,
it is important that regular scheduled reports are
made to all team members. These reports should

2084

Globalising Software Development in the Local Classroom

be timely and accurate and submitted by all team
members.

competencies required by the
Software manager

In addition to the competencies required by the
software developer, the software manager working
in the global environment must be able to ensure
that the team for which he/she has responsibil-
ity can work effectively. This requires them to
bring additional competencies and requirements
to the team.

They are responsible for ensuring the visibility
of, for example, tasks, team members, project
structure, and reporting structures across the
global team. They are likely to be co-located with
some team members and may never meet face to
face with all their global team. To coordinate the
work of a global team in this environment may
cause difficulties if they are not dealt with in an
effective manner.

Companies are not always aware of the “true
cost” of GSD, and indeed there is no “silver bul-
let” that can provide them with that information.
However, it is something about which the software
development manager should be aware. Negative
influences within a global team are high risk and
can cause decreases in productivity. For example,
lack of communication can reduce the effective-
ness of a project and can occur easily through
the misuse of communication tools (Casey &
Richardson, 2004).

Moving from a local co-site team structure to
a global team environment requires technology
transfer and knowledge management. The global
software development manager has to understand
how they can do this effectively. If new project
members are being employed at an off-site location
(normally global), how can these people be given
the same transfer of technology and knowledge as
would happen in a local environment where there
are informal discussions and the availability of

experts? This needs to be correctly managed with
an effective training strategy put in place.

The global project manager must be able to
decide upon the roles and responsibilities within
the project team so that the team can work success-
fully together. In doing this, they must recognise
the variety of competencies that individuals are
bringing to the project, and they need to man-
age these competencies for the project’s benefit.
Considering the lack or limited opportunity for
informal contact between teams, the impact this
has in a geographically dispersed group is ex-
tremely important, and the failure to be cognisant
of these factors can cause the team’s effectiveness
to be reduced (Casey, 2007).

Once the project team has been structured, the
project manager must be able to partition the work
in such a manner that the team’s effectiveness is
maximised. In some cases, the partitioning can
be based around the software development life
cycle, where the team members at each location
undertake one element of the life cycle, for ex-
ample, development or testing, while control is
maintained at a central location. Another model,
which is becoming increasingly popular, is to set
up virtual teams, where team members work as
one team even though they are located globally.
This is not an easy task for the project manager
to undertake (Nidiffer & Dolan, 2005).

Within countries, such as Ireland, who no
longer are considered a low-cost economy, people
who work on project teams can perceive the
implementation of GSD as a step in the transfer
of their jobs to low-cost economies in Eastern
Europe and the Far East. This can, in turn, lead
to an element of fear and mistrust among the
project team members, which would not exist in a
local team. The role of the software development
manager is to understand these fears and address
them where possible. The objective is to ensure that
the team does not become de-motivated about the
work they are expected to do. Maintaining a level
of motivation is an important task that should not

 2085

Globalising Software Development in the Local Classroom

be overlooked by the manager. This in turn will
facilitate the development of “teamness” within
the group, which has to be built across communi-
ties and geographical locations. It cannot be done
in the informal manner in which local teams can
gel together, through casual meetings on the cor-
ridor, or through more company-based structured
activities, for example, starting a sports and social
club (Linnane & Richardson, 2006).

The GSD manager has to consider all the risks
involved in setting up and operating their global
software development team. While risk manage-
ment is an important element within a co-site
software process and it is a level three process
area of the Capability Maturity Model Integrated
(CMMI4sm). The additional risks involved in man-
aging a GSD team are significant and need to be
specifically acknowledged and addressed.

providing gSD competencies to the
graduate

Given the requirements emerging from GSD,
the graduate of the 21st century will not only be
required to have competencies that are useful in
the local development environment; they must
also, for the success of GSD initiatives, demon-
strate those other competencies that allow them
to operate effectively in the global environment.
As educators, we considered how our teaching
methods could be developed and enhanced to instil
these GSD competencies within the graduate. Our
experience has shown that we must be prepared
to introduce experiential learning to the student
through extending education across international
boundaries, cooperating globally between edu-
cational institutions and others, thus giving the
graduate an educational experience which could
not be provided in the local classroom. In the
light of these principles the projects described in
subsequent sections were undertaken.

When introducing an experiential dimension
to student learning, the features of the learning
environment can become different and ultimately

more beneficial than they might otherwise be. By
creating a learning experience that mimics the
dynamics, pressures, and puzzles of “real-life”
GSD environments, we present a learning con-
text that has the potential of addressing some of
the problems that may be associated with more
conventional learning modes. In the light of these
principles the projects described in the section,
Global Software Development in the Classroom,
were undertaken.

eDucAtiOnAl OBJectiVeS
ASSOciAteD WitH interVentiOn

The GSD team structure and process created a
problem-based learning environment for students,
the benefits of which are well documented, for
example, in Savin-Baden (2004) and Barrett
(2005). In particular, the benefits of group work
in which several students work together to solve
a problem or to achieve a task have been evi-
denced in the educational literature. Joy (2005)
has recently shown the particular way in which
group working experiences can be beneficial in
the context of a computer science curriculum by
highlighting learning and experiential outcomes
such as the application of knowledge, motiva-
tion, advanced cognitive competencies (or deep
learning), and self-direction. The importance of
ideological development is also relevant in the way
that Reynolds (1994) has suggested. It is argued
that working on real problems in a group setting
can prepare students to become more collabora-
tively orientated and subsequently more willing
to participate in collective effort.

By setting up virtual teams for software engi-
neering students, we also argue that it is possible
to inject several more specific learning benefits
than the ones that have been briefly outlined. By
learning from direct and relevant experience,
students’ own sense about the plausibility of their
learning environment becomes stronger. Levitt
and March (1988) and Luo and Peng (1999) are

2086

Globalising Software Development in the Local Classroom

among many who highlight the importance of
real-world experience that is applied in the con-
text of a genuinely and realistically problematic
task. Being part of a virtual team in which other
pedagogical support is also available can bestow
a reflective dimension on learning that can allow
students to learn more about themselves through
reflection of the ways in which they engaged with
the process.

Reflective practice in a “safe” environment is
a process that can have both psychological and
pedagogical benefits. It dismantles defensive
reactions to problems and errors and allows par-
ticipants to examine them in order to enhance
understanding and cognitive command of their
features. Indeed, defensiveness in many work
environments often prohibits the capacity for
learning in ways that are damaging to individuals,
teams, and their organisations (Tjosvold, Yu, &
Hui, 2004). Setting up early professional experi-
ences in which teams can effectively reflect on and
analyse their mistakes as well as their successes
in a supported learning environment is one of the
beneficial features that we hoped would prevail
in this particular learning innovation.

We hypothesised that this type of innovation
would create professional precedents that would
make it more likely that participating students
would engage professionally in more learning-
oriented ways. This innovation went beyond just
simulating an environment; it allowed students
to become contributory members of GSD teams.
This could have also created insights about how
a sense of responsibility to deliver their part of
the task is experienced, and how this sense of
responsibility interacts with their learning. These
are the kinds of integrated insights that might
not otherwise have been possible using other
modes of learning. We argue then that the sense
of engagement and responsibility was automati-
cally enhanced. These dynamics of learning are
ones that have been highlighted as crucial to the
creation of self-directed, responsible learners in
higher education (e.g., Hwarng, 2001).

These real GSD experiences also have the
potential to raise student awareness of the impor-
tance of related competencies that they might not
otherwise have considered important. Such com-
petencies include those related to communication
and global interaction; language and intercultural
awareness; and functioning effectively as part of a
team (self awareness; creativity; formulation and
implementation processes; problem solving; time
management; and task completion).

By designing the learning experience de-
scribed in this chapter, we hoped that we would be
able to give rise to the learning benefits outlined
previously. The following section captures the
insights that participating students provided when
asked to reflect on their experiences as part of
the GSD team to which they had been assigned.

glOBAl SOftWAre
DeVelOpment in tHe
clASSrOOm

The University of Limerick (UL) delivers a Mas-
ter of Science course in software engineering.
Participants have previously completed a related
undergraduate degree course. To date, one-third
of the students are working in software develop-
ment and are part-time. The remaining students
are pursuing the degree in full-time mode—85%
of these have no prior industrial experience,
having commenced the degree directly after
completing their undergraduate studies. When
pursuing the MSc degree, students study a variety
of modules which include software engineering
quality, software engineering requirements,
human computer interaction, software design,
software development paradigms, software
evolution, software engineering system design,
and software engineering fundamentals. These
modules account for 60% of course credits, and
the remaining 40% of course credits are obtained
through a final dissertation, encompassing a major
study undertaken by the student.

 2087

Globalising Software Development in the Local Classroom

As educationalists, and given the importance
and growth of GSD within both multinational
and small to medium-sized companies in Ireland,
we strive to expose graduates from this course to
GSD. We do this in some cases through lecturing
on the topic. However, as we aim to maximise
the pedagogic experience for students we have
implemented two specific GSD projects for the
course, where students were given the opportunity
to participate in situated GSD projects. One of
these projects, Ard na Croise,5 is carried out in
conjunction with Siemens Corporate Research,
USA and has been running for 2 years. In each
year, there has been one team of five people from
the MSc class involved. Of these, nine had no prior
industrial experience. The other project, Ainm
an Eolaithe,6 is a collaborative project with Ball
State University, USA and has run during one
course, with 12 full-time students participating in
UL. Ten of these students had no prior industrial
experience. Four of these students also participated
in Ard na Croise.

In implementing these projects we aimed to
equip students with the competencies required
for software developers and managers as given
in Table 1, while additionally expecting that
at least some of the competencies required by
software development managers in working with
globally dispersed teams will be attained by the
participants.

prOJect DeScriptiOnS

Ard na croise with Siemens
corporate research

Siemens Corporate Research, Inc. (SCR) has
been conducting research aimed at developing a
better understanding of the issues and impact of
various practices with respect to GSD. By making
this investment SCR hopes to establish itself as
a GSD centre of excellence that can assist other
Siemens operating companies to cope with the

unique complexities of conducting GSD. SCR,
in conjunction with Harvard Business School,
University of Limerick, Carnegie Mellon Univer-
sity, Monmouth University, Technical University
of Munich, the Indian Institute of Information
Technology Bangalore, University of Toronto,
Penn State University, and the Pontifícia Universi-
dade Católica do Rio Grande do Sul (PUCRS) in
Brazil have set up an experimental geographically
distributed development project (GSP) using stu-
dent teams to study associated issues. The project
ran for 2 years, with different students involved
in the teams each year within the participating
institutions.

Organisation of the global Studio
project

The project simulates a hub-and-spoke model.
The hub is the central team at SCR in Princeton
orchestrating the effort, and the spokes are the
remote teams consisting entirely of participat-
ing students. The central team is responsible for
project management, requirements, architecture,
testing, and integration of the system. The remote
teams are responsible for design, development,
and unit tests for defined work packages that cor-
respond to code modules or subsystems defined by
the central team. Interactions between the central
and remote teams are managed by the role of a
supplier manager. There is a supplier manager
for each remote team and the incumbent of this
role is a member of the central team.

In the first year of the project the central team
was staffed by four members of SCR’s technical
staff (part time) and two masters students (full
time) working onsite at SCR. The team consisted
of several roles: architect, requirements engineer,
project manager, supplier manager, and build
meister. The build meister handled the system
testing, integration, configuration management,
and delivery of artefacts from the teams.

For the second year of the project, the struc-
ture of the central team changed. It was staffed

2088

Globalising Software Development in the Local Classroom

with four interns working full time on the project
along with one member of SCR’s technical staff
working part time in a supervisory capacity.
Team roles were similar to the first phase but
evolved to include an infrastructure manager,
quality assurance manager, process manager,
integrator, and wiki administrator. The role of
a build meister was abolished as it encapsulated
several key responsibilities that could be split and
assigned to various central team members. Three
graduates from the University of Limerick with
an MSc in software engineering were central
team members in the second year, one of whom
became the central team contact for UL.

Remote development teams were set up at five
universities across the globe in the first year. The
teams consisted primarily of masters or graduate
students in the field of software engineering. UL,
Carnegie Mellon University, Technical University
of Munich, and the Indian Institute of Information
Technology each had one team while Monmouth
University had three teams. In the second year of
the project, an additional student team was estab-
lished in PUCRS in Brazil. Each team member
committed a specified number of hours each week
on the project, taking the academic commitment
within their own university into account. Each
team had a direct contact on the central team.

Ard na croise: ul’s involvement in
the global Studio project

Participation by the MSc in software engineering
students at UL in the Global Studio project has
been implemented as part of the MSc dissertation
process. Students are expected to research a topic
relevant to their degree. Students who chose to
participate in the GSP project were expected to
become reflective practitioners within the project
and use this analysis to compare with their chosen
aspect of GSD in the “real world.” For example,
dissertations included a comparison of project
management in the local versus the global, and

how communication is carried out within global
project teams.

In each year, five students volunteered to partic-
ipate in the SCR GSP project. In the first year, none
of the students had previous industrial experience
and did not know each other prior to commencing
the course a few weeks earlier. Each of the students
assumed a role within the team—project leader,
software architect, technical support, tester, and
quality assurance. These roles were decided on
by the team members themselves without any
input from the supervisor. Internally, within the
university, students were given the software and
hardware that they required. This was located in
a laboratory shared with students studying this
course and other postgraduate courses. The UL
team was assigned a supplier manager who was
based in SCR. All contact for the first 2 months
was via Internet or telephone. The supplier man-
ager visited UL at that stage.

In the first year, as with all participating teams,
the UL teams were engaged in the definition
phase of the project. Initial tasks were assigned
with the goal of bringing the teams up to speed
with the building automation domain. Work
breakdown was done considering several factors.
The schedule, available weekly student hours,
and the geographic proximity of the teams to the
central team were all considered when defining the
original work breakdown. During the first year, it
was decided (as part of the research project) not
to allow the UL team to communicate with any
other team. Their communication was only with
the central team. Work packages were defined and
distributed to all of the teams. The initial work
packages contained: requirements specification,
high level architecture, market intent, specifica-
tions, high level project plan, and a description
of the tasks to be completed by the team for the
first engineering release.

In year 2, a new team was formed. One part-
time student had significant experience, and he
became the project leader of the team. Other roles

 2089

Globalising Software Development in the Local Classroom

assumed by each of the team members were de-
fined by the SCR central team. The UL team was
also provided with a space that was private to the
project team. The SCR central team contact for
UL had been the project leader on the UL team
the previous year. Prior to this, no member of the
UL project team knew him, and none of them had
met him. Furthermore, the restriction on the UL
team communicating only with the central team
was removed. A wiki, set up by the central team,
was continually updated by students and central
team members. Otherwise, the project structure
was similar to that in year 1.

Ainm an eolaithe with Ball State
university

As with other aspects of GSD, distributed test-
ing is becoming important to the global software
development industry. Researchers from UL and
Ball State University (BSU) have been involved
in studying management and technical issues
involved in the distribution of testing across
countries within a multinational company who
are based in Ireland, USA, and Malaysia (Casey
& Richardson, 2005; Zage, Zage, & Wilburn,
2005). As part of this research project, we set up
a collaborative teaching project involving MSc
students from both UL and BSU. While we were
interested in establishing “what works” and “what
does not work” when implementing global test-
ing, a further aim of this project was to provide
knowledge and education on GSD to individual
students in both locations.

The time frame for this joint project began
with a week of instruction for the UL students.
The projected testing time line of the project was
to commence with black-box testing7 (UL) in
weeks 2 through 4. During the black-box testing
time frame, it was expected that the white-box
testers (BSU) would review the actual code, would
review the unit testing environment, and prepare
test scripts. At the end of the semester each BSU
team was expected to submit the combined defect

reports (UL and BSU), the white-box testing
scripts, the white-box test cases accompanied
by the testing resources, and a summary report.
The black-box and white-box test cases were to be
recorded in a collaborative testing tool (GATE),
which was used by students from both locations.
Within GATE, students had access to a wiki
where they were free to enter discussions with
each other and where they could add information
about themselves.

Ainm an eolaithe: ul’s involvement
in the testing project

At UL, all full-time students studying software
quality engineering (one module) as part of their
MSc in software engineering course were ran-
domly selected to participate in testing teams,
which comprised two or three students based at
UL. Many of these students did not know each
other prior to the course, so in some cases they
were working with people they had not met before
they attended these classes. However, they had
been in the MSc class together for 8 weeks before
this project commenced. These teams were then
paired, again, at random, with student teams from
BSU, thus creating virtual teams.

Initially some difficulties arose with the provi-
sion of the product to be tested. UL students were
given a week-by-week oral update of status and
were also given regular updates through the class
Web page. This impacted on the start of the initial
projected time line for testing outlined perviously.
The Irish students testing assignment started 3
weeks later than anticipated, which meant that
their training was completed 3 weeks before they
had an opportunity to start testing.

reSeArcH metHODOlOgy

Having instigated and managed both of these
projects within the MSc class, both of which
required extra collaboration and input from the

2090

Globalising Software Development in the Local Classroom

university lecturers, we were interested to es-
tablish the success or otherwise of both of these
global projects. We collected and analysed data
throughout the lifetimes of each of the projects
described previously. The results presented in this
chapter are based exclusively on the analysis of
data obtained from UL participants.

Each member of the two UL Ard na Croise
teams participated in a semistructured interview
with one of the authors. These interviews focused
on the expectations and experiences of each of the
participants. When the interviews were conducted,
five students had completed their dissertations,
the remaining five had completed 3 months’ in-
volvement in the project.

During the Ainm an Eolaithe UL/BSU col-
laboration, UL students were required to maintain
a log book describing their participation. As part
of their continuous assessment submission, they
were required, in teams of two or three, to write
a reflective analysis on the experience of being
involved in a GSD testing team.

While the educational objectives (outlined later
on) were of interest to the researchers, a semi-
structured, grounded approach was adopted, so
that students were facilitated in identifying learn-
ing-related issues in their own words and on their
own terms. However, students were guided in the
provision of responses and insights by a variety
of prompts, which, for example, in the interviews
that were conducted included questions like: Why
did you participate in the project? What were your
expectations? Were your expectations fulfilled?
What did you learn? What was good? What was
bad? What was done well? What was done badly?
What should be changed? What should I keep?
Would you participate again? These prompts had
two functions. Firstly, they were designed to help
students to make more sense of their experiences
and to integrate those insights into their learning.
Secondly, they allow us to capture and dissemi-
nate (via this commentary) issues that may be of
use to teachers and academics planning similar
interventions within their own contexts.

The interview notes, log books, and the reflec-
tive analysis was analysed by the researchers. A
qualitative content analysis of these sources of
data took place in order to identify overarching
themes associated with the students’ experiences
of this learning intervention. A broad analysis of
the frequency of different concepts was conducted
based on an interrogation of the available data.

StuDent inSigHtS

The data gathered from students about their
insights and experiences were rich and diverse,
expressed mainly in their own words in response
to various prompts and delivered as part of the
reflective requirements of the programme of study
on which they were enrolled. We categorised the
feedback, reflections, and ideas that they provided,
while also attempting to stay true to the student
voices and the priorities that they reported.
Throughout this process we maintained aware-
ness of the emphases that we had established as
educators. We observed certain insights, focusing
on either pedagogical process or GSD require-
ments. Oftentimes, these observations were so
intertwined, that they were essentially inseparable
in the eyes of the students themselves. Therefore,
this section organises these student insights into
categories sequenced in order of the frequency and
emphasis with which certain response categories
appeared in the data. There is no explicit division
between pedagogic and GSD issues.

Our analysis of the reflective, qualitative data
reveals seven overarching categories of student
insight into the learning experiences associated
with the GSD project process. These categories
can broadly be summarised under the following
headings:

1. The importance and subtleties of commu-
nication and timing of contact.

2. Interpersonal awareness and team dynam-
ics.

 2091

Globalising Software Development in the Local Classroom

3. The movement from incompetence and
uncertainty to confidence and command
over ambiguous dynamics.

4. Issues associated with energy and emotion:
stress, isolation, commitment, morale, sat-
isfaction, and motivation.

5. Awareness of and concern with how students
present themselves as individuals and teams,
and how they represent their institution

6. Career development advantages.
7. Empowerment, responsibility, and decision

making.

Each category is discussed in further detail.
This discussion is supported by respondent state-
ments (presented in italics).

importance and Subtleties of
communication and timing of
contact

A content analysis of student insights shows that
the issue of communication was the most fre-
quently invoked overarching “insight category.”
A variety of subcategories also emerged here
which mainly focused on the inherent value, the
subtleties, and the timing of communication.
Participants frequently referred to the overall
importance of having virtual team communication
that was regular and positive, while also reveal-
ing perceptions that this was difficult to achieve.
General comments about communication often
revealed how important the participants consid-
ered (or came to consider) it to be:

Communication would be the big one.

Communication can be helped with emails. Phone
calls, Wiki’s, instant messenger etc but require
effort and participation from distributed teams.

The pragmatic issue of timing of communica-
tion was seen generally as a problematic aspect
of the experience, but also often recognised both

as a realistic and inevitable challenge that needed
to be managed. In addition, many of the insights
that students provided suggested that “waiting” for
responses from the team members in the remote
location may have given rise to frustrations and
anxieties that affected the group and its work.

We were told by SCR to sit tight and wait.

Timing can be a problem. If the [local] team finds
an error at 8am then it won’t be until the next
day that team B will tackle the error, leading to
delays.

One student made a link between early com-
munication problems and a feeling of ambiguity
and noted that addressing this would lend clarity
and possibly more momentum to the work that
they had been assigned:

There should be more phone conferences early
in the req phase. This probably would help clear
up ambiguity.

Another respondent recognised the importance
of the proximity of certain types of expertise by
saying:

The remotely located team may have different
knowledge and experience than others and there-
fore communication is a key player to resolve
this issue.

Subtleties of communication and the nuances,
conflicts, and misinterpretations to which it can
often be vulnerable, were also regularly invoked
in this response category. Several respondents
talked about the importance of face-to-face con-
tact and seemed to suggest that tone and patience
are more important when communicating with
remote team members.

Learning point: Know what to say and what not
to say.

2092

Globalising Software Development in the Local Classroom

Team in US was not as helpful as they could have
been. They made us feel bad about it “Where is
it?” I like meeting and talking to people.

With the teams so dispersed there was no face
to face warming of the teams. This led to a slow
start in stimulation of the participants.

The sense of interdependence between the
locations was also invoked:

Coordination of effort also came into play after
the black-box testing phase as the American teams
used our completed tests to form a basis for white
box testing. Our performance would obviously
have an impact on that.

These comments echo with communication
competencies that we identified in Educating
the Graduate section as essential to facilitate
the software developer and manager functioning
effectively in the GSD environment. The student
teams articulated insights about communication
in a global classroom setting, a fact that should
equip them to operate more effectively in subse-
quent GSD work environments.

interpersonal Awareness and
team Dynamics

Commonly, students’ reflective statements about
their experiences as a part of the project, invoked
the issue of interpersonal awareness and team
dynamics. These statements were coded under
this category when they specifically referred to
issues about “getting to know” the remote team
members or themselves more accurately. They
were linked to issues of communication too, but
the following statement types were deemed to be
sufficiently different and more focused on team
dynamics and interpersonal awareness issues to
merit their own category:

We got on very well as a team. We did have
problems. Some worked better with each other.
Some were really pessimistic—could only see the
downside of things. I tried as a team leader to see
the upside—sometimes seeing the downside can
stop a project too—it does stop the whole thing
from happening, or stop the momentum but it
gives a reality check.

I started to understand the importance of group
work. I have more of an understanding of different
personalities—what we had to deal with—laid
back or not.

In particular, one of the respondents indicated
a need to “get the measure” of people in the re-
mote locations and refers directly to “making up”
personalities. [With this project] you never get a
sense of what the other guys are like. We have
made up a personality for [him] (S8). This sug-
gests the conscious “construction”of individual
images along with their own mistrust in their
theories about other people.

There also seem to emerge “theories” about
team functioning. Several comments from re-
spondents suggested that they had generated
overall hypotheses about how teams should work,
based directly on the experiences that they had
with this task:

Teams should be more inquisitive.

When there are 5 people there are always problems
of someone not there.

The development of a sense of “teamness”
among all members of the virtual team was also
highlighted more particularly as problematic
through the following insights:

At no stage was a sense of teamness developed.
In fact at times it felt very much a case of running
test cases and hearing nothing back.

 2093

Globalising Software Development in the Local Classroom

The aforementioned statements reflect a rich
engagement with the development of insights
about team characteristics, and an emerging
sense of understanding gained about the strengths
of different members of the team. Some of the
statements provide evidence of a fine-grained
development of knowledge about which team
member’s strengths relate to which aspect of the
task. In addition, respondents demonsrated the
feeling of getting to know different emotional
orientations towards the processes in which they
were immersed (for example, some people could
only see the downside of things). It is difficult to
see how such fine-grained knowledge of team
dynamics could be achieved without the direct
participation that they had experienced, and it
is unlikely that the curriculum relating to their
programme of study specifies this level of un-
derstanding and knowledge of the nuances and
complexities of team functioning. The statement
provided by respondent S8, reveals something
even more complex—that is, a sense of caution and
awareness about the assumptions made relating
to personalities of people that had not yet been
met in person. We have made up a personality
for [him] is a statement that may reveal the need
for team members to apply characteristics to
people they have not yet met, accompanied by a
recognition that the assumptions are only provi-
sional and cannot be confirmed from a distance.
In terms of interpersonal awareness and insight,
such statements demonstrate strong and complex
learning of some of the intangible aspects of GSD
as a process and a task.

the movement from incompetence
and uncertainty to confidence and
command Over Ambiguous
Dynamics

There is plenty of evidence among the reflec-
tive statements provided in this study that a
developing sense of competence and confidence
started to emerge as part of the GSD experience.

Statements that signalled a gradual unfolding of
knowledge and engagement with the task included
the following:

We did not know what they meant. As we went
through the course more we got to know what
they meant.

We learned from our mistakes and adapted.

It is often said that we learn more from our mis-
takes than our successes and in that case it has
been fair to say that it has been a worthwhile
experience.

It also seemed clear that part of the journey to
competence included encountering an experience
of ambiguity and confusion, as revealed by the
following kinds of statement:

Hard to pin down how code was going to work
in a new system.

A component was changed so all the work we did
before Christmas was wasted.

Requirements were not good. We constantly had
to read between the lines.

Insights about emerging confidence also
appeared frequently in students’ responses and
reports, particularly in response to prompts that
encouraged them to think specifically about what
they had learned from the process. Familiarity,
comfort, and confidence seem to have replaced
the sense of the task having been “daunting” and
of feeling out of their depth. The recognition of
the importance of experience and the role that it
has played in reinforcing and developing their
learning seems to be clear:

Well now I’ve seen that (req doc) before so it won’t
be as daunting .

2094

Globalising Software Development in the Local Classroom

It all comes down to experience. If we could go
back and do it again, we’d do it differently.

The fundamental purpose of education is to
facilitate the journey towards competence. It is
clear from the previous statements that students
appeared to navigate a kind of pedagogical “jour-
ney” to competence. When looking back on this
experience, their insights suggest that the negotia-
tion of confusion and ambiguity was central, if
not essential, to the learning processes in which
they were involved. Again this suggests that there
was something very crucial about the simulated
GSD experience, and that in conventional learning
environments the movement from ambiguity to
clarity might not be as significant or as realistic as
those experienced by this group of students. A link
between these insights and the developing sense of
“teamness” reflected in other comments suggests
that the developing sense of competence might
also occur in tandem with a developing sense of
teamness. This may be evidence of the students’
enhanced understanding of the sophisticated and
complex dynamics of GSD.

issues Associated with energy and
emotion: Stress, isolation,
commitment, morale, Satisfaction,
and motivation

Another common statement category among
students suggested that they were readily able
to identify “emotionally relevant” aspects of the
experience of working in a GSD team. The abil-
ity to signal the relevance of difficult feelings
associated with stress and isolation as well as
the more positive emotions associated with com-
mitment, morale, and motivation demonstrate
another dimension of self-awareness that may
have developed and become enhanced over the
course of the experience.

Student references to experienced stress and
isolation included the following types of state-
ment:

We felt isolated. We felt a bit alone as a small
development team.

It was time consuming and stressful but at the
same time I enjoyed it.

Some of the stress was linked to the time
deadlines associated with the learning experi-
ence, while one respondent also highlighted that
the emotional engagement with the task could
be experienced as simultaneously positive and
negative.

In addition, responding students also seemed
to demonstrate an awareness of the commitment
required in order to complete the task success-
fully and on time. Some of them demonstrated
this awareness by highlighting that among their
team members that commitment was not always
present, while others took commitment as one of
the learning outcomes of the process:

Make sure they understand the commitment they
need to give to the project. People not coming in
[on] time affects morale.

Are you going to be in at 9 a.m. during the 3 week
break. It is worth it in the end if you can do it.

Others noted how the experience induced
commitment by creating inherent motivators into
their lives as students. Statements demonstrating
this insight included the following:

This gave me something to get up and come into
college for [even when my lecture schedule did
not require it].

I have something to push me along.

The realisation of the effective dimension of
working seems to have had an effect on students’
recognition of how feelings can impact on projects.
An explicit recognition of the added value of
intangibles like commitment shows that students

 2095

Globalising Software Development in the Local Classroom

are developing a more subtle comprehension of
how team dynamics work and how emotions
impact on those dynamics in sometimes funda-
mental ways.

Awareness of and concern with How
Students present themselves as
individuals and teams, and How
they represent their institution

A very clear category of statements emerged
from respondents that related specifically to the
ways in which the local student team presented
itself and appeared to the remote members of
the GSD teams. A concern for how they came
across to their corresponding team members in
the other locations emerged as something that
was important to students:

We didn’t want to look like a bunch of muppets
and you were our supervisor.

You don’t want to be seen to be proven wrong.
Very pleased when we were able to say the other
team was wrong.

We didn’t want to be seen as a failure.

These statements express that students were
prevented from availing themselves of useful
learning moments during the process. They were
reluctant to clarify, question, and learn. This was
not because of pressure from lecturers, project
supervisors, or central team members but because
of an internal pressure that they put on themselves
and a concern regarding how they might be viewed
by other stakeholders in the process.

It also seems clear that once they had met face
to face with a representative of the remote team
members, this reluctance and concern diminished
significantly:

Once they met the guy from Siemens they were
much happier.

This year’s team haven’t got that problem at all
because the links are stronger.

Furthermore, the implementation of the wiki,
which is used as a remote communication tool
within the Ard na Croise project during year 2
has helped communication—Wiki may be help-
ing too—to break taboo about asking “stupid”
questions. The wiki contains questions from all
students internationally—so UL students have
visibility into queries from other international
student teams. This was not the case in year 1
of the project, when UL students were isolated
from communicating with other teams. This was
a decision of the research project team.

The most striking aspect of this category of
statements lies in its identification of a learning
paradox within the student teams. On one hand,
the concern for projecting themselves in a posi-
tive light led to them wanting to work hard and
appear to be performing at high levels. This may
have boosted their motivation and engagement
with the task. On the other hand, the need to be
seen in a positive light seemed, at least occasion-
ally, to block good learning, as the students were
reluctant to ask important questions at key stages
in the process.

career Development Advantages
and practical “real-life” experience

Students tended also to invoke the pragmatic
and instrumental benefits associated with hav-
ing participated in the process. Many of them
mentioned specifically how being able to say
they had participated in the project would be
helpful for their career opportunities, indicating
particularly that it would give them “the edge”
in an interview setting.

In addition the benefits of having been in-
volved in an activity that reflected the real life
pressures and structures of GSD was something
that they invoked explicitly as being positive and
beneficial:

2096

Globalising Software Development in the Local Classroom

While we did not hypothesise that this experi-
ence would be seen in such pragmatic ways by the
participants, our research shows that the pragmatic
benefits of participating in this kind of educational
experience must not be underestimated. We as
educators tend to look at the “whole curriculim”
as contributing to the overall employability of our
students. However, it seems in this instance that
the specific GSD experience reported here was
heavily weighted by students as having particu-
larly useful career development effects. It is worth
noting that out of five participants in one of the
GSD projects, three were subsequently employed
in GSD environments, a series of choices and
opportunities that may not have arisen without
their participation while studying.

empowerment, locus of control,
and Decision making

Students also highlighted the struggles and issues
that they encountered in the development of a
more “internal locus of control” for the work that
they were doing. They highlighted key questions
and problems that seem to indicate that a gradual
emerging of empowerment occurred over the
course of the project. The worries associated with
who was responsible for what were indicated in
the following types of statements:

I’d feel a good bit responsible.

I didn’t think we should go to Ita.

One student articulated an emerging convic-
tion that the decision making relating to the task
ultimately lay within their own team:

We had to learn to figure things out for our-
selves.

Several noted the issue of responsibility and
locus of control as something that needed to be
defined and clarified:

Something like a contract would be good at the
start.

It’s important to assign responsibilities. If we don’t,
no-one will take it on for themselves.

Another intangible but important aspect of
learning and work performance is relevant to this
issue of locus of control. Understanding levels
of responsibility and empowerment influences
individual and group decision making in very
significant ways. In grappling with the issue of
locus of control and decision making in GSD con-
texts, students also seem to have gained a possibly
deeper level of insight about their engagement
with the tasks and processes.

The pragmatic effects of student participation
can be seen explicitly when we analyse their career
development advantages. However, there were
other pragmatic effects observed in the study,
for example, following their participation in the
global projects, they recognise the importance
of teamwork (I learned a lot of things that are
valuable like working with the group), how they
need to change their work practices (It involved
changing my mindset from haphazard to process),
and how to deal with responsibility (Need to set
ground rules and clarify responsibility).

As illustrated in Table 1, graduates are ex-
pected to demonstrate competencies for use in the
GSD environment. Through involvement in the
projects discussed, students had exposure to all
of the competencies required by the software de-
veloper. Through the discussion on interpersonal
awareness and team dynamics, students developed
communication and language and worked with
other cultures. They also had exposure to commu-
nication tools and how these are used differently
by different cultures (for example, Differences
in the Irish and American teams—Irish used
email more, but US used discussion boards).
The reality of temporal issues became clear
(Communication may have been delayed as a
result of the time difference). The students were

 2097

Globalising Software Development in the Local Classroom

also exposed to cooperation issues. Not only did
they have to work together within local teams,
they also had to cooperate with internationally
dispersed teams. Furthermore, in the Global
Studio Project, in particular, they were required
to report to a “management” team in Siemens
Corporate Research. As discussed earlier, this
was not always an easy task and participation
ensured that the students learned how to cooperate.
In our interviews, statements from the students
such as—One would make breakthrough, others
would put shoulders to the wheel—illustrate this.
In the global environment, as in other development
environments, software developers should also be
aware of processes and process tools. Participants
in these projects were exposed to processes such
as requirements and configuration management
and were expected to continue development even
with changing requirements. Global tools were
implemented and used by the students. Students
were expected to make regular reports to both
their internal university supervisor and to the
teams with whom they were working.

In addition to competencies required by the
software developer, students were also exposed to
some of those required by the software manager.
In particular, they experienced roles, responsibili-
ties, and competencies management. In one case,
when the students stated: We didn’t want to look
really bad. We all thought that if we kept ringing
with questions, we did not want to seem incom-
petent; they learned that to survive in the global
environment, then they needed to do exactly the
opposite and have their questions answered.

cOncluSiOn AnD OBSerVAtiOnS

Through the qualitative analysis of key reflective
statements conducted for this chapter, it has been
possible to extract several overarching themes
that demonstrate participants’ own perceptions of
the learning concerns, experiences, benefits, and

outcomes associated with being part of a virtual
GSD team. We now bring these themes together
in an effort to map the student experiences with
pedagogical interventions and aims associated
with this project.

Moore and Ryan (2006) remind educators that
“Important truths that seem obvious to experi-
enced practitioners can often only be learned by
students if they have been encountered in a ‘deep’
as opposed to a ‘shallow’ sense.” In the complex
experience of joining an international, virtual
GSD team, students gained insights, learned
lessons, and acquired understanding that would
otherwise have been very difficult, if not impos-
sible to achieve. In an analysis of students’ own
words we have seen evidence of both cognitive
and affective breakthroughs achieved directly as a
result of their experience with a GSD environment
and tasks. While students could be given vicari-
ous insights (through lectures, tutorial sessions,
and discussion forums) about the importance of
knowing the subtleties of communication, team
dynamics, and perceptions, we find it difficult to
imagine how the range of work-based compre-
hension that they have reported could possibly
be achieved outside of the experiential frame
provided by this learning experience. In sketch-
ing out the framework of competencies that the
literature highlights as central to the needs of GSD
developers and managers, we are struck by the
parallels found between this competence set and
those identified by the students when discussing
and explaining their learning outcomes.

For several decades now, there have been sig-
nificant criticisms of conventional higher educa-
tion environments. Biglow (1983) highlighted a
direct link between university classroom norms
and the problems faced by graduates on entering
the workplace. Passivity, dysfunctional competi-
tion, and lack of a sense of responsibility are, he
argues, all facilitated by inactive, disengaged
educational environments. While conventional
educational norms can be active, engaged, and

2098

Globalising Software Development in the Local Classroom

excellent, it is arguably much easier to create these
conditions in more experiential settings like the
ones described and evaluated in this chapter.

By observing the seven outcomes identified
previously, it is possible to argue that there are
three forms of learning impact experienced by
students who participated in this project: (1) peda-
gogical, (2) pragmatic, and (2) achievement of spe-
cific GSD competencies. The pedagogical effects
can be tracked most strongly through observed
references to the journey from incompetence to
competence. The pragmatic effects, while they
may derive from this journey, are more closely
evidenced by participants’ own insights about
the practical and optical value of participation.
The specific GSD competency development is
demonstrated through the students’ own reported
sense of achievement, but still requires confirma-
tion through the normal curriculum assessment
process. We do, however, argue that the sense of
competence that the students report sets the scene
for more positive and engaged learning, even in
didactic contexts.

In summary, we champion the application of
the learning experiences we have described in this
chapter, while recognising that the implications
of this for GSD learning are that educators need
to work interinstitutionally and in tandem with
industry where relevant. Mimicking real work
settings creates the possibility of giving rise to
the range of learning benefits that are associated
with truly problem-based learning environments.
Adding pedagogical support, opportunities for
reflection, and the capacity to revise and develop
ideas using experienced teachers as a sounding
board creates an added-value environment that we
believe should become a standard part of software
engineering education curricula.

AcKnOWleDgment

The research in this chapter has been funded by
Science Foundation Ireland through the Princi-

pal Investigator, B4Step project (Grant no. SFI
02/IN.I/108) and Cluster project GSD for SMEs
(Grant no 03/IN3/1408C) within the University of
Limerick, Ireland; by the National Science Foun-
dation (U.S.) within the Software Engineering
Research Center, Ball State University, Muncie,
Indiana, U.S. (Grant no: EEC-0423930); and by
Siemens Corporate Research, Princeton, New
Jersey, U.S.

referenceS

Augar, N., Raitman, R., & Zhou, W. (2004,
December 5-8). Teaching and learning online
with Wikis. In R. Atkinson, C. McBeath, D.
Jonas-Dwyer, & R. Phillips (Eds.), Beyond the
comfort zone: Proceedings of the 21st ASCILITE
Conference (pp. 95-104).

Barrett, T. (2005). Understanding problem based
learning. In Barrett, MacLabhrainn, & Fallon
(Eds.), Handbook of enquiry and problem based
learning: Irish case studies and international
perspectives. AISHE: Galway.

Bigelow, R. (1983, May). The importance of en-
gagement and responsibility in higher education.
Paper presented at the University of Iowa Educa-
tional Development Conference, Iowa City.

Boland, D., & Fitzgerald, B. (2004). Transitioning
from a co-located to a globally-distributed soft-
ware development team: A case study and Ana-
log Devices Inc. ICSE International Workshop
on Global Software Development, Edinburgh,
Scotland.

Carmel, E. (1999). Global software teams: Col-
laboration across borders and time zones. Upper
Saddle River, NJ: Prentice Hall.

Casey, V. (2007). PhD to be published, University
of Limerick, Ireland.

Casey, V., & Richardson, I. (2004). Practical
experience of virtual team software develop-

 2099

Globalising Software Development in the Local Classroom

ment. European Software Process Improvement
(EuroSPI) 2004, Trondheim, Norway.

Casey, V., & Richardson, I. (2005, September
26-30). Virtual software teams: Overcoming the
obstacles. Third World Congress on Software
Quality, Munich, Germany, 1-63 to 1-70, Vol-
ume 1.

DeSanctis, G., Staudenmayer, N., & Wong, S. S.
(1999). Interdependence in virtual organisations,
The virtual organization (Trends in organiza-
tional behavior). Chichester, England, UK: John
Wiley & Sons.

Ebert, C., & De Neve, P. (2001). Surviving global
software development. IEEE Software, 18(2),
62-69.

Grinter, R. E., Herbsleb, J. D., & Perry, D. E.
(1999). The geography of coordination: Dealing
with distance in R&D work. In Proceedings of
ACM SIGGROUP Conference on Supporting
Group Work (pp. 306-315). Phoenix, AZ.

Hayes, I. S. (2002). Ready or not: Global sourcing
is in your IT future. Cutter IT Journal, 15(11),
5-11.

Herbsleb, J. D., & Grinter, R. E. (1999). Splitting
the organisation and integrating the code: Con-
way’s law revisited. Twenty-first International
Conference on Software Engineering, Los An-
geles: IEEE Computer Press.

Herbsleb, J. D., & Mockus, A., Finholt, T. A.,
& Ginter, R. E. (2000). Distance, dependencies
and delay in a global collaboration. ACM confer-
ence on Computer Supported Cooperative Work,
Philadelphia: ACM Press.

Herbsleb, J. D., Paulish, D. J., & Bass, M. (2005,
May 15-21). Global software development at
Siemens: Experience from nine projects. In Pro-
ceedings of the 27th International Conference on
Software Engineering, ICSE ’05 (pp. 524-533).
New York: ACM Press.

Hwarng, H. B. (2001). A modern simulation course
for business students. Interfaces, 31(3), 5-11.

Jarvenpaa, S. L., & Ives, B. (1994). The global
network organization of the future: Informa-
tion management opportunities and challenges.
Journal of Management Science and Information
Systems, 10, 25-57.

Joy, M. (2005). Group projects and the computer
science curriculum. Innovations in Education and
Teaching International, 42(1), 15-25.

Kiel, L. (2003). Experiences in distributed de-
velopment: A case study. ICSE International
Workshop on Global Software Development,
Portland, OR.

Levitt, B. B., & March, J. G. (1988). Organisa-
tional learning. Annual review of Sociology, 14,
319-340.

Linnane, S., & Richardson, I. (in press). Dis-
tributed software development—Difficulties for
the SME. In Perspectives in Software Quality,
Proceedings of Software Quality Management
Conference, SQM2006, (pp. 113-128). South-
ampton, UK.

Lipnack, J., & Stamps, J. (1997). Virtual teams:
Reaching across space, time and organisa-
tions with technology. New York: John Wiley
& Sons.

Luo, Y., & Peng, M. W. (1999). Learning to
compete in a transition economy: Experience,
environment and performance. Journal of Inter-
national Business Studies, 34, 52-68.

McDonough, E. F., III, Kahn, K. B., & Barczak,
G. (2001). An investigation of the use of global,
virtual, and collocated new product development
teams. Journal of Product Innovation Manage-
ment, 18, 110-120.

Moore, S., & Ryan, A. (2006). Learning to play the
drum: An experiential exercise for management

2100

Globalising Software Development in the Local Classroom

students. Innovations in Teaching and Learning
International, 435-444.

Nidiffer, K. E., & Dolan, D. (2005). Evolving
distributed project management IEEE Software,
22, 63-72.

O’Brien, J. A. (2002). Management information
systems managing information technology in
the business enterprise (6th ed.). McGraw-Hill
Irwin.

Organisation for Economic Co-operation and
Development (OECD). (2004). International
investment perspectives. France: Author.

Powell, A., Piccoli, G., & Ives, B. (2004). Virtual
teams: A review of current literature and direction
for future research. The DATA BASE for Advances
in Information Systems, 35, 6-36.

Pyysiainen, J. (2003). Building trust in global
interorganizational software development proj-
ect: Problems and practices. ICSE Workshop on
Global Software Development.

Reynolds, M. (1994). Groupwork in education
and training. London: Kogan Page.

Riley, M. (2005, September 13). The proof is out
there. Software Development. Retrieved February
2006, from http://www.sdmagazine.com/docu-
ments/s=9889/sdm0510b/0510b.html

Robey, D., Khoo, H. M., & Powers, C. (2000).
Situated learning in cross-functional virtual
teams. IEEE Transactions on Professional Com-
munications, 43(1), 51-66.

Savin-Baden, M. (2004). Understanding the im-
pact of assessment on students in problem based
learning. Innovations in Education and Teaching
International, 41(22), 221-233.

Sommerville, I. (2001). Software engineering (6th
ed.). Harlow, UK: Addison-Wesley.

Technology Foresight Ireland. (2001). Information
and communications technologies. Report from
the Information and Communications Technolo-
gies Panel. Dublin, Ireland: Forfás.

Tjosvold, D., Yu, Z., & Hui, C. (2004). Team
learning from mistakes; The contribution of co-
operative goals and problem solving. Journal of
Management Studies, 41(7), 1223-1245.

Toaff, S. S. (2002). Don’t play with “mouths of
fire” and other lessons of global software develop-
ment. Cutter IT Journal, 15(11), 23-28.

Zage, D., Zage, W., & Wilburn, C. (2005, April).
Test management and process support for virtual
teams (Tech. Rep. No. SERC-TR-271). Muncie,
IN: Ball State University.

enDnOteS

1 A virtual team may be formally defined as
“A team whose members use the Internet,
intranets, extranets and other networks
to communicate, coordinate and collabo-
rate with each other on tasks and projects
even though they may work in different
geographical locations and for different
organisations” (O’Brien, 2002).

2 sm CMMI is a service mark of Carnegie
Mellon University.

3 A wiki (from the Hawaiian word meaning
quick) is a user-editable Web site. Users
can visit, read, reorganise and update the
structure and content of a wiki as they see
fit. An Internet connection and Web browser
are all that are required to read and edit a
wiki, (Augar, Raitman, & Zhou, 2004).

4 sm CMMI is a service mark of Carnegie Mellon
University

5 Ard na Croise (height of the cross) is a hy-
dro-electric power station built by Siemens,
Germany and is located about 8km from the

 2101

Globalising Software Development in the Local Classroom

University of Limerick. Its 75th anniversary
was celebrated in 2005.

6 Anim an Eolaithe (name of the scientist): In
recognition of the scientific achievements in
Ireland and the U.S., each of the teams was
named after two celebrated scientists—one
Irish and one American.

7 Black-box or functional testing is an ap-
proach to software testing where tests
are derived from the program or from its
specification. Success or failure of the test
can only be determined from studying its
inputs and related outputs (Summerville,
2001).

This work was previously published in Information Systems and Technology Education: From the University to the Workplace, ed-
ited by G. Lowry and R. L. Turner, pp. 82-104, copyright 2007 by Information Science Reference (an imprint of IGI Global).

2102

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.19
A Requirement Elicitation
Methodology for Global

Software Development Teams
Gabriela N. Aranda

Universidad Nacional del Comahue, Argentina

Aurora Vizcaíno
Universidad de Castilla-La Mancha, Spain

Alejandra Cechich
Universidad Nacional del Comahue, Argentina

Mario Piattini
Universidad de Castilla-La Mancha, Spain

IntroductIon

Failures during the elicitation process have been
usually attributed to the difficulty of the devel-
opment team in working on a cooperative basis
(Togneri, Falbo, & de Menezes, 2002), but today
there are other points that have to be considered.
In order to save costs, modern software organiza-
tions tend to have their software development team
geographically distributed, so distance between
members becomes one of the most important
issues added to the traditional problems of the

requirement elicitation process (Brooks, 1987;
Loucopoulos & Karakostas, 1995).

So far, literature has widely analysed real life
Global Software Development (GSD) projects
and pointed out the main problems that affect
such environments, especially related to com-
munication. As a complementary view, we have
focused our research on analysing how cognitive
characteristics can affect people interaction in
GSD projects, especially during the require-
ment elicitation process, where communication
becomes crucial.

 2103

A Requirement Elicitation Methodology for Global Software Development Teams

In this article, we present the main character-
istics of requirements elicitation in GSD projects
and introduce a cognitive-based requirement
elicitation methodology for such environments.

BAcKgrOunD

Advantages and challenges of GSD have been
widely analyzed in literature. As part of the ad-
vantages, the most cited are:

•	 Taking advantage of time difference to ex-
tend productive hours (Herbsleb & Moitra,
2001);

•	 Minimizing development costs (Lloyd, Ros-
son, & Arthur, 2002);

•	 Locating developers closer to the customers
(Damian & Moitra, 2006); and

•	 Taking advantage of diversity of stakehold-
ers’ knowledge and experiences (Ebert &
De Neve, 2001).

On the other hand, the challenges that GSD
must face are (Damian & Zowghi, 2002):

•	 the loss of communicative richness, affected
by the lack of face-to-face interaction;

•	 the time difference between sites, that in-
troduce delays in the project;

•	 cultural diversity, as a source of misunder-
standings; and

•	 knowledge management, because of the
need of maintaining information from many
distributed sources.

Looking for solutions to improve communica-
tion in GSD, concepts from CSCW (Computer-
Supported Cooperative Work) become important
because this research area concerns the develop-
ment of software for enabling communication
between cooperating people (groupware), that
can be simple systems (like e-mail or plain-text
chat), more complex ones (like videoconferenc-

ing), or the combination of more than one of
them. To be more specific, when talking about
groupware we follow a convention: We refer to
every simple communication technology (e-mail,
chat, videoconference) as groupware tools, and
to the systems that combine them as groupware
packages (Gralla, 1996). Doing so, the most
common groupware tools used during multisite
developments are e-mails, newsgroups, mailing
lists, forums, electronic notice boards, shared
whiteboards, document sharing, chat, instant
messaging, and videoconferencing (Damian &
Zowghi, 2002; Gralla, 1996).

Another research area related to the distributed
requirements elicitation process is Cognitive In-
formatics (CI), a transdisciplinary research area
that encompasses informatics, computer science,
software engineering, mathematics, cognition sci-
ence, neurobiology, psychology and philosophy,
and knowledge engineering (Chiew & Wang,
2003). In CI, there is a bidirectional relation-
ship between cognitive sciences and informatics
(Wang, 2002):

1) using computing techniques to investigate
cognitive science problems like memory,
learning, and thinking; and

2) using cognitive theories to investigate infor-
matics, computing, and software engineer-
ing problems.

In our research, we have followed the second
point of view, using concepts from cognitive
psychology to improve the requirement elicitation
process. Doing so, our research focused on learn-
ing styles models (LSMs), a cognitive psychology
theory based on Jung’s theory of psychological
types published in 1921 (Miller & Yin, 2004),
that classify people according to the ways they
perceive and process information. These models
have been discussed in the context of analyzing
relationships between instructors and students,
but we propose applying them to a virtual team
that deals with a distributed requirement elicita-

2104

A Requirement Elicitation Methodology for Global Software Development Teams

tion process, considering an analogy between
stakeholders and roles in LSM, because during
the elicitation process everybody “learns” from
others (Martin, Martinez, Martinez, Aranda, &
Cechich, 2003), and stakeholders play the role of
students or instructors alternatively, depending on
the moment or the task they are carrying out.

After analyzing five LSM in Martin et al.
(2003), we found out that every item in the other
models was included in the model proposed by
Felder-Silverman (Felder & Silverman, 1988), so
that we may build a complete reference frame-
work choosing this as a foundation. The Felder
and Silverman (F-S) model classifies people into
four categories, each of them further decomposed
into two subcategories (Sensing – Intuitive; Visual
– Verbal; Active – Reflective; Sequential – Global).
To know their cognitive profile, people must fill
in a multiple-choice test (available at http://www.
engr.ncsu.edu/learningstyles/ ilsweb.html), that
returns a rank for each category. Depending on
the circumstances people may fit into one category
or the other, being, for instance, “sometimes”
active and “sometimes” reflective, so preference
for each category is measured as strong, moder-
ate, or mild.

Most of related works use learning and psycho-
logical style models with educational purposes,
while few works use them to solve problems in
software engineering. One work which uses cogni-
tive styles as a mechanism for software inspection
team construction is described in Miller and Yin
(2004). They use the MBTI method, an instrument
similar to the F-S model. Their intent is different
from ours because they use the cognitive styles
to set which people seem to be more suitable
to work together, while we try to give the best
solution (concerning technology) for an already
chosen group of people.

Our metHODOlOgy: re-gSD

In order to define the basis for a methodology
for requirement elicitation in GSD projects, we
have analyzed methodologies used in colocated
development and proposed extending them from
a cognitive point of view, using the F-S model
as a basis for defining a model for technology
selection.

We have called our methodology RE-GSD
(Requirement Elicitation for Global Software
Development projects) and, as a starting point
for it, we have selected the models proposed by
Christel and Kang (1992) and Hickey and Davis
(2003). This selection is due to the fact that both
models share a generic view of the selection of
requirement elicitation techniques, which fits
our intention of defining what to use accord-
ing to stakeholders’ personalities. Both models
have been extended and adapted to a distributed
environment, so that our methodology can be
expressed as follows (see Figure 1):

1. Preliminary data collection: Further de-
composed into two categories: (1) about the
stakeholders, and (2) about the system and
the domain.

2. Virtual team definition & Technology
selection: Before starting the requirement
gathering, it is important to determine who
is going to participate in that stage, because
not all the stakeholders in the project are
required to participate in every iteration of
the elicitation process. Then, the selection
of appropriate technology should be carried
out, that means, choosing the most appropri-
ate set of requirement elicitation techniques
and groupware tools for a given group of
people, by taking into account their personal
characteristics.

 2105

A Requirement Elicitation Methodology for Global Software Development Teams

3. Requirement gathering: Once technology
has been defined, it is time to apply the re-
quirement elicitation techniques (which are
combined with appropriate groupware tools)
to obtain a new list of requirements, trying
to answer “what” is to be built (Christel &
Kang, 1992).

4. Requirement evaluation: In this stage, re-
quirements lists must be analyzed in order
to determine consistency between different
statements.

5. Requirement prioritization: Once require-
ments are defined, it is important to give
them an order of relative importance so as
to know when they should be addressed in
relation to other requirements (Christel &
Kang, 1992). Specially designed tools for dis-
tributed requirement inspection (Lanubile,
Mallardo, & Calefato, 2003), which allow
synchronous and asynchronous discussion,
voting, and so forth, can be used to address
both this step and the previous one.

6. Requirement integration and validation: In
this step, the new requirement list must be
integrated to the requirements collected in

the previous iterations, looking for incon-
sistencies also with the system’s goals and
organizational factors initially defined.

The following sections present the first two
phases of our model that are related to our pro-
posal of technology selection according to the
stakeholders’ cognitive styles.

pHASe 1: preliminAry DAtA
cOllectiOn

a) About the stakeholders
1) Identify people whose participation is

important for the requirement elicita-
tion process, including people from
different levels of the organization.

2) Get personal information about stake-
holders, using the form shown in Figure
2. Some important points for distrib-
uted environments are, for instance,
distinguishing which is the given name
and the family name, because differ-
ent cultures use different order (for

Preliminary Data
Collection

Virtual Team Definition
& Technology Selection

Requirement Gathering

Requirement Evaluation

Requirement Prioritization

Integration and Validation

Figure 1. RE-GSD methodology

2106

A Requirement Elicitation Methodology for Global Software Development Teams

Figure 2. Stakeholder’s personal information form

Stakeholder’s Personal Information Form

Complete Name (as written in the ID card)

Given Name Family Name

Nickname (optional)

Birthday

Gender

Mother Language
Country of Origin

Country of Residence

Academic degree University / College Years of study

For each foreign
language
(mark with an
X your level of
knowledge)

<Language> low low-interm interm high- interm high

Writing

Reading

Speaking

Felder and Silverman preferences Active
Reflexive

Sensitive
Intuitive

Visual
Verbal

Sequential
Global

instance, in China the family name
goes first, while in most of occidental
countries, the family name is the last
one). Also, recording information about
the country of origin and the country of
residence is important to identify their
mother language and possible differ-
ences in cultural background, as well
as the foreign languages stakeholders
know to choose a second language.

3) Get information about stakeholders’
job, roles, responsibilities and sched-
ules. And because they are distributed,
obtaining information about each team
member’s location (time difference with
other sites, work hours, lunch time, etc.)
is relevant for other members to know
how to contact each other. The form is
shown in Figure 3.

b) Get information about the structure, culture,
and internal politics of the organization
(SWEBOK, 2004), to answer the following
questions:

4) About the groupware tools: Which
groupware tools are commonly used
in the organization? Have stakehold-
ers received training in the use of
groupware tools? Which ones do they
know better? Which ones have they
not used before? Is there any policy
that limits the use of groupware tools?
Are stakeholders willing to learn how
to use other groupware?

5) About the requirements elicitation tech-
niques: Which requirement elicitation
techniques are commonly used in the
organization? Have stakeholders re-
ceived training in the use of requirement
elicitation techniques? Which ones do
they know better? Which ones have
they not used before? Are stakeholders
willing to learn new techniques?

6) About the organizational culture: Do
organizational policies allow stakehold-
ers to communicate with others in the
virtual team freely, or is there a person
that must act as a mediator?

 2107

A Requirement Elicitation Methodology for Global Software Development Teams

c) About the system and the domain
7) Get information about the domain and

the system in construction.
8) Determine the system goals.

 9) Identify similar systems

pHASe 2: VirtuAl teAm
DefinitiOn AnD tecHnOlOgy
SelectiOn

As we have mentioned before, we aim at defining
strategies that analyze the personal characteristics
of stakeholders with the objective of selecting the

best groupware tools and requirement elicitation
techniques for them. For that reason, selecting
appropriate groupware tools is related to our goal
of providing the stakeholders with the possibility
of communicating with others in a manner closer
to the way in which they perceive and process
information. That means giving them the chance
to feel comfortable with the way in which they
interact (synchronously or asynchronously) and
the kind of information they interchange (based
on words, based on diagrams, etc.).

Even when the technology selection is done for
a given virtual team before the elicitation process,
obtaining the preference rules is a previous step.

Figure 3. Stakeholder labour information form
Stakeholder’s Labour Information Form

Role during RE

Job description
Position Time in such a position: …….... years ……... months

Place Time difference (GM)

Daily timetable Monday Tuesday Wednesday Thursday Friday Saturday

Arrival time

Dismissal time

Coffee-break(s)

Lunch break from
 to

 from
 to

 from
 to

 from
 to

 from
 to

 from
 to

Time I prefer to be
called

 from
 to

 from
 to

 from
 to

 from
 to

 from
 to

 from
 to

Contact information
(write the number or
user login name)

 Telephone (number)
Country code …….. City code ………
 Numbers
 (1) ……………………………….
 (2) ……………………………….
 (3) ……………………………….

 Fax (number)
 Country code …….. City code ………
 Numbers
 (1) ……………………………….
 (2) ……………………………….
 (3) ……………………………….

 E-mail (user name)
 (1) ……………………………….
 (2) ……………………………….
 (3) ……………………………….

 Instant messaging (user name)
 MSN: ……..………………………..….
 Yahoo messenger: ………….…………
 Skype: …...………………….…………
 Other: ……………………………...….

I have also the
possibility
to use (check)

 videoconference
 audio conference
 others: ……………………………………………………………………………………

If I can choose, I
prefer using (put a
value of preference
between 1 and 10)

…….. e-mail
…….. telephone
…….. instant messaging
…….. discussion forums

…….. shared whiteboards
…….. audio conference
…….. videoconference

2108

A Requirement Elicitation Methodology for Global Software Development Teams

Preference rules are obtained from a generic set
of people that works on GSD projects, and then
the resulting sets can be used in many different
GSD projects as well as different virtual teams,
at the same time that new information can be
added to improve the source of knowledge of the
fuzzy logic system.

Obtaining preference rules

In order to support personal preferences toward
groupware tools, in Aranda, Cechich, Vizcaíno,
and Castro-Schez (2004) a model based on fuzzy
logic and fuzzy sets to obtain rules from a set of
representative examples has been proposed. The
obtained rules represent patterns of behavior that
indicate the preferences of stakeholders in their
daily use of groupware tools and requirements
elicitation techniques, according to their classifica-
tion in the F-S model. To do so, we have collected
examples of people preferences and applied a
machine learning algorithm. The algorithm we
chose (Castro, Castro-Schez, & Zurita, 1999) finds
a finite set of fuzzy rules to reproduce the input-
output system’s behavior. Using this machine
learning algorithm over a set of examples that
represent the preferences of many stakeholders,
we obtained a set of rules (Aranda, Vizcaíno,

Cechich, Piattini, & Castro-Schez, 2006). The
resulting set of preference rules can be applied
to choose the best suite of groupware tools for
a group of people by analyzing the results and
combine them appropriately, as we will explain
in the next section.

the technology Selection Strategies

According to the analysis of real life projects,
analysts are those who choose the techniques for
requirement elicitation (Hickey & Davis, 2003).
To model such a selection, Hickey and Davis’
model considers a personal selector function π
that returns a technique ti, from a given a set
of techniques {t} and a set P that represents the
personal preferences of the analyst. That means
only the analyst’s preferences are taken into ac-
count, as it is shown in Figure 4.

A first attempt to adapt the previous generic
model to our cognitive point of view analyzes the
preferences of all the stakeholders and chooses the
technique that has more adherents (Aranda, Viz-
caíno, Cechich, & Piattini, 2005). This extension
of the π function, called π*, is shown in Figure 5.
In this formula PSi represents a set of techniques
that fit the i-th stakeholder’s preferences (defined
by the mechanisms based on fuzzy logic and fuzzy

Figure 4. Requirement technique selection according to analyst’s preferences (π)

Requirements Elicitation Techniques
Universal Set

Suitable
Req.Elicitation

Techniques

T

{t}
Analyst’s
preferred

techniques

P

 ({t} , P) → ti ∈ {t} ti

 2109

A Requirement Elicitation Methodology for Global Software Development Teams

sets we have described previously), and ti ∈ {t}
is the technique that appears in most of the PSi.
In this case, analysts are considered without any
priority over the rest of the stakeholders.

A later improvement of π* considers the rela-
tive importance of stakeholders’ preferences by
means of weighting them. Its purpose is that, if
some stakeholders’ preferences are stronger than
the rest, the preferences that should be primarily
considered are those of the first group of stake-

holders. Also, the different weights might be used
to prioritize preferences according to stakehold-
ers’ roles. The resulting function, called π**, is
shown in Figure 6. In this case, wsi represents
the weight (how strong the preferences are), and
the resulting ti is a technique that is appropriate
for the current situation and is also appropriate
for the stakeholder whose personal preferences
are the strongest.

Figure 5. Requirement technique selection according to the most common preference (π*)

Figure 6. Requirement technique selection according to the strongest preferences in the group (π**)

Suitable
Req.Elicitatio

Techniques

T

{t}

PS1

* ({t} , {PS1} , {PS2} , …, {PSt }) → ti ∈ {t}

ti

Requirements Elicitation Techniques
Universal Set

Stk 1
preferred

techniques

Stk 2
preferred

techniques

Stk 3 preferred
techniques

PS2

PS3 n

Suitable
Req.Elicitatio

T

{t}

PS1

** ({ t} , ({ PS1} , ws1), ({PS2} ,ws2), … ,({ PSn} ,wsn)) → ti ∈ { t} ∧ ti ∈ {PSj}
∧ wsj = max(ws 1, ws2,… , wsn)

ti

Requirements Elicitation Techniques
Universal Set

Stk 1
Preferred

techniques

Stk 2
Preferred

techniques

Stk 3 Preferred
techniques

PS2

PS3

Stakeholder with the
strongest preference

techniques
n

2110

A Requirement Elicitation Methodology for Global Software Development Teams

pHASe 3: reQuirement
gAtHering

At the moment of deciding how to conduct the
requirement gathering, the first step is deciding
which of the possible techniques is best, given a
current state of knowledge and a particular situa-
tion. To do so, the Hickey and Davis model defines
the selector function σ (shown in Figure 7).

In a scenario where stakeholders are distributed
along many geographically distanced sites, the se-
lector function σ must also consider other aspects.
The most important are time difference and the
level of knowledge of a common language.

Time difference is important because when
timetable does not overlap, or overlaps for a very
short period of time, synchronic communication
is not possible, then the selection process should
prioritize those techniques that work better on
asynchronous basis. Similarly, when stakeholders
do not share the same language, some of them
would need more time to read, think quietly,
look for some vocabulary in the dictionary, and
so forth.

With those considerations in mind, we ex-
tended the selector function σ as it is shown in
Figure 8, where Ti (time difference) indicates in
which degree synchronous communication is pos-

Figure 7. Definition of the requirements elicitation techniques most suitable for a given situation in a
collocated environment ()

Suitable

Req.Elicitation
Techniques

T {t}
Requirements Elicitation Techniques

Universal Set

Si

Ri

σ (Ri, Si, χ(T)) → {t ∈ T | t is applicable in situation Si when the
current state of requirements is Ri}

Figure 8. Definition of the requirements elicitation techniques most suitable for a given situation in a
distributed environment (*)

Suitable

Req.Elicitation
Techniques

T
{t}

Requirements Elicitation Techniques
Universal Set

Si

Ri

Ti
Li

σ* (Ri, Si, χ(T), Ti, Li) → {t ∈ T | t is applicable in situation Si when the current state
of requirements is Ri, according to restrictions Ti and Li}

 2111

A Requirement Elicitation Methodology for Global Software Development Teams

sible between the sites that need to interact; and Li
(degree of knowledge of a common language) in-
dicates the level of fluency of communication.

Finally, a graphical representation of the
requirement elicitation process in a distributed
environment is shown in Figure 9.

future trenDS

For many years, research on GSD has focused
on improving technology as a supporting media
for spreading global communication. Those
technology topics are really necessary indeed, but
not enough for a society challenged by cultural
diversity and worldwide-located working teams.
Currently, research efforts are looking at GSD as a
human-intensive process, where new strategies to
deal with socio-cultural differences and distance
are bringing psychological and cognitive aspects
into the arena. Human factors seem more complex
than technological ones, so probably we will see
many strategies in the future trying to find the

most effective way people understand, choose, and
communicate during GSD. Certainly, cognitive
informatics will be one of them.

cOncluSiOn

GSD projects are a common way of work these
days. Looking for solutions to improve com-
munication in virtual environments has led us
to analyse human interaction and how to apply
well-known techniques from the field of cogni-
tive psychology (called learning style models) as
a base for technology selection.

Based on a cognitive-based technology selec-
tion approach, we propose a methodology for
requirement elicitation in GSD projects, which
focuses on improving communication between
distant stakeholders. Considering cognitive as-
pects of stakeholders is significant because the
selection of requirement elicitation techniques
according to personal characteristics of all the
members of a virtual team (instead of just the

Figure 9. Requirement elicitation in GSD, as an iterative process of technique selection and applica-
tion

Si

ti

Preference
Rules

Ri

Apply ti

Obtain
Ri+1 and Si+1

{t}

Stakeholders’
characteristics

Calculate π**({t})

Calculate σ*
Ti

Li

2112

A Requirement Elicitation Methodology for Global Software Development Teams

analyst) might affect positively the quality of
the information gathered during the requirement
elicitation process. In addition, as stakeholders
might feel more comfortable expressing them-
selves when using a groupware tool closer to the
way they perceive and reason about the world,
communication in virtual teams is expected to be
more fluid and personal satisfaction higher.

In this article, we show the first three phases
of such a methodology, called RE-GSD, which
are the most clearly different from traditional
requirement elicitation methodologies. Current
work is focused on defining experiments, in
academic and industrial scenarios, to analyze
its performance.

AcKnOWleDgment

This work is partially supported by the ENIGMAS
(PIB-05-058), and MECENAS (PBI06-0024)
project, Junta de Comunidades de Castilla-La
Mancha, Consejería de Educación y Ciencia, and
the ESFINGE project (TIN2006-15175-C05-05)
Ministerio de Educación y Ciencia, Dirección
General de Investigación, Fondos Europeos de
Desarrollo Regional (FEDER), from Spain. The
CompetiSoft project (CyTED 3789); and the 04/
E059 project, Universidad Nacional del Comahue,
Argentina.

referenceS

Aranda, G., Cechich, A., Vizcaíno, A., & Castro-
Schez, J. J. (2004). Using fuzzy sets to analyse
personal preferences on groupware tools. In
Proceedings of the 10th Argentine Congress
of Computer Science, CACIC 2004, San Justo,
Argentina, (pp. 549-560).

Aranda, G., Vizcaíno, A., Cechich, A., & Piattini,
M. (2005). A cognitive-based approach to improve
distributed requirement elicitation processes. In

Proceedings of the 4th IEEE International Confer-
ence on Cognitive Informatics (ICCI’05), Irvine,
USA, (pp. 322-330).

Aranda, G., Vizcaíno, A., Cechich, A., Piattini,
M., & Castro-Schez, J. J. (2006). Cognitive-based
rules as a means to select suitable groupware tools.
In Proceedings of the 5th IEEE International
Conference on Cognitive Informatics (ICCI’06),
Beijing, China, pp.

Brooks, F. P. (1987). No silver bullet: Essence
and accidents of software engineering. IEEE
Computer, 20(4), 10-19.

Castro, J. L., Castro-Schez, J. J., & Zurita, J. M.
(1999). Learning maximal structure rules in fuzzy
logic for knowledge acquisition in expert systems.
Fuzzy Sets and Systems, 101(3), 331-342.

Chiew, V., & Wang, Y. (2003). From cognitive
psychology to cognitive informatics. In Proceed-
ings of the Second IEEE International Conference
on Cognitive Informatics, ICCI’03, London, UK,
(pp. 114-120).

Christel, M., & Kang, K. (1992). Issues in re-
quirements elicitation. Pittsburgh, PA: Carnegie
Mellon University.

Damian, D., & Moitra, D. (2006). Guest editors’
introduction: Global software development: How
far have we come? IEEE Software, 23(5), 17-19.

Damian, D., & Zowghi, D. (2002). The impact of
stakeholders geographical distribution on man-
aging requirements in a multi-site organization.
In Proceedings of the IEEE Joint International
Conference on Requirements Engineering, RE’02,
Essen, Germany, (pp. 319-328).

Ebert, C., & De Neve, P. (2001). Surviving global
software development. IEEE Software, 18(2),
62-69.

Felder, R., & Silverman, L. (1988). Learning and
teaching styles in engineering education. Engi-
neering Education, 78(7), 674-681.

 2113

A Requirement Elicitation Methodology for Global Software Development Teams

Gralla, P. (1996). How Intranets work. Emeryville,
CA: Ziff-Davis Press.

Herbsleb, J. D., & Moitra, D. (2001). Guest edi-
tors’ introduction: Global software development.
IEEE Software, 18(2), 16-20.

Hickey, A. M., & Davis, A. (2003). Requirements
elicitation and elicitation technique selection:
A model for two knowledge-intensive software
development processes. In Proceedings of the
36th Annual Hawaii International Conference on
Systems Sciences (HICSS), (pp. 96-105).

Lanubile, F., Mallardo, T., & Calefato, F. (2003).
Tool support for geographically dispersed inspec-
tion teams. Software Process: Improvement and
Practice, Wiley InterScience, 8(4), 217-231.

Lloyd, W., Rosson, M. B., & Arthur, J. (2002).
Effectiveness of elicitation techniques in distrib-
uted requirements engineering. In Proceedings
of the 10th Anniversary IEEE Joint International
Conference on Requirements Engineering, RE’02,
Essen, Germany, (pp. 311-318).

Loucopoulos, P., & Karakostas, V. (1995). System
requirements engineering. New York, USA.

Martin, A., Martinez, C., Martinez, N., Aranda,
G., & Cechich, A. (2003). Classifying groupware
tools to improve communication in geographically
distributed elicitation. In Proceedings of the Ninth
Argentine Congress on Computer Science, CACIC
2003, La Plata, Argentina, (pp. 942-953).

Miller, J., & Yin, Z. (2004). A cognitive-based
mechanism for constructing software inspection
teams. IEEE Transactions on Software Engineer-
ing, 30(11), 811-825.

SWEBOK. (2004). Guide to the software engi-
neering body of knowledge.

Togneri, D. F., Falbo, R. d. A., & de Menezes, C. S.
(2002). Supporting cooperative requirements en-
gineering with an automated tool. In Proceedings

of the Workshop em Engenharia de Requisitos,
WER02, Valencia, España, (pp. 240-254).

Wang, Y. (2002). On cognitive informatics. In
Proceedings of the First IEEE International
Conference on Cognitive Informatics, ICCI’02,
Calgary, Alberta, Canada, (pp. 34-42).

Key termS

Cognitive Informatics: It is an interdisciplin-
ary area that applies concepts from psychology and
other cognitive sciences to improving processes
in engineering disciplines, such as informatics,
computing, and software engineering.

CSCW (Computer-supported Cooperative
Work): It is a research area that focuses on how
people work together and the design and develop-
ment of software (groupware) that may help their
work as a group.

Distributed Software Development: It is
a way of developing software that allows the
stakeholders to be distributed in geographically
distanced sites.

Global Software Development: When the
distribution of the members of a distributed
software development team exceeds the frontiers
of a country.

Groupware: Software that supports and im-
proves group work. It can be a simple text-based
technology like e-mail or more sophisticated like
videoconferencing.

Learning Style Model: It is a cognitive psy-
chology theory that classifies people according to
a set of behavioural characteristics pertaining to
the ways they perceive and process information.
They can be used to improve the way people learn
a given task.

Requirements Elicitation: It is the first stage
in the process of understanding the problem the

2114

A Requirement Elicitation Methodology for Global Software Development Teams

software has to solve. It is crucially based on
human communication between the develop-
ment team and the customer. Other terms that are
used as synonyms are “requirements capture,”
“requirements discovery” and “requirements
acquisition.”

Stakeholders: They are all the actors that
have some interest on a system. They can be the
people that pay for it, work on its development or
people whose task will be affected by the system,
among others.

This work was previously published in Encyclopedia of Information Science and Technology, Second Edition, edited by M.
Khosrow-Pour, pp. 3273-3282, copyright 2009 by Information Science Reference (an imprint of IGI Global).

 2115

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.20
Project Quality of Off-Shore
Virtual Teams Engaged in

Software Requirements Analysis:
An Exploratory Comparative Study

Dhruv Nath
Management Development Institute, India

Varadharajan Sridhar
Management Development Institute, India

Monica Adya
Marquette University, USA

Amit Malik
Management Development Institute, India

ABStrAct

The off-shore software development companies
in countries such as India use a global delivery
model in which initial requirement analysis phase
of software projects get executed at client locations
to leverage frequent and deep interaction between
user and developer teams. Subsequent phases such
as design, coding and testing are completed at
off-shore locations. Emerging trends indicate an
increasing interest in off-shoring even require-
ments analysis phase using computer mediated

communication. We conducted an exploratory
research study involving students from Manage-
ment Development Institute (MDI), India and
Marquette University (MU), U.S.A. to determine
quality of such off-shored requirements analysis
projects. Our findings suggest that project qual-
ity of teams engaged in pure off-shore mode is
comparable to that of teams engaged in collocated
mode. However, the effect of controls such as user
project monitoring on the quality of off-shored
projects needs to be studied further.

2116

Project Quality of Off-Shore Virtual Teams Engaged in Software Requirements Analysis

IntroductIon

The past two decades have witnessed significant
globalization of the software development process
with development rapidly moving away from the
traditional collocated model, often called on-site
development, to the off-shoring model. With the
availability of increasingly skilled, flexible, and
economical IT workforce in countries such as
India, Malaysia, and China, it makes financial
sense for United States and European client
organizations to execute a significant portion of
software projects in these countries. This growing
trend towards off-shoring has, in turn, spurred
growth in many Asian nations, creating improved
economic and IT infrastructure and enhancing the
viability of these countries as software service
providers. For example, India has emerged as a
dominant off-shore software development indus-
try with revenue of about $16.7 billion, which is
projected to reach $60 billion by the year 2010

(Carmel, 2006; National Association of Software
and Service Companies, 2005).

The Indian off-shore software industry has
matured over the years, and process capability
has been steadily improving. Coordination and
communication problems typically encountered
in off-shore development (see Battin, Crocker,
Kreidler, & Subramanian, 2001, for an extended
discussion), are mitigated by the use of processes
such as rational task assignments and liaisoning,
and tools such as centralized bug reporting
system and software configuration management
platforms. A case in point is India’s Infosys Tech-
nologies, which has significantly leveraged time
zone differences with its clients by modifying
its organizational culture, processes, and com-
munication technologies (Carmel, 2006).

The typical off-shore development model,
followed successfully for over a decade by many
Indian software companies such as Infosys, Wipro,
TCS, and Satyam, is illustrated in Figure 1.

Status Tracking, Issue Resolution,
Task Assignment

Onsite Coordinator,
Client Manager

Off-shore Project
Manager/off-shore
Development Team

Requirement
Analysis

Phase

Design, Coding
and Testing

Phases

Deployment
Phase

Support and
maintenance

Phase

Client Location
Off -shore

Development
Center

Status Tracking, Issue Resolution,
Task Assignment

Onsite Coordinator,
Client Manager

Off-shore Project
Manager/off-shore
Development Team

Requirement
Analysis

Phase

Design, Coding
and Testing

Phases

Deployment
Phase

Support and
maintenance

Phase

Client Location

Status Tracking, Issue Resolution,
Task Assignment

Onsite Coordinator,
Client Manager

Off-shore Project
Manager/off-shore
Development Team

Requirement
Analysis

Phase

Design, Coding
and Testing

Phases

Deployment
Phase

Support and
maintenance

Phase

Client Location
Off -shore

Development
Center

Figure 1. The off-shore software development model

 2117

Project Quality of Off-Shore Virtual Teams Engaged in Software Requirements Analysis

 Requirements analysis refers to that stage of
the system development life cycle wherein the
information and information processing services
needed to support select objectives and functions
of the organization are (i) determined and (ii) co-
herently represented using well-defined artifacts
such as entity-relationship diagrams, data-flow
diagrams, use cases, and screen prototypes (Hof-
fer, George, & Valacich, 1999). As suggested in
Figure 1, typically this phase is conducted at the
client location, since this phase requires frequent
and significant interaction between users and
developers. Business and systems analysts are
physically located at the client site to perform
this activity. Global projects consultant teams
from off-shore location travel to the user site to
gather and analyze requirements in face-to-face
meetings (Damian & Zowghi, 2002). The consul-
tants then communicate the requirements to the
development staff in the offshore site. Depending
on the nature of the project, high-level design is
conducted in both on-site and off-shore mode due
to comparatively lower interaction needs with the
client. Detailed design, coding, and testing are
executed at the off-shore site. Off-shore vendors
also deploy liaisons who coordinate activities
between on-site users and the off-shore develop-
ment team. These liaisons are critical for effective
communication and coordination between users
and developers (Battin et al., 2001).

Increasingly, both client and software provid-
ers are now considering the possibility of off-shor-
ing the requirements analysis phase, traditionally
done on client site, away from the client location.
In such a scenario, analysts and developers located
at the off-shore location would interact in a virtual
mode with the clients situated at their premises to
determine and structure the requirements. Such a
shift could potentially improve the cost arbitrage
of the projects for instance by cutting down travel
costs incurred for sending analysts to the client
site for face-to-face meetings. In an extreme case,
the entire team of analysts and developers could
be based in off-shore location such as India while

the client could be in Europe or the United States.
Requirements gathering would then be conducted
between these virtual teams using existing com-
puter-mediated communications such as chat,
e-mail, and video conferencing. The questions
of research interest then are:

1. Can requirements analysis conducted by
collocated teams using face-to-face commu-
nication be comparable or better than those
produced by virtual off-shore teams using
computer-mediated communication?

2. What forms of control are necessary to fa-
cilitate high-quality outcomes from virtual
requirements analysis undertakings?

Using theories of social presence, media rich-
ness (Burke & Chidambaram, 1999), as well as
control theory (Kirsch, 2002), we develop and test
hypotheses regarding these questions.

Traditionally, user involvement in IS projects
has been an important contributor to project suc-
cess (Hartwick & Barki, 1994; Foster & Franz
,1999; Lin & Shao, 2000; Sridhar, Nath, & Malik,
in press). Lack of user proximity in a virtual setting
can potentially limit the quality of requirements
elicitation due to limitations of communications
media. In order to mitigate these limitations and
the absence of analysts and developers at customer
premises, user involvement is expected to take
the form of close project monitoring and control
to ensure that requirements and project goals
are met. Control theory provides the required
theoretical foundations for analyzing the effect
of different types of controls on teams (Crisp,
2003). In this study, we specifically consider
user project monitoring as a behavioral control
mechanism and examine its impact on project
quality during requirements analysis phase of
off-shored software projects. Further, we explore
the intersection of media richness and control
theories to find early answers to the research
questions raised earlier.

2118

Project Quality of Off-Shore Virtual Teams Engaged in Software Requirements Analysis

This study is exploratory in nature. Without
loss of generality, we restrict our attention to the
requirements analysis phase as defined in the
structured systems analysis and design (SSAD)
methodology as defined by Hoffer et al. (1999).
We define requirements analysis as subsuming
the following two phases:

1. Requirements determination: The process
by which the analysts determine the require-
ments of the system from the users through
discussions and interviews and exchanging
forms, reports, job descriptions and other
necessary documents.

2. Requirements structuring: The process by
which the analysts coherently represent the
information gathered as part of requirements
determination using process modeling
and logic modeling tools as described in
SSAD.

Our interactions with managers in client
firms engaged in software development indicate
that off-shoring of requirements analysis is still
uncommon. Hence it is not practical to analyze
this phenomenon of pure off-shoring of require-
ments in real-life setting. It is also difficult to
do in-depth longitudinal or cross-sectional case
studies. Given these arguments, an exploratory
research study was conducted in an academic
setting involving management students enrolled
in a graduate-level information systems course
at Management Development Institute (MDI),
India, and management students enrolled in a
graduate level IT Project Management course
at Marquette University (MU), United States.
MU students role-played as virtual users/project
managers while MDI students were software
developers for MU teams as well as user clients
for collocated MDI teams. Prior to a full descrip-
tion of our undertaking, we first discuss existing
literature on virtual teams in software projects.
We then describe the theoretical foundations of
this study and elaborate on our research design.

Next, we discuss our measures and discuss study
outcomes. The article concludes with implications
for future research in this context.

VirtuAl teAmS in
SOftWAre prOJectS

In a pure off-shore mode, users at the client loca-
tion and the developers at the off-shore location
never meet face to face and hence operate as vir-
tual teams, primarily linked through technology
across national boundaries. It is in this context
that we review previous research on such virtual
teams, specifically those engaged in software de-
velopment projects. Virtual teams are becoming
the norm in most corporate environments such
as consulting firms, technology products, and
e-commerce (Lurey & Raisinghani, 2001) and
are being increasingly examined in academic
literature (see Powell, Piccoli, & Ives, 2005 for
a comprehensive survey of virtual teams). Battin
et al. (2001) described how Motorola deployed
global virtual teams across six different countries
for a Third Generation Cellular System product
development. Software development in Alcatel
was handled by a central group of several thou-
sand engineers distributed throughout the world
(Ebert & De Neve, 2001).

Few studies however, have, examined the use of
virtual teams for requirements analysis. Edwards
and Sridhar (2005) studied the effectiveness of
virtual teams in a collaborative requirements
analysis practice. In that study virtual teams at
near and far locations participated in require-
ments analysis phase of the project. This typi-
cally is applicable in collaborative global product
development exercises as described in Battin et
al. (2003). In contrast, in this study we look at
the requirements analysis phase of off-shored
software projects in which the two protagonists
are (i) users who specify the requirements, and
(ii) developers who determine and document
these requirements together constituting a col-

 2119

Project Quality of Off-Shore Virtual Teams Engaged in Software Requirements Analysis

laborative virtual teams. Damian and Zowghi
(2002) studied the interplay between culture and
conflict and the impact of distance on the ability
to reconcile different viewpoints with respect
to “requirements negotiation” processes. They
found that lack of a common understanding of
requirements, together with reduced awareness
of local context, trust level, and ability to share
work artifacts significantly challenge effective
collaboration among remote stakeholders in
negotiating a set of requirements that satisfies
geographically dispersed customers. Damian,
Eberlein, Shaw, and Gaines (2000) examined the
effect of the distribution of various stakeholders in
the requirements engineering process. They found
that highest group performance occurred when
customers were separated from each other and
collocated with the facilitator or system analyst.
Our study further contributes to the literature
on virtual teams engaged in off-shored software
requirements analysis.

tHeOreticAl fOunDAtiOnS AnD
HypOtHeSeS DeVelOpment

Social presence and media
richness theories

Social presence is the extent to which one feels the
presence of a person with whom one is interacting.
Short, Williams, and Christie (1976) suggested
that some media convey greater social presence
than others. For instance, face-to-face interac-
tion is considered to be high in social presence,
primarily because of the capacity of the medium
to transmit proximal, facial, and other nonverbal
cues relative to other media. In contrast, computer-
mediated communication such as e-mail exhibit
inherently lower bandwidth than face-to-face
interaction, thus permitting transmission of fewer
visual and nonverbal cues and restricting socio-
emotional communication (Rice & Love, 1987). In
addition to differences in social presence, media

richness theory proposes that, given their limited
cue-carrying capacity, leaner media such as e-
mail, will be less effective for groups performing
ambiguous tasks which require a variety of cues to
be exchanged. However, Burke and Chidambaram
(1999) pointed out that despite some support for
media characteristics-dependent theories, overall
empirical evidence has been mixed.

Quality of Off-Shored Projects vs.
Collocated Projects

Teams engaged in pure off-shored projects primar-
ily rely on computer-mediated communications
(synchronous such as chat, audio and video confer-
encing as well as asynchronous such as e-mail) for
interaction. However, collocated teams have the
luxury of rich face-to-face communication. Based
on the social presence and media richness theories,
we formulate the following hypothesis:

H1: Collocated teams using face-to-face commu-
nication will produce higher quality project arti-
facts compared to virtual teams using computer-
mediated communication during the requirements
analysis phase of software projects.

In a subsequent section, we define quality of
project artifacts and how it is measured. To the
best of our knowledge, quality of projects and per-
formance of virtual teams engaged in the software
requirements analysis has not been studied in the
literature thus far. Although several research-
ers have compared performances of traditional
collocated teams with that of virtual teams, the
conclusions have been mixed. While one study
reported greater effectiveness for virtual teams
(Sharda, Barr, & McDonnell 1988), others such
as McDonough, Kahn, and Barczak (2001) have
found that virtual teams could not outperform
traditional teams. Andres (2002) reported that
teams working in face-to-face settings experi-
enced greater productivity compared to those
supported using videoconferencing. Generally,

2120

Project Quality of Off-Shore Virtual Teams Engaged in Software Requirements Analysis

computer-mediated teams exhibit lower frequency
of communication than face-to-face teams, al-
though they tend to exchange more task-oriented
messages as a proportion of total communication
(Burke & Chidambaram, 1999; Chidambaram,
1996). This enhanced communication leads
to comparable or even higher performance of
virtual teams as compared to collocated teams
(Burke & Chidambaram, 1999). Consistent with
these findings, Schmidt et al. (2001) reported that
virtual teams are more effective in new product
development decisions as compared to face-to-
face teams. However, a majority of the early work
has detected no difference between the two types
of teams (Burke & Aytes, 1998). Other studies
have found no significant differences between
traditional and virtual teams when examining
decision quality (Archer, 1990; Chidambaram
& Bostrom, 1993) as well as the number of ideas
generated by decision making teams (Archer,
1990; Lind, 1999; Sharda et al., 1988). Walther
(2005) further suggested that complex human
processes such as negotiation actually improve
between physically distributed individuals who
communicate using media low in richness. Studies
comparing performance of virtual and collocated
teams in software requirements analysis phase
are even fewer. Damian et al. (2000) found that
groups in face-to-face meetings performed no
better than the electronically mediated groups in
the requirements negotiation phase of the software
development life cycle.

control theory

Control is defined as the set of mechanisms de-
signed to motivate individuals to work in such a
way that desired objectives are achieved (Kirsch,
1996). Formal controls rely on mechanisms that
influence the controllee’s behavior through per-
formance evaluation and rewards (Choudhury &
Sabherwal, 2003). Controllers utilize two modes
of formal control: behavior and outcome (Kirsch,
2002). In behavior control, appropriate steps and

procedures for task performance are defined by
controllers, and then controllees’ performance
is evaluated according to their adherence to
the prescribed procedures. In outcome control,
controllers define appropriate targets and allow
controllees to decide how to meet those output
targets. Controllees’ performance is evaluated
on the extent to which targets were met, and
not on the processes used to achieve the targets
(Kirsch 2002).

Informal control mechanisms utilize social
or people strategies to reduce goal differences
between controller and controllee. Self-control,
one mode of informal control, occurs when an
individual sets up his or her own goals, self-
monitors goal achievement, and rewards or
sanctions him- or herself accordingly (Kirsch,
2002). Clan control, the other type of informal
control, is implemented through mechanisms that
minimize the differences between controller’s and
controllee’s preferences by “promulgating com-
mon values, beliefs and philosophies within a clan,
which is defined as a group of individuals who are
dependent on one another and who share a set of
common goals” (Choudhury & Sabherwal, 2003).
Kirch et al (2002) extended the control theory to
the role of client liaisons, exercising control of
IS project leaders to ensure that IS projects meet
their goals. The study examined the conditions
under which client liaisons of IS development
projects choose various modes of control. In a
related work, Choudhury and Sabherwal (2003)
examined the evolution of portfolio of controls
over the duration of outsourced IS development
projects. They conclude that in outsourced soft-
ware projects outcome controls are exercised at
the start of the project. Behavioral controls are
added later in the project. Clan controls are used
when the client and vendor had shared goals, and
when frequent interactions lead to shared values.
Both these studies analyzed the evolution and
choice of controls in IS projects and not on the
effect of these controls on project outcome. In this
study we focus on the effect of formal modes of

 2121

Project Quality of Off-Shore Virtual Teams Engaged in Software Requirements Analysis

control (both outcome and behavior) on the qual-
ity of project artifacts produced by virtual teams
engaged in software requirements analysis. Project
monitoring provides opportunities for both forms
of formal control previously described through
tracking, interpretation and transmission of status
information (Crisp, 2003). In this study, we define
user control to include not only monitoring the
project plan (a form of behavioral control) but also
the evaluation of the formal artifacts produced (a
form of outcome control) during the requirements
analysis process. Monitoring of costs is excluded
as requirements analysis is often part of a large IS
outsourcing project. Though cost monitoring is
vital, it does not assume much significance when
considered for only one phase of the project and
hence is excluded. Based on the control theory
and literature review of virtual teams, our second
hypothesis is as follows:

H2: Developer teams that are closely monitored
by their users in a virtual team mode will pro-
duce higher quality of artifacts as compared to
developer teams that are not closely monitored
by their users.

reSeArcH DeSign

To test both the aforementioned hypotheses, we
conducted two overlapping quasi experiments
involving students at MU and MDI in controlled
settings. Such experimental settings have been
actively used in distributed software engineer-
ing laboratories and business schools to conduct
virtual team exercises in their courses (Powell et
al., 2005). A controlled experimental approach
provides three benefits. Firstly, it makes avail-
able several teams that work in parallel, thereby
generating rich data for drawing conclusions.
Secondly, it permits researchers to experiment
with newer approaches, which may not yet have
been explored by the industry. Finally, it equips and
trains software engineering students to understand

and to handle the challenges of working in global
software teams (Favela & Pena-Mora, 2001). A
survey on virtual team research by Powell et al.
(2005) cited 28 academic experiments and only
13 case study research papers. Our experimental
setup is illustrated in Figure 2 and described in
greater detail next.

experiment 1—testing H1:
the impact of media richness on
project Quality

For hypothesis 1 (H1), we compared the quality
of projects produced by collocated teams with
those that were produced by virtual teams. The
collocated teams were students of the postgraduate
program in management (equivalent to an MBA)
who were attending a core course in management
information systems (MIS) at MDI. One hundred
and twenty-seven students were divided into two
roughly equal sections, section A and section B.
Students from section A were grouped into 10
teams of 5 or 6 students each. Each team played
the role of users for the collocated project. Figure
2(a) shows one such team, referred to as MDI team
A1. Students from section B were also grouped
into 10 teams of 5 or 6 students each. Each of these
teams formed developer teams for the collocated
project. Figure 2(a) shows one such team, referred
to as MDI team B1. Each MDI A team was then
paired with one of the MDI B teams, as shown in
Figure 2(a). Thus MDI team A1 served as users
to MDI team B1, the developers in the collocated
project. Similarly, MDI team A2 was the user for
MDI team B2, and so on.

Setting for the Virtual Teams

MU students, enrolled in a graduate elective
course in IT project management, assumed the
role of virtual users. Twenty-eight students di-
vided into 10 teams (each with a team size of 2-3
members), referred to as MU Teams. Figure 2(a)
shows one of these MU teams, team 1. Each MU

2122

Project Quality of Off-Shore Virtual Teams Engaged in Software Requirements Analysis

team was paired with one of the MDI B teams.
Thus MDI B teams became the off-shore devel-
opment teams for the associated MU user teams.
These teams consisting of users and developers
worked in virtual team mode. In summary, each
MDI team B was involved in the following two
projects: (i) collocated project with MDI user

team A and (ii) virtual off-shored project with
MU user team.

In both projects, the MDI B teams were required
to submit a project plan at the beginning of the
project, detailing various activities and timelines.
The final delivery date was predetermined by the
instructors based on the course schedule. Project

mu team 1

mDI
team A1

mDI
team B1

co-located
project

developer

developer

user

Virtual Off-shored
project

user

loose project
monitoring

mu team 1

mDI
team A1

mDI
team B1

co-located
project

developer

developer

user

Virtual Off-shored
project

user

loose project
monitoring

Figure 2. The experimental set-up

(a) Experiment 1: Collocated vs. Virtual Teams

loose project
monitoring

tight project
monitoring

mu team 1

mDI
team A1

mDI
team B1

user

developerdeveloper

user
Virtual Off-

shored
project

Virtual Off-
shored
projectloose project

monitoring
tight project
monitoring

mu team 1

mDI
team A1

mDI
team B1

user

developerdeveloper

user
Virtual Off-

shored
project

Virtual Off-
shored
project

(b) Experiment 2: Virtual Teams Under Tight Project Monitoring vs. Loose Project Monitoring

 2123

Project Quality of Off-Shore Virtual Teams Engaged in Software Requirements Analysis

monitoring was voluntary between MDI B and
MDI A user teams, so as to minimize the impact
of any other variables on the experiment. The MDI
B development teams communicated with their
corresponding user teams at MU through online
means such as e-mail, instant messaging, and
voice chats such as Skype and with their MDI A
user teams through face-to-face meetings while
having face-to-face interactions with their col-
located MDI A teams. It must be noted that each
developer teams (i.e., MDI B teams) had 5 or 6
members, thus controlling for the effects of team
sizes on the quality of the project.

experiment —testing H2: the
impact of project monitoring on
project Quality

 To test H2, we compared the quality of two sets
of virtual teams, one in which the users imposed
project monitoring (referred to as tight monitor-
ing), and the other one in which user project
monitoring was voluntary (referred to as loose
monitoring). For this purpose, we used a por-
tion of the data collected as part of experiment
1. Recall that in experiment 1 we already had a
set of virtual teams, namely the teams formed
by MU user team and the MDI B developer
teams, operating in voluntary project monitor-
ing mode. We then formed another set of virtual
teams by pairing each MU user team with MDI
A teams. However, in this experiment MDI A
teams performed the role of developers for their
corresponding MU user teams (compared to the
role of users they played in experiment 1). MU
user teams were required to tightly monitor their
projects with MDI A teams. This is illustrated in
Figure 2(b), where MU team 1 was the user for
MDI team A1, under tight project monitoring,
and was also the user for MDI team B1, under
loose project monitoring (part of experiment 1).
Similarly, the MU team 2 was the user for MDI
team A2 and B2, and so on. Once again, each of
the developer teams (i.e., MDI A and B teams)

had 5 or 6 members, thus controlling for effects
of team size on success of the project.

Tight and loose control was implemented as fol-
lows: In the case of virtual teams operating under
imposed tight project monitoring (MU and MDI A
teams), the developers were told to submit weekly
project reports to their respective user teams.
The user teams were required to review and ask
for changes/actions as required, thus implement-
ing behavioral control. In addition, MDI teams
were required to conduct requirements analysis
in iterative model, returning a set of intermedi-
ate artifacts which would also be reviewed and
commented on by their users, thus implementing
outcome control. This formed the control group
in our experiment. In contrast, teams operating
under voluntary user project monitoring did not
have to submit regular project status reports nor
any intermediate artifacts to their users. They
received requirements specifications from their
users, asked for clarifications where necessary,
and submitted the final artifacts at the end of
the project. Any communication between these
teams and their users was strictly on a need-be
basis. This formed the experimental group in our
research design. MU teams were graded partly
on the communication plans and weekly project
status reports they developed for monitoring
their MDI A teams. This ensured that MU team
users spent more time and effort in monitoring
their associated MDI A teams than MDI B teams.
This design resulted in the two overlapping ex-
periments 1 and 2 described previously. Table
1 illustrates the roles of MDI and MU teams in
these experiments.

All student teams were formed in such a way
that the technical background and average work
experience of group members were almost the
same across groups, thereby controlling team
member heterogeneity. Table 2 provides ANOVA
results comparing means of various parameters
across teams. Results suggest no significant dif-
ferences in the means of various parameters across
teams confirming their homogeneity. Students

2124

Project Quality of Off-Shore Virtual Teams Engaged in Software Requirements Analysis

had sufficient stake in the virtual team project
as up to 30% of the course grade was assigned
to the project.

Our research design adopts the quasi experi-
ment approach where the participants are allotted
to teams, based on certain criterion, as explained
previously, and not randomly. Hence the limita-
tions of quasi experimentation as explained in
Campbell and Stanley (1966) applies to our
research setting as well.

tasks

Virtual Team Exercise

The virtual team interactions (in both experi-
ments) were broken down into two phases: (1)
socialization, which permitted the teams to de-
velop relationships and negotiate communication
terms and requirements; and (2) project execution,
which allowed requirements gathering, clarifica-
tions, and exchange of analysis artifacts.

Phase 1: Socialization

It is an increasingly common practice in virtual
teams to engage in formal socialization before
embarking on virtual projects in order to under-
stand each others’ work styles and expectations,
negotiate communications strategies and proto-
cols, and build trust for sustained relationships
(Jarvenpaa & Leidner, 1999). In our experiment,
this was not feasible due to resource and other
restrictions, not unlike those faced by organiza-
tions new to off-shoring as well as those involved
in small, preliminary initiatives. Furthermore, our
objective was to draw benchmark conclusions
regarding effects of user project monitoring on
teams engaged in a fully virtual team environ-
ment. Therefore we encouraged the MU and
MDI teams to communicate and socialize with
each other on-line before initiating actual work
on the project. The virtual teams—MU, MDI
A, and MDI B—socialized with each other us-
ing on-line media such as e-mail, Internet chat,

MU
Teams

MDI A
Teams

MDI B
Teams Treatment Hypothesis

Tested

Experiment 1 Users Users Developers

MU Users <-> MDI B Developers,
Virtual Teams

MDI A Users <-> MDI B Develop-
ers, Collocated Teams

H1

Experiment 2 Users Developers Developers

MU Users <-> MDI A Developers,
Virtual and tightly controlled Teams
MU Users <-> MDI B Developers,

Virtual and loosely controlled Teams

H2

 Table 1. Experimental set-up

Variable F Significance

Work Experience 0.601 0.795

Experience in Programming 1.356 0.213

Experience in Participating in Virtual Teams 0.803 0.614

Experience in Software Project Management 0.973 0.465

Experience in Systems Analysis and Design 0.543 0.841

Table 2. ANOVA comparing means of variables across teams

 2125

Project Quality of Off-Shore Virtual Teams Engaged in Software Requirements Analysis

bulletin boards, and e-groups for a period of 2
weeks. Project details were withheld from all
teams till conclusion of the socialization phase
in order to ensure that communication was more
personalized and oriented towards relationship
and trust building (Sarkar & Sahay, 2002) rather
than requirements exchange.

Phase 2: Project Execution

Subsequent to socialization, the projects were
initiated, and team roles were detailed. Marquette
University has a service learning office that ob-
tains information systems projects from nonprofit
organizations and small businesses in and around
Milwaukee. Such real-life projects were given to

MU users. Examples of these projects include
a donation management system for a nonprofit
organization, a volunteer management system,
an alumni website, a tracking system for bat-
tered and abused women, and a book inventory
management system.

The MDI teams elicited project requirements
from MU teams through various on-line media,
as described previously. SSAD methodology was
used in the experiment. The gathered requirements
were structured using process modeling tools
such as context analysis diagram (CAD), data
flow diagrams (DFDs) and process specifications.
MDI teams also modeled the data and associated
relationships using entity relationship diagrams
(ERDs). MDI teams also created screen-based

Artifact
MDI A Teams for the Vir-
tual Team Projects under
tight Project Monitoring

MDI B Teams for both
the Virtual and Collocat-
ed Projects under loose
Project Monitoring

MU Teams for the Vir-
tual team Projects (to
be submitted to the in-
structors)

Context Analysis
Diagram 	 	

Data Flow Diagrams 	 	

Entity Relationship
Diagrams 	 	

Process Specifications 	 	

Screen shots
	 	

An intermediate version
of all the above artifacts 	

Weekly Development
Status Report 	

Communication Plans 	

Risk Assessment
	

Contingency Plans 	

Weekly Project Status
Report (to the Instruc-
tors) (only with MDI A teams)

Project Closure Report 	

Team A and B Assess-
ment 	

Table 3. Artifacts submitted by the different teams for the virtual team projects

2126

Project Quality of Off-Shore Virtual Teams Engaged in Software Requirements Analysis

prototypes as part of the requirements analysis
exercise. These artifacts were submitted by the
MDI teams to MU user teams as part of the
deliverables.

In addition, the MDI A development teams that
experienced tightly monitored projects submitted
the following additional artifacts to the users:

a. A weekly status report of the project, ex-
plaining reasons for delays and plans for
overcoming any slippages.

b. Any modifications to the project plan.
c. A draft (intermediate) version of all the

above artifacts, midway through the project
Based on their requirements, users provided
feedback and corrections, which were in-
corporated by the developers into the final
version.

Details of all these deliverables submitted by
the different teams for this virtual team exercise
are shown in Table 3. The table also shows several
artifacts/reports that the MU teams had to submit
to the course instructors.

Collocated Exercise

For the collocated team exercises, each MDI A
team had at least one member who had prior work
experience of 2 to 3 years. These individuals were
asked to select an information system project they
had encountered at work, to ensure realism and
familiarity with system features. Each collocated
team developed requirements analysis artifacts
for these projects. The instructors had discussions
with each group and scoped the projects such
that the project complexity was almost the same
as that of the virtual teams. The MDI B teams
were asked to submit to MDI team A artifacts
identical to those submitted to MU teams during
the virtual team project (see Table 1). The entire
project duration for both virtual and collocated
projects was 8 weeks.

OutcOme meASureS

Quality of projects

Quality of MU-MDI projects were determined
through (i) expert evaluation of project artifacts
produced by developer teams and (ii) user per-
ceptions about the project deliverable quality.
Quality of project artifacts was measured on
several dimensions—namely, correctness of the
artifacts (e.g., whether the data flow diagrams were
drawn correctly, whether or not they satisfied user
requirements), adherence of the artifacts to user
requirements, and consistency of the artifacts
with each other.

i. Completeness and Adherence of the Arti-
facts to User Requirements

Completeness and adherences were analyzed
by an external expert who was not part of the
MU-MDI teams. This expert had 2 to 3 years
of experience in software projects and had taken
courses in SSAD. The expert evaluated the com-
pleteness and adherence of each of the following
artifacts:

1. Context analysis diagram
2. Data flow diagrams (DFDs)
3. Process specifications
4. Entity-relationship diagrams (ERDs)
5. Screen shots of the proposed system

The expert analyzed and scored the above
artifacts for each project on a 7-point Likert-type
scale. Though the expert had only 2 to 3 years of
experience, by following a standard evaluation
procedure such as the one outlined previously,
this individual was able to arrive at an objective
assessment of project quality. This evaluation
was validated for consistency and accuracy by
a second expert who had more than 20 years of
SSAD industry experience, thus reducing possible

 2127

Project Quality of Off-Shore Virtual Teams Engaged in Software Requirements Analysis

biases in the evaluation process. The average of
these scores across all artifacts for each project
was taken as a measure of completeness and ad-
herence of project artifacts to user requirements.
By making the team assignments to the projects
blind to the expert, we minimized subjective bias
of the expert during the assessment.

ii. Consistency of the Artifacts

The expert also analyzed the consistency of
the screen prototypes submitted by development
teams with the DFDs and ERDs submitted. Using
a 7-point Likert-type scale, the expert analyzed and
scored for each project the consistency across

1. Screen prototypes and DFDs
2. Screen prototypes and ERDs

 Using the same evaluation and validation
procedure described in (i), an average score
measuring the consistency of the project artifacts
was generated.

iii. User-perceived quality

User perceptions about the quality of artifacts
submitted by the developer teams were also col-
lected through a survey questionnaire as the third
measure of team performance. A 7-point Likert-
type scale was used to elicit response from the user
team members. Items adapted from Edwards and
Sridhar (2005) are detailed in Appendix I. Scores
given by all the users to a particular development
team were averaged and were treated as measure
of user-perceived quality. Therefore, there was one
rating/score per user teams. Based on measures of
quality already mentioned, hypothesis H1, which
was constructed in the previous section, can be
refined and are presented in Table 4.

By specifying the two dimensions of com-
pleteness and adherence as well as consistency,
any errors in the assessment of the quality of the
projects was thought to be minimized.

Research Question Hypotheses

Quality of Projects of Virtual
Teams vs. Collocated Teams

H1a: Adherence and completeness of the requirements analysis artifacts produced by the col-
located teams using face-to-face communication will be better than those produced by the
virtual teams using computer-mediated communication.

H1b: Consistency of the screen shots and requirements analysis artifacts produced by the
collocated teams using face-to-face communication will be better than those produced by the
virtual teams using computer-mediated communication.

H1c: The users will perceive the quality of project artifacts produced by collocated teams
using face-to-face communication to be better than those produced by the virtual teams using
computer-mediated communication.

Impact of User Project
Monitoring on of the Quality of
Projects

H2a: Quality of project artifacts (as defined by the three measures of completeness & adher-
ence, consistency, and user perception) produced by the developer teams that are closely moni-
tored by their associated users in a virtual team mode will be better than those produce by the
developer teams that were not closely monitored by their users..

H2b: Quality of project artifacts (as defined by the three measures of adherence & complete-
ness, consistency, and user perception) produced by of the developers that perceived higher
levels of project monitoring by their users will be better than those produced by the developer
teams that perceived lower levels.

Table 4. Detailed hypotheses based on different measures

2128

Project Quality of Off-Shore Virtual Teams Engaged in Software Requirements Analysis

User Project Monitoring

We also measured perceived project-monitoring
practices of all users and developers involved
in both tight and loosely monitored projects.
Responses were elicited on a 7-point Likert-type
scale at the end of the project. Items are shown
in Appendix I. In order to capture the responses
for perceived quality and user project monitoring
based on the roles they played (user/developer) and
the team (collocated/ virtual) with which they did
the projects, different versions of the survey was
prepared and administered to students at MDI and
at MU. The various versions included same items
for each construct but were worded differently,
depending on the roles the participants played.
Based on the experimental measure of perceived
project management practice, hypothesis H2 can
be further articulated as in Table 4.

AnAlySiS, reSultS,
AnD DiScuSSiOnS

A principal component analysis was performed
on the items constructed for the previously men-
tioned measures with Varimax rotation and Kaiser
normalization; the results are given in Table 5.
Reliability of all these measures of (i) complete-
ness and adherence of artifacts, (ii) consistency of
project artifacts, (iii) user-perceived quality, and
(iv) perceived user project monitoring practices
are given in Table 6. Cronbach’s alpha values of
0.70 and higher indicate construct reliability.

performance of collocated vs.
Virtual teams

To test hypothesis H1, a one-way ANOVA test
was performed on the three measures of project
quality, as were previously described, between
virtual and collocated teams that participated in
Experiment 1. Note that in this case the project

artifacts are produced by the same developer
teams, and the project complexity of both the
virtual and collocated projects were moderated by
the instructors to be almost the same. However,
due to constraints in conducting the experiment,
the user teams could not be the same. User project
monitoring was kept loose for both virtual and
collocated projects. ANOVA results are repre-
sented in Table 7.

Results indicate that all the variations (H1a,
H1b and H1c) of hypothesis H1 can be rejected.
Although two of the mean quality measures of
collocated teams are better than that of virtual
teams, they are not significantly different. This
is contrary to expectations that the quality of
projects that are produced by collocated teams
and that benefit from higher social presence, me-
dia-rich face-to-face communications is no better
than that produced by virtual teams that use lean
media. This potentially suggests that the require-
ments analysis phase of software projects may be
successfully off-shored in full and conducted in
virtual team mode without significantly affecting
the quality of projects.

effect of user project monitoring

To test H2a, we compared mean values of the
quality measures between the tightly monitored
control group and the loosely monitored experi-
mental group. Results presented in Table 8 indicate
that the completeness and adherence of project
artifacts produced by the control group were
significantly superior to those produced by the
experimental group, suggesting that close project
monitoring by users had a positive impact on this
measure of project quality. However, neither the
consistency of project artifacts nor the user-per-
ceived quality differed significantly across the
two sets of teams. As expected, participants in the
control group perceived that their projects were
indeed closely monitored, compared to those in
the experimental group.

 2129

Project Quality of Off-Shore Virtual Teams Engaged in Software Requirements Analysis

Item No Adherence and Completeness
of Project Artifacts

Consistency of
Project Artifacts

User-Perceived
Quality

Perceived User Project
Monitoring

1 .792 .892 .882 0.663

2 .869 .885 .935 0.845

3 .699 .871 0.700

4 .400 .956 0.615

5 .680 0.759

6 0.548

7 0.686

Table 5. Principal component analysis of various constructs indicating factor loadings of survey items

Note. Extraction method: principal component analysis; rotation method: varimax with kaiser normalization

Table 6. Reliability coefficients (Cronbach’s Alpha) of constructs

Constructs (Number of items) Cronbach’s Alpha
Value

Completeness and Adherence of Project Artifacts (5) 0.70

Consistency of Project Artifacts (2) 0.71

User-Perceived Quality (4) 0.93

Perceived User Project Monitoring (7) 0.73

Construct Mean
(Collocated team)

Mean
(Virtual team) F-value (significance)

Completeness and Adherence of
Project Artifacts 4.92 4.56 0.551(0.467)

Consistency of Project Artifacts 6.32 6.51 1.025(0.323)

User-Perceived Quality 4.91 4.75 0.616(0.435)

Table 7. ANOVA Results (Collocated vs. Virtual teams)

Construct

Mean
(Control group-

imposed tight user
project monitoring)

Mean
(Experimental

group—voluntary
loose user project

monitoring)

F-value (significance)

Completeness and Adherence of
Project Artifacts 5.60 4.50 4.6(0.044)

Consistency of Project Artifacts 6.39 6.51 0.314(0.582)

User-Perceived Quality 4.61 4.75 0.076(0.785)

Perceived User Project Monitor-
ing 5.18 4.35 37.2 (0.000)

Table 8. ANOVA results (tight vs. loose project monitoring)

2130

Project Quality of Off-Shore Virtual Teams Engaged in Software Requirements Analysis

Mean values of the perceived monitoring of the
virtual team were then computed. We categorized
those responses that were above the mean value
as high perceived user project monitoring and
those that were below as low perceived project
monitoring. The performance measured on all
the three dimensions were then compared across
these two sets, using a one-way ANOVA test.
The results as presented in Table 9 indicate that
artifacts produced by developers who perceived
higher levels of user project monitoring practices
were better on the two dimensions of completeness
and adequacy, as well as user-perceived quality,
as compared to those who perceived low user
monitoring.

A pair-wise correlation was carried out
between perceived project monitoring and the
three measures of project quality, which further
confirmed these findings. (These correlations in
presented in Table 10.)

It is important to understand the difference
between imposed project monitoring as defined
in the control and experimental groups and
perceived project monitoring. Though ANOVA
results in Table 8 indicate that the mean values
of perceived project monitoring of the control
group were significantly higher compared to
that of the experimental group, the mean of the
experimental group was significantly higher (4.35)
in the Likert scale. We also observed that in the

Construct
Mean

(Perceived HIGH user
project monitoring)

Mean
(Perceived LOW user
project monitoring)

F-value (significance)

Completeness and Adherence
of Project Artifacts 5.30 4.73 6.18(0.044)

Consistency of Project Arti-
facts 6.41 6.49 0.107(0.768)

User-Perceived Quality 5.01 4.17 8.91(0.003)

Table 9. ANOVA results (perceived user project monitoring)

Note. TPM = tight project monitoring; LPM = loose project monitoring;
HUPM = high user project monitoring; LUPM = low user project monitoring

Construct Quality of Projects

Completeness and Adherence of
Project Artifacts (p)

Consistency of Project
Artifacts

User-Perceived
Quality

Perceived User Project
Monitoring 0.215 (0.021) 0.042(0.643) 0.281(0.002)

Collocated Teams vs. Virtual
Teams in Off-Shore Mode

User Project Monitoring of Off-Shored
Projects in Virtual Team Mode

Control/ Experimental Perceived

Completeness and Adherence of
Project Artifacts - TPM > LPM HUPM > LUPM

Consistency of Project Artifacts - - -

User-Perceived Quality - - HUPM > LUPM

Table 10. Pair-wise correlations between input and output variables

Table 11. Summary of results of teams engaged in software requirements analysis

 2131

Project Quality of Off-Shore Virtual Teams Engaged in Software Requirements Analysis

experimental group, some of the MU teams,
along with their corresponding MDI B teams,
had voluntarily adopted closer project monitoring
practices. These MDI B teams had been submit-
ting their project plans and intermediate artifacts
to their MU user teams, thus resulting in higher
levels of perceived project monitoring. From an
experimental perspective, there was a positive
impact of both imposed project monitoring as well
as perceived project monitoring on adherence of
artifacts. At the same time, there was a positive
impact of perceived project monitoring on user-
perceived quality, possibly because of the close
working relationship adopted by the users and
developers. This could have occurred through
informal behavioral control mechanisms such as
clan control deployed by the MDI B teams and
their corresponding MU user teams. However this
issue warrants further analysis. Table 11 gives a
summary of the results.

cOncluSiOn

In this article we have described an exploratory
study that examines two aspects of virtual teams in
off-shored software development projects, specifi-
cally in the requirements analysis phase. First, we
examine whether the quality of projects produced
by virtual teams engaged in pure off-shore mode
is at par with that of traditional, collocated teams.
Secondly, within the ambit of virtual teams, we
examine whether user monitoring of the projects
has an impact on the quality of projects.

contributions of the Study

Our study is one of the few to apply social presence,
media richness and control theories to develop and
test a research model of the antecedents of quality
of software requirements analysis projects con-
ducted in off-shore virtual team environment. As
client and vendor organizations are increasingly
considering off-shoring parts of requirements

analysis phases, our early conclusions might
enable organizations to design communications
and governance structures that might facilitate
virtual requirements analysis. Considering the
rapid leaps in technological infrastructure glob-
ally, technology will become a moot point in this
facilitation. From an academic perspective, the
introduction of these two theories in an offshore
context lays the foundations for extended empiri-
cal research.

We find that there is no significant difference in
the quality of projects produced by virtual teams
that used lean media and that by collocated teams
that used rich face-to-face communications. This
is similar to findings reported in Burke and Chi-
dambaram (1999) where, despite the persistently
lower social presence of leaner media, distributed
groups performed better than face-to-face coun-
terparts. Possibly, a more task-focused approach
and limited social interaction may have enabled
teams to generate higher quality outputs. This
could be a potentially important result because
it implies that off-shoring, which was so far
restricted to the lower level phases of system
development (such as low-level design, coding,
and testing) could successfully be extended to
the requirements analysis phase as well. A key
benefit, of course, is that software firms could save
significantly on costs by locating their business
and systems analysts in off-shore locations and
facilitating interactions with users through virtual
channels. While this may currently be challenging,
our study highlights the need for future research
in improving these virtual interactions between
users and off-shored development teams.

The effect of user project monitoring (con-
trol/experimental) on the quality of off-shored
requirements analysis projects is ambiguous.
Formal behavioral and outcome control imple-
mented through the experimental set up had a
positive effect on one measure of quality. It did
not have any effect on the other two measures.
Piccoli and Ives (2003) pointed out that behavior
control mechanisms, which are typically used in

2132

Project Quality of Off-Shore Virtual Teams Engaged in Software Requirements Analysis

traditional teams, have a significantly negative
impact on trust in virtual teams. It was reported
that behavior control mechanisms increase vigi-
lance and create instances in which individuals
perceive team members failing to uphold their
obligations. On the other hand, the perceived user
project monitoring had significant positive effect
on two dimensions of quality (one assessed and
one perceived).

We also infer that, even when project man-
agement practices were not enforced, teams
might have adopted these practices to improve
their performance through clan control. This
observation, though anecdotal based on class
observations and our analysis of perceived user
project monitoring, has important implications.
It provides clues that, apart from forced formal
controls, informal controls existed between the
users and developers when they share common
goals (Choudhury & Sabherwal, 2003).

Our findings have important implications
for the industry as well. Companies engaged in
off-shore software development have produced
strong processes around their global delivery
model. However, whether the same process and
project monitoring discipline will lead to success
of projects conducted in pure off-shore mode in
virtual team setting during the early stages of
system development work has not been explored.
Our research indicates that teams engaged in vir-
tual teamwork might develop their own informal
control mechanisms and even bypass the forced
control mechanisms necessitated by the standard
operating procedures while doing their projects.
The firms (viz. both the clients and software
developers) engaged in off-shore work should
develop a conducive climate for team members
to develop these informal controls that seem to
affect project quality. Apart from this, our study
fills the gap in the literature in the area of analy-
sis of quality of projects implemented by virtual
teams engaged in off-shore system requirements
analysis. Further research is needed to confirm
our exploratory findings.

limitations of the Study:
Opportunities for future research

Use of Experiments

Literature in the area of virtual teams has mainly
followed three research methodologies—case
studies, industry surveys, and experiments. Ex-
perimental methods make possible the careful
observation and precise manipulation of inde-
pendent variables, allowing for greater certainty
with respect to cause and effect, while holding
constant other variables that would normally be
associated with it in field settings (Damian et al.,
2000). They also encourage the investigator to
try out novel conditions and strategies in a safe
and exploratory environment before implement-
ing them in the real world (McGrath, 1984). The
industry is yet to adopt off-shoring of the require-
ments analysis phase. This precludes the use of
case study or industry survey for this research.
Hence, we used experiments where we can explore
this emerging phenomena.

In our experiment, MDI A teams played the
roles of both users (in Experiment 1) and devel-
opers (in Experiment 2). The dual roles could
have created conflicts that might have affected
(positively or negatively) their project quality. The
same is true with MDI B teams, who performed
the roles of consultants for both MU teams as
well as MDI A teams. MU teams also had to
manage two projects: one with tight monitoring
(with MDI A teams) and the other with loose
monitoring (with MDI B teams). To remove the
confounding effects of dual roles played by the
teams, it is recommended that a true controlled
factorial experiment be conducted to verify our
findings.

Use of Students as Surrogates

There are criticisms for the use of students in
academic experiments as surrogates. However,
MBA students have been used as surrogate us-

 2133

Project Quality of Off-Shore Virtual Teams Engaged in Software Requirements Analysis

ers in a range experiments conducted (see, e.g.,
Briggs, Balthazard, & Dennis, 1996; Hazari,
2005). Even in requirement negotiation phase,
students with work experience were taken as
users for developing a small system (Damian et
al., 2000). Remus (1986) argued that graduate
students could be used as surrogates for manag-
ers in experiments on business decision making.
Students often represent a typical working pro-
fessional and organizational member due to the
variety of backgrounds and goals (Dipboye &
Flanagan, 1979). Studies in industrial organization
psychology and organization behavior have found
that results obtained from students were similar
to those from managers (see, e.g., Locke, 1986).
Despite the fact that users and developers in our
experiments had 2 to 4 years of work experience,
limitations of using students as surrogates are still
applicable in our study. As the industry evolves,
we suggest the extension of these experiments to
business settings.

Complexity of Projects

Requirements analysis is intensive, and hence it
is not possible to completely replicate in student
experiments. However, our objective was to study
the research questions on comparable, relatively
well-defined small projects in which complexity
of requirements analysis is not high.

Though the experiments were carefully de-
signed, the projects were limited in scope and
size compared to large-scale industrial projects.
Furthermore, no formal measures of complexity
were used in the study so that we could com-
pare the projects used in the experiments with
real-world industrial projects. Further research
is needed to assess the impact of these findings
on large-scale industrial projects with complex
requirements.

future research Directions

One way of dealing with the lack of realism in
laboratory experiments is to use multiple meth-
ods (McGrath, 1984) so that strengths of some
compensate weaknesses of others. To truly test
the predictive ability of the research results, the
studies must also involve a multiplicity of research
methodologies in order to avoid biases due to
the methods used (Jarvenpaa, Knoll, & Leidner,
1988). Simulated laboratory negotiations could
be complemented by field studies or validations
(whose strength is realism), if the lack of realism is
an issue. In our research, internal validity of results
was established through conducting experiments
in a controlled environment. We expect to conduct
external validity through industry survey.

Finally, while we have explored one variable
of project control, quality of projects can be af-
fected by other variables such as team motivation,
trust, cohesion, coordination, and communication
(Chidambaram, 1996; Jarvenpaa et al., 1998; Lurey
& Raisinghani, 2001). Hence, a comprehensive
model that defines all factors affecting the qual-
ity of off-shored software requirements analysis
projects must be developed. Further research is
required to determine how informal controls
develop between the virtual team members.
One cause may be the amount of initial online
socialization, when the teams familiarize with
each other before the start of the project, for the
design of such experiments in the future. Since it
may not always be feasible to make experimental
and control groups adhere to experimental require-
ments in a classroom setting, a flexible approach
is needed in experimental design.

2134

Project Quality of Off-Shore Virtual Teams Engaged in Software Requirements Analysis

referenceS

Andres, P. (2002). A comparison of face-to-face
and virtual software development teams. Team
Performance Management, 8(1/2), 39-48.

Archer, N. P. (1990). A comparison of computer
conferences with face-to-face meetings for small
group business decisions. Behavior & Information
Technology, 9(4), 307-317.

Battin, R., Crocker, R., Kreidler, J., & Subrama-
nian, K. (2001). Leveraging Resources in global
software development. IEEE Software, 18(2),
70-77.

Briggs, R. O., Balthazard, P. A., & Dennis, A. R.
(1996). Graduate business students as surrogates
in the evaluation of technology. Journal of End
User Computing, 8(4), 11-17.

Burke, K., & Aytes, K. (1998). A longitudinal
analysis of the effects of media richness on co-
hesion development and process satisfaction in
computer-supported workgroups. In Proceedings
of the 31st Hawaii International Conference on
Systems Sciences (pp. 135-144).

Burke, K., & Chidambaram, L. (1996). How much
bandwidth is enough? A longitudinal examination
of media characteristics and media outcomes. MIS
Quarterly, 23(4), 557-580.

Campbell, D. T., & Stanley, J. C. (1966). Ex-
perimental and quasi-experimental designs for
research. Chicago: Rand McNally.

Carmel, E. (2006). Building your information
systems from the other side of the world: How
Infosys manages time zone differences. MIS
Quarterly Executive, 5(1), 43-53.

Chidambaram, L. (1996). Relational development
in computer-supported groups. MIS Quarterly,
20(2), 143-163.

Chidambaram, L., & Bostrom, R. (1993). Evolu-
tion of group performance over time: A repeated
measures study of GDSS effects. Journal of Or-
ganizational Computing, 3(4), 443-469.

Choudhury, V., & Sabherwal, R. (2003). Portfolios
of control in outsourced software development
projects. Information Systems Research, 14(3),
291-314.

Crisp, C. B. (2003). Control enactment in global
virtual teams. Dissertation Abstracts Interna-
tional. (UMI No.)

Damian, D. E, Eberlein, A., Shaw, M. L. G., &
Gaines, B. R. (2000). Using different communi-
cation media in requirements negotiation. IEEE
Software, 17(3), 28-36.

Damian, D. E., & Zowghi, D. (2003). An insight
into interplay between culture, conflict and
distance in globally distributed requirement
negotiations. In Proceedings of the 36th Hawaii
International Conference on System Sciences.

Dipboye, R. L., & Flanagan, M. F. (1979). Research
setting in industrial and organization psychol-
ogy: Are findings in the field more generalizable
than in laboratory. American Psychologist, 34(2),
141-150.

Ebert, C., & De Neve, P. (2001). Surviving global
software development. IEEE Software, 18(2),
62-69.

Edwards, K., & Sridhar, V. (2005). Analysis of
software requirements engineering exercises in
a global virtual team setup. Journal of Global
Information Management, 13(2), 21-41.

Favela, J., & Pena-Mora, F. (2001). An experience
in collaborative software engineering education.
IEEE Software, 18(2), 47-53.

Foster, S., & Franz, C. (1999). User involvement
in information systems development: A com-

 2135

Project Quality of Off-Shore Virtual Teams Engaged in Software Requirements Analysis

parison of analyst and user perceptions of system
acceptance. Journal of Engineering Technology
Management, 16(3-4), 329-348.

Hartwick, J., & Barki, H. (1994). Explaining the
role of user participation in information system
use. Management Science, 40(4), 440-465.

Hazari, S. I. (2005). Perceptions of end-users on
the requirements in personal firewall software:
An exploratory study. Journal of Organizational
and End User Computing, 17(3), 47-65.

Hoffer, J., George, J., & Valacich, J. (1999). Mod-
ern systems analysis and design. Reading, MA:
Addison Wesley.

Jarvenpaa, S., Knoll, K., & Leidner, D. (1998). Is
anybody out there? Antecedents of trust in global
virtual teams. Journal of Management Informa-
tion Systems, 14(4), 29-64.

Jarvenpaa, S., & Leidner, D. (1999). Communica-
tion and trust in global virtual teams. Organization
Science, 10(6), 791-815.

Kircsh, L. J. (1996). The management of complex
tasks in organizations: Controlling the systems
development process. Organizational Science,
7(1), 1-21.

Kircsh, L., Sambamurthy, V., Ko, D., & Purvis,
R. (2002). Controlling information systems de-
velopment projects: The view from the client.
Management Science, 48(4), 484-498.

Lin, W., & Shao, B. (2000). A relationship be-
tween user participation and system success: A
simultaneous contingency approach. Information
& Management, 37(6), 283-295.

 Lind, M. (1999). The gender impact of temporary
virtual work groups. IEEE Transactions on Pro-
fessional Communication, 42(4), 276-285.

Locke, E. A. (1986). Generalizing from laboratory
to field setting: Research finding from industrial
organization, organization behavior, and hu-

man resource management. Lexington, MA:
Lexington Books.

Lurey, J., & Raisinhgani, M. (2001). An Empirical
study of best practices in virtual teams. Informa-
tion & Management, 38(8), 523-544.

McDonough, E., Kahn, K., & Barczak, G. (2001).
An investigation of the use of global, virtual, and
collocated new product development teams. The
Journal of Product Innovation Management,
18(2), 110-120.

McGrath, J. (1984). Groups: Interaction and
performance. Upper Saddle River, NJ: Prentice
Hall.

National Association of Software and Service
Companies. (2005). Indian IT industry. Retrieved
March 3, 2005, from http://www.nasscom.org/

Piccoli, G., & Ives, B. (2003). Trust and the un-
intended effects of behavior control in virtual
teams. MIS Quarterly, 27(3), 365-395.

Powell, A., Piccoli, G., & Ives, B. (2004). Virtual
teams: A review of current literature and directions
for future research. The DATABASE for Advances
in Information Systems, 35(1), 6-36.

Remus, W. E. (1986). An empirical test of the use
of graduate students as surrogates for managers in
experiments on business decision making. Journal
of Business Research, 14(1), 19-25.

Rice, R. E., & Love, G. (1987). Electronic emotion:
Socio-emotional content in a computer-medi-
ated communication network. Communication
Research, 14(1), 85-108.

Sharda, R., Barr, S. H., & McDonnell, J. C. (1988).
Decision support system effectiveness: A review
and an empirical test. Management Science,
34(2), 139-157.

Schimdt, J. B., Montoya-Weiss, M. M., & Massey,
A. P. (2001). New product development decision-
making effectiveness: Comparing individuals,

2136

Project Quality of Off-Shore Virtual Teams Engaged in Software Requirements Analysis

face-to-face teams and virtual teams. Decisions
Sciences, 32(4), 575-600.

Sarkar, S., & Sahay, S. (2002). Information systems
development by US-Norwegian virtual teams:
Implications of time and space. In Proceedings of
the 35th Annual Hawaii International Conference
on System Sciences (pp. 1-10).

Short, J., Williams, E., & Christie, B. (1976).
The social psychology of telecommunications.
London: Wiley.

Sridhar, V., Nath, D., & Malik, A. (in press).
Analysis of user involvement and participation on
the quality of IS planning projects: An exploratory
study. Journal of Organizational and End User
Computing.

Stevenson, W., & McGrath, E. W. (2004). Differ-
ences between on-site and off-site teams: Manager
perceptions. Team Performance Management,
10(5/6), 127-132.

Townsend, A., DeMarie, A. M., & Hendrickson,
A. R. (1998). Virtual teams: Technology and the
workplace of the future. Academy of Management
Executive, 12(3), 17-29.

Walther, J. (1995). Relational aspects of com-
puter-mediated communication: Experimental
observations over time. Organization Science,
6(2), 186-203.

This work was previously published in Journal of Global Information Management, Vol. 16, Issue 4, edited by F. Tan, pp. 24-
45, copyright 2008 by IGI Publishing (an imprint of IGI Global).

 2137

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.21
A Case Study on the Selection
and Evaluation of Software for

an Internet Organisation
Pieter van Staaden

Media24 Ltd., South Africa

ABStrAct

The author conducted research to determine
whether IT managers, IT auditors, users, man-
agement, etc. (all decision-makers) use a certain
evaluation and selection process to acquire
software to meet business objectives and the
requirement of users. An argument was used
that the more thorough the software evaluation
and selection process, the more likely it would
be that the organisation will chose software that
meets these targets. The main objective of the
research was therefore to determine whether
Media24 uses evaluation methods and obtains
the desired results. The results confirmed that
Media24 uses suggested protocol as noted in the
theory for software acquisition correctly during
most stages.

IntroductIon

There is a wide variety of methods that can be
used for selection of software in various fields of
business (e.g., manufacturing, service providers,
insurance, wholesale, retail, etc.). This software
is used for a variety of purposes in businesses.
However, selecting the software that meets or-
ganisational requirements and business objectives
could prove to be a challenge considering the
number of vendors and software available.

Choosing the right software for your company can
be bewildering. There are thousands of titles to
choose from, and programs and their functionality
differ frequently. (Buyerzone.com, 2002)

A hurried, uneducated choice could lead to var-
ious problems in the company. Some of these are

2138

A Case Study on the Selection and Evaluation of Software for an Internet Organisation

failing to support an important business process,
supporting a process inaccurately or inefficiently,
unhappy customers, disgruntled employees, loss
of sales, and poor financial performance.

Competition in the Western Cape requires
good performance in all aspects of the electronic
publication industry. Bad judgments or decisions
in terms of software acquisition could cause a
company some losses and complications in their
daily operations. Choosing the right software
is therefore important and can be achieved by
using pre-determined evaluation and selection
guidelines.

eVAluAtiOn AnD SelectiOn Of
A cOmmerciAl SOftWAre
SyStem

Decisions made prior to the
Software evaluation process

As mentioned by Capterra’s software selection
methodology (2002), certain procedures should
be completed before the actual evaluation is con-
ducted. They suggest that the company should
start off by interviewing some staff members,
addressing corporate vision, analysing existing
systems limitations and features, and looking at
present policies and procedures. The company
should also determine whether new software will
help the business and if it will increase competi-
tive advantage.

They argue that when the decision is made to
purchase software, a project plan should be devel-
oped to evaluate and list the evaluation criteria that
will be used during the process. A project team
should also be selected to carry out the evaluation.
This team must include representatives from all
levels the organisation. If the proposed software
incorporates financial aspects, the audit team
should also be included.

Determine requirements for the new
Software package

The purpose would be to create a comprehensive
and prioritised list of requirements to help evalu-
ate the software. Base Consulting Group (BCG)
(2000) state that the requirements definition should
consist of several processes (such as managerial
requirements (budget/timing, reporting require-
ments), functional requirements (stated business
needs, technical requirements), and IS standards
(data flow diagrams, system interfaces, and hard-
ware and network requirements with emphasis
on capacity).

They also note that some companies do not
develop detailed requirements and as a result may
be dissatisfied with the final outcome. Romney
and Steinbart (2000) support this statement and
suggest that one or any combination of four strate-
gies (listed below) should be used to determine
requirements for the new software:

• Survey end-users to determine what their
requirements for software is by using ques-
tionnaires, personal interviews, and focus
group discussions.

• Analyse the existing system and eliminat-
ing requirements that have already been
defined.

• Examine how the existing software is used,
helping to determine the shortcomings of the
system, and identifing any new requirements
needed by users.

• Pilot demonstrations of applications/soft-
ware systems could be utilised when there
is a problem in identifying requirements.

Document the requirements

The systems requirement document or software
requirement specifications should be the start-
ing point for measuring performance of the final

 2139

A Case Study on the Selection and Evaluation of Software for an Internet Organisation

system (Shelly, Cashman, & Rosenblatt, 1998).
Users must understand the document to be able
to improve the final version. The content of this
requirements document will depend on the type of
company and the complexity of the new system.
BCG (2000) states that the requirements document
is the cornerstone to evaluate the software and
should be used to identify requirements. Capterra
(2002) argues that there is a methodological ap-
proach available to help with requirement analysis.
This is listed in Table 1.

Selecting Vendors

Michell and Fitzgerald (1997) argue that the
range of services offered by IT vendors is large
and growing rapidly. They also note that while
searching for the “best” vendor, it should be borne
in mind that the process of selection and evalu-
ation of a vendor is important. Base Consulting
Group (2000) suggests that the project team’s first

step should be to identify the vendors who offer
software solutions that could be used. It could be a
high-risk approach not to properly evaluate vendor
companies. The sources used to compile the list
of vendors should be recent and reliable. These
sources include software user groups, databases,
industry groups, research firms, consulting firms,
trade shows, seminars and conferences, current
users, personal recommendations and contacts,
competitors, IT, and business magazines, as well
as Web sites.

preliminAry eVAluAtiO Of
VenDOr cOmpAnieS AnD tHeir
prODuct

Ward (2001) argues that selecting software from
a vendor should be a simplified process. She sug-
gests that vendors be invited to participate in a
software demonstration because it reduces time

Table 1. Capterra’s methodology (2002)

COLUMN NAME DESCRIPTION
Functional department,

business processes, and pro-
cess.

This creates the requirements hierarchy and ensures that all
processes are covered (e.g., would be creditors department, cheque
printing, approving cheques for printing, etc.)

Requirement type This identifies the requirement as functional, technical, vendor
related, or contractual.

Requirement description This details the requirement itself and should be as descrip-
tive as possible.

Priority and ranking This could be used during the evaluation.
Objective addressed This could be used to match the requirement to a business

objective.
Comments This can be used for any additional comments or justifica-

tions.

2140

A Case Study on the Selection and Evaluation of Software for an Internet Organisation

spent on evaluations. Companies could work
toward solving the business problems earlier
resulting in faster return on investment. Base
Consulting Group (2000) states that inviting too
many vendors to participate increases the costs
and timelines of the project. Team members may
also lose focus after seeing too many product
demonstrations. In order to shorten the time of
the process send the request for proposal (RFP)
to a shortlist of 5 vendors, and do a preliminary
evaluation of the vendors.

The evaluation team should look at things
like:

• The standard functionality and key features
of the product

• Technology requirements (hardware, addi-
tional software, database, operating system,
network, development tools)

• Product considerations such as viability,
stability, and cost

• Products targeting different, smaller, or
much larger companies or industries should
be eliminated

• Eliminate products that are in development
or a recent release.

• Licensing and support costs are examined
and products that are over/under priced
should be eliminated (licensing escalation
must be considered).

• Develop a request for proposal (RFP).

According to Levinson (2001), an RFP guides
buyers through a process of tying business needs
to technical requirements (e.g., as the particular
platform on which the software needs to run on
or the systems with which the solution must in-
terface). It clarifies why they are undertaking a
particular project. Schwalbe (2000) suggests that
the RFP should include: statement of the purpose,
background information on the company issuing
the RFP, basic requirements for the products and/or

services being proposed, HW and SW environ-
ment, description of the RFP process, statement
of work (SOW), and other information added (as
appendices). The SOW should describe the work
required for the procurement of the software
and help vendors determines if they can deliver
required goods and services.

eVAluAtiOn prepArAtiOnS

gather and Organise resources

Lars and Matthew (2002) note that a reason for not
detecting errors early is because the inadequacy of
the test used by the team. The quality assurance of
the evaluation project is jeopardised. To prevent
this, the test team should ensure they have the
resources to detect errors present. The adequacy
of resources gathered should be determined at
the same time potential vendors are identified.
Resources could be added or updated to support
the evaluation.

Determine the evaluation Approach/
technique

Restrictions on Evaluating Software

Dean and Vigder (2002) state that, while purchas-
ing software, there are some unique constraints on
the ability to conduct effective testing. In general,
it should be assumed that there is no access to the
source code. If the source code is available it could
not be modifiable and it means that the executable
part cannot be tested internally and this rules out
white box testing. Documentation should consist
of user manuals and advertising materials and is
not directed at evaluating the software (e.g., it
does not describe the behaviour of the software
in response to abnormal input).

 2141

A Case Study on the Selection and Evaluation of Software for an Internet Organisation

Evaluation Techniques and Methods

Romney et al. (2000) suggest benchmarking while
processing times of software are measured. Soft-
ware with the lowest time is normally judged the
most efficient. Oberndorf, Brownsword, Morris,
and Sledge (1997) engaged scenario-based testing
methods to represent typical procedures for the
software to be programmed and not the software
undergoing tests. Test procedures are developed
based on scenarios and each is evaluated against
a set of criteria. In this case, the initial scenarios
are established using preliminary operational
definitions. The results of this will serve as con-
firmation that the software performed satisfactory
against set parameters.

Romney et al. (2000) suggest a point scoring
technique to evaluate the vendor. Each criterion
is assigned a weight based on its relevancy. The
vendor is assigned a score based on how their
proposal measures up to each criterion. The
vendor with the highest score is then judged the
“best.” They argue that “requirements” costing is
an alternative where the total cost of the proposed
software is calculated. This provides an equitable
basis for comparison.

Another method suggested by Voas, Charron,
and McGraw (1997) is the use of fault injection
techniques. This is effective when buyers do not
have access to the source code. The method con-
sists of inserting erroneous values into the control
stream and checking the results. This technique
is an example of evaluating (for discovery) to
determine unknown or unexpected reactions of
the product under evaluation.

Beizer (1995) suggests black box testing to al-
low a tester to treat each module as a unit that can
be defined by its inputs and outputs (the interfaces
to the module) without considering the route by
which an input is transformed into a particular
output. Visibility into the internal workings of
the code module is not necessary and source code
not required. An example of black box testing is

boundary value analysis where inputs are supplied
to the software to be tested (these values represent
valid, invalid and parameters). The outputs are
measured and accepted if they fall within expected
limitations. This type of testing is used during
acceptance testing and is the basis of validation
testing, confirming the software performed the
required functions.

Other techniques (Hausen & Welzel, 1993)
include analysing product documentation,
presentations, using trial versions, scheduling
demonstrations, or attending training of the
software. They suggest that one or more of the
previously mentioned techniques could be used
to supplement the evaluation of software. The
project team should use discretion when selecting
evaluation techniques as a company’s approach
and resources may vary.

Evaluation Considerations

Hausen and Welzel (1993) mention that some
of the following principles should be taken into
consideration:

• Repeat testing of the same product using
the same product specifications with the
same testing techniques must deliver similar
results (Repeatability).

• Repeat evaluation of the same product to
the same product specifications by different
parties must deliver similar results (Repro-
ducibility).

• The evaluation is free from bias while achiev-
ing any particular result (Impartiality).

• The result is obtained with minimum subjec-
tive judgment (Objectivity).

Product Evaluation

Hausen and Welzel (1993) state that the evalu-
ation process should consider software features
(compared to the requirements document), product

2142

A Case Study on the Selection and Evaluation of Software for an Internet Organisation

information (acquired from the RFP, product
demonstration, information gathered from inves-
tigating vendors, etc.), evaluation techniques, and
process information (e.g., results obtained from
the testing techniques).

Capterra’s methodology (2002) states that all
software should be evaluated to determine if it
meets requirements (functional and technical).
Any additional (functional/technical) require-
ments should be listed and re-calculated. Missing
requirements should be listed and cost incurred
to add these features should be calculated. Price
and maintenance levels of the product have to
be evaluated by totalling cost and maintenance
levels. Firms must consider initial product costs
(also long-term costs (such as training, implemen-
tation costs, maintenance, and upgrading costs).
Project teams should keep in mind that software
is expensive and by picking the wrong one could
have costly repercussions.

Final Evaluation of Vendor Companies
Providing Possible Software Solution

Pollard (1999) suggested the evaluation of the
support and maintenance staff of the vendor. He
notes that it is necessary to know the number of
people in customer support. The response time
can be measured by calling the customer support
department. The availability and quality of the
implementation support also ought to be evalu-
ated. The new software could have bugs and other
problems (e.g., not meeting the required deadline).
The vendor must provide training because users
want to use the system properly.

He suggests following up on customer refer-
ences, reviewing case studies and finding out
how many companies are using the software. The
financial stability of a vendor is an aspect to con-
sider. Pollard (1999) supports this by suggesting
the examination of the financial history and the
long-term financial stability of the vendor.

Selecting the Software System

The total score of the software should be recorded
on a scoring sheet when a point scoring technique
is used. All the software must be listed from
the highest to the lowest. The software with the
highest score would represent the best fit for the
organisation. Although the software with the high-
est score might represent the best solution for the
company, there may be reasons unrelated to the
requirements that could prevent an organisation
from selecting software. Inconsistencies should
be identified (also extremes in scoring that may
influence it—or a competency or deficiency within
a single business function). Criteria such as a
business partnership, potential future business,
or other intangibles, must also be included.

Notify the Vendor

Once the steering committee has approved the
vendor, then the vendor should be notified and
a contract drawn up. The diagram (on the next
page) was derived from the theory to illustrate
steps used during the evaluation and selection
process.

prOBlem StAtement

Brown and Wallnau (1996) state that organizations
should recognize the importance of technology
“refreshment”:

• To improve the quality of their products and
services

• To be competitive with organizations provid-
ing similar products and services

• To remain attractive to investors

Any organization should invest in appropriate
software to stay in business. Careful decision-

 2143

A Case Study on the Selection and Evaluation of Software for an Internet Organisation

making on investment into software is therefore
essential. Whether the release of an update, or
the availability of new software, should force an
organization to initiate an evaluation process that
provides timely, balanced information on which
decisions can be made.

The problem statement was thus stated as:

…the more thorough the evaluation of software, the
greater the chances could be for the organization
to select the software that will meet their business
objective and the requirements of the users.

reSeArcH metHODOlOgy

Objective

The objective of the study is to determine whether
Media24 uses the correct software evaluation and
selection guidelines when purchasing software
from a vendor as prescribed in the theory and
whether these guidelines have obtained results.
Based on the theory and the problem statement,
the research questions were stated as follows:

• Is the software evaluation process of Me-
dia24 thorough enough to select software
that fulfils their end-user requirements?

• Does the organisation pick software that
meets the business objectives easily?

limitations of the Study

The researchers had decided to exclude legal pro-
cedures and only focussed on the project from a
technical viewpoint. Also they were not allowed
to use the name of any software used by Media24
as it might discredit the vendor or Media24. The
research scope also does not include the processes
(e.g., contract negotiation) followed after a deci-
sion has been made.

Development of Questionnaire

The researchers compiled a questionnaire con-
sisting of two sections (Section A and B). Sec-
tion A contained seven sub-sections, covering
aspects of evaluation and selection processes.
Section B contains the user satisfaction survey.
The questionnaire was handed to a Media24 IT
manager who reviewed it. He also identified people
responsible for evaluating and selecting software
in Media24 to be respondents while he completed
a questionnaire himself.

Section A was sent out to 15 decision-makers
involved in acquiring software in Media24. The
objective was to measure whether they used the
evaluation techniques as prescribed in the theory.
Section B was sent to 50 users of the software.
The objective was to determine whether they
were satisfied with present software. All questions
where derived from the theory described earlier.
A 5-point Lickert scale was used in most of the
questions (it included questions that required
respondents to pick more than one answer). The
reason is to evaluate areas where answers from
the respondent indicates an in depth approach to
the evaluation process. At the end of each section,
a section was dedicated to find out in more detail
what respondents think.

Analysis of Data

The results of both sections were compared us-
ing cross tabulation. The data was captured and
analyzed on an excel spreadsheet. Twelve “section
A” respondents returned the questionnaires and
74% of the respondents who received section B
returned the questionnaire.

Section A: Evaluation Process

Nearly all the respondents agree that the steering
committee correctly directs the evaluation pro-

2144

A Case Study on the Selection and Evaluation of Software for an Internet Organisation

Figure 1. Graphical summary of software selection

Evaluation
Report

Determine
Requirements

Conduct
Preliminary
Evaluation

Gather Information
on

Vendors

Evaluation
Preparation

Technical
Evaluation

Determine
Evaluation

approach/technique

Product
Evaluation

Functional
Evaluation Evaluate Support

and maintenance
capability

Review
Vendor

Customers

Evaluate
the

Company

Final Vendor
Evaluation

 RFP

Requirement

Document

RFP

Vendor Short
List

Extensive
List of

Vendors

Used to

Used to

Used to Compile

Conduct Conduct

Compile Compile

Consists of
Consists of

Steering Committee
Approval Notify the selected

Vendor
Price and

Maintenance
levels

Used to Compile

Compile

Compile

Sent to
Vendors on

Table 2. Project management structure

SA A NDA D SD
There is a Steering Committee in place to oversee

and direct the evaluation process
11 7 1 0 0

Sufficient resources are allocated to the evaluation
process

4 8 0 0 0

A project team with the required expertise is as-
signed to conduct the evaluation and selection of the
new software system.

3 5 1 3 0

AVERAGE 4 6 1 1 0

 2145

A Case Study on the Selection and Evaluation of Software for an Internet Organisation

Table 3. Requirements definition

Table 4. Vendor identification and evaluation

SA A NDA D SD
Technical requirements are determined (e.g., the
system interface)

5 7 0 0 0

The Functional requirements are determined (e.g.,
business objectives system has to fulfil)

5 5 2 0 0

Managerial requirements are determined (e.g.,
reporting capabilities, budget, timing)

4 8 0 0 0

Requirements are properly documented and easy to
understand

2 7 1 2 0

AVERAGE 4 7 .5 .5 0

SA A NDA D SD
Various sources (e.g., Web sites) are investigated

in order to identify the software available.
3 7 2 0 0

A preliminary evaluation is conducted to limit
software that are going to be extensively evaluated.

3 7 0 1 1

The support and maintenance staff provided by the
vendor is evaluated based on…

…response time 4 7 1 0 0
…quality of support 1 9 2 0 0
…number of people 0 1 1 8 2
…cost 1 1 0 0

The company providing the software system is
evaluated based on…

...long term Financial stability 5 5 0 2 0

...customer References 4 7 1 0 0

...number of clients 4 5 3 4 0

...long and short term strategic planning 0 2 2 8 0
AVERAGE 2 7 1 .7 .3

2146

A Case Study on the Selection and Evaluation of Software for an Internet Organisation

cess (11). This indicates that people realise that
there is a structure in place that could oversee the
evaluation of software and is in agreement with
a similar comment by Capterra (2002).

All the respondents agree that there are suf-
ficient resources available to ensure that the
evaluation process runs smoothly. Nine of the
respondents indicated that the project team has
enough expertise to conduct an evaluation. Three
indicated that they disagree with this. There might
be a problem that falls outside the scope of this
study and needs to be addressed by management.
The organisation therefore needs to assemble a
project team that is representative of the people
working in the organisation (see also Dean &
Vigder, 2002). Nine of the respondents indicated
that Media24 used the interview method to de-
termine requirements. The same respondents
have also used the present system to ensure that
they meet the correct requirements (see Figure
4). Six respondents have indicated that they use
questionnaires to collect requirements. It seems
that project teams in Media24 prefer to use three
methods to determine software requirements.

All respondents have indicated that techni-
cal requirements are determined beforehand

(systems interface). Ten of the respondents are
happy that business objectives have been met
while determining functional requirements. All
agree that managerial requirements should be
met when requirements are defined. Nine of the
respondents noted that requirements are properly
documented. Media24 needs to address this to
ensure that people are in agreement otherwise it
can become a problem.

Ten of the respondents agree that many sources
should be investigated to identify correct software.
The same number agrees that Media24 should
ensure that software that meets requirements are
evaluated. This is done to limit the number of
products to be considered. On the other hand, 11
of the respondents agree that the support/main-
tenance staff provided by the vendor is evaluated
on response time while the quality of support is
rated high by 10 of the respondents. It seems to
the authors that ‘old fashioned’ values are still
important while looking at new IT investments.
This is in agreement with the statement made by
Capterra (2002) that end-users value help provided
by the supplier.

The number of people working for the vendor
is not regarded as important by the respondents;

Figure 2. Techniques used while evaluating software

100%

56%

67%

89%
33%

100%

78%

Point scoring

Analysing
product
documentation

Demonstrations

Trial versions

Attending
training classes

Expertise of
own staff

 2147

A Case Study on the Selection and Evaluation of Software for an Internet Organisation

as long as their service is not affected by it (qual-
ity is rated higher). Eight stated that cost plays
a role while maintenance is evaluated. Most of
the respondents noted that the vendor should be
evaluated on financial stability and customer
references. The number of clients and long-term
strategy of the vendors were not used when looking
how reputable the vendor is. This is something
that Media24 and similar organisations need to
investigate.

Table 5 displays the data collected on the RFP.
Most of the respondents agree that this is complied
with by Media24. Many (10) stated that the evalu-
ation processes are properly documented while
thought is given to objectivity (11) and impartial-
ity (9). Most (10) of them agree that repeatability
is lacking while reproducibility (7) is important
and needs careful attention. Impartiality is an
aspect that needs to be addressed as a third of
the people noted that it is lacking. The averages
for the request for proposal can be improved but

because there are individual items that manage-
ment of Media24 needs to pay attention to as
stated. The common method used to evaluate the
software is the point scoring technique (Figure
2). Trial versions of software have a better chance
to be selected if it was analysed previously or
used. The other method that Media24 uses to
evaluate software is the expertise of their staff
in a particular field.

Table 6 shows the evaluation process. The
respondents were positive that the final score
used to determine how well the software product
meets the requirements is a good method. Nine
respondents are in agreement that the docu-
mentation to do this evaluation is well laid out
beforehand. Management needs to convince the
three that does not agree to accept the documen-
tation as presented. Objectivity is complied with
but repeatability of the evaluation is not highly
thought off (and the same for reproducibility).
Nine of the respondents noted that the tests were

Table 5. Request for proposal

SA A NDA D SD
A Request for proposal is sent to Vendors. 10 1 1 0 0
The RFP includes…

…the purpose of the RFP 1 9 2 0 0
...all necessary background information of the

company issuing the RFP
1 4 6 1 0

...the requirements for the new system 4 7 1 0 0

...the hardware and software environment currently
being used

3 4 4 1 0

...instructions on how to reply and a description of
how responses will be dealt with

9 2 1 0 0

...a statement of work (SOW) that includes the
required work needed for the procurement of the new
software solution.

1 9 2 0 0

AVERAGE 4 5 2.6 .4 0

2148

A Case Study on the Selection and Evaluation of Software for an Internet Organisation

impartial. Again, it would be a task for manage-
ment to convince the remaining three that this is
the case before problems are experienced (also
supported by Shelly et al., 1998).

Most of the people agree that the final decision
to acquire software is based upon the evaluation
results. Eleven of the respondents agree that they
are happy with the results achieved by Media24.

Table 6. Evaluation of the product

SA A NDA D SD
The evaluation score of the product is determined

based on how well it meets the pre-determined require-
ments.

1 11 0 0 0

The evaluation process and results are properly
documented.

1 8 2 1 0

When conducting the evaluation thought, is given
to…

...Objectivity 7 4 1 0 0

...Repeatability 0 0 4 7 1

...Reproducibility 0 6 4 2 0

...Impartiality 7 2 2 1 0
AVERAGE 3 5 2 1.8 .2

Agreeing meant that they use the methods as
prescribed in theory but there are some methods
that are not used presently (e.g., benchmarking and
black box testing). These should be investigated
and used to ensure that the methods presently
being used is still considered the best (Beizer,
1995).

Table 7. Results obtained from decision makers

SA A NDA D SD TOTAL
The final decision is not made solely

based on the evaluation result, but also in-
cludes other intangible aspects (e.g., potential
future business)

1 9 2 0 0 12

I am satisfied with the evaluation results
obtained by our company.

4 7 0 1 0 12

AVERAGE 2.5 8 1 .5 0 12

 2149

A Case Study on the Selection and Evaluation of Software for an Internet Organisation

User Satisfaction and Overall
Effectiveness of Evaluation Process
Used

Nearly all the respondents (11) at Media24 are
satisfied with the software that was purchased
by Media24. Eight of the respondents have
agreed that it falls within the parameters set by
the organisation. The respondents that do not
agree (4) may be users that were not part of the
project team. They should be convinced that the

software is of benefit to Media24. Eleven of the
respondents agreed that the software meet their
requirements. This is supported in their article
by Michel and Fitzgerald (1997) who stated that
normally most of the users who were part of the
process are happy with the software.

This could mean that the individual user re-
quirements agree with Media24’s requirements.
However, seven of the respondents agree that there
is room for improvement This should be investi-
gated in another study as this falls outside the scope

Table 8. User satisfaction

Figure 3. Number of complaints from users

SA A NDA D SD
I am satisfied with the software I am using. 2 9 0 1 0
The commercial software system fulfills the business

objective it was assigned to.
1 7 3 1 0

The commercial software system adheres to my
requirements.

2 8 0 1 0

There is no room for improvement for the commercial
software system I am using.

0 4 2 5 1

AVERAGE 1.5 7 1.25 2 .25

0%

20%

40%

60%

80%

Never Unknown Occasionally Frequently

2150

A Case Study on the Selection and Evaluation of Software for an Internet Organisation

of this study. This does not agree with previous
statements made by the respondents. Maybe the
present evaluation procedure should be extended
to inquire about reasons why the respondents argue
that there is room for improvement. This should
be included as part of the evaluation.

The respondents (9) complain about the soft-
ware occasionally to ensure that management pay
attention. Seven of the users argue that there is
room for improvement. This would require another
survey to find out why users complain about the
software and if there is room for improvement.

Section B: Assessment

The main objective of section B was to as-
sess whether the users where satisfied with the
software acquired by Media24. There are some
complaints lodged by the respondents (e.g., the
systems response time and redundant processes
and procedures included in the current system
and that the software does not integrate with other
software). The figure on the next page illustrates
the percentage respondents who agreed that they
use the correct evaluation techniques. The results
are summarized according to key areas.

An area of concern should be the evaluation
of the product for management (only 63% average

with some areas that were identified that needs
attention). Eighty-six percent of users agreed
that they where satisfied with the software ob-
tained. Sixty-five percent of users verified that
the software systems meet the business objective
and 84% noted that the software they are using
meets their requirements (also supported by Voas
et al., 1997).

DiScuSSiOn AnD cOncluSiOn

From the findings, the researchers conclude
that Media24 has identified and used the better
suited evaluation techniques as described in the
theory. End-users were generally satisfied with
the software and agreed that the software meet
their requirements and business objectives. The
above-mentioned statement answers the first
research question. It is evident that software that
help Media24 achieve its goal has a better chance
of being selected (answer to the second research
question).

 The researchers note that there were some
complaints mentioned by end-users. They feel
that this “unhappiness” could be because not all
employees were actively involved in determining
the requirements or because the requirements were

Figure 4. Key area’s average

Average

0%
20%
40%
60%
80%

100%

Pr
oj

ec
t

M
an

ag
em

en
t

St
ru

ct
ur

e
(T

ab
le

 2
)

R
eq

ui
re

m
en

ts
de

fin
itio

n
(T

ab
le

 3
)

Ve
nd

or
Id

en
tif

ic
at

io
n

 (T
ab

le
 4

)

R
FP

(T

ab
le

 5
)

Ev
al

ua
tio

n
of

 P
ro

du
ct

(F
ig

ur
e

7)

 2151

A Case Study on the Selection and Evaluation of Software for an Internet Organisation

not communicated to all users. A manager during
an interview noted that the software he was using
does not integrate with one of the sub-systems.
This eventually leads to more work, as manual
reconciliation has to be done between the sub-
system and the software. This could be because
the requirements or the software weren’t described
properly in the request for proposal. Most of the
statements indicated that e-commerce organisa-
tions should be careful how they select software
(Capterra, 2002; Hausen & Welzel, 1993; Lars &
Methven, 2002). This was also supported by the
research findings of this study.

future reSeArcH

Further research might be needed to refine or re-
design the evaluation approach used by Media24.
The reason is that the current software will be
outdated soon and with the rise of new technol-
ogy, the evaluation and selection process might
have to be adjusted. There were also some issues
that were not picked up before the installation of
the product (e.g., integration with sub systems).
This indicates why the evaluation and selection
process might have to be revised. Other studies
could help place emphasis on the use of specific
evaluation models. In order to speed up the pro-
cess and to gather more data more respondents
will have to be included in the sample before the
next survey is conducted.

referenceS

Base Consulting Group: Strategic Technology
White Paper Series. (2000). Software selection:
A business-based methodology. Retrieved August
2002, from http://www.baseconsulting.com/ as-
sets/PDFs/BusinessBasedMethodology.pdf

Beizer, B. (1995). Black box testing: Techniques
for functional testing of software and systems.
New York: John Wiley & Sons Inc.

Buyerzone.com. (n.d.). Retrieved August
2002, f rom ht tp://www.buyerzone.com/
software,internet_software/printable_bg.html

Brown, A.W., & Wallnau, K. C. (1996). A frame-
work for systematic evaluation of software tech-
nologies. Software Engineering Institute Carnegie
Mellon University. Pittsburgh. Scientific Litera-
ture Digital Library. Retrieved August 2002, from
http://citeseer.nj.nec.com/cache/papers/cs/23040/
http:zSzzSzwebfuse.cqu.edu.auzSzInforma-
tionzSzResourceszSzReadingszSzpaperszSzsoft-
ware.evaluation.pdf/brown96framework.pdf

Capterra detail-level software selection meth-
odology. (2002). Retrieved August 2002, from
http://www.capterra.com/detailed_software_se-
lection_methodology.pdf

Dean, J. C., & Vigder, M. R. (2002). COTS soft-
ware evaluation techniques. National Research
Council Canada: Software Engineering Group.
Retrieved August 2002, from http://seg.iit.nrc.
ca/papers/NRC43625.pdf

Hausen, H. L., & Welzel, D. (1993). Guides to soft-
ware evaluation scientific literature digital library.
Retrieved August 2002, from http://citeseer.nj.nec.
com/cache/papers/cs/12053/ftp:zSzzSzftp.gmd.
dezSzGMDzSzSW-QualityzSzEval-Guide746.
pdf/hausen93guides.pdf

Lars, M., & Matthew, G. (2002). Ten points for
improving the testing process: White paper. Re-
trieved August 2002, from http://www.tautester.
com/download/ten_points.pdf

Levinson, M. (2001, July). Vendor management:
Do diligence. CIO Magazine. Retrieved August
2002, from http://www.cio.com/archive/070101/
vet.html

2152

A Case Study on the Selection and Evaluation of Software for an Internet Organisation

Michell, V., & Fitzgerald, G. (1997). The IT
outsourcing market place: Vendors and their
selection. Journal of Information Technology,
12(3), 223-237.

Oberndorf, P., Brownsword, L., Morris, E., &
Sledge, C. (1997). Workshop on COTS-based sys-
tems. Retrieved August 2002, from www.sei.cmu.
edu/pub/documents/ 97.reports/pdf/97sr019.

Pollard, W. E. (1999, July). Confessions of a soft-
ware salesman. CIO Magazine. Retrieved August
2002, from http://www.cio.com/archive/070199/
expert.html

Romney, B. R., & Steinbart, P. J. (2000). Account-
ing information systems (8th ed., pp. 638-641). NJ:
Prentice Hall.

Schwalbe, K. (2000). Information technology
project management. PA: Course Technology.
311, accessed August 2002.

Shelly, G. B., Cashman, T. J., & Rosenblatt, H.
J. (1998). Systems analysis and design (3rd ed.).
Cambridge: Course Technology.

Voas, J., Charron, F., & McGraw, G. (1997). Pre-
dicting how badly “good” software can behave.
Reliable Software Technologies Corporation.
Scientific Literature Digital Library. Retrieved
August 2002, from http://citeseer.nj.nec.com/
cache/papers/cs/743/ftp:zSzzSzrstcorp.comzSz-
pubzSzpaperszSzieee-gem.pdf/voas97predicting.
pdf

Ward, S. (2001, December). Keep it simple when
buying enterprise apps. CIO Magazine. Retrieved
August 2002, from http://www.cio.com/ana-
lyst/051101_hurwitz.html

This work was previously published in Managing Information Communication Technology Investments in Successful Enterprises,
edited by S. Lubbe, pp. 190-208, copyright 2007 by IGI Publishing (an imprint of IGI Global).

 2153

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.22
Planning and Managing the

Human Factors for the
Adoption and Diffusion of
Object-Oriented Software
Development Processes

Magdy K. Serour
University of Technology, Sydney, Australia

ABStrAct

Although there are a large number of contempo-
rary software development processes/methodolo-
gies available to assist and guide software profes-
sionals in developing software systems, there is
no specific process that can assist organizations
in planning and managing their transition to this
new work environment. As a result, there are still
a large number of information technology (IT)
organizations that have not yet implemented any
object-oriented (OO) process. For them, the transi-
tion to a new work environment and the adoption
and utilization of a software process implies a
number of problems, commonly including neces-
sary human and organizational resistance to the

ensuing cultural change. This chapter provides
IT organizations and professionals with insights
into the most important key success factors that
may promote the entire process of organizational
change. We investigate the effect of various hu-
man factors on the adoption and diffusion of an
object-oriented software development process.
Some of the human factors include motivation,
leadership, resistance to culture change, and
willingness and readiness to change. In addition,
this chapter explores the significant role of these
factors in controlling the entire process of imple-
menting an OO process in practice, emphasizing
the significance of planning and managing these
“soft” factors to achieve clear advantages and
gain enviable results.

2154

Adoption and Diffusion of Object-Oriented Software Development Processes

IntroductIon

This chapter investigates and examines the effect
of various human behavioral patterns during the
organizational transition to an object-oriented
(OO) work environment, and the adoption and
diffusion of an OO software development pro-
cess. Technology is only a tool; what makes the
difference is the individual who makes use of the
technology, and the culture that motivates people
to realize and understand the advantages of adopt-
ing such technology (Zakaria & Yusof, 2001).

During any paradigm shift, human tendencies
play a critical role that may invariably result in
either success or failure. Examples of such hu-
man aspects may include cultural change coupled
with people’s resistance, motivation, education
and training, communications, and leadership.
Collectively, these factors can form either oppos-
ing or supporting forces that may influence and
impact on the entire transition process. Therefore,
human aspects must be seriously considered, well
addressed, planned, and managed for a reward-
ing result.

Past studies (e.g., Gibson, 1999; Ioannidis &
Gopalakrishnan, 1999; Nambisan & Wang, 1999;
Auer & Dobler, 2000; Jurison, 2000; Burshy, 2001)
of the process of organizational transition have
related the transition process to how organizations
adopted innovation, ideas, new technologies (e.g.,
Web services and e-business), or new “ways of
doing things” (e.g., the adoption and deployment
of an OO process).

What these processes missed in the past was
the first (and the most critical) step towards the
adoption of a new technology. They all missed
the study of moving organizations from their
current state or environment to their desired one
where they can feel comfortable, familiar, and
confident to adopt and diffuse an innovation or
new technologies such as OO processes. Getting
organizations ready to adopt and diffuse a new
technology involves a number of serious manage-

rial decisions that must be made to provide full
management support, dedication, and commit-
ment. Organizations must feel comfortable and
familiar with the new way of “doing things”
before any attempt is made to implement these
new ways in practice to avoid or lessen people’s
natural resistance to change, and also increase
their acceptance and readiness.

Hence, the main objective of investigating
the impact of human issues is to gain a full un-
derstanding of individual behavior during the
transition and also to examine different human
factors that influence the response of individuals
within organizations toward the adoption of an
OO software development process.

OrgAnizAtiOnAl cHAnge AnD
HumAn fActOrS

“The greatest difficulty in the world is not for
people to accept new ideas, but to make them forget
about old ideas.” John Maynard Keynes

people Behavior During
Organizational change

During an organizational transition, different
people play different roles, such as motivators,
adopters, resistors, opposers, and neutral or
observers (Bridges, 1995). How they respond to
change during transition can, and in most cases
does, dominate and determine the success or fail-
ure of the entire project. The inextricable reality
is that people are different, and so act and react to
changes differently; from time-to-time even the
same person can behave in a different manner.

Bridges (1995) claims that changes are always
accompanied by natural resistance, as changes
often drive people out of their comfort zone.
Consequently, people can develop a resistance
to change and become the main obstacle to the
whole organizational change.

 2155

Adoption and Diffusion of Object-Oriented Software Development Processes

Once an organization comes to realize what
it needs to achieve and decides how it will ac-
complish its goals, the main challenge becomes
the issue of effective and efficient management
of human factors. It is quite surprising to know
that 80% of project failures are traced back to
mismanagement of human factors (Jacobson,
Ericsson, & Jacobson, 1995).

Unfortunately, there are many organizations
still struggling to deal with difficulties related to
the effective management of human or sociological
factors during technology adoption and diffu-
sion. This type of problem is usually caused by
management’s lack of commitment to the human
factors of IT. Szewczak and Khosrow-Pour (1996)
relate this problem of mismanagement of human
aspects to the fact that, in general, organizations
traditionally invest a significant proportion of
their resources to obtain the necessary hardware
and software technologies, but with insignificant
investment in the human aspect of technology.
An experienced software development team
that has been around for more than a decade,
for example, is likely to have superior expertise
in (and consequently be comfortable with) tra-
ditional software modeling techniques such as
Flow Charts, Data Flow, and Entity Relationship
Diagrams. Professionals of this type would not be
openly receptive to changing their existing work
culture and switching to modern OO techniques
such as Object Model, Use Case, and interactions
Diagrams. This kind of human culture change can
form a major challenge during the transition that
may increase people’s resistance to change.

the challenges of Human factors

In general, human aspects are the most difficult
challenge to be addressed during any organi-
zational change (Zakaria & Yusof, 2001). The
transition process to OO and the adoption of an
OO process usually involves a large number of
technical as well as non-technical issues. Vari-

ous authors have referred to these non-technical
issues as soft factors (Constantine, 1995) and
sociological factors (DeMarco & Lister, 1987).
We call these ‘human’ Key Success Factors in
this discussion, since they deal with the ‘human
aspect’ of change. These human factors neces-
sarily require complete understanding and man-
aging alongside the technological factors. Since
OO contains elements relevant to all stages of
the development lifecycle (not only coding), and
includes models for requirements engineering,
project management, team building, and so on,
adopting OO process requires a combination of
learning about technical issues as well as larger
scale sociological issues.

People, procedures, and tools are the three
critical aspects that must be well planned and man-
aged during any organizational change (Serour,
Henderson-Sellers, Hughes, Winder, & Chow,
2002). Certainly out of these three aspects, people
are the most demanding aspect to be changed and
managed. Eason (1983) argues that the human
factors of technology are far more important than
technical factors. The most challenging aspects
of the transitioning to object-orientation remain
in establishing a new software development en-
vironment and in introducing a new work culture
to managers, software developers, and customers
(Ushakov, 2000).

As a result, it is imprudent for management
to expect every team member to agree with all
the proposed changes. It may even be unwise to
anticipate full commitment and belief in the new
organization mission, especially at the early stage
of transitioning. Organizations must face reality
by realizing that change is often difficult in the
best of circumstances and seldom goes exactly
to plan. Management must be mindful that only
a minority of individuals will wholeheartedly
welcome any proposed changes to the way they
have done things for so long.

The challenge to software professionals is to
change and adapt to a new environment. A pos-

2156

Adoption and Diffusion of Object-Oriented Software Development Processes

sible scenario may ensue where developers need
to adopt new ways of ‘thinking’ about software,
followed by OO modeling/designing, develop-
ing, quality assuring, and testing the software.
Adopting a new approach of developing software
may include technical factors (e.g., CASE tools,
Programming languages, and databases) that
require a reasonable degree of human culture
change in order to utilize them to their maximum
potential. Individuals, especially those working
on software projects, work under the influence of
various personal, motivational, and social factors.
These factors, more often than not, remain in the
background. Due to their elusive and intangible
nature, these human factors are often difficult to
discern, analyze, and improve on when change
is about to be implemented.

As a result, moving working professionals to
new ways of perceiving and undertaking various
tasks is very difficult (Fingar, 1996). However,
many studies such as Szewczak and Khosrow-
Pour (1996) suggest many organizations are still
struggling to deal with problems related to the
human aspects of technology. Furthermore, they
correlated this problem to management’s lack of
commitment to the human side of IT.

It is vital, then, that organizations pay care-
ful attention in addressing all human or soft
factors, and be open and ready to confront and
solve any conflicts that may influence the entire
transition. Organizations need to appreciate in-
dividual behavior when examining the transition
and the adoption of new OO process; they need to
investigate and explore the different factors that
influence the response of individuals within the
organization towards the new technology. To ac-
complish a successful transition, an organization
needs to advance people’s motivation and enthu-
siasm, maintain management commitment, and
provide efficient and persuasive mentors whose
leadership may be seen as the source of expert
guidance (Jacobson et al., 1995).

The art of managing cultural interfaces has
become an everyday business challenge at ev-
ery organizational level (O’Hara-Devereaux &
Johansen, 1994). The main question here, and
management’s major challenge, is how an organi-
zation makes the transition a driving force for all
people involved in being adopters and supporters
of the change, instead of opposers or neutral play-
ers. Constantine (1996), during the OOPSLA’96
panel discussion pertaining to human factors,
contended that it is quite easy to communicate
with machines and solve problems, but with people
it is difficult. The main reason is because people
are very difficult to “generalize.”

Human factors and risk issues

Organizations must be aware of the consequences
and the possible risks involved in mismanaging the
human factors during the introduction of a new
work culture such as OO process. The improper
planning and managing of human factors can
easily lead to undesirable consequences, such as
building resistance to change, and adding more
confusion, uncertainty, and fear that can consid-
erably diminish the chance of success. Schein
(1999) interestingly states that there was no such
failure for technology adoption; instead it was a
failure to understand the organizational and the
individuals’ culture.

As a result, organizations that are aiming to
adopt an OO process need to address not only
the technological factors of the adoption, but also
the human factors. As an example, organizations
must provide adequate education and training
to their people in order to understand and grasp
the fundamentals and underpinning concepts of
object-orientation and development processes,
as it is a critical factor to avoid those risky con-
sequences. Bridges (1995) argues that the most
prevailing cause for the unsuccessful implanta-
tion of organizational changes can be attributed

 2157

Adoption and Diffusion of Object-Oriented Software Development Processes

to a lack of planning in managing the impact of
change on individuals. He also emphasizes that
many organizations that are not properly geared
to handle this facet of change can run the major
risk of jeopardizing their own existence.

Therefore, management may be very well
advised to create a plan to manage and mitigate
these potential risk factors by answering the fol-
lowing questions:

• How are people likely to respond to the
change?

• What is required to convince people that
the change is worth the effort?

• What actions are necessary to earn people’s
support and commitment to the change?

In addition, management needs to identify the
ultimate and most effective means in achieving
the following objectives:

• Selling the change to all people involved,
including customers.

• Motivating people to make the transition.
• Reducing people’s resistance to change.
• Eliminating people’s fear and uncertainty.
• Minimizing the change’s disruption to

people.
• Mitigating the increasing tensions between

people during the change.
• Encouraging people to be enthusiastic for

the change, as opposed to being apathetic
and an obstacle.

By answering the above questions and achiev-
ing the related objectives, organizations will
be able to use persuasive approaches to human
change, ensuring that everyone is comfortable and
willing to accept, and make use of, the new OO
process with all its associated changes.

tHe HumAn fActOrS

Human culture and necessary
culture change

“In a time of rapid change, standing still is the
most dangerous course of action.” Brian Tracy

The Oxford English Dictionary (9th edition)
broadly defines human culture as the arts and other
manifestations of human intellectual achievement
regarded collectively as the improvement by
mental or physical training. In particular, Palvia,
Palvia, and Roche (1996) define the culture of IT
professionals as the set of values and practices
shared by these members of an organization
involved in information technology activities,
including managers, developers, and custom-
ers/end users.

Personal culture is usually characterized and
distinguished by the individual’s values, such as
behavior, attitude, experience, and beliefs. There
are people who work well under pressure, whereas
others work well only when properly supervised
and directed, and then there are the ‘cowboys’
(Constantine, 1993) who prefer to work on their
own. Cooper (1994) asserts that an IT person’s
culture may resist the introduction of a new pro-
cess which realigns status, power, and working
habits, especially when they violate some of the
group’s shared values. Current personal culture
can be incompatible with certain new processes
to the degree that risky consequences may be in-
curred, including resistance to change, a negative
attitude and behavior, implementation failure, or
the achievement of totally unsatisfactory results.
Human culture change—that is, the physiological
change that people undergo to alter the way they
carry out their work on a daily basis—is one of
the hardest and most longstanding parts of the
adoption of an OO software development process
(Fayad & Laitinen, 1998).

2158

Adoption and Diffusion of Object-Oriented Software Development Processes

natural resistance to change

Coupled with the introduction of a new work
culture, people tend to naturally build resistance
to any challenge of changing their culture and/or
learning new things. The unfamiliarity with the
new changes can lead to a discomfort that naturally
increases people’s resistance. In general, change is
often seen as a personal threat by those involved
in transition (Huse, 1975).

Resistance to change can also come from man-
agement, project leaders, and customers/end users
for similar reasons, including fear of change and
uncertainty of their capability of carrying out these
changes (Fayad & Laitinen, 1998). Furthermore,
adopting an OO process also requires people to
advance their skills and knowledge, and/or gain
new ones, as well as learning new tools and
techniques. All these changes can lead to a threat
that, if people are not capable of changing their
culture, they will be out of the workforce, and be
replaced by others who possess the required OO
knowledge and skills and are capable of utilizing
the new process. Resistance may also happen
during the course of adoption when people are
faced with serious impediments. For example,
people may reach a stage when they feel that
they cannot use their old ways (ad hoc) and at
the same time they are not comfortable with the
new ways (OO process). They then try to escape
or oppose the changes. This leads to an increased
level of resistance.

During organizational change, managing
people’s resistance becomes a critical issue that
must be seriously considered so as to accomplish
satisfactory results. For that reason, organizations
must be able to effectively manage people’s resis-
tance to leading and directing the change process.
To do so, management must first understand
what resistance really means. What do people
really resist? Do they resist the new environ-
ment, new technology, or the changes they have
to undertake? And finally, why do people really
resist? Do they resist for psychological reasons,

technological issues, personal concerns, or a
combination of all?

What Resistance Really Means?

Naturally, people want to improve and find better
ways of doing things. A part of making improve-
ments is causing changes, and changes are always
faced with different types of resistance. People’s
resistance can be a result of different human reac-
tions that sometimes form obstacles, impediments,
hindrances, and difficulties to change. One of the
risky issues regarding people’s resistance is that,
sometimes, managers see resistance as a sign of
laziness, stupidity, or just unwillingness and op-
position to change (Fayad & Laitinen, 1998).

In actual fact, resistance can be a sign of
people’s disinterest or they could be busy with
more pressing issues. Resistance could also be a
signal of conflict of interest or contradictory point
of views. Moreover, resistance could be a silent
request for assistance, more information, or an
assertion of different priorities. Resistance can be
viewed as an opportunity to gather information
and learn better about current and desired state
(Bamberger, 2002).

What People Really Resist?

Naturally, people do not like to lose. They do
not like their own things to be taken away from
them, and that is exactly what people resist. People
associate change with the loss of their existing
comforts. People do not resist the change itself,
so much as they resist the uncertainties, fear, and
discomforts associated with it. People, especially
those who are confident and comfortable with
their existing culture, resist the idea of changing
their ways of doing things, and facing the risk of
becoming unfamiliar and uncomfortable with the
new ways. In addition, every change involves a
degree of risk, and people are naturally reluctant
to take risks and face the unknown.

 2159

Adoption and Diffusion of Object-Oriented Software Development Processes

Why People Really Resist?

To manage the resistance to change, it is important
first to understand the various reasons behind it.
Resistance could happen at an early stage of the
introduction of the new change and/or at a later
stage, during the change process. People resist
change when they are unaware of the need to
change and, accordingly, are uncertain of the final
result. On the other hand, Bamberger (2002) notes
that change often meets with resistance because
it is seen as a personal threat that leads to fear of
failure and rejection. Fayad and Laitinen (1998)
relate resistance to the lack of a clear view of the
current state and objective goals. They further
note that resistance to change often exists as a
result of structural conflicts within the organi-
zation. Lack of management’s commitment and
inconsistent actions with the new change can also
elicit resistance.

Bridges (1995) declares that when changes
take place, people get angry, sad, frightened,
depressed, and confused. These emotional states
can be mistaken for bad morale, but they rarely
are. Rather they are more likely to be a sign of
grieving, the natural sequence of emotions people
go through when they lose something that mat-
ters to them. People resist the loss of competence
that they once had and which was associated
with their old familiar tasks. Transition is tiring;
during the change, people build resistance when
they feel unfamiliar and uncomfortable with the
new ways. Resistance happens when people feel
that they cannot use their existing old ways, and
at the same time they are not comfortable and
familiar with the new ways. From a different
perspective, people build resistance when they
feel that the new ways they have to follow can
negatively affect their productivity. For example,
an inappropriate new process or technique can
discourage people to change, as it can lead to a
drop in people’s productivity.

Accordingly, with the introduction of a new
OO process, people’s resistance to transition and

culture change could be a result of one or more of
the following human behavior factors:

• They see the transition with its necessary
changes as a threat to their jobs.

• They do not have inadequate knowledge and
experience related to the new OO process.

• They are afraid of learning new ways of
carrying out their jobs.

• They doubt the benefits of adopting a new
OO process.

• They are afraid of failure or that they will
not be able to understand the new process.

• It is exhausting to learn new things, and
some think they are too old to learn a new
process.

• Some prefer to do what they know best, even
when they acknowledge there may possibly
be a better way (The devil you know!).

• They are overloaded with their current
projects with no time to learn new things.

• They are not in favor of the new process
with its associated modeling language and/or
CASE tools.

Even during the transition process, and when
changes take place, people can develop more
resistance and be less motivated for different
reasons including:

• Anxiety rises and motivation falls.
• They are afraid of failing.
• They are unsure of the new way.
• They are afraid that they may be blamed if

something goes wrong.
• They try to avoid learning new things.
• They become self-protective.
• They respond slowly and want to go back

to the “old way.”
• They doubt the benefits of the new way.
• They feel panic and confused.

Unsurprisingly, even customers may develop
some resistance and be reluctant to accept the

2160

Adoption and Diffusion of Object-Oriented Software Development Processes

changes as a result of the risk factors involved in
introducing a new process that would affect their
products. Therefore, customers must be involved
in the change process owing to their effective role
in supporting the organization’s adoption of a
new OO process. The customer role needs to be
changed from being just a customer requesting
and running a software application to that of being
an effective and supportive partner in the whole
process of producing their products.

Defeating People’s Resistance to
Change

As discussed above, many managers see resis-
tance as a sign of laziness, stupidity, or just plain
perversity on the part of employees (Fayad &
Laitinen, 1998). Lawrence (1969) suggests that
resistance to change should not be treated as a
problem, but rather as an expected symptom and
an opportunity, or a request, for learning and better
knowing the unknown. Also, Senge (1990) stated
that resistance to change generally has a real basis
that must be understood in order for it to be dealt
with. In order to manage people’s resistance to
change, organizations need to understand better
the very human reactions they face when they
are asked to do something differently or change
their work habits. Management must plan and
practice some strategies to manage and deal with
people’s resistance.

To do so, management must begin to under-
stand what “resistance” really is? What are the
major reasons for people to build resistance to
change? Then they must establish a suitable work
environment for people to undergo the required
changes. Management cannot change people,
they have to change themselves and they only
change when they have the appropriate and sup-
portive environment (Boyett & Boyett, 2000).
Bridges (1995) reported that most managers and
leaders put only 10% of their energy into selling
the problem, but 90% into selling the solution to
the problem. Management must put more energy

into “selling” the problem that is the reason for
the change, because people are not interested
in looking for a solution to a problem they do
not know they have. Management must realize
that culture change is very tiring. People will
feel tired, overwhelmed, down, and depressed.
Management must look at those symptoms as a
natural human reaction, and work hard to rebuild
its people self-confidence and give them the feeling
of competence in mastering the new way. Man-
agement must realize their people’s capabilities
and give them what they can do best without any
fear of failure. Anxiety is natural, and the best
way to defeat it is to educate and train people on
their new environment. Adequate education and
training regarding the newly adopted process
can easily eliminate the fear of the unknown, the
uncertainties about the final result, and thus lead
to elimination of people’s resistance.

Defeating Resistance with Participation

One of the most effective ingredients to defeat
people’s resistance to change is by encouraging
them at an early stage to participate in planning
for the change; Huse (1975) confirms this fact
by assuring that people—during transition—see
change as a threat unless they have participated in
its planning. Lawrence (1969) has demonstrated
through one of his case studies, where an identical
change was introduced to several factory groups,
that the first group, who was not offered any expla-
nation, resisted all management’s efforts, whereas
the second group, who was involved in the change
planning, carried out its transition with minimal
resistance, and an initial small productivity drop
was rapidly recovered.

Involvement of people in planning their change
allows them to understand why they need to go
through it and what they should expect. Hum-
phrey (1995) affirms that people’s resistance can
be gradually changed to acceptance, once people
are convinced of the necessity of the changes,
and also they can see the value of undergoing

 2161

Adoption and Diffusion of Object-Oriented Software Development Processes

the change. So, management must show and
convince people that the change they need to go
through is not a threat, but rather an opportunity
for improvement.

Defeating Resistance with Small Wins

Humphrey (1995) asserts that people’s resis-
tance to change is proportional to its magnitude.
Therefore, resistance can be reduced by planning
a number of small changes instead of a hefty
change. Transitioning an IT organization to OO
environment and adopting an OO process involves
outsized changes. Psychological, organizational,
and technological changes that can be planned
in an incremental manner are “small wins.” By
introducing the new changes in small increments,
each increment will be easy to sell and implement.
People will feel confident and positive every time
they successfully achieve one increment, and
become even more enthusiastic and motivated to
implement the next increment. This technique can
lead to a smooth transition by enhancing people’s
willingness to participate and reducing their total
resistance. For example, the process of adopting a
new OO method could well be started by address-
ing the Requirements Engineering (RE) activity
as a major focus to engender everyone’s involve-
ment. An initial RE approach, using a well-defined
technique such as the use case technique, can be
introduced and utilized without the burden of all
other activities and techniques. Once people feel
confident in carrying out the RE activity, another
major activity such as user interface design can
be introduced in the same manner and so on for
all other activities.

education and training (Knowledge
and Skills)

Younessi and Marut (2002) define education as an
opportunity to learn and ideally master a number
of theories—principles that enable the recipient to
assess, analyze, and act appropriately to a broad

range of relevant situations. The impact of educa-
tion is usually more abstract and wide in scope.
They also defined training as the provision of an
opportunity to learn and ideally practice some
skills in a controlled environment to carry out a
particular task(s). The impact of training is usually
more focused, direct, and narrow in scope. In other
words, education provides people with the answer
to “know what,” whereas training provides them
with the answer to “know how.” People can gain
knowledge and skills either through education and
training courses provided by their organization
and/or through real-life work experience.

In general, people need education and training
in their discipline to enable and empower them
to assess and perform their duties in a profes-
sional and satisfactory manner. In the context
of the adoption of a new OO process, technical
people need to learn about the new process and
associated technology to feel comfortable when
using it (Zakaria & Yusof, 2001). The individual’s
knowledge and experience related to the new
process play an effective role in making the deci-
sion for the adoption. People with adequate and
appropriate knowledge and experience of their
new OO process can be more self-motivated and
enthusiastic to make a transition than others. On
the other hand, during an organizational change,
lack of knowledge and/or experience could elicit
people’s resistance to change and increase their
feeling of incompetency and frustration.

Necessity of Education and Training for
Transition

Younessi and Marut (2002) have emphasized
the vital role of education and training during
the adoption of a new OO process by suggest-
ing that education and training is an obligatory
component for the successful introduction of
software processes into an organization. Fur-
thermore, they considered education and training
as a Critical Success Factor for adopting these
processes. Perkins and Rao (1990) stated that

2162

Adoption and Diffusion of Object-Oriented Software Development Processes

the more knowledge and experience people have,
the more they are able to contribute to decisions
regarding the adoption of OO processes. They
also emphasized the impact of training related to
the new technology that increases their ability to
adopt, diffuse, and master processes, techniques,
and tools. Conner (1992) demonstrates the impera-
tive role of education and training in adoption by
saying that people change only when they have
the capacity to do so.

People’s experience towards OO processes
should have a positive impact on the adoption
(process) of such technology. In the context of
adopting a new OO process, Sultan and Chan
(2000) stated that the greater the knowledge and
skills of individuals, the more likely they are to
adopt it.

Management must recognize the critical nature
of proper education and training, since experi-
ence has shown that between 25 and 40% of the
total cost of an extensive project will be spent
on education and training (Mize, 1987). More
experience enables people to contribute more
towards the transition and the adoption of new
OO processes. People’s appropriate knowledge,
experience, and education may have a positive
impact on their transition. The greater the work
experience of individuals with the organization,
the more likely they are to transition and adopt
the new process. Highly skilled staff can man-
age themselves more easily, particularly during a
paradigm shift. Therefore, an individual’s satisfac-
tory level of knowledge and education towards
the new technology and processes forms another
imperative management challenge.

motivation

“Motivation is the release of power within a
person to accomplish some desired results. It is
a major key for achievement and success.” Dr.
Len Restall

Motivation has a remarkable power and is a
major influence on people’s behavior towards any
achievement (Humphrey, 1997). In order to in-
vestigate the importance of motivation during the
organizational adoption of OO processes, we need
to understand what motivation is, its role during
the adoption, and what motivates people.

What is Motivation?

Bolton (2002) defines motivation as a sociological
concept used to describe individual factors that
produce and maintain certain sorts of human
behavior towards a goal. Hence, motivation, as
a goal-directed behavior, is a driving force that
stimulates people to achieve a set of planned
goals.

Motivation is often driven from a desire or
an inspiration to accomplish a defined objective,
combined with the ability to work towards that
objective. In other words, Motivation is the abil-
ity of taking good ideas or serious changes, and
coupling them with appropriate knowledge and
skills to achieve desired objectives.

Consequently, people who are aiming to
achieve a specific goal must be both motivated
and have the power and ability to work towards
that goal. People who are motivated towards an
accomplishment must be also capable and em-
powered to do so (carry out the work).

In the context of this chapter, motivating
people during the adoption of a new OO software
process could mean those factors which cause
individuals within the organization to do more
than they otherwise would. For example, to transit
a development team to a totally new OO environ-
ment and/or adopting a new process, people need
to work more than usual to change their existing
work culture and adopt a new way. Then, motiva-
tion becomes a measure of an individual’s level of
readiness and willingness to participate effectively
towards a successful transition.

 2163

Adoption and Diffusion of Object-Oriented Software Development Processes

Role of Motivation During Adoption

Pfeffer (1982) states that when people understand
and accept a goal, and believe they can meet
it, they will generally work very hard to do so.
Additionally and from a different perspective,
Maslow (1970), when he described his “Hierar-
chy of Needs,” stated that people are capable of
achieving their goals if they believe that they can
achieve them.

Motivation provides people with the under-
standing of the reasons for the change that in-
creases their acceptability, which in turn improves
their ability to accomplish a successful mission.
Moreover, motivated people more often than not
are capable of defining and achieving their own
goals.

During an organizational change, people need
to have compelling and persuasive reason(s) why
they have to go through changes. Once they are
convinced and believe in their mission, they will
feel more competent to carry out their necessary
changes successfully. This becomes a positive
motivation that makes people desire to accomplish
their goals that result in their very best perfor-
mance (Humphrey, 1997).

On the other hand, lack of motivation during
adoption can lead to negative consequences that
may contribute to undesirable results. Those con-
sequences may include fear, confusion, frustra-
tion, and uncertainty. Humphrey (1997) confirms
the vital role of motivation by saying, “Without
motivated and capable employees, no technical
organization can prosper.”

As a result, management must improve and
maintain people’s motivation to help them to be
more effective and efficient in moving to their
desired work environment with the adoption and
utilization of a formal OO process. Motivation
addresses the degree to which people want to,
and are willing to, complete the work necessary to
change their existing work culture. Furthermore,
during transitioning to a new work environment,

management must maintain people’s motivation
if they try to give up easily, or too soon, so as to
encourage them to keep trying as long as they
believe in their goals.

What Motivates People?

Bolton (2002) suggests that a good first step
towards understanding what motivates people is
to know what people want from their jobs. The
answer could be gaining financial advantages,
acquiring more skills and knowledge, or working
with the latest technologies. In reality, it is very
difficult to predict and judge on people’s desire
because it depends on the individual’s values
and beliefs.

What motivates people to change their work
culture and adopt a new process differs, all de-
pending on their needs and perception of the new
process. Hence, not all people can be motivated by
the same things and to the same degree. Therefore,
management—especially during transition—needs
to understand why their people do their work, and
consequently elicit what motivates them and how
to maintain that motivation through the entire
process. Understanding people’s aspiration can
help management not only motivate people, but
also support their motivation by maintaining and
increasing the reasons for motivation.

Motivation is often seen as the driving force
that moves people to perform some actions. Then,
in the context of the adoption and diffusion of an
OO process, people need a comfortable, familiar,
valuable, and convincing driving force or “mo-
tivation factor” to move them to perform more
effectively than they usually do.

People feel comfortable when they confidently
know how to do their jobs. Enhancing people’s
skills and knowledge to the required level for
transition makes them feel comfortable with the
new process. Formal and professional education
and training pertaining to OO processes are con-
sidered to be effective and efficient techniques

2164

Adoption and Diffusion of Object-Oriented Software Development Processes

to achieve people’s self-confidence. In order to
motivate people, training must include clarifica-
tion of language and jargon or commands used
to avoid further frustration and anxiety, as new
technologies usually have a mystifying and alien-
ating potential. The more comfortable people
feel with the new technology (here OO process),
the more willing they are to experiment with it
(Zakaria & Yusof, 2001).

Motivation factors must also add extra values
for people such as financial reward, or learning
a new language, process, or tool. For example,
someone likely to retire in a year is unlikely to
learn a new way of doing things. On the other
hand, an enthusiastic newcomer to the project is
likely to put in the extra effort needed to pick up
new methods of thinking and modeling.

People who are in the move (e.g., changing
profession, changing company, or reaching re-
tirement) will not be interested in changing their
culture, and they become difficult to motivate to
change their current culture because they will not
gain any benefits. To motivate people to change
their culture, they need assurance of benefiting
from the change.

The driving force must also be convincing, it
must be relevant to what people usually do, and
it must be in a way that people can believe and
make use of. Most people must be convinced of
the need to change before they will willingly
comply (Humphrey, 1995).

leadership

“Leadership is the ability to provide those func-
tions required for successful group action.”
Weldon Moffitt

Leadership is well thought-out by many re-
searchers and authors as a fundamental activity
of project management, and they simply describe
it as motivation plus organization (Stogdill, 1974;
Thite, 2001; Phillips, 2002; Castle, Luong, &
Harris, 2002).

In general, leadership plays a significant role in
how people effectively perform their jobs. Rogers
(1995) defines leadership as the degree to which
an individual is able to guide, direct, and influ-
ence other individuals’ attitudes informally in a
desired way. Stogdill (1974) describes leadership
as a process of influencing group activities toward
goal setting and goal achievement.

Leadership is a practice that needs special
skills and talent to motivate people to get things
done in a favorable and constructive way. Bridges
(1995) affirms that leading a team of professionals
efficiently is an invaluable resource to any leader
who is eager and willing to understand how to
inspire team members. Also, it is a vital ability
to augment teams’ cooperation and individuals’
commitment and productive participation. Above
all, an effective leadership is a Critical Success
Factor on how team members become adaptable
to changing circumstances (Thite, 2000).

Leadership is basically situational. Fiedler
(1967) suggests that there is no one style of lead-
ership that suits every project situation. Rather,
it should be contingent upon the nature of the
organization, the team, and the project situation.
Leadership style should be flexible and agile
enough to be adapted to suit the project at hand
in the most appropriate manner. Phillips (2002)
claims that the “appropriate” leadership style is
the style with the highest probability of success.
Additionally, a good leader should effectively mix
and cooperate with team members.

Leadership Style for Adoption

“A leader is best when people barely know that
he/she exists.” Whitter Bynner

During an organizational change situation,
leadership style must be adapted to promote and
support the organizational change. Social factors
such as the style of leadership can influence the
individual’s ability to transit to a new work cli-
mate. Thite (2000) emphasizes the importance of

 2165

Adoption and Diffusion of Object-Oriented Software Development Processes

the appropriate leadership style during a change
situation by considering it as a Critical Success
Factor.

Changing people’s work culture and introduc-
ing them to a new way of doing their job is usually
accompanied by increasing anxiety, ambiguity,
and insecurity. During such time, a supportive
leadership style can effectively contend with and
overcome these problems.

Due to the fact that an effective leadership style
should depend on the follower and the project situ-
ation, leaders must use the most appropriate style
of leadership that best suits the project situation
that yields the best chance of success (Phillips,
2002). Furthermore, Phillips states that managers
must be able not only to determine the most ap-
propriate leadership style, but also to apply that
style correctly.

Stodgill (1974) supports that argument by
saying, “The most effective leaders exhibit a
degree of versatility and flexibility that enables
them to adapt their behavior to the changing and
contradictory demands made on them.” Moreover,
Hersey, Blanchard, and Johnson (1996) proclaim
that successful and effective leaders are able to
adapt their leadership style to best fit the require-
ments of the situation. Therefore, leaders within
an organization about to introduce a major change
to their work environment—such as the adop-
tion of a new OO process—must have adequate
resources (mainly time), a strong interest in the
mission, and a greater exposure to the new process
they are about to adopt. Sultan and Chan (2000)
firmly assert that the greater the opinion leadership
among group members, the greater the chance of
a successful transition and adoption.

Leadership always means responsibility.
Consequently, an effective leadership style for a
transitioning organization must be driven from
top management with full support and commit-
ment, and it must be also coupled with a rational
degree of authority. Co, Patuwo, and Hu (1998)
support that by saying: “Ideally, the team leader-
ship should come from top management: one who

is a ‘doer’, and who commands respect throughout
the entire company.”

During the organizational transition to a
new work environment, leadership should foster
strong alignment with the organization’s vision.
Team members that depend primarily on strong
alignment with their organization’s vision are
at their best with well-understood practices ap-
plied to well-understood problems. Furthermore,
successful leaders must be able to create a new
work environment in which team members feel
comfortable and familiar, and also enjoy what
they are doing.

Lockwood (1991) and Constantine (1994)
affirm that the working culture shapes the style
in which software development is carried out.
Different styles of organization during differ-
ent situations require somewhat different forms
of leadership style and management, and each
will tend to have somewhat different software
practices.

Leaders who are leading their teams through
a serious change—such as adopting a new OO
process—must be able to:

• Define a clear vision and mission.
• Provide convincing and compelling reasons

for the change.
• Focus on and be concerned with the why to

aspect of the transition, rather than the how
to.

• Manage and motivate team members.
• Maintain an authority level to make appro-

priate decisions in the face of uncertainty.
• Provide full support and commitment to

their followers.
• Provide adequate and appropriate resources

including time, education, and training.
• Establish clear communication channels

with team members.
• Monitor and review tasks allocated to team

members.
• Recognize and appreciate achievements,

and reward people for doing good work.

2166

Adoption and Diffusion of Object-Oriented Software Development Processes

perception of OO processes

While IT organizations perceive new OO pro-
cesses as an essential means to advance their
existing software development culture and ef-
fectively compete in the marketplace, individuals
could have a different perception. Since people
are different, their needs and expectations are also
different. The more positively people perceive
their new process with regard to its characteris-
tics—advantages, observability, compatibility,
complexity, and trialability—the more likely it is
that the process will be adopted and utilized.

management of expectations

From past projects, it has been proven that people
with life experience are able to deal with conflicts
of interest that may arise due to their ability to
make any decision regarding the transition (Hill,
Smith, & Mann, 1987). To emphasize the vital
role of education on conflict resolution, Barclay
(1991) stated that any organization’s members
who have adequate education and significant
real-life experience are well prepared to deal with
interdepartmental conflict. It has to be made very
clear from the beginning, to both managers and
developers, that following a new OO process is
not a magic wand or a silver bullet to make the
entire organization’s dreams come true, but rather
is simply today’s best approach option for software
development. Nonetheless, it is also important
that managers appreciate not only the benefits of
adopting a new process, but also become aware
of all the pitfalls and consequences of changing
people’s existing work culture.

Different stakeholders such as managers, de-
velopers, and customers may look at, assess, and
evaluate OO processes, as a new technology to be
adopted and utilized, from a different perspective.
Senior managers are always looking for the dollar
value return for their spending and investments.

They evaluate the technology based on how much
it will reduce the cost of software production
with improved quality. Project managers and
team leaders may assess the new OO processes
from a different perspective. They emphasize
project management aspects, gaining more con-
trol and meeting customer’s expectations with
on-time delivery based on building the software
system from the pre-tested and proven software
components. Software developers may value the
proposed process for adoption as the new fad
and trend to developing software. They view the
transition process as a good opportunity to acquire
new skills, and learn new tools and techniques.
Unquestionably, this will insert desirable additions
in their resume, add value to their worth in the
market, and make them in more demand.

From the above discussion, unrealistic expecta-
tion from adopting a new OO process and also any
conflict of people’s interest can have a negative
impact on the entire transition process. People
will be reluctant to work effectively together as a
team if they do not share the same interest and/or
have different expectations.

In order to overcome the barrier of the conflict
of interest, management and champion teams must
include a specific plan to resolve that conflict
between people, and reach mutual perceptions,
consensus, and understanding.

Proper education, mentoring, and open discus-
sions are examples of good techniques that can be
used to achieve good understanding and realistic
expectations of the new process. Stakeholders
must come to some sort of consensus as to what
they can expect from adopting a new process and
also should be fully aware of the new technology
pitfalls as much as its benefits. Stakeholders’
consensus and shared understanding, as well as
realistic expectations of the new process, can lead
to a good working environment that can positively
impact on the process of transition and thus the
quality of the software produced.

 2167

Adoption and Diffusion of Object-Oriented Software Development Processes

Sharing the Vision with the
Organization

People perform better if they feel that they share
the value of the change with their firm. Managers
need to provide the right organizational climate
to ensure that their employees can see that, by
working towards the organizational goals, they
are also achieving some of their own goals. These
goals could be financial rewards, or personal
rewards such as the respect of their colleagues,
or job satisfaction, or a combination of any num-
ber of things that the employee considers to be
important.

During organizational change, such as the
adoption and diffusion of an OO process, to gain
people’s acceptance, management should get
people involved during the initial stage, listen
to what they have to say, respect their view, and
involve them in discussions and debates regarding
the change. Follow up with them on any further
progress. Give them the feeling that they are
the owners and supporters of the change. Give
them the impression that we are only interested
in the change if it will help them and make their
job more efficient and more enjoyable. Never
blame the people for any faults or mistakes, but
rather blame the product, the techniques, and/or
the tools being used. Organizations need to try
everything they can during the adoption of a new
process to gain their people’s willingness and
support such as:

• Choose a flexible software development
process/methodology to be tailored to best
suit the organization’s environment.

• Obtain senior and middle management sup-
port and commitments.

• Set an appropriate change management
plan.

• Establish a transition support team to sell
the changes to everyone and to deal with all
transition issues.

• Plan for adequate resources.
• Plan for rewarding people behind the transi-

tion.
• Carry out the changes gradually and avoid

overloading people.
• Plan for the appropriate type of education

and training to enhance people’s skills that
minimize their fear and confusion.

• Introduce new ways in formal and informal
ways as required.

• Never blame people for any failure; instead
blame the process (no criticism).

• Listen to people and encourage their indi-
vidual contribution.

• Reinforce the new way of following the new
adopted process.

• Start with small jobs with high chance of
success so they to gain self-confidence.

• Celebrate success with people.

Organizations should set a well-defined set of
guiding beliefs that the mission of the transition
and adopting a new OO process is worthy and
must be shared with people. Individuals must be
in harmony and agreement with an organization’s
value and goals. When individuals share the same
values and beliefs as the organization, they form
a psychological union as a group. They become
more congruent to the organization. Thus, the
efforts of adopting a new process are determined
and rigorous. The sharing of ideas and commit-
ments through cooperation and harmony within
an organization often leads to an effective change
and positive participation. Needless to say, when-
ever individual goals are in alignment, or close
to alignment, with the organizational goals, then
any initiative undertaken by the organization to
adopt and diffuse a new technology—in our case,
OO process—will be easily accepted and utilized
by individuals. When people share the vision and
beliefs with their organization, they feel that they
share the ownerships of their new process and the
accountability of the whole transition procedure.

2168

Adoption and Diffusion of Object-Oriented Software Development Processes

This feeling can motivate the individuals and assist
management to defeat resistance to change should
it arise. A strong organizational culture is usually
measured by the way in which the key values are
intensely held and widely shared. It has a greater
influence upon employees than weak culture.

communication channels

When Zakaria and Yusof (2001) analyzed the
implementation of technological change from a
user-centered approach, they asserted that com-
munication is a critical element in ensuring the
success of a new technological change such as
the adoption of OO processes.

Communications are defined as a process by
which individuals exchange information through
a common system of behavior. The process of
communication between individuals has an influ-
ence on organizational transition, because it has a
strong impact in conjunction with the leadership.
A strong and effective communication network
has a strong positive impact on adoption of a new
technology. Proper and open communication
channels can, from one side, help management
to express their commitment and support to their
people. From the other side, these channels can
give people opportunities to discuss and exchange
their concerns regarding their transition in order
to adopt the new process. This can strongly
increase people’s cooperation, which enhances
their ability to carry out the required changes
effectively. From a project management point of
view, open communications keep management
in continuous contact with their people, and
they can closely observe the transition progress
to quickly resolve any problems that may occur.
Communication can take different forms such
as meetings. During an organizational transition
to a new work environment and adopting a new
process, meetings—driven by management—are
seen as ways of undoubting management’s com-
mitment and support to change.

cOncluSiOn

It can be clearly noticed that by considering and
managing the human factors in great detail, the
chances of successful adoption and diffusion of
a software development process are enhanced
significantly. Based on our research projects
and several empirical studies, we conclude the
following:

• Human factors play a vital role during the
organizational transition to adopt and dif-
fuse an OO process, as they can form either
a promoting or resisting force.

• Understanding of the new desired OO pro-
cess work environment can assist manage-
ment in putting together a plan to manage
the necessary cultural change.

• During an organizational change, managing
people’s resistance becomes a critical issue
that must be seriously considered so as to
accomplish satisfactory results.

• Organizations must be able to effectively
manage people’s resistance to leading and
directing the change process.

• Involving individuals in planning and mak-
ing decisions can positively eliminate their
resistance to change and enhance their ability
to carry out a successful transition.

• The individual’s knowledge and experience
related to the new process play an effective
role in making the decision for the transi-
tion.

• More knowledge and experience enable
people to contribute more towards the transi-
tion and the adoption of new technologies,
including OO processes.

• The greater the work experience of individu-
als with the organization, the more likely
they are to transition and adopt the new
process.

• Gaining adequate knowledge and proper
training on OO processes and associated

 2169

Adoption and Diffusion of Object-Oriented Software Development Processes

tools can significantly contribute to enhanc-
ing people’s ability to positively involve
themselves in the transition process.

• The more knowledge and experience the
organization’s individuals have regarding
OO processes, the more likely they are to
change and adopt the new work culture and
thus enhance the chances of a successful
transition to a totally new OO software
development environment.

• When people understand and accept a goal
and believe they can meet it, they will gen-
erally work very hard to do so.

• Motivation provides people with the un-
derstanding of the reasons for the change
that increases their acceptability, which in
turn improves their ability to accomplish a
successful transition.

• Maintaining and enhancing people’s motiva-
tion during transition can be a driving force
for people to wholeheartedly and positively
participate.

• Successful and effective leaders are able to
adapt their leadership style to best fit the
requirements of the situation.

• The greater the opinion leadership among
group members, the greater the chance of
a successful transition and adoption.

• The more positively people perceive the
new process with regard to its characteris-
tics—advantages, observability, compatibil-
ity, complexity, and trialability—the more
likely that the process will be adopted and
effectively used.

• Management of expectations of the new
process and conflict resolution can lead
to a good working environment that can
positively impact the change process.

• When individuals share the same values and
beliefs with the organization, they are more
likely to effectively participate towards the
change.

• When people share the vision and beliefs
with their organization, they feel that they

share the ownerships and the accountability
of the whole change practice and thus their
new OO process.

• The sharing of ideas and commitments
through cooperation and harmony within
an organization often leads to an effective
change and positive participation.

• The more individuals find values in the
organizational change, the more likely they
are to contribute to the transition success.

• The more congruent and rewarding the in-
dividuals perceive the organization’s values,
the more positive is the influence on the
transition and the adoption.

referenceS

Auer, D. & Dobler, H. (2000). A model for migra-
tion to object-oriented software development with
special emphasis on improvement of acceptance.
Proceedings of TOOLS Sydney 2000 Conference
(pp. 132-143). Los Alamitos, CA: IEEE Computer
Society Press.

Bamberger, J. (2002). Managing resistance—tech-
niques for managing change and improvement.
Asia Pacific Software Engineering Process Group
(SEPG) Conference Handbook and CD-ROM (p.
30), Hong Kong.

Barclay, D.W. (1991). Interdepartmental conflict in
organizational buying: The impact of the organi-
zational context. Journal of Marketing Research,
18(28), 145-159.

Bolton, L. (2002). Information technology and
management. Retrieved December 15, 2002, from
http://opax.swin.edu.au/~388226/howto/it2/man-
age1.htm

Boyett, J.H., & Boyett, T. (2000). The skills of ex-
cellence: The new knowledge requirements for the
twenty-first century workplace. Retrieved June 3,
2002, from http://www.jboyett.com/skillsof.htm

2170

Adoption and Diffusion of Object-Oriented Software Development Processes

Bridges, W. (1995). Managing transitions, making
the most of change. Nicholas Brealey.

Burshy, D. (2001). Technology adoption—many
roadblocks slow it down. Electronic Design,
49(9), 20-21.

Castle, R.D., Luong, H.S., & Harris, H. (2002).
A holistic approach to organisational learning
for leadership development. Proceedings of the
IEEE International Engineering Management
Conference, Cambridge, UK.

Co, H.C., Patuwo, B.E., & Hu, M.Y. (1998). The
human factor in advanced manufacturing technol-
ogy adoption: An empirical analysis. International
Journal of Operations & Production Manage-
ment, 18(1), 87-106.

Conner, D.R. (1992). Managing at the speed of
change. New York: Villard Books.

Constantine, L.L. (1993). Coding cowboys and
software sages. American Programmer, 6(7),
11-17.

Constantine, L.L. (1994). Leading your team
wherever they go. Constantine: Team Leadership,
Software Development, 2(12), 1-6.

Constantine, L.L. (1995). Constantine on People-
ware. Englewood Cliffs, NJ: Prentice Hall.

Constantine, L.L. (1996, October). Panel on soft
issues and other hard problems in software de-
velopment (Ward Cunningham, Luke Hohmann,
Norman Kerth). Proceedings of OOPSLA’96 (pp.
6-10), San Jose, CA.

Cooper, R.B. (1994). The internal impact of
culture on IT implementation. Information and
Management, 27(1), 17-31.

DeMarco, T., & Lister, T. (1987). Peopleware:
Productive projects and teams. Dorset House.

Eason, K.D. (1983). The process of introducing
information technology: behavior and informa-

tion technology (pp. 197-213). New York: Pren-
tice-Hall.

Fayad, M.E., & Laitinen, M. (1998). Transition
to object-oriented software development. New
York: John Wiley & Sons.

Fiedler, F.E. (1967). A theory of leadership ef-
fectiveness. New York: McGraw-Hill.

Fingar, P. (1996). The blueprint for business ob-
jects. New York: SIGS Books.

Gibson, S. (1999). Videoconferencing still shy of
adoption. PC Week, 16(13), 130-131.

Hersey, K.H., Blanchard, & Johnson, D.E. (1996).
Management of organizational behavior. Utilizing
human resources (8th ed.). Upper Saddle River,
NJ: Prentice-Hall.

Hill, T., Smith, N.D., & Mann, M.F. (1987). Role
of efficacy expectations in predicting the deci-
sion to use advanced technologies: The case of
computers. Journal of Applied Psychology, 72(2),
307-313.

Humphrey, W.S. (1995). A discipline for software
engineering. Reading, MA: Addison-Wesley.

Humphrey, W.S. (1997). Managing technical
people-innovation, teamwork, and the software
process (6th ed.). Reading, MA: Addison-Wesley-
Longman.

Huse, E.F. (1975). Organization development and
change. St. Paul, MN: West.

Ioannidis, A., & Gopalakrishnan, S. (1999). De-
terminants of global information management:
An extension of existing models to firm in a de-
veloping country. Journal of Global Information
Management, 7(3), 30-49.

Jacobson, I., Ericsson, M., & Jacobson, A. (1995).
The object advantage, business process reen-
gineering with object technology. Wokingham,
UK: ACM Press.

 2171

Adoption and Diffusion of Object-Oriented Software Development Processes

Jurison, J. (2000). Perceived value and technology
adoption across four end user groups. Journal of
End User Computing, 12(4), 21-33.

Lawrence, P.R. (1969). How to deal with resistance
to change. Harvard Business Review, 4-6.

Lockwood, L.A.D. (1991). Strategies for man-
aging application development. Fox Software
Developers Conference Proceedings. Toledo,
OH: Fox Software.

Maslow, A. (1970). Motivation and personality
(2nd ed.). Harper & Row.

Mize, J.H. (1987). Success factors for advanced
manufacturing systems. Dearborn, MI: Society
of Manufacturing Engineering.

Nambisan, S., & Wang, Y. (1999). Roadblocks
to Web technology adoption? Communications
of the ACM, 42(1), 98-101.

O’Hara-Devereaux, M., & Johansen, R. (1994).
GlobalWork (p. 35).

Palvia, P.C., Palvia, S.C., & Roche, E.M. (1996).
Global information technology and systems
management: Key issues and trends. Nashua,
NH: Ivy league Publishing.

Perkins, W.S., & Rao, R.C. (1990). The role of
experience in information use and decision-mak-
ing by marketing managers. Journal of Marketing
Research, 18(27), 1-10.

Pfeffer, J. (1982). Organizations and organization
theory. Marshfield, MA: Pitman.

Phillips, D.A. (2002). How effective is your lead-
ership style? IEEE Antenna’s and Propagation
Magazine, 44(2), 124-125.

Schein, E.H. (1999). Process consultation revis-
ited: Building the helping relationship. Reading,
MA: Addison-Wesley.

Senge, P.M. (1990). The fifth discipline: The art
& practice of the learning organization. New
York: Doubleday/Currency.

Serour, M.K., Henderson-Sellers, B., Hughes, J.,
Winder, D., & Chow, L. (2002). Organizational
transition to object technology: Theory and prac-
tice. Proceedings of Object-Oriented Information
Systems: 8th International Conference (pp. 229-
241), Montpellier, France. Berlin, Heidelberg:
Springer-Verlag.

Stogdill, R.M. (1974). Historical friends in leader-
ship theory and research. Journal of Contempo-
rary Business, pp.7-7

Szewczak, E., & Khosrow-Pour, M. (1996). The
human side of information technology manage-
ment (p. 1). Hershey, PA: Idea Group Publish-
ing.

Thite, M.R. (2000). Leadership styles in informa-
tion technology projects. The International Jour-
nal of Project Management, 18(4), 235-241.

Thite, M.R. (2001). Help us but help yourself:
The paradox of contemporary career manage-
ment. Career Development International, 6(6),
312-317.

Ushakov, I.B. (2000). Introducing an OO technol-
ogy in non-OO standard environment. Proceed-
ings of the 4th IEEE International Symposium and
Forum on Software Engineering Standards (pp.
1-5), Curitiba, Brazil.

Younessi, H., & Marut, W. (2002). The impact
of training and education in the success of in-
troducing object-oriented into an organization.
Unpublished Paper.

Zakaria, N., & Yusof, S. (2001). The role of hu-
man and organizational culture in the context of
technological change. IEEE Software, 83-87.

This work was previously published in Management of the Object-Oriented Development Process, edited by B. Roussev & L.
Liu, pp. 247-277, copyright 2006 by IGI Publishing (an imprint of IGI Global).

2172

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.23
Developing Software in a

Bicultural Context:
The Role of a SoDIS®1 Inspection

Don Gotterbarn
East Tennessee State University, USA

Tony Clear
Auckland University of Technology, New Zealand

Wayne Gray
The University of Auckland, New Zealand

Bryan Houliston
Auckland University of Technology, New Zealand

ABStrAct

This article introduces the SoDIS process to
identify ethical and social risks from software
development in the context of designing soft-
ware for the New Zealand Maori culture. In
reviewing the SoDIS analysis for this project,
the tensions between two cultures are explored
with emphasis on the (in)compatibility between
a Maori worldview and the values embedded in
the SoDIS process. The article concludes with
some reflections upon the key principles inform-
ing the professional development of software and
ways in which cultural values are embedded in

supposedly neutral technologies, and reviews the
lessons learned about avoiding colonization while
working on a bicultural project.

IntroductIon

Rogerson and Gotterbarn (1998) developed
an early warning system that can be used by
software developers to identify and address po-
tential ethical, professional, and social risks in
software development. The method, a software
development impact statement (SoDIS) inspec-
tion (Gotterbarn, Clear, & Kwan, 2004), uses

 2173

Developing Software in a Bicultural Context

ethical relations to connect broad-based project
stakeholders to the project tasks and deliverables.
The SoDIS methodology based upon standard
Western ethical values has been proven effective
in a variety of environments. It has been applied
to the development of a data warehousing project
in Boston, the development of software for the
analysis of psychometric test data for youth, Web
sites in New Zealand, and electronic voting in the
UK. In each of these cases, the SoDIS inspection
process identified significant risks in the develop-
ment process and in the final product (Gotterbarn
& Rogerson, 2005). This identification of the risks
gave management the opportunity to develop suc-
cessful risk mitigation strategies.

This article introduces the Software Develop-
ment Impact Statement process and discusses its
application to a bicultural project. In reviewing
the SoDIS analysis for this project, the tensions
between the two cultures are explored with
emphasis on the compatibility between a Maori
worldview and the values embedded in the So-
DIS process. The article concludes with some
reflections upon the key principles informing
the professional development of software and
reviews the lessons learned about working on a
bicultural project.

The article recounts the application of the
SoDIS process to an ethically sensitive project
involving software development for a Maori
Tribal Authority. Maori are the indigenous people
of New Zealand, a bicultural society in which the
other culture could broadly be termed Western
(comprising subsequent New Zealand settlers
from a predominantly European immigrant
community). Clear and Gotterbarn used this op-
portunity to address action research questions
such as the following:

1. Would the ethical connectives between task
and stakeholder that had been derived from
software codes of ethics and codes of prac-

tice be adequate to identify ethical risks in a
manner that was sensitive to the indigenous
culture in this bicultural context?

2. Would the use of the SoDIS process colo-
nize the software system for Maori stake-
holders with Western cultural values?

BAcKgrOunD AnD termS
relAteD tO tHe prOJect

Historical context

The history of New Zealand, as with most former
colonies, reflects a complex series of struggles
between the colonizing settlers and the indigenous
peoples. A unique feature of New Zealand history
is the signing of the Treaty of Waitangi in 1840
between the British Crown and a large number of
the indigenous Maori tribes. This controversial
treaty, in which the Maori people engaged as
equal parties in a partnership whereby they ceded
a degree of sovereignty to the crown in exchange
for certain rights, since has been regarded as “the
legitimate source of constitutional government in
New Zealand” (Walker, 1990, p. 98). The English
and Maori language versions of the treaty differ
in substantial ways and are each open to quite
different interpretations. Subsequent debate has
revolved around these differing interpretations
of the treaty, and consequent actions have been
taken by the Crown and its agents. Walker (1990,
p. 98) observes that “acquisition, control and,
ultimately, expropriation of land were the key
factors in the consolidation of sovereignty” by
the Crown. This was in spite of the treaty’s guar-
antees to the Maori signatories of “full exclusive
and undisturbed possession of their Lands and
Estates, Forests, Fisheries, and other properties
which they may collectively or individually pos-
sess, so long as it is their wish and desire to retain
the same in their possession” (Walker, 1990, p.

2174

Developing Software in a Bicultural Context

92). He argues that the “outcome of colonization
by the end of the century was impoverishment of
the Maori, marginalisation of leaders and chiefly
authority and a structural relationship of Pakeha
[European] dominance and Maori subjection”
(Walker, 1990, p. 10).

Relatively recently, a process of reconciliation
has been engaged in by the Crown, one element of
which has involved the devolution of responsibili-
ties from the former Government Department of
Maori Affairs to Maori tribal authorities known
as Runanga. The intention was to move from
a paternalistic governmental model of service
provision to Maori toward a self-determined
model managed by the Maoris themselves. An
earlier key step in the reconciliation process had
been the establishment in 1975 of a specialized
tribunal (the Waitangi Tribunal) to hear and to
adjudicate upon Crown breaches of the treaty
brought by Maori claimants. A number of settle-
ments have resulted from this process, in which
significant financial compensations have been
made to claimant tribes.

One of the most significant nationwide settle-
ments resulting from the Maori Fisheries Act 1989
and the subsequent Deed of Settlement 1992 has
resulted in the establishment of the Maori Fisher-
ies Commission, a Crown body with more than
NZD$700 million worth of fisheries assets to be
redistributed to several claimant tribes. This redis-
tribution will be effected by the establishment of
a “new trust, Te Ohu Kai Moana … with iwi (the
Maori tribes) as beneficiaries” (Maori Fisheries
Bill, 2003, p. 1). The trust will undertake a process
of allocation of groups of shares to tribal authori-
ties, who then will apportion them accordingly to
bona fide members of that tribe. “For individual
Maori to become shareholders in this asset they
must be registered with their iwi” (Tuhono, 2004).
Thus, in order to demonstrate membership of a
tribe, a process of tribal registration similar to
voter registration will be required.

project context

In mid-2002, a number of students at Auckland
University of Technology (AUT) began work on
a project to extend the existing IT systems of a
Maori tribal authority, Te Runanga a Iwi o Ngapuhi
(TRAION), the statutory body representing the
Ngapuhi tribe, or iwi (Clear et al., 2004). Proposed
changes in a broadly conceived project included
the following:

• Online registration of tribal members
• Linking members to several groupings of

significance to Maori
• Extended family (whanau)
• Subtribe (hapu)
• Marae (a meeting-house complex used

for several cultural purposes and serv-
ing the Maori community centered in
that location)

• Creating a database of genealogical (whaka-
papa) information

• Creating a database of interests in commu-
nally owned tribal land

The TRAION project, then, was entering into
sensitive areas. For Maori, “Identity and worth
were found in family and tribal connectedness
[and] …identity was linked to both ancestry and
place” (King, 2003, p. 77). As a consequence,
Maori people have known sensitivities about
research related to whakapapa (genealogical and
land-based information), which is considered a
taonga (treasured possession) particular to the
groupings (whanau, hapu, and iwi) who have
interests in this information.

To better articulate the risks and to investigate
the issues inherent in computerizing such sensi-
tive information, a Software Development Impact
Statement (SoDIS) analysis was undertaken.

 2175

Developing Software in a Bicultural Context

tHe SODiS prOceSS

There is significant evidence that many software
projects fail because, during development, they
do not adequately identify and address significant
qualitative risks, including social, professional,
and ethical risks. Rogerson and Gotterbarn (1998)
developed a process, Software Development
Impact Statements (SoDIS), to address this
problem. The SoDIS process was prototyped in
software (SDRF, 2005). These unidentified risks
and associated software failures can range from
trivial annoyances to cumbersome and dangerous
situations. Developers frequently are surprised
by the impacts of the software they develop and
their own failure to pay attention to a wide range
of risks. Sometimes, the missed risks can have
tragic consequences.

A major cause of failed software projects is
the narrow focus of risk analysis on only the
concerns of the developer and the customer. Risk
analysis sometimes is extended also to include
those with a financial stake in the software. But
this limited scope of analysis excludes those who
do not have a financial stake in the development
of the software. Because they have no financial
stake in the development of the software, the
needs of the pacemaker recipient, or the vehicle
passenger whose life is affected by the successful
application of anti-lock braking software, often are
overlooked. The SoDIS methodology is designed
to include in the risk analysis those people who
are impacted by the development of the software.
Broadening the base of stakeholders requires a
broadening of the types of risks considered.

The decision support technique, Software
Development Impact Statements, is a modification
of an environmental impact statement. Software
impact statements, like environmental impact
statements, are used to identify potential negative
impacts of the planned software and to specify ac-
tions to mediate those impacts. SoDIS is intended
to reflect both the software development process
and the more general ethical obligations to vari-

ous stakeholders. In particular, it was designed
to access the possibility of ethical, professional,
and social risks — risks that occur where the
software interacts with people or modifies their
social environments.

The SoDIS process is an ethical decision
support process insofar as it focuses on the
developer’s responsibility to consider the diver-
sity of stakeholders and the special nature of
the project tasks. The SoDIS analysis precedes
the software development. A SoDIS analysis
identifies concerns about the potential impact of
particular planned tasks on individual stakehold-
ers. It highlights changes in some planned tasks
and additional possible tasks that are needed to
prevent any anticipated problems. The analysis is
done first during the planning stage for software
development.

On a very high level, the SoDIS process can
be characterized as examining the way every
task or function of a proposed system impacts a
stakeholder. Unacceptable potential impacts are
identified, and the developer has the opportunity
to address the risk before the product is developed.
The process generates a series of questions of
the form, “Might task n have a specified ethical
impact on the particular stakeholder?” For ex-
ample, a retirement payment system may require
all data on a single screen. “Failing to take into
consideration the needs of” is an ethical impact
issue. Thus, a SoDIS question might be, “Might
putting all data on a single screen fail to take
into consideration the needs of the senior citizen
(visually impaired) stakeholder?”

The SoDIS process can be reduced to four
stages: (1) the identification of the immediate and
extended stakeholders in a project; (2) the analysis
of the tasks in a project; (3) for every task for each
stakeholder, the identification of potential ethical
issues raised by the completion of that task; and
(4) the recording of the details and solutions of
those ethical issues and a decision whether the
current task needs to be modified or a new task
created in order to address the identified concern.

2176

Developing Software in a Bicultural Context

The process of developing a SoDIS encourages the
developer to think of people, groups, or organi-
zations related to the project (stakeholders in the
project) and how they are related to each of the
individual tasks that collectively constitute the
project. This encouragement is done by generating
a series of questions for the analyst.

The generation of these questions requires
the list of tasks, the potential issues connecting
(ethical relata and impact issues) task and stake-
holder, and the list of stakeholders. The task list
can be at a variety of levels of abstraction and is
provided by the requirements, function lists, or
a project task list.

The SoDIS process identifies overlooked risks
through the inclusion in the analysis of a broader
range of stakeholders. Stakeholders include indi-
viduals or groups who may be directly or indirectly
affected by the project and thus have a stake in
the development activities.

Stakeholder identification
techniques

The stakeholders can be identified in several ways.
A preliminary identification of software project
stakeholders is accomplished by examining the
system plan and goals to see who is affected
and how they may be affected. When determin-
ing stakeholders, an analyst should ask whose
behavior, daily routine, or work process will be
affected by the development and delivery of this
project; whose circumstances, job, livelihood, or
community will be affected by the development
and delivery of this project; and whose experi-
ences will be affected by the development and
delivery of this product. All those pointed to by
these questions are stakeholders in the project.

The identification of stakeholders also must
strike a balance between a large list of stakeholders
who are ethically remote from the project and a list

Figure 1. SoDIS® process (Gotterbarn & Rogerson, 2005)

B
S takeho lder ro les

A rticu la tion o f r isk and
associa ted s everity

N o
potentia l risks

P otentia l risks
identifiedG enerate q uestion

ins tances

C
S pec ific s takeho lder

ins tances

A
Identify p ro jec t t ype

P rioritized risk
m itiga tion s tra teg ies

Im port t asks
lis t

tasks

descrip tion

qualita tive
questions

S oftware
D eve lopm ent

Im pact
S ta tem ent

P ro jec t t ypes
and s takeho lder

ro les S T A G E 1

S T A G E 2

S T A G E 4

S T A G E 3

B
S takeho lder ro les

A rticu la tion o f r isk and
associa ted s everity

N o
potentia l risks

P otentia l risks
identifiedG enerate q uestion

ins tances

C
S pec ific s takeho lder

ins tances

A
Identify p ro jec t t ype

P rioritized risk
m itiga tion s tra teg ies

Im port t asks
lis t

tasks

descrip tion

qualita tive
questions

S oftware
D eve lopm ent

Im pact
S ta tem ent

P ro jec t t ypes
and s takeho lder

ro les S T A G E 1

S T A G E 2

S T A G E 4

S T A G E 3

 2177

Developing Software in a Bicultural Context

of stakeholders that only includes a small portion
of the ethically relevant stakeholders. Rogerson
and Gotterbarn (1998) proposed a method to help
achieve a balance between an underestimation and
overestimation of the relevant stakeholders based on
Gert’s (1988) moral rules. Gert gives the 10 basic
moral rules shown in Table 1. These rules carry
with them a corresponding set of rights, such as
the rights to liberty, physical security, personal
liberty, free speech, and property.

One approach to stakeholder identification is
to use Gert’s (1988) rules as stakeholder search
criteria, search for stakeholders who would be
caused pain by a particular project task, search
for stakeholders who would be disabled by a par-
ticular project task, and so forth. A preliminary
identification of software project stakeholders is
accomplished by listing each of these rules and
rights and examining the system plan and goals
to see who is affected and how they may be af-
fected. For example, according to the rule “don’t
cause pain,” we should ask if the system changes
the level of pain felt by anyone.

Stakeholders are also those to whom the
developer owes an obligation. The imperatives
of the Software Engineering Code of Ethics and
Professional Practice and similar codes of ethics
and practice define the rights of the developer
and other stakeholders. These imperatives can
be used to guide the stakeholder search. The
process of identifying stakeholders also identifies

their rights and the developers’ obligations to the
stakeholders.

ethical relata

These codes also can be used to identify the impact
issues connecting tasks and stakeholders. Many
of the computing codes have similar imperatives,
which embody the software profession’s views of
responsibility. The SoDIS process uses abstracted
imperatives from many codes and organizes them
under general moral principles. These impera-
tives have been organized as a set of 32 impact
issues, which form questions when relating tasks
and stakeholder. There may be some special
circumstances that are not covered by these 32
questions, so the SoDIS analyst can add impact
issues. Only codes of western professional com-
puting societies were abstracted (e.g., the British
Computer Society, the Association of Computing
Machinery, etc.). There is in each of the codes a
clear statement that protects individual rights of
ownership. The ethical umbrella under which the
SoDIS was developed seems to reflect a Western,
largely individualistic worldview (see Hofstede
[1980] and discussion in the section “The Ethical
Problem”) of software development and ethical
rights and responsibilities.

We now can modify our initial research ques-
tions as follows:

Table 1. Gert’s moral rules

Don’t kill Don’t cause pain Don’t disable Don’t deceive
D o n’t d e p r ive of
freedom

Don’t cheat Don’t depr ive of
pleasure

Keep your promises

Do your duty Obey the law

2178

Developing Software in a Bicultural Context

1. Would the ethical connectives between task
and stakeholder that had been derived from
software codes of ethics and codes of prac-
tice be adequate to identify ethical risks in a
manner that was sensitive to the indigenous
culture in this bicultural context? This can be
put as the following more general question:
1*. Does the application of a Western

worldview of software development
constrain (impact, affect, colonize)
the system it develops with more
general ethical values (which would
include indigenous values or the gen-
eral value sets implicit in the Western
worldview)?

2. Would the use of the SoDIS process colonize
the Maori software system with Western
cultural values? This is now divided into
the following two questions:
2*. Does the SoDIS process really embody

Western values, or does it embody a
view that is conditioned by software
development rather than a social-ethi-
cal culture?

2**. Does the SoDIS process necessarily
force such constraints on a different
culture?

Question 2** is different from the question,
“Can the process be used in such a way to colonize
values into another culture?” A simple example of
software colonization is the loss of accountability
in vote counting caused by the development of
vote counting machines that do not produce paper
audit trails for votes cast.

tHe prOpOSeD prOJect
AS tArget fOr tHe
SODiS prOceSS

The Ngapuhi iwi, 103,000 according to the 2001
census, have their interests represented and man-

aged by Te Runanga a Iwi o Ngapuhi, the project
client. Because the majority of these members live
outside the tribal boundaries in the Northland,
identifying and maintaining contact with members
is a costly and difficult exercise.

The software project, TRAION, was to replace
the current paper-based membership system with
only 2,000 recorded members. The iwi is very
large and dispersed, but a complete roster is
needed for representative decision making in iwi
matters, such as the long-term management and
reporting of tribal resources and the facilitation
of Treaty of Waitangi settlements. Communicat-
ing with the diverse membership is facilitated
by a Runanga-developed Web site (http://www.
ngapuhi. iwi.nz). A major function of the Web site
is the distribution of iwi membership application
forms. “Nevertheless, providing a fully dynamic,
robustly architected website had been beyond the
resources of the Runanga at the time of commis-
sioning the project” (Clear et al., 2004, p. 8).

the tribal membership System

One of the immediate needs of the Runanga was
the establishment of an up-to-date membership
system verifying that people, indeed, are members
of the iwi. This list was required for iwi manage-
ment and the potential disbursement of settlement
funds, a task made more difficult by the interna-
tional dispersal of members of the iwi.

Implications for the Project: Technical
and Social Issues

To meet the membership recording needs of the
Runanga, it was decided that the system would be
Web-based. The project as originally conceived
(i.e., developing a full genealogical/land-based
system) could not be completed in the time al-
located for a student project. “Developing a land
information system revolves around not merely
providing the right technology, but the difficulty

 2179

Developing Software in a Bicultural Context

of the information gathering process and the ac-
curacy and currency of the results garnered from
the process” (Clear et al., 2004, p. 10).

Determining land ownership is very complex
for Maori. As in other societies, land is inherited
through family linkages, but there is not a com-
plete paper trail of all of these linkages. The most
accurate information can be found by investigat-
ing the family relationships and background of
land ownership candidates. Another problem is
that the Maori culture is community-based, so
there are often hundreds of owners for one block
of Maori land, with each owning a proportion.
The records for these dispersed owners are often
inaccurate.

The three factors of land, genealogy, and tribal
membership are interconnected and provided the
original scope of the investigation. A decision was
made to focus on the membership system require-
ments, with the database designed to allow for
future implementation of genealogical and land
information system requirements.

Membership Information Structure
Difficulties

Given the lack of genealogical documentation,
tribal debate informs matters of whakapapa, and
every piece of information is important in genea-
logical research, regardless of the correctness of
the information at the time of examination. Even
dubious data must be preserved to allow for later
reinvestigation. Not only must inconsistent stories
be maintained, but the system also must track the
time-based nature of genealogical data. Instead
of a simple hierarchical structure, the Maori also
have an overlapping network structure in differ-
ent groups (i.e., family, hapu, tribe, etc.). The
levels of family relationship (shown in Figure 2)
include parent-child, whanau (extended fami-
lies), marae clusters within hapu (local meeting
complexes within the territories of a subtribe),
and hapu clusters within a larger tribe (iwi). The
Whanau is not a simple genetically related group
but frequently includes members who have been

Figure 2. Iwi relationship structures (adapted from Clear et al., 2004)

Whanau/families

iwi

Hapu 1 Hapu 2

marae 2
marae 1

2180

Developing Software in a Bicultural Context

adopted formally from other Whanau; it also
includes those who have been adopted casually
by a Whanau. Thus, someone who is adopted
casually into a particular family will be a member
of that family’s marae of their hapu in their iwi,
but that same person is related genetically to a
different family that could belong to a completely
different iwi.

tHe SODiS ApplieD tO tHiS
prOJect

Smith (1997) identified several Maori concerns
about putting cultural information on the Internet,
including concerns relating to threats to cultural
values, loss of control of information, intellectual
and cultural property ownership issues, accuracy
and authority of information, the commercializa-
tion of information, and access issues. Based on
consultation with the Maori about computerization
of Land Court records, the Department of Courts
(1999, p. 3) noted that Maori had objected to the
database being made available over the Internet
and believed “that management of the records
(paper and electronic), the information therein,
and access, has to be consistent with the following
principles: the mana (authority) of the records/in-
formation comes from iwi, [and] whakapapa is
intrinsically tapu (sacred).”

The Maori say that cultural information (here,
whakapapa) has an intrinsic value, while in the
West, information is viewed primarily in an
instrumental sense; the value of the information
is a function of its usefulness. In addition to the
cultural concerns, there are significant technical
issues with the TRAION project. The potential
of the final outcome of this project to support
not only the production of a tribal membership
register but also the recording of whakapapa and
consequential land ownership rights gave rise to
natural concerns about the design of the system,
use of data provided in the course of the project, the

responsibilities for management of the resulting
information, and access to this sensitive data.

the ethical problem

Given that whakapapa is sacred, would the
analysis of the project tasks manage to identify
the development of this database as a potential
instance of cultural colonization of the Maori by
another culture?

Our investigation requires at least a distinction
between the two cultures. Culture is a complex
phenomenon and generalizations are all too easy to
make. Nonetheless, differences do exist, and some
categorization such as the dimensions proposed
by Hofstede (1980) can be helpful. In one such
example, at a country level, New Zealand has
been categorized, along with countries such as
Canada, Great Britain, and the United States, as
possessing an individualistic culture (Jarvenpaa &
Leidner, 1998), whereas Maori would be classified
more appropriately as possessing a collectivist
culture. The group is a dominant structure in the
Maori world, just as the individual is dominant in
the Western perspective of the previous country
grouping. Avison and Myers (1995, p. 52), arguing
that culture is essentially an emergent phenom-
enon, have refuted simplistic definitions, noting,
“The assumption that cultures are separate, dis-
tinct entities which identify and distinguish one
group from another … is too simplistic.” As with
all generalizations, there are obvious exceptions
with each culture, but the individualism — col-
lectivism dimensions — seem to be based upon
strong conceptual foundations. Given this obvious
difference in perspective, forcing the values from
one culture onto another would be an example of
ethical/social colonization.

Therefore, when engaging with Maori as
with many other indigenous cultures, we need
to acknowledge that the Western perspective is
different from the Maori. To develop software
that accommodates this difference in perspective

 2181

Developing Software in a Bicultural Context

requires that we work in a partnership model and
that we have tools and techniques that can surface
issues based on these different perceptions. The
SoDIS process is one such analytical technique.
The SoDIS was designed with a fiduciary model
of professionalism in mind (Bayles, 1981). A
fiduciary model of professionalism imposes
high standards of development, but the resulting
software is developed in partnership with those
affected by the developed product. But we are
wrestling with the extent to which its underpin-
ning logic is essentially Western and fails also to
address the different value systems of indigenous
peoples who come from a strong tribal or clan-
based community culture. The tools used require
a focus on what that community values.

tHe reSultS Of tHe
firSt ApplicAtiOn

The SoDIS process is part of an inspection process.
The first step in the SoDIS inspection process (Got-
terbarn, Clear, & Kwan, 2004) is the identification
of potential high-level risks — clusters of concern.
The awareness of these high-level issues is used
as a filter for the SoDIS analysis. In application of
the SoDIS process through a SoDIS inspection of
the TRAION project, the following four distinct
clusters of concern were identified:

• Client-developer communications
• Sensitive data
• User experience
• Academic considerations

Within these clusters, the specific concerns
later identified during the detailed SoDIS analysis
related to several further subcategories.

Client-developer communication concerns
that were identified related to a conflict of inter-
est between the local proxy client, who was a
member of the iwi and also of the academic staff

at the developers site, and the remote client at the
Runanga itself, who would operate the final systems
once delivered. Questions arose about the ability
of the proxy client to adequately represent the
requirements to the developers and mechanisms
for securely transferring sensitive project related
documentation between the development and
client sites.

Sensitive data concerns related to reasons
for collecting data (consistency with privacy
legislation and mechanisms for obtaining consent
for provision of data for genealogical research
purposes [http://www.caldeson.com/RIMOS/
nzguide. html]) and access to data (determining
authorization protocols, managing privacy con-
siderations, keeping data over time, managing
multiple copies of the database, etc.). Cultural
sensitivity and avoiding exploitation through
commercialization were concerns, especially
over display of cultural artefacts over the Web
or use of whakapapa information for commercial
purposes.

The user experience concerns related to
unusual circumstances (e.g., where contested
values over tribal groupings were held and where
members could be refused enrollment under their
chosen groupings, or when dealing with cases of
adoption and the desire to represent both natural
and adoptive lineages); refusing membership and
the resulting impact on tribal members, whether
that refusal was by design or through admin-
istrative, security, or data integrity occasioned
errors; access and performance issues for rural
members with slow dial-up connections; visual
and language impairments (e.g., the impact of
Maori language text without translation for young
members who are more frequently non-Maori
speakers and for the elderly who have poorer
eyesight and for whom the choice of a suitable
font will be an important consideration).

Academic considerations were concerns
related to developer inexperience with taking a
system through all the activities of a full devel-

2182

Developing Software in a Bicultural Context

opment life cycle to production use, and time
constraints potentially leading to shortcuts and
quality compromises.

This SoDIS-generated list of Clusters of Con-
cern and subcategories did not impose Western
social values. The list appears as a relatively
culturally neutral collection that has identified
issues that would be of concern to any professional
developer and likewise to their clients and other
stakeholders in the system. As we shall see, there
are, however, some issues here that are of specific
concern to Maori due to their cultural priorities
and values. We return to the research question 1*
— Is the SoDIS with its Western cultural base
capable of including indigenous values?

SOme Seemingly culturAl
DifferenceS relAteD tO tHe
DAtABASe AnD tHreAtS tO
culturAl VAlueS

In this clash of values between Maori and Western
perspectives, however, we have identified some
critical issues. Broadly speaking, we can say
that Western culture is inherently individualistic
(whether through natural persons or notion of
the firm as a natural person) and tends to assert
property rights through ownership; it also tends
to view resources through a utilitarian ethic as
opportunities for personal gain through some
form of exploitation. Maori culture, by contrast,
is group-based, emphasizing the collective good
and views resources not simply as opportunities
for exploitation but from an innate sense of one-
ness with the natural world, as entities deserving
respect in their own right. The notion of collec-
tive responsibility for the guardianship of these
natural resources is an accompanying strong
cultural imperative.

Solomon (2000, p. 4) phrases the distinction
as follows:

Acknowledging the spiritual dimension of their
universe and respecting the mauri or central
life force of every living thing was fundamen-
tally important to the Maori world view. In other
words, the reciprocity of obligations was balanced
against the right to use and exploit. This can be
contrasted with the notion of intellectual property
rights which focuses on the economic right to
exploit for profit and financial gain. The needs
of the individual, and corporate legal personali-
ties such as multinationals, are preferred to the
collective good.

Under this capitalist model, resources are viewed
entirely as a means of exploitation for economic
gain. There is little or no reciprocity or respect for
the integrity of the resources as living and breathing
entities with their own mauri or life force.

A new Stakeholder

This raised an interesting question. We hold a
model of data as information to be used for our
purposes, which underpins the informational per-
spective of whakapapa. Does our model violate
the Maori ethic relating to whakapapa as a sacred
entity warranting respect and for whose respectful
guardianship we have a collective responsibility?
Thus, the notion of a data collection itself (here,
the whakapapa is the collection considered) hav-
ing an inherent integrity in its own right leads us
to reconsider the notion of stakeholder. Not only
the impacted individuals and groups but even
the very information may be a stakeholder, if we
adopt a Maori perspective (Floridi, 1998). Thus,
including whakapapa in our stakeholder list and
conducting subsequent analysis to determine
whether the integrity of the whole collection
is at risk by actions in the course of the project
may assist in bridging the gulf between the two
cultures. In this way, we may apply a tool based
on Western value systems in a manner nonetheless

 2183

Developing Software in a Bicultural Context

consistent with the worldview of a very different
culture. The key is being able to adopt the Maori
perspective when doing the analysis.

The inspection itself had identified as a concern
issues to do with data integrity, in general, but had
not done so through a perspective that animated in
this way the data itself as a collective stakeholder.
Thus, the Maori perspective appears capable of
being represented through the SoDIS inspection
process, but only if the analysts themselves adopt
a similar and compatible (in this case, animist)
mindset. This is a subtle but significant shift
in thinking. Research question 1* is answered
affirmatively. The SoDIS process is capable of
identifying more general value issues.

2** is not resolved.

AnOtHer SenSe Of
cOlOnizAtiOn AnD tHe SODiS
WeStern principleS

Myers and Young (1997) have noted how an infor-
mation system may act as a steering mechanism
enlisted to serve the agenda of a power elite, and,
in this way, the system itself may act as a coloniz-
ing device. While the term information system has
been used by Myers and Young (1997), it equally
might be substituted by a systematic process, a
set of processes, or a software tool used in sup-
port of a process. One reason for the concern
about cultural ethical colonization is the fact
that the ethical relata in the SoDIS process were
derived from a Western cultural-ethical perspec-
tive embodied in codes of professional ethics. A
necessary condition in order for the process to
avoid colonization is its application from a Maori
perspective. But is that a sufficient condition, or
does the SoDIS process’ seeming foundation in
a Western ethic mean that the use of the process
in other cultures necessarily colonizes social and
ethical values in this way?

Our initial questions were (1) Would the ethi-
cal connectives between task and stakeholder that

had been derived from software codes of ethics
and codes of practice be adequate to identify
ethical risks in a manner that was sensitive to the
indigenous culture in this bicultural context? and
(2) Would the use of the SoDIS process colonize
the Maori software application with Western
cultural values?

Did the SoDiS Have these threats
— 1* Was it Adequate to the task?
and 2** Did it necessarily Act to
colonize the maori culture?

a. SoDIS and Western Culture or Professional-
ism. The SoDIS process embodies standards
of professionalism, which, at a certain level,
are universal but may be sociologically de-
fined as merely a set of norms. However, there
does appear to be a common ethic inherent
in the international community of practice
(Wenger, 1998) constituted by professional
software developers. Is this ethic to do their
job well, sensitively, and in a manner that
does not cause harm, a universal ethic of
the profession?

b. The derivation of the connecting issues be-
tween tasks and stakeholders in the SoDIS
analysis was driven by ethical imperatives
common to software codes of conduct and
codes ethics. A significant number of ethical
imperatives were gathered from the various
codes and were assigned as instances to one
or another of Gert’s (1988) moral rules. Some
of the imperatives derived from professional
codes did not fit clearly under any particular
Gertian moral rule. These imperatives were
related specifically to a moral approach to a
project and did not have a stakeholder other
than the project itself. These included is-
sues like “require the developer to work on
projects with infeasible goals.” This process
identified 32 common issues distributed
among five distinct principles depicted in
Table 2.

2184

Developing Software in a Bicultural Context

As some imperatives seemed to belong equally
under two different Gertian rules, it was decided
to collapse the rules under more general moral
principles, so “Don’t kill” and “Don’t cause pain”
were subsumed under the principle “Cause harm.”
The negative form of the principles was used so
that when a question was answered with a yes, it
would indicate an ethics violation. For example,
affirming that “a particular task will cause harm
to a stakeholder” indicates the need for remedial
ethical action.

The resulting generic SoDIS principles and
the relation to Gert’s rules are in Table 2.

Some of the rights and obligations identified
when following this method of categorization
may be in conflict, and it will become necessary
to prioritize how these rights are addressed and
which of them can, within the bounds of the five
previous principles, be addressed. This prioriti-
zation, of course, involves value decisions and a
setting of priorities among values identified. As
Rikys (1980, p. 26) has noted, these value-deter-
mined priority choices may create an opportunity
for cultural exclusion, since “if planners are not
exposed to or in possession of some values, these
values will fail to be reflected in the planning poli-
cies and priorities which result from planning.”
One of the general ways to help prioritize the
ethical obligations within a project is to determine

what actions are necessary in order to satisfy the
perceived obligation and to evaluate those actions
in terms of whether they are morally required,
morally wrong, or merely morally permissible.
This approach to evaluating potential actions is
a variation on Green’s (1994) decision tree for
assessing obligations.

colonization of Social and ethical
Values

One of the research questions in general and in
particular for a multicultural process is related
to the derivation of the ethical issues relating the
task and the stakeholder. This potential problem
may be more likely because change of the moral
rules used in the SoDIS may have an impact on
the way stakeholders will be identified. It may
seem that this change might be a cause of ethical
colonization.

Justification of the Process as
Non-Colonizing

There are three items that weigh against the
charge that the SoDIS engages in ethical coloni-
zation. The first is that the underlying premise
of the SoDIS is an analysis of an expanded set
of stakeholders. The second is that the set of

Table 2. Alignment of SoDIS principles with those of Gert

SoDIS Principles Gert’s Original 10 Principles
Project issues (no stakeholder focus) none
Cause harm Don’t kill, Don’t cause pain
Unreasonably restrict Don’t disable, Don’t deprive of freedom
Involve deception Don’t deceive, Don’t cheat
Conflict with your responsibility toward Don’t deprive of pleasure, Keep your promises, Do

your duty, Obey the law

 2185

Developing Software in a Bicultural Context

principles and questions is expandable by the
user and, thus, does not mandate the ethics of the
analyst. Third, the ethical questions are answered
from the analyst perspective and subject to the
analyst’s interpretation. In this regard, it may
be the analyst who is guilty of ethical coloniza-
tion rather than the SoDIS process. This risk
normally is mitigated by conducting the analysis
process jointly with stakeholders from the client
organization or community. This ensures that
participants are well-versed in the cultural context
and subject domain.

No Ethical Colonization

First, the process expands rather than narrows
who the stakeholders are so that it broadens the
issues and is not colonizing. If the stakeholder
expansion were consistent with the Western busi-
ness ethics model that the primary stakeholders
in any project are only those who have a financial
interest (Mitchell et al., 1997), then enlarging the
stakeholder base indeed would be colonizing. As
we have seen, however, stakeholders are identified
by the following three questions that address af-
fected parties in their cultural circumstance:

• Whose behavior, daily routine, or work
process will be affected by the development
and delivery of this project?

• Whose circumstances, job, livelihood, or
community will be affected by the develop-
ment and delivery of this project?

• Whose experiences will be affected by the
development and delivery of this product?

By stakeholder, we mean individuals or groups
who may be affected directly or indirectly by the
project and, thus, have a stake in the development
activities. Those stakeholders who are affected
negatively are particularly important regarding
ethical sensitivity, because they are often the
ones overlooked.

Negative effects include both overt harm and
the denial or reduction of goods. So, obviously,
the development of a medical software package
that delivered erroneous dosages of medicine that
killed patients would have a negative effect. But
SoDIS analysts also would include software that
limited people’s freedom of expression as having
a negative effect. Limitations on positive ethical
values and rights are negative effects. It can also
be argued that the failure to promote positive
ethical values is also a negative effect. This is
the model that was used in part for the project
questions about tasks.

Therefore, we extend the traditional software
project stakeholder list from customers and
corporations or shareholders to include all those
who will be affected by the software and by its
production. This includes users of the software,
families of the users, social institutions that may
be altered radically by the introduction of the
software, the natural environment, social com-
munities, software professionals, employees of the
development organization, and the development
organization itself. If the analysis is done from a
Maori perspective, those affected further include
whakapapa and related social groupings.

Space precludes a fuller discussion here, but
this inclusive motivation could be considered to be
broadly consistent with the Habermasian (1984)
desire to avoid distorted forms of communication,
whereby dominant groups use systems as mecha-
nisms to effect a “colonization of the lifeworld”
(Myers & Young, 1997, p. 226) of other groups.

Second, the SoDIS is tailorable in two ways:
(1) new questions can be asked and existing ones
can be ignored and (2) the meaning of terms
is conditioned by one’s worldview. A basic as-
sumption of the SoDIS process is that the original
ethical relata are a starting point for the analysis.
The SoDIS analyst should add appropriate ethical
relata to the analysis. The ethical relata are about
software development impacts.

2186

Developing Software in a Bicultural Context

Third, the questions are answered from the
perspective and understanding of the analyst.
The analysts answer questions from the perspec-
tive of the stakeholder. The effect of taking the
stakeholder perspective can be seen by looking
at some specific ethical issues and the guidance
contained in the SoDIS process. For example, the
principle, “Does task cause harm to the stake-
holder?” includes the alteration of information
(interpreted from a Maori perspective to include
whakapapa) as a potential harm. This approach
also facilitates the addition of context-relevant
stakeholders. So, in the case of the Ngapuhi, the
information is a stakeholder who is exposed to
significant risks.

Under the principle cause harm are the ethical
relata that follow.

Does the task in question:

• Allow unauthorized access or alteration of
the data of the stakeholder?

• Violate the privacy and confidentiality of
the stakeholder?

• Discriminate against the stakeholder?
• Fail to take into consideration the needs of

the stakeholder?
• Involve the design or approval of software

that may lower the quality of life of the
stakeholder?

• Cause loss of information, loss of property,
property damage, or environmental impacts
that affect the stakeholder?

It is clear from the earlier discussion that these
principles are broad enough when interpreted from
a Maori cultural perspective to encompass most
of their specific concerns with this project.

Even if the SoDIS process were to attempt
to colonize, we have seen Maori resistance to
possible colonization in their resistance to the
computerization of land court records and other
information (see the earlier section “The SoDIS
Applied to this Project”).

mAOri-Specific etHicAl relAtA
frOm tHe SODiS inSpectiOn

Of the issues identified in the SoDIS inspection
(see the earlier section “The Results of the First
Application”), several had specific significance
from a Maori cultural perspective. While some
of the concerns raised could be viewed as fairly
relevant to any software development context,
the Maori dimension often introduced further
culture-specific elements.

In the first cluster of client developer commu-
nication, the key Maori ethical questions related
to who could legitimately represent the iwi as the
project client. Walker (1990) has noted historical
situations in which the authority of the chiefs
had been subverted and the authority structures
of Maori society undermined by the colonizer.
Thus, when engaging in research and develop-
ment with Maori (Bishop, 1996), the processes
of initiation and the need to work through due
tribal and group decision making and authority
structures are critical.

In the second cluster of sensitive data, several
Maori ethical questions arose. Privacy concerns
and mechanisms for obtaining consent for provi-
sion of data for genealogical research purposes
raised complex questions of who could legiti-
mately view what data. The collective ownership
of whakapapa at different levels meant that group
and individual access rights had to be negotiated.
Individual data were personal, but whanau data
were the property of the family group to decide,
and hapu and iwi had their own interests and
group decision-making processes in order to
determine these rights. For instance, what rights
would system administrators, data entry clerks,
and Runanga management have to access or
restrict access to this data? These policies and
authorization protocols would need to be devel-
oped and agreed upon through accepted tribal
decision-making processes. Similarly, protocols
concerning display of cultural artifacts over the

 2187

Developing Software in a Bicultural Context

Web or use of whakapapa information for com-
mercial purposes (e.g., to defray expenses of the
site or to support storage and research costs)
would need to be agreed upon at the tribal level in
order to offset concerns over commercialization
and inappropriate use of treasured information
and sacred objects. Data integrity and the need
to preserve the very authenticity of whakapapa
as a stakeholder in its own right has been noted
as a key Maori concern.

In the third cluster, user experience, several
more Maori ethical questions arose. Again, ques-
tions over authority in disputed circumstances
would need to be settled (i.e., who could deter-
mine official groupings and their standing?). For
instance, a particular Northern grouping, Ngati
Hine, claims iwi status but has been deemed by
Te Ohu Kai Moana as a hapu. How do such deter-
minations hold standing, who decides official lists
of hapu and iwi, and how are dissenting voices to
be registered? Likewise, under what criteria are
membership applications to be refused registra-
tion and what is the impact for those refused?
What authority will systems administrators and
Runanga clerks possess, and what controls will
be in place to ensure the integrity of data entered
and stored? How is the integrity of whakapapa to
be maintained in each of these circumstances?

Questions related to access and performance
arose, with concerns over slow Internet access
speeds for rural users. For indigenous peoples
who often live in rural areas, access issues pres-
ent known problems. Burn and Loch (2001) have
observed how the digital divide particularly
impacts the rural poor and rural and central city
minorities. In a relatively recent report (T.P.K.,
2001, p. 7), it was found that “65 percent of Maori
respondents reported they had never used the
internet, and about 8 percent reported they used
the internet on a daily basis…only 34% of Maori
households possessed a computer.”

Visual and language impairments were further
concerns, with untranslated Maori language text

a potential barrier for younger Maori, who would
frequently be less fluent, and font selection an
issue for older Maori.

Another whakapapa-related concern arose
for those who were adopted (whether formally
or informally) and how their data would be rep-
resented; for instance, would both natural and
adoptive lineages be stored? Who would need to
give consent for such a practice?

Thus, it can be seen that the SoDIS process
has been able to identify concerns of particular
relevance to Maori in this bicultural project. The
input from Maori project participants to the SoDIS
inspection seems to have resulted in an outcome
whereby the Maori perspective has been incor-
porated successfully. This incorporation of the
Maori perspective has been realized by working
through the questions of the process derived from
the general ethical principles identified in Table
2. While relatively generic, the questions have
forced consideration of many issues critical to the
stakeholders in this project. The detailed operation
of the principles can be seen in the appendix to
this article, which provides the full wording for
each of the SoDIS principles considered relevant
to Maori.

pOtentiAl limitAtiOnS
Of tHe SODiS in tHe
BiculturAl cOntext

Joint governance models

In her report to the New Zealand government on
the issues related to online authentication and e-
government, Kamira (2004) proposes joint gover-
nance models to operate in such large technology
projects with potential negative impacts for Maori.
The joint governance model is intended to enable
power sharing between Maori and governmental
agencies and to ensure that cultural differences
are taken into account (i.e., the key importance

2188

Developing Software in a Bicultural Context

of face-to-face relationships in Maori culture
stands to be lost in a computerized authentication
process wherein access to government services
could become more alien and inaccessible to
Maori users of services).

Key notions underpinning a governance-kai-
tiaki (guardianship) model to operate at program
and project levels are drawn from the Treaty of
Waitangi, the founding partnership document
between the two peoples, which include:

• Active participation and participation in
decision making;

• Active protection of Maori interests, rights
and taonga; and

• An ongoing right to development that is not
locked into an 1840 “time closet.” (Kamira,
2004, p. 35)

Thus, a general model of oversight is proposed
in order to operate at a program level when an
information-technology-based program of change
is to be implemented in a bicultural context.
While we believe that this is a sound approach
to an engagement model recognizing difference
and seeking partnership, we also believe that this
is a difficult model for the dominant partner to
adopt and to adhere to consistently.

While the SoDIS process specifically does not
operate at this governance level, it can act in support
of such structures by offering a mechanism for its
operationalization within a project. In some cases,
where a joint governance model has not been agreed
upon, the SoDIS process even may compensate for
its absence. For instance, the SoDIS process can act
in concert with several of the following key factors
indicated by Kamira (2004) for establishment of
governance-kaitiaki:

• Align with the treaty (by ensuring joint
participation in the analysis process);

• Encompass different cultural consider-
ations;

• Protect the sensitivity of information;
• Ensure that ultimate accountability be to the

intended beneficiaries of the project; and
• Cultivate trust and strong working relation-

ships.

professionalism and culture

Multicultural discussions often take a “silo”
approach to the description of diverse cultures,
emphasizing what makes them different at the
expense of complete accuracy. We have looked
at the question of colonization with this approach
in mind and have assumed that cultures are like
a series of silos, each isolated and distinct from
other cultures. Despite this presumption of dif-
ference, two such cultures, Maori and Western,
seemed to interact in the application of the SoDIS
inspection process to the development of a Maori
software application.

The SoDIS principles are designed for the
engagement of professionals in the development
of software across all cultures. The SoDIS is ap-
plied within the silo in order to help the system
developers to attend to the social and ethical risks
within that silo. The SoDIS could be used as a tool
in a paternalistic model of professionalism, where
the analyst uses it to impose his or her cultural
values on another; but the SoDIS was designed
with a fiduciary model of professionalism in mind
(Bayles, 1981). A fiduciary model of professional-
ism imposes high standards of development, but
the resulting software is developed in partnership
with the culture in which it works. Fiduciary
means trust, which must be won by both partners
in the endeavor.

The SoDIS provides a model for software in-
spection, and the values (i.e., acknowledging that
whakapapa is a stakeholder) are derived from the
perspective of the analyst(s) working with project
stakeholders in the inspection team. In the Maori
context, where models of group decision making
based upon oral modes of consensus discussion

 2189

Developing Software in a Bicultural Context

(hui) are common, it could be argued that the
SoDIS process needs to incorporate opportunities
for such group conversations, which is certainly
an area for adapting the SoDIS process and worth
exploring further.

cOncluSiOn

Although the SoDIS inspection identified some
risks unique to Maori and some more general
risks, it did not identify all of the risks. SoDIS, in
fact, is limited in that it is not designed to identify
risks arising from the interaction of multiple tasks.
The application of the SoDIS process, however,
has provided several interesting lessons. The ap-
plication of the SoDIS process did not colonize
the TRAION software project, so we can say the
following:

1. The use of a Western-based development
process need not colonize an indigenous
software project, even using several con-
cepts of colonize. The positive result is the
following:

2. The process was able to identify some Maori
unique issues. The features that facilitated
this positive result are as follows:
2a. The underlying premise of the SoDIS

is an analysis based on an expanded
set of stakeholders.

2b. The set of principles and questions
is expandable by the user and, thus,
does not mandate the ethics of the
analyst.

2c. The ethical questions are answered from
the analyst’s perspective and subject to
the analyst’s interpretation.

We believe that these lessons, gained in a
bicultural context-developing software with NZ
Maori, will be applicable to other indigenous
peoples, especially those who have a history of
colonization, such as Australian aboriginals, Native

Americans, Peruvian Indians, the Inuit peoples,
and so forth. In developing software for people
with such differing worldviews, the careful use of
software development impact statement (SoDIS)
inspections may ameliorate the worst forms of re-
colonization by Western values through software
and may enable the development of software in
respectful partnerships, applying techniques that
enable deep cultural differences to surface and
to be addressed specifically rather than being
accorded mere lip service.

referenceS

ACM. (n.d.). ACM code of ethics and professional
conduct (section 1.2). Retrieved from http://www.
acm.org/constitution/code.html

Avison, D., & Myers, M. (1995). Information
systems and anthropology: Aan anthropological
perspective on IT and organizational culture. In-
formation Technology and People, 8(3), 43-56.

Bayles, M. (1981). Professional ethics. Belmont,
CA: Wadsworth.

Bishop, R. (1996). Collaborative research sto-
ries; Whakawhanaunatanga. Palmerston North:
Dunmore Press.

Burn, J., & Loch, K. (2001). The societal impact
of the World Wide Web — Key challenges for the
21st century. Information Resources Management
Journal, 14(4), 4-14.

Clear, T., Charkova, R., Lin, A., & Lomax, T.
(2004). Nga Iwi o Ngapuhi membership system:
Relationship management and relational design.
NZ Journal of Applied Computing and IT, 8(1),
8-15.

Courts, D. O. (1999). Maori land court informa-
tion management team report — Access to and
archiving of Maori land court records after imag-
ing. Wellington: Maori Land Court.

2190

Developing Software in a Bicultural Context

Floridi, L. (1998). Does information have a moral
worth in itself? Retrieved July 2005, from http://
www.wolfson.ox.ac.uk/~floridi/cepe.htm

Gert, B. (1988). Morality. Oxford: Oxford Uni-
versity Press.

Gotterbarn, D. (1991). Computer ethics: Respon-
sibility regained, national forum. The Phi Kappa
Phi Journal, 71(3), 26-32.

Gotterbarn, D., Clear, T., & Kwan, C. (2004).
Managing software requirements risks with
software development impact statements. Paper
presented at the 17th Annual NACCQ Confer-
ence, Christchurch, New Zealand. Retrieved from
http://www.naccq.ac.nz/conference05/proceed-
ings_04/gotterbarn.pdf

Gotterbarn, D., Miller, K., & Rogerson, S. (1999).
Software engineering code of ethics. IEEE-Com-
puter, 30(10), 84-88.

Gotterbarn, D. & Rogerson, S. (2005). Responsible
risk analysis for software development: Creating
the software development impact statement. Com-
munications of the Association for Information
Systems, 15(Article 40).

Green, R. M. (1994). The ethical manager. Engle-
wood Cliffs, NJ: Macmillan Publishing.

Habermas, J. (1984). The theory of communica-
tive action: Reason and the rationalisation of
society, Vol. 1. (T. McCarthy, Trans.). Boston:
Beacon Press.

Hofstede, G. (1980). Culture’s consequences:
International differences in work related values.
Newbury Park, CA: Sage.

Jarvenpaa, S., & Leidner, D. (1998). Communi-
cation and trust in global virtual teams. Journal
of Computer Mediated Communication, 3(4).
Retrieved December 14, 2005, from http://jcmc.
indiana.edu/vol3/issue4/jarvenpaa.html

Kamira, R. (2004). Research of issues for Maori
relating to the online authentication project

— For state services commission (Commission
Report). Auckland: Paua Interface Ltd. For State
Services Commission. Retrieved December 10,
2004, from http://www.e.govt.nz/docs/tikanga-
200408/tikanga.pdf

King, M. (2003). The penguin history of New
Zealand. Auckland: Penguin Books.

Mitchell, R. K., Agle, B. R., & Wood, D. J. (1997).
Toward a theory of stakeholder identification and
salience: Defining the principle of who or what
really counts. Academy of Management Review,
22(4), 853-886.

Myers, M., & Young, L. (1997). Hidden agendas,
power and managerial assumptions in information
systems development. Information Technology
and People, 10(3), 224-240.

Rikys, P. (1980). The case for Maori representation
in regional planning. Te Maori, pp. 26-28.

Rogerson, S., & Gotterbarn, D. (1998). The ethics
of software project management. In G. Collste
(Ed.), Ethics and information technology. Delhi:
New Academic Publisher.

SDRF. (2005). SoDIS 4.0 prototype location.
Software Development Research Foundation.
Retrieved from http://www.sdresearch.org

Smith, A. (1997). Fishing with new nets; Maori
Internet information resources and implica-
tions of the Internet for indigenous peoples.
Retrieved April 2, 2003, from http://www.isoc.
org/isco/whatis/conferences/inet/97/proceed-
ings/E1/E1_1.htm

Solomon, M. (2000). IPR and IPRO: Intellectual
property rights and indigenous peoples rights
and obligations. Paper presented at the Global
Biodiversity Forum, Nairobi, Kenya. Retrieved
June 26, 2004, from http://www.inmotionmaga-
zine.com/ra01/ms2.html

T. P. K. (2001). Maori access to information tech-
nology. Wellington: Te Puni Kokiri - Ministry of

 2191

Developing Software in a Bicultural Context

Maori Development. Retrieved June 24, 2004,
from http://www.tpk.govt.nz

Tuhono. (2004). Tuhono helps Maori link to $bn
fisheries asset. Retrieved June 8, 2004, from
http://www.scoop.co.nz/mason/stories/PO0405/
S00122.htm

Walker, R. (1990). Ka whawhai tonu matou
— Struggle without end. Auckland: Penguin
Books.

Wenger, E. (1998). Communities of practice (1st
ed.). Cambridge: Cambridge University Press.

enDnOte

1 SoDIS is a registered trademark of the Soft-
ware Development Research Foundation
(SDRF).

2192

Developing Software in a Bicultural Context

AppenDix. text Of SODiS principle guiDAnce
WitH pArticulAr releVAnce tO mAOri

principles with particular maori relevance

CAUSE HARM TO
As a software project is undertaken, a central principle requires that the project and its

product cause no harm, either direct or indirect. Harm means injury or negative consequences,
such as undesirable loss of information, loss of property, property damage, or unwanted envi-
ronmental impacts. This principle prohibits use of computing technology in ways that result in
harm to users, the general public, employees, or employers. Harmful actions include intentional
destruction or modification of files and programs leading to serious loss of resources or unneces-
sary expenditure of human resources, such as the time and effort required to purge systems of
computer viruses. As the Association of Computing Machinery (ACM) puts it, “Well-intended
actions, including those that accomplish assigned duties, may lead to harm unexpectedly. In
such an event the responsible person or persons are obligated to undo or mitigate the negative
consequences as much as possible. One way to avoid unintentional harm is to carefully consider
potential impacts on all those affected by decisions made during design and implementation”
(ACM).

CAUSE Loss of Information, Loss of Property,
Property Damage, or Environmental Impacts

Software can harm property and the environment directly and indirectly. Examples might
include software that regulates chemicals or machine control software and financial systems.
The task should be evaluated in light of the current stakeholder’s interests.

INVOLVE the Design or Approval of Software that
Will Not Lower the Quality of Life

Software first should not harm and, if possible, should improve the quality of life. Each task
should be evaluated to determine the effect it will have on the quality of life of each relevant
stakeholder. Examples of diminished quality of life could include applications that cause repeti-
tive strain injuries, the inability of customers to return unwanted or damaged merchandise, or
software-controlled machinery that is excessively noisy.

FAIL to Take into Consideration the Needs of
Software tasks, projects, and products often are completed without considering the needs

of certain stakeholders. The omission of these considerations can lead to mediocre software,
disgruntled stakeholders, and, in the worst case, unacceptable products.

 2193

Developing Software in a Bicultural Context

DISCRIMINATE Against
Codified, systematic discrimination can damage entire demographic groups and, in the worst

cases, result in class-action litigation. Health insurance or life insurance eligibility software, for
example, inadvertently can discriminate against persons from certain economic backgrounds.
Single-language automated teller machines can prevent groups from getting access to their
accounts. Each task should be evaluated to determine whether its outcome might discriminate
against the current stakeholder.

VIOLATE the Privacy and Confidentiality of
Could the current task compromise the privacy or confidentiality of the current stakeholder?

If so, what steps must be taken to ensure that the stakeholder’s needs will be considered and
resolved?

ALLOW Unauthorized Access or Alteration to the Data
Could the current task compromise the information security of the current stakeholder?

If so, what steps must be taken to ensure that the stakeholder’s needs will be considered and
resolved?

This work was previously published in the International Journal of Technology and Human Interaction, edited by B. Stahl,
Volume 2, Issue 2, pp. 1-23, copyright 2006 by IGI Publishing (an imprint of IGI Global).

2194

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.24
Issues, Limitations, and

Opportunities in Cross-Cultural
Research on Collaborative
Software in Information

Systems
Dongsong Zhang

University of Maryland, Baltimore County, USA

Paul Benjamin Lowry
Brigham Young University, USA

ABStrAct

Globalization has led to the increasing use of
organizational teams comprising individuals with
diverse cultural backgrounds. Existing research
suggests that collaborative software may benefit
multicultural teams. However, most prior studies
are limited by their focus on U.S. and Western
cultures. We explore this issue by comprehensively
examining the literature on cultural effects on
collaborative software use. This article makes
several contributions by providing common
nomenclatures and theoretical perspectives that
are essential to promoting scientific progress in
this area. It focuses mainly on empirical col-

laborative software studies in which culture is a
key conceptual construct. We discuss underlying
cultural theories, research methodologies, and
findings of major collaborative software studies
on the impact of culture. This article provides
insights into various issues surrounding this
line of research and highlights future research
opportunities.

IntroductIon

Globalization has affected business by increasing
the competitiveness of the marketplace, restruc-
turing organizational boundaries, and creating

 2195

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

new challenges for managers who deal with mul-
tinational companies or international alliances.
Businesses often use multicultural collaborative
groups working in distributed environments to
cope with uncertainty, change, ambiguous prob-
lem definitions, and rapidly changing information
(e.g., Vick, 1998). Hence, a critical need exists
for managers “to develop a new repertoire of
skills and abilities to manage and/or work with
people whose cultures and value systems can be
significantly different from those at home” (Tung,
1995, p. 485).

Improving group processes and outcomes has
been one of the most highly investigated research
issues of the past two decades. The advance of
information technologies makes it possible for
distributed teams to be supported through col-
laborative technologies such as group support
systems (GSS) and computer-mediated commu-
nication (CMC), which are collectively known
as collaborative software (CSW). CSW refers to
computer systems that combine communication
and decision-support technologies to facilitate
the formulation and execution of various group
activities.

Culture is central to how people experience
their world, make sense of concepts, express
themselves, and make decisions. Information
technology is not “culturally neutral and may
come to symbolize a host of different values driven
by underlying assumptions and their meaning,
use, and consequences” (Leidner & Kayworth,
2006, p. 359). First, beliefs and values shared by
the members of a group affect group behavior in
a variety of ways that can either accelerate or re-
tard the implementation of technological changes
(Veiga, Floyd, & Dechant, 2001). For example,
many management and organization practices
developed in Western countries are viewed with
suspicion and often fail when introduced into other
cultures (Kim, Park, & Suzuki, 1990). Likewise,
when group tasks involve cross-cultural teams,
cultural conflicts can arise. Since CSW design

is typically based on Western cultural values,
adopting CSW successfully in another culture
may require both technical and social modifica-
tions (Watson, Ho, & Raman, 1994).

Second, the manner in which CSW may
change group behavior is likely dependent on
culture (Tan, Watson, Wei, Raman, & Kerola,
1993). Samarah, Paul, Mykytyn, and Seethara-
man (2003) find that cultural diversity has a
significant, positive moderating effect on group
agreement and perceived decision quality when
using CSW. To better understand how CSW can
be successfully applied to a variety of cultures,
researchers need to systematically compare the
effects of CSW across different cultures (Tan,
Watson, & Wei, 1995). Yet, only a small number
of existing studies have empirically and theoreti-
cally examined cultural effects.

To advance this knowledge, we review and
critique existing empirical research that specifi-
cally addresses cultural effects on CSW-supported
group decision making. This article is different
from recent literature reviews that focus on re-
lationships between information technology and
culture in general (Gallivan & Srite, 2005; Leidner
& Kayworth, 2006). We attempt to focus primarily
on empirical studies of multicultural, CSW-sup-
ported group work, which is critical for testing
and validating propositions and hypotheses, and
for developing theories about cultural influence in
collaborative groups. We hope that our attempts at
assimilation and analysis of existing studies will
stimulate further research along this line.

The scarcity of literature in this area makes
meta-analysis infeasible. For each specific re-
search question/issue, there are usually only two
to three studies. Most prior studies had very small
sample size (effect sizes are typically small).
Thus, our review and discussion are offered from
a descriptive and critical perspective that aims to
provide a roadmap for researchers. In addition,
we focus only on empirical studies that include:
(1) participants from different cultures, (2) the use

2196

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

of certain CSW in face-to-face and/or distributed
settings, and (3) culture as a key conceptual con-
struct. Our coverage includes papers published
before 2005 in journals and conference proceed-
ings in information systems (IS) and management
fields (see Table 1). During the search, we used a
variety of searching terms such as cross-culture
groups, culture and group collaboration, virtual
teams, and virtual community.

In the remainder of the article, we will discuss
underlying cultural theories, research methodolo-
gies, and findings of the studies we reviewed. We
will then provide insights into the limitations of
existing studies and highlight some directions
for future research.

culture AnD cOllABOrAtiVe
SOftWAre

In general, CSW has been proven useful in al-
leviating problems associated with intercultural
communication primarily by reducing many be-
haviors that might offend members of other
cultures (Gray & Olfman, 1989; Aiken, Martin,
Shirani, & Singleton, 1994). However, theories
relating to group and organizational behavior and
other disciplines are dependent on the culture
being studied. Because each culture has unique
beliefs, values, and norms, considerable differ-
ences may exist in how technologies are used
and diffused across cultures (De Vreede, Jones,
& Mgaya, 1999).

Journals

Academy of Management Journal
Academy of Management Review
Communications of the ACM
Decision Sciences
Decision Support Systems
Group Decision and Negotiation
Information and Management
Information Systems Research
Journal of Global Information Management
Journal of Management Information Systems
Management Science
MIS Quarterly
Small Group Research

Conferences

International Conference on Information Systems
(ICIS)
Hawaii International Conference on System Sci-
ences (HICSS)
Americas Conference on Information Systems
(AMCIS)

Digital Librar-
ies

ACM digital library
IEEE digital library

Table 1. Literature review coverage

 2197

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

Since the majority of CSW studies on group
performance have been conducted in the United
States and other countries with Western cultures,
culture is largely neglected or assumed to be ir-
relevant (Fjermestad & Hiltz, 1999). In an earlier
review of 230 CSW studies (Fjermestad & Hiltz,
1999), only nine were found that included culture
as either an independent variable or a moderator.
Few studies both advance theories involving culture
and employ empirical data to test assumptions and
hypotheses. Consequently, the benefits of CSW
identified mostly from research on Western cultures
may not be manifest in different cultures under the
same circumstances. For example, Kim et al. (1990)
report that some incentives used to motivate North
American workers can be counterproductive in
collectivistic cultures.

This article discusses CSW studies on cultural
influence from several perspectives (see Figure
1). Those studies primarily examine the following
independent variables: culture, task type, conflict
management style, and technology support. We
examine the effects of cultural differences on
group processes (including group participation
equity, production blocking, group polariza-
tion, status effects, and majority influence) and

outcomes (including group consensus, perceived
satisfaction, group productivity, and quality of
results). Culture can also be used as a moderator
while studying group process and final group
outcome (Samarah et al., 2003). We will discuss
the reviewed studies in terms of independent
variables (IVs), dependent variables (DVs), and
major findings and limitations.

independent Variables

Culture

Individuals are socially conditioned by their
culture (Zakour, 2004). Cultural differences in
different nations, religions, ethnic groups, and
societies are stable over time and often have ex-
isted for centuries. Kluckhohn (1962) states that
culture “consists of patterns, explicit and implicit,
of and for behavior acquired and transmitted by
symbols, constituting the distinctive achievement
of human groups, including their embodiments
in artifacts” (p. 73). Hofstede (1991) defines cul-
ture as the “collective programming of the mind
which distinguishes the members of one group or
category of people from another” (p. 5). Groeschl

Figure 1. An overview of independent and dependent variables used in CSW studies

2198

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

and Doherty (2000) assert that “culture consists
of several elements of which some are implicit
and others are explicit. Most often these elements
are explained by terms such as behavior, values,
norms, and basic assumptions” (p. 14). Based on
previous culture literature, we define culture as
a system of implicit and explicit beliefs, values,

norms, preferences, and behaviors that are stable
over time, are held in common by a group of people,
and that distinguish one group from others.

The majority of cultural theories we studied
focus on group value orientations such as value
dimensions of national culture or the competing
values framework at the organizational level

C
ul

tu
ra

l D
im

en
sio

n
D

efi
ni

tio
n

Ex
am

pl
es

Po
w

er
 D

is
ta

nc
e

Po
w

er
 d

is
ta

nc
e i

s t
he

 ex
te

nt
 to

 w
hi

ch

th
e

le
ss

 p
ow

er
fu

l m
em

be
rs

 o
f

in
st

i-
tu

tio
ns

 a
nd

 o
rg

an
iz

at
io

ns
 w

ith
in

 a

co
un

tr
y

ex
pe

ct
 an

d
ac

ce
pt

 th
at

 p
ow

er

is
 d

is
tr

ib
ut

ed
 u

ne
qu

al
ly

.

L
ow

: U
.S

. a
nd

 C
an

ad
a

H
ig

h:
 Ja

pa
n

an
d

Si
ng

ap
or

e

In
di

vi
du

al
is

m
 a

nd
 C

ol
-

le
ct

iv
ism

In
di

vi
du

al
is

m
 d

es
cr

ib
es

 c
ul

tu
re

s
in

w

hi
ch

 t
he

 t
ie

s
be

tw
ee

n
in

di
vi

du
al

s
ar

e
lo

os
e.

C
ol

le
ct

iv
is

m
 d

es
cr

ib
es

 c
ul

tu
re

s
in

w

hi
ch

 p
eo

pl
e

ar
e

in
te

gr
at

ed
 i

nt
o

st
ro

ng
, c

oh
es

iv
e

gr
ou

ps
 th

at
 p

ro
te

ct

in
di

vi
du

al
s

in
 e

xc
ha

ng
e

fo
r u

nq
ue

s-
tio

ni
ng

 lo
ya

lty
.

In
di

vi
du

al
is

tic
: U

.S
., A

us
tra

lia
, a

nd

G
re

at
 B

rit
ai

n

C
ol

le
ct

iv
is

ti
c:

 S
in

ga
po

re
,

H
on

g
K

on
g,

 a
nd

 M
ex

ic
o

M
as

cu
lin

ity
-F

em
in

in
ity

M
as

cu
lin

ity
 p

er
ta

in
s

to
 c

ul
tu

re
s

in

w
hi

ch
 so

ci
al

 g
en

de
r r

ol
es

 a
re

 c
le

ar
ly

di

st
in

ct
.

F
em

in
in

ity
 d

es
cr

ib
es

 c
ul

tu
re

s
in

w

hi
ch

 so
ci

al
 g

en
de

r r
ol

es
 o

ve
rla

p.

M
as

cu
lin

ity
:

Ja
pa

n,
 A

us
tr

ia
,

an
d

Ita
ly

Fe
m

in
in

ity
: S

w
ed

en
, N

or
w

ay
, a

nd

Th
e

N
et

he
rla

nd
s

U
nc

er
ta

in
ty

 A
vo

id
an

ce

(U
A

I)

U
nc

er
ta

in
ty

 a
vo

id
an

ce
 is

 th
e

ex
te

nt

to
 w

hi
ch

 th
e m

em
be

rs
 of

 a
cu

ltu
re

 fe
el

th

re
at

en
ed

 b
y

un
ce

rt
ai

n
or

 u
nk

no
w

n
sit

ua
tio

ns
.

L
ow

:
Si

ng
ap

or
e,

 J
am

ai
ca

,
an

d
D

en
m

ar
k

H
ig

h:
 G

re
ec

e,
 P

or
tu

ga
l,

an
d

Ja
pa

n

C
on

fu
ci

an
 D

yn
am

is
m

C
on

fu
ci

an
 d

yn
am

is
m

 d
en

ot
es

 t
he

tim

e o
rie

nt
at

io
n o

f a
 cu

ltu
re

, d
efi

ne
d a

s
a c

on
tin

uu
m

 w
ith

 lo
ng

-te
rm

 an
d s

ho
rt-

te
rm

 o
rie

nt
at

io
ns

 a
s i

ts
 tw

o
po

le
s.

L
on

g-
te

rm
: C

hi
na

 a
nd

 Ja
pa

n

Sh
or

t-
te

rm
: U

.S
. a

nd
 C

an
ad

a

Table 2. Hofstede’s cultural dimension model (Hofstede, 1991, p. 28)

 2199

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

(Leidner & Kayworth, 2006). Although many
culture theories have been developed (Triandis,
1972; Hofstede, 1984; Hall & Hall, 1990), most
CSW studies that focus on the impacts of culture
rely on Hofstede’s (1991) model of national culture,
which was developed based on a large body of
survey data about the values held by people in more
than 50 countries. The participants in Hofstede’s
study were employees in local subsidiaries of
IBM. His model defines five generalizable cul-
tural dimensions based on value orientations that
are considered important and are shared across
cultures: power distance, individualism and col-
lectivism, masculinity-femininity, uncertainty
avoidance (UAI), and Confucian dynamism. Table
2 summarizes these cultural dimensions.

There have been several debates about and
criticisms of Hofstede’s cultural model. For
example, the model is criticized on the grounds
that it is rather crude and simplistic, that a survey
may not be a suitable way of measuring cultural
differences, and that a study of the subsidiaries of
one company may not provide information about
entire national cultures (Walsham, 2002). Despite
these claims, Hofstede’s model has been widely

validated by theoretical and empirical evidence
(Usunier, 1998). Myers and Tan (2002) examined
36 studies on culture in the IS literature. Among
them, 24 used Hofstede’s dimensions. Although
Hofstede’s model has various limitations, the
general cultural constructs or dimensions appear
to be useful for explaining potential differences
in culture regarding the use of technology (Vogel,
Davison, & Shroff, 2001a). In our literature review,
almost every empirical study adopted some of the
cultural dimensions of Hofstede’s model.

All of the studies we reviewed involved at least
one culture other than U.S. culture, as summarized
in Appendix A. Figure 2 graphically depicts the
non-U.S. countries examined in those studies. As
shown, the majority of existing cultural research
on CSW involves Asian and European countries,
the U.S., and Australia. Only one study involves
Africa (De Vreede et al., 1999), and none focuses
on Central or South America. The lack of research
on Africa, South America, and Central America
may be attributable to the relatively rare adoption
and use of CSW in those regions due to economic,
political, and technological barriers.

Figure 2. Countries examined by existing studies

2200

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

So far, IS researchers have not developed
models or theories for the cultural effects on CSW-
supported group work. Some of the empirical
studies we surveyed failed entirely to base their
hypotheses on any previous cultural model (e.g.,
Aiken, Hwang, Magalhaes, & Jeanette, 1993;
Daily, Whatley, Ash, & Steiner, 1996; Daily &
Steiner, 1998).

Although Hofstede’s model is the dominant
cultural model used in existing IS studies, the
individualism-collectivism and power-distance
dimensions of his model have received more
attention in IS literature than have other dimen-
sions (Leidner & Kayworth, 2006). These two
dimensions delineate stark differences between
cultures and can be cleanly operationalized for
observations between cultures in a controlled set-
ting. Watson et al. (1994) assert that individualistic
groups are more likely to embrace the social struc-
tures of CSW because those structures conform
with their individualistic culture; collectivistic
groups are less likely to adopt CSW because
the social structures of CSW conflict with their
collectivistic nature. Triandis (1989) suggests
that researchers develop hypotheses concerning
the relationship between culture and social be-
havior based on the individualism-collectivism
dimension. Conversely, the cultural dimensions
of masculinity-femininity, UAI, and Confucian
dynamism in Hofstede’s cultural model have been
rarely adopted in cross-cultural CSW research
for various reasons. UAI, for example, can only
explain Western cultures because a cultural bias
toward “truth” is not as respected in Eastern
cultures (Hofstede, 1991). Although various cul-
tures examined in a study may differ in several
cultural dimensions, the dependent variable(s)
may be less influenced by one dimension than
another. For example, in a study that examines the
effect of majority influence in culturally hetero-
geneous and/or homogeneous groups, if student
subjects with equivalent status are used, then
the variance in the individualism-collectivism
dimension would have a much larger impact on

majority influence than would the difference in
power distance. Power distance should, of course,
be considered only when there is a hierarchical
or non-egalitarian structure among participants.
Therefore, while doing cross-culture research,
researchers should identify which cultural dimen-
sions would most likely play a role in the treatment
of the IT artifact.

Technology Support

Cultural studies on CSW often use technology
support as an IV, concentrating on how group
processes and outcomes differ with and without
CSW support (Ho, Raman, & Watson, 1989; Wat-
son et al., 1994; Daily et al., 1996; El-Shinnawy &
Vinze, 1997; Mejias, Vogel, & Shepherd, 1997b;
Daily & Steiner, 1998; Tan, Wei, Watson, Clap-
per, & McLean, 1998a; Quaddus & Tung, 2002;
Tung & Quaddus, 2002; Reinig & Mejias, 2003).
Those studies have mainly compared three work
modes: (1) traditional face-to-face groups without
CSW support; (2) face-to-face (FtF), synchronous
groups supported by CSW; and (3) distributed,
anonymous groups supported by CSW. To our
best knowledge, very few CSW studies have ex-
amined culture in distributed, asynchronous, and
CSW-supported groups, distributed and identified
groups, or distributed, culturally heterogeneous
groups, mainly because of the great technical
and logistic challenges in carrying out empirical
studies in those environments.

Different communication media provide
different levels of information cues (Daft &
Lengel, 1986), social pressure, and immediacy
of feedback (i.e., synchronous vs. asynchronous
communication). For example, in traditional face-
to-face communication, communication partners
see and hear each other and have to respond to
others immediately, while in a distributed set-
ting, communication partners will have fewer
cues but more time for preparing and rehearsing
their responses. In addition, direct confrontation
between group members which often occurs in

 2201

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

the face-to-face environment is reduced via the
use of CSW. Given previous research on the topic,
we argue that the cultural influence on group
process may vary according to different amounts
of social presence afforded by various types of
communication media.

Social presence is “the degree to which a me-
dium facilitates awareness of the other person and
interpersonal relationships during the interaction”
(Fulk, Schmitz, & Steinfield, 1990). Accord-
ing to social presence theory (Short, Williams,
& Christie, 1976; Miranda & Saunders, 2003),
face-to-face communication typically offers the
highest level of social presence, while CSW-sup-
ported communication is typically low in social
presence. In a study conducted by Zhang, Lowry,
Zhou, and Fu (2007), the impact of culture on
majority influence was manifested differently in
three various communication settings. Because
different communication work modes affect the
degree to which culture impacts communication,
work modes should be examined separately in
culture studies.

Several studies use the anonymity feature of
CSW as an IV to examine its effect in different

cultures (Atkinson & Pervan, 1998; Mejias et al.,
1997b). Anonymity works better in an individual-
istic culture than in a collectivistic culture, because
individualistic cultures encourage free exchange
of ideas, egalitarian decisions, and creativity
(El-Shinnawy & Vinze, 1997; Tung & Quaddus,
2002). Collectivists are accustomed to conforming
and restricting their ideas by following the group
majority or the group leader’s preferences—even
when using CSW. Thus, the use of the anonymity
feature may induce more conservative decision
making and reduce participation equity in a col-
lectivistic culture.

Task Type

Groups primarily exist to complete collaborative
tasks, and the choice of group tasks in collabora-
tion research is critical because it may account for
50% of total group performance (Poole, Seibold,
& McPhee, 1985).

Most CSW studies use McGrath’s task cir-
cumplex (1984). This topology proposes four
general types of processes: generating alterna-
tives, choosing alternatives, negotiating, and

Task Category Task Type Task Description Used in Previous Studies

Generate

Type 1:
Planning
tasks

Generating action-oriented plans
(e.g., problem-solving tasks)

None

Type 2: Cre-
ativity tasks

Generating ideas (e.g., brainstorming
tasks and idea generation)

(Aiken et al., 1993; Aiken, Kim,
Hwang, & Lu, 1995; Atkinson &
Pervan, 1998; Daily & Steiner, 1998;
Daily et al., 1996; De Vreede et al.,
1999; Mejias, Shepherd, Vogel, &
Lazaneo, 1997a; Mejias, Vogel, &
Shepherd, 1997b; Quaddus & Tung,
2002; Tung & Quaddus, 2002)

Table 3. McGrath’s task circumplex

continued on following page

2202

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

Task Category Task Type Task Description Used in Previous Studies

Choose

Type 3:
Intellective
tasks

Solving problems with a correct answer;
such tasks have a demonstrable right
answer, and the group task is to invent/
select/compute that correct answer

(Tan et al., 1998a; Vogel et al., 2001a,
2001b)

Type 4:
Decision-
making tasks
or preference
tasks

Dealing with tasks for which the pre-
ferred or agreed upon answer is the cor-
rect one; tasks for which a demonstrably
correct answer does not exist and for
which the group’s task is to select, by
some consensus, a preferred alternative
(e.g., tasks used in choice shift, and
polarization studies; mock juries)

(De Vreede et al., 1999; El-Shinnawy
& Vinze, 1997; Griffith, 1998; Ho,
Raman, & Watson, 1989; Morales,
Moriera, & Vogel, 1995; Quaddus &
Tung, 2002; Reinig & Mejias, 2003;
Souren, Priya, Imad, & Mykytyn,
2004; Tan et al., 1998a; Tan, Wei,
Watson, & Walczuch, 1998b; Tung
& Quaddus, 2002; Watson et al.,
1994)

Negotiate

Type 5: Cog-
nitive-con-
flict tasks

Resolving conf licts of viewpoint;
tasks where members of the group do
not just have different preferences but
have systematically different preference
structures (e.g., some jury tasks)

None

Type 6:
Mixed-mo-
tive tasks
(resolving
conflicts of
interest)

Resolving conflicts of motive-interest
(e.g., negotiation and bargaining tasks,
mixed-motive dilemma tasks)

None

Execute

Type 7: Con-
tests/battles/
competitive
tasks

Resolving conflicts of power; compet-
ing for victory (e.g., wars, winner-take-
all conflicts, competitive sports)

None

Type 8: Per-
formances/
psycho-mo-
tor tasks

Executing performance tasks; psycho-
motor tasks performed against objective
or absolute standards of excellence (e.g.,
many physical tasks)

None

Table 3. continued

executing, which are further divided into eight
types of tasks (see Table 3).

As shown in Table 3, creativity and preference
tasks are the most popular ones selected, followed

by intellectual tasks. The other five task types
have never been used in previous research. Among
the reviewed studies, four used task type as an
IV (Tan et al., 1998a, 1998b; Quaddus & Tung,

 2203

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

2002; Tung & Quaddus, 2002). The preliminary
findings suggest that group members with diverse
cultures behave differently while performing dif-
ferent tasks.

It is interesting to note that although tasks in
negotiate and execute categories are common in
real life, they have never been used in previous
studies. We speculate that because most partici-
pants in those studies were university students,
they lacked sufficient knowledge and experience
with such tasks. As a result, those types of tasks
may be inappropriate for university students, but
should be used in field studies.

Conflict Management Style

Conflict refers to situations in which group
members believe their needs cannot be mutually
satisfied, reconciled, or integrated. Conflict among
group members can emerge for various reasons,
including a group’s cultural composition (Reinig &
Mejias, 2003). Different ways of handling internal
group conflict are termed “conflict management
styles” (Souren et al., 2004). They include avoid-
ance, accommodation, competition, collaboration,
and compromise (Rahim, 1983).

Conflict management styles often vary by
culture. Hofstede’s dimensions of power distance,
individualism-collectivism, and UAI can help
explain how conflict is managed differently in
different cultures. First, in low-power-distance
cultures, people believe in the legitimate use
of power and equal rights; when making group
decisions, members’ views are more likely to be
judged according to their merits rather than by
the status of their contributors. In high-power-dis-
tance cultures, low-status individuals are usually
dependent on and respectful of high-status indi-
viduals; they are more likely to accept the views
of higher-status members. Therefore, we propose
that in cultures with higher power distance (e.g.,
Singapore, Japan, and China), conflicts between
low-status and high-status members in a group are
less likely to occur, and even if they do occur, they

will be more easily resolved than those between
members of low-power-distance cultures.

Second, members of individualistic cultures
are expected to look after themselves and their im-
mediate families; speaking one’s mind is a virtue;
self-actualization and individual achievements
are valued. Thus, individualists tend to resolve
conflict via open and direct communication. In
collectivistic groups, relationships prevail over
tasks. Such groups tend to employ indirect means
for conflict resolution since the maintenance of
harmony and the ability to forge consensus are
highly regarded. As a result, collectivists are more
inclined to reach consensus and resolve conflicts
by following majority views than are individualists
(Tan et al., 1998a; Zhang et al., 2007).

Third, low-UAI cultures are characterized by
people who are comfortable in ambiguous situa-
tions, and tolerant of dissent and deviance (Hofst-
ede, 2001; Tan et al., 1995). In high-UAI cultures,
people fear ambiguous situations; groups are more
likely to suppress deviant ideas and behavior and
to resist innovation. As a result, conflicts are more
easily resolved in high-UAI groups.

Some studies have shown how culture af-
fects conflict management styles. Samarah et
al. (2003) investigated whether the cultural
heterogeneity of a group influences the styles of
conflict management adopted by group members.
Their study used a fuzzy task (Campbell, 1988)
to examine the behavior of U.S. homogeneous,
Indian homogeneous, and U.S.-Indian culturally
heterogeneous groups. Results showed that group
heterogeneity, as well as the interaction between
collaborative conflict management style and cul-
tural diversity, had positive moderating effects
on perceived decision quality and the degree of
group management. Another study (Souren et
al., 2004) used conflict management style as an
IV to examine its effect on group performance
using homogeneous and heterogeneous groups
consisting of U.S. and Indian members. The study
found that the culturally heterogeneous groups
had a lower level of collaborative conflict man-

2204

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

agement style than did homogeneous groups. In
addition, the collaborative conflict management
style positively influenced user satisfaction with
the decision-making process, perceived decision
quality, and perceived participation.

Dependent Variables

We discuss DVs in two categories: (1) group
process variables that assess group process gains
or losses, and (2) group outcome variables that
evaluate the final results of group interaction.

Process: Group Participation Equity

Group participation equity is defined as equal and
effective group participation (Steiner, 1972). Barri-
ers to group participation equity often result from
cultural and social norms (Steiner, 1972; Hofstede,
1984; Robichaux & Cooper, 1998). Because CSW
encourages participation through anonymity and
simultaneity, participation equality is often greater
in groups supported by CSW than those without
support (Reinig & Mejias, 2003).

Mejias et al. (1997b) compared group produc-
tivity levels and perceived participation equity in
U.S. (individualistic) and Mexican (collectivistic)
groups. U.S. groups generated more comments per
participant and more unique ideas per group than
their Mexican counterparts, even when partici-
pants were not anonymous; U.S. groups reported
no differences in perceived participation equity
between CSW and face-to-face groups, whereas
Mexican CSW groups reported higher perceived
participation equity than Mexican face-to-face,
non-software-supported groups did; Mexican
CSW groups also perceived higher levels of
participation equity than their U.S. counterparts
did. One possible explanation for these results is
that CSW might encourage equal participation
by reducing the dominance of some members,
particularly in collectivistic groups.

Researchers also compare the perceived levels
of equal participation between U.S. (individual-

istic) groups and Asian (collectivistic) groups.
In Ho et al. (1989), the use of CSW led to more
equal member influence in both U.S. groups and
Singaporean groups. The anonymity feature of
a group decision support system allowed domi-
nant members in Singaporean groups to openly
express negative opinions about other group
members’ contributions, a behavior that would
otherwise be culturally unacceptable. Reinig
and Mejias (2003) reported that participants
from both the United States and Hong Kong sup-
ported by CSW perceived less dominance than
did traditional face-to-face participants. Hong
Kong participants reported less dominance in
both face-to-face and CSW treatments than U.S.
participants reported.

These findings conform to the view that the
use of CSW, by alleviating status effect and avoid-
ing direct confrontation, should encourage equal
participation and reduce individual dominance. In
the American culture, openness and directness in
communication are often considered a virtue. In
contrast, people from Singapore or Hong Kong
(who are of high power distance and low individu-
alism) tend to be modest and nonconfrontational
with others through direct, open communication.
On the one hand, the use of CSW can encourage
participation particularly from those low-status
group members from cultures with high power
distance and low individualism. On the other
hand, high-status members in such cultures may
be unhappy because they feel they lose the power
and influence over other group members because
of CSW, which poses challenges to their authority
and changes traditional social norms. As a result,
those high-status members may be uncomfortable
with or even resist the adoption and use of CSW
in support of group tasks.

Process: Production Blocking

Production blocking refers to productivity loss in
brainstorming groups when group members must
take turns to express their ideas. This interferes

 2205

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

with idea generation in two possible ways. First,
it disrupts the generation of ideas when delays are
relatively long. Second, it reduces the flexibility
of idea generation when delays are unpredictable.
Because CSW enables parallel input from group
members, it can significantly reduce production
blocking that is common in face-to-face groups
without CSW support.

Three studies have explicitly used produc-
tion blocking as a DV, either examining whether
the use of CSW reduces production blocking or
comparing levels of production blocking between
Asian and U.S. groups (Aiken et al., 1993, 1995;
Reinig & Mejias, 2003). They all found that CSW
reduced production blocking in both U.S. and
Asian groups. Non-Western participants sup-
ported by CSW often experience significantly
more production blocking than Western users
of CSW did (Chung & Adams, 1997; Reinig &
Mejias, 2003). This is likely because collectivism
influences CSW users to contribute in a slower,
more reserved manner. For example, in the study
conducted by Reinig and Mejias (2003), the U.S.
and Hong Kong participants were asked to assume
the role of members of a “Community Resource
Allocation Task Force” and rank nine projects
that would be most deserving of money donated
by local corporations. The perceived production
blocking was measured by three survey questions.
GSS participants from both the U.S. and Hong
Kong reported less production blocking than those
in non-GSS groups reported, indicating that the
features of anonymity and parallel communica-
tion were successful in reducing process losses. In
addition, Hong Kong participants reported more
production blocking across both face-to-face and
GSS treatments than did U.S. participants, which
might be attributable to their cultural difference
as collectivists—Hong Kong participants had a
higher tendency to be modest and listen to others
first, causing delays in expressing their ideas and
increasing production blocking.

Process: Group Polarization

Group polarization is the tendency of individu-
als in a group to engage in more extreme deci-
sions than their original individual inclinations
(Moscovici & Zavalloni, 1969). CSW may alter
group polarization because it allows people to
participate in group discussion with reduced social
presence in comparison to face-to-face verbal
communication. To date, only one study has ex-
amined the impact of technology and culture on
group polarization (El-Shinnawy & Vinze, 1997).
That study used persuasive arguments theory
(PAT) (Pruitt, 1971) to study group behavior in
a CMC setting and in a face-to-face, non-CMC
setting that included two cultures—the U.S. and
Singaporean. The power-distance and individual-
ism-collectivism dimensions of Hofstede’s model
were used as the theoretical basis. It was found
that Singaporean groups polarized in a riskier
direction, whereas U.S. groups polarized in a
more cautious direction.

Process: Status Effects

Status effects occur when high-status members
negatively dominate or marginalize the contri-
butions of low-status members (Berger, Fisek,
Norman, & Zelditch, 1977). Cultures that em-
phasize the status or power differences among
members can increase evaluation apprehension
and conformance pressure. Cultural norms dictate
that critical remarks should be avoided in order
to steer clear of conflict (Robichaux & Cooper,
1998). In high-power-distance cultures, status
differences among individuals are prominent;
individuals with higher status are powerful and
exude excessive influence during group com-
munication; people strive to maintain harmony;
and relationship concerns tend to prevail over
task concerns (Earley, 1994). Therefore, status
influence is likely to be strong in high-power-
distance cultures. In low-power-distance cultures,

2206

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

status differences among individuals are less
significant and people believe in equal rights, and
high-status individuals do not exercise excessive
influence during group communication. Hence,
status influence is likely weak.

Only one cultural study on CSW has exam-
ined status effects (Tan et al., 1998b). That study
indicated that the power-distance and individual-
ism-collectivism dimensions of Hofstede’s model
were relevant to status effects. It examined status
influence, sustained influence, and perceived
influence. Status influence is the extent to which
low-status individuals defer to the opinions of
high-status individuals during group communica-
tion. Sustained influence is the amount of status
influence remaining after group communication
when high-status individuals are no longer pres-
ent. Perceived influence is the amount of status
influence that low-status individuals perceive
during group communication. The study used
Singaporean and U.S. groups and two different
tasks (intellective vs. preference tasks). Results
showed that the task type and communication
medium (face-to-face verbal communication vs.
CMC) had significant main effect on both status
influence and perceived influence, whereas na-
tional culture had nearly significant main effect.
National culture, task type, and communication
medium had significant effects on sustained in-
fluence. Status influence and sustained influence
were higher in preference task groups than in
intellectual task groups. CMC was able to reduce
status effects in both U.S. and Singaporean CSW
groups.

Process: Majority Influence

Majority influence is the attempt by a majority
of members in a group to impose their common
position upon group dissenters during a deci-
sion-making process (Levine & Russo, 1987).
Individualism-collectivism in Hofstede’s model
is a pertinent factor to be considered in cultural

research on CSW and majority influence. In in-
dividualistic cultures, when people disagree with
a majority position, they are likely to contradict
it. In collectivistic cultures, people are integrated
into strongly cohesive groups and base their self-
understanding on the reactions of others. When
CSW replaces verbal and visual communication,
group majorities may exercise less normative
influence on minorities (Ridgeway, Berger, &
Smith, 1985). Several empirical studies conducted
in North America have examined the effects of
CSW on majority influence (e.g., Zigurs, Poole,
& DeSanctis, 1988; Connolly, Jessup, & Valacich,
1990; Jessup, Connolly, & Galegher, 1990; Clap-
per, McLean, & Watson, 1991; Gallupe, Bastia-
nutti, & Cooper, 1991). Some argue that minority
members are more likely to oppose a majority
viewpoint when they use CSW, especially when
working anonymously (Dennis, Hilmer, & Taylor,
1998). One possible explanation, according to the
Media Richness Theory (MRT) (Daft & Lengel,
1986), is that CSW is a lean medium that results in
lower levels of social presence and conformance
pressure than experienced in traditional face-to-
face communication.

One study investigated majority influence in
U.S. groups vs. Singaporean groups using two
different tasks in three different communication
settings (Tan et al., 1998a). The results showed
that the impact of CMC on majority influence
was contingent upon national culture. In the
U.S. groups, participants challenged the major-
ity position in the CMC settings more often than
they did in the face-to-face, unsupported setting.
In Singaporean groups, participants using CMC
were less willing to challenge the majority posi-
tion, and majority influence remained unchanged
when CMC replaced verbal and visual commu-
nication—indicating that CMC may not be able
to reduce conformance intention of collectivistic
members. The results also showed that the impact
of CMC on majority influence was not moderated
by the type of group task.

 2207

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

Outcome: Consensus

Consensus refers to the achievement of group
solidarity in decision making. Collectivistic
cultures are more oriented toward consensus and
less tolerant of conflict and discord (Triandis et
al., 1994) than individualistic cultures are, which
embrace open conflicts.

Research results vary as to the relationship
between CSW use and different levels of group
consensus in various cultures. In Reinig and
Mejias (2003), Hong Kong CSW groups had
significantly higher levels of initial consensus
than their U.S. counterparts; however, U.S. CSW
groups achieved greater change in consensus than
Hong Kong groups did. Watson et al. (1994) also
reported that Singaporean groups supported by
CSW had significantly higher pre-meeting consen-
sus than their U.S. counterparts, but they reported
no difference in levels of post-meeting consensus.
Mejias et al. (1997b) found that Mexican CSW
groups generated higher levels of consensus than
U.S. groups did, although no difference existed
between Mexican and U.S. CSW groups in the
change of consensus levels. Overall, results indi-
cate that collectivistic groups may favor a more
defined approach to convergence and agreement
in comparison to U.S. groups. Individualists
may be more adept at accommodating divergent
viewpoints than collectivists are.

Outcome: Group Productivity

CSW can increase group productivity in terms
of time spent (Dennis, 1994), idea production
(Gallupe, DeSanctis, & Dickson, 1988), and
document length (Lowry & Nunamaker, 2003).
A few cultural studies on CSW have investigated
group productivity in terms of idea generation and
reported mixed results. In Atkinson and Pervan
(1998), participants from high-power-distance
cultures who used the anonymity feature of CSW
derived a higher level of productivity than those
from low-power-distance cultures (i.e., Malaysia

> Indonesia > Singapore > Australia). Conversely,
Mejias et al. (1997b) compared group productiv-
ity levels between U.S. and Mexican groups and
found that culture had a significant impact on
group productivity. U.S. groups and Mexican
groups supported by CSW (both anonymous
and identified) generated more comments per
participant than did face-to-face groups without
CSW. Regardless of CSW, U.S. groups generated
more comments on average per individual than
Mexican groups did; U.S. groups also produced
more unique ideas per group than Mexican groups
did in face-to-face settings without CSW and in
identified settings supported by CSW. Another
study (Quaddus & Tung, 2002) supported these
results, with Australian groups (low power dis-
tance) having higher productivity than Singapor-
ean groups (high power distance).

Daily et al. (1996, 1998) compared the pro-
ductivity of culturally homogeneous and cultur-
ally heterogeneous groups. Among groups using
CSW, culturally heterogeneous groups produced a
significantly higher number of unique ideas than
culturally homogeneous groups did. A possible
explanation for this finding is that CSW may aid
in conflict management and diffuse intergroup
conflict in culturally diverse groups, thus increas-
ing productivity. According to Triandis, Hall, and
Ewen (1965), when a culturally heterogeneous
group employs a process to reduce stress and com-
munication problems, it becomes more creative
than a homogeneous group.

Outcome: Quality of Group Outcome

CSW can increase the quality of group outcome
by providing group members with equal op-
portunities to contribute instantaneously and
anonymously (George, Easton, Nunamaker, &
Northcraft, 1990). Three cultural studies in-
vestigated the effects of CSW on the decision
quality but reported contrasting findings. Daily
et al. (1996) found no significant differences in
the quality of solutions produced by culturally

2208

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

homogenous and culturally heterogeneous groups
supported by CSW; Samarah et al. (2003) and
Souren et al. (2004), however, reported that the
interaction of collaborative conflict management
style and cultural diversity of groups supported
by CSW had a significant effect on perceived
decision quality.

Outcome: Satisfaction

User satisfaction reflects perceived individual
goal attainment, as well as perceived future gains
(Briggs, De Vreede, & Reinig, 2003). Results of
traditional CSW studies on user-perceived sat-
isfaction are mixed, with some showing higher
satisfaction (George et al., 1990) and others lower
(Gallupe et al., 1988). Because cultures may differ
in the nature of individual goals, results of user
satisfaction in previous studies are also mixed.
Some studies find that Western users of CSW have
higher levels of satisfaction than non-Western
users (Reinig & Mejias, 2003). Yet more studies
report that CSW evokes feelings of comfort and
satisfaction among participants from non-Western
cultures (Morales et al., 1995; Mejias et al., 1997b;
De Vreede et al., 1999). For example, Mejias et al.
(1997b) reported that Mexican groups supported
by CSW perceived higher levels of satisfaction
than their U.S. counterparts did. This difference
might be caused by the interactive effect between
the culture factor and experimental treatment
factors.

The findings discussed above suggest that some
national cultures may be susceptible to different
types of group dysfunctions than others and that
CSW may be used to neutralize those negative
influences.

culture as a moderator

Although the majority of previous studies consid-
ered culture as an independent variable, culture
may also be a moderator of other factors (Tan et al.,
1998a; Samarah et al., 2003). For example, the ef-

fect of communication media may be moderated by
culture (Tan et al., 1998a). Thus, if we assume that
collectivistic cultures value relationship building
and openness, and that distributed communication
tends to decrease satisfaction in general groups,
then it is possible that the degree of collectivism
would moderate satisfaction in distributed groups.
Other moderation relationships are possible and
remain largely unexplored.

DiScuSSiOn: limitAtiOnS,
extenSiOnS, AnD neW
OppOrtunitieS

In the previous section, we reviewed the existing
literature and analyzed various issues regarding
cultural differences and their impact in group
settings supported by CSW. This section seeks
to highlight major limitations of current research
and provides some insights into future research
opportunities and methods.

Existing research has barely begun to address
fundamental research questions. More empirical
research needs to be conducted to fully examine
whether and how the effective use of CSW is
contingent upon cultural norms. Since culture is
a prominent factor in general IT adoption (Hasan
& Ditsa, 1999), it also likely affects the adoption
and use of CSW. Research suggests that groups
are more likely to adopt a technology if their
own values match or fit the values embedded
within the technology or those associated with its
development (Leidner & Kayworth, 2006). One
might thus assume that the use of CSW would be
more suitable in a collectivistic culture than in an
individualistic culture, but this is not necessarily
true (Davison, 1996). In collectivistic cultures,
the use of CSW that incorporates anonymous
communication may have dysfunctional effects
(Watson et al., 1994). Further, in collectivistic
cultures in which public dissent is discouraged
and early consensus is encouraged, members have
a social obligation to conform to rules that place

 2209

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

national or group interests higher than individual
interests. Although the structure and anonymity of
CSW can facilitate expression of conflict in North
American groups, they may not help collectivistic
groups because CSW forces group members to
be direct and open. This feature is undesirable
in collectivistic cultures in which people prefer
to express disagreement indirectly in order to
preserve group harmony. Therefore, the degree
of fit between a group’s social values/norms and
the values embedded in the CSW is an important
construct for studying the relationship between
cultural values and the adoption of CSW.

To guide future empirical research, we high-
light seven major limitations identified in existing
research and discuss potential future research
opportunities.

failing to pass the “Absurdity test”

Related literature clearly shows that culture mat-
ters but does not fully and consistently explain
and predict why culture matters. Some authors
simply note the observed differences among
subjects from different countries and label them
as “cultural differences,” without linking those
differences to specific cultural beliefs or values
and/or without having any cultural theory as a
theoretical foundation (Gallivan & Srite, 2005).
Failing to answer “why” may be the greatest
limitation of existing research and the greatest
opportunity for future research.

The strongest theoretical argument against
existing research is that it appears to fail the “ab-
surdity test” for developing a theory. In positivist
and postpositivist inquiry, the aim of the empirical
researchers is to study effects rather than causes
of effects. To develop theories, researchers should
check for logical absurdity by examining whether
an increase or decrease in a cause logically re-
sults in some kind of corresponding increase or
decrease in the phenomenon of interest (i.e., effect)
(Briggs & Dean, 2005). This simple test checks

whether IVs are expressed in a manner that logi-
cally gives the possibility to the rise of DVs. For
example, “more culture” does not logically lead to
“more satisfaction” because culture is a construct
too abstract to give logical rise to satisfaction.
Conversely, a “higher degree of collectivism”
could logically lead to more satisfaction. Hence,
researchers can benefit from being clearer in
defining the phenomenon of interest they are
studying. To do so, researchers should develop
generalizable theories and research models to
explain and predict the chosen phenomenon and
define constructs that operationalize logically to
pass the absurdity test.

In order to understand the “why” behind
relationships between variables, researchers in
the field of computer-supported multicultural
collaboration need to more concretely define the
phenomenon of interest. There are two major
theoretical weaknesses in some existing research.
First, rather than focusing on one or two major
phenomena of interest, several studies examine
a cocktail of outcomes. The problem with the
cocktail approach to theoretical outcomes is that
it tends to place theoretical explanations and pre-
dictions on shaky theoretical grounds by making
empirical studies look more like “fishing expedi-
tions” for statistical significance. The cocktail
approach leads to at least one violation of the
absurdity test as researchers essentially propose
something like: “More CSW use in cross-cultural
groups leads to more productivity, more outcome
satisfaction, more process satisfaction, more ef-
ficiency, and more quality of decision.” Although
this approach allows researchers to operationalize
and hypothesize specific measures, it is theoreti-
cally flawed because each phenomenon of interest
should have a theoretically sound explanation and
prediction as to what causes it. Deep theoretical
investigations into common phenomena such as
productivity, satisfaction, and quality demonstrate
that entirely different mechanisms typically ex-
ist for explaining and predicting their existence.

2210

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

Thus, mixing disparate effects often creates
theoretical hodgepodge. We need to develop good
theories that can succinctly explain and predict
the phenomenon of interest affected by culture
in collaboration environments.

Second, although CSW is an appropriate op-
erationalization of a particular technology to be
used as an IV, a specific technology should not be
used as a construct in a theoretical proposition.
Accordingly, researchers need to break down
specific theoretical constructs of CSW that give
rise to the improvement of a group’s results; oth-
erwise, the developed theories will be technology
dependent and not generalizable. For example,
social presence is an underlying construct that
has been proposed as a theoretical explanation for
superior or inferior technological outcomes. Social
presence is constant and potentially generalizable
in effects, regardless of specific technologies that
will come and go. Given appropriate theoretical
explanations and predictions, a study could pass
the absurdity test by following a proposition pat-
tern such as: “A higher level of social presence
leads to higher satisfaction with group outcome.”
An IV can then be operationalized for specific
CSW, such as various versions of GSS or CMC
products. Defining the phenomenon of interest
and using a generalizable framework will help
build the body of knowledge that supports the
“why” behind culture, collaboration, and tech-
nology support.

Our theoretical criticisms highlight many
promising opportunities in this line of research.
First, researchers need to clearly demonstrate
that certain constructs, which are known to in-
stantiate differently across cultures, can give rise
to differences in certain outcomes that may be
important. For example, people are motivated by
status attainment in most cultures, but the means
of attaining and symbolizing status may differ
by culture. Hence, researchers should develop
clear taxonomies, conduct studies on particular
constructs that are known to manifest themselves

differently across cultures, and explain why. For
instance, we intuitively know that software devel-
opers who are Hispanic Baptists living in Texas
are culturally different from those in India who
are Hindu. Those differences can create strong
team management challenges for a global soft-
ware engineering firm. Yet it is atheoretical and
not generalizable to create a pseudo-theoretical
proposition such as: “Baptists behave in a certain
way, whereas Hindus behave in another way.”

Singular focus on national culture

The logic that “Americans will behave in a
certain way while citizens of another country
X will behave in another way” is the dominant
paradigm in prior research. Straub, Loch, Evaristo,
Karahanna, and Srite (2002) and Myers and Tan
(2002) highlight and criticize the focus of previ-
ous research that leans on nationalistic definitions
of culture. They assert that with globalization,
culture aligns itself less with the definition of a
nation-state because many countries are melting
pots of various cultures. In addition, culture may
not be static. It becomes increasingly difficult for
any cultural group to remain isolated and unin-
fluenced by other cultures. Over time, societies
may experience attitude changes towards gender,
environment, race, family life, and religion,
although these changes would rarely happen as
fast as technological changes. Thus, defining a
culture by nation may be too simplistic. These
critics also argue that in empirical research that
involves culture, researchers should identify in-
dividualistic or collectivistic individuals rather
than preassigning participants to categories based
solely on the country in which they live.

Cultures are generally stable in the short term,
but cultural change may occur because of immi-
gration, the influence of global media, and other
social and technological innovations (Gallivan &
Srite, 2005). We agree that researchers may adopt
a more dynamic view of culture―one that sees

 2211

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

culture as contested, temporal, and emergent. For
example, most prior studies simply followed the
findings reported in Hofstede’s study to justify
their cultural categorizations, without further
examination of the cultural differences among
participants in the experiments. Watson et al.
(1994) and Tan et al. (1998) assumed, based on
Hofstede’s original study, that the subjects re-
cruited in Singapore were collectivists. We suggest
that when a researcher uses national culture as an
IV manipulation, it is important to validate the
cultural characteristics of recruited participants
to ensure that expected cultural differences exist.
There should be a manipulation check of partici-
pants’ cultural characteristics.

Another challenge in IS-culture research is
the assumption that all individuals from a spe-
cific national culture will behave consistently
based on the group’s cultural values. This does
not take into account the possibility of individual
differences that may lead to different behavioral
outcomes (Leidner & Kayworth, 2006). This
indicates that researchers may need to consider
individual differences (e.g., disposition) as a factor
when studying the impacts of culture on group
processes and outcomes.

limited Sampling

Because of difficulty in recruiting participants
with different cultural backgrounds, many studies
have problems of small sample size. It is common
in previous studies to have less than six groups
in each experimental condition (e.g., Aiken et
al., 1993, 1995; Daily et al., 1996; Walther, 1997;
Atkinson & Pervan, 1998; Daily & Steiner, 1998;
Quaddus & Tung, 2002; Souren et al., 2004).
Such small sample size, though understandable
given the challenging nature of conducting this
type of research, may significantly weaken the
validity and generalizability of findings. Small
sample size is also the likely cause of some of
the mixed findings.

lack of research on group
Heterogeneity

With globalization, more tasks are being accom-
plished by distributed teams consisting of mem-
bers from varied cultural backgrounds, making
it imperative to examine such groups. Thus, one
area in need of expanded research is culture’s
influence on distributed, culturally diverse teams.
More research needs to be conducted to examine
how diverse team member values complement
or contradict each other (Leidner & Kayworth,
2006). Specifically, it would be useful to investi-
gate how group processes and outcomes can be
improved in both culturally homogeneous and
heterogeneous groups supported by CSW within a
broader context of diversity management. Debate
exists over whether cultural diversity improves or
suppresses group performance (Anderson & Hiltz,
2001). Very few empirical studies have examined
how to improve the dynamics associated with
a culturally diverse workforce. In such groups,
cultural diversity may cause difficulties in reach-
ing an agreement; as a result, group harmony and
cohesion might suffer, resulting in psychological
pressures such as discomfort and weak feelings
of belonging to the group (Samarah et al., 2003).
These considerations become more complicated
when considering diversity management in a
broader sphere that includes nationality, expatri-
atism, race, ethnicity, gender, and religion.

Several research issues related to culturally
heterogeneous groups are worth investigating in
future research. One is the potential difference in
the level of status effect and majority influence
(two of the most common phenomena in group
work) on group members from different cultures,
which can be reflected by their behavior during a
group task. For example, according to the power-
distance dimension of Hofstede’s model, it can
be assumed that in a culture with high power
distance, low-status group members may easily
follow the opinions of high-status members, even

2212

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

though they disagree. However, in a culture with
low power distance, when there is a disagreement
between low- and high-status group members,
low-status members are less likely to accept the
views of higher-status members if they disagree
with them. Will this truly happen? Furthermore,
would group members from different cultures
behave differently under status effect and ma-
jority influence in face-to-face and distributed
communication environments? Will the use of
CSW reduce (or increase) such influences? Will
the individualistic members dominate in a group
task? How can managers encourage equal par-
ticipation in culturally heterogeneous groups?
These are all practical and interesting questions
to be answered.

Language barriers could significantly pre-
vent team members who speak different native
languages from communicating with each other
effectively. The inferior capability for commu-
nication due to language problems could lead
to misunderstandings and less participation.
Therefore, selecting appropriate participants for
cross-cultural studies that examine culturally
heterogeneous groups is crucial. Researchers
must ensure that all team members in a cultur-
ally heterogeneous group can communicate via
a common language (e.g., English) well enough.
Some studies, for example, have used foreign
students who are currently studying in the U.S.
and can communicate in English well enough to
form culturally heterogeneous groups with U.S.
students (Setlock, Fussell, & Neuwirth, 2004).
However, researchers should be cautious and
perform manipulation checks on participants’
cultural dimensions to make sure that the cultural
norms of participants from foreign countries have
not dramatically changed.

too much focus on face-to-face
groups

Although work mode is one of the major IVs in
previous research, participants in most studies

worked only in face-to-face mode. Future stud-
ies should extend to other work modes such as
distributed and asynchronous working environ-
ments. According to social presence theory, a
communication medium (e.g., FtF communica-
tion) that provides more social cues will generate
a higher level of social presence, thus leading to
stronger social pressure and normative influence
on individual group members. Such social pres-
sure may have more impact on group members
from cultures characterized by high power dis-
tance and low individualism than on those from
a culture characterized by low power distance
and high individualism (Zhang et al., 2007). By
contrast, distributed communication supported
by CSW offers fewer social cues. As a result,
the corresponding social pressure and normative
influence on group members are reduced, leading
to potentially different behavior of group members
when compared to the FtF work mode. We argue
that findings in the FtF environment may not be
applicable to a distributed environment. So far,
only a few studies examined the effects of culture
in distributed groups (Montoya-Weiss, Massey, &
Song, 2001; Vogel et al., 2001a, 2001b; Walther,
1997). However, the findings about distributed
work in general may provide some theoretical
and empirical foundation for theory develop-
ment and experimental design for research that
explores the relationship between culture and
distributed work.

FtF and distributed communication may be
confounded by task type. Media Richness Theory
(Daft & Lengel, 1986) suggests that managers
can improve performance by matching media
characteristics to the needs of organizational in-
formation-processing tasks, which are categorized
based on uncertainty and equivocation. When
ambiguity and uncertainty in tasks are high (or
low), high-richness (or low-richness) media should
be used. Thus, an important element of study-
ing culture is examining various work modes
with different levels of media richness and the
confounding effect of task type. Watson et al.

 2213

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

(1994) suggest that FtF, anonymous meetings are
suitable for individualists, while asynchronous
and distributed meetings may be more suitable
for collectivists. All hypotheses of existing re-
search focus on synchronous communication,
which may put time and emotional pressure on
participants. It would thus be useful to conduct
studies using distributed, asynchronous groups
and to examine whether collectivistic group mem-
bers behave differently when there is less social
and time pressure, in contrast to their behavior
in FtF, synchronous communication. In such a
group, the social and time pressure is probably
minimal among all communication media. That
being said, studying distributed, asynchronous
groups will pose many challenges to the design
and execution of the research.

Singular focus on Small groups

Almost all studies we reviewed used only small
groups (i.e., consisting of three to five members),
yet it is well recognized that group size affects
group outcomes and the degree of conflict within
a group’s structure (Steiner, 1972; Valacich,
Wheeler, Mennecke, & Wachter, 1995). Small
groups are more likely to resolve opinion differ-
ences, whereas in larger groups consensus is more
difficult to achieve (Hare, 1981). In traditional FtF
groups without CSW support, increasing group
size can significantly increase process losses
(Bouchard & Hare, 1970; Steiner, 1972). CSW has
been shown to be effective in support of larger
groups (e.g., Gallupe et al., 1992; Dennis, 1994;
Valacich et al., 1995). Future research needs to
examine cultural effects in groups of different
group sizes and to determine whether the group
size has a moderating or mediating effect on
cultural influence.

lack of realism

All of the reviewed previous studies except Mo-
rales et al. (1995), De Vreede et al. (1999), and

Calhoun, Teng, and Cheon (2002) used students
working on hypothetical tasks as opposed to
organizational members engaging in real-world
tasks. There are a few potential problems in em-
ploying lab experiments using student subjects.
First, students may not be representative of their
culture. Second, some culture values examined,
such as power distance, are unlikely to be reflected
by participants with equal status. Although the
relative homogeneity of student participants
prevents a source of uncontrolled variance, their
motivation to maximize the quality of group tasks
is sometimes questionable. Also, an interaction
might exist between types of participants and
the effectiveness of technology (Fjermestad &
Hiltz, 1999). Likewise, most research is con-
ducted on groups that have no working history.
Existing relationships between group members
established prior to carrying out group tasks set
conditions for a group’s interaction (McGrath,
1984; Watson et al., 1994). Future studies should
examine the performance of established groups
vs. ad hoc groups.

To increase realism, researchers should con-
sider using nonstudent participants performing
realistic work tasks. The duration of group tasks
may be more varied. Hong, Morris, Chiu, and
Benet-Martinez (2000) note that under conditions
of heavy time pressure, participants in experimen-
tal studies tend to behave in a manner consistent
with trait-based cultural norms. Future studies
may take a longitudinal focus, with enhanced
sensitivity to group characteristics and intergroup
dynamics. Since any single group session may
not correctly detect long-term effects of CSW, a
multilevel perspective in looking at differences
between cultures should be adopted. Besides, most
prior studies concentrated mainly on one task,
limiting the generalizability of research findings.
It would be useful to examine the processes and
outcomes of cross-cultural groups that deal with
different types of tasks.

Finally, we want to point out that compared to
general research on CSW, conducting empirical

2214

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

studies on cultural influence on group processes
and outcomes is typically much more challenging
and resource consuming, especially when stud-
ies involve culturally heterogeneous groups in a
distributed setting. One challenge is that research-
ers may have to deal not only with differences in
language (e.g., translating and back-translating
related documents used in the experiment) and
time zones, but also more complicated logistic
issues and experimental design. In addition, the
group task(s) and CSW selected for a study have
to be equally and unambiguously understood by
participants from different cultures. For example,
the mock jury task that is commonly used in em-
pirical group studies in the U.S. is not appropri-
ate for participants from China and some other
countries where jury systems do not exist.

cOncluSiOn

With increasing globalization, CSW is recognized
as an important family of technologies supporting
collaborative work. This article makes several
contributions by providing a common taxonomy
of CSW research that examines the impact of
culture on group collaboration. Our review and
analysis lead to four general conclusions. First,
interest in research on cross-cultural collaboration
appears to be increasing. However, compared to
hundreds of papers published in the field of CSW
research, only a limited number of studies have
examined the impact of culture. The body of
relevant literature is too small to be able to draw
any significant and general conclusions. As Ford,
Connelly, and Meister (2003) point out, the re-
search has been conducted in a manner that resists
building a cumulative tradition. Findings obtained
within specific contexts are difficult to generalize.
Second, existing studies have investigated only
limited types of group outcomes under limited
contexts. The effects of cultural differences on
many important constructs have yet to be inves-
tigated. Third, prior research shows that culture

affects group processes and outcomes; however,
the findings are still inconsistent. Part of this
inconsistency may arise from the research using
CSW with different features and design goals, dif-
ferent group tasks, and varying statistical power.
Fourth, as an emerging area of research, this line
of research lacks comprehensive and empirically
validated theories. Researchers should realize that
no single solution is universally applicable to all
organizational, cultural, or social problems. Many
factors can affect the performance of groups sup-
ported by CSW. It is imperative that practitioners
introducing collaborative technologies into groups
with disparate cultures understand cultural dif-
ferences and their impact. Developing a deeper
theoretical understanding of differences in cross-
cultural groups will go a long way toward assisting
global organizations to manage their groups more
effectively. More advanced and validated theories
need to be built, and better-designed empirical
research needs to be conducted.

referenceS

Aiken, M., Hwang, C., Magalhaes, R.D., & Jea-
nette, M. (1993). A comparison of Malaysian and
American groups using a group decision support
system. Journal of Information Science, 19(6),
489-491.

Aiken, M., Kim, D., Hwang, C., & Lu, L. (1995).
A Korean group decision support system. Informa-
tion and Management, 28(5), 303-310.

Aiken, M., Martin, J., Shirani, A., & Singleton,
T. (1994). A group decision support system for
multicultural and multilingual communication.
Decision Support Systems (DSS), 12(2), 93-96.

Anderson, W.N., & Hiltz, S.R. (2001, January
3-6). Culturally heterogeneous vs. culturally
homogeneous groups in distributed group support
systems: Effects on group process and consensus.
Proceedings of the 34th Hawaii International

 2215

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

Conference on System Sciences (HICSS), Maui,
HI.

Atkinson, D., & Pervan, G. (1998, June 4-6).
Group support systems and productivity in
four national cultures. Proceedings of the 6th
European Conference on Information Systems,
Aix-en-Provence, France.

Baker, S.M., & Petty, R.E. (1994). Majority and
minority influence: Source-position imbalance
as a determinant of message scrutiny. Journal of
Personality and Social Psychology, 67(1), 5-19.

Berger, J., Fisek, M.H., Norman, R.Z., & Zeld-
itch, M. (1977). Status characteristics and social
interaction. Amsterdam: North-Holland.

Bouchard, T., & Hare, M. (1970). Size, perfor-
mance, and potential in brainstorming groups.
Journal of Applied Psychology, 54(1), 51-55.

Briggs, R.O., De Vreede, G.J., & Reinig, B.A.
(2003, January 6-9). A theory and measurement
of meeting satisfaction. Proceedings of the 36th
Hawaii International Conference on System Sci-
ences (HICSS), Big Island, HI.

Briggs, B., & Dean, D. (2005). Successful research
from logical positivist’s perspective. Proceedings
of the 38th Annual Hawaii International Confer-
ence on System Sciences (HICSS), Kona, HI.

Calhoun, K.J., Teng, J.T.C., & Cheon, M.J. (2002).
Impact of national culture on information tech-
nology usage behavior: An exploratory study of
decision making in Korea and the USA. Behavior
& Information Technology, 21(4), 293-302.

Campbell, D.J. (1988). Task complexity: A review
and analysis. Academy of Management Review,
13(1), 40-52.

Chung, K., & Adams, C.R. (1997). A study on the
characteristics of group decision making behavior:
Cultural difference perspective of Korea vs. U.S.
Journal of Global Information Management,
5(3), 18-29.

Clapper, D.L., McLean, E.R., & Watson, R.T.
(1991). An experimental investigation of the effect
of a group decision support system on normative
influence in small groups. Proceedings of the 12th
Annual International Conference on Information
Systems (ICIS), New York.

Connolly, T., Jessup, L.M., & Valacich, J.S.
(1990). Effects of anonymity and evaluative tone
on idea generation in computer-mediated groups.
Management Science, 36(6), 689-703.

Daft, R.L., & Lengel, R.H. (1986). Organizational
information requirements, media richness and
structural design. Management Science, 32(5),
554-571.

Daily, B.F., & Steiner, R.L. (1998). The influence
of group decision support systems on contribu-
tion and commitment levels in multicultural and
culturally homogeneous decision-making groups.
Computers in Human Behavior, 14(1), 147-162.

Daily, B.F., Whatley, A., Ash, S.R., & Steiner,
R.L. (1996). The effects of a group decision sup-
port system on culturally diverse and culturally
homogeneous group decision making. Information
and Management, 30(6), 281-289.

Davison, R. (1996). National cultures, organisa-
tional forms and group support systems. Retrieved
September 28, 2004, from http://www.is.cityu.edu.
hk/Research/WorkingPapers/paper/9607.pdf

De Vreede, G., Jones, N., & Mgaya, B.J. (1999).
Exploring the application and acceptance of group
support systems in Africa. Journal of Manage-
ment Information Systems, 15(3), 197-234.

Dennis, A.R. (1994). Electronic support for large
groups. Journal of Organizational Computing,
4(2), 177-197.

Dennis, A.R., Hilmer, K.M., & Taylor, N.J. (1998).
Information exchange and use in GSS and ver-
bal group decision making: Effects of minority
influence. Journal of Management Information
Systems, 14(3), 61-88.

2216

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

Earley, P.C. (1994). Self or group? Cultural effects
of training on self-efficacy and performance. Ad-
ministrative Science Quarterly, 39(1), 89-117.

El-Shinnawy, M., & Vinze, A.S. (1997). Technol-
ogy, culture and persuasiveness: A study of choice-
shifts in group settings. International Journal of
Human-Computer Studies, 47(3), 473-496.

Fjermestad, J., & Hiltz, S.R. (1999). An assessment
of group support systems experimental research
methodology and results. Journal of Management
Information Systems, 15(3), 7-149.

Ford, D.P., Connelly, C.E., & Meister, D.B. (2003).
Information systems research and Hofstede’s
culture’s consequences: An uneasy and incomplete
partnership. IEEE Transactions on Engineering
Management, 50(1), 8-25.

Fulk, J., Schmitz, J., & Steinfield, C. (1990). A
social influence model of technology use. In J.
Fulk & C. Steinfield (Eds.), Organizations and
communication technology (pp. 117-142). New-
bury Park, CA: Sage.

Gallivan, M., & Srite, M. (2005). Information
technology and culture: Identifying fragmentary
and holistic perspectives of culture. Information
and Organization, 15, 295-338.

Gallupe, R.B., Bastianutti, L.M., & Cooper, W.H.
(1991). Unlocking brainstorms. Journal of Applied
Psychology, 76(1), 137-142.

Gallupe, R.B., Dennis, A.R., Cooper, W.H., Va-
lacich, J.S., Bastianutti, L.M., & Nunamaker, J.F.
Jr. (1992). Electronic brainstorming and group
size. Academy of Management Journal, 35(2),
350-369.

Gallupe, R.B., DeSanctis, G., & Dickson, G.W.
(1988). Computer-based support for group prob-
lem-finding: An experimental investigation. MIS
Quarterly, 12(2), 277-298.

George, J.F., Easton, G., Nunamaker, J.F., & North-
craft, G. (1990). A study of collaborative group

work with and without computer-based support.
Information Systems Research, 1(4), 394-415.

Gray, P., & Olfman, L. (1989). The user interface
in group decision support systems. Decision Sup-
port Systems, 5(2), 119-137.

Griffith, T.L. (1998). Cross-cultural and cognitive
issues in the implementation of new technology:
Focus on group support systems and Bulgaria.
Interfacing with Computers, 9(4), 431-447.

Groeschl, S., & Doherty, L. (2000). Conceptual-
izing culture. Cross Cultural Management—An
International Journal, 7(4), 12-17.

Hall, E.T., & Hall, M.R. (1990). Understanding
cultural differences. Yarmouth, ME: Intercultural
Press.

Hare, A.P. (1981). Group size. American Behav-
ioral Scientist, 24, 695-708.

Hasan, H., & Ditsa, G. (1999). The impact of
culture on the adoption of IT: An interpretive
study. Journal of Global Information Manage-
ment, 7(1), 5-15.

Ho, T., Raman, K., & Watson, R. (1989, Decem-
ber 4-6). Group decision support systems: The
cultural factor. Proceedings of the 10th Annual
International Conference on Information Systems,
Boston.

Hofstede, G. (1984). Culture’s consequences:
International differences in work related values.
London: Sage.

Hofstede, G. (1991). Cultures and organizations:
Software of the mind. Berkshire, England: Mc-
Graw-Hill.

Hofstede, G. (2001). Culture’s consequences
comparing values, behaviors, institutions, and
organizations across nations (2nd ed.). London:
Sage.

Hong, Y., Morris, M.W., Chiu, C., & Benet-Mar-
tinez, V. (2000). Multicultural minds: A dynamic

 2217

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

constructivist approach to culture and cognition.
American Psychologist, 55(7), 709-720.

Jessup, L.M., Connolly, T., & Galegher, J. (1990).
The effects of anonymity on GDSS group process
with an idea-generating task. MIS Quarterly,
14(3), 313-321.

Kim, K., Park, H., & Suzuki, N. (1990). Reward
allocations in the United States, Japan and Korea:
A comparison of individualistic and collectivis-
tic cultures. Academy of Management Journal,
33(1), 188-198.

Kim, U., Triandis, H.C., Kagitcibasi, C., Choi,
S.C., & Yoon, G. (1994). Individualism and col-
lectivism: Theory, methods and applications.
Thousand Oaks, CA: Sage.

Kluckhohn, C. (1962). Culture and behavior. New
York: The Free Press.

Leidner, D.E., & Kayworth, T. (2006). A review
of culture in information systems research: To-
ward a theory of information technology culture
conflict. MIS Quarterly, 30(2), 357-399.

Levine, J.M., & Russo, E.M. (1987). Majority
and minority influence. In C. Hendrick (Ed.),
Group processes (pp. 13-54). Newbury Park,
CA: Sage.

Lowry, P.B., & Nunamaker, J.F. Jr. (2003). Using
Internet-based, distributed collaborative writing
tools to improve coordination and group awareness
in writing teams. IEEE Transactions on Profes-
sional Communication, 46(4), 277-297.

McGrath, J.E. (1984). Groups: Interaction and
performance. Englewood Cliffs, NJ: Prentice
Hall.

Mejias, R.J., Shepherd, M.M., Vogel, D.R., &
Lazaneo, L. (1997a). Consensus and perceived
satisfaction levels: A cross-cultural comparison of
GSS and non-GSS outcomes within and between
the United States and Mexico. Journal of Manage-
ment Information Systems, 13(3), 137-161.

Mejias, R.J., Vogel, D.R., & Shepherd, M.M.
(1997b, January 7-10). GSS meeting productiv-
ity and participation equity: A U.S. and Mexico
cross-cultural field study. Proceedings of the 30th
Hawaii International Conference on System Sci-
ences (HICSS).

Miranda, S., & Saunders, C. (2003). The social
construction of meaning: An alternative perspec-
tive on information sharing. Information Systems
Research, 14(1), 87-106.

Montoya-Weiss, M.M., Massey, A.P., & Song, M.
(2001). Getting it together: Temporal coordina-
tion and conflict management in global virtual
teams. Academy of Management Journal, 44(6),
1251-1262.

Morales, B., Moriera, H., & Vogel, D.R. (1995,
January 4-7). Group support for regional develop-
ment in Mexico. Proceedings of the 28th Hawaii
International Conference on System Sciences
(HICSS).

Moscovici, S., & Zavalloni, M. (1969). The group
as a polarizer of attitudes. Journal of Personality
and Social Psychology, 12, 125-135.

Myers, M.D., & Tan, F.B. (2002). Beyond models of
national culture in information systems research.
Journal of Global Information Management,
10(1), 24-32.

Poole, M.S., Seibold, D.R., & McPhee, R.D. (1985).
Group decision-making as a structural process.
Quarterly Journal of Speech, 71, 74-102.

Pruitt, D.G. (1971). Choice shifts in group discus-
sion: An introductory review. Journal of Personal-
ity and Social Psychology, 20, 339-360.

Quaddus, M.A., & Tung, L.L. (2002). Explaining
cultural differences in decision conferencing.
Communications of the ACM, 45(8), 93-98.

Rahim, M.A. (1983). A measure of styles of
handling interpersonal conflict. Academy of
Management Journal, 26(2), 368-376.

2218

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

Reinig, B.A., & Mejias, R.J. (2003, January 6-9).
An investigation of the influence of national cul-
ture and group support systems on group processes
and outcomes. Proceedings of the 36th Annual
Hawaii International Conference on System Sci-
ences (HICSS), Big Island, HI.

Ridgeway, C.L., Berger, J., & Smith, L. (1985).
Nonverbal cues and status: An expectation states
approach. American Journal of Sociology, 90(5),
955-978.

Robichaux, B.P., & Cooper, R.B. (1998). GSS
participation: A cultural examination. Informa-
tion & Management, 33, 287-300.

Samarah, I., Paul, S., Mykytyn, P., & Seethara-
man, P. (2003, January 6-9). The collaborative
conflict management style and cultural diversity
in DGSS supported fuzzy tasks: An experimental
investigation. Proceedings of the 36th Annual
Hawaii International Conference on System Sci-
ences (HICSS), Big Island, HI.

Setlock, L.D., Fussell, S.R., & Neuwirth, C. (2004,
November 6-10). Taking it out of context: Collabo-
rating within and across cultures in face-to-face
settings and via instant messaging. Proceedings
of CSCW’04, Chicago, IL.

Short, J., Williams, E., & Christie, B. (1976). The
social psychology of telecommunication. London:
John Wiley & Sons.

Souren, P., Priya, S., Imad, S., & Mykytyn, P.P.
(2004). Impact of heterogeneity and collaborative
conflict management style on the performance of
synchronous global virtual teams. Information
and Management, 41(3), 303-321.

Steiner, I.D. (1972). Group processes and pro-
ductivity. New York: Academic Press.

Straub, D., Loch, K., Evaristo, R., Karahanna,
E., & Srite, M. (2002). Toward a theory-based
measurement of culture. Journal of Global In-
formation Management, 10(1), 13-23.

Tan, B.C., Watson, R., & Wei, K.-K. (1995). Na-
tional culture and group support systems: Filtering
communication to dampen power differentials.
European Journal of Information Systems, 4(2),
82-92.

Tan, B.C.Y., Watson, R.T., Wei, K.K., Raman,
K.S., & Kerola, P.K. (1993, January 5-8). National
culture and group support systems: Examining the
situation where some people are more equal than
others. Proceedings of the 26th Annual Hawaii
International Conference on System Sciences
(HICSS), Wailea, HI.

Tan, B.C.Y., Wei, K.-K., Watson, R.T., Clapper,
D.L., & McLean, E.R. (1998a). Computer-medi-
ated communication and majority influence:
Assessing the impact in an individualistic and
a collectivistic culture. Management Science,
44(9), 1263-1278.

Tan, B.C.Y., Wei, K.-K., Watson, R.T., & Walc-
zuch, R.M. (1998b). Reducing status effects with
computer-mediated communication: Evidence
from two distinct national cultures. Journal of
Management Information Systems, 15(1), 119-
142.

Triandis, H. (1972). An analysis of subjective
culture. New York: John Wiley & Sons.

Triandis, H.C. (1989). The self and social behav-
ior in differing cultural contexts. Psychological
Review, 96, 506-520.

Triandis, H.C., Hall, E.R., & Ewen, R.B. (1965).
Member homogeneity and dyadic creativity. Hu-
man Relations, 18, 33-54.

Tung, L.L., & Quaddus, M.A. (2002). Cultural
differences explaining the differences in results
in GSS: Implications for the next decade. Decision
Support Systems, 33, 177-199.

Tung, R. (1995). Strategic human resource
challenge: Managing diversity. International
Journal of Human Resource Management, 6(3),
482-494.

 2219

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

Usunier, J.C. (1998). International and cross-cul-
tural management research. London: Sage.

Valacich, J., Wheeler, B., Mennecke, B., & Wa-
chter, R. (1995). The effects of numerical and
logical size on computer-mediated idea generation.
Organizational Behavior and Human Decision
Processes, 62(3), 318-329.

Veiga, J.F., Floyd, S., & Dechant, K. (2001). To-
wards modeling the effects of national culture on
IT implementation and acceptance. Journal of
Information Technology, 16(3), 145-158.

Vick, R.M. (1998). Perspectives on and problems
with computer-mediated teamwork: Current
groupware issues and assumptions. Journal of
Computer Documentation, 22(2), 3-22.

Vogel, D., Davison, R., & Shroff, R. (2001a).
Sociocultural learning: A perspective on GSS-
enabled global education. Communications of
AIS, 7(9), 1-41.

Vogel, D., Van Genuchten, M., Lou, D., Verveen,
S., Van Eekout, M., & Adams, A. (2001b). Ex-
ploratory research on the role of national and
professional cultures in a distributed learning
project. IEEE Transactions on Professional Com-
munication, 44(2), 114-125.

Walsham, G. (2002). Cross-cultural software
production and use: A structurational analysis.
MIS Quarterly, 26(4), 359-380.

Walther, J.B. (1997). Group and interpersonal
effects in international computer-mediated col-
laboration. Human Communication Research,
23(3), 342-369.

Watson, R., Ho, T., & Raman, K. (1994). Culture:
A fourth dimension of group support systems.
Communications of the ACM, 37(10), 44-55.

Watson, R.T. (1987). A study of group decision
support system use in three and four person
groups for a preference allocation decision.
Unpublished Doctoral Dissertation, University
of Minnesota, USA.

Zakour, A.B. (2004, February 27-28). Cultural dif-
ferences and information technology acceptance.
Proceedings of the 7th Annual Conference of the
Southern Association for Information Systems,
Savannah, GA.

Zhang, D., Lowry, P.B., Zhou, L., & Fu, X. (2007).
The impact of individualism-collectivism, social
presence, and group diversity on group decision
making under majority influence. Journal of Man-
agement Information Systems, 23(4), 53-80.

Zigurs, I., Poole, M.S., & DeSanctis, G. (1988). A
study of influence in computer-mediated group de-
cision making. MIS Quarterly, 12(4), 625-644.

2220

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

A
ut

ho
rs

R
es

ea
rc

h
Fo

cu
s

R
es

ea
rc

h
M

et
ho

do
l-

og
y

Ta
sk

(s)
U

se
d

In
de

pe
nd

en
t

(I
V

) a
nd

D

ep
en

de
nt

 (D
V

)
Va

ri
ab

le
s

C
ul

tu
re

s I
nv

ol
ve

d
an

d
G

ro
up

 S
iz

e
U

nd
er

ly
in

g
T

he
or

y
or

M

od
el

M
aj

or
 F

in
di

ng
s

A
ik

en
 e

t
al

.
(1

99
3)

Pr
el

im
in

ar
y

st
ud

y
co

m
-

pa
ri

ng
 N

or
th

A

m
er

ic
an

an

d
M

al
ay

-
si

an
 g

ro
up

s
us

in
g

G
SS

;
ha

d
M

al
ay

-
si

an
 g

ro
up

s
sw

itc
h

be
tw

ee
n

En
gl

is
h

an
d

M
al

ay

La
bo

ra
to

ry

ex
pe

ri
m

en
t

C
re

at
iv

ity

ta
sk

(I
V

) l
an

gu
ag

e;

(D
V

) p
ro

du
c-

tio
n

bl
oc

ki
ng

,
ev

al
ua

tio
n

ap
pr

eh
en

sio
n,

sa

tis
fa

ct
io

n

9
M

al
ay

si
an

s
sp

ea
ki

ng
 M

al
ay

; 9

M
al

ay
si

an
s s

pe
ak

-
in

g
En

gl
is

h;
 1

6
N

or
th

 A
m

er
ic

an
s

sp
ea

ki
ng

 E
ng

lis
h

N
ot

 sp
ec

i-
fie

d
N

o
di

ff
er

en
ce

s w
er

e
fo

un
d

be
tw

ee
n

al
l-N

or
th

 A
m

er
i-

ca
n

gr
ou

ps
 a

nd
 a

ll-
M

al
ay

-
si

an
 g

ro
up

s u
si

ng
 G

SS
 in

te

rm
s o

f p
ro

du
ct

io
n

bl
oc

k-
in

g
(a

ll
lo

w
),

ev
al

ua
tio

n
ap

pr
eh

en
sio

n
(a

ll
lo

w
),

an
d

sa
tis

fa
ct

io
n

(a
ll

hi
gh

).

**
*A

i-
ke

n
et

al

.
(1

99
5)

C
om

pa
re

s
th

e
pe

rc
ei

ve
d

ef
fe

ct
iv

e-
ne

ss
 a

nd

sa
tis

fa
ct

io
n

of

us
er

s w
ho

 u
se

En

gl
is

h
an

d
K

or
ea

n
ve

r-
sio

ns
 o

f t
he

sa

m
e

G
SS

La
bo

ra
to

ry

ex
pe

ri
m

en
t

C
re

at
iv

ity

ta
sk

s
(I

V
) l

an
gu

ag
e

(K
or

ea
n

vs
.

En
gl

is
h)

; (
D

V
)

pr
od

uc
tio

n
bl

oc
ki

ng
, e

va
lu

-
at

io
n

ap
pr

eh
en

-
sio

n,
 p

ro
ce

ss

sa
tis

fa
ct

io
n

12
 K

or
ea

n
st

u-
de

nt
s a

t U
ni

ve
rs

ity

of
 M

is
si

ss
ip

pi
 (1

gr

ou
p)

C
on

fu
ci

an

ph
ilo

so
ph

y
in

 K
or

ea
n

so
ci

et
y

N
o

sig
ni

fic
an

t d
iff

er
-

en
ce

s w
er

e
fo

un
d

be
tw

ee
n

En
gl

is
h

an
d

K
or

ea
n

ve
r-

sio
ns

 o
f s

ys
te

m
s i

n
te

rm
s

of
 ra

tin
gs

 o
f e

va
lu

at
io

n
ap

pr
eh

en
sio

n,
 p

ro
du

ct
io

n
bl

oc
ki

ng
, a

nd
 p

ro
ce

ss

sa
tis

fa
ct

io
n;

 G
SS

 re
du

ce
d

ne
ga

tiv
e

ef
fe

ct
s o

f v
er

ba
l

m
ee

tin
gs

 c
on

du
ct

ed
 in

K

or
ea

.

AppenDix A. exiSting StuDieS On culture AnD cOllABOrAtiVe
SOftWAre

 2221

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

A
ut

ho
rs

R
es

ea
rc

h
Fo

cu
s

R
es

ea
rc

h
M

et
ho

do
l-

og
y

Ta
sk

(s)
U

se
d

In
de

pe
nd

en
t

(I
V

) a
nd

D

ep
en

de
nt

 (D
V

)
Va

ri
ab

le
s

C
ul

tu
re

s I
nv

ol
ve

d
an

d
G

ro
up

 S
iz

e
U

nd
er

ly
in

g
T

he
or

y
or

M

od
el

M
aj

or
 F

in
di

ng
s

A
nd

er
-

so
n

&

H
ilt

z
(2

00
1)

C
om

pa
re

s
gr

ou
ps

 fr
om

th

e
sa

m
e

cu
ltu

ra
l

ba
ck

gr
ou

nd

w
ith

 g
ro

up
s

fr
om

 v
ar

-
ie

d
cu

ltu
ra

l
ba

ck
gr

ou
nd

s
w

he
n

th
ey

us

e
tw

o
di

ff
er

en
t

co
m

m
un

ic
a-

tio
n

m
ed

ia

sy
st

em
s

La
bo

ra
to

ry

ex
pe

ri
m

en
t

A
 v

al
ue

-
ba

se
d

co
gn

iti
ve

co

nfl
ic

t
(n

eg
ot

ia
-

tio
n)

 ta
sk

(I
V

) c
om

m
u-

ni
ca

tio
n

m
od

e
(m

an
ua

l F
2F

an

d
as

yn
ch

ro
-

no
us

 d
is

tr
ib

-
ut

ed
) a

nd
 g

ro
up

co

m
po

sit
io

n
(c

ul
tu

ra
lly

 h
o-

m
og

en
eo

us
 a

nd

he
te

ro
ge

ne
ou

s);

(D
V

) a
da

pt
at

io
n

fa
ct

or
s a

nd
 o

ut
-

co
m

e
fa

ct
or

s

A
 to

ta
l o

f 4
6

gr
ou

ps
: 2

0
ho

m
og

en
eo

us

(U
.S

.)
m

an
ua

l
F2

F
gr

ou
ps

 a
nd

di

st
rib

ut
ed

 g
ro

up
s;

26
 h

et
er

og
en

eo
us

gr

ou
ps

 c
on

si
st

in
g

of
 m

em
be

rs
 fr

om

no
n-

U
.S

. c
ou

nt
rie

s

H
of

st
ed

e’
s

cu
ltu

ra
l

di
m

en
sio

ns

Fa
ce

-to
-fa

ce
 c

ul
tu

ra
lly

he

te
ro

ge
ne

ou
s (

m
ix

ed
)

gr
ou

ps
 h

ad
 th

e
hi

gh
es

t l
ev

-
el

 o
f p

os
t-m

ee
tin

g
co

ns
en

-
su

s,
w

hi
le

 a
sy

nc
hr

on
ou

s
cu

ltu
ra

lly
 h

om
og

en
eo

us

(U
.S

.)
gr

ou
ps

 h
ad

 th
e

lo
w

es
t l

ev
el

; n
o

sig
ni

fic
an

t
di

ff
er

en
ce

s w
er

e
fo

un
d

ba
se

d
on

 c
ul

tu
ra

l c
om

po
si

-
tio

n
of

 th
e

gr
ou

ps
.

A
tk

in
-

so
n

&

Pe
rv

an
(1

99
8)

E
xp

lo
ra

to
ry

st

ud
y

co
m

-
pa

re
s

pr
o-

du
ct

iv
it

y
of

gr

ou
ps

 f
ro

m

fo
ur

 n
at

io
na

l
cu

lt
ur

es
 u

s-
in

g G
ro

up
Sy

s-
te

m
s

Ex
pl

or
at

or
y

la
bo

ra
to

ry

ex
pe

ri
m

en
t

(4
*2

 re
pe

at
-

ed
 m

ea
su

re

de
sig

n)

C
re

at
iv

it
y

ta
sk

(i
de

a
ge

n-
er

at
io

n)

(I
V

)
an

on
ym

ity

an
d c

ul
tu

re
; (

D
V

)
gr

ou
p

pr
od

uc
tiv

-
ity

A
u

st
ra

li
a

(3

gr
ou

ps
),

Si
ng

ap
or

e
(1

 g
ro

up
),

M
al

ay
si

a
(1

 g
ro

up
),

In
do

ne
-

si
a

(1
 g

ro
up

);
m

os
t

gr
ou

ps
 in

cl
ud

ed
 1

0
pa

rt
ic

ip
an

ts

H
of

st
ed

e’
s

m
od

el

Ex
pl

or
at

or
y,

 l
ow

 s
am

pl
e

st
ud

y
in

di
ca

te
s h

ig
he

r p
ow

-
er

-d
is

ta
nc

e
cu

ltu
re

s
m

ay

de
riv

e
gr

ea
te

r p
ro

du
ct

iv
ity

fr

om
 a

no
ny

m
ity

; a
ll

gr
ou

ps

fr
om

 d
if

fe
re

nt
 c

ul
tu

re
s

pe
rc

ei
ve

 a
no

ny
m

ity
 a

s
an

ad

va
nt

ag
e.

2222

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

A
ut

ho
rs

R
es

ea
rc

h
Fo

cu
s

R
es

ea
rc

h
M

et
ho

do
l-

og
y

Ta
sk

(s)
U

se
d

In
de

pe
nd

en
t

(I
V

) a
nd

D

ep
en

de
nt

 (D
V

)
Va

ri
ab

le
s

C
ul

tu
re

s I
nv

ol
ve

d
an

d
G

ro
up

 S
iz

e
U

nd
er

ly
in

g
T

he
or

y
or

M

od
el

M
aj

or
 F

in
di

ng
s

C
al

ho
un

et

 a
l.

(2
00

2)

E
xp

lo
ra

to
ry

su

rv
ey

 s
tu

dy

th
at

 e
xa

m
in

es

th
e

us
e

of
 I

T
fo

r
or

ga
ni

za
-

tio
na

l d
ec

isi
on

m

ak
in

g i
n K

o-
re

a
an

d
U

.S
.

Su
rv

ey
R

e
sp

o
n

-
de

nt
s

w
er

e
as

ke
d

to

co
ns

id
er

 th
e

us
e

of
 C

M
C

to

 s
en

d
an

d
re

ce
iv

e
in

fo

in
 d

ec
is

io
n

m
ak

in
g

(I
V

) i
nt

en
sit

y
of

IT

 u
se

 f
or

 d
e-

ci
si

on
 m

ak
in

g;

(D
V

) 1
7

de
ci

sio
n

at
tr

ib
ut

es

65
 K

or
ea

n
pa

rt
ic

i-
pa

nt
s;

77
 U

.S
. p

ar
-

tic
ip

an
ts

;
al

l
w

er
e

em
pl

oy
ee

s

H
of

st
ed

e’
s

m
od

el

Ex
pl

or
at

or
y

re
su

lts
 s

ho
w

th

at
 d

ec
is

io
n

m
ak

er
s

in

K
or

ea
 a

nd
 th

e
U

.S
. h

ad
 d

if-
fe

re
nt

 p
er

ce
pt

io
ns

 o
f t

he
 IT

us

e t
ha

t i
m

pa
ct

ed
 th

ei
r d

ec
i-

sio
n-

m
ak

in
g

ac
tiv

iti
es

.

D
ai

ly

et
 a

l.
(1

99
6)

D
ai

ly
 &

St

ei
ne

r
(1

99
8)

E
x

a
m

in
e

s
th

e
in

flu
en

ce

of
 a

 G
SS

 o
n

co
nt

ri
bu

ti
on

an

d
co

m
m

it-
m

en
t

le
ve

ls

in
 c

ul
tu

ra
lly

ho

m
og

en
eo

us

an
d C

C
 (c

ro
ss

-
cu

ltu
ra

l)
de

ci
-

si
on

-m
ak

in
g

gr
ou

ps

Tw
o

pa
pe

rs

re
po

rt
on

 t
he

sa

m
e

st
ud

y’
s

da
ta

.

La
bo

ra
to

ry

ex
pe

ri
m

en
t

(w
it

h
2*

2
fa

ct
o

ri
al

de

sig
n)

Th
re

e
cr

ea
tiv

ity
ta

sk
s

(I
V

)
G

SS
 s

up
-

po
rt

(w
/ a

nd
 w

/o

G
SS

),
 c

ul
tu

ra
l

di
ve

rs
ity

;
(D

V
)

pe
rc

ei
ve

d c
on

tr
i-

bu
tio

n,
 nu

m
be

r o
f

un
iq

ue
 id

ea
s g

en
-

er
at

ed
,

so
lu

tio
n

qu
al

ity
, c

om
m

it-
m

en
t,

pe
rs

on
al

in

flu
en

ce

H
is

pa
ni

c,
 A

ng
lo

,
an

d
ot

he
rs

;
12

gr

ou
ps

:
6

he
te

ro
-

ge
ne

ou
s

an
d

6
ho

-
m

og
en

eo
us

 g
ro

up
s

(4
 to

 5
m

em
be

rs
 pe

r
gr

ou
p)

N
ot

sp

ec
i-

fie
d

C
ul

tu
ra

lly
 d

iv
er

se
 g

ro
up

s
ou

tp
er

fo
rm

ed
 c

ul
tu

ra
lly

ho

m
og

en
eo

us
 g

ro
up

s o
n t

he

nu
m

be
r o

f i
de

as
 g

en
er

at
ed

,
bu

t n
o

sig
ni

fic
an

t e
ff

ec
t o

n
th

e
so

lu
tio

n
qu

al
ity

.

N
on

e
of

 t
he

 e
ff

ec
ts

 o
f

pe
rc

ei
ve

d
co

nt
ri

bu
ti

on
,

co
m

m
itm

en
t,

or
 p

er
so

na
l

in
flu

en
ce

 w
er

e
fo

un
d

to
 b

e
sig

ni
fic

an
t.

 2223

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

A
ut

ho
rs

R
es

ea
rc

h
Fo

cu
s

R
es

ea
rc

h
M

et
ho

do
l-

og
y

Ta
sk

(s)
U

se
d

In
de

pe
nd

en
t

(I
V

) a
nd

D

ep
en

de
nt

 (D
V

)
Va

ri
ab

le
s

C
ul

tu
re

s I
nv

ol
ve

d
an

d
G

ro
up

 S
iz

e
U

nd
er

ly
in

g
T

he
or

y
or

M

od
el

M
aj

or
 F

in
di

ng
s

D
e

V
re

ed
e

et
 a

l.
(1

99
9)

Ex
pl

or
es

 t
he

ef

fe
ct

iv
e

us
e

an
d

ac
ce

p-
ta

nc
e

of
 G

SS

in
 a

 C
C

 c
on

-
te

xt

Fi
el

d
st

ud
y

M
u

lt
ip

le

ta
sk

s,

in
-

cl
ud

in
g

pr
ef

er
en

ce

ta
sk

 an
d c

re
-

at
iv

ity
 ta

sk

(I
V

)
cu

lt
ur

e;

(D
V

)
th

e
us

e
of

G

SS
 fo

r d
ec

is
io

n
m

ak
in

g

3
co

un
tr

ie
s:

 T
an

-
za

ni
a,

 M
al

aw
i,

an
d

Zi
m

ba
bw

e;
gr

ou
p

si
ze

s
va

rie
d

fr
om

 5
 t

o
12

0
in

ea

ch
 p

ro
je

ct

H
of

st
ed

e’
s

m
od

el

an
d

T
e

c
h

n
o

l-
og

y
A

cc
ep

-
ta

nc
e

M
od

el

(T
A

M
)

G
SS

 c
ou

ld
 l

ea
d

to
 s

ig
ni

fi-
ca

nt
 d

iff
er

en
ce

s i
n

te
ch

no
l-

og
y

ac
ce

pt
an

ce
,

us
e,

 a
nd

di

ff
us

io
n,

 a
s

w
el

l
as

 u
se

r
sa

tis
fa

ct
io

n.

El
-S

hi
n-

na
w

y
&

V

in
ze

(1
99

7)

Ex
am

in
es

 t
he

im

pa
ct

 of
 G

SS

an
d

cu
ltu

re
 o

n
th

e
pr

oc
es

s
an

d
ou

tc
om

es

of
 g

ro
up

 d
ec

i-
si

on
 m

ak
in

g
(p

ol
ar

iz
at

io
n)

La
bo

ra
to

ry

ex
pe

ri
m

en
t

(2
*2

 re
pe

at
-

ed
 f

ac
to

ria
l

de
sig

n)

Pr
ef

er
en

ce

ta
sk

(th
e P

en
tiu

m

pr
ob

le
m

)

(I
V

)
m

ed
iu

m

(fa
ce

-to
-fa

ce
 v

s.
C

M
C

)
an

d
cu

l-
tu

re
; (

D
V

) p
ol

ar
-

iz
at

io
n,

 p
er

su
a-

si
ve

 a
rg

um
en

ts
,

no
ve

lty
, v

al
id

ity

U
.S

.
(2

4
gr

ou
ps

)
vs

.
Si

ng
ap

or
e

(2
4

gr
ou

ps
);

6 m
em

be
rs

pe

r g
ro

up

H
of

st
ed

e’
s

m
od

el
;

Pe
rs

ua
si

ve

A
rg

um
en

ts

T
h

e
o

r
y

(P
A

T)

C
ul

tu
re

 an
d c

om
m

un
ic

at
io

n
m

ed
iu

m
 h

ad
 s

ig
ni

fic
an

t e
f-

fe
ct

s o
n p

ol
ar

iz
at

io
n;

 ne
ith

er

m
ed

iu
m

 n
or

 c
ul

tu
re

 h
ad

m

ai
n

ef
fe

ct
s

on
 p

er
su

as
iv

e
ar

gu
m

en
ts;

 th
e G

SS
 m

ed
iu

m

ha
d

a
hi

gh
er

 i
m

pa
ct

 o
n

gr
ou

ps
 in

 th
e

U
.S

. t
ha

n
on

gr

ou
ps

 in
 S

in
ga

po
re

.
G

rif
fit

h
(1

99
8)

A
 c

og
ni

ti
ve

m

od
el

 o
f

C
C

im

pl
em

en
ta

-
tio

n
is

 t
es

te
d

us
in

g
G

ro
up

-
Sy

st
em

s
an

d
B

ul
ga

ria
n

an
d

U
.S

. s
tu

de
nt

s

La
bo

ra
to

ry

ex
pe

ri
m

en
t

Pr
ef

er
en

ce

ta
sk

 (
lu

na
r

su
rv

iv
a

l
pr

ob
le

m
)

(I
V

)
cu

lt
ur

e;

(D
V

) i
nn

ov
at

io
n,

cr

iti
qu

e,
 sa

tis
fa

c-
tio

n

U
.S

.
(1

6
st

ud
en

ts)

vs
. B

ul
ga

ria
 (1

5 s
tu

-
de

nt
s);

 da
ta

 an
al

ys
is

on

 in
di

vi
du

al
 le

ve
l

H
of

st
ed

e’
s

m
od

el
 (

po
w

-
er

 d
is

ta
nc

e)

Sh
ow

ed
 th

at
 B

ul
ga

ria
n

st
u-

de
nt

s
m

ay
 b

e
m

or
e

lik
el

y
to

 c
ha

lle
ng

e
au

th
or

ity
 th

an

th
ei

r
U

.S
.

co
un

te
rp

ar
ts

.
Po

w
er

 d
is

ta
nc

e
m

ed
ia

te
s

so
m

e
ef

fe
ct

s
be

tw
ee

n
cu

l-
tu

re
 a

nd
 s

at
is

fa
ct

io
n

w
ith

G

SS
.

2224

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

A
ut

ho
rs

R
es

ea
rc

h
Fo

cu
s

R
es

ea
rc

h
M

et
ho

do
l-

og
y

Ta
sk

(s)
U

se
d

In
de

pe
nd

en
t

(I
V

) a
nd

D

ep
en

de
nt

 (D
V

)
Va

ri
ab

le
s

C
ul

tu
re

s I
nv

ol
ve

d
an

d
G

ro
up

 S
iz

e
U

nd
er

ly
in

g
T

he
or

y
or

M

od
el

M
aj

or
 F

in
di

ng
s

H
o,

 R
a-

m
an

, &

W
at

so
n

(1
98

9)

A

G
S

S
st

ud
y

(u
si

ng

SA
M

M
)

in

Si
ng

ap
or

e t
ha

t
ex

pl
or

es
 t

he

cu
ltu

ra
l d

iff
er

-
en

ce
s b

et
w

ee
n

U
.S

. a
nd

 S
in

-
ga

po
re

La
bo

ra
to

ry

ex
pe

ri
m

en
t

Pr
ef

er
en

ce

ta
sk

(a
ll

oc
at

io
n

of
 f

un
ds

 t
o

6
pr

oj
ec

ts)

(I
V

) l
ev

el
 of

 su
p-

po
rt

 (
3

le
ve

ls
);

(D
V

)
po

st
-m

ee
t-

in
g

co
ns

en
su

s,

in
flu

en
ce

 e
qu

al
-

ity

Si
ng

ap
or

e:
4

8

5
-p

e
rs

o
n

gr
ou

ps
’

re
su

lts
 w

er
e

co
m

-
pa

re
d w

ith
 th

e fi
nd

-
in

gs
 i

n
a

si
m

ila
r

U
.S

. s
tu

dy
 (W

at
so

n,

19
87

)

H
of

ste
de

’s
in

-
di

vi
du

al
is

m
-

co
lle

ct
iv

is
m

di

m
en

sio
n

Si
ng

ap
or

ea
n

gr
ou

ps
 w

er
e

in
di

re
ct

 in
 th

e
co

m
m

un
ic

a-
tio

n
an

d
se

ld
om

 e
xp

re
ss

ed

di
sa

gr
ee

m
en

t
in

 a
n

op
en

m

an
ne

r;
th

e a
no

ny
m

ity
 fe

a-
tu

re
 le

d
to

 lo
w

er
 in

flu
en

ce

eq
ua

lit
y

in
 S

in
ga

po
re

.

M
e-

jia
s e

t a
l.

(1
99

7a
)

Ex
am

in
es

 t
he

ef

fe
ct

 o
f

cu
l-

tu
re

 o
n

pr
o-

du
ct

iv
ity

, c
on

-
se

ns
us

 l
ev

el
,

an
d

pa
rt

ic
i-

pa
tio

n
eq

ui
ty

du

ri
ng

 th
e u

se

of
 G

SS

Fi
el

d
st

ud
y

w
it

h
2*

2
w

it
h

in
-

su
b

je
ct

s
de

sig
n

C
re

at
iv

ity
ta

sk
(I

V
)

G
SS

 s
up

-
po

rt
, a

no
ny

m
ity

,
na

tio
na

l c
ul

tu
re

;
(D

V
)

nu
m

be
r

of

id
ea

s a
nd

 u
ni

qu
e

id
ea

s,
 p

ar
ti

ci
-

pa
ti

on
 e

qu
it

y,

co
ns

en
su

s
le

ve
l,

sa
tis

fa
ct

io
n

w
ith

de

ci
sio

n

U
.S

. (
22

 g
ro

up
s)

 vs
.

M
ex

ic
o (

20
 gr

ou
ps

);
al

l w
er

e
di

vi
de

d i
nt

o 3
 tr

ea
t-

m
en

ts

H
of

st
ed

e’
s

m
od

el
(f

ir
st

 4
 d

i-
m

en
sio

ns
)

Si
gn

ifi
ca

nt
 di

ff
er

en
ce

s w
er

e
fo

un
d

in
 t

he
 n

um
be

r
of

id

ea
s

ge
ne

ra
te

d,
 c

on
se

ns
us

le

ve
ls

,
an

d
re

la
tiv

e
le

ve
ls

of

 u
se

r
sa

tis
fa

ct
io

n
ac

ro
ss

cu

ltu
re

s.

M
or

al
es

et

 a
l.

(1
99

5)

Ex
pl

or
es

 t
he

ap

pl
ic

at
io

n
of

G

ro
up

-
Sy

st
em

s
in

re

gi
on

al
 d

e-
ve

lo
pm

en
t

in

M
ex

ic
o

an
d

co
m

pa
re

s w
ith

fin

di
ng

s
fr

om

th
e

U
.S

.

Fi
el

d
st

ud
y

Pr
ef

er
en

ce

ta
sk

 (r
eg

io
n-

al
 d

ev
el

op
-

m
en

t)

N
ot

 sp
ec

ifi
ed

29
3

M
ex

ic
an

 p
ar

-
tic

ip
an

ts
 f

ro
m

 a
c-

tu
al

 o
rg

an
iz

at
io

ns

H
of

st
ed

e’
s

m
od

el
Pa

rt
ic

ip
an

ts
 a

gr
ee

d
th

at

co
m

m
un

ic
at

io
n

w
ith

in
 t

he

gr
ou

p
w

as
 m

or
e

ef
fe

ct
iv

e
w

ith
 t

he
 u

se
 o

f
th

e
G

SS
;

th
er

e w
as

 di
sa

gr
ee

m
en

t a
s t

o
w

he
th

er
 Ft

F
co

m
m

un
ic

at
io

n
w

ou
ld

 be
 m

or
e e

ffe
ct

iv
e t

ha
n

th
e

us
e

of
 G

SS
.

 2225

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

A
ut

ho
rs

R
es

ea
rc

h
Fo

cu
s

R
es

ea
rc

h
M

et
ho

do
l-

og
y

Ta
sk

(s)
U

se
d

In
de

pe
nd

en
t

(I
V

) a
nd

D

ep
en

de
nt

 (D
V

)
Va

ri
ab

le
s

C
ul

tu
re

s I
nv

ol
ve

d
an

d
G

ro
up

 S
iz

e
U

nd
er

ly
in

g
T

he
or

y
or

M

od
el

M
aj

or
 F

in
di

ng
s

N
ie

de
r-

m
an

(1
99

7)

E
xp

lo
ra

to
ry

an

d
at

he
or

et
i-

ca
l s

tu
dy

 co
m

-
pa

re
s M

ex
ic

an

an
d U

.S
. g

ro
up

fa

ci
lit

at
or

s u
s-

in
g

ke
y

el
e-

m
en

ts
 of

 m
ee

t-
in

g
su

cc
es

s
an

d
se

le
ct

io
n

of
 G

SS
 to

ol
s

In
te

rv
ie

w

an
d

ta
pe

re

co
rd

in
gs

N
ot

 s
pe

ci
-

fie
d

N
ot

 sp
ec

ifi
ed

U
.S

.
vs

.
M

ex
ic

o:

7
M

ex
ic

an
 g

ro
up

fa

ci
lit

at
or

s,
37

 U
.S

.
fa

ci
lit

at
or

s

H
of

st
ed

e’
s

m
od

el

R
es

ul
ts

 f
ou

nd
 n

o
co

m
pe

l-
lin

g
di

ff
er

en
ce

s
be

tw
ee

n
w

ha
t

M
ex

ic
an

 a
nd

 U
.S

.
fa

ci
lit

at
or

s c
on

sid
er

 im
po

r-
ta

nt
 m

ea
su

re
s

of
 m

ee
tin

g
su

cc
es

s,
ex

pe
ct

ed
 b

en
efi

ts

an
d c

on
ce

rn
s,

to
ol

 se
le

ct
io

n,

an
d

so
 fo

rt
h.

Q
ua

dd
us

&

 T
un

g
(2

00
2)

C
om

pa
re

s t
w

o
cu

lt
ur

es

in

th
e

co
nt

ex
t o

f
gr

ou
p

co
nfl

ic
t

ge
ne

ra
tio

n a
nd

m

an
ag

em
en

t
vi

a
a

no
n-

ne
t-

w
or

ke
d

G
SS

La
bo

ra
to

ry

ex
pe

ri
m

en
t

(2
*2

 f
ac

to
-

ria
l d

es
ig

n)

Pr
ef

er
en

ce

an
d

cr
ea

tiv
-

it
y

ta
sk

s:

(1
)

re
so

ur
ce

al

lo
ca

ti
on

,
(2

)
st

ra
te

gi
c

pl
an

ni
ng

(I
V

)
te

ch
ni

ca
l

su
pp

or
t a

nd
 ta

sk
;

(D
V

) a
m

ou
nt

 an
d

ty
pe

 o
f

co
nfl

ic
t,

co
nf

lic
t

re
so

lu
-

tio
n

st
ra

te
gi

es
,

pr
od

uc
tiv

ity

5
gr

ou
ps

 f
or

 b
ot

h
A

us
tr

al
ia

 a
nd

 S
in

-
ga

po
re

 (3
 or

 4
m

em
-

be
rs

 p
er

 g
ro

up
)

H
of

st
ed

e’
s

m
od

el

H
ig

he
r

le
ve

ls
 o

f
co

nf
lic

t
w

er
e g

en
er

at
ed

 in
 A

us
tr

al
ia

th

an
 in

 S
in

ga
po

re
; A

us
tr

a-
lia

ns
 t

en
de

d
to

 u
se

 f
ew

er

av
oi

da
nc

e
st

ra
te

gi
es

 a
nd

re

po
rt

 m
or

e
pr

od
uc

tiv
ity

th

an
 th

e
Si

ng
ap

or
ea

ns
.

R
ei

ni
g

&

M
ej

ia
s

(2
00

3)

Ex
am

in
es

 t
he

in

fl
ue

nc
e

of

G
SS

 a
nd

 n
a-

tio
na

l
cu

ltu
re

on

 g
ro

up
 p

ro
-

ce
ss

es
,

m
ee

t-
in

g
sa

ti
sf

ac
-

tio
n,

 an
d g

ro
up

ou

tc
om

es

La
bo

ra
to

ry

ex
pe

ri
m

en
t

(2
*2

 f
ac

to
-

ria
l d

es
ig

n)

Pr
ef

er
en

ce

ta
sk

(I
V

)
G

SS
 s

up
-

po
rt

an
d

na
tio

na
l

cu
lt

ur
e;

 (
D

V
)

le
ve

ls
 o

f c
on

se
n-

su
s,

 p
ro

du
ct

io
n

bl
oc

ki
ng

,
do

m
i-

na
nc

e,
 s

at
is

fa
c-

tio
n,

 p
ar

tic
ip

a-
tio

n
eq

ua
lit

y

U
.S

.:
22

 g
ro

up
s

(1
1

G
SS

 a
nd

 1
1

Ft
F

gr
ou

ps
, w

ith
 7

to

 8
 m

em
be

rs
 p

er

gr
ou

p)
; H

on
g K

on
g:

18

 g
ro

up
s

(9
 G

SS

an
d

9
Ft

F
gr

ou
ps

,
w

ith
 7

to
 8

m
em

be
rs

pe

r g
ro

up
)

H
of

st
ed

e’
s

m
o

d
e

l
an

d
So

ci
al

In

fo
rm

at
io

n
P

ro
ce

ss
in

g
(S

IP
) t

he
or

y

N
o

su
bs

ta
nt

ia
l

di
ff

er
en

ce
s

fo
un

d
be

tw
ee

n
cu

ltu
re

s:

G
SS

 us
er

s r
ep

or
te

d l
es

s p
ro

-
du

ct
io

n
bl

oc
ki

ng
 an

d
do

m
i-

na
nc

e,
 a

nd
 lo

w
er

 le
ve

ls
 o

f
co

ns
en

su
s

an
d

sa
tis

fa
ct

io
n

th
an

 d
id

 F
TF

 p
ar

tic
ip

an
ts

ac

ro
ss

 b
ot

h
th

e
U

.S
.

an
d

H
on

g
K

on
g

sa
m

pl
es

.

2226

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

A
ut

ho
rs

R
es

ea
rc

h
Fo

cu
s

R
es

ea
rc

h
M

et
ho

do
l-

og
y

Ta
sk

(s)
U

se
d

In
de

pe
nd

en
t

(I
V

) a
nd

D

ep
en

de
nt

 (D
V

)
Va

ri
ab

le
s

C
ul

tu
re

s I
nv

ol
ve

d
an

d
G

ro
up

 S
iz

e
U

nd
er

ly
in

g
T

he
or

y
or

M

od
el

M
aj

or
 F

in
di

ng
s

Sa
m

ar
ah

et

 a
l.

(2
00

3)

E
x

a
m

in
e

s
th

e
m

od
er

at
-

in
g

ef
fe

ct
 o

f
cu

lt
ur

al
 d

i-
ve

rs
ity

 o
n

th
e

re
la

ti
on

sh
ip

be

tw
ee

n
th

e
co

nfl
ic

t
m

an
-

ag
em

en
t s

ty
le

an

d g
ro

up
 pe

r-
fo

rm
an

ce

La
bo

ra
to

ry

ex
pe

ri
m

en
t

Fu
zz

y
ta

sk
(I

V
)

co
nf

li
ct

m

an
ag

em
en

t
st

yl
e;

 m
od

er
at

or
:

cu
ltu

re
 di

ve
rs

ity
;

(D
V

)
de

gr
ee

 o
f

ag
re

em
en

t,
pe

r-
ce

iv
ed

 d
ec

is
io

n
qu

al
ity

,
pa

rt
ic

i-
pa

tio
n;

m
od

er
at

or
:

cu
l-

tu
re

U
.S

.
vs

.
In

di
a:

 4

U
.S

. h
om

og
en

eo
us

gr

ou
ps

; 9
 In

di
an

 ho
-

m
og

en
eo

us
 gr

ou
ps

;
9

he
te

ro
ge

ne
ou

s
gr

ou
ps

; 3
 to

 4
m

em
-

be
rs

 p
er

 g
ro

up

H
of

st
ed

e’
s

m
od

el

Sh
ow

ed
 th

at
 cu

ltu
ra

l d
iv

er
si-

ty
 ha

s a
 po

sit
iv

e m
od

er
at

in
g

ef
fe

ct
 on

 th
e d

eg
re

e o
f g

ro
up

ag

re
em

en
t

an
d

pe
rc

ei
ve

d
de

ci
sio

n
qu

al
ity

.

So
ur

en

et
 a

l.
(2

00
4)

In
ve

st
ig

at
es

th

e
im

pa
ct

 o
f

he
te

ro
ge

ne
ity

an

d c
ol

la
bo

ra
-

tiv
e

co
nf

lic
t

m
an

ag
em

en
t

st
yl

e
on

 t
he

pe

rf
or

m
an

ce

of
 s

yn
ch

ro
-

no
us

 v
ir

tu
al

te

am
s

us
in

g
a

W
eb

-b
as

ed

G
SS

La
bo

ra
to

ry

ex
pe

ri
m

en
t

(4
*2

 f
ac

to
-

ria
l d

es
ig

n)

Pr
ef

er
en

ce

ta
sk

(s
el

ec
ti

ng

on
e

op
tio

n
to

re

co
m

-
m

en
d

to
 a

un

iv
er

si
ty

ab

ou
t

ad
op

ti
ng

 a

co
m

pu
te

r-
us

e
fe

e)

(I
V

)
gr

ou
p

he
t-

er
og

en
ei

ty
 v

s.

he
te

ro
ge

ne
it

y
an

d c
on

fli
ct

 m
an

-
ag

em
en

t
st

yl
e;

(D

V
)

sa
ti

sf
ac

-
tio

n,
 p

er
ce

iv
ed

de
ci

si
on

 q
ua

l-
it

y,
 p

er
ce

pt
io

n
of

 p
ar

tic
ip

at
io

n,

gr
ou

p
ag

re
e-

m
en

t

U
.S

. v
s.

In
di

a:
 15

 4
-

pe
rs

on
 g

ro
up

s
an

d
on

e 3
-p

er
so

n g
ro

up
;

U
.S

. h
om

og
en

eo
us

gr

ou
ps

M
e

n
ti

o
n

s
H

of
st

ed
e’

s
m

od
el

 bu
t n

ot

to
 g

en
er

at
e

hy
po

th
es

is

or
 i

nt
er

pr
et

re

su
lts

C
ol

la
bo

ra
tiv

e c
on

fli
ct

 m
an

-
ag

em
en

t s
ty

le
 po

sit
iv

el
y i

m
-

pa
ct

ed
 sa

tis
fa

ct
io

n
w

ith
 th

e
de

ci
si

on
-m

ak
in

g
pr

oc
es

s,

pe
rc

ei
ve

d
de

ci
sio

n
qu

al
ity

,
an

d
pe

rc
ei

ve
d

pa
rt

ic
ip

a-
tio

n
of

 v
ir

tu
al

 te
am

s;
w

ea
k

ev
id

en
ce

 l
in

ks
 a

 g
ro

up
’s

he

te
ro

ge
ne

ity
 to

 it
s

co
lla

b-
or

at
iv

e c
on

fli
ct

 m
an

ag
em

en
t

st
yl

e.

 2227

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

A
ut

ho
rs

R
es

ea
rc

h
Fo

cu
s

R
es

ea
rc

h
M

et
ho

do
l-

og
y

Ta
sk

(s)
U

se
d

In
de

pe
nd

en
t

(I
V

) a
nd

D

ep
en

de
nt

 (D
V

)
Va

ri
ab

le
s

C
ul

tu
re

s I
nv

ol
ve

d
an

d
G

ro
up

 S
iz

e
U

nd
er

ly
in

g
T

he
or

y
or

M

od
el

M
aj

or
 F

in
di

ng
s

Ta
n

et
 a

l.
(1

99
8a

)
In

ve
st

ig
at

es

w
he

th
er

 C
M

C

ca
n

re
du

ce

no
rm

at
iv

e
in

-
fl

ue
nc

e
fr

om

m
aj

or
iti

es
 i

n
th

re
e

de
ci

-
si

on
-m

ak
in

g
se

tti
ng

s

La
bo

ra
to

ry

ex
pe

ri
m

en
t

(3
*2

*2
 f

ac
-

to
ri

al
 d

e-
sig

n)

(1
) A

n
in

te
l-

le
ct

ua
l t

as
k;

(2

)
a

pr
ef

-
er

en
ce

 t
as

k
(m

oc
k

ju
ry

)

(I
V

) n
at

io
na

l c
ul

-
tu

re
,

ta
sk

 t
yp

e,

an
d

co
m

m
un

i-
ca

tio
n

m
ed

iu
m

;
(D

V
) t

he
 nu

m
be

r
of

 r
ou

nd
s

ta
ke

n
by

 t
he

 g
ro

up
 t

o
re

ac
h

co
ns

en
su

s

U
.S

.
(8

 g
ro

up
s

in

ea
ch

 tr
ea

tm
en

t)
vs

.
Si

ng
ap

or
e

(1
1

or

12
 g

ro
up

s
in

 e
ac

h
tr

ea
tm

en
t);

 4
-p

er
-

so
n

gr
ou

ps
; 6

 tr
ea

t-
m

en
ts

H
of

st
ed

e’
s

m
o

d
e

l
(i

nd
iv

id
ua

l-
is

m
-c

ol
le

c-
tiv

is
m

)

Su
bj

ec
ts

 in
 th

e u
ns

up
po

rt
ed

se

tti
ng

 to
ok

 fe
w

er
 ro

un
ds

 to

re
ac

h
co

ns
en

su
s t

ha
n

th
os

e
in

 F
tF

 C
M

C
 a

nd
 d

is
pe

rs
ed

C

M
C;

 f
or

 b
ot

h
ta

sk
s,

m
a-

jo
ri

ty
 i

nf
lu

en
ce

 d
id

 n
ot

va

ry
 w

ith
 c

om
m

un
ic

at
io

n
m

ed
iu

m
.

Ta
n

et
 a

l.
(1

99
8b

)
E

x
a

m
in

e
s

w
he

th
er

 C
M

C

ca
n

re
du

ce

st
at

us
 e

ff
ec

ts

du
ri

ng
 g

ro
up

co

m
m

un
ic

a-
ti

on
 i

n
tw

o
na

tio
na

l
cu

l-
tu

re
s

La
bo

ra
to

ry

ex
pe

ri
m

en
t

(2
*2

*2
 f

ac
-

to
ri

al
 d

e-
sig

n)

(1
) A

n
in

te
l-

le
ct

ua
l t

as
k;

(2

)
a

pr
ef

-
er

en
ce

 t
as

k

(I
V

) n
at

io
na

l c
ul

-
tu

re
,

ta
sk

 t
yp

e,

an
d

co
m

m
un

i-
ca

tio
n

m
ed

iu
m

;
(D

V
) s

ta
tu

s i
nfl

u-
en

ce
,

su
st

ai
ne

d
in

fl
ue

nc
e,

 p
er

-
ce

iv
ed

 in
flu

en
ce

U
.S

.
(4

5
gr

ou
ps

)
vs

.
Si

ng
ap

or
e

(4
8

gr
ou

ps
);

fi
ve

-p
er

-
so

n
gr

ou
ps

;
fo

ur

tr
ea

tm
en

ts
,

w
it

h
10

 to
 1

2
gr

ou
ps

 p
er

tre

at
m

en
t

H
of

st
ed

e’
s

m
o

d
e

l
(i

nd
iv

id
ua

l-
is

m
-c

ol
le

c-
ti

vi
sm

 a
nd

po

w
er

 d
is

-
ta

nc
e)

Ta
sk

 ty
pe

 a
nd

 c
om

m
un

ic
a-

tio
n m

ed
iu

m
 ha

d s
ig

ni
fic

an
t

m
ai

n
ef

fe
ct

s o
n

st
at

us
 in

flu
-

en
ce

;
st

at
us

 i
nfl

ue
nc

e
w

as

no
t

si
gn

ifi
ca

nt
ly

 s
tr

on
ge

r
in

 S
in

ga
po

re
 g

ro
up

s t
ha

n
in

U

.S
. g

ro
up

s;
st

at
us

 in
flu

en
ce

w

as
 h

ig
he

r
in

 p
re

fe
re

nc
e

ta
sk

 g
ro

up
s t

ha
n

in
 in

te
lle

c-
tiv

e
ta

sk
 g

ro
up

s,
et

c.
Tu

ng
&

 Q
ua

d-
du

s
(2

00
2)

C
on

du
ct

s
a

co
m

pa
ra

bl
e

st
ud

y
on

 t
he

us

e
of

 G
SS

 in

tw
o

di
ff

er
en

t
co

un
tr

ie
s

to

ex
pl

ai
n t

he
 im

-
pa

ct
 of

 cu
ltu

re

on
 d

iff
er

en
ce

s
in

 re
su

lts

La
bo

ra
to

ry

ex
pe

ri
m

en
t

(2
*2

 fa
ct

or
i-

al
-r

ep
ea

te
d

m
ea

su
re

)

Pr
ef

er
en

ce

ta
sk

 an
d c

re
-

at
iv

ity
 ta

sk
:

(1
)

re
so

ur
ce

al

lo
ca

ti
on

;
(2

)
st

ra
te

gi
c

pl
an

ni
ng

(I
V

)
ta

sk
 a

nd

te
ch

ni
ca

l
su

p-
po

rt
;

(D
V

)
ou

t-
co

m
e

in
 te

rm
s o

f
th

e
“p

ro
du

ct
iv

-
ity

”
of

 t
he

 c
on

-
fli

ct
s

A
us

tra
lia

n:
 6 g

ro
up

s
(3

 t
o

5
m

em
be

rs

pe
r

gr
ou

p)
;

Si
ng

a-
po

re
: 2

0
gr

ou
ps

 (3

or
 4

 m
em

be
rs

 p
er

gr

ou
p)

H
of

st
ed

e’
s

m
od

el

R
ev

ea
le

d
di

ff
er

en
ce

s
in

th

e
sig

ni
fic

an
ce

 o
f

te
ch

ni
-

ca
l s

up
po

rt
an

d
ta

sk
s

w
ith

pr

od
uc

tiv
ity

 i
n

th
e

Si
n-

ga
po

re
an

 a
nd

 A
us

tr
al

ia
n

st
ud

ie
s

(h
ig

he
r

av
oi

da
nc

e
be

ha
vi

or
s

in
 S

in
ga

po
re

an

gr
ou

ps
 a

nd
 h

ig
he

r
le

ve
ls

of

 in
te

rp
er

so
na

l c
on

fli
ct

 in

A
us

tr
al

ia
n

gr
ou

ps
).

2228

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

A
ut

ho
rs

R
es

ea
rc

h
Fo

cu
s

R
es

ea
rc

h
M

et
ho

do
l-

og
y

Ta
sk

(s)
U

se
d

In
de

pe
nd

en
t

(I
V

) a
nd

D

ep
en

de
nt

 (D
V

)
Va

ri
ab

le
s

C
ul

tu
re

s I
nv

ol
ve

d
an

d
G

ro
up

 S
iz

e
U

nd
er

ly
in

g
T

he
or

y
or

M

od
el

M
aj

or
 F

in
di

ng
s

Vo
ge

l
et

 a
l.

(2
00

1a
)

Ex
pl

or
es

 h
ow

G

ro
u

p
S

y
s-

te
m

s
ca

n
fa

-
ci

lit
at

e v
ir

tu
al

te

am
s

in
 a

n
ed

uc
at

io
na

l
en

vi
ro

nm
en

t

Fi
el

d
st

ud
y

7
jo

in
t p

ro
j-

ec
ts

 (
id

en
-

tif
y

th
e

im
-

pa
ct

 o
f s

of
t-

w
ar

e d
ef

ec
ts

an

d
C

SF
s)

(in
te

lle
ct

ua
l

ta
sk

)

N
ot

 sp
ec

ifi
ed

T
he

 N
et

he
rl

an
ds

,
G

re
ec

e,
 a

nd
 H

on
g

K
on

g;
 n

o
be

tw
ee

n-
gr

ou
p

co
m

pa
ris

on
;

ea
ch

 p
ro

je
ct

 c
on

-
si

st
s

of
 o

ne
 g

ro
up

on

ly
,

w
ith

 a
t

le
as

t
48

 s
tu

de
nt

s
fr

om
 2

di

ff
er

en
t r

eg
io

ns

H
of

st
ed

e’
s

m
od

el
 a

nd
S

o
ci

o
cu

l-
tu

ra
l

L
e

a
rn

in
g

Th
eo

ry

En
co

un
te

re
d

so
m

e
co

m
-

m
un

ic
at

io
n p

ro
bl

em
s;

ric
he

r
in

te
ra

ct
io

n
le

d
to

 h
ig

he
r

pe
rf

or
m

an
ce

;
at

tr
ac

tio
n

to

w
or

k w
ith

 di
ff

er
en

t c
ul

tu
re

s
va

rie
d

gr
ea

tly
 a

m
on

g
st

u-
de

nt
s;

cu
ltu

ra
l

di
ff

er
en

ce
s

em
er

ge
d

in
 te

am
 fe

el
in

gs
.

Vo
ge

l
et

 a
l.

(2
00

1b
)

R
ep

or
ts

 t
he

cu

ltu
ra

l d
iff

er
-

en
ce

 r
efl

ec
te

d
in

 gr
ou

p m
em

-
be

r
be

ha
vi

or

in
 a

C
C

 co
ur

se

pr
oj

ec
t

Fi
el

d
st

ud
y

A

7-
w

ee
k

jo
in

t p
ro

je
ct

on

 a
sp

ec
ifi

c
IT

-r
el

at
ed

su

bj
ec

t,
re

-
su

lti
ng

 i
n

a
jo

in
t r

ep
or

t
(in

te
lle

ct
ua

l
ta

sk
)

N
ot

 sp
ec

ifi
ed

32

H
on

g
K

on
g

st
ud

en
ts

 a
nd

 3
9

D
ut

ch
 s

tu
de

nt
s;1

0
C

C
 g

ro
up

s,
w

ith
 6

to

 1
0

m
em

be
rs

 p
er

gr

ou
p

H
of

st
ed

e’
s

m
od

el
 a

nd
So

ci
oc

ul
tu

r-
al

 L
ea

rn
in

g
Th

eo
ry

A
 c

ul
tu

ra
l

ef
fe

ct
 e

xi
st

ed
,

re
fle

ct
ed

 by
 di

ff
er

en
t b

eh
av

-
io

rs
 of

 m
em

be
rs

 fr
om

 di
ff

er
-

en
t c

ul
tu

re
s (

e.g
., H

on
g K

on
g

st
ud

en
ts

 t
en

de
d

to
 r

es
ol

ve

is
su

es
 b

y
di

sc
us

si
ng

 t
he

m

w
ith

 th
ei

r l
oc

al
 te

am
m

at
es

,
w

hi
le

 D
ut

ch
 s

tu
de

nt
s

w
er

e
m

or
e

in
cl

in
ed

 t
o

ad
dr

es
s

te
am

m
at

es
 f

ro
m

 b
ot

h
cu

l-
tu

ra
l b

ac
kg

ro
un

ds
).

 2229

Issues, Limitations, and Opportunities in Cross-Cultural Research on Collaborative Software in IS

A
ut

ho
rs

R
es

ea
rc

h
Fo

cu
s

R
es

ea
rc

h
M

et
ho

do
l-

og
y

Ta
sk

(s)
U

se
d

In
de

pe
nd

en
t

(I
V

) a
nd

D

ep
en

de
nt

 (D
V

)
Va

ri
ab

le
s

C
ul

tu
re

s I
nv

ol
ve

d
an

d
G

ro
up

 S
iz

e
U

nd
er

ly
in

g
T

he
or

y
or

M

od
el

M
aj

or
 F

in
di

ng
s

W
al

th
er

(1

99
7)

Ex
am

in
es

 t
he

in

te
rp

la
y

of

cu
lt

ur
e

w
it

h
lo

ng
-te

rm
 a

nd

sh
o

rt
-t

er
m

gr

ou
ps

 i
n

Ft
F

an
d

di
st

ri
b-

ut
ed

C

M
C

co

nd
iti

on
s

La
bo

ra
to

ry

ex
pe

ri
m

en
t

(2
*2

 f
ac

to
-

ria
l d

es
ig

n)

W
ri

ti
ng

a

pa
pe

r
su

m
-

m
ar

iz
in

g,

cr
it

iq
ui

ng
,

an
d

co
m

-
m

en
tin

g
on

5

ar
tic

le
s

(I
V

)
te

am
 d

ur
a-

tio
n

(lo
ng

 t
er

m

vs
.

sh
or

t
te

rm
),

id
en

tit
y

(s
oc

ia
l

vs
.

in
di

vi
du

al
);

(D
V

)
so

ci
al

 a
t-

tra
ct

iv
en

es
s,

ta
sk

at

tr
ac

ti
ve

ne
ss

,
ph

ys
ic

al
 a

ttr
ac

-
tiv

en
es

s

54
 s

tu
de

nt
s,

 i
n

gr
ou

ps
 o

f
5

to
 6

,
dr

aw
n

fr
om

 U
.S

.
an

d
B

rit
ai

n

R
ec

en
t i

nt
er

-
ac

tio
n

th
eo

-
rie

s

D
is

tr
ib

ut
ed

 gr
ou

ps
 w

er
e j

us
t

as
 ef

fe
ct

iv
e w

he
n e

xa
m

in
in

g
so

ci
al

 a
ttr

ac
tiv

en
es

s,
 t

as
k

at
tr

ac
tiv

en
es

s,
an

d
ph

ys
ic

al

at
tr

ac
tiv

en
es

s.

W
at

so
n

et
 a

l.
(1

99
4)

Ev
al

ua
te

s
th

e
cu

ltu
ra

l e
ff

ec
t

on
 c

ha
ng

e
in

co

n
se

n
su

s
an

d
in

flu
en

ce

eq
ua

li
ty

in

th

re
e d

iff
er

en
t

co
m

m
un

ic
a-

tio
n

se
tti

ng
s

La
bo

ra
to

ry

ex
pe

ri
m

en
t

(3
*2

 f
ac

to
-

ria
l d

es
ig

n)

Pr
ef

er
en

ce

ta
sk

:
al

-
lo

ca
tio

n
of

m

on
ey

 t
o

6
pr

oj
ec

ts

(I
V

)
ty

pe
 o

f
de

-
ci

si
on

 s
up

po
rt

(C

S
,

m
an

ua
l,

ba
se

li
ne

),
 n

a-
ti

on
al

 c
ul

tu
re

;
(D

V
)

ch
an

ge
 i

n
co

ns
en

su
s,

in
flu

-
en

ce
 e

qu
al

ity

U
.S

.
vs

.
Si

ng
a-

po
re

:
U

.S
.:

3
to

 4
 m

em
-

be
rs

 p
er

 g
ro

up
,

gr
ou

p
si

ze
s

fo
r

3
de

ci
si

on
 s

up
po

rt

tre
at

m
en

ts
 w

er
e 2

7,

26
, a

nd
 2

9;
Si

ng
ap

or
e:

 5
-p

er
-

so
n

gr
ou

ps
;

gr
ou

p
si

ze
s

fo
r

3
de

ci
-

sio
n-

su
pp

or
t

tre
at

-
m

en
ts

 w
er

e
14

, 1
6,

an

d
15

H
of

st
ed

e’
s

m
od

el
 a

nd
A

d
a

p
ti

v
e

S
tr

uc
tu

ra
-

tio
n

Th
eo

ry

(A
ST

)

Si
ng

ap
or

ea
n

gr
ou

ps
 h

ad

hi
gh

er
 p

re
-m

ee
ti

ng
 c

on
-

se
ns

us
 t

ha
n

U
.S

.
gr

ou
ps

;
al

l g
ro

up
s

in
 b

ot
h

cu
ltu

re
s

ha
d

th
e

sa
m

e
le

ve
l o

f p
os

t-
m

ee
tin

g
co

ns
en

su
s;

ch
an

ge

in
 c

on
se

ns
us

 w
as

 g
re

at
er

 in

U
.S

.
th

an
 i

n
Si

ng
ap

or
ea

n
gr

ou
ps

.

This work was previously published in the Journal of Global Information Management, edited by F. Tan, Volume 16, Issue 1,
pp. 61-84, copyright 2008 by IGI Publishing (an imprint of IGI Global).

2230

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.25
Online Behavior Modeling:

An Effective and Affordable Software
Training Method

Charlie Chen
Appalachian State University, USA

Terry Ryan
Claremont Graduate University, USA

Lorne Olfman
Claremont Graduate University, USA

ABStrAct

Organizations need effective and affordable soft-
ware training. In face-to-face settings, behavior
modeling (BM) is an effective, but expensive,
training method. Can BM be employed effectively,
and more affordably, for software training in the
online environment? An experiment was con-
ducted to compare the effectiveness of online BM
with that of face-to-face (F2F) BM for software
training. Results indicate that online BM and
F2F BM provide essentially the same outcomes
in terms of knowledge near transfer, immediate
knowledge far transfer, delayed knowledge far
transfer, perceived ease of use, perceived useful-
ness and satisfaction. Observed differences were
not significant, nor were their patterns consistent,

despite sufficient power in the experimental design
to detect meaningful differences. These results
suggest that organizations should consider online
BM as a primary method of software training.

IntroductIon

Investment in software training can improve
productivity, boost employee morale (Bell, 2004)
and reduce employee turnover rate (Heller, 2003).
End users who have not received proper software
training often feel insecure about their jobs, and
this insecurity can contribute to turnover costs and
productivity losses (Aytes & Connolly, 2004). The
departure of a newly hired IT employee within
180 days of hiring can cost a company as much

 2231

Online Behavior Modeling

as $100,000 (Brown, 2000). The departure of em-
ployees who leave their companies due to a lack
of proper training can have a variety of negative
consequences (McEvoy & Cascio, 1987).

In contrast, properly trained end users often
feel confident and secure, with positive implica-
tions for productivity. Increases in individual
performance can add up to substantial improve-
ments for businesses. The American Society for
Training and Development (ASTD) conducted a
study of 575 United States (U.S.)-based, publicly
traded firms between 1996 and 1998 to examine
the relationship between organizational train-
ing investments and total shareholder return.
This study found an 86% higher return on such
investments for the top half of firms (in terms of
training investment) than for the bottom half of
firms (Bassi, Ludwig, McMurrer, & Van Buren,
2000).

Software training requires a significant finan-
cial outlay. The most effective software training
at present involves F2F behavior modeling, but
such training is expensive to deliver. One possible
way to reduce delivery costs is by offering similar
software training, but through less expensive
online delivery.

Allen and Seaman (2003) forecast that online
learning would grow at a rate approaching 20% per
year. The world corporate online learning market
has been predicted to grow to nearly $24 billion
by 2006 from $6.6 billion in 2002, an annual
increase of 35.6% (International Data Corpora-
tion, 2002). The continuous growth of the online
training market has prompted discussion about
the effectiveness of Web-based virtual learning
environments (Piccoli, Ahmad, & Ives, 2001).

While it is commonly agreed that online soft-
ware training is less expensive and more flexible,
it may also be less effective. Online software
training continues to be of great interest to or-
ganizations, but significant challenges remain in

implementing online solutions. These challenges
include: (1) the cost of acquiring online learning
systems, (2) the time for developing online learn-
ing materials, and (3) the need to be convinced of
online learning’s effectiveness compared to other
training models (Bloom, 2004).

Three general training methods have been
compared experimentally in F2F settings: in-
struction based, exploration based and behavior
modeling. Instruction-based training occurs when
trainers tell trainees about software, but do not
model the use of it. Exploration-based training
teaches trainees through practice by trainees on
relevant examples, also without trainer modeling
of software use. BM training teaches trainees via
demonstrations, in which trainers model the use of
software for trainees. Evidence exists that BM is
the most effective method for F2F software train-
ing (Compeau & Higgins, 1995; Simon, Grover,
Teng, & Whitcomb, 1996).

This research compares experimentally the
relative effectiveness of F2F BM and online
behavior modeling. Since prior research has
indicated that the BM method dominates the
instruction-based and exploration-based meth-
ods in F2F settings, this study does not include
the latter two methods. Online asynchronous
methods of software training, because they al-
low more favorable ratios of trainers to trainees
and do not require training participants to meet,
have the potential to achieve significant cost
savings over F2F approaches. On the other hand,
given that live trainers are not present in online
asynchronous software training, there can be no
direct interaction between trainers and trainees.
This difference in direct interaction could mean
that F2F training might be more effective than
online training. Knowledge about the relative
effectiveness of these methods will be valuable
to people who must make decisions about how to
provide software training.

2232

Online Behavior Modeling

tHeOreticAl BAcKgrOunD

Software training method

As mentioned, three methods are common in
F2F software training: exploration-based, in-
struction-based and BM (Simon et al., 1996). In
exploration-based training, the assumption is
made that learning is “a matter of rearranging or
transforming evidence in such a way that one is
enabled to go beyond the evidence so reassembled
to additional new insights” (Burner, 1966, p. 22).
Exploration-based training involves an inductive
process through which individuals learn general
concepts by trying to solve specific tasks (Taba,
1963). In instruction-based training, “the entire
content of what is to be learned is presented to
the learner in the final form” (Ausubel, 1963, p.
16). Instruction-based training is deductive and
programmed, with low trainee control and a fo-
cus on software features (Davis & Davis, 1990).
The BM method is in some ways a hybrid of
exploration- and instruction-based training, and
is centered on having trainees treat the behavior
of their trainer as a model for their own (Simon
et al., 1996).

When assessing the applicability of training
methods for online asynchronous software train-
ing, researchers must bear in mind that some key
elements of F2F software training may be lost in
a movement to the online asynchronous setting.
The opportunities for direct interactions between
trainers and trainees are necessarily fewer, if they
exist at all, in online asynchronous software train-
ing. Thus, the beneficial effects of trainer-trainee
interactions typical of F2F software training may
be missing. Videotapes, transcriptions, simula-
tions or virtual reality are unlikely to serve as
complete substitutes for live interactions between
trainer and trainee. Along these lines, the features
that distinguish BM training from exploration-
and instruction-based training may perhaps be
less evident in the online asynchronous software
training situation.

Online asynchronous software training does
not provide close monitoring of trainees by the
trainer, as is common in F2F software training.
This lack of monitoring can be expected to lead
to increased levels of distraction among trainees.
Trainees in online asynchronous software training
might be inclined to attend to matters other than
their training, such as surfing the Web, to a much
greater extent than they would in F2F software
training. Furthermore, online asynchronous soft-
ware training may deliver content less tailored
to trainees’ interests than content provided in
F2F software training. As a result, trainees may
experience a higher degree of boredom in online
asynchronous settings than in F2F settings, lead-
ing to poorer performance and more negative
reactions to training experiences.

Online training modes

There are two temporal modes of online training:
synchronous and asynchronous. Either mode can
be used for software training. Text messaging,
audio conferencing and video conferencing are
examples of online applications that can be used
for training purposes in a synchronous mode. Web
pages, files to be downloaded, e-mail, newsgroups
and discussion forums are examples of applica-
tions that can support training asynchronously.

Horton (2000) suggests that synchronous
training and asynchronous training be designed
differently. Synchronous training demands the
control of schedule, time, people, class size, video
and audio equipment, and place. These factors
limit the possibilities for reaching trainees in
a cost-effective manner. This study focuses on
online asynchronous software training in part to
avoid the influence of these factors, and in part to
concentrate on the methods most likely to keep
costs low. This choice reflects the reality that
most online training delivered across continents
is provided in the asynchronous mode and that
use of the online asynchronous mode is destined
to grow.

 2233

Online Behavior Modeling

Behavior modeling in face-to-face
and Online Asynchronous
Software training

Social cognitive theory (Bandura, 1986) serves
as a theoretical basis for behavior modeling. Ac-
cording to this theory, “most human behavior is
learned by observation through modeling” (p. 47).
Observational learning allows one to form rules
to guide future behavior by watching what others

do and noting what consequences such behavior
has for them. Further, observational learning can
make use of symbolic models, allowing people
to consider words and images in coming to ap-
preciate what happens to others when they behave
in particular ways, thereby extending what can
be learned beyond the immediate environment.
Learning by modeling involves four kinds of
processes: (1) attention, (2) retention, (3) produc-
tion, and (4) motivation (Bandura, 1986). These

BM Approaches
F2F behavior modeling Online behavior modeling

Strengths

• Regardless of learning styles,
trainees are motivated to use the
training approach.

• The approach is less influenced
by learning style and is the most
effective.

• The teaching quality is contingent
on both the quality of entire course
materials packaged in final form and
supplementary materials (e.g., hand-
outs).

• Trainer’s teaching abilities and
trainees’ participation are major
determinants for training outcomes.

• Real-time two-way feedback.
• Both trainers and trainees have equal

power to control the learning pace.

• Regardless of learning styles, trainees
may be motivated to use the training
approach.

• The approach may be less influenced by
learning style and should be an effective
training approach.

• Teaching quality may be contingent
on both the quality of entire course
materials packaged in final form and
supplementary materials on the Internet.

• Trainer’s teaching abilities and trainees’
participation may be major determinants
for the training outcomes.

• Web-based peer-to-peer interaction may
improve commitment and participation.

• Both trainers and trainees may have
equal power to control the learning pace.

Weaknesses

• Needs longer time to exercise the
training approach.

• Constrained by the length of time,
a trade-off between instruction and
exploration learning is needed.

• A trainer’s experience will influence
the decision quality of the trade-off,
thereby affecting trainees’ motivation
and their learning outcomes.

• Trainees may have trouble modeling the
behavior of the trainer without direct
interaction.

• Demonstrative lecturing may need to
rely on videotaped or scripted course
materials.

• Asynchronous, one-way communication
may lower motivation, thereby degrading
learning outcomes.

• Real-time reiterative learning process to
confirm understanding may be lost.

Table 1. F2F BM vs. online behavior modeling: strengths and weaknesses

2234

Online Behavior Modeling

processes are influenced both by characteristics
of the events observed and characteristics of the
observer.

 Learning by modeling or observing people’s
behaviors may be more effective than learning by
trial and error, because the former approach can
avoid unnecessary mistakes and harm. Modeling
a trainer’s behavior empowers trainees to (1) learn
new behavior from the trainer, (2) self-evaluate
their behavior against the trainer’s, and (3) rein-
force their current adequate behaviors. The BM
approach is different from learning by adaptation.
The former approach teaches via demonstration,
while the latter approach influences the behaviors
of learners by reward and punishment (Skinner,
1938).

An early application of BM training was in
the area of interpersonal communication and
management skills (Decker & Nathan, 1985). In
the realm of training for software and computer
usage, BM training has been shown consistently
to be more effective than instruction- or explora-
tion-based training (Compeau & Higgins, 1995;
Gist, Schwoerer & Rosen, 1989; Simon, Grover,
Teng & Whitcomb, 1996). Yi and Davis (2001)
found that the effects of BM could be enhanced
by the provision of training features to support
retention enhancement and practice.

BM is readily employed in F2F training, but
may be difficult to apply in online settings, which
may be less suited to demonstrations of behavior.
Limitations of the media typically used in online
synchronous instruction in terms of their rich-
ness constitute one possible constraint. Another
is a reduced level of reinforcement possible in
online settings, compared with F2F instruction.
For example, in a live training class, the trainer
is able to demonstrate a software process and im-
mediately ask the trainees to repeat the activity
under the trainer’s close supervision. However, in
an online asynchronous situation, in which there
is no live trainer, demonstrations lose the benefit
of immediate feedback. In an online synchronous
situation, bandwidth constraints and compromised

reciprocity may undermine the effectiveness of
demonstrations. In online environments, effec-
tiveness can be further compromised with the
absence of learning by doing, another key element
of F2F BM training (McGehee & Tullar, 1978).
Table 1 summarized the strengths and weaknesses
of F2F BM and online behavior modeling.

Trying to use BM for online software train-
ing would involve the issues mentioned above.
Therefore, there is a strong possibility that the
BM approach cannot be fully replicated in the
online asynchronous setting and, therefore, will
not be as effective in the online environment as
in the traditional environment. On the other hand,
if online BM were to prove as effective as F2F
behavior modeling, organizations would prefer it,
because it would cost less and promise higher re-
turns on investment. The increasing use of online
asynchronous software training by businesses and
schools raises questions: What training methods
should be used under what circumstances in the
online asynchronous environment?

reSeArcH mODel AnD
HypOtHeSeS

This study tested the relative efficacy of BM
training, in two different environments: experi-
mentally and in a field setting. Experimentation
can allow testing of causal relationships among
variables. A field setting can provide greater
confidence in the meaning of experimental tasks
than in a laboratory setting. A field experiment
methodology has the merits of being able to test
theory and answer practical questions (Kerlinger
& Lee, 2000).

The independent variable for the experiment
was training method, set at two levels of behavior
modeling – F2F and online. Training materials
were designed to operationalize each level by
integrating key elements of BM training, as il-
lustrated in Figure 1.

 2235

Online Behavior Modeling

The online BM treatment was designed to be
video-demonstration oriented. Trainees watched
a recording of the trainer using the software to
perform tasks. All communication between the
trainer and trainees was one-way. Following the
video, trainees completed tasks to demonstrate
their level of mastery of the training materials.
Online reference sources were available to them
as they completed the tasks. Control over what
occurred was shared between the system and
trainees. Online behavior modeling, as conceived
here, shares features with both exploration and
instruction approaches, including both inductive
and deductive aspects.

The F2F BM treatment was designed to be
direct-demonstration oriented. Trainees watched
the trainer performing tasks in person. Two-way
communication between the trainer and trainees
was possible. Following the demonstration, train-
ees performed a task assigned by the trainer. No
online reference sources were available. Control
over what occurred was shared between the trainer
and trainees. The F2F condition included a trainer
(other than one of the researchers, to reduce
chances of awareness of the hypotheses being

tested). The trainer followed the same script as
the one designed for the online condition.

The length of time allotted to training was
the same for both conditions. Both conditions
included the same pre- and post-training tests.
All training sessions were conducted in the same
computer classroom.

Dependent Variables

Regardless of teaching environment, most train-
ing is intended to instill a competency of some
kind. Software competency depends on the kind
of knowledge acquired in training. Learning ef-
fectiveness can be evaluated through trainees’
reactions and knowledge transfer (Kirpatrick,
1967). Knowledge levels can be categorized as
near transfer or far transfer (Simon et al., 1996).
Near transfer of knowledge is necessary for
understanding of basic software commands and
procedures. Far transfer of knowledge allows the
solving of problems different from those worked
out in training. The measurement of near-transfer
knowledge involves direct assessment of what was
learned about the specific objects (such as software

Figure 1. Key elements of behavior modeling training

B = f(P,E) (Lewin, 1951)
Imitate and extend a role model

Continuous feedback
Flexibility

Inductive
Relevancy

Goal oriented
Trainee control

Deductive
Irrelevancy

Features or command-oriented
Trainer control

Behavior ModelingExploration Instruction

F2FVideoScriptsScriptsVideoF2F

2236

Online Behavior Modeling

features and commands) covered in training. The
measurement of far-transfer knowledge has to
do with evaluating the extent to which what was
learned is available to trainees in their solution
of problems similar to those included in training.
For far-transfer knowledge, it is interesting to as-
sess learning both immediately after training and
after some delay, because software competency is
intended to be a long-term effect of training.

In this study, software competency was
measured in terms of near-transfer knowledge,
far-transfer knowledge (assessed immediately)
and far-transfer knowledge (assessed with delay).
The measure of near transfer (NT) consisted of
10 multiple-choice questions concerning details
of the software covered in training. Immediate far
transfer (IFT) was measured with a problem to be
solved with the software during the experimental
session. Delayed far transfer (DFT) was measured
with a problem administered later in the academic
term as part of the final exam.

In addition to how well it instills software
competency, software training should also be
judged by the reactions that trainees have to it. It is
common to use satisfaction as a surrogate for the
effectiveness of information systems (Ives, Olson,
& Baroudi, 1983) and it has been adopted as an
indicator of success in software training (Simon
et al., 1996). Perceived usefulness and perceived
ease of use have been shown to predict attitudes
and behaviors with information systems (Davis,
Bagozzi, & Warshaw, 1989).

In this study, the reactions of trainees were
captured through three measurement scales:
satisfaction (SAT), perceived usefulness (PU) and
perceived ease of use (PEOU). SAT, PU and PEOU
were measured with scales administered during
the experimental session, as described below.

Hypotheses

As discussed above, the online BM approach
replaces the live instructor with the scripted

demonstration, and some key elements of the
F2F BM approach may be lost. Characteristics
of the online asynchronous environment—par-
ticularly limitations on trainer-trainee interac-
tions—suggest that BM training done in a F2F
manner should be superior to BM training done
in the online mode. BM training in the F2F mode
may be more effective at improving the learning
outcome for a trainee than the BM approach in
the online asynchronous mode. Proving that the
F2F BM is more or less effective than online BM
could justify the validity of replicating the same
pattern in the online asynchronous environment.
Hence, it is only hypothesized that the F2F BM
approach is more effective than the online BM
to improve learning outcomes for trainees of all
learning styles. The hypotheses listed below cor-
respond to this expectation with respect to NT,
IFT, DFT, SAT, PU and PEOU.

• H1: NT scores will be greater with F2F BM
than with online BM.

• H2: IFT scores will be greater with F2F BM
than with online BM.

• H3: DFT scores will be greater with F2F
BM than with online BM.

• H4: SAT scores will be greater with F2F
BM than with online BM.

• H5: PU scores will be greater with F2F BM
than with online BM.

• H6: PEOU scores will be greater with F2F
BM than with online BM.

trainees and Setting

The setting for the experiment was an introduc-
tory computer course requiring trainees to learn
spreadsheet software (Excel 2000). Trainees in this
course were freshmen, majoring in management
information systems or accounting. Participation
in the study was voluntary. The faculty for the
course agreed to run the experiment near the end
of the academic term. As a result of this timing,

 2237

Online Behavior Modeling

none of the trainees in the experiment were com-
plete novices with respect to computers; all had
some literacy and experience.

It was not desirable in this study for ex-
perimental trainees to have prior knowledge of
spreadsheets. Therefore, as part of the experi-
mental procedure, a pre-test of 10 multiple-choice
questions about Excel 2000 was given to each
trainee; trainees who scored higher than 50%
were excluded.

training procedure

The trainer conducted the traditional F2F BM by
following the same procedures as delineated in
the online BM training package (Figure 2). The
first stage of the package provides examples of
how to manage a database using Excel 2000. The
second stage lists online asynchronous training
tools that can be used to assist the trainee. These
tools are: (1) examples that are relevant to trainees’

Figure 2. F2F BM and online BM procedures

STAGE 1
Show examples

STAGE 2
List Learning

Tools

STAGE 3
Relevant

Examples to
Practice

STAGE 4
Scripted

demonstration of step-
by-step performing

five funcions

STAGE 5
Self-practice on

relevant examples

STAGE 6
Take quiz

STAGE 7
End of session

Figure 3. Scripted demonstration of step-by-step, performing five functions: The fourth step of online
BM method (enabled by Excel’s macro functions)

2238

Online Behavior Modeling

backgrounds, (2) a self-practice worksheet for
each function of database management, and (3)
online reference sources. The third stage allows
trainees to choose relevant examples to use for
practice throughout the training session.

Two examples were prepared for each ma-
jor. Trainees were encouraged to practice with
examples relevant to their majors. The training
covered five database management features of
Excel. These features allow one to (1) create a
database without using a data form, (2) create
a database with a data form, (3) sort data in a
data list, (4) filter data in a data list, and (5) add
subtotals to a data list. Step-by-step instructions
were adopted to illustrate each function.

Additionally, trainees could choose to watch
or not to watch a demonstration for all database
functions. On the same page as the demonstra-
tion, a self-practice worksheet was presented.
Practice results could also be carried over to the
next practice. Trainees of the online BM group
took the same quizzes as the F2F group and
then concluded the study. Figures 3 and 4 are
two screenshots of course materials used for the
online BM approach. The demonstration of a
live instructor was substituted for fixed-time (12

seconds) transition of page presentations. Each
scripted demonstration focused on one particular
function of the database management topic. At
each learning point of a particular function, train-
ees were encouraged to experiment by practicing
the related exercises.

reSultS

A total of 114 trainees completed the study by
submitting valid questionnaires. This amounted to
approximately 46% of the trainees who had been
registered for the course. Although a higher rate
of participation in the experiment was expected,
the achieved rate may have been due to the experi-
ment being a voluntary activity at the end of an
academic term. Of the trainees who did participate,
31 had too much prior spreadsheet knowledge to
qualify as trainees for the experiment, leaving 83
trainees whose data were analyzed.

Table 2 shows the number of trainees for each
experimental treatment. Note that the counts of
trainees in each condition, although not exactly
the same, are similar enough not to cause ana-
lytic difficulties. The sample size, although not

Figure 4. The first step of scripted demonstration for the first subject: Sort data in a list

 2239

Online Behavior Modeling

as large as might be desired, also is not a source
of analytic problems.

Multivariate analysis of covariance (MAN-
COVA) has advantages over analysis of variance
(ANOVA) in removing some systematic errors
and uncontrolled individual differences. Although
the researchers planned to adopt MANCOVA, a
cursory investigation showed no interaction effect
between two dependent variables—user satisfac-
tion and learning performance. This indicates that
learning performance and satisfaction effects are

separated; interaction among them is not the issue
in this study. The possibility of inflating type I
error due to the analyses of multiple univariate
ANOVAs is minimum. Furthermore, due to the
small sample size of some cells and the unequal
cell sizes, complying with the assumptions of two-
way ANOVA can improve the reliability of data
analysis. Each dependent variable was treated and
analyzed independently with ANOVA as a result.
Data analysis using a histogram graph shows that
each dependent variable complies with univariate

Training Approaches Total Completing Study Excess Prior Knowledge Number for Data Analysis
Online 44 9 35
F2F 70 22 48
Total 114 31 83

Table 2. Number of trainees by treatments

Table 3. Descriptive statistics by treatments

Dependent Variable
Mean/Standard Deviation Online BM F2F BM

NT mean 45.33 49.38
s.d. 19.43 16.94

IFT mean 39.33 25.00
s.d. 24.90 18.22

DFT mean 36.00 44.63
s.d. 39.23 36.41

SAT mean 2.86 3.05
s.d. 0.61 0.63

PU mean 2.72 2.97
s.d. 0.69 0.62

PEOU mean 3.02 2.93
s.d. 0.32 0.34

2240

Online Behavior Modeling

normality assumptions. Additionally, Levene’s
test at α = 0.10 shows that the null hypothesis,
the error variance of the dependent variable is
equal across groups, is not violated. The tests
indicate that the data is normally distributed.
An ANOVA was conducted for each dependent
variable. ANOVA is robust for situations having a
limited number of data points (Moore & McCabe,
1989). Table 3 provides descriptive statistics for
dependent variables by experimental treatment.
Table 4 summarizes ANOVA results for training
methods in terms of learning outcomes. Direction
and significance of differences between treatments
are indicated.

From a hypothesis-testing standpoint, four out
of six hypotheses, all concerning the superiority
of F2F BM over online BM (H1, H3, H4, and
H5), were in the direction hypothesized. Despite
this, these hypotheses were not supported in a
statistical sense.

DiScuSSiOn

Although none of the hypothesized relation-
ships are fully supported, the results obtained
are interesting. The most intriguing result is
that—contrary to expectations—there are no
statistical reasons for preferring F2F BM to online

BM for software training of this kind. The pattern
of results indicates that while F2F BM results in
better outcomes than online BM for four of the
six dependent variables, it never does so at a sta-
tistically significant level. One interpretation of
this is that online BM training is no worse than
F2F BM training across all dependent variables.
(Trainees in the online BM condition actually
score higher than F2F BM trainees in IFT.) The
pattern of results for F2F BM suggests that trainers
might choose online BM—which ought to be a
less costly alternative to F2F BM—without mak-
ing any significant sacrifice in either learning or
trainee reaction outcomes. The complex picture
of the implications of these four treatments must
be more clearly illustrated.

Two methods can illustrate this complexity.
The first is the “insufficient difference” finding
between online BM and F2F BM. The second is the
beginning of a strategy for online asynchronous
software training. As a first result, the conclusion
of “insufficient difference” between online BM
and F2F BM depends on being able to say there
is not enough difference between their effects to
justify the difference in their costs. A practical
difference between F2F BM and online BM—one
that matters in cost/benefit terms—must have
some minimum size. Specifying a practical dif-
ference involves knowing the costs of F2F BM

Variable Hypothesis Result in Correct Direction? Significant p-value?
NT Face-to-face > online T n.s.
IFT Face-to-face > online F n.s.
DFT Face-to-face > online T n.s.
SAT Face-to-face > online T n.s.
PU Face-to-face > online T n.s.
PEOU Face-to-face > online F n.s.

Table 4. Results for training methods

 2241

Online Behavior Modeling

and online BM, as well as how effect size maps
to benefits.

Ability to detect effect sizes is nothing more
than statistical power (Cohen, 1977). In informa-
tion systems research, “studies are unlikely to
display large effects and that, typically, small-
to medium-effect sizes should be anticipated”
(Baroudi & Orlikowski, 1989, p. 90). Because
this study exercised due care with experimental
procedure and made use of reliable instruments,
there is justification in addressing statistically
insignificant results. Before executing the experi-
ment, efforts were made to maximize the differ-
ence between F2F BM and online BM conditions;
a Delphi study was conducted regarding the design
of course materials to reflect the different train-
ing approaches. Despite this careful control over
operationalization, there was not enough differ-
ence between F2F BM and online BM effects to
justify the difference in their costs.

Due to the undeveloped nature of research
in this area, it may be inappropriate to establish
an index for effect size based on prior research
on software-training strategy in the traditional
environment (Mazen et al., 1987). To explain the

phenomenon carefully, we employ Cohen’s (1977)
approach to estimate proxy effect-size levels
based on the standardized difference d of two
populations taking different training approaches
(see Table 5).

The estimated effect size is 0.5 for all dependent
variables except KNT and PEOU. Since PEOU
is related to the design of the e-learning system
rather than the treatment of training approach,
smaller effect size across different groups is un-
derstandable. However, the study cannot detect
differences of effect size for KNT. This indicates
that it makes no difference whether F2F BM or
online BM is employed to improve KNT. Online
trainers can choose either F2F BM or online BM
to improve end-users’ KNT if either approach has
relatively similar costs.

Contrary to the expectation of hypotheses,
a larger effect size was detected for KFT in the
short term and long term. This practical difference
indicates that the benefits of online BM outweigh
F2F BM for KFT in the short and long term. Larger
effect size was also detected for the measures of
end-user satisfaction: OS and PU. This practi-
cal difference supports that F2F BM is a better
approach than online BM to improve end-user
satisfaction. The difference between knowledge
absorption capability and end-user satisfaction
poses many interesting questions.

As a second result, this study can offer concrete
suggestions about the beginning of a strategy
for online asynchronous software training. One
result of interest is that F2F BM might be better
than online behavior modeling. Of the six hy-
potheses concerning relationships between these
two methods, four are in the expected direction,
none significantly so.

These findings indicate that use of online BM
may be the best software-training strategy for the
online asynchronous setting. To confidently offer
such suggestions, the study needs to discuss the
design decisions that trainers face in the online
asynchronous environment. The study provides
support for using online BM over exploration- and

Table 5. Effect size estimation

Dependent
Variables

Standardized
Difference between

F2F BM and online
BM

*
Estimated

Effect Size

Knowledge
NT (KNT) 25.47% 0.20

Knowledge
FT (KFT) -46.45% 0.50

OS 58.82% 0.50
PEOU -21.05% 0.20

PU 57.97% 0.50

* Calculated based on Cohen’s (1977) Effect Size
Conventions

2242

Online Behavior Modeling

instruction-based training, given that the prior
contribution makes the point of favoring online
BM over F2F BM. Since our suggestions are a
start on an online asynchronous software training
strategy, we will present the outline of the strategy
that includes “to-do” and “not-to-do” lists. This
online asynchronous software training strategy
will allow trainers and vendors to capitalize on
these opportunities and avoid costly mistakes.

The largest implication for practice is that
online BM may provide a cost-effective substitute
for F2F BM without significant reductions in train-
ing outcomes. Compared to F2F BM, online BM
allows trainees to have more control over their
learning. Cognitive learning theory indicates that
the learning process can be improved via active
learning (Shuell, 1986) and problem-solving
learning (Alavi, 1994). In the virtual learning
environment (VLE), trainees have higher control
of learning and can choose to use exploration- or
instruction-based training approaches depending
on tasks and individual needs. For instance, train-
ees with more experience and knowledge related
to a particular trainee may resort to meaningful
learning and use relevant examples to practice.
Trainees with little knowledge about another
trainee may resort to rote learning and use generic
examples to practice. The VLE allows trainees
to switch freely between meaningful and rote
learning, to their advantages.

Since trainees have control flexibility, online
BM can be viewed as more effective than the F2F
BM in helping trainees perform well on near-
transfer and far-transfer tasks. In the VLE, the
individualized and contextual learning provides
anchoring for trainees to transform their mental
models. While more must be learned about this
relationship, it is encouraging to see evidence that
there may be a desirable leverage from online
asynchronous software training.

Another thing trainers need to bear in mind
when designing an online asynchronous software
training strategy is that the effectiveness of online
asynchronous software training methods does

not necessarily go hand-in-hand with overall
satisfaction, perceived ease of use and perceived
usefulness. In particular, it may still be the case
that learning effectiveness is neutral to learning
style. Improving satisfaction by customizing
learning approaches may be the right decision to
make, but performance might not be the decid-
ing factor.

Online BM and F2F BM allow trainees to have
some control of the learning process and informa-
tion acquisition regarding its content, accuracy,
format, ease of use and timeliness (Doll, Xia,
& Torkzadeh, 1994), which leads to somewhat
higher satisfaction levels. In itself, higher levels
of satisfaction may be justification for online BM
and F2F BM use, but much remains to be learned
about the effects of these methods for training
performance.

Assimilation Theory suggests that being re-
ceptive to new procedural knowledge on how to
operate a new target system is the prerequisite
to meaningful learning (Mayer, 1981) or far-
knowledge transfer. With the time constraints, a
more focused learning approach can be useful at
assimilating new knowledge. Hence, the online
BM approach is a logical solution for meaningful
learning, because the approach allows trainees to
not only acquire new knowledge, but also gives
them flexibility to search their long-term memory
for “appropriate anchoring ideas or concepts”
(p. 64) and to use the ideas to interact with new
knowledge (Davis & Bostrom, 1993).

limitAtiOnS

While it seems unlikely, given the care taken in
the design of the study, there is always the pos-
sibility that the independent variable, training
method, could inadequately represent its intended
construct. With any complex treatment, such as
the establishment of a training method here, there
is a chance that operationalization can be less than
what is needed for effects to occur. Additional re-

 2243

Online Behavior Modeling

search is required to refine and perfect the training
method treatments as much as possible. There is
no simple manipulation check for verifying the
efficacy of this kind of treatment, but continued
investigation should reveal the extent to which
the manipulation is a successful one.

Future research can attempt to improve the
reliability of the findings by controlling the experi-
mental environment more tightly (e.g., equal cell
size, larger cell size and longer training sessions)
or by improving the strategy’s generalizability
through the examination other variables (e.g.,
trainees vs. professional workers, number of train-
ing duration sessions, type of training media, self
efficacy, experiences of using the online learning
system and software types).

implicAtiOnS fOr reSeArcH

The findings here raise additional questions for
research. Some that might be addressed in the
immediate future include:

• To replicate the experimental equivalence of
F2F BM and online BM methods of software
training with different software and trainees.
With this, to demonstrate a practical (i.e.,
cost-based) advantage of online BM over
F2F BM for software training in practical
settings.

• To study the impact of training duration on
performance and trainee reactions. Train-
ees should be exposed to the same training
methods for different durations.

• To improve the reliability of the study by
manipulating some useful blocking vari-
ables. A series of comparative studies can be
conducted to assess the impact of individu-
alism as a cultural characteristic, computer
self-efficacy, task complexity, professional
backgrounds, and the ratio of the training
duration to the quantity of information to
be processed, among others.

• To investigate the impacts of social presence
and information richness (SPIR) (Fulk, 1993)
features of online asynchronous software
training media on training outcomes. Future
studies might vary the SPIR features of train-
ing media (e.g., F2F vs. online asynchronous
scripted or Web cam modes).

• To conduct longitudinal studies of the influ-
ence of learning style on learning perfor-
mance and trainee reaction.

• To continue to study the relationship between
learning style, training methods and train-
ing outcomes. Learning style is somewhat
associated with the cultural backgrounds
of online trainees. Trainees with varying
cultural backgrounds may prefer to adopt
training media with different SPIR features.
Cultural differences, such as relative degree
of individualism, may affect preference for
SPIR characteristics. Some combination of
training methods, learning style and SPIR
attributes may jointly determine learning
outcomes.

implications for practice

The largest implication for practice is that on-
line BM may provide a cost-effective substitute
for F2F BM without significant reductions in
training outcomes. While more must be learned
about this relationship, it is encouraging to see
evidence that there may be a desirable leverage
from online asynchronous software training.
Also, when designing an online asynchronous
software training strategy, trainers need to bear
in mind that both F2F BM and online BM are
equally effective to improve learning outcomes
(including satisfaction), and performance might
not be the decision factor if these two approaches
need to be chosen from. Other decision factors,
such as trainer’s preference, equipment avail-
ability, budget and scheduling, could be more
important than the efficacy issue. Online BM and
F2F BM allow trainees to have some control of

2244

Online Behavior Modeling

the learning process, leading to somewhat higher
satisfaction levels. This advantage in itself may
be justification for their use, but much remains
to be learned about the effects of these methods
for training performance.

cOncluSiOn

The success of an online asynchronous software
training strategy depends on its effectiveness in
improving learning outcomes. This study builds
on a well-accepted framework for training re-
search (Bostrom, Olfman & Sein, 1990; Simon,
Grover, Teng & Whitcomb, 1996), examines the
relative effectiveness of four training methods
and begins to derive a strategy for online asyn-
chronous software training. Testing the following
hypotheses provides an empirical basis for the
development of an online asynchronous software
training strategy: (1) F2F BM is more effective
than online BM for learning performance and
trainee reactions, and (2) online BM is more cost
effective than F2F BM.

While these hypotheses are not fully supported
statistically, and while many of the observed re-
sults are difficult to interpret, the study discovers
important potential implications for practitioners
and researchers. The formulated online asyn-
chronous software training strategy suggests that
trainers customize their training methods based
on desired learning outcomes.

What is learned from this study can be sum-
marized as follows: When conducting software
training, it may be as effective to use an online
BM method as it is to use a more costly F2F BM
method. Although somewhat better results are
sometimes evident for F2F BM, observed differ-
ences are not significant, nor are their patterns
consistent.

The study has accomplished its major goal—it
provides evidence as to the relative effectiveness
of various methods, particularly those of an on-
line asynchronous nature, for software training.

Within its limits, this research takes a first step
in developing a strategy for online asynchronous
software training.

referenceS

Allen, I. E. & Seaman, J. (2003). Sizing the oppor-
tunity: The quality and extent of online education
in the United States, 2002-2003. Needham, MA:
The Sloan Consortium.

Ausubel, D. P. (1963). The psychology of mean-
ingful verbal learning. New York: Grune and
Stratton.

Aytes, K., & Connolly, T. (2004, July-September).
Computer Security and Risky Computing Prac-
tices: A Rational Choice Perspective. Journal of
Organizational and End User Computing 16(3),
22-40.

Bandura, A. (1986). Social foundations of thought
& action. Englewood Cliffs: Prentice-Hall.

Baroudi, J. J., & Orlikowski, W. J. (1988). A short
form measure of user information satisfaction: A
psychometric evaluation and notes. Journal of
Management Information Systems, 4, 45-59.

Bassi, L.J., Ludwig, J., McMurrer, D.P. & Van
Buren, M. (2000, September). Profiting from
learning: Do firms’ investments in education
and training pay off? The American Society for
Training and Development (ASTD) and Saba,
Alexandria, VA. Retrieved January 3, 2006, from
http://www.astd.org/NR/rdonlyres/15C0E2AB-
B16D-4E3C-A081-4205B865DA3F/0/PFLWhite-
Paper.pdf

Bell, J. (2004, March/April). Why software train-
ing is a priority? Booktech the Magazine, 7, 8.

Bielefield, A., & Cheeseman, L. (1997). Technol-
ogy and copyright law. New York: Neal-Schuman
Publishers.

 2245

Online Behavior Modeling

Bloom, M. (2003, April 2). E-learning in Canada,
Findings from 2003 E-survey: Top line findings
from a survey of the conference board of Canada’s
customers on current e-learning practices. The
Conference Board of Canada. Retreived June 6,
2005, from http://www.conferenceboard.ca/edu-
cation/reports/pdfs/TopLine_report.pdf

Brown, J. (2000, December 15). Employee turn-
over costs billions annually. Computing Canada,
26, 25.

Bruner, J. (1966). Toward a theory of instruction.
New York: Norton.

Cohen, J. (1977). Statistical power analysis for
the behavioral sciences. New York: Academic
Press.

Compeau, D. R. & Higgins, C. A. (1995). Com-
puter self-efficacy: Development of a measure and
initial test. MIS Quarterly, 19, 189-211.

Compeau, D. R., Higgins, C. A., & Huff, S. (1999).
Social cognitive theory and individual reactions
to computing technology: A longitudinal study.
MIS Quarterly, 23(2), 145-158.

Davis, D. L., & Davis, D. F. (1990). The effect of
training techniques and personal characteristics
on training end users of information systems.
Journal of Management Information Systems,
7(2), 93-110.

Davis, F. D. (1989, September). Perceived useful-
ness, perceived ease of use, and user acceptance
of information technology. MIS Quarterly, 319-
339.

Decker, P. J. & Nathan, B. R. (1985). Behavior
modeling training. New York: Praeger.

Fulk, J. (1993). Social construction of commu-
nication technology. Academy of Management
Journal, 36, 921-950.

Gist, M. E., Schwoerer, C., & Rosen, B. (1989).
Effects of alternative training methods on self-
efficacy and performance in computer software

training. Journal of Applied Psychology, 74(6),
884-891.

Heller, M. (2003, November 15). Six ways to boost
morale. CIO Magazine, 1.

Horton, W. (2000). Designing Web-based training.
New York: John Wiley & Sons.

International Data Corp. (2002, September 30).
While Corporate Training Markets Will Not
Live up to Earlier Forecasts, IDC Suggests
Reasons for Optimism, Particularly eLearn-
ing. International Data Corporation. Retrieved
March 5, 2003, from http://www.idc.com/getdoc.
jhtml?containerId=pr2002_09_17_150550

Ives, B., Olson, M., & Baroudi, S. (1983). The
measurement of user information satisfaction.
Communications of the ACM, 26, 785-793.

Kerlinger, F. N., & Lee, H. B. (2000). Founda-
tions of behavioral research. New York: Harcourt
Brace College Publishers.

Kirpatrick, D. L. (Ed.). (1967). Evaluation of
training. Training and development handbook.
New York: McGraw Hill.

Leidner, D. E., & Jarvenpaa, S. L. (1995). The use
of information technology to enhance manage-
ment school education: A theoretical view. MIS
Quarterly, 19, 265-291.

Mazen, A. M., Graf, L. A., Kellogg, C. E., &
Hemmasi, M. (1987). Statistical Power in Con-
temporary Management Research. Academy of
Management Journal, 30, 369–380.

McEvoy, G. M., & Cascio, W. F. (1987, Decem-
ber). Do good or poor performers leave? A meta-
analysis of the relationship between performance
and turnover. Academy of Management Journal,
30(4), 744-762.

McGehee, W., & Tullar, W. (1978). A note on
evaluating behavior modification and behavior
modeling as industrial training techniques. Per-
sonal Psychology, 31, 477-484.

2246

Online Behavior Modeling

Piccoli, G., Ahmad, R., & Ives, B. (2001). Web-
based virtual learning environments: A research
framework and a preliminary assessment of
effectiveness in basic IT skills training. MIS
Quarterly, 25(4).

Simon, S. J., Grover, V., Teng, J. T. C., & Whit-
comb, K. (1996, December). The relationship of
information system training methods and cogni-
tive ability to end-user satisfaction, comprehen-
sion, and skill transfer: A longitudinal field study.
Information Systems Research, 7(4), 466-490.

Skinner, B. F. (1938). The behavior of organisms:
An experimental analysis.New York: B. F. Skin-
ner Foundation.

Taba, H. (1963). Learning by discovery: Psycho-
logical and educational rationale. Elementary
School, 308-316.

Wexley, K. N., & Baldwin, T. T. (1986). Posttrain-
ing strategies for facilitating positive transfer: An
empirical exploration. Academy of Management
Journal, 29, 503-520.

Yi, M. Y. & Davis, F. D. (2001). Improving comput-
er training effectiveness for decision technologies:
Behavior modeling and retention enhancement.
Decision Sciences, 32(3), 521-544.

Yi, Y. (Ed.). (1990). A critical review of con-
sumer satisfaction: Review of marketing. Chicago:
American Marketing Association.

This work was previously published in the International Journal of Web-Based Learning and Teaching Technologies, edited by
L. Esnault, Volume 1, Issue 4, pp. 36-53, copyright 2006 by IGI Publishing (an imprint of IGI Global).

 2247

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.26
Lack of Skill Risks to

Organizational Technology
Learning and Software
Project Performance

James Jiang
University of Central Florida, USA

Gary Klein
United States Air Force Academy, USA

Phil Beck
Southwest Airlines, USA

Eric T. G. Wang
National Central University, Taiwan

ABStrAct

To improve the performance of software projects,
a number of practices are encouraged that serve to
control certain risks in the development process,
including a lack of essential skills and knowledge
related to the application domain and system
development process. A potential mediating
variable between the lack of skill risk and proj-
ect performance is the ability of an organization
to acquire the essential domain knowledge and

technology skills through learning, specifically
organizational technology learning. However,
the same lack of knowledge that hinders good
project performance may also inhibit learning.
This study examines the relationship between
information system personnel skills and domain
knowledge, organizational technology learning,
and software project performance with a sample of
professional software developers. Indications are
that the relationship between information systems
(IS) personnel skills and project performance is

2248

Lack of Skill Risks to Organizational Technology Learning and Software Project Performance

partially mediated by organizational technology
learning.

IntroductIon

The importance of technical and business skills
and knowledge for information systems personnel
has been advocated in the IS literature for decades
(Cheney & Lyons, 1980; Jiang, Klein, Van Slyke,
& Cheney, 2003). In spite of the recognized im-
portance, empirical investigations that examined
the relationship between IS personnel skills and
project performance, as measured comprehen-
sively by attainment of goals and budgets, have
been lacking in the IS research literature. To ad-
dress this lack, Byrd and Turner (2001) conducted
a study using the perceptions of chief information
officers (CIOs) to evaluate IS personnel skills and
the success of information systems in building
competitive posture. To one’s surprise, their study
did not find a significant positive relationship be-
tween IS personnel skills and eventual success of
the developed system. Why should an empirical
study contradict experience? They suspect that
the relationships in an organization where IS
personnel skills are applied have too many com-
plexities to be modeled accurately. Could there be
a mediating variable between IS personnel skills
and IS project performance that further explains
how to overcome this essential lack?

Researchers have observed that activities dur-
ing information system development and imple-
mentation offer an opportunity for organizational
technology learning, or the ability and practice
of bringing new skills and knowledge into the
organization related to IS development and the
application of IS tools to business domains (Ko,
Kirsch, & King, 2005; Stein & Vandenbosch,
1996). For a successful IS implementation, skills
must be brought to bear from the application
domain and technical domains, which can best
happen when the organization encourages the
learning of newer skills and knowledge, and has

practices to incorporate these newly acquired
assets into current and future projects. In short,
organizational technology learning is a critical
factor for predicting final IS project performance,
and a base of knowledge and skills in the IS
project team are a necessary condition for or-
ganizational technology learning to occur. This
suggests that organizational technology learning
is a mediator between IS skills and knowledge and
the performance of the IS project. Unfortunately,
no empirical study has attempted to validate this
reasoning.

The focus of this study is, therefore, to examine
the relationship from IS staff development skills
and domain knowledge to project performance
with organizational technology learning as a
mediator. A positive result of this study will
provide additional insights on IS skill research
and provide an alternative explanation to the
unsolved IS skills puzzle of Byrd and Turner
(2001). From a survey sample of 212 Institute of
Electrical and Electronics Engineers Computer
Society members, the results indicate that the
lack of system development skills and knowledge
in the application domain have a direct negative
impact on organizational technology learning and
project performance. Furthermore, organizational
technology learning has a significant positive
impact on final project performance, showing
that the impact of IS personnel skill levels on
project performance is partially mediated by
organizational technology learning.

BAcKgrOunD AnD reSeArcH
mODel

Broad categories of critical IS personnel skills
are identified, including (1) technical specialties/
technology management skills and (2) business
domain knowledge and skills (Jiang et al., 2003).
Unfortunately, given decades of emphasis, these
IS skills were still not linked to IS project per-
formance (Byrd & Turner, 2001). This may be

 2249

Lack of Skill Risks to Organizational Technology Learning and Software Project Performance

due to the lack of an intervening variable similar
to an established relationship between IS staff
competency and firm performance where learning
is a mediator (Tippins & Sohi, 2003). This study
investigates the possibility of a variation on learn-
ing as a mediating variable in the project context
between IS personnel knowledge and skills and
IS project success.

This research considers learning from the
perspective of general technology skills acquired
by the firm in the project context (Cooprider &
Henderson, 1990). Organizational technology
learning is an organization’s furthered under-
standing of its operational business procedures
and information system technology capabilities
(Lee & Choi, 2003). The IS application develop-
ment process itself can be viewed as an intensive
activity of skill learning and knowledge acquisi-
tion (Rus & Lindvall, 2002). Such learning results
in associations, cognitive systems, and memories
that are developed and shared by members of an
organization. These learned skills can then be
used to enhance the performance of a software
project and, thus, the organization. From concept
generation to implementation, integration of skills
and knowledge to achieve a desired product can
be viewed as the central theme of the software
development process. IS projects require such an
in-depth set of skills and knowledge of application
domains (Badaracco, 1991).

Various project stakeholders (e.g., IS develop-
ers and end-users) bring different repositories of
expertise, skills, knowledge, and perspectives
to the project teams. This potential pool of skills
held collectively by project stakeholders repre-
sents embedded knowledge (Schramer, 2000).
The delivered system represents embodied (i.e.,
learned) knowledge – referring to how the techni-
cal knowledge and knowledge of application do-
main is formalized and incorporated in the design,
functionality, policies, and features of a system.
Okhuysen & Eisenhardt (2002) indicated that the
successful integration and learning of embedded
knowledge into embodied knowledge is the key

to successful product and service developments.
The information system development process is a
process of converting embedded knowledge into
embodied knowledge (Robillard, 1999). Proposed
organizational practices to achieve this conversion
can be found in various literature on knowledge
management, organizational learning, and em-
ployee education (Chiva & Alegre, 2005; Kayes,
Kayes & Kolb, 2005). In particular, practices have
been proposed to enhance knowledge management
via information systems, promote learning dur-
ing development, and educating through training
(Majchrzak, Beath, Lim, & Chin, 2005; Olfman,
Bostrom, & Sein, 2003; Sher & Lee, 2004). As a
result, a relatively stable and accessible body of
embedded knowledge that exists within the project
team may become a necessary condition for an
occurrence of organizational technology learning
and improved project performance.

The notion of organizational entities, like proj-
ect teams as vehicles for integrating fragmented
knowledge, is the core of knowledge-based theory
(Grant, 1996). Some knowledge is codified in doc-
uments or embodied in procedures and policies,
and much is held tacitly in the minds of individuals.
The development of new products and services
require combining both tacit and explicit knowl-
edge held by many individuals (Kogut & Zander,
1992). Many of the “run-away” IS projects can be
related to either embedded customer or technical
knowledge that are difficult to be embodied in a
system: vague requirements, new technologies/
methods, new development methodologies, new
ideas, and changing user needs. To be success-
ful, technical knowledge and knowledge about
user functions and needs must be learned by the
organization and embodied in the system design
and implementation. Based upon the above dis-
cussion, we propose the following research model
(see Figure 1). We propose that the lack of system
development technical knowledge and the lack of
application domain knowledge will negatively
impact organizational technology learning, and,
in turn, negatively impact final project outcomes.

2250

Lack of Skill Risks to Organizational Technology Learning and Software Project Performance

The detailed hypotheses examined in this study
are discussed in the following section.

HypOtHeSeS

For learning to occur, it is accepted that certain
conditions must be in place in the organization.
One seeming catch-22 is that existing knowledge
must be in place for learning to occur (Cohen &
Levinthal, 1990). In this instance, learning is not
merely the sum of the basic knowledge and skills
of the individuals, but the structure in place to
retain and transfer knowledge throughout the
organization (Schulz, 2001). This by itself indi-
cates that individual knowledge is not sufficient to
guarantee that organizational technology learning
will take place. Knowledge and skills must be the
collective of a project team that can be directed to
accomplish the goals of a software development
project (Schulz, 2001).

Absorptive capacity is a theory-based expla-
nation of this phenomena (Cohen & Levinthal,
1990). The basic premise of absorptive capacity
is that the IS project team must have prior related
knowledge and skills to assimilate and utilize the
new knowledge. Research in other fields supports
this premise. Memory development research sug-
gests that an accumulation of prior knowledge
improves the ability to store new knowledge and
the ability to recall and use knowledge as skills
(Bower & Hilgard, 1981). Furthermore, lack
of knowledge in the appropriate context limits
the ability to make new knowledge intelligible
(Lindsay & Norman, 1977). New knowledge
must be exploitable as skills and depends upon
the transfer of knowledge within the organization
(Sarin & McDermott, 2003). Essentially, a lack of
knowledge blocks organizational access to further
knowledge and the ability to utilize the skills de-
rived from the knowledge. A previous knowledge
base is important to the rapid dissemination and

Project
Performance

Organizational
Technology

Learning

Lack of
Application

Domain
Knowledge

Lack of
System

Development
Skills

H1b

H1a

H2b

H2a

H3

Figure 1. Research model of risk impact on learning and performance

 2251

Lack of Skill Risks to Organizational Technology Learning and Software Project Performance

assimilation of the knowledge required to exploit
technology and adopt new technology into pro-
ductive domain applications (Ko et al., 2005). In
addition, diversity of knowledge is important for
further learning in order to place new knowledge
in a corporate context (Fichman & Kemerer,
1997). Based upon absorptive capacity theory and
existing studies demonstrating the importance of
previous knowledge, we expect:

• H1a: There is a negative relationship be-
tween the lack of system development skills
and organizational technology learning.

• H1b: There is a negative relationship
between the lack of application domain
knowledge and organizational technology
learning.

Risk-based software engineering describes
why software project uncertainties have an
adverse impact on performance (Boehm, 1991).
According to this theory, project uncertainties
can be viewed as risk drivers that increase the
performance risk of the project. The purpose of
software engineering is to manage the particular
sources of project risks and lead to a successful
project development. If this holds, then project
performance depends upon the reduction or
control of the various risks in place, including
those associated with knowledge deficiencies on
the part of the IS development staff. Research
based upon the analysis of risk in project environ-
ments supports this notion (Jiang & Klein, 2000).
Researchers and practitioners have indicated that
the lack of knowledge on the part of the IS staff
is a significant project risk that could negatively
impact a project’s outcome (Schmidt, Lyytinen,
Keil, & Cule, 2001). In the IS skill literature, Ji-
ang et al. (2003) found that the lack of skills was
correlated with project failures. Based upon the
risk management theory and above discussion,
we expect that:

• H2a: There is a negative relationship be-
tween the lack of system development skills
of IS staff and project performance.

• H2b: There is negative relationship between
the lack of application domain knowledge
of IS staff and project performance.

Various learning models incorporate the
concept of feedback (Argyris, 1999). Single-
loop learning is defined as matching expected
consequences to those incurred from action and
correcting the actions when a match is not present.
Double-loop learning occurs when the mismatch
causes a reflection on the underlying rules and
principles of the system. This mechanism is
similar to the feedback and control mechanisms
of cybernetic (control) theory (Henderson &
Lee, 1992). In projects, when expectations are
not met, this creates feedback that is then used
in a learning process to prevent the errors in the
future. Thus, when organizational technology
learning occurs, subsequent errors in the soft-
ware development projects are reduced through
either corrective action or reformulation of the
principles of practice.

Performance improvement by learning is a
general assumption in learning research (Lee &
Choi, 2003; Sarin & McDermott, 2003). A study
on shared knowledge has found positive relation-
ships to group performance (Nelson & Cooprider,
1996). Project teams pursuing project goals are
usually defined to be groups along the lines of
those whose performance can be improved by
shared knowledge (Klein, 1991). Organizations
benefit from knowledge management practices
implanted during system development and com-
pleted system projects (Fedor, Ghosh, Caldwell,
Maurer, & Singhal, 2003; Sher & Lee, 2004). This
process of sharing knowledge is considered one
form of learning (Schulz, 2001). Thus, based on
limited empirical results and the adaptive learning
model, we expect support for:

2252

Lack of Skill Risks to Organizational Technology Learning and Software Project Performance

• H3: There is a positive relationship between
organizational technology learning and
project performance.

reSeArcH metHODS

Sample

Questionnaires were mailed to 1,000 randomly
selected IEEE Computer Society members. The
letter salutation was directed to software engi-
neers. This sample is likely familiar with software
development activities and, thus, appropriate for
study. Instructions in the letter told the targets
to consider their responses in light of their most
recently completed software development project.
From the initial mailing and a follow-up, 221
responses were received. Nine questionnaires
were eliminated due to missing data, leaving
a final sample of 212 used in the data analysis.
Demographic features of the sample population
are in Table 1.

Non-response bias occurs when the opinions
and perceptions of the survey respondents do not
accurately represent the overall sample to which
the survey was sent. One test for non-response
bias is to compare the demographics of early
versus late respondents to the survey (Armstrong
& Overton, 1977). T-tests on the means of key
demographics (work experience, gender, recent
project duration, and team sizes) to examine
whether significant differences existed between
early and late respondents in the first mailing, and
from those received in the first mailing to those
in the follow-up mailing, found no significant
differences.

Since all independent and dependent variables
were collected from the same subject at the same
time, common method bias was assessed using
Harman’s one-factor test (Podsakoff & Organ,
1986). Two models, a single factor model and a
four-factor model, were created and tested in EQS.
The model fit indices of the single factor model

(GFI=0.514, CFI=0.564, Chi-Square = 1343.264,
df =152, RMR=0.231, and RMSEA=0.193) were
worse than the model fit indices of the four fac-
tors model (GFI = 0.849, CFI = 0.928, Chi-Square
= 343.6, df =146, RMR=0.068, RMSEA=0.08)
indicating that common method bias will not be
a potential problem in the following analysis.

constructs

Project performance is a comprehensive view that
includes meeting project goals, budget, schedule,
user requirement, and operational efficiency con-
siderations. This is also reflected in the information
systems literature in terms of meeting system
budget, meeting delivery schedule, fulfilling user
requirements, the amount of work produced, the
quality of work produced, and an ability to meet
project goals (Jones & Harrison, 1996). The items
used in this study were adopted from a previous
study (Henderson & Lee, 1992). The questionnaire
asked respondents’ satisfaction with the project
team performance when developing information
systems. The specific items are listed in Table
2. Each item was scored using a five-point scale
ranging from criterion not met at all (1) to criterion
fully met (5). All items were presented such that
the greater the score, the greater the satisfaction
of the particular item.

Organizational technology learning describes
the technology knowledge being acquired by the
firm (Cooprider & Henderson, 1990). This instru-
ment was applied in previous studies involving
organizational technology learning (Cooprider
& Henderson, 1990). Three items were used to
measure this construct and are shown in Table 2.
Respondents were asked to indicate the extent of
the items typically incurred when developing IS
applications in their organization. Each item was
scored using a five-point scale ranging from never
occurring (1) to always occurring (5). All items
were presented such that the greater the score, the
greater the extent of the particular item occurring
during the system development.

 2253

Lack of Skill Risks to Organizational Technology Learning and Software Project Performance

Lack of application domain knowledge relates
to the IS staff’s knowledge of the new application
areas. Lack of system development skills is the IS
staff’s overall lack of expertise of the development
methods used during system development. These
two risks are all based on items proposed in earlier
studies (Barki, Rivard, & Talbot, 1993; Jiang,
Klein, & Means, 2000). The items associated
with each of these risks are in Table 2. All items
were presented such that the greater the score, the

greater the extent of the particular item present
during the system development projects.

Analytical procedures

The analysis followed a two-step procedure.
In the first step, confirmatory factor analysis
(CFA) was applied to develop a measurement
model describing the nature of the relationship
between a number of latent factors and the mani-

1. Gender
Male 189

Female 23
2. Position:

IS Manager 55
Project Leader 71
IS Professional 75
Others 8

3. The industry type of your company:
Service 110
Manufacturing 78
Education 12

 Others 6
4. Average IS project duration in your organization:

1 years and under 85
1 – 2 years 75
2 – 3 years 23
3 – 5 years 11
6 or more years 13

5. Average size of IS project teams in your organization:
7 and under 113
8 – 15 69
16 – 25 13
26 and over 13

Table 1. Demographic information

2254

Lack of Skill Risks to Organizational Technology Learning and Software Project Performance

Construct Indicators Load-
ings T-value

Project Performance (α=.90)
Ability to meet project goals .79 12.64*
Expected amount of work completed .76 11.98*
High quality of work completed .82 13.43*
Adherence to schedule .75 11.87*
Adherence to budget .71 10.30*
Efficient task operations .76 12.09*
Organizational Technology Learning (α=.80)
Knowledge is acquired by your organization about use
of key technologies .86 13.31*

Knowledge is acquired by your organization about use
of development techniques .83 12.69*

Knowledge is acquired by your organization about
supporting users’ business .57 7.95*

Lack of System Development Skills (α=.87)
Lack of expertise in the development methodology
used in projects .84 13.86*

Lack of expertise in the development support tools
used in projects (e.g., DFD, flowcharts, ER model,
CASE tools)

.90 15.41*

Lack of expertise in the project management tools used
in projects (e.g., PERT charts, Gantt diagrams, walk-
throughs, project management software)

.79 12.68*

Lack of expertise in the implementation tools used
in projects (e.g., programming languages, data base
inquiry languages, screen generators)

.62 9.03*

Lack of Application Domain Knowledge (α=.86)
The members of the development team are unfamiliar
with the application types .68 10.25*

Insufficient knowledge of organizational operations .89 14.97*
Lack of knowledge of the functioning of user depart-
ments .95 14.04*

Lack of expertise in the specific application areas of
new systems .71 10.71*

Table 2. Measurement model—confirmatory factor analysis

 2255

Lack of Skill Risks to Organizational Technology Learning and Software Project Performance

fest indictor variable that measures those latent
variables. In step two, the measurement model
serves to test the theoretical model of interest.
The indicators used to present the latent variables
in the theoretical model tested are identical to
those presented in the measurement model. This
analysis step may be described as a path analysis
with latent variables. The path model consists of
the unobservable constructs and the theoretical
relationships among them (the paths). It evaluates
the explanatory power of the model and the sig-
nificance of paths in the structural model, which
represent hypotheses to be tested. The estimated
path coefficients indicate the strength and the sign
of the theoretical relationships.

Three important assumptions associated with
path analysis are: 1) normal distribution of the
variables examined; 2) absence of multicollinear-
ity among the variables; and 3) a limit on the
maximum number of variables in the model. To
test for normality, Mardia’s multivariate kurtosis
and normalized multivariate kurtosis tests were
conducted. No violation was found. Multicol-
linearity is present when one or more variables
exhibit very strong correlations with one another.
The correlations between variables (see Table 3)
were all less than .80, thus no significant viola-
tion of multicollinearity was present (Anderson
& Gerbing, 1988).

When conducting a CFA, if the model provides
a reasonably good approximation to reality, it
should provide a good fit to the data. The CFA for
the measurement model resulted in a root mean
square residual of .07 (<= .10 is recommended),
a chi-square/degree of freedom ratio of 2.41 (<=
3 is recommended), a comparative fit index of
.90 (>= .90 recommended), and a non-normed
fit index of .89 (>= .90 recommended) using the
SAS CALIS procedure. The recommended values
are based on research traditions and established
authors in the field of structural equation model-
ing (Bentler, 1990). The measurement model was
adequate for the data set.

Convergent validity is demonstrated when
different instruments are used to measure the
same construct, and scores from these different
instruments are strongly correlated. Convergent
validity can be assessed through t-tests on the fac-
tor loadings, such that the loadings are greater than
twice their standard error (Anderson & Gerbing,
1988). The t-tests for the loadings of each variable
are in Table 2. The results show that the constructs
demonstrate a high convergent validity since all
t-values are significant at the .05 levels. In addition,
the reliability of each construct is examined by
the Cronbach alpha value, all of which exceeded
the recommend level of .70 (Nunnally, 1978).

A threat to external validity occurs if the
sample shows systematic biases in terms of de-
mographics. An ANOVA was conducted by using
project performance as the dependent variable
against each demographic category (as inde-
pendent variables). Results did not indicate any
significant relationship to project performance.
Similar results were found for the remaining
variables in the model. The external validity
of the findings is also threatened if the sample
is systematically biased – for example, if the
responses were generally from projects that are
more successful. Table 3 shows the descriptive
statistics for the construct. The responses had a
good distribution for project performance since
the mean and median were similar, skewness
was less than two, and kurtosis was less than five
(Ghiselli, Campbell, & Zedeck, 1981). Similar
results held for the remaining variables. Lastly,
external validity is improved if the measures are
similar to those found in other studies. In our
case, the project performance measure matches
within 2% to two other studies (Henderson &
Lee, 1992; Jones & Harrison, 1996).

Discriminant validity is demonstrated when
different instruments are used to measure dif-
ferent constructs and the correlations between
the measures of those different constructs are
relatively weak. Discriminant validity is assessed

2256

Lack of Skill Risks to Organizational Technology Learning and Software Project Performance

by using the confidence interval test (Anderson
& Gerbing, 1988). A confidence interval test in-
volves calculating a confidence interval of plus
or minus two standard errors around the corre-
lation between factors and determining whether
this interval includes 1.0 (or -1.0). If the interval
(for each pair of constructs) does not include 1.0,
discriminant validity is demonstrated. No viola-
tions were found.

reSultS

The theorized model in Figure 1 fit the data rea-
sonably well, with a root mean square residual of
.08, a chi-square/degree of freedom fit of 2.47, a
comparative fit index of .88, and a non-normed

fit index of .86. Hypotheses H1a, H1b, H2a, H2b,
and H3, were all supported at the .05 significance
level. The high R-square value (.49) indicated that
the independent variables included in this model
were all critical to the project performance. The
strengths of these relationships, path coefficients,
are on Figure 2.

DiScuSSiOn

The importance of system development skills
and business domain knowledge for IS person-
nel has been advocated in the IS literature for
decades. However, empirical examinations that
investigated the relationship between these skills
and system success provided conflicting results

O
rganization-

al Technology
Learning

Lack of
D

evelopm
ent

Skills

Lack of
Application
K

now
ledge

Project
Perform

ance

Mean 3.64 2.64 2.47 3.52
Std. Dev. .83 .93 .8 .75
Median 3.67 2.75 2.50 3.67
Skewness -.34 .09 .07 -.51
Kurtosis -.26 -.56 -.50 .22

Correlations
Lack of Development
Skills

-.36
(.0001)

Lack of Application
Knowledge

-.37
(.0001)

.64
(.0001

Project Performance .54
(.0001)

-.46
(.0001)

-.36
(.0001)

Table 3. Descriptive analysis and correlations of measures

 2257

Lack of Skill Risks to Organizational Technology Learning and Software Project Performance

(Byrd & Turner, 2001). To provide an alternative
explanation of the IS skill puzzle in the literature,
this study proposed that organizational technology
learning is a mediator between the lack of system
development technical skills and application do-
main knowledge and project performance. Results
indicate that risk of lack of skills and knowledge
adversely impacts IS software development proj-
ects and interferes with the organizational technol-
ogy learning required to help overcome the risks.
Furthermore, organizational technology learning
was found to promote project performance.

For researchers, this study complements exist-
ing literature in several respects. First, learning
does not take place unless a set of knowledge and
skills is in place to use as a foundation (Cohen
& Levinthal, 1990). This result has specific con-
sequences to the limited framework of the study

but also puts forth the idea that risks thought to be
associated with project performance may impact
other organizational processes and remedies. Sec-
ond, lack of knowledge and skills is shown to be
a large risk to the performance of projects. This
study confirms the IS skill literature that a lack
of skills does have a negative impact on project
performance. Third, the positive relationship
between IS skills and project performance may
be explained by the mediator -- organizational
technology learning. This extends the mediation
results found in the organizational setting to the
project environment (Tippins & Sohi, 2003). It
provides an alternative explanation for a lack of
positive relationships between IS skills and project
performance in previous studies. Some natural
actions to promote learning of the technology may
be needed for the newer developments (Schulz,

Project
Performance

Organizational
Technology

Learning

Lack of
Application

Domain
Knowledge

Lack of
System

Development
Skills

-.16

-.19

-.15

-.21

+.42

Figure 2. Research model path coefficients

2258

Lack of Skill Risks to Organizational Technology Learning and Software Project Performance

2001). Additionally, a direct link between organi-
zational technology learning and the performance
of IS projects is established. This goes beyond the
literature that considers success limited to the
completion of learning, the dissemination of new
ideas, or the adoption of new methodologies.

For practitioners, the results encourage man-
agement to seek ways to overcome risks associated
with knowledge deficiencies. The IS personnel
literature contains studies of composing teams
that have a variety of knowledge and skills (Jiang,
Klein & Balloun, 1998). This goes along with
a need for a diversity of knowledge and skills.
The knowledge management literature supports
this knowledge diversity through examples of
loyalty in personnel and cross-fertilization of
specialties (Nonaka & Takeuchi, 1995). A set of
knowledge must be present in order to acquire
more knowledge and must be present in the in-
dividuals in order for the organization to acquire
and utilize the knowledge as applied skills (Cohen
& Levinthal, 1990). Hiring practices must be set
to ensure the requisite variety and background in
the organization as a whole and in the individual
expected to grow the knowledge and skills of the
organization.

Organizational policies or practice may also
contribute to the ability to overcome lack of
knowledge and skills. Training is still an effective
tool in the preparation of employees; however,
the organization must appropriately target the
training. Employees, or groups of employees,
with limited background may not gain as much as
employees with a stronger background. Employees
with a broad technical, business, and liberal arts
background have a larger learning set to grow
from than do employees with strictly a technical
background. Appropriate structures that promote
growth of knowledge should serve to leverage
existing knowledge (Nonaka & Takeuchi, 1995).
Knowledge systems within an organization serve
to distribute the knowledge more widely (Daven-
port & Prusak, 2000). Each of these techniques

must be carefully weighed to determine their
value in overcoming deficiencies.

The study is limited by its scope and sample.
The scope is narrowly defined to include only
certain components and only learning that occurs
about technology application. However, though
this study took a unique posture in its scope, it
does confirm existing learning theory. A bigger
limitation is on the risks considered. Other risk
factors are well known to play a critical role in
project performance (Barki et al., 1993). What
must be remembered is that risks are not isolated
and are often interrelated. The control of one
risk factor may lead to an associated increase in
another. This study does not account for all of
the possible interactions inherent in risk inter-
relationships.

referenceS

Anderson, J. C., & Gerbing, G. W. (1988). Struc-
tural equation modeling in practice: A review and
recommended two-step approach. Psychological
Bulletin, 103(3), 411-423.

Argyris, C. (Ed.). (1999). On organizational
learning (Second ed.). Malden: Blackwell Pub-
lishers, Inc.

Armstrong, J. S., & Overton, T. S. (1977). Estimat-
ing non-response bias in mail surveys. Journal
of Marketing Research, 14, 396-402.

Badaracco, J. (1991). The knowledge link: How
firms compete through strategic alliances. Boston:
Harvard Business School Press.

Barki, H., Rivard, S., & Talbot, J. (1993). Toward
an assessment of software development risk.
Journal of Management Information Systems,
10(2), 202-223.

Bentler, P. M. (1990). Comparative fit indexes in
structural models. Psychological Bulletin, 107(2),
238-246.

 2259

Lack of Skill Risks to Organizational Technology Learning and Software Project Performance

Boehm, B. W. (1991). Software risk management:
Principles and practice. IEEE Software, 32-41.

Bower, G. H., & Hilgard, E. R. (1981). Theories of
learning. Englewood Cliffs, NJ: Prentice-Hall.

Byrd, T. A., & Turner, D. E. (2001). An explor-
atory analysis of the value of the skills of IT
personnel: Their relationship to IS infrastructure
and competitive advantage. Decision Sciences,
32(1), 21-54.

Cheney, P. H., & Lyons, N. R. (1980). Informa-
tion systems skill requirements: A survey. MIS
Quarterly, 4(1), 35-43.

Chiva, R., & Alegre, J. (2005). Organizational
learning and organizational knowledge: Towards
the integration of two approaches. Management
Learning, 36(1), 49-68.

Cohen, W. M., & Levinthal, D. A. (1990). Absorp-
tive capacity: A new perspective on learning and
innovation. Administrative Science Quarterly,
35, 128-152.

Cooprider, J. G., & Henderson, J. C. (1990).
Technology-process fit: Perspectives on achieving
prototyping effectiveness. Journal of Manage-
ment Information Systems, 7(3), 67-87.

Davenport, T. H., & Prusak, L. (2000). Working
knowledge. Boston: Harvard University Press.

Fedor, D. B., Ghosh, S., Caldwell, S. D., Maurer,
T. J., & Singhal, V. R. (2003) The effects of knowl-
edge management on team members’ ratings of
project success and impact. Decision Sciences,
34(3), 513-539.

Fichman, R. G., & Kemerer, C. F. (1997). The
assimilation of software process innovations: An
organizational learning perspective. Management
Science, 43(10), 1345-1363.

Fiol, C. M., & Lyles, M. A. (1985). Organizational
learning. Academy of Management Review, 10(4),
803-813.

Ghiselli, E.E., Campbell, J.P., & Zedeck, J.P.
(1981). Measurement theory for the behavioral
sciences, San Francisco, CA: Freeman.

Grant, R. M. (1996). Prospering in dynami-
cally-competitive environment: organizational
capability as knowledge integration. Organization
Science, 7(4), 375-387

Green, G. I. (1989). Perceived importance of
systems analysts’ job skills, roles, and non-salary
incentives. MIS Quarterly, 13(2), 115-133.

Harlow, H. F. (1949). The formation of learning
sets. Psychological Review, 56, 51-65.

Henderson, J. C., & Lee, S. (1992). Managing
IS design teams: A control theory perspective.
Management Science, 38(6), 757-777.

Jiang, J. J., & Klein, G. (1999). Risks to different
aspects of system success. Information & Man-
agement, 36, 263-272.

Jiang, J. J., & Klein, G. (2000). Software devel-
opment risks to project effectiveness. Journal of
Systems and Software, 52, 3-10.

Jiang, J. J., Klein, G., & Balloun, J. (1998). Systems
analysts’ attitudes toward information systems
development. Information Resources Manage-
ment Journal, 11(4), 5-10.

Jiang, J. J., Klein, G., & Means, T. (2000). Proj-
ect risk impact on software development team
performance. Project Management Journal,
31(4), 19-26.

Jiang, J. J., Klein, G., Van Slyke, C., & Cheney, G.
(2003). A note on interpersonal and communica-
tion skills for IS professionals: Evidence of positive
influence. Decision Sciences, 34, 4, 1-15.

Jones, M. C., & Harrison, A. W. (1996). IS project
team performance: An empirical assessment.
Information & Management, 31(2), 57-65.

2260

Lack of Skill Risks to Organizational Technology Learning and Software Project Performance

Kayes, A. B., Kayes, D. C., & Kolb, D. A. (2005).
Experiential learning in teams. Simulation &
Gaming, 36(3), 330-354.

Klein, H. (1991). Further evidence on the relation-
ship between goal setting and expectancy theories.
Organizational Behavior and Human Decision
Processes, 49, 230-257.

Ko, D., Kirsch, L., & King, W. (2005). Anteced-
ents of knowledge transfer from consultants to
clients in enterprise system implementations.
MIS Quarterly, 29(1), 59-85.

Kogut, B., & Zander, U. (1992). Knowledge of the
firm, competitive capabilities, and the replication
of technology. Organization Science 3, 383-397.

Lee, H., & Choi, B. (2003). Knowledge manage-
ment enablers, processes, and organizational
performance: An integrative view and empirical
examination. Journal of Management Information
Systems, 20(1), 179-228.

Lindsay, P. H., & Norman, D. A. (1977). Human
information processing. Orlando, FL: Academic
Press.

Majchrzak, A., Beath, C. M., Lim, R. A., & Chin,
W. W. (2005). Managing client dialogues during
information system design to facilitate client
learning. MIS Quarterly, 29(4), 653-672.

Nelson, K. M., & Cooprider, J. G. (1996). The
contribution of shared knowledge to IS group
performance. MIS Quarterly, 20(4), 409-432.

Nonaka, I., & Takeuchi, H. (1995). The knowledge-
creating company: how Japanese companies cre-
ate the dynamics of innovation. Oxford: Oxford
University Press.

Nunnally, J. C. (1978). Psychometric theory (2nd
ed.). New York: McGraw-Hill.

Okhuysen, G., & Eisenhardt, K. (2002). Integrat-
ing knowledge in groups: How formal interven-
tions enable flexibility. Organization Science
13(4), 370-386.

Olfman, L., Bostrom, R. P., & Sein, M. K. (2003).
A best-practice model for information technology
learning strategy formulation. In Proceedings of
the 2003 SIGMIS Conference on Computer Per-
sonnel Research, ACM Digital Library, 75-86.

Podsakoff, P. M., & Organ, D. W. (1986). Self-
reports in organizational research: Problems
and prospects. Journal of Management, 12,
531-544.

Robillard, R. (1999). The role of knowledge in
software development. Communications of the
ACM, 42(1), 87-92.

Rus, L., & Lindvall, M. (2002). Knowledge
management in software engineering. IEEE
Software, 26-38.

Sarin, S., & McDermott, C. (2003) The effect of
team leader characteristics on learning, knowl-
edge application, and performance of cross-func-
tional new product development teams. Decision
Sciences, 34(4), 707-739.

Schmidt, R. C., Lyytinen, K., Keil, M., & Cule, P.
E. (2001). Identifying software project risks: An
international Delphi study. Journal of Manage-
ment Information Systems, 17(4), 5-36.

Schramer, C. (2000). Organizing around not-
yet-embedded knowledge. In G. Von Krogh,
I. Nonaka, & T. Nishiguchi (Eds.), Knowledge
creation: A source of wealth (pp. 36-60). London:
Palgrave MacMillan.

Schulz, M. (2001). The uncertain relevance of
newness: Organizational learning and knowledge
flows. Academy of Management Journal, 44(4),
661-681.

Sher, P. J., & Lee, V. C. (2004). Information
technology as a facilitator for enhancing dynamic
capabilities through knowledge management.
Information & Management, 41(8), 933-945.

Stein, E. W., & Vandenbosch, B. (1996). Or-
ganizational learning during advanced system

 2261

Lack of Skill Risks to Organizational Technology Learning and Software Project Performance

development: Opportunities and obstacles.
Journal of Management Information Systems,
13(2), 115-136.

Tippins, J., & Sohi, R. (2003). IT competency
and firm performance: Is organizational learning
a missing link. Strategic Management Journal,
24, 745-761.

This work was previously published in the Information Resources Management Journal, edited by M. Khosrow-Pour, Volume
20, Issue 3, pp. 32-45, copyright 2007 by IGI Publishing (an imprint of IGI Global).

2262

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.27
Patterns for Organizational

Modeling
Manuel Kolp

Université Catholique de Louvain, Belgium

Stéphane Faulkner
University of Namur, Belgium

ABStrAct

Organizational modeling is concerned with
analyzing and understanding the organizational
context within which a software system will
eventually function. This paper proposes orga-
nizational patterns motivated by organizational
theories intended to facilitate the construction
of organizational models. These patterns are
defined from real world organizational settings,
modeled in i* and formalized using the Formal
Tropos language. Additionally, the paper evaluates
the proposed patterns using desirable qualities
such as coordinability and predictability. The
research is conducted in the context of Tropos,
a comprehensive software system development
methodology.

intrODuctiOn

Analyzing the organizational and intentional con-
text within which a software system will eventu-
ally operate has been recognized as an important
element of the organizational modeling process
also called early requirements engineering (see
e.g., Anton, 1996; Dardenne, van Lamsweerde, &
Fickas, 1993; Yu, 1995). Such models are founded
on primitive concepts such as those of actor and
goal. This paper focuses on the definition of a
set of organizational patterns that can be used as
building blocks for constructing such models. Our
proposal is based on concepts adopted from orga-
nization theory and strategic alliances literature.
Throughout the paper, we use i* (Yu, 1995) as
the modeling framework in terms of which the
proposed patterns are presented and accounted
for. The research reported in this paper is being
conducted within the context of the Tropos project

 2263

Patterns for Organizational Modeling

(Giorgini, Kolp, Mylopoulos, & Pistore, 2004;
Giorgini, Kolp, Mylopoulos, & Castro, 2005),
whose aim is to construct and validate a software
development methodology for agent-based soft-
ware systems. The methodology adopts ideas from
multi-agent system technologies, mostly to define
the implementation phase of our methodology. It
also adopts ideas from Requirements Engineering,
where actors and goals have been used heavily for
early requirements analysis. The project is founded
on the premise that actors and goals are used as
fundamental concepts for modeling and analysis
during all phases of software development, not
just early requirements, or implementation. More
details about Tropos can be found in Giorgini, et
al., 2005. The present work continues the research
in progress about social abstractions for the Tropos
methodology. In Kolp, Giorgini and Mylopoulos
(2002a), we have detailed a social ontology for
Tropos to consider information systems as social
structures all along the development life cycle.
In Giorgini, Kolp, and Mylopoulos (2002); Kolp,
Giorgini, and Mylopoulos (2002b); and Kolp, Gior-
gini, and Mylopoulos (2006), we have described
how to use this Tropos social ontology to design
multi-agent systems architectures, notably for
e-business applications (Kolp, Do, & Faulkner,
2004). As a matter of fact, multi-agent systems can
be considered structured societies of coordinated
autonomous agents. In the present paper, which is
a extended and revised version of Kolp, Giorgini,
and Mylopoulos (2003), we emphasize the use of
organizational patterns based on organization
theory and strategic alliances for early require-
ments analysis, with the concern of modeling
the organizational setting for a system-to-be in
terms of abstractions that could better match its
operational environment (e.g., an enterprise, a
corporate alliance, etc.).

The paper is organized as follows: The second
section describes organizational and strategic
alliance theories, focusing on the internal and
external structure of an organization. The third
section details two organizational patterns—the

structure-in-5 and the joint venture—based on real
world examples of organizations. These patterns
are modeled in terms of social and intentional
concepts using the i* framework and the Formal
Tropos specification language. The fourth sec-
tion identifies a set of desirable non-functional
requirements for evaluating these patterns and
presents a framework to select a pattern with
respect to these identified requirements. The
fifth section overviews the Tropos methodology.
Finally, The sixth section summarizes the con-
tributions of the paper and provides an overview
of related work.

Structuring OrgAnizAtiOnS

Organizational structures are primarily studied by
organization theory (e.g., Mintzberg, 1992; Scott,
1998; Yoshino & Rangan, 1995), that describes
the structure and design of an organization and
strategic alliances (e.g., Dussauge & Garrette,
1999; Gomes-Casseres, 1996; Morabito, Sack, &
Bhate, 1999; Segil, 1996), that model the strategic
collaborations of independent organizational
stakeholders who have agreed to pursue a set of
agreed upon business goals.

Both disciplines aim to identify and study
organizational patterns that describe a system
at a macroscopic level in terms of a manageable
number of subsystems, components, and modules
interrelated through dependencies.

In this article, we are interested in identifying,
formalizing and applying organizational modeling
patterns that have been already well-understood
and precisely defined in organizational theories.
Our purpose is neither to categorize them exhaus-
tively nor to study them on a managerial point of
view. The following sections will thus only insist
on patterns that have been found, due to their
nature, interesting candidates, also considering
the fact that they have been studied in great detail
in the organizational literature and presented as
fully-formed patterns.

2264

Patterns for Organizational Modeling

Organization theory

“An organization is a consciously coordinated
social entity, with a relatively identifiable bound-
ary, that functions on a relatively continuous
basis to achieve a common goal or a set of goals”
(Morabito et al., 1999). Organization theory is the
discipline that studies both structure and design
in such social entities. Structure deals with the
descriptive aspects, while design refers to the
prescriptive aspects of a social entity. Organiza-
tion theory describes how practical organizations
are actually structured, offers suggestions on how
new ones can be constructed, and suggests how
old ones can change to improve effectiveness. To
this end, since Adam Smith, schools of organiza-
tion theory have proposed models and patterns to
try to find and formalize recurring organizational
structures and behaviors.

In the following, we briefly present organiza-
tional patterns identified in Organization Theory.
The structure-in-5 will be studied in detail in the
next section.

The Structure-in-5

An organization can be considered an aggregate
of five substructures, as proposed by Minztberg
(1992). At the base level sits the Operational Core,
which carries out the basic tasks and procedures
directly linked to the production of products and
services (acquisition of inputs, transformation of
inputs into outputs, and distribution of outputs).
At the top lies the Strategic Apex which makes
executive decisions ensuring that the organiza-
tion fulfils its mission in an effective way and
defines the overall strategy of the organization in
its environment. The Middle Line establishes a
hierarchy of authority between the Strategic Apex
and the Operational Core. It consists of managers
responsible for supervising and coordinating the
activities of the Operational Core. The Techno-
structure and the Support are separated from the
main line of authority and influence the operating

core only indirectly. The Technostructure serves
the organization by making the work of others
more effective, typically by standardizing work
processes, outputs, and skills. It is also in charge
of applying analytical procedures to adapt the
organization to its operational environment. The
Support provides specialized services at various
levels of the hierarchy, outside the basic operat-
ing workflow (e.g., legal counsel, R&D, payroll,
and cafeteria). We describe and model examples
of structures-in-5 in the next section.

The Pyramid Pattern

A well-known hierarchical authority structure.
Actors at lower levels depend on those at higher
levels. The crucial mechanism is the direct super-
vision from the Apex. Managers and supervisors
at intermediate levels only route strategic decisions
and authority from the Apex to the operating (low)
level. They can coordinate behaviors or take deci-
sions on their own, but only at a local level.

The Chain of Values

The chain of values merges, backward or forward,
several actors engaged in achieving or realizing
related goals or tasks at different stages of a sup-
ply or production process. Participants who act
as intermediaries, add value at each step of the
chain. For instance, for the domain of goods dis-
tribution, providers are expected to supply quality
products, wholesalers are responsible for ensuring
their massive exposure, while retailers take care
of the direct delivery to the consumers.

The Matrix

The matix proposes a multiple command struc-
ture: vertical and horizontal channels of informa-
tion and authority operate simultaneously. The
principle of unity of command is set aside, and
competing bases of authority are allowed to jointly
govern the workflow. The vertical lines are typi-

 2265

Patterns for Organizational Modeling

cally those of functional departments that operate
as ”home bases” for all participants, the horizontal
lines represent project groups or geographical
arenas where managers combine and coordinate
the services of the functional specialists around
particular projects or areas.

The Bidding Pattern

The bidding pattern involves competitive mecha-
nisms, and actors behave as if they were taking
part in an auction. An auctioneer actor runs the
show, advertises the auction issued by the auc-
tion issuer, receives bids from bidder actors and
ensures communication and feedback with the
auction issuer who is responsible for issuing the
bidding.

Strategic Alliances

A strategic alliance links specific facets of two
or more organizations. At its core, this structure
is a trading partnership that enhances the ef-
fectiveness of the competitive strategies of the
participant organizations by providing for the
mutually beneficial trade of technologies, skills,
or products based upon them. An alliance can
take a variety of forms, ranging from arm’s-length
contracts to joint ventures, multinational corpo-
rations to university spin-offs, and franchises to
equity arrangements. Varied interpretations of the
term exist, but a strategic alliance can be defined
as possessing simultaneously the following three
necessary and sufficient characteristics:

• The two or more organizations that unite
to pursue a set of agreed upon goals remain
independent, subsequent to the formation of
the alliance.

• The partner organizations share the benefits
of the alliances and control over the perfor-
mance of assigned tasks.

• The partner organizations contribute on a
continuing basis in one or more key strate-
gic areas, e.g., technology, products, and so
forth.

In the following, we briefly present organiza-
tional patterns identified in strategic alliances.
The joint venture will be studied in detail in the
third section.

Joint Venture Pattern

The joint venture pattern involves agreement
between two or more intra-industry partners to
obtain the benefits of larger scale, partial invest-
ment, and lower maintenance costs. A specific joint
management actor coordinates tasks and manages
the sharing of resources between partner actors.
Each partner can manage and control itself on a
local dimension and interact directly with other
partners to exchange resources, such as data and
knowledge. However, the strategic operation and
coordination of such an organization, and its ac-
tors on a global dimension, are only ensured by
the joint management actor in which the original
actors possess equity participations. We describe
and model examples of joint ventures in the third
section.

Arm’s-Length Pattern

The arm’s-length pattern implies agreements
between independent and competitive, but part-
ner, actors. Partners keep their autonomy and
independence but act and put their resources
and knowledge together to accomplish precise
common goals. No authority is lost or delegated
from one collaborator to another.

Hierarchical Contracting Pattern

The hierarchical contracting pattern identifies co-
ordinating mechanisms that combine arm’s-length

2266

Patterns for Organizational Modeling

agreement features with aspects of pyramidal
authority. Coordination mechanisms developed
for arm’s-length (independent) characteristics
involve a variety of negotiators, mediators, and
observers at different levels handling conditional
clauses to monitor and manage possible contingen-
cies, negotiate and resolve conflicts, and finally
deliberate and take decisions. Hierarchical rela-
tionships, from the executive apex to the arm’s-
length contractors, restrict autonomy and underlie
a cooperative venture between the parties.

Co-Optation Pattern

The co-optation pattern involves the incorporation
of representatives of external systems into the
decision-making or advisory structure and be-
havior of an initiating organization. By co-opting
representatives of external systems, organizations
are, in effect, trading confidentiality and authority
for resource, knowledge assets, and support. The
initiating system has to come to terms with the
contractors for what is being done on its behalf;
each co-optated actor has to reconcile and adjust
its own views with the policy of the system it has
to communicate.

mODeling OrgAnizAtiOnAl
pAtternS

We will define an organizational pattern as a
metaclass of organizational structures offering a
set of design parameters to coordinate the assign-
ment of organizational objectives and processes,
thereby affecting how the organization itself
functions. Design parameters include, among
others, goal and task assignments, standardiza-
tion, supervision and control dependencies, and
strategy definitions.

This section describes two of the organiza-
tional patterns presented in the second section:
the structure-in-5 and the joint-venture.

Structure-in-5

To detail and specify the structure-in-5 as an
organizational pattern, this section presents
two case studies: LDV Bates (Bates, 2006) and
GMT (GMT, 2006). They will serve to propose
a model and a semi-formal specification of the
structure-in-5.

LDV Bates

Agate Ltd. is an advertising agency located in
Belgium that employs about fifty staff, as detailed
in Table 1.

The Direction—four directors responsible for
the main aspects of LDV Bates’s Global Strat-
egy (advertising campaigns, creative activities,
administration, and finances)—forms the Stra-
tegic Apex. The Middle Line, composed of the
Campaigns Management staff, is in charge of
finding and coordinating advertising campaigns
(marketing, sales, edition, graphics, budget, etc.).
It is supported in these tasks by the Administration
and Accounts and IT and Documentation depart-
ments. Administration and Accounts constitutes
the Technostructure handling administrative tasks
and policy, paperwork, purchases, and budgets.
The Support groups the IT and Documentation
departments. It defines the IT policy of Agate,
provides technical means required for the man-
agement of campaigns, and ensures services for
system support as well as information retrieval
(documentation resources). The Operational Core
includes the Graphics and Edition staff in charge
of the creative and artistic aspects of realizing
campaigns (texts, photographs, drawings, layout,
design, and logos).

Figure 1 models LDV Bates in structure-in-5
using the i* strategic dependency model. i* is
a framework for organizational modeling (Yu,
1995), which offers goal-and-actor-based notions,
such as actor, agent, role, position, goal, softgoal,
task, resource and belief, as well as different kinds

 2267

Patterns for Organizational Modeling

Direction Edition
1 Campaigns Director 2 Editors IT
1 Creative Director 4 Copy writers 1 IT manager
1 Administrative Director 1 Network administrator
1 Finance Director Documentation 1 System administrator

1 Media librarian 1 Analyst
Campaigns Management 1 Resource librarian 1 Computer technician
2 Campaign managers 1 Knowledge worker
3 Campaign marketers
1 Editor in Chief Administration Accounts
1 Creative Manager 3 Direction assistants 1 Accountant manager

4 Manager Secretaries 1 Credit controller
Graphics 2 Receptionists 2 Accounts clerks
6 Graphic designers 2 Clerks/typists 2 Purchasing assistants
2 Photographers 1 Filing clerk

Table 1. Organization of LDV Bates

Figure 1. LDV Bates as a Structure-in-5

Graphics &
Edition

Docu-
mentation

IT & Docu-
mentation

IT Policy

Direction

Agency
Global

Strategy

Technical
Means

System
SupportCoordinate

Compaigns
Realize

Campaigns
Admini-

strative help

Campaigns
Managements

Campaign
Budget &

Paperwork

Admini-
stration &
Accounts

Admini-
stration &

Budget
Find

Campaigns

2268

Patterns for Organizational Modeling

of social dependency between actors. Its strate-
gic dependency model describes the network of
social dependencies among actors. It is a graph,
wherein each node represents an actor, and each
link between two actors indicates that one actor
depends on the other for some goal to be attained.
A dependency describes an “agreement” (called
dependum) between two actors: the depender and
the dependee. The depender is the depending ac-
tor, and the dependee, the actor who is depended
upon. The type of the dependency describes the
nature of the agreement. Goal dependencies
represent delegation of responsibility for fulfill-
ing a goal; softgoal dependencies are similar to
goal dependencies, but their fulfillment cannot
be defined precisely (for instance, the apprecia-
tion is subjective or fulfillment is obtained only
to a given extent); task dependencies are used in
situations where the dependee is required to per-

form a given activity; and resource dependencies
require the dependee to provide a resource to the
depender. As shown in Figure 1, actors are rep-
resented as circles; dependums–goals, softgoals,
tasks, and resources–are represented as ovals,
clouds, hexagons, and rectangles, respectively,
and dependencies have the form depender →
dependum → dependee.

GMT is a company specialized in telecom
services in Belgium. Its lines of products and
services range from phones & fax, conferencing,
line solutions, internet & e-business, mobile solu-
tions, and voice & data management. As shown
in Figure 2, the structure of the commercial orga-
nization follows the structure-in-5. An Executive
Committee constitutes the Strategic Apex. It is
responsible for defining the general strategy of
the organization. Five chief managers (finances,
operations, divisions management, marketing,

Sales &
Consultants

Documentation
& Promotion

R&D &
Marketing

Technology
 Policy

General
Strategy Sales Policy

Division
Management

Implement
Sales

Strategy

Finances &
Operations

Budget

Sales
Resource

Management

Planning &
Control

Technological
Awareness

Market
Study

Sales
Scheduling Sales &

Consulting
Coordinate

Sales

Technology
Training

Expertise
Support

Customer
Accounting
Information

Figure 2. GMT’s sales organization as a structure-in-5

 2269

Patterns for Organizational Modeling

and R&D) apply the specific aspects of the general
strategy in the area of their competence: Finances
& Operations is in charge of Budget and Sales
Planning & Control, Divisions Management is
responsible for Implementing Sales Strategy,
and Marketing and R&D define Sales Policy and
Technological Policy.

The Divisions Management groups manag-
ers that coordinate all managerial aspects of
product and service sales. It relies on Finance &
Operations for handling Planning and Control of
products and services, it depends on Marketing
for accurate Market Studies, and on R&D for
Technological Awareness.

The Finances & Operations departments
constitute the technostructure in charge of man-
agement control (financial and quality audit) and
sales planning, including scheduling and resource
management.

Support involves the staff of Marketing and
R&D. Both departments jointly define and sup-
port the Sales Policy. The Marketing department
coordinates Market Studies (customer positioning
and segmentation, pricing, sales incentive, etc.)
and provides the Operational Core with Docu-
mentation and Promotion services. The R&D
staff is responsible for defining the technological
policy, such as technological awareness services.
It also assists Sales people and Consultants with
Expertise Support and Technology Training.

Finally, the Operational Core groups the Sales
people and Line consultants under the supervision
and coordination of Divisions Managers. They
are in charge of selling products and services to
actual and potential customers.

Figure 3 abstracts the structures explored in
the case studies of Figures 1 and 2 as a structure-
in-5 pattern composed of five actors. The case

Strategic
Apex

Non-
Operational

Services

Support

Operational
Core

Operational
Management

Middle LineTechno
Structure Planning

Policy
Management

Behavior
Management

Logistics

Coordination MaintenanceOperateStandardi-
zation

Procedure
Information

Strategic
Management

Figure 3. The structure-in-5 pattern

2270

Patterns for Organizational Modeling

studies also suggested a number of constraints
to supplement the basic pattern:

• Dependencies between the Strategic Apex as
depender and the Technostructure, Middle
Line, and Support as dependees must be of
type goal

• A softgoal dependency models the strategic
dependence of the Technostructure, Middle
Line, and Support on the Strategic Apex

• Relationships between the Middle Line and
Technostructure and Support must be of
goal dependencies

• Operational Core relies on the Technostruc-
ture and Support through task and resource
dependencies

• Only task dependencies are permitted
between the Middle Line (as depender or
dependee) and the Operational Core (as
dependee or depender)

To specify the formal properties of the pattern,
we use Formal Tropos (Fuxman, Liu, Mylopoulos,
Roveri, & Traverso, 2004), which extends the
primitives of i* with a formal language comparable
to that of KAOS (Dardenne, et al., 1993). Con-
straints on i* specifications are thus formalized
in a first-order linear-time temporal logic. Formal
Tropos provides three basic types of metaclasses:
actor, dependency, and entity (Giorgini, Kolp, &
Mylopoulos, 2002). The attributes of a Formal
Tropos class denote relationships among different
objects being modeled.

metaclasses

Actor : = Actor name[attributes] [creation-proper-
ties] [invar-properties][actor-goal]

With subclasses:
Agent(with attributes occupies: Position, play:

Role)
Position(with attributes cover: Role)

Role
Dependency : =Dependency name type

mode Depender name Dependee
name [attributes] [creation-properties] [in-
var-properties] [fulfill-properties]

Entity:=Entity name [attribute] [creation-
properties][invar-properties]

Actor-Goal := (Goal|Softgoal) name mode
FulFillment(actor-fulfill-property)

Classes: Classes are instances of Metaclasses.

In Formal Tropos, constraints on the lifetime
of the (meta)class instances are given in a first-
order linear-time temporal logic (see Fuxman et
al., 2004 for more details). Special predicates can
appear in the temporal logic formulas: predicate
JustCreated(x) holds in a state if element x exists
in this state but not in the previous one; predicate
Fulfilled(x) holds if x has been fulfilled; and predi-
cate JustFulfilled(x) holds if Fulfilled(x) holds in
this state, but not in the previous one.

In the following, we only present some
specifications for the Strategic Management and
Operational Management dependencies.

Actor StrategicApex
Actor MiddleLine
Actor Support
Actor Technostructure
Actor OperationalCore

Dependency StrategicManagement
Type SoftGoal
Depender te: Technostructure, ml: MiddleLine,
su: Support
Dependee sa: StrategicApex
Invariant
∀dep : Dependency (JustCreated(dep)
→ C o n s i s t e n t (s e l f , d e p))
∀ag : Actor - Goal (JustCreated(ag)
→ C o n s i s t e n t (s e l f , a g))

 2271

Patterns for Organizational Modeling

Fulfillment
∀dep : Dependency (dep.type = goal ∧ dep.
depender = sa

∧
(dep.dependee = te dep.dependee = ml dep.
dependee = su)) ∧
Fulf i l led (se l f) → ♦Fulf i l led (dep)

[Invariant properties specify, respectively,
that the strategic management softgoal must
be consistent with any other dependency of
the organization and with any other goal of
the actors in the organization. The predicate
Consistent depends on the particular organiza-
tion we are considering and it is specified in
terms of goals’ properties to be satisfied. The
fulfillment of the dependency necessarily implies
that the goal dependencies between the Middle
Line, the Technostructure, and the Support as
dependees, and the Strategic Apex as depender
have been achieved some time in the past]

Dependency OperationalManagement Type
Goal
Mode achieve
Depender sa: StrategicApex
Dependee ml: MiddleLine
Invariant

Consistent(self, StrategicM anagement)
∃ c : Coordinat ion (c.t ype = task
∧ c.dependee = ml ∧ c.depender =
OperationalCore ∧ ImplementedBy(self, c))

Fulfillment
∀ts : Technostructure, dep : Dependency (dep.
type = goal ∧
d e p . d e p e n d e r = m l ∧ d e p . d e -
p e n d e e = t s) ∧ Fu l f i l l e d (se l f))
→ ♦Fulfilled(dep)

 [The fulfillment of the Operational manage-
ment goal implies that all goal dependencies
between the Middle Line as depender and the
Technostructure as dependee have been achieved

some time in the past. Invariant properties speci-
fies that the Operational Management goal has to
be consistent with Strategic Management softgoal
and that there exists a coordination task (a task
dependency between MiddleLine and Operational
Core) that implements (ImplementedBy) the Op-
erationalManagaemnt goal.]

In addition, the following structural (global)
properties must be satisfied for the Structure-in-
5 pattern:
•	 ∀inst1, inst2 : StrategicApex → inst1 =

inst2

[There is a single instance of the Strategic Apex
(the same constraint also holds for the Middle
Line, the Technostructure, the Support, and the
Operational Core)]

•	 ∀sa : StrategicApex, te : Technostructure,
ml : MiddleLine,

 su : Support, dep : Dependency
 (dep.dependee = sa ∧ (dep.depender = te

∨ dep.depender = ml
	 ∨ dep.depender = su) → dep.type = soft-

goal)

[Only softgoal dependencies are permitted be-
tween the Strategic Apex as dependee and the
Technostructure, the Middle Line, and the Sup-
port as dependers]

• ∀sa : StrategicApex, te : T echnostructure,
ml : M iddleLine,

 su : Support, dep : Dependency :
 (dep.depender = sa ∧ (dep.dependee
 = te ∨ dep.dependee =
 ml ∨ dep.dependee = su) →
 dep.type = goal)

[Only goal dependencies are permitted between
the Technostructure, the Middle Line, and the
Support as dependee, and the Stategic Apex as
depender]

2272

Patterns for Organizational Modeling

• ∀su : Support, ml : M iddleLine, dep : De-
pendency

 ((dep.dependee = su ∧ dep.depender = ml)
→ dep.type = goal)

 [Only task dependencies are permitted
between the Middle Agency and the Opera-
tional Core]

• ∀te : T echnostructure, oc : Operational-
Core, dep : Dependency

 ((dep.dependee = te ∧ dep.depender = oc)
→

 (dep.type = task ∨ dep.type = resource))

[Only resource or task dependencies are permit-
ted between the Technostructure and the Opera-
tional Core (the same constraint also holds for
the Support)]

• ∀a : Actor, ml : M iddleLine,
 (∃dep : Dependency(dep.depender = a ∧

dep.dependee =
 ml) ∨ (dep.dependee = a ∧ dep.depender

= ml) →
 ((∃sa : StrategicApex(a = sa)) ∨ (∃su :

Support(a = su) ∨
 (∃te : T echnostructure(a = te)) ∨ (∃op :

OperationalCore
 (a = op))

[No dependency is permitted between an external
actor and the Middle Agency (the same constraint
also holds for the Operational Core)]

This specification can be used to establish that
a certain i* model does constitute an instance of
the structure-in-5 pattern. For example, the i*
model of Figure 1 can be shown to be such an
instance, in which the actors are instances of the
structure-in-5 actor classes (e.g., Direction and
IT&Documentation are instances of the Strategic
Apex and the Support, respectively), dependen-

cies are instances of structure-in-5 dependen-
cies classes (e.g., Agency Global Strategy is an
instance of the Strategic Management), and all
above global properties are enforced (e.g., since
there are only two task dependencies between
Campaigns Management and Graphics&Edition,
the fourth property holds).

Joint Venture

We describe here two alliances—Airbus (Dussau-
ge & Garrette, 1999) and a more detailed one,
Carsid (Wautelet, Kolp, & Achbany, 2006)—that
will serve to model the joint venture structure
as an organizational pattern and propose a semi-
formal specification.

Airbus. The Airbus Industrie joint venture
coordinates collaborative activities between
European aeronautic manufacturers to build and
market airbus aircraft. The joint venture involves
four partners: British Aerospace (UK), Aerospa-
tiale (France), DASA (Daimler-Benz Aerospace,
Germany), and CASA (Construcciones Aeronau-
ticas SA, Spain). Research, development, and
production tasks have been distributed among the
partners, avoiding any duplication. Aerospatiale is
mainly responsible for developing and manufac-
turing the cockpit of the aircraft and for system
integration. DASA develops and manufactures
the fuselage, British Aerospace the wings, and
CASA the tail unit. Final assembly is carried
out in Toulouse (France) by Aerospatiale. Unlike
production, commercial and decisional activities
have not been split among partners. All strategy,
marketing, sales, and after-sales operations are
entrusted to the Airbus Industrie joint venture,
which is the only interface with external stake-
holders, such as customers. To buy an Airbus, or
to maintain their fleet, customer airlines could
not approach one or another of the partner firms
directly, but have to deal with Airbus Industrie.
Airbus Industrie, which is a real manufacturing
company, defines the alliance’s product policy and

 2273

Patterns for Organizational Modeling

elaborates the specifications of each new model of
aircraft to be launched. Airbus defends the point
of view and interests of the alliance as a whole,
even against the partner companies themselves
when the individual goals of the latter enter into
conflict with the collective goals of the alliance.

Figure 4 models the organization of the Air-
bus Industrie joint venture using the i* strategic
dependency model. Airbus assumes two roles:
Airbus Industrie and Airbus Joint Venture.

Airbus Industrie deals with demands from
customers, Customer depends on it to receive air-
bus aircrafts or maintenance services. The Airbus
Joint Venture role ensures the interface for the four
partners (CASA, Aerospatiale, British Aerospace,
and DASA) with Airbus Industrie defining Airbus
strategic policy, managing conflicts between the
four Airbus partners, defending the interests of
the whole alliance, and defining new aircraft
specifications. Airbus Joint Venture coordinates
the four partners, ensuring that each of them as-

sumes a specific task in the building of Airbus
aircrafts: wings building for British Aerospace,
tail unit building for CASA, cockpit building and
aircraft assembling for Aerospace, and fuselage
building for DASA. Since Aerospatiale assumes
two different tasks, it is modeled as two roles:
Aerospatiale Manufacturing and Aerospatiale
Assembling. Aerospatiale Assembling depends on
each of the four partners receiving the different
parts of the planes.

Carsid (Carolo-Sidérurgie) is a joint venture
that has recently arisen from the global concentra-
tion movement in the steel industry. The alliance,
physically located in the steel basin of Charleroi in
Belgium, has been formed by the steel companies
Duferco (Italy), Usinor (France)—that also par-
tially owns Cockerill-Sambre (Belgium) through
the Arcelor group—and Sogepa (Belgium), a pub-
lic investment company representing the Walloon
Region Government. Usinor has also brought its
subsidiary Carlam into the alliance.

Airbus Joint
Venture

Aerospatiale
Manufacturing

British
Aerospace

DASA

Airbus
Industrie

CASA

Aerospatiale
Assembling

Build
Cockpit

Defend
Alliance’s
Interests

Maintenance

Customer
Airline

Build Wings Wings

Build Tail
Unit

Tail Unit

Fuelage
Cockpit

Build
Fuselage

Figure 4. The Airbus Industrie joint venture

2274

Patterns for Organizational Modeling

Roughly speaking, the aim of a steel manufac-
turing company like CARSID is to extract iron
from the ore and to turn it into semi-finished steel
products. Several steps compose the transforma-
tion process, each step is generally assumed by a
specific metallurgic plant:

• Sintering plant: Sintering is the prepara-
tion of the iron ore for the blast furnace.
The minerals are crushed and calibrated to
form a sinter charge.

• Coking plant: Coal is distilled (i.e., heated
in an air-impoverished environment in order
to prevent combustion) to produce coke.

• Blast furnace: Coke is used as a combus-
tion agent and as a reducing agent to remove
the oxygen from the sinter charge. The coke
and sinter charge are loaded together into
the blast furnace to produce cast iron.

• Steel making plant: Different steps (de-
sulphuration, oxidation, steel adjustment,

cooling, etc.) are necessary to turn cast
iron into steel slabs and billets. First, ele-
ments other than iron are removed to create
molten steel. Then, supplementary elements
(e.g., titanium, niobium, and vanadium) are
added to make a more robust alloy. Finally,
the result—finished steel—is solidified to
produce slabs and billets.

• Rolling mill: The manufacture of semi-fin-
ished products involves a process known as
hot rolling. Hot-rolled products are of two
categories: flat (plates, coiled sheets, sheet-
ing, strips, etc.) produced from steel slabs
and long (wire, bars, rails, beams, girders,
etc.) produced from steel billets.

Figure 5 models the organization of the Car-
sid joint venture in i*. Carsid assumes two roles:
Carsid S.A. (“Société Anonyme”–the English
equivalent is “Ltd”) and Carsid Joint Venture.

Figure 5. The Carsid joint venture

Duferco Steel
Making Plant

Carlam
Rolling MillSogepa

Carsid S.A.

Duferco
Sintering

Plant

Crush and
Calibrate Iron

Ore

Proper
Ecology
Policy

Cast Iron

Slabs

Carsid Joint
Venture

Usinor
Coking plant

Cokerill Blast
Furnace

Industry

Remove
Oxygen from

Sinter
Transform

Cast Iron into
Steel

Distill Coal

Hot Rolling

Develop
Regional
Initiatives

Sinter
Charge

Coke
Steel Semi

Finished and
Co Products

Coke
Co-Products
Promotion

Product
Promotions

Job Security

Regional
Economy

Accident
Prevention
Standards

Maintenace
Investment

Production
Plan

Improve

 2275

Patterns for Organizational Modeling

Carsid S. A. is the legal and contractual inter-
face of the joint venture. It handles the sales of
steel semi-finished products (bars, plates, rails,
sheets, etc., but also slabs and billets) and co-
products (coke that does not meet blast furnace
requirements, rich gases from the different plants,
godroon, naphtalin, etc.) to external industries
such as vehicle manufacturers (e.g., automobiles,
trains, and boats), foundries, gas companies, and
building companies. It is also in charge of the
proper environment policy, a strategic aspect
for steelworks that are polluting plants. Most
important, Carsid has been set up with the help
of the Walloon Region to guarantee job security
for about 2000 workers in the basin of Charleroi.
Indeed, the steel industry in general and the Wal-
loon metallurgical basins in particular are sectors
in difficulty with high unemployment rates. As
a corollary, the joint venture is committed to
improve regional economy and maintain work
in the region. Carsid has then been contractually
obliged to plan maintenance investment (e.g.,
blast furnace refection, renovation of coke oven
batteries, etc.) and develop production plans

involving regional subcontractors and suppliers.
Since steelmaking is a hard and dangerous work
sector, Carsid, like any other steelworks, is legally
committed to respect, develop, and promote ac-
cident prevention standards.

The Carsid joint venture itself coordinates
the steel manufacturing process. The sintering
phase to prepare iron ore is the responsibility
of Duferco Sintering Plant while Usinor Coking
Plant, distills coal to turn it onto coke. The sinter
charge and coke are used by the Cokerill Blast
Furnace to produce cast iron by removing oxygen
from sinter. The Duferco Steel Making Plant
transforms cast iron into steel to produce slabs
and billets for the Carlam Rolling Mill in charge
of the hot rolling tasks. Carlam (Carolo-Laminoir).
Sogepa, the public partner, has the responsibility
to develop regional initiatives to promote Carsid
activities, particularly in the Walloon Region and
in Belgium.

Figure 6 abstracts the joint venture structures
explored in the case studies of Figures 4 and 5.
The case studies suggest a number of constraints
to supplement the basic pattern:

Figure 6. The joint venture pattern

Joint Manager
Private

Interface

Strategic
Objectives

Production

Collaborative
Work

Service
Support

Resource
Exchange

Operation
Management

Joint Manager
Public Interface

Partner_1

Partner_n

2276

Patterns for Organizational Modeling

• Partners depend on each other for providing
and receiving resources

• Operation coordination is ensured by the
joint manager actor, which depends on
partners for the accomplishment of these
assigned tasks

• The joint manager actor must assume two
roles: A private interface role to coordinate
partners of the alliance and a public inter-
face role to take strategic decisions, define
policy for the private interface, and represent
the interests of the whole partnership with
respect to external stakeholders

Part of the Joint Venture pattern specification
is in the following:

Role JointManagerPrivateInterface Goal Coor-
dinatePatterns

Role JointManagerPublicInterface
Goal TakeStrategicDecision
SoftGoal RepresentPartnershipInterests
Actor Partner

and the following structural (global) properties
must be satisfied:

•	 ∀jmpri1, jmpri2 : J ointManagerPrivateIn-
terface

 (jmpri1 = jmpri2)

 [Only one instance of the joint manager]

• ∀p1, p2 : P artner, dep : Dependency
(((dep.depender = p1 ∧

dep.dependee = p2)
∨

(dep.depender =
 p2 ∧

dep.dependee = p1)) →

(dep.type =
resource))

 [Only resource dependencies between
partners]

• ∀ j m p r i : J o i n t M a n a g e r P r i -
v a t e I n t e r f a c e , p : P a r t n e r ,

dep : Dependency((dep.dependee = p ∧
 dep.depender = jmpri)

 →dep.type = task)

 [Only task dependencies between partners
and the joint manager, with the joint man-
ager as depender]

• ∀jmpri : JointM anagerPrivateInterf ace,
j m p u i : J o i n t M a n a g e r P u b l i -
cIn te r f ace , dep : Dependenc y
((dep.depender = jmpri ∧

dep.dependee
= jmpui)

 →

(dep.type = goal ∨

dep.type = softgoal))

[Only goal or softgoal dependencies between
the joint manager roles]

• ∀dep : Dependency, p1 : Partner
((dep.depender = p1 ∨

dep.dependee =
p1) →

 ((∃p2 : P artner(p1≠ p2 ∧ (dep.de-
pender = p2 ∨

dep.dependee = p2))
 ∨ (∃jmpi : J ointM anagerP rivateInterf ace
 ((d e p . d e p e n d -
er = jmpi ∨dep.dependee = jmpi))))

 [Partners only have relationships with
other partners or the joint manager private
interface]

• ∀d e p : D e p e n d e n c y , j m p i
: J ointM anagerP rivateInterf ace
((d e p . d e p e n d e r = j p m i
∨d e p . d e p e n d e e = j p m i) →

 ((∃p : P artner((dep.depender = p ∨

dep.
dependee = p))) ∨

 (∃jmpui : J ointM anagerP ublicInterf ace
((d e p . d e p e n d e r = j m -
p u i ∨d e p.d e pe n d e e = jm p u i))))

 [The joint manager private interface only
has relationships with the joint manager
public interface or partners]

 2277

Patterns for Organizational Modeling

eVAluAtiOn

Patterns can be compared and evaluated with
quality attributes (Shaw & Garlan, 1996), also
called non-functional requirements (Chung,
Nixon, Yu, & Mylopoulos, 2000). For instance,
the requirements seem particularly relevant for
organizational structures (Do, Faulkner, & Kolp,
2003; Kolp, et al., 2006):

• Predictability (Woods & Barbacci, 1999):

Actors can have a high degree of autonomy
(Wooldridge & Jennings, 1995) in the way
that they undertake action and communica-
tion in their domains. It can be then difficult
to predict individual characteristics as part
of determining the behavior of the system at
large. Generally, predictability is in contrast
with the actors’ capabilities to be adaptive
and responsive: Actors must be predictable
enough to anticipate and plan actions while
being responsive and adaptive to unexpected
situations.

• Security: Actors are often able to identify
their own data and knowledge sources and
they may undertake additional actions based
on these sources (Woods & Barbacci, 1999).
Strategies for verifying authenticity for these
data sources by individual actors are an im-
portant concern in the evaluation of overall
system quality since, in addition to possibly
misleading information acquired by actors,
there is the danger of hostile external entities
spoofing the system to acquire information
accorded to trusted domain actors.

• Adaptability: Actors may be required to
adapt to modifications in their environ-
ment. These may include changes to the
component’s communication protocol or
possibly the dynamic introduction of a new
kind of component previously unknown or
the manipulations of existing actors.

Generally, adaptability depends on the capa-
bilities of the single actors to learn and predict
the changes of the environments in which they
act (Weiss, 1997), and also their capability to
make a diagnosis (Horling, Lesser, Vincent,
Bazzan, & Xuan, 1999), that is, being able to
detect and determine the causes of a fault based
on its symptoms. However, successful organiza-
tion environments tend to balance the degree of
reactivity and predictability of the single actors
with their capabilities to be adaptive.

• Coordinability: Actors are not particularly
useful unless they are able to coordinate
with other agents. Coordination is generally
(Jennings, 1996) used to distribute expertise,
resources, or information among the actors
(actors may have different capabilities,
specialized knowledge, different sources
of information, resources, responsibilities,
limitations, charges for services, etc.), solve
interdependencies between actors’ actions
(interdependence occurs when goals un-
dertaken by individual actors are related),
meet global constraints (when the solution
being developed by a group of actors must
satisfy certain conditions if is to be deemed
successful), and to make the system effi-
cient (even when individuals can function
independently, thereby obviating the need
for coordination, information discovered by
one actor can be of sufficient use to another
actor that both actors can solve the problem
twice as fast).

Coordination can be realized in two ways:

1. Cooperativity: Actors must be able to coor-
dinate with other entities to achieve a com-
mon purpose or simply align their local goals.
Cooperation can either be communicative in
that the actors communicate (the intentional
sending and receiving of signals) with each

2278

Patterns for Organizational Modeling

other in order to cooperate or it can be non-
communicative (Doran, Franklin, Jennings,
& Norman, 1997). In the latter case, actors
coordinate their cooperative activity by each
observing and reacting to the behavior of the
other. In deliberative organizations, actors
jointly plan their actions so as to cooperate
with each other.

2. Competitivity: Deliberative negotiating
organization (Doran et al., 1997) are like
deliberative ones, except that they have an
added dose of competition. The success of
one actor implies the failure of others.

• Availability: Actors that offer services to
other actors must implicitly or explicitly
guard against the interruption of offered
services.

• Fallibility-tolerance: A failure of one ac-
tor does not necessarily imply a failure of
the whole organization. The organization
then needs to check the completeness and
the accuracy of information and knowledge
transactions and workflows. To prevent
failure, different actors can have similar
or replicated capabilities and refer to more
than one actor for a specific behavior.

• Modularity: (Shehory, 1998) increases
efficiency of service execution, reduces
interaction overhead, and usually enables
high flexibility. On the other hand, it implies
constraints on inter-organization communi-
cation.

• Aggregability: Some actors are parts of
other actors. They surrender to the control
of the composite entity. This control results
in efficient workflow execution and low in-
teraction overhead. However, it prevents the
organization to benefit from flexibility.

As an illustration, we evaluate the patterns
with respect to coordinativity, predictability,
fallibility-tolerance, and adaptability. The evalu-

ation can be done in a similar way for the other
non-functional requirements. Due to the lack of
space, we refer the author to the bibliography for
the other attributes.

The structure-in-5 improves coordinativ-
ity among actors by differentiating the data
hierarchy (the support actor) from the control
hierarchy—supported by the operational core,
technostructure, middle agency, and strategic
apex. The existence of three different levels of
abstraction (1) Operational Core; (2) Techno-
structure, Middle Line, and Support; (3) Strategic
Apex addresses the need for managing predict-
ability. Besides, higher levels are more abstract
than lower levels: Lower levels only involve
resources and task dependencies while higher
ones propose intentional (goal and soft-goal)
relationships. Checks and control mechanisms
can be integrated at different levels of abstraction
assuming redundancy from different perspectives
and considerably increase fallibility-tolerance.
Since the structure-in-5 separates data and control
hierarchies, integrity of these two hierarchies can
also be verified independently. The structure-in-5
separates independently the typical components
of an organization, isolating them from each other
and allowing them dynamic adaptability. But
since it is restricted to no more than five major
components, more refinement has to take place
inside the components themselves.

The joint venture supports coordinativity in the
sense that each partner actor interacts via the joint
manager for strategic decisions. Partners indicate
their interest, and the joint manager either returns
the strategic information immediately or medi-
ates the request to some other partners. However,
since partners are usually heterogeneous, it could
be a drawback to define a common interaction
background. The central position and role of the
joint manager is as a means for resolving con-
flicts and preventing unpredictability. Through
its joint manager, the joint-venture proposes a
central communication controller. It is less clear

 2279

Patterns for Organizational Modeling

how the joint venture pattern addresses fallibil-
ity-tolerance, notably reliability. However, excep-
tions, supervision, and monitoring can improve
its overall score with respect to these qualities.
Manipulation of partners can be done easily to
adapt the structure by registering new ones to
the joint manager. However, since partners can
also exchange resources directly with each other,
existing dependencies should be updated as well.
The joint manager cannot be removed due to its
central position. Table 2 summarizes the strengths
and weaknesses of the reviewed patterns.

To cope with non-functional requirements and
select the pattern for the organizational setting,
we go through a means-ends analysis using the
non functional requirements (NFRs) framework
(Chung et al., 2000). We refine the identified
requirements to sub-requirements that are more
precise and evaluates alternative organizational
patterns against them, as shown in Figure 7.
The analysis is intended to make explicit the
space of alternatives for fulfilling the top-level
requirements. The patterns are represented as
operationalized requirements (saying, roughly,
“model the organizational setting of the system
with the pyramid, structure-in-5, joint venture,
arm’s-length ... pattern”).

The evaluation results in contribution rela-
tionships from the patterns to the non-functional

requirements, labeled “+”, “++”, “–”, “– –”. De-
sign rationale is represented by claims drawn as
dashed clouds. They make it possible for domain
characteristics (such as priorities) to be considered
and properly reflected into the decision making
process, e.g., to provide reasons for selecting or
rejecting possible solutions (+, –). Exclamation
marks (! and !!) are used to mark priority re-
quirements while a check-mark “√” indicates an
accepted requirements and a cross “ X ” labels a
denied requirement.

Relationships types (AND, OR, ++, +, –,
and – –) between NFRs are formalized to offer
a tractable proof procedure. AND/OR relation-
ships correspond to the classical AND/OR
decomposition relationships: if requirement R0
is AND-decomposed (respectively, OR-decom-
posed) into R1,R2,...,Rn, then all (at least one)
of the requirements must be satisfied for the re-
quirement R0 to be satisfied. So, for instance, in
Figure 7 Coordinativity is AND decomposed into
Distributivity, Participability, and Commonality.
Relationships “+” and “–” model respectively a
situation where a requirement contributes posi-
tively or negatively towards the satisfaction of
another one. For instance, in Figure 7 Joint Ven-
ture contributes positively to the satisfaction of
Distributivity and negatively to the Reliability. In
addition, relationships “++” and “– –” model a
situation where the satisfaction of a requirement
implies the satisfaction or denial of another goal.
In Figure 7 the satisfaction of structure-in-5 im-
plies the satisfaction of requirements Reliability
and Redundancy.

The analysis for selecting an organizational
setting that meets the requirements of the system
to build is based on propagation algorithms pre-
sented in Giorgini, Mylopoulos, Nicchiarelli, and
Sebastiani (2002). Basically, the idea is to assign
a set of initial labels for some requirements of the
graph, about their satisfiability and deniability,
and see how this assignment leads to the labels
propagation for other requirements. In particular,
we adopt from Giorgini, Mylopoulos, Nicchiarelli

Structure-in-5 Joint-Venture

Coordinativity ++ +

Predictability + +
Fallibility-
Tolerance ++ +

Adaptability + +

Table 2. Strengths and weaknesses of some pat-
terns

2280

Patterns for Organizational Modeling

and Sebastiani (2002) both qualitative and a nu-
merical axiomatization for goal (requirements)
modeling primitives and label propagation algo-
rithms that are shown to be sound and complete
with respect to their respective axiomatization.
The following is a brief description of the qualita-
tive algorithm.

To each requirement R, we associate two vari-
ables. Sat(R), Den(R), ranging in {F, P, N}

(full,
partial, none) such that F > P > N, represents the
current evidence of satisfiability and deniability
of the requirement R. For example, Sat(Ri) > =
P states there is at least partial evidence that Ai
is satisfiable. Starting from assigning an initial
set of input values for Sat(Ri), Den(Ri) to (a subset
of) the requirements in the graph, we propagate
the values through the propagation rules of Table

3. Propagation rules for AND (respectively OR)
relationships are min-value function for satisfiabil-
ity (max-value function) and max-value function
(min-value function) for deniability. A dual table
is given for deniability propagation.

The schema of the algorithm is described in
Figure 8. Initial, Current, and Old are arrays of
pairs Sat(Ri), Den(Ri), one for each Ri of the graph,
representing respectively the initial, current, and
previous labeling status of the graph.

The array Current is first initialized to the
initial values Initial given in input by the user.
At each step, for every requirement Ri, Sat(Ri),
Den(Ri) is updated by propagating the values of
the previous step. This is done until a fixpoint
is reached, that is, no updating mode is pos-
sible (Current == Old). The updating of Sat(Ri),

!

!

!

+

+

+ +

+

+

+

+ +

+

Coordinativity Failability-Tolerance

Distributivity Commonality Redundancy

CompletnessReliabilityParticipability

Joint Venture Stucture in 5

Claim
[”External Agents
can spoof
the system”]

Other Styles

Figure 7. Partial evaluation for organizational patterns

 2281

Patterns for Organizational Modeling

Den(Ri)works as follows. For each relation Reli
incoming in Gi, the satisfiability and deniability
values satii and denii derived from the old values
of the source requirements are computed by ap-
plying the rules of Table 3. Then, it returns the
maximum value between those computed and
the old values.

A reQuirementS-DriVen
metHODOlOgy

This research is conducted in the context of the
early requirements phase of Tropos (Giorgini
et al., 2004; Giorgini et al., 2005), a software
development methodology for building multi-
agent systems founded on the concepts of actor
and goal.

The Tropos methodology adopts ideas from
multi-agent systems technologies, mostly to define
the detailed design and implementation phase,
and ideas from requirements engineering and
organizational modeling, where agents/actors and
goals have been used heavily for early require-
ments analysis (Dardenne et al., 1993; Yu, 1995).
In particular, the Tropos project adopts Eric Yu’s
i* model which offers actors (agents, roles, or posi-
tions), goals, and actor dependencies as primitive
concepts for analyzing an application during orga-
nizational modeling. The key assumption which
distinguishes Tropos from other methodologies
is that actors and goals are used as fundamental
concepts for analysis and design during all phases
of software development, not just requirements
analysis. That means that, in the light of this paper,
Tropos describes the organizational environment
within which a system will eventually operate,
as well as the system itself in terms of the same
concepts and patterns. Tropos spans four phases
of software development:

+ - ++ --
G2→ G1 G2→ G1 G2→ G1 G2→ G1

Sat(G1)
Den(G1)

min{ Sat(G2), P }
N min{ Sat(G2), P } Sat(G2)

N
N

Sat(G2)

Table 3. Propagation rules for satisfiability in the qualitative framework. A dual table is given for deni-
ability propagation.

1 Current=Initial;
2 do
3 Old=Current;
4 for each Ri do
5 Current[i] = Update label(i, Old);
6 until not (Current==Old);
7 return Current;
8 for each Reli s.t. target(Reli) == Ri
do
9 satij = Apply Rules Sat(i, Reli , Old);
10 denij = Apply Rules Den(Ri, Reli ,
Old);
11 return max(maxi (satii), Old[i].
sat),
12 max(maxi (denii), Old[i].
den);

Figure 8. Schema of the label propagation al-
gorithm

2282

Patterns for Organizational Modeling

• Organizational modeling, concerned with
the understanding of a problem by studying
an organizational setting; the output is an or-
ganizational model which includes relevant
actors, their goals and dependencies.

• Requirements analysis, in which the system-
to-be is described within its operational
environment, along with relevant functions
and qualities.

• Architectural design, in which the system’s
global architecture is defined in terms of
subsystems, interconnected through data,
control, and dependencies.

• Detailed design, in which behavior of each
architectural component is defined in further
detail.

cOncluSiOn

Modelers need to rely on patterns, styles, and idi-
oms to build their models, whatever the purpose.
We argue that, as with other phases of software
development, organizational modeling can be
facilitated by the adoption of organizational pat-
terns. This paper focuses on two such patterns
and studies them in detail through examples,
a formalization using Formal Tropos and an
evaluation with respect to desirable requirements.
There have been many proposals for software
patterns (e.g., Kolp, Do, & Faulkner, 2005) since
the original work on design patterns (Gamma,
Helm, Johnson, & Vlissides, 1995). Some of
this work focuses on requirements patterns. For
example, Konrad and Cheng (2002) propose a set
of requirements patterns for embedded software
systems. These patterns are represented in UML
and cover both structural and behavioral aspects of
a requirements specification. Along similar lines,
Fowler (1997) proposes some general patterns
in UML. In both cases, the focus is on require-
ments analysis, and the modeling language used
is UML. On a different path, Gross and Yu (2002)
propose a systematic approach for evaluating

design patterns with respect to non-functional
requirements (e.g., security, performance, and
reliability). Our approach differs from this work
primarily in the fact that our proposal is founded
on ideas from organization theory and strategic
alliances literature. We have already described
organizational patterns, but to be used for de-
signing multi-agent system architectures (Kolp
et al., 2006) and e-business systems (Kolp et al.,
2004). Considering real world organizations as
a metaphor, systems involving many software
actors, such as multi-agent systems, could ben-
efit from the same organizational models. In the
present paper we have focused on patterns for
modeling organizational settings rather than
software systems, and emphasized the need for
organizational abstractions to better match the
operational environment of the system-to-be
during organizational modeling.

referenceS

Anton, A. I. (1996). Goal-based requirements
analysis. In Proceedings of the 2nd International
Conferance on Requirements Analysis, ICRE’96,
Colorado Spring (pp. 136-144).

Bates, L.D.V. (2006). Advertising agency. At
http://www.ldv.be

Chung, L.K., Nixon, B.,Yu, E., & Mylopoulos, J.
(2000). Non-functional requirements in software
engineering. Kluwer Publishing.

Dardenne, A., van Lamsweerde, A., & Fickas, S.
(1993). Goal-directed requirements acquisition.
Science of Computer Programming 20(1-2), 3-
50.

Do, T. T., Faulkner, S., & Kolp, M. (2003). Organi-
zational multi-agent architectures for information
systems. In Proceedings of the 5th International
Conferance on Enterprise Information Systems,
ICEIS’03, Angers, France (pp. 89-96).

 2283

Patterns for Organizational Modeling

Doran, J. E., Franklin, S., Jennings, N.R., & Nor-
man, T.J. (1997). On cooperation in multi-agent
systems.Knowledge Engineering Review, 12(3),
309-314.

Dussauge, P., & Garrette, B. (1999). Coopera-
tive strategy: Competing successfully through
strategic alliances. Wiley & Sons.

Fowler, M. (1997). Analysis patterns: Reusable
object models. Addison-Wesley.

Fuxman, A., Liu, L., Mylopoulos, J., Roveri, M.,
& Traverso, P. (2004). Specifying and analyzing
early requirements in Tropos. Requirements En-
gineering, 9(2), 132-150.

Gamma, E., Helm, R., Johnson, J., & Vlissides,
J. (1995). Design patterns: Elements of reusable
object-oriented software.Addison-Wesley.

Giorgini, P., J. Mylopoulos, E. Nicchiarelli, & R.
Sebastiani (2002). Reasoning with goal models.
InProceedings of the 21st International Confer-
ence on Conceptual Modeling (ER 2002), Tam-
pere, Finland (pp. 167-181).

Giorgini, P., Kolp, M., & Mylopoulos, J. (2002).
Multi-agent and software architecture: A com-
parative case study. In Proceedings of the 3rd
International Workshop on Agent Software Engi-
neering, AOSE’02, Bologna, Italy (pp. 101-112).

Giorgini, P., Kolp, M., Mylopoulos, J., & Castro,
J. (2005). A requirements-driven methodology
for agent-oriented software. In B. Henderson-
Sellers & P. Giorgini (Eds.), Agent oriented
methodologies (pp. 20-46). Hersey, PA: Idea
Group Publishing.

Giorgini, P., Kolp, M., Mylopoulos, J., & Pistore,
M. (2004). The Tropos methodology. In M-P. G.F.
Bergenti & F. Zambonelli (Eds.), Methodologies
and software engineering for agent systems (pp.
89-105). Kluwer.

GMT. (2006). GMT Consulting Group. http://
www.gmtgroup.com/

Gomes-Casseres, B. (1996). The alliance revolu-
tion: The new shape of business rivalry. Harvard
University Press.

Gross, D., & Yu, E. (2002). From non-functional
requirements to design through patterns. Require-
ments Engineering, 6(1), 18-36.

Horling, B., Lesser, V.,Vincent, R., Bazzan, A., &
P. Xuan (1999). Diagnosis as an integral part of
multi-agent adaptability (Technical Report UM-
CS-1999-003), University of Massachusetts.

Jennings, N. R. (1996). Coordination techniques
for distributed artificial intelligence. In G. M. P.
O’Hare & N. R. Jennings (Eds.), Foundations of
distributed artificial intelligence (pp. 187-210).
Wiley.

Kolp, M., Giorgini, P., &Mylopoulos, J. (2002a).
Information systems development through social
structures. In Proceedings of the 14th Interna-
tional Conferance on Software Engineering and
Knowledge Engineering, SEKE’02, Ishia, Italy
(pp. 183-190).

Kolp, M., Giorgini, P., & Mylopoulos, J. (2002b).
Organizational multi-agent architecture: A mobile
robot example. In Proc. of the 1st International
Conferance on Autonomous Agent and Multi
Agent Systems, AAMAS’02, Bologna, Italy (pp.
94-95).

Kolp, M., Giorgini, P., & Mylopoulos, J. (2003).
Organizational patterns for early requirements
analysis. In Proceedings of the 15th International
Conferance on Advanced Information Systems,
CAiSE’03, Velden, Austria (pp. 617-632).

Kolp, M., Giorgini, P., & Mylopoulos, J. (2006).
Multi-agent architectures as organizational
structures. Autonomous Agents and Multi-Agent
Systems, 13(1), 3-25.

Kolp, M., Do, Y., & Faulkner, S. (2004). A social-
driven design of e-business system. In Software
Engineering for Multi-Agent Systems III, Research

2284

Patterns for Organizational Modeling

Issues and Practical Applications, Edinburg, UK
(pp. 70-84).

Kolp, M.,Do, T., & Faulkner, S. (2005). Introspect-
ing agent-oriented design patterns. In S. K. Chang
(Ed.), Handbook of software engineering and
knowledge engineering, Vol. 3, Recent Advances
(pp. 151-177). World Scientific.

Konrad, S., & Cheng, B. (2002). Requirements
patterns for embedded systems. In Proceedings of
the 10th IEEE Joint International Requirements
Engineering Conference, RE’02, Essen, Germany
(pp. 127-136).

Mintzberg, H. (1992). Structure in fives : Design-
ing effective organizations.Prentice-Hall.

Morabito, J., Sack, I., & Bhate, A. (1999). Orga-
nization modeling: Innovative architectures for
the 21st century. Prentice Hall.

Scott, W.R. (1998). Organizations: Rational,
natural, and open systems. Prentice Hall.

Segil, L. (1996). Intelligent business alliances :
How to profit using today’s most important stra-
tegic tool. Times Business.

Shaw, M., & Garlan, D. (1996). Software archi-
tecture: Perspectives on an emerging discipline.
Prentice Hall.

Shehory, O. (1998). Architectural properties of
multi-agent systems (Technical Report CMU-RI-
TR-98-28), Carnegie Mellon University.

Wautelet, Y., Kolp, M., & Achbany, Y. (2006).
S-tropos: An iterative spem-centric software
project management process (Technical Report
IAG Working paper 06/01), IAGISYS Informa-
tion Systems Research Unit, Catholic Univer-
sity of Louvain, Belgium (http://www.iag.ucl.
ac.be/wp/).

Weiss, G. (Ed.). (1997). Learning in DAI systems.
Springer Verlag.

Woods, S.G., & Barbacci, M. (1999). Architectural
evaluation of collaborative agent-based systems
(Technical Report SEI-99-TR-025), SEI, Carnegie
Mellon University, Pittsburgh.

Wooldridge, M., & Jennings, N. R. (1995). Intel-
ligent agents: Theory and practice. Knowledge
Engineering Review, 2(10).

Yoshino, M.Y., & Rangan, U.S. (1995). Strategic
alliances: An entrepreneurial approach to global-
ization. Harvard Business School Press.

Yu, E. (1995). Modelling strategic relationships
for process reengineering. Unpublished doctoral
thesis, University of Toronto, Department of
Computer Science.

This work was previously published in the International Journal of Enterprise Information Systems, edited by A. Gunasekaran,
Volume 3, Issue 3, pp. 1-22, copyright 2007 by IGI Publishing (an imprint of IGI Global).

 2285

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.28
A Multi-Methodological

Approach to Study Systems
Development in a Software

Organization
Paivi Ovaska

South Karelia University of Applied Sciences, Finland

ABStrAct

Large-scale systems development is a complex
activity involving number of dependencies that
people working together face. Only a few stud-
ies concentrate on the coordination of develop-
ment activities in their organizational context.
This research study tries to fill at least part of
this gap by studying how systems development
process is coordinated in practice. The study
uses a multimethodological approach to interpret
coordination of systems development process in a
contemporary software organization in Finland.
The methodology is based on the empirical case-
study approach in which the actions, conceptions,
and artefacts of practitioners are analyzed using
within-case and cross-case principles. In all the
three phases of the study, namely multi-\site
coordination, requirement understanding, and

working with systems development methods,
both the qualitative and quantitative methods
were used to an understanding of coordination
in systems development. The main contribution
of this study is to demonstrate that contemporary
systems development is much more complex and
more driven by opportunity than is currently ac-
knowledged by researchers. The most challenging
part of the research process was the combination
of qualitative and quantitative methods, because
of the lack of multimethodological work done in
IS discipline.

IntroductIon

Large-scale systems development is a complex
activity involving number of dependencies that
people working together face. Furthermore, in

2286

A Multi-Methodological Approach to Study Systems Development in a Software Organization

distributed and multiparty information systems
projects, there is even a larger number of stakehold-
ers involved, and a great number of dependencies.
These dependencies create a need for coordination
that requires continuous effort by developers.
Broadly defined, coordination is management of
interdependencies between activities (Malone &
Crowston, 1994). This definition assumes that if
there are no interdependencies, there is nothing
to coordinate. The activities can be activities or
objects; everything that has dependencies re-
quires coordination (Malone & Crowston, 1994).
Coordination is an inherent aspect of work in
any organization and takes place in the form of
meetings, scheduling, milestones, planning, and
processes.

To systematize coordination, many methods
and process models have been proposed over
the years. These models mainly focus on the
sequence of steps used by developers to develop
information systems. The status of methods as a
whole has been described as a “method jungle,”
as “an unorganized collection of methods more
or less similar to each other” (Jayaratna, 1994).
Though these methods and process models have
helped companies to gain certification and attain
global standards, they do not take into account
interpersonal interactions and various other social
aspects of development organizations. The devel-
opment of new methods has tended to be more
technology driven, often being influenced by the
introduction of improved techniques and software
tools (Nandhakumar & Avison, 1999).

Only a few studies concentrate on the pro-
cess of systems development and coordination
of development activities in their organizational
context. Kraut and Streeter (1995) found that
coordination becomes much more difficult as
project size and complexity increases. Apparently,
complexity increases when the project is located
in multiples sites. Communication is a salient part
of coordination, and it has been observed (e.g.,
Allen, 1977) that distance affects the frequency
of communication. Communication delays and

breakdowns taking place in software development
projects are discussed in several studies (Curtis,
Krasner, & Iscoe, 1988; Kraut & Streeter, 1995;
Herbsleb et al., 2000).

Systematic surveys of the existing literature in
both Information Systems (Wynekoop & Russo,
1997) and Software Engineering (Glass, Vessey,
& Ramesh, 2002) fields revealed that most of the
research papers in these fields consist of norma-
tive research in which concept development is
not based on empirical grounding or theoretical
analysis, but merely upon the author’s opinions.
Because of that, many researchers (e.g., Curtis et
al., 1988; Orlikowski, 1993) call for more empirical
studies in order to understand how information
systems are developed in today’s organizations
and how development work is coordinated in vari-
ous types of organizations before development of
new methods.

This research study tries to fill at least part
of this gap by further clarifying how systems
development process is coordinated in practice.
This objective is reached by conducting a series
of empirical studies of two systems development
projects in a contemporary organization that
competes in the information technology busi-
ness. We study the early systems development,
which we consider to be most important phases
in development process: requirement elicitation
and architecture design. In this study, the actions,
conceptions, and artefacts of practitioners are in-
terpreted and analyzed using multimethodological
approach. By multimethodological approach is
meant research approach that uses different re-
search methods structured as a set of guidelines or
activities to assist in generating valid and reliable
research results (Mingers, 2001). The objective
for this research is twofold: (1) to understand how
practitioners coordinate the systems development
process and (2) to make a contribution to the theory
and practice of systems development.

The rest of this chapter is structured as fol-
lows. First we describe the other research using
multiple research methods and then the research

 2287

A Multi-Methodological Approach to Study Systems Development in a Software Organization

framework is created and the research process
used is explained. After that, the research find-
ings are summarized. The discussion of using
this methodology by comparing it to framework
proposed by Mingers (2001) as well the general
experiences in using the methodology is given
in the sixth section. Finally, we summarize the
used methodology and research findings and give
direction for future research.

relAteD reSeArcH

Combining different research methods has been
the subject of much debated after 1990s. Mingers
(2001) advocated multimethodological research
on the grounds that both the target of the research
and the research process were complex and
multidimensional, requiring range of different
approaches.

There have been numerous reviews of the
information system research literature, each
with different purpose, but few of them spe-

cifically considered combining methodologies.
Mingers (2003) reviewed systematically the six
IS top journal published in the time period from
the year 1993 to 2000 and studied the extent of
multimethodological research. The results of this
study clearly show a lack of multimethodological
research published within IS. In the following table
is shown the proportion of multimethodological
research papers in these journals.

Mingers also looked at the particular combi-
nations of methods used. He found that the vast
majority (70%) involve only observation, survey,
case study, and interview. In these studies, the
mixture of hard (quantitative) and soft (qualita-
tive) methods were rare.

Example of studies in IS discipline using mul-
timethodological approaches are Markus (1994),
Ngwenyama and Lee (1997), Trauth and Jessup
(2000), and Ormerod (1995), but the literature
around the theme is quite scarce.

In relation to IS field, in the area of Manage-
ment Science, a research of Munro and Mingers
(2002) showed that the use of multimethodological

Year ISR
(%)

ISJ
(%)

MISQ
(%)

EJIS
(%)

AMIT
(%)

JIT
(%)

Average
(%)

1993 40 0 50 0 - 21 22
1994 13 20 35 29 - 13 25
1995 0 11 7 18 33 8 13
1996 28 14 18 15 60 0 23
1997 18 27 19 7 63 17 25
1998 0 0 20 18 25 16 13
1999 0 22 24 21 56 21 24
2000 10 31 13 0 33 33 20

Table 1. Proportion of multimethodological papers (1993, 2000) adapted from Mingers (2003)

Note: Information Systems Research (ISR); Information Systems Journal (ISJ); MIS Quarterly (MISQ); European
Journal of Information Systems (EJIS); Accounting, Managements and Information Technology (AIMT); Journal
of Information Technology (JIT)

2288

A Multi-Methodological Approach to Study Systems Development in a Software Organization

methods were very common among practitioners
within organizational interventions and was
driven by the demands of complex real-world
problem situations. According to this study, prac-
titioners used two, three or even more methods
together in this area.

DeVelOping tHe metHODOlOgy

Studied Organization

The research study was carried out in a software
development department of an international ICT
company. The software development department
was an internal partner for the company’s busi-
ness units. The development of applications and
services was assigned to an in-house software
development unit (Internal Development Unit,
later referred as IDU) or outsourced companies.
The use of IDU for development of new services
was mandated by the company’s top management.
IDU had approximately 150 employees that had
formerly focused on R&D work in the company.
During the past few years, it had tried to improve
its software skills and processes in order to make
its development more effective and also to prove
its capability to other business units. All the
business units of the company did not agree with
IDU’s processes and did not trust in its software
development capability. Their attitudes towards
IDU competencies in software development were
quite suspicious, mainly because of IDU’s history
as an R&D department. Quite often business
units preferred outsourcing instead of develop-
ing in-house.

The projects, called here the “DS project” and
the “EC project” respectively developed mobile
services to both the global and domestic telecom-
munication markets. A major goal of both projects
was the renewal of old platform architecture to
allow the services to be better and easier modifi-
able, maintainable, and scalable.

The DS project developed a directory service
platform for international markets. The project
was partitioned into two subprojects to facilitate
easier management. Partitioning was carried out
on the basis of the architecture and technology:
one subsystem had a highly distributed, compo-
nent-based architecture (Server) and the other was
a centralized subsystem (Client), which handled
authentication, authorization and user interfaces.
The functionality of the services required subsys-
tems to communicate only through an extensible
and configurable interface.

The goal of the EC project was to develop an
Electronic Commerce mobile service platform.
The system was intended to enable organizers
or their sponsors to promote their products in all
kinds of events, such as ice hockey and football
games. The system was composed of two sub-
systems: the platform in which the services are
run (Platform subsystem) and the toolbox (Tool
subsystem). The Tool subsystem allowed adding,
configuring and simulating of services to run in
a Windows PC and with a service platform in an
UNIX environment.

The actual systems development projects took
place in IDU during the year 2001 and they were
planned and organized according to a traditional
waterfall model with distinct requirement elicita-
tion, analysis, software design, implementation,
and testing phases.

Shaping the research problem

The basic notion of systems development, namely
systems development as a process that involves
real people in real environments (e.g., Lyytinen,
1987), formed the ground for constructing our
research methodology. To truly understand
systems development, it is imperative to study
people-systems development practitioners as they
solve real development problems in real environ-
ments. Therefore, as

 2289

A Multi-Methodological Approach to Study Systems Development in a Software Organization

Rosen (1991) puts it, “to understand social
process one must get inside the world of those
generating it.” This kind of goals favoured in-
terpretive approach that enables researcher to
understand human thought and action in social
and organizational contexts (Walsham, 1995).

Systems development in organizational envi-
ronment arouses different kinds of dependencies.
The structure of the software system itself creates
dependencies between software elements, while
the structure of the development process creates
dependencies between software developers. Each
of these both shapes and reflects the development
process; therefore, the other objective of selecting
the research methodology to this study was to
focus on different aspects of systems develop-
ment (both technical and social dependencies)
and therefore to get richer understanding of the
dependencies.

Yet another goal was also to be more con-
vinced of information accuracy also discussed
in Yin (1994). Quantitative evidence can indicate
relationships which may not be salient to the re-
searcher. It also can keep researchers from being
carried away by vivid, but false impressions in
qualitative data, and it can bolster findings when
it corroborates those findings from qualitative
evidence (Eisenhardt, 1989).

Above objectives favoured selecting the inter-
pretive approach (Walsham, 1995) and integrating
different methods according to multimethodologi-
cal approach (Eisenhardt, 1989; Mingers, 2003).
Used methods are described in another section
along with description of research process. In
the following, the basic principles of the shap-
ing the research methodology are explained in
more detail.

phases Adopted in research

The research included three phases: studies on
how architecture affects a multi site development
project, studies on how requirements were shaped

and interpreted during the systems development
and how this process is to be estimated, and a study
on how practitioners work with systems develop-
ment methods. It is briefly explained how these
three phases shaped the research problem:

Phase One: Multisite Coordination

The objective of this phase was to clarify the
systems development problems related to software
architecture and investigate how practitioners
cope with these problems in systems development.
This phase consisted of two parts: a qualitative
study about social complexities and a quantitative
analysis of technical complexities. During the
phase, the problems found in the qualitative study
evolved more to coordination and communication
problems for which architecture provided a tool.
In the quantitative study, the understanding of the
architecture as a size predictor in the project cost
estimation got its basic shape. The results from
this phase of study are given in another section.

Phase Two: Requirement
Understanding Process

In the beginning of phase two, we tried to find coor-
dination problems or problems related to software
architecture, but observed that the problems were
more related to requirement understanding and
organizational conflicts. This observation shaped
the research problem towards the interpretation of
the requirement understanding process and how
this could be measured to get better estimates of
the project timetable along with the architecture
measures from phase one. The results from this
phase are given in another section. At the end
of this phase, the observations so far suggested
that methods in the organization played an im-
portant role in the case study projects. This led
us to shape the study towards the interpretation
of the role of methods and their use in the studied
organization.

2290

A Multi-Methodological Approach to Study Systems Development in a Software Organization

Phase Three: Working with Systems
Development Methods

In this phase, the comparisons of the results
of phase one and phase two according to their
similarities and differences (cross-case analysis).
During this analysis, it appeared that the coor-
dination and the requirements understanding in
the projects were the result of using and adapting
methods based on the practitioner’s background,
experience and the development situation at hand.
The results from this phase are given in another
section.

reSeArcH prOceSS

In this section, the research process is explained.
Figure 1 explains the flow of research phases and

tasks. After that the process is explained in a more
detailed level.

preparing for the Study

The beginning of our research study included
an initial definition of the research question, a
selection of cases and crafting instruments and
protocols.

Each of the phases of the study had the research
questions of its own. Table 2 summarizes the
research questions of each three phases.

The selection of cases relied on the theoreti-
cal sampling principle (Glaser & Strauss, 1967),
in which cases are chosen as extreme situations
and polar types in which the process of interest is
“transparently observable.” The sampling strat-
egy of the current study was designed to be built
around projects displaying problems in systems

Theoretical s a mpling

Initial data analys is

U s ing a p rio ri c onstruct

S e lective co ding

F ormu la ting project n arra tive

E n folding litera tu re

W riting a r e p o rt

C ross-case analys is

S h aping hypo th esis

W riting a r e p o rt

L iterature analys is

Metaph orical an alys is
C reatin g conceptua l m od els

C reatin g p roperties o f s ys tem s size

C reatin g p re dic tio n m od el

C orrelation an alys is

E r ror an alys is

W riting a r e p o rt

P hases o n e and two

P has e th ree

Figure 1. Research process

 2291

A Multi-Methodological Approach to Study Systems Development in a Software Organization

development, big problems that caused delays to
the project’s timetable. Within these projects in
the studied organization, we chose projects of
polar types: one project had problems inside the
project, the other problems with the customer; one
was smaller and the other one bigger; they both
produced service platforms for different business
areas. The analysis revealed that the projects had
even more different features, such as the orienta-
tion, attitudes, and experience of the participants,
and the communication between participants that
extended the emergent theory (Eisenhardt, 1989).
To facilitate iteration and comparison, which is an
inevitable feature of the grounded theory method
(Locke, 2003), these two projects were analyzed
one by one.

Data collection

During the study, most of the data was collected
from project extensive documentation (see Table
3) based on the dynamic process of data collec-
tion (Glaser & Strauss, 1967), where samples
were extended and focused according to the
emerging needs of the theoretical sampling. In
both case projects, the project documentation
data was complemented with interviews among
project participants (customer, project managers,
designers, etc.).

The interviews were all tape-recorded and com-
pletely transcribed. The length of the interviews
varied from half an hour (focused interviews) to
2 hours (group interview). Several hundreds of
pages of project documentation, the transcribed
interviews, and 170,000 lines of program source
codes were analysed during the studies.

The data for the quantitative statistical analysis
in both phases one and two was collected from
the architecture and component design specifica-
tions, source code, project management database,
and bills from subcontractors. Some metrics (or
property values) of the software system were
calculated based on these documents. In the phase
this metric was related to software architecture
and in the phase two to requirements evolution.
In the project management database, the data
included the time spent on each task (development
effort) by the project participants. In the cases
where foreign consultants were involved in the
development work, the development effort data
was taken from the subcontractors’ bills.

Seed categories

Specification of a priori constructs (Eisenhardt,
1989) or also called seed categories (Miles &
Huberman, 1984) can help research. In phase
one, a notion of the common object from Malone

Phase one Phase two Phase three
What kind of coordination problems re-
lated to software architecture was present
during the systems development?

How were software require-
ments shaped and interpreted
during systems development?

How practitioners use sys-
tems development methods in
projects?

How did these problems differ in the
same-site and multi-site environments?

How methods support systems
development practitioners in
projects?

Table 2. Research questions in each three phases of the study

2292

A Multi-Methodological Approach to Study Systems Development in a Software Organization

and Crowston’s coordination theory (Malone &
Crowston, 1990, 1994) was used to interpret the
coordination in the project. In phase two, the
concept of a technology frame of reference (Or-
likowski & Gash, 1994) was used to interpret the
requirement understanding in the project.

Data Analysis

In these studies, we used the principle of within-
case and cross-case analysis to interpret the find-
ings in different phases of this thesis (Eisenhardt,
1989). In the within-case analysis “the overall idea
is to become intimately familiar with each case as
a standalone entity” allowing unique patterns to
emerge before trying to generalize patterns across

cases (Eisenhardt, 1989). In the first two phases
of the research, the qualitative data analysis was
based on the grounded theory (Glaser & Strauss,
1967; Strauss & Corbin, 1990). In those phases,
quantitative data analysis with a simple linear re-
gression method (Lawson, 1995) was carried out.
The principal researcher conducted the qualitative
analysis alone in all the phases, but, in phases one
and two, two other researchers did the quantita-
tive data analysis and provided complementary
insights (Eisenhardt, 1989) into the qualitative
analysis in our discussions. As outsiders of the
qualitative data collection, they were able to look
at the data more with greater objectivity (Nand-
hakumar & Jones, 1997), which facilitated a more
reliable data analysis as a whole.

Data/Document/Artifact
DS project

Data/Document/Artifact
EC project

15 Progress Report (from Project Manager) 15 Progress Reports (from Project Manager)
Project management
Software: Plan vs. Actual costs

Project management
Software (Niku Workbench): Plan vs. Actual costs, develop-
ment effort

11 Project Steering Group Meeting Minutes 16 Project Steering Group Meeting Minutes
46 Project Group Meeting Minutes 26 Project Group Meeting Minutes
Project Plan Project Plans
Functional Specifications Requirement Specification document
Requirement Catalogue Project Quality Criteria document
Risk analysis document Architecture Specification
Project Quality Criteria document 26 Module Specifications
Architecture Descriptions 22 Tool subsystem UI specifications
Module Specifications Kick-off presentation, Steering Group kick-out meeting min-

utes
Group Interview with project participants Focused interviews of three BU members (development man-

ager, team leader, designer)
Group interview slides Focused interviews of four IDU members (steering group rep-

resentative, project architect, 2 project designers)
Source code (Lines of Codes) 138,000 LOC Source code (Lines of Codes) 32,000 LOC

Table 3. Data available from the case projects

 2293

A Multi-Methodological Approach to Study Systems Development in a Software Organization

In the first and second phase of the study, the
qualitative data analysis started quite early, right
after the data on the project meeting minutes
was collected. In the first phase, data collection
continued with design specifications simultane-
ously with the analysis of the data on the project
meeting minutes. In phase two, the collection of
requirement specification data started while the
analysis of the data on the project meeting minutes
was still being performed. The quantitative data
collection started as soon as some initial findings
of the qualitative data analysis were made. Such
overlap of data collection and analysis is strongly
recommended by Eisenhardt (1989) and Strauss
and Corbin (1990). To help manage the quite ex-
tensive amount of information and the analysis
process, the Atlas.ti (Scientific Software, 2001)
tool was used. It helped in the analysis process, for
example in the retrieval of categories, memo mak-
ing and recording of semantic relationships.

The quantitative data analysis was hypoth-
eses testing in nature and naturally used a priori
constructs. Both hypotheses were based on the
initial findings of the corresponding qualitative
studies. To the statistical data analysis, we used
the Matlab Optimization Toolbox (MathWorks
Inc., 2003).

In the following we describe the data analysis
process in the three phases of the study.

Phase One

Data analysis started with open coding according
to Miles and Huberman (1984). In open coding, a
researcher tries to find relevant categories based
on research questions. Open coding started with
the finding of problems and deviations related to
coordination and software architecture (relevant
categories in this study) in the project progress,
using mainly project meeting minutes and the
group interview as a data source. We further
used architecture and design specifications to
help pinpoint the problems. We observed in total

329 deviations and problems related to software
architecture and coordination.

Data analysis continued with the axial coding,
in which categories found in open coding were
refined, developed further, and related. In this
phase, we used a notion of common object as a
seed category based on Malone and Crowston’s
coordination theory (Malone & Crowston, 1990,
1994) to help in the interpretation of coordination
problems in the project. We identified two types
of common objects from the study, namely com-
ponent and development activity. The following
example (Figure 2) shows a translated excerpt of a
transcript after axial coding. This example shows
how common objects were interpreted from the
project material.

In the selective coding phase, where the “core
category,” or central category that ties all other
categories in the theory together, was identified
and related to other categories (Glaser & Strauss,
1967). The identification of common objects
helped in finding the interdependencies between
activities that caused coordination problems in
the project. We identified three interdependencies
between components and three interdependencies
between development activities. These interde-
pendencies are explained in another section.

After finding the interdependencies, we tried
to find an answer to the research question of how
the problems in coordination differed in multisite
and same same-site environments (cross-case
analysis). To find these differences, we compared
the two subprojects and analyzed the differences
in the coordination processes between them.

In the quantitative analysis, we used meta-
phorical analysis (Frost & Morgan, 1983; Lakoff
& Johson, 1980; Schultze & Orlikowski, 2001) to
help understand the architecture of the system.
According to our metaphor of architecture draw-
ing, we identified three categories that described
the architecture of our case study system best.
Within these categories, we attempted to select
the properties, which were simple and could be

2294

A Multi-Methodological Approach to Study Systems Development in a Software Organization

calculated based on project design specifications.
We chose the simple linear prediction model to
analyze the correlation between architecture
properties and systems development effort. From
these 7 property values for six components, a total
of 42 property values were calculated. From these
property values, we calculated coefficient values
using Matlab Optimization toolbox. In the end of
this quantitative process, we calculated the model
errors to determine the quality of our cost effort
estimation model and analyzed the results based
on coefficient values.

Phase Two

Phase two started with the identification of
problems and deviations in the project progress.
During the development, these were issues that
were brought to the project meetings for discus-
sion and decision-making. The steering and
project group meeting minutes were the main
sources for problem and change identification.
We observed in total 150 problems and deviations
related to project progress. Most of the concerns
brought to the steering group were related to the

Figure 2. Translated excerpt of a transcript after axial coding in the phase one

”On the Server side, we gained experience from new technologies,
like XML, XSL and CORBA”

”We had a lot of problems with Client and Server synchronization.
The Client was first and the Server was behind, it should be wice versa ”

”The Client-Server interface was dependent on core resources”

”AA and MS&LB need communication with architect and designer”

”The second actual build was made 24th August, FFE not ready for testing”

T echn ica l o rien ta tion of the S erver
C om m on o b ject: d eve lopm ent activ ity

C om m un ica tion prob lem s
C om m on o b ject: d eve lopm ent activ ity

In te rface and in te rdependence prob lem s
C om m on o b ject: c om ponent

A ssem bly order p rob lem s
C om m on o b ject: d eve lopm ent activ ity

In te rface prob lem s
C om m on o b ject: c om ponent

 2295

A Multi-Methodological Approach to Study Systems Development in a Software Organization

other subsystem and its requirements. Also the
system development styles and strategies caused
concerns.

To better understand the requirements of
the system, we investigated in more detail the
requirements specification document. We were
able to extract only four initial requirements that
were related to the other subsystem. Our analysis
continued as we used three conceptual models
of both subsystems developed in the qualitative
study.

Through these models, we were able to grasp
how the subsystems evolved through different
phases of systems development. The content of
these conceptual models suggested to us that
the other subsystem’s requirements changed
considerably during the process. This led us
into investigating further why this subsystem’s
requirements changed so much, while the other
subsystem’s requirements remained stable.

To answer this question, we made focused in-
terviews among the project participants to identify
the reasons for these changes. Project participants
were asked to reflect on the project’s history by
showing the analysis and implementation models
of the system and to describe their understand-
ing of what happened in the project between the
requirement analysis and implementation phases.
Four of the interviewed project participants were
from the development side and three from the
business side. Business side representatives were
also asked about the competences and processes
of development side during the time the project
was running and how these competences and
processes had evolved after that. The interviews
were audio taped and fully transcribed to preserve
all the details.

Based on the interviews, we observed that
requirements did not change that much during the
project, but the understanding of them changed.
The open coding proceeded in parallel, treating
each interview as confirmation or further develop-
ment of results from earlier findings. During this
process, the categories developed gradually. First,

we identified quite concrete concerns of system
development. In further analysis, we found more
subtle contextual attitudes and expectations about
how systems development should be performed.
These attitudes and expectations were so strongly
visible in the data that we could interpret them as
technology frames (Orlikowski & Gash, 1994). In
further analysis, we used technology frames as a
priori construct or lenses to the data. This further
analysis consisted of group analysis, cross-group
analysis and re-examination of the categories.
This iterative examination of the data yielded five
categories of technology frames, which were used
as a basis for the next phase, axial coding.

During the axial coding, we identified four
processes of stereotypical “tensions” between
these attitudes and expectations, which affected
how project participants emphasized these frames
of understanding in different phases of the proj-
ect. These tensions and explained in another
section.

In the selective coding phase, the causal
relationships between categories were recorded
with Atlas.ti’s (Scientific Software, 2001) se-
mantic network capability. Figure 3 shows an
example of such a network diagram. In Figure
3, the boxes represent categories, the arrows the
interpreted causalities between them, and the
lines simple associations between the categories.
The abbreviations business value of system de-
velopment (BVSD), system development strategy
(SPS), system development capability (SDC),
and system development resource allocation
(SDRA) correspond to the categories of frames
of understanding.

Based on project material, interviews, and
analysis, we formulated the project narrative to
trace how the participants’ attitudes and expecta-
tion influenced the systems development process.
In the end of the research process, the project
narrative was sent by e-mail to the project man-
ager to get her opinion on the correspondence of
the narrative with the reality. She adjusted some
details, which did not affect the main findings.

2296

A Multi-Methodological Approach to Study Systems Development in a Software Organization

In the quantitative analysis, we formulated
the metric describing the identified requirement
evolution in the project. The metric was quite
simple: it calculated the concepts found dur-
ing the analysis and implementation models of
the system. These analysis and implementation
models were formed based on the project speci-
fications. In the statistical analysis, we used the
same simple prediction model as in phase one of
the study. The other metrics needed were chosen
based on simplicity and wide usage. Using this
prediction model, we calculated the correlation
between metrics chosen and the development ef-
fort. In the end of the process, we formulated the
model errors to determinine the reliability of our
prediction model and analyzed the results.

Phase Three

In phase three, we used cross-case analysis to
interpret the final results in this thesis (Eisenhardt,
1989). We searched for cross-cased patterns to
compare the multi-site and same-site development
by listing their similarities and differences (Eisen-
hardt, 1989). We selected pairs of cases and listed
similarities and differences between each pair. In
this phase, the number of cases was actually three
because one of the case projects consisted of two
subprojects. The cross-category table produced
in this process is shown in Table 4.

Figure 3. An example of semantic network diagram using Atlas.ti (Scientific Software, 2001)

= >
= =

= =

= =

= >

= >

= >

= =
= =

= =

= =

= =

= =

= >

= =

= =

= =

= =

= =

I n c o n g r u e n c e : d i f f e r e n t o p i n i o n

B V S D : c o n s u l t a t io n o f o u t s i d e c o m p a n y

B V S D : u s e o f I D U s e r v i c e s

S D C : B U n e g a t i v e a t t i t u d e t o w a r d s
c o m p e t e n c e s o f I D U

S D C : I D U r e l ia n c e o n t h e i r c a p a b i l i t y

I n c o n g r u e n c e : d i f f e r e n t a t t i t u d e

B V S D : T e c h n ic a l c o n v e r s a t i o nB V S D : B u s in e s s c o n v e r s a t i o n

I n c o n g r u e n c e : d i f f e r e n t p r e f e r

S D S : u s e o f w a t e r f a l l m o d e l

S D S : u s e o f in t e r a c t i v e / i t e r a t i v e m o d e l

I n c o n g r u e n c e : d i f f e r e n t v ie w

S D R A : R e s o u r c e a l lo c a t io n a d d o r d i n g
p r o c e s s d e s c r i p t io n s

S D R A : R e s o u r c e a l lo c a t io n b a s e d o n
n e c e s s i t y o f s i t u a t i o n

I n c o n g r u e n c e : d i f f e r e n t p o i n t o f v ie w

S D S : p r o c e s s r e l i a n c e

F i l t e r in g : i n h i b i t

S D C : N e g a t i v e a t t i t u d e s t o w a r d s U I

F i l t e r in g : a f f e c t

B V S D : I D U a s a t e c h n ic a l r e s o u r c e

F i l t e r in g : i n f l u e n c e

S D R A : L a c k o f U I e x p e r t i s e

F i l t e r in g : c o n t r i b u t e

 2297

A Multi-Methodological Approach to Study Systems Development in a Software Organization

Shaping the Hypothesis

From the within-case analysis, the cross-case
analysis and overall impressions, tentative tenses
and concepts and their relationships begin to

emerge, which is called hypothesis shaping
(Eisenhardt, 1989). The idea is that researchers
constantly compare emergent theory and “raw”
data—iterating towards a theory with closely fit
data (Eisenhardt, 1989).

Table 4. Cross-category table between projects in the studies

 Category Case Project 1

subproject A

Case Project 1

subproject B

Case Project 2

Adaptation to
method

yes no yes

Problems minor technical
inside project

inside project,
coordination and
architecture
understanding

requirement understanding

Timetable
estimation

no major
problems

problems problems

Orientation and

Architect’s
technical
orientation

Architect’s
business
orientation

towards UI and windows

Experience Experienced
project group

Unexperienced
project group

Unexperienced project group

Communication good bad in the beginning bad, later good

Understanding
the system

fairly good not very good in the beginning no, learning to
understand

Understanding
the
development
situation

yes no in the beginning no later yes

Method
purpose

communication
and
coordination

method use failed communication and learning

The most
meaning metric
(relative to
development

Coupling
(NIC)

 - Requirements Creep

2298

A Multi-Methodological Approach to Study Systems Development in a Software Organization

In the hypothesis shaping, we used the semantic
network diagram capability of Atlas.ti software
(Scientific Software, 2001). This semantic network
is shown in Figure 2. This network shows the
relationships between the core categories used
to interpret the role of methods.

finishing and reporting the Studies

Eisenhardt (1989) distinguishes the phase “enfold-
ing literature.” By this phase, Eisenhardt means
the comparison of the findings with similar and
conflicting literature. The aim of this phase is to
raise confidence, creative thinking, and the valid-
ity, generalizability, and conceptual level of the
findings. Yin (Yin, 1994) refers to this as “analytic
generalization” to distinguish it from the more
typical statistical generalization that generalizes
from a sample to a population. In phase one, the
main comparisons were done with Malone and
Crowston’s (Malone & Crowston, 1990, 1994)
coordination theory and cost estimation literature.
The comparisons of phase two were made with
traditional requirement engineering approaches
and existing sociotechnical approaches to re-
quirement elicitation, especially the concept of a
technological frame. All these provided conflict-
ing and similar concepts and patterns, which all
provided an alternative and more creative view
to our findings. In phase three, the findings were
compared to a few empirical studies of the role
of methods in systems development.

SummAry Of finDingS

Phase One: Multisite Coordination (Ovaska &
Bern, 2004; Ovaska, Rossi, & Marttiin, 2004)

In phase one, we discovered six different coordina-
tion processes to explain most of the coordination
problems related to software architecture in the
case studies. These six processes can be sum-
marised as follows:

1. Interfaces: Managing interfaces between
system components

2. Integration: Managing the assembly of sys-
tem components, enabling their integration
into a full, working system architecture

3. Interdependence: Managing the interdepen-
dencies between system components

4. Communication: Managing the commu-
nication processes between development
participants

5. Responsibility: Managing the allocation of
responsibilities for key decisions related to
the software architecture and subsystem
designs

6. Perspectives: Managing the different per-
spectives development participants brought
to the project and managing negotiations
related to these perspectives

This phase suggest that technical dependen-
cies among software components (interfaces,
integration, and interdependence) create social
dependencies (communication, responsibility,
perspectives) among the software developers
implementing those components. It also supports
the Malone and Crowston’s coordination theory by
highlighting the importance of the coordination
of interdependencies between activities instead
of purely coordinating activities in systems de-
velopment.

Phase Two: Requirement Understanding
(Ovaska, 2004; Ovaska, Rossi, & Smolander,
2005)

In phase two of the research process four categories
of technology frames were identified that could
explain attitudes and expectations that affected
people’s understanding of requirements and which
were directly related to the ISD process. These
categories can be summarised as follows:

1. Business value of systems development:
attitudes and expectations about the re-

 2299

A Multi-Methodological Approach to Study Systems Development in a Software Organization

lationship between business and system
development.

2. Systems development strategy: attitudes
and expectations about the system develop-
ment lifecycle model and associated ISD
processes.

3. Systems development capability: the as-
sumptions, attitudes and expectations
surrounding the various competencies of
project participants in different areas of
system development

4. Systems development resource allocation:
the assumptions, attitudes and expectations
as regards scheduling, budgeting, and priori-
tisation of systems development activities

Within these four frames it was possible to
identify stereotypical “tensions” which emerged
as the projects unfolded. These tensions and the
processes associated with them had important ef-
fects on how the project participants emphasized
various technology frames during the different
phases of the project:

1. Incongruence: this tension emerged when
understanding, attitudes, or expectations
differed among the stakeholders, causing
conflicts and misunderstanding

2. Filtering: this tension surfaced when a
stakeholder of the development process left
something out of scope because of his/her
particular perspective, attitude, series of
expectations, or experience of ISD

3. Negotiation: this refers to tensions associ-
ated with the various negotiations between
project participants and took place in order
to resolve incongruities

4. Shifting: this emerged when the understand-
ing of a frame changed (called a “frame
shift”). After a frame shift, the parties in-
volved achieved an understanding of a frame
that was more aligned and suitable for the
current situation than before the shift.

In this phase, we observed that preconcep-
tions, attitudes, and expectations about systems
development among project participants filtered
the understanding of software requirements, ne-
gotiating between project participants resolved
the issues caused by filtering and shifts in these
attitudes and expectations facilitated changes in
the understanding of requirements. In spite of this
observed filtering, shifting, and negotiation, the
developed system exceeded the customer’s needs
and expectations even though it was delivered late.
The results of this phase suggest that the current
conceptions regarding requirement elicitation do
not correspond with the needs of practice. The
traditional requirement engineering research
concentrates on detecting and representing re-
quirements and ensuring that they are complete
and consistent. It sees requirements mainly in a
system context assuming that they already exist

somewhere ready to be picked in the require-
ment elicitation phase. Our study has consequences
beyond such a view. It suggests that requirement
elicitation is in practice an ad-hoc and iterative
process involving political, cognitive and social
aspects that affect the interpretation of require-
ments during the whole project lifetime.

Phase Three: Working with Methods (Ovaska,
2005)

During the cross-case analysis in phase three of
the research process, we discovered the five cat-
egories which summarised various ways in which
methods were used in the target projects:

1. Methods used as tools: rather than following
predefined phases and tasks practitioners
used ISD methods as if they were a set of
tools which could be variously deployed or
discarded as the need arose

2. Methods used to coordinate: practitioners
primarily used methods to coordinate sys-
tems development

2300

A Multi-Methodological Approach to Study Systems Development in a Software Organization

3. Methods used a communication language:
methods were used to provide common
communication language between various
project participants, and the methods thus
helped to set the agenda for many discus-
sions

4. Methods as a means to aid understanding
of the system and its requirements: methods
were used to help develop an understanding
of the system in terms of requirements and
expectations of users and align these with
various technical and nontechnical issues
which arose

5. Understanding the development context:
methods were used by participants to make
sense of the development situation as it
shifted over time

This phase suggests that working with methods
is complex social interaction and a mutual under-
standing process between project participants. The
methods were used in our case study as a tool for
communication and learning and as a resource
in project planning among system development
participants, not as a list of phases to be followed
in detail. Method use requires communication
between project participants to adopt the method
to the development situation. Without commu-
nication, methods use failed. When participants
gained common understanding

of the appropriate development strategy and
method, the method use became a learning pro-
cess. In this learning process, system develop-
ment participants changed their understanding of
the system, according to changing development
situations. Without the common understanding
of the system between project participants, the
estimation of project timetable and resources
did not succeed. Based on the observations of
our study, we argue that methods are used more
as support and guide the development than strict
phases to be followed in detail.

DiScuSSiOn

In this section the multimethodological ap-
proach used in this study is discussed related to
the multimethodological guidelines set out by
Mingers (2001). The guidelines suggest that in
designing research one should consider the fol-
lowing domains:

• The context of the research—in particular the
relationships between the research situation
and task, the methods and theories available,
and the researchers’ own competencies and
commitments

• The dimensions of the research situation—in
particular, the material, social, and personal
aspects

In the following, these domains are explained
in more detail along with the comparison our
multimethodological approach to it. Finally, we
summarize the general experiences of using the
methodology and its limitations.

the context of the research

The multimethodology used in this study lies on
the most close to dominant type of design in which
one method is the main approach with contribu-
tions from the others. The qualitative methods
were our main method in all phases contributed
from qualitative statistical analysis. The reasons
for such a design were formed from the nature of
systems development as a social process.

The professional and scientific background of
principal researcher provides some explanations
for understanding the selection of the research
method and also the role of the researcher in the
interpretive research process. Because of her
educational background in engineering, she also
wanted to get some “hard evidence” of the projects,
maybe to become more assured of the reliability
of the research. She wanted to carry out some
statistical, quantitative calculations that would

 2301

A Multi-Methodological Approach to Study Systems Development in a Software Organization

support the qualitative work. During the learn-
ing process in the research work, the quantitative
calculations faded into the background and shifted
more towards an interpretive approach.

Although the principal researcher did not work
on the chosen projects, she acquired “deep famil-
iarity” (Nandhakumar & Jones, 1997) with the
research context and its actors during the 5 years
working in that company. During the observation
period, she was fully involved in the activities
of the company. During the analysis period, she
was not involved in the activities, but had full
access to all project documents gaining access to
information that would not otherwise have been
divulged. The used data in the study was mainly
documents gathered during the projects. Without
her personal experience in the company, it would
have been difficult to interpret the local meanings,
dominant perceptions, tacit knowledge, and non-
verbal communication (Nandhakumar & Jones,
1997) from the documentation. Without the deep
familiarity with the research context and its actors,
it would not be possible to gain additional insight
in the actors’ interpretations, their motivation,
and perspectives (Nandhakumar, Jones, 1997)
in the focused interviews carried out during the
study. Her role as a researcher was somewhere
between an outside observer and involved re-
searcher (Walsham, 1995); it can be called an
“involved observer” participating in the work of
the company before the analysis period.

the Dimensions of the research
Situation

According to Mingers (2001), each research
situation is the combination of three worlds: the
material world, the social world, and the personal
world. Each domain has different modes of exis-
tence and different epistemological possibilities
as followed:

• The material world is outside and inde-
pendent of human beings characterized as

objective in the sense that it is independent
of the observer although our observations
and descriptions of it are not. Our relation-
ship to this world is one of observation.

• The personal world is the world of our own
individual interpretations, experiences,
thoughts, and beliefs. We do not observe it,
but experience it.

• The social world is the world that we share
with others in a particular social system and
participate in it.

In comparing our research situation and
methodology to this framework, all these worlds
were present to the following extent. The study
covered material aspects, such as architecture as
a predictor of system size or requirement creep
as a measure of requirement evolution. The inter-
pretive analysis of documentation and interviews
explored the meaning of coordination and require-
ments understanding for particular individuals;
and group interviews and their interpretations
revealed the social aspects of coordination and
requirements understanding.

general experiences

In general, we experienced the methodology
highly iterative learning process, in this process
the research themes and questions changed dur-
ing its phases.

The most challenging part of the research was
the combination of quantitative and qualitative
methods, mainly because of the lack of the em-
pirical frameworks to guide the work; therefore
the frameworks would be helpful in designing
and developing this kind of research.

limitations of the methodology

A critical issue for researchers concerns the
generalizability of the results of their work, and
Yin (1994) notes that this issue is often rose with
respect to case studies. Different arguments for

2302

A Multi-Methodological Approach to Study Systems Development in a Software Organization

the generalizability of case study research have
been given (Dutton & Dukerich, 1991; Eisenhardt,
1989; Walsham, 1995; Yin, 1994). It is argued that
in case study research, the identified concepts and
categories are compared to theoretical concepts
and patterns, unlike in statistical generalization
from a sample to a population. Still, due to the
nature of this study in which the understanding
of method use was interpreted on the basis of
separate phenomena found in one organization,
the generalization of the use of methods may be
limited. Therefore, the understanding gained in
these studies provides a basis for understanding
similar phenomena in the same settings rather
than enabling the understanding of phenomena
in other contexts.

SummAry AnD future WOrK

This chapter has described the multimethod-
ological approach to study coordination of systems
development process. We used the principle of
within-case and cross-case analysis to interpret
the findings in different phases of the study. In
all these three phases, we used both qualitative
and quantitative methods to get richer and more
reliable understanding from coordination phe-
nomena.

The three phases of the study have provided
a rich picture of different aspects of systems
development in the software organization. In the
first phase of the study, we examined the role of
architecture in coordination and cost estimation
in a multisite software development from quan-
titative and qualitative viewpoints. The second
phase involved two studies, one qualitative and
the other quantitative, on the evolving requirement
understanding process and the measurement of
this process. The third phase was a study based
on the first two studies on the role of methods and
how practitioners work with them using principle
of cross-case analysis. The research process of
these phases was explained.

We experienced the methodology highly itera-
tive and adaptive learning process, in which the
research themes and questions evolved during its
phases. The study covered material aspects, such
as architecture as a predictor of system size as
well as personal and social aspects. Highly inter-
pretive analysis of documentation and interviews
covered aspects of particular individuals whereas
the group interviews and their interpretation
revealed the social aspects of coordination of
systems development work.

The main contribution of this study is to dem-
onstrate that contemporary systems development
is very complex and more driven by opportunity
than is currently acknowledged by researchers. We
need more knowledge of the current and emerging
business and organizational contexts in which and
for which these systems are developed. This study
suggests that further rich, multimethodological
research is urgently needed in order to build a
picture of how communities of practice make sense
of systems development. Only in this way we can
begin to find ways to understand and address the
problems in systems development.

The most challenging part of the research
process was the combination of qualitative and
quantitative methods because of the lack of mul-
timethodological work done so far; therefore the
frameworks would be helpful in designing and
developing multimethodological approaches.

In the future, our multimethodological frame-
work needs deeper work towards a theory-building
approach, especially related to analysis process in
the phase three. Also, the replication of our study
in other contexts and redefinition of the framework
based on experiences is necessary.

referenceS

Allen, T. (1977). Managing the flow of technology.
Cambridge, MA: MIT Press.

 2303

A Multi-Methodological Approach to Study Systems Development in a Software Organization

Curtis, B., Krasner, H., & Iscoe, N. (1988). A field
study of the software design process for large
systems. Communications of the ACM, 31(11),
1268-1287.

Dutton, J., & Dukerich, J. (1997). Keeping an eye
on the mirror: Image and identity in organizational
adaptation. Academy of Management Journal,
34, 517-554.

Eisenhardt, K.M. (1989). Building theories from
case study research. Academy of Management
Review, 14(4), 532-550.

Frost, P.J., Morgan, G. (1983). Symbols of sense-
making: The realization of the framework. L. R.
Pondy, P.J. Frost, G. Morgan & R.T.C. Dandrike
(Eds.), Organizational Symbolism (pp. 419-437).
New York: Wiley.

Glaser, B., & Strauss, A.L. (1967). The discovery
of grounded theory: Strategies for qualitative
research. Chicago, Adline.

Glass, R., Vessey, I., & Ramesh, V. (2002). Re-
search in software engineering: An analysis of the
literature. Information and Software Technology,
44(8), 491-506.

Jayaratna, N. (1994). Understanding and evalu-
ating methodologies: NIMSAD a systematic
framework. New York, McGraw-Hill.

Hersleb, J.D., Mockus, A., Finholt, T.A., & Grinter,
R.E. (2000). Distance, dependencies and delay in
a global collaboration. ACM Conference on Com-
puter-Supported Cooperative Work. Philadelphia
(p. 319, 328), December 2-7.

Kraut, R.E., & Streeter, L.A. (1995). Coordination
in software development. Communications of the
ACM, 38(3), 69-81.

Lakoff, G., & Johson, M. (1980). Metaphors we live
by. Chicago: The University of Chicago Press.

Lawson, C.L. (1995). Solving least squares
problems. Society of Industrial and Applied
Mathematics.

Lee, A (1997). Integrating positivist and inter-
pretivist approaches to organizational research.
Organization Science, 2, 342-264.

Locke, K. (2003). Grounded theory in manage-
ment research. London: Sage.

Lyytinen, K. (1987). Different perspectives on
information systems: Problems and solutions.
ACM Computing Surveys, 19(1), 5-46.

Malone, T.W., & Crowston, K. (1990, October
7-10). What is coordination theory and how can
it help design cooperative work systems? In
Conference on Computer Supported Cooperative
Work (CSCW ‘90), Los Angeles, (pp. 357-370).
ACM Press.

Malone, T.W., & Crowston, K. (1994). The interdis-
ciplinary study of coordination. ACM Computing
Surveys, 26(1), 87-110.

Markus, I. (1994). Electronic mail as the medium
of managerial choice. Organizational Science,
5(4), 502-527.

Mathworks Inc. (1995). Matlab. Retrieved August
20, 2008 from http://www.mathworks.com

Miles, M.B., & Huberman, A.M. (1984). Qualita-
tive data analysis: A sourcebook of a new methods.
Beverly Hills, CA: Sage.

Mingers, J. (2001). Combining IS research meth-
ods: Towards a pluralist methodology. Information
Systems Research, 12(3), 240-259.

Mingers, J. (2003). The paucity of multimethod
research: A review of the information systems
literature. Information Systems Journal, 13,
233-249.

Munro, I., & Mingers, J. (2002). The use of mul-
timethodology in practice—Results of a survey
of practitioners. Journal of Operational Research
Society, 53, 369-378.

Nandhakumar, J., & Avison, D. (1999). The fic-
tion of methodology development: A field study

2304

A Multi-Methodological Approach to Study Systems Development in a Software Organization

of information systems development. Information
Technology & People, 12(2), 176-191.

Nandhakumar, J., & Jones, M. (1997). Too close
for comfort? Distance and engagement in inter-
pretive information systems research. Information
Systems Journal, 7(2), 109-131.

Ngwenyama, O., & Lee, A. (1997). Communica-
tion richness in electronic mail: Critical social
theory and the contextuality of meaning. MIS
Quarterly, 21, 145-167.

Orlikowski, W.J. (1993). Case tools as organi-
zational change: Investigating incremental and
radical changes in systems development. MIS
Quarterly, 17(3).

Orlikowski, W.J., & Gash, D.C. (1994). Tech-
nological frames: Making sense of information
technology in organizations. ACM Transactions
on Information Systems, 12(2), 174-207.

Ormerod, R. (1995). Putting soft OR methods
to work: Information systems strategy develop-
ment at Sainsbury’s. Journal of the Operational
Research Society, 46(3), 277-293.

Ovaska, P. (2004, April 14-17). Measuring require-
ment evolution – a case study in the e-commerce
domain. In 6th International Conference on En-
terprise Information Systems (ICEIS(3)), Porto,
Portugal, INSTICC (pp. 669-673).

Ovaska, P. (2005). Working with methods: Obser-
vations on the role methods in systems develop-
ment. O. Vasilegas, A. Capinskas, W. Wotjowski,
W.G. Wotjowski, J. Zupneic, & S. Wrycza (Eds.),
Information systems development, advances in
theory, practice and education, ISD 2004 (pp.
185-197). Springer.

Ovaska, P., & Bern, A. (2004, June 7-11). Archi-
tecture as a predictor of system size – a metaphor
from construction projects. In 16th International
Conference on Advanced Information Systems

Engineering (CAISE ’04 Forum), Riga, Latvia,
Riga Technical University (pp. 193-203).

Ovaska, P., Rossi, M., & Marttiin, P. (2004).
Architecture as a coordination tool in multi-site
software development. Software Process Im-
provement and Practice, 8(4), 233-248.

Ovaska, P., Rossi, M., & Smolander, K. (2005).
Filtering, negotiating and shifting in the under-
standing of information systems requirements.
Scandinavian Journal of Information Systems,
17(1), 31-66.

Rosen, M. (1991). Coming to terms with the
field: Understanding and doing organizational
ethnography. Journal of Management Studies,
28, 7-24.

Schultze, U., & Orlikowski, W.J. (2001). Meta-
phors of virtuality: Shaping an emergent reality.
Information and Organization, 11(1), 45-77.

Scientific Software. (2001). Atlas.ti-the knowl-
edge workbench. Retrieved June 3, 2008, from
http://www.atlasti.de/

Strauss, A., & Corbin, J. (1990). Basics of qualita-
tive research: Grounded theory procedures and
applications. Newbury Park, CA: Sage.

Trauth, E.M., & Jessup, L. (2000). Understanding
computer-mediated discussions: positivist and
interpretive analyses of group support system
use [Special issue on intensive research]. MIS
Quarterly, 24(1), 43-79.

Walsham, G. (1995). Interpretive case studies in
IS research. European Journal of Information
Systems, 4, 74-81.

Wynekoop, J., & Russo, N. (1997). Studying
system development methodologies: An exami-
nation of research methods. Information Systems
Journal, 7(1), 47-65.

Yin, R.K. (1994). Case study research: Design
and methods (2nd ed.). Newbury Park: Sage.

 2305

A Multi-Methodological Approach to Study Systems Development in a Software Organization

ADDitiOnAl reADingS

Andersson, S., & Felici, M. (2001, September
10-13). Requirements evolution: From process
to product oriented management. In Proceedings
of the 3rd International Conference on Product
Focused Software Process Improvement, Kaiser-
slautern, Germany (pp. 27-41). Springer Verlag.

Andersson, S., & Felici, M. (2002, August 26-29).
Quantitative aspects of requirement evolution.
In Proceedings of the 26th Annual International
Conference on Computer Software and Appli-
cations Conference (COMPSAC 2002), Oxford,
England (pp. 27-32). IEEE Society

Baskerville, R., Travis, J., & Truex, D.P. (1992).
Systems without method: The impact of new
technologies on information systems development
projects. In J.I. DeGross (Ed.), Transactions on the
impact of computer supported technologies in in-
formation systems development (pp. 241-260).

Boehm, B. (1987). Improving software productiv-
ity. IEEE Computer, 20(8), 43-58.

Brodner, P. (2006). Behind the IT productivity
paradox: The semiotic nature of IT artefacts. In
F. Meyer (Ed.), 2006 International Federation
of Automation and Control (IFAC) Conference
on Automation Based on Human Skill (ABoHS),
Nancy, France.

Brooks, F.P.J. (1995). The mythical man-month
- 20th anniversary edition. Boston, MA: Ad-
dison-Wesley.

Benbasat, I., D. Goldstein & Mead M. (1987) The
case study research strategy in studies of informa-
tion systems. MIS Quarterly, 11(3),369-386.

Benbasatam, I. & Weber, R. (1996) Rethinking
‘diversity’ in information systems research. In-
formation Systems Research.7(4): 389-399.

Calloway, L.J., & Ariav, G. (1991). Developing and
using qualitative methodology to study relation-

ships among designers and tools. In E. Nissen,
H. Klein, & R. Hirschheim (Eds.), Information
systems research: Contemporary approaches and
emergent traditions (pp. 175-193). Amsterdam,
North-Holland.

Fitzgerald, B. (1998). An empirical investiga-
tion into the adoption of systems development
methodologies. Information & Management,
34(6), 317-328.

Galliers, R. (1993). Research issues in informa-
tion systems. Journal of Information Technology,
8(2), 92-98.

Gersick, C. (1988). Time and transition in work
teams: Toward a new model of group develop-
ment. Acade.

Iivari, J., & Maansaari, J. (1998). The usage of
systems development methods: Are we stuck to
old practices? Information and Software Technol-
ogy, 40(9), 501-510.

Jick, T.D. (1983). Mixing qualitative and quan-
titative methods: Triangulation in actions. In J.
Van Maanen (Ed.), Qualitative methodology (pp.
135-148). Beverly Hills, CA: Sage.

Kidder, T. (1982). Soul of a new machine. New
York: Avon.

Landry, M., & Banville, C. (1992). A disciplined
methodological pluralism for MIS research. Ac-
counting, Management & Information Technol-
ogy, 2(2), 77-97.

Mintzberg, H. (1979). An emerging strategy of
direct research. Administrative Science Quarterly,
24(4), 582-589.

Munro, I., & Mingers, J. (2002). The use of mul-
timethodology in practice & results of a survey
of practitioners. J Opl Res Soc., 53, 369-378.

Orlikowski, W.J. (1993). Case tools as organi-
zational change: Investigating incremental and
radical changes in systems development. MIS
Quarterly, 17(3), 309-340.

2306

A Multi-Methodological Approach to Study Systems Development in a Software Organization

Pinfield, L. (1986). A field evaluation of perspec-
tives on organizational decision making. Admin-
istrative Science Quarterly, 31(3), 365-388.

Pohl, K. (1994). Three dimensions of requirements
engineering: Framework and its application. In-
formation Systems, 19(3), 243-258.

Robey, D. (1996). Diversity in information sys-
tems research: Threat, promise and responsibility.
Information Systems Research, 7(4), 400-408.

Suchman, L. (1987). Plans and situated action.
Cambridge: Cambridge University Press.

Truex, D.P., Baskerville, R., & Travis, J. (2001).
Amethodical systems development: The deferred
meaning of systems development methods. Ac-
counting, Management and Information Tech-
nologies, 10(1), 53-79.

van Lamsweerde, A. (2000). Requirements engi-
neering in the year 00: A research perspective.
In Proceedings of the International Conference
on Software Engineering (ICSE 2000), Limerick,
Ireland (pp. 5-19).

Weill, P., & Broadbent, M. (1998). Leveraging
the new Infrastructure. Boston, MA: Harvard
Business School Press.

Wiegers, K.E. (1999). Software requirements.
Microsoft Press.

Winograd, T., & Flores, F. (1986). Understanding
computers and cognition. Norwood, NJ: Ablex.

Wynekoop, J., & Russo, N. (1995). Systems
development methodologies: Unanswered ques-
tions. Journal of Information Technology, 10(2),
65-73.

This work was previously published in Information Systems Research Methods, Epistemology, and Applications, edited by A.
Cater-Steel & L. Al-Hakim, pp. 162-182, copyright 2009 by Information Science Reference (an imprint of IGI Global).

 2307

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.29
Integrating Usability, Semiotic,
and Software Engineering into a

Method for Evaluating
User Interfaces

Kenia Sousa
University of Fortaleza, Brazil

Albert Schilling
University of Fortaleza, Brazil

Elizabeth Furtado
University of Fortaleza, Brazil

ABStrAct

We present artifacts and techniques used for user
interface (UI) design and evaluation, performed
by professionals from the human-computer in-
teraction (HCI) area of study, covering usability
engineering and semiotic engineering, which can
assist software engineering (SE) to perform us-
ability tests starting earlier in the process. Tests
of various interaction alternatives, produced
from these artifacts, are useful to verify if these
alternatives are in accordance with users’ prefer-
ences and constraints, and usability patterns, and
can enhance the probability of achieving a more
usable and reliable product.

IntroductIon

In a software development process (SDP), it is
crucial for developers, customers, and users to
interact in order to specify, generate, and evalu-
ate the software. From software specification to
its delivery, various kinds of tests must be per-
formed, involving aspects such as: functionality,
portability, performance, and usability. This work
focuses on the context of usability, communicabil-
ity, and functionality tests (e.g., appropriateness
of a chosen interface design alternative to user
preferences, consistency to a visual pattern, ef-
ficient execution of interactive tasks on interface
objects, etc.).

2308

Integrating Usability, Semiotic, and Software Engineering into a Method for Evaluating User Interfaces

Through our researches on tests in HCI and SE,
and through our experiments on their integration
in a SDP, we verified that HCI concepts facilitate
the UI evaluation work performed by the test team
of an interactive system under development. More
specifically, by means of UI generation based
on HCI models (e.g., task model), it is possible
to evaluate the UI earlier (e.g., its functionality),
independent of having the entire noninteractive
specification ready. Prototypes, for instance,
can represent UI design alternatives that may be
tested early by HCI experts to verify if they are
in accordance with user preferences, usability
patterns, and so on.

This work presents a SDP to design and
evaluate UIs, based on the integration of concepts,
models, and activities of usability, semiotic, and
software engineering.

This chapter is structured as follows: The
“User-Interface Evaluation” section shows the
contribution of each engineering area to UI
evaluation; “The Process” section describes the
UI design process; “The Evaluation Strategy”
section describes the UI evaluation process, show-
ing which concepts are used to perform tests and
when they are performed; the “Case Study” section
describes the case study in which we designed
and evaluated UIs for the Brazilian System for
the Digital Television (SBTVD); and, finally, the
“Findings and Future Works” section describes
findings and future works, and the “Conclusion”
section concludes this work.

uSer-interfAce eVAluAtiOn

In this section, we present concepts and evaluation
techniques from usability engineering, software
engineering, and semiotic engineering.

usability engineering

Usability engineering is a set of activities that
ideally take place throughout the lifecycle of

the product, with significant activity at the early
stages even before the UI has been designed. The
need to have multiple usability engineering stages
supplementing each other was recognized early in
the field, though not always followed in develop-
ment projects (Gould & Lewis, 1985).

In usability engineering, techniques and meth-
ods are defined aiming to assure a high usability
level of the interactive UIs. Among them, we
emphasize the application of ergonomic criteria
in the UI design. Verification of these criteria
in designed UIs is called heuristic evaluation,
performed by usability experts without user par-
ticipation. Evaluators examine the IS searching
for problems that violate general principles of
good UI design, diagnosing problems, obstacles
or barriers that users will probably encounter
during their interaction. In addition, methods to
capture usability requirements attend to user pref-
erences, restrictions, and use-context. A usability
requirement can be derived from an interaction
restriction; such as if part of the system needs to
be implemented for palm-top devices.

The evaluation approaches from usability
engineering suggests a structured sequence of
evaluations based on “usability inspections
methods” and on “usability tests”.

Some inspection methods are: (1) heuristic
evaluation, verification of usability heuristics
(Nielsen, 1993); (2) review of guidelines, verifi-
cation if the UI is according to a list of usability
guidelines (Baranauskas & Rocha, 2003); (3)
consistency inspection, verification of the con-
sistency among the UIs related to terminology,
color, layout, input and output format, and so
on; and (4) cognitive walkthrough, simulation
of the user “walking” through the UI to execute
typical tasks.

Some usability test methods are: (1) thinking
out loud, we request the user to verbalize every-
thing he or she thinks while using the system, and
we expect that their thoughts demonstrate how the
user interprets each UI item (Lewis, 1982); and

 2309

Integrating Usability, Semiotic, and Software Engineering into a Method for Evaluating User Interfaces

(2) performance measures, quantification of some
evaluated items to make future comparisons.

Software engineering

Software engineering is composed of technologies
and practices that are used in the development of
software products, enhancing software productiv-
ity and quality, by providing a more systematic
and controlled SDP (Sommerville, 2001).

In software engineering, there are various
types of tests to be performed in each test stage,
such as: usability tests to ensure that access and
navigation through functionalities are appropriate
for users; UI tests, to ensure a good functionality
of the UI components and verify conformity to
corporate patterns; and functionality tests, which
are responsible for verifying if the generated
software achieves all the proposed functionalities
according to the customer’s requests. Test cases
(Myers, 2004) are normally generated and com-
prise procedures to be followed in test activities
in order to deal with all possible situations when
using the software, including basic flows, as well
as error treatment and invalid data verification.

According to Pressman (1995), the main goal of
test cases is to derive a set of tests that will prob-
ably reveal errors in the software. To achieve this
goal, software engineering basically proposes two
test categories: white-box and black-box tests.

For Pressman (1995), the white=box test must
verify the internal part of the product, tests can
be performed to guarantee that the components
are integrated, and the internal operation achieves
the performance level as specified in the require-
ments.

Functional tests, or black box tests, represent
a test approach in which tests are derived from
specifications of the system. In this kind of test,
the evaluator is concerned with the functionality,
not with the software implementation (Sommer-
ville, 2001).

In these two test categories, software engineer-
ing defines four main types of tests: unit tests

that are generally white-box tests; acceptance
and regression tests that are usually black-box
tests, and integration tests that blend this two
categories.

Semiotic engineering

Semiotic engineering is an HCI theory that empha-
sizes aspects related to the metacommunication
designer user(s) via user-system communication,
which passes through the UIs of interactive
applications. The system is considered to be
the “deputy” or a representative of the system
designer (Souza, Barbosa, & Silva, 2001). The
content of messages is the application usability
model. Its expression is formed by the set of all
interaction messages sent through the UI during
the interaction process. The user plays a double
role: interacting with the system and interpreting
messages sent by the designer.

Semiotic engineering is essentially involved in
test procedures with final users (empiric evalua-
tion), aiming at system communicability analysis
— based on qualitative evaluation, in which
there are four phases: test preparation; labeling;
interpretation, and formatting — and elaboration
of the semiotic profile of the application to be
evaluated. The techniques used in theses phases
are: system-user observations, questionnaires,
(somative-evaluation) inspections, interviews,
filming,and so on.

Semiotic engineering is essentially present in
tests with final users (e.g., empiric evaluation),
aiming at analyzing the system communicability.
A UI has a good level of communicability when it
is able to successfully transmit the designer mes-
sage to the user, allowing him or her to understand
the system goal, the advantages of using it, how it
works, and the basic UI interaction principles.

evaluation

After studying about evaluation techniques, arti-
facts and approaches from software, usability, and

2310

Integrating Usability, Semiotic, and Software Engineering into a Method for Evaluating User Interfaces

semiotic engineering we are able to conclude that
an evaluation process can be seen under various
perspectives.

Concerning software engineering, we noticed
the importance of software quality concerning
functionality, performance, portability, and other
nonfunctional requirements. Its artifacts and
techniques include the evaluation of these aspects
in an objective manner.

Usability engineering focuses in providing
more ease of use, ease of learning, and efficiency
to interactive systems.

Semiotic engineering includes procedures that
allow the evaluation of the quality of the interac-
tivity of systems by observing the communication
through messages of the user to the system.

Based on these perspectives, we believe that
an approach for UI evaluation of interactive
systems that integrates these approaches is able
to guarantee a system with quality concerning
functionality, usability, and interactivity, derived
from software, usability, and semiotic engineer-
ing, respectively.

Next, we will describe a lightweight develop-
ment process for interactive systems, called UPi
(Sousa & Furtado, 2004), which integrates HCI
and SE activities, artifacts, and professionals.

tHe prOceSS

UPi can serve as a guide, providing useful steps
and artifacts that can be tailored and customized
when organizations intend to develop usable
interactive systems. One of the best advantages
of UPi is the idea to focus on activities, artifacts
and guidelines that add value to the UI generation.
With this approach, it can be integrated with any
other process and inherit activities that are vital
to the entire process, but that are better defined
and solidified in other processes. For instance,
project management, configuration and change
management, implementation, and deployment
activities are very well detailed in the RUP

(Kruchten, Ahlqvist, & Bylund, 2001). Besides
the RUP, UPi can also be applied in conjunction
with ISO 13407 (ISO 13407, 1999), which already
has other activities defined and validated, such as
project planning, testing, and so on.

UPi is composed of activities that aim at de-
signing UIs. These activities are based on RUP
activities, but they follow different guidelines that
take into consideration usability aspects.

In this work, we are integrating UPi with
UPi-Test (to be presented in the next section) in
order to guide professionals that are developing
interactive systems to evaluate them throughout
the entire development process.

phase i: inception

The main goal in this phase is to elicit require-
ments from users in order to develop an interac-
tive system that best suits their needs through the
execution of some activities (presented as follows).
These requirements are documented through
certain artifacts: use-case models, task models,
usability requirements, and paper sketches.

Use-case models represent a well-established
manner to define the system functionality, while
task models can be used to detail use cases by
breaking them down into tasks. Usability require-
ments represent users’ preferences or constraints
that can be part of a usable interactive system.
Paper sketches focus on the interaction, UI
components, and on the overall system structure,
keeping the style guide secondary, without being
too abstract.

The purpose of the Elicit Stakeholder Needs
activity is to understand users, their personal
characteristics, and information on the environ-
ment where they are located that have a direct
influence on the system definition, and to col-
lect special nonfunctional requirements that the
system must fulfill, such as performance, cost,
and device requests.

The purpose of the Find Actors and Use Cases
and Structure the Use-case Model activities is

 2311

Integrating Usability, Semiotic, and Software Engineering into a Method for Evaluating User Interfaces

to define the actors (users or other systems) that
will interact with the system and the functional-
ity of the system that directly attend to users’
needs and support the execution of their work
productively.

The purpose of the Detail a Use Case activity
is to describe the use case’s tasks using the task
model, to describe any usability requirements
related to the use case, to define the system
navigation based on the task model hierarchical
structure, and to create paper sketches.

The purpose of the Review Requirements
activity is to verify, with usability experts, if the
paper sketches are in accordance to the task model
and validate, with users, if the requirements are in
conformance with their needs by showing them
the elaborated paper sketches.

phase ii: elaboration

The main goal in this phase is to transform the
requirements in a representation that can be
understood by UI designers and programmers.
These representations are provided by the follow-
ing artifacts: system architecture, UI Definition
Plan, and drawing prototypes.

System Architecture is composed of smaller
components that represent the main functionality
of the entire system. The UI Definition Plan is
a new artifact that aims to define which visual
objects should be part of the UI. Drawing proto-
types produce an accurate image of the system
and they are useful to demonstrate patterns and
style guides.

The purpose of the Define and Refine the
Architecture activity is to (re)design the classes
that represent the data that are handled by users
while performing certain tasks.

The purpose of the Define UI Plan activity is
to define which visual objects and which usability
patterns can be part of the UI according to the
nonfunctional requirements defined in the Elicit
Stakeholder Needs activity.

The purpose of the UI Prototyping activity is
to design a UI prototype in drawings following the
description specified in the task models, in the UI
definition plan and in the system architecture.

The purpose of the Evaluate Prototype activity
is to verify if the UI prototypes are in accordance
to usability principles and to validate with users
if the UI prototypes are in conformance with
their needs.

phase iii: construction

The main goal of this phase is to implement and
verify the accuracy of the components imple-
mented and of the UI designed.

The purpose of the Implement Components
activity is to develop the classes previously de-
signed and implement the UI prototyped.

The purpose of the Evaluate the Version of the
System activity is to verify if the functionality
of the interactive system is in accordance with
users’ requirements.

phase iV: transition

The main goal of this phase is to deliver to the
customer a system with high level of quality and
usability.

The purpose of the Deploy the System activity is
to make the system available for the customer.

The purpose of the Evaluate the System activity
is to validate with users (by using the system in
the deployment site) if the system conforms with
their view of the system.

All of these phases are supported by processes
concerning configuration and change manage-
ment and project management, such as the RUP.
This support is provided for the Manage Change
Requests activity, which aims at evaluating the
impact of change requests, deciding if they are
to be included in the current iteration, and, if
they are accepted, manage the changes in the
appropriate artifacts.

2312

Integrating Usability, Semiotic, and Software Engineering into a Method for Evaluating User Interfaces

Concerning the evaluation activities per-
formed in each phase, they will be more thoroughly
explained in the next section.

tHe eVAluAtiOn StrAtegy

The unified process for evaluating interactive
systems “UPi-Test” (Schilling et al., 2005) has the
same phases as the RUP (inception, elaboration,
construction, and transition) (Kruchten, Ahlqvist,
& Bylund, 2001). This process is based on the
Unified Process for Interactive Systems, called
UPi (Sousa & Furtado, 2004) and follows the
approach to design UI prototypes dependent on
the device (Coyette, Faulkner, Kolp, Limbourg,
& Vanderdonckt, 2004).

Each phase is directly related to a specific
area. This way, usability engineering supports
the verification and validation in the inception
and elaboration phases, software engineering
supports verification in the construction phase,
and semiotic engineering supports validation in
the transition phase.

Figure 1 illustrates these four phases in the
UPi-Test, each one with its flow of activities,
artifacts, and techniques.

UPi-Test includes the verification and valida-
tion of usability and functionality of interactive
systems UIs. Nonfunctional requirements are not
in the scope of this work, such as aspects related to
database (e.g., connection, integrity, etc.), security,
and architecture. These aspects can be supported
in future versions of this process.

phase i: inception

The inception phase is important in guaranteeing
that the following phases achieve results to attend
to users’ and customers’ usability goals. This phase
has the constant participation of users in order
to understand their requests, which are verified
and validated according to usability engineering
to allow the development of these requests. The

description of the activities and artifacts in this
phase is presented as follows.

Talk with Users and/or Customers

This activity consists of the first contact with users
or customers, in which system analysts understand
their profiles, objectives, and the scenario where
they are included. In this activity, it is necessary
to use a technique to elicit requirements.

We propose an initial informal talk in order to
better understand users’ environment. Then, we
suggest the performance of interviews, with the
use of a questionnaire that aids in the identifica-
tion of users and/or customers and their intended
goals, preferences, and possible constraints.

Obtain Users’ and Customers’
Preferences and Constraints

In this activity, system analysts aim at eliciting
users’ and customers’ preferences and constraints
in order to design UIs that attend their needs and
also to help usability experts during evaluation
and to help UI designers during prototyping.
Some examples of preferences are: design colors,
font styles, navigation schemes. Some examples
of constraints are: technology constraints, such
as platform, device, and so on.

Consider HCI Models and Use Cases

Use cases represent an artifact from software
engineering that identifies the functionality of
interactive systems; users’ interactions, expressed
through users’ tasks; and the system’s responses
to perform these interactions (system’s tasks).

Task models detail a use case or a group of
related use cases by specifying users’ tasks and
system’s tasks. It is useful to support UI design-
ers in the elaboration of prototypes because it is
easy to identify the necessary views and objects
in the prototype from the task model hierarchi-
cal structure.

 2313

Integrating Usability, Semiotic, and Software Engineering into a Method for Evaluating User Interfaces

Figure 1. Evaluation process of UIs

2314

Integrating Usability, Semiotic, and Software Engineering into a Method for Evaluating User Interfaces

Analyze Existing Systems

In this moment, it is important to analyze exist-
ing systems. This involves a comparative study
of similar systems. These systems can be used
as a reference in order for system analysts to
propose new functionality or to choose design
patterns, which are all useful for the design of
UI prototypes.

Consider Paper Sketches

After talking with users and customers, the UI
designer designs paper sketches. This prototype
is verified and validated, as presented in the next
activity.

Verify with Expert

This activity consists of the verification of paper
sketches by the usability expert. The expert is
concerned with verifying if users’ goals, in terms
of functionality, were included in the prototype,
as well as if usability principles were used.

We propose that experts use the heuristic evalu-
ation approach (Nielsen, 1993) as an inspection
method. The usability heuristics will guide the
usability expert in the process of verifying UIs’
quality of use. We also suggest the use of the task
model to verify if all the specified functionality
was designed in the prototype.

When the expert notices that a functional
requirement or any usability principle is miss-
ing, change requests can be made, which leads
to changes in the models and new proposals of
prototypes.

Validate with Users and Customers

After the verification with the expert, we propose
a validation with users and customers so they can
approve the generated artifacts. If the prototypes
do not attend users’ needs, change requests can

be made, which leads to changes in the models
(if new functionality is requested) and new pro-
posals of prototypes (if changes in the navigation
are requested). This process is repeated until the
generated prototype attends users’ preferences
and needs.

This activity early in the process provides
flexibility for users and customers to evaluate the
evolution of the system, therefore, designers and
users feel more confident with the UI design.

After the conclusion of the inception phase,
the resulting artifacts are verified and validated
as paper sketches.

phase ii: elaboration

The elaboration phase is concerned with designing
and evaluating drawing prototypes. In this phase,
we use verification and validation techniques,
such as heuristic evaluation and validations with
users. After this phase, the resulting artifacts
are drawing prototypes validated according to
usability requirements and patterns. The descrip-
tion of the activities and artifacts in this phase is
presented as follows.

Use Design Patterns

In order to guarantee the quality of the product
and efficiency of the project, we suggest the use of
design patterns for graphical UIs. These patterns
will guarantee that we elaborate and develop UIs
following already verified and validated param-
eters, which can be incremented by the reports
generated in the end of the transition phase.

Consider Drawing Prototypes

UI designers are responsible for designing draw-
ing prototypes based on paper sketches previously
validated, and on usability patterns. These proto-
types are verified and validated by the following
two activities.

 2315

Integrating Usability, Semiotic, and Software Engineering into a Method for Evaluating User Interfaces

Verify with Expert

This activity consists of verifying the usability
of drawing prototypes by experts. We propose
that experts use the heuristic evaluation approach
(Nielsen, 1993) as an inspection method to verify
whether or not certain usability principles are
present in the prototype.

When the expert notices that any usability
principle is missing, change requests can be made,
which leads to new proposals of prototypes. At
this moment, it is not necessary to make changes
in the models because this approach evaluates the
quality of use, not functionality aspects, which
were evaluated in the previous phase.

Validate with Users and Customers

After verification with the expert, a validation is
proposed to users and customers so they can ap-
prove the generated prototypes. At this moment,
users and customers evaluate the used usability
patterns and the style guide. This process is
repeated until the generated prototype attends
users’ preferences and constraints. If the proto-
types do not attend users’ needs, change requests
can be made, which leads to new proposals of
prototypes.

After the conclusion of the elaboration phase,
the resulting artifacts are verified and validated
drawing prototypes, which support development,
tests, and deployment activities.

phase iii: construction

In this phase, the UI is developed and the applica-
tion is integrated with it. Considering software
engineering, we propose functionality tests of an
executable prototype (i.e., a product with some
functionality) or the final product (i.e., a product
with all the functionality), using functional test
cases.

The activities and artifacts in this phase are
presented as follows.

Implement and Integrate

These activities consist of developing the UI and
integrating it with the application. The integrated
product, either a prototype or the final system, can
be useful for evaluating the navigation, interactiv-
ity, and functionality aspects.

Elaborate Test Cases

Test cases can be elaborated starting in the incep-
tion phase, using paper sketches, they can then be
updated in the elaboration phase, using drawing
prototypes, and finished in this activity. This
artifact focuses on the system functionality, not
on nonfunctional aspects.

The technique used to define test cases includes
the following topics: association to a use case,
specification of the item to be tested, preconditions
to execute before testing, identification of valid
and invalid inputs, and the expected outputs. The
actual outputs are compared with the expected
outputs described in the test cases and this com-
parison is used as validation of the use case.

Verify with Expert

This activity consists of the verification of the
functionality of the product by usability experts
and developers. Examples of aspects that are veri-
fied are: consistency of the outputs, navigation,
existence of error messages, results after clicking
on objects, as well as other aspects identified in
the test cases.

After this verification, developers and experts
can generate change requests to correct the errors;
which leads to the repetition of the implementa-
tion and integration activities.

After the conclusion of the construction phase,
the resulting artifact is the integrated product,
which is tested with consideration to usability
aspects in the transition phase.

2316

Integrating Usability, Semiotic, and Software Engineering into a Method for Evaluating User Interfaces

phase iV: transition

This phase comprehends, in general terms, the
preparation of the test environment, which can
be a test laboratory or the environment where the
system is used. With consideration to semiotic
engineering, we use some validation techniques
and artifacts. The description of the activities and
artifacts in this phase is presented as follows.

Prepare the Environment

To prepare the environment, we suggest the in-
stallation of the system, software for capturing
the system’s use, and equipment, such as video
cameras and necessary hardware devices. We
also suggest the creation of questionnaires and
checklists.

The test laboratory must be similar to the
real user environment — with consideration to
physical structure, climate, sound aspects, and
equipment — in order to allow users to live the
same conditions of the real environment. There
should be a room where the test takes place and
another one for observation.

Install the Product

In this activity, the product is installed, either a
partial version or the final version of the system,
in order to allow users to use the system in their
real environment. This installation allows the
tests to be performed.

Usability Tests “with Users”

This evaluation is performed with users. In it,
evaluation techniques, proposed by semiotic engi-
neering, are used, such as: recording, observation,
questionnaires, and so on.

Before starting the tests, the usability expert
talks with the user in order to: clarify that the
system is under evaluation, not him/her; present
the scenario used for the test; and make the user

feel comfortable; which are aspects that influence
the final results.

Observers that are in the observation room
should fill out the questionnaires and check-
lists.

This activity can be divided in two moments,
the first one, when the user interacts with the
system to perform a task of his/her own interest;
the second one, when the expert requires the user
to perform a specific task.

In this activity, navigability, interactivity, and
acceptability will be evaluated.

Use Observations/Checklist/
Questionnaires

Observations, questionnaires, and checklists are
artifacts and techniques proposed by the semiotic
engineering in order to verify the user-system
interactivity and communicability. Experts and
observers will use these artifacts during the
tests, which result in the definition of the quality
of the interactive system. These results can lead
to change requests for developers to correct the
detected mistakes.

Users’ comments and the actual execution of
the tests will be recorded to help in the analysis
of the results of the questionnaires and of users’
observations.

Make Corrections

In this activity, developers make corrections pro-
posed by experts after the tests. After the changes
are made, users validate the product.

Deliver the Evaluated Product

As a result of the process, we have the results of
evaluations, which are useful for future versions;
and we also have a verified and evaluated product
according to a set of techniques proposed by us-
ability, software, and semiotic engineering.

 2317

Integrating Usability, Semiotic, and Software Engineering into a Method for Evaluating User Interfaces

If the product is a final version of the system,
it is ready to be delivered for use. If it is a partial
version (e.g., executable prototype), the profession-
als need to perform the activities in the construc-
tion phase, then in the transition phase, until the
product reaches its final version.

Elaborate Reports

The results obtained will be used as a basis for
the elaboration of evaluation reports, which
propose adaptations in the used patterns and in
the creation of new patterns that can be used in
future iterations.

cASe StuDy

In this chapter, we describe the case study of this
research work, which is concerned with the evalu-
ation of UIs for the SBTVD project, focusing on
the applications: electronic portal, insertion of
texts, and help.

introduction

The digital TV represents digital and social inclu-
sion for a great part of the Brazilian population,
especially for people less privileged, who do not
have access to computers, and therefore, cannot
access the Internet.

The SBTVD must be adapted to the socioeco-
nomic conditions of the country, as well as allow
the use of conventional TV sets already in large
use in the country in order to decrease risks and
costs for the society.

The digital TV creates various possibilities of
interaction between the TV and the user, such as:
exchange of text or voice messages, virtual chats,
searches for a favorite show, access to informa-
tion about the government, and so on. These
possibilities are different from the characteristics
of the conventional TV, in which the user plays
a passive role.

In the following section, we describe the
performance of the activities proposed by UPi
and UPi-Test. It is important to point out that the
SBTVD is still under development. That is the
reason why we cannot demonstrate all the activi-
ties of the process.

phase i: inception

Talk with Users and/or Customers

This activity was difficult to perform in this project
because there is an almost unlimited number of
users and/or customers. Fortunately, there were
specific and clear specifications, established by the
Brazilian government. Such specifications were
used as requests from users and customers.

To define the scope of the application under
our responsibility (access portal), we had meet-
ings with representatives of the government and
with other institutions that are participating in
the project. These meetings were supported with
brainstorming and the resulting decisions were
analyzed and were shared with all the institutions
through e-mails and discussion lists.

After these meetings, we decided that the portal
will consist of a main application that allows the ac-
cess to all other applications in the SBTVD, which
can be: electronic mail, electronic commerce, EPG,
help, electronic government, and so on.

Obtain Users’ and Customers’
Preferences and Constraints

The SBTVD project is concerned with various us-
ers’ profiles, including the ones who are and those
who are not used to technology, but not including
the ones with any kind of disabilities.

In order to identify their possible preferences
and constraints, we studied existing systems; we
had many meetings and workshops. The opinions
of all the participants in the project were taken into
consideration because we can also be considered
to be potential users.

2318

Integrating Usability, Semiotic, and Software Engineering into a Method for Evaluating User Interfaces

Our main goal in the usability workshops
was to choose the best usability pattern for each
requirement based on the evaluation of positive
and negative aspects of each proposed usability
pattern, as specified in the UPi activity define
UI plan.

These proposed usability patterns were se-
lected from a list, such as the one available in
Welie (2005), which are organized in the following
format: problem to be solved, solution, context in
which it can be used, and graphical illustration.

For the participants to evaluate the usability
patterns, we provided a set of guidelines. After
they read the guidelines, each group evaluated
the positive and negative aspects of each usabil-
ity pattern suggested for the requirement. Then,
the participants discussed and reached the final
decision as to what was the best usability pattern
for the requirement under discussion.

The personalization group considered the
guidelines as they evaluated the positive and
negative implications of each usability pattern,
aiming at achieving Nielsen’s usability goals. For
demonstration purposes, we focus on presenting
the personalization of colors.

As a result of the evaluation, the personaliza-
tion group decided to use color templates because
of the greater impact of positive implications over
the negative ones. The result of this work was the
generation of a document associating usability
patterns with their positive and negative implica-
tions. For instance, the selected pattern with more
positive implications was “Provide predefined
color templates to change font/background colors”
instead of the pattern “Offer a list of colors from
where the font/background colors can be chosen”
because of the following positive implications: ef-
ficiency of use, compatibility of the system with the
real world, and clarity of information. The second
option had more negative implications than the
first one, such as difficulty in use by beginners
and the constant need to resize the space reserved
to the presentation of information.

We defined that the applications in the SBTVD
need to have a high level of usability. There was
a list of technology constraints, especially the
ones related to memory and processing capacity.
Besides that, graphical representations need to
be simple because conventional TV sets do not
support images as computer monitors do, and the
TV luminosity is very different from the one in
monitors; consequently, colors and texts appear
differently.

Consider HCI Models and Use Cases

In this activity, analysts and usability experts
elaborated use case and task models, and then
changed them, when change requests were made
after the evaluation of users in the end of the In-
ception phase. The requests resulted in changes
in the models because they were changes in the
functionality, such as: do not consider access to
multiple applications simultaneously (technical
constraint) and include personalized help. These
changes reflected in the models and will be con-
sidered in the prototypes.

Analyze Existing Systems

In this activity, we researched on the Internet in
order to find digital TV systems already in use. It
was very difficult to find them because there are
few systems available for access in the Internet.

This analysis was used to identify some UI
design patterns for the digital TV, such as: upper
and bottom options bar, menu on the left, naviga-
tion icons, interaction buttons, and so on.

Consider Paper Sketches

After the analysis of existing systems, UI design-
ers elaborated paper sketches (Figure 2). However,
they needed to be redesigned after the evaluation
of users in the end of the inception phase, which
resulted in change requests.

 2319

Integrating Usability, Semiotic, and Software Engineering into a Method for Evaluating User Interfaces

Some change requests resulted in the following
changes in the prototypes: transfer the bar from the
top to the bottom of the screen, include the “TV”
button in the bar when accessing an application or
in the portal; include the “Portal” button in the bar
when accessing an application, take off activated
icons (because of technical restrictions), and give
a preview of the requested options of personaliza-
tion. However, other requests resulted in changes
in the models as well as in the prototypes, such
as the ones mentioned in the activity “Consider
HCI models and use cases.”

Verify with Expert

In this activity, we performed heuristic evalu-
ations with three experts who considered the

usability of the paper sketches. They observed
aspects, such as: navigation between views and
if usability principles were applied. Besides that,
the experts verified if all users’ goals, in terms of
functionality (in the task models), were included
in the prototypes.

Validate with Users and Customers

In meetings with the institutions participants of
the project and with representatives of the Govern-
ment users evaluated the elaborated prototypes.

Various change requests, as well as users’ pref-
erences were identified. These requests resulted
in updates in the models and in redesign of the
paper sketches.

Figure 2. Paper sketch: Personalization

2320

Integrating Usability, Semiotic, and Software Engineering into a Method for Evaluating User Interfaces

As examples of preferences, we point out the
following: Include the “TV” and “Portal” in the
remote control; the bottom options bar should
overpass the application; and make available a set
of options for inserting text, such as the one used
in computer keyboards, the one used in mobile
phones, and in alphabetical order.

phase ii: elaboration

Use Design Patterns

In this activity, the UI design patterns, identified
while analyzing existing systems, were evaluated
and the UI designers started to design drawing
prototypes using the design patterns.

Consider Drawing Prototypes

The UI designers used image editors, such as
Photoshopâ and Corel Drawâ, in order to de-

sign the drawing prototypes (Figure 3), which
followed the selected patterns, the updated task
models, and paper sketches. In this prototype, the
small view on the right shows the preview of the
required personalization about the color of the
screen before applying it.

Verify with Expert

The drawing prototypes were evaluated by experts
(Figure 4), who observed various aspects, such
as: layout, colors and fonts, UI design patterns,
and usability principles applied.

Validate with Users and Customers

This activity is yet to be fully performed in this
project, currently; we have finished the document
that specifies the SBTVD graphical UI, which is
going to be evaluated by representatives of the
Brazilian Government.

Figure 3. Drawing prototype: Personalization

 2321

Integrating Usability, Semiotic, and Software Engineering into a Method for Evaluating User Interfaces

We scheduled a workshop with the other insti-
tutions participants of the project to evaluate the
drawing prototypes (Figure 5). They requested us
to elaborate other alternatives of UIs (including
association of options in the UI with options on
the remote control), increase the size of the op-
tions and fonts in the upper bar, and change the
way to differentiate the selected option.

phase iii: construction

Implement and Integrate

The implementation of the portal has not started
yet. However, the developers have been studying
and implementing simple applications for the
digital TV, such as three possibilities of inser-
tion of text (the one used in computer keyboards
(‘qwert’), the one used in mobile phones, and in
alphabetical order).

Figure 4. Verification with expert Figure 5. Validation with users

Table 1. Test case: Personalization

2322

Integrating Usability, Semiotic, and Software Engineering into a Method for Evaluating User Interfaces

Elaborate Test Cases

The elaboration of functional test cases has
started since the inception phase, when use cases
and paper sketches were elaborated. Functional
requirements were selected and the associated
test cases were elaborated: structure applications,
access applications, access help and personaliza-
tion (Table 1).

Verify with Expert

In this activity, the programmers and the experts
verify the applications using the test cases for
guidance. Some of these evaluations were done
in the small applications developed for insertion
of text.

phase iV: transition

The usability experts and the developers have
prepared the test environment. For that, they have:
prepared the physical structure (e.g., TV, video
camera, couch, computer to simulate the set-top
box, etc.) and installed the necessary software
(i.e., software to capture the user interaction with
the TV, Linux Operating System, Java Virtual
Machine, and applications to be tested).

A group of three usability experts were
responsible for performing the following activi-
ties before the tests started: First, they defined
a questionnaire to apply with users in order to
understand their characteristics and familiarity
to the DTV technology. Second, they selected ap-
propriate metrics (e.g., number of errors, number
of access to the help, etc). Third, they created a
checklist based on Nielsen’s usability goals and on
the metrics from the previous step. Fourth, they
prepared the environment with a DTV, a couch,
and a center table in order to make users feel at
home. Fifth, they selected ten users with different
profiles between the ages of 18 and 26.

When the users arrived, each one at a time
was taken to the DTV room, where a usability

expert explained the goals of the test; applied the
questionnaire; and defined a specific goal to be
achieved while interacting with the DTV. While
the user interacted with the application, usability
experts filled out the checklist in the visualization
room, where we monitored the environment and
the user with a camera and captured the interaction
with the DTV using specific software.

finDingS AnD future WOrKS

After the tests, we evaluated the checklists and
generated reports with solutions to the problems
encountered during the tests. These reports con-
tain comments about the icons, the navigation,
and the help module of the portal application.

• No user realized the possibility of navigation
through the numbers associated to each icon,
which represents an interactive application
(see Figure 6).

• When they were told about this, they used
it and said it was very practical.

• For them, the icons were not a natural rep-
resentation, but they did not want to give
any opinion about possible solutions.

• Some users did not notice the application
that was selected. They said it was better to
have a big square around the icon instead of
the current selection.

• When the users were confused and wanted
some help, they did not look for it in the
portal (the blue option in the bottom bar
that activates the help module). Some users
activated the menu button of the remote
control and others waited for the evaluator
to tell them what was necessary to do to
obtain the help.

• As the bottom bar is used as a design pattern
to put the navigation options, and as each
option is different depending on the situation
(the application being executed), the users
got very confused. We realized they looked

 2323

Integrating Usability, Semiotic, and Software Engineering into a Method for Evaluating User Interfaces

at this bar only once, and then they did not
look at it any more. After memorizing the
options, they wanted to use them all the
time, but the color was different, so they
made many navigation errors.

From the execution of these tests, we were able
to quantify the results: 85% of the users found
the system easy to use, easy to read, and easy to
navigate, but on the other hand, 50% had difficul-
ties in identifying that an option was selected and
in getting out of an unexpected situation.

Our next step is to make the necessary changes
that are related to improving the layout, color
contrast, and icon selection. In addition, the next
tests will be done with the elderly in order to
investigate people who are not used to interac-
tion devices.

cOncluSiOn

In this chapter, we present a new method, which
focuses on integrating different techniques of
usability, semiotic and software engineering. The
aims are to design usable UIs following a model-
based UI design process and to facilitate the test
process by using the evaluated HCI models. In this
manner, we hope to contribute to the development
of interactive systems that are easy for users to
learn and use, and to help testers in performing
their usability tests in an efficient manner.

As main contributions, we focus on evaluat-
ing the usability of UIs with the constant par-
ticipation of users and customers. Besides that,
the integration of various approaches results in
positive outcomes for the prototypes, as well as
for multidisciplinary team members, who are
better integrated and can have their knowledge

Figure 6. The portal application

2324

Integrating Usability, Semiotic, and Software Engineering into a Method for Evaluating User Interfaces

enhanced, since they are continuously exchanging
information and experiences.

referenceS

Baranauskas, M. C. C., & Rocha, H. V. da. (2003).
Design e Avaliação de Interfaces Humano-Com-
putador, NIED–Núcleo de Informática Aplicada
à Educação, UNICAMP–Universidade Estadual
de Campinas.

Coyette, A., Faulkner, S., Kolp, M., Limbourg,
Q., & Vanderdonckt, J. (2004). SketchiXML:
Towards a multi-agent design tool for sketching
user interfaces based on UsiXML. In P. Palanque,
P. Slavik, & M. Winckler (Eds.), 3rd Int. Workshop
on Task Models and Diagrams for User Interface
Design (pp. 75-82). New York: ACM Press.

Gould, J. D., & Lewis, C. (1985). Designing for
usability: Key principles and what designers think.
Communications of the ACM, 28(3), 300-311.

ISO 13407. (1999). Human-centred design pro-
cesses for interactive system teams.

Kruchten, P., Ahlqvist, S., & Bylund, S. (2001).
User interface design in the rational unified pro-
cess. In M. Van Harmelen (Ed.), Object modeling
and user interface design (pp. 45-56). New York:
Addison-Wesley.

Lewis, C. (1982). Using the “thinking-aloud”
method in cognitive interface design (IBM
Research Rep. No. RC9265, #40713). Yorktown

Heights, NY: IBM Thomas J. Watson Research
Center.

Myers, G. J. (2004). The art of software testing.
New York: John Wiley & Sons.

Nielsen, J. (1993). Usability engineering. Boston:
Academic Press.

Pressman, R. S. (1995). Engenharia de Software.
São Paulo: Makron Books.

Schilling, A., Madeira, K., Donegan, P., Sousa, K.,
Furtado, E., & Furtado, V. (2005). An integrated
method for designing user interfaces based on
tests. In Proceedings of the ICSE 2005 Workshop
on Advances in Model-Based Software Testing,
(pp. 27-31). St. Louis, MO: ACM.

Sommerville, I. (2001). Software engineering.
New York: Addison-Wesley.

Souza, C. S. de, Barbosa, S. D. J., & Silva, S. R.
P da. (2001). Semiotic engineering principles for
evaluating end-users programming environments.
Interacting with Computers, 13(4), 467-495.

Sousa, K. S., & Furtado, E. (2004). UPi — A
unified process for designing multiple UIs. In
IEEE Computer Society, Proceedings of the
International Conference on Software Engineer-
ing, Edinburgh, Scotland (pp. 46-53). Edinburgh,
Scotland: ACM.

Welie, M. van (2005). Retrieved September, 15,
2005, from http://www.welie.com

This work was previously published in Verification, Validation and Testing in Software Engineering, edited by A. Dasso, pp.
55-81, copyright 2007 by IGI Publishing (an imprint of IGI Global).

 2325

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 5.30
The Work of Art in the Age of

Mechanical Production
Thomas B. Cavanaugh

Embry-Riddle Aeronautical University, USA

ABStrAct

When Walter Benjamin wrote his famous es-
say The Work of Art in the Age of Mechanical
Reproduction, he shone a light on the cultural
changes inherent in technology’s ability to in-
finitely reproduce and distribute art. One of the
important consequences of this development was
the democratization of art’s availability, allowing
the general population to experience artwork that
they would otherwise be unable to access. Now
technology has advanced to a point where not
only is art’s reproduction available to anyone who
wants it, its very production is now accessible to
almost everyone, even if the prospective artist is
utterly devoid of training, expertise, or even tal-
ent. With software-based artistic assistance and
low-threshold electronic distribution mechanisms,
we have achieved the promise of Benjamin’s
blurred distinction between artist and audience.
As a result, the process by which art is produced
has now been democratized, resulting in legiti-
mate questions regarding quality, taste, and the
legitimacy of authorship in a human-technological
artistic collaboration.

IntroductIon

When Walter Benjamin wrote his famous es-
say The Work of Art in the Age of Mechanical
Reproduction, he shone a light on the cultural
changes inherent in technology’s ability to in-
finitely reproduce and distribute art. One of the
important consequences of this development is
the democratization of art’s availability, allowing
the general population to experience artwork that
they would otherwise be unable to access—art-
work that previously was only available to a
privileged elite.

Now technology has advanced to a point
where not only is art’s reproduction available to
anyone who wants it, the very production of art
is now accessible to almost everyone, even if the
prospective artist is utterly devoid of training,
expertise, or even talent. This development is
symptomatic of a wider self-service mindset that
pervades western society, what I have dubbed the
“kiosk culture.” The term “kiosk culture” con-
notes the general acceptance and even encourage-

2326

The Work of Art in the Age of Mechanical Production

ment of self-service for the postmodern citizen.
From touchtone telephone answering systems to
Web-based electronic commerce to scanning our
own groceries at the neighborhood supermarket,
self-service is as much an expectation for the post-
modern consumer as it is a business necessity for
the provider. The kiosk culture represents nothing
less than a cultural transition to a naturalized “do
it yourself” attitude.

In the production of art, the do-it-yourself
aesthetic of the kiosk culture has been actual-
ized by the introduction of performance support
technology into all manner of expression. Just
as with consumer-oriented tasks, artistic perfor-
mance support technology compensates for any
skill-based shortcomings, allowing a novice to
achieve the same level of performativity as an
expert. As such, the very process by which art is
produced has been democratized. But when these
support technologies are applied to the creation
of art, the cultural implications are quite differ-
ent from those in the business milieu. It raises
essential questions such as What is good art? Is
art developed with the assistance of performance
support technology as valuable as that produced
without it? Who really is the artist—the human
or the machine?

Art, of course, does not exist independently
from a complicated infrastructure of production,
distribution, and consumption, tied together by
social relationships that maintain it. As described
by Bourdieu (1993) and others, the consumption
of art involves social, economic, and class im-
plications. Recognizing this larger context, it’s
important to note that the subject of this essay
focuses only on the production of art—specifi-
cally the production of art as enabled by the use
of assistive performance support technology.

Software such as Dramatica and Scriptware
assists the aspiring screenwriter to prepare a
screenplay. In many cases, this support goes far
beyond surface assistance such as formatting and
spelling to include brainstorming services, story

ideas, and other cognitive help normally consid-
ered the sole domain of the artist. Marketing lit-
erature for Dramatica® Pro touts the collaborative
aspect of the software’s artistic support, calling
it “the ‘Ultimate Creative Writing Partner.’” An-
other software product from the same company,
Writer’s DreamKit™, is promoted specifically
as a tool for beginning screenwriters and even
promises to co-write your script. “(A)s your men-
tor, the Writer’s DreamKit will do something no
other writing program can do—it predicts parts
of your story based upon creative decisions you
make!” (Write Brothers, 2004, p. 5-6)

With technological tools like these and
low-threshold distribution mechanisms such as
self-publishing, podcasting, and blogs, we have
achieved the promise of Benjamin’s blurred dis-
tinction between artist and audience. Benjamin
(1968) predicted that the distinction between
author and public is about to lose its basic char-
acter:

The difference becomes merely functional; it may
vary from case to case. At any moment the reader is
ready to turn into a writer. As expert, which he had
to become willy-nilly in an extremely specialized
work process, even if only in some minor respect,
the reader gains access to authorship… Literary
license is now founded on polytechnic rather than
specialized training and thus becomes common
property. (p. 232)

Just as we no longer need to be a trained cashier
in order to use the complex point-of-sale (POS)
technology of the retail industry, likewise we
no longer need to possess any expertise in how
to write a screenplay to accomplish the writing
task. The embedded performance support tech-
nology compensates for our lack of competence.
The “readerly” has literally become “writerly,”
where “the reader [is] no longer a consumer but
a producer of the text” (Barthes, 1970, p. 4).

 2327

The Work of Art in the Age of Mechanical Production

nOViceS AnD expertS

But what about other artistic endeavors, espe-
cially those that require the direct use of complex
technology? The most obvious example might
arguably be photography. Referring specifically
to digitization, Willis claims that the “means of
production of ... visual imagery is undergoing a
mutation as significant as the invention of photog-
raphy” itself (1990, p. 197). Unlike painting, for
instance, where the artistic technology (e.g., the
brush) doesn’t easily permit compensatory perfor-
mance support, photographic equipment utilizes
a variety of compensatory performance support
technologies, such as red-eye reducing flash bulbs,
auto-focus, backlight adjustments, and digital
enhancement tools. Even before the introduction
of this technological assistance, photography had
already secured a place as an equalizer between
the amateur and professional.

From the middle of the nineteenth century,
“with its low cost and availability, photography
democratized the visual image…For the first
time, it was possible for the ordinary person to
record his or her life with certainty and to create
personal archives for future generations” (Mir-
zoeff, 1999, p. 65). Although the technological
elite of the time tried to categorize photography
as a pursuit solely for society’s upper classes,
the low cost of materials and relative usabil-
ity of the technology trumped any attempts to
restrict its growth. “With the invention of the
collodion-glass negative process in 1852, prints
became affordable to all…working people. They
availed themselves of this resource en masse to
the despair of elite critics who disparaged the
results as ‘fried fish pasted onto metal plaques’”
(Mirzoeff, 1999, p. 72). But the genie was already
long out of the bottle. “Despite the attempts by
[photographic pioneers Louis Jacques Mande]
Daguerre and Fox Talbot to claim elite status for
their devices, photography was quickly claimed
as the people’s medium” (Mirzoeff, 1999, p. 71).

With the addition of compensatory performance
support technology to photographic equipment,
this even more true today.

One might argue that any literate and reason-
ably coordinated person can string two words
together or point a camera and press a button
and, as such, literary authorship or photographic
competence are easier for an amateur to achieve
than an artistic pursuit more dependent upon
manual dexterity. For instance, what about mu-
sic? At one time in our past, playing music was
a common amateur activity and musical training
was a requisite component of the bourgeois educa-
tion. But with the advent of mechanized music in
the late nineteenth century, such as that offered
by the gramophone, homemade music rapidly
declined. This phenomenon manifested in what
Thompson (2002) calls “a wide chasm” between
professionals and amateurs. An early attempt
at musical performance support to reduce that
chasm was the simplified sheet music produced
by publishers for home use:

As amateurs gradually abandoned their own music
making and listened increasingly to professional
musicians, a wide chasm opened between the two
groups… Sheet music publishers did their best to
bridge the gap, by offering ‘Brilliant but not Dif-
ficult’ versions of the most popular showpieces,
but the effect of the discrepancy was gradually
but effectively to silence many amateur perform-
ers of music. By the end of the century, countless
parlor pianos had been replaced by automatic
‘reproducing’ pianos or other mechanical devices
that recreated the performances of great concert
pianists. …The result of these trends was a new
dissatisfaction with amateur music and, perhaps
more significantly, a heightened engagement by
amateurs with the experience of listening to pro-
fessionals. (pp. 49-50)

Thompson quotes an 1894 article from the
Atlantic magazine which describes the term

2328

The Work of Art in the Age of Mechanical Production

“amateur” pejoratively, equating amateur efforts
with “bad work” (p. 49-50).

Benjamin’s colleague Adorno would likely
agree with the Atlantic’s assessment, excoriat-
ing any attempts to produce “Brilliant but not
Difficult” sheet music of popular tunes for the
untrained masses. He refers to such products
designed to bridge the gap between amateur and
professional as a:

sort of musical children’s language…it differs
from the real thing in that its vocabulary exists
exclusively of fragments and distortions of the
artistic language of music. In the piano score
of hit songs, there are strange diagrams. They
relate to guitar, ukulele and banjo, as well as the
accordion—infantile instruments in comparison
with the piano—and are intended for players
who cannot read the notes. They depict graphi-
cally the fingering for the chords of the plucking
instruments. The rationally comprehensible notes
are replaced by visual directives, to some extent
by musical traffic signals. These signs, of course,
confine themselves to the three tonic major chords
and exclude any meaningful harmonic progres-
sion. The regulated music traffic is worthy of them.
(1982, pp. 290-291)

Adorno would agree that playing a musical
instrument is difficult (clearly privileging the
piano) and rightfully so, or it might have no more
value than any other common activity, as unique
as walking across the room. Mastering a difficult
activity such as playing a musical instrument is
what makes the artist admired. Even that great
contemporary prophet of technological usability,
Donald Norman, accepts the usability challenges of
musical instruments, stating that they “take years
of dedicated practice to be used properly, and even
then, errors and poor performance are common
among nonprofessionals. The relative unusability
of musical instruments is accepted, in part because
we know of no other alternative, in part because the
results are so worthwhile” (2004, p. 77-78).

But is this really the case? With today’s technol-
ogy, do instruments really need to be so difficult
in order to retain their value? Just as you might
be able to envision the design of an airplane with
embedded transparent performance support that
enables an untrained novice to pilot it success-
fully, why can’t you picture a musical instrument
equipped with similar performance support? What
if a piano’s keys could be internally illuminated
in time to a musical score, allowing a novice to
perform within an acceptable margin of error even
if he or she had never sat on a piano bench before?
What if a saxophone’s interface (its keys) could be
equipped with both visual support (such as lights
or shades of color) and haptic feedback (such as
localized vibrations or mild electrical sensations)?
What if other, more sophisticated and transparent
performance support technology were embedded
within musical instruments? Instruments are, after
all, technology. By definition, performance sup-
port technology is technology that helps humans
use other technology. When a novice user is unable
to accomplish the artistic/musical performance,
he/she activates the support (directly or indirectly)
and the resulting performance is one far more
polished than the novice could otherwise achieve.
A popular example is the video game Guitar Hero,
which allows a novice musician to play music on
a simulated guitar with embedded support and
performance feedback.

If, as Thompson suggests, the widening gap
between musical novices and professionals is a
symptom of modernity—something surely cele-
brated by a high modernist such as Adorno—then,
perhaps the obliteration of that gap by transparent
performance support technology is indicative of
a postmodern evolution. In this context, the only
relevant criterion is the musical performance. How
that performance is achieved is irrelevant. This is
no different than the goal of performance support
in an industrial environment. When viewed via
this extreme postmodern perspective, terms such
as “novice” and “expert” become meaningless.

 2329

The Work of Art in the Age of Mechanical Production

There are no novices or experts. There is only
in-situ “performance.”

Taylor (2001) addresses this transition directly,
connecting it to the “modern” chasm between
amateurs and professionals, but recognizing what
may be a postmodern shift. “Before the advent of
recording technology and radio, people made their
own music most of the time, but what is radically
different today is that it is now possible to create
entire worlds of sound all by yourself with your
computer” (p. 139). The days are now gone when
you need formal musical training in order to pro-
duce music. The performance now resides in the
situation. “Digital technology…makes home music
making possible as never before. One can create
complex, polyphonic music at home with a com-
puter and other digital equipment without having
had years of piano lessons” (Taylor, 2001, p. 13).
We have reached a musical point where Benjamin’s
reader (listener) has become writer (composer). And
this is not limited solely to music. “The relatively
low cost of new media…and the internet allows
many more people to be both producers and con-
sumers of visual and other media” (Mirzoeff, 1999,
p. 256-257). The postmodern atomization of both
artistic production and distribution have contrib-
uted to this new producer/consumer phenomenon,
where at any given time, any given individual can
be found on either side (or both) of the creation-
consumption continuum.

tHe QueStiOn Of tASte

Although performance may be the most important
metric for success in both business and art, unlike
many businesses, the art world cares very much
about the human being responsible for the perfor-
mance. With transparent performance support, the
difference between the artist and the technological
helper is hazy at best. Lanham (1993) describes
the challenge in attributing artistic responsibility
and assessing talent:

Programs available widely and cheaply…allow
novices to compose pleasant sounding music
by enlisting the computer as co-composer. Far
from…thinking that the computer diminishes
human originality and skill, the authors of such
programs often regard the physical skills needed
for performance, and the theoretical knowledge
needed for notation, as elitist prejudices…What
“musical talent” is thought to be may itself
change…In Laurie Spiegel’s Music Mouse, you
move the Macintosh mouse around on its pad and
the linear motions are translated by the computer
into musical sounds. Time and space, drawing
and music, are made one by digitization. And
if the music sounds good, as often it does, what
does “good” mean here? “Who” has created the
goodness? (p. 12)

Does it matter “who” is responsible, as long as the
result—the performance—is the desired outcome?
What, after all, is “taste?” As Lanham said, what
is “good?” Is there any objective definition of good
taste that can be applied across society? As noted by
Freedman (2003), “even the term art has traditionally
signified a judgment of quality” (p. 53).

This notion of quantifying aesthetic taste was an
issue addressed by pioneering acoustical physicist
Wallice Sabine as early as 1902. Sabine first became
known for the development of a scientific acoustical
formula that allowed him to predict how sound would
behave in any interior environment, based upon a
set of variables. After the initially favorable reviews
of the musical acoustics of the newly constructed
Boston Symphony Hall, on which Sabine consulted,
dissenting critical voices began to complain about
those very same acoustics. So Sabine convened
a committee of faculty members from the New
England Conservatory of Music and conducted a
series of acoustical tests to determine the optimal
amount of acoustical reverberation (Thompson,
2002, p. 55-56).

What Sabine attempted to do, in true scientific
fashion, was determine an algorithm for taste.

2330

The Work of Art in the Age of Mechanical Production

Whether he or his acoustical successors achieved
this goal is debatable. Throughout the history of
sound, the amount of ideal reverberation continued
to be adjusted based upon the individual prefer-
ences of the audience and the fashion of the time.
Sabine, of course, was trying to objectify the ex-
ternal quality of the sound. He wanted to answer
the question: what is good sound? He did not
address the internal quality of sound, specifically
its content—what sounds good? This, naturally,
begs the question: can an algorithm be developed
that describes exactly what constitutes a “good”
song? Can we derive a formula for taste?

In essence, that’s exactly what screenwriting
software, entry-level musical composition soft-
ware, and photographic auto-focus attempt to do.
In order for a novice to possibly write a screenplay
or compose a song, the system must make some
transparent “intuitive” performance support deci-
sions about how that artistic expression will be
created. Those decisions—the variety of choices
offered, the amount of user control—constitute a
de facto taste algorithm. By changing the values of

the few variables in the formula we are permitted
to adjust, we create an original piece of art within
prescribed limitations.

The result, however, seems to be (to echo
Barthes in Image-Music-Text) a general “flat-
tening” of the qualitative differences between
pieces (1977, p. 189). For example, with musical
composition software, on the bottom end, the
system prevents you from producing something
so horrible as to be universally unrecognizable
as music. However, by so doing, it also prevents
you from really excelling at the top end. The
very performance support decisions that enable
a novice to compose a song actually preclude
someone with real talent and experience from
composing something truly wonderful. The
system is only capable of producing music in a
general “fair” range.

It seems that an equation could be derived that
states that the user’s ability to leverage his/her
own talent and experience is directly proportional
to the amount of control that a piece of software
affords that user (Figure 1). That amount of

Figure 1. Control vs. risk with artistic performance support technology

us
er

 c
on

tro
l

risk

Performance Focus

Humanistic

Mechanistic

 2331

The Work of Art in the Age of Mechanical Production

control, however, is also proportional to the risk
that a novice has of failure. The lower the risk of
failure, the lower the ability to excel.

This equation can very likely be applied to
any example of artistic performance support
technology, including the earlier examples of
screenwriting software.

As the amount of user control lessens, the great-
er the level of mechanical influence. Conversely,
as the amount of user control increases, so do the
humanistic/organic characteristics. Control is an
important issue relative to performance support
across all areas of society—whether in business,
the arts, medicine—since it is intrinsically linked
to risk and success (financial, artistic, physiologi-
cal). Norman (1988) addresses this issue directly
when he writes:

All tasks have several layers of control. The low-
est level is the details of the operation, the nimble
finger work of sewing or playing the piano, the
nimble mental work of arithmetic. Higher levels
of control affect the overall task, the direction
in which the work is going. Here we determine,
supervise, and control the overall structure and
goals. Automation can work at any level. Some-
times we really want to maintain control at the
lower level. For some of us, it is the nimble execu-
tion of the finger or mind that matters. Some of us
want to play music with skill. Or we like the feel
of tools against wood. Or we enjoy wielding a
paintbrush. In cases like these, we would not want
automation to interfere. At other times we want to
concentrate on higher level things. Perhaps our
goal is to listen to music, and we find the radio
more effective for us than the piano; perhaps our
artistic skill can’t get us as far as can a computer
program. (p. 197)

The risk of creative failure is mitigated, of
course, through the use of artistic formulas. An
artistic formula, like a mathematical formula or
algorithm, is simply a structure in which variables
can be adjusted to produce a predicted result.
However, unlike mathematics, where a formula
is generally perceived as a useful tool, artistic
formulas have traditionally been denigrated as
clichés and the work of hacks. “The more stuffed
the poem with ‘formulas,’ the more it passes for
successful,” wrote Barthes (1979, p. 112). Unfor-
tunately, in the world of arts education, where the
professional artists of tomorrow are being trained,
“the value of originality is imparted at the same
time as the value of following rules” (Freedman,
2003, p. 8). This mixed message—originality vs.
following rules—is fundamental to the challenge
faced when trying to balance issues of control. As
formula-based performance support technology
embeds itself more intrinsically into the tools of
artistic production, questions will arise regarding
the value of artistic education. If the performance
is resident in the instrument (or camera, or word
processor), then why do we need master artists or
teachers? This is a dangerous question, of course,
and one that will likely be rejected by those within
the established artistic community.

Adorno doesn’t spare the rod when address-
ing the formulaic structure of popular music. He
laments the “standardization” of this music and
foreshadows the very “flattening” evidenced by
entry-level musical compositional software:

The harmonic cornerstones of each hit—the be-
ginning and end of each part—must beat out the
standard scheme. This scheme emphasizes the
most primitive harmonic facts no matter what has
harmonically intervened. Complications have no
consequences. This inexorable device guarantees
that regardless of what aberrations occur, the hit
will lead back to the same familiar experience, and
nothing fundamentally novel will be introduced.
(1941, p. 17)

2332

The Work of Art in the Age of Mechanical Production

Of course, what constitutes a formula may only
be in the eye of the beholder. Just because Adorno
or the musical elite might denigrate the music of
a currently popular but critically panned artist
such as Ashlee Simpson doesn’t mean that her
music has no value. She brings pleasure and en-
joyment to her fans, who would likely roll their
eyes if Adorno suddenly appeared and told them
they were being duped by the great manipula-
tive apparatus of corporate music. The critical
lambasting of Ashlee Simpson and her music is
consistent with Mirzoeff’s observation of mass
culture (specifically visual culture) that “the gen-
eralized antipathy of intellectuals to popular visual
representations may be displaced hostility to those
who participate in and enjoy mass culture” (11).
But are the critics even relevant? The Beatles and
Elvis were panned at first, too. Besides, is there
anything wrong with someone listening to what
they like and actually enjoying it? Does everyone
have to enjoy the same music?

This is likely the primary reason why achieving
a “taste” algorithm is so difficult. If you prefer
Ashlee Simpson and I prefer Beethoven, then
how could our tastes possibly agree in order to be
captured in any type of meaningful equation? The
answer may lie in those very differences. What
if you could choose the type of music you liked
best and then the embedded performance support
technology helped you create music in that style?
Inventor Ray Kurzweil has written at length about
this issue and his “Poet’s Assistant” software is
an excellent example of this concept:

The Poet’s Assistant provides a simple word pro-
cessor (“poem processor”) in which you write your
poem or song lyrics. Besides providing standard
text editing features, the Poet’s Assistant monitors
your “poem-in-progress,” and provides a wide
range of helpful suggestions as you type…Each
suggestion is based on a “poet personality” that
you select…The standard version…includes 50
poet personalities…For example, the Poet’s As-
sistant can provide rhymes (words that rhyme with

one of your words) or half-rhymes that were used
by Robert Frost; alliterations used by Yeats; a set
of “next words” used by Shelley; and entire lines
(or stanzas) of poetry that are based on (but which
were not actually written by) Emily Dickinson (or
based on a combination of contemporary poets).
From these lines and/or stanzas, you can find ideas
for words and turns of phrase. (2005a)

Kurzweil also offers the next step in mecha-
nistic art, what he terms a completely “cyber-
netic poet” in which a human being isn’t even
necessary. Called the Ray Kurzweil Cybernetic
Poet (RKCP), the system auto-generates poems
using an algorithm based upon pre-selected poet
styles. This “unique recursive poetry generation
algorithm” is rooted in an analysis of the selected
poet’s technique (2005b). When tested, it was dif-
ficult for a combined general audience of juvenile
and adult readers to determine which poems were
written by the actual poet and which were written
by the computer (Kurzweil, 1992).

However, Kurzweil’s cybernetic poet strays a
bit far from the domain of performance support
technology, which, by definition, requires a human
to be supported. The cybernetic poet is more in-
dicative of automation (a term invoked by Norman
in the earlier quote regarding issues of control).
But I include it here to illustrate recent attempts
to develop taste algorithms. Are they successful?
To many, especially those who couldn’t tell the
cybernetic poetry from that of Eliot or Frost, the
answer is certainly “yes”; although, to others, the
jury is still decidedly out.

When Kurzweil discusses “language model-
ing techniques” and a “recursive poetry genera-
tion algorithm,” we can’t help but speculate on
a post-human stylistic recursion. Will we reach
a point where the very poetry generated by the
computer is being used as a stylistic model for
future cybernetic poetry, in a sort of technological
Ouroboros, a great mechanical serpent continually
swallowing its own tail, reducing humanity to
an uninvolved bystander? As Kahn (1999) says,

 2333

The Work of Art in the Age of Mechanical Production

“The relationship of techniques to technologies
is…complicated since it is clear that technologies
can derive from techniques…and techniques can
derive from technologies” (p. 15). Musicians today,
especially those working in sampled sounds, are
creating music that can only be produced by very
specific technology. The technology is molding the
technique, which, in turn, continues to influence
the technology of music production.

Yet, if performance support technology em-
ploys formulas to assist in the creation of art, even
if those formulas are based on T.S. Eliot or J.S.
Bach, perhaps all we’re left with is a computerized
Minou Drouet (to reference Barthes), where the
formulaic banality of the work is masked by the
novelty of who (or what) produced it. It’s possible
that, as Adorno stated, “the golden age of taste
has dawned at the very moment in which taste no
longer exists” (1982, 280-281). Adorno, of course,
implored us to resist what he called “the cult of
the machine…For the machine is an end in itself
only under given social conditions—where men
are appendages of the machines on which they
work. The adaptation to machine music neces-
sarily implies a renunciation of one’s own human
feelings and at the same time a fetishism of the
machine such that its instrumental character
becomes obscured thereby” (1941 p. 17-48). To
many, the simple fact that a particular piece of
music was created by a computer is what makes
it interesting, regardless of any artistic merit.
Such listeners have fetishized the machine to the
detriment of the art.

“A triumpH Of AmAteuriSm”

However, some artists today do resist the over-
mechanization of the creation process. This goes
back to the essential issue of control. The more
experienced and/or talented the artist, the less
he/she wants to abdicate control of the creative
process to a machine. Talent is a rare commodity
and those who have it are unlikely to dull its edge

with assistive technology. Trained artists with
legitimate talent may naturally resist the unre-
stricted democratization of artistic production.
Perhaps extending the kiosk culture into the arts
eventually leads to an overall cheapening of the
value of artistic talent. How many of the scripts
generated by the screenwriting software would
be movies you would want to see? How much of
the computer-mediated music is worth listening
to? Will we lose something intrinsically—ex-
clusively—human by layering in compensatory
artistic performance support technology?

The answer to this question may very well be
different for each person depending upon your
own perception of personal artistic talent. Hayes
(1991) feels that such human-computer collabora-
tions could result in “a triumph of amateurism.
Computer-based tools may compensate for the
amateur’s lack of skill, but they cannot make up
for a failure of taste or judgment” (p. 15). Do
we end up with, as the critics of early amateur
photography protested, “fried fish pasted onto
metal plaques” (Mirzoeff, 1999, p. 72)? Barthes
astutely observed that the difficulty in mastering
Beethoven is related more to the artistry of the
music—the code—than in any technical skill
required to perform it (1977, p. 152).

Benjamin himself remarks on the rarity of tal-
ent in a long note at the end of The Work of Art in
the Age of Mechanical Reproduction. He quotes
at length from Huxley (1949), who declares that
“artistic talent is a very rare phenomenon,” in both
the visual and auditory arts. With the increase in
the sheer volume of artistic material produced,
the result is that:

the gramophone and the radio have created an
audience of hearers who consume an amount
of hearing-matter that has increased out of all
proportion to the increase of population and the
consequent natural increase of talented musicians.
It follows from all this that in all the arts the output
of trash is both absolutely and relatively greater
than it was in the past; and that it must remain

2334

The Work of Art in the Age of Mechanical Production

greater for just so long as the world continues
to consume the present inordinate quantities of
reading-matter, seeing-matter, and hearing-mat-
ter. (pp. 217-251)

The production of art of dubious merit is only
exacerbated by the rise of performance support
technology. A quick internet search will reveal
literally millions of homemade songs, podcasts,
and other creative expressions available for the
general public.

Nevertheless, for the novice or untalented, the
machine offers access to previously unavailable
artistic expression. Perhaps self-service art is
the ultimate extreme in egalitarianism, opening
the closed, rarified world of art to anyone who
wants to join in. Any layman who wants to write
or paint or compose or play an instrument can
do so successfully. If that results in more people
enjoying the creation of and participation in art,
is that so bad?

Where technology once created distance be-
tween amateurs and professionals (Thompson’s
“wide chasm”), technology is now pulling both
sides back together into a homogenous group where
at any given moment someone can be either creator
or audience (or both). “With digital technology,
there is some hope that people—at least those who
can afford computers—will begin to make music
for themselves again using their computers and
cheap, easily available software” (Taylor, 2001,
p. 5). Taylor quotes from a publication aimed at
amateur composers of electronica music: “‘Forget
about talent,’ says ‘How to Become a Techno God,’
a guide to making your own techno music; ‘talent
just gets in the way’” (p. 164).

Whether in music or the visual arts, this at-
titude is reflective of “a young generation that
seems increasingly resistant to the seductions
of production values and actively engaged in
a ‘do-it-yourself’ aesthetic…the production of
visual imagery is by now so diversified that it
collectively signifys [sic] a shift away from the
passive consumer trying to invest consumption

with meanings towards a consumer-producer”
(Mirzoeff, 1999, p. 257). Recall, too, Lanham’s
remark that the programmers of composition
software regard the physical skills of musicianship
as “elitist prejudices.” Who needs talent when it’s
already programmed into the software?

Although he would probably cringe at artistic
performance support technology, even Adorno
might smirk at some of its cultural consequences.
As more and more art is produced by people who
were previously unable to do so, traditional dis-
tribution channels are being torn asunder. There
is simply too much content now. As a result, the
seams of the traditional pipelines are popping
open under the pressure of volume and artistic
expression is finding new, unorthodox ways to
reach the public.

USA Today recently observed that “new
sounds and new bands are emerging from Web
cabals, a blow to radio and labels used to set-
ting the agenda… That’s causing a democratic
shift, as more phenomena filter up and fans elect
their own stars rather than accept the dictates
of radio or MTV” (Gunderson, 2005). The vast
corporate musical apparatus is losing the power
to dictate what kinds of popular music the mass
consumer should listen to. Media can now be
“distributed both locally and globally by activist
groups, charities and other small-scale organiza-
tions” (Mirzoeff, 1999, p. 257). This sentiment is
resonating across the media spectrum with the
emergence of outlets such as the Current televi-
sion network, which is founded on the principle
that its programming will be produced largely, if
not entirely, by amateurs. Such direct distribution
channels, with podcasting being the most acute
example, are undermining the role of Bourdieu’s
mediators (1984), which until now have been
serving as “cultural intermediaries,” controlling
the presentation of commoditized artistic goods
and services.

As a catalyst for this shift, enabling amateurs
to produce art and other media, performance sup-
port technology helps to answer some of Adorno’s

 2335

The Work of Art in the Age of Mechanical Production

Marxist critiques of the music industry while at the
same time validating Benjamin’s vision of artistic
democracy. If, as Freedman (2003) has written,
“all art is political” (p. 52), then the politics of
artistic performance support and postmodern
technological distribution channels are certainly
“democratic.” The kiosk culture is “of the people,
by the people, and for the people.”

Perhaps the role of artistic performance sup-
port technology isn’t to fundamentally change
the process of creating art. It seems unlikely that
it will turn talentless hacks into artist poseurs.
By and large, especially over time, audiences can
tell the difference. Audiences grow increasingly
sophisticated and, despite Adorno’s assertions,
Mirzoeff (1999) appears to be on the right track
when he declares that “it is no longer possible
to suggest that the mass audience will gullibly
consume any product that is offered to it contain-
ing a simple formula of entertainment” (p. 255).
The example of American Idol notwithstanding
(although the show’s eventual winners do gener-
ally seem to have legitimate vocal ability and
much of the show’s appeal lies in its spectacle
of poor talent), this is why copycat films and
trend-chasing television programs rarely suc-
ceed. The true promise of artistic performance
support technology lies elsewhere.

If a musical composition software program
were used to introduce a child to the concept
of reading music, combined with the positive
reinforcement of a technologically-enabled early
compositional success, it could quite easily serve
as a catalyzing inspiration for a lifelong love of
music. And if, as a result, such a child happened to
discover a previously unrealized natural musical
talent and blossomed from that early nurturing
into tomorrow’s Ludwig van Beethoven or George
Gershwin or Brian Wilson, that wouldn’t be such
a bad thing. With artistic performance support
technology, anyone can now go from reader to
writer, listener to performer. Benjamin’s vision is
realized, where the cultural democracy of artistic

production grows increasingly more democratic
every day.

referenceS

Adorno, T. W. (1982). On the fetish-character in
music and the regression of listening. In A. Arato,
& E. Gebhardt (Eds.), The essential Frankfurt
school reader (pp. 270-299). New York: Con-
tinuum.

Adorno, T. W. (1941). On popular music. Stud-
ies in philosophy and social science. New York:
Institute of Social Research, 17-48.

Barthes, R. (1979). Literature according to Minou
Drouet. The Eiffel Tower & Other Mythologies.
New York: Hill and Wang, 110-118.

Barthes, R. (1977). The grain of the voice. Image-
Music-Text. Translated by Stephen Heath. New
York: Hill and Wang, 179-189.

Barthes, R. (1977). Musica Practica. Image-Mu-
sic-Text. Translated by Stephen Heath. New York:
Hill and Wang, 149-154.

Barthes, R. (1970). S/Z. Translated by Richard
Miller. New York: Hill and Wang.

Benjamin, W. (1968). The work of art in the age of
mechanical reproduction. In H. Arendt (Ed.), Il-
luminations (pp. 217-251). New York: Shocken.

Bourdieu, P. (1984). Distinction: A social critique
of the judgment of taste. Ed. R. Nice. London:
Routledge

Bourdieu, P. (1993). The field of cultural produc-
tion: Essays in art and literature. Ed. R. Johnson.
New York: Columbia University Press.

Freedman, K. (2003). Teaching visual culture.
New York and London: Teachers College Press.

Gunderson, E. (2005). Music fans reach for
the stars. USA Today 9 Mar 2005. Retrieved

2336

The Work of Art in the Age of Mechanical Production

March 15, 2005, from http://www.usatoday.
com/tech/webguide/music/2005-03-09-internet-
jukebox_x.htm

Hayes, B. (1991). The information age. Sciences,
2, 13-15, March/April 31.

Huxley, A. (1949). Beyond the Mexique Bay. A
traveller’s journal. London: Heron Books, 274.
First published in 1934. (Quoted from an endnote
within: Benjamin, W. (1968). The Work of Art in
the Age of Mechanical Reproduction. Illumina-
tions. Ed. Hannah Arendt. New York: Shocken,
217-251.

Kahn, D. (1999). Noise, water, meat: A history of
voice, sound, and aurality in the arts. Cambridge:
MIT Press.

Kurzweil, R. (2005). Ray Kurzweil’s Cybernetic
Poet: Features. Kurzweil Cyber Art Technologies.
Retrieved March 15, 2005, from http://www.
kurzweilcyberart.com/poetry/rkcp_features.
php3

Kurzweil, R. (2005). Ray Kurzweil’s Cybernetic
Poet: How It Works. Kurzweil Cyber Art Tech-
nologies. Retrieved March 15, 2005, from http://
www.kurzweilcyberart.com/poetry/rkcp_featu-
res.php3

Kurzweil, R. (1992). A kind of turing test. In R.
Kurzweil (ed.), The age of intelligent machines
(pp, 374-379). Cambridge: MIT Press.

Lanham, R. A. (1993). The electronic word: De-
mocracy, technology, and the arts. Chicago &
London: The University of Chicago Press.

Mirzoeff, N. (1999). An introduction to visual
culture. London & New York: Routledge.

Norman, D. A. (2004). Emotional design: Why
we love (or hate) everyday things. New York:
Basic Books.

Norman, D. A. (1988). The design of everyday
things. New York: Basic Books.

Taylor, T. D. (2001). Strange sounds: Music, tech-
nology and culture. London: Routledge.

Thompson, E. (2002). The soundscape of moder-
nity (1st ed.). Cambridge: The MIT Press.

Willis, A. M. (1990). Digitisation and the living
death of photography. In H., Philip (Ed.), Culture
technology and creativity in the late twentieth
century. London: John Libby.

Write Brothers. (2005). Writer’s dreamkit product
overview. Screenplay.com. Write Brothers, Inc.
Retrieved March 15, 2005, from http://www.
screenplay.com/products/dreamkit/popup03.
html

Write Brothers. (2004). Software secrets of highly
successful authors. Write Brothers Marketing
Literature. Glendale: Write Brothers, Inc.

This work was previously published in the International Journal of Technology and Human Interaction, edited by B. Stahl,
Volume 4, Issue 3, pp. 27-42, copyright 2008 by IGI Publishing (an imprint of IGI Global).

Section VI
Managerial Impact

This section presents contemporary coverage of the managerial implications of software applications.
Particular contributions address agile practices in project management, virtual software teams, and
computer-aided management of software development. The managerial research provided in this section
allows executives, practitioners, and researchers to gain a better sense of how software applications
can inform their practices and behavior.

2338

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6.1
Open Source Software and

the Corporate World
Sigrid Kelsey

Louisiana State University, USA

ABStrAct

This chapter discusses various ways that open
source software (OSS) methods of software
development interact with the corporate world.
The success achieved by many OSS products
has produced a range of effects on the corporate
world, and likewise, the corporate world influences
the success of OSS. Many times, OSS products
provide a quality product with strong support,
providing competition to the corporate model
of proprietary software. OSS has presented the
corporate world with opportunities and ideas,
prompting some companies to implement compo-
nents from the OSS business model. Others have
formed companies to support and distribute OSS
products. The corporate world, in turn, affects
OSS, from funding labs where OSS is developed
to engaging in intellectual property disputes with
OSS entities. The consumer of software is some-
times baffled by the differences in the two, often
lacking understanding about the two models and
how they interact. This chapter clarifies common
misconceptions about the relationship between

OSS and the corporate world and explains facets
of the business models of software design to better
inform potential consumers.

intrODuctiOn

Open source software (OSS) is impacting the
corporate world in numerous ways, from provid-
ing software and competing with its proprietary
software companies to changing the direction
of the software industry. While some corporate
giants are embracing the OSS business model,
launching OSS projects of their own, and sup-
porting existing OSS projects, others are vigor-
ously competing with the OSS movement and
its products. Still others are capitalizing on suc-
cessful OSS products by packaging, distributing,
and providing support for them. Sharma et al.
(2002) assert that the success of OSS is turning
the software industry from a manufacturing to a
service industry in which customers are paying
more for support and service than for the product
itself. In addition, the OSS model of production

 2339

Open Source Software and the Corporate World

has gained recognition as an “important organi-
zational innovation” (Lerner & Tirole, 2002, p.
1). Without a doubt, the OSS movement has had
a substantial influence on the software industry
and the corporate world.

BAcKgrOunD

Both the OSS and proprietary models of software
productions have existed since the early days of
software development. Unix, for example, was
developed at Bell Laboratories in the late 1960s
and early 1970s and distributed freely to uni-
versities during the 1970s. Unlike the altruistic
motivations of many OSS products, the reason for
Bell Laboratories’ free distribution was to keep
the “consent decree” that resulted from a 1956
antitrust litigation that prevented AT&T from
marketing computing products (Vahalia, 1996).
In fact, AT&T’s 1979 announcement that it would
commercialize UNIX prompted the University of
California Berkeley to develop its own version,
BSD UNIX (Lerner & Tirole, 2002). AT&T’s
move to make the cooperatively developed UNIX
into a proprietary product came four years before
Stallman’s decision to develop GNU and General
Public License.

By 1980, a business model for software had
emerged, restricting the copying and redistribu-
tion of software by copyright. Bill Gates had
already established himself as a supporter of this
proprietary model, stating in his February 3, 1976,
“An Open Letter to Hobbyists”:

As the majority of hobbyists must be aware, most
of you steal your software. Hardware must be paid
for, but software is something to share. Who cares
if the people who worked on it get paid? … Is
this fair? … One thing you do do is prevent good
software from being written. Who can afford to do
professional work for nothing? (Gates, 1979)

Gates’ letter indicates the differences in phi-
losophy between proprietary and free software
proponents that have existed since the early days
of software development.

In 1984, computer scientist Richard Stallman,
frustrated that all available operating systems
were proprietary, quit his job at MIT to develop
the GNU (pronounced guh-noo, a recursive ac-
ronym for GNU’s Not Unix) system. His goal, in
addition to developing a new operating system,
was to change the way software was created
and shared, giving users freedom to modify or
add to programs, redistribute the programs with
their changes, cooperate with each other, and
form communities. Stallman also developed
the concept of “copyleft” and the GNU General
Public License (GPL) in 1989, publishing all of his
work under that license. Copyleft gives software
a copyright and users permission to change the
software, add to it, and redistribute it, as long as
it remains under the GPL terms. By preventing
the software from entering the public domain, the
GPL prevents users from turning free software
into a proprietary derivative. Thus, the beginnings
of the OSS movement were a reaction to the pro-
prietary corporate model. In 1990, University of
Helsinki student Linus Torvalds wrote the Linux
kernel, releasing it under GPL, and filling the
gap for a piece of Stallman’s system still under
development. Soon after, the Apache Web server
was developed, providing an OSS application
for Linux. This combination of software offered
a new option to Internet service providers and
e-commerce companies, which, until then, had
only proprietary options.

Stallmans’s Free Software Foundation Web
page, reminding readers that free software means
“free” as in “free speech,” not as in “free beer”
(Free Software Foundation, 2005), echoes a
concept brought forth perhaps more eloquently
by Thomas Jefferson and widely-quoted by OSS
advocates that “ideas should freely spread from

2340

Open Source Software and the Corporate World

one to another over the globe, for the moral and
mutual instruction of man, and improvement of
his condition” With the growth of the OSS
movement, some of the values of the OSS culture
have diversified, but freedom and sharing remain
integral to its success and completely dissimilar
to the proprietary model of development and
distribution.

The corporate and OSS models and phi-
losophies continued to influence one another
and develop throughout the 1990s. The “open
source” label came out of a 1998 meeting, and
shortly thereafter, the Open Source Initiative
was created. Also in 1998, the Digital Millen-
nium Copyright Act (DMCA), criminalizing the
production of software for the purpose of evading
copyright, and the Sonny Bono Copyright Term
Extension Act, extending U.S. copyright terms
by 10 years, both passed. Despite the divergent
directions the two movements were taking, the
difference between free software and proprietary
software has never been reducible to a battle
between anti-corporate OSS proponents and the
profiteering corporate world, as many people
perceive. Corporate companies with a stake in
the software industry have, in fact, navigated
various approaches to succeed in an industry in
which the motivations for developing software go
beyond the commercial value of the product or
ownership of intellectual property. While the two
models of software production and distribution
are competitive in many ways, it was also in the
1990s that it became common for commercial
companies to interact with the OSS community
(Lerner & Tirole, 2002).

During 1998, Torvalds appeared on the cover
of Forbes, Netscape announced a decision to
make the next version of its Web browser an
OSS product, and IBM adopted the Apache Web
server as the core of its Websphere line of products
(O’Reilly, 1999). Like IBM, some corporate giants
have chosen to use and support OSS voluntarily.
Others have found it necessary to contribute in
order to market products to Linux users; still others

have fought intellectual property battles with OSS
constituents. The relationship between the OSS
and corporate cultures is complex, but it is clear
that the OSS culture is making an impression on
the corporate world, and vice versa.

As the OSS community has grown to include
professionals, students, hobbyists, corporate gi-
ants, universities, and others, the freedom of ideas
and sharing knowledge remains the crux of the
OSS ideology. To integrate into the OSS culture,
therefore, the corporate world must be willing to
share its developments. This chapter summarizes
some ways in which the OSS movement has
motivated change in the software industry and
corporate world, citing some specific examples of
corporations reacting to OSS software and strate-
gies in different ways, which serves to illustrate
the larger picture.

mAin fOcuS Of tHe cHApter

corporate culture and motivations
of OSS Developers

A misconception often associated with OSS
developers is that they are volunteer program-
mers, willing to “dedicate their time, skills, and
knowledge to the OSS systems with no monetary
benefits” (Ye & Kishida, 2003, p. 1). In fact, there
are many money-making opportunities for open
source developers, from providing software sup-
port to programming for companies or institutions
using the software. While it is true that many OSS
developers are paid to make the developments,
Eric Raymond is quick to point out that while OSS
developers may be paid for their contributions to
the software, their salaries rarely depend on the
sales value of their software (Raymond, 2001).
OSS contributors may work for support compa-
nies, universities, and other organizations with
motivations not attached to selling the software.
This is a key difference between the OSS and
proprietary software business models. Stallman’s

 2341

Open Source Software and the Corporate World

1985 GNU Manifesto not only outlines his reasons
for creating GNU but also offers some sugges-
tions for how programmers can make money in
an OSS environment.

While too often OSS advocacy is reduced to
an anti-Microsoft position, the challenge that the
OSS community has posed to the software giant
does provide an illustration of the extent of the
movement’s success. For example, throughout
the Microsoft Corporation antitrust case, Linux
was a named threat to Windows domination, with
Microsoft CEO Steve Ballmer referring to open
source as a “cancer” (Microsoft Exec, 2006). In
the midst of the antitrust trial, Eric Raymond
became the recipient of two leaked internal Mi-
crosoft memos, posting them on a Web site and
naming them the “Halloween Documents.” The
documents, acknowledged by Microsoft to be
authentic but according to Raymond dismissed as
an engineering study not defining company policy,
discuss the success of Linux, acknowledging the
achievements of the OSS movement and outlin-
ing strategies to “beat” Linux (Raymond, n.d.).
Microsoft is not the only corporation combating
the success of Linux and other OSS products.

The SCO Group is a software company cur-
rently involved in a number of disputes regarding
intellectual property, including lawsuits with
IBM, Red Hat, and Novell. SCO filed a complaint
against IBM in March 2003 claming that IBM has
misappropriated SCO’s proprietary knowledge
by contributing to the GNU/Linux systems with
code SCO claims to own, alleging damages of at
least $1 billion. The result of the ongoing litigation
will set a precedent for future cases.

In 2005, Columbia University law professor
Eben Moglin formed the Software Freedom Law
Center to help protect OSS development from
similar litigation. The center provides pro bono
legal services to FOSS projects and developers;
its mission to help provide FOSS developers
with “an environment in which liability and
other legal issues do not impede their important
public service work. The Software Freedom Law

Center (SFLC) provides legal representation and
other law-related services to protect and advance
FOSS.” His foundation is one of several helping
to defray legal costs for litigation against FOSS
developments. The Open Source Development
Labs (OSDL) Linux Legal Defense Fund has
raised more than $10 million to provide legal
support for Linus Torvalds and others subject to
SCO litigation (Goth, 2005, p. 3).

While Microsoft and SCO are resisting the OSS
model of business, others in the corporate world
have come to see the benefit of working with OSS
producers and products. Silicon Valley’s NetApp,
for example, became involved in Linux because
its Linux-using customers were experiencing dif-
ficulty moving files between their computers and
NetApp filers. Although it was a Linux problem,
customers complained to NetApp, and with a
vested interest in fixing it, NetApp cofounder and
chief of engineering talked to Linus Torvalds.
Mistrustful of companies like NetApp, Torvalds
declined NetApp’s offer to fix the problem, naming
instead his choice programmer for the job, Trond
Myklebust. NetApp, along with Linux developers
worldwide, could submit suggestions to Myklebust
in hopes that he would accept them. Therefore, if
NetApp was to market its product to Linux users,
it was obliged to join the OSS culture (Lyons,
2004). The NetApp circumstances demonstrate
that any company wishing to make its product
compatible on a Linux platform has a stake in the
OSS world. Yet while the OSS culture is able to
influence the actions of the corporate world, so
the corporate world is able to do likewise.

In 1999, NetApp began funding the University
of Michigan’s Center for Information Technol-
ogy Integration (CITI), home to a lot of Linux
NFS development. By 2002, NetApp was paying
Myklebust a stipend and providing him office
space in the lab and a company-paid apartment in
Ann Arbor. Peter Honeyman, scientific director
of the lab where Myklebust works who receives
$192,000 a year from NetApp, notes, “What’s in
it for [NetApp] is sales; it can sell into the Linux

2342

Open Source Software and the Corporate World

market. This is not about philanthropy. There is
plenty of mutual benefit going on here” (quoted
in Lyons, 2004). Torvalds, who was mistrustful
of NetApps’ offer to help, works at a Beaverton,
Oregon, lab funded in part by Hewlett-Packard
(Lyons, 2004). In response to the apparent conflict
between picking up a salary from a revenue-hun-
gry corporation and developing OSS, Torvalds
compares himself to an athlete with a corporate
sponsor (Lyons, 2004).

The OSS culture, therefore, is not separate from
the proprietary model of development; rather, the
two models interact with and influence each other
in many ways. Indeed, the OSS, corporate, and
academic worlds have a complex relationship,
each able to control, to some extent, the others’
directions.

A 2004 Forbes article notes that many top tech-
nical firms hire Linux programmers in hopes of
manipulating the direction of Linux development
(Lyons, 2004). Hewlett Packard Vice President
Martin Fink acknowledges that the closer he can
get to Torvalds, the more influence he can have on
Linux, saying “I try to keep it under two hops. ...
The way to get stuff done in the Linux commu-
nity is to hire the right people.” In 2003, Hewlett
Packard generated $2.5 billion in Linux-related
revenue; IBM $2 billion; and Red Hat, which
distributes a version of Linux, $125 million in
revenues. Linux runs in datacenters of places like
Charles Schwab & Co. and Sabre Holdings (Lyons,
2004). These corporations have recognized the
benefits of the OSS culture, and many of them
have become sponsors of its research.

IBM has been a powerful corporate advocate
of OSS development for years. In 2005, IBM
promised free use of 500 of its U.S. patents to
open source developers, stating, “The open source
community has been at the forefront of innovation
and we are taking this action to encourage addi-
tional innovation of open platforms” (IBM, 2005).
IBM’s Bob Sutor, vice president of standards, says
that this move was made in hopes of starting a
“patent commons” for companies to contribute

intellectual property for open source developers
to use freely without fear of litigation (Goth, 2005,
p.4) from companies like SCO. OSS supporters
generally believe that software patents hinder
advancements in software research; in Europe,
efforts are underway to prevent laws that would
allow the patenting of software (Carver, 2005).

With IBM and other such corporations design-
ing their products with OSS platforms in mind,
and contributing to the furthering of OSS research,
it is plain that the two cultures have learned to
work together.

reliable code, reliable Support

The success of OSS projects like Linux, Apache,
and Perl evince the success of the bazaar model
on the code itself. The traditional paradigm
of collaborative development follows Brooks’
Law, which ascertains that only a select circle of
experts should be allowed to collaborate, with
little or no feedback, to improve a product before
it is finished. Brooks’ Law states, “Conceptual
integrity in turn dictates that the design must
proceed from one mind, or a very small number of
agreeing resonant minds” (Neus & Scherf, 2005,
p. 216). Eric Raymond dubs the bazaar approach
Linus’ Law in which software is released early
and often, evolving as users around the world use
it and contribute to it. Making the code freely
available and open to review by one’s peers makes
the quality better (Bergquist & Ljungberg, 2001).
Open source has proved itself to be a formidable
model for creating quality software, and as OSS
projects become even more widely adopted, the
culture and communities grow larger.

Customers often question the availability or
longevity of support available for OSS. Without
a revenue-generating company supporting it, it
is difficult for OSS newcomers to imagine that
any support will exist. But the success of OSS
projects like Linux, GIMP, and Apache provide
examples of the bazaar model’s success. In fact,
with proprietary software, the support is propri-

 2343

Open Source Software and the Corporate World

etary as well, where anyone who is able to provide
support for OSS is free to do so. O’Reilly Media,
Inc., a strong supporter and early advocate of OSS,
points out on its Web site that its success came in
part because it was not “afraid to say in print that
a vendor’s technology didn’t work as advertised”
(O’Reilly, n.d.). Besides publishing numerous sup-
port books, O’Reilly provides online services and
hosts OSS summits and conferences. O’Reilly is
not the only company providing support for OSS.
The OSS culture of sharing and helping gives
assurance that with any successful OSS product,
adequate support is available.

future trenDS

A July 2005 article reports that 70% of Web
servers on the Internet use Apache compared
to roughly 25% using Microsoft’s Internet In-
formation Server (Bradbury, 2005). Already,
European governments have adopted OSS
for their computing needs, and California has
started a U.S. trend toward the same, making a
2004 recommendation for the use of OSS in its
performance reviews. Products like OpenOffice,
named by Developer.com as a 2006 Open Source
Product of the year, offer products that are able
to compete with Microsoft’s Office Suite. The
state of Massachusetts is currently deciding
whether to go forward with a decision made by
the former CIO to use OpenOffice, with Harvard
Law School Professor John Palfrey predicting, “If
Massachusetts gets this right, others will follow”
(McMillan, 2005).

OpenOffice is already common in Israel, in
part because OpenOffice works well with the
Hebrew language and because Microsoft software
is expensive. China, where software theft has dis-
couraged proprietary companies from marketing,
has embraced OSS, creating the China Standard
Software Company (CSSC) and the China Open

Source Software Promotion Alliance (Bradbury,
2005). The growing trend to adopt OSS has spread
worldwide. With such support, the OSS culture
and movement will continue to grow. Market re-
searcher IDC predicts that by 2008, Linux server
sales could approach $10 billion.

The GPL has yet to be ruled enforceable in
a U.S. court of law; until now, it has only been
enforced in private negotiation or settlement
agreements (Carver, 2005). In Germany, how-
ever, a Munich district court has ruled it valid
and enforceable (Carver, 2005). The result of
ongoing litigation between SCO and IBM will
set a precedent for how the GPL is interpreted in
the United States.

Lerner and Tirole acknowledge that the future
of the open source development process is difficult
to predict with existing economic models and
that further research is needed from an economic
perspective.

cOncluSiOn

The predominating shared norms, values, atti-
tudes, and behavior that characterize OSS culture
are deeply rooted in valuing freedom and sharing.
As OSS has grown to offer software options for
large entities like governments, companies, and
universities, reasons for joining the OSS move-
ment diversify. While the movement has grown
and the culture has shifted, the basic values have
remained in tact. Its success has impacted other
cultures and traditions worldwide, from academic
publishing and research to government to the
corporate world. Clearly, the initial ideas and
philosophies set forth by Jefferson and echoed
by Stallman are affecting the culture of research
worldwide, with the OSS movement proof that
a culture of sharing is beneficial to everyone
involved.

2344

Open Source Software and the Corporate World

referenceS

Association of College and Research Libraries
(ACRL), Association of Research Libraries (ARL),
SPARC, & SPARC Europe. 2003. Create: New
systems of scholarly communications; change: old
systems of scholarly communication. Retrieved
from http://www.createchange.org/resources/Cre-
ateChange2003.pdf

Bergquist, M., & Ljungberg, J. (2001). The power
of gifts: Organizing social relationships in open
source communities. Information Systems Jour-
nal, 11(4), 305.

Bradbury, D. (2005). The future is open
source: Should Microsoft be watching its
back? Retrieved January 18, 2006, from http://
www.silicon.com/research/specialreports/open-
source/0,3800004943,39150625,00.htm

Carver, B. W. (2005). Share and share alike:
Understanding and enforcing open source and
free software licenses. Berkeley Technology Law
Journal, 20(1), 443.

Free Software Foundation. (2005). The free soft-
ware definition. Retrieved December 1, 2005,
from http://www.fsf.org/licensing/essays/free-
sw.html

Gates, W. H., III. (1979). An open letter to hob-
byists. Retrieved July 7, 2006, from http://www.
digibarn.com/collections/newsletters/homebrew/
V2_01/homebrew_V2_01_p2.jpg

Goth, G. (2005). Open source infrastructure
solidifying quickly. IEEE Distributed Systems
Online, 6(3), 1.

Hars, A., & Shaosong, O. (2001). Working for
free? Motivations of participating in open source
projects.

IBM. (2005). IBM statement of non-assertion of
named patents against OSS. Retrieved January
29, 2006, from http://www.ibm.com/ibm/licens-
ing/patents/pledgedpatents.pdf

Lattemann, C., & Stieglitz, S. (2005). Framework
for governance in open source communities. In
Proceedings of the 38th Hawaii International
Conference on System Science.

Lerner, J., & Tirole, J. (2002). Some simple
economics of open source. Journal of Industrial
Economics, 50(2), 197.

Lyons, D. (2004). Peace, love and paychecks.
Forbes, 174(5), 180. Retrieved July 11, 2006, from
http://www.msnbc.msn.com/id/5907194/

McMillan, R. (2005). CIO who brought OpenOf-
fice to Massachusetts resigns: Whether Peter
Quinn’s departure helps or hinders state’s move
away from Microsoft remains to be seen. Info-
World. Retrieved January 29, 2006, from http://
ww6.infoworld.com/products/print_friendly.
jsp?link=/article/05/12/28/HNmasscio_1.html

Microsoft exec leaves suddenly: Windows live
official helped company fight Linux threat (2006,
June 21). The Seattle Post-Intelligencer, p. E1.

Moore, J. (2003). Revolution OS: Hackers, pro-
grammers & rebels unite. In W. Productions
(Producer): Seventh Art Releasing.

Neus, A., & Scherf, P. (2005). Opening minds:
Cultural change with the introduction of open
source collaboration methods. IBM Systems
Journal, 44(2), 215.

Open Source Initiative. (n.d.). The open source
definition. Retrieved December 1, 2005, from
http://www.opensource.org/docs/definition.php

O’Reilly, T. (n.d.). O’Reilly media: History. Re-
trieved July 11, 2006, from http://www.oreilly.
com/history.html

O’Reilly, T. (1999). Lessons from open source
software development. Communications of the
ACM, 42(4), 32-37.

Raymond, E. S. (n.d.). The halloween documents.
Retrieved January 30, 2006, from http://www.
catb.org/~esr/halloween/index.html

 2345

Open Source Software and the Corporate World

Raymond, E. S. (2001a). The cathedral & the
bazaar. Beijing: O’Reilly.

Raymond, E. S. (2001b). How to become a hacker.
Retrieved January 24, 2006, from http://www.catb.
org/~esr/faqs/hacker-howto.html#what_is

Rheingold, H. (1994). Virtual community. London:
Minerva.

Sharma, S., Sugumaran, V., & Rajagopalan, R.
(2002). A framework for creating hybrid-open
source software communities. Information Sys-
tems Journal, 12, 7.

Stallman, R. (1985). The GNU manifesto. Re-
trieved from http://www.gnu.org/gnu/manifesto.
html

Unsworth, J. M. (2004). The next wave: Liberation
technology. The Chronicle of Higher Education,
50(21), B16-B20.

Vahalia, U. (1996). UNIX internals: The new
frontiers. Upper Saddle River, NJ: Prentice-Hall,
Inc.

Ye, Y., & Kishida, K. (2003). Toward an un-
derstanding of the motivation of open source

software developers. In Proceedings of the 25th
International Conference on Software Engineer-
ing (ICSE’03) (pp. 419-429).

Key termS

Free Software (FS): Software that users have
the freedom to alter, use, and redistribute, usually
under the terms of the General Public License.
Closely related to Open Source Software, the two
terms are sometimes used interchangeably. “Free”
is not associated with cost but with the freedom
associated with it. However, free software is often
cost-free as well.

General Public License (GPL): A license
created by Richard Stallman that protects free
software from being turned into proprietary
software.

Open Source Software (OSS): Software that
allows the user to see and alter the source code;
closely related to free software.

Proprietary Software (PS): Software that
does not allow the user to see or alter the source
code.

This work was previously published in Handbook of Research on Open Source Software: Technological, Economic, and Social
Perspectives, edited by K. St.Amant; B. Still, pp. 570-577, copyright 2007 by Information Science Reference (an imprint of
IGI Global).

2346

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6.2
Combining Tailoring

and Evolutionary Software
Development for Rapidly

Changing Business Systems
Jeanette Eriksson

Blekinge Institute of Technology, Sweden

Yvonne Dittrich
IT-University of Copenhagen, Denmark

ABStrAct

This article reports on a case study performed in
cooperation with a telecommunication provider.
The telecom business changes rapidly as new
services are continuously introduced. The rapidly
changing business environment demands that
the company has supportive flexible software.
The company’s continuous evolution of the IT-
infrastructure makes it necessary to tailor the
interaction between different applications. The
objective of the case study was to explore what is
required to allow end-users to tailor the interaction
between flexible applications in an evolving IT-
infrastructure. The case study followed a design
research paradigm where a prototype was created
and evaluated from a use perspective. The overall

result shows that allowing end-users to tailor the
interaction between flexible applications in an
evolving IT infrastructure relies on, among other
things, an organization that allows cooperation
between users and developers that supports both
evolution and tailoring.

IntroductIon

End-user development (EUD) is one way to
provide a flexibility that allows companies to
compete in rapidly changing business environ-
ments. Telecommunication provision is one such
example of a rapidly changing business area.
Telecommunication providers compete by, among
other things, providing their customers with new

 2347

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

types of services, and as the business changes,
the business systems supporting it must also
change. One way of conducting EUD is end-user
tailoring. End-user tailoring is an activity allow-
ing end-users to modify the software while it is
already in use, as opposed to modifying it during
the development process (Henderson & Kyng,
1991). End-user tailoring ranges from setting
the values of parameters to adding code to the
software. Since evolution of software is inevitable
(Lehman, 1980) and since tailoring is recognized
as a way of reducing the efforts when keeping the
system up to date through further development
(Mørch, 2002), tailoring could be an alternative to
increase the sustainability of software in a rapidly
changing business environment.

Tailoring research so far has focused on flex-
ible stand-alone systems. In earlier projects, we
too focused on the design of flexible and end-user
tailorable applications (Lindeberg, Eriksson, &
Dittrich, 2002). However, interaction with other
systems turned out to be a bottleneck, since busi-
ness systems in telecommunication are part of an
IT-infrastructure consisting of heterogeneous data
sources. Other research also indicates that soft-
ware and IT-infrastructures pose new challenges
for software engineering (Bleek, 2004). Normally,
the data exchange between different systems is
the realm of the software developers, but in this
article we use the evaluation of a prototype to
answer the question: What is necessary to allow
end-users to tailor the interaction between flex-
ible applications in an evolving IT-infrastructure?
Our results support the claim that end-users can
even tailor the interaction between business ap-
plications. The analysis of a user evaluation of
a case-based prototype results in a number of
issues to be addressed regarding the technical
design, the know-how demanded of the users,
and the organizational setting, particularly the
cooperation between users and developers. These
issues both confirm and extend existing research
on end-user development and tailoring.

We start by briefly describing the relevant work

practices and business systems of our industrial
partner. We then present how our research relates
to others’ work. In the following section, we
describe our research approach in detail and the
design of the prototype is presented to provide a
basis for the evaluations and discussions. There-
after, we present the outcome of the evaluation,
which points out three different categories of issues
that are important when providing end-users with
the possibility to manage interactions between
applications in an evolving IT-infrastructure.
The discussion relates these results to the state
of the art.

HiStOry AnD BAcKgrOunD

The research reported here is part of a long-term
cooperation between the university and a major
Swedish telecommunication provider, exploring
the applicability of end-user tailoring in industrial
contexts (Dittrich & Lindeberg, 2002). The subject
of the prototype is part of the telecommunication
provider’s back office support infrastructure for
administering a set of contracts and computing
payments according to these contracts. To compute
payments, the system must be supplied with data
from other parts of the IT-infrastructure. When
creating new contract types based on different
data, flexibility is constrained by the hard-coded
interface to other systems. As a work-around,
ASCII files can be created providing the necessary
data sets – or events – to compute the payments.
The data for these extra payments is handled and
computed manually. To compute the data for an
extra payment, members of the administrative
department first run one or more SQL queries
against the data warehouse. The result is stored
in ASCII files. Next, the user copies the data
from the ASCII files and pastes it into a prepared
spreadsheet. When the user has thus accumulated
the data, the user works through the spreadsheet in
order to remove irregularities. The contents of the
sheet are eventually converted again to an ASCII

2348

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

file that is imported into the payment manage-
ment system. The manual procedure to compute
the data for the extra payments has worked well
until recently, although it is time consuming.
The competitiveness of the telecom business is
however continually forcing the company to come
up with new services; more and more types of
extra payments will be needed. This situation
necessitates a tool to define and handle the new
data sets or events. To make such event tool as
flexible as possible, it must allow the collection
and assembly of data from different kinds of sys-
tems. Experience suggests that it is impossible to
anticipate the structure of future extra payments
or which details will be needed. As a result, the
tool must be able to communicate with any sys-
tem in the IT-infrastructure. It is also essential
that the tool allow for expansion of the tailoring
capabilities, meaning that new data sources can
be added. The addition of a new source should be
as seamless as possible. Since different system
owners and developers are responsible for these
systems, it is their responsibility to make new
data sources available. Such changes are part of
the maintenance of the other systems, and here
the limits of end-user tailoring are reached.

relAteD WOrK

The research on end-user tailoring addresses
mainly the design of tailorable applications, tailor-
ing as a work practice, and cooperation between
users and tailors. Examples of research on the
design of tailorable systems are (Eriksson, Warren,
& Lindeberg, 2003; Lindeberg et al., 2002; Mørch,
1997; Stiemerling, 2000; Stiemerling & Cremers,
1998). Of these, only two address tailoring in the
context of distributed systems. In Eriksson et al.
(2003) a prototype that dynamically connects
different physical devices (video cameras, moni-
tors, tag readers, etc.) is presented. The tool can
be regarded as tailoring the interaction between
different intelligent devices. Stiemerling (2000)

and his colleague (Stiemerling & Cremers, 1998)
show how to build a search tool by using custom-
ized Java Beans. The users customize search and
visualization criteria. The tailorable search tool is
used within a distributed environment provided
by a groupware system. Neither of the distributed
tailoring approaches is evaluated by users to ex-
plore beyond technical issues of how end-users
can manage interaction between applications.

Several researchers have studied how tailor-
ing activities are carried out in work practice, for
example (Gantt & Nardi, 1992; Trigg & Bødker,
1994). In a study involving tailoring spreadsheets,
Nardi and Miller (1991) identify collaboration
between three kinds of users of CAD (Computer
Aided Design) systems (1) users who do not pro-
gram (2) users who acquired the skill to program
small macros, and (3) local developers: users
having a more or less formalized responsibility
for supporting other users and maintaining the
macro selection of a group or department.

Carter and Henderson (1999) invented the
expression tailoring culture to express the need
for organizational support for tailoring. Kahler
(2001) also points out that, in order to make tai-
loring successful, an organizational culture must
evolve that supports the development and sharing
of tailoring knowledge. Kahler also emphasizes
three often coexisting levels of tailoring culture,
identified and addressed by different researchers:.
First there is a level with equal users; people help
each other to tailor the software (Gantt & Nardi,
1992) or there is a network of whom to ask when
encountering trouble when tailoring the software
(Trigg & Bødker, 1994). Second, there is a level
with different competencies (Gantt & Nardi,
1992). The third level is a level of organizational
embedment of tailoring efforts and official rec-
ognition of tailoring activities (MacLean, Carter,
Lövstrand, & Morgan , 1990). We will return to
this classification in the discussion of our results,
as our findings propose the consideration of a
fourth level of tailoring culture when implement-
ing and deploying tailoring possibilities in an
IT-infrastructure environment.

 2349

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

tHe cASe StuDy

research Approach

Our research approach can be described as a
single case study (Yin, 2003) following a design
research paradigm (Nunamaker, Chen, & Purdin,
1991). The question “What is necessary to allow
end-users to tailor the interaction between flexible
applications in an evolving IT-infrastructure?”,
addresses the design and deployment of a previ-
ously inexistent functionality. In design research,
the design and development of a (prototypical)
information system can be used both to answer
technical questions and as a probe to explore
requirements posed by the deployment of the
technical possibilities. Hevner, March, Park,
and Ram (2004) especially emphasize the need
for combining design research and behavioral
science. The technical design of the prototype is
discussed in (Eriksson, 2004).

The practical work was conducted during a
period of slightly more than one and a half years.
Prior research indicates that the collection of data
to process the so-called extra payments was a
bottleneck both for the users’ work as well as
for deploying the flexibility implemented in the
existing systems. During the initial field studies
focusing on the work practice of the business de-
partment, we visited our industrial partner once or
twice a week to observe and interview both users
and developers. These field studies informed the
development of the overall research question and
also the design of the prototype.

In the beginning of the design phase, work-
shops were arranged involving researchers, users
and developers. When designing the prototype,
one of the researchers was stationed at the com-
pany two or three days a week to ensure that the
prototype conformed to existing company sys-
tems. Field notes were taken, and meetings and
interviews were audio taped, during all phases
of the case study.

The prototype was evaluated by all three
employees involved in the collection of data and

computation of the extra payments and by one
developer involved in the maintenance of the
payment system. These evaluations were video
taped. The analysis in the section of this article
entitled “Outcome of Evaluation” is mainly
based on the latter tapes, but uses the other field
material as a background. For secrecy reasons,
videotaping is not allowed on the telecommunica-
tion provider’s premises. We therefore installed
the system on a stand-alone computer outside the
actual work place. To allow the users to evaluate
the prototype realistically, we reconstructed part
of the IT-infrastructure in a local environment and
populated it with business data, developing our
prototype into a case-based prototype (Blomberg,
Suchman, & Trigg, 1996). The users were given
two tasks. One task was to construct the collec-
tion and assembly of data for an extra payment
that they implemented regularly (in the manual
fashion described above) as part of their normal
work. For the second task they had to construct a
totally new but realistic payment. The users were
asked to talk-aloud while performing the task. This
method is common when evaluating software in
a use context (Ericsson & Simon, 1993; Robson,
2002). The researcher performing the evaluation
observed and asked exploratory and open-ended
questions to provoke reactions that differed from
our expectations. The developer who worked with
maintenance of the regular system evaluated the
prototype in a workshop, and discussed advan-
tages and drawbacks concerning use, tailoring,
and expansion of the tailoring capabilities.

We analyzed the data in a manner that was
inspired by grounded theory. A coding scheme
was developed with its starting point in the
transcripts of the evaluation sessions. The re-
searchers coded the interviews independently
from one other and then compared their results.
The resulting categories were finally merged into
three core categories, that is, design issues, user
knowledge, and organizational and cooperative
issues. The categorization can be found in the
evaluation section.

2350

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

the prototype

The prototype is divided into two parts, the Event
Definer and the Event Handler (Figure 1). By using
the Event Definer, the end-user can tailor com-
munication and data interchange between systems,
that is, the end-user defines the event types for
the computation of the above-described extra pay-
ments. It allows the user to: define the assembly
of data from different sources (Figure 1a), set up
rules for aggregation and algorithms that will be
performed on the data when aggregating the data
(Figure 1b) and define how to map data sets to
the format required by the receiving application.
(Figure 1c). The Event Definer needs to be used
only when defining new types of extra payments.
The Event Handler handles the execution of extra
payments or events and is to be used once a month
to run the different extra payments.

Various solutions exist that provide the
functionality needed to manage the connections

between applications. These are found in tools
for system integration that connect systems, in
network management for monitoring the IT-in-
frastructure, in component management (if you
choose to regard the different systems as compo-
nents) and in report generation for assembling data.
These tools are designed exclusively for system
experts, not for end-users. A possible exception
is report generation, which sometimes supports
end-users but often needs support from develop-
ers to adapt it to fit new data sources. We found
that none of these approaches was suitable for
fulfilling the requirements for a tool for interap-
plication communication that can be adapted by
users. Neither were the approaches suitable for the
purpose of exploring what is necessary to allow
end-users to tailor the interaction between flexible
applications in an evolving IT-infrastructure. For
our prototype we used an existing platform that
supports integration between the telecommuni-
cation provider’s back office applications. The

View View Export

Run extra payment
 (xml)

Payment
System

DB of
System Y

DB of
System X

Meta data
 (xml)

Connection
 data (xml)

Meta data
 (xml)

Meta data
service (e)

Publcation
service (d)

Connection
 data (xml)

Export

A
lgorithm

s

D
ata retrieval

(a) (b) (c)

Event
definer

Event
handler

Intergration
 Platform

Figure 1. The connection between the prototype and the surrounding systems

 2351

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

integration platform makes it possible to publish
events that other applications can subscribe to. We
had a somewhat different intention when using the
platform. We wanted to collect the information
when needed, and we used the platform to provide
the prototype with information about how to get
in touch with desired resources and what data
were accessible at these resources. We created a
service (Figure 1d) on the integration platform that
allowed the developers of the different systems
to publish information about available data and
showed how to connect to the respective database.
To do so, the developers must set up a database
view containing data that could be accessible to
other systems (such as the prototype). The service
produced an XML file containing connection data
for all published data sources. When the Event
Definer starts, the XML file is fetched from the
integration platform. Yet another service (Figure
1e) provided the prototype with metadata from the
data sources, for example, which fields (attributes)
could be accessed in a specific database, and the
types of the fields.

tailoring

The graphical tailoring interface of the Event De-
finer was constructed to consist of seven different
steps. These steps are intended to guide the user
through the process, but could also be used in an
arbitrary order as the end-user chooses.

Step 1: Naming the extra payment.
Step 2: Choosing which databases to connect

to.
Step 3: Choosing which fields to use from the

selected databases.
Step 4: Setting up criteria for what data to collect

from the different databases, that is, by drag
and drop, the end-user chooses which field
should be used and the end-user can also
specify how the different views should be
linked together, for example, fieldX in Sys-
temX must be equal to fieldY in SystemY.

Step 5: Showing the specified criteria from Step
4 as SQL queries, that is, here the user can
edit the SQL queries to set up more com-
plicated (and unusual) conditions for data
retrieval than can be accommodated by the
graphical interface.

Step 6: Setting up algorithms for what to do
with the collected data. (partially imple-
mented.)

Step 7: Mapping the input table structure to the
output table structure, that is, the end-user
can map the assembled and computed data
to a receiving system by dragging the fields
from the assembled data table and dropping
them in a table representing the receiving
database.

All these choices, criteria, algorithms, map-
ping and so forth, were finally brought together
and arranged into an XML file (extra payment
in Figure 1).

use

The XML files produced by the Event Definer
are then used whenever the end-user decides to
execute the extra payment. The Event Handler
contacts the chosen systems one by one and col-
lects the data specified in the XML file. When the
data is collected and assembled in a single table
it is displayed to the user to allow for checking
and correcting the result where necessary. By
clicking on a button, it is possible for the end-user
to export the result to the system handling the
payment data, in accordance with the mapping
specification (Step 7).

expansion of tailoring capabilities

There will inevitably be situations where end-
users wish to define extra payments based on
data that is currently unavailable. If the data and
metadata are unavailable, the end-users are un-
able to perform new tasks. They have neither the

2352

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

authority nor the ability to alter or add views in
surrounding systems. In this case the surrounding
systems, as well as the tailorable system, have to
evolve to meet the additional requirements from
the end-users. The developer responsible for the
respective system must then (a) alter the system
by creating a new view or changing an existing
view, so that it contains the required data, and (b)
make the changes available through the integration
platform. To support the latter, the publication of
a new source was supported by a web interface
where the developer (also system owner) could
fill in the necessary data.

Outcome of evaluation

The evaluation presented here focuses on issues
beyond the technical design and the appearance
of the graphical interface of this specific ap-
plication. It addresses overall design issues for
this kind of application, the end-user knowledge
necessary to handle such complex tailoring tasks,
and organizational issues to deploy such systems
in a sustainable way. We have also evaluated the
prototype against functional requirements, but the
results are not reported here. Individual opinions
held by only one or two of the subjects are disre-
garded in the following presentation.

Design issues

In terms of technical support we focused on the
different interfaces provided by the prototype:
the tailoring interface, the deployment interface
and the development interface.

the tailoring interface

Functionality for Controlling and Testing

All users appreciated the freedom to alternate
between the seven steps. They found that the steps
provided not only guidance and an overview but
also the freedom to alter something performed in

previous steps, without losing the overall view.
To be able to overview all choices and trace them
backwards was one way of providing control. But
there was also a need for error control and limita-
tion. The users, especially the beginners, wanted
some kind of guidance in order to feel secure.

It became very obvious that the design must
enable the end-user to test and control the correct-
ness of the specification of extra payments. Control
facilities must be provided to ensure security for
the users in their work. Although control and test
functionality was important for all users, the at-
titude towards test and control varied between
the users. The better the knowledge of the task,
the surrounding systems and possible errors, the
less important explicit test and control seemed
to be. Following statements exemplifies different
attitudes towards control and test functionality:
When you make an extra payment for the first
time you would probably like to make a test run to
see that it really works correctly. (user comment,
evaluation session, February 24, 2004)

and

there isn’t the same protection as in SystemZ …
but to make a more flexible solution, then you can’t
expect it to be strictly user friendly (user comment,
evaluation session, February 24, 2004).

Clear Division Between Definition,
Execution and the Tailoring Process

When tailoring, the user rises from one level of
abstraction to another, higher level. From think-
ing only in terms of the execution of an extra
payment the user had to think in more general
terms of what characterizes this extra payment,
what kind of data were fetched, what variables
there were, and so forth. The users had to think
in terms of levels which is not an easy step to
take. We found that a clear separation between
execution and the tailoring process helped the
users to make this step successfully.

 2353

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

The users also started to discuss the division
of labor enabled by a system resembling the pro-
totype. For example, one of the users said:

I think it is very good because then someone is very
familiar with how to make a new extra payment
and then all employees in the group can run the
extra payment. (user comment, evaluation session,
February 24, 2004)

Unanticipated Use Revealed to the
Tailor

Systems that continuously evolve through tailoring
aim to support unanticipated use. The possibilities
for unexpected use are inevitably limited by the
technical design. To support unanticipated ways
of tailoring, the system has to provide additional
information of what is possible to do and what the
limitations are. In the prototype this was achieved
by providing information for the user that is not
directly applicable to the type of extra payments
that exist today. As one of the users expressed it
when seeing the opportunity for one of the export
systems to also act as input source:

this is interesting! It opens up new opportunities.
It might be like one extra payment uses another
payment as a base (user comment, evaluation
session, February 24, 2004).

Complexity

We found that the users preferred more informa-
tion, rather than a less complex tailoring interface,
resulting in more tailoring possibilities. Their
opinion was that, as tailoring is not routine work,
performed several times a day, it is allowed to
take extra time. Then it is better to have a more
complex interface providing more opportunities
to tailor the system.

the Deployment interface

Simplicity

One thing that was revealed and worth mention-
ing is that it seems that the deployment interface
should be even simpler than an ordinary user
interface. The users expressed the opinion that
the tailoring interface and the tailoring process
may be rather wide-ranging if that allows for a
simpler deployment interface.

the Development interface

One Point of Interaction

The development interface in the prototype was
a graphical Web interface where the developer
could fill in the data that was to be published about
the respective source system. During the evalu-
ation of the development interface, the software
engineer emphasized the importance of having
one point where changes to the data sources are
published. The developer should not be forced to
make changes in several places in the application
in order to extend the tailoring capabilities.

end-user Knowledge required for
tailoring

Even previous to the evaluation session we had
experienced the high expertise of the users not
only regarding their tasks but also regarding the
data available in the different databases that are
part of the IT-infrastructure. The users acquired
the knowledge in order to perform the assembly
manually. The communication between different
systems is normally hidden from the user in a data
communication layer for the separate systems.
Our prototype is designed to make exactly this
communication tailorable. Its deployment depends
on the respective expertise of the users.

2354

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

Task Knowledge

Business knowledge about contracts and payments
provides the base on which the users decided what
data to collect. Extensive business knowledge
was a prominent feature of the results of the
evaluation. The users’ reflections on which data
to collect always concerned different aspects of
the business tasks.

System Knowledge

To map requirements regarding the task at hand
and the available data, demands expertise regard-
ing the available data in the different systems. And
the users knew where to find the data needed for
defining a specific extra payment. The prototype
just helped with the exact location of the data, for
example it guided the user to which fields to use,
by listing the fields with examples of the data they
contained. However, the user had to understand
the sometimes quite cryptic names and know
where to look for specific data.

Error Knowledge

All users were extremely aware of which errors
could occur,that is, errors concerning the use of
the prototype, the IT-infrastructure and the task.
Task-specific errors are particularly important for
the end-user to overview since they may cause
serious consequences for the company if the errors
are not prevented. On several occasions during
the user tests the users expressed concern about
making errors. They made statements like:

when you work as we do you must know a little
about database management, you have to under-
stand how the tables are constructed and how to
find the information. And also in some way un-
derstand the consequences of or the value of the
payment. In other words how you can formulate
conditions and what that leads to. (user comment,
evaluation session, February 24, 2004)

Organizational and cooperative
issues

The system for which the prototype was a test
would depend on data published by many dif-
ferent surrounding programs. Each one of these
systems is itself the subject of both tailoring and
evolution. Both the users, and the software engi-
neer who evaluated the prototype, addressed the
necessary interaction with other system owners
and the assignment of responsibilities regarding
the publication and updating of the connection
information and the kinds of data available.

Publication and Update Responsibilities

During the workshops it became apparent that
there is already friction in the coordination be-
tween the payment system and the changes in the
surrounding systems. When one system in the IT-
infrastructure is changed, the changes are orally
communicated to the owners of other systems
that may or may not be affected by the change.
For the prototype to function as designed, it was
important that the systems that the prototype was
expected to communicate with were visible and
accessible. The design of the prototype solved
this problem by requiring every change relevant
to the prototype to be reflected in the published
information. In other words, it was designed so
that the respective system owners were responsible
for keeping their system visible and showing its
current status. As the prototype was dependent
on accurate just-in-time information, the evalua-
tion revealed a need for coordination concerning
publication and updates of surrounding systems
and tailoring activities in the prototype.

Collaboration Between Developer and
End-Users

The fieldwork revealed, and the evaluation con-
firmed, that it is impossible to know what future
contracts will look like. Therefore there will

 2355

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

always come a time when the end-user wants to
retrieve data that is not published in any available
view. In this case the system that can provide the
data has to be identified and the respective system
owner or developer has to be persuaded to imple-
ment a new view of the system or update existing
ones, and publish the relevant information.

Another issue related to communication and
cooperation between users and developers con-
cerned the decision of how much information
to make available for the users to do a good job
of tailoring. The users wanted to see as much
information as possible, provided it was within
reasonable limits. In order to have better control
over the execution of the system and to decouple
maintenance that would not necessarily impact
the communication with the payment system,
the developers would rather prefer to restrict the
user’s options. These two perspectives have to
be negotiated.

In this company, cooperation between business
units and the IT unit works very well. The users
evaluating the system were quite aware of the
limit of their own competences and knew when
to consult the responsible developers. All users
frequently referred to developers when they expe-
rienced that something was beyond them. None of
them considered the necessary coordination and
cooperation to be a serious problem.

Summary of Outcome of evaluation

The evaluation revealed many issues to consider
when making a system that continuously evolves
through tailoring work in a rapidly changing busi-
ness environment. The issues could be divided
into three categories regarding design issues, user
knowledge, and organizational and cooperative
issues. Below, the issues are summarized and
listed under the respective category.

DeSign iSSueS

1. Functionality for controlling and testing
changes has to be integrated into the tailoring

interface and there must be sufficient techni-
cal support for the end-user to estimate and
check the correctness of the computation.

2. A tailorable system has to define a mental
model that makes a clear division between
definition, execution and tailoring. This
mental model must be adopted in the tailor-
ing interface and be shared by users, tailors
and developers.

3. The tailoring interface also has to reveal
potential for unanticipated use to the tailor.
This means, that the information flow must,
to a certain extent, exceed what is currently
necessary.

4. The tailoring interface can be more complex,
provided the tailoring process makes the
deployment easier. The tailoring interface
is not used as often as the deployment in-
terface and additionally the tailoring itself
often involves careful thought.

5. The deployment interface should be simpler
than ordinary user interfaces.

6. The developer expanding the tailoring capa-
bility should only interact with one clearly
defined point in the tailorable system, that
is, changes are made at one point in the
system.

end-user Knowledge

7. End-users must have sufficient knowledge
of how the systems are structured and what
the systems can contribute.

8. End-users must have solid knowledge of the
nature of the task and what data is required
to perform it.

9. End-users must have knowledge of which
errors can occur and what the consequences
of these may be.

Organizational and cooperative
issues

10. System owners or developers must be re-
sponsible for making their systems publicly

2356

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

available within the company. System own-
ers or developers must also be responsible for
updating the systems according to external
requirements.

11. The necessity to extend the possibilities for
end-users to manage the interaction in an
evolving IT-infrastructure requires effective
collaboration between the developer and
end-users.

DiScuSSiOn

Our results are applicable in other areas that are
similar to telecommunications, and that depend
on an IT-infrastructure for a major part of their
business and where the development of new prod-
ucts requires changes in this IT-infrastructure. On
one hand, our results confirm existing research:
Users ask for additional functionality to guide the
tailoring and test the outcome (Burnett, Rothernel,
& Cook, 2003). We found that users wished to
incorporate control of the tailoring process in the
form of an outline, preferably in a step-by-step
fashion. They also asked for visualization and
test facilities in order to check the impact of the
separate steps on the end results. The evaluation
of the interface allowing software engineers to
expand the tailoring possibilities confirms and
expands previous research results addressing the
developer responsible for the evolution of tailor-
able systems as an additional stakeholder whose
requirements also have to be considered (Eriksson
et al., 2003; Lindeberg et al., 2002).

On the other hand, the results indicate that
tailoring in an IT-infrastructure of networked
applications provides additional challenges for the
design of the software, the competence of the users
and tailors, and the cooperation between users and
developers. Changes—independently of whether
they are implemented by tailoring or by evolving
the software—can depend on and affect changes
in other applications of the IT-infrastructure and
the interaction between applications. This requires

coordination between tailoring and development,
and cooperation between the persons responsible
for tailoring and developing the different applica-
tions. And this, in turn, requires a different set of
competences from users and developers. The use
of an application such as the prototype discussed
here, for example, required knowledge of the
surrounding systems and their data structures.
Developers as well as users have to understand
not only the system they are responsible for but
also the dependencies between different systems
and tasks. Several researchers have discussed
collaboration between users and tailors, but not
between users, tailors, and professional develop-
ers. For example Nardi and Miller’s approach
(1991) differs from ours in that they see local
developers and programmers as being skilled
users, while we take the concepts a step further
and state that there is also a need for collaboration
between users and professional developers who
can perform programming tasks to extend the
tailorable software beyond the script level.

What we claim is that in order to make tailor-
ing really successful,it must be made possible
for the tailorable system to evolve beyond the
initial intention when building the tailorable
system. Kahler’s three levels (2001) of tailoring
culture— cooperation between tailoring end-us-
ers, cooperation between tailors and users, and
the organizational recognition and coordination
of tailoring efforts—have to be extended with
a fourth level, of organizational support for co-
ordinating tailoring and development activities
involving the cooperation not only between users
and tailors but also between tailors and software
developers.

cOncluSiOn

Allowing end-users to tailor the interaction
between flexible applications in an evolving IT-
infrastructure requires that the tailoring activities
are supported by the design of the system, for

 2357

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

example by providing a clear division between
execution and tailoring, by revealing potential
for unanticipated use, and by supporting single
interfaces for changes to the software. It is also
essential that the competence of the end-users
is sufficient in terms of knowledge of how the
systems are structured and what the systems can
contribute. End-users must also have substantial
knowledge of the task and which errors can occur
and what the consequences of these may be. To
allow end-users to tailor the interaction between
applications in an evolving IT-infrastructure, the
organization has to allow for cooperation between
users and developers.

The main conclusion of the research described
here is that it is possible to provide end-users with
the possibility to tailor not only the applications,
but if necessary also the interaction between
different applications that are part of an IT-in-
frastructure. The evaluation clearly showed the
dependencies between tailoring and the further
development of the tailoring capabilities. The
evaluation also made it apparent how the differ-
ent actors were aware of their colleagues’ skills
and of what each individual could contribute.
To ensure a sustainable tailorable system when
deploying a system intended to evolve continu-
ously through tailoring, it is necessary to take
into account resources concerning various skills
and collaboration between users and developers.
Without smooth collaboration between the par-
ties an extended fourth level of tailoring culture
will not be provided for, and therefore the system
will soon become partially obsolete and the com-
petitive advantages provided by the system will
decrease dramatically. The results challenge the
clear division between software use and evolu-
tion on one side and software development on the
other side, when developing and maintaining an
IT-infrastructure. Collaboration between the end-
user and the developer must work satisfactorily in
order to achieve tailorable, sustainable software.
In other words, in a rapidly changing business
environment with continuously changing require-

ments, such as the one presented in this paper, the
tailoring activities have to be coordinated with
the software evolution activities.

AcKnOWleDgment

This work was partly funded by The Knowledge
Foundation in Sweden under a research grant for
the project “Blekinge - Engineering Software
Qualities (BESQ)” (http://www.bth.se/besq).

referenceS

Bleek, W.G. (2004). Software infrastruktur. Von
analystischer Perspective zu konstruktiver Orien-
tierung. Hamburg: Hamburg University Press.

Blomberg, J., Suchman, L., & Trigg, R.H. (1996).
Reflections on a work-oriented design project.
Human-Computer Interaction, 11(3), 237-265.

Burnett, M., Rothermel, G., & Cook, C. (2003).
Software engineering for end-user programmers.
In Proceedings of the Conference on Human
Factors in Computing Systems (CHI’03) (pp.
12-15).

Carter, K., & Henderson, A. (1999). Tailoring
culture. In Proceedings of the 13th Information
Systems Research Seminar (IRIS’13) (pp. 103-
116).

Dittrich, Y., & Lindeberg, O. (2002). Designing
for changing work and business practices. In N.
Patel (Ed.), Evolutionary and adaptive informa-
tion systems (pp. 152-171). Hershey, PA: Idea
Group Publishing.

Ericsson, K.A., & Simon, H.A. (1993). Protocol
analysis: Verbal reports as data. Cambridge,
MA: MIT Press.

Eriksson, J., Warren, P., & Lindeberg, O. (2003).
An adaptable architecture for continuous develop-
ment - User perspectives reflected in the archi-

2358

Combining Tailoring and Evolutionary Software Development for Rapidly Changing Business Systems

tecture. In Proceedings of the 26th Information
Systems Research Seminar (IRIS’26), Finland.

Eriksson, J. (2004). Can end-users manage system
infrastructure? User-adaptable inter-application
communication in a changing business environ-
ment. WSEAS Transactions on Computers, 6(3),
2021-2026.

Gantt, M., & Nardi, B.A. (1992). Gardeners and
gurus: Patterns of cooperation among CAD us-
ers. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (pp.
107-117).

Henderson, A., & Kyng, M. (1991). There’s no
place like home: Continuing design in use. In J.
Greenbaum & M. Kyng (Eds.), Design at work (pp.
219-240). Hillsdale, NJ: Lawrence Erlbaum.

Hevner, A.R., March, S.T., Park, J., & Ram, S.
(2004). Design science in information systems
research. MIS Quarterly, 28(1), 75-105.

Kahler, H. (2001). Supporting collaborative tai-
loring. Roskilde: Roskilde University.

Lehman, M.M. (1980). Programs, life cycles, and
laws of software evolution. In Proceedings of the
IEEE, 68(9), 1060-1076.

Lindeberg, O., Eriksson, J. & Dittrich, Y. (2002).
Using metaobject protocol to implement tailor-
ing; Possibilities and problems. In Proceedings of
the 6th World Conference on Integrated Design
& Process Technology (IDPT ’02), Pasadena,
California.

MacLean, A., Carter, K., Lövstrand, L., & Mor-
gan, T. (1990). User-tailorable systems: Pressing
the issues with buttons. In Proceedings of the
Conference on Human Factors in Computing
Systems (CHI’90) (pp. 175-182).

Mørch, A. (1997). Evolving a generic applica-
tion into domain-oriented design environment.
Scandinavian Journal of Information System,
8(2), 63-89.

Mørch, A. (2002). Evolutionary growth and
control in user tailorable systems. In N. Patel
(Ed.), Evolutionary and adaptive information
systems (pp. 30-58). Hershey, PA: Idea Group
Publishing.

Nardi, B.A., & Miller, J.R. (1991). Twinkling lights
and nested loops: Distributed problem solving and
spreadsheet development. International Journal
of Man-Machine Studies, 34(1), 161-184.

Nunamaker, J., Chen, M., & Purdin, T. (1991).
System development in information systems
research. Journal of Management Information
Systems, 7(3), 89-106.

Robson, C. (2002). Real world research. Oxford:
Blackwell Publishers Ltd.

Stiemerling, O. (2000). Component-based tailor-
ability. Bonn: Bonn University.

Stiemerling, O., & Cremers, A.B. (1998). Tailor-
able component architectures for CSCW-systems.
In Proceedings of the 6th Euromicro Workshop
on Parallel and Distributed Programming (pp.
302-308).

Trigg, R., & Bødker, S. (1994). From implemen-
tation to design: Tailoring and the emergence of
systematization in CSCW. In Proceedings of the
Conference of Computer Supported Cooperative
Work (CSCW 94) (pp. 45-54).

Yin, R.K. (2003). Case study research - Design
and methods. Thousand Oaks, CA: SAGE Pub-
lications.

This work was previously published in Journal of Organizational and End User Computing, Vol. 19, Issue 2 , edited by M.
Mahmood, pp. 47-64, copyright 2007 by IGI Publishing (an imprint of IGI Global).

 2359

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6.3
Differentiated Process Support

for Large Software Projects
Alf Inge Wang

Norwegian University of Science and Technology, Norway

Carl-Fredrik Sørensen
Norwegian University of Science and Technology, Norway

ABStrAct

This chapter presents a framework for differenti-
ated process support in large software projects.
Process support can be differentiated in different
levels based on the size of the development orga-
nization and the need for coordination across dif-
ferent levels of the organization. We have defined
four main perspectives: individual, group, team,
and project level, where the framework consider
essential issues when planning and executing the
software development processes in organizations
with different levels of management. Further, a
guideline is provided that suggests what is required
of process support in the various organizational
levels.

IntroductIon

Development of large and complex software
systems involves large organisations. In such

working environments, it is essential to plan and
coordinate the process, feed the involved devel-
opers with necessary documents, tools and files,
track the process and effort, and learn from and
improve the process.

Software process modeling is aimed at under-
standing, guiding, coordinating, automating, and
improving the software process to thus improve
the software quality and reduce the effort of de-
veloping software products (Wang, 2001). Many
process models and process-centred support
environments (PSEs) have been created with the
assumption that the same process support should
be provided at every level in an organization
(Conradi, Fuggetta, & Jaccheri, 1998; Derniame,
Baba, & Wastell, 1998; Finkelstein, 2000; Fug-
getta, 2000; Nitto & Fuggetta, 1998).

If we consider development of large software
systems, the organisations in such projects usually
involve several levels of management. Depending
on the level of an organisation a person is working
in, the perspective and goal of the work will vary.

2360

Differentiated Process Support for Large Software Projects

For a programmer, the main concern would be to
have access to all necessary files, documents, and
tools to carry out efficient programming. Person-
nel working at higher levels in the organisation
would typically have other concerns like coordi-
nating people, scheduling of the process, quality
assurance, planning of activities and so forth.
Thus, it is essential that the process support in such
organisations reflects the levels being supported.
It is also important that the way the processes are
modeled is tailored for the organisational level
and the characteristics of this level.

This chapter presents a differentiated process
support framework that describes the elements re-
quired to model the software process, the required
external resources (like tools and documents),
and the required process support provided by a
process-centred environment. Our framework
describes the required process support from four
perspectives: At the individual level, at the group
level, at the team level, and at the project level.
Thus, the objectives of this chapter is to give in-
sights into essential issues to be considered when
planning and executing a software development
process for large software projects consisting
of several levels of management. The chapter
also provides a guideline for what is required
of process support for the various levels of an
organisation. This guideline can be used as input
when evaluating tools to be used to support the
development and management processes of large
software projects.

BAcKgrOunD

This section gives an introduction to the back-
ground and the important terms used in our
framework, and describes related work.

Software process and Software
process modeling

At a NATO Conference in Garmisch-Parten-
kirchen in 1968, the term software engineering

was first introduced (Naur & Randell, 1969).
The conference discussed what was called the
“software crisis” introduced by third generation
computer hardware. The work within the soft-
ware engineering domain has been concerned
with methods, techniques, tools, programming
languages, and more to face the problems in
software projects like delayed products, cost
overruns, and bad reliability and performance
in software products. Despite the many efforts
to try to solve the software crisis, we are still
struggling with the same problems as they did
in the sixties. Brooks (1986) argues that there is
no “silver bullet” that can solve all problems in
software engineering. The only way to limit the
negative effects identified as the software crisis is
to use best practices in the many areas of software
engineering. There are no best practices that solve
all problems, but in combination many issues can
be eliminated. One best practice is to improve the
software process itself involving all the activities
necessary in developing a software product. This
chapter is intended as a guideline for improving the
software process at different levels in a software
development organisation.

Before we take a closer look at the software
process support for different levels of an or-
ganisation, it is necessary to agree on the central
terminology used in this chapter. As mentioned
before, the term software engineering covers most
aspects involved when developing large software
systems. According to Sommerville (1995):

Software engineering is concerned with software
systems which are built by teams rather than indi-
vidual programmers, uses engineering principles
in the development of these systems, and is made
up of both technical and non-technical aspects.

As Sommerville states, software develop-
ment involves more than the technical aspects
like dealing with the source code of the system.
Important nontechnical aspects of developing
software involve scheduling, budgeting, resource

 2361

Differentiated Process Support for Large Software Projects

management, and so forth. In addition, the term
software process (Lehman & Belady, 1985) is
used to denote all activities performed within a
software organisation.

In this perspective, software process model-
ing describes the activities of understanding and
describing a given software process (Wang, 2001).
Several elements have been proposed that need
to be identified to describe a software process,
but the most common model involves the ele-
ments products (a set of artefacts related to the
software product), resources (assets, like tools or
human resources needed to carry out the process),
activities (steps of the process) and directions
(policies, rules, and procedures that govern the
activities) (Derniame et al., 1998). To be able to
provide process support, the software process
must be modeled. Software process modeling is,
according to Høydalsvik (1997), defined as “The
activities performed, and language and tools
applied, in order to create models of software
development processes within a software devel-
opment organisation.”

Another term related to software process is
workflow. Workflow is by the Workflow Manage-
ment Coalition (1999) defined as “The automation
of a business process, in whole or part, during
which documents, information or tasks are passed
from one participant to another for action, ac-
cording to a set of procedural rules.”

The main difference between software process
and workflow is that workflow focuses on busi-
ness processes. However, this does not rule out
the possibility to use workflow tools to support
the software process.

When talking about software processes, we
also often mention the term software lifecycle
(Royce, 1987) that describes the life of a product
from the initial stage to the final production and
maintenance. A software lifecycle consists of sev-
eral phases that a software product usually must
go through: requirement specification, system
design, implementation, testing and operation, and
maintenance. During these phases, the required

process support will vary. For the two first phases,
the main focus is on analysis and documentation.
For the three last phases, the main focus is on the
source code and computer system. For all these
phases, various tools exist to make the software
development easier.

In addition, there are other parts of the software
process that are phase independent, for example,
software configuration management, software
cost estimation, software quality management,
software process improvement, and software
process technology (Wang, 2001).

The lifecycle of a software product can be
organised in various ways. The classical ap-
proach is the Waterfall model (Royce, 1987) that
describes the lifecycle as a predefined sequence
of phases, where each phase has a set of defined
activities. Each phase has an input and output,
and the output from one phase is the input to the
next. The Waterfall process is in principle linear
and a succeeding phase should not start until the
previous phase has been finished.

The evolutionary development model is an-
other way of viewing the software development
process. This approach interleaves the phases;
specification, implementation and validation,
and is based on rapid prototyping. A prototype
is developed early in the project in cooperation
with the customer and is refined until the cus-
tomer is satisfied. An example of an evolutionary
development model is the Spiral Model (Boehm,
1988) that can incorporate different development
processes through separate iterations.

Agile software development models like
eXtreme Programming (Beck, 1999) focus on
being lightweight and flexible. Such model em-
braces short development iterations to be able to
cope with upcoming changes in requirements,
minimum project documentation apart from
comments in source code, user involvement dur-
ing development, and other best-practices. Agile
methodologies fit very well for high-risk projects
with unstable requirements.

2362

Differentiated Process Support for Large Software Projects

A software process model gives an overview
of all the required activities and how they relate
to each other, documents, tools, actors, methods,
techniques, standards and so forth. This chapter is
not limited to process support of a specific lifecycle
model, but focuses rather on the required process
support independent of how the software process
is modeled and carried out in detail. Thus, this
chapter describes guidelines that are important
to incorporate when planning and supporting
a software process. This may make it easier to
improve the software process, thus improving the
software product.

related Work

The framework described in this chapter divides
the software process into four distinct levels. The
Personal Software Process (PSP) (Humphrey,
1997) defines the software process at the individual
level in a software development process. The
intention of PSP was to help software engineers
to do their daily work well by applying practices
that work well based on experiences from the
software engineering field. Further, PSP describes
detailed methods for making estimates and plans,
shows how software engineers can track their
performance, and describes how defined processes
can guide their work. The process model in PSP is
described only at a high-level. The model consists
of the activities Planning, Design, Code, Com-
pile, Test, and Post-Mortem. The PSP fits very
well with the individual process level described
in this chapter. However, note that PSP does not
say anything explicitly about coordination of
developers and project management on a higher
organisational level.

The Software Process Engineering Metamodel
(SPEM) defines software process models and their
components using UML notation (OMG, 2002). In
SPEM, a software development process is usually
described by a Process role performing an Activity
on a Work product. In addition, SPEM provides
modeling elements to express phases, iterations,

lifecycles, steps and so forth. This means that
SPEM can visualise different organisational levels
of a software process. Thus, SPEM can be used in
combination with our framework to describe the
software processes at different levels. However,
SPEM was not made with software process enact-
ment in mind. This means that to provide process
support for a process specified using SPEM, the
model has to be translated to an enactable process
model language (PML).

UML4SPM is executable software PML based
on UML 2.0 (Bendraou, Gervais, & Blanc, 2006).
In UML4SPM PML, a software process can be
represented at different hierarchical levels by us-
ing the main building blocks Process, Activity,
and Action. The organisational structure can also
be modeled in a hierarchical manner using the
model building blocks Team and Agents. Although
UML4SPM support modeling of a software
process at different levels, it uses the same PML
to represent all levels of an organisation. As the
PML represents processes as activity-networks,
collaborative activities beyond coordination are
hard to represent in such PMLs (Wang, 2002).

Serendipity-II is a process management envi-
ronment that supports distributed process model-
ing and enactment (Grundy, Apperley, Hosking,
& Mugridge, 1998). The PML allows hierarchi-
cal modeling of software processes represented
as process stages and subprocesses. Moreover,
Serendipity-II is based on a decentralized dis-
tributed architecture that enables users to collab-
oratively edit process models synchronously and
asynchronously. This approach enables support
for autonomous suborganisations that can tailor
their specific part of the process to their needs,
which is essential to support different levels of a
software organisation.

Kivisto (1999) describes the roles of devel-
opers as a part of a software process model for
development of client-server process. Kivisto
proposes a process model in three dimensions:
Organisational, Technological, and Process. The
organisational dimension focuses on what roles

 2363

Differentiated Process Support for Large Software Projects

are involved in the development process and how
these roles are organised. The technological di-
mension focuses on issues related to client-server
software architecture and technology choices for
such a system. The process dimension gives an
overview of how the development process can be
organised in phases and tasks, and the assignment
of roles to specific tasks.

A taxonomy for characterising metaprocess
categories with the main focus on process changes
is presented in Nguyen and Conradi (1994). The
taxonomy reflects the following questions to be
asked concerning the metaprocess: What aspects
of the software process are allowed to be changed,
due to what reasons (Why), How can the changes be
implemented/installed and be propagated (When)
by which roles (Whom)? The Why aspect identi-
fies four sources for process changes: the external
world, an organisation, a project environment,
and individuals. The framework described in this
chapter can be mapped to the individual (indi-
vidual level), project environment (group and team

level), and organisation (project level). Changes
in the process support will affect the processes at
all levels in our framework, while modifications
of the production process (the way the software is
developed) would typically be mapped to the team
level and below. Modifications of the metaprocess
(changes and evolvement of the process model)
would typically be mapped into the project level.
The taxonomy described in Nguyen and Conradi
(1994) is useful for analysing process changes at
all four levels in our framework.

prOceSS SuppOrt in Different
leVelS in A SOftWAre
DeVelOpment OrgAniSAtiOn

This section describes issues that must be con-
sidered when planning the process support for
large software projects being organised in groups
and teams (typically 20 or more people). In such
software development organisations, the process

Figure 1. Overview of process support in different levels

2364

Differentiated Process Support for Large Software Projects

support required is very dependent on where
you are in the hierarchy in the organisation. For
example, the software process support needs for
an individual developer is totally different from
the needs of a project manager.

Our framework as detailed below, describes
the software process support from four perspec-
tives based on the organisational level, as shown
in Figure 1. The first level in the framework
focuses on the individual process reflecting the
personal software process in the daily work. The
second level describes group processes where
two or more individual collaborate and interact.
The third level is concerned with management of
groups within a team. Finally, the fourth level is
concerned with project management where several
teams are involved. Typically for smaller projects,
the team and group levels will merge.

Table 1 shows the four levels of process sup-
port required in a big software organisation. For
each level, the model describes:

• Process elements: The required process
elements needed to model the process,

• Process relations: The required relation-
ships between process elements,

• Required external resources: The re-
sources used by the process-centred support
environment (PSE), and

• Required process support: The process
support required at a specific organisational
level.

The framework specifies interfaces that de-
scribe the input and output between levels. The
uppermost interface specifies the relationships
to the company and customer(s). Some activities
are carried out at all levels of an organisation,
for example, quality assurance and configuration
management.

The rest of this section will describe each level
of the framework in more detail.

individual process

The lowest process level in an organisation is the
individual process level focusing on the individual
tasks of a software developer. An example of a
role related to this level is a programmer with
typical tasks like reading documents, writing
code, writing documentation, debugging code,
compiling code, building code, and so forth.

Org. level Process elements Process relations Required external resources Required process support

Interface: Product, Experiences and knowledge, Resources, Project management rules and practice

Project
process

Teams, Team
processes, Mile-
stones

Team coordination,
Assigned team(s)

Project management tools and Artefacts,
Experience-/ knowledgebase, Estimation
models and tools, Resource tools

Project planning, Project man-
agement, Experience exchange,
Project estimation, Resource
management

Interface: Input and output artefacts, Team and resources assigned, Team process state

Team
process

Groups, Group
processes

Group coordination,
Assigned group(s)

Team management tools and Artefacts Team management

Interface: Input and output artefacts, Group assigned, Group process state

Group
process

Roles, Process
fragments, Coop-
erative activities

Cooperation and
coordination rules,
Assigned role(s)

Cooperative tools, Configuration
management and Artefacts

Coordination, Negotiation,
Collaboration

Interface: Input and output artefacts, Role assigned, Process fragment state

Individual
process

Activities Assigned activities Tools and Artefacts Process guidance,
automation, calendar

Table 1. Process support in an organisation

 2365

Differentiated Process Support for Large Software Projects

Generally, the process of an individual actor
typically consists of a set of activities related to
the roles that the actor plays (an actor can play
more than one role). It is very important that the
process support is adaptable and configurable,
making it possible for the actor to fit the work to
personal preferences. The required process sup-
port is very dependent on the experience level
of the individual actor. An inexperienced person
would typically need process guidance to show
the tasks to do next, what procedures to follow,
what tools to use, where to find documentation
and so forth. However, for an experienced person
that knows all the basics, extensive process guid-
ance would be a hindrance to work effectively.
For the latter, it would be more useful to provide
automation of repetitive tasks. Independently of
the experience level of the actors, the process
support should provide quick and easy access to
the required tools and artefacts. The activities
of the individual process should be integrated
with personal digital calendars to enable activity
states and deadlines to be accessible on personal
computers, personal data assistants (PDAs), and
mobile phones. This means that the execution
environment for the process support also must be
capable of communicating and utilising mobile
devices and networks.

The framework presented in Table 1 identified
activity as the main building block for individual
process models. Another approach could be to use
roles with responsibilities as the main building
block. However, the most common approach is
that individuals represent the daily work as a set
of activities. Also, the most used process tools

for individual processes also focus on activities,
like calendar software. In addition, activities
or tasks are the most common output of many
project-planning tools, where individuals are as-
signed a set of activities. This means that using
activities as process model elements makes it
easier to integrate with higher-level management
processes and tools. In addition, because people
are used to the representation of work as a set
of activities and tools that represent the work as
activities, it is also easier for the individuals to
tailor their own processes (reschedule activities,
etc.). In some cases, it can be useful to let an
actor model her or his own processes. In Wang
(2002), an experiment indicates that it is easier to
use activity-based than role-based modeling for
individual processes. This is especially true for
inexperienced process modelers.

The process relation with respect to indi-
vidual processes is the assign relation. A team
or project manager typically assigns activities to
an individual actor. In some cases, some activi-
ties must be carried out in a specific sequence,
putting constraints on how the work should be
carried out and how the individual process can
be modified. A representation of an individual
process is illustrated in Figure 2.

The process model in Figure 2 shows a col-
lection of activities. Some of the activities have
pre-order relations (the activities 1, 2, 3, 6, 7, and
8). The remaining activities have no constraints
and can be carried out regardless of the state of
the process.

In this chapter, we define a collection of re-
lated activities (e.g., activities related to the same

Figure 2. An individual process model

2366

Differentiated Process Support for Large Software Projects

phase in the process and the same project) to be a
process fragment (PF). The name process frag-
ment indicates that this collection of activities is
part of a larger process at a higher level of the
organisation. The process of assigning activities
to an individual actor in the organisation is carried
out by delegating one or more process fragments
to the actor. The state of the process fragment is
determined by looking at the state of the activi-
ties. A process fragment is completed when all
actvities in the fragment are completed.

The goal of the individual process is to produce
various artefacts like requirement and design
documents, source files, build files, test files and
so forth. To provide a sufficient software process
support at this level of the organisation, it is essen-
tial that the PSE can be integrated with production
tools such as office applications, integrated devel-
opment environments (IDEs), and other similar
tools. The process support environment should
make it easy to access all necessary tools and files,
and handle configuration management.

When the individual actor initialises her/his
process, the process models could either be fully
specified by, for example, a team or project man-
ager or be provided as a process template where
all necessary activities are defined. For the latter,
the actor must detail her/his own process to meet
her/his needs and preferences. During the process
enactment, the individual actor might also add,
change, or delete activities depending on how the
process proceeds (e.g., change of project plan,
changed priorities, or changed process goals).
Some PSEs might provide support for changing
the process automatically or semi-automatically.
It is important that the PSE is flexible enough to
managing instantiation of template process frag-
ments as well as allowing changes of the process
during process enactment (Grundy et al., 1998).

group process

The next level in the framework is the group
process level focusing at the cooperative aspects

of the software process. Traditionally, software
process modeling and enactment of software
processes have been focusing on ”forcing” and
guiding people to work according to a specified
model, where interaction between people has been
coordinated through a strictly defined control/data
flow. Such approaches are usually based on mod-
eling processes as activity-networks consisting
of subprocesses, activities, tasks, or operations.
Cooperative aspects of the software development
process have often been either eliminated or
ignored because it has been hard to model coop-
erative activities in existing systems, or there has
not been an interest for doing so. The software
development processes are also human-centred
processes. Cugola and Ghezzi (1998) state that
”Human-centred processes are characterised by
two crucial aspects that were largely ignored by
most software process research: They must sup-
port cooperation among people, and they must
be highly flexible.”

The cooperative process involves coordina-
tion of activities carried out by several actors or
roles, cooperative activities where two or more
persons must participate to complete the activity,
and coordination and negotiation of artefacts and
resources.

At this level, configuration management
(CM) is very important because two or more ac-
tors often will share the same resources (includ-
ing files). The sharing of resources might cause
conflicts where two or more actors would like
to update the same data at the same time. Thus,
the CM environment must be integrated with the
PSE to provide support for initiating negotiation
processes in case of conflicts regarding resources
(e.g., files), and support for synchronising output
artefacts from the process (Wang, 2000; Wang,
Larsen, Conradi, & Munch, 1998).

The group process defines the synchronisation
points for individual processes involving several
actors. These synchronisation points represent
parts of the software process where files or other
resources need to be exchanged and synchronised

 2367

Differentiated Process Support for Large Software Projects

(mainly coordination of artefact and process). In
addition, the group process involves cooperative
activities where two or more actors are involved.
An example of such activities can be distributed
brainstorming, electronic voting, collaborative
authoring, and conflict management. Coopera-
tive activities have very different characteristics
compared to individual activities. While the main
emphasis of the individual activities is on the
activities themselves, cooperative activities are
all about interaction and coordination between
roles. This means that the process support for
cooperative activities must provide an infrastruc-
ture to enable efficient interaction of the involved
roles and to enable flexible exchange of artefacts.
Note that most people working in a large software
project will be involved in both individual and
group processes.

The cooperative processes can be represented
in many ways. However, to represent cooperative
processes as a set of related activities, as described
in a previous section, does not make sense because
the focus is on interaction between roles. We
propose two alternative approaches to represent
cooperative processes at the group level.

Cooperative Software Agents

Cooperative software agents can be used to
represent actors involved in cooperative activi-
ties. The cooperative agents will act on behalf
of the involved actors to provide the required
infrastructure for collaboration (coordination,
negotiation, etc.). In Wang, Conradi, and Liu
(2000), a cooperative agent framework developed
to provide process support is presented. In this
framework, all actors have their own workspace
where they can interact and configure their agents.
Agents interact on behalf of various actors in agent
meeting places that represent neutral workspaces
where services and artefacts can be exchanged.
The collaborative aspects are supported through
coordination agents, negotiation agents, and
mediation agents. When software agents are

used, the agent environment usually provides a
set of ready-to-use agents that provide support
for various collaborative tasks and that can be
configured for specific user needs. If the required
functionality is not supported by the predefined
agents, new agents can be implemented using a
high-level API. A similar approach to support
group processes using software agents is described
in Glaser and Derniame (1998). This approach
uses agents to look for competence profiles that
match the tasks to be carried out.

Role-Based Process Environments

Role-based process environments can also be
used very efficiently to model and provide support
for cooperative activities, for example, like the
workflow system ProcessWeb (Yeomans, 1996).
In ProcessWeb, all involved in the process are
modeled as roles, and interactions are used to
provide communication channels between roles.
A role is defined by its actions (methods) and its
resources (attributes). Preconditions called “when
guards” are used to select action for enactment,
and they are expressed as if statements. Interac-
tions are unidirectional, asynchronously typed
communication channels provided through a
takeport and a giveport. A takeport receives data
or control flow from another role, and a giveport
sends data or control flow to another role. Simi-
lar approaches can be found in Fadlia, Said, and
Nora (2005). Most role-based process modeling
approaches are object-oriented and the modeling
process will be similar to programming in an ob-
ject-oriented programming language. This gives a
very flexible and expressive PML, but it requires
a certain level of expertise to handle.

A comparison of how well cooperative activi-
ties can be modeled and supported in software
agents, activity networks, and role-based process
environments is described in Wang (2002). The
results show that activity networks are not well
suited, but software agents and role-based process
environments are able to represent cooperative
activities very well.

2368

Differentiated Process Support for Large Software Projects

In the previous section, the term process frag-
ment was used to denote a collection of activities
that represents the process for an individual actor.
To model group processes, it is necessary to model
the relationships between the process fragments
of the individual actors as well as cooperative
activities and the roles involved. Cooperative
rules (Wang et al., 2000) can be used to define
the relationships between process fragments and
cooperative activities. The cooperative rules
specify conditions for cooperative activities that
should be initiated depending on the condition of
the individual process fragments. The cooperative
rules also specify how the individual processes
should proceed depending on the outcome of a
cooperative activity. Thus, the cooperative rules
specify a loose coupling between the individual
process fragments and the cooperative activities
enabling federation of different PSEs for indi-
vidual and group processes.

Figure 3 illustrates a group process model
consisting of roles, process fragments, a coopera-
tive activity, and cooperative rules (C1-C6). The
model describes how cooperative rules describe
the relationships between process fragments (in-
dividual processes) for each role and the coopera-
tive activity. The cooperative rules are modeled
as result-reaction pairs that specify the reaction

that should be taken based on the result (outcome)
of a cooperative activity or a process fragment.
Typical reactions can be to execute, regroup, halt,
change, or add a process fragment. In addition, a
reaction can initiate or change cooperative activi-
ties (e.g., initiate a specified agent) or change the
cooperative rules (reflective).

The cooperative rules in the process model in
Figure 3 specifies that Process fragment 1 and 3
must be completed before the cooperative activ-
ity will be executed (C1 and C2). Depending on
the outcome of the cooperative activity, either
Process fragment 1 and 3 will be re-enacted (C3
and C4), or Process fragment 2 and 4 will be
initiated (C5 and C6).

In addition to provide support for coopera-
tive activities in a PSE, it is also important for
the PSE to provide access to other collaborative
tools like chat-applications, collaborative editors,
Wikis, discussion forums and so forth. The output
of group processes is artefacts produced by the
group and the individuals.

team process

The team process level is related to middle man-
agement and specific roles in a software project
like a team manager. The team manager manages

Figure 3. Group process model

 2369

Differentiated Process Support for Large Software Projects

the development of one or more main parts of a
software system within the competence of the team
(e.g., security, business logic, etc.). Typical tasks
at this level can be planning of group processes,
assignment of group process to groups, tracking
progress of the team, monitoring resource usage,
and low-level quality assurance. The process
support required at this level is monitoring of the
ongoing processes, computation of resource usage,
prediction and estimation of progress and resource
usage, and creation and editing of process models.
It is also essential that the team process model
can integrate the group and individual process
models and provide a process environment that
will exchange artefacts and state changes between
the individual and group processes. The main dif-
ference between the coordination and cooperation
at the group and team levels is the granularity. At
the group level, the cooperation between group
members is tight and frequent. At the team level,
the groups are independent but the coordination
is still important to, for example, manage avail-
able resources and exchange project artefacts
(document, source code, programs, tools, etc.).
It is the team manager who is responsible for the
coordination of groups. Thus, it is important that
the process support provides the infrastructure
and tool to support and ease this job.

Figure 4 illustrates a process model at the team
level that consists of team process coordination
and assigning group processes in addition to
other team management activities. The group
processes are coordinated through defined in-
terfaces provided by the PSE (illustrated by the
small circles). Another alternative could be to
allow direct coordination between groups. This
approach might cause problems because two
levels of coordination must then take place at
the group level: coordination of individuals and
coordination of groups. Another advantage by
coordination groups through a team manager is
that it is easier to make correct decisions about
changes of the process, as this level gives a bet-
ter overview of the process and the state of the
different parts of the process.

The output from the team process level is the
artefacts from all groups as well as the state of
the team process.

project process

The project process level represents the software
development process at the highest abstraction
level, usually managed by a project manager. For
this role, the required process support involves
tools and procedures to create a project plan
(project process model) for the whole project,
establish and change teams and groups, assign
personnel to teams and groups, estimate project
resource usage, track progress of the whole project,
monitor resource usage, perform company qual-
ity assurance procedures, assess and improve the
development process, and so forth.

At this level it is not unusual to have external
subcontractors to carry out parts of the project
that require special expertise or expertise that is
not present in the company. From a process sup-
port point of view, it is also likely that external
subcontractors use their own process models and
support environment. Thus, it is essential for the
process-centred support environment to enable
federation of various process model languages and
tools to enable monitoring and process enactment
of the whole project.

Another essential activity at the project
level is to package artefacts, process models,
and knowledge and experiences from completed
projects that can be used as input when planning,

Figure 4. Team process model

2370

Differentiated Process Support for Large Software Projects

estimating, modeling, and managing new projects.
One method for harvesting experiences from
completed projects is to use postmortem analy-
sis methods (Birk, Dingsoyr, & Stalhane, 2002)
like Affinity Diagram (KJ diagrams) (Scupin,
1997) and Root Cause Analysis (Straker, 1995).
Affinity diagrams provide a method for carry-
ing out a structured brainstorming focusing on
successes and problems in the project. The root
cause analysis investigates one particular issue
found in the brainstorming process (positive or
negative) to discover the causes and subcauses
of the success or problem. In addition, reusable
code and documents need to be identified and
described with meta-information to enable search
on historical information. A knowledgebase or
experience-base is the most common tool to store
and manage project experiences and reusable
artefacts (Dingsøyr & Røyrvik, 2003).

Figure 5 illustrates a process model at the
project level. A project process consists of several
team processes. Some of these team processes
must be carried out in a specific order (e.g., Team
process 4, 2, 5, and 6). The pre-order constraints
are most often caused by one team process that
requires a finished product from another team
process before it can start. Note also that parts
of the process might be carried out by external

organisations. This might implicate that this
part of the process model will be expressed in a
different process modeling language compared
to the in-company models. Also, this part of
the process model might need integration with
another PSE.

The output of the project process is the final
software product along with experiences and
knowledge acquired during the project. The
completion of a project will also release resources
that can be used in new projects. The input to the
project process should also be experiences and
knowledge from previous projects. Further, a new
project is allocated resources like people, tools,
equipment, and money. Other important inputs
to the project process are company policies and
project management rules and practices that must
be followed. These constraints will influence the
way the process is organised and how the software
process will be modeled.

Organisational issues

This section has so far only briefly mentioned the
organisational issues that have to be taken into
consideration when planning multilevel process
support. This section will briefly look at organi-
sational issues that must be taken into account.

Figure 5. Project process model

 2371

Differentiated Process Support for Large Software Projects

At all levels of an organisation, people involved
play different roles related to the activities they are
involved in. What roles people play varies from
project to project. The role also depends on the
domain of the project, the company culture, and the
culture of the nationalities of the people employed
in the company. Kivisto (1999) describes the roles
involved in the development of client-server ap-
plications to be: application developer, business
object developer, database developer, end-user,
team leader, project manager, quality assurancer,
tester, and expert. Further, these roles are mapped
into a hierarchy where the project manager is
responsible for managing team leaders, and team
leaders are responsible for managing the rest of
the roles. This organisational decomposition fits
well with the two top levels and the bottom level
of our framework. For a specific project, the roles
involved must be described and people that fit
these roles must be found. An employee profile
database can be used for this purpose to find the
correct person for a specified role.

McGrath (1998) has proposed a software
process modeling framework that incorporates
the behavioural issues of software development.
The framework has three levels: the universe of
discourse (level 1), the conceptual model (level 2)
and the external models (level 3). The framework
includes behaviour aspects such as attitudes, opin-
ions, beliefs, knowledge, organisational power,
politics, culture, and structure. These important
issues are not covered in the approach presented
in this chapter.

creAtiOn Of A multileVel
prOceSS mODel

We propose two main approaches to create a
multilevel process model for a software project:
top-down and bottom-up. These two approaches
are presented in this section.

top-Down Approach

In the top-down approach, a project manager will
typically first create a high level process model
based on experiences from previous projects found
in the knowledgebase, and the present information
(constraints and resources) about the new project.
This process model should at least identify the
processes at the team process level. Further, the
model might contain representations of group
and individual processes at a coarse level. It is
important that the individual and group processes
are not constrained in such a way that they cannot
be tailored by the process participants carrying
out the processes. If the group and individual
processes are modeled by a project manager (at
the project level), then the process model should
be described by a process template rather than an
instantiated process model. If the project manager
has not modeled any group or individual processes,
the team manager must identify and model indi-
vidual and group processes. It is also essential that
the individual activities are not modeled in such
a way that they cannot be altered or tailored by
the process participants at the individual process
level. The team manager should include sufficient
content to the individual process level like activity
description, necessary documents and tools, and a
proposed sequence of the activities. In some cases
the sequence of activities must be frozen because
of coordination and synchronisation between
developers. The top-down approach is suitable
when the top management has a good idea of how
the software is being developed in the company
or the company management wants to enforce a
specific way of developing software motivated by
software improvement initiatives (e.g. CMM). For
the latter, it is important that the project manager
has a good dialogue with the people working in
the teams to avoid sabotage of the process. If a
process is enforced on the individual actors, they
need to be motivated and know why they have to

2372

Differentiated Process Support for Large Software Projects

do their work in a particular way (e.g., because
of quality or economical reasons).

Bottom-up Approach

The button-up approach aims to harvest the
process models by starting at the individual pro-
cesses and moving upwards in the hierarchy of
the software organisation. This means that the
team process models will be created based on the
underlying group and individual process models,
and that the project process model will be created
based on the underlying team process models. If
no processes or process models are described or
defined in the company, the bottom-up approach
can be applied to create a process model that rep-
resents how the organisation is currently working.
This process model can be used as a starting point
to improve the process by identifying parts of the
process that are cumbersome or uses unnecessary
resources. However, it is likely that the process
needs to be simplified to be able to model it and
provide process support for it.

What Approach to choose?

There is no clear answer if a software organisa-
tion should use the top-down or the bottom-up
approach. The choice depends on the strategic
goals of the organisation and on the working
routines used. If the current work processes are
causing several problems, a top-down approach
inspired by established software development
practices could be used to establish a new and
more efficient way of working. If the current
work processes are efficient and the employees
are pleased with the way they work, a bottom-up
approach should be chosen. Many organisations
are in between these two extremes. If this is the
case, a combination of top-down and bottom-up
can be used. To succeed in combining the two ap-
proaches, it is necessary for the different levels of
the organisation to interact often and synchronise
the process models to make sure they fit. This

chapter can be used as a checklist of what should
be considered at each level of the organisation.
In addition, the chapter identifies the interfaces
between the organisational levels, making it pos-
sible to provide one process model for the whole
project consisting of autonomous parts.

cOncluSiOn

This chapter has presented a framework that de-
scribes process support in four levels in a large
software development organisation.

The first level is the individual level where
the main focus is on the activities of individual
developers and the process support they require.
At this level it is important that the process sup-
port can be integrated with calendar applications
running on personal computers, personal data
assistants, or mobile phones. In addition, it is
essential that the process support provides easy
access to the required files and tools.

The second level is the group level where ac-
tors involved in the development process need to
collaborate, and coordinate and negotiate shared
resources. The process model at this level focuses
on cooperative activities, cooperative rules, and
the process fragments of the individual partici-
pants. The cooperative activities can be modeled
and supported using software cooperative agents
or role models. Because files are likely to be
shared at this level, configuration management is
essential. The configuration management system
should be integrated to the process-centred sup-
port environment to provide process support for
negotiation for shared resources.

The third level is the team level where the
team manager coordinates the various groups
in the team. The main focus at this level is team
management that involves assigning work to
groups, and provides the necessary infrastructure
and support for intergroup coordination.

The forth level is the project level where the
project manager initiates, manages, and finalises

 2373

Differentiated Process Support for Large Software Projects

projects. At the end of a project, it is important
that experiences, knowledge and reusable artefacts
are packaged in a knowledgebase for later usage.
In the initialisation phase of a new project, the
knowledgebase plays a vital role when making re-
source estimates, modeling the process, assigning
resources, and finding the reusable software com-
ponents. It is also important at this level to make
a heterogeneous PSE able to interact with PSEs
in external organisations, as some team processes
might be carried out by external resources. Finally,
support for monitoring the process consisting of
several teams that also might be external to the
company is essential.

The main contribution of this chapter is a de-
scription of the process model elements required
in a process model at each level of a software
development organisation, and a description and
discussion about the required process support at
these levels.

future reSeArcH DirectiOnS

Professional industrial software development
organisations are always looking for ways to
improve their development and project processes.
One way of improving the software process is to
provide the appropriate support for the process at
different levels of the organisation. Most research
within software process modeling assumes soft-
ware development made by one company with a
stable organisation and where the requirements
are stable. This is not always the case.

The success of large open source projects
have made open source development practices
interesting to also apply within larger software
organisations that perform global software de-
velopment.

The ITEA COSI project (Codevelopment us-
ing inner & Open source in Software Intensive
products, http://itea-cosi.org/) has observed a shift
in software development, to more cooperation,
new coalitions, and more collaboration with open

source communities. These forms of network-
enabled collaborations create new challenges for
software developers (Lacotte, 2004). These new
forms of development make the normal develop-
ment processes less scalable and flexible because
more and more of the software is harvested through
reuse of internal components, through COTS, or
through open source projects. In addition, a lot
of the actual development efforts are outsourced,
making it harder to ensure quality, productivity,
and control of the software project(s).

The percentage of code actually produced
locally in an organisation is decreasing, while
the complexity and size of the products are still
increasing. Large software companies like IBM
and Sun Microsystems have made parts of their
product portfolio as open source, creating prece-
dence for how to make and publish software.

Participants in open source projects are in-
creasingly employed by industrial companies.
Many of these participants are very flexible with
respect to how software is developed, and will
often adapt the development practices used in
the open source project.

When considering software process support
for open source processes, the most important
issues that must be considered are collaboration
and coordination between many distributed de-
velopers and flexible and open PSEs that can be
integrated with a large set of tools.

Agile methods (Abrahamsson, Warsta, Si-
ponen, & Ronkainen, 2003) have gained much
attention in recent years by moving the attention
from documents and specifications to customer
participation and incremental and iterative de-
velopment of the products. Smaller projects are
more likely to adopt agile methods, while large
projects still will employ project management
practices that are more heavyweight. To use agile
methods in larger organisation, the main problem
is to manage multiple cooperating teams that fa-
cilitate various overlapping, informal cross-team
communication. Kahkonen (2004) describes an
approach for introducing agile methods in large

2374

Differentiated Process Support for Large Software Projects

organisations. This approach was tested by Nokia
with success, where the informal cross-team
communication problem was solved by using
communities of practices theory.

Our proposed framework is embracing these
new trends by differentiating the process model
and support for different levels of organisation.

referenceS

Abrahamsson, P., Warsta , J., Siponen , M. T., &
Ronkainen, J. (2003), New directions on agile
methods: A comparative analysis. In Proceedings
of the 25th International Conference on Software
Engineering (ICSE’03), Portland, OR, USA.

Beck, K. (1999). Extreme programming ex-
plained: Embrace change. Reading, MA: Ad-
dison-Wesley.

Bendraou, R., Gervais, M.-P., & Blanc, X. (2006).
UML4SPM: An executable software process mod-
eling language providing high-level abstracts. In
Proceedings of the10th IEEE International Enter-
prise Distributed Object Computing Conference
(EDOC’06), Hong Kong, China.

Birk, A., Dingsøyr, T., & Stålhane, T. (2002, May-
June). Postmortem: Never leave a project without
it. IEEE Software, 19(3), 43-45.

Boehm , B. W. (1988, May). A spiral model of
software development and enhancement. IEEE
Computer.

Brooks, F. P. (1986). No silver bullet: Essence and
accidents of software engineering. In Proceedings
of Information Processing’86. North-Holland,
IFIP.

Conradi, R., Fuggetta, A., & Jaccheri, M. L.
(1998). Six theses on software process research.
In Proceedings of Software Process Technology:
6th European Workshop (EWSPT’98), Weybridge.
Springer-Verlag. LNCS 1487.

Cugola, G., & Ghezzi, C. (1998). Software pro-
cesses: A retrospective and a path to the future.
SOFTWARE PROCESS—Improvement and
Practice, 4(2), 101-123.

Derniame, J.-C., Baba, B.A., & Wastell, D. (Eds.).
(1998). Software process: Principles, methodol-
ogy, and technology. Berlin: Springer-Verlag
LNCS 1500.

Dingsøyr, T., & Røyrvik, E. (2003). An empirical
study of an informal knowledge repository in a
medium-sized software consulting company. In
Proceedings of the 25th International Conference
on Software Engineering (ICSE’03), Portland,
OR, USA.

Fadila, A., Said, G., & Nora, B. (2005). Software
process modeling using role and coordination.
Journal of Computer Science, 2(4).

Finkelstein , A. (Ed.). (2000). The future of soft-
ware engineering. In Proceedings of the 22nd
International Conference on Software Engineer-
ing (ICSE’2000), Limerick, Ireland.

Fuggetta, A. (2000). Software process: A road-
map. In Proceedings of the Conference on the
Future of Software Engineering (ICSE 2000)
(pp. 25-34). Limerick, Ireland.

Glaser, N., & Derniame , J.-C. (1998). Software
agents: Process models and user profiles in dis-
tributed software development. In Proceedings
of the 7th Workshop on Enabling Technologies
Infrastructure for Collaborative Enterprises
(WETICE’98), Palo Alto, CA, USA.

Grundy, J. C., Apperley, M. D., Hosking, J. G., &
Mugridge, W. B. (1998, September-October). A
decentralized architecture for software process
modeling and enactment. IEEE Internet Comput-
ing, 2(5), 53-62.

Høydalsvik, G. M. (1997). Experiences in soft-
ware process modeling and enactment. Doctoral
thesis, Department of Computer and Information

 2375

Differentiated Process Support for Large Software Projects

Science, Norwegian University of Science and
Technology, Trondheim, Norway.

Humphrey, W. S. (1997). Introduction to the per-
sonal software process. Information Technology
for European Advancement. Addison-Wesley.

Kahkonen, T. (2004). Agile methods for large
organizations—building communities of practice.
Agile Development Conference (ADC’04), Salt
Lake City, Utah, USA.

Kivisto, K. (1999). Roles of developers as part of
a software process model. In Proceedings of the
32nd Hawaii International Conference on System
Sciences.

Lacotte, J.-P. (2004). ITEA report on open source
software (Tech. Rep.). ITEA -

Lehman, M. M., & Belady, L. A. (1985). Pro-
gram evolution—processes of software change.
Academic Press.

McGrath, G. M. (1998, January). Behavioural is-
sues in software engineering process modelling:
A multi-paradigm approach. Hawaii International
Conference on System Sciences (HICSS).

Naur, P., & Randell, B. (Eds.). (1969). Software
engineering. In Proceedings of the NATO Confer-
ence in Garmisch-Partenkirchen, 1968. NATO
Science Committee, Scientific Affairs Division,
NATO, Brussels.

Nguyen, M. N., & Conradi, R. (1994). Classifica-
tion of meta-processes and their models. In Pro-
ceedings of the Third International Conference
on Software Process, Washington, USA.

Nitto, E. D., & Fuggetta, A. (Eds.). (1998). Pro-
cess technology. Journal on Automated Software
Engineering, 5(Special Issue).

OMG. (2002). Software process engineering
metamodel specification. Formal/2002-11-14.

Royce, W. W. (1987). Managing the develop-
ment of large software systems: Concept and

techniques. In Proceedings of WesCon, 1970.
Reprinted in Proceedings of the International
Conference on Software Engineering. IEEE
Computer Society Press.

Scupin, R. (1997). The KJ method: A technique for
analyzing data derived from Japanese ethnology.
Human Organization, 56(2), 33-237.

Sommerville, I. (1995). Software engineering.
Addison-Wesley. ISBN 0-2014-2765-6.

Straker, D. (1995). A toolbook for quality im-
provement and problem solving. Prentice Hall
International (UK).

Wang, A. I. (2000). Using software agents to sup-
port evolution of distributed workflow models. In
Proceedings of the International ICSC Symposium
on Interactive and Collaborative Computing
(ICC’2000) at International ICSC Congress on
Intelligent Systems and Applications (ISA’2000),
Wollongong, Australia.

Wang, A. I. (2001). Using a mobile, agent-based
environment to support cooperative software pro-
cesses. Doctoral thesis, Norwegian University of
Science and Technology. ISBN 82-7984-172-5.

Wang, A. I. (2002). An evaluation of a cooperative
process support environment. In Proceedings of
the 6th IASTED International Conference on Soft-
ware Engineering and Applications (SEA2002),
Cambridge, MA, USA.

Wang , A. I., Conradi, R., & Liu, C. (2000).
Integrating workflow with interacting agents
to support cooperative software engineering.
In Proceedings of the 4th IASTED International
Conference on Software Engineering and Appli-
cations (SEA’2000), Las Vegas, NV, USA.

Wang, A. I., Larsen, J.-O., Conradi, R., & Munch,
B. (1998). Improving cooperation support in the
EPOS CM System. In Proceedings of the 6th Euro-
pean Workshop on Software Process Technology
(EWSPT’98), Weybridge (London), UK.

2376

Differentiated Process Support for Large Software Projects

WfMC. (1999, February). Workflow management
coalition—terminology & glossary (Tech. Rep.
No. WFMC-TC-1011). The Workflow Manage-
ment Coalition. Retrieved March 6, 2008, from
http://www.wfmc.org/standards/docs/TC1011_
term_glossary_v3.pdf

Yeomans, B. (1996). Enhancing the World Wide
Web (Tech. Rep.). Computer Science Department,
University of Manchester.

ADDitiOnAl reADing

The following is a list of references recommended
for further reading.

Ambriola, V., Conradi, R., & Fuggetta, A. (1997,
July). Assessing process-centered software
engineering environments. ACM Transactions
on Software Engineering and Methodology
(TOSEM), 6(3), 283-328.

Andersson, C., Karlsson, L., Nedstam, J., Höst,
M., & Nilsson, B. (2002). Understanding software
processes through system dynamics simulation:
A case study. In Proceedings of the 9th IEEE
Conference and Workshop on the Engineering of
Computer-based Systems, Lund, SWEDEN.

Barros, M. O., Werner, C. M. L., & Travassos, G.
H. (2000, October). Using process modeling and
dynamic simulation to support software process
quality management. XIV Simpósio Brasileiro de
Engenharia de Software, Workshop de Qualidade
de Software, João Pessoa, Brazil.

Chatters, B. W., Lehman, M. M., Ramil, J. F.,
& Wernick, P. (1999, June 28-30). Modelling a
software evolution process. In Proceedings of
the Software Process Modelling and Simulation
Workshop, Silver Falls, OR.

Collofello, J., Yang, Z., Merrill, D., Rus, I., &
Tvedt, J. D. (1996). Modeling software testing
processes. In Proceedings of the International
Phoenix Conference on Computers and Com-
munications (IPCCC’96), 1996.

Dean, D. L. , Lee, J. D. , Orwig, R. E., & Vogel,
D. R. (1994, December). Technological support for
group process modelling. Journal of Management
Information Systems, 11(3), 43-63.

Deephouse, C., Mukhopadhyay, T., Goldenson, D.
R., & Kellner, M. I. (1995, December). Software
processes and project performance. Journal of
Management Information Systems, 12(3), 187-
205.

Delen, D., Dalal, N. P., & Benjamin, P. C. (2005,
April). Integrated modeling: The key to holistic
understanding of the enterprise. Communications
of the ACM, 48(4), 107-112.

Estublier, J., Amiour, M., & Dami, S. (1999,
March). Building a federation of process support
systems. In ACM SIGSOFT Software Engineering
Notes, 24(2), Proceedings of the International Joint
Conference on Work Activities Coordination and
Collaboration WACC ‘99.

Gary, K., Lindquist, T., Koehnemann, H., &
Sauer, L. (1997, November 16-19). Automated
process support for organizational and personal
processes. In Proceedings of the International
ACM SIGGROUP Conference on Supporting
Group Work: The Integration Challenge, (pp.
221-230), Phoenix, AZ, USA.

Glass, R. (1999, February). The realities of soft-
ware technology payoffs. Communications of the
ACM, 42(2), 74-79.

Gopal, A., Mukhopadhyay, T., & Krishnan, M. S.
(2002, April). The role of software processes and
communication in offshore software development.
Communications of the ACM, 45(4).

Gruhn, V., & Wolf, S. (1995). Software process
improvement by business process orientation.
Software Process—improvement and Practice
(Pilot Issue).

Kahen, G., Lehman, M. M., & Ramil, J. F. (1999,
September 3-4). Empirical studies of the global
software process—the impact of feedback. In

 2377

Differentiated Process Support for Large Software Projects

Proceedings of the Workshop on Empirical Stud-
ies of Software Maintenance (WESS-99), Keble
College, Oxford, UK.

Keating, E., Oliva, R., Repenning, N., Rockart, S.,
& Sterman, J. (1999). Overcoming the improve-
ment paradox. European Management Journal,
17(2), 120-134.

Kellner, M. I., Madachy, R. J., & Raffo, D. M.
(1999, April 15). Software process modeling and
simulation: Why, what, how. Journal of Systems
and Software, 46(2/3), 91-105.

Kueng, P., & Kawalek, P. (1997, August). Process
models: A help or a burden? In Paper presented
at the Association for Information Systems 1997
Americas Conference, Indianapolis, IN.

Lehman, M. M. (1997, April 14-15). Feedback in
the software process. In Proceedings of the Soft-
ware Engineering Association Easter Workshop,
SEA’97, ICSTM, (pp. 43-49).

Lehman, M. M. (1998, April 20). Feedback,
evolution and software technology—the human
dimension. In Proceedings of the ICSE Workshop
on Human Dimension in Successful Software
Development, Kyoto, Japan.

Lin, C. Y., & Levary, R. R. (1989). Computer-
aided software development process design.
IEEE Transactions on Software Engineering,
15(9), 1025-1037.

Madachy, R., & Tarbet, D. (2000). Case studies in
software process modeling with system dynamics.
Software Process: Improvement and Practice,
5(2-3), 133-146.

Martin, R. H., & Raffo, D. M. (2000). A model of
the software development process using both con-
tinuous and discrete models. Software Process:
Improvement and Practice, 5(2-3), 147-157.

McGrath, G. M. (1996, August 19-21). Repre-
senting organisation and management theories
in software engineering process modelling. In

Proceedings of the IASTED Conference, Hono-
lulu, HI.

McGrath, G. M. (1997, September 28-October
2). A process modelling framework: Capturing
key aspects of organisational behaviour. In Pro-
ceedings of theAustralian Software Engineering
Conference (ASWEC ‘97), Sydney, Australia.

McGrath, G. M., Campbell, B., More, E., & Of-
fen, R. J. (1999). Intra-organisational collabora-
tion in a complex, rapidly-changing information
services company: A field study. In Proceedings
of ISDSS’99, Melbourne, Pacific Mirror Image,
Melbourne, Australia, ISBN 0732620740.

Muehlen, M. Z. (2004, July-October). Organiza-
tional management in workflow applications—is-
sues and perspectives. Information Technology
and Management, 5(3-4), 271-291.

Mishali, O., & Katz, S. (2006, March 20-24). Using
aspects to support the software process: XP over
Eclipse. In Proceedings of the 5th International
Conference on Aspect-oriented Software Devel-
opment, Bonn, Germany.

Oliveira, T. C., Alencar, P. S. C., Filho, I. M., de
Lucena, C. J. P., & Cowan, D. D. (2004, March).
Software process representation and analysis for
framework instantiation. IEEE Transactions on
Software Engineering, 30(3), 145-159.

Paech, B., Dorr, J., & Koehler, M. (2005, Janu-
ary). Improving requirements engineering com-
munication in multiproject environments. IEEE
Software, 22(1), 40-47.

Raffo, D. M., Harrison, W., & Vandeville, J. (2000).
Coordinating models and metrics to manage soft-
ware projects. Software Process: Improvement
and Practice, 5(2-3), 159-168.

Richardson, G. P., & Andersen, D. (1995). Team-
work in group model building. System Dynamics
Review, 11(2), 113-137.

Russell, N., van der Aalst, W. M. P., ter Hofstede,
A. H. M., & Wohed, P. (2006, January 16-19). On

2378

Differentiated Process Support for Large Software Projects

the suitability of UML 2.0 activity diagrams for
business process modelling. In Proceedings of
the 3rd Asia-Pacific Conference on Conceptual
Modelling, (pp. 95-104), Hobart, Australia.

Sawyer, S., & Guinan, P. J. (1998). Software
development: Processes and performance. IBM
Systems Journal, 37(4).

Scacchi, W. (1999, June 27-29). Understand-
ing software process redesign using modeling,
analysis and simulation. In Proceedings of the
ProSim’99 Workshop on Software Process Simu-
lation and Modeling, Silver Springs, OR.

Sharp, A., & McDermott, P. (2001). Workflow
modeling: Tools for process improvement and
application development. Norwood, MA: Artech
House.

Stelzer, D., & Mellis, W. (1998). Success factors
of organizational change in software process
improvement. Software Process: Improvement
and Practice, 4, 227-250.

Verlage, M. (1996, October 16-18). About views
for modeling software processes in a role-spe-
cific manner. In Joint Proceedings of the Second
International Software Architecture Workshop
(ISAW-2) and International Workshop on Mul-
tiple Perspectives in Software Development
(Viewpoints ‘96) on SIGSOFT ‘96 Workshops,
(pp. 280-284), San Francisco, CA, USA.

Wang, Y., & Bryant, A. (2002, December). Pro-
cess-based software engineering: Building the
infrastructures. Annals of Software Engineer-
ing, 14(1-4). J. C. Baltzer AG, Science Publish-
ers.

This work was previously published in Designing Software-Intensive Systems: Methods and Principles, edited by P. Tiako, pp.
1-20, copyright 2009 by Information Science Reference (an imprint of IGI Global).

 2379

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6.4
Computer-Aided Management

of Software Development in
Small Companies

Lukáš Pichl
University of Aizu, Japan

Takuya Yamano
International Christian University, Japan

ABStrAct

This chapter focuses on the principles of man-
agement in software development projects and
optimization tools for managerial decision mak-
ing, especially in the environment of small IT
companies. The management of software projects
is specific by high requirements on qualified labor
force, large importance of the human capital, low
level of fixed costs, and highly fluctuating product
demand. This yields a dynamic combinatorial
problem for the management involving consider-
able risk factors. The key aspects addressed here
are structuring of the project team, cost estimation,
and error avoidance in the implementation phase
of the project. Special emphasis is put on human
resource and fault-tolerant management of the
project cycle. Discrete faults and continuous sto-
chastic inputs are used to test and evaluate project

variants. We have developed an online simulation
tool for this purpose that facilitates findings of op-
timal resource structures and creation of optimal
network from task relations. General principles
of software project management are presented
along with the analysis of the software project
simulation tool in a brief case study.

IntroductIon

The history of modern project management in
general dates back to the 5th decade of the last
century in connection with large military projects.
About 1 or 2 decades ago, a close attention started
to be paid to risk assessment and coordination of
mammoth software projects (MS Windows de-
velopment, etc.). Although it is fully recognized
that the way of management of software projects

2380

Computer-Aided Management of Software Development in Small Companies

often matters more than financial resources (and
a frequent success of small software companies
sold at astronomic profits to giant SW development
companies demonstrates this point), relatively
little is known what are the crucial factors for
success. A project can be defined as a temporary
endeavor undertaken to create a unique product
or service (i.e., in the present case, software) or
another product by using software at a large scale.
It is noteworthy that a complexity limit was em-
pirically discovered in the software development,
which is as low as about 10 software engineers
working on one project. Therefore, an appropriate
management is crucial since most of the software
projects exceed this number.

Software development and its successful man-
agement is a key issue for a number of small IT
companies and, with increasing importance, also
for their clients. The project management (PM)
common fundamentals are integration, scope,
time, cost, quality, human resource, communica-
tions, risk, procurement, delivery and service to
customers. Software project management (SPM)
is, in addition, characterized by unique success
factors derived from the unique components of
IT projects. There are specific requirements on
the applicability of standards, fault-tolerance, risk
management, project scheduling, code develop-
ment and testing techniques. Further important
issues are selection and use of third-party software
and also the intellectual property rights.

It has been noted in recent surveys that
most software projects suffer from inadequate
management techniques that ignore the unique
characteristics of this field (cf. Northwest Center
for Emerging Technologies, 1999; US Govern-
ment Accounting Office, 1979, 2000). The most
cited reasons are poor strategic management and
underestimation of human factors in particular.
It is known that about one half of software proj-
ects was delayed in completion and one third
was over budgeted in 1997-1999, similar to the
first study conducted in 1979 on this problem
by the US Government Accounting Office. This

remarkably persistent problem has been gaining
increasing attention in scientific literatures for
about a decade (cf. Abdel-Hamid & Madnick
1991; Humprey & Kellner, 1989). Since then,
books and practice guides (e.g. Bennatan, 1995;
Jalote, 2002) have appeared with different levels
of rigor, but the number of detailed investigations
in scientific journals has been rather limited (cf.
Drappa & Ludewig, 1999; Rodrigues & Bow-
ers, 1996). There is also a nuance to be noted:
Traditional PM aims to solve certain types of
problems, while SPM is rather a process than a
solution of a problem, and therefore it requires a
different approach.

Major authorities among the professional or-
ganizations in the field of SPM are Project Man-
agement Institute (PMI), Software Engineering
Institute (SEI) and IEEE Software Engineering
Group. These recognize the following important
factors for a successful project:

• Leadership,
• Communication,
• Negotiating,
• Problem-solving methodology,
• Information sharing and training, and
• Relevant technical expertise.

Coordination and cooperation are the key
factors; this is within the responsibility of the
administrative hierarchy that typically includes
a coordinator, assistant project manager, program
manager, and a software development coordinator.
Each project typically involves a team, targets
certain customers and relies on contractors, and
must be backed by sponsors, executives, and
functional managers.

The first principle of project management
is that there exists no universal principle at all.
Attention has to be paid to project size, project
type, culture of the project team and other factors.
Software projects, in addition, require a special
emphasis on the communication of technical
experts in order to guarantee code portability

 2381

Computer-Aided Management of Software Development in Small Companies

and program compatibility. Thus, one may raise
a question whether a rigorous methodology for
SPM is, in fact, possible. In this chapter, we (a)
give an overview of managerial approaches in the
field, and (b) address the gap in the standard SPM
theory and practice, which is the lack of portable
and customizable computer simulations for accu-
rate estimation of project costs. In the early (but
crucial) project phase when decisions are made so
as to whether start a particular software project
or not, such estimations are typically very crude.
Such strategic decision making then inevitably
leaves a space for cost increases, software delivery
delays and even project failures.

Software companies are complex environ-
ments in which managers are faced with the
decision-making problem involving uncertainty.
Because of the complexity in the interactions
among project tasks, resources, and people,
estimates using average values of the project fac-
tors are very crude, and the errors are typically
in the orders of 25%-100 % or even more. It is
well known in the queuing theory that average
output of a system with stochastic inputs can be
substantially different from system output based
only on average inputs. Many software projects at
present disregard this point, or attempt to address
it by using the best, mean, and the worst scenario,
which still ignores the queuing structure of the
project components (two blocks in a queue, each
with the mean scenario, can produce a result
even beyond the average worst-case scenario,
for instance when a peak congestion in the queue
results in a hardware damage or suspension of
software service). Therefore even the overall
worst-case estimates may be too optimistic and
vice versa.

A deterministic algorithm can hardly be ap-
plied to estimate project costs, but the cost of
false decision is typically enormous. Simulation
techniques form a bridge to overcome this problem
and to find the probabilistic optimum. In this work,
we deal with a decision-making problem in the
context of the software project management using

three levels of detail, namely, (a) a decision whether
to accept or refuse a new contract for a specific
software project (complete computer simulation
screening), (b) how to organize the project team
(human aspect), and (c) what measures to take in
order to optimize the cost of an accepted project
with a given project team (resource optimization).
Because of the importance of human factor in
project management, we have decided to develop
and provide a customizable, object-oriented, and
free software project simulation environment
that facilitates duration and cost estimates and
supports decision making. Such a tool is consider
more applicable than a fully deterministic opti-
mization program with an implicit hard-encoded
“general” project topology, however complex its
parameterization might be.

The chapter is organized as follows. In Section
2, we review the managerial recommendations
for project management, focusing on the specific
features of software projects. Then we proceed to
computer simulation of software projects in Sec-
tion 3, discussing general design issues along with
their particular implementation in the presently
developed object-oriented simulation tool. Sec-
tion 4 gives the simulation results for a selected
case study along with discussion of their broader
implications. Concluding remarks close this
chapter in Section 5. We also recognize that the
SPM area is, in fact, very appropriate for agent-
based simulations, although it has been largely
neglected in AI applications thus far.

mAnAgement Of SOftWAre
prOJect

A successful project strategy is a balanced blend
of development fundamentals, risk management,
schedule-control, and mistake-avoidance tech-
niques, adjusted to a certain trade-off in product
quality, project cost and delivery schedule. One of
important specific features in software projects is
the huge range in productivity and ability of human

2382

Computer-Aided Management of Software Development in Small Companies

resources. Therefore selection, organization, and
motivation of the team are the key factors of SPM
success or failure. In this chapter, we elaborate
especially on these factors. Considering what has
been outlined above, it is unlikely if not impos-
sible to find a generally applicable SPM strategy.
Instead, we focus on the development of a soft-
ware simulation tool that helps to select project
teams, estimate the project risks in a variety of
possible scenarios, and to identify possible failures
before these really occur. Here we develop a SW
project simulation tool that is customizable for
a particular product, human resource structure
and development environment. The source code
is open and the tool is free to download (Online
simulation application, 2005). Let us note that
there exist commercial PM tools too, e.g. MS
Project 2000. Their inbuilt computer simulation
features are often limited. Since no two projects
are really the same, the proprietary source code
of the commercial products which does not allow
any modification means also a serious limitation
to their applicability.

Principal functions of a general project man-
agement can be listed as (Northwest Center for
Emerging Technologies, 1999):

• Define scope of project
• Identify stakeholders, decision-makers, and

escalation procedures
• Develop detailed task list (work breakdown

structures)
• Estimate time requirements
• Develop initial project management flow

chart
• Identify required resources and budget
• Evaluate project requirements
• Identify and evaluate risks
• Prepare contingency plan
• Identify interdependencies
• Identify and track critical milestones
• Start the project and track its progress
• Participate in project phase review
• Secure resources as needed
• Manage the change control process

• Report project status
• Finalization or quitting of project

In order to plan or monitor a certain project,
the basic useful tools are project flow charts and
network queuing diagrams for interdependent
operations (visualization of tasks and their rela-
tions). Any project design should start from the
final product. Therefore it is important to asses
the product characteristics, size, requirements
and methods of management. Project planning
then means determination of available resources,
selection of life-cycle model, and the design of
a development strategy. Once the project starts,
it needs to be tracked for costs, schedule and
human efforts. When discrepancies between the
plan and real state arise, a portfolio of appropriate
measures should be available to handle such case.
Each project can be classified into certain phases
(i.e., milestones in the project tracking and project
management). In case of SPM, these are:

1. Software concept;
2. Resource requirements;
3. Architecture development;
4. Detailed design;
5. Implementation, programming, and debug-

ging;
6. System integration, testing, and quality as-

surance; and
7. Product deployment, distribution, and main-

tenance.

Interestingly, major mistakes in failed software
project (identified ex post) appear to be very alike.
It is therefore crucial to identify their emergence
based on certain fingerprint patterns and eliminate
them as early as possible. To that aim, one can used
the so-called McConnell’s Anti-Patterns, related
to failures in human resource, process, product,
and the technology. For instance, these are the
customer-developer friction (the programmer
“knows better” what the customer “should” need),
“politics over substance” (e.g., prestige competi-

 2383

Computer-Aided Management of Software Development in Small Companies

tion on international level in science policy and
R&D), wishful thinking (withholding cooperation
quietly by sticking to formal procedures), or the
lack of money (“priority shift” in the middle of the
project) rank among the most serious issues.

Process related mistakes include unrealistic
schedules (following “optimistic variants”), con-
tractor failure (resources in computer engineering
are often stochastic), insufficient planning for
phases under time pressure (e.g., complications

Figure 1. Work breakdown structure (WBS) for a sample project

2384

Computer-Aided Management of Software Development in Small Companies

arising in debugging of “nasty codes”—applies
to the author of the code, the more to someone
else). Product-related mistakes typically include
lack of customers (e.g., “products for researchers
in bioinformatics or nanoscience” or certain “soft-
ware products for the elderly”). Technology related
mistakes often include unrealistic extrapolations
of available resources (“counting on the Morse
law”, or admiration to new platforms “preference
over a CPU maker without caring for compiler
availability”).

The important issues to check are: What will
be the total cost? How long will it last? How
many developers does it need? What resources are
required? What can go wrong? And finally, the
most important question for financial managers is
the rentability, measured in the net present value
(NPV), return on investment (ROI) or payback
period. Since the required rentability can be
viewed as an associated fixed cost, we do not need
to consider it explicitly in what follows.

Before proceeding to the design and simulation
issues in the next section, we would like to note
that there exist various movements attempting to
change the landscape of software development
completely. One of these is eXtreme Programming
(XP), a lightweight methodology for small teams,
a highly iterative approach in which programmers
closely interact with application users about the
SW test releases in development (originally for
small release applications based on certain HW
or software architecture spikes). In a cycle of
test scenario, user stories (bug reports, feedback
from on-site customers) and incremental release
version planning, the code development can be
enormously accelerated. The reverse side of this
methodology is high requirements on coders skills
and enthusiasm for the project. In this respect,
there is also an important problem of measur-
ing the programmer’s output and determining
appropriate rewards. One measure frequently
applied is the number of lines of code (LOC)
together with the number of program function
points. This is certainly an informative criterion

but a care should be taken when to use LOC as
a motivation and remuneration basis. LOC may
work well in case of standard large-size projects
but is certainly inappropriate in case of XP and
other lightweight SW development methods.

In the next section, we develop a general
purpose simulation tool for software projects,
focusing on the project structure, planning and
stochastic resources (including stochastic fail-
ures).

cOmputer SimulAtiOn Of
SOftWAre prOJect

In order to facilitate the software development
process in a specific way, we have developed a
java-based online application with Graphical User
Interface (GUI), which allows the user to define
tasks, properties, resources, and team members
including various attributes. The structure closely
follows the principles of SPM. Java was selected
because it is an object-oriented programming
language with an easily implementable and well-
established Web interface. Structure of project
activities is outlined in Figure 1. The screen
shots of the simulation environment are shown
in Figure 2, starting from the front page entitled
“Decision Making Simulation” in the right upper
corner of the figure.

In the application program, there are four types
of data: project data, task data, human resource
data, and team data. These are all subject to opti-
mization. The stochastic environment is simulated
in two modes: (a) binary process that occurs with
a given probability per unit of time (typically a
false outcome of a certain task, for example, we set
higher probability for coding mistakes on Monday
mornings and Friday nights), and (b) probability
distribution of some input data with a predefined
range of values (data bandwidth available in exter-
nal network, supercomputer CPU time available
for rent, etc.). Both the discrete probabilities and
continuous probability densities can be derived

 2385

Computer-Aided Management of Software Development in Small Companies

Figure 2. Application interface includes project, team, member, task, resource and worker editors, and
displays all data

2386

Computer-Aided Management of Software Development in Small Companies

from histograms of real systems and input into
the model by specifically tailored non-uniform
random number generators. In particular, this
procedure is as follows:

• Divide the range of the stochastic factor,
<x1, x2>, into representative bins {bi}.

• Create a statistical record of the stochastic
factor over a suitable period of time.

• Generate probability for each bin pi = Ni /N,
where Ni is the number of observations fall-
ing in bin bi and is the total.

• Tailor a custom random number generator
by using the following algorithm:

 ο Repeat
 ο Generate a uniform random number r

= x1 + (x2 – x1)×rnd()
 ο Generate a uniform check number c =

pm ×	rnd() (pm = maxi {pi}).
 ο Determine bin io (r) for the number r
 ο If return r (and exit).
 ο Until forever

Here stands for a uniform float random number
generator with values between 0 and 1 (a standard
function in the libraries of most programming
languages). Our simulation environment (cf. Fig-
ure 2) allows to set the relationship of tasks and
structure human resources in a flexible manner.
The task’s determinants are time, grade, deadline
and the queueing structure (standard and priority
queues). Human resource (worker) determinants
are skill, grade, and wage. Workers pick up tasks
from the queue based on custom project team
structure. Human resource is divided into four
grades. Any group can take a task, if the group
grade permits. Last is the project resource de-
terminants, such as CPU time required or office
supply items. Registered resources are acquired
and consumed by units of days and increase the
project cost. Cost of each resource is in principle
time dependent, therefore various cost pricing
schemes (FIFO, LIFO, opportunity costs) can be
included in a straightforward manner.

Data Structures in the Simulation

The particular data structures in any SPM tool
should derive from project resources and project
organization. In order to design the simula-
tion environment as general as possible, we do
not hard-encode the project structure. Instead,
several online editor forms allow to add project
components as needed and register their mutual
relations (Project, Team, Member and Task Editors
in Figure 2; also Resource Editor, not shown).

The present java application stores all simu-
lation data in a database (implemented with the
MySQL relational database management system).
The main database components are Member, Task,
Project and Resource. Member is determined by
name, identification number, wage or salary, and
performance measures (A, B, C and S). Task is
determined by identification, queuing schedule,
progress indicator, deadline, and difficulty grade.
Projects are distinguished by name, identification
number, budget limit, team available, task com-
position and the deadline. Resources are deter-
mined by identification, number of units required
by each project, unit cost, average daily supply,
distribution width, and identifications of calling
projects. Functional relations of the data during the
course of simulation are shown in Figures 1 and
2. The simulation program is executed in discrete
units by taking series of snapshots of the current
progress (project, task, worker), incrementing the
project immediate cost step by step. For the sake of
simplicity, we implemented two particular types
of random parameters: worker’s fault probability
pi and a continuous randomized resource x (e.g.
daily cash flow from

2()
22

1()
2

x

x e
µ

σρ
σ π

− −

= .

Generalization to a general histogram is
straightforward as discussed above.

 2387

Computer-Aided Management of Software Development in Small Companies

Application Data

In order to test the simulation environment, we
have adopted sample model data. The respective
Work Breakdown Structure (WBS) is shown in
Figure 1. WBS is a useful tool to estimate project
duration and workload of project participants. It is
a 1D hierarchical list of project work’s activities
which shows inclusive and sequential relations.
The 21 items listed in Figure 1 are the project
activities. The labels “A”, “B”, “C” and “S” in the
Figure show the lowest grade of the labor force
qualified to deal with them. More detailed WBS in
managerial applications may also distinguish the

managerial level (project, task) from the technical
level (subtask, work packages with definable end
results, effort level). Instead of a chart, decimal
catalogue-like form is sometimes used.

Next, we have created a sample case study
project consisting of three modules. Each module
has an architecture phase, implementation phase,
integration phase and testing phase. The number
of project modules and resource sharing among
them is completely flexible. This is an extremely
important point for the decision making support,
since the entire company can be simulated in such
framework by combining various modules (or
projects) in one large scale simulation. Therefore

TOP TEAM : high out put ,
l ow c os t

i d name salary

out pt.

No

5 Rober t 3000 35 S 1 S 2000 20 S
6 Bar bar a 2780 27 S 2 A 1500 20 A
9 Al l en 2500 25 S 3 B 1000 20 B

11 Sonny 1800 23 A 4 C 650 20 C
12 J ul i a 1650 23 A
17 Ander 1850 25 A BAD TEAM : low out put ,

ex pens i ve
18 Sus an 1250 25 B 7 Tom 2000 18 S
19 Di ana 1300 23 B 8 Ken 2200 20 S
23 Er ni e 1200 23 B 10 Kevi n 1800 18 S
24 M el i s s a 900 26 C 14 Eva 1500 18 A
25 Nanc y 800 25 C 15 Lar r y 1450 17 A
27 Ni t a 700 24 C 16 J er r y 1300 16 A

GI ANT: t oo l a r ge t eam
s i z e

20 M ike 1100 22 B

7 Tom 2000 18 S 21 Davi d 1000 20 B
8 Ken 2200 20 S 22 El i ot 1050 18 B
9 Al l en 2500 25 S 26 Sander 750 23 C

12 J ul i a 1650 23 A 28 Anne 650 20 C
13 Bob 1500 20 A 29 Ri c har d 600 18 C
14 Eva 1500 18 A M INI TEAM : s i z e i s

small
15 Lar r y 1450 17 A 8 Ken 2200 20 S
19 Diana 1300 23 B 9 Al l en 2500 25 S
20 M ike 1100 22 B 11 Sonny 1800 23 A
21 Davi d 1000 20 B 12 J ul i a 1650 23 A
23 Er ni e 1200 23 B 19 Di ana 1300 23 B
26 Sander 750 23 C 23 Er ni e 1200 23 B
27 Ni t a 700 24 C 24 M el i s s a 900 26 C
28 Anne 650 20 C 25 Nanc y 800 25 C

Table 1. Prototypical teams

2388

Computer-Aided Management of Software Development in Small Companies

the general design above and our java application
tool in particular should not be misunderstood as
a mere “single project simulation” unrelated to
other activities in the SW company.

In particular, we implemented four sample
teams: “TOP TEAM”, “GIANT”, “BAD TEAM”
and “MINI TEAM” (see Table 1). These teams
consist both of common and extra members.
The project optimized here uses a stochastic re-
source—external supercomputer time—of 2,200
minutes in total (normal distribution with 1 hour
mean and 20 minute dispersion). The flow of task
relations among workers of 4 grades (S>A>B>C)
in time is shown in Figure 1. Simulation is executed
for each team, and the results are evaluated in
the application program. Because of the general
project structure that can be flexibly created using
the online “Editor” forms for each project com-
ponent, a universal optimization routine cannot
be efficiently used, except for a full screening
(gradually building teams by adding members
still available; gradually including resources
from the pool of resources available). Although
this brute-force (full screening) approach feature
was implemented in our program for the sake of
completeness and suffices in case of small com-
panies, it is not recommended in large simulations
for obvious efficiency reasons. Let us note that
the application performs two types of computa-
tions: (a) multiple simulation runs and the best-
case, average, and worst-case analysis for each
managerial decision (i.e., for each fixed project
structure), and (b) brute-force full screening for
the best project structure (small-sized projects).
Because the SPM in practise is a multivariant
decision making process, it is also preferable that
the management modifies project structures as
desired and then evaluates each variant separately,
learning the most important trends and worst-case
scenarios from the simulation results.

interface and technology

Let us briefly summarize the software project
management tool developed in this work. In the
simulation environment, users change and input
all data with the Graphical User Interface based
and Java Server Page. Logic programming is also
implemented in Java. Mysql database is used to
store simulation data. The interface described
by Figure 2 allows the user to choose from a
variety of functions in the left navigation menu
of the window “Decision Making Simulation,”
to set the simulation properties and to check
simulation progress and history. There are five
editors for members, projects, teams, tasks and
resources. The editor page can create and delete
relations among the data. There are three main
parts in Figure 2. The first one is the team mem-
ber’s working history. The second is a progress
snapshot of all project tasks, each having one
status assigned from “READY”, “PROGRESS”,
“OVER”, “END”, and “NO STATUS.” At last,
the simulation result graph shows the total cost
and indicates whether the simulation run is over
the project budget or not (long and short lines
indicated by arrows in the window “Simulation
Result”). Work time data sheets enable editing of
worker’s grade and performance. The parameters
are the mean and the stochastic error range. The
resource editor page adds the resource data and
their possible stochastic distributions for any
project. Resources can be fixed or random; these
are especially important to decide the need of the
project and its final cost.

After multiple simulation runs, project vari-
ants are compared in order to find the optimum.
This environment is used to design the best team
possible for a given project (or a set of projects).
The optimization is conditioned, (i.e. the Top
Team in Table 1 is chosen if the project manager

 2389

Computer-Aided Management of Software Development in Small Companies

needs the most economical team, and the Giant
team in Table 1 is chosen only when maximum
speed is the criterion). Whenever a task over the
deadline is found, its margin is checked, the length
is edited and all other related tasks are adjusted.
Thus the optimal decision making is possible
with using the simulation data. Input data can
be changed flexibly, including task relationships,
team members, project teams, project budgets,
workers ability or random input streams, and then
reused for the simulation.

cOncluDing remArKS

In spite of various established project manage-
ment models and quality management systems,
such as ISO-9001, Capability Maturity Model,
or Constructive Cost Model (COCOMO), SPM
simulation has not received sufficient attention in
academia. Also software projects in businesses
often suffer from inadequate management. The
complexity of software projects with various
stochastic features involved implies that an object-
oriented computer simulation is a very appropriate
approach. In addition, because of the autonomous
human factor in program coding and complexity
in motivation of software developers, agent-based
simulations are expected to contribute to this field
in the future.

This chapter summarized principal features of
software project management along with present-
ing a newly developed SPM simulation tool. The
tool is a general purpose object-oriented simula-
tion environment with emphasis on fault-tolerance
in the development process. Randomized inputs,
randomized faults, variable team structures,
branching queues and idle time analysis are in-
cluded (Online simulation application, 2005). The
online Java program adopts flexible data structures
for the teams and stores all simulation data in a
dynamic database. The contribution of this work
consists in developing simulation technology for
the new area of SPM.

AcKnOWleDgment

Lukáš Pichl acknowledges partial support by the
JSPS Grant-in-Aid. We are grateful for the com-
ments of anonymous reviewers on the background
of this work.

referenceS

Abdel-Hamid, T. K., & Madnick, S. E. (1991).
Software project dynamics: An integrated ap-
proach. New York: Prentice Hall.

Bennatan, E. M. (1995). Software project man-
agement: A practitioner’s approach. New York:
McGraw-Hill.

Drappa, A., & Ludewig, J. (1999). Quantitative
modeling for the interaction simulation of soft-
ware projects. Journal of Systems and Software,
46, 113.

Humphrey, W. S., & Kellner, M. I. (1989, May).
Software process modeling: Principles of entity
process models. Proceedings of the 11t h Inter-
national Conference on Software Engineering,
Pittsburgh (p. 331).

Jalote, P. (2002). Software project management
in practice. Adison Wesley.

Northwest Center for Emerging Technologies
(1999). Building a foundation for tomorrow:
Skills standards for information technology.
Belleview, WA.

Pichl, L. (2005). Software process simulation.
Retrieved March 1, 2005, from http://lukas.pichl.
cz/spm.zip

Rodrigues, A., & Bowers J. (1996). System dy-
namics in project management: A comparative
analysis with the traditional methods. System
Dynamics Review 12, 121.

2390

Computer-Aided Management of Software Development in Small Companies

US Government Accounting Office. (1979). Docu-
ment FGMSD-79-49. Retrieved September 2003,
from www.gao.gov:8765

This work was previously published in Computational Economics: A Perspective from Computational Intelligence, edited by
S. Chen; L. Jain; C. Tai, pp. 205-216, copyright 2006 by IGI Publishing (an imprint of IGI Global).

 2391

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6.5
A Survey of Competency
Management Software

Information Systems in the
Framework of Human

Resources Management
Alfonso Urquiza

Francisco de Vitoria University, Spain

ABStrAct

One of the greatest surprises of the Internet
economy is that far from replacing people, the use
of advanced technology is confirming that talent
is the most valuable asset in today’s organizations.
In this context, competency management (CM)
software automation practices become the most
valuable business approach to define, measure,
and manage talent needs, the human capital of
the organization.This chapter’s position is that
CM process automation in competitive, knowl-
edge-intensive e-business oriented organizations
requires that information technology (IT) address
software strategy in a comprehensive human
resources management (HRM) framework. Core
competency management-related applications
are deployed in current corporate e-business

transformation processes in association with the
use of innovative employee—facing relations
management technology and reengineering most
HR transactional domain type of applications
in place.The chapter shows the CM software
evolution from a previous fragmented market
situation to a much more integrated scenario
in which best-of-breed single-function oriented
products preferences are now swiftly moving to
the enterprise resource planning (ERP) type of
architecture.

IntroductIon

As the Internet age transforms the way people
work and live, organizations keep continuously
embracing the new opportunities and challenges

2392

A Survey of Competency Management Software Information Systems

generated by this relatively recent and significant
change, introducing a new knowledge revolution
(Nordstrom & Ridderstrale, 2000).

Today’s economy is creating a new breed of
“intelligent” organizations, where a very high
percentage of the total workforce is comprised
of knowledge workers. In this context, the ability
to effectively manage human capital investments
becomes essential to ensure business success.
Organizations gain real advantages by applying
Internet technology to the measurement and man-
agement of their talent needs, the human capital
of the organization.

The long transition from traditional “personnel
administration” activities to most recent “human
resources (HR) management,” has meant an evolu-
tion from a purely functional to a process-oriented
approach in which all those activities associated
with the management of employment and work
relations are included (Boxall & Purcel, 2003).

Traditionally, organizations of any size or
activity used to focus primary attention on auto-
mating payroll & basic administrative functions.
Other administrative-required functions (like
recruiting, training, etc.) were largely assumed
and performed in a non-automated way, thus
creating large staff departmental units in these
areas, non-associated with the organization’s
primary business.

IT solutions at the time were not designed to
manage knowledge assets; they were focused on
managing physical assets. Individual employees
and managers used to call upon HR to satisfy
different kinds of requests. Individual employees
typically required tracking and processing per-
sonal information, such as compensation, benefits,
or other related data. Managers required HR to
provide information on recruitment or training
services.

In recent HR management, the new e-business
context has transformed and automated most HR
operations, thus generating additional efficiency:
process flows are handled like “automated transac-
tions” and self-service functions appear, simplify-

ing individual employee/manager relations within
the organisation, automating administrative tasks
and enhancing task-driven routines formerly
performed by HR departments.

In the new “human capital” (HC) paradigm,
it is not just about modeling and automating
“tactical” HR functions. Two new dimensions
are introduced. The first to consider is that a new
role appears for HR: that of strategic asset (talent)
management. The second is that HR becomes
just another component in the organisation, like
financial management, supply chain management,
customer relations management, or IT, all of them
driven to produce a product or service that gener-
ates value to the customer (Laudon, 2004).

It is in this new, comprehensive management
context where competency management fully
develops itself, becoming the integrating “glue”
element in HC management systems (Sagi-Vela,
2004), thus reshaping today’s and future HR
management implementation strategies.

In the context of this work, competence is
understood as the set of knowledge, skills, and
attitudes required in people to perform a specific
task in an efficient way (Sagi-Vela, 2004). CM
is a comprehensive HR process that starts by
defining the required organizational competen-
cies, assigns them to employees, observes them
through behaviour, asses them according to an
organization’s defined values, and permanently
improves them (Levy-Leboyer, 1997). Unlike in
traditional transaction-oriented HR practices, a
CM strategy should pursue the following goals:

•	 Support business objectives, providing in-
formation to acquire, maintain, influence,
develop, and retain the right employees.

•	 Align people, processes, and technology
around shared values.

•	 Measure the strategic value of human capital
investments.

•	 Anticipate human capital changes.
•	 Learn from industry-best practices, leverag-

ing benchmark data.

 2393

A Survey of Competency Management Software Information Systems

HR Basic Transactional Domain

Employee Life Cycle Management:Strategic CM-related Domain

Employee- facing, Relations Domain

career development e-learningperformance mangt.competency mangt.

e-recruiting
Workforce planning

& Analytics
compensation

reporting payroll time management

employee
Self-Service

portal technology,
expert finder

manager
Self-Service

Employee-facing, Relation Domain

Employee Life Cycle Management: Strategic CM-related Domain

HR Basic Transactional Domain

Career Development Competency Mangt. Performance Mangt.

E-Recruiting
Workforce Planning

E-Learning

Compensation

In today’s knowledge-intensive organizations,
competency management is not viewed just like
a new function associated with a single job topic
(learning, employee career development, etc.),
nor is it an additional responsibility, to be added
to the traditional list of activities that the orga-
nization expects to be accomplished by the HR
department.

Experience shows that effective CM strate-
gies succeed most when all HR processes in
operation—not just a portion of them, like career
development, performance management, or learn-
ing, for example—are reviewed and aligned to
the talent management vision, accomplishing a
real e-business transformation in organization’s
processes. This remains true even in situations
where CM strategies are focused to a limited ex-
tent in overall taskforce, applied only to strategic
level of employees within the organization (i.e.,
managers), which happens very often, particularly
in large-size organizations.

The main objective pursued in this chapter
reflects this business reality: There is not just a
simple, unique solution that automates CM pro-
cess in an organization. CM is not an IT vendor
product; it is a full comprehensive strategy that
transforms the HR management function from a
mere, although mature, administrative level to a
strategic business alignment role.

This chapter’s proposed detailed position is
that, when it comes to implementing a CM strategy

in a competitive, knowledge-intensive e-business-
oriented organization, IT components in the three
areas showed in Figure 1 should be addressed (to
the extent placed upon defined CM deployment
requirements) or sometimes re-engineered as a
‘combined’ operation:

The transactional domain type of applications
are not obviously related to CM functionality, but
some processes in this area require small re-en-
gineering enhancements to work in a CM driven
e-business environment. Functions included in the
employee life cycle domain are driven to enhance
employee value, core in CM deployment. Em-
ployee-facing relations management technology
deployment usually exceeds the scope of HR,
but the use of such tools significantly improves
CM-related process efficiency: use of paper and
forms-oriented types of activities are replaced
by Web-based self service processes, generating
significant return on investment (ROI) in large
organizations and employee satisfaction in online
experience.

In order to fully understand this chapter’s busi-
ness-oriented perspective, the rest of this chapter
is structured as follows:

The next section shows the background in
which this work is based, followed by an analysis
of IT industry response to the CM evolutionary
organizational requirements. Then, a character-
ization of most relevant HR processes is presented,
depicting inter-process relations, and supporting

Figure 1. HC key components in CM deployment strategies

2394

A Survey of Competency Management Software Information Systems

and clarifying the proposed comprehensive ap-
proach to CM implementations. Finally, today’s
commercial CM-related technology scenario is
presented, followed by future trends and final
conclusions uncovered in this survey.

BAcKgrOunD

Competency management is considered by some
authors (Sagi-Vela, 2004) as a complementary
methodology to other related HR management
practices, such as emotional intelligence or,
more often, knowledge management. Knowledge
management (KM) is a very close concept to
CM, and technical literature (Alle, 1997) tends
to generate some confusion when analysing KM
and CM management systems.

In the scope of this work, KM management
systems are those directed to capture, analyze,
apply, and re-use organizations’ know-how, with
the objective of performing higher-quality busi-
ness processes at a lower cost and generating a
competitive advantage. CM systems’ focus is
on employee life cycle, covering competency
requirement analysis (Lindgren & Stenmark,
2002) and other related HR management topics,
such as personnel selection and compensation
(Sagi-Vela, 2004).

Contributions on KM designs and product
evaluations are widespread in scientific literature
(Benson & Standing, 2001; Friss, Azpiazu, &

Silva, 2004; Kamara, Anumbad, & Carrillo, 2002;
Rollet, 2003), but technical literature on CM is
still scarce and dedicated to specific areas, such as
organizations adjustment to CM (Lindgren, 2005)
or competency development (Hardless, 2005).

In addition to above, the software capability
maturity model initiatives (CMM I, 2002) have
been complemented by the Software Engineering
Institute with the people capability maturity model
(People CMM) (Curtis, Hefley, & Miller, 2001)
as the foundation for a model of best practices
in managing an organization’s workforce. And
competency management is obviously present in
various significant People-CMM process areas:

In this context, a CM software information
systems survey in the framework of a comprehen-
sive HR management process scenario might be
of great value in further CM software research,
for example, investigating compliance relation-
ships between the five People CMM evolutionary
maturity levels with CM market products research
and development.

cOmpetency mAnAgement AnD
tHe SOftWAre inDuStry

Today’s SW products and services marketplace in
the HR domain has been shaped in the last 25 years
by the business evolution described above.

It is no surprise to anyone that until the e-
business transformation with the arrival of the

Figure 2. The Process Areas in People CMM

 2395

A Survey of Competency Management Software Information Systems

Internet age during the late ’90s, HR businesses
have created a sort of IT industry fragmented
market. There exist hundreds (if not thousands)
of different HR administration and management
solutions (payroll, learning, PM, CM, etc.) in
organizations around the globe. Some are global
market-oriented, other vertical cross-industry
oriented; most are local and country-driven so-
lutions, aimed to satisfy specific single-market
demands.

In addition to the above situation, the amount
of in-house developments and custom-made
implementation solutions in this field far exceeds
expected figures compared to other types of sup-
port applications, such as financials, business
analytics, and so forth.

But the above scenario is now changing very
fast today, and the e-business evolution is driv-
ing industry from the previous IT-fragmented
scenario to an extremely concentrated one. The
vast majority of today’s large organizations (those
in which CM has the largest deployment potential)
are automating HR (or planning to do so) within
the scope of one out of three global, integrated
ERP products: SAP, PeopleSoft or Oracle.

To better understand this evolution that is
reshaping the market in which CM software

progress takes place and is making many best of
breed stand-alone HCMS solutions disappear,
let’s apply a modern, innovative approach that is
useful to map organizations’ business require-
ments with information technology decisions.
The Meta Group Technology Analysts call it
portfolio management:

Independently of the economic environment,
a key challenge for IT professionals has been to
assess and permanently communicate the value
of IT investments to the business units.

Today’s advanced organizations don’t just
require a functional justification and a “busi-
ness case” study to make a technology decision.
The portfolio management approach introduces
financial issues to any IT investment, as for
example:

Level of risk versus expected benefits/value: Just
like a pure financial investment. In IT, project
deployment time, magnitude of investment, and
so forth are taken into account.

Current fair value, at any time.

Expected life cycle: when will investment pay
off?

Figure 3. IT portfolio management methodology

3© 2003 META Group, Inc., Stamford, CT-USA, +1 (203) 973-6700, metagroup.com

Risk

Transform
the

business

R
is

k
s

V
a
lu

e
/

T
im

in
g Venture

Growth

Discretionary
Enhancements

Non-
Discretionary

Core Run the
business

Grow the
business

N
o
n

-D
is

cr
e
ti

o
n

a
ry

 I
T

C
o

st
s

D
is

c
re

ti
o
n

a
ry

P

ro
je

ct
s

2396

A Survey of Competency Management Software Information Systems

Perceived relationships: defining the IT domain,
its platform, and architecture.

IT assets and projects are categorized as shown
in Figure 3.

The run-grow-transform classification defines
the primary goal for any IT project:

“Run the Business” investments are focused
to keep business operational (i.e., maintenance
contracts, utilities, etc.). Core spending is for
business-critical activities, like customer service,
sales ordering, and so forth. Non-discretionary
relates to organic growth in core IT assets (servers,
DBMS, etc.). Business risk is low and expected
reward usually medium to high.

“Grow the business” IT expenditure is ap-
plied to expand organization’s scope, in product
or services. Learning activities to develop new
skills fall in this category.

“Transform the business” initiatives are related
to opening new markets or issues having a major
impact on the current business model. Business
risks and expected rewards, in the last two cat-
egories, are both moderate to high. Organizations
sometimes afford the high risk (of unplanned

events) and expect also high reward in venture
initiatives, where speed is usually the way to
proceed (i.e., be the first to deliver a product).

The IT industry in most recent e-business
process transformations (that obviously ap-
plies to HR) drives SW product development &
projects investment decisions, analysing three
dimensions: investment business impact, cost
and performance expectations, and risk and op-
portunity appraisal.

There are many SW tools in the market to
analyse and manage IT portfolios: ProSight (www.
prosight.com/solutions/software/), Primavera
(www.primavera.com/about/trillion.asp), Niku
(www.niku.com/), and so forth. The example
in Figure 3 depicts a view of the different SW
implementations in place in an organization, as-
sociating the value and the risk dimension.

Now, if we apply portfolio management’s ap-
proach to HC management and CM, and clearly
understand IT’s decision-making process, current
technology scenario, and, also, expected trends
for the future, it will be much better understood.
For this purpose, we will analyse IT-phased
evolution, within the proposed HC framework in
which CM strategy develops in today’s advanced

Risk

B
u

si
n

es
s

V
al

u
e

AltoBajo

Ba
jo

Al
to

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8

RTB GTB
TTB

Figure 4. IT portfolio classification example

 2397

A Survey of Competency Management Software Information Systems

organizations: the employee transactional, life
cycle management, and relations management
domains.

Let’s first focus on the employee transactional
domain. Traditionally, payroll and basic employee
administration services have been considered the
primary, core HR organization’s service. Mistakes
in this area do have a clear “dissatisfying” effect,
thus damaging HR internal image. And particu-
larly in medium- to large-size organizations, some
specific processing difficulties led to prompt IT
automation: earning and deductions complexity
derived from different, concurrent labour agree-
ments to apply in single organizations, continu-
ous updates in country regulatory requirements,
gross-to-net permanent calculations, and finally,
banking reconcilement and automated interfaces
requirements.

Payroll, therefore, rapidly became the first
core “run the business” type of investment in HR
management, parallel to other basic back-office
applications like accounting. Business risks were
low (processes are quite stable) and benefits were
medium.

Other transaction-oriented processes fol-
lowed automation in a segregated manner, just
when business required the need due to growth,
changes in HR policy, merging events, and so
forth. Some of these processes were compensa-
tion and benefits or time management, typically
non-discretionary enhancements, low business
risks, and high benefits.

Initial market products’ scope was local, co-
existing with many made-to-measure solutions in
place. Outsourcing of services models began to
develop, particularly in the low- to medium-size
type of organizations.

Employee life cycle management is the primary
core domain for HC competency management
strategy deployment in any organization. Com-
petencies are created to manage organizations’
required talent across the employee life cycle:

Attract talent (e-recruiting) Assign talent
(workforce planning) Influence talent (perfor-

mance/compensation management) Develop-
ing talent (e-learning) and Retaining talent
(career & potential development).

Although integrated solutions are the most
relevant implementation solutions in today’s IT
industry (see section “HC market applications:
The CM contribution”), stand-alone products are
also growing. We will shortly analyse performance
management and CM and E-Learning, these two
being the most relevant convergent solutions in
the CM market today.

a. Performance and competency manage-
ment

Early non-integrated deployed performance
management (PM) systems were perceived by
employees as non-useful, time-wasting applica-
tions. It is not until the e-business transformation
process generated during the last five years that
organizations perceived real business impacts
in developing values and competencies, enhanc-
ing employees’ business alignment. Medium- to
large-size organizations started to create and track
measurable skills and competencies through the
deployment of advanced e-business-oriented PM
solutions. About 40% of large organizations have
already defined competencies for some type of
jobs, and 10% have a well-defined enterprise-
wide set of competencies. And the IT market
today still has large expectations: 60% are still
non-automated, paper-based solutions, about 25%
in-house developments, and 10% product based
(PeopleSoft, SAP, Workscape, etc.).

CM solutions are mostly “grow the business”
and, to a lesser extent, “transform the business”
venture-type applications. Business risks and
reward are, typically, moderate to high.

b. E-learning

Early (1980s to mid 1990s) learning manage-
ment systems (LMS) were just tools driven to auto-
mate instructor-led training activities. E-learning

2398

A Survey of Competency Management Software Information Systems

today is somehow different. Cisco chairman John
Chambers said in August 2003 that “ the two great
equalizers in life are the Internet and education.”
More than 70 million people received education
over the Internet that year.

LMS’ most relevant change in the Internet
age is that employees now become themselves
responsible for their own learning requirements.
Training is delivered in a personalized way, thus
facilitating individual competency development
as required and planned by the organization.

IT’s e-learning products have a singularity
compared to the rest of HC applications related
to competency management implementations:
The LMS market is dominated by stand-alone
solutions. Platforms like Saba (www.saba.
com/),Centra (http://www.centra.com/education/
resources/index.asp), IBM’s Lotus (“www-306.
ibm.com/software/info/ ecatalog/es_ES/products/
N105931Y77809P74.html”), and 70-plus more
represent today 95% of the total market, and just
5% (although growing) are tied to ERP-integrated
packages (i.e., SAP, PeopleSoft).

E-learning solutions fit into the “grow the
business” category. Business risks are moderate
and reward is, typically, moderate to high.

IT products in the employee relations manage-
ment domain don’t address or directly process
CM-related information. They are viewed as com-
munication-integrated tools, driven to “automate”
most (if not all) HC processes, as in other parallel
e-business environments. Typical applications
in this domain are employee self service (ESS),
manager self service (MSS), workflow, and expert
finders. Let’s shortly describe them.

ESS are portal-driven solutions created to
ensure comprehensive and controlled employee
access to internal or external information and ap-
plications. Employee satisfaction and dramatic re-
duction in transaction cycle time over HC services
are proven benefits in using this tool, typically
integrated within HR ERP application.

ESS Portal solutions are in the “grow the busi-
ness” category. Business risks are moderate and
reward is, typically, moderate.

MSS technology and purpose is of the same
nature as ESS. The only difference is in the nature
of the type of applications that are relevant to this
type of employee’s role within the organization.
Managers require a single access point to infor-
mation, otherwise disseminated throughout the
organization. They manage people, budgets and

24 October 2001 Copyright©2001 Iniciativa Terra Meta4you S.A. 6

? Personal
Development

? News & Events
? Holidays
? Shopping

? Procurement
? Markets
? Resources
? Bulletin
? Projects

? Knowledge
? Career

Development
? Metrics
? E-Learning
? Travel
? Payroll
? Competency Mngt.
? Evaluation

? Agenda
? Comunications
? Colaboration
? Team Work
? Knowledge Mng.
? Interest Groups

La Solución

Figure 5. Generic structure of ESS portal implementation

 2399

A Survey of Competency Management Software Information Systems

groups assigned responsibilities in an effective,
proactive way.

Again, MSS solutions are in the “grow the
business” category. Business risks are moderate
and reward is, typically, moderate.

Workflow represents a highly critical enabling
technology to automate HR processes, thus critical
too for comprehensive CM deployment policies:
workflow replaces paper notifications with mes-
sages notification, routing, and approval.

Workflow servers solutions are mostly dis-
cretionary enhancements within the “grow
the business” category, creating new levels of
process efficiency and effectiveness (or process
agility). Business risks and reward are, typically,
moderate.

 Expert finders are Web-based tools typically
found in integrated ERP HC solutions used to
provide the means to find and locate employees
having specific knowledge or competency profile
(“who is who”-type of approach) and, finally,
ensure contact with the expert for the required
period of time. Usually works tie to the workflow
server functionality.

Expert finders solutions are considered dis-
cretionary enhancements within the “grow the
business” category. Business risks and reward
are typically moderate.

HumAn reSOurceS
mAnAgement prOceSSeS

The foremost trend in information systems
restructuring in recent years is process-based
working. This approach enhances knowledge
development and sharing, forcing IT professionals
and business decision makers to collaborate and
share information concerning IT and business
trends. Successful corporate e-business transfor-
mation initiatives necessarily incorporate process
improvement and transformation. Process under-
standing provides the bridge between corporate
strategy and IT implementation.

CM software technology is no exception to
this reality. As indicated in the introduction,
CM market analysis requires a comprehensive
approach within the HC domain. This brings
about an excellent opportunity to critique and
model value delivery mechanisms, thus clarifying
business relationships.

In today’s advanced organisations, a process
is defined as a “set of activities directed to obtain
a service or a product that creates value to the
client.” Although human capital management fits
into the corporate management support domain
functions (same as financials, planning, etc.), the
same definition applies. Competency management

Figure 6. Example of a real ESS

2400

A Survey of Competency Management Software Information Systems

is the cornerstone in this proposed client-oriented
process approach: People drive results.

The following is a generic level 1 definition of
all relevant industry-accepted HC management
processes representing the framework in which
CM software is deployed. Best-process practices
indicators are proposed, as well as information
concerning the most significant internal and ex-
ternal application inter-relationships.

This framework will facilitate the understand-
ing of the competency management business
“ecosystem.” Some HR management processes
are very much tied to CM strategy deployment,
and others are not. This comprehensive view will
have significant value to further evaluate and
assess the various software system architectures
and market products available against the People
CMM model.

persons Administration and payroll

Payroll processing represents the primary HR
automated function in most organizations. It
ensures that the workforce gets accurately paid
on time. Critical activities are usually linked to
specific country regulatory requirements, the
amount and structure of labour-related accounting
models to consider, and other specific reconcile-
ment tasks.

Best practices key process indicators in this
area are the following:

•	 Employee’s administration and informa-
tion flow is integrated within HR or global
corporate ERP.

•	 Administrative tasks are performed using
ESS methods, implementing portal/intranet-
driven solutions and workflow technolo-
gies.

The Process Reference Model for Payroll &
Administration is shown in Table 1.

The internal and external process relationship
is shown in Figure 7.

The external-related applications are finan-
cials, ESS, travel management, and CRM (to
directly manage incentives typically associated
to sales or commercial goals).

time and Attendance management

In the context of knowledge persons manage-
ment, TM (time control of employee time) is not
a high-priority process and often deployed to a
very limited extend. See Table 2.

Figure 8 shows internal and external process
relationships.

The only significant interface to consider
here is with any clock-in system (when required).
Notifications are often made via ESS or simple
workflow dialogs with authorising persons.

Best practices key process indicators in this
area are the following:

•	 Presence control management integrated
within HR or global corporate ERP.

•	 Decentralization of absence and time off
registry.

•	 Absence/permit and vacation request ap-
provals flow is fully automated.

OrgAnizAtiOnAl DeVelOpment
AnD cHArting

Structure management is often a centralized
process that creates, organizes, and manage orga-
nizational directory information. See Table 3.

Figure 9 shows the internal and external pro-
cess relationships.

Best practices key process indicators:

•	 Structure definition and job description
information processed within HR or global
corporate ERP.

•	 Decentralization of organizational changes
across corporation.

 2401

A Survey of Competency Management Software Information Systems

•	 Change organization approval process is
managed using workflow mechanisms via
ESS/Intranet.

WOrKfOrce plAnning AnD
AnAlyticS

HR requires automated processes to evaluate
generic and specific income change proposals,
benefits, or any other HR cost-related issue that
may be considered. Simulation and analytical
tools are essential to assume control of present and
future HR budget responsibilities. See Table 4.

Figure 10 shows the internal and external
process relationships.

Best practices key process indicators:

•	 Organization HR budget calculated through
HR or global corporate ERP.

•	 Full integration with payroll and payroll
simulation and analysis.

•	 Full integration with the organization mod-
ule (to simulate organisational changes).

•	 Automated budgetary analysis and measure-
ments, identifying unusual patterns in data
through technologies such as data mining
and understanding correlations between
measurements.

Table 1. Process reference model for payroll & administration

Activity Name Description

PA_01 Employee data maintenance

Workforce data and changes in employee status,
relevant to payroll, are introduced in HR system.
Sometimes, employee time reporting is the front end
of payroll overall process.

PA_02 Payroll process

Taking into account monthly changes, backdate
payment rules, corporate and country regulatory
requirements, gross and net earnings, and deductions
are calculated.

PA_03 Checking of calculated results

Post-payroll process report writing is made to check
possible errors prior to HR results formal approval,
prior to post-information further processing.

PA_04 Individual payroll forms
generation

Payroll forms are generated and made available
to employees in printed or electronic format for
individual ESS access.

PA_05 Legal Social Security report
generation

Adequate automated monthly files (FAN type or
other) are generated, together with established
payment forms (TC1s)

PA_06 Tax reports generation

According to company type and local regulations,
adequate report (i.e. 110, 111, 190) is periodically
generated. Earning and retention information is
prepared for personal direct consultation (vía ESS).

PA_07 Social benefits information
delivery

System interfaces with agreed social benefit provision
companies

PA_08 Prepare bank transfer files Files generated for bank use with net earning to be
transferred to employee’s account.

PA_09 Accounting File generation As agreed with the financial department for
accounting processing (general ledger, etc.)

2402

A Survey of Competency Management Software Information Systems

PA_01

Empl. Data Maint.

PA_02

Payroll calculation

PA_03

Check Results

PA_09

Accounting

PA_08

Bank Files

PA_07

Social Benefit Rep

PA_06

Tax Reports

PA_05

SS Reports

PA_04

Payroll Forms

CRM

TRAVEL
MNGT

ESS

FINANCIALS

Figure 7. Internal and external process relationships

Activity Name Description

TM_01 Time schedule definition
Relevant labour calendar information is prepared:
work hours, flexible schedules, and so forth. Relevant
only if clock in control is in place.

TM_02 Time off request Applicable to vacation periods or special permits.

TM_03 Time off authorisation Authorise or reject employee request and
inform HR department.

TM_04 Collect clock-in data Exit and entry information is registered by external
clock-in device, located in work premises.

TM_05 Identify deviations
Based upon calendar and work hours information, a
contrast task is performed with clock-in data in order
to identify eventual deviations.

TM_06 Deviations justifications The employee justifies detected work absence, then
approved or rejected by superior.

TM_07 Registry of time incidences Time off accruals, vacation, sick leave type of
information for HR information and management.

TM_08 Inform payroll Only the payroll-relevant information is transferred for
adequate processing.

TM_09 Statistics Periodically, HR obtains statistic information to be
delivered to employees via ESS.

Table 2. Process reference model for time and attendance management

cOmpetency mAnAgement

CM processes flow across organizational divi-
sions and units as the most challenging practice
in workforce management activities.

Managing knowledge assets like managerial
behaviours, problem-solving skills, and so forth
is somehow different than managing physical as-
sets. The ultimate CM process goal is to provide
the means to ensure continuous development of

 2403

A Survey of Competency Management Software Information Systems

employees and organizations’ competencies. It
implies observing them through behaviour, as-
sessing them according to organizations’ defined
values, and permanently improving them.

Competencies are usually linked to career
planning, so employees permanently have a view
of the potential career paths they are offered by
the organization.

CM strategies are as good or effective as the
information available. Even though CM is about
managing intangibles, without the right infor-
mation measuring or predicting how employees
or the organization will be affected is just hit or
miss. See Table 5.

Figure 10 shows the internal and external
process relationships.

Best practices key process indicators:

•	 Corporate competency catalogue defined
within HR or global corporate ERP.

•	 Integration with all relevant applications,
supporting HR processes.

•	 Automated gap analysis process, matching
employee profile with profile required.

•	 Competency profile information through
B2E communication-based links.

emplOyee recruitment

Even though procedures vary from one region
and organization to another, the process is driven
to ensure the best tracking of applicants (internal
or external to organization), based upon skills
and competencies to match into the required job
profiles. See Table 6.

Figure 6 shows internal and external process
relationships.

Activity Name Description

OM_01 Identify organisation
change request

Every year each department performs a business
strategic and functional review identifying
recommended changes as business develops. Structure
updates proposals are then submitted for approval.

OM_02 Change request approval Change proposal is aggregated at organisation
department level, then approved by board of directors.

OM_03 Inform on change to HR
Once new structure has been approved (includes new
assignments, positions, etc.) HR assumes control to
update organisation-dependent information.

OM_04 Update structure Updating structure often requires changes in HR master
data and cost centres allocation.

OM_05 New structure is made
public

Internally (via B2E mechanisms) and externally if
required. Quality assurance manuals also updated.

Table 3. Process reference model for organizational development and charting

OM_01

Identif.Org.Ch.Req

OM_02

Change Approval

OM_03

Inform Change

OM_04

Update Structure

OM_05

Structure is publ.

PORTAL/
INTRANET

WORKFLOW
APP,

Figure 9. Internal and external process relationships

2404

A Survey of Competency Management Software Information Systems

Best practices key process indicators:

•	 Recruitment process supported by HR or
global corporate ERP.

•	 Full integration with administration applica-
tion.

•	 Automated CV information data registry
(through B2E).

• Automated mail service.

trAining

This process helps managers to evaluate and
plan organization’s training requirements and
events. Information is processed on prerequisites,
objectives, content, schedules, and locations, as
well as appraisal course’s results and additional
management required data. See Table 7.

Figure 7 shows internal and external process
relationships.

Table 4. Process reference model for workforce planning analytics
Activity Name Description

CP_01 Staff planning
Departments and business unit staff requirements
and status requirements are processed. Aggregated
information is then validated and budgeted.

CP_02 Actual cost evaluation
Current payroll cost is used to estimate cost for next
period. Planned staff increase cost is estimated based
upon current figures.

CP_03 Workforce budget analysis

Payroll cost models are simulated based upon
previous calculations. Cost and budget effects due to
organizational changes, new statutory requirements,
or updated payroll and benefits configurations are
simulated.

CP_04 Final configuration approval Final proposal is approved and submitted to
management committee.

CP_05 Accounting control is
updated New approved budget is incorporated in accounting.

CP_06 Budget appraisal Permanent budget appraisal.

Figure 10. Internal and external process relationships

CP_01

Staff Planning

CP_02

WF Budget Analy.

CP_03

Scen. Simulation

CP_04

Final Budget Appr.

CP_05

Inform Controlling

CP_06

Budget appraisal

PAYROLL &
ORGANISAT.

FINANCIALS
CONTROLLING

 2405

A Survey of Competency Management Software Information Systems

Table 5. Process reference model for CM

Activity Name Description

CM_01 Catalogue definition

Core and other required competencies, plus
proficiency level required for each job profile within
the organisation, are established and catalogued as a
corporate dictionary.

CM_02 Competency assignment

Once competencies are assumed by management,
an assessment process defines procedures and level-
assignment rules. Competencies are then matched to
employees. This is often a time- and cost-consuming
non-automated set of activities.

CM_03 Employee enrollment Individual employees may leverage competency and
potential career paths within organization.

CM_04 Competency gap
identification

Gap between competency level definition and
employee status is identified. This information is the
basis for employee continuous improvement process,
usually linked to CM.

CM_05 Employee-continuous
improvement activities

Individual person’s development is supported in
learning (e-learning) programs, providing the means
to develop required competencies.

CM_06 Career management

Supported on KM information and individual
development, “profiles” matching job vacancies are
identified within organizational scope. Succession
planning information is analysed.

CM_07 Performance evaluation

Continuous matching employee-assigned business
objectives with actual performance based upon the
CM model. Evaluation information is created, then
managed by HR evaluation process.

CM_08 Compensation
Individual salary and benefits compensation is
triggered by evaluation, thus closing the periodically
updated employee development cycle.

CM_01

Catalogue Def.

CM_02

CompetencyAsign

CM_03

Enroll.Employee

CM_05

Continuous Impr.

CM_04

Gap Identification

CM_06

Career Mngment

PA_07

Evaluation

PA_08

Compensation

EMPLOYEE
DB ESS

LEARNING

PERFORMANCE
MNGT.

CAREER
DEVELOPM.

RECRUITMENT &
SUCCESSION

PLANNING

KM

Figure 11. Internal and external process relationships

2406

A Survey of Competency Management Software Information Systems

Best practice’s key process indicators:

•	 Training management supported by HR or
global corporate ERP.

•	 E-learning integration within ERP.

•	 Integration with other related ERP pro-
cesses.

•	 Automated mail service activities required
to manage training courses.

Table 6. Process reference model for employee recruitment
Activity Name Description

ER_01 Vacancies identification Next-period strategic HR planning is taken as input
information to identify vacancies to be assigned.

ER_02 Organization internal
publication

Required position and expected candidate profile are
made public within organization.

ER_03 Internal candidates reception CV is usually updated by employee prior to
candidature submission.

ER_04 Internal candidates filtering HR analyses candidatures and filters position profile
compatibility against candidate profile.

ER_05 Selection tests

HR and required technical and managerial personnel
are involved during the selection process. Tests
are designed in accordance to position. Technical
knowledge and person’s profile suitability tests are
executed.

ER_06 External recruitment Applies when no internal candidate gets position
assignment. Scheduling.

ER_07 Prequalification and CV’s
reception

The selection application inputs candidates’
information for further assessment and tracking.

ER_08 Recruitment proposal Selected candidate receives notification and formal
offer to accept position.

ER_09
HR administration
incorporates selected
candidate information

Once formal offer is accepted, starting work date
is fixed. Organization-required administrative
information is entered and legal employment
agreement is created.

ER_01

Identify Vacancies
ER_02

Internal Publicat.

ER_03

Receive int. Req.

ER_06

Extennal publ.

ES_0R

CV Reception

ER_08

Make offer

ER_09

HR Data update

ER_04

Filter int.candidat.

ER_05

Selection process

COMPETENCY
MNGT

ORGANISATION PORTAL /
INTRANET

HR ADMIN.

Selected candidate

INTERNET

N

Figure 12. Internal and external process relationships

 2407

A Survey of Competency Management Software Information Systems

emplOyee’S cAreer
DeVelOpment

This process creates a roadmap for success, de-
termining future development activities. With
CM, focus is made on high-potential employees
and leadership-oriented careers.

Figure 8 shows internal and external process
relationships.

Best practices key process indicators:

•	 Employee’s development plans defined in
HR or global corporate ERP.

•	 Individual development initiatives managed
from ERP results registry .

•	 HR ERP integration with other relevant
processes.

•	 Employee’s potential and preferences reg-
istered in ERP.

perfOrmAnce mAnAgement

Associated to any CM strategy, organizations
require employees’ daily execution to be aligned
to corporate strategy, committed to achieve mea-
surable business results. HR focus is on skills

Activity Name Description

ET_01 Create training plan

A training plan is established every business year. It
includes all educational methodologies applied within
the organization and is finally approved by executive
committee.

ET_02 Identify education
requirements

Following inputs are considered:
Business units plans.
Cross-organization corporate initiatives.
Training topics generated by management, derived from
evaluation results.
HR corporate-defined improvement needs.

ET_03 Training plan
assessment and approval Executive committee approves plan and budget.

ET_04 Courses & training units
definition

According to budget, priority, and expected employee
usage.

ET_05 Select training and
education providers

Internal and external providers, content and methodology
evaluation against organization requirements, and cost
and budget negotiations through established business-
to-business commerce chain management procurement
process.

ET_06 Assign employees to
training units

Assignment is based upon profiles. E-learning initiatives
are usually managed by organization based upon
employee’s self-initiative.

ET_07 Training call
Arrangements are made according to employees’ job
schedules, presence, or distant learning method used,
instructors’ and logistics availability.

ET_08 Perform training In accordance with plan. HR receives assistance and
evaluation report.

ET_09 Training evaluation

Following aspects are evaluated:
Quality: content, instructor (by attendance).
Student’s attitude, knowledge acquisition (by tutor/
teacher).
Employee contribution to business (after training).

ET_10 Update employee
competency record By HR and management, after complete evaluation.

Table 7. Process reference model for training

2408

A Survey of Competency Management Software Information Systems

tracking, targeting leadership and high-potential
employees. It includes skills and competency
personal assessment, and, sometimes, 360-degree
type of evaluations and feedback.

Best practices key process indicators:

•	 Evaluation definition and results registry
defined in HR or global corporate ERP.

•	 Individual self-evaluation made via ESS
and workflow-based approval process.

• Integration with other relevant ERP mod-
ules.

cOmpenSAtiOn AnD incentiVe
mAnAgement

Compensation is critical to fix adequate wage
structures within the organization. Incentive
management is required to manage employees’
variable retribution and benefits. Complexity var-
ies according to extent and type of benefits (pen-
sion plans, private medical services, insurances,
etc.). Usually third-party required information
tracking and reports are used. Best practices key
process indicators:

•	 ERP-based variable retribution, calculated
for employee evaluation.

•	 ERP-based market salary survey.

market Applications: the cm
contribution

HCMS is considered today a mature market for
the IT industry. Although the administrative,
transaction-based type of applications have very
limited growth potential (only outsourcing, hosted
services in small and medium size business), the
strategic talent management-type of applications,
driven primarily by competency management
business interest, is on the rise.

Similarly to other enterprise-wide applications,
where process integration becomes essential, the
vast majority of medium to large organizations
are now automating HC process in one out of
three products: SAP, PeopleSoft, or Oracle, and
two companies, because Oracle finally acquired
PeopleSoft during 2005. Around 40% of the
worldwide HCM market is concentrated in these
two companies.

This merger and acquisition wave is not an
isolated exception (Adonix acquired Meta4, Cy-

ET_01

Create Training Plan

ET_02

Ident. Ed. Requir.

ET_03

Asses&Aprov.TP

ET_06

Employees sign on

ET_05

Select T.Providers

ET_04

Courses Definition

ET_08

Train Employees

ET_07

Training Call

EMPLOYEES
DEVELOPMENT

EVALUATION

COMPETENCIES

E_LEARNING

ESS

TRAINING
TECH/CORP.REQ.

ET_10

Update E.Record

ET_09

Evaluate Training

ADMIN.

CCM &
PROCUREMENT

Figure 13. Internal and external process relationships

 2409

A Survey of Competency Management Software Information Systems

borg merged with HR Services, Infinium with
SSA, etc.). Microsoft (the world’s leading IT
corporation but still not an important player in
HCMS) and SAP announced merging conversa-
tions last year.

Best-of-breed products’ previous business
preferences are now swiftly moving to the ERP
(trough acquisitions). Market fragmentation in
HC management is therefore ending, and many
small, single-function-oriented products are being
incorporated in ERP suites or just disappearing.
Maybe the LMS market is the exception to the
rule, with an approximately 15% growth expecta-
tion in a $450M world market (2005).

It is quite difficult to quantify which percentage
of the global HCMS market corresponds just to

CM processes. Most organizations enter ERP-
based solutions (acquiring licences), automating
just part of the functionality. Usually, deployment
corresponds to most critical business functional-
ity, with limited CM process automation. Com-
panies invest in ERP suite licences and deploy
functionality over the years with the confidence
that the ERP vendor will ensure a long process
integration.

Worldwide HRMS and payroll administration
revenues in 2004 reached around 3.900 M de €
with an estimated growth rate for 2005 of 7%.
About 30% of the revenue corresponds to payroll
and 70% to HR management processes. This
survey assumes that, although not all product
licences are devoted to comprehensive compe-

Table 8. Process reference model for employee’s career development

Activity Name Description

CD_01 Career development plan
design

Based upon employee’s potential and strategic HR CM development
objectives (includes target employees segment, criteria to identify
potential, application period, etc.). Succession planning information
is filtered.

CD_02 Employee potential analysis
Following actions are taken:
Identify employees matching profile
employee appraisal.

CD_03 Employee’s potential inventory
Update HR master employee data with employee’s information to
ensure that opportunities are considered: job vacancy opportunities,
special task assignments, and so forth.

CD_04 Generate personalized
development plans

Individual career plans for competency development. Usually based
upon employee performance evaluation, training opportunities,
special task assignments, etc.

CD_05 Development’s plan appraisal Periodic checks to confirm suitability and compliance to
organization’s business objectives.

CD_01

Prog.Dev.Design

CD_02

Potential Analysis

CD_03

Potential Inventory

CD_05

Plan Appraisal

CD_04

Indiv.Dev.Plan

EVALUATION

LEARNING HR
ORGANIZATION

COMPETENCIES

RECRUIT &
SUCCESSION

PLANNING

Figure 14. Internal and external process relationships:

2410

A Survey of Competency Management Software Information Systems

Table 9. Process reference model for employee’s performance management

Activity Name Description

EV_01 Competencies and business
objectives definition

Frequently mix of global, business unit, and personal
objectives plus competencies and shared values.

EV_02 Self-evaluation According to person’s perceived achievement.

EV_03 Formal evaluation Performed by management, and employee agrees.

EV_04 Formal approval HR validates and ensures organization’s coherence.

EV_05 Results analysis
Information is obtained to shape next period’s
educational requirements and assigns variable
benefits.

EV_01
Stablish

Obj&Competencies

EV_02

Self-evaluation

EV_03

Formal evaluation

EV_04

Eval.Analysis

COMPETENCIES

COMPENSATION
EVALUATION

TRAINING

ESS

HR OK ?

Y

N

Figure 15. Internal and external process relationships

Table 10. Process reference model for employee’s compensation and incentive management

Activity Name Description

CO_01 Compensation plan
Plan is established according to strategic retribution
policy, considering internal and market reference
information.

CO_02 Evaluation results analysis Competency development and business objectives
and accomplishments are evaluated.

CO_03 Compensation schema
elaboration and review

Based upon results and time schedule to be applied
to individuals. HR approves and submit schema for
approval.

CO_04 Management approval Management board approves final plan.

Figure 16. Internal and external process relationships

CO_01

Compensation Plan

CO_02

Anal. Ev Results

CO_03

Comp.Schema

CO_04

Managt. Approval

PAYROLL

HR EVALUATIONMarket Survey

Int. references

 2411

A Survey of Competency Management Software Information Systems

tency management deployment strategies, about
40% ($1,300 M) is the market size for HC direct
CM-related process.

The estimated figures reported in this study
refer only to product licence fees and mainte-
nance costs. Consultancy and implementation
engineering costs are not included. In order to
obtain overall comprehensive IT-related cost
distribution statistics, the following experience-
based statistics method may be applied:

Figure 17 shows current OS environment
usage for CM-related solutions. Trends indicate
a significant increase of Windows 32 and 64b.
and reductions in AS400, others, and mainframe
environments.

Figure 18 shows that, for each Euro spent in
the software product licence, 1.5 Euros are spent

on consultancy and engineering services and 0.73
Euros in hardware.

technical Architecture reference
characteristics

The next point in this survey shows a generic
evaluation model used to asses IT and HR business
specialists in selecting the most adequate technol-
ogy to deploy a competency management strategy
in any medium- to large-size organization. As we
will see later on, the product’s technical architec-
ture is an important issue in this process.

This section depicts the technical architecture
to be considered as a reference in CM strategy
deployments.

Which are the relevant aspects define a good
(or poor) technical architecture?

Figure 17. Best practice cost distribution for competency management
consult

33%

internal
29%

SW
22%

HW
16%

Concept % Ratio

Consultancy & Engineering 33% 1,50

Product Licences 22% 1,00

Hardware 16% 0,73

Figure 18. OS Environments in CM Implementations (2005)

33%

43%

4%

8%
2%

10%

Unix
Windows
OS/400
Main Frame
Linux
Others

2412

A Survey of Competency Management Software Information Systems

• Quickly and flexibly.
• Facilitating the introduction of new perfor-

mance and scalability mechanisms.
• In a true multi-tiered approach, using com-

prehensive standards-based interfaces:

The client side is basically a user terminal
(Web browser, PDA, etc.). Technologies: HTML,
JavaScript, WML, Servlets, JSP, and so forth.

The Server side consist on the Server elements,
as a Web or WAP Server, that send information
to the User Terminal.

The business logic is the core application
intelligence that makes the CM logic possible
(application server with Java support, EJBs,
servlets, etc.).

Data Logic is responsible for data storage and
transactional services (DBMS, etc.).

Enhancing SW reusability and development
skills specialisation, using component-based
software.

competency management market
products

Product solutions vendors that automate CM
processes fall in one of these four categories:

•	 Large integrated ERP suites: These vendors
dominate the high-end HCMS market; also
competitive in SME Markets. Organizations
select these solutions usually to automate
more than one corporate business processes
(in the areas of financials, CRM, HC manage-
ment, e-procurement, etc.). Even recognising
that these vendors do not always deliver the
best solution for any given particular func-
tion, their value proposition is founded on
process integration and proven, reliable
comprehensive process automation. Most
market CM strategy deployment demand
comes from large-size organizations to an
extent that in the coming years, CM may be
considered the most relevant business driver
that will facilitate HCM market growth.

•	 SME integrated ERP suites: Similar func-
tional scope to previous high-end ERPs with
simpler parametrization options, much faster
to deploy, tailored to SME-type organiza-
tions.

•	 Standalone HCMS: Large- and SME-driven
solutions from vendors exclusively dedicated
to payroll & HCMS, not providing support
for other corporate business processes (as

mobile
employee

connected
employee

thin
client

Handheld
client

intranet/internetintranet/internet

Wireless
client

CM Application

Employee DB

Figure 19. Deliver Comprehensive E-Business functionality, across and between Multiple cChannels

 2413

A Survey of Competency Management Software Information Systems

supply chain management, CRM, financials,
etc).

•	 Standalone CM solutions: They automate
CM processes, sometimes in combination
with performance management and eventu-
ally providing support for some other related
CM process, in a non-comprehensive, inte-
grated way.

The following part of this chapter shows for
each CM product-type category previously indi-
cated, IT- and business-relevant vendor informa-
tion, evaluating their product offering according
to the next proposed evaluation method. Some
additional markets are based on four evaluation
criteria, as indicated hereafter:

cOncluSiOnS AnD OutlOOK

Following are the most relevant market conclu-
sions and outlook uncovered in this survey:

•	 HCM and CM application market scope is
strong, clearly on the rise. Organizations
have to adapt fast to changing, unstable
business conditions in a way that CM paper
and spreadsheet manual-based processes
will have to evolve to a much more flexible,
automated employee management-type
practice.

• Market preference for ERP-integrated CM
solutions instead of best-of-breed standalone
products will continue in the future. ERP

integration ensures that HR and business
managers can efficiently align, measure, and
automate individual employee competencies
and organizational goals and objectives.

• 	 In this context, IT managers estimate that
the integration value provided by global
ERP suites far exceeds the benefit of using
best-of-breed solutions for each HC busi-
ness function. The e-business technological
transformation and the processes model
depicted in this survey clearly show the
inter processes and software dependencies
required in CM deployment strategies.

•	 And again, the fact that the trend has been
widely adopted creates additional confi-
dence in large vendors’ ability to deliver
HC-proven process automation. This loop
affects CM implementations, where process
automation is critical. In some particular CM
tasks (like competency assessment), process
efficiency, when adopting a stand-alone op-
tion, increases fairly moderately compared
to the asset they replace. This situation also
increases pressure in IT managers to adopt
the comprehensive, integrated ERP suite
way.

•	 Large, multinational companies require
comprehensive multi-region, often cen-
tralized, HC deployment solutions. Global
processes and local country localizations
makes the three large ERP solutions analysed
in this survey the strongest CM option in
the future for this type of organization, thus

Figure 20. CM Development Architecture

Business Logic
(Legacy Systems)

Presentation
(Client Side)

Presentation
(Server Side)

Business Logic
(Web Technologies) Data Logic

2414

A Survey of Competency Management Software Information Systems

displacing fragmented solutions.
•	 Small and mid-size organizations (less than

4,000 employees) and large, single-country
type installations have many more options.
According to required functionality, together
with associated licence and engineering
costs, they may select in the high-end or
mid-market type of products, thus accessing
a wider menu of options.

•	 Hosting and outsourcing HRMS services
keep growing at a fast pace, particularly in
small- to medium-size market companies.
This trend represents an intelligent busi-
ness option for small best-of-breed vendors,
having experienced competency assessment
experts and staff (apart from being acquired
or just disappearing). Some product vendors,
apart from the traditional, large-size HRMS
service providers (i.e., ADP), are success-
fully, adopting this delivery model(i.e.,
Ultimate Software, Ceridian, etc.).

referenceS

Alle, V. (1997). The knowledge evolution: Ex-
panding organizational intelligence. Boston:
Butterworth-Heinemann.

Benson, S., & Standing, C. (2001). Effective
knowledge management: Knowledge, thinking
and the personal corporate knowledge nexus
problem. Information Systems Frontiers, 3(2),
227-238.

Blain, J., & Dodd, B. (ASAP Internacional Group)
(1999). Administering SAP R/3: The HR-human
resources module, QUE. Indiana.

Boxall, P., & Purcell, J. (2003). Strategy and hu-
man resource management. New York: Palgrave
Macmillan.

Curtis, B., Hefley, W. E., & Miller, S. A. (2001).
People capability maturity model (P-CMM),
(Version 2.0) (Tech. Rep. No. CMU/SEI-2001-

Table 11.

Evaluation Criteria Key Factors Description

COMPANY

Financial stability
strategy and vision
Partners and alliances
Research and development
Professional services

Vendors with high
potential to survive in
the IT market and strong
product maintenance and
support are highly rated.

MARKET PRESENCE
Product current and previous versions
References
CM functionality references

Evaluate product stability,
installed base and market
credentials in previous
implementations.

FUNCTIONALITY

Competencies definition
Competencies diagnosis
Competencies development
Competencies monitoring
Rest of CM-, HC-related processes

Matching of vendor
product standard
functionality vs.
organizational
requirements in current
needs and expected
required support in the
future.

PRODUCT
TECHNOLOGY

Technical architecture
E-business support
Flexibility
Integration facilities with required
organizations Applications
Security compliance

Although e-business
engineering practices
are widely used, product
architecture, scalability,
and configuration remain
an important differentiator.

 2415

A Survey of Competency Management Software Information Systems

Ev
al

ua
tio

n
C

rit
er

ia
C

on
si

de
ra

tio
ns

C
O

M
PA

N
Y

SA
P

A
G

 (W
al

do
rf

, G
er

m
an

y)
 is

 th
e

w
or

ld
’s

 th
ird

-la
rg

es
t i

nd
ep

en
de

nt
 S

W
 c

om
pa

ny
, d

ev
ot

ed
 to

 e
nt

er
pr

is
e

m
an

ag
em

en
t,

an
d

is
 th

e
w

or
ld

’s
 le

ad
in

g
ER

P
ve

nd
or

. M
or

e
th

an
 2

8,
00

0
cl

ie
nt

s,
1,

50
0

pa
rtn

er
s,

an
d

34
,0

00
 e

m
pl

oy
ee

s w
ith

 lo
ca

l s
up

po
rt

in
 m

or
e

th
an

 5
0

co
un

tri
es

. W
or

ld
’s

 le
ad

in
g

ve
nd

or
 in

 c
om

bi
ne

d
ad

m
in

is
tra

tio
n

an
d

H
C

 m
an

ag
em

en
t,

w
ith

 a
 6

50
 M

 €
 y

ea
r r

ev
en

ue
 (2

00
4)

, s
ec

on
d

in
 H

C
 m

an
ag

em
en

t
(5

60
 M

 €
),

cl
os

e
be

hi
nd

 P
eo

pl
eS

of
t,

al
th

ou
gh

 N
o.

 1
 in

 E
ur

op
e.

M
A

R
K

ET
 P

R
ES

EN
C

E

SA
P

st
ar

te
d

in
 th

e
19

70
s w

ith
 th

e
fir

st
 m

ar
ke

t p
ro

du
ct

 to
 a

ut
om

at
e

fin
an

ci
al

 a
pp

lic
at

io
ns

 (R
/1

).
Ev

ol
ut

io
n

fr
om

 th
e

fir
st

 R
/1

 in
st

al
la

tio
ns

 to
 th

e
pr

es
en

t’s
 c

om
pr

eh
en

si
ve

 c
or

po
ra

te
 p

ro
ce

ss
es

 (fi
na

nc
ia

ls
, H

C
M

S,

C
R

M
, S

C
M

, e
-p

ro
cu

re
m

en
t,

bu
si

ne
ss

 w
ar

eh
ou

se
, p

or
ta

ls
, e

tc
.),

 a
pp

lic
at

io
ns

 u
nd

er
 R

/3
, i

n
w

hi
ch

 H
C

 a
nd

C

M
 so

lu
tio

ns
 a

re
 in

te
gr

at
ed

, i
s a

 h
is

to
ry

 o
f s

ou
nd

 e
vo

lu
tio

n,
 in

co
rp

or
at

in
g

w
or

ld
w

id
e

pr
oc

es
s e

xc
el

le
nc

e
an

d
re

al
 c

us
to

m
er

 m
ig

ra
tio

n
su

pp
or

t i
n

an
 a

ll-
ne

w
 p

ro
du

ct
 v

er
si

on
 (c

ur
re

nt
ly

, o
nc

e
a

ye
ar

).

FU
N

C
TI

O
N

A
LI

TY

A
ll

C
M

-r
el

at
ed

 p
ro

ce
ss

es
 id

en
tifi

ed
 in

 th
is

 su
rv

ey
 a

re
 in

cl
ud

ed
 in

 th
e

in
te

gr
at

ed
, S

A
P

R
/3

 S
ol

ut
io

n.
 It

s
in

te
rn

at
io

na
l f

oc
us

 h
as

 e
ns

ur
ed

 e
xt

en
si

ve
 lo

ca
l r

eg
ul

at
or

y
w

or
ld

w
id

e
su

pp
or

t f
or

 a
dm

in
is

tra
tiv

e
fu

nc
tio

ns

(i.
e.

, p
ay

ro
ll)

. S
om

e
pr

oc
es

se
s r

em
ai

n
rig

id
 to

 im
pl

em
en

t (
co

m
pe

ns
at

io
n,

 b
en

efi
ts

) c
om

pa
re

d
w

ith
 b

es
t-

of
-b

re
ed

 so
lu

tio
ns

, b
ut

 o
ve

ra
ll

C
M

 a
ss

oc
ia

te
d

fu
nc

tio
na

lit
y

ra
tin

g
is

 v
er

y
go

od
.

PR
O

D
U

C
T

TE
C

H
N

O
LO

G
Y

SA
P

N
et

W
ea

ve
r’s

 a
rc

hi
te

ct
ur

al
 d

es
ig

n
co

m
es

 fr
om

 a
 ri

gi
d

cl
ie

nt
-s

er
ve

r M
od

el
, s

up
po

rte
d

on
 a

 v
en

do
r’s

pr

op
rie

ta
ry

 e
nv

iro
nm

en
t (

A
B

A
P)

.
Pr

od
uc

t e
vo

lu
tio

n
in

 th
e

la
st

 th
re

e
ye

ar
s o

ffe
rs

 a
 re

as
on

ab
le

 Ja
va

 su
pp

or
t a

nd
 in

te
ro

pe
ra

bi
lit

y
w

ith
 .N

ET

an
d

IB
M

 W
eb

Sp
he

re
 (J

2E
E)

. D
ev

el
op

m
en

t,
de

pl
oy

m
en

t a
nd

 e
xe

cu
tio

n
en

vi
ro

nm
en

ts
 ru

n
on

 it
s o

w
n

SA
P

W
eb

 A
pp

lic
at

io
n

Se
rv

er
 (W

A
S)

, p
ro

vi
di

ng
 c

om
bi

ne
d

A
B

A
P,

 J2
EE

, a
nd

 W
eb

 se
rv

ic
es

 su
pp

or
t.

Table 12. Large Integrated ERP Suites Software Products
SAP AG

2416

A Survey of Competency Management Software Information Systems

PeopleSoft
Ev

al
ua

tio
n

C
rit

er
ia

C
on

si
de

ra
tio

ns

C
O

M
PA

N
Y

A
cq

ui
re

d
by

 O
ra

cl
e

in
 2

00
5,

 w
or

ld
’s

 se
co

nd
-la

rg
es

t i
nd

ep
en

de
nt

 S
W

 c
om

pa
ny

 (S
ee

 O
ra

cl
e,

 n
ex

t c
om

pa
ny

).

M
A

R
K

ET
 P

R
ES

EN
C

E

Pe
op

le
So

ft’
s r

oo
ts

 w
ith

in
 th

e
en

te
rp

ris
e

m
an

ag
em

en
t b

us
in

es
s a

re
 in

 H
R

, t
he

n
ex

te
nd

ed
 to

 fi
na

nc
ia

ls
,

SC
M

, C
R

M
, a

nd
 e

-c
om

m
er

ce
 a

pp
lic

at
io

ns
. L

ea
de

r i
n

th
e

U
S,

 fa
r b

eh
in

d
in

 E
ur

op
ea

n
sa

le
s d

ue
 to

 S
A

P’
s

do
m

in
an

ce
 a

nd
 la

te
ne

ss
 in

 in
co

rp
or

at
in

g
co

un
try

-r
eq

ui
re

d
re

gu
la

tio
ns

 in
 H

H
R

R
 a

dm
in

is
tra

tiv
e

an
d

pa
yr

ol
l

pr
oc

es
se

s i
n

so
m

e
co

un
tri

es
.

FU
N

C
TI

O
N

A
LI

TY

Pe
op

le
So

ft
En

te
rp

ris
e

su
ite

 r
ep

re
se

nt
s t

he
 m

os
t a

dv
an

ce
d,

 in
te

gr
at

ed
 p

ro
ce

ss
 a

ut
om

at
io

n
so

lu
tio

n
fo

r
H

C
 m

an
ag

em
en

t o
n

th
e

m
ar

ke
t.

La
st

 p
ro

du
ct

 v
er

si
on

s h
av

e
in

tro
du

ce
d

en
ha

nc
em

en
ts

 in
 C

M
 m

an
ag

em
en

t
an

d
w

or
kf

or
ce

 a
na

ly
tic

s,
in

te
gr

at
in

g
fin

an
ci

al
, t

ra
ns

ac
tio

na
l H

R
, a

nd
 e

xt
er

na
l m

ar
ke

t d
at

a
to

 p
ro

vi
de

st

ra
te

gi
c

pe
rf

or
m

an
ce

 m
an

ag
em

en
t.

W
or

kf
or

ce
 re

w
ar

ds
 m

an
ag

es
 c

om
pe

ns
at

io
n

an
d

re
te

nt
io

n
po

lic
ie

s.
Pe

op
le

So
ft’

s o
w

n
B

al
an

ce
 S

co
re

ca
rd

 is
 e

ffe
ct

iv
el

y
us

ed
 to

 m
an

ag
e

H
R

 e
ffe

ct
iv

en
es

s u
nd

er
 w

or
kf

or
ce

sc

or
ec

ar
d

m
od

ul
e.

PR
O

D
U

C
T

TE
C

H
N

O
LO

G
Y

Pe
op

le
So

ft
ar

ch
ite

ct
ur

e
is

 a
 v

er
y

fle
xi

bl
e

co
m

bi
na

tio
n

of
 d

at
ab

as
e,

 a
pp

lic
at

io
n,

 W
eb

, a
nd

 fi
le

 S
er

ve
r,

fu
lly

e-

bu
si

ne
ss

 c
om

pl
ia

nt
. T

he
 P

eo
pl

eT
oo

ls
 A

pp
lic

at
io

n
Se

rv
er

 ru
ns

 th
e

bu
si

ne
ss

 lo
gi

c
an

d
fa

ci
lit

at
es

 a
cc

es
s t

o
m

os
t c

lie
nt

 ty
pe

s,
us

in
g

th
e

In
te

rn
et

 a
rc

hi
te

ct
ur

e
an

d
al

lo
w

in
g

in
te

rf
ac

es
 to

 v
is

ua
l b

as
ic

-v
is

ua
l C

-b
as

ed
 u

se
r

pr
og

ra
m

s.

Table 12. Continued

 2417

A Survey of Competency Management Software Information Systems

Oracle

Ev
al

ua
tio

n
C

rit
er

ia
C

on
si

de
ra

tio
ns

C
O

M
PA

N
Y

O
ra

cl
e

is
 th

e
w

or
ld

’s
 se

co
nd

-la
rg

es
t i

nd
ep

en
de

nt
 S

W
 c

om
pa

ny
. T

he
 c

om
bi

ne
d

O
ra

cl
e

+
Pe

op
le

So
ft

+
JD

Ed
w

ar
ds

 (p
re

vi
ou

sl
y

ac
qu

ire
d

by
 P

eo
pl

eS
of

t)
ha

s m
ad

e
O

ra
cl

e
th

e
w

or
ld

’s
 se

co
nd

-la
rg

es
t b

us
in

es
s

ap
pl

ic
at

io
n

ve
nd

or
 (b

eh
in

d
SA

P)
 w

ith
 a

n
es

tim
at

ed
 a

nn
ua

l r
ev

en
ue

 (fi
sc

al
 y

ea
r 2

00
4)

 in
 th

is
 b

us
in

es
s

of
 4

50
 M

 €
, a

nd
 fi

rs
t v

en
do

r i
n

H
C

 a
nd

 c
om

pe
te

nc
y

m
an

ag
em

en
t-r

el
at

ed
 so

lu
tio

ns
, l

ar
ge

ly
 b

ec
au

se
 o

f
Pe

op
le

So
ft

en
te

rp
ris

e
m

ar
ke

t s
ha

re
. E

xt
en

si
ve

 g
lo

ba
l p

ar
tn

er
 su

pp
or

t a
nd

 c
ou

nt
ry

-a
ss

ig
ne

d
se

rv
ic

es
 in

m

os
t l

oc
at

io
ns

.

M
A

R
K

ET
 P

R
ES

EN
C

E
O

ra
cl

e’
s H

C
M

S
ha

s 3
,0

00
-p

lu
s i

ns
ta

lla
tio

ns
 in

 m
or

e
th

an
 8

0
co

un
tri

es
.

FU
N

C
TI

O
N

A
LI

TY
Fu

ll
H

C
M

S
pr

oc
es

s s
up

po
rt

as
 p

ar
t o

f e
-b

us
in

es
s s

ui
te

, i
nt

eg
ra

te
d

su
ite

; i
nc

lu
de

s a
ll

re
qu

ire
d

fu
nc

tio
na

lit
y

to
 d

ep
lo

y
C

M
-r

el
at

ed
 st

ra
te

gi
es

. I
ts

 D
ai

ly
 B

us
in

es
s I

nt
el

lig
en

ce
 su

pp
or

ts
 e

xc
el

le
nt

 H
C

 a
na

ly
tic

al
 se

rv
ic

e.

Pe
rf

or
m

an
ce

, c
om

pe
ns

at
io

n,
 a

nd
 e

-le
ar

ni
ng

 m
an

ag
em

en
t a

re
 e

xc
el

le
nt

 a
nd

 e
ffi

ci
en

t C
M

-r
el

at
ed

 m
od

ul
es

.

PR
O

D
U

C
T

TE
C

H
N

O
LO

G
Y

O
ra

cl
e

ha
s n

ow
 th

re
e

in
de

pe
nd

en
t s

ui
te

s t
o

m
an

ag
e:

 it
s o

rig
in

al
 E

R
P,

 P
eo

pl
eS

of
t E

nt
er

pr
is

e,
 a

nd
 JD

Ed

w
ar

ds
’ E

nt
er

pr
is

e
O

ne
/W

or
ld

. T
he

 b
ig

ge
st

 c
ha

lle
ng

e
fo

r O
ra

cl
e

is
 to

 e
ns

ur
e

a
pr

od
uc

t s
tra

te
gy

th

at
 c

om
bi

ne
s s

tre
ng

th
s f

ro
m

 a
ll

di
ffe

re
nt

 p
ro

du
ct

s,
de

liv
er

in
g

cu
st

om
er

s a
 re

lia
bl

e
an

d
af

fo
rd

ab
le

ev

ol
ut

io
na

ry
 ro

ad
m

ap
 fr

om
 it

s c
ur

re
nt

 p
ro

du
ct

s’
di

ve
rs

ity
. D

ur
in

g
th

e
ne

xt
 tw

o
to

 th
re

e
ye

ar
s,

it
is

ex

pe
ct

ed
 th

at
 F

us
io

n
O

ra
cl

e’
s a

pp
lic

at
io

ns
 w

ill
 in

co
rp

or
at

e
m

an
y

of
 th

e
cu

rr
en

t f
ea

tu
re

s f
ro

m
 P

eo
pl

eS
of

t
En

te
rp

ris
e.

Table 12. Continued

2418

A Survey of Competency Management Software Information Systems

Lawson Software

Table 12. Continued

Ev
al

ua
tio

n
C

rit
er

ia
C

on
si

de
ra

tio
ns

C
O

M
PA

N
Y

St
ar

te
d

op
er

at
io

ns
 in

 th
e

U
.S

. i
n

19
75

 in
 th

e
co

rp
or

at
e

an
al

yt
ic

s
an

d
m

an
ag

em
en

t a
pp

lic
at

io
ns

 m
ar

ke
t t

o
be

co
m

e
a

gl
ob

al
 E

R
P

so
lu

tio
n

pr
ov

id
er

, w
ith

 p
ar

tic
ul

ar
 fo

cu
s

on
 fi

na
nc

ia
ls

, H
R

, a
nd

 p
ro

cu
re

m
en

t.
Its

 b
us

in
es

s
gr

ow
th

st

ra
te

gy
 h

as
 b

ee
n

ba
se

d
on

 b
es

t-o
f-

br
ee

d
pr

od
uc

t a
cq

ui
si

tio
ns

 (A
cc

ou
nt

4,
 ij

ob
, A

rm
at

ur
e,

 e
tc

.)
an

d
m

os
t r

ec
en

tly

(J
un

e
20

05
),

In
te

nt
ia

 (S
w

ed
is

h
le

ad
in

g
SW

 c
om

pa
ny

, s
m

al
l-s

iz
e

or
ga

ni
za

tio
ns

 E
R

P
ve

nd
or

),
to

 c
re

at
e

a
3,

50
0-

em
pl

oy
ee

 c
om

pa
ny

, w
ith

 4
,0

00
 c

us
to

m
er

s
di

st
rib

ut
ed

 in
 4

0
co

un
tri

es
.

La
rg

e
U

.S
. t

ec
hn

ol
og

y
pa

rtn
er

s
lis

t b
ut

 la
ck

s
in

te
rn

at
io

na
l,

lo
ng

-te
rm

 lo
ca

l s
up

po
rt

an
d

co
ns

ul
tin

g
pa

rtn
er

s
ou

ts
id

e
U

.S
.

La
w

so
n

so
ftw

ar
e

sa
le

s
in

 H
C

- a
nd

 C
M

-r
el

at
ed

 b
us

in
es

s
re

ac
he

d
44

 M
 €

 in
 2

00
5

w
ith

 fi
na

nc
ia

l g
ro

w
th

di

ffi
cu

lti
es

 in
 la

st
 th

re
e

ye
ar

s.

M
A

R
K

ET
 P

R
ES

EN
C

E
U

nt
il

re
ce

nt
ly

, b
us

in
es

s
w

as
 fo

cu
se

d
in

 th
e

U
ni

te
d

St
at

es
, C

an
ad

a,
 a

nd
 th

e
U

.K
. m

ar
ke

ts
. O

nc
e

m
er

gi
ng

 w
ith

In

te
nt

ia
 c

on
cl

ud
es

 s
om

et
im

e
ne

xt
 y

ea
r,

m
or

e
Eu

ro
pe

an
 te

ch
ni

ca
l s

up
po

rt
m

ay
 b

e
ex

pe
ct

ed
. P

ro
du

ct
 s

ta
bi

lit
y

an
d

ro
ad

m
ap

 e
vo

lu
tio

n
ne

ed
s

to
 b

e
en

su
re

d
in

 fo
llo

w
in

g
ye

ar
s.

FU
N

C
TI

O
N

A
LI

TY

O
ff

er
s

H
R

 s
ui

te
 a

s
pa

rt
of

 L
aw

so
n.

 In
si

gh
t s

er
ie

s
ap

pl
ic

at
io

n
in

cl
ud

es
 s

om
e

C
M

-ty
pe

 fu
nc

tio
na

lit
y

w
ith

in
 it

s
pe

rs
on

ne
l a

dm
in

is
tra

tio
n

m
od

ul
e

bu
t l

ac
ks

 a
 c

om
pr

eh
en

si
ve

 C
M

 fu
nc

tio
na

lit
y

(p
oo

r p
er

fo
rm

an
ce

 m
an

ag
em

en
t,

no
 e

-le
ar

ni
ng

 p
ar

t).
 S

tro
ng

 w
or

kf
or

ce
 a

na
ly

tic
s

th
at

 c
om

pa
re

 in
te

rn
al

 m
et

ric
s

w
ith

 e
xt

er
na

l s
ou

rc
es

 (p
ro

vi
de

d
by

Sa

ra
to

ga
) i

n
ar

ea
s

su
ch

 a
s

co
m

pe
ns

at
io

n,
 s

ta
ffi

ng
, a

nd
 o

rg
an

iz
at

io
na

l e
ff

ec
tiv

en
es

s.

PR
O

D
U

C
T

TE
C

H
N

O
LO

G
Y

E-
bu

si
ne

ss
 c

om
pl

ia
nt

, W
eb

-b
as

ed
 a

rc
hi

te
ct

ur
e,

 w
ith

 in
te

re
st

in
g

so
ftw

ar
e

ex
te

ns
io

n
to

ol
s

to
 fa

ci
lit

at
e

in
te

gr
at

io
n

w
ith

 o
th

er
 a

pp
lic

at
io

ns
 (b

us
in

es
s

co
m

po
ne

nt
 in

te
gr

at
or

).

 2419

A Survey of Competency Management Software Information Systems

Table 13. SME-Integrated Suites

Ev
al

ua
tio

n
C

rit
er

ia
C

on
si

de
ra

tio
ns

C
O

M
PA

N
Y

U
.K

.-b
as

ed
 so

ftw
ar

e a
pp

lic
at

io
ns

 an
d

ou
ts

ou
rc

in
g

se
rv

ic
es

 v
en

do
r.

C
re

at
ed

 in
 1

96
9,

 h
as

 b
ec

om
e l

ea
di

ng

U
.K

. H
R

 an
d

pa
yr

ol
l s

up
pl

ie
r i

n
th

e U
.K

. t
ro

ug
h,

 sm
al

l a
nd

 le
ad

in
g

st
at

e-
of

-th
e-

ar
t c

om
pa

ni
es

 (P
ro

lo
g,

PW

A
, C

ar
aP

eo
pl

e,
 R

eb
us

 H
R

 G
ro

up
).

A
pa

rt
fr

om
 H

R
, i

nc
lu

de
s

SM
E-

dr
iv

en
, E

R
P-

ty
pe

 s
ol

ut
io

ns
 fo

r
fin

an
ci

al
s a

nd
 C

R
M

. C
ur

re
nt

ly
 em

pl
oy

s 3
,3

00
 p

eo
pl

e,
 h

av
in

g
5,

00
0-

pl
us

 S
M

E
cl

ie
nt

s,
58

 M
 €

 re
ve

nu
e

in
 H

C
 m

an
ag

em
en

t,
m

ai
nl

y
in

 th
e

U
.K

.;
pr

es
en

ce
 in

 th
e

U
.S

.,
A

us
tra

lia
, a

nd
 N

ew
 Z

ea
la

nd
.

M
A

R
K

ET
 P

R
ES

EN
C

E
In

 th
e

U
.K

.,
lo

ng
 h

is
to

ry
 o

f
su

cc
es

s
in

 S
M

E
or

ga
ni

za
tio

ns
, o

ffe
rin

g
co

m
pr

eh
en

si
ve

 p
ro

du
ct

 li
ce

nc
e

sa
le

s,
en

gi
ne

er
in

g,
 a

nd
 o

ut
so

ur
ci

ng
 se

rv
ic

es
.

FU
N

C
TI

O
N

A
LI

TY

It
of

fe
rs

 w
id

e f
un

ct
io

na
lit

y
in

 H
R

, s
ta

rti
ng

 w
ith

 b
as

ic
 p

ro
ce

ss
es

 an
d

pr
od

uc
t-b

as
ed

 au
to

m
at

io
n.

 U
su

al
ly

re

qu
ire

s e
xt

en
siv

e s
pe

ci
fic

 so
ftw

ar
e d

ev
el

op
m

en
t, p

ar
tic

ul
ar

ly
 in

 ar
ea

s a
s w

or
kf

or
ce

 m
an

ag
em

en
t. I

nc
lu

de
s

re
cr

ui
tm

en
t,

tra
in

in
g,

 b
en

efi
ts

, a
nd

 E
SS

-ty
pe

 a
cc

es
s.

M
os

t C
M

 im
pl

em
en

ta
tio

n
re

qu
ire

s p
ro

du
ct

 m
ad

e
to

 m
ea

su
re

 c
ha

ng
es

 in
te

gr
at

io
n

w
ith

 e
xt

er
na

l a
pp

lic
at

io
ns

.

PR
O

D
U

C
T

TE
C

H
N

O
LO

G
Y

O
pe

n,
 sc

al
ab

le
, W

eb
-b

as
ed

, n
on

-in
te

gr
at

ed
, s

ta
nd

ar
d

ER
P-

ty
pe

 o
f a

rc
hi

te
ct

ur
e.

Northgate Information Solutions

2420

A Survey of Competency Management Software Information Systems

Microsoft Business Solutions

Ev
al

ua
tio

n
C

rit
er

ia
C

on
si

de
ra

tio
ns

C
O

M
PA

N
Y

M
ic

ro
so

ft
is

 th
e

w
or

ld
’s

 la
rg

es
t S

W
 c

om
pa

ny
, p

ro
vi

di
ng

 p
ro

du
ct

s a
nd

 se
rv

ic
es

 to
 in

di
vi

du
al

s a
nd

or

ga
ni

za
tio

ns
 a

ro
un

d
th

e
gl

ob
e.

 It
s b

us
in

es
s s

ol
ut

io
ns

 d
iv

is
io

n
(M

ic
ro

so
ft

D
yn

am
ic

s)
 is

 a
n

in
te

rn
at

io
na

l
pr

ov
id

er
 o

f i
nt

eg
ra

te
d

so
lu

tio
ns

 fo
r m

os
t S

M
E

fu
nc

tio
na

l a
re

as
. M

ic
ro

so
ft

en
te

re
d

th
e

ER
P

m
ar

ke
t t

hr
ou

gh

ac
qu

is
iti

on
 o

f s
m

al
l l

ea
di

ng
 m

ar
ke

t v
en

do
rs

 (G
re

at
 P

la
in

s,
So

lo
m

on
 A

pp
lic

at
io

ns
, N

av
is

io
n,

 e
tc

.).
 T

he
 m

os
t

si
gn

ifi
ca

nt
 o

ne
s i

n
H

R
M

S
ar

e
N

av
is

io
n

an
d

A
xa

pt
a,

 th
e

la
te

st
 o

ne
 in

co
rp

or
at

in
g

an
 a

dv
an

ce
d

co
m

pe
te

nc
y

m
an

ag
em

en
t s

ol
ut

io
n

fo
r S

M
E.

M
A

R
K

ET
 P

R
ES

EN
C

E

M
ic

ro
so

ft’
s m

ar
ke

t s
ha

re
 in

 H
C

M
S

is
 lo

w
 (3

0
M

 €
, r

ep
re

se
nt

in
g

ju
st

 a
 m

er
e

1.
3

%
 o

f t
he

 w
or

ld
’s

 m
ar

ke
t)

in

re
la

tio
n

to
 c

om
pa

ny
 p

ro
fil

e
an

d
bu

si
ne

ss
 m

ar
ke

t s
iz

e,
 m

ai
nl

y
be

ca
us

e
of

 c
ur

re
nt

 S
M

E-
dr

iv
en

 st
ra

te
gy

, u
nt

il
no

w.
 In

 th
is

 se
gm

en
t,

im
pl

em
en

ta
tio

ns
 h

is
to

ry
 is

 c
on

si
st

en
t w

ith
 g

oo
d

cu
st

om
er

 re
fe

re
nc

es
, a

lth
ou

gh
 e

ac
h

pr
od

uc
t w

ith
in

 th
e

fa
m

ily
 (A

xa
pt

a,
 N

av
is

io
n,

 G
re

at
 P

la
in

s)
 fo

llo
w

s i
nd

iv
id

ua
l d

ev
el

op
m

en
t r

oa
d

m
ap

s.

FU
N

C
TI

O
N

A
LI

TY

M
ic

ro
so

ft
A

xa
pt

a
is

 e
as

y
to

 im
pl

em
en

t a
nd

 o
pe

ra
te

 w
ith

 in
te

gr
at

ed
 H

C
M

S
(p

lu
s fi

na
nc

ia
ls

, C
R

M
, p

ro
je

ct

m
an

ag
em

en
t,

et
c.

)
in

 S
M

E-
ty

pe
 o

rg
an

iz
at

io
ns

. E
xc

el
le

nt
 C

M
 fu

nc
tio

na
lit

y,
 d

riv
en

 to
 d

et
ec

t t
ra

in
in

g
re

qu
ire

m
en

ts
 a

m
on

g
in

di
vi

du
al

 e
m

pl
oy

ee
s,

as
 w

el
l a

s c
ar

ee
r p

la
ns

 a
nd

 o
rg

an
iz

at
io

ns
’ r

e-
st

ru
ct

ur
in

g
fu

nc
tio

ns
.

PR
O

D
U

C
T

TE
C

H
N

O
LO

G
Y

O
pe

n,
 sc

al
ab

le
 W

eb
-b

as
ed

 a
rc

hi
te

ct
ur

e
.N

ET
 a

nd
 Ja

va
, e

-b
us

in
es

s-
co

m
pl

ia
nt

 so
lu

tio
ns

.

Table 13. Continued

 2421

A Survey of Competency Management Software Information Systems

Table 14. Standalone HRMS Products
Kronos

Ev
al

ua
tio

n
C

rit
er

ia
C

on
si

de
ra

tio
ns

C
O

M
PA

N
Y

K
ro

no
s i

nc
or

po
ra

te
d

be
ga

n
op

er
at

io
ns

 in
 1

97
7

as
 a

 h
ar

dw
ar

e
tim

e-
cl

oc
k

ve
nd

or
 a

nd
 h

as
 su

cc
es

sf
ul

ly
 e

vo
lv

ed

in
to

 a
n

H
R

 p
ay

ro
ll

 a
nd

 m
an

ag
em

en
t c

om
pa

ny
, r

ea
ch

in
g

$5
19

 M
 in

 sa
le

s i
n

fis
ca

l y
ea

r 2
00

5.
 It

’s
 th

e
w

or
ld

’s

th
ir

d-
la

rg
es

t
ve

nd
or

 in
 H

C
 m

an
ag

em
en

t
(fi

rs
t n

on
-g

lo
ba

l E
R

P
pr

ov
id

er
),

ju
st

 b
eh

in
d

SA
P

an
d

O
ra

cl
e,

w

ith
 to

ta
l 2

00
4

sa
le

s o
f 2

10
M

 €
. A

bo
ut

 2
,9

00
 e

m
pl

oy
ee

s,
of

fe
rin

g
co

m
pr

eh
en

si
ve

 li
ce

nc
es

 sa
le

s,
co

ns
ul

tin
g,

im

pl
em

en
ta

tio
n

an
d

le
ar

ni
ng

 s
er

vi
ce

s
ar

ou
nd

 th
e

co
m

pa
ny

’s
 H

R
 p

ro
du

ct
s.

In
cl

ud
ed

 in
 F

or
be

s’
“2

00
 B

es
t

Sm
al

l C
om

pa
ni

es
.”

M
A

R
K

ET
 P

R
ES

EN
C

E

A
n

ex
ce

lle
nt

 r
ec

or
d

of
 c

us
to

m
er

 r
et

en
tio

n
th

ro
ug

h
se

rv
ic

e
sa

tis
fa

ct
io

n,
 c

om
bi

ne
d

w
ith

 v
is

io
na

ry
 p

ro
du

ct

ev
ol

ut
io

n
fr

om
 a

ha
rd

w
ar

e t
o

th
e m

os
t d

yn
am

ic
 so

ftw
ar

e H
C

 m
an

ag
em

en
t b

us
in

es
s,

so
m

et
im

es
 b

y
ac

qu
is

iti
on

s
(i.

e.
, A

dO
pt

, e
xc

el
le

nt
 w

or
kf

or
ce

 p
la

nn
in

g
m

od
ul

e)
. B

us
in

es
s f

oc
us

 is
 d

riv
en

 p
rim

ar
ily

 to
 th

e
U

.S
.,

an
d

so
m

e
cu

st
om

er
s a

re
 in

 C
an

ad
a

an
d

U
.K

.

FU
N

C
TI

O
N

A
LI

TY

K
ro

no
s

of
fe

rs
 a

 c
om

pr
eh

en
si

ve
 H

R
 a

dm
in

is
tra

tio
n

an
d

m
an

ag
em

en
t s

ol
ut

io
n

fo
r S

M
E

an
d

so
m

e
la

rg
e-

si
ze

or

ga
ni

za
tio

ns
, i

nc
lu

di
ng

 m
os

t r
el

ev
an

t C
M

-r
el

at
ed

 p
ro

ce
ss

es
. P

ro
ba

bl
y

th
e

m
os

t s
uc

ce
ss

fu
l W

F
m

an
ag

em
en

t
so

lu
tio

n
in

 th
e U

.S
. m

ar
ke

t.
Its

 w
or

kf
or

ce
 ce

nt
ra

l s
ui

te
 in

cl
ud

es
 co

re
 C

M
 fu

nc
tio

na
lit

y.
 F

oc
us

 in
 al

ig
ni

ng
 sk

ill
s

an
d

co
m

pe
te

nc
ie

s
to

 c
or

po
ra

te
 o

bj
ec

tiv
es

, t
ra

ck
in

g
sk

ill
s,

an
d

ce
rti

fic
at

io
ns

, a
nd

 c
om

pe
te

nc
y

en
ha

nc
em

en
ts

tro

ug
h

tra
in

in
g

in
iti

at
iv

es
.

PR
O

D
U

C
T

TE
C

H
N

O
LO

G
Y

O
pe

n,
 s

ca
la

bl
e

W
eb

-b
as

ed
 a

rc
hi

te
ct

ur
e.

 D
ep

lo
y

Ja
va

 a
pp

le
ts

 to
 fa

ci
lit

at
e

dy
na

m
ic

 u
se

r i
nt

er
fa

ce
s,

as
 w

el
l a

s
H

TM
L

ac
ce

ss
.

2422

A Survey of Competency Management Software Information Systems

Table 14. Continued
Meta4

Ev
al

ua
tio

n
C

rit
er

ia
C

on
si

de
ra

tio
ns

C
O

M
PA

N
Y

Sp
an

is
h-

ba
se

d
co

m
pa

ny
, f

ou
nd

ed
 in

 1
99

1,
 a

cq
ui

re
d

by
 A

do
ni

x
in

 N
ov

em
be

r
20

04
, s

tre
ng

th
en

in
g

pr
ev

io
us

 c
om

pa
ny

’s
 fi

na
nc

ia
l s

itu
at

io
n

an
d

cl
ea

rin
g

fu
tu

re

m
ar

ke
t d

ev
el

op
m

en
t.

In
 N

ov
em

be
r 2

00
5,

 th
e

Sa
ge

 G
ro

up
 P

lc
 a

nn
ou

nc
ed

 th
e

ac
qu

is
iti

on
 o

f A
do

ni
x

un
de

r a
n

op
er

at
io

n
th

at
 e

xp
lic

itl
y

ex
cl

ud
es

 th
e

bu
si

ne
ss

 o
f

M
et

a4
 (l

ea
vi

ng
 c

on
tro

l o
f F

re
nc

h
en

tre
pr

en
eu

r E
m

ile
 H

am
ou

).

M
A

R
K

ET
 P

R
ES

EN
C

E

La
rg

e
an

d
m

ed
iu

m
-s

iz
e

ex
te

ns
iv

e
cu

st
om

er
 li

st
 (1

00
0-

pl
us

) i
n

20
 c

ou
nt

rie
s.

Le
ad

in
g

H
C

, C
M

 m
ar

ke
t p

ro
du

ct
 in

 S
pa

in
 w

ith
 a

 st
ro

ng
 c

om
pe

tit
iv

e
po

si
tio

n
in

 o
th

er
 E

ur
op

ea
n

m
ar

ke
ts

 (F
ra

nc
e,

 P
or

tu
ga

l,
U

.K
.)

an
d

So
ut

h
A

m
er

ic
a,

 w
ith

im

pl
em

en
ta

tio
ns

 in
 la

rg
e

as
 w

el
l a

s m
id

-s
iz

e
or

ga
ni

za
tio

ns
. I

n
O

ct
ob

er
 2

00
5,

M

et
a4

 re
op

en
ed

 o
pe

ra
tio

ns
 in

 th
e

U
.S

.,
su

pp
or

tin
g

its
 n

ew
 o

pe
ra

tio
ns

 fo
r t

he

A
m

er
ic

as
 in

 M
ia

m
i,

th
ro

ug
h

pa
rtn

er
sh

ip
 w

ith
 in

de
pe

nd
en

t H
R

 c
on

su
lta

nt
 V

is
io

n
3.

 E
xt

en
si

ve
 te

ch
no

lo
gy

, c
on

su
lta

nc
y,

 a
nd

 se
rv

ic
e,

 o
ut

so
ur

ci
ng

 p
ro

vi
de

rs
 in

op

er
at

io
na

l M
ar

ke
ts

.

FU
N

C
TI

O
N

A
LI

TY

M
et

a4
 P

eo
pl

eN
et

/M
in

dS
et

 su
ite

 h
as

 a
n

ex
ce

lle
nt

 a
dm

in
is

tra
tiv

e
pr

oc
es

s
fu

nc
tio

na
lit

y,
 e

xc
ep

t i
n

be
ne

fit
s a

dm
in

is
tra

tio
n,

 a
nd

 a
 p

ow
er

fu
l c

om
pe

te
nc

y
m

an
ag

em
en

t s
tra

te
gy

 a
nd

 se
t o

f t
oo

ls
, p

ar
tic

ul
ar

ly
 c

om
pe

te
nc

y
as

se
ss

m
en

t a
nd

pe

rf
or

m
an

ce
 m

an
ag

em
en

t.
Fu

ll
C

M
-r

el
at

ed
 p

ro
ce

ss
es

 a
ut

om
at

io
n,

 in
cl

ud
in

g
em

pl
oy

ee
/m

an
ag

er
 se

lf-
se

rv
ic

e
an

d
co

m
pr

eh
en

si
ve

 in
te

gr
at

ed
 k

no
w

le
dg

e
m

an
ag

em
en

t e
nv

iro
nm

en
t.

PR
O

D
U

C
T

TE
C

H
N

O
LO

G
Y

St
at

e-
of

-th
e-

ar
t e

-b
us

in
es

s t
ec

hn
ol

og
y

de
si

gn
 a

nd
 im

pl
em

en
ta

tio
n.

 3
-T

ea
rs

co

m
po

ne
nt

s-
ba

se
d

ar
ch

ite
ct

ur
e:

 S
up

po
rts

 p
ur

e
H

TM
L,

 Ja
va

 (a
pp

le
ts

),
an

d
W

in
do

w
s (

A
ct

iv
e

X
) C

lie
nt

s,
ap

pl
ic

at
io

n
se

rv
er

 a
nd

 D
B

 S
er

ve
r.

 2423

A Survey of Competency Management Software Information Systems

Ultimate Software

Ev
al

ua
tio

n
C

rit
er

ia
C

on
si

de
ra

tio
ns

C
O

M
PA

N
Y

U
lti

m
at

e
So

ftw
ar

e
is

 a
 su

cc
es

sf
ul

 p
ay

ro
ll

an
d

H
C

M
S

de
di

ca
te

d
co

m
pa

ny
, e

xp
an

di
ng

 it
s b

us
in

es
s f

ro
m

 a

m
er

e
lic

en
ce

 sa
le

s v
en

do
r t

o
an

 o
ut

so
ur

ci
ng

 se
rv

ic
e

pr
ov

id
er

, r
ea

ch
in

g
37

 M
 €

 in
 fi

sc
al

 y
ea

r 2
00

5
in

 H
C

m

an
ag

em
en

t s
al

es
. C

ur
re

nt
ly

 e
m

pl
oy

s 5
00

 p
ro

fe
ss

io
na

ls
 a

nd
 h

as
 a

bo
ut

 1
,2

00
 c

us
to

m
er

s,
m

ai
nl

y
in

 th
e

U
S.

H

R
O

A
 (H

um
an

 R
es

ou
rc

es
 O

ut
so

ur
ci

ng
 A

ss
oc

ia
tio

n)
 2

00
5

Pr
ov

id
er

 o
f t

he
 Y

ea
r.

M
A

R
K

ET
 P

R
ES

EN
C

E
A

n
ex

ce
lle

nt
 re

co
rd

 o
f c

us
to

m
er

 sa
tis

fa
ct

io
n,

 c
om

bi
ne

d
w

ith
 v

is
io

na
ry

 p
ro

du
ct

 to
 se

rv
ic

e
bu

si
ne

ss
 o

rie
nt

at
io

n.

B
us

in
es

s f
oc

us
 is

 d
riv

en
 p

rim
ar

ily
 to

 th
e

U
.S

.,
an

d
so

m
e

cu
st

om
er

s a
re

 fr
om

 C
an

ad
a

an
d

U
.K

.

FU
N

C
TI

O
N

A
LI

TY
Its

 U
lti

pr
o

W
or

kf
or

ce
 M

an
ag

em
en

t
Su

ite
 in

co
rp

or
at

es
 m

os
t r

eq
ui

re
d

C
M

 r
eq

ui
re

d
pr

oc
es

s a
ut

om
at

io
n

fu
nc

tio
ns

.

PR
O

D
U

C
T

TE
C

H
N

O
LO

G
Y

O
pe

n,
 sc

al
ab

le
 W

eb
-b

as
ed

 a
rc

hi
te

ct
ur

e.
 E

ar
ne

d
ce

rti
fic

at
io

n
fr

om
 H

R
-X

M
L

 C
on

so
rti

um
 in

 2
00

3,
 c

re
at

in
g

H
R

-
sp

ec
ifi

c
X

M
L

vo
ca

bu
la

rie
s.

Table 14. Continued

2424

A Survey of Competency Management Software Information Systems

Table 15. Standalone CM Products
Mindsolve

Ev
al

ua
tio

n
C

rit
er

ia
C

on
si

de
ra

tio
ns

C
O

M
PA

N
Y

Fa
st

-g
ro

w
in

g
co

m
pa

ny
 c

re
at

ed
 in

 1
99

4,
 e

xc
lu

si
ve

ly
 d

ed
ic

at
ed

 to
 th

e
em

pl
oy

ee
 p

er
fo

rm
an

ce
 m

an
ag

em
en

t
bu

si
ne

ss
, l

ic
en

si
ng

 it
s

M
in

d
So

lv
e

V
is

ua
l P

ro
du

ct
 a

nd
 p

ro
vi

di
ng

 a
ss

oc
ia

te
d

re
qu

ire
d

co
ns

ul
ta

nc
y

se
rv

ic
es

.
La

st
 y

ea
r b

us
in

es
s r

ev
en

ue
 e

st
im

at
ed

 a
t 1

3
M

 €
.

M
A

R
K

ET

PR
ES

EN
C

E

N
ic

he
 p

la
ye

r,
w

ith
 co

ns
ol

id
at

ed
 H

R
 ex

pe
rti

se
 su

pp
or

t t
o

de
pl

oy
 P

M
 fu

nc
tio

na
lit

y
in

 h
et

er
og

en
eo

us
 U

.S
.-b

as
ed

(s

om
e o

ut
si

de
 U

S)
 m

ed
iu

m
- a

nd
 la

rg
e-

si
ze

 or
ga

ni
za

tio
ns

. P
ro

du
ct

 li
ce

nc
e s

al
es

 an
d M

V
P

Ex
pr

es
s s

ui
te

, t
ai

lo
re

d
fo

r o
ut

so
ur

ci
ng

, e
as

y
to

 d
ep

lo
y

W
eb

-b
as

ed
 so

lu
tio

n.

FU
N

C
TI

O
N

A
LI

TY

In
cl

ud
es

 en
d-

to
-e

nd
 p

er
fo

rm
an

ce
 ap

pr
ai

sa
ls

, 3
60

-d
eg

re
e p

er
fo

rm
an

ce
 as

se
ss

m
en

t,
co

m
pe

te
nc

y
al

ig
nm

en
t a

nd

ac
co

un
ta

bi
lit

y,
 a

nd
 ta

le
nt

 a
nd

 d
ev

el
op

m
en

t p
la

nn
in

g.
 S

ki
lls

 a
nd

 c
om

pe
te

nc
y

m
an

ag
em

en
t s

up
po

rt,
 re

qu
ire

s
in

te
rf

ac
es

 w
ith

 o
th

er
 e

xt
er

na
l t

oo
ls

 f
or

 f
ul

l C
M

 s
tra

te
gy

 d
ep

lo
ym

en
t (

e-
le

ar
ni

ng
, w

or
kf

or
ce

 m
an

ag
em

en
t,

et
c.

).

PR
O

D
U

C
T

TE
C

H
N

O
LO

G
Y

O
pe

n,
 s

ca
la

bl
e

W
eb

-b
as

ed
 a

rc
hi

te
ct

ur
e.

 I
t u

se
s

pr
op

rie
ta

ry
 te

ch
no

lo
gy

 (
M

in
dS

ol
ve

’s
 V

is
ua

l P
ro

fil
er

™
)

of

un
iq

ue
 dr

ag
-a

nd
-d

ro
p s

ys
te

m
 to

 de
liv

er
 ac

cu
ra

te
, tr

us
ta

bl
e i

nf
or

m
at

io
n.

 V
is

ua
l P

ro
fil

er
’s

 ab
ili

ty
 to

 co
m

pa
ra

tiv
el

y
di

sp
la

y
m

ul
tip

le
 e

m
pl

oy
ee

s
on

 a
 s

in
gl

e
sc

re
en

 p
ro

du
ce

s
ra

tin
gs

 th
at

 b
et

te
r d

iff
er

en
tia

te
 s

up
er

io
r,

go
od

, a
nd

un

ac
ce

pt
ab

le
 p

er
fo

rm
er

s.

 2425

A Survey of Competency Management Software Information Systems

Geo Learning

Ev
al

ua
tio

n
C

rit
er

ia
C

on
si

de
ra

tio
ns

C
O

M
PA

N
Y

G
eo

 L
ea

rn
in

g i
s a

n S
M

E-
ty

pe
 co

m
pa

ny
, U

.S
. b

as
ed

, d
ed

ic
at

ed
 to

 e-
le

ar
ni

ng
 an

d a
ss

oc
ia

te
d e

du
ca

tio
na

l a
ct

iv
iti

es
.

It
se

lls
 le

ar
ni

ng
 p

ro
du

ct
s (

LM
S,

 au
th

or
in

g
to

ol
s,

et
c.

) a
nd

 o
th

er
 st

an
d-

al
on

e S
W

 p
ro

du
ct

s,
as

 it
s c

om
pe

te
nc

y p
lu

s
C

M
 to

ol
. S

ta
rte

d
bu

si
ne

ss
 in

 2
00

0;
 la

st
 3

 y
ea

rs
, a

nn
ua

l g
ro

w
th

 ra
te

 o
f 1

25
%

; h
as

 m
or

e t
ha

n
30

0
SM

E-
ty

pe
 cl

ie
nt

s,
m

ai
nl

y
in

 g
ov

er
nm

en
t a

nd
 fi

na
nc

ia
l s

er
vi

ce
s.

M
A

R
K

ET
 P

R
ES

EN
C

E
G

oo
d

re
co

rd
 o

f c
us

to
m

er
 b

as
e.

 W
or

ks
 w

ith
 sm

al
l r

es
el

le
r a

nd
 sy

st
em

s i
nt

eg
ra

to
rs

 p
ar

tn
er

s.

FU
N

C
TI

O
N

A
LI

TY

Ex
xc

ee
d

co
m

pe
te

nc
y

pl
us

 i
s

a
st

an
d-

al
on

e
C

M
 p

ro
du

ct
 t

ha
t

in
cl

ud
es

 c
om

pe
te

nc
y

m
od

el
in

g
(u

si
ng

 p
ro

fil
es

m

at
ch

in
g

jo
bs

, p
ro

je
ct

s,
et

c.
),

ca
re

er
 m

an
ag

em
en

t (
jo

b
pr

ofi
le

s m
at

ch
in

g
em

pl
oy

ee
’s

 c
om

pe
te

nc
ie

s)
, i

nd
iv

id
ua

l
de

ve
lo

pm
en

t p
la

nn
in

g
(b

as
ed

 o
n

co
m

pe
te

nc
y

ga
ps

, a
ss

ig
ni

ng
 le

ar
ni

ng
 o

bj
ec

ts
, i

m
po

rte
d

fr
om

 e
xt

er
na

l L
M

S)
,

an
d

co
m

pr
eh

en
si

ve
 3

60
 c

om
pe

te
nc

y
as

se
ss

m
en

t p
ro

ce
ss

.
Th

e f
ou

nd
at

io
n

of
 E

xx
ce

ed
 fu

nc
tio

na
lit

y
is

 b
as

ed
 u

po
n

a c
om

pe
te

nc
y

di
ct

io
na

ry
 w

he
re

in
 in

di
vi

du
al

 co
m

pe
te

nc
ie

s
ar

e
st

or
ed

 a
nd

 o
rg

an
iz

ed
 in

 th
e

fo
rm

 o
f f

am
ili

es
, i

de
nt

ify
in

g
as

se
ss

ab
le

 b
eh

av
io

ur
s l

in
ke

d
to

 c
om

pe
te

nc
ie

s.
Ty

pi
ca

lly
 r

ec
or

ds
 a

nd
 e

m
pl

oy
ee

 in
fo

rm
at

io
n

is
 o

bt
ai

ne
d

us
in

g
cr

ys
ta

l r
ep

or
ts

 o
r

ot
he

r
W

eb
-b

as
ed

 r
ep

or
tin

g
to

ol
s.

PR
O

D
U

C
T

TE
C

H
N

O
LO

G
Y

M
ic

ro
so

ft,
 P

C
, S

Q
L-

ty
pe

 a
pp

lic
at

io
n,

 th
in

 c
lie

nt
 W

eb
-b

as
ed

 a
rc

hi
te

ct
ur

e.
 L

ow
 c

os
t a

nd
 m

ai
nt

en
an

ce
. D

el
iv

er
ed

w

ith
 p

re
co

nfi
gu

re
d

co
m

pe
te

nc
y

D
B

 (1
0,

00
0

co
m

pe
te

nc
ie

s i
n

ar
ea

s s
uc

h
as

 b
us

in
es

s,
m

an
ag

em
en

t,
en

gi
ne

er
in

g,

et
c,

 a
nd

 4
00

-p
lu

s i
nd

us
try

 p
re

de
fin

ed
 jo

b
pr

ofi
le

s)
.

Table 15. Continued

2426

A Survey of Competency Management Software Information Systems

MM-01). Pittsburgh, Carnegie Mellon University,
The Software Engineering Institute.

Friss de Kereki, I., Azpiazu, J., & Silva, A. (2004).
Knowledge management in learning environmen-
tal design. In Proceedings of the 34th ASEE/IEEE
Frontiers in Education Conference, Savannah.

Hardless, C. (2005). Designing competence de-
velopment systems. Unpublished doctoral thesis,
University of Göteborg, Göteborg, Sweden.

Hartman, A., & Sifonis, J. (2000). Net ready.
Strategies for success in the e-conomy. McGraw-
Hill.

Kamara, J. M., Anumbad, C. J., & Carrillo, P. M.
(2002). A clever approach to selecting a knowledge
management system. International Journal of
Project Management, 20(3), 205-211.

Levy-Leboyer, C. (1997). Gestión de las com-
petencias. Cómo analizarlas, cómo evaluarlas,
cómo desarrollarlas, ediciones gestión 2000.
Barcelona: SA.

Lindgren, R. (2005). Adopting competence sys-
tems in fast growing knowledge intensive orga-
nizations. Journal of Information & Knowledge
Management, 4, 1-13.

Lindgren, R., & Stenmark, D. (2002). Designing
competence systems: Towards interest-activated
technology. Scandinavian Journal of Information
Systems, 14, 19-35.

Means, G., & Schneider, D. (2000). Meta-capi-
talism. The e-business revolution and the design
of companies.

Nordstrom, A. K., & Ridderstrale, J. (2000). Funky
business. Talent makes capital dance. Stockholm,
Sweden: Book House Publishing.and Markets
in the XXI century. Pricewaterhouse Coopers,
Deusto Ediciones.

Rollett, H. (2003). Knowledge management
processes and technologies. Boston: Kluver
Academic Publishers.

Sagi-Vela, L. (2004). Gestión por competencias.
El reto compartido del crecimiento personal y de
la organización. Madrid: ESIC Editorial, Pozuelo
de Alarcón.

The Hay Group. (1996). Las competencias: Clave
para una gestión integrada de los recursos huma-
nos. Bilbao, Spain: Ediciones Deusto SA.

This work was previously published in Competencies in Organizational E-Learning: Concepts and Tools, edited by M. Sicilia,
pp. 41-82, copyright 2007 by Information Science Publishing (an imprint of IGI Global).

 2427

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6.6
Becoming a Learning
Organization in the
Software Industry:
Is CMM the Silver Bullet?

Dev K. Dutta
Richard Ivey School of Business, The University of Western Ontario, Canada

AbstrAct

This chapter examines to what extent the imple-
mentation of Software Engineering Institute’s
Capability Maturity Model (CMM) of software
process improvement enables a firm to trans-
form itself into an learning organization (LO).
It argues that even though the CMM does lead
the software firm forward on the route to learn-
ing, it does not go far enough. By recognizing
organizational knowledge and organizational
learning as the twin pillars of the LO, the author
develops a conceptual framework against which
the five maturity levels of CMM can be mapped
and examined. This allows for an assessment
of whether the CMM serves as a silver bullet in
achieving the software firm’s goal of reaching the
visionary state of the LO.

IntroductIon

Today, across the world, business firms are ex-
posed to increased environmental turbulence and

uncertainty. There is rapid change in technology
and its usage, and competition in the marketplace
has intensified, with customers becoming highly
knowledgeable and demanding. With economic
realities and priorities shifting constantly, there is
now the emergence of a new global economic order
in which knowledge or intellectual capital—rather
than labor, machine power and capital—consti-
tutes the most critical factor of production as well
as a source of competitive advantage (Zack, 1999).
Nowhere is this more evident than in the software
industry. By its very nature, a firm engaged in
developing software applications as its primary
product shares all the features of what Alvesson
terms as “knowledge-intensive” firms. These
firms depict the following characteristics:

1. “Highly qualified individuals doing knowl-
edge-based work, using intellectual and
symbolic skills in work;

2. A fairly high degree of autonomy and the
downplaying of organizational hierarchy;

3. The use of adaptable, ad hoc organizational
forms;

2428

Becoming a Learning Organization in the Software Industry

4. The need for extensive communication for
coordination and problem-solving;

5. Idiosyncratic client services;
6. Information and power asymmetry (often

favoring the professional over the client);
7. Subjective and uncertain quality assess-

ment.” (2004, p. 21)

To survive in such a turbulent business environ-
ment and achieve global standards with respect to
quality, cost and customer expectations, a software
firm must not only treat knowledge as its most
critical resource but also learn to be highly adap-
tive in everything it does with the knowledge. It
must proactively anticipate emerging trends and
directions with regard to the business environ-
ment, customers and technology. It must assimilate
the knowledge and use it effectively to best meet
the customer requirements. Therefore, the soft-
ware firm must work towards building for itself
an all-pervasive learning culture. It must become
what is termed as an LO (Senge, 1990).

The CMM, developed by the Software Engi-
neering Institute (SEI) at Carnegie Mellon Uni-
versity, is suggested to be a step in this direction
(Levine, 2001). The CMM enables firms to view
software development as an engineering disci-
pline and ensure its progression from being an
immature, ad-hoc process to a mature, managed
process (Paulk, 1998a). Ramanujan and Kesh
(2004) note that the last few years have seen a
significant investment on the part of software firms
to implement the CMM; in most cases, firms also
a report a spectacular improvement in financial
performance after they have gone through the
implementation process. However, the question
that remains unanswered is, how sustainable is
this improvement effort? That is, does adoption of
the CMM enable the software firm into becoming
an LO? The aim of this chapter is to investigate
this research question. This is important because
after the initial fanfare associated with the CMM
has died down, the initiative will continue to
prove useful only if it enables a software firm to

develop an organization-wide learning culture
and derive sustainable competitive advantage
based on knowledge.

EssEntIAl chArActErIstIcs of
thE lo

The idea of an LO is difficult to grasp. This is
because not only is it is far from a homogeneous
concept but also because the terms “LO” and “or-
ganizational learning” are used interchangeably in
literature. In tracing the concept of organizations
as learning systems, Yeung, Ulrich, Nason and
von Glinow (1999) identify eight properties that
they suggest constitute the “basics” of LOs: (1)
they focus not only on learning but also in meet-
ing organizational goals; (2) they follow a systems
logic and engage in out-of-the-box thinking; (3)
they build upon but are not limited by individual
learning; (4) they follow the learning continuum
that stretches from superficial to substantial; (5)
they recognize that learning comes from many
small failures; (6) they adopt a process approach
to learning, understanding that learning often
evolves along a predictable set of processes; (7)
they give cognizance to both direct experience
and vicarious experience as being useful inputs
to learning; and (8) they treat learning as being
important, not only for “exploiting” existing op-
portunities but also for “exploring” new oppor-
tunities. This suggests that the LO is an ideal or
visionary state that firms aspire to reach and one
that requires them to engage in transformational,
organization-wide, real-time learning.

Senge defines the LO as one where “people
continually expand their capacity to create the
results they truly desire, where new and expansive
patterns are nurtured, where collective aspira-
tion is set free and where people are continually
learning how to learn together” (1990, p. 17).
Even though this gives an idea of the philosophy
behind an LO, Mumford provides a definition that
is more practice oriented: “The LO is one that

 2429

Becoming a Learning Organization in the Software Industry

creates an environment where the behaviors and
practices involved in continuous development are
actively encouraged” (1995, p. 12). In turn, then,
OL refers to “a variety of practices and values
that enable a company to explore continually new
directions and anticipate, or even lead, change in
the marketplace and in society at large” (EIU &
IBM, 1996, p. 11).

Even though the LO appears to be an ideal or
visionary state that a firm endeavours to reach,
it is clear that its foundations rest on two specific
organizational characteristics: (1) organizational
knowledge, and (2) organizational learning. The
former denotes the unique resource available to
firms to use in order to progress. It can usefully
be represented as the content aspect of the LO.
Similarly, the latter can be referred to as the
process aspect of the LO; that is, the specific
mechanisms that actually allow learning to hap-
pen. In the next few paragraphs, I examine these
two pillars of the LO and develop a theoretical
framework that elaborates on how and when a
firm truly becomes one.

organizational Knowledge

Organizational knowledge is not static. It is
created within the firm as a continuous dialog
between its constituents; that is, explicit and tacit
forms of knowledge available with employees and
within organizational artefacts. Though such an
exchange arises primarily among individuals, it
is the organization that creates the facilitating
mechanisms that lead to emergence of dialog.
According to Nonaka (1994), the organization
manages the four constituent processes of dialog:
socialization (creating tacit knowledge through
sharing of tacit experience), combination (creat-
ing explicit knowledge by combining different
explicit knowledge), externalization (conversion
of tacit knowledge into explicit knowledge) and
internalization (converting explicit knowledge
back into tacit knowledge). When all four modes
of knowledge sharing occur as a continual shift,

organizational knowledge is generated (Nonaka,
1994). Thus, close cooperation among organiza-
tional members is necessary for organizational
knowledge to develop. This view endorses that
organizations are social entities populated by
individuals who have an interest and desire to
share and learn from each other, and it is through
the organizational platform that knowledge and
expertise of individuals get converted into eco-
nomic products and services that have an economic
value in the marketplace (Kogut & Zander, 1992).
In other words, it is in the organizational space
that situated learning occurs between individu-
als, and which leads to a dynamic evolution of
organizational knowledge. This is what is also
called the distributed knowledge system (Tsoukas,
1996), where individual knowledge is constantly
getting merged, shaped and reshaped as an orga-
nizational resource.

The firm’s base of explicit knowledge can
be expanded in several ways. For example, the
firm’s current knowledge position may be bench-
marked vis-à-vis what are viewed as world-class
practices; the firm can also focus on learning
as a visible and central element of its strategic
intent (by making explicit mention of it in the
mission or vision statement); also, the firm can
actually go for concrete investments in learning
(through adoption of “hard” mechanisms, such
as sponsoring employees to training programs,
or through “soft” mechanisms, such as devising
creative ways and means of employee feedback
and suggestions, and by sharing best practices
across vertical/horizontal divisions within the
firm). Organizational learning does not happen
by chance; nor does it happen overnight. Thus,
LOs must exhibit “a purposeful learning approach
designed to create knowledge and translate it
into effective action” (Bohlin & Brenner, 1996,
p. 2). By experimenting with collective learning,
most firms engage in work practices that gener-
ate “ideas with impact.” This is possible through
continuous improvement, competence acquisition,
experimentation and boundary spanning. Accord-

2430

Becoming a Learning Organization in the Software Industry

ing to Ulrich, Von Glinow and Jick, “combining
the ability to learn by going outside a business’
boundaries (i.e., boundary spanning), coupled
with a culture focused on internal management
processes such as empowerment and teamwork,
is most conducive to competitiveness” (1993, p.
64). Firms also generalize ideas that have impact
by creating an organizational infrastructure that
moves ideas across boundaries. This can be
through building up organizational competence
(staffing, training and organizational develop-
ment), management action (appraisal, rewards),
governance (management style, policies, orga-
nization design, communication, feedback) and
work processes (systems, processes, teams).

However, given that the firm competes in a
radically shifting and turbulent environment, the
knowledge it draws upon is not only inherently
indeterminate but also continually emerging
(Tsoukas, 1996). This requires that knowledge be
viewed as being more than simply tacit or explicit
or a sum of the two. Rather, it brings into focus
an alternate view of knowledge as “knowing.”
Cook and Brown (1999) have suggested that if
the former (i.e., knowledge) constitutes an “epis-
temology of possession” (with knowledge being
treated as something people possess), the latter
(i.e., knowing) calls for an “epistemology of prac-
tice” (where the focus is more on people knowing).
The authors further suggest that knowledge and
knowing are not competing but mutually enabling;
together, they constitute a “generative dance” that
leads to continuous innovation on the part of the
firm. Orlikowski (2002) notes that “knowing in
practice” is a social activity that has as its core
several important attributes, such as sharing iden-
tity, interacting face-to-face, coordinating across
time and space, learning by doing and supporting
participation. Similarly, using a structuration
perspective, Hargadon and Fanelli (2002) suggest
that organizational knowledge arises as a recur-
sive outcome of interaction between knowledge
as action and knowledge as possibility. In that
sense, by its very nature, knowledge is uncertain
and never completely revealed.

organizational learning

Organizational learning has been defined as the
process by which: (1) the organizational knowl-
edge base is developed (Shrivastava, 1983), (2)
organizational action is improved through bet-
ter knowledge and understanding (Fiol & Lyles,
1985),(3) organizational inter-subjective meaning
is changed (Cook & Yanow, 1993), or(4) change
is effected in individual and shared thought and
action (Crossan, Lane & White, 1998). Thus,
by its very nature it is suggested to effect both
cognitive and behavioral change among organi-
zational members. In a general sense, the cogni-
tive perspective regards organizational learning
to be the summation of learning of individuals.
It suggests the organization is a cognitive or in-
formation processing system (March & Simon,
1958). Any requirement of learning or strategic
change is viewed in terms of cognitive maps of
managers and employees, as a gap between actual
and desired results measured in terms of business
performance. Knowledge is taken to be primar-
ily resident in the minds of individuals and from
where it can be extracted, packed and stored in
repositories for future use or transferred to oth-
ers (Nidumolu, Subramani & Aldrich, 2001). In
other words, the cognitive view takes learning to
be primarily an individual activity separate from
and, in some sense, even opposed to other activi-
ties individuals engage in within organizations
(Gherardi, Nicolini & Odella, 1998). However,
such an extreme position also seems to suggest
that viewing organizational learning exclusively
based on the cognitive perspective brings about
its own inadequacies.

Though Kolb’s (1979) cyclic model of indi-
vidual learning (concrete experience, reflective
observation, abstract conceptualization and
active experimentation) has been applied in the
organizational setting (Carlsson & Martin, 1976),
individual learning forms only a necessary but
not a sufficient condition for organizational learn-
ing. Huysman (1999) notes that current literature
on organizational learning suffers from several

 2431

Becoming a Learning Organization in the Software Industry

biases: (1) it tends to treat the individual as the
actor in learning; (2) it considers environmental
adaptation as the primary motivator for why
organizations learn; (3) it suggests that learn-
ing primarily is a planning activity; and (4) it
focuses on improvement as the only expected
result of learning. While organizational learning
necessarily must incorporate these elements, the
question that arises is whether fulfilling these
conditions will transform the firm into a LO. It is
impossible to see cognition occurring at the level
of the organization (Cook & Yanow, 1993). Also,
most of the time, organizational members cannot
agree on common cognitive models to interpret
information or take action (Mirvis, 1996). Even
if all individuals in the firm engage in learning,
does it ensure learning at the organizational level?
Again, does planning necessarily ensure optimal
learning?

To mitigate these difficulties, researchers have
proposed an alternate view of organizational
learning based on the social, behavioral cultural
and interpretive characteristics of organizations,
with the recognition that context is an important
parameter in learning (Fiol & Lyles, 1985; Daft
& Huber, 1987). Under this perspective, organi-
zational learning occurs when a group of learners
(as social beings) engage in joint construction of
reality and shared meaning-making, based on
social interaction within specific socio-cultural
settings (Gherardi et al., 1998; Miner & Mezias,
1996; Nicolini & Mezner, 1995). Thus, learning
is a process that is socially constructed and “…
focuses on the way people make sense of their
experiences at work” (Easterby-Smith & Araujo,
1999, p. 4). When the individual learns, learning
gets linked to changes in an individual’s interpre-
tation of events and action (Daft & Weick, 1984).
Proponents of the social view of learning suggest
that individual knowledge is possible only because
of the social practices individuals find themselves
in (Tsoukas, 1996). Therefore, the social view on
learning not only endorses the active participation
of individuals in the joint sense of making and
learning, but also suggests the extremely impor-

tant role context plays in this endeavor. The idea
of socially constructed knowledge recognizes it
as closely following a socio-historical context,
made available through the everyday experience
of individuals (McAdam & McCreedy, 1999). An
ongoing, circular interaction between individually
held latent knowledge and the knowledge manifest
in the surrounding environment is what enables
organizational knowledge to emerge (Hargadon
& Fanelli, 2002). Specific mechanisms that may
aid in this process of interaction include situ-
ational factors, such as the unit’s tasks (process
or content orientation) and domain of learning
(focused or broad) (Becerra-Fernandez & Sab-
herwal, 2001).

In fact, Lave and Wenger (1991) go a step
further. They suggest that not only is learning
situated in practice, it is in fact hidden from the
other regular mechanisms of the organization.
Therefore, studying it systematically is extremely
difficult (Brown, Collins & Duguid, 1989; Richter,
1998). According to the situated or social learning
view, the learning context and relationship of the
learners are as important as learning itself. As new
members get inducted into the process of collab-
orative learning and meaning-making, individual
schemata, scripts and beliefs get institutionalized
into organizational knowledge structures (Cook
& Yanow, 1993; Daft & Weick, 1984; Schank &
Abelson, 1977; Weick & Bougon, 1986).

At the same time, apart from the individuals
engaging in knowledge sharing and exchange,
the team/group as well as the whole organiza-
tion are influenced by organizational knowledge
structures. Socialization of individuals in the
learning process helps in the dynamic transfer
of knowledge from the individual to the orga-
nization, as described in Nonaka’s knowledge
spiral (Nonaka &Takeuchi, 1995). Following this
process, the knowledge structure and form of the
organization also undergoes changes. It becomes
a product of complex relations and interaction
between individual beliefs and perceptions and
organizational routines (Garud & Rappa, 1994),
thus creating an appropriate collective for knowl-

2432

Becoming a Learning Organization in the Software Industry

edge sharing across the community of practice
(Nonaka & Konno, 1998). Crossan, Lane, and
White (1999) suggest that the core processes that
constitute organizational learning can be depicted
as the 4I (Intuiting, Interpreting, Integrating and
Institutionalizing), with intuiting and interpret-
ing focused on the individual level, interpreting
and integrating focused on the group level, and
integrating and institutionalizing focused on the
organizational level. The authors further suggest
that a system of feed-forward and feedback learn-
ing flows characterizes a back-and-forth flow of
knowledge across each of these three levels.

In view of the preceding discussion, I suggest
that each of the two pillars of the LO—organi-
zational knowledge and organizational learn-
ing—can be usefully looked upon as captured in
two distinct states. For organizational knowledge,
this state varies from “knowledge” to “knowing.”
Similarly, for organizational learning, the states
vary from “individual-focused” learning to “or-
ganization-focused” learning. By identifying each
of these two states of organizational knowledge
and organizational learning, I arrive at a 2x2
framework that describes the different stages of
a LO. This is depicted in Figure 1. Quadrants
1, 2 and 3 are intermediate stages that the firm
finds itself in during its journey towards an LO.
In my depiction, a true LO comes into existence
in Quadrant 4, where the focus is on knowing
over knowledge and organizational learning over
individual learning. While it is expected that a
firm in Q1 would reach Q4 by either traversing
through the intermediate stage of either Q2 or Q3,
it is possible that it may reach Q4 directly. This

rare event would happen under a visionary change
agent within the firm, who pulls up the organiza-
tion from Q1 directly into Q4, thus by-passing
the intermediate stage. Finally, it is important
to remember that in Figure 1 the categorizations
“knowledge” vs. “knowing” and “individual”
vs. “organizational” are merely stylized ways of
representing the two orthogonal dimensions. In
practice, a firm will describe elements of both
knowledge and knowing simultaneously, just as
it will depict both individual and organizational
learning at the same time. Rather, what I sug-
gest is that in each of the four cells, one of the
two forms of organizational knowledge focus
will predominate, just as one of the two forms
of organizational learning will assume greater
importance.

Quadrant 1: This quadrant represents firms that
focus on organizational knowledge over organiza-
tional knowing. In other words, these firms focus
on knowledge possession over knowledge practice.
While these firms may also accord importance to
tacit knowledge in addition to explicit knowledge,
they do so with the idea of possession rather than
practice. In effect, these firms seem to adopt a
rather static view of how knowledge is acquired,
exchanged, utilized and updated. Similarly, these
firms tend to lay a greater emphasis on explicit
knowledge over tacit knowledge. If they do focus on
tacit knowledge, they tend to view it as knowledge
that is possessed rather than practiced.

Quadrant 2: This quadrant represents firms that
give emphasis to organizational learning over

Organizational Learning

Individual-
focused

Organization-
focused

Knowing

Q3
Intermediate stage

of an LO

Q4
The LO

Organizational

Knowledge

Knowledge

Q1
Not a LO

Q2
Intermediate stage of

a LO

Figure 1. The LO framework

 2433

Becoming a Learning Organization in the Software Industry

individual learning. Thus, they recognize that
organizational learning is more than the sum of
learning of individuals. However, by continuing
to focus on the idea of knowledge as possession
rather than practice, these firms fall short of the
target of becoming a true LO.

Quadrant 3: Like Quadrant 2, this quadrant
represents firms that are at an intermediate stage
in their journey towards becoming an LO. While
these firms do focus on knowing—that is, the idea
of knowledge as practice rather than as posses-
sion—they continue to believe that learning in
organizations is simply synonymous with learning
efforts of individuals. As such, these organizations
miss out on certain important linkages of how
individual learning can expand into learning at
the organizational level.

Quadrant 4: This quadrant represents firms that
not only accord higher emphasis to knowing
(i.e., knowledge as practice) over knowledge
(i.e., knowledge as possession) but also focus on
developing organizational mechanisms, processes
and practices that expand individual-level learn-
ing into organizational learning. By doing so,
these firms transform them into LOs in the true
sense of the term.

Having described the essential characteristics
of a firm’s journey towards becoming an LO based
on its understanding of organizational knowledge
as well as organizational learning, I now examine
to what extent adoption of SEI CMM enables the
software firm to achieve this vision of transform-
ing itself into an LO.

thE cApAbIlIty MAturIty
ModEl of softwArE
dEvElopMEnt

The CMM was developed by SEI to enable soft-
ware firms to treat the process of software devel-

opment as an engineering discipline, and develop
“reliable and usable software that is delivered on
time and within budget … The progression from
an immature, unrepeatable software process to
a mature, well-managed software process also is
described in terms of maturity levels in the model.”
(Paulk et al., 1993a, pp. 0-1). SEI commenced work
on the model in 1986, based on an initial request
on the part of the United States (U.S.) federal gov-
ernment, to provide the latter with a method for
assessing the capability of its software contractors.
The model was first released in 1991. Thereafter,
periodic improvements on the model have been
continued to be made, based on feedback from
organizations that adopted the CMM.

Immature vs. Mature software firms

A computer software firm, assessed on the basis of
robustness and maturity of the processes used by
it to develop software, can be placed along a con-
tinuum that progresses from immature to mature.
The immature software firm is characterized by
an overall ad-hoc, reactive approach to software
development. Not only does the firm not have
consistently followed processes and procedures
for production, testing and quality assurance of
software, but whatever processes that may be
in place are also thrown to the wind whenever
the firm is in the throes of a crisis. In contrast, a
mature software organization ushers in a certain
consistency and uniformity of approach in the
development of software. It possesses established,
consistent processes for software development.
Planning forms an integral part of the process
cycle. Periodic re-evaluation and improvement of
currently adopted processes is also institutional-
ized within the organization. In view of these
measures, the mature software tends to produce
software that is relatively less prone to defects and
errors. To summarize, while immature software
firms operate on a reactionary basis, mature soft-
ware firms display a proactive approach towards
managing the processes used to develop software
products (Paulk et al., 1993b).

2434

Becoming a Learning Organization in the Software Industry

cMM process Maturity framework

When it adopts the CMM, the software firm dem-
onstrates a commitment that it intends to move
from a software development regime character-
ized by ad-hoc, immature, reactive processes
to one that is disciplined, mature and proactive.
The CMM process maturity framework has
been conceptualised at five maturity levels (1 to
5), which “define an ordinal scale for measur-
ing the maturity of an organization’s software
process and for evaluating its software process
capability” (Paulk et al., 1993b, p. 7). Each of the
five maturity levels of the CMM exhibit certain
behavioral attributes. At Level 1, the software
process is an amorphous black box that generates
a software product when provided with certain
specifications; however, it is unable to define or
use any process controls whatsoever. This situa-
tion improves somewhat in Level 2, where both
customer requirements and work products are
controlled. At this level, the organizational soft-
ware process can be visualized as a succession of
black boxes that “allows management visibility
into the project on defined occasions” (Paulk et
al., 1993b, p. 21). Internal structure of the black
boxes, the tasks in the project’s defined software
process, becomes visible in Level 3. This is, there-
fore, the level at which the software development
process is viewed as an organization-wide activ-
ity, even though it is broken down into individual
projects, and common routines and standards are
applied to ensure both process and product quality.

Level 4 is a further improvement; processes are
instrumented and controlled quantitatively, and
ability to predict outcomes and initiate corrective
action is high. This culminates in the organiza-
tion progressing into Level 5, where it initiates
a culture of continuous process and product im-
provement. At this stage, “disciplined change is
a way of life” (Paulk et al., 1993b, p. 21). Since
each level builds a foundation for the next level, it
is preferable for a software firm to progressively
go up the maturity hierarchy; skipping levels is
counterproductive.

softwArE fIrMs And cMM
IMplEMEntAtIon: A JournEy
towArd thE lEArnIng
orgAnIzAtIon

Being an organization-wide change initiative
based on the principles of total quality manage-
ment (TQM), adoption of CMM provides an
organization with many benefits. Some of the
tangible benefits of CMM implementation include
“… shorter development cycle, reduced rework,
higher development productivity and higher-
quality systems” (Duggan, 2004, p.9). The CMM
concentrates on developing an organization-wide
process architecture that enhances some aspects of
both knowledge management and organizational
learning through easy acquisition, storage, man-
agement and utilization of knowledge on the part
of software firms. CMM plays this enabling role

 Organizational Learning

Individual-focused O rganization-focused

Organizational

Knowledge

Knowing

Q3
Intermediate stage

of an LO
Q4

The LO

Knowledge

Q1

Q2

Level 1 of CMM
Level 2 of CMM

Level 3 of CMM Level 4 of CMM
Level 5 of CMM

Figure 2. CMM and its overlaps with the LO framework

 2435

Becoming a Learning Organization in the Software Industry

mainly through transformation of the processes
associated with the software development life
cycle, making them less person-specific and based
more on robust institutional systems, processes
and practices. As a result, the firm necessarily
progresses from “ad hoc, chaotic processes to
mature, disciplined processes … [which reflect
a culture of continuous process and product im-
provement, and where] disciplined change is a
way of life” (Paulk et al., 1993b, pp. 3, 21).

In attempting to map each level of the CMM
(with its associated challenges and benefits) onto
the 2x2 LO framework, I arrive at Figure 2, which
is a depiction of the extent to which the CMM ac-
tually helps a software firm to become an LO.

Under Levels 1 and 2, the firm continues to
focus on individual training and learning, with
little effort being taken to bring these processes
up to the level of the entire organization as a
common unit of analysis. Therefore, firms that
are either at Level 1 or have progressed to Level 2
cannot be termed as LO at all. For instance, Level
1 firms may produce quality software from time
to time, but if this happens, it is due to the per-
sonal initiative and heroics of the firm’s managers
rather than the firm’s process architecture. When
a firm has progressed to the stage of Level 2, it
has initiated a system of managing development
of software by imitating and implementing a re-
peatable set of software development processes.
It is expected that at this level the firm has been
able to articulate and share most of its explicit
knowledge with other organizational members.
However, even here the firm is focused too much on
the present, with little efforts being made toward
learning from the current set of experiences and
applying it the future.

Figure 2 also suggests that Levels 3, 4 and 5
emerge as shifting positions within Quadrant 2.
In these successive stages of software process
maturity, the firm is clearly focused on adopting
the entire organization as the unit of analysis. Thus,
when it is in Level 3, the firm has already begun
to use a set of standard software processes. In ad-

dition, under Level 4 the firm begins to practice
a quantitative orientation as far as measuring and
managing projects are concerned. Further, it has
developed the requisite repositories for knowledge
storage and retrieval. Finally, at Level 5 the firm
is focused on managing and improving the pro-
cesses on a proactive basis, with the objectives of
defect prevention, innovation, knowledge shar-
ing and dissemination of lessons learned across
the organization. It is expected that at this stage
there will be interplay of tacit knowledge among
members, just as there is high emphasis on explicit
knowledge exchange.

Even though the CMM and, especially, upper
Levels 3, 4 and 5 make a software firm engage in
organizational learning, by its very structure it
also acts as a constraint in holding back the firm
from becoming a true LO. This is because the
CMM essentially over-emphasizes the structural
and process aspects of an organization’s journey
towards becoming the LO and neglects the equally
important people aspects. The framework es-
sentially accords importance to the process and
capability aspects of learning at the organizational
level. It even emphasizes the skills and behavior
aspects of learning at the individual level. In doing
all this, however, the CMM continues to follow and
emphasize an “epistemology of possession” (Cook
& Brown, 1999) with respect to knowledge and
learning. It is silent on what further must be done
to usher in an organizational culture that values
an “epistemology of practice” (Cook & Brown,
1999) with regard to knowledge and learning. In
fact, the CMM seems to foster a notion within
the firm that whatever gets measured is managed.
While this is true with regard to many of the struc-
tured, relatively simple aspects of organizational
life, it is well known from mainstream theories
of the organization that this may not completely
represent the totality of the firm’s existence. Not
only is organizational reality highly complex and
ambiguous, but also managers are boundedly
rational. This makes managers go for a strategy
of satisficing rather than optimizing most of the

2436

Becoming a Learning Organization in the Software Industry

time. Unfortunately, the CMM does not recognize
any scope for ambiguity within its processes.

In his study of what he terms as “high maturity
organizations,” Paulk (1998b) finds that these
firms address several organizational issues that
go beyond the scope of the CMM. These relate
to developing a culture of openness and com-
munication, commitment to quality, customer
responsiveness and other “peopleware” issues. In
contrast, the CMM seems to overemphasize what
may be termed as the “hard” aspects of manage-
ment and, in doing so, neglects its “soft” aspects.
For example, process and capability mainly denote
the structural or harder constituents of learning at
the organizational level, whereas leadership and
climate denote the visionary, style and cultural
or softer constituents. Similarly, at the individual
level skills comprise the harder constituent while
behaviors and, to a greater extent, values consti-
tute the softer components. The CMM implicitly
assumes that the softer prerequisites are given or
already existing within the firm. For example,
top management vision, foresight and commit-
ment are taken for granted, assumed as being
exhibited by the decision to implement the model.
Similarly, individual values may be said to exist,
in the desire to use the model, achieve error-free
software programs and continuous improvement,
and thus ensure teamwork, transferability and
sharing of knowledge.

According to Elkjaer (2001), a problem that
plagued the initial efforts of organization towards
becoming an LO related to the ways in which
learning was understood. It was supposed that if
individual learning was taken care of, organiza-
tional learning was bound to result. It is only later
that specific concern, such as the assimilation of
individual learning into organizational learning,
began to be examined. In her study, Levine (2001)
finds that learning and a program of adoption of
technical change (such as the CMM implemen-
tation) mutually reinforce each other. Yet, it can
be said that though adoption of CMM takes the
software firm forward towards becoming the

LO, it does not go far enough. Mathiassen and
Pourkomeylian (2003) find that to become effec-
tive at managing knowledge, a software process
improvement (SPI) initiative (such as the CMM)
must strike a balance between personalized and
codified aspects. This is because the organization
in which information systems development occurs
is essentially a socio-technical system in which
technical processes combine with social ones
and involve stakeholders at multiple levels of the
organizational hierarchy (Robey, Welke & Turk,
2001; Sawyer & Guinan, 1998). Therefore, not only
does the SPI need to be flexible and amenable to
change over time, but it must also maintain a ten-
sion between dialectical opposites—codified vs.
tacit, individual vs. the organization, informal vs.
formal. Unless it is able to do this, the knowledge
management efforts engaged in through the SPI
will achieve adequate results but certainly not
transform the firm into an LO. This is an area
where the CMM leaves much to be desired.

Ravichandran and Rai believe that “… many
software process improvement frameworks, in-
cluding the CMM, do not pay adequate attention to
the organizational factors that enable or constrain
process improvements” (2000, p. 401). In fact,
even with respect to knowledge management,
which is only a part of the organization’s overall
journey towards becoming an LO, the CMM
has further to go (Ramanujan & Kesh, 2004).
Though adoption of the CMM does position the
software firm on the road to transforming itself
into an LO, to ensure sustainability of collective
learning within the firm, its leadership must
continually demonstrate in no uncertain terms
the commitment to organizational learning. This
will need to be reinforced through creation of
an organizational climate that fosters innovative
behavior on the part of employees and adoption of
the essential “epistemology of practice” (Cook &
Brown, 1999) based on adoption of an organiza-
tion-wide enabling value system (trust, spirit of
sharing and respect for the individual).

 2437

Becoming a Learning Organization in the Software Industry

Le
ve

l
N

am
e

Pr
oc

es
s Q

ua
lifi

er
B

eh
av

io
ra

l C
ha

ra
ct

er
iz

at
io

n

1
In

iti
al

A
d

ho
c

•
U

ns
ta

bl
e

in
te

rn
al

 e
nv

iro
nm

en
t f

or
 so

ft
w

ar
e

de
ve

lo
pm

en
t

•
Pl

an
ne

d
pr

oc
ed

ur
es

 a
ba

nd
on

ed
 d

ur
in

g
cr

is
is

•
Q

ua
lit

y
of

 o
ut

pu
t d

ep
en

ds
 o

n
m

at
ur

ity
 a

nd
 re

si
lie

nc
e

le
ve

ls
 o

f s
ta

ff
•

Sc
he

du
le

s,
bu

dg
et

, f
un

ct
io

na
lit

y
an

d
qu

al
ity

 re
m

ai
n

un
pr

ed
ic

ta
bl

e

2
R

ep
ea

ta
bl

e
D

is
ci

pl
in

ed
•

P o
lic

ie
s e

st
ab

lis
he

d
fo

r m
an

ag
in

g
th

e
pr

oc
es

se
s

•
R

ep
et

iti
on

 o
f s

uc
ce

ss
fu

l p
ra

ct
ic

es
 d

ev
el

op
ed

 e
ar

lie
r

•
B

as
ic

 so
ft

w
ar

e
m

an
ag

em
en

t c
on

tr
ol

s e
xi

st
•

So
ft

w
ar

e
pr

oj
ec

t s
ta

nd
ar

ds
 a

re
 d

efi
ne

d
an

d
ad

he
re

d
to

•
So

ft
w

ar
e

co
st

s,
sc

he
du

le
s a

nd
 fu

nc
tio

na
lit

y
ar

e
tr

ac
ke

d
an

d
m

on
ito

re
d

3
D

efi
ne

d
St

an
da

rd
, c

on
si

st
en

t
•

St
an

da
rd

 so
ft

w
ar

e
en

gi
ne

er
in

g/
m

an
ag

em
en

t p
ro

ce
ss

es
 d

oc
um

en
te

d
an

d
in

te
gr

at
ed

•
A

de
qu

at
e

tr
ai

ni
ng

 p
ro

gr
am

s i
m

pa
rt

ed
 to

 st
af

f t
o

us
e

so
ft

w
ar

e
en

gi
ne

er
in

g
co

nc
ep

ts
•

In
di

vi
du

al
 p

ro
je

ct
s u

se
 b

as
el

in
e,

 st
an

da
rd

 so
ft

w
ar

e
pr

oc
es

se
s a

lr
ea

dy
 a

va
ila

bl
e

w
ith

 th
e

or
ga

ni
za

tio
n

4
M

an
ag

ed
Pr

ed
ic

ta
bl

e
•

P r
od

uc
tiv

ity
 a

nd
 q

ua
lit

y
st

an
da

rd
s m

ea
su

re
d

fo
r a

ll
im

po
rt

an
t s

of
tw

ar
e

ac
tiv

iti
es

 a
cr

os
s p

ro
je

ct
s

•
O

rg
an

iz
at

io
n-

w
id

e
pr

oc
es

s d
at

ab
as

e
us

ed
 to

 c
ol

le
ct

, s
to

re
 a

nd
 a

na
ly

ze
 in

fo
rm

at
io

n
on

 p
ro

je
ct

s
•

Q
ua

nt
ita

tiv
e

m
ea

su
re

m
en

t s
ta

nd
ar

ds
 a

va
ila

bl
e

to
 e

va
lu

at
e

pr
oj

ec
ts

’ s
of

tw
ar

e
pr

oc
es

se
s a

nd

pr
od

uc
ts

•
M

ea
ni

ng
fu

l v
ar

ia
tio

n
in

 p
ro

ce
ss

 p
er

fo
rm

an
ce

 c
an

 b
e

di
st

in
gu

is
he

d
fr

om
 ra

nd
om

 v
ar

ia
tio

n

5
O

pt
im

iz
in

g
C

on
tin

uo
us

ly
im

pr
ov

in
g

•
F o

cu
s o

n
or

ga
ni

za
tio

n-
w

id
e

co
nt

in
uo

us
 p

ro
ce

ss
 im

pr
ov

em
en

t
•

M
ea

ns
 a

va
ila

bl
e

fo
r i

de
nt

if
yi

ng
 a

nd
 st

re
ng

th
en

in
g

pr
oc

es
s w

ea
kn

es
se

s p
ro

ac
tiv

el
y

•
So

ft
w

ar
e

en
gi

ne
er

in
g

in
no

va
tio

ns
 id

en
tifi

ed
 a

nd
 a

do
pt

ed
 a

cr
os

s t
he

 o
rg

an
iz

at
io

n

Table 1. SEI-CMM process maturity framework (adapted from Paulk et al., 1993a, 1993b)

2438

Becoming a Learning Organization in the Software Industry

conclusIon

In this chapter, my main aim has been to synthesize
the growing body of literature on knowledge and
learning with the primarily practitioner-driven
framework of software quality assurance and
process improvement—that is, the CMM. I have
done this to identify whether the CMM process
framework indeed acts as a silver bullet in the
software firm’s quest for becoming an LO. My
analysis reveals that even though adoption of the
CMM does take the software firm forward on the
route to learning, it does not go far enough. Being
a quality assurance framework, the CMM mainly
concentrates on strengthening the structural or
“hard” issues of ensuring collective learning
based on predominantly codifiable or explicit
knowledge. Therefore, it falls far short of con-
comitant changes in behavior, beliefs, values and
culture that are required of employees if the firm
is to truly transform itself into the LO. Future
research efforts could concentrate on exploring
how to build these “softer” concepts of the LO
into the CMM.

This discussion on explaining to what extent
the CMM transforms a software firm into an
LO has several limitations. I have restricted the
scope of the discussion to include only the CMM.
It must be recognized that there are other associ-
ated/variant models also available with the SEI
and adopted by software firms—for example, the
People CMM, CMMI, PSP and IDEAL. However,
these are outside the scope of the present discus-
sion. To conclude, it is fair to suggest that even
though the CMM has become the most popular
TQM framework currently being adopted across
the software industry, it has certain inherent
limitations that do not take the software firm
adopting the CMM to go far enough on the road
to becoming an LO. The quest for becoming an
LO, thus, continues to remain a journey along an
arduous path, and one that the software organiza-
tion must traverse with a great deal of foresight,
experimentation and humility.

rEfErEncEs

Alvesson, M. (2004). Knowledge work and
knowledge-intensive firms. New York: Oxford
University Press.

Becerra-Fernandez, I., & Sabherwal, R. (2001).
Organizational knowledge management: A con-
tingency perspective. Journal of Management
Information Systems, 18(1), 23-55.

Bohlin, N.H., & Brenner, P. (1996). The LO jour-
ney: Assessing and valuing progress. The Systems
Thinker, 7(5), 1-5.

Brown, J.S., Collins, A., & Duguid, P. (1989).
Situated cognition and the culture of learning.
Educational Researcher, Jan-Feb, 32-42.

Carlson, B.P., & Martin, J.B. (1976). R&D orga-
nizations as learning systems. Sloan Management
Review, 17(3), 1-15.

Cook, S.D.N., & Brown, J.S. (1999). Bridging
epistemologies: The generative dance between or-
ganizational knowledge and organizational know-
ing. Organization Science, 10(4), 381-400.

Cook, S.D.N., & Yanow, D. (1993). Culture and
organizational learning. Journal of Management
Inquiry, 2(4), 373-390.

Crossan, M., Lane, H., & White, R. (1998). Or-
ganizational learning: Toward a theory (work-
ing paper). London: The University of Western
Ontario.

Crossan, M., Lane, H., & White, R. (1999). An
organizational learning framework: From in-
tuition to institution. Academy of Management
Review, 24, 522-538.

Daft, R.L., & Huber, G. (1987). How organizations
learn: A communications framework. Research in
the Sociology of Organizations, 5(2), 1-36.

Daft, R.L., & Weick, K.E. (1984). Towards a model
of organizations as interpretive systems. Academy
of Management Review, 9(2), 284-295.

 2439

Becoming a Learning Organization in the Software Industry

Duggan, E.W. (2004). Silver pellets for improving
software quality. Information Resources Manage-
ment Journal, 17(2), 1-21.

Easterby-Smith, M., & Araujo, L. (1999). Or-
ganizational learning: Current debates and op-
portunities. In M. Easterby-Smith, L. Araujo &
J. Burgoyne (Eds.), Organizational learning and
the LO. Thousand Oaks: Sage Publications.

EIU & IBM. (1996). The LO: Managing knowl-
edge for business success. Research Report of the
Economist Intelligence Unit in cooperation with
the IBM Consulting Group.

Elkjaer, B. (2001). The LO: An undelivered prom-
ise. Management Learning, 32(4), 437-452.

Fiol, C.M., & Lyles, M.A. (1985). Organizational
learning. Academy of Management Review, 10,
803-813.

Garud, R., & Rappa, M. (1994). A socio-cogni-
tive model of technology evolution: The case of
cochlear implants. Organization Science, 5(3),
344-362.

Gherardi, S., Nicolini, D., & Odella, F. (1998). To-
ward a social understanding of how people learn in
organizations: The notion of situated curriculum.
Management Learning, 29(3), 273-297.

Hargadon, A., & Fanelli, R. (2002). Action and
possibility: Reconciling dual perspectives of
knowledge in organizations. Organization Sci-
ence, 13(3), 290-302.

Huysman, M. (1999). Balancing biases: A critical
review of the literature on organizational learning.
In M. Easterby-Smith, L. Araujo, & J. Burgoyne
(Eds.), Organizational learning and the LO.
Thousand Oaks: Sage Publications.

Kogut, B., & Zander, U. (1992). Knowledge of
the firm, combinative capabilities, and the rep-
lication of technology. Organization Science, 3,
383-397.

Kolb, D. (1979). On management of the learning
process. In D.L. Rubin & F. McIntyre (Eds.),
Organizational psychology: A book of readings.
Laxington: Prentice Hall.

Lave, J., & Wenger, E. (1991). Situated learning:
Legitimate peripheral participation. Cambridge:
Cambridge University Press.

Levine, L (2001). Integrating knowledge and
process in a LO. Information Systems Manage-
ment, 18(1), 21-33.

March, J.G., & Simon, H. (1958). Organizations.
New York: Wiley.

Mathiassen, L., & Pourkomeylian, P. (2003).
Managing knowledge in a software organiza-
tion. Journal of Knowledge Management, 7(2),
63-80.

McAdam, R., & McCreedy, S. (1999). A critical
review of knowledge management models. The
LO, 6(3), 91-100.

Miner, A., & Mezias, S. (1996). Ugly-duckling no
more. Pasts and futures of organizational learning
research. Organization Science, 7(1), 88-99.

Mirvis, P.H. (1996). Historical foundations of
organizational learning. Journal of Organization
Change Management, 9(1), 13-31.

Mumford, A. (1995). The LO in review. Industrial
and Commercial Training, 27(1), 9-16.

Nicolini, D., & Mezner, R. (1995). The social
construction of organizational learning: Concepts
and practical issues in the field. Human Relations,
48(7), 727-746.

Nidumolu, S.R., Subramani, M., & Aldrich,
A. (2001). Situated learning and the situated
knowledge web: Exploring the ground beneath
knowledge management. Journal of Management
Information Systems, 18(1), 115-150.

2440

Becoming a Learning Organization in the Software Industry

Nonaka, I. (1994). A dynamic theory of organiza-
tional knowledge creation. Organization Science,
5(1), 14-37.

Nonaka, I., & Konno, N. (1998). The concept
of ‘Ba’: Building a foundation for knowledge
creation. California Management Review, 40(3),
40-55.

Nonaka, I., & Takeuchi, H. (1995). The knowledge
creating company. New York: Oxford University
Press.

Orlikowski, W.J. (2002). Knowing in practice:
Enacting a collective capability in distributed or-
ganizing. Organization Science, 13(3), 249-273.

Paulk, M.C. (1998a). Using the capability maturity
model for software to drive change. In T.J. Larsen
& E. McGuire (Eds.), Information systems inno-
vation and diffusion: Issues and directions (pp.
196-219). Hershey: Idea Group Publishing.

Paulk, M. (1998b). Practices of high maturity
organizations. Retrieved August 16, 2005, from
www.sei.cmu.edu/pub/cmm/high-maturity/sur-
vey98.pdf

Paulk, M.C.W., Charles V., Garcia, S.M. Garcia,
C., Bush, M.B., & Marilyn, W. (1993a). Key prac-
tices of the capability maturity model, Version
1.1. Retrieved January 30, 2005, from www.sei.
cmu.edu/publications/documents/93.reports/93.
tr.025.html

Paulk, M., Curtis, B., Chrissis, M., & Weber, C.
(1993b). Capability maturity model for software,
Version 1.1. Retrieved January 30, 2005, from
www.sei.cmu.edu/publications/documents/93.
reports/93.tr.024.html

Ramanujan, S., & Kesh, S. (2004). Comparison
of knowledge management and CMM/CMMI
implementation. Journal of American Academy
of business, 4(1/2), 271-277.

Ravichandran, T., & Rai, A. (2000). Quality
management in systems development: An orga-

nizational system perspective. MIS Quarterly,
24(3), 381-415.

Richter, I. (1998). Individual and organizational
learning at the executive level: Towards a research
agenda. Management Learning, 29(3), 299-316.

Robey, D., Welke, R., & Turk, D. (2001). Tradi-
tional, iterative, and component-based develop-
ment: A social analysis of software development
paradigms. Information Technology and Manage-
ment, 2(1), 53-70.

Sawyer, S., & Guinan, P.J. (1998). Software
development: Processes and performance. IBM
Systems Journal, 37(4), 552-568.

Schank, R.C., & Abelson, R.P. (1977). Scripts,
plans, goals and understanding: An inquiry into
human knowledge systems. Hillsdale: Erlbaum.

Senge, P.M. (1990). The fifth discipline: The art
and practice of the LO. New York: Doubleday.

Shrivastava, P. (1983). A typology of organiza-
tional learning systems. Journal of Management
Studies, 20(2), 7-28.

Tsoukas, H. (1996). The firm as a distributed
knowledge system: A constructionist approach.
Strategic Management Journal, 17(Winter Spe-
cial Issue), 11-25.

Ulrich, D., Von Glinow, M.A., & Jick, T. (1993).
High-impact learning: Building and diffusing
learning capability. Organizational Dynamics,
22(2), 52-66.

Weick, K.E., & Bougon, M.G. (1986). Orga-
nizations as cognitive maps: Charting ways to
success and failure. In H. Sims Jr. & D. Gioia
(Eds.), The thinking organization. San Francisco:
Jossey-Bass.

Yeung, A.K., Ulrich, D.O., Nason, S.W., & Von
Glinow, M.A. (1999). Organizational learning
capability. New York: Oxford University Press.

 2441

Becoming a Learning Organization in the Software Industry

Zack, M.H. (1999). Developing a knowledge
strategy. California Management Review, 41(3),
125-145.

This work was previously published in An Overview of Knowledge Management, edited by B. Walters; Z. Tang, pp. 104-120,
copyright 2006 by IGI Publishing (an imprint of IGI Global).

2442

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6.7
Agile Practices in

Project Management
John Gómez

Ericsson Chile, Chile

Alejandro Núñez
Practia Consulting S.A, Chile

AbstrAct

This chapter introduces agile project management
as a way to improve the processes for software
development in small organizations. The chapter
contains a description of the main concepts and
techniques used along with practical recom-
mendations for their application in real situa-
tions. The chapter also analyzes the relationship
between these practices and recognized process
improvement models like the CMMI and the PMI
PMBOK and presents case studies to illustrate
implementation.

IntroductIon

Most of the reasons behind failure in software
projects lie in the lack of sound project manage-
ment practices. The results of many industry
studies and surveys show that the absence of
appropriate strategies for scope management,
risk handling, or project planning are frequently
found in challenged projects.1 For that reason,

process improvement (PI) initiatives start with
the project management discipline. For example,
the maturity level 2 of the Capability Maturity
Model Integration (CMMI®2) model is focused
on the development of basic project manage-
ment capabilities (CMMI Product Team, 2006,
p. 55). This means that although an organization
should improve the project management and the
engineering process, beginning with the first one
may allow it to obtain better results.

Nevertheless, starting process improvement
is an overwhelming endeavor no matter the size
or nature of the organization. The improvement
initiatives have to compete with “delivery proj-
ects” that always seem to be more important (or
urgent) especially from the business user’s point
of view. The benefits of a PI initiative are usu-
ally difficult to perceive or measure in the short
term. This causes the organization motivation
to decline progressively and lead the initiative
to failure. This situation is even worse for small
or medium organizations where resource limita-
tions are higher. Small and medium organizations
must approach process improvement in a way that
benefits are realized sooner.

 2443

Agile Practices in Project Management

Another aspect of PI projects that reinforces
the situation previously described is that many
times PI teams replace the absence of good
practices with over-engineered processes where
formalism and control exceed what is needed due
the nature of the work on the project or organiza-
tion. Managers, users, and practitioners start to
perceive these new processes as obstacles and not
as tools and refer to the new way of doing things
as bureaucratic, rigid, or heavy-weight. Product
quality may be improved (initially), but team
productivity and motivation remain low which is
going to impact product quality in the long run.
Also, team focus deviates from reaching project
objectives to blindly follow procedures. Small and
medium organizations are also more affected by
this situation since usually their environments
(team size, product size, project duration, cost,
etc.) are smaller, and over-engineered methods
may have a greater impact on project delivery.

The application of agile practices for project
management addresses these common problems
and may allow an organization (especially small
and medium ones) to manage effectively a pro-
cess improvement initiative. The development of
project management capabilities facilitates the
establishment of the environment to control not
only project delivery but also the improvement
project itself. The agile approach (by definition
lighter and goal-oriented) may reduce the effort
(and cost) and contribute to realize benefits sooner,
keeping high morale and motivation. Our intent is
to describe briefly how agility is understood and
applied within the project management context
and how this may benefit a process improvement
initiative.

There has been a lot of discussion between agile
and traditional methods authors and supporters.
We do not adhere to any of them, and our purpose
is not to contribute to any side of that polemic.
What we see is that the limits known as the usual
home grounds for agile and traditional methods
are blurring creating environments where no
one of them is enough or complete. A mixed ap-

proach is needed to find the best solution. Also, as
many other disciplines, agile project management
(APM) may be enhanced by a proper use of tools.
Choosing the right tool and deciding how to use
it is not easy, so we created a special section to
make some recommendations on that subject.

Agile project Management

Origin of APM

APM has its roots in the agile methodologies for
software development created specially during
late 1990s and publicly formalized as a move-
ment with the formation of the Agile Alliance
and subsequent publication of the Agile Mani-
festo (see Figure 1. Manifesto for Agile Software
Development) in 2001 (Beck et al., 2001). Every
agile method adheres to the declaration of values
and principles stated in the manifesto, but the
approach to deliver the solution varies from one
to another; however, since agile methodologies
are designed to handle a product development
project, project management practices are pres-
ent in most cases. We took our main references
from the work of Jim Highsmith who recently
published a book on agile project management,
the SCRUM method created by Ken Schwaber

Manifesto for Agile Software Development

We are uncovering better ways of developing software
by doing it and helping others do it.

Through this work we have come to value:
Individuals and interactions over processes and
tools
Working software over comprehensive documenta-
tion Customer collaboration over contract negotia-
tion Responding to change over following a plan

That is, while there is value in the items on the
right, we value the items on the left more.

•
•

•

Figure 1. Manifesto for Agile Software Develop-
ment

2444

Agile Practices in Project Management

and Jeff Sutherland, and the Crystal Clear method
developed by Alistair Cockburn.

Since its official birth in 2001, agility has
grown beyond software development, and one of
these areas is project management. This means
not only that practices that were initially used
for software development projects are currently
applied for nonsoftware projects but also that
there is an ongoing effort within the agile com-
munity to improve and extend the current state of
the practice. The formation of the Agile Project
Leadership Network (APLN3) and the publica-
tions of books on agile project management like
the one from Highsmith (2004) mentioned before
showed that work.

Agility Defined for Project Management

For the purpose of the chapter agility in project
management is defined by:

Keeping the team focused on reaching project
goals oriented by customer objectives
Use of a risk-oriented approach to accomplish
project goals based on frequent delivery of
functional solutions
Creating and maintaining a healthy environ-
ment for team interaction and development,
enhancing self-management, transparency,
and visibility

•

•

•

Use of balanced project management process-
es to allow the appropriate mix of flexibility
and control, enhancing team productivity

The APLN also published a declaration of
values and principles of agile and adaptive ap-
proaches to project management (see Figure 3.
Declaration of Interdependence). Note how for
APLN the appropriate term is “leadership” and
not management. We talk about this topic later
when discussing the role of the project manager
in an agile environment.

Life Cycle of an “Agile-Managed”
Project

There are three major phases of an agile man-
aged project:

Initiate phase, where product vision is defined,
initial scope is established, a high level plan
is elaborated, and the team and environment
are set up.
Produce phase, which is conformed by a
successive set of iterative and incremental
deliveries of functional product that ends in
a product release.
Close phase, which ends the project and gath-
ers lessons learned.

•

•

•

•

Figure 2. Agile project life cycle

Initiate produce close

Iterations
(Plan – develop – review)

 2445

Agile Practices in Project Management

The produce milestone may be divided into
more than one release and each release in more
than one milestone to establish different levels of
control. The most important concept on this stage
is the iterative-incremental approach that aims to
reduce risk and uncertainty by delivering fully
functional portions of the product to the customer.
Every iteration has an internal cycle of plan (re-
viewing and updating scope and high-level plans
and elaborating a detailed plan for the iteration),
develop (building functional increments of the
product), and review (team self-assessment on
project performance and customer reviews of the
product). In the next section, we will be seeing
practices that fit into this life cycle.

Agile Project Management Practices

Product and Project Envisioning

Establishing a shared vision is critical in an
agile environment. This is based on the belief
that people work better when they are motivated
for the long-term effects of the job. This is done
by making the team realize the benefits that the
project results will bring to the customers and the
performing organization. A product or project
vision statement is declared using workshops as
team-building tools. Defining the product vision
must include:

Description of customer needs, motivations,
or problematic situations
Expected benefits or value added to customer
business (problem solving, reducing costs,
increasing revenue, or enhancing competi-
tive advantage)
Expected benefits for the organization per-
forming the project

Highsmith (2004) suggests the use of a tech-
nique called the product vision box, where the
team and customer representatives participate in
a workshop to design the box that will contain the
product. The team designs the front and back of
the box and defines a set of statements that should
be on the box to help sell the product. This may
end with an “elevator test statement” containing
the product vision (Chapter VI). For Crystal, this
is part of a workshop is called “The Exploratory
360o.” The product/project vision is defined in
project initiation but is reviewed and communi-
cated along the project to assure that objectives
are still on target and that the team is oriented
by those goals. The project vision normally ends
with some charter of the project that contains
the product vision, business objectives, project
organization, and environment definitions.

•

•

•

Figure 3. Declaration of Interdependence

Declaration of Interdependence

Agile and adaptive approaches for linking people,
projects and value

We are a community of project leaders that are highly
successful at delivering results. To achieve these
results:

We increase return on investment by
making continuous flow of value our focus.
We deliver reliable results by engaging
customers in frequent interactions and
shared ownership.
We expect uncertainty and manage for
it through iterations, anticipation, and
adaptation.
We unleash creativity and innovation by
recognizing that individuals are the ultimate
source of value, and creating an environment
where they can make a difference.
We boost performance through group
accountability for results and shared
responsibility for team effectiveness.
We improve effectiveness and reliability
through situationally specific strategies,
processes and practices.

�

�

�

�

�

�

2446

Agile Practices in Project Management

Environment Setup

Enhancing team interaction is one of the goals
of an agile managed project. This practice refers
to establishing the environment when interac-
tion happens. Environment definition covers
essentially:

Interaction rules: Agile methodologies are
oriented by principles and values. These two,
in combination with the product/vision, have
a function within the agile environment:
they allow team self-management. In agile
environments many decisions on how to ac-
complish the work are left to the team who
uses this rules to keep the work oriented to
goals.
Processes and tools: Agile teams should
select the processes and tools that allow them
to accomplish the objectives. A methodology
workshop may be conducted to decide on this
topic that results in a set of roles, practices,
work products, and tools that the team will
use on the project.
Physical environment: Co-location is fre-
quently suggested in many forms within agile
environments to facilitate communication and
interaction. This can be seen explicitly as a
practice in extreme programming (XP) (Beck,
2000, chap. 13) and slightly modified with the
osmotic communication property of Crystal
Clear (Cockburn, 2005, p. 24). Face-to-face
conversation is the most effective way of
communication and the physical environment
must facilitate that. Also the environment is
designed to promote transparency, so it is com-
mon to use dashboards with task or feature
cards where critical information like issues
or progress are published and made visible
to the whole team. A very good description
of this practice is the information radiators
strategy in Crystal Clear (Cockburn, 2005, p.
54). In projects with virtual teams, other col-
laborative tools are available and frequently

•

•

•

used. The use of these kinds of tools will be
commented on later.

Scope Management Strategy

Scope creep is one of the most common causes
related to project failure, so strategies to handle
this are a must. The degree of uncertainty is key
in defining an adequate strategy for scope man-
agement. Uncertainty leads to change, and agile
teams recognize that change is unavoidable and
even beneficial. In that sense, change requests
are allowed anytime in pursuit of maximizing
the value that a customer may get for the prod-
uct. Anyway, implementing changes as they are
requested leads exactly to scope creep, so there
must be some sort of change control. This is how
it works:

Scope is established using backlogs of scope
elements. A scope element is a requirement
(functional and nonfunctional), feature, use
case, user story, defect, or change request.
Changes to scope elements are received any-
time but added at the end of the backlog.
At the beginning of each iteration, the backlog
is prioritized to decide which elements are to
be developed during the iteration. Change
requests are in the backlog so the customer
has the chance to include them for the next
iteration if they are considering more impor-
tant that previous elements.

Engagement rules are established at the begin-
ning of the project to manage customer expec-
tation, and roles are defined to accomplish the
scope management tasks. Normally, a customer
representative owns the backlog and is in charge
of prioritizing. This customer representative act
also as an official provider of scope definitions.
This way, uncontrolled changes from unofficial
channels are prevented.

With this approach, the customer does not
have to wait too long to include a change if he/

•

•

•

 2447

Agile Practices in Project Management

she really wants it. When the time of prioritiz-
ing comes, many change requests are dismissed
because they add little to no value compared to
other features previously defined. Iteration dura-
tion is critical to the success of this strategy. The
iteration duration establishes the “lag” or “waiting
time” for the customer to introduce changes to
the project. A high change rate suggests a shorter
iteration time. Anyway, sometimes changes are
critical and must be included right away. When
this situation happens, there is no sense to continue
the iteration: the iteration is stopped and a new
iteration is planned.

The backlog is usually maintained with as
little detail as possible to facilitate updates.
Scope elements definition may be detailed some
more with feature cards or use cases/user stories
descriptions. Detail information is usually added
only for elements to be developed in the next
iteration. Scope definition is also complemented
with release or milestone plans. At the beginning
of the project, the initial scope is established
and release or milestone plans are elaborated to
organize the project within a schedule. A release
or milestone plan is usually a high level plan that
describes which scope elements will be devel-
oped for each release or milestone. Release and
milestone plans are based on the backlog and are
reviewed and updated each iteration. This subject
will be covered next.

Layered Planning

The focus on the planning process is to keep it
the most cost-effective as possible. According to
the scope management strategy, there are scope
elements that are really committed (the ones that
will be developed the current iteration) and oth-
ers that are not. Detailed planning for items not
committed or with low priority may be a waste.
However, there should be a mechanism to elabo-
rate a schedule for the whole project. A common
misunderstanding of agile projects is that since
changes are always allowed, the project is not

able to commit for a fixed date. This is not true. A
finish date is required to organize the work. This
seems to be a paradox but has a simple solution.
At the beginning of the project, an initial scope is
established, and with that initial scope, a project
plan is elaborated. This plan is kept at high level
and its purpose is to establish a base schedule
with some levels (or layers) of control. A large
project with more than one delivery (release) to
production environment may be organized by
releases (every six months or more). A release
is an organized set of scope elements associated
with a date in the schedule. This primary level
of control may be decomposed into a second one
(milestones, from one to three months) that are also
defined in terms of scope elements and dates. The
work to accomplish a milestone is then divided
in iterations (from one week to one month). The
iteration is the minimum unit of work and is where
the scope management strategy is fully applied.
The iteration work is fixed, and the team is able
to focus on that work. Then, predictability for the
iteration work is higher, and detailed planning is
cost-effective. The plans for the primary (releases)
or secondary (milestones) layers are reviewed and
updated each iteration.

Iteration planning is usually done in workshops
where the customer and the whole team interact.
This workshop is present in most of the agile
methods (Beck, 2000; Cockburn, 2005; Scwhaber,
2004) and usually works like this:

During the first part of the workshop, the
customer representative explains the scope
elements to be developed during this itera-
tion.
The team raises technological or environ-
mental issues that may affect priorities which
are adjusted.
Based on previous performance results,
the team estimates the effort to develop the
scope elements. Restriction analysis (re-
source availability, risk identification, etc.)
are incorporated to the estimations to allow

•

•

•

2448

Agile Practices in Project Management

contingencies. Based on estimation, the scope
for the iteration is agreed and committed. The
whole team participates in the estimations,
produced taking into account the complexity
and size of the requirement, using a relative
scale and assigning “points.” This way, the
simplest requirement takes one point and so
on. The concept of relative scale refers to a
predefined set of the amount of points that a
requirement may get: 1, 2, 3, 5, 8, 13, 20, 40,
80 (Cohn, 2004, chap. 8). This kind of scale
facilitates discussion among team members
considering that for more complex or larger
requirements uncertainty is higher and may
reveal the need for further information or
more decomposition.
The team takes scope elements and breaks
them down into tasks; tasks are assigned
and effort is estimated. Task estimation is
verified against scope element estimation to
verify consistency.
Resource load is reviewed and leveled.
Team decides on task dependencies and
sequencing and defines priorities. Tasks for
the first day of work are agreed on and com-
municated.

The planning workshop is usually time boxed
(Schwaber & Beedle, 2002).4 The tasks are listed
in another backlog. To facilitate control, tasks are
always mapped to scope elements. This allows
the team to keep the focus on the commitments
for the iteration.

Frequent Inspection

The purpose of frequent inspection is to detect any
obstacles before they can cause a major impact on
project goals. The frequency of the inspection is
left to be decided by the team, but most of the agile
methods detect and remove obstacles on a daily
basis. There are two more objectives of frequent
inspection: set up a space for team interaction and
communication and provide visibility on work

•

•
•

progress to the team and project stakeholders.
There are two main strategies related to frequent
inspection: daily team meetings and daily task
re-estimation and burn-down charts.

In the daily team meeting, the whole team gath-
ers together for a maximum of 15 minutes with the
main purpose of detecting any obstacles that may
prevent the team from accomplishing the iteration
goal. Each member of the team participates in the
meeting, answering three questions:

What tasks was I working on since the previ-
ous daily meeting?
What tasks am I going to be working on until
the next daily meeting?
What obstacles or problems are or may be
on the way?

No other subjects are allowed at the meeting,
and problems are scheduled for further discussion
later, commonly right after the meeting. Many
soft aspects are related to this meeting: the team
usually forms a circle (of peers) and is standing
up. When a team member speaks, everyone else
is listening. No interruptions are allowed, but
questions may be asked to clarify some subject.
The team leader conducts the meeting but only
to keep the focus and register issues. Issues are
registered for further action. It is expected that a
defined response action must be in place for every
issue before the next meeting.

The second strategy is to re-estimate the re-
maining effort of every not-completed task daily.
Based on the daily information of total remaining
effort, a “burn-down” is calculated. This informa-
tion is graphically represented in “burn-down”
charts as seen in Figure 4. Burn-down chart. In
the figure, the blue/continuous line is plotted
between the points of total remaining effort for
each day. The trend of this line represents the
“velocity” of the team. This actual velocity may
be compared against an ideal or planned velocity
(the red-dashed line) to obtain daily information

•

•

•

 2449

Agile Practices in Project Management

about progress and make performance forecasts.
The graphics may be interpreted as follows:

If at any given point, the actual velocity line
is over the planned velocity line, the team is
advancing slower than expected; probably,
there are issues impeding the team progress
or maybe the team underestimates the work
to be done, so adjustments may be needed.
If the actual velocity line is below the planned
velocity line, the team is advancing faster.
Assumptions may have changed, or the team
overestimates effort.

With the value of actual velocity, the team is
able to forecast its performance and make ad-
justments to assure that it will meet the iteration
objectives. Burn-down information is public, and
graphics are printed and published in a dashboard
or any other place that everyone can see.

•

•

Product Review

Product review is present in agile environments
with different techniques. For software projects,
the use of automated unit testing linked to a disci-
plined procedure is frequent. Therefore, customer
involvement in reviews is required and techniques
like acceptance testing, technical reviews, or
customer focus groups are common (Highsmith,
2004, chap. 8). These customer reviews occur
normally at the end of every iteration. In SCRUM,
there is a practice named sprint (iteration) review,
the main focus of which is to review the product
developed during the sprint; the sprint review
is a meeting time boxed to three or four hours
where the team presents the product to the product
owner and other stakeholders. Defects and change
requests are added to the product backlog to be
prioritized at the next sprint (Schwaber, 2002, p.
54). The purpose of this practice is to show the
actual progress on the product development and
allow the customer to make changes and recom-

Figure 4. Burn-down chart

Effort burndown

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

day

Ef
fo

rt
 p

oi
nt

s

2450

Agile Practices in Project Management

mendations if the product does not match stated
requirements and expectations.

Team and Environment Tuning

Not only is the product reviewed to verify con-
formance to requirements and expectations; the
performance of the team is also evaluated. At de-
fined moments or at the end of every iteration, the
team meets and reflects on its performance trying
to find essentially what things worked well (and
should be maintained), what did not (and should be
adjusted or removed), and what improvements may
be made to the team interaction or environment to
enhance performance. In SCRUM, this is called
the sprint retrospective (Schwaber, 2002, p. 54).
Crystal Clear named it the reflection workshop
(Cockburn, 2005, p. 65).

Time Boxes

The use of time boxes has a wide range on agile
environments and that is why we decided to
include a special part on this technique. A time
box is a fixed duration time frame assigned to
an event in the project. The most important time
box is for iterations: once the iteration starts, the
finish date is not changed. Time boxes are also
applied for the daily meetings and the planning
and reflection workshops.

Role of the Agile Project Manager

First of all, it is appropriate to state that the word
“manager” is rarely used in agile environments
to refer to the person that conducts the project
planning and execution. Team self-management
is a fundamental concept of agile projects, and
having that in mind, there is no place for a tradi-
tional “project manager.” Instead, the agile project
manager’s main responsibilities are:

Facilitating team interaction, removing ob-
stacles from the path of the team to allow goal
accomplishment and enhance performance
Coaching and serving as change agents,
promoting the values and principles, and
encouraging discipline on the defined pro-
cesses and rules
Leading the team by keeping the team focus on
customer objectives and the defined product
vision and project goals
Coordinating the work, helping in decision
making and problem solving

One of the most interesting aspects of this role
is the difference between self-management and
self-direction. For authors like Highsmith (2004),
agile teams are self-managed since they organize
their own work and decide how to accomplish
the goals. However, the team is not self-directed:
there is a leader that keeps the work on track of
the vision and objectives (Chapter III).

•

•

•

•

Figure 5. Agile vs. Traditional PM paradigms

traditional

time

scope

cost

Agile

time

scope

costFixed

Variable

 2451

Agile Practices in Project Management

relating ApM and traditional pM
Models

Agile vs. Traditional Paradigms for
Managing a Project

Figure 55 shows the way the triple-restriction of
projects is managed in agile and traditional envi-
ronments. From the agile point of view, traditional
project management aims to maintain the scope
fixed by strict control of changes. When a scope
is committed, the project tries to deliver it allow-
ing some variations of time and cost. If the scope
changes significantly, then the time and cost are
adjusted. In an agile project, the time restriction is
fixed (using time boxes), and the scope is allowed
to change in benefit of the customer objectives,

which is facilitated by the prioritizing practice in
the scope management strategy.

Agile Project Management and the
CMMI6

The CMMI model is one of the most important
references in process improvement, especially for
the software development industry. The CMMI
establishes a set of recognized best practices for
product development at the project and organi-
zational contexts. The model is organized in 25
process areas, six of them dedicated to project
management. Therefore, there is a cross-sectional
focus on project management for the maturity
level 2 and capability levels 1 and 2. That is why
we decided to comment on the relationships be-

Process Area Specific Goal Compatibility of Agile Practices

Requirements
Management SG1 Manage requirements

In an agile environment, there is a defined scope management
strategy. There is a documented backlog of scope elements.
Understanding is assured by the definition of official providers
and the customer involvement in the development. Commitments
are made and established in the iteration plan. Normally, there
is traceability between scope elements and tasks. Changes are
managed.

Project Planning

SG1 Establish estimates

Scope is established trough the development of the scope elements
backlog and the release/milestone plan which also contains the
defined lifecycle. Rationale for estimations is present and usually
scope elements receive an assignation of attributes of size and
complexity. Effort estimation is realized at ROM for the project and
detailed for each iteration.

SG2 Develop a project plan

Explicit planning of some parameters is missing (i.e., data
management) and may be analyzed for each project. A schedule,
budget, and resource plan exists. There are artifacts that represent
the planning process.

SG3 Obtain commitment to
the plan

Planning is usually made at workshops when the customer
participates. Resource leveling occurs by iteration.

Project Monitoring
and Control

SG1 Monitor project against
plan

During the daily meeting, issues that may cause deviations are
detected. During iteration planning, the parameters for the whole
project are reviewed and adjusted. Progress is analyzed daily using
burn-down charts.

SG2 Manage corrective
action to closure

Issues detected are analyzed and a corrective action should be
initiated as soon as possible.

Exhibit 1.

continued on following page

2452

Agile Practices in Project Management

tween the CMMI and APM. We are not trying to
prove that an organization may achieve a CMMI
maturity or capability level using agile practices.
Our purpose is to show how the agile practices
we commented are related to some key elements
of the project management discipline on the
CMMI model. The table shows the goals process
areas of the project management category until
maturity level 3. Supplier management was out
of the scope of this work, so the supplier agree-
ment management process area was not included;
instead the requirements management process
area was included due its relevance to the project
management discipline; although for the CMMI,
it belongs to the engineering category.

Note how there are many agile elements that
give some level of support to the specific goals
of this process areas. Considering the nature of
the SCAMPI method is difficult to affirm that an
organization may achieve a capability or maturity
level using only agile practices. In most cases, a
refinement or addition is needed. Further, in this
chapter, we comment on a case were a CMMI
level 3 organization used some agile practices

in a project without sacrificing the CMMI imple-
mentation.

Agile Project Management and the
Project Management Body of
Knowledge (PMBOK7)

The PMBOK (Project Management Institute,
2004) is recognized as one of the top standards
in the project management profession. As many
traditional methods are usually misunderstood
as heavyweight processes that are unsuitable
for small environments, the PMBOK contains
a series of best practices that are recognized as
successful for a wide range of projects, and it is
not expected that every one of them should be
applied for every project. One statement says that
quality should be planned into the project from
the beginning and defining adequate processes
is part of that definition. The adequate processes
should address the objectives and nature of the
project and this does not mean that every practice
in the PMBOK is adequate for every case.

Process Area Specific Goal Compatibility of Agile Practices

Integrated Project
Management

SG1 Uses the project defined
process

Normally, at the beginning of the project, a process is defined to
manage the project. This process is reviewed at the end of every
iteration and adjusted. Estimations are adjusted using velocity data
of previous iterations or projects. Lessons learned are gathered and
shared among teams.

SG2 Coordinate and
collaborate with relevant
stakeholders

Stakeholders are identified and its participation defined from the
beginning of the project.

Risk Management

SG1 Prepare for risk
management

The priorities and the choosing of life cycle are driven by project
risks.

SG2 Identify and analyze
risks

Risks are identified and monitored as potential blocks in the daily
meetings.

SG3 Mitigate risks Potential blocks are detected and preventive actions initiated using
the same rationale as issues.

Exhibit 1. continued

 2453

Agile Practices in Project Management

We can start analyzing compatibility with
the groups of processes of project management
in the PMBOK (initiating, planning, executing,
monitoring and controlling, and closing) and the
agile project life cycle. The process groups do not
happen in a cascade in the project; instead they
occur many times in different project phases. In
an agile project, initiating and closing are related
to the initiate and close phases, and the produce
phase are continuous cycles of planning, execut-
ing and monitoring, and controlling the iterations.
For that reason, most of the planning processes
occur every iteration. The following table shows
some compatibility of agile practices within the
context of PMBOK areas:

lessons learned (tales from the
trench)

Managing a Project Without a Gantt
Chart

Power Games Co. (PGC) is a small game de-
velopment studio8 with just three years on the
market. PGC works for larger game publishers
developing small products oriented to the casual
gamer segment. A typical project at PGC takes
about six months with a team of five to six people
integrated by designers and engineers. In the game
industry, the product are built incrementally. This
is explained since most of the features need to be

Knowledge Area Compatibility of Agile Practices

Scope management
Scope is defined using the scope elements backlog and the release plan, which when combined are
equivalent to the WBS. The scope management strategy is defined from the beginning of the project
and most of its rules (prioritizing as a key one) are performed every iteration.

Time management

Activity definition and dependency analysis for sequencing occur every iteration. There is not
usually a bar (Gantt) chart or network diagrams to show the schedule. Also, techniques like
resource leveling, theory of constraints, and rolling wave planning are frequently applied in agile
environments. Schedule control also uses time boxes and is supported by burn-down charts.

Cost management ROM (rough order of magnitude) estimations occur at initiation. Detailed task effort estimations
occur every iteration. Effort control is based on daily re-estimation and burn-down charts.

Risk management

The whole life cycle of the project and the priorities are driven by project risk. Quantitative
risk analysis is not commonly used. Mitigation occurs at the project level with time boxing and
prioritization and at the iteration level with definition of corrective and preventive actions to avoid
or remove obstacles

Quality management Adequate processes are selected at the beginning of the project. Normally, there are quality control
techniques in place like acceptance testing, product reviews, or customer focus groups.

Human resource
management

The team is the most important factor in agile environments. Ground rules are explicitly established
at the beginning of the project and maintained along the way. Team development is enhanced with
reflection on causes of good or bad performance. The daily meeting allows for team management
and interaction.

Communications
management

The PMBOK states that the best way of communication is the face-to-face conversation which
is also an agile principle. Communication is key on agile environments and frequently promoted
through the workshops, daily meetings, and even the physical environment (i.e., with information
radiators). Stakeholder identification and analysis is also conducted.

Integration
Chartering occurs at the beginning of the project by establishing a vision of the product and the
project. The project is managed with integrated perspective of the scope, release plan, and iteration
plans, which are maintained consistently through the project.

Exhibit 2.

2454

Agile Practices in Project Management

tested to prove not only that the software works
as specified but also that the gaming experience
is fun. PGC delivers a product increment each
month or so. The culture is informal, and people
are very talented.

PGC has a product manager who is in charge of
all projects, and from previous work experiences,
she firmly believes that the best way to eliminate
risk or uncertainty is to plan up-front the activities
with as much detail as possible. The team writes
a project plan and produces a detailed schedule
of the whole project tasks. Preparing this plan
usually takes from two to three weeks. The team
is not very comfortable with this way of doing
things that, by the way, does not seem to be con-
sistent with the culture and the iterative product
development cycle; however, it seems to work for
PGC: products are delivered on time and usually
exceeding customer expectations. Publishers give
PGC bigger contracts which implies developing
more exciting games and making people feel
happy. There are no complaints.

This success opens new opportunities for PGC,
and one shows up quickly: a very important pub-
lisher contracts PGC for a new game. This project
is different from any other PGC has executed in
the past. It is a nine-month project that requires
at least 15 people; most of the visual design of the
game has to be outsourced and the game involves
the use of technology that is unknown to people
at PGC. Another challenge rises up: contract and
franchise negotiations took almost two months,
but the delivery dates remain fixed. A nine-month
project is now a seven-month one. The product
manager decides to start planning the project right
away, as usual: the team takes about three weeks
to build a detailed schedule with fine-grained
tasks for the seven months of the project plotted
in a Gantt chart. The first production iteration
starts, and three weeks later (one before the first
delivery), the project is completely challenged.
Tasks seem to be advancing, but no real progress
is visible. Team interaction is difficult: status
meetings are held weekly but are not effective.

Morale is very low. By this time, many tasks in
the schedule do not make sense anymore, and the
schedule has to be updated. This sole fact worries
the team a lot because they know that it may take
at least a week.

It is evident that the management approach is
not working in this case, and a change is needed.
The team decides to use an agile approach. First,
the team is divided into three mini-teams of five
people each. Each team has an assigned leader
and is self-sufficient in terms of the required
skills; this means that each team has at least a
game designer, an illustrator, an animator, and
a programming engineer. The product is also
divided into two major components and assigned
to the first two teams. The third team receives the
responsibility of integrating the game. Regarding
the planning process, considering the business
and technology uncertainty, it is recognized that
full up-front planning is not useful so a high-level
milestone plan is prepared, and it is defined that
detailed planning will be conducted iteratively.
The iteration’s duration is established in two
weeks. Every iteration will start with a planning
session when the scope is analyzed and tasks
are identified and estimated. Tasks will be re-
estimated daily, and progress will be reported
with burn-down charts. Each team will hold daily
inspection meetings. Team leaders will hold a daily
meeting too. Agile principles and philosophy are
communicated to the team, and ground rules are
established. To support this transition, a coaching
strategy is launched.

The results for this project improve signifi-
cantly. After the first iteration pitfall, commit-
ments with the customer are always fulfilled on
time. Technology issues are common, but they are
handled by the team and the product is delivered
with high quality levels. There is also another
big gain: people at the company have acquired
competencies to lead a team and manage a proj-
ect. The company feels more confident in taking
bigger and more challenging projects. There is a
paradox in this case that must be noticed. What

 2455

Agile Practices in Project Management

we can call a natural agile environment (small
new product developed iteratively by a co-located
team of highly talented people) was performing
well using a traditional method. However, when
they needed to scale-up, agile practices supported
that better.

Mixing Approaches

Real Insurance Corp. is a large CMMI maturity
level 3 company for which the project management
methodology is based on the PMI framework. IT
projects are managed using a strong matrix orga-
nization and the project management discipline
is supported by the establishment of a project
management office (PMO). There are senior
project managers with more than eight years of
experience. The company wants to develop two
products for a business unit. The first one is a tra-
ditional product that is going to be re-engineered
in a 12-month project that is partially outsourced.
The second one is a new product which is going to
be based in the framework developed for the first
one. This second project will start three months
before the first one ends and is planned to last
about nine months (the first release in the sixth
month). The first project starts and is challenged
from the beginning: deliveries are always late; the
primary supplier is changed twice and deliveries
are normally rejected. The progress is very slow
and schedules change frequently. The second
project starts as planned by the ninth month of
the first one with a six-person team. After two
months, the first project is cancelled. A quality
assurance audit is then conducted on the second
project, but no significant methodology issues are
detected. Knowing that this project was going to
use components developed for the first one (that
are not ready), six more people are added to the
team. The team struggles trying to use the por-
tions of components previously built, but the first
partial delivery is late and rejected. This fact raises
alarms to IT management which has been highly
committed to the business unit since the first

project failure. Now its three months to the first
release, and the team realizes that it is less costly
to stop trying to work around the half-developed
components and start from scratch.

The decision was to include some agile
practices to facilitate team interaction and im-
prove morale. Scope management artifacts were
maintained but change control procedures were
slightly modified to allow fixed scope iterations.
The scope of the first release was renegotiated by
prioritizing items. The work was divided into four
fixed-duration iterations: the first three finishing
with a fully functional increment of the product
and the fourth dedicated only to refinements and
tuning. The project schedule was updated, leav-
ing only milestones and high-level descriptions.
The formal estimation method was maintained,
but estimations were reviewed according to the
defined iteration plan. Iteration planning work-
shops were conducted to create task backlogs.
Daily meetings and burn-down charts were used.
The main project management artifacts, like the
project charter and project plan, were updated to
reflect these changes. The project status reports
required weekly by the PMO were maintained and
also the risk management processes. Neverthe-
less, the main focus was not the process itself. A
detailed communication plan was put in place and
a coaching program was launched to facilitate
change. The team was trained in agile principles
and values, and workshops to establish ground
rules were conducted. The team was co-located.
The customer was involved in the methodology
changes, and the acceptance testing plans were
modified to fit the new approach.

The first iteration was the most difficult. The
planning workshop lasted almost three days (not
the day that was expected for the three-week itera-
tion). Initially, the 12-person team was separated
into two functional groups which was believed
to be the most appropriate approach, but this
was confusing for the people who decided to
create groups by architecture layer. Initial daily
meetings were also longer than expected. After

2456

Agile Practices in Project Management

a week, the first integrations started with some
suffering, but by the end of the second week,
the team solved most of the problems allowing
them to finish the iteration on time. Due the slow
procedures to release a product to the acceptance
testing environment, the result of the first iteration
was presented in the development environment.
Despite the customer’s surprise, there was not
too much to see but the team was able to accom-
plish a goal and deliver for the first time on the
project a product that was functional. The team
interaction improved a lot, but some political
factors were present always and required a lot of
attention along the project. The next iterations
were less difficult but not exempt of challenges.
The team was able to finish the development of all
functionalities committed for the first release two
weeks before the deadline, which was normally
considered too short. However, since acceptance
testing was conducted incrementally too, the first
release went to production on time. Quality as-
surance reviews were conducted on the project,
and no deviations from the CMMI process were
noted. The management approach and practices
were registered as lessons learned and made part
of the organizational process assets.

software tools for ApM

Software tools have been around us, helping to
achieve goals since the beginning of the computer
age. We can easily recall the different approaches
to word processing of the late 1980s, the endless
race of database engines of the mid-1990s, and
the overpopulation of support software for what-
soever one may like in the present day. We may
remember many enterprise resource plans (ERPs),
customer relationship management (CRMs), oper-
ating systems (OSs), information managers, to-do
lists, reminders, Web development, CAD tools,
3D modelers, and so on, but something amazing
has revealed, in the continuous (and chaotic) race
towards the future, that project management has
received help from project management support

packages. The offer is wide: they come in many
flavors and some are more appealing to some
clients (organizations) than to others. We will
try to give a perspective of the present status of
agile-focused project management tools or, to
put it in the right way, tools that can be used to
assist agile project management, and possibilities
of their use in agile organizations, giving hints
of alternate uses and warnings when risks are
identified. In our search, we have recognized four
flavors in which tools fit:

Plan-based/traditional
Wiki
Web (2.0)
Methodology-specific

As tools evolve and are fed with industry
trends, new ideas, or customer feedback, they start
to share some inspiration, leading ultimately to the
fact that no tool can be allocated exclusively to one
of these flavors, but the most influential one will
represent its type. We will approach these tools
with APM in mind, trying to relate their specific
functions to components of APM.

Plan-based/Gantt Chart-Driven
Software Tools

This is maybe the most overcrowded segment of
consideration. There are many tools available,
ranging from feature rich and quite expensive
packages to free Gantt drawers. All these tools
seem to have a strong bond to the traditional
paradigm of project management, but some allow
a degree of flexibility to adapt to the principles
of APM.

Primavera Project Planner (Primavera) and MS
Project (Microsoft) are the top of mind tools for
many people, both are being used for a long time,
and are the “de facto” standard for certain indus-
tries. Both tools are usually perceived as Gantt
drawing tools, but they are feature rich and very
helpful giving assistance to the project manager.

•
•
•
•

 2457

Agile Practices in Project Management

For product and project envisioning, Primavera
Project Planner offers embedded forums on which
the envisioning can take place as text post. These
posts are published inside the application and are
visible for all project members. Another possibility
is to put the envisioning documents shared and
access them through the embedded file manager.
MS Project allows shared documents using project
server’s collaboration abilities.

For the layered planning, both tools use the
traditional planning, so it is possible to specify
milestones for the releases and some referential
tasks to give a view of the project as a whole. Due to
the inherent volatility of the tasks to be performed
on an iteration, its inclusion on these tools would
result in task/resource administration overhead.
A parallel tool to maintain the feature list, task
list, and estimations would be recommended. It
must be said that a XP (template/extension) is
available for MS Project on the Microsoft Web
site (http://www.microsoft.com). Both products
have an issue manager (in the case of Project,
using Project server’s collaboration capabilities)
that allows tracking issues that might rise during
product development.

Some other tools that have the same focus but
with different implementations are eGroupware
and TUTOS, both Web based, both open source.
Each of these collaborative tools have a project
module in which tasks and milestones are added
with explicit task precedence and assignment. It
is able to form a Gantt chart from the data set.
Again, changing the content to be developed on the
iterations can be a painful experience, especially
when page loading time matters.

Wiki

Wikis have radically transformed the collabora-
tive documentation works as we know them; its
simplicity of concept has allowed many different
implementations on many languages and plat-
forms. Some people are using wikis as a project
documentation repository; others are integrat-

ing tools around wikis to enhance planning and
collaboration capabilities. Inside this group, the
numbers point to open source as the most com-
mon licensing method. Among the best quali-
fied applications is Trac (Edgewall Software), a
software development project management tool
with configuration management capabilities. Trac
consists on a wiki integrated to an issue tracker
and a subversion repository viewer for configura-
tion management.

During the life cycle of the project, the wiki
functions will allow the product and project
envisioning development and organization in a
collaborative way. Using the tool configurations,
it is possible to define expected releases for the
product. For each planned release, the project
members have the chance to link any issue (or
requirement) to any release, in such a way that
the project features are organized based on the
release in which they are expected. The wiki
pages can act as concentrators, allowing linking
from documentation to issues, change sets, files,
including past versions of the project files (stored
in a subversion server). The issue tracker provides
configurable reports to check the project status
according to the defined tasks.

A very lightweight alternative is TiddlyWiki
and its branches, particularly d3, an implemen-
tation of GTD (Getting Things Done) by David
Allen. D3 is a stand-alone wiki with the advan-
tage of having certain tiddlers (wiki pages) with
special behaviors, like projects or tasks that can
be tracked as pending or checked as completed.
Each tiddler has tags that will give us another way
to search for them. Although this is not an APM
tool, the flexibility that modern wikis give can
empower a tool to handle more complex tasks. In
this case, for the early stages of the project, the
wiki inherent features can be very useful for the
envisioning and project setup. Each task resides
in a context; for our use, each context will be a
release. In that way, a release will have many tasks
that fulfill it. Using the task review, it is possible
to see a list of all tasks pending, associated to its

2458

Agile Practices in Project Management

particular release. In this case, we can use tags
to assign the tasks to a particular team member.
Any issue can be inserted into an issues context
for its tracking.

Web

In the last year, the Internet community has seen
the blooming of the Web 2.0 trend, the principles
of which try to serve as a group of guidelines for
Web applications towards a better user experience,
where collaboration and social interactions are
very strong concepts and tend to take applications
out of the desk and onto the Net. Web 2.0 has
brought some fresh air into project management
tools, and some companies are actively working
towards a better and more agile project manage-
ment tool, and the results so far look promising.

Maybe the best example for this category
comes with BaseCamp (37 signals), a Web ap-
plication (service) for project management with
an appealing user interface and simple but highly
effective design. A BaseCamp project is a group
of task lists, milestones, messages, and files. Its
use for an APM project would be as follows: For
envisioning, messages or files can contain the en-
visioning results that, in later phases, will become
a major input for the planning; the release plan
would consist of milestones marking approximate
dates for each release; features are created in the
form of task lists containing the actions to be
performed in order to achieve the feature. Each
feature can be assigned to a particular release, so
it is possible to have a wide vision of the tasks
needed to complete each release. This service was
thought to handle many projects simultaneously
and has access control features to give specific
permissions to administrators, project members,
and clients.

An open source clone is available under the
name ProjectPier; it presents the same func-
tionality of BaseCamp, with a less polished
user interface. This tool can be installed into
an organization’s intranet (beating some of the

fears that rise when one thinks of maintaining
projects on the Web) and allows tagging for any
element that is created. Although it is in active
development, its available version has enough to
carry a full project.

Stepping away from Web 2.0 and back to the
traditional Web tools, another important referent
is TargetProcess which can be used as a service
or downloaded and installed in the organization’s
intranet. Its design denotes a profound knowl-
edge of agile practices for project management
and tries to cover the software life cycle in full.
It has a user stories management module with
mass import capabilities (from comma separated
values files [CSV]), layered planning for releases
and iterations, effort planning helpers, and team
velocity estimation. It also includes per release
burn-down charts based on the planning and daily
status report. Additionally, it integrates its own
bug tracking and test definition tools.

Methodology-Specific

Many of the APM tools available have a strong
focus on a particular methodology. Among the
more popular are Scrum and eXtreme Program-
ming. In some cases, as we have seen in the past
categories, we will notice mixtures of them. In
this category, we discuss some tools with a scope
limited to the methodology that may help to in-
stitutionalize their practices.

Wikiscrum is an open source wiki, adapted to
support the Scrum project management method-
ology. Inside of a wiki page, the planned sprints
are listed along the product backlog. Each sprint
is clickable, leading to the task list for that sprint,
having the opportunity to attach new tasks to it
or to the product backlog, assigning the effort
estimations for each task and the specific project
member involved. One noticeable aspect of this
tool is the charting capabilities included to show
the burn-down chart for each sprint, based on
the daily estimation variations for that sprint’s

 2459

Agile Practices in Project Management

tasks. These are very basic but enough to get a
team on track.

IceScrum is a basic tool for Scrum that lacks
advanced functionality like planning support or
resource estimating but achieves good works on
giving order to releases, sprints, features, and
tasks. It has security management that allows
the daily review of the project, based on the team
information about tasks. It is currently on active
development.

On the road of eXtreme Programming, Xplan-
ner is an open source tool made to simplify the
project management using eXtreme Program-
ming. The early stages of the project are supported
in the way of a user stories management module;
these user stories can be assigned to each planned
iteration and, from these iterations, can be linked
the tasks to perform. Among other aspects, the
integration queue can be highlighted as a specific
help for the project team, along with its time track-
ing module with special support for the tracking
of pairs, like in pair programming.

conclusIon

The application of agile principles and value will
continue its expansion to other disciplines. The
next step from the project management point of
view is the use of agile practices in multiproject
environments and even more important in port-
folio management. The portfolio management
discipline by nature have many similarities with
the agile context: a close relationship with business
goals, prioritizing opportunities and enhancing
resource productivity. Application of concepts
like time boxes is starting at the project portfolio
level in some companies, and we can expect many
other applications in the next years.

We told before about the polemic raised be-
tween supporters of agile and traditional meth-
ods. For us, much of that discussion was based
on misunderstandings. Many times, misusing a
method is far more harmful than not having any.

This is true for traditional and agile methodol-
ogy implementations. A misunderstanding on
the traditional planning paradigm may lead to
the belief that fine-grained (one or two hour’s
tasks initiating 10 months from today) schedule
elaboration is appropriate. A misunderstanding
of the agile paradigm may lead to not having any
plans at all.

Also it has been said that agile and traditional
paradigms have home grounds where their prin-
ciples and practices are appropriate, but outside
of that zone, they are no longer valid. We agree
that there is not any single method that may be
applied to every context: there are no silver bullets.
However, we do not believe that home grounds
are mutually exclusive. In today’s environments,
the characteristics are crossing those limits. In
those environments, neither agile nor traditional
methods are able on their own to provide the best
solution. The most effective solution is obtained
by taking the best the two worlds can offer for
that specific context. We truly believe that orga-
nizations may benefit from knowing how to ap-
ply best practices for their process improvement
initiatives no matter the origin or philosophy
behind them.

rEfErEncEs

Beck, K. (2000). Extreme programming explained:
Embrace change. Boston: Addison-Wesley.

Beck, K., Beedle, M., van Bennekum, A., Cock-
burn, A., Cunningham, W., & Fowler, M., et al.
(2001). Manifesto for agile software development.
Retrieved December 16, 2007, from http://www.
agilemanifesto.org

CMMI Product Team. (2006). CMMI for develop-
ment (version 1.2, CMMI-DEV v1.2, SEI Tech.
Rep. No. 06.tr.008). Pittsburgh: Software Engi-
neering Institute, Carnegie Mellon University.

2460

Agile Practices in Project Management

Cockburn, A. (2005). Crystal clear: A human
powered methodology for small teams. Pearson
Education Inc.

Cohn, M. (2004). User stories applied for agile
software development. Addison-Wesley.

Highsmith, J. (2004). Agile project management:
Creating innovative products. Addison-Wesley.

Project Management Institute. (2004). A guide
to the project management body of knowledge
(3rd ed.).

Schwaber, K. (2004). Agile project management
with Scrum. Microsoft Press.

Schwaber, K., & Beedle, M. (2002). Agile software
development with Scrum. Upper Saddle River,
NJ: Prentice Hall.

EndnotEs

1 The Chaos Report and Chaos Chronicles
1994, 1998, 2000, 2004, Standish Group
(www.standishgroup.com)

2 CMMI is a Service Mark of the Software
Engineering Institute at the Carnegie Mellon
University

3 For more information on the APLN, please
visit http://www.apln.org

4 Time boxing is commented on later. Scrum
suggests a full day planning for a 30 day
iteration.

5 This graphic, although common in agile
sources, was adapted from the DSDM
Consortium site (http://www.dsdm.org)

6 We are using the CMMI-DEV version 1.2
as reference (CMMI Product Team, 2006)

7 PMI and PMBOK are trademarks of the
Project Management Institute in the United
States and other countries

8 The names of the companies are fictional

This work was previously published in Encyclopedia of Software Process Improvement for Small and Medium Enterprises:
Techniques and Case Studiesg, edited by H. Oktaba; M. Piattini, pp. 193-211, copyright 2008 by Information Science Refer-
ence (an imprint of IGI Global).

 2461

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6.8
Project Management in

Enterprises:
IT Implementation Based on

Fuzzy Models

Cezary Orłowski
Gdańsk University of Technology, Poland

Zdzisław Kowalczuk
Gdańsk University of Technology, Poland

AbstrAct

The article discusses how the knowledge of
management and artificial intelligence can be
used for controlling the budgets and schedules of
software projects. The first part of this paper gives
an outline of the problems involved in software
project management regarding the planning and
control of processes and project teams. Next, an
overview of changes in management is presented,
followed by a description of a method for how
these ideas can be used to solve software engi-
neering problems. Consequently, an example is
presented of a decision-support system, designed
to aid project-team managers in planning and
controlling budgets and schedules and helping
the team members to adjust.

IntroductIon

In this paper, suitable methods for Software
Project Management (SPM) are discussed. New
possibilities of modelling SPM processes are
indicated as well as an example concerning the
issue of building a fuzzy model of a project team
is presented. The scope of our research has been
focused on specific project implementation per-
formed by international project consortia. Such
an ensemble can consist of several or more project
teams, understood as those “distinguished from
the structure of the organisation, commissioned
for a defined period and consisting of specialists
from various fields, whose knowledge and expe-
rience have a bearing on the problem” (Stoner,
1994, p. 143).

2462

Project Management in Enterprises

problEMs of ModEllIng spM

With the purpose of building on an SPM knowl-
edge-based model, an appropriate state of the art
has been established. The knowledge obtained
in this way concerns the management tech-
niques used by managers to support a project
implementation and, based on process models,
to allow for suitably assessing the states of both
project processes and human teams (Figure 1).
The consequences of these issues can be found
in the budget, deadlines, and functionality of
the project.

Expert Knowledge of project
Management

According to the SPM experts, scope, time, com-
munication between team members, and risks
of project changes are inter-related management
knowledge factors. “Recycling” such knowledge
in new projects is difficult. Those difficulties often

result from an incomplete documentation of the
project processes and from the lack of adequate
knowledge, both on the factual project manage-
ment mechanisms and way of describing SPM.
They are also conditioned by the commercial
nature of the projects (concerning the knowledge
about implementations and their management).
For given project experts (managers), the source
of knowledge may be placed in the know-how of
implementing previous projects. It is clear that
such knowledge depends both on the specific
characteristics of the performed projects and on
the manager’s ability to make suitable predictions,
for example, to make use of this experience in
implementing new projects.

Methods of supporting Management
processes

Apart from expert knowledge, an important source
of the education on project management can be
found in the spectrum of the methods applied

Figure 1. Relationships between the knowledge of project management and project implementation

Knowledge of project management

Using suitable

management methods

to support project

implementation

Application of the appropriate

model in assessing project

processes and project teams

Expert knowledge (‘art

of management’) on the

project management

Project implementation

Budget Schedule Functionality

 2463

Project Management in Enterprises

in project organisation. They constitute formal
guides to proper behaviour in SPM. For example,
KADS presented in the work of Hickman and Kil-
lin (1994) and Pragmatic KADS from the study
of Kingston (1992) propose to divide projects into
implementation phases and indicate solutions for
these phases of the project. Adaptation of several
known methods in the project management can
be found in the works of Coleman and Somerland
(1994) and Nerson (1992).

Individual methods created by certain large
project teams can also be applied. As an example,
the method of Project Management Methodology
(PMM), discussed for instance by Łopaciński and
Kalinowska-Iszkowska (1999), can be mentioned
as being worked out by the IBM company. The
main feature of PMM lies in planning the pro-
cesses of the project and using a packet of WS-
DDM (Worldwide Solution Design and Delivery
Methods) supporting knowledge acquisition and
project management.

There are also other methods which support
project management in respect to costs, composi-
tion, and size of teams as well as labour intensity,
as follows:

• Estimation by analogy — meaning an as-
sessment of the project analysed on the basis
of earlier implemented and documented
projects;

• Expert assessment carried out by a group
of independent experts;

• Initial estimation based on elementary work
units (Work Breakdown Structure [WBS]);

• Top down estimation — the method of design
within the limits of a given cost (Design to
Cost) — introductory decomposition into
simpler tasks (Workpackages) and definition
of the necessary outlay of work, further de-
composition to tasks, and exact processes;

• Estimation based on parametric models
— the relationship between the productiv-
ity and the duration of the project as well

as other factors directly bearing on them;
and

• Estimation in order to win (Price to Win)
— an assessment of the project is conducted
in a way to outdo potential competitors.

For the purpose of managing time and mate-
rial/human resources, the method of functional
points analysis is applied. This method was worked
out by Albrecht of the IBM company in 1979
and later perfected by the IFPUG (International
Function User Group).

The method of functional points analysis, like
COCOMO (Pfleeger, 2001), is characterised by
the influence of subjective judgment, and not by
objective indicators in the assessment of project
productivity. This means the assessment of the
projects productivity by the use of considerable
experience and quite complicated algorithms.

description of project teams

SPM demands a considerable involvement of
human resources. As most beneficial solutions
co-operation with an external organiser of the
project and suitable definitions of the tasks of
the team members are generally recommended.
During team organisation, an attention should
be given to the changes that may occur in the
organisational structure of the consortium. New
teams can be seen as complex systems in which
information tools and management techniques
are directly connected with each other (Workflow
Management, Groupware Process Reengineer-
ing, Computer Supported Co-operative Work). It
is also assumed that the project teams, brought
together to implement a team task, can bear both
formal and informal organisational structures.
Such a project team is assembled by an appointed
project manager. It is clear that the compiled
team is usually interdisciplinary, which calls
for using appropriate solutions to co-ordination
problems.

2464

Project Management in Enterprises

Models for Assessing team and
project processes

Assessing teams and project processes needs
appropriate models. A number of models, such
as CMM (Capability Maturity Model) (Paulk,
1997), SPICE (Standard for Software Process
Assessment) (Spice, 2000) and the norms of ISO
9000 have been elaborated. The models of process
maturity (CMM) supply useful solutions making
possible the handling of project processes. Their
application supports the assessment of basic team
management processes and defines their level of
maturity. They also identify critical elements of
the processes. The SPICE model constitutes a
complement to other international standards of
process assessment and other models for assess-
ing the capacities and effectiveness of both teams
and processes.

nEw possIbIlItIEs for
crEAtIng thE spM ModEls

There is an opinion in the subject literature
(Pfleeger, 2001) that SPM is more an art than
a systematic strategy of action. This judgment
reflects the fact that, in the course of the project,
the manager makes various decisions which
can hardly be modelled and anticipated. They
can, for instance, concern the running changes
in the make-up of the team enforced by human
and social factors (as best programmers may be
“tempted” by a rival business). For these reasons,
many managers consider the art and experience
of SPM as being the principal source of knowl-
edge about project management. Generally, the
project success is connected with the manager’s
ability to appropriately forecast changes and react
to the risks appearing in SPM. Many managers
assert that it is not possible to successfully plan,
organise and control a project without applying
formal SPM procedures and methods.

Several methods of assessing projects in fuzzy
categories (Fuzzy Projects) are discussed in the
works of Słowiński and Hapke (1999), Węglarz
(1999), and Hapke and Jaszkiewicz (1999). There
are methods of scheduling projects with the use
of metaheuristic algorithms, which are basically
founded on genetic or evolutionary algorithms,
simulated annealing, and taboo search. Such
methods are widely used in solving problems
of continuous, non-linear, multi-dimensional,
multiple criteria, or combinatory characteristics.
A multi-faceted version of this algorithm called
Pareto-Simulated Annealing (PSA) makes it pos-
sible to search for representations of competitive
(not dominated) solutions. It is also possible to
use an interactive search method named Light
Beam Search (Mesarovic & Takahara, 1989) to
support the effort of the manager in choosing one
of many solutions found by PSA.

A different group of system models are those
concerning management in uncertain conditions
as presented by Pawlak (1997) and Kacprzyk
(1997). Their characteristic feature consists within
incomplete or lack of information. Examples of
this type can be observed within relational, prob-
ability, game, and fuzzy models.

Application of fuzzy set theory

Fuzzy models of a linguistic type (LM, Linguis-
tic Models) are based on a set of rules of type
IF-THEN concerning undefined conditions and
inference mechanism. They are profitably used
in modelling social systems (Yager & Filew,
1995). Paradigms containing logical rules with
fuzzy conditions and functional conclusions are
marked as Takagi-Sugeno-Kanga (TSK) models
(Tong, 1979). Nevertheless, the most commonly
used model is the one of Mamdani (1974).

The following exemplary rule presents the
process of fuzzy modelling for the case of two
input variables and one output variable:

 2465

Project Management in Enterprises

IF (u1 is Ai) AND (u2 is Bj) THEN (y is Ck)
 (1)

where the symbols represent:

Ai, Bj, Ck — fuzzy sets,
u1, u2, y — input and output variables, and
i, j, k — indices of fuzzy sets.

The TSK model differs from the Mamdani’s
one by the form of the rules.

IF (u1 is Ai) AND (u2 is Bj) THEN (y is f(u1, u2))
 (2)

where:

f(u1, u2) marks the function of the output (which
can assume a linear or non-linear form).

The processes of fuzzy modelling for the case
involving two inputs and one output are presented
in Figure 2 (Zadeh, 1978).

These processes include: fuzzification, infer-
ence, and defuzzification. In the fuzzification
process, the degrees of membership of crisp,
model-input values (u1, u2) to the definite fuzzy
sets (Ai, Bj) are calculated. Within the inference
process, the membership function for the output

value (µCk(y)) is computed based on the input
degrees of membership (µAi(u1), µBj(u2)). Finally,
creation of the membership function for the output
variable (y) takes place in the following stages:

• Construction of the rule base;
• Activation of the conclusion mechanism;
• Definition of the degree of membership for

the output value of the fuzzy model; and
• Calculation of the crisp value for the output

value.

fuzzy SPM ModEl
constructIon

It is, thus, assumed that fuzzy models are con-
structed using the knowledge of SPM and project
modelling. In the first case, the knowledge is ac-
quired from project managers, while the latter one
results from the specialists in the field of systems
modelling. The knowledge of SPM can be applied
in constructing formal methods of description,
and, in particular, in building fuzzy models.

We also assume that a strategic milestone for
the modeller lies in the selection of methods of
formalising the knowledge of SPM. The famous
statement of one of the originators of the fuzzy
sets theory announces that “if the complexity of

Figure 2. Processes of fuzzy modelling for a case involving two inputs and one output

FUZZIFICATION

Membership
function built for

input values
u1, u2

INFERENCE

Rule base and
membership func-
tion built for ouput

values
y

DEFUZZIFICATION

Calculating crisp val-
ues using membership

function

u1

u2

µAi(u1)

µBj(u2)
µCk(y) y

2466

Project Management in Enterprises

the system increases, then our ability to formulate
accurate and also meaningful views of its behav-
iour decreases, until we reach a threshold value,
beyond which precision and meaning become
almost mutually exclusive features” (Yager &
Filew, 1995, p. 167).

Making use of complex mathematical appa-
ratus gives the possibility of precise description
of repeatable processes mainly for technical sys-
tems (mechanical, electric). Whereas in the case
of social systems, a departure from such precise
descriptions is recommended by Łopaciński and
Kalinowska-Iszkowska (1999), along with the use
of techniques based on fuzzy logic. Therefore, also
in the case of modelling socio-technical systems
such as SPM, the apparatus of fuzzy set theory
may be used both in the processes of formalising
the knowledge and adapting the model. Then, the
construction of the fuzzy model of SPM (Figure 3).

can be treated as a process of continuous model-
ling with the use of fuzzy algorithms.

Keeping in mind the earlier assumptions, we
have used the knowledge of the project manager
(expert knowledge, methods and models) and
the one of the modeller (basics of modelling and
simulation, theory of fuzzy sets and regulators) in
constructing a new prospective SPM model.

The aggregated knowledge of manager and
modeller enables the processes of modelling SPM
to be conducted along the lines of continuous
modelling with the use of fuzzy sets. A detailed
concept is presented in Figure 3, taking into ac-
count:

• Preparation of data concerning the structure
and parameters of the model;

• Structural modelling on the linguistic
level;

Figure 3. Continuous modelling of SPM with the use of fuzzy algorithms

Copyright © 2006, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

International Journal of Enterprise Information Systems, 2(2), 1-12, April-June 2006 7

in MT-ITM, the use of the concept of vari-
able states in describing those changes
seems to be necessary, which needs also
to be estimated by an expert of the MT-
ITM according to the practice applied in
SPM.

Three values of the level of exploita-
tion of MT-ITM (in terms of management
and implementation) are proposed, as shown

on a linear scale in Figure 4. This distinc-
tion is applied to all the previously men-
tioned areas (KPIT).

(1) The state of the MT-ITM management
layer is described by a scalar state
variable, which assumes one of three
values. In the case of methods, they
are within the range of 5% to 100%,

Figure 3. Continuous modelling of SPM with the use of fuzzy algorithms

Structure of the
experiment

Area of management Area of modelling

Adaptation
Y/N ?

Model:
structure and
parameters

Input/Output

Preprocessing of the input data

Linguistics and fuzzy modeling

Tuning of the structure and
parameters

Structure

N Y

Y

Selection
processes

Fuzzy
model

Parameters

Assumptions of the
model

Data

Software project
management

Figure 4. Defining the management states based on a linear expert scale for the
two layers of KPIT

MT-ITM
I

MT-ITM
II

MT-ITM
III

Layer of implementation
of MT-ITM [%]

Layer of management of
MT-ITM [%] 0/5 50 100

MT-ITM
I

MT-ITM
II

MT-ITM
III

Layer of implementation
of MT-ITM [%]

Layer of management of
MT-ITM [%] 0/5 50 100

 2467

Project Management in Enterprises

• Basic tuning of the values of the parameters;
and

• Possible adaptation of the parameters and
structure.

data concerning the structure of the
Model

On the basis of the managerial knowledge, it
is accepted that SPM can be implemented in
four areas of management: knowledge, project
processes, infrastructure, and supporting tech-
nologies (KPIT).

The SPM should also be analysed taking into
account particular running phases of the project.
Moreover, the scope of activity of managers should
concern planning, selection, organisation, and
monitoring of the methods and tools of informa-
tion technology and management (MT-ITM).
With regard to the crucial dynamic changes in
MT-ITM, the use of the concept of variable states
in describing those changes seems to be neces-
sary, which needs also to be estimated by an
expert of the MT-ITM according to the practice
applied in SPM.

Three values of the level of exploitation of
MT-ITM (in terms of management and implemen-
tation) are proposed, as shown on a linear scale
in Figure 4. This distinction is applied to all the
previously mentioned areas (KPIT).

1. The state of the MT-ITM management layer
is described by a scalar state variable, which
assumes one of three values. In the case of
methods, they are within the range of 5%
to 100%, and in the case of tools, from 0
to 100%. The choice of the scale for the
methods (starting from 5%) results from
the fact that the managing projects, without
any method, is not possible. The choice of
particular state values on the scale concern-
ing the methods and tools of management
depend accordingly:
• On the number of team members

who apply MT-ITM in relation to the
number of all project team members
(a composition co-factor, ks) at a
given stage (in the case of managing
infrastructure and knowledge);

• On the number of implemented pro-
cesses in which MT-ITM is applied
in relation to the overall number of
processes implemented (a process co-
factor, kp) at a given stage (in the case
of managing processes and supporting
technologies).

On the basis of a weighted sum of the scalar
states of the management layer concerning both
methods and tools, we determined a generalised
scalar state of management of KPIT. Note that

Figure 4. Defining the management states based on a linear expert scale for the two layers of KPIT

2468

Project Management in Enterprises

in calculating the generalised scalar states of
management, we use weights, whose values are
established on the basis of expert assessment.

2. Similarly, the TM-ITM implementation
layer (determined by experts on the basis
of the best practice in managing this type
of projects) also covers the KPIT fields, but
in terms of their implementation, and is
assessed within three discrete values sym-
bolised by MT-ITM I through MT-ITM II.

Using the Scale to Define the
generalised scalar state of
Knowledge Management

If the project manager achieves knowledge by
means of direct talks with experts and formalises it
with the use of diagrams or a rule description, the
application of this method has considerable influ-
ence on planning the collection of knowledge. For
the method of direct talks with experts, the scalar
state of information and management methods
is defined at the value of 5%, the formalisation
of knowledge with the use of diagrams at 50%,
and the rule description at 100%. The scalar state
of information and management tools is defined
similarly. Correct values are connected with the
use of the co-factor kp resulting from the member-
ship of the team. Next, the generalised scalar state
of knowledge management (being the weighted
sum of both values) is calculated.

In developing a concept of the model, several
factors (such as “hand steering” of the composition
of the team) have been ignored. Equally irrelevant
appeared the so-far-identified phases of the project
(definition and specification of demands, construc-
tion of the model, and its implementation). This
could be easily justified because the manager
initially chooses MT-ITM for all phases of the
project and (if necessary) conducts a team train-
ing stage (Szczerbicki & Orłowski, 2003). With

this, we assume that the manager is a specialist
in a given field of IT and can appropriately select,
exploit, and assess the information solutions ap-
plied in project management.

data concerning the parameters of
the Model

A concept of tuning the fuzzy model has been
accepted, making use of SPM expert knowledge.
The team manager collects the knowledge about
the project management in suitable experimental
knowledge base and records them in the form of
rules whose structures correspond to the rules of
the fuzzy model. The experimental knowledge
base is classified with regard to the type of projects
(e.g., successful, unsuccessful). It is clear that such
a classification is performed by an expert in project
management. Successful projects are defined as
completed in the allotted time, with the agreed
finance and aim. By using this kind of solution,
we avoid misleading “averaging”, which results
in creating useless models.

The rules recorded in the experimental knowl-
edge base are grouped according to the phases of
the project. Such ordering influences a procedure
of identifying clusters and creates the conditions
for calculating the coordinates of the centres of
gravity of the clusters, identified as coordinates of
the peaks of membership functions. Adding new
rules to the experimental knowledge base has an
effect on a change of the centres of gravity of the
clusters and, in consequence, on a change of the
peaks of membership functions.

In the presented concept of the model con-
struction, we also assume the processes of tuning
the model parameters. The knowledge necessary
for tuning should be gained from the managers
and coordinators of the teams involved in the
project realisation. The sources of knowledge
are simply project documentations.

 2469

Project Management in Enterprises

structural Modelling on the
linguistic level

A four-stage construction of the fuzzy model is
proposed as shown in Figure 5. The first step is
the analysis of the real system. It covers the man-
agement of the project consortium consisting of
several or more project teams. In this paper, the
management of the consortium is characterised
by a basic structure of modelling experiments and
a resulting hierarchical model. Next, a structural
model is obtained, referring to the management
concerning (the level of) the project team SPMz.
According to the theory of system modelling,
this corresponds to a basic model. Next the fuzzy
model is built (reflecting the so-called integrated
model), which portrays the management processes
based on the fuzzy rules. The applied concept of
fuzzy modelling by giving a simple mathemati-
cal description of SPMz , allows for obtaining
a full hierarchy of management for the project
consortium.

tuning the Model parameters

We have proposed a concept of tuning the mem-
bership function according to the project phases.
The membership functions are tuned separately
for the system input and output variables, while
in the case of the state variables, the membership
functions are fixed (in terms of the forms and
the peak parameters). The construction of the
membership function is controlled with the use
of the clustering methods with the data from the
concluded projects.

Adapting the parameters

With the approach described earlier, it is easy
to perform the adaptation of the model/system
on two levels: (1) the management of the project
and teams SPMz and (2) the adaptation of the
parameters of model SPMz - RFM (Software
Project Management - Rule Fuzzy Model). The
first level of adaptation depends on the selection
of “better” solutions of higher scalar values of the
generalised management states, while the second
level depends on the qualification of the output
variables by the team manager according to the
quality of team management.

As has been mentioned previously, with the
proposed procedure and a great variety of the
methods of implementation and various levels
of quality in managing project teams and imple-
menting information projects, we could easily
finish off with “over-averaged” and, therefore,
useless models. For this reason, in the concept
of adaptation on the first level, we recommend
a pre-selection of all projects carried out by an
expert in SPMz. The pre-selection can be done
according to the quality of the project and team
management, for example, leading to “success-
ful” and “unsuccessful” projects based on the
experimental knowledge base (see subsection,
Data Concerning the Parameters of the Model). In

Figure 5. The process of constructing the fuzzy
model

2470

Project Management in Enterprises

the second level, this influences the classification
of input and output variables to appropriate models
and the position of the apexes of the membership
function. In conclusion, the method of modelling
and adapting the model presented in this work
SPMz - RFM allows us to:

1. Model various (established by the expert)
types of processes, and

2. Create conditions for the project manager to
use a proper model fitting to his knowledge
about the level of managing the project
team.

Finally, it can be worth mentioning that no
adaptation of the model structure is assumed.

conclusIon And AssEssMEnt
of EXIstIng solutIons

The methodological solutions (methods PMM
and KADS, models CMM and SPICE) provide
formal approaches to supporting SPM by focusing
on a collection of procedures for assessment of
teams (the CMM model) or processes (the SPICE
model). In the case of methodological solutions
(PMM and KADS), we can use the project tools
to implement IT systems, but not to manage them.
The SPMz - RFM model indicate possibilities for
managing the knowledge of IT projects and for
using of IT methods and tools.

In the first case, the model SPMz - RFM (Kow-
alczuk & Orłowski, 2004) gives the possibility
of selecting qualified solutions (on the basis of
generalised management states) to the problems
of realising project processes and functioning
project teams. The latter case creates an integrated
environment for ongoing assessment of both teams
and processes. The criteria of MT-ITM for project
teams increase the probability of selecting the best
solution (on the basis of strict assessment). It also
creates conditions for gaining knowledge, more
effective rule-based processing, and increases

the efficiency of the mechanism of cooperation
between members of the project team. At the
same time, it shortens production time (making
group work mechanisms more efficient) and raises
product quality (constant control of the produced
software using SPMz - RFM).

rEfErEncEs

Coleman, D., & Somerland, P. (1994). Object-
oriented development: The fusion method. Engle-
wood Cliffs, London: Prentice Hall.

Hapke, M., & Jaszkiewicz, A. (1999). Integrated
tools of programming project planning in uncer-
tain conditions (in Polish). In Proceedings of the
1st National Conference on Software Engineering
(pp. 65-76), Kazimierz Dolny, Poland.

Hickman, F. R., & Killin, K. (1994). Analysis
for knowledge-based systems. A practical guide
to the KADS methodology. London: Ellis Howard
Limited.

Spice. (2000). Software process improvement
and capability determination. Retrieved from
http://www.sqi.gu .edu.au/spice

Kacprzyk, J. (1997). Multistage fuzzy control.
New York: John Wiley Inc.

Kingston, J. (1992). Pragmatic KADS: Methodi-
cal approach to a small knowledge based systems
project. Expert Systems, 9, 171-179.

Kowalczuk, Z., & Orłowski, C. (2004). Design
of knowledge-based systems in environmental
engineering. Cybernetics and Systems, 35(5-6),
487-498.

Łopaciński, T., & Kalinowska-Iszkowska, M.
(1999). Aiding tools for planning processes and
implementation of IBM software projects (in
Polish). In Proceedings of the 1st National Con-
ference on Software Engineering (pp. 145-149),
Kazimierz Dolny, Poland.

 2471

Project Management in Enterprises

Mamdani, E. H. (1974). Applications of fuzzy
algorithms for control of a simple dynamic plant.
Proceedings of IEEE, 121, 1585-1588.

Mesarovic, M., & Takahara, Y. (1989). Abstract
systems theory. In Lecture notes in control and
information science, Vol. 116. New York: Springer
Verlag.

Nerson, J. M. (1992). Applying object-oriented
analysis and design. Communications of the
ACM, 9, 67-74.

Paulk, M. C. (1997). Software capability matu-
rity model, version 2 (Draft Technical Report).
Software Engineering Institute, Carnegie Mellon
University, Pittsburgh.

Pawlak, Z. (1997). Rough set and data mining.
In Proceedings of Intelligent Processing and
Manufacturing of Materials, Vol. 1 (pp. 663-667),
Gold Coast. IPMM Publisher.

Pfleeger, L. (2001). Software engineering, theory
and practice. New York: Prentice Hall.

Słowiński, R., & Hapke, M. (Eds.) (1999).
Scheduling under fuzziness. Heidelberg: Physica-
Verlag.

Stoner, J. A. (1994). Management (in Polish).
Warsaw, Poland: PWN.

Szczerbicki, E., & Orłowski, C. (2003). Qualita-
tive and quantitative mechanisms in managing IT
projects in concurrent-engineering environmental
systems. Analysis, Modelling, Simulation, 43(2),
219-230.

Tong, R. M. (1979). The construction and evalu-
ation on fuzzy models in advances in fuzzy set
theory and applications (pp. 559-576). Amster-
dam: North Holland.

W/glarz, J. (Ed.) (1999). Project scheduling: Recent
models, algorithms and applications. Dordrecht:
Kluwer.

Yager, R., & Filew, D. (1985). Basics of fuzzy mod-
elling and control (in Polish). Warsaw: WNT.

Zadeh, L. A. (1978). Fuzzy sets as a basis for theory
of possibility. Fuzzy Sets and Systems, 1, 3-28.

This work was previously published in the International Journal of Enterprise Information Systems, edited by A. Gunasekaran,
Volume 2, Issue 2, pp. 1-12, copyright 2006 by IGI Publishing (an imprint of IGI Global).

2472

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6.9
Occurrence and Effects of

Leader Delegation in Virtual
Software Teams

Suling Zhang
Kean University, USA

Marilyn Tremaine
New Jersey Institute of Technology, USA

Rich Egan
New Jersey Institute of Technology, USA

Allen Milewski
Monmouth University, USA

Patrick O’Sullivan
IBM Dublin Lab, Ireland

Jerry Fjermestad
New Jersey Institute of Technology, USA

AbstrAct

Virtual teams are an important work structure in
software development projects. However, little
is known about what constitutes effective vir-
tual software team leadership, in particular, the
amount of leader delegation that is appropriate in

a virtual software-development environment. This
study investigates virtual software team leader
delegation and explores the impact of delegation
strategies on virtual team performance mediated
by team motivation, team flexibility and team
satisfaction with the team leader. This research
is a report of a pilot study run on student teams

 2473

Occurrence and Effects of Leader Delegation in Virtual Software Teams

carried out to refine and test the research con-
structs and research model for a larger study run
in corporations. The study found that virtual team
leaders delegate more to competent virtual teams
and that such delegation is positively correlated
with team member satisfaction with their leader
and with team member motivation. Overall, the
work provides important information for soft-
ware-based organizations interested in developing
virtual team leadership skills.

IntroductIon

Virtual teams are composed of geographically
distributed coworkers linked though information
technologies to achieve an organizational task
(Townsend, DeMarie, & Hendrickson, 1998).
Virtual teams are a popular structure in software
development for several reasons: they provide
access to lower-cost labor as well as access to
a range of disciplines and technical specialties
(Curtis, Krasner, & Iscoe, 1988). While software
team leaders and managers are now frequently
given virtual teams to manage, they have not been
given clear directions on how to effectively man-
age such teams. One important issue regarding
virtual software team management is when and
how team leaders should delegate authority and
responsibility to the team.

Delegation means that one has been empow-
ered by one’s superior to take responsibility for
certain activities, which were originally reserved
for the superior (Ashton & Kramer, 1980; Bass,
1990). In traditional leadership studies, delegation
is widely acknowledged to be an essential ele-
ment of effective management (Yukl, 2002), and
effective delegation offers a number of potential
benefits, both to the manager and the subordi-
nates. However, to the authors’ knowledge, only
a few studies have been conducted to investigate
delegation as a distinct component of global vir-
tual team leadership. In the limited number of
conceptual works and empirical studies in which

delegation is not the direct focus, delegation has
been a controversial issue. Some researchers
argue for the benefits of delegation: Eveland and
Bikson, (1988); Jarvenpaa, Knoll, and Leidner,
(1998); Jarvenpaa and Leidner, (1999) report that
an effective leader of a virtual team needs to be
more flexible to accommodate the complexities
and volatility of the virtual team environment,
and to be willing to let others take the lead when
necessary. Furthermore, they suggest that virtual
team leadership should focus on facilitating and
empowering team members to take action on
their own. In contrast, Paré and Dubé, (1999)
argue that, due to the distributed nature of virtual
teams, management by observation is simply not
possible, and that much more discipline and con-
trol is required in a virtual setting. Additionally,
team effectiveness in virtual environments may
be hindered by excessive autonomy coupled with
exclusive reliance on electronic communication
and lack of face-to-face interaction.

This article aims to address the research gap
regarding delegation to a virtual software team by
investigating the occurrence and effects of leader
delegation in such teams. Finding out how and why
leaders do or do not delegate to virtual teams and
the impact of the leaders’ delegation behaviors on
the teams will help industry practitioners to bet-
ter frame their strategy for managing distributed
software teams and will also add to the field’s
knowledge about virtual team leadership.

The focus of the article is on software teams,
in part, because it is felt that the global software
team phenomenon has several unique charac-
teristics that may not apply to virtual teams in
general. Unlike other activities that have been
outsourced or offshored, work activities cannot
be as easily compartmentalized because of the
high integration of the software product. Thus,
there is a need for communication and working
together in a structured fashion, which demands
good leadership. In addition, software developers
expect to have a high degree of independence in
their work. Therefore, the degree of delegation

2474

Occurrence and Effects of Leader Delegation in Virtual Software Teams

by a leader may differentially affect these virtual
teams.

Collaboration in software development also
demands the ability to communicate highly de-
tailed specifications and questions. This requires
communication skills that may not be needed in
other types of virtual teams, skills which may
be influenced by a team member’s knowledge
of English, the common language for many of
these teams. Therefore, good management of the
communication structure and media is likely to
be an important leadership trait. Finally, the new
countries that are now being included in global
software development have relatively young team
members. As such, the distribution of corporate
knowledge and software skills is uneven. Thus,
leadership and delegation in this type of environ-
ment is likely to be different for software than for
other tasks carried out by virtual teams.

The article is structured as follows: first, an
overview of the research model is presented to
give readers a sense of the focus of the article;
then, based on a review of the literature, concep-
tualizations of leader delegation are presented and
specific research hypotheses regarding virtual
team leader delegation are explained; finally,
the pilot study testing the model is presented.
A discussion section presents the contributions
and limitations of this research, and a final sec-
tion discusses the implications for virtual team
management.

rEsEArch ModEl

Before beginning a detailed discussion of the
variables used in this study, we present the overall
research model and briefly describe the relation-
ships that are hypothesized to exist between the
variables. A key focus of the model is the amount
of delegation that virtual software teams receive
from their leaders. It behooves us, therefore, to
describe the management structures that are be-
ing studied.

When we talk about virtual teams, the struc-
ture that is typically in place does not constitute
virtuality for each and every team member but,
rather, distributed teams in which some subsection
of the software development team is co-located
and other sections are virtual. For example, a
portion of the team may be located in the United
States and a second and third portion in India and
China, respectively. The overall team is working
on the same software product, but the work has
typically been compartmentalized in some way
so that each co-located portion of the team has
specific assignments. However, the work is such
that there is a need for continued communication
between each of the non-co-located portions of
the team to resolve integration issues.

Management of these teams comes from
several sources. First, there is typically a local
manager who handles personnel issues. Then,
there is a technical manager who oversees the
project. Finally, there is a technical head of the
particular subsection of the project who is direct-
ing the work of both virtual and co-located sub
teams. Management of the work is the purview
of this leader, and this is where delegation typi-
cally occurs. This management is located with
one sub team and virtual to the other sub teams.
Traditionally, management is located in the home
of the parent company, but it also may be at a
customer site.

Because at least, one part of the software team
is distant from the manager, less is likely to be
known about the competence of that part of the
team by the manager, and therefore, he or she is
likely to delegate in a manner so that majority con-
trol of the technical issues rests with that portion
of the team that is co-located with the manager.
The research model being put forward in this
paper suggests that perceived team competence
predicts the amount of delegation that will occur
but that this delegation will have an effect on key
team variables such as satisfaction, motivation and
flexibility. It is argued that these three variables

 2475

Occurrence and Effects of Leader Delegation in Virtual Software Teams

are primary in affecting team performance. Figure
1 presents our research model.

An elemental part of this model is that team
competence not only affects the decision of the
team leader on whether to delegate or not, but
also affects the impact of the delegation. That is,
teams with less competence, are likely to desire
less delegation and to be unhappy and unmoti-
vated with less direction from the leader. This
occurs primarily because the team members do
not know how to perform their tasks completely,
yet wish to succeed in these tasks. However, the
only way they can succeed is if they receive tighter
direction from the leader. As we shall see with
our analysis, we did not necessarily find that less
competent teams wanted more delegation. The
measure of perceived competence that we used
had difficulties with the student teams used in this
research. All student teams perceived themselves
to be highly competent. Rather than treating this
as a problem, it is a result that we believe has an
impact on virtual team management.

Virtual subteams are not able to ascertain their
competence in comparison to their distant coun-
terparts because they lack the proximity required
for an accurate comparison. They are, therefore,
likely to perceive themselves as competent and
desire more delegation. Culture may also have
an impact in that many cultures worry about
“face,” that is, how they appear to others. These
cultures would also perceive themselves as com-
petent, possibly due to team members’ advanced
education in their country or membership in a
high social class. Whatever the reason, they are
likely to desire more delegation even when it is
unwarranted. This issue will be further addressed
in the paper’s discussion section.

The next sections present prior research on
the relations posited in our model and detailed
definitions of each of the variables used in the
model plus support from the literature on the
validity of the constructs we have developed for
the variables.

Figure 1. Proposed model of delegation effects on global software teams

2476

Occurrence and Effects of Leader Delegation in Virtual Software Teams

lItErAturE And hypothEsEs

delegation

As mentioned earlier, delegation is a state or
condition in which one has been empowered by
one’s superior to take responsibility for certain
activities, which were originally reserved for the
superior (Ashton & Cramer, 1980). There is a rich
body of studies in traditional leadership research
investigating delegation, mostly as a feature of
leadership style or as a combination of related
leader behaviors. Very few studies investigated
delegation as a distinct management practice
(Yukl & Fu, 1999; Zhang, Tremaine, Fjermestad
et al., 2006). Because of this, we cannot ascertain
the effect size of delegation (as a distinct leadership
component) on possible variables of interest.

Another major limitation of previous delega-
tion and leadership studies is the failure to focus
on what types of responsibilities and activities a
leader delegates. Only the global delegative style of
the leader was assessed. This limitation seriously
undermines the practical value of these studies,
as their findings do not inform software team
managers where they can and cannot delegate nor
does it tell them what they can delegate. Leader-
ship is a multi-faceted process, particularly so in
virtual teams, given the technological, cultural
and organizational complexities of a virtual team
environment. Therefore, it is important to examine
the leadership and managerial functions originally
assigned to leaders to determine which of these
can be delegated to followers. To that end, studies
that describe leadership and managerial functions
are reviewed in this section, and a list of leader
delegation categories is generated.

For classical management theorists like Davis
(1942) and Urwick (1952), the functions of the
manager-leader in a formal organization were
orderly planning, organizing and controlling. To
address the overlapping needs of the organization,
team and individuals, Coffin (1944) modified the
classical functions as follows: formulation (plan-

ning), execution (organizing), and supervision
(persuading).

MacKenzie (1969) proposed a well-known
leader-manager model that illustrated the great
variety of activities that a typical manager
performs. He proposed that the central man-
agement functions relate to the management of
people, ideas and things, which form the three
basic components of every organization with
which managers must work. Three functions
(the analysis of problems, decision-making and
communications) are important at all times and
in all aspects of the jobs held by managers, and
therefore permeate the entire work process. To
carry out these functions, the leader-manager
needs to execute these leader activities: planning,
organizing, staffing, directing and controlling. A
factor analysis reported by Dunnette (1986) of
65 managerial activities yielded seven factors:
monitoring the business environment, planning
and allocating resources, managing individual
performances, instructing subordinates, man-
aging the performance of groups, representing
groups and coordinating groups.

Janz, Colquitt, and Noe (1997) identified four
distinct facets in which a leader could give the team
autonomy: planning (e.g., scheduling the team’s
work), product (e.g., suggesting new products
or services), people (e.g., recruiting and hiring
members) and process-related (e.g., specifying
the development method a team should use).

Hertel, Geister, and Konradt (2005) reviewed a
collection of empirical works on the management
of virtual teams and summarized the manage-
ment functions of virtual team leaders at various
phases in the team’s lifecycle. They proposed
that virtual team leaders are generally engaged
in such activities as personnel selection, task de-
sign, team initiation, performance management,
training and team development, and disbanding
and re-integration.

These studies categorize leader functions in
different ways and use different labels for these
leader functions. Integrating these different

 2477

Occurrence and Effects of Leader Delegation in Virtual Software Teams

categorizations, Table 1 summarizes four major
leader function categories which can be delegated
to virtual team members. These four areas are the
overlapping important leader-manager functions
identified in the mentioned studies. The first leader
delegation category consists of planning-related
team management and leadership activities that
a virtual team leader can possibly delegate to the
team. The second category consists of people-re-
lated team management and leadership activities
that a virtual team leader can delegate, such as
team staffing and team member training. The third
category consists of process-related team man-
agement and leadership activities (or teamwork
process management). The fourth is control-re-
lated team management and leadership activities.
This category relates to the leader’s functions
and activities that control the work progress and
quality of a virtual team.

To keep the categorization parsimonious, the
key activities in each delegation category may
incorporate more than one of the leader functions
identified in the previous studies. For example,
“determining operating procedures and work
instructions” incorporates two virtual leader
functions in MacKenzie’s model: standardize
methods and decide how to achieve goals. Some
of the manager activities are not included because
they either cannot be assigned to the team through
leader delegation or are already tasks that are done
by team members, for example, suggesting new
products or services.

delegation in virtual software teams

The issue of productivity loss is very important
when global software team leaders weigh the
benefits and costs of delegation. A software team

Table 1. Four-dimensional leader delegation framework

 Delegation
Aspects Key Activities

Planning-related

Scheduling the team’s work
Setting the team’s long-term goals
Setting the team’s short-term objectives
Setting the team’s budget

People-related
Selecting team members
Removing members from the team
Determining team members’ training needs

Process-related

Assigning work to team members
Selecting the tools team members will use in their work
Determining the team’s operating procedures and work instructions

Control-related

Evaluating the progress of the team’s work
Evaluating team product quality
Determining corrective actions when performance objectives are not met

2478

Occurrence and Effects of Leader Delegation in Virtual Software Teams

is often formed for completing certain tasks
within a limited time period. The short-term
nature of the project requires avoidance of any
productivity loss. In a longitudinal study using
18 student information system development
(ISD) teams, Nicholson et al. (2002) confirmed
the importance of avoiding productivity loss in
distributed teams. The researchers attempted to
identify the characteristics/behaviors of effec-
tive ISD project team leaders/managers. Their
exploratory analysis revealed that face-to-face
(FTF) and virtual ISD team members valued
different ingredients of leadership in different
phases of the ISD project. They found that a key
ingredient for virtual team leadership was having
a realistic leader who managed time efficiently.
Global virtual teams involved in ISD are tempo-
rary structures that are very focused on the de-
velopment of the information system application.
These teams have tremendous time constraints.
Hence, the role of a virtual project team leader is
to remain practical in terms of the goals set and
the deliverables promised, and to manage the time
allocated to each task efficiently. Therefore, to
avoid productivity loss, global software leaders
are likely to delegate more to competent teams
than to incompetent teams. A competent virtual
software team has the knowledge, attitudes and
expertise required to perform the team tasks
and is more likely to plan well and manage their
work efficiently (Faraj & Sambamurthy, 2006). A
competent team can quickly apply their expertise
to the delegated task and reduce productivity
loss to a minimum. In contrast, delegation to
incompetent teams means that leaders have to
spend additional time giving feedback and moni-
toring the execution of delegated tasks to ensure
that performance standards are met. Otherwise,
managerial anxiety over loss of control can be
overwhelming. However, in the distributed global
team environment, close monitoring and timely
feedback is difficult as “management by walking
around” can not be used as a strategy (Paré &
Dubé, 1999). Due to increased temporal distances,

possible increased cultural distances and the lean
nature of computer-mediated communication in
virtual teams (Bell & Kozlowski, 2002), leaders
will need to spend much more time and effort
in coordinating, monitoring and coaching team
followers in the delegated tasks.

Besides the need to manage time efficiently, the
matrix organizational structure of global software
teams is often another reason why team leaders
delegate more to competent team members. De-
veloping subordinates’ skills and confidence is
the biggest reason why leaders delegate or consult
their followers, especially when followers’ skill
sets are still to be developed (Yukl & Fu, 1999).
The potential growth of the followers is likely to
be the major benefit leaders obtain from delega-
tion to an incompetent team. However, virtual
teams are often designed to cross geographical
and organizational boundaries to allow dispersed
organizations to maximize their expertise without
having to physically relocate individuals. The
required expertise for a given task or project
may be dispersed at multiple locations through-
out the organization; however, a global software
team may facilitate the ‘pooling’ of this talent to
provide focused attention to a particular problem
without having to physically relocate individuals
(Kayworth & Leidner, 2000). Therefore, global
software teams are often dispersed in cities or
even countries and, very commonly, the team
followers do not report to the team leader in a
direct organizational line. Due to the typically
short-term nature of the team and the complex-
ity of the reporting relationship, global software
team managers are more likely to be evaluated
on their success in achieving project goals, rather
than on their development of team members. In
delegating to incompetent teams, global software
team managers—unlike line managers who may
treat the costs of delegation as an investment to
be redeemed later—are faced with the cost of
sacrificing team performance, which determines
the manager’s own promotion and career growth.
As managing a matrix structure is already chal-

 2479

Occurrence and Effects of Leader Delegation in Virtual Software Teams

lenging for virtual team leaders (Oertig & Buergi,
2006), the costs associated with delegating to an
incompetent team would tend to deter virtual team
leaders from this management strategy. Based
on these arguments, the following hypothesis is
proposed:

Hypothesis 1: Leader delegation will be posi-
tively correlated with global software team com-
petence.

the Effects of team leader
delegation

In this section, three variables, motivation, team
flexibility and team member satisfaction with their
software team leader are each discussed. An argu-
ment is made as to why each of these variables is
expected to be affected by team leader delegation
and also why each of these variables is a primary
determiner of overall team performance.

Motivation: According to Herzberg’s (1968)
motivation theories, recognition fulfills work-
ers’ esteem needs and can significantly improve
employee’s performance. A competent virtual
team typically expects the team leader to recog-
nize the team’s competency by delegating more
responsibility. Leader delegation will then im-
prove the team’s sense of self-worth and motivate
the team to work more effectively. An empirical
study found that the autonomy of virtual team
members in determining work objectives and
methods improved the intrinsic motivation of the
team (Kirkman, Rosen, Tesluk, & Gibson, 2004).
They investigated the relationship between team
empowerment and virtual team performance and
the moderating role of the extent of face-to-face
interaction using 35 sales and service virtual teams
in a high-technology organization. They found that
team members are more intrinsically motivated
when they believe they have high performance
capability (competence), high responsibility and
authority to carry out work (delegation), and a

meaningful task that could impact the organiza-
tion. Piccoli and Ives (2003) found that student
virtual teams were more motivated and satisfied
with less behavior control. Also, a team’s accep-
tance of a decision is highest when the decision is
made by the group (Curtis et al., 1988). Therefore,
we posit that delegation to a competent virtual
team would increase the team’s motivation

On the other hand, delegation to less competent
virtual teams will put the team in a difficult situa-
tion. Due to their low competence level, they need
close monitoring and constant coaching from the
leader or other experts, which is difficult and costly
to obtain in dispersed virtual teams. Kayworth
and Leidner’s (2002) observation of a dichotomy
between inexperienced members wanting and
expecting strong directive leadership and team
leaders who, faced with the practical constraints
of distance and the lack of a direct management
line, would prefer members to be self-managing.
Such dichotomy hurts the team members’ motiva-
tion and performance. In addition, the relatively
short-term nature of virtual teams, which are
often formed dynamically to cope with emerging
projects or tasks, also means that the team has
less time to learn on the job. Instead of desiring
delegation, less competent virtual teams want
detailed directions from the leader.

Therefore, we posit that delegation to less
competent virtual teams may not improve team
motivation. Based on these arguments, Hypothesis
2a is put forth:

Hypothesis 2a: Delegation to competent virtual
software teams will improve team motivation
more than delegation to less competent virtual
software teams.

Team performance, as with individual perfor-
mance, is a function of ability and motivation (Jar-
venpaa et al, 1998). Sridar, Nath, Paul and Kapur
(2007) have shown that team member motivation
and trust affect performance in student teams

2480

Occurrence and Effects of Leader Delegation in Virtual Software Teams

distributed between the United States and India.
Significant improvement in team performance is
therefore expected from motivated teams. Based
on this argument, Hypothesis 2b is put forth:

Hypothesis 2b: Virtual team leader delegation
indirectly improves team performance through
improving virtual team motivation.

Flexibility: Team flexibility refers to how
flexible a virtual team is in responding to environ-
mental and personnel changes. Most virtual teams
are knowledge-based teams which are formed to
solve customer problems or to develop new prod-
ucts (Kirkman et al., 2004). The complex, knowl-
edge-based tasks many virtual teams perform
require behaviors such as planning and executing,
managing team performance, improving team
processes, and influencing organization-level
direction and resource allocations (Mohrman,
Cohen, & Mohrman, 1995). In conducting these
activities, teams have to make sense of their tasks,
improvise their work processes, and adjust how
they make progress toward agreed upon goals.
Therefore, flexibility is important to virtual team
performance and team leaders should delegate to
competent virtual teams to allow them to flexibly
adapt to their immediate situations and opportu-
nities. Remote team leaders may not be able to
understand the work context or to appreciate the
consequences of the changes occurring in the
distributed locations. Delegation, therefore, puts
this task in the hands of the competent virtual team
members. These members can also make decisions
in a more timely matter than the leader. Having
appropriate authority delegated to them, they can
proactively influence team leaders’ decisions or
even their own decisions instead of passively
waiting for managerial permission before taking
actions. Therefore, delegation to competent virtual
teams will increase team flexibility. In contrast,
delegation to less competent virtual teams may
not improve team flexibility since less competent

team members may not have the skills to make
decisions and form action plans. Based on this
argument, Hypothesis 3a is put forth:

Hypothesis 3a: Delegation to competent virtual
software teams will improve team flexibility more
than delegation to less competent virtual software
teams.

When a virtual team flexibly adapts to its work
situations and is free to respond to situations in
at timely manner, it will be more risk-taking and
learn from experience to continuously improve its
work processes and to perform in more efficient
ways. Based on this argument, Hypothesis 3b is
put forth:

Hypothesis 3b: Virtual team leader delegation
indirectly improves team performance through
virtual team flexibility.

Satisfaction with Software Team Leader:
Delegation to competent virtual teams represents
the leaders’ recognition of their competence. Del-
egation allows the competent team to utilize their
capabilities to adapt to the immediate opportuni-
ties and changes without waiting for decisions to be
made by the distant leader. Therefore, delegation
to a competent virtual team should improve the
team’s satisfaction level with the leader.

On the other hand, delegation to a less com-
petent virtual team may decrease the team’s
satisfaction with the leader. In a global virtual
team study consisting of undergraduates as fol-
lowers and experienced MBA graduate students
as team leaders, Kayworth and Leidner (2002)
found that the inexperienced undergraduate fol-
lowers were more satisfied with leaders who gave
clear, detailed instructions and feedback. Faraj
and Sambamurthy’s (2006) study of 65 software
development teams found similar results. Their
study showed that empowering leadership has an
important positive impact on team performance

 2481

Occurrence and Effects of Leader Delegation in Virtual Software Teams

but only under conditions of high task uncertainty
or high team expertise. In the software teams they
studied, when team members have significant
levels of professional experience with software
development, they are more likely to possess the
relevant expertise and experience for manag-
ing their project activities. For such teams, an
empowering leadership approach might be more
appropriate since members may need less direct
control and coordination and possibly possess as
much relevant task expertise as the team leader.
In contrast, when teams have low professional
experience, a directive leadership might be more
appropriate because the members look to the leader
to provide needed directions and guidance about
their work activities.

 As software team distance increases, the
work context exhibits increased complexities,
for example, cultural misunderstandings, com-
munication difficulties, and so forth. This makes
virtual teamwork more daunting for a less com-
petent team. Under such circumstances, the team
needs to attain confidence and a sense of direction
from a strong leader. Based on this argument,
Hypothesis 4a is put forth:

Hypothesis 4a: Delegation to a competent virtual
team will improve the team’s satisfaction with
their team leader more than delegation to a less
competent virtual team.

When the virtual software team members are
satisfied with the team leader, the team leader will
be more able to influence the members to work
towards team goals and therefore to improve
team performance. This has been confirmed in
empirical studies (e.g., Zeffane, 1994).

Based on this argument, Hypothesis 4b is
put forth:

Hypothesis 4b: Virtual team leader delegation
indirectly improves team performance through
improving virtual team’s satisfaction with the
team leader.

rEsEArch study

study design and sample

A full-scale study with industry software develop-
ment teams is currently underway to explore the
presented research hypotheses. We report here
on the pilot study conducted to test the validity
and reliability of the constructs that were formed
for this research and the viability of our research
model. Although many of the questions that
were used came from studies that had already
tested their validity and reliability, there were
modifications made to the questions to (a) fit the
virtuality nature of the teams being studied and
(b) to fit the software development environment.
For example, the constructs of team competency
and leader delegation were adapted to describe
competency in terms of software skills and por-
tions of leader delegation in terms of the assign-
ment of software tasks

Student teams were used to pilot the research
survey because the diversity of the student teams
closely matched the software development team
populations that the final survey is intended for.
The student teams are part of a computer science
and information systems program at an American,
east coast university that has one of the most
diverse student bodies in the United States. The
students are primarily from China, India, the
Middle East, Brazil, and Pakistan.

Forty-eight students in 30 software-develop-
ment teams took an online survey that requested
information about the variables presented in the
hypotheses. Thirty-two males and 16 females;
three graduate students and 45 undergraduate
students participated. All participants were in-
volved in teams that were engaged in developing
a single software program for the entire semester.
The software teams are part of the ABET accred-
ited Capstone course designed to have students
working in teams on real software projects before
they matriculate. This is a course most students
take in their last year of school. Companies are

2482

Occurrence and Effects of Leader Delegation in Virtual Software Teams

solicited for software projects and present their
projects to the class. A team leader volunteers
for a software project and then interviews and
accepts members for his or her team. Teams
normally have four members but some teams
have three or five members. Teams then meet
with the company representative and develop
requirements, a budget, a design and a deliver-
able tested product. Reports are due, including a
management report with assigned team roles, at
regular intervals. Thus, the teams are set up to
behave as much as possible like typical software
development teams. Our interviews with corporate
management in software companies indicates
that projects rarely last for more than six months
and that when new teams form, the membership
is also new, so our student teams represent this
type of project assignment.

The research instrument is designed to work
with virtual teams. Thus, it may be asked, how
can this student population constitute a virtual
team? Almost any team at the university studied
is partially virtual because of the nature of the
university. All capstone classes are held in the
evenings because team members usually are
part time students. The university is a commuter
university with many classes online or partially
online so that students may come to the univer-
sity once a month. Thus, many of the teams meet
virtually and much of the team work is done by
e-mail, instant messaging and teleconferencing.
It was felt that with the more mature students,
seniors, the partial virtuality and member mul-
ticulturism presented a population suitable for
piloting the research.

The survey was given near the end of the se-
mester so the team members had worked together
for about three months.

In a second administration of the survey, 34
graduate students from 14 report-writing teams
took the online survey. The team task was to
analyze an industry case study and write a team
report based on the case study results. The teams
consisted of five to six members with team lead-

ers elected by the team members. The survey
was given after the team finished their first case
study project. These 14 teams were taking a two-
month summer online management information
systems course.

Only two of these teams reported meeting face-
to-face once a week. The other teams did not report
meeting face-to-face during the team project and
may never have met each other face-to-face. This
second set of teams was also different from the
first in that they were working on a report rather
than developing software. Thus, they met the
requirement of being virtual for our pilot study
but not of being a software development team. We
use this second team to determine if the difference
in virtuality might have an influence.

After the survey, open-ended interviews
with six members from two software-develop-
ment teams were conducted face-to-face. Each
interview was conducted by two researchers and
videotaped with the interviewee’s permission.
The interview results are reported in section 4.4
and 4.5.

survey Measurement

In this section, each of the constructs used in the
research is described in more detail, in particular,
its source for validity and reliability verification
are cited along with a sample question that presents
the intent of the measure.

Delegation: The four categories of virtual
team leader delegation were measured by 13
7-point Likert-scale items in the survey. Section
3.1 introduced the conceptualization of the four
categories. A sample question statement is “how
much is your team able to schedule team work?”
(completely – not at all)

Team Competence: In the first round of the
survey, six questions were used, which are adapted
from the situational leadership measurement of
follower ability (Hersey & Blanchard, 1988) and
Hardin, Fuller, and Valacich’s instrument of vir-
tual team efficacy (2006). A sample question is

 2483

Occurrence and Effects of Leader Delegation in Virtual Software Teams

“The team has past experience related to the team
job” (strongly agree – strongly disagree). In the
second round, six 7-point Likert scale questions
were used to assess specific skills important to
team tasks. A sample question is “how do you
evaluate your team on its critical analysis skills?”
(extremely high – extremely low)

Team Motivation: Four 7-point Likert scale
items measuring this construct are adapted
from situational leadership theory (Hersey &
Blanchard, 1988). A sample questions is “The team
is motivated to take on additional responsibilities
if needed to finish the project” (strongly agree
– strongly disagree).

Team Flexibility: Three 7-point Likert-scale
items were created by the research team consist-
ing of five researchers with extensive virtual team
research experience to measure this variable. A
sample question is “This team quickly responds
to new opportunities” (strongly agree – strongly
disagree).

Team’s Satisfaction with the Team Leader:
Three 7-point Likert-scale items were created
by the research team to measure this variable. A
sample question is, “I am dissatisfied with the way
the team leader manages this project” (strongly
agree – strongly disagree).

Team Performance: Team performance is
measured by five 7-point Likert-scale items
adapted from Henderson and Lee’s (1996) study.
This is a composite measure which reflects five
important areas of software team work outcomes
including: the amount of work the team produces,
the efficiency of team operations, the team’s adher-
ence to schedules, and the team’s adherence to bud-
gets, the quality of work the team produces. This
measurement was examined by five experienced
researchers and three IT managers with extensive
virtual team experience and was considered by
them to provide a valid and comprehensive view
of software team outcomes. A sample question
of this measurement is “Compared to other proj-
ects you have served on or observed, how do you

evaluate your team’s performance on adherence to
schedules” (Extremely high – extremely low).

Other Contextual Variables: In addition to
these constructs, the study also captured data on
another two variables: trust towards other team
members, and interdependence of tasks performed
by team members, which were found to moder-
ate the impact of leader delegation (Yukl & Fu,
1999) Trust is measured with four 7-point Likert
scale items from Jarvenpaa et al.’s study (1998).
A sample question measuring trust is “If I had
my way, I would not let the other team members
have any influence over issues that are important
to the project” (strongly agree – strongly disagree).
Task interdependence is measured by two items
adapted from Campion, Medsker, and Higgs
(1993). A sample question is “To what extent do
the team members have to share work materials to
get the project done?” (strongly agree – strongly
disagree). Finally, team background information
such as team member’s age, year in school, how
often the team met and how they met (remotely
or face-to-face) was also gathered. This informa-
tion is used in the post-hoc analysis to help us in
our interpretation of the resulting relationships
uncovered in the research model.

preliminary data Analysis

Delegation Construct Structure: A principle
component analysis (PCA) was conducted to
test if delegation is a four-dimensional variable.
However, in the pilot study, the student teams did
not have budget constraints and were not allowed
to change their membership once the teams had
been established. Therefore, the four leadership
and management function measurements are
not included in the data analysis done with PCA
because students answered these questions as not
applicable. PCA results show that all the remain-
ing nine items measuring delegation load on one
component instead of three unique components.
This indicates that virtual team leader delegation

2484

Occurrence and Effects of Leader Delegation in Virtual Software Teams

in the student teams is not multi-dimensional
counter to our predictions.

Measurement Validity: The numbers in the
study were too small to conduct a factor analysis,
but wherever possible, the questions used for the
constructs were drawn from previously validated
surveys. We also checked the constructs for face
validity by reviewing the questions with twenty
experts from the countries where the virtual teams
for the full study were located. In addition, a card
sorting test was performed on the constructs using
20 respondents. Ninety-five percent of the ques-
tions were sorted correctly supporting a case for
acceptable construct validity. Finally, external
validity is a concern because students were used
in the study. We treat this issue in the discussion
on this research’s limitations.

Measurement Reliability: Except for trust
(α=0.409), the Cronbach Alphas of other construct
measurements are above the level of 0.8. Trust is
therefore not included in further data analyses.

Within-Team Agreement: Due to the small
sample size, a simple measure was used to judge
within-team agreement level: individual team
members’ responses were considered to have
an adequate level of within-team agreement and
were averaged to obtain a team score if the dif-
ference between the highest score and the lowest
score in a team was less than 2.5 (half the scale
range). There was a high level of within-group
agreement in more than 85% of the 44 teams on
all constructs in the research model. Therefore,
individual team member’s responses are averaged
to get team-level data.

test of hypotheses

Multiple regression testing was chosen to analyze
the data as the data met normality and homogeneity
of variance requirements (An arcsine transforma-
tion was carried out on the team competence and
performance measure to achieve these assump-
tions). Structured equation modeling was not used

because of the small sample size and the intent of
the study (pilot). Although a PLS model is more
likely to have more accurate beta scores, it also
has a greater chance of a Type I error (Goodhue,
Lewis, & Thompson, 2006). Since this was a
pilot study, we wanted to bias it against possible
spurious results.

Hypothesis 1 Test: Hypothesis 1 predicts that
virtual team leaders delegate more to competent
virtual teams than to less competent virtual teams.
A multiple regression analysis was conducted to
test this hypothesis. The test results shown in Table
2 support Hypothesis 1. Delegation is positively
correlated with team competence.

Hypotheses 2, 3, and 4 Tests: Hypothesis 2a
predicts that leader delegation to competent vir-
tual teams will improve team motivation more
than delegation to less competent virtual teams.
Hypotheses 3a and 4a predict the effects of virtual
team leader delegation on team flexibility and on
a team’s satisfaction with team leader respectively.
The three hypotheses were tested by stepwise re-
gression with the outcome variables regressed on
delegation, team competency and the interaction
term of delegation and team competency.

Table 3 presents the test results in the software-
development teams. Hypotheses 2a and 3a are not
supported, as no significant interaction effects
were found. Therefore, the effects of delegation
on team motivation and team flexibility were
not found to change as team competence varied.
Regarding Hypothesis 4a, the results show that
leader delegation improves the team’s satisfaction
but such effects do not change as team compe-
tence varies. In addition, team competence was
found to significantly improve team motivation,
flexibility, and team satisfaction with the leader
(p<0.05).

Table 4 shows the Hypotheses 2a, 3a, and 4a
test results in the report-writing teams. Regard-
ing Hypothesis 2a, Team leader delegation sig-
nificantly improves team motivation (p=0.006).
However, the effects of leader delegation on team

 2485

Occurrence and Effects of Leader Delegation in Virtual Software Teams

Table 3. Hypotheses 2a, 3a, and 4a test results in software-development teams

Motivation Flexibility Satisfaction
Delegation 0.537 0.821 1.502*
Competency 1.536*** 1.423*** 1.708***
D e l e g a t i o n
X Competency 0.11 -0.153 -0.231

R-Square 0.75 0.54 0.65
F-Overall 21.93*** 7.91*** 9.94***

*p < 0.10, ** p < 0.05, ***p < 0.01

Table 4. Hypotheses 2, 3 and 4 test results in report-writing teams

Motivation Flexibility Satisfaction
Delegation 0.782*** 0.216 1.502***
Competency 0.126 0.069 1.708***
Delegation
X Competency -0.433 0.102*** -0.231***
R-Square 0.531 0.687 0.561
F-Overall 12.263*** 21.912*** 11.502***

*p < 0.10, ** p < 0.05, *** p < 0.01

Table 2. Hypothesis 1 test results in both report writing and software development teams

Delegation Regressed on Team Competency
Software Devel-
opment Teams

Report Writing
Teams

Standardized
Coefficient 0.508*** 0.706***

R-Square 0.258 0.498
F-Overall 8.706*** 9.913***
*p < 0.10, ** p < 0.05, *** p < 0.01

motivation did not differ as team competence level
varied. Hypotheses 3a and 4a are supported by
the regression results. The interaction effects of
delegation and team competence are significant

such that leader delegation to competent virtual
teams improves team flexibility and team satisfac-
tion with the leader more than delegation to less
competent virtual teams.

2486

Occurrence and Effects of Leader Delegation in Virtual Software Teams

Hypotheses 2b, 3b, and 4b Tests: Hypoth-
eses 2b, 3b, and 4b predict leader delegation
indirectly improves virtual team performance
through improving team motivation, flexibility
and satisfaction with leader respectively. A Sobel
test determines the significance of the indirect
effect of the mediator by testing the hypothesis
of no difference between the total effect and the
direct effect. This method is used because its su-
periority of reducing Type 1 error and increasing
power (Mackinnon, Lockwood, Hoffman et al.,
2002). Due to the small sample size of the study,
a bootstrapping Sobel test was performed.

For the software development teams, the tests
did not find delegation improved motivation and
flexibility. Consequently, the effect of delegation
motivation and flexibility improvements on virtual
team performance was not testable and therefore,
Hypotheses 2b and 3b are rejected. Hypothesis
4b is supported by Sobel test results, as shown
in Table 5. Therefore, delegation improves team

performance partly through improving team
satisfaction with the leader.

For the report-writing teams, Hypothesis 2b is
not supported by regression test results, as shown
in Figure 2. Regression tests did not find that
motivation had a significant positive impact on
performance. Therefore, delegation was not found
to improve team performance indirectly through
improving team motivation. Previous tests on
Hypotheses 3a and 4a did not find that delega-
tion improved team flexibility and satisfaction
with the leader. Consequently, delegation cannot
be tested as to whether it improves virtual team
performance through improving team flexibility
and satisfaction with leader. Therefore, Hypoth-
eses 3b and 4b are not supported either.

Interview data Analysis

The interviews were analyzed in two steps. First,
two PhD students and two professors with ex-

Table 5. Sobel test results on hypothesis 4b in student software-development teams

Sobel
Statistic F Value Percentage of Total Effects

that are Mediated
Ratio of the Indirect Effects
to the Direct Effects

2.868 0.004 77.34 3.412

Figure 2. Hypothesis 2b test in report-writing teams

Delegation

Motivation

Performance

0.782*** 0.091

0.860*

 2487

Occurrence and Effects of Leader Delegation in Virtual Software Teams

tensive research experiences watched the videos
of the interviews and discussed what they found
relevant to this study in a group meeting. Each of
them explained his/her findings to the group and
the group discussed the validity and implications
of these findings. These discussion results were
recorded in writing. Second, one PhD student
summarized these group discussion results and
combined them into a set of statements. Then,
she watched the interview videos for the second
time. She put down quotes from the interviewees
related to each statement, examined these quotes
to judge how they supported or disproved the
categories of findings and modified the results of
the analysis accordingly. This two-step procedure
does not transcribe the interview data but roughly
follows the process of creating a coding scheme,
coding the data, iteratively improving the coding
scheme and drawing conclusions. This proce-
dure uses insights made by multiple researchers
who separately viewed the interview videos and
therefore should be adequately rigorous for a
small-scale pilot study.

The interview data analysis found overall
that delegation was an important part of team
leadership and affected team outcomes in vari-
ous ways. The following paragraphs present the
detailed findings.

First, team leaders were aware of the impor-
tance of delegation, and engaged in delegation
for a variety of reasons. One team leader learned
from his previous military training that leaders
should teach their subordinates to do their job so
that they can take over if the leader is not avail-
able. The other reason both team leaders gave for
delegating to the team was a belief that the team
had the capabilities to perform the work. This
belief in the team’s competence came from knowl-
edge about team members’ past performance and
their professional experiences. Also, one team
leader recognized that competent team members
have egos and decided that being too controlling
would hurt such egos. Lastly, at least one team
leader felt that delegating tasks to incompetent

team members with the added support of fellow
team members could be a way to build up a team
member’s self-confidence and skills.

Second, as the team develops, a leader’s
delegation style may change. In both teams the
author interviewed, the leaders’ style changed
from one of controlling to that of delegating as
team member’s competence increased. In one
team, members reported that at the beginning
of the project, the team leader “tried to control
everyone and everything in the project.” When
the leader was traveling, he sent team members
detailed e-mails that specified the work to be
done and the precise methods to use. As his
team members demonstrated their capability and
produced several deliverables ahead of deadlines,
the leader “eased off in the middle.” Near the end
of the project, the team leader was very trusting
and allowed the team members to self-lead. One
of the most competent members in the team even
led the team for two weeks when the leader was
on vacation in a foreign country.

Third, delegation happened with monitoring
and coaching. After certain tasks or functions were
delegated, the leaders monitored how the team
performed and coached the team members when
needed. One team leader, for example, suggested
books for the team members to read and advised
the team on available development tools.

Fourth, delegation affects team motivation
and a team’s satisfaction with the leader. Within
one team, a team member missed the first dead-
line and produced very low-quality deliverables.
The team leader took action and became very
directive setting detailed work schedules for the
team, making detailed work assignments to team
members and closely monitoring the work quality
and progress of the team. Such non-delegation
drove the team members to work harder. In this
case team members appreciated the team leader’s
direction and effort to get their project started.
In the other team, team members had adequate
professional experience and the skills needed to
perform the project tasks. In the beginning the

2488

Occurrence and Effects of Leader Delegation in Virtual Software Teams

team leader was very controlling and the team
members complained and even had a confronta-
tion with the leader. However, as the team leader
became aware that he was directing a competent
team, he switched to negotiating with team mem-
bers when making decisions. With this change,
the team members felt his trust in their abilities
and became more satisfied with the leader.

dIscussIon

The following hypotheses were supported by the
study. First, virtual team competence predicted
leader delegation behaviors. This implies that
virtual team leaders should carefully evaluate a
team’s competence before delegating tasks, espe-
cially before delegating important tasks. Second,
leader delegation improved the satisfaction and
motivation of team members. The effects of del-
egation on flexibility and satisfaction were more
prominent in competent report-writing teams
than in less competent report-writing teams but
these effects were small. Other hypothesized
results were not found. None of the intermedi-
ate outcome variables (flexibility, motivation,
satisfaction) mediated the effects of delegation

on team performance. Instead, tests results in-
dicated that delegation directly improves virtual
team performance. Figure 3 presents the model
supported by the study results.

Comparing the results found in the two types
of teams, one will observes that first, delegation
exerted deeper influence on the report-writing
teams than the software-development teams. It
is suspected that the differences in delegation
effects may arise from the differences in the
number of times the teams met face-to-face or,
as suspected, the degree of virtuality of the team.
In contrast to the software development teams,
which met face-to-face at least once a week, the
report-writing teams barely met. Students in the
report-writing teams were in an online summer
course and, throughout the project, only two teams
met face-to-face once a week. As collaboration
and communication processes suffer from lack
of face-to-face contact, the leader’s role in team
coordination and communication becomes more
important. Therefore, leader delegation produced
deeper effects in the more virtual report-writing
teams. This suggests that leader delegation is
likely to be a very significant factor in managing
virtual teams.

Figure 3. Delegation effects on student teams. (Bold lines indicate supported hypotheses. The double
line indicates a new result showing a direct link between delegation and team performance.)

Delegation

Competence

Satisfaction

Flexibility

Motivation

Performance

 2489

Occurrence and Effects of Leader Delegation in Virtual Software Teams

limitations of study

One of the major limitations of this study is that
the teams were student teams working on class
projects. In particular, some of the questions that
were designed for corporate virtual teams were
not applicable. Student teams do not typically
assign salaries, manage finances or hire and fire
personnel. Only the planning part of the delega-
tion construct showed differences between teams.
The other parts were scored as not applicable
(one of the possible answers) so that the results
were pooled into one construct called Delegation
which consisted mostly of items that addressed
planning delegation.

In addition, the software and report writing
teams did not represent the distributed teams that
the survey was prepared for. There were some
examples of distributed teams, for example, one-
half of the team lived in the southern part of the
state and the other half lived in the northern part,
but, by and large, teams consisted of members
who were individually virtual but also met face-
to-face occasionally. The report writing teams
were the most virtual with some team members
never having seen each other.

It can also be argued that student teams do not
give representative answers that parallel those of
individuals working in companies although there
is evidence that this is not always so. Hughes and
Gibson (1991) found that MBA students made
decisions comparable to managers in an Executive
MBA program, but Ashton and Kramer (1986) in
their literature review, note that attitude questions
are answered differently by individuals in the
workforce than by students. Briggs, Balthazard,
and Dennis (1995) found students to be valid
predictors of managerial technology adoption
and Remus (1989) found graduate students to be
more representative of industry personnel than
undergraduates. In particular, studies show that
students are not representative because of their
lack of experience in the workforce and because
of their youth. Because most of the students in

our study were part time students and had full-
time jobs, because the age of the students in the
teams was higher than normal for university un-
dergraduates and because the students represented
the cultural mix that we wanted to assess, it was
felt that this study’s population was representative
of the industry group our study targeted.

We did find, however, evidence that suggests
that students were responding differently than
a workforce population might. Student groups
uniformly evaluated their team competence and
team performance highly with more spread on this
evaluation in the report-writing teams (Master’s
students). We also found that we were not able to
obtain any viable reliability on what is considered
a highly reliable trust measure that we borrowed
from the literature. We therefore did not include
trust in our models. We also remade the compe-
tence measure into a formative construct for the
survey of the report writing team. This helped to
fix the skew in the distribution of these results.

As mentioned earlier, the skewed evaluations
of team competence and performance may be an
artifact of student teams, but they also might be an
artifact of virtual teams in some cultures. Thus,
an additional variable to collect and compare to
self report of team performance is a team leader’s
report of team performance in addition to other
related variables such as subproject completion
times. We continue to strive to obtain measures
of performance from team leaders, but, to date,
the descriptions of how management scores per-
formance for their distributed teams lead us to
believe that self-report of perceived performance
is not any worse a measure than managerial
reports. In particular, the cultural and temporal
distances are likely to affect a leader’s perception
of performance.

The trust measure may have been highly
unreliable because student team members have a
different social relationship than workforce team
members. One trust question asked if a team
member would like to control the work of the other
team members. This is socially out of the question

2490

Occurrence and Effects of Leader Delegation in Virtual Software Teams

in a student team where fellow team members
are independent individuals more than members
of some greater whole such as a company. Thus,
team members are likely to respond negatively
to this question. A second question asked if a
team member felt uncomfortable with the work of
the other team members. A team member could
answer positively in a socially acceptable way to
this question. Thus, the reliability of a construct
that works fine in a company environment falls
apart in the student context. However, this failure
of the trust construct could be applicable to vir-
tual teams where their non-colocated counterpart
may also feel that they have no right to control or
monitor the work that the distant team performs
even if they feel uncomfortable with this lack of
control. This is likely to be true of teams in China
and India where new hires are continually being
added to the workforce. None of these younger
team members would feel that they should con-
trol the work of their team members in Europe
or North America, but their recent training may
also make them feel uncomfortable with the work
being done in these places.

These discussion notes that the literature
demonstrates that student teams can provide reli-
able answers that represent industry situations if
the groups are appropriately chosen, but it also
suggests that the very nature of student teams
might be more appropriate for studying virtual
teams across cultures in that their responses might
represent similar cultural responses.

The small sample size also limits the general-
izability of the study findings. We analyzed the
teams separately because of inherent differences
in their virtuality and work assignments. We
also performed a separate analyses so that we
could examine the effects of virtuality although
confounded with task and a more senior student
population. This made the sample sizes small.
Approximately 200 software teams were asked
to fill in the survey but only 30 responded. The
response rate was extremely low, in particular,
because many of the students were in their final

year, already had jobs that reduced the importance
of the payment incentive we offered and were
quite busy with class projects. The response rate
was significantly higher for the report writing
teams (about 50 percent) but the class size was
small. We also choose to analyze all of the teams,
even those with only one respondent because
the response rate was low. Thus, there were 12
software teams that only had one member. For
the report writing teams, only teams with two or
more respondents were used in the analysis. The
problem with a single team member responding
constitutes another analysis problem because that
single member could have been an outlier gener-
ating data unrepresentative of the team. Studies
now in progress with a larger number of industry
teams will yield more conclusive findings related
to virtual team leader delegation.

contrIbutIons And
futurE worK

This study addressed an important yet under-
researched area regarding leader delegation
practice in virtual software teams. It provides
statistically sound conclusions which reduce the
confusion arising from the conflicting findings
of prior case studies. Some virtual software team
managers claim that the increased distance make
self-management necessary while others question
whether excessive autonomy will produce negative
effects in a complex virtual team environment.
A pressing question for industry practitioners is
when and how much authority and responsibility
should be delegated to remote team members. Our
findings suggest that delegation is an important
virtual team management strategy that positively
affects team performance. In particular, the results
from the student teams imply that a team leader
will delegate in response to his or her sense of
how competent the team is. However, the real
world situation affects this delegation with a push
and pull effect, that is, management will want to

 2491

Occurrence and Effects of Leader Delegation in Virtual Software Teams

delegate more because the task of managing a
global virtual team means more communication,
odd hours of work scheduled for communication
and care needed to avoid miscommunications.
This is the push to delegate. However, the pull
effect is that a team leader because of the lack of
information on the global virtual team stemming
from language difficulties, cultural differences
and simply not being able to observe team be-
havior because of the distance will not want to
delegate to the team. The findings suggest that
team leaders need to be trained to ignore these
effects and perform their delegation based on real
information about the team, perhaps by visiting
the virtual team or setting up viable measures for
team performance.

The tendency of the student teams to give self-
reports of high competence and high performance
suggests leadership guidelines for industry. In
particular, it would be wise to give team leaders
training in the cultures they are interacting with
so that they can better judge the self-reports they
are obtaining.

Our findings also suggest that delegation is a
good thing in that it increases a team’s satisfaction
with its leader, a team’s flexibility to adjust the
project to local needs and a team’s motivation. The
findings, however did not find a strong mediating
relationship between these values and team per-
formance Earlier discussion on the limitations of
the study suggest that the performance measures
captured were corrupted by the use of student
teams. Flexibility, motivation, and satisfaction
have been shown to affect performance in face-
to-face teams so there is good reason to believe
that obtaining better measures of performance
would find moderation by these variables. This
is future work that needs to be performed.

Overall, more delegation was found to be a
positive behavior for a team leader, but with the
youth and newness of team members joining vir-
tual teams in many of the companies that offshore
or outsource, this is likely to be a poor strategy

unless measures are taken to bring up the skill
sets of the offshore team members.

Due to high team member turnover in some
countries, especially with the constantly in-
creasing wages in these countries, companies
are reluctant to invest in training for these team
members. However, as we have been told by team
managers from India, this training is precisely one
of the mechanisms used to reduce turnover. This
is another variable that clearly needs evaluating
in future work.

Overall, the pilot study findings suggest use-
ful recommendations for virtual software team
leadership as to when and how much they should
delegate to the team based on the team’s degree
of virtuality and competence. However, the
hypotheses of this study were mainly based on
software team literature and the pilot study was
done mainly with student software teams. Future
work with real industry teams with varied types of
companies and a variety of organizational models
needs to be performed to verify these findings.
Currently a full-scale survey and interview has
been conducted with the global software test-
ing teams of a Fortune 100 company. Future
data analysis will be performed to compare the
industry team findings with the findings of this
pilot study.

rEfErEncEs

Ashton, R. A., & Kramer, S. S., (1980). Students
as surrogates in behavioral accounting research:
Some evidence. Journal of Accounting Research,
18(1), 1-15.

Bass, B. M. (1990). Bass and stogdill’s handbook of
leadership (3rd ed.). New York: The Free Press.

Bell, B.S., & Kozlowski, S.W.J. (2002). A typol-
ogy of virtual teams: Implications for effective
leadership. Group and Organization Manage-
ment, 27(1), 14-49.

2492

Occurrence and Effects of Leader Delegation in Virtual Software Teams

Briggs, R. O., Balthazard, P. A., & Dennis, A.
(1995). Graduate business students as surrogates
for executives in the evaluation of technology.
Journal of End User Computing, 8(4), 11-17.

Campion, M. A., Medsker, G. J., & Higgs, A. C.
(1993). Relations between work group characteris-
tics and effectiveness: Implications for designing
effective work groups. Personnel Psychology,
46, 823–850.

Coffin, T. E. (1944). A three-component theory
of leadership. Journal of Abnormal and Social
Psychology, 39(2), 63-83.

Curtis, B., Krasner, H., & Iscoe, N. A., (1988).
Field study of the software design process for
large systems. Communications of the ACM,
31(11), 1268-1287.

Davis, R. C. (1942). The fundamentals of top
management. New York: Harper.

Eveland, J.D., & Bikson, T.K. (1988). Work
group structures and computer support: A field
experiment. Transactions on Office Information
Systems, 6(4), 354-379.

Faraj, S,. & Sambamurthy, V. (2006). Leadership
of information systems development projects.
IEEE Transactions on Engineering Management,
53(2), 238-240

Goodhue, D., Lewis, W., & Thompson, R. (2006).
PLS, small sample size, and statistical power in
MIS research. Proceedings of the 39th Hawaii
International Conference on System Science,
(pp. 1-10).

Hardin, A., Fuller, M., & Valacich, J. (2006).
Measuring group efficacy in virtual teams: New
questions in an old debate. Small Group Research,
37, 65-85.

Henderson, J. C., & Lee. S. (1996). Managing
IS design teams: A control theories perspective.
Management Science, 6, 757-777.

Hersey, P., & Blanchard, K. (1988). Manage-
ment of organizational behavior: Utilizing hu-
man resources (5th ed.). Englewood Cliffs, NJ:
Prentice-Hall.

Hertel, G., Geister, S., & Konradt, U. (2005).
Managing virtual teams: A review of current
empirical research. Human Resource Manage-
ment Review, 15(1), 69-95.

Herzberg, F. I. (1968). One More Time: How do
You Motivate Employees? Harvard Business
Review. January-February, 109-120.

This work was previously published in the International Journal of e-Collaboration, edited by N. Kock, Volume 5, Issue 1, pp.
47-68, copyright 2009 by IGI Publishing (an imprint of IGI Global).

 2493

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6.10
Cultural Diversity Challenges:

Issues for Managing Globally
Distributed Knowledge Workers in

Software Development

Haiyan Huang
The Pennsylvania State University, USA

Eileen M. Trauth
The Pennsylvania State University, USA

AbstrAct

This chapter discusses cultural diversity chal-
lenges in globally distributed software develop-
ment and the implications for educating and man-
aging the future global information technology
workforce. It argues that the work practices of
global software development are facing a variety
of challenges associated with cultural diversity,
which are manifested in and can be analyzed from
three dimensions: the work environment of global
software development, the globally distributed
knowledge workers, and the global software de-
velopment work. It further articulates how cultural
diversity is manifested in these three dimensions.
Furthermore, it highlights the importance of de-
veloping cultural awareness and cultural diversity

understanding as important skills for the future
information technology workforce.

IntroductIon

In this chapter, we explore the cultural diver-
sity challenges of managing globally distributed
knowledge workers who engage in global soft-
ware development work practices. This topic is
important to information technology personnel
management and knowledge management for
three reasons. First, there has been a significant
increase in global software development work
practices in recent years. Such work practices
not only adopt the conventional characteristics of
knowledge intensive work, but also generate a set

2494

Cultural Diversity Challenges

of distinct features, which call special attention to
managerial researchers and practitioners. Second,
in global software development, the information
technology (IT) professionals are globally dis-
tributed in the forms of global virtual teams and
represent a wide range of nationalities and, thus
cultures. Therefore, we should not only acknowl-
edge the existence of cultural diversity of globally
distributed knowledge workers, but also explore
how such cultural diversity may affect global
software development work, and how to explore,
assess, and manage this cultural diversity. Third,
although cross-cultural issues have been one of the
major concerns of the global information systems
discipline, there are still on-going debates about
how to assess culture and cultural diversity. As
a result, different views of culture and cultural
diversity will have impacts on the related human
resource strategies used in managing global IT
personnel. Consequently, evaluation and reflection
on those issues in global software development
work environments are very important.

As knowledge work is increasingly outsourced
globally, we would like to take the opportunity in
this book chapter to consider the cultural diver-
sity challenges of managing globally distributed
knowledge workers. The objectives of this book
chapter are: (1) to propose a framework to address
the cross-cultural aspects of managing IT person-
nel in globally distributed software development
work; and (2) to discuss some managerial implica-
tions that are derived from this framework. We
believe both professionals and academics working
in the field of global information technology and
information systems (IS) management will benefit
from these discussions.

The organization of the book chapter proceeds
as follows. In the Background section, we intro-
duce the concepts of global software development
and virtual teamwork. Then we present our re-
search framework, which focuses on articulating
how cultural diversity is manifested in global
software development workplaces, workers, and
work practices. In the following section on rec-

ommendations, we discuss how we may address
the cultural diversity challenges in managing
globally distributed knowledge workers who are
engaged in global software development activi-
ties, particularly from the perspectives of IS/IT
education and organizational human resource
management.

bAcKground

global software development

Global software development as one type of
information technology offshore outsourcing
activities (Lacity & Willocks, 2001), has become
an established practice for software and informa-
tion systems development (Carmel & Agarwal,
2002; Herbsleb & Moitra, 2001). Global software
development can be defined as software and
information systems development practices that
are knowledge intensive and involve the work
arrangements between two or more organizations
across the national boundaries.

Software and information systems develop-
ment has been widely conceived as knowledge-
intensive work (Henninger, 1997; Swart & Kinnie,
2003) with three characteristics. First, knowledge
as intellectual capital is an important input to a
software development project, and an impor-
tant output as well (Swart & Kinnie, 2003; van
Solingena, Berghoutb, Kustersc, & Trienekensc,
2000). Second, Waterson, Clegg, and Axtell
(1997) pointed out that software development
work is “knowledge intensive” in the sense that
building a complex software system demands
selecting and coordinating multiple sources of
knowledge (Shukla & Sethi, 2004). Drucker
(2004) argued that the specialized knowledge in
knowledge work indicates that knowledge workers
need to access the organization—the collective
that brings together a diversity of specialized
knowledge workers to achieve a common goal.
For example, a software development project may

 2495

Cultural Diversity Challenges

involve a variety of IT personnel such as designer,
analyst, programmer, tester, implementer, and
manager. Therefore, collaborations of team work
are necessary and critical for software develop-
ment projects. Third, knowledge associated with
software development is rapidly changing as the
complexity and diversity of the application do-
main is increasing (Henninger, 1997). Therefore,
software development knowledge is not static but,
rather, is evolving with the changing needs of the
customers and business environments (Henninger,
1997). Drucker (2004) pointed out that knowl-
edge workers not only need formal education to
enable them to engage in knowledge work in the
first place, but also need continuous learning op-
portunities through the work practice to keep the
knowledge up-to-date. These three characteristics
of software development work usually refer to
the work practices within a single organizational
domain. As software and information systems
development work is increasingly outsourced
globally, how to manage the knowledge workers
to facilitate effective software development work
practice in the cross-cultural context has become
a great challenge.

Since the 1990s, software development and
IT services have become dominant in global
sourcing, which includes application packages,
contract programming, and system integration
(Lee, Huynh, Kwok, & Pi, 2002). And the global
IT outsourcing market is continuously growing
(Sahay, Nicholson, & Krishna, 2003; Trauth,
Huang, Morgan, Quesenberry, & Yeo, 2006). It
was projected that the IT outsourcing revenue
would reach $159.6 billion by 2005 (Laplante,
Costello, Singh, Bindiganaville, & Landon,
2004). The U.S. is the primary user of the global
software and systems development market, fol-
lowed by Western European countries such as the
UK and Germany (Sahay et al., 2003). Countries
such as India, Ireland, and Israel, have domi-
nated the offshore outsourcing supplier market
(Gopal, Mukhopadhyay, & Krishnan, 2002). A
news release (InformationWeek, June 3, 2004)

indicated that India’s revenues from exports of
software and back-office services is at $12.5 bil-
lion in the latest fiscal year and with growth of
30% compared with $9.6 billion in the previous
year. Another news release (Friedman, 2005)
reported that 7 out of 10 top software designers
have operations in Ireland.

When compared to the traditional character-
istics of software development work, globally
distributed software development knowledge
work has three additional characteristics. First, it
is mainly conducted through a virtual environment
that is supported to a great extent by networking
technologies. Such virtual space is global by na-
ture and transcends national and organizational
boundaries. Second, it is situated within different
complex, multi-leveled socio-cultural contexts.
Walsham (2000, 2001) argued that the distinct
cultures of different local contexts are critical
factors in mediating the globalization process
in the specific contexts. Therefore, the globally
distributed workplace has a global-local dual-
ity. Third, the work practices of global software
development are facing a variety of challenges
associated with the difficulties of temporal and
spatial distance, and cultural diversity.

global virtual team

The globally distributed virtual team is the basic
unit engaged in software development work. A
global virtual team can be defined as a collec-
tion of individuals who are organizationally and
globally dispersed, and culturally diverse, and
who communicate and coordinate work activity
asynchronously or in real time primarily through
information and communication technologies
(ICTs) (DeSanctis & Poole, 1997; Jarvenpaa &
Leidner, 1999).

A variety of strategic and catalytic factors
have contributed to the increasing trend of using
globally distributed virtual teams for software
and information systems development (Carmel,
1999; Herbsleb & Moitra, 2001). These include:

2496

Cultural Diversity Challenges

24/7 around-the-clock development activities, the
desire to reduce development costs and have ac-
cess to a global resource pool, and the proximity
to the customer. In addition, some authors have
further emphasized the contribution of diversity
of heterogeneous teams to work performance
brought about by globally dispersed team members
(Adair, 1986; Harrison, McKinnon, Wu, & Chow,
2000; Hartenian, 2000; Maugain, 2003; Trauth et
al., 2006). For example, Maugain (2003) argued
that the different thinking modes and dissimilar
problem solving methods brought in by diverse
team members in multicultural R&D (Research
& Design) teams will stimulate novel ideas and
creativity. Hartenian (2000) pointed out that
diverse groups have a tendency to make higher
quality decisions, to be more creatively motivated,
and have a higher productivity potential than less
diverse groups.

However, research also shows that the absence
of regular face-to-face interactions and the break-
down of traditional communication and coordina-
tion mechanisms are negatively associated with
the effectiveness of globally distributed software
development teams (Cameral, 1999; Herbsleb
& Mockus, 2003). Systems development tasks,
particularly front-end activities, require formal
and informal communication and coordination
(Audy, Evaristo, & Watson-Manheim, 2004)
to facilitate knowledge exchange and learning
(Curtis, Krasner, & Iscoe, 1988). According
to Herbsleb and Mockus (2003), the change of
communication patterns and the lack of effective
communication channels (formal or informal) in
globally distributed software development teams
can lead to delays in global software development
projects. The study by Cramton and Webber (2005)
shows a negative relationship between geographic
dispersion and perceived team performance with
respect to complex and interdependent tasks.

The cultural difference may further exacerbate
the communication problems (Herbsleb & Moitra,
2001). Carmel (1999) pointed out that the barri-
ers of time, space, and cultural distances may be

detrimental to building trust and achieving team
cohesiveness in global virtual teams. Nicholson
and Sahay (2004) argued that the barriers of
knowledge sharing among knowledge workers
in offshore software development are related
to the embeddedness of knowledge in the local
cultural context, and should be investigated at
the interconnected societal, organizational, and
individual levels of analysis.

While cultural factors may influence global
virtual teams engaged in a variety of activities
in general, they are particularly important to
software development work for three reasons.
First, compared to other activities such as new
product developments in manufacturing sec-
tors, the processes of software development are
more complexly interdependent and iterative,
the products of software development are less
tangible, and knowledge perspectives involved
in software development are more tacit and fast
changing in nature (Sahay et al., 2003). Second,
a number of studies have shown that culture is a
critical influential factor in global software de-
velopment work and has impacts on a variety of
issues. While some issues are general issues faced
by global virtual teams engaged in other activities
in general (e.g., managing conflicts—Damian
& Zowghi, 2003), building trust (Zolin, Hinds,
Fruchter, & Levitt, 2004), some issues are specific
to software development, such as managing IT
outsourcing relationships (Krishna, Sahay, &
Walsham, 2004; Nicholson & Sahay, 2001; Sahay
et al., 2003), preference of software development
methods (Borchers, 2003; Hanisch, Thanasankit,
& Corbitt, 2001), preference of computer sup-
ported collaborative technologies (Massey, Hung,
Montoya-Weiss, & Ramesh, 2001), knowledge
transfer and management related to software de-
velopment (Baba, Gluesing, Rantner, & Wagner,
2004; Nicholson & Sahay, 2004; Sarker, 2003),
and the process and performance of globally
distributed software development teams (Carmel,
1999; Olson & Olson, 2003). Third, as more and
more countries are now entering the IT outsourc-

 2497

Cultural Diversity Challenges

ing market, global software development work
practices are facing more cultural diversity (Sahay
et al., 2003; Trauth et al., 2006). Companies in
Japan and Korea join those of the U.S., Canada
and other western European nations in outsourcing
their software or information system development
and services activities to other countries. Besides
the current leading outsourced countries such as
India, Ireland, and Israel, Russia and China are
now establishing their capabilities as outsourcing
providers (Sahay et al., 2003).

Globally distributed software development
efforts, thus, must deal with trade-offs between
taking advantage of the global resource pool and
cultural diversity while managing the cultural and
distance barriers to effective communication and
coordination in a geographically dispersed envi-
ronment. How to make sense of cultural diversity
and its impact on managing globally distributed
knowledge workers who are engaged in global
software development work activities are becom-
ing the primary concerns of global IT personnel
management and knowledge management.

In the research framework (Figure 1), we
propose that cultural diversity is situated and
manifested in three interrelated dimensions of

global software development activities: the virtual
workplace, the workers, and the work (Trauth,
2000). These three main constructs reflect what
dimensions of global software development may
be affected by cultural diversity. And the bullets
under each main construct further indicate how
cultural diversity is manifested in each of these
dimensions. Trauth (2000) studied the information
economy development in Ireland and pointed out
that culture is one of the major influential factors.
More specifically, she addressed the cultural in-
fluences from three perspectives: multinational
workplaces, knowledge workers, and knowledge
work. These three perspectives are interrelated
and serve as our analytical lenses to study how
the cultural factors influence IT work, and in this
chapter, how cultural diversity is manifested in
and affects global software development.

The virtual workplace of global software
development is situated within a multi-leveled
socio-cultural context with the global-local duality
characteristic, which constitutes a unique work
environment. Being engaged in global software
development activities within such a work envi-
ronment, globally distributed knowledge workers
should be aware of the complexity and dynamics

Figure 1. Research framework: Situating cultural diversity in global software development

2498

Cultural Diversity Challenges

of cultural diversity, and constantly make sense of
and negotiate meanings of such diversity. Global
software development work, which includes both
divergent and convergent perspectives is affected
by the effectiveness of the sense-making pro-
cesses and the management of cultural diversity.
This framework adopts a situated approach and
emphasizes the importance of studying globally
distributed knowledge work as socially negotiated
work practices by situating it within the both the
global and local contexts (Avgerou, 2002; Trauth,
2000; Weisinger & Trauth, 2002, 2003). In the fol-
lowing sections, we discuss in detail how cultural
diversity is manifested in each dimension of the
framework, respectively.

thE worK EnvIronMEnt

globalization vs. localization

Globally distributed software development
work can be seen as a result of the globaliza-
tion process—the IT industry is becoming more
and more globally interconnected. According to
Castells (1996), the globalization process involves
the flows of capital, commodities, technology,
cultural influences, and human resources across
national boundaries, thereby creating a networked
society. One stream of sociological and cultural
research considers processes of globalization
and flows of cultural elements across frontiers
as a global “cultural homogenization” (Kellner,
2002; Schuerkens, 2003). Schuerkens (2003)
criticized such “cultural homogenization” argu-
ments of globalization by pointing out that they
usually ignore the existence and active role of
local cultural perspectives. Castells (1996) also
pointed out that the globalization process is selec-
tive and segmented with many imbalances, and
the networked society is both centralized and
decentralized, which shows heterogeneous and
global-local duality characteristics.

Sahay et al. (2003) argued against the “cultural
homogenization” assumption of globalization and
proposed that global software development work
relationships can be seen as “models of” global-
ization process and “models for” globalization
as well (p. 27). They emphasized the dynamic
reciprocal relationships between the local cultural
contexts and the globalization processes. Simi-
larly, Walsham (2001) used Giddens’ structura-
tion theory (1990) and Castells’ network society
theory (1996) to study global IT development and
stressed that the existing socio-cultural context
of a country is a critical factor in mediating the
globalization process in the specific context and,
in turn, will have an impact on the complexity of
globalization. They both acknowledge the unique-
ness and importance of local contexts to globally
distributed software development.

To illustrate the continuous interactions of local
cultural elements and global cultural influences,
Schuerkens (2003) cited Long’s (1996) discussion:
“Local situations are transformed by becoming
part of wider global arenas and processes, while
global dimensions are made meaningful in rela-
tion to specific local conditions and through the
understandings and strategies of local actors”
(p. 217).

Therefore, the local cultural context is neither
a passive recipient of globalization and external
cultural influences as indicated by the “global
homogenization” argument, nor is it a static and
deterministic factor that remains unchanged dur-
ing the globalization process. The local cultural
forms and meanings are constantly reconstructed
(Schuerkens, 2003; Walsham, 2001).

We believe that such continuous interactions
of globalization and localization processes have
three implications for conceptualizing the cultural
diversity of global software development work
environments. First, global software development
work is situated within a complex and dynamic
global-local societal context. Second, cultural
diversity is inherent in global software develop-

 2499

Cultural Diversity Challenges

ment and is a critical influential factor affecting
global software development work practices.
Third, the emergent nature of both the local
cultural context and the globalization process
indicates that we should focus on the appropria-
tion and transformation of local cultural elements
to address the dynamic perspectives of cultural
diversity of the global software development work
environment.

different levels of the socio-cultural
context

Another important feature of the cultural diversity
of the virtual workplace of global software devel-
opment is the multi-levels of analysis ranging from
societal (national) to regional, organizational,
professional, and team. Different cultural factors
at different levels coexist, interact with each other,
and together produce different work environments
of globally distributed software development work
practices. However, the influence of different
cultural factors at different levels is not equal and
varies across work environments. Some cultural
factors may be more visible than others and some
may seem trivial compared to the predominant
factors depending on different cases.

For example, Robey, Gupta, and Rodriguez-
Diaz (1988) studied one multinational company’s
efforts to implement an account system in its
subsidiaries in two Latin American countries:
Chile and Panama. Their findings showed that
cultural and political differences between Chile
and Panama could not explain the significant
differences in the implementation outcomes.
They believed that those differences were due
to the organizational cultural differences of the
two subsidiaries. This case is an example of the
dominance of organizational cultural influences
while national and organizational cultural differ-
ences coexist. Barrett and Walsham (1995) studied
the global software development relationships
between a Jamaican insurance company and an

Indian software company. They pointed out that
although the Indian and Jamaican team members
of this joint venture development shared a similar
professional culture, there were major differences
between the local work culture at the Indian
software company and the Jamaican insurance
company. This case demonstrates the dominance
of national and organizational cultural influences.
The case study by Kaiser and Hawk (2004) on
a long-term alliance outsourcing relationship
between a U.S. company and an Indian company
showed that the mutual understanding of ethnic
and corporate cultures was an important factor
to build stable and trust relationships.

In global IT outsourcing research, the focus
tends to be on the national level of analysis. There-
fore in most cultural studies of global software
development, the national culture is predominant
while other factors such as regional, organiza-
tional, and team cultures are in the background.
This is probably due to the high visibility of cross-
national cultural differences. Another reason may
be that the cultural elements at different levels
interact with each other and somehow diffuse
into some inseparable influential factors.

Some studies (Cougar, Adelsberger, Borovits,
Zviran, & Motiwalla, 1990; Constantine, 1995)
pointed out that while the national culture may
show divergent characteristics across national
boundaries, the professionalism of the knowledge
workers will share certain common cultural ele-
ments that constitute the professional culture.
As a result, the team culture of the global virtual
team may show a different pattern from either
the national culture or the organizational or the
professional culture. Earley and Gibson (2002)
pointed out that through communications and
interactions, the highly heterogeneous global
team may appear to develop a common identity
over the course of a long-term project, which they
referred to as the team culture.

The contemporary work environment of
global software development is situated within

2500

Cultural Diversity Challenges

a complex multi-leveled socio-cultural context
in which culture and its influences are emergent
as the work practices evolve. The emergent
perspective of cultural diversity indicates that
it cannot be reduced to a set of variables and
treated as unchanging inherited properties. In a
sense, globally distributed knowledge workers
are not passively embedded in their local context.
Instead, they continuously and actively engage
and negotiate with their work environment in
everyday work practices.

the globally distributed Knowledge
workers

Brannen, Gómez, Peterson, Romani, Sagiv, and
Wu (2004) pointed out that the concept of culture
is by no means free of controversy. According to
Worsley (1984), there are four ways of conceptu-
alizing culture: the elitist view – culture implies
superior power; the holistic view–culture implies
the whole way of life; the hegemonic view – cul-
ture is a set of behaviors imposed by the majority;
the relativist view – culture is localized and may
bear different behaviors in different regions or
communities from the same society.

There are two general doctrines of concep-
tualizing culture—the functionalist view and
the interpretivist view (Schultz & Hatch, 1996).
The functionalist view assumes that culture can
be studied from several generalized dimensions
and those dimensions are universal. As a result,
the functionalist studies focus on categorizing
cultural dimensions and predicting their influ-
ences. Hofstede’s (1984) framework of five major
national cultural dimensions is one example of
the functionalist doctrine. The interpretivist
doctrine, on the other hand, argues that culture
may be ambiguous and unstable and should be
studied within a specific local context instead of
using general frames.

Schultz and Hatch (1996) studied the differ-
ence between the functionalist and interpretivist

paradigms of cultural research. They proposed
that these two paradigms can somehow interact
to address the different perspectives of culture.
To some extent, the mainstream of each of these
doctrines can be integrated to a “multiparadigm”
approach. They suggested that for example, to
study national cultural patterns, the functional-
ist view uses predefined categories to provide
a clear, generalizable and stable pattern, while
the interpretivist view uses interpretation and
symbolic representation to describe the ambigu-
ous, situated and instable perspectives of culture.
However, this approach may still be problematic
since it assumes that there is a line between the
stable and unstable elements of culture. In reality,
the line itself may be ambiguous and dynamically
changing.

The anthropological view of culture is a con-
structivist view which rejects the idea of culture
as having hard and fast boundaries (Avison &
Myers, 1995). On the contrary, culture is seen
as contestable, temporal, and emergent, and is
constantly interpreted and re-interpreted in so-
cial relations (Carrithers, 1992). Therefore, the
anthropological cultural view rejects the notion
of culture as a set of predefined variables peculiar
to a certain society. In the information systems
discipline, Walsham’s notion of culture mediat-
ing the global process in specific local contexts
(Walsham, 1993, 2000, 2001), Avegerou’s proposal
on relativism (2002), and the situated culture
perspective suggested by Weisinger and Trauth
(2002, 2003) are three approaches to studying
culture through exploration, interpretation, and
sense making, which reflect the anthropological
perspective of conceptualizing culture.

We argue that when managing global software
development practice, the functionalist approach
may provide general guidance if cautiously ad-
opted. However, it is lacking the capability to
provide an in-depth understanding of cultural
dynamics. Therefore, we take the following state-
ment as a working definition of culture:

 2501

Cultural Diversity Challenges

Culture is the sense making of different social
structures and relations such as beliefs, values,
and norms, attitudes, hierarchies by a group of
people within a particular social context.

In this definition, we view culture as the “sense
making” which actively strives for interpretation
and re-interpretation of the relationships between
the self-identity and the surrounding contexts.
We believe that viewing culture as dynamic
and emergent instead of static and predefined
will provide the corresponding cross-cultural
management the capability of accounting for the
evolving and diversified nature of global software
development phenomena.

Child (2002a, b) pointed out that the globaliza-
tion trend and subsequent interconnectivity of net-
working technologies have pushed the traditional
boundaries between nations and organizations to
become somehow “borderless.” At the same time,
they enhance the people’s awareness of their own
identity and cultural distinctiveness as they have
more and more opportunities to interact with a
variety of cultural groups during the processes. In
a sense, they interpret and reinterpret self-identity
and the relationships between the self-identity and
the surrounding contexts.

We argue that cultural awareness of globally
distributed knowledge workers should have two
levels—the self-awareness of their own identity
and the mutual awareness of the existence of the
cultural diversity and differences in others. Baba
et al. (2004) pointed out that in order for team
members of a globally distributed team to bring
together and integrate the divergent knowledge,
they should first develop the mutual awareness
and shared cognition of the divergences. They
further stressed (Baba et al., 2004) that the mutual
awareness is not simply exchanging declarative or
procedural knowledge—it requires: “…suspend-
ing our own judgment as we learn the cultural
logic and rationality of others’ divergent beliefs
and values, while also allowing those others to

call our own beliefs and values into question as
they learn about us…” (p. 583).

the global software development
work

Studies have shown that while cultural diver-
sity may lead to advantages with respect to the
divergent processes of knowledge work, it may
also cause problems for the convergent pro-
cesses (Miroshnik, 2002). Divergent knowledge
work processes in software development refer
to processes of generating and articulating dif-
ferent viewpoints by different team members,
as well as challenging the existing assumptions
in requirement analyses and systems designs,
which are important for surfacing and exploring
alternatives, thus promoting creativity and in-
novation in software development (Kryssanov,
Tamaki, & Kitamura, 2001; Nickerson, 1999).
Convergent knowledge work processes refer to
processes of developing shared understanding and
building common ground among team members
with respect to different perspectives of software
development, which are important to decision-
making and effectiveness of teamwork (Potts &
Catledge, 1996).

Knowledge intensive work, such as design
and development of new software and informa-
tion systems is usually characterized as highly
ambiguous, uncertain, equivocal, and interde-
pendent (Curtis et al., 1988; Herbsleb & Grinter,
1999; Hoegl & Proserpio, 2004). The analysis of
systems requirements, which is a critical task at
the front-end of software and information sys-
tems development, is highly dynamic, complex,
fluctuating, and evolutionary in nature (Audy et
al., 2004; Curtis et al., 1988; Mathiassen & Stage,
1990). Cultural diversity may provide benefit to
the front-end of software development work by
providing different perspectives, ideas, and ap-
proaches. Dafoulas and Macaulay (2001) pointed
out that cultural diversity may be beneficial to

2502

Cultural Diversity Challenges

team performance, especially on tasks for which
differing perspectives might increase team per-
formance (Trauth et al., 2006). Miroshnik (2002)
also argued that cultural diversity can be used as
a resource to enhance creativity, flexibility and
problem solving skills, all of which are important
for knowledge-intensive work.

On the other hand, to bring the divergent per-
spectives into a convergent development practice,
cultural diversity may become a barrier to knowl-
edge sharing and transference since knowledge is
contextually dependent and culturally contingent
(Nicholson & Sahay, 2004). To a great extent, the
convergent processes require both formal and
informal communication and coordination mecha-
nisms to exchange diverse knowledge perspectives
and facilitate learning (Curtis et al., 1988), to
surface conflicts and negotiate differences (Audy
et al., 2004; Briggs & Gruenbacher, 2002; Curtis
et al., 1988), and to build shared understandings
and common ground regarding various issues
such as how to represent the system requirements
and which system development methodologies are
more appropriate (Cramton & Webber, 2005; Da-
mian & Zowghi, 2003). During these convergent
processes, cultural diversity may create cultural
distance and barriers to knowledge sharing and
transference. Herbsleb and Moitra (2001) pointed
out that while cultural diversity can be seen as an
enriching factor by bringing together divergent
bodies of knowledge, it can also lead to serious
and chronic misunderstandings.

For example, in the case study of distributed
software development between England and
India, Nicholson and Sahay (2004) identified
cultural difference in perceptions of time between
India and England. In England, a 9 AM to 5 PM
working routine and the separation of working
life from personal life are encouraged. In India,
the boundaries between working life and home
life are less defined (Nicholson & Sahay, 2004).
Thus, Indian employees may respond to personal
or home needs during regular working hours and
may spend extra time working later hours or on

weekends (Nicholson & Sahay, 2004). Such cul-
tural differences are implicitly embedded in each
local cultural context. Without building corre-
sponding mutual knowledge and awareness about
these differences, team members from one site
may have misconceptions about the availability
of team members from the other site. Saunders,
van Slyke, and Vogel (2004) argued that different
global virtual team members may have different
time visions, which may influence the manage-
ment and performances of global virtual teams.

The interchange of benefits of cultural diversity
and hindrance of cultural distance put forward
special challenges of teaching cultural diversity
to future IS/IT workforce and managing globally
distributed knowledge workers. On one hand, we
need to address issues related to bridging cultural
distance to encourage knowledge sharing and
transference across different cultures. On the
other hand, we need to study how to cultivate and
integrate cultural diversity in order to develop new
organizational capabilities (Baba et al., 2004).

rEcoMMEndAtIons for
prActIcE

As suggested by our research framework, it is very
challenging to manage such a diverse workforce
for global software development for three reasons.
First, the culture of the virtual work environment
is complex and dynamic. Second, the cultural di-
versity of globally distributed knowledge workers
has the potential for both great accomplishments
and great conflicts. Third, the cultural diversity of
such a global workforce needs to be proactively
managed, and cultivated in order to facilitate
both the divergent and convergent perspectives
of software development work activities.

To address these challenges, we recommend
the following. First, treat cultural awareness and
cultural diversity understanding as important and
necessary skills for the future IS/IT workforce,
provide IS/IT students opportunities to experi-

 2503

Cultural Diversity Challenges

ence cultural diversity, and help them explore
and develop a proper mind-set towards diversity.
Second, adopt the sense-making approach in hu-
man resource practices to motivate and facilitate
globally distributed knowledge workers’ articu-
lation of their self-identities and the identities of
others during the social interactions of teamwork
processes. Third, balance the tensions between
the values and the conflicts of cultural diversity
by encouraging contested, diverse thinking while
building the trust and shared understanding
among globally distributed team members. Fi-
nally, value cultural diversity knowledge as an
important part of the organization’s intellectual
capital and strategic resources for competing in
the global market.

Is/It Education

The gap of critical skills and knowledge required
for information technology professionals between
academe and industry has been a major concern
for IS/IT education (Lee, Trauth, & Farwell, 1995;
Miller & Donna, 2002; Swanson, Phillips, & Head,
2003; Trauth, Farwell, & Lee, 1993). Academics
and practitioners have called for assessing and
expanding IT, IS, and MIS curricula to adapt
to the needs of future global IS/IT workforces
(Miller & Donna, 2002; Swanson et al., 2003).
For example, Swanson, et al. (2003), and Noll
and Wilkins (2004) discussed the growing needs
for soft skills such as communication skills and
teamwork skills in information technology profes-
sionals. Larsen and McInerney (2002) simulated
the inter-organization virtual teamwork environ-
ment in course design to teach students certain
skill sets needed in virtual work.

However, only a few of these programs spe-
cifically target the global IT environment and
conceptualize diversity as one of the core elements
in the global IT environment. One of those few
examples is the online “IT Landscape in Nations”
repository initiated by Carmel and Mann (2003)
to facilitate students conducting comparative

analyses of different nations and developing
greater awareness of the global IT environment.
Therefore, there is a great gap between current
IS/IT education and the increasing demands of the
global IS/IT workforce. Educators should focus
on designing and implementing corresponding
curricula, renovating and expanding current
pedagogical approaches to bridge such a gap.

Is/It human resource Management

Along with the focus shifting from capital re-
sources to knowledge resources in modern eco-
nomic development, the role of knowledge has
been fundamentally changed (Drucker, 1994).
As a result, the role of human resource man-
agement has become more and more important
because “people are the only sustainable asset
in modern business” (Schwarzkopf, Saunders,
Jasperson, & Croes, 2004, p. 28). The strategies
and implementations of human resource practices
directly affect how knowledge workers will be
continuously motivated and trained to perform
their value creation tasks (Hill & Jones, 1998;
Pfeffer, 1994). Trauth et al. (2006) pointed out
that it is critical that researchers and practitioners
take an active role in creating HR solutions and
it is important to understand diversity issues in
the global IT environment.

Kakabadse and Kakabadse (2000) pointed
out that organizational outsourcing initiatives
have both negative and positive effects on their
employees. As more and more IT jobs shift off-
shore, it may hamper the employment relationship
of belonging and dedication when employees feel
unsafe with respect to job security (Kakabadse &
Kakabadse, 2000). The cultural diversity and the
lack of trust and cohesiveness of global virtual
teams may influence team members’ working
experiences (Carmel, 1999). It is also argued that
outsourcing and global software development
arrangements may provide career enhancement
and learning opportunities for employees and
organizations provided that special expertise

2504

Cultural Diversity Challenges

and skills can be acquired and knowledge can be
mutually shared and transferred across borders
(Baba et al., 2004; Carmel, 1999; Kakabadse &
Kakabadse, 2000). Therefore, one of the primary
concerns of human resource management in
global software development practices is how to
mitigate the negative impacts and enhance the
positive effects.

Given the complexity and dynamics of cultural
diversity and its criticality in global software
development work practices, it is important to
emphasize the sense-making perspective in cul-
tural training and provide employees proper and
continuous cross-cultural training. When knowl-
edge workers are involved in different virtual work
environments, the stereotypically and culturally
specific approach may fail to help them make
sense of different cultural nuances from different
cultural contexts (Goodall, 2002; Osland & Bird,
2004). Therefore, cross-cultural training should
focus on how to develop and improve the cultural
sense-making skills of employees.

Foster (2000) studied the cultural training
for expatriates of multi-national companies and
pointed out that most of those training programs
focus on pre-departure training and fail to provide
continuous training during the work processes.
Krishna et al. (2004) pointed out that systematic
cross-cultural training is less common than in-
formal experience sharing in their case studies
of global software development activities. And if
in place, that cultural training is usually in one
direction: for the outsourced companies to learn
the culture of the outsourcing companies (Krishna
et al., 2004). Osland and Bird (2004) advocated
the sense-making approach for cultural training
and stressed that there should be both formal
and informal mechanisms for sharing cultural
knowledge.

We believe that organizational human resource
management together with knowledge manage-
ment practices should value cultural diversity
knowledge as an important part of the organiza-

tional intellectual capital and strategic resources
for competing in the global IT market in the future.
Cross-cultural sense making, understanding, and
knowledge sharing are critical to develop flexible,
competitive, and yet sustainable learning organi-
zations (Garvin, 1998). In cross-cultural training
and learning practices, we should allow distrib-
uted knowledge workers to have opportunities to
continuously reflect on their cultural experiences
in the course of accomplishing working processes
and encourage them to take such reflections as
learning opportunities.

conclusIon

To address the cultural diversity challenges of
managing globally distributed knowledge work-
ers in global software development, we proposed
a research framework to articulate how cultural
diversity is manifested in global virtual work
environments and how the cultural diversity of
distributed knowledge workers may influence
global software development work practices.
The main objective of the chapter is to promote
the awareness of cultural diversity challenges to
managing information technology professionals in
the increasingly globalized IT environment. Our
analyses show that we should critically examine
the global-local context of the cross-cultural issues
to overcome the obstacles of cultural diversity in
convergent tasks of software development work
and maximize its values in divergent tasks of the
work activities.

As researchers and educators in academic
settings, we believe that cultural awareness
and cultural diversity understanding should be
viewed as important skills for the future IS/IT
workforce. We also believe that organizational
human resource practices should adopt the sense-
making approach for cross-cultural training and
knowledge sharing. In order for organizations
to compete in the global market in the future,

 2505

Cultural Diversity Challenges

cultural diversity knowledge should become an
important part of the organization’s intellectual
capital and strategic resources.

rEfErEncEs

Adair, J. (1986). Effective teambuilding: How to
make a winning team. London: Pan.

Avgerou, C. (2002). Information systems and
global diversity. Oxford; New York: Oxford
University Press.

Avison, D. E., & Myers, M. D. (1995). Information
systems and anthropology: An anthropological
perspective on IT and organizational culture.
Information Technology & People, 8(3), 43-56.

Audy, J., Evaristo, R., & Watson-Manheim, M.
B. (2004). Distributed analysis: The last frontier?
Proceedings of the 37th Hawaii International
Conference on System Sciences. IEEE.

Baba, M. L., Gluesing, J., Rantner, H., & Wagner,
K. H. (2004). The contexts of knowing: Nature
history of a globally distributed team. Journal of
Organizational Behavior, 25(5), 547-587.

Barrett, M., & Walsham, G. (1995). Managing
IT for business innovation: Issues of culture,
learning, and leadership in a Jamaican insurance
company. Journal of Global Information Manage-
ment, 3(3), 25-33.

Borchers, G. (2003). The software engineering
impacts of cultural factors on multi-cultural
software development teams. Proceedings of 25th
International Conference on Software Engineer-
ing (pp. 540-545).

Brannen, M. Y., Gómez, G., Peterson, M. F., Ro-
mani, L., Sagiv, L., & Wu, P. C. (2004). People
in global organizations: Culture, personality, and
social dynamics. In H. W. Lane, M. L., Maznevski,
M. E., Mendenhall, & J. McNett (Eds.), The Black-
well handbook of global management: A guide to

managing complexity (pp. 26-54). Malden, MA:
Blackwell Publishing.

Briggs, R. O., & Gruenbacher, P. (2002). Easy
winwin: Managing complexity in requirements
negotiation with GSS. Proceedings of 35th Annual
Hawaii International Conference on Systems
Science. IEEE.

Carmel, E. (1999). Global software teams: Col-
laborating across borders and time zones. Upper
Saddle River, NJ: Prentice Hall PTR.

Carmel, E., & Agarwal, R. (2002). The maturation
of offshore sourcing of information technology
work. MIS Quarterly Executives, 1(2), 65-77.

Carmel, E., & Mann, J. (2003). Teaching about
information technology in nations: Building and
using the “landscape of it” repository. Journal of
Information Technology Education, 2, 91-105.

Carrithers, M. (1992). Why human have cultures.
Oxford: Oxford University Press.

Castells, M. (1996). The rise of the network society.
Oxford: Blackwell.

Child, J. (2002a). Theorizing about organization
cross-nationally: Part 1 – An introduction. In
M. Warner & P. Joynt (Eds.), Managing across
cultures: Issues and perspectives (2nd ed., pp.
26-39). London: Thomson Learning.

Child, J. (2002b). Theorizing about organization
cross-nationally: Part 2 – Towards a synthesis. In
M., Warner & P. Joynt (Eds.), Managing across
cultures: Issues and perspectives (2nd ed., pp.
40-56). London: Thomson Learning.

Constantine, L. (1995). Constantine on People-
ware. Englewood Cliffs, NJ: Yourdon Press.

Cougar, J. D., Adelsberger, H., Borovits, I., Zviran,
M., & Motiwalla, J. (1990). Commonalities in
motivating environments for programmer/ana-
lysts in Austria, Israel, Singapore, and the USA.
Information and Management, 18(1), 41-46.

2506

Cultural Diversity Challenges

Cramton, C. D., & Webber, S. S. (2005). Rela-
tionships among geographic dispersion, team
processes, and effectiveness in software develop-
ment work teams. Journal of Business Research,
58(6), 758-765.

Curtis, B., Krasner, H., & Iscoe, N. (1988). A
field study of the software design process for large
systems. Communications of the ACM, 31(11),
1268-1287.

Dafoulas, G., & Macaulay, L. (2001). Investigat-
ing cultural differences in virtual software teams.
The Electronic Journal on Information Systems
in Developing Countries, 7(4), 1-14.

Damian, D. E., & Zowghi, D. (2003). An insight
into the interplay between culture, conflict, and
distance in globally distributed requirements
negotiations. Proceedings of the 36th Hawaii
International Conference on System Sciences.
IEEE.

DeSanctis, G., & Poole, M. S. (1997). Transitions in
teamwork in new organizational forms. In B. Mar-
kovsky (Ed.), Advances in group processes (Vol.
14, pp. 157-176). Greenwich, CT: JAI Press.

Drucker, P. F. (1994). The age of social transforma-
tion. The Atlantic Monthly, 274(5), 53-80.

Drucker, P. (2004). The next workforce. Retrieved
on February 17, 2005, from http://207.36.242.12/
data/html/pop/article3print.htm

Earley, P. C., & Gibson, C. B. (2002). Multinational
work teams: A new perspective. Mahwah, NJ:
Lawrence Erlbaum Associates Publishers.

Foster, N. (2000). Expatriates and the impact of
cross-cultural training. Human Resource Man-
agement Journal, 10(3), 63-78.

Friedman, T. L. (2005, June 29). The end of the
rainbow. New York Times. Retrieved January 26,
2006, from http://www.nytimes.com/2005/06/
29friedman.html ?ex=127769700&en=a3f1a208
e2617871&ei=5088&partner=rssnyt&emc=rrs

Garvin, D. A. (1998). Building a learning organiza-
tion. In Harvard Business Review on Knowledge
Management (pp. 47-80). Boston: Harvard Busi-
ness School Publishing.

Giddens, A. (1990). The consequences of moder-
nity. Cambridge: Polity Press.

Goodall, K. (2002). Managing to learn: From
cross-cultural theory to management education
practice. In M. Warner & P. Joynt (Eds.), Managing
across cultures: Issues and perspectives (2nd ed.,
pp. 256-268). London: Thomson Learning.

Gopal, A., Mukhopadhyay, T., & Krishnan, M.
S. (2002). The role of software process and com-
munication in offshore software development.
Communications of the ACM, 45(4), 193-200.

Hanisch, J., Thanasankit, T., & Corbitt, B.
(2001, June 27-29). Understanding the cultural
and social impacts on requirements engineering
processes–Identifying some problems challenging
virtual team integration with clients. Proceedings
of the 9th European Conference on Information
Systems (pp. 11-22). Bled, Slovenia.

Harrison, G., McKinnon, J., Wu, A., & Chow, C.
(2000). Cultural influences on adaptation to fluid
workgroups and teams. Journal of International
Business Studies, 31(3), 489-505.

Hartenian, L. (2000, December). Cultural diversity
in small business: Implications for firm performance.
Journal of Developmental Entrepreneurship,
209-219.

Henninger, S. (1997). Case-based knowledge
management tools for software development. Au-
tomated Software Engineering, 4(3), 319-340.

Herbsleb, J. D., & Grinter, R. E. (1999). Split-
ting the organization and integrating the code:
Conway’s law revisited. Proceedings of the 21st
International Conference on Software Engineer-
ing (pp. 85-95). Los Alamitos, CA.

 2507

Cultural Diversity Challenges

Herbsleb, J., & Mockus, A. (2003). An empirical
study of speed and communication in globally
distributed software development. IEEE Transac-
tions on Software Engineering, 29(6), 481-494.

Herbsleb, J. D., & Moitra, D. (2001). Global
software development. IEEE Software, 18(2),
16-20.

Hill, C. W. L., & Jones, G. R. (1998). Strategic
management: An integrated approach (4th ed.).
New York: Houghton Mifflin.

Hoegl, M., & Proserpio, L. (2004). Team member
proximity and teamwork in innovative projects.
Research Policy, 33(8), 1153-1165.

Hofstede, G. (1984). Culture’s consequences:
International differences in work-related values.
Beverly Hills, CA: Sage.

InformationWeek (2004, June 3). India’s software
exports reach $12.5 billion. Retrieved on December
10, 2005, from http://www.informationweek.com/
story/showArticle.jhtml?articleID=21401198.

Jarvenpaa, S., & Leidner, D. (1999). Communica-
tion and trust in global virtual teams. Organization
Science, 10(6), 791-815.

Kaiser, K. M., & Hawk, J. (2004). Evolution of
offshore software development: From outsourc-
ing to cosourcing. MIS Quarterly Executive,
3(2), 69-81.

Kakabadse, N., & Kakabadse, A. (2000). Critical
review – Outsourcing: A paradigm shift. Journal
of Management Development, 19(8), 670-728.

Kellner, D. (2002). Theorizing globalization. So-
ciological Theory, 20(3), 285-305.

Krishna, S., Sahay, S., & Walsham, G. (2004).
Managing cross-cultural issues in global software
development. Communications of the ACM, 47(4),
62-66.

Kryssanov, V. V., Tamaki, H., & Kitamura, S.
(2001). Understanding design fundamentals: how

synthesis and analysis drive creativity, resulting
in emergence. Artificial Intelligence in Engineer-
ing, 15(4), 329-342.

Lacity, M., & Willcocks, L. (2001). Global in-
formation technology outsourcing: Search for
business advantage. Chichester, UK: John Wiley
& Sons.

Laplante, P. A., Costello, T., Singh, P., Bindi-
ganaville, S., & Landon, M. (2004). The who,
what, why, where, and when of IT outsourcing.
IT Professional, 6(1), 19-23.

Larsen, K. R., & McInerney, C. R. (2002). Prepar-
ing to work in the virtual organization. Informa-
tion & Management, 29, 445-456.

Lee, D. M., Trauth, E. M., & Farwell, D. (1995).
Critical skills and knowledge requirements of IS
professionals: A joint academic/industry investi-
gation. MIS Quarterly, 19(3), 313-340.

Lee, J., Huynh, M., Kwok, R., & Pi, S. (2002).
Current and future directions of IS outsourcing. In
R. Hirschheim, A., Heinzl, & J. Dibbern (Eds.), In-
formation systems outsourcing: enduring themes,
emergent patterns, and future directions (pp.
195-220). Berlin, Germany: Springer-Verlag.

Massey, A. P., Hung, Y. T. C., Montoya-Weiss,
M., & Ramesh, V. (2001). Cultural perceptions
of task-technology fit. Communications of the
ACM, 44(12), 83-84.

Mathiassen, L., & Stage, J. (1990). Complexity
and uncertainty in software design. Proceedings
of the 1990 IEEE Conference on Computer Sys-
tems and Software Engineering (pp. 482-489).
Los Alamitos, CA: IEEE.

Maugain, O. (2003). Managing multicultural R&D
teams: An in-depth case study of a research project
at CERN. PhD thesis. Retrieved on January 26,
2006, from http://www.unisg.ch/www/edis.nsf/
wwwDisplayIdentifier/2820/$FILE/dis2820.pdf

2508

Cultural Diversity Challenges

Miller, R. A., & Donna, D. W. (2002). Advancing
the IS curricula: The identification of important
communication skills needed by is staff during
systems development. Journal of Information
Technology Education, 1(3), 143-156.

Miroshnik, V. (2002). Culture and international,
management: A review. Journal of Management
Development, 21(7/8), 521-544.

Nicholson, B., & Sahay, S. (2004). Embedded
knowledge and offshore software development.
Information and Organization, 14(4), 329-365.

Nickerson, R. S. (1999). Enhancing creativity.
In R. E. Sternberg (Ed.), Handbook of creativity
(pp. 392-430). Cambridge: Cambridge University
Press.

Noll, C. L., & Wilkins, M. (2004). Critical skills
of IS professionals: A model for curriculum de-
velopment. Journal of Information Technology
Education, 3, 117-131.

Olson, J. S., & Olson, G. M. (2003). Culture
surprises in remote software development teams.
QUEUE, 1(9), 52-59.

Osland, J. S., & Bird, A. (2004). Beyond so-
phisticated stereotyping: Cultural sensemaking
in contex. In S. M. Puffer (Ed.), International
management: Insights from friction and practice
(pp. 56-66). Armonk, NY: M.E. Sharpe.

Pfeffer, J. (1994). Competitive advantage through
people: Unleashing the power of the work force.
Boston: Harvard Business School Press.

Potts, C., & Catledge, L. (1996). Collaborative
conceptual design: A large software project case
study. Computer Supported Cooperative Work,
5(4), 415-445.

Robey, D., Gupta, S. K., & Rodriguez-Diaz, A.
(1988). Implementing information systems in
developing countries: organizational and cul-
tural considerations. In S. C. Bhatnagar & N.

BjØrn-Andersen (Eds.), Information technology
in developing countries (pp. 41-50). New York:
Elsevier Science Publishers.

Sahay, S., Nicholson, B., & Krishna, S. (2003).
Global IT outsourcing: Software development
across borders. Cambridge, UK: Cambridge
University Press.

Sarker, S. (2003). Knowledge transfer in virtual
information systems development teams: An em-
pirical examination of key enables. Proceedings of
the 36th Annual Hawaii International Conference
on System Sciences (pp. 119-128).

Saunders, C., van Slyke, C., & Vogel, D. R. (2004).
My time or yours? Managing time visions in
global virtual teams. Academy of Management
Executive, 18(1), 19-31.

Schuerkens, U. (2003). The sociological and an-
thropological study of globalization and localiza-
tion. Current Sociology, 51(3/4), 209-222.

Schultz, M., & Hatch, M. J. (1996). Living with
multiple paradigms: The case of paradigm inter-
play in organizational culture studies. The Acad-
emy of Management Review, 21(2), 529-557.

Schwarzkopf, A. B., Saunders, C., Jasperson,
J., & Croes, H. (2004). Strategies for managing
IS personnel: IT skills staffing. In M. Igbaria &
C. Shayo (Eds.), Strategies for managing IS/IT
personnel (pp. 37-63). Hershey, PA: Idea Group
Publishing.

Shukla, M., & Sethi, V. (2004). An approach of
studying knowledge worker’s competencies in
software development team. Journal of Advanc-
ing Information and Management Studies, 1(1),
49-62.

Swanson, D. A., Phillips, J., & Head, N. W.
(2003, June 8-12). Developing growing need for
soft-skills in IT professionals. Proceedings of the
2003 ASCUE Conference (pp. 263-269). Myrtle
Beach, SC.

 2509

Cultural Diversity Challenges

Swart, J., & Kinnie, N. (2003). Sharing knowledge
in knowledge-intensive firms. Human Resource
Management Journal, 13(2), 60-75.

Trauth, E. M. (2000). The culture of an information
economy: Influences and impacts in the Republic
of Ireland. Dordrecht, The Netherlands: Kluwer
Academic Publishers.

Trauth, E. M., Farwell, D., & Lee, D. (1993). The
IS expectation gap: Industry expectations versus
academic preparation. MIS Quarterly, 17(3),
293-307.

Trauth, E. M., Huang, H., Morgan, A., Quesen-
berry, J., & Yeo, B. J. K. (2006). Investigating
diversity in the global IT workforce: An analytical
framework. In F. Niederman & T. Ferratt (Eds.),
Human resource management of IT professionals.
Hershey, PA: Idea Group Publishing.

van Solingena, R., Berghoutb, E., Kustersc, R.,
& Trienekensc, J. (2000). From process improve-
ment to people improvement: Enabling learning in
software development. Information and Software
Technology, 42(14), 965-971.

Walsham, G. (1993). Interpreting information
systems in organizations. New York: John Wiley
& Sons.

Walsham, G. (2000). IT, globalization and cultural
diversity. In C. Avgerous & G. Walshem (Eds.),

Information technology in context: Studies from
perspective of developing countries (pp. 291-303).
Aldershot, UK: Shgate Publishing.

Walsham, G. (2001). Making a world of differ-
ence: IT in a global context. Chichester, UK:
John Wiley & Son.

Waterson, P. E., Clegg, C. W., & Axtell, A. M.
(1997). The dynamics of work organization,
knowledge, and technology during software
development. International Journal of Human-
Computer Studies, 46(1), 79-101.

Weisinger, J. Y., & Trauth, E. M. (2002). Situating
culture in the global information sector. Informa-
tion Technology and People, 15(4), 306-320.

Weisinger, J. Y., & Trauth, E. M. (2003). The im-
portance of situating culture in cross-cultural IT
management. IEEE Transactions on Engineering
Management, 50(1), 26-30.

Worsley, P. (1984). The three worlds. Chicago:
The University of Chicago Press.

Zolin, R., Hinds, P. J., Fruchter, R., & Levitt, R.
E. (2004). Interpersonal trust in cross-functional,
geographically distributed work: a longitudinal
study. Information and Organization, 14(1), 1-
26.

This work was previously published in Managing IT Professionals in the Internet Age, edited by P. Yoong, pp. 254-276, copyright
2007 by IGI Publishing (an imprint of IGI Global).

2510

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6.11
Business Modeling in

Process-Oriented Organizations
for RUP-Based Software

Development
Francisco J. Duarte

Blaupunkt Auto-Rádio Portugal, & Universidade do Minho, Portugal

João M. Fernandes
Universidade do Minho, Portugal

Ricardo J. Machado
Universidade do Minho, Portugal

AbstrAct

Several organizations nowadays are not particu-
larly comfortable with their internal structuring
based on a hierarchical arrangement (sub-divided
in departments), where collaborators with a lim-
ited view of the overall organization perform their
activities. Those organizations recognize the need
to move to a model where multi-skilled teams
run horizontal business processes that cross the
organization and impact suppliers and clients. To
develop software systems for any organization, the
development process must always be appropriate
and controlled. Additionally, for organizations that

want to migrate to a horizontal business processes
view, it is required to model the organizational
platform where the organizational processes will
run. This necessity is also true when the organiza-
tion under consideration is a software house. In
this chapter, a proposal of a generic framework
for process-oriented software houses is presented.
The way of managing the process model and the
instantiation of their processes with the rational
unified process (RUP) disciplines, whenever they
are available or with other kind of processes, is
recommended as a way to control and define the
software development process. To illustrate the
usefulness of the proposal, the chapter presents

 2511

Business Modeling in Process-Oriented Organizations for RUP-Based Software Development

how the generic reference framework was ex-
ecuted in a real project called “Premium Wage”
and shows, in some detail, the created artifacts
(which include several UML models) during
the development phases following the RUP
disciplines, especially the artifacts produced for
business modeling.

IntroductIon

A generic reference framework for process-ori-
ented organizations is presented in Fernandes
and Duarte (2004). Here, that framework is
specialized to the specific case of organizations
that develop software (software houses) and we
describe its main characteristics. From now on,
the term “target organization” is used to refer to
those organizations where the software is deployed
and installed. The term “software house” is used
to refer to the organization that develops software
to run in the target organizations.

The main objective of this chapter is to pres-
ent a reference framework based on processes
and RUP disciplines for software houses and to
show its usage in a real software development
project, as a demonstration case to illustrate the
applicability of the proposed model.

With the proposed framework, a holistic
view of any software house is straightforward
to obtain, allowing a more accurate definition of
those processes directly related with the software
development, without disregarding the manage-
ment and support processes.

process-oriented organizations

The concept of a process-oriented organization is
a way of focusing the activities of an organization
toward the clients needs (Hammer, 1996). These
activities are oriented toward and validated by
the clients, whose necessities must be satisfied
efficiently and with quality. Reengineering, and its
process orientation, must be applied to anticipate

change and not as a corrective procedure when
bad business indicators occur. In process-oriented
organizations, clients’ needs must be continu-
ously satisfied, which mandates an easy and fast
adaptation to changes. This favors and forces the
continuous improvement of every aspect of the
enterprise, being it process-, product- or organi-
zational-related.

Information technologies are among the princi-
pal factors to permit a process-based restructuring
of a given organization (Spurr, 1994). The develop-
ment of a software application for organizations of
this kind must consider their process framework.
Thus, the software engineering processes must
take into account the organization structure. With
this model, the application becomes more useful to
the target organization, and maintenance is facili-
tated since no major modifications and adaptations
to the process framework are needed.

A process framework inside an organization
contains processes, and these can be viewed as a
set of activities that has as inputs and outputs a set
of services and/or materials. This view must be
oriented toward the necessities of the client and to
the creation of added-value. This implies that the
clients’ requirements must always be considered,
both in the design and in the performance of the
system. In an organization, there are other pro-
cesses rather than those that provide added-value
to the clients. The existence of different types of
processes is necessary to assure, for example,
the strategic planning for the organization, the
recruitment of the human resources or the fiscal
duties. As illustrated in Figure 1, these processes
are instantiated in Management and Support
Processes.

Within an organization, the management by
processes requires a structure that differs from
the typical functional hierarchy. It is mandatory
to synchronize the processes among them and to
fulfill the strategic objectives of the organization.
For a process-oriented organization, a structure
with the following elements should exist:

2512

Business Modeling in Process-Oriented Organizations for RUP-Based Software Development

• Process management top team: This team
includes the top managers, all process own-
ers and, if existing, the process management
structural responsible. Its mission is to revise
all the processes according to the strategic
objectives of the organization, to analyze
the effectiveness of the process-oriented
management and to decide about unsolved
problems at the processes’ interfaces.

• Process sponsor: The mission of this top
manager is to help and instruct the process
owner, to decide when there is a problem
of interface among processes, to determine
the strategic orientation of the process and
to assure that the process is uniform within
the organization.

• Process owner: For each process, its owner
must have know-how on managing processes
and persons and competency in the areas as-
sociated with the process. His mission is to
lead the process’ multi-disciplinary team.

• Multi-disciplinary team: This team must
be created for each added-value process,
since they represent the most important
processes for the clients. The mission of this
team is multi-fold: to monitor its process, to
define and analyze the key indicators and the
process objectives, to ensure that the process
documentation is updated, to decide when
and how to use improvement teams and to
coordinate them and to manage the process
execution teams.

• Execution teams and team leaders:
These teams and their leaders represent
the instances of a given process (Scheer
& Nüttgens, 2000). Therefore, during the
execution of a process, some teams will
use it with a specific focus. For example,
for a given production process, one team
may be responsible for producing parts for
industrial clients, while another team may
produce them for individual clients.

To align a process-based organization with its
strategic objectives, it is crucial that the goals are
based on the organization mission and vision, and
also on its principles and values. Based on those
strategic objectives and in the business plan, the
priority when deciding the key business processes
within the organization can be perceived and in-
cluded in the process landscape. This action may
imply that some processes, activities or tasks can
be eliminated if they do not add any value to the
clients or to the organization. These eliminated
(or redefined) processes, activities and tasks, and
their respective consequences in terms of reorga-
nization and impact in human resources, are the
essence of re-engineering (Hammer, 1996).

demonstration case

The proposals made in this chapter were tested in
a real industrial environment, more specifically
in the first author’s organization.

The project, titled “Premium Wage,” consists
of the development of a software application to
calculate the payment of extra money to em-
ployees, based on their productivity, quality and
absenteeism (Fernandes & Duarte, 2004). This
project was considered critical, since it is likely to
have important social and behavioral impacts on
the organization, namely, if the amount is badly
calculated or if it is impossible to explain how
it was obtained. This premium was introduced
with the aim of ameliorating the organization’s
overall productivity and quality, and to return the
excellence to the workers.

Besides its criticality, the business process is
also complex since it depends on other processes.
In this case, the payment of a premium depends
on three main factors: individual absenteeism,
quality of the products made in the employee’s
line and individual performance. The first two
sub-processes were extended in order to support
new functionalities. For the third, a complete

 2513

Business Modeling in Process-Oriented Organizations for RUP-Based Software Development

reengineering was carried out. Finally, a new
process was designed, modeled and implemented
to the premium wage calculation.

In the project, the proposed reference frame-
work, namely RUP’s business modeling discipline,
is extensively used and we evaluate the capacity
of the process to cope with complex organiza-
tions.

structure of the chapter

This chapter is structured in five main sections.
The second section presents the main character-
istics of the reference framework for Process-
Oriented software houses, namely the processes
they are composed of. In the third section we
describe RUP’s business modeling core discipline,
which implements an added-value process. In the
fourth section we describe and discusses in detail
the produced artifacts for the demonstration case
during the execution of the business modeling
discipline. In fifth section, future trends and work
along with the conclusions are presented.

rEfErEncE frAMEworK for
procEss-orIEntEd softwArE
housEs

A reference framework, also called PSEE (pro-
cess-centered software engineering environment),
does not support the notion of a predefined process
model that is supposed to be applied in every
development project, but instead supports a wider
variety of processes based on parameterization
(Engels et al., 2001). SPADE (Bandinelli et al.,
1994), EPOS (Conradi et al., 1994), MELMAC
(Gruhn & Jegelka, 1992), OIKOS (Montangero
& Ambriola, 1994), OPEN (Henderson-Sellers,
2000), ESF (Gasch et al., 1987) and APPL/A (Sut-
ton et al., 1995) are well-known examples of PSEE
systems or process modeling formalisms.

A reference framework for process-oriented
organizations is presented and justified in Fer-

nandes and Duarte (2005). In this chapter, an
updated version of this particular framework
(Figure 1) includes a new process, called change
management, that allows a more explicit manage-
ment of continuous improvement and changes.
This framework has some of its processes con-
substantiated with RUPs disciplines. Since RUP
is a process meta-model, we can obtain a specific
process model by tuning some of the parameters,
allowing our reference framework to be tailored
for each kind of project.

According to the classification described in
Fettke et al. (2005), the framework in Figure 1
has the following main characteristics:

• Construction: domain differentiation
(institution), domain description (software
houses), modeling language (graphical,
UML activity diagrams and RUP business
use cases), modeling framework (yes) and
evaluation (demonstration case)

• Application: method (procedure model),
reuse and customization (customization of
model contents)

The reference framework intends to cope
with all issues related to software development
processes and potentially can be used with the
following purposes: documentation, analysis and
improvement of software process models (Bandi-
nelli et al., 1993), software process improvement
(Avrilionis et al., 1996) and software process
execution (Deiters & Gruhn, 1998).

Figure 1 represents a top-level view of the
process landscape, which is useful to show and
discuss with top managers and process owners.
Afterwards, this view must be further refined by
the process owner and the multidisciplinary team,
to present the process at the appropriate level of
detail for each software house professional.

It is also important to notice that Figure 1 cor-
responds to a specialization of the general frame-
work presented in Fernandes and Duarte (2005)
for the particular situation of organizations whose

2514

Business Modeling in Process-Oriented Organizations for RUP-Based Software Development

main activity is to develop software. The execu-
tion of the TTM process by the software house
produces an instance of the general framework
that models the organization where the software
will run. This fact makes the general framework
valuable in two senses: (1) as a reference for the
software house to model itself, and, (2) as a refer-
ence for the software house to model the target
organization.

In software houses, we propose the business
processes to be organized into two different
groups: (1) the first one includes processes that
exist in any organization independently of its
relation to the software development business; (2)
the second group includes processes that present
specific characteristics due to the fact that the
organization’s main activity is the development
of software-based solutions.

Management and support processes

We can observe several processes in the context
of the management and support issues that are
common to any type of organization.

The global management process includes
the sub-processes global strategy (GS), policy
deployment (PD) and business plan (BP). This
process is equivalent to that of any other organi-
zation, although we must take into account the
particularities of the software market, such as the
rapid changes in technology and the competition
in worldwide markets when defining, for instance,
an organizations’ business and vision.

Once stable process models have been ob-
tained, they should be released and afterwards it
is desirable to manage their changes, according to
the change requests made by process stakeholders
(Gruhn & Wellen, 2000). The change manage-
ment (CM) process allows the software house to
collect, organize and manage the output data and
experiences that are the basis for processes self
improvement. This new process should exist in
any software house aiming to reach the highest
CMM (capability maturity model) levels (Paulk
et al., 1995). To reach the highest CMM levels,
the concern about the constant improvement of
the development processes must be part of each
process, instead of being only a matter of the CM

Figure 1. Reference framework for software houses

F
1

C
lie

nt
s

M
ar

ke
tin

g
&

S
up

po
rt

an
d

M
ai

nt
en

an
ce

R
U

P
- E

nv
iro

nm
en

t

Su
pp

lie
rs

Management Processes

Global Management (GM)

Change Management (CM)

Added-Value Processes

RUP - nuclear disciplines

Support Processes

Human Resources (HR)

Finances (FI)

RUP - Project Management

Supplying (SP)

 2515

Business Modeling in Process-Oriented Organizations for RUP-Based Software Development

process. CMM level 3, which is considered the
minimum when discussing the software process
(Henderson-Sellers, 2000) is reachable with RUP
if it is extended accordingly, for example, to the
proposals made in Manzoni and Price (2003).
Also, rules and procedures should be defined
previously to cope with the introduction of sig-
nificant changes in the organization.

The supplying (SP) process consists essentially
in creating copies of an application. In contrast
with more traditional industries, where it rep-
resents probably the most important process, in
software, due again to its intangible nature, this
is a trivial process. The usual outsourcing of this
process comes from the fact that it is considered
to be secondary for an organization that develops
software. Therefore in this kind of organization,
this process is a support one.

The human resources (HR) process for soft-
ware factories is the same as for other types of
organizations. We must, however, point out that
software development requires highly specialized
people, making their hiring a critical issue for the
success of the organization. It is impossible to pro-
duce quality software without skilled people.

The finances (FI) process is the typical fulfill-
ment of the fiscal obligations, which is common
to all types of organizations and may also include
controlling activities.

The processes marketing and maintenance and
support, represent the typical customer relation-
ship management (CRM) process. This ensures
that when a software application is delivered to
the final clients, its life-cycle does not end at
that time, but instead continues by incorporating
changes and corrections, providing training to the
users, while the application is being used by the
clients. Hotline support activities can also exist
as an included sub-process.

Added-value processes

In the context of added-value processes, the
proposed reference framework is influenced by

the fact that RUP constitutes a systematic ap-
proach to assign tasks and responsibilities to its
members. The main aim of RUP is to construct
quality software that meets the requirements of
the stakeholders, within a typical engineering
context (Machado et al., 2005). RUP identifies
and defines the activities needed to map user
requirements into a software application and is
accepted to be a generic/customizable process
that can be adapted for a wide range of contexts,
namely organizations with distinct CMM levels,
different skills and tools and unequal number of
team members.

Since software is an intangible product, it is
obvious that no raw materials are needed to produce
it. For organizations that develop software, RUP’s
environment discipline can instantiate the supplier
relationship management (SRM) process, since it
furnishes the working environment (e.g., develop-
ment tools) and the development guidelines to be
followed by the teams.

The RUP’s core disciplines (business modeling,
requirements, analysis and design, implementa-
tion, test and deployment) represent the most
critical activities for an organization that develops
software and can be seen as the time-to-market
(TTM) process of the organization. This set of
activities, or sub-processes, run in parallel for the
same development project.

The RUP’s discipline project management
implements the data management (DM) process. In
this discipline, some activities lead to the production
of indicators of the project status. Its existence is the
foundation to take decisions based on facts, related
to the advance of the project aiming to adjust and
improve the software development process.

business Modeling in rup

RUP’s core disciplines implement added-value
process. These disciplines are sub-divided in
activities, which can be viewed as sub-processes.
The description of those sub-processes is made
with UML activity diagrams, complemented

2516

Business Modeling in Process-Oriented Organizations for RUP-Based Software Development

optionally with other kinds of diagrams, such as
interaction and business object diagrams.

This representation is also valid for all other
processes of a generic organization. Any time a
software house starts a new project, the TTM pro-
cess is executed. Since we propose this process to
be implemented by the six RUP’s core disciplines,
it implies that business modeling will also be
executed. Among the recommended diagrams by
this discipline for modeling purposes are included
activity diagrams. Thus, a target organization will
be modeled also by a collection of these diagrams.
Additionally, within the software house, the disci-
pline business modeling itself can also be modeled

by activity diagrams, since it is a sub-process of
the TTM process (Figure 2).

During software development, all the stake-
holders must have a common understanding of
the business processes that exist in the target
organization. This reality is not circumscribed to
the obvious organizational information systems. If
the development of applications does not take into
account the current business processes (or those
to be implemented), the result will be probably
unsuccessful. This may be caused by the fact that
end users do not employ correctly the application,
since it does not support directly the activities
under their responsibility.

Figure 2. Activity diagram to help the execution of RUP’s business modeling discipline in TTM pro-
cess

Refine
Roles and

Responsibilities

Describe
Current

Processes
Explore

Processes
Automation

Assess
Business Status

Develop
Domain Model

[Business Modelling]
[Only Domain Modelling]

[Begin]

[Else]

Identify
Business

Processes

Refine
Business

Processes

Design Bus.
Process

Realizations

 2517

Business Modeling in Process-Oriented Organizations for RUP-Based Software Development

The main activities of business modeling are
centered on the identification, refinement and
realization of the business processes and in the
definition of the roles of people associated to the
business. Each role in this RUP’s discipline has
under its responsibility the execution of several
activities that will have as deliverables several
artifacts (Table 1).

The activities of Table 1 are at a detailed level
than those of Figure 2. For example, the activity

refine business processes includes the activities
structure the business use case model, review
the business use case model and detail business
use cases.

Among all the activities and their respective
artifacts, only some are mandatory. This flex-
ibility permits the configuration of RUP, so that
it can be adapted to a specific project executed
in a given organization.

Role Sub-Activity Activity
(Figure 2)

Main Artifacts

Analyst of the
Business Process

Assess target organization
Assess Business Status

Business rules
Business use case
model
Business glossary
Business object model
Business vision
Supplementary busi-
ness specification
Target organization
verification
Business architecture

Set and adjust goals
Capture the business
vocabulary
Find business actors and
use cases

Describe Current Processes

Maintain the business
rules

Assess Business Status &
Identify business processes

Structure business use
case model

Refine Business Processes

Define the business archi-
tecture

Identify Business Processes

Reviewer of the
Business Model

Review the business use
case model

Refine Business Processes

Review the business
object model

Refine Roles and Responsi-
bilities

Designer of the
Business

Detail business use cases Refine Business Processes Organizational units
Find business workers and
entities

Describe Current Processes

Define the automation
requirements

Explore Processes Automa-
tion

Detail business entities Refine Roles and Responsi-
bilitiesDetail business workers

Table 1. Roles, activities, and main artifacts for business modeling in RUP

2518

Business Modeling in Process-Oriented Organizations for RUP-Based Software Development

busInEss ArtIfActs for thE
dEMonstrAtIon cAsE

Nowadays, the technology-planning horizon for
big companies is a synthesis of software and
process engineering (Smith & Fingar, 2002).
Additionally, the success of a project depends
heavily on the correct perception of the busi-
ness process to be modeled. Taking into account
these two aspects, the RUP’s business modeling
discipline assumes a critical role in the software
development process. The artifacts that can be
generated by this discipline have the following
objectives:

• To understand the structure and dynamics
of the organization where the system will
be executed

• To comprehend the current problems of the
target organization and to identify potential
improvements

• To assure that clients, final users and devel-
opers have a common understanding about
the target organization

• To capture/deduct the requirements of the
system necessary to support the target or-
ganization

RUP can be parameterized and used both
in small and complex projects; next we discuss
what artifacts were produced for the demonstra-
tion case. For this parameterization to occur, it
is necessary, during project execution, to choose
which artifacts to use and their level of detail.
This choice was validated by quality assessments
contained in the process model as milestones
between phase transitions. Thus, both the subset
of used artifacts and also its degree of detail can
not be anticipated with rigor, but must be selected
based on experience and knowledge of the de-
velopment team in relating the characteristics of
each project with the functionalities offered by
the artifacts. The criteria to fulfill this choice are
related with:

• Characteristics of the project itself (e.g.,
criticality of the modeled business processes,
type of target organization)

• Characteristics of the organization that
develops software (e.g., team size, level of
knowledge about internal rules)

• Temporal restrictions. Since resources are
limited in engineering projects, it is always
a necessary balance between the quantity
and detail of the produced artifacts and the
deadlines for implementing the project.

The produced artifacts result from a set of
activities that occur inside those disciplines. In
this demonstration case, we identified the need
for the artifacts to represent two distinct situa-
tions in terms of business: One part of the project
represents reengineering activities of some busi-
ness processes, while the other part represents
the introduction of a new business process. In
several diagrams (e.g., business use case model),
the standard UML is augmented with the stereo-
types defined by RUP, thus allowing the creation
of RUP-like artifacts.

business rules

The business rules correspond to policy statements
and conditions that should be fulfilled from the
business perspective. They are similar to systems
requirements, but they focus on the business core,
expressing rules related to business, and also its
architecture and style. Its modelling must be rig-
orous, one possibility being the use of the object
constraint language (OCL) as specified in UML.
Alternatively, business rules can be modeled with
structured English, using some fixed constructors
(Odell, 1998).

The usage of structured natural language with
fixed constructs and with a pseudo-programming
language syntax was chosen due to the necessity to
validate directly with key users the perception of
the development team about stated business rules,
and also because key users have a generic engi-

 2519

Business Modeling in Process-Oriented Organizations for RUP-Based Software Development

neering background. This way, in the particular
situation of the demonstration case, the usage of
natural language was preferred over OCL.

Table 2 shows, as examples, three rules for
Premium Wage system.

Rule 1 describes a situation where no premium
payment is due when the worker has conflicts in
its team or is under a disciplinary process, even
though productivity, quality and absenteeism are
at good levels for that worker. Rule 2 assigns a
weight factor to the final premium based on the
worker’s absenteeism. Rule 3 states that if there
is no information available from one of the three
premium factors, no payment will be made for
that worker.

business use case Model

The main goal of this artifact is to show how the
business is being perceived and run by stakehold-
ers. This is achieved by modeling the business
processes and their interactions with external

parties, based on business use case diagrams (with
stereotypes for business use cases and business
actors) (Fernandes & Machado, 2001; Machado
& Fernandes, 2002).

Business processes models should specify how
added value is created for the business actors.
Activity diagrams, possibly extended with the
representation of organizational units interfering
in the business process and with the distribution
of the activities by those organizational units,
can support this modelling. The knowledge about
“who is doing what” should be obvious when
reading this model.

Business use case model is the first description
of the business functionalities and actors inside
the target organization. For Premium Wage, one
artifact was created to model the current situa-
tion (Figure 3) and another for the desired future
situation (Figure 4).

The existence of these two models shows to all
stakeholders, using the same notation and same
detail level, the first perspective of effort amount

Rule # Description

1
If worker_has_conflict_inside_team or worker_is_under_disciplinary_process

then
 premium(worker) = 0

2

Switch absenteeism(worker)
 case = 0h: premium(worker) = premium(worker) * 1
 case]0-4h]: premium(worker) = premium(worker) * 0.75
 case]4-8h]: premium(worker) = premium(worker) * 0.5
 case >8h: premium(worker) = premium(worker) * 0

3
If line_productivity_not_available or absenteeism_not_available or quality_fac-

tor_not_available then
 premium(worker) = 0

Table 2. Business rules examples for Premium Wage

2520

Business Modeling in Process-Oriented Organizations for RUP-Based Software Development

needed to reach a future situation, and more im-
portant, acts as a base for the target organization’s
management to decide on business re-engineering
and improvement. A special emphasis should
be given to explain to the target organization’s
management that an information system is not the
complete business reality, but an abstraction of it.
Real business processes, such the ones stated in
business modeling discipline, are far more extent
than the ones implemented inside the information
system. This may be caused by people’s activities
because they do not act similarly every day, and
mainly because people like to have their own
special information systems (e.g., spreadsheets or
personal databases) to make decisions and cause
the starvation of the organization business infor-
mation system with missing data. This is a crucial
success factor at the present time because the work
is no longer only individual or departmentally
related, but exists through horizontal business
processes that cross the entire organization and
reaches external partners.

Figure 3 shows the current situation, where
only three business use cases exist and only two
business actors take part. The line productivity
is calculated by the controller-based master data
lines’ team member and products maintained by
the team manager. This situation shows that no
information was available on how and where to
collect quality data and absenteeism. Next, in
Figure 4, the desired extensions and new business
use cases can be seen. For the future situation,
six business actors are needed, and special care
should be put on this situation because some of
them may not be directly related with project
activities and may not understand the business
value of the new activities (stated in the business
use cases) if no proper involvement and education
is provided.

In this situation, line productivity is triggered
also by the controller, but to be useful, it first has
to be transformed into individual performance
(because one employee can work in several
production lines for the premium calculation

Figure 3. Business use case model: As-Is situation

Keep Master Data for Products in Lines Keep Master Data for Team Members

Team Manager

Calculate Line Productivity

<<include>>

<<include>>

Controller

 2521

Business Modeling in Process-Oriented Organizations for RUP-Based Software Development

time frame). Additionally, the remaining two
premium factors (quality and absenteeism) are
stated, thus allowing the industrial engineer to
calculate the final values and the wage manager
to handle them.

organizational units

This artifact is used to reduce the complexity and
structure of the business object model by dividing
it into smaller parts. For the demonstration case,

five organization units where created (Figure 5),
each one representing a collection of business
workers, business entities, relationships, busi-
ness use-case realizations, diagrams and other
organization units.

The organization unit line productivity in-
cludes the re-engineered activities for the pro-
ductivity calculation, quality and presences in
the organization where extended to cope with
premium calculation. The individual performance
and premium wage calculation organizational

Figure 4. Business use case model: To-Be situation

Quality system data transformer
Time evaluation manager

Wage Manager

Calculate Quality Factor Calculate Presences in the organization

Keep Master Data for Products in Lines Keep Master Data for Team Members

Industrial Engineer

Pay premium wage

Team Manager

Controller

Calculate Individual Performance

Calculate Line Productivity

<<include>>

<<include>>

2522

Business Modeling in Process-Oriented Organizations for RUP-Based Software Development

units were newly created in the organization,
because none of the existent capabilities could
handle it.

business object Model

This artifact is an object model describing the
realization of business use cases. It serves as an
abstraction of how business workers and business
entities need to be related and how they need to
collaborate in order to perform the business. In
Figures 6 and 7 the realizations of some To-Be
situation business use cases are presented, namely
Presences in the organization and Pay premium
wage.

The importance of this artifact comes also from
it being a basis for identifying future information
system actors and use cases, and in addition, to
identifying classes for analysis and design models.
First modelling the business and afterwards the
information system is a crucial practice to cor-

rectly align the business reality with the abstrac-
tion the information system implements. If the
software information system development only
starts with the modelling of a software system, a
quality software product can be obtained (being
the quality perceived as the degree of correctly
implementing requirements) but that may fail
completely to cope with the business reality of
the organization in which it will run. Although
business information systems implement a large
percentage of the business practices, there are
always some parts of the organization’s business
processes that are not implemented in software
systems. The modeling of such business practices
by the software development team is a wise and
safe procedure to avoid future inconsistencies
when introducing the information system in the
organization.

To calculate the presences in the organization
(Figure 6), the business worker Time evaluation
manager uses business entity Export presences

Figure 5. Organizational units

Presences in the organization (Extension)

Line Productivity (Reengineering)

Quality (Extension)

Individual Performance (NEW)

Premium Wage (New)

 2523

Business Modeling in Process-Oriented Organizations for RUP-Based Software Development

to pick the business object Presences available in
the HR system and generate a new business object
Exported presences containing the presences in
the organization in a proper format to use inside
the Premium Wage information system.

In Figure 7, business entity Calculate Premium
Values uses several business objects representing
final premium factors, such as Compiled Qual-
ity System data, Exported presences (generated
in Figure 6, business object model) Individual
Performance and also business objects represent-
ing levels and limits (acting as data supports to
implement business rules (Table 2) to generate
the business object Premium to Pay. Afterwards,
this business object will be used and transformed
by several business entities, with and without
the intervention of business actors, until the
final Employee Total Wage (Wage + Premium)
is loaded and calculated in the HR system, as
shown in Figure 7.

The business object model exposed in Figure 7
is not fully contained in Premium Wage informa-
tion system. The business object Premium to Pay
Exported is generated by Premium Wage to be
used inside the organization’s HR system. This

is an example where some of the business actors,
business entities and business objects will not be
part of the information system required by the
software development team, but they were mod-
eled to guarantee a proper integration of current
information systems (e.g., HR system) with newly
developed ones (e.g., Premium Wage).

other business Artifacts

From all of the proposed artifact in RUP for busi-
ness modeling, some were not used in the Premium
Wage demonstration case. Next, we present the
reason why they were not needed in the instance
of the RUP we used for this project:

• Business glossary: In this artifact all busi-
ness terms and expressions are kept. They are
necessary for a good understanding among
all project stakeholders. In our situation, the
business terms are common to the target
and to the software developing organization
because they both are sub-organizations of
the same organization.

Figure 6. Business object model: Calculate presences in the organization

Exported PresencesTime evaluation
manager

Presences (HR system)

Export Presences

2524

Business Modeling in Process-Oriented Organizations for RUP-Based Software Development

Figure 7. Business object model: Pay premium wage

Limits for Individual Performance

Limits for Quality

Limits for Presences

Levels for Premiums

Exported Presences

Compiled Quality System data

Individual Performance

Calculate Premium Values

Premiums to Pay

Validate Premiums to Pay

Industrial Engineer Validated Premiums to Pay

Export Premiums to Pay

Wage Manager

Premium to Pay Exported

Load Premium values into HR system

Premium values in HR system

Employee Total Wage (Wage + Premium)

HR system

 2525

Business Modeling in Process-Oriented Organizations for RUP-Based Software Development

• Business vision: This artifact captures the
goals of a particular business modeling
activity, stating what is to be modeled and
the reasons why. It also serves as an oracle
to all future high-level decisions. We did not
use business vision because it is common
to the target and software development or-
ganization due to the same reasons as those
of business glossary.

• Supplementary business specification:
No need for extra-detail than that available
in the business use case and the business
object models.

• Target organization verification: The tar-
get organization is perfectly known by the
software developers. The current processes
are modelled by the business use case model,
As-Is situation.

• Business architecture document: The de-
tail level presented in the business use case
model and in the business object model is
sufficient to understand the business archi-
tecture.

conclusIon And futurE
trEnds

In this chapter, we have presented a revised ver-
sion of a reference framework for process-oriented
software houses which serves as a foundation to
model organizations. This specific framework is
based on a more generic one, which is also used
as a template to model the target organization in
which the software product is to be executed. Ad-
ditionally, we also show the way of managing the
framework and the instantiation of its processes
with RUP disciplines whenever feasible.

We also discuss in detail the usage of the
framework within a demonstration case, and
more particularly, the produced artifacts during
the execution of the RUP’s business modelling
discipline. The modeling capabilities of a graphical

modelling language (such as the UML) and the
understanding that it gives to all the stakehold-
ers was a crucial factor in the demonstration
case to avoid communication and interpretation
errors and to improve the solution utility and
correctness.

As future work, we plan to model the refer-
ence framework with UML (Fettke et al., 2006)
and formalize the processes of the framework by
using colored Petri nets (Jensen, 1992). Similar
approaches also based on Petri nets were also
experienced with results (Gruhn & Wellen, 2001;
van der Aalst, 2003).

By adopting a formal language, it is possible
to model, animate, simulate and formally verify
the properties of each single process. Addition-
ally, we intend to explicitly model the interfaces
between the business processes in our reference
framework, which allows the complete framework
to be analyzed, verified and validated.

We intend to automatically generate CPN
skeletons from business requirements models. A
semantic layer in the Arena environment (Kelton
et al., 2002), capable of accepting CPN-based
business specifications, will also be developed
to allow the stochastic execution of workflow
scenarios as a complement to some current valida-
tion approaches based on CPN/Tools (Beaudouin
Lafon et al., 2001).

After formally describing the reference frame-
work processes, we can use them in every organi-
zation (in this case, software houses) to compare
with current processes. This comparison (based
on the same Petri net formalism) should allow
a quick assessment of the organization against
world-class processes and consequently permit
the re-engineering and improvement of its own
processes. In this way, the reference framework
acts as a To-Be model to be compared with the
As-Is model of the software house. The detected
mismatches show the improvement areas for the
software house to proceed accordingly within the
organization vision and mission.

2526

Business Modeling in Process-Oriented Organizations for RUP-Based Software Development

rEfErEncEs

Avrilionis, D., Belkhatir, N., & Cunin, P.-Y.
(1996). Improving software process modelling
and enactment techniques. In C. Montangero
(Ed.), The 5th European Workshop on Software
Process Technology, Nancy, France (LNCS 1149,
pp. 65-74).

Bandinelli, S., Fuggetta, A., & Grigolli, A. (1993).
Process modelling in-the large with SLANG. In
Proceedings of the 2nd International Conference
on the Software Process: Continuous Software
Improvement, Berlin, Germany (pp. 75-83).
IEEE.

Bandinelli, S., Fuggetta, A., Ghezzi, C., & La-
vazza, L. (1994). SPADE: An environment for
software process analysis, design, and enactment.
A. Finkelstein, J. Kramer, & B. Nuseibeh (Eds.),
Software process modeling and technology.
London: Research Studies Press.

Beaudouin-Lafon, M., Mackay, W. E., Andersen,
P., Janecek, P., Jensen, M., Lassen, M., et al. (2001).
CPN/Tools: A post-WIMP interface for editing
and simulating coloured Petri nets. In Application
and Theory of Petri Nets 2001, Proceedings of
the 22nd International Conference (ICATPN 2001),
Newcastle upon Tyne, UK.

Conradi, R., Hasgaseth, M., Larsen, J.-O., Nguyên,
M. N., Munch, B. P., Westby, P. H., et al. (1994).
EPOS: Object-oriented cooperative process mod-
eling. A. Finkelstein, J. Kramer, & B. Nuseibeh
(Eds.), Software process modeling and technol-
ogy. London: Research Studies Press

Deiters, W., & Gruhn, V. (1998). Process man-
agement in practice: Applying the FUNSOFT
net approach to large scale processes. Automated
Software Engineering, 5, 7-25.

Engels, G., Schäfer, W., Balzer, R., & Gruhn, V.
(2001). Process-centered software engineering
environments: Academic and industrial perspec-

tives. In Proceedings of the 23rd International
Conference on Software Engineering, Toronto,
Canada (pp. 671-673). IEEE CS Press.

Fernandes, J. M., & Duarte, F. J. (2005). A refer-
ence framework for process-oriented software
development organizations. Software and Sys-
tems Modeling (SoSyM), 4(1), 94-105. Springer-
Verlag.

Fernandes, J. M., & Duarte, F. J. (2004). Using
RUP for process-oriented organisations. In F.
Bomarius & H. Iida (Eds.), Proceedings of the
5th International Conference on Product Focused
Software Process Improvement (PROFES 2004)
(LNCS 3009, pp. 348-362). Springer-Verlag.

Fernandes, J. M., & Machado, R. J. (2001). From
use cases to objects: An industrial information
systems case study analysis. In Proceedings of the
7th International Conference on Object-Oriented
Information Systems (OOIS ’01) (pp. 319-328).
Springer-Verlag.

Fettke, P., Loos, P., & Zwicker, J. (2005). Business
process reference models: Survey and classifica-
tion. In Proceedings of the Workshop on Business
Process Reference Models (BPMR 2005), Nancy,
France (pp. 1-15).

Fettke, P., Zwicker, J., & Loos, P. (2006) Using
UML for reference modeling. In P. Rittgen (Ed.),
Enterprise modeling and computing with UML.
Hershey, PA, USA: Idea Group Inc.

Gasch, B., Kelter, U., Kopfer, H., & Weber, H.
(1987). Reference model for the integration of tools
in the EUREKA software factory. In Proceedings
of the 1987 Fall Joint Computer Conference on
Exploring Technology: Today and Tomorrow (pp.
183-189). IEEE Computer Society Press.

Gruhn, V., & Jegelka, R. (1992). An evalua-
tion of FUNSOFT nets. In Proceedings of the
2nd European Workshop on Software Process
Technology (EWSPT ’92) (LNCS). New York:
Springer-Verlag.

 2527

Business Modeling in Process-Oriented Organizations for RUP-Based Software Development

Gruhn, V., & Wellen, U. (2000). Structuring
complex software processes by “Process Land-
scaping.” In Proceedings of the 7th European Work-
shop on Software Process Technology (EWSPT
2000), Kaprun, Austria (LNCS 1780, pp. 138-149).
Springer Verlag.

Gruhn, V., & Wellen, U. (2001). Process land-
scaping: Modelling distributed processes and
proving properties of distributed process models.
Unifying Petri nets (LNCS 2128, pp. 103-125).
Springer-Verlag.

Hammer, M. (1996). Beyond reengineering: How
the process-centered organization is changing our
work and our lives. New York: Harper Collins.

Henderson-Sellers, B. (2000). The OPEN frame-
work for enhancing productivity. IEEE Software,
17(2), 53-58.

Jensen, K. (1992). Coloured Petri nets: Basic
concepts, analysis methods and practical use,
Vol. 1: Basic concepts. In EATCS monographs in
theoretical computer science. Springer-Verlag.

Kelton, W. D., Sadowski, R. P., & Sadowski, D.
A. (2002). Simulation with ARENA (2nd ed.). New
York: McGraw-Hill.

Machado, R. J., & Fernandes, J. M. (2002). Het-
erogeneous information systems integration:
Organizations and methodologies. In M. Oivo
M. & S.K. Sirviö (Eds.), Proceedings of the 4th
International Conference on Product Focused
Software Process Improvement—PROFES ’02,
Rovaniemi, Finland (LNCS 2559, pp. 629-643).
Springer-Verlag.

Machado, R. J., Ramos, I., & Fernandes, J. M.
(2005). Specification of requirements models. In
A. Aurum & C. Wohlin (Eds.), Engineering and
managing software requirements (pp. 47-68).
Berlin: Springer-Verlag.

Manzoni, L. V., & Price, R. T. (2003). Identify-
ing extensions required by RUP (rational unified
process) to comply with CMM (capability matu-
rity model) levels 2 and 3. IEEE Transactions on
Software Engineering, 29(2), 181-192.

Montangero, C., & Ambriola, V. (1994). OIKOS:
Constructing process-centered SDEs. A. Finkel-
stein, J. Kramer, & B. Nuseibeh (Eds.), Software
process modeling and technology. London: Re-
search Studies Press.

Odell, J. (1998). Advanced object-oriented analy-
sis & design using UML. Cambridge University
Press.

Paulk, M. C., Weber, C. V., Curtis, B., & Chris-
sis, M. B. (Eds.). (1995). The capability maturity
model: Guidelines for improving the software
process. Reading, MA: Addison-Wesley.

Scheer, A. W., & Nüttgens, M. (2000). ARIS
architecture and reference models for business
process management. In W. van der Aalst, J.
Desel, & A. Oberweis (Eds.), Business process
management, models, techniques, and empirical
studies (LNCS 1806, pp. 376-389). Springer.

Smith, H., & Fingar, P. (2002). Business pro-
cess management: The third wave. Tampa, FL:
Meghan-Kiffer Press.

Spurr, K., Layzell, P., Jennison, L., & Richards,
N. (1994). Software assistance for business re-
engineering. New York: John Wiley & Sons.

Sutton, S., Heimbigner, D., & Osterweil, L.
(1995). APPL/A: A language for software process
programming. ACM Transactions on Software
Engineering Methodology, 4(3), 221-286.

van der Aalst, W. M. P. (2003). Challenges in
business process management: Verification of
business processes using Petri nets. Bulletin of the
European Association for Theoretical Computer
Science, 80, 174-198.

This work was previously published in Reference Modeling for Business Systems Analysis, edited byP. Fettke & P. Loos, pp.
98-117, copyright 2007 by IGI Publishing (an imprint of IGI Global).

2528

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6.12
Improvement of Software
Engineering by Modeling

Knowledge-Intensive
Business Processes

Jane Fröming
University of Potsdam, Germany

Norbert Gronau
University of Potsdam, Germany

Simone Schmid
University of Potsdam, Germany

AbstrAct

The Knowledge Modeling and Description
Language (KMDL®) allows analysts to identify
process patterns, which leads to improvements in
knowledge-intensive processes. After modeling
the business processes, knowledge and process
potentials in daily business processes can be
unleashed. The following contribution presents
a specification of KMDL® for software engineer-
ing (KMDL®-SE). A real-life example is used to
explain KMDL®-SE.

IntroductIon

Software development is a knowledge-intensive
business process. Until now, no adequate methods
were available to improve knowledge manage-
ment in software engineering by appropriate
models, analyses, and concepts. It seems useful to
combine more than 10 years of experience in the
modeling and analysis of information processing
tasks, applying methods like event-driven process
chains and establishing a new modeling paradigm
focused on knowledge creation. Its application in

 2529

Improvement of Software Engineering by Modeling Knowledge-Intensive Business Processes

the area of software engineering is described in
the following contribution.

The main focus of the contribution refers to
two principal objects: First, knowledge-intensive
business processes in software engineering can be
identified and improved using an adapted mod-
eling language. Second, the specification of the
Knowledge Modeling and Description Language
(KMDL®) is used to model an exemplary software
engineering processes. In the section “Theoretical
Foundation of KMDL®,” the theoretical frame-
work of KMDL® is presented. The modeling
language is used to describe knowledge-intensive
business processes, tacit and explicit knowledge,
and knowledge and information flows. In the sec-
tion “Analysis of Potentials with KMDL®-SE,”
potential improvements for software engineering
processes are proposed. In the section “Real-Life
Application of KMDL®-SE,” a real-life example
of using KMDL® is described. “Identification
of Process Patterns” describes the conclusions
and identified process patterns that can be found
and used to reorganize the software engineering
processes in software engineering companies as
well as for the specification of KMDL®. The last
section gives future prospects of further develop-
ments of KMDL®-SE.

QuEstIons And problEMs of
KnowlEdgE MAnAgEMEnt In
softwArE EngInEErIng

The dynamic behavior of the actual business en-
vironment will gain speed and complexity. The
market for software products will transform very
quickly, and the pressure due to competition is
expected to increase massively. Especially small
and medium-sized enterprises have to cope with
the high pressure in the software engineering
sector consisting in the rivalry between them-
selves and major players (Groff & Jones, 2003).
Therefore, methods and applications are needed

to identify potentials in daily business processes
(Hamel & Prahalad, 1990). The knowledge and
use of these potentials can be a decisive competi-
tive advantage. The management and processing
of organizational knowledge increasingly are be-
ing viewed as critical to organizational success
(Inkpen & Dinur, 1998).

The contribution is based on the central thesis:
The productivity of software engineering will be
increased using appropriate knowledge manage-
ment applications.

Software engineering processes have to be
improved in a way that relevant information and
knowledge have to reach the appropriate employee
at the right time. If so, employees reduce unneces-
sary waiting time for information and knowledge;
therefore, tasks can be completed more quickly.
Another way to increase the productivity of soft-
ware engineering is a constant documentation and
optimization of recurring subprocesses and a reuse
of these as patterns in other projects. Knowledge
management activities in software engineering
can be effective only if they are implemented and
applied consequently throughout the company.
Even the greatest strategies will be unsuccessful
without the support of employees. Staff members
have to deal with knowledge management, and
its advantages have to be made clear.

In the following sections, the central thesis will
be discussed, applying it to a real-life example
of software engineering in a small and medium-
sized enterprise. A German software engineering
firm was analyzed within the research project
M-Wise1. M-Wise is based on the German fed-
eral government’s software engineering research
initiative 2006. The interdisciplinary organized
project aims to promote knowledge manage-
ment in software engineering. Existing methods
and applications to model knowledge-intensive
business processes were improved, and a new
specification of a modeling language in software
engineering could be developed and tested in a
real-life environment.

2530

Improvement of Software Engineering by Modeling Knowledge-Intensive Business Processes

ModElIng of softwArE
EngInEErIng procEssEs wIth
thE KnowlEdgE ModElIng And
dEscrIptIon lAnguAgE

In the following section, the Knowledge Model-
ing and Description Language KMDL® is intro-
duced. KMDL® is currently under development
at the University of Potsdam in Germany. The
theoretical framework of KMDL® as well as a
general procedural model for its implementation
is described. Finally, this article will point out the
use of KMDL® especially for software engineer-
ing, for which a new specification (KMDL®-SE)
is introduced. Further references to the modeling
method are available in Gronau and Weber (2004)
and Gronau and Weber (2004a).

Knowledge-Intensive business
processes in software Engineering

Within process-oriented knowledge management,
the knowledge-intensive business process is the
primary perspective (Remus, 2002). Several at-
tempts have been made in the literature to define
knowledge-intensive business processes. Heisig
(2002) points out the opportunity to schedule
the knowledge demand and evaluates knowledge
intensity according to the existence of variabil-
ity and exceptions (Mertins et al., 2000). Other
sources define a process as knowledge-intensive
if an improvement with conventional methods of
business reengineering is not or is only partially
possible (Remus, 2002). Davenport recognizes
the knowledge intensity by the diversity and un-
certainty of process input and output (Davenport
& Prusak, 2000). A process is knowledge-inten-
sive if its value can be created only through the
fulfillment of the knowledge requirements by the
process participants. Several properties that are
typical of knowledge-intensive business processes
are introduced in the following list (Gronau et
al., 2005):

•	 In knowledge-intensive processes, knowl-
edge contributes significantly to the values
added within the process. Innovation and
creativity plays a major role in such pro-
cesses (Eppler et al., 1999). People within
the process have a large scope in the freedom
of decision, meaning that they can decide
autonomously.

•	 The event flow of knowledge-intensive busi-
ness processes is not clear in advance, as it
can evolve during the process (Davenport
& Prusak, 2000).

•	 The participants in the process have different
experiences and bring in knowledge from
different domains with a varying level of
expertise (Heisig, 2002).

•	 The lifetime of knowledge involved in the
process is often very short (Eppler et al.,
1999). It quickly becomes obsolete. It is
usually very time-intensive to build up this
knowledge.

•	 Usually knowledge-intensive business
processes do not follow structured working
rules and often lack metrics to evaluate the
success of the process (Davenport & Prusak,
2000).

•	 IT-tools for knowledge-intensive business
processes are generally not very sophis-
ticated, because the knowledge usually is
transferred through socialization and an
informal exchange of knowledge.

•	 Often the costs of knowledge-intensive
processes are very high.

Software engineering consists of different
knowledge fields such as requirements analysis,
software design, software testing, and software
configuration management (Abran et al., 2004).
These fields can be analyzed and evaluated in
terms of their knowledge-intensive characteristics.
Except for the software configuration manage-
ment, all the mentioned fields of applications
are affected by a high degree of innovation and

 2531

Improvement of Software Engineering by Modeling Knowledge-Intensive Business Processes

autonomy. They do not follow structured work-
ing rules, and various individuals with different
expertise are involved in the process. All that the
knowledge fields have in common is that there is
great variety of sources and media, a high demand
for communication, a short half-life period of
knowledge, and high process costs; therefore, it can
be defined as knowledge-intensive processes.

In order to successfully create knowledge-
intensive business processes in software engi-
neering, a method to reflect knowledge flows is
necessary. This dimension cannot be brought out
adequately by methods like event-driven process
chains (Van der Aalst, 1998), because the ability
to display the essential elements of knowledge
flows are missing, especially the description of
tacit knowledge. The process-based approach can
provide an efficient way to capture and navigate
knowledge (Kim et al., 2003).

theoretical foundation of KMdl®

The first version of KMDL® was developed by
Professor Gronau at the University of Oldenburg.
The motivation for the development was the lack
of appropriate methods to model knowledge-in-
tensive business processes. At the University of
Potsdam, KMDL® is improved continuously by
the Knowledge Management Group. A procedural
model is developed as well as a mechanism for
the process analysis. KMDL® is a description
language that is suitable to model knowledge-
intensive business processes. It has the ability to
identify available knowledge that exists in or is
necessary for the process, including its origin and
application. The following section introduces the
theoretical concepts that are used to define the
Knowledge Modeling and Description Language.
The first paragraph outlines the tacit and explicit
knowledge defined by Nonaka and Takeuchi. In
the second paragraph, the concept of knowledge
conversion will be introduced.

Tacit and Explicit Knowledge

KMDL® uses the understanding of tacit knowl-
edge according to Nonaka and Takeuchi (1995).
They follow the thoughts of Polanyi (1958),
who introduced the terms of tacit knowledge
and explicit knowledge. Polanyi (1958) defines
tacit knowledge as personal knowledge bound
to humans. This type consists of mental models,
beliefs, and perspectives (Nonaka & Takeuchi,
1995). It is partially unconscious and, therefore,
difficult to be communicated and explained by
the persons who possess it.

Explicit knowledge, on the other hand, easily
can be expressed in handbooks, papers, patents,
or software (Gronau & Weber, 2004). It is for-
mal, codified, systematic, easy to communicate,
shared, and can be articulated in writing and
numbers (Schmidt et al., 1996). This also means
that it can be transmitted and stored for reuse by
other people.

Numerous life-cycle models adopt a similar
staged view of knowledge flow (Nissen, 2002;
Nissen & Levitt, 2004). Nonaka goes further still,
as he introduces a model describing a spiral of five
dynamic interactions between tacit and explicit
knowledge along an epistemological dimension,
and he characterizes four processes (socialization,
externalization, combination, internalization) that
enable individual knowledge to be amplified and
to effect organizational knowledge crystalliza-
tion along the ontological dimension (Nonaka &
Takeuchi, 1995).

KMDL® Description Language

The basis for a software engineering specifica-
tion of KMDL® is version 1.1 (see Figure 1).
Tasks represent the frame of the KMDL® model
description. They describe the logical sequence
of the business process. The prerequisite for
the execution of a task is certain information as

2532

Improvement of Software Engineering by Modeling Knowledge-Intensive Business Processes

input. The generated information is the result or
the output of a task. The information flow con-
nects these objects. Tasks are executed by roles.
A role integrates textual or organizational-related
activities of a task. For each role, requirements to
execute the specific task in the desired manner
in order to generate the required output using the
given input are modeled. The person who performs
a task is assigned to a role. The knowledge ob-
jects (tacit knowledge, see the section “Tacit and
Explicit Knowledge”) are attached to the person.
These objects are required in order to execute a
task. Each knowledge object is linked to a person
and is personal. The attribute level describes
the qualification of each knowledge object and
task requirement. At present, the attribute level
contains four degrees: 0 means no knowledge, 1
means basic knowledge, 2 means intermediate
knowledge, and 3 means expert knowledge.

Attributes are used for more detailed de-
scriptions of objects. For instance the attribute
knowledge domain is provided for each knowledge
and information object, assigning it to a specific
topic. This enables the hierarchical assignment of

knowledge and information objects and, hence, the
description of used explicit and tacit knowledge
within the considered process.

In addition, the description language enables
the visualization of knowledge flows (see Figure
1). From the business process perspective, the
flows of knowledge as well as the conversions
of knowledge into other knowledge types are of
significant importance. New objects of knowledge
or information are created by the transformation
of objects existing in the process. This transforma-
tion is performed by an interaction of knowledge
and information objects. As an analogy to Non-
aka/Takeuchi, KMDL® distinguishes between
four types of knowledge conversion (Gronau &
Weber, 2004):

• Internalization. Internalization means
the conversion of explicit knowledge into
tacit knowledge. It is related very closely
to learning by doing. Experiences made
through socialization, externalization, or a
combination are internalized and integrated
into the individual’s knowledge framework.

Figure 1. Associations and objects of KMDL® v1.1

 2533

Improvement of Software Engineering by Modeling Knowledge-Intensive Business Processes

The internalization is started by an infor-
mation object and ends with a knowledge
object.

• Externalization. Externalization is defined
as the transformation of tacit into explicit
knowledge. The problematical aspect within
this conversion is that important and per-
son-bound parts will get lost, because it is
difficult or, in some cases, impossible to
externalize tacit knowledge. The external-
ization is modeled beginning with at least
one knowledge object and ending with an
information object.

• Socialization. Socialization is defined as
a conversion from tacit to tacit knowledge.
The most common way is by sharing expe-
rience: Just like apprentices of a craftsman
learn skills by observation, a knowledge
worker can learn required abilities through
on-the-job training. The socialization does
not demand for spoken or written words.
Socialization is modeled starting with a

knowledge object of one person to a knowl-
edge object of another person.

• Combination. Combination is the conversion
from explicit to explicit knowledge. During
a combination, one or more information
objects are used to create a new information
object.

Unlike other process modeling tools, the main
focus of KMDL® is to support all four expressions
of knowledge conversion (see Figure 2). It allows a
systematical description of process knowledge and
the identification of all containing information.
Origin and usage of knowledge and information
can be defined as well. A conversion is either
once (continuous line) or repeated (dashed line).

Specification of KMdl® for software
Engineering (KMdl®-sE)

Software engineering is a field of activity with a
high percentage of knowledge-intensive business

Figure 2. Model of the dynamics of knowledge creation

2534

Improvement of Software Engineering by Modeling Knowledge-Intensive Business Processes

processes. Competitive as well as sustainable soft-
ware solutions have to be developed. In addition,
there are factors like a fast-changing technical
basis and a dynamic personnel situation. Modern
software engineering processes have to find a
way between these demands and conditions. An
effective and efficient knowledge transfer within
and between projects is an important factor for
success, especially for an early identification and
estimation of risks.

Besides the description of classical business
processes, KMDL® provides the systematical
identification and analysis of knowledge flows
and transformations. This allows identifying
knowledge monopolies, unused competencies, or
unsatisfied demands. Thereby, actions to enhance
knowledge-intensive processes can be taken. The
development of a new knowledge management
approach specifically for software engineering
is based on the previous version of KMDL®,
which was enhanced toward KMDL®-SE. It en-
ables users to configure knowledge acquisition,
storage, and transfer in software engineering
effectively and efficiently. Starting points of the
KMDL®-SE development were the complex and,
to a high degree, knowledge-intensive software
engineering processes of several business partners
that accompanied the project. The project part-
ners gave significant input in order to determine
requirements and to evaluate the KMDL® meth-
odology (Rombach et al., 1993). Simultaneously,
the K-Modeler tool that supports the modeling of
knowledge-intensive SE processes was developed
and a prototype implemented.

Analysis of potentials with
KMdl®-sE

The K-Modeler automatically identifies and evalu-
ates various design patterns in the modeled pro-
cesses, which hence helps to analyze the process.
These process patterns are derived from known
disadvantageous process elements and structures
found in knowledge-intensive processes (Brown

et al., 1998). The concept of patterns was coined
originally by the architect and mathematician
Christopher Alexander. Patterns can be used to
find solutions for recurring problems, reusing
existing knowledge (Greenfield, 2004; Kirchner &
Jain, 2004). During the 1990s, the concept of pat-
terns and best-practice solutions was transferred
in subareas of software engineering (Gamma et
al., 1995). The principle of patterns is used in
KMDL® to analyze knowledge-intensive busi-
ness processes (KMDL, 2006). Thereby, a single
process pattern describes a specific situation that
repeatedly occurs during these processes. It is an
indicator of hidden process potentials and points
out opportunities for an alternative process design.
During several projects, a multitude of patterns
could be identified:

• Occurrence Patterns. The pattern of oc-
currence shows where specific objects ap-
pear with exceptionally high frequency in
the business processes. If a specific person
frequently occurs in a process, a knowledge
monopoly might be present. The pattern
can show that one person holds knowledge
of high relevance for the process; hence,
problems can surge when this person resigns.
A better responsibility assignment can be a
valid improvement. The occurrence pattern
also can be used to determine the occurrence
of information, knowledge, roles, tasks, and
task requirements objects.

• Multi-Step Patterns. The multi-step pat-
tern category describes a combination of
two conversions, whereby transitions from
tacit to the explicit process level and vice
versa will be analyzed. There is also an
examination of conversion doubling on the
same level. Twelve different combinations of
knowledge conversions are imaginable, but
only some of the combinations can be used
to improve the process design. The multi-
step socialization pattern is one example of a
multi-step pattern in which information gets

 2535

Improvement of Software Engineering by Modeling Knowledge-Intensive Business Processes

lost during a double socialization (Chinese
Whisper).

• Relevance Patterns. Relevance patterns
refer to tasks with a high degree of com-
plexity and knowledge intensity. There are
four types of relevance patterns that indicate
tasks with a great amount of input (knowl-
edge objects, information objects), output
(knowledge objects, information objects),
integrated persons, and task requirements.
A suggestion for improvement can be task
reorganization and, therefore, splitting up
tasks.

• Exclusive Patterns. Two types of the ex-
clusive pattern category are distinguished:
exclusive information and exclusive knowl-
edge pattern. Certain information or knowl-
edge objects are requested very frequently
in the business process. The loss of these
information or knowledge objects can lead
to a process disruption. Therefore, the infor-
mation or knowledge has to be secured, for
example, through externalization of specific
knowledge objects.

• Prerequisite Pattern. The prerequisite pat-
tern describes a person involved in the pro-
cess who has the ability to fulfill a task only
after the generation of knowledge through
socialization with a noninvolved person. The
informal acquisition of knowledge depends
on personal preferences and the personal
social network. A way of improvement can
be the institutionalization of the knowledge
transfer.

Usually, the mentioned patterns cannot be
identified without modeling the business process.
Therefore, modeling knowledge-intensive busi-
ness processes with KMDL®-SE is an important
step to detect strengths and weaknesses. As
soon as the patterns are identified, proposals
to improve the process can be made. This is an
effective way to identify and unleash potentials
systematically.

rEAl-lIfE ApplIcAtIon of
KMdl®-sE

In this section, the application of KMDL®-SE in a
software developing company will be described.
First, the company will be introduced, and then the
main objectives of the real-life example will be ex-
plained. This will provide a better understanding
of usage of KMDL® in software engineering.

The real-life application was carried out
in a small software developing company with
25 employees based in Berlin, Germany. The
company, founded in April 1999, today attends
the entire middle European market. Since its
establishment, the company has offered two
browser-based content- and knowledge-manage-
ment products based on the IBM Lotus Domino
platform. These systems enable the maintenance
of complex Internet, intranet, and extranet sites.
Flexible integration modules provide interfaces
and import and export functionalities. Beneath
the permanent improvements of their standard
software products, the firm also offers professional
consulting, training, and individual development
in conjunction with the product implementation.
To cope with the changing market and client
requirements, the company decided in 2003
to migrate the development environment of its
content management system from IBM Lotus
Domino Platform to IBM WebSphere.

principal objects of the practical
Example

For a reasonable design and analysis of software
engineering processes, an adequate modeling is
fundamental. Therefore, it is of great importance
to consider the knowledge-intensive processes
that occur during the development of new soft-
ware products and even to build the main part
of it. Based on the already existing Knowledge
Modeling and Description Language (KMDL®),
the practical example had two intentions:

2536

Improvement of Software Engineering by Modeling Knowledge-Intensive Business Processes

•	 Analysis of the Existing Software Engi-
neering Processes

 The complete analysis of the existing soft-
ware engineering processes is the first step
in order for a company to reorganize and,
therefore, to improve these processes. All
knowledge conversions and knowledge
carriers have to be identified. Furthermore,
the existent knowledge in the company
should be identified, which could be useful
for future developments. In this real-life
example, the main focus was directed to the
analysis of standard software engineering
processes. As a result, the complete model
of standard software engineering processes
with the existing version of KMDL® could
be presented. By mapping these standard
development processes to one meta-model,
critical points and risks as well as potentials
in the existing software engineering pro-
cesses could be identified. With the help of
KMDL®, an effective redesign for the post
migration processes became feasible.

• Expansion of the Knowledge Modeling
and Description Language (KMDL®) to a
New Specification for Software Engineer-
ing Processes

 The customization of the KMDL® for soft-
ware engineering processes is the starting
point for process reorganization. The exist-
ing version of KMDL® had to be adapted to
the theoretical and practical requirements
of the software engineering processes. The
implementation in practice identified prob-
lems, which led to extensions and revisions
of KMDL®. Putting KMDL® into practice
allowed discovering critical points and insuf-
ficiencies in general. A further intention was
to point out opportunities for improvement
and to check the KMDL® approach for its
relevance in software engineering. Thus,
the drawing of profound conclusions for a
new specification for KMDL® in software
engineering became possible.

KMdl® procedural Model

In order to determine the potentials for process
improvements, a detailed analysis of knowledge-
intensive business processes is required. The
procedural model ensures the correct collection
of data and information (see Figure 3). It is the
basis for KMDL® process models and it was used
in the following real-life example:

After project acquisition and preparation,
it is necessary to identify knowledge-intensive
processes. For this selection, a criteria catalogue
can be used. It consists of more than 30 prop-
erties that are typical of knowledge-intensive
business processes. In the next phase, current
knowledge-intensive business processes are
mapped. KMDL® offers a subprocedure within
the six steps: definition of tasks associated with
the process, identification of the information in-
put and output, assignment of the persons to the
specific roles, executing the task, specification
of the role requirements, and assignment of the
knowledge objects to the accompanying person.
During the third phase, the modeling is realized
with the K-Modeler tool. After going through
the six steps, possible process improvements can
be generated. The next step is to implement the
recommendations in practice.

Detailed mapping of the knowledge-intensive
business process is a requirement for the analysis
and evaluation of potential improvements of the
process. The analysis of the process contains the
identification of knowledge intensity, the process
scheme, and process potentials (weak spots).
As-is models illustrate the ownership, demand,
development, and use of knowledge. Further on,
it is possible to visualize the knowledge intensity
on a knowledge map for the entire process, a pro-
cess part or for a single activity of the respective
tasks. This procedure allows a classification of
single tasks or the weighting of their relevance.
The results are used for recommendations of
technical and organizational improvements.
The comparison of as-is models of different in-

 2537

Improvement of Software Engineering by Modeling Knowledge-Intensive Business Processes

stances from the same process is useful in order
to generate universally valid statements about
process elements and element relations. Selected
knowledge-based activities should be examined
in order to identify specific patterns. It is recom-
mended to extend the existing reference processes
with this information in order to support future
participants of the process.

process Modeling in software
Engineering

In this case, three process instances of software
engineering were modeled following the KMDL®
procedural model. The individual process instanc-
es are used to derivate an organization-specific
process model for the company. An organization-

Figure 3. KMDL® procedural model

Figure 4. Extended organization-specific process model

2538

Improvement of Software Engineering by Modeling Knowledge-Intensive Business Processes

specific process model describes the approximated
process flow and contains only all information
objects and tasks, which can be found in most of
the process instances.

In the next step, the organization-specific
process model was enhanced with roles, persons,
task requirements, and knowledge objects from
the process instances in order to derivate conclu-
sions for future software engineering processes.
The resulting model is called extended organiza-
tion-specific process model (see Figure 4). This
model shows the process flow in the company
containing all knowledge conversions. With
ease, existing conversions within the software
engineering process can be recognized. With
these conclusions, the intended conversions can
be supported directly.

Identification of process patterns

The following section describes the most impor-
tant patterns that were identified several times in
the business processes of the described software
engineering company. They were used to optimize
these processes as well as to improve the software
engineering specification of KMDL®.

Person Occurrence Pattern

A frequent occurrence of a certain person in one
process can be interpreted in two ways: First,
frequent occurrence might indicate an unwanted
knowledge monopoly. Second, frequent occur-
rence might classify the person as a specialist
who supports his colleagues efficiently. Anyway,
problems may surge if the specialist leaves the
company and new employees are hired, because
the new employees now might have the same
expertise. A way to solve this issue can be the
distribution of knowledge within the company.
As a conclusion for the real-life example, newly
hired employees socialized tacit knowledge from
the specialist. In the future, the new employees are
expected to take over the specialist’s tasks, thereby
replacing him. A major conclusion for modeling
knowledge-intensive processes in software engi-
neering is that important enterprise knowledge is
frequently based on individual employees.

Figure 5 shows the KMDL® person occurrence
pattern: person A is needed for all tasks within a
subprocess. The person occurrence pattern (see
Table 1) belongs to the family of occurrence pat-

Figure 5. Person occurrence pattern

 2539

Improvement of Software Engineering by Modeling Knowledge-Intensive Business Processes

Figure 6. Two-step socialization pattern

Table 1. Person occurrence pattern description

Purpose Identification of monopolies and specialists
Description A person is involved in many tasks within the process
Involved KMDL®-
Objects

Person

Problem
Process-specific knowledge is held only by a single person.
Problems can surge if this person is absent

Solution Improved responsibility assignment

terns, such as task-, information-, knowledge-,
role- and requirements-occurrence pattern.

Two-Step Socialization Pattern

The next pattern that could be identified within
process modeling is a two-step socialization
pattern (see Figure 6 and Table 2). This pattern
is also known as Chinese whisper and belongs
to the multi-step pattern family. It describes a

transitive conversion between two persons (person
A socializes person B, and person B socializes
person C). Instead of a direct communication
between person A and C, two socializations take
place. Results of transitive conversion can be
lost or modified information. This problem can
be solved through a direct socialization. In the
real-life example, German and English language
skills were of significant importance. The software
developers spoke only English, while the product

2540

Improvement of Software Engineering by Modeling Knowledge-Intensive Business Processes

consultants spoke German. The consultants were
the middlemen between customers and developers
because the software developers could not com-
municate with the customers due to not being
able to speak the German language. The software
developers were instructed what consultants
believed the customer wanted. This was one of
the main sources of errors. To solve the issue, a
new developer who spoke German and English
was recruited. This enabled a correct translation

of customer wishes into technical requirements,
bypassing the consultants.

team relevance pattern

The team relevance pattern (see Figure 7 and Table
3) describes the complexity of many tasks that
cannot be completed by a single person. There-
fore, the task requirements are very extensive and
diversified. It is necessary that several persons

Table 2. Two-step socialization pattern description

Purpose Identification of knowledge deformations

Description
Identical knowledge objects are transferred more than once on the tacit
process level

Involved KMDL®-
Objects

Persons, knowledge objects, socializations

Problem Lost information due to indirect communication (Chinese whisper)
Solution Support for direct communication, knowledge externalization

Figure 7. Team relevance pattern

 2541

Improvement of Software Engineering by Modeling Knowledge-Intensive Business Processes

and roles be put together in order to fulfill the
task successfully. It is not always a competitive
advantage to reduce the number of persons within
a process step. Especially knowledge-intensive
business processes are characterized though
complexity and often require a high degree of
creativity and teamwork. Nevertheless, it can be
useful to divide one task into subtasks, which can
reduce complexity and make it easier to manage
the task within the process.

requirement-oriented team
building

Requirement-oriented team building can be re-
alized through KMDL®. In order to guarantee a
successful task realization, it is essential to build
teams according to the requirements that have
to be fulfilled. The team-building component is
based on a term: taxonomy (see Figure 8). To clarify
the functionality of the algorithm, Table 5 shows a
repository including all the involved persons and
their knowledge objects. These objects can be recov-
ered in the taxonomy. Only red-marked terms are
important for the real-life example; the remaining
terms are relevant only in order to understand the
full software engineering context.

A basic condition for the team-building com-
ponent is a task. A task is defined by a couple
of requirements that have to be fulfilled by a
number of persons. In the practical example, a
Linux server was purchased, and a Java-based
application for Lotus Notes/Domino had to be
developed. Therefore, the following requirements
(see Table 4) had to be fulfilled by the team.

First of all, a matrix has to be set up consist-
ing of task requirements and available knowledge
objects (see Table 6). It can be recognized that
Peter will not be considered, because he lacks the
required knowledge object Java. Skills that are
essential for all of the team members are marked
(*). Requirements of particular importance and a
high weighting will be indicated with (**).

Three teams were proposed to accomplish the
task (see Table 7):

1. Mary (as a single person because she holds
all the required knowledge objects)

2. Steve und Mary
3. Jane und Mary

The three proposed teams do not completely
fulfill the requirements. More specialized or more
general knowledge is available to close the gap.

Table 3. Team relevance pattern description

Purpose Identification of important teams
Description Many persons are involved within one task
Involved KMDL®-
Objects

Task, persons

Problem
A task is too complex to be worked out by a
single person

Solution A number of subtasks can reduce complexity

2542

Improvement of Software Engineering by Modeling Knowledge-Intensive Business Processes

Figure 8. Knowledge taxonomy (extract)

Table 4. Necessary requirements

Necessary Knowledge (amount of
persons)

Weight
8/8

Operating systems at least one person 1/8
Linux at least one person 1/8

Database systems at least one person 1/8
PostgreSQL at least one person 1/8

Lotus Notes/Domino at least one person 2/8
XML at least one person 1/8
Java every team member 1/8

 2543

Improvement of Software Engineering by Modeling Knowledge-Intensive Business Processes

Table 5. Repository of persons

Steve Peter George Jane Mary

Operating systems,
Windows XP, Linux, Lotus
Notes/Domino, Java

Database
systems,
Oracle, DB2

HTML, XML,
Java, DB2

Programming,
Lotus Notes/
Domino, Java,
Windows XP

Linux, database
systems,
PostgreSQL, Java,
programming

Table 6. Team-building matrix

Operating
systems

Linux
Database-
systems

PostgreSQL
Lotus Notes/
Domino**

XML Java*

Steve 0 0 -5 -5 0 -5 0
Peter -5 -5 0 -1 -5 -5 -5

George -5 -5 +1 -5 -5 0 0
Jane +1 -5 -5 -5 0 -2 0
Mary +1 0 0 0 -1 -2 0

Table 7. Staffing algorithm results and team choice

Expert Search Team Search Covering rate
Efficiency (covering rate/

persons)
1 person Mary 4/8 0,50
2 persons Steve, Mary 7/8 0,43

George, Mary 5/8 0,31
Jane, Mary 6/8 0,37

3 persons Steve, Mary, George Steve, Mary, George 8/8 0,33
Jane, Mary, George 7/8 0,29
Jane, Steve, Mary 7/8 0,29

4 persons
Steve, Mary, George,

Jane
Steve, Mary, George,

Jane
8/8 0,25

2544

Improvement of Software Engineering by Modeling Knowledge-Intensive Business Processes

Within the expert search, only the team of Steve,
Mary, and George are proposed.

gEnErAl conclusIon And
futurE prospEcts

Applied to knowledge-intensive software engi-
neering processes, KMDL® has proven to be a
working concept. Current research focuses on
the analysis of KMDL® process models in order
to identify possible process improvements. The
real-life example showed that the application of
knowledge management can increase productivity
in software engineering. By pointing out process
patterns, potential improvements were identified.
Therefore, long-winded coordination processes
could be accelerated and optimized. But it has
to be considered that knowledge management
activities will be accepted by employees only if
the advantages are clearly shown and the required
effort is kept within a limit.

Based on the research results as well as the
successful commercial implementation, KMDL®
v1.1 now builds the backbone for the current devel-
opment of KMDL® v2.0. The focus on knowledge
conversions and the extension of the theory of
Nonaka et al. leads toward a more powerful method
that represents the actual conducted knowledge
transfer, application, and creation. By introducing
methods for the knowledge conversions, it is easy
to distinguish the different knowledge conversions
and to classify them. Therefore, they contribute to
the expressiveness of the language. On the other
hand, this can be used to identify best practice
methods in the analysis of knowledge-intensive
processes. In KMDL® v2.0 the introduction of
information systems will extend the opportunities
of the method and, thereby, consider technical
aspects of the knowledge-intensive process. This
provides an integrated view on the subject matter.
The knowledge management strategy, therefore,
can be arranged by considering the organizational,

cultural, and technical aspects. The KMDL® v1.1
has been applied successfully in commercial and
research projects. The next step with KMDL® v2.0
is the application of the method in real-life projects
to measure the benefits of the improvements and
to draw conclusions from the application of the
method. Besides this, the analysis methods of
KMDL® v1.1 that have been applied successfully
in different projects have to test for KMDL® v2.0
now. Actual research in the field of KMDL® copes
with skill management and staffing support for
KMDL® v2.0, simulation of knowledge-inten-
sive business processes, process-model-based
configuration of knowledge management tools,
interorganisational knowledge management, and
semantic annotation of process models.

rEfErEncEs

Abran, A., Moore, J.W., Bourque, P., Dupuis, R.,
& Tripp, L.L. (2004). Guide to the software engi-
neering body of knowledge. Swebok®: A project of
the software engineering coordination committee
(1st ed.). IEEE Computer Society Press.

Brown, W.J., Malveau, R.C., McCormick, H.W., &
Mowbray, T.J. (1998). AntiPatterns: Refactoring
software, architectures, and projects in crisis.
John Wiley & Sons.

Davenport, T.H., & Prusak, L. (2000). Working
knowledge. Harvard Business School Press.

Eppler, M., Seifried, P., & Röpnack, A. (1999).
Improving knowledge intensive processes through
an enterprise knowledge medium. In Proceedings
of the 1999 Conference on Managing Organiza-
tional Knowledge for Strategic Advantage: The
Key Role of Information Technology and Person-
nel, New Orleans, Louisiana.

Gamma, E., Helm, R., Johnson R., & Vlissides,
J. (1995). Design patterns. Addison-Wesley.

 2545

Improvement of Software Engineering by Modeling Knowledge-Intensive Business Processes

Greenfield, J., Short, K., Cook, S., Kent, S., &
Crupi, J. (2004). Software factories: Assembling
application with patterns, frameworks, and tools
(1st ed.). Wiley.

Groff, T.R., and Jones, T.P. (2003). Introduction
to knowledge management: KM in business. But-
terworth-Heinemann.

Gronau, N., & Weber, E. (2004). Modeling of
knowledge intensive business processes with the
declaration language KMDL®. In Proceedings of
the Information Resources Management Associa-
tion International Conference.

Gronau, N., & Weber, E. (2004a). Management
of knowledge intensive business processes. In J.
Desel, B. Pernici, & M. Weske (Eds.), Business
process management (pp. 284-287). Heidelberg:
Springer.

Gronau, N., Müller, C., & Uslar, M. (2004). The
KMDL® knowledge management approach: In-
tegrating knowledge conversions and business
process modeling. In D. Karagiannis, & U. Reimer
(Eds.), Practical aspects of knowledge manage-
ment (pp. 1–11). Berlin: Springer-Verlag.

Gronau, N., Müller, C., & Korf, R. (2005).
KMDL®—Capturing, analysing and improving
knowledge-intensive business processes. Journal
of Computer Science, 4, 452–472.

Hamel, G., & Prahalad, C.K. (1990). The core
competence of the corporation. Harvard Business
Review 68(3), 79-91

Heisig, P. (2002). GPW-WM: Methoden und
werkzeuge zum geschäftsprozessorientierten
wissensmanagement. In A. Abecker, K. Hinkel-
mann, & M. Heiko (Eds.), Geschäftsprozessori-
entiertes wissensmanagement (pp. 47–64). Berlin:
Springer.

Inkpen, A.C., & Dinur. A. (1998). Knowledge
management processes and international joint
ventures. Organization Science, 9(4), 454–468.

Kim, S., Hwang, H. & Suh, E. (2003). A process-
based approach to knowledge-flow analysis: A
case study of a manufacturing firm. Knowledge
and Process Management, 10(4), 260–276.

Kirchner, M., & Jain, P. (2004). Pattern-oriented
software architecture: Pattern for resource man-
agement. John Wiley & Sons.

KMDL. (2006). Knowledge modeling and descrip-
tion language. Retrieved March 30, 2006, from
http://www.kmdl.de

Mertins, K., Heisig, P., Vorbeck, J., and Mertens,
K. (Eds.). (2000). Knowledge management: Best
practices in Europe. Springer.

Nissen, M.E. (2002). An extended model of
knowledge-flow dynamics. Communications
of the Association for Information Systems, 8,
251–266.

Nissen, M.E., & Levitt, R.E. (2004). Agent-based
modeling of knowledge dynamics. Knowl-
edge Management Research & Practice, 2(3),
169–183.

Nonaka, I., & Takeuchi, H. (1995). The knowledge-
creating company: How Japanese companies
create the dynamics of innovation. New York:
Oxford University Press.

Polanyi, M. (1958). Personal knowledge—To-
wards a post-critical philosophy. Chicago: The
University of Chicago Press.

Remus, U. (2002). Process oriented knowledge
management: Concepts and modeling. Doctoral
thesis, University of Regensburg, Germany.

Rombach, H.D., Basil, V.R., & Selbey, R.W.
(1993). Experimental software engineering is-
sues: Critical assessment and future directions.
In Proceedings of the International Workshop,
Dagstuhl Castle, Germany.

Schmidt, S.R., Kiemele, M.J., and Berdine, R.J.
(1996). Knowledge based management: Un-

2546

Improvement of Software Engineering by Modeling Knowledge-Intensive Business Processes

leashing the power of quality improvement. Air
Academy Press.

Van der Aalst, W.M.P (1998). Formalization
and verification of event-driven process chains.
Eindhoven: Computer Science Reports.

EndnotE

1 http://www.m-wise.de

This work was previously published in the International Journal of Knowledge Management, edited by M. Jennex, Volume 2,
Issue 4, pp. 32-51, copyright 2006 by IGI Publishing (an imprint of IGI Global).

 2547

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6.13
A Relative Comparison of

Leading Supply Chain
Management Software

Packages
Zhongxian Wang

Montclair State University, USA

Ruiliang Yan
Indiana University Northwest, USA

Kimberly Hollister
Montclair State University, USA

Ruben Xing
Montclair State University, USA

AbstrAct

Supply Chain Management (SCM) has proven
to be an effective tool that aids companies in the
development of competitive advantages. SCM
Systems are relied on to manage warehouses,
transportation, trade logistics and various other
issues concerning the coordinated movement of
products and services from suppliers to customers.
Although in today’s fast paced business environ-
ment, numerous supply chain solution tools are

readily available to companies, choosing the right
SCM software is not an easy task. The complex-
ity of SCM systems creates a multifaceted issue
when selecting the right software, particularly in
light of the speed at which technology evolves.
In this paper, we use the approach of Analytic
Hierarchy Process (AHP) to determine which
SCM software best meets the needs of a company.
The AHP approach outlined in this paper can be
easily transferred to the comparison of other SCM
software packages.

2548

A Relative Comparison of Leading Supply Chain Management Software Packages

IntroductIon

A supply chain represents the veins of a busi-
ness; it is a network of facilities and distribution
options that perform the functions of material
procurement, the transformation of materials into
intermediate and finished products, and finally
the distribution of finished products to custom-
ers. Supply chains are not specific to any one
industry; they are inherent in both manufacturing
and service based organizations. Supply chains
do however vary in complexity from industry to
industry and even firm to firm. The process of
managing supply chains is a multi-billion dol-
lar software industry; the worldwide market for
SCM software topped an estimated $6 billion
in 2006 and is expected to reach $10 billion by
2010 (a compound annual growth rate of 8.6%)
(Trebilcock, 2007).

Supply chains are evolving to meet the
changing requirements of the companies trying
to manage them. A few years ago simply hav-
ing full visibility of your own supply chain was
seen as extraordinary. Now that visibility is no
longer enough; companies need to be agile in
respect to their supply chain (Croom, Romano,
& Giannakis, 2000; Bartels, 2006). Companies
need to make educated business decisions based
upon the information captured in their informa-
tion systems.

SCM systems are used to coordinate the move-
ment of products and services from suppliers to
customers (including manufacturers, wholesal-
ers, and retailers). The system’s main objective
is to manage warehouses, transportation, trade
logistics and various other issues concerning
facilities and the movement and transformation
of materials en-route to customers.

The components of SCM include (but are not
limited to) supply chain event management and
optimization, warehouse management, radio
frequency identification (RFID), transportation
management, demand management, supplier rela-
tionship management, and service parts planning.

Beyond the traditional elements, SCM software
has also incorporated modules for international
management; this is the direct result of the growing
need for businesses to manage supply chains that
include a mix of global suppliers, manufacturers,
and company owned plants. In fact, the bursting
demand for global SCM has led the upsurge in
the worldwide market for SCM systems (Aksoy
& Derbez, 2003; Das & Buddress, 2007; Hill,
2007).

why compare?

Research has found that the typical U.S. manu-
facturer is managing an average of more than
30 contract relationships (Trebilcock, 2007).
Wholesalers are distributing to worldwide re-
tailers and jobbers for resale; and retailers now
staff virtual storefronts that service customers
globally. The growing supply chain requires a
management system that is efficient and caters
to the needs of each enterprise. The benefits of
implementing an appropriate SCM system in-
clude: Increased top-line profit growth through
supplier teamwork; Reduced inventory carrying
costs and stock-outs; Increased customer service;
Supply chain visibility; Optimization of the value
chain respective to cost reduction and bottom-line
improvement; Reduced corporate-wide operating
costs; Increased competitiveness; and Quick ad-
aptation to changing markets without detriment
to customers.

However, since SCM system implementation
is typically not a small scale operation, there are
inherent managerial risks. For example, within
businesses with several facilities, partners, and
departments etc., a legacy or manual SCM system
can lead to bottlenecks. There are cases where
the appropriate SCM application is chosen but it
does not sufficiently integrate with the rest of the
enterprise software applications. In some cases,
the wrong SCM application is chosen (perhaps to
cut costs or due to poor information); the result is
that the whole business from sourcing to distribu-

 2549

A Relative Comparison of Leading Supply Chain Management Software Packages

tion is negatively affected. Efficient SCM provides
immense benefits; a well-run value chain should
positively impact an organization’s profitability
and success.

supply chAIn MAnAgEMEnt
softwArE

While there are a number of SCM software
providers, the major players have maintained
their top positions. For example, in 2005 the top
5 ranked providers were Manhattan, RedPraire,
SSA Global, Swisslog, and SAP AG (O’Neill,
2005); in 2007 the top 5 spots were manned by
Manhattan, RedPraire, SAP, Oracle and Infor
(who swallowed up SSA) (Trebilcock, 2007). In
selecting SCM software vendors to compare for
this study, the following criteria were utilized:

• Limited to those providers offering world-
wide solutions

• Limited to vendors whose SCM systems
include the following minimum components:
Warehouse Management Systems (WMS),
Transportation Management Systems
(TMS) and Warehouse Control Systems
(WCS),

• Limited to 7 software vendors in the study
(use of Expert Choice limited us to 7 alter-
natives).

Based on criteria outlined above we have
elected to compare the following 7 software
vendors:

• Aldata – Aldata SCM
• HighJump - HighJump SCM
• Infor – Infor SCM
• Manhattan Associates – Integrated Logistics

Solutions
• Oracle – Oracle E-Business Suite Supply

Chain Management - R12

• RedPrairie – E2e
• SAP – SAP SCM

decision tool

To aid in the comparison of our selected SCM
systems, we have relied on Expert Choice 11.5
(EC11.5). The key functions of EC11.5 are: to
structure by identifying objectives and criteria for
evaluating the decision at hand and the potential
alternatives; to evaluate the objectives and alterna-
tives; to synthesize by combining hard numbers
and intuitive judgments (math and psychology) to
value the alternatives via sensitivity analyses and
exploring “what if” scenarios (Expert Choice Inc.,
2007). By relying on EC11.5 we can understand
the trade-off of weighing certain choice criteria
differently.

It is possible to yield the best alternative via
EC11.5 using the Analytical Hierarchical Process
(AHP). AHP is based on mathematics and hu-
man psychology; the process deals with complex
decision making by providing a framework for
arranging the criteria, quantifying them, and
relating the elements to the overall goal. The
AHP method breaks down the decision into
a hierarchy of more clearly stated sub-issues
(where each issue is treated independently); once
the hierarchy is built, the numerous alternatives
are reduced to a series of pair-wise comparisons
for synthesis. Those judgments are converted to
numerical values that are processed, evaluated
and compared over the whole scope of the issue.
Because a numerical priority (weight between 0
and 1) is assigned to each element, AHP allows
non-comparative elements to be compared in a
consistent way. Finally, AHP produces numerical
priorities and the choice of the best alternative
simply becomes ranking the software packages
in order of preference (Saaty & Vargas, 2006;
Saaty, 1980; 1996; 2001; 2005).

In the following section, we briefly discuss
features offered in each of our seven chosen soft-

2550

A Relative Comparison of Leading Supply Chain Management Software Packages

ware alternatives. Based upon this information,
each alternative software package will be scored
with respect to our evaluation criteria; these
scores form the basis for pair-wise comparisons
used in the AHP.

Aldata (Aldata scM)

Aldata is one of the global leaders in supply
chain software for retail, wholesale and logis-
tics companies. The company’s comprehensive
range of SCM and In-Store solutions enable
more than 300 customers across 50 countries to
enhance productivity, profitability, performance
and competitiveness. The majority of Aldata’s
customers are located in Western Europe; they
primarily service small and medium size super-
market chains but also provide service to larger
companies including Bosch and Merck. Aldata
has won the IT Europa’s European IT excellence
award (General Business News, 2008).

Aldata invests heavily in research and develop-
ment within the SCM unit. The G.O.L.D. product
family is being further developed and the current
version six of the software will remain the core
platform for the coming years. Major launches
were the new G.O.L.D. Track modules, a federa-
tion module for providing integrated traceability
across business networks, and G.O.L.D. Mobile, a
module providing mobility in the retail store and
enabling store operations such as stocktaking,
receiving and price control using PDAs or radio
frequency terminals (IHL Group, 2006). The
company does not provide any other enterprise
management solutions.

highJump (highJump scM)

HighJump, a 3M Company, offers standard func-
tionality but leverages best practices in order to
meet the clients’ immediate operational disciplines
while increasing efficiencies. HighJump software
highlights its vertical-specific adaptability which
enables solutions to fit a variety of customer re-

quirements in industries that include aerospace,
automotive, consumer goods, direct store delivery
(DSD), discrete manufacturing, food and bever-
age, wholesale distribution/industrial production,
document management, and publishing.

HighJump implants a best-practice advan-
tage implementation methodology which fo-
cuses on budgeting and aligning clients’ interests.
HighJump offers in-depth training courses aimed
at preparing clients to administer their software
solutions and 24/7 staffed customer support.
Furthermore, HighJump organizes an annual
user conference where HighJump industry ana-
lysts, employees, partners and customers meet to
brainstorm the latest trends in execution; custom-
ers get the opportunity to learn how to leverage
SCM solutions to achieve increased efficiencies
and maintain competitive advantage.

The software architecture and hardware plat-
forms include the following: Main Languages:
C++; .net; C-sharp; DMBS; SQL Server; Oracle;
and a 4GL: HighJump adaptability tool set. The
software pricing ranges from $100,000 to $250,000
and is dependent on the number of concurrent
users. The target market for HighJump includes
logistics/distribution, batch, repetitive, job shop,
discrete, process, continuous flow, and project
manufacturing which translates to industries that
include health care, pharmaceuticals, automotive,
grocery, food, apparel, 3PL, and audio.

HighJump integrates source-to-consump-
tion solutions that contain four critical elements
including rapid return on investment, a global
execution platform that allows all applicants to
work together seamlessly, ease of configuration
to empower strategic competitive advantage, and
best practices based functionality to solve core
logistic challenges

Infor (Infor scM)

Infor is a large size software developer that
provides very strong management resource solu-
tions. The company offers its products as separate

 2551

A Relative Comparison of Leading Supply Chain Management Software Packages

modules for various enterprise functions, includ-
ing: Manufacturing, Supply Chain Management,
Financials, Project Management (PM), Human
Resources, and Customer Relationship Manage-
ment. Infor also offers an all-inclusive Enterprise
Resource Planning Suite (ERP). Their products
are implemented worldwide.

Built on Open SOA (service-oriented ar-
chitecture), Infor’s logistics software provides
advanced customization, which is not limited to
any specific platform.

Due to high levels of customization, there are
high setup costs in switching to the Infor’s soft-
ware. Due to high setup costs, Infor has historically
targeted medium and large size businesses with
sales in excess of $50,000,000. Recently, Infor
announced a new ERP solution targeting small to
medium size distributors (ERP FACTS). In target-
ing smaller firms, Infor has developed numerous
industry specific basic modules that do not need
costly customization; this has put them in a very
cost advantage position when compared with
their industry competition. Infor’s SCM solutions
range from $2,000 to $100,000+; solutions at the
higher end of the price range tend to be solutions
that have been extensively customized.

Manhattan Associates (Integrated
logistics solutions)

Manhattan Associates is a leading supply chain
solutions provider. The company’s supply chain
planning, supply chain execution, business intel-
ligence, and business process platform capabilities
enable its more than 1200 customers worldwide
to enhance profitability, performance and com-
petitive advantage. Unlike some of the other
companies that provide SCM tools in addition
to other non-SCM solutions, Manhattan Associ-
ates is engaged almost exclusively in the SCM
solutions field. Much of their operational results
company acquisitions.

Manhattan Associates targets companies
in the retail, distribution, transportation, and

manufacturing industries; their modules include
warehouse, transportation, trading partner, dis-
tributed order, and reverse logistics management
applications. Manhattan also offers performance
management and radio-frequency identification
tools designed to enhance the functionality of its
other products. Manhattan’s “Atlanta facility lets
customers evaluate technology and equipment
before adding RFID to supply-chain operations”
(Malykhina, 2005, P.1). The company sells third-
party hardware, including bar code scanners and
printers, and also provides professional services.
Manhattan Associates has been expanding their
operations through new product offerings. Ac-
cording to Trebilcock (2007), “In 2001 Manhattan
was the No.1 provider of warehouse management
systems, with just more than $100 million in rev-
enue. Today, Manhattan is a nearly $300 million
company, offering transportation management,
supplier collaboration and supply chain planning”
(P. 47). Manhattan offers customer service on a
24 hour /7 days a week basis.

oracle (oracle E-business suite
supply chain Management - r12)

With Oracle SCM (OSCM), companies can build
and operate world class value-chains for profit-
able growth. The Oracle E-Business Suite Supply
Chain Management (R12) family of applications
integrates and automates all key supply chain
processes, from design, planning and procure-
ment to manufacturing and fulfillment, providing
a complete solution set to enable companies to
power information-driven value chains. Com-
panies can anticipate market requirements and
risks, adapt and innovate to respond to volatile
market conditions, and align operations across
global networks. A unified data model provides a
single, accurate view of your entire supply chain.
Companies can implement lean, demand driven
principles and manage their increasingly complex,
global supply chains.

2552

A Relative Comparison of Leading Supply Chain Management Software Packages

OSCM consists of a variety of separate ap-
plications which are categorized by supply chain
segments. Depending on a company’s needs, a
wide variety of applications are available. Some
of the basic benefits of OSCM include real time
supply chain measurements as a result of a di-
rect connection with suppliers and customers,
expense management for all categories of goods
and services, analytical support to monitor the
performance of a company’s supply and the ability
to make adjustments.

Oracle has been rapidly expanding its SCM
software business, primarily through the acqui-
sition of smaller, more specialized businesses.
Oracle has adopted an acquisition strategy in order
to accelerate its software innovations. Previous
acquisitions include People Soft and Demantra.
As a result of the acquisitions, Oracle is focusing
its next generation of products on integration and
the ability for these programs to communicate
and share information with each other.

redprairie (E2e tM suite)

E2e offers customers supply chain execution, store
management, logistics, and warehouse manage-
ment software that can assist or manage all facets
of their business. E2e allows for monitoring and
control from inbound logistics and inventory
management to order fulfillment and transporta-
tion. Collaboration tools are included to assist in a
company’s daily efforts to collaborate or interact
with trading partners.

Every industry is being challenged with in-
creasingly complex multi-channel demands, es-
pecially from the end consumer of their products.
The ability to respond to create perfect, custom-
ized, and timely orders is a critical competitive
advantage to meet consumer expectations, reduce
inventory and storage costs, and streamline opera-
tions (Report, 2006).

RedPrairie considers themselves unique in the
SCM software industry in their effort to incorpo-
rate change management, learning management,

interactive training, comprehensive online help,
and customized learning and reference materials
into their offerings. Companies implementing
their suite of tools can leverage real ROI, mini-
mize downtime due to obstacles, and move toward
near 100% efficiency which increases companies
core advantage. RedPrairie’s support centers are
located globally and offer full language capa-
bilities in addition to leading-edge call tracking
capabilities for reliability.

RedPrairie’s ability to configure their software
suites into practical groupings and components
allows them to offer build-to-order manufactur-
ing solutions that include sophisticated in-line
sequencing which can lead to reduced cost and
increased efficiency. The result is that all compo-
nent levels can be tracked, revised and/or updated
keeping all elements in synchronization. This
capability is enhanced when used in conjunc-
tion with RedPrairie’s warehouse management
system (WMS).

sAp (sAp scM)

SAP is the world’s largest business software com-
pany and the world’s third – largest independent
software vendor. By building the strongest technol-
ogy, services and development resources, SAP is
positioned to deliver a superior business platform
that can access valuable information resources,
while improving overall process efficiencies and
strong customer relationships including end users,
suppliers and vendors. SAP’s integrated packages
allow customers’ needs to be identified quickly
and precisely while comprehensive and personal
solutions are developed and rolled out.

SAP’s services assists companies in maxi-
mizing their success through a combination of
SAP experts, methodologies, tools, and certified
partners. Users of SAP SCM can benefit with the
following: Faster response to changes in supply
and demand that will give customers the chance to
quickly capitalize on new opportunity; Increased
customer satisfaction- SAP SCM enables clients

 2553

A Relative Comparison of Leading Supply Chain Management Software Packages

to better adapt to changes and meet customer de-
mand; Compliance with regulatory requirements;
Improved cash flow; and Higher margins- SAP
SCM helps companies lower operational expenses
with more timely planning for procurement,
manufacturing and transportation. Using SAP
SCM companies can also improve their overall
performance and quality through better order,
product, and execution synchronization.

SAP SCM delivers a complete set of futures
and functions for building adaptive supply chain
networks. SAP SCM includes features and
functions to support collaborative supply chain
planning processes, including strategic, tactical,
and operational planning as well as service parts
planning. By using SAP SCM, a company can
optimize a full range of planning activities in-
cluding: demand planning, safety stock planning,
supply network planning, distribution planning,
and supply network collaboration. The company
can also handle service parts planning activities,
which includes: parts demand planning, parts
inventory planning, parts supply planning, parts
distribution planning, parts monitoring. With SAP
SCM the company can manage order fulfillment
activities, support end-to-end procurement, man-
age key transportation processes, manage ware-
house activities, support all production processes
including engineer-to-order, make-to-order, and
make-to-stock manufacturing. SAP SCM also
supports supply chain visibility design and analyt-
ics with features and functions that enable supply
chain design and analytics processes. Planners
and key decision makers can perform strategic
and tactical business planning.

rElAtIvE coMpArIson

criteria revisited

In order to conduct our analysis we will use se-
lected quality criteria to assess software charac-
teristics. With the help of Expert Choice software,

we will first compare the relative importance of
each of the criteria against each other.

• Ease of Integration: the ability to integrate
with any third party software platforms
(vendors, government clearance computers,
ocean carriers, etc.) and any other propri-
etary software or legacy systems.

• Reliability and Stability: any warranties
provided by the vendor in addition to the
degree of completeness, accuracy, and con-
sistency of the package. The availability of
any templates or custom models available
for specific aspects of the supply chain.

• Efficiency: the level of accessibility and ef-
ficiency; how well the software functions are
aligned with the general business objectives
as well as the number of tools available.

• Customization and Expansion potential: the
degree to which the product supports the
specific business goal assumptions and the
tools available for SCM respective to the
specific needs of the client company. Also,
the degree of augmentation ability and the
ability to evolve over time and expand as
well as any expert options or limitations.

• Service and Support: the availability of
support services coupled with the time it
takes to have a technician to be available
on site or on the network. The availability
of technicians that are specialized in the
particular industry the SCM is being utilized
(transportation versus warehouse manage-
ment, retail versus wholesale etc.). Any extra
perquisites such as annual conferences.

• Mobility and Portability: is a measure of
platform independence; the number of sup-
port platforms and supported architecture as
well as any software requirements needed
to run the software.

• Ease of Interface: shows how well the soft-
ware communicates with the outside world,
the quality of human machine interface, and
how results are displayed.

2554

A Relative Comparison of Leading Supply Chain Management Software Packages

• Pricing: the base price of the product, and/or
range of the price for “basic” packaging
respective to the SCM applications.

Evaluation Model

Our evaluation criteria, as entered in Expert
Choice, are as follows:

• Ease of Integration – evaluated in terms
of:
• Time
• Number of platforms supported
• Support for open source developers
• Reliability and Stability – evaluated

in terms of:
• What classes of models does the ap-

plication support?
• If the application allows custom model

creation, templates or both.
• The reputation of the vendor supplying

the tool
• Efficiency – measured in relation to:

• How well the software supports the
general business objectives?

• Data processing capacity and speed.
• Customization – evaluated in terms of:

• How well the product supports the
general business goal assumption?

• Specific tools available respective to
the specific needs of the client com-
pany.

• Expansion – evaluated in terms of:
• The degree of augment ability
• The ability to evolve over time and

expand (i.e. available upgrades)
• Any expert options or limitations

• Service and Support – evaluated in terms
of:
• Any available demos
• Turnaround time for on site or network

tech availability
• Specialization of the techs in the re-

spective industry

• Any additional perks (i.e. annual
conferences, 24/7 service etc.)

• Mobility and Portability – evaluated in terms
of:
• Hardware platform
• Software architecture
• Software requirements

• Ease of Interface – evaluated in terms of:
• Simplicity of human machine inter-

face
• Result displays
• Graphical layout

• Price (where available) – evaluated in terms
of:
• The price range provided – the lower

of the range and the mean served as
the rating criteria.

procEdurE of EXpErt choIcE:
short EXAMplE

Providing an example of Expert Choice on a small
scale helps to describe the method behind pair-
wising and making the best decision regarding
which SCM Software to choose contingent on
our criteria. To provide a small scale example we
implemented five criteria against our objective and
compared three SCM software applications.

The pair–wise weights were assigned to the
criteria initially chosen; the decisions were based
on available information and which criteria out-
weighed their pair. The result is the prioritized
listing of criteria respective to the objective – in
this case selecting the best SCM software. Expert
Choice allows for normalization in order to bet-
ter understand the weighting scheme – in other
words these small scale results recommend that
Pricing is more than twofold the importance of
Portability. In addition, the inconsistency is very
low at only 2%; the logic behind assigning weights
(importance) to each criterion remained consistent
within each pair-wise comparison.

 2555

A Relative Comparison of Leading Supply Chain Management Software Packages

We chose three alternative SCM Software
packages (Infor, SAP & Oracle) for the short
example to exhibit the functions of AHP relied
on by Expert Choice. We proceeded to perform a

pair-wise comparison of all our software solution
alternatives based on each established criteria.
Based on strengths and weaknesses determined
about each software; we analyzed the components

Figure 2. Presents the introduction of alternative SCM software packages analyzing pricing

Figure 1. Presents the prioritized criteria after the initial weight assignments

2556

A Relative Comparison of Leading Supply Chain Management Software Packages

of each criterion on a case by case basis. The
detailed level of analysis allowed us to obtain
informative results about each software solution
tool. The logic provided a prioritized listing of
the software packages according to the criteria
which held the highest weight. As an example,
Figure 2 displays results obtained from Expert
Choice when analyzing Pricing criteria.

However, this is minimal information when
making a decision – sensitivity analysis provides
a technique for determining the outcome of a de-
cision if a key prediction turns out to be wrong.
The analysis is a tool for analyzing the impact
of key criteria; sensitivity blocks are used to
generate tables and/or plots of simulation results
as functions of feed stream, block input, or other
input variables. Since there are various criteria,
the following charts demonstrate the outcome of
each SCM package against the chosen criteria.
Expert Choice offers a variety of alternatives
which facilitates the decision making process
and offers alternatives for assessing the outcomes
according to user preference.

We found that the dynamic sensitivity analy-
sis tool can prove to be very useful when trying
to estimate overall impact of each criterion on
the final decision. The program allows users to
graphically manipulate the relative weight of each
criterion against one another by simply clicking
and dragging. Furthermore, the program would
simultaneously change the graphically presented
outcome. Thus, if for the purposes of presenta-
tion, we assigned an unrealistically high weight
to the price criterion in the example above the
overall outcome would change from SAP being
the best option to Infor software as the ultimate
solution.

scEnArIo AnAlysIs

In this section, we compare the seven chosen SCM
applications based on the seven criteria previously
defined. The decision of optimal software choice

involves multiple-objectives and will vary among
customers based upon individual needs. It is not
often that one SCM application suits the expecta-
tions of every industry, institution, or customer;
therefore the integration of scenarios is an impor-
tant tool of the decision making process.

In order to make the simulation realistic,
various scenarios were examined that altered the
size, needs, and global presence (amongst other
aspects) of potential customers for the available
SCM applications. We proceed with the hypo-
thetical situations and demonstrate techniques
and procedures to establish the best available
alternative based on our set of defined criteria. In
examining the importance of various criteria, size
stood out as a decision making factor. In order to
emphasize the importance of size as a decision
making factor, we went further to implement
three specific scenarios that visit opposite ends of
the spectrum; large global presence versus small
regional existence. Note, however, that when the
size was manipulated, only certain criteria proved
to be dependent on that factor, therefore the results
below exhibit how other criteria were weighted
similarly, despite the variations in size.

The number of SCM applications compared
coupled with the number of evaluation criteria
results in a significant number of pair-wise com-
parisons used in the AHP process. The following
table summarizes the relative weights of each
criterion in addition to the direct relationship
between the synthesized weights in each column
with their respective criterion. The higher the
synthesized weight, the more a particular sized
company (Large vs. Small) views that particular
SCM software alternative.

When comparing above scenarios, the notable
changes were the relative weights of each crite-
rion when the size of the company is accounted
for in the scenario. It is important to take into
consideration that a real business environment
comprises many different industries, as well as
an array of different company types with different
needs, goals and business objectives; all of which

 2557

A Relative Comparison of Leading Supply Chain Management Software Packages

would impact relative weights and the ultimate
SCM software decision.

The selection of the best software for a specific
company should be based on the individual needs

of the organization making the choice. The same
software package will not be the best choice for
every buyer. Different SCM solutions will provide
the best fit depending on the applicable situation or

Table 1. Synthesized weights with respect to criteria or goal

Synthesized
Weights with
Respect to Criteria

Service & Sup-

port

Reliability &
StabilityPricing

Large Small Large Small Large Small
Manhattan Associates 0.138 0.162 0.140 0.090 0.143 0.143
RedPrairie 0.165 0.103 0.159 0.186 0.119 0.119
SAP 0.140 0.103 0.161 0.163 0.209 0.209
Oracle 0.143 0.228 0.161 0.156 0.211 0.211
Infor 0.089 0.078 0.105 0.119 0.146 0.146
Aldata 0.114 0.051 0.090 0.065 0.071 0.071
HighJump 0.212 0.275 0.183 0.221 0.100 0.100

Customization &
Expansion

Easiness of
Interface

Mobility &
Portability

Easiness of
Integration

Large Small Large Small Large Small Large Small
0.181 0.173 0.223 0.223 0.205 0.205 0.215 0.215
0.114 0.123 0.139 0.139 0.145 0.145 0.137 0.137
0.198 0.204 0.141 0.141 0.205 0.205 0.143 0.143
0.199 0.202 0.165 0.165 0.212 0.212 0.171 0.171
0.143 0.151 0.167 0.167 0.073 0.073 0.166 0.166
0.097 0.086 0.122 0.122 0.043 0.043 0.124 0.124
0.068 0.062 0.042 0.042 0.116 0.116 0.044 0.044

Overall Synthesized
Weights with Respect to Goal

Large Small
Manhattan Associ-
ates 0.179 0.156

RedPrairie 0.135 0.133
SAP 0.176 0.169
Oracle 0.186 0.199
Infor 0.135 0.122
Aldata 0.094 0.070
HighJump 0.096 0.152

2558

A Relative Comparison of Leading Supply Chain Management Software Packages

scenario. Creating different hypothetical scenarios
can be useful in the selection process.

To illustrate this point, we have created dif-
ferent scenarios which demonstrate the relevance
of the individual organization’s environment and
objectives in the selection process. In addition
to size, the best SCM software package for an
organization can differ based on characteristics
like industry or sector, geographic diversity of
operations and vertical or horizontal integration
of the supply chain. We found that sector can be a
crucial factor in the decision making process; we
believe that an organization’s sector will drive the
decision for an optimal SCM software package.

In addition to a total of 144 basic pair-wise
comparisons in order to compare all alternatives
with respect to all of the criteria, each scenario also

requires an additional 21 pair-wise comparisons.
Once all pair-wise comparisons are made, Expert
Choice is used to synthesize the weights of all the
criteria with the weights of all the alternatives
to determine the best solution for each scenario.
In illustrating the impact of each scenario of the
final decision, we have chosen different sets of
SCM software packages for a more complete
comparison.

Table 2 lists the weights of the pair-wise
comparisons for government versus business
entities. There is a direct relationship between the
individual criterion and the weights displayed in
each column. The higher the number displayed,
the greater the weight placed on the criterion for
that type of organization.

Synthesized Weights
- with respect to

criteria

Portability Reliability Efficiency User Friendliness
Busi-
ness Gov’t Busi-

ness Gov’t Busi-
ness Gov’t Business Gov’t

i2 Solutions 0.149 0.147 0.167 0.167 0.154 0.154 0.159 0.153
Logility 0.138 0.134 0.149 0.149 0.140 0.140 0.135 0.141
SYSPRO 6.0 0.114 0.116 0.085 0.085 0.112 0.112 0.138 0.138
Picaso 0.069 0.073 0.081 0.081 0.064 0.064 0.103 0.102
Manhattan Assoc 0.215 0.207 0.177 0.177 0.209 0.209 0.162 0.172
Oracle 0.238 0.182 0.201 0.201 0.251 0.251 0.154 0.131
ILOG 0.077 0.141 0.141 0.141 0.071 0.071 0.150 0.163

Synthesized
Weights – Contin-

ued

Report Interpreta-
tion Simplicity

Customization
Flexibility

Training &
Support

Business Gov’t Business Gov’t Business Gov’t
i2 Solutions 0.164 0.164 0.153 0.153 0.143 0.143
Logility 0.117 0.117 0.165 0.167 0.153 0.153
SYSPRO 6.0 0.124 0.124 0.124 0.123 0.142 0.142
Picaso 0.097 0.097 0.105 0.098 0.118 0.118
Manhattan Assoc 0.215 0.215 0.150 0.150 0.206 0.206
Oracle 0.175 0.175 0.197 0.200 0.133 0.133
ILOG 0.107 0.107 0.106 0.110 0.105 0.105

Table 2. Weights assigned to alternatives for both business and government use

 2559

A Relative Comparison of Leading Supply Chain Management Software Packages

Based on the results of the weighted criteria
calculations done by Expert Choice, the top
three alternatives for a business entity would be
Oracle, Manhattan Associates and i2 Solutions.
This was in line with our expectations. We had
expected Oracle and Manhattan Associates to
be prime solutions for business and government
operations, since they were the software solution
tools that excelled in the areas of Efficiency and
Reliability.

Table 3 summarizes the overall results obtained
through Expert Choice for our case scenario. We
previously placed emphasis on efficiency and
reliability for which the weights obtained were
very close to each other when comparing the
three top alternatives. However, when the rest of
the criteria are considered, the weights obtained
under each business entity change influencing the
type of software solution that best suit each type
of organization. For example: under a business
entity Oracle obtained the highest weight of .202
overall, as opposed to .180 under a government
entity. Picasso on the other hand, although ob-
tained the lowest weight for both type of entities,
it obtained a better rating from the government
sector with a weight of .092 as opposed to .086
from the business sector.

As demonstrated by the tables previously
shown above, different entities have different
preferences and priorities which leads to differ-
ences in optimal software selection. The following
scenarios will further support this conclusion.

scenario 1: A&d wholesale
distributors, Inc

Let us assume this is a mid-size distribution com-
pany that operates throughout the United States,
with 550 employees and operations in 20 different
states. A&D is looking for SCM software that will
support a distribution intensive type of business
and assist them in reducing transportation and
inventory retention costs leading to increased
revenue and customer satisfaction. Based on
this company’s goals and objectives, we decided
that the criteria they would focus on would be:
Customization Flexibility, they need a software
solution tool that would be able to customize to
support their specific needs and Efficiency, their
main objectives are to reduce transportation costs
and inventory retention time.

Table 3. Summary of synthesized results for government vs. business entities

Synthesized Weights -- with respect to goal Business Government
i2 Solutions 0.157 0.156
Logility 0.145 0.144
SYSPRO 6.0 0.113 0.117
Picaso 0.086 0.092
Manhattan Associates 0.189 0.189
Oracle 0.202 0.180
ILOG 0.109 0.121
Overall inconsistency ratio 0.03 0.05

2560

A Relative Comparison of Leading Supply Chain Management Software Packages

scenario 2: start up online
company

Let us assume this is a small retail oriented start
up internet company with 10 partners, no fixed
location, no fixed relationship with outside parties
and limited knowledge on the industry. This is
a company that would need a software solution
alternative that would offer them a high level of
support with relation to hardware platform and
software architecture, and one that would be able to
provide a high level of training and support, since

they are new in the industry and have a flexible
SCM structure. Based on this company’s needs,
we decided that the criteria they would focus on
would be: Portability, because they need a software
solution that would support their internet based
business, across different platforms and operating
systems and Training and Support, because they
need a software solution that will provide them
with intensive training about the software as well
as with aids to gain a better understanding of their
flexible supply chain structure and demands.

Criteria Weights Alternative Ranking
Efficiency 0.232 Logility 0.192
Customization Flexibility 0.228 i2 Solutions 0.186
Reliability 0.138 Manhattan Associates 0.156
Report Interpretation Ease 0.126 Oracle 0.156
User Friendliness 0.117 Syspro 6.0 0.115
Training and Support 0.091 ILOG 0.102
Portability 0.069 Picaso 0.093

Scenario 1.

Criteria Weights Alternative Ranking
Portability 0.239 Manhattan Assoc 0.195
Training and Support 0.183 Oracle 0.191
Customization Flexibility 0.176 I2 Solutions 0.166
Efficiency 0.138 Logility 0.159
Reliability 0.103 Syspro 6.0 0.109
Report Interpretation Ease 0.094 ILOG 0.095
User Friendliness 0.067 Picaso 0.085

Scenario 2.

 2561

A Relative Comparison of Leading Supply Chain Management Software Packages

In the following tables, results for a number
of additional scenarios are presented.

conclusIon

The SCM software industry is gaining an increas-
ing amount of attention as companies try to maxi-
mize return on investment and gain a competitive
edge in their markets. The increasing focus on
the industry is resulting in greater investment in
SCM software and fueling innovation. In order to

choose the best alternative among all of the choices
available, potential users must clearly identify and
prioritize their needs and preferences.

Expert Choice’s technology, which utilizes
AHP analysis, allowed us to compare seven SCM
software alternatives according to seven select
criteria in order to determine which software
best meets the needs of each scenario. All of the
potential factors involved in the selection process
must be determined by the organization making
a decision on an individual basis. We expect
continuous improvements and competition from

Table 4. Summary of a large scale retailer

Table 5. Summary of a regional grocery chain

2562

A Relative Comparison of Leading Supply Chain Management Software Packages

the companies we have examined as well as new
entrants into the marketplace looking to fill niches.
The natural caveat to all this software is from
the human side; the software is only as good as
the users who truly understand how to properly
use the application. Most logistics professionals
and senior level management lack the knowledge
or training to fully exploit the potential of their
systems (Hannon, 2005). This ties in to a recent
emphasis in moving away from pure planning and
focusing on the execution aspects of managing a
supply chain (Parker, 2007).

Since problems, criteria, needs, alternatives
and other variables will vary from one entity to
the next, there is no universal solution. In order to
support an optimal choice, all of the key factors
in the decision process must be identified and
quantified. The methods and processes relied on
in our research transfer easily to the comparison
of other SCM software packages. The future for
SCM software solutions is endless.

Table 6. Summary of an auto part distributor

rEfErEncEs

Adata Optimises its G.O.L.D. Supply Chain
Management (SCM) Software. (2006, September
30). IT Toolbox.

Aksoy, Y., & Derbez, A. (2003). Supply chain
management: despite persistent implementation
problems, SCM remains a top priority for compa-
nies eager to optimize operations (2003 Software
Survey). OR/MS Today, 30(3), 30-31.

Bartels, N. (2006). Agile more important than
lean. Manufacturing Business Technology, May
1, 46-48.

Croom S., Romano P., & Giannakis, M. (2000).
Supply chain management: an analytical frame-
work for critical literature review. European
Journal of Purchasing & Supply Management,
6(1), 67-83.

Das, A., & Buddress, L. (2007). Evaluating
prospective e-providers: an empirical study. The
Journal of Supply Chain Management, 43(4),
31-46.

 2563

A Relative Comparison of Leading Supply Chain Management Software Packages

Expert Choice Inc. (2007). Expert Choice 11.5.
Retrieved July 1, 2008, from http://www.expert-
choice.com/products/ec11.html

General Business News. (2008). Aldata wins at
European IT excellence awards. Manufacturing
& Logistics IT, March 7.

Hill Jr., S. (2007). The new rules for global sup-
ply chain management. Manufacturing Business
Technology, April 1, 2007, 22.

IHL Group. (2006, June 15). Hard data, smart
decisions. The Eye on Retail Information Systems,
11 (11), 1.

Malykhina, E. (2005). Minimize supply-chain
risk. Information Week, February 28, 72.

O’Neill, J. (2005). Top 20 SCE suppliers. Modern
Materials Handling (Warehousing Management
Edition), 60(6), 32.

Parker, K. (2007). Current trends in supply chain
management. Manufacturing Business Technol-
ogy, September 1, 2.

Report. (2006). RedPrairie Corporation an-
nounces a supply chain revolution. Manufacturing
& Logistics IT, May 16, 1.

Saaty, T.L. (1980). Multicriteria decision making:
the Analytic Hierarchy Process, RWS Publica-
tions.

Saaty, T.L. (1996). Decision making with de-
pendence and feedback: the Analytic Network
Process, RWS Publications.

Saaty, T.L. (2001). The Analytic Network Pro-
cess, 2e, RWS Publications, 4922 Ellsworth Ave.,
Pittsburgh, PA 15213.

Saaty, T.L. (2005). Theory and applications of the
Analytic Network Process, RWS Publications,
4922 Ellsworth Ave., Pittsburgh, PA 15213.

Saaty, T.L., & Vargas, L.G. (2006). Decision mak-
ing with the analytic network process: economic,
political, social and technological applications
with benefits, opportunities, costs and risks. New
York: Springer.

Trebilcock, B. (2007). Top 20 supply chain man-
agement software providers. Modern Materials
Handling (Warehousing Management Edition),
62(5), 47.

This work was previously published in the International Journal of Information Systems and Supply Chain Management, edited
by J. Wang, Volume 2, Issue 1, pp. 81-96, copyright 2009 by IGI Publishing (an imprint of IGI Global).

2564

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6.14
How E-Entrepreneurs Operate

in the Context of
Open Source Software

Ambika Zutshi
Deakin University, Australia

Samar Zutshi
Monash University, Australia

Amrik Sohal
Monash University, Australia

AbstrAct

The Internet has become an integral part of our
everyday lives and it is often difficult to imagine
how we ever functioned without it. This chapter
presents experiences of two entrepreneurial com-
panies, one of which has survived the ‘dot-com
bubble burst.’ The chapter identifies current and
future online business environments especially
in light of open source software (OSS) being
accepted globally. Unlike proprietary software
(such as Windows), OSS comes with its internal
implementation details (source code) visible
both to its developers and users, along with the
freedom to change and redistribute this source.
The significant implications of this unique style

of software distribution for e-entrepreneurs are
examined. Having a flexible strategic plan; pos-
sessing management skills; providing excellent
service; and having patience are some of the
recommendations provided by interviewed e-
entrepreneurs. When made part of the decision-
making process, these recommendations would
enhance current and future e-entrepreneurs in
sustaining their business.

IntroductIon

The aim of this chapter is to explore the usage
of OSS in e-entrepreneurship and to identify the
attributes and skills necessary for an e-entrepre-

 2565

How E-Entrepreneurs Operate in the Context of Open Source Software

neur. E-entrepreneurship is defined as the notion
which principally uses the Internet to strategically
and competitively achieve vision, business goals,
and objectives. E-entrepreneurs use the World
Wide Web (WWW) to interact and complete
virtual transactions both with other businesses
(B2B) and their consumers/customers (B2C).

The notion of an e-entrepreneur has recently
gained recognition amongst both academics and
practitioners. An e-entrepreneur has many simi-
larities with that of an ‘entrepreneur,’ especially
with respect to the attributes and traits required to
be successful. Concurrently, the major differences
between the two are primarily in the resources
(such as infrastructure and setup costs) required
to start the business.

Over the last two decades, most businesses
have experienced substantial change brought
about as a result of globalisation and the Internet.
Maintaining a competitive advantage to simply
survive is a continued battle for many businesses.
The Internet, however, has provided companies
with numerous opportunities irrespective of the
nature of the products and services offered to
customers. Many companies now make use of
the Internet and provide customers through their
Web site information such as store opening hours,
store locations, contact details, and listing of their
products and services. However, for a majority
of these businesses a large proportion of the
sales revenue is still generated through activities
conducted at the physical stores. One example is
Telstra, which in addition to having nationwide
physical stores also does sales and online billing
(Telstra, 2004).

The number of companies performing their
business activities through the Internet is increas-
ing rapidly while still maintaining a physical store
presence to enable customers to ‘see and feel’ their
products before making a purchasing decision.
Satisfying the needs of conventional customers
who prefer to complete ‘face-to-face’ transactions
is recognised by many businesses. One example

being the Borders bookstores (Borders, 2004).
Then, there also are companies who only have a
virtual presence and complete all their advertising,
marketing, and transactions through the Internet.
Amazon.com (Amazon.com, 2004) is a perfect
example of this type of organisation. Brand recog-
nition, customer service, and customer satisfaction
are the main ingredients for any company, whether
operating solely as ‘bricks and mortar,’ ‘online,’
or a mix of the two (Mottl, 2000).

The concept of ‘entrepreneurship’ has been
in existence and researched by academics for
some time. Due to the lack of literature in the area
of e-entrepreneurship, the authors have sought
guidance and direction from the entrepreneurship
literature to realise the following objectives:

• Identify attributes of e-entrepreneurs.
• Identify the similarities and differences

between entrepreneurship and e- entrepre-
neurship.

• Identify if being an e-entrepreneur is more
advantageous than simply being an entre-
preneur.

• Examine open source software in the context
of e-entrepreneurship.

Chief executives of two e-entrepreneurial
organisations were interviewed to obtain insights
into the concept of e-entrepreneurship. Some of
the issues explored in the interviews included:

• attributes of an e-entrepreneur,
• role played by open source software (OSS)

in the information technology sector,
• impact of OSS on existing and future e-

entrepreneurs, and
• role played (if any) by government in sup-

porting e-entrepreneurs.

The next section presents an overview of the
literature examining the dot-com crash, entrepre-
neurship, and open source software (OSS). This is

2566

How E-Entrepreneurs Operate in the Context of Open Source Software

followed by the section that describes the research
methodology used to conduct the interviews. Case
studies of the two companies interviewed is then
presented identifying the various aspects of be-
ing an e-entrepreneur with respect to the current
technological environment including OSS. The
last section presents the conclusions and future
research directions.

thE dot-coM crAsh:
dId It chAngE thE world?

The arrival of the 21st century was accompanied by
the ‘dot-com crash’ with hundreds of companies
around the world laying off thousands of em-
ployees and filing for bankruptcies. Competition
amongst the remaining companies, however, has
not diminished. Companies that have survived
have merely “shifted their value propositions to
meet (or chase) new marketplace needs” (Spiegel,
2002, p. 30). Success stories of companies that
have survived and moreover thrived following
the crash are no less amazing (see Anonymous,
2003; Spiegel, 2002).

A number of parties have been blamed for the
‘dot-com crash’ that include but are not restricted
to venture capitalists, investment banks and bro-
kerages, and the Federal Reserve Bank (Mills,
2001). Another factor that has been attributed to
the dot-com crash was that the majority of these
businesses were established and run by young
entrepreneurs who lacked the “essential expe-
rience in planning, organising, and managing
businesses” (Foster & Lin, 2003, p. 456). These
arguments also have been substantiated by The
New York Times and The Industry Standard stud-
ies (Infante, 2001) where lack of human resource
planning has been noted as a contributing factor
leading to sexual harassment and legal suits
against the companies, further crippling them
following the crash (see also Dvorak, 2001). Duck
(2004, p.14) listed seven mistakes that resulted

in the crash: “too many competitors; short-term
mentality; undisciplined growth; unrealistic
revenue projects; inexperienced management;
underestimated costs of establishing a national
brand; and lack of customer-centered focus.” It is
the authors’ view that as opposed to the traditional
models, entrepreneurs and investors alike failed
to foresee long-term funds allocation and put in
place contingency plans.

The ‘dot-com crash’ has not meant that the
Internet is no longer used for undertaking busi-
ness transactions, rather it is being used more
than ever before. Whether a company started
using e-technologies before or after the crash,
it is imperative that they offer security to their
customers and avoid hackers from their Web
sites. Conry-Murray (2001) and Dvorak (2001)
have highlighted security issues that companies
should address to protect their customers such as
debugging their sites regularly, minimum use of
cookies, and not putting too many advertisements
on their Web sites.

Over the past decade there has been a sub-
stantial increase in the uptake of the Internet by
businesses primarily as a marketing tool. The
Internet has enabled even small businesses with
limited resources to instantly communicate their
products and services to their target markets and
audiences globally. Worldwide companies are
being encouraged to join this phenomenon. For
instance, speakers at the Dubai Strategy Forum
mentioned a number of attributes required to
improve economic performance. This included
the need for accepting information technologies
and a “strategic structure that wipes out bureau-
cracy and encourages entrepreneurialism, where
managers manage, innovators innovate, and the
teams are rewarded for their successes” (Anony-
mous, 2002, p. 1).

The next section identifies the attributes of
entrepreneurs and reviews the relevant literature
in the area of e-entrepreneur(ship).

 2567

How E-Entrepreneurs Operate in the Context of Open Source Software

EntrEprEnEurshIp And Its
rElAtIonshIp to
E-EntrEprEnEurshIp

The concept of entrepreneurship has been evident
in economics and sociology studies since the
early 18th century (Becker & Knudsen, 2004).
A number of entrepreneurship definitions have
been mentioned in the literature. Mulcahy (2003,
p.165), while citing the Oxford Dictionary defines
an entrepreneur as “a person who undertakes or
controls a business or enterprise and bears the
risk of profit or loss.” Thompson and Randall
(2001, p. 290) describe entrepreneurs as those in-
dividuals who “sense opportunities and take risks
in the face of uncertainty to open new markets,
design and develop new and improved products
and processes” (see also Legge & Hindle, 1997;
Kuratko & Hodgetts, 2001).

A number of traits and skills that entrepreneurs
possess are cited in the literature. According to
Chris Dyson, a business analyst, there are nine
traits that depict a person’s entrepreneurial char-
acters. These traits include: “personality, integrity,
initiative, commitment, drive and determination,
directiveness, confidence, self-direction, selling,
and leadership” (cited in Tams 2002, p. 399). Ch-
erwitz and Sullivan (2002, pp. 24-25) similarly
comment that an “intellectual entrepreneur” is
depicted by having attributes such as “realistic
and attainable vision, taking risks and seizing op-
portunities, using available resources to achieve
the vision by using collaboration, teamwork, and
innovative strategies” (see also Jablecka, 2001, p.
376). From these definitions, it can be inferred
that successful entrepreneurs need to possess
attributes such as vision, opportunity-seeking,
leadership, and management skills.

As highlighted earlier, for the purpose of
this chapter, the authors have defined e-entre-
preneurship as a concept which principally uses
the Internet to strategically and competitively
achieve vision, business goals, and objectives.
e-entrepreneurs have been defined as those indi-

viduals who use the World Wide Web (WWW)
to interact and complete virtual transactions
both with other businesses (B2B) and customer
(B2C) (see Thompson & Stickland, 2003). E-
entrepreneurs have come under focus after the
dot-com crash that resulted in the closing of
hundreds of businesses and thousands of people
left unemployed. Practitioners, consultants,
academics, and governments are investigating
the causes behind this crash that left many other
industries dependent on information technology
crippled for months. Contingency measures are
now being put in place to avoid similar crashes
in the future. A study of 42 entrepreneurs based
in the Greater London Business area who sur-
vived the dot-com crash was conducted during
the last quarter of 2002 by the London School
of Economics and Political Science (Steinberg,
2004). Using a triangulation method, the study
found that businesspeople were “in the process
of jointly developing a new [under]standing of
what success and decision-making means via e-
business networks” (Steinberg, 2004, p. 4) and,
accordingly, developing coping strategies to avoid
similar downfalls in the future.

One of the factors that contributed toward the
demise of many e-entrepreneurial companies was
the lack of human resources and communication
between sellers and customers. To address such
issues and provide potential e-entrepreneurs with
an understanding and practicalities of the busi-
ness world, many multinational organisations are
now working with their prospective employees
with the aim of providing them with an in-depth
understanding of business operations. “Media
entrepreneurship” is one such program that has
been launched by Hewlett-Packard (Canada) Ltd.
(Bolan, 2002). The program primarily uses Linux
as being open sourced, allowing users (students)
to acknowledge that there are no limitations in
software development. Robert Miller, national
business development manager responsible for
education and healthcare at HP, commenting on
the program said (Bolan, 2002, p. 19):

2568

How E-Entrepreneurs Operate in the Context of Open Source Software

The dot-com boom/bust saw a lot of technologi-
cally astute people become empowered with vast
amounts of capital funding, but they lacked the
business sense or financial management skills to
fully exercise their plans. Some of them were smart
enough to bring in business people that had that
kind of savvy, but it was a very awkward culture
mix because there were two totally different kinds
of mindsets.

Globally, companies and individuals are being
encouraged to embrace the Internet as a means of
developing a business advantage. For instance, the
e-Business Forum Working Group D5 (WG D5) in
June 2003 identified the key challenges (including
those encountered in communication and policy
formulation) to encourage Greek companies to en-
ter the area of e-business (Neofotistos & Yagoulis,
2003). WG D5 consulted with a number of Greek
private and public sector companies involved
in e-business and provided a number of recom-
mendations to smooth the process of conducting
business through the Internet. These included
being aware of issues of privacy, protection of
personal information, promoting communication,
and the training the e-entrepreneurs (Neofotistos
& Yagoulis, 2003).

An individual’s prior understanding and
knowledge in business studies and cultural back-
ground affects how much new knowledge and
information is required to develop a collabora-
tive business plan. This finding was realised by
Foster and Lin (2003) when exploring the impact
of individual students’ learning in e-business and
e-commerce environments. By using cognitive
perspective in the study of students from different
cultural backgrounds, Busenitz and Lau (1996)
found that people from some cultures produced
more entrepreneurs than others (see also Thorn-
ton 1999). Similar results have been found in a
recently completed study across eight countries
including Australia, Slovenia, Mexico, North
America, Finland, Scotland, South Africa, and
Kenya (Morrison, 2000). Business plans of new

ventures in New Zealand in 2000 were compared
to identify the percentage of Internet usage as part
of the e-entrepreneurship competition based on
the Mckinsey model (McQueen, 2004). At the end
of the phase two of the competition, it was found
that individuals with pervious IT background,
education, business experience, or personal inter-
est had a much higher Internet component in their
business plans than participants with traditional
business experience such as those for the fields of
accountancy, retail, entertainment, and games.

opEn sourcE softwArE (oss)
vs. proprIEtAry softwArE

proprietary software Model

In the recent past, much high-profile software
(including Microsoft products such as Word and
Windows XP) have been distributed under a
license that treats the software as a ‘black box.’
The software is supplied in ‘compiled’ or ‘bi-
nary’ form, meaning that a computer can read
and execute it directly. However, programmers
are unable to study the internals of the program.
They are forbidden to understand in detail how the
program works, they are not permitted to modify
its working and they can redistribute neither the
software in its original form, nor in any derived
or modified form. Typically, a single company or
an individual holds copyrights on proprietary
software (Anonymous, 2004). These copyrights
are used in conjunction with licensing agreements
to deny the “freedom” or “openness” to modify and
redistribute the software. “Proprietary software
is software that is not free or semi-free. Its use,
redistribution, or modification is prohibited, or
requires you to ask for permission, or is restricted
so much that you effectively can’t do it freely”
(FSF 2004).

From the point of view of the software vendor,
the proprietary software model utilises restrictive
licensing and secrecy to safeguard intellectual

 2569

How E-Entrepreneurs Operate in the Context of Open Source Software

property (IP). It is possible that the development
of the software could be regarded as entrepre-
neurship.

However, from the point of view of an
e-entrepreneur looking to leverage existing
technology, proprietary software may not seem
like an attractive option, since modification and
redistribution of existing proprietary software is
forbidden. Furthermore, providing key services
related to deployed proprietary software may
not be possible due to the unavailability of the
internal source code. Another problem is what is
commonly referred to as ‘vendor lock-in.’ A pro-
prietary software vendor by definition is the only
organisation with the legal capacity to improve
and enhance their proprietary software products.
Hence, an e-entrepreneur wishing to deploy pro-
prietary software is “locked in” to the vendor.
No other organisation or individual (including
the e-entrepreneur) can provide improvements
or custom modifications. For instance, Microsoft
is the only organisation that can provide security
updates and bug fixes for the proprietary Windows
operating system. In effect, any user of Microsoft
Windows faces vendor lock-in. Unless and until
Microsoft decides to issue a security update or
a bug fix, users must helplessly use the software
in whatever condition it is in. This argument is
developed further under the discussion of OSS
below.

free and open source software
Model

When referring to OSS, the authors have used
the Open Source Initiative (OSI) definition (OSI,
2004a). OSS involves access to the underlying
source code. In addition, for a license under which
software distributed is to be considered open
source, it must permit redistribution of the soft-
ware without requiring a royalty. Redistribution
must be permitted in source as well as compiled
(ready-to-run) form. Modification of the software
and creation of derived works must be permitted.

There are some other clauses that must be satis-
fied for a particular software package to qualify
as OSS (OSI, 2004b). However, the criteria are
arguably the most fundamental and, to someone
not familiar with the OSS paradigm, perhaps the
most revolutionary. Many organisations and Web
sites use the term “free software” (FSF 2004)
whose meaning and interpretation is very similar
to OSS, with ‘free’ implying freedom to access
and modify the source as well as redistribute un-
modified and modified versions. Strictly speaking,
the definition of ‘free software’ might preclude
certain software from being considered “free”
even though it might be considered OSS. Since
all ‘free’ software would be considered OSS, we
will use that term for simplicity and to avoid the
confusion that comes from ‘free,’ meaning ‘at
no charge.’ Interestingly, while it is possible that
OSS and ‘free’ software can be obtained for no or
very little cost, e-entrepreneurs should note that
it is entirely possible for OSS and ‘free’ software
to be ‘commercial’ (i.e., a source of revenue).
For instance, Red Hat produces an open source
product called Red Hat Enterprise Linux, an open
source operating system that is sold by annual
subscription. Subscribed customers are entitled
to receive ongoing security updates, errata fixes,
and new features as they become available for the
duration of their subscription.

rEsEArch MEthodology

In this chapter, we have adopted the exploratory
methodology (see Peil et al., 1982; Spencer, 1982)
to identify the trends of how OSS has been and
would impact the entrepreneurs as the usage of
Internet and other technological methods to con-
duct business continues to increase. Conducting
interviews as a method of exploratory research
has been accepted in academia. For instance,
Murray (1996) used case study methodology to
identify the role of venture capital investments in
newly established technological firms. Conduct-

2570

How E-Entrepreneurs Operate in the Context of Open Source Software

ing interviews as a research methodology offers
a numbers of advantages: giving flexibility to
both interviewers and interviewees in setting
up a mutual time; increasing the interviewers’
control on the direction of the questions and an
opportunity to further explore issues; providing
undivided attention of the interviewees; and, last
but not the least, providing insight into non-verbal
observations such as body language (see May,
1993; Burns, 1998; Peil et al., 1982; Spencer, 1982;
Reddy, 1987; McNiff, 1988; Yin, 1994).

As previously mentioned, e-entrepreneur-
ship is a new and under-researched area, hence,
the authors were working in unfamiliar terrains.
Case study as a research methodology has been
accepted when attempting to overcome the uncer-
tainty of having clear measuring instrument (see
Wallace, 1984; McCutcheon & Meredith, 1993;
McGuire, 1995; Palmer & France, 1999; Corbett
& Cutler, 2000).

Chief executives from two entrepreneurial or-
ganisations were interviewed in September 2004
for their experiences of setting up, running, and
maintaining their businesses in light of growing
technological changes. According to the Aus-
tralian Bureau of Statistics (ABS) classification,
Company A can be classified as “micro” with
only four employees, while Company B can be
classified as “small” with 25 full-time employees
(see Steinberg, 2004). The focus of the interviews
was on the role of OSS in today’s entrepreneurial
world where considerable focus is being placed on
functions of the Internet for completing business
transactions. After receiving consent from the
interviewees, the interviews were tape-recoded
and subsequently transcribed and written up as
case studies. These were then sent back to the in-
terviewees for verification of the content, and any
changes as required, were accordingly made. This
step was undertaken to reduce limitations (e.g.,
generalisation, reliability, information overload,
validity, rigour) accompanied by the case study
methodology (see McNiff, 1988; McGuire, 1995;
Burns, 1998; Kitazawa & Sarkis, 2000).

Please note that to protect the confidentiality
of the interviewees and their respective organi-
sations, their names have not been disclosed and
are referred to here as Company A and Company
B, respectively. Nonetheless, as far as possible,
direct quotes from the interviewees have been
incorporated in the following sections.

cAsE study fIndIngs

company A

With its head office currently based in regional
New South Wales (NSW), Australia, the company
was established and registered as a partnership
business in early 2003 and then become a pro-
prietary limited company in January 2004. The
company is “focused on developing and deploying
Web commerce and Linux-based network solu-
tions” (Company A Web site) and has successfully
secured and completed projects in both the open
source area and commercial world projects for both
Australian and foreign-based companies including
in the UK and the United States. The company’s
open source content management product has been
ranked in the top 2% of the active projects at the
SourceForge dot-net site which has over 8,000
projects and downloads listed on its Web site
(Company A Web site). Even though the company
and its members have a strong background and
focus on Linux, it also provides software solutions
for pocket PCs, the Palm Operating System (Palm
OS), and Microsoft Outlook.

The mission and vision of Company A, in ad-
dition to generating and increasing its revenue, is
to move toward the area of “embedded media.”
Interviewee A considers embedded media to
“employ devices and solutions on single chip
computers running on open source software.”
Each of the Company A directors have expertise
in areas of programming, administration, and
management, respectively, and are on the path
of expanding the company.

 2571

How E-Entrepreneurs Operate in the Context of Open Source Software

The motivation and flexibility offered by
working for oneself was one of the driving
forces for the interviewee to establish his own
company. The interviewee also wanted to have
the flexibility to adjust quickly as changes in the
external environment and technology took place
without going through the bureaucratic levels often
found in a large organisation. Technology itself
is also the passion of the company. This is still a
motivating factor for all the personnel involved,
which is steadily pushing the company forward.
The interviewee believes that this is true of other
companies such as Adobe and Apple, where he
feels that the vision of the company and the passion
of its technologists had kept them going despite
management changes.

One of the themes that intrigued the interview-
ers was how the concept of OSS that involves
freely distributing your knowledge can result in
generating business for the company. Under an
open source license the ‘source code’ is distrib-
uted along with the ready-to-run version of the
software product. The interviewers were keen
to ascertain how this apparent giving away of
intellectual capital could result in profit for the
person/organisation involved. It appears that OSS
is gaining momentum and acceptance around
the world, and these issues are becoming more
relevant, especially for e-entrepreneurs.

To answer the query, interviewee A com-
mented that the writers of a program are generally
accepted as having the authoritative knowledge.
To elucidate his point he gave the following ex-
ample: If a program is released as OSS, the writer
not only shares, but also demonstrates, his or her
knowledge in a manner that can be subject to
scrutiny by experts. In addition, other organisa-
tions that require tailoring of the program to their
specific needs may contact the writer to do the
customisation for them.

This is where dollars come into the picture.
The interviewee has had similar experiences. A
London-based company contacted the interviewee
when they wanted him to make changes to their

program source code so that it was compatible
with the company’s accounting system. Since
the company’s experts had the source code of
the product available to them, they could, in
theory, do the customisation themselves. How-
ever, this would involve them first becoming
familiar with the internal details of the software
and then modifying it. Cost-benefit analysis by
the company showed that it was easier and more
economical for them to ask the interviewee to
utilise his knowledge and expertise to deliver
the modified code. The interviewee estimates
that the work took him approximately 20 hours
to complete while his customers might have had
to spend several man-days to achieve the same
result. So, the interviewee was able to acquire
highly specialised, lucrative business without
having invested in marketing or publicity services.
The client, on the other hand, was able to procure
a software system that fitted their needs in less
time and for less money than if they had done it
by themselves. So, it was a win-win situation for
both parties involved.

In interviewee A’s view, the Internet, due to
its ubiquitousness and near universal accessibil-
ity, can be very effectively used as a marketing
medium and MySQL AB, the popular open source
database product vendor, is a classic example. In
less than a decade, the MySQL database server
has become internationally recognised and widely
used, including in customised forms. High-profile
clients include Sony, Suzuki, and Sabre Holdings
(MySQL, 2004).

It should be noted that not all the software
produced by Company A is OSS. Some software
is released under the “general public license”
(GPL) (Derekgnu, 2004) and qualifies as OSS. In
other cases, clients may purchase software under
a “commercial licence agreement” from Company
A. This agreement allows the client to use the
product and to view the source code and covers
the provision of regular service by Company
A such as providing further customisation and
enhancements. Under this license, the clients are

2572

How E-Entrepreneurs Operate in the Context of Open Source Software

not allowed to modify the source. Essentially, this
is Company A’s strategy to be able to effectively
support their clients. If too many modifications
are made to the code, Company A would have
to extensively study the modified version before
being able to provide enhancements. It also can
be seen as a precaution taken by Company A to
avoid legal repercussions arising from claims of
failing to provide adequate support as per the
license agreement of the customised program.
However, if the buying organisation changes the
source code without obtaining prior consent from
Company A, the latter is under no legal obliga-
tion to be able to support the changed version of
the code. Of course, the client is free to approach
Company A and/or other software solution provid-
ers to collaborate on customised versions subject
to additional costs.

During discussions with Interviewee A, an
interesting point emerged: Company A does
produce open source software but also utilises
open source software tools. Company A has ob-
tained commercial services from Red Hat Linux
related to their open source Linux-based operating
system. They also are developing some software
for embedded systems which may turn out to be
a derived and open modification of existing open
source software.

If an individual is contemplating to become an
entrepreneur or change himself or herself from
an entrepreneur to an e-entrepreneur, they have
to first consider a number of alternatives and
subsequently take appropriate decisions. One
needs to decide whether they would be deploying
new software or leverage the existing software.
Further considerations regarding licensing agree-
ments (OSS or proprietary or a mix of both) also
would be required.

In views of Interviewee A, “Open source
[should be considered] as a serious alternative for
people [who] are trying to do [something new].
Statistically, more than 50% of the Web servers
in the world run open source software, which is
generally […] Apache, […] the most popular Web

server in the world.1MySQL is the best or the
most popular database for Web-based projects.”
Company A does still utilise proprietary software,
such as MYOB for its accounting needs since it
helps them conform to the appropriate standards
and legislation. MYOB runs on the proprietary
Microsoft Windows operating system. Except in
instances where the clients request that supplied
programs remain closed source, Company A gen-
erally licenses its software as OSS and believes
that other organisations should do the same.

Interviewee A commented that the decision
whether or not to go OSS for their software is a
business decision and dependent on its vision,
current position in the market, current/existing
new code development, and future plans. One
needs to keep in mind that like any other material
product, software and code have their own life
cycle and the business decision should incorporate
the potential life of the code, accordingly.

Interviewee A also made two points of direct
relevance to e-entrepreneurship. First, as an e-
entrepreneur, if you are trying to develop a novel
solution, you can focus on the entrepreneurial
aspects by using existing, reliable, open source
software to avoid “re-inventing the wheel.” Sec-
ond, as a provider of innovative IT solutions, an
e-entrepreneur faces a more level playing field
since organisations are not “locked-in.” Hence,
they can turn to the e-entrepreneurs to provide sup-
port, maintenance, and enhancement of OSS.

The interviewers also were interested to know
the support, if any, provided by the government
to Company A and whether being based in a
regional area it was eligible for any specific
government funds. Interviewee A indicated that
he had approached the state government for as-
sistance and there had been some progress. The
response, however, has not always been very
speedy which sometimes is a challenge for small,
struggling firms looking for assistance as they
may not be operating after a few months. The
problem is sometimes further compounded by
the bureaucratic structure of the governments.

 2573

How E-Entrepreneurs Operate in the Context of Open Source Software

The difficulty experienced by regionally based
organisations is convincing the officials of their
innovative ideas who are sometime reluctant to
provide capital for new ideas that may be regarded
as being too risky. A classic example is trying to
get funds for OSS projects as the question raised
by government officials is the same as the authors:
How can one make money by giving away their
knowledge and expertise?

company b

The company has been providing innovative,
competitive solutions based on open systems and
open source technology to its customers since
the late 1980s. The company aims to “develop
strong, ongoing relationships with its clients and
long-term partnerships, based on mutual growth
and respect with industry vendors” (Company
B Web site). Services provided by the company
fulfil customers’ needs in areas of: consulting;
application development; and training in software
programs such as Unix, Linux, Windows systems
administration and network management, and
Web-based solutions to name a few. In addition
to serving a number of small and medium-sized
Australian-based customers, Company B also
has successfully completed projects and pro-
vided training to a number of large organisations
including Hitachi, Telecom Australia, Kodak
Australasia, University of Melbourne, Mobil Oil
Australia, CSIRO, RACV Insurance, Rockwell
Areospace, ANZ Bank, Ericsson Data Australia,
and VDO Instruments (Company B Web site).

When the interviewee first started working in
the computer industry, not only was the indus-
try in its infancy with huge-sized computers, a
much smaller percentage of people had access to
computers as compared to today. The majority of
people involved in the industry at the time were
young males generally categorised as ‘geeks.’
Only large professional organisations such as
insurance companies and banks were using
computers. The interviewee’s introduction to the

potential for online collaboration and the spirit
of OSS occurred in the late 1980s. At the time,
only a small team of professionals had access to
the Internet. He recalls participating in an online
newsgroup where he would ask questions about
the C++ programming language and on occasion
receiving advice from Bjarne Stroustrup — the
creator of C++. However, the state of the technol-
ogy at the time meant that only technically skilled
people could take advantage of this online com-
munity and near-instantaneous communication.
Interviewee B realised that there was a “great
business opportunity” in this area if people at
large could access the Internet using tools that
they could learn to work with relatively easily.
Unfortunately, initial feasibility studies indicated
that the level of capitalisation available was not
sufficient to fund the infrastructure needed to
realise such an opportunity. The way to make an
entry into the field was by doing consulting work
based on the emerging Internet technologies and
the related open standards and software.

One of the areas in which Company B has
competitive advantage is in the area of OSS as
it was one of the pioneering companies. The
company also has a very high reputation in
providing superior client service and catering
to clients’ specific needs. Hence, the company
receives many of its projects through referrals as
has happened in one of its recent projects when
an Australian University on recommendation
from another university contacted the company
to tailor its student database to comply with the
federal government’s reporting guidelines by us-
ing the ERP system. In this instance, the company
made use of existing codes from “open source
framework called Open for Business,” along
with their expertise in programming to success-
fully complete the project in less than half of the
time and cost than if the company had to write
the source code from scratch. By using existing
codes on the OSS, the company can reduce the
price of their products and accordingly is more
competitive than its counterparts. By having

2574

How E-Entrepreneurs Operate in the Context of Open Source Software

access to codes and research and development
(R&D) at their disposal, the company also is able
to provide prompt service as compared to other
large software companies who may not have
their respective service offices in Australia. The
company does not bind its clients into a lifetime
contract and the latter have full access to their
codes that they can decide to move to another
vendor/company if they wished without being
penalised/disadvantaged in any way.

Working toward the “betterment of the man-
kind” by sharing his knowledge and expertise with
others while operating in an exciting, dynamic
sector are the motivations for Interviewee B to
remain as an e-entrepreneur. One of the chal-
lenges encountered by the company and others
in the information technology sector is when
trying to market their products to third parties
and businesses. It has been noted that most
technology experts do not have marketing and
business skills that can often disadvantage them
in the marketplace.

Interviewee B and his company had different
experiences while interacting with the government
sector. At the time of the interview, Interviewee
B had been working with the federal govern-
ment to create a document/database that would
provide access to all government “agencies on
the procurement of open source software.” The
document would explain legal ramifications if the
third party decides to take up the OSS modules
from the document. The database also would act
as a networking site for individuals and organisa-
tions who wish to safely use OSS modules. The
federal government is consequently working to
“remove impediments towards the adoption of
open source.” At the state government level, the
focus is still at industry development. The New
South Wales (NSW) government recently an-
nounced a US$40m Linux project which is one
of the largest in the world.

Company B had been in operation long before
the dot-com crash, and the authors were interested
in understanding how the company had survived

it as opposed to many other unfortunate competi-
tors. Interviewee B noted that unlike other new
companies emerging at the time with hundreds
of people being employed in the company within
weeks, the number of employees had remained
more or less the same in Company B. Many people
contemplating to expand their wealth also had
invested huge funds in their newly established
companies. Company B, however, did not receive
any such funds. This does not imply that Company
B’s products and services were any less reliable
or competitive. Nonetheless, its experience had
cautioned them against investing or accepting
impulsive projects and funds alike. Thinking
and operating strategically as well as employing
experienced staff saved the company while other
businesses vanished within days after the dot-
com crash. In an attempt to capture the already
saturated market, new information technology
companies spent huge amount of resources and
was another reason for their failing: not conduct-
ing sufficient market and competitive analysis,
a prerequisite for establishing and running any
type of business.

Interviewee B cautioned existing and new
entrepreneurs of being aware of globally existing
patents for various programs and software codes
as even without their knowledge the programmer
could be held liable for potentially plagiarising
other patented softwares. He proposed that for
emerging economies and businesses to be suc-
cessful, it was essential that the software patent
system be either made redundant or more flexible
with clear guidelines with a database for searching
all the existing patents.

When asked about the future of e-entrepre-
neurship, Interviewee B commented that this
was going to expand in the coming years. To
emphasise his point, he gave the example of the
music industry. Until very recently, popularity in
the music industry was gained by singing face-
to-face to a wider audience and generally it took
years to get a reputation and make money. In this
current era, however, by using the technology

 2575

How E-Entrepreneurs Operate in the Context of Open Source Software

and the Internet, the singer can make hundreds
of copies of the music on CD and simultaneously
distribute it worldwide capturing the global music
market. This would not have been possible using
the traditional manufacturing and distribution
system.

Interviewee B strongly believes that for exist-
ing and future e-entrepreneurs and information
technology companies it is essential that laws
relating to patents should be changed, otherwise
the progress could come to a standstill. Entrepre-
neurs also need to be aware and cautious of the
situation and take comprehensive legal consulta-
tion and protection.

dIscussIon

For an e-entrepreneur, the software tools used are
likely to be the enabling factor of the novel service
being provided. In fact, the entrepreneurial prod-
uct may be software or a combination of hardware
equipment and software. Given that such is the
case, how should various entrepreneurs decide
whether to use software solutions and/or which
model to use for development?

To become a successful entrepreneur, it is es-
sential that a person learns from the experience
of others and avoids making the same mistakes.
The reoccurring themes within the literature and
interviewees complement each other. Halloran
(1991), for example, discussed the 20 commonly
experienced pitfalls which should be avoided,
including: having unrealistic expectations; short-
sighted financing arrangements; missing the target
market; buying costly and ineffective advertising;
and inconsistent and chaotic management.

Explaining the similarities and differences
between an entrepreneur and an e-entrepreneur,
Interviewee B viewed that both have similar
attributes and skills. Both need to be able to
“visualise future potential [that is] above and
beyond just the vision for making money.” One
major difference between the two is that while

working in the information technology sector, an
e-entrepreneur requires comparatively less funds
and infrastructure when starting a business and,
consequently, less total investment dollars. Once
a comprehensive market and competitor analysis
has been undertaken and the service that would
be delivered has been finalised, only access to the
Internet is required to start the business, which
can be done from any location.

Andal and Yip (2002) postulate that companies
should combine traditional and new-economy
bases of competitive advantage into their busi-
ness models in order to be successful in e-busi-
ness. The generally accepted “e-bases” (Andal &
Yip, 2002, p.1) include community effects, first
mover advantage, fulfilment/delivery, technology,
teamwork, and scalability. They also suggest that
some e-business start-ups failed to implement
these advantages effectively or found that they
needed to be augmented with traditional bases of
competitive advantage. For instance, the e-base
first mover advantage should be combined with
traditional product/service advantages. Getting to
the market first with a novel product or service can
result in significant benefits such as in the case of
Amazon.com and Yahoo. Also, while the use of
new and emerging technologies is considered an e-
base of competitive advantage, realistically, most
technology can be easily replicated. Despite this,
some companies, notably Google, have been able
to convert technology into an asset and sell it.

The interviewees’ comments indicate that they
are at least intuitively aware of such implications.
Both Interviewees A and B perceived a business
opportunity in connection with an emerging
technology, namely, embedded devices and the
Internet, respectively. At the same time, they also
realised that over-committing themselves merely
on the basis of new technology did not make
business sense, and they relied on other sources
of revenue such as consulting work and Web de-
velopment to acquire the infrastructure and capital
to develop their e-entrepreneurial ideas.

2576

How E-Entrepreneurs Operate in the Context of Open Source Software

Interviewee B mentioned that the fact that they
were the pioneers in the industry of open source
solutions was a major source of competitive ad-
vantage, thus, underscoring the first-mover e-base
of competitive advantage. However, Interviewee
B regards their use of OSS as another — and
perhaps less traditional — source of competitive
advantage. By candidly disclosing to their clients
the fact that a solution is based on open source
software, the clients are reassured that they can,
should the need arise, go to other vendors for
maintenance, support, and development. There
is also an undercurrent of transparency at work;
when a company agrees to provide an OSS solu-
tion, their entire system is potentially subject to
scrutiny by their clients. This may give the cli-
ents a sense of confidence; a vendor supplying a
completely open solution that can be verified by
independent technical staff must surely believe
in the technical quality of their product.

A possible interpretation of the comparative
ease with which certain technological function-
ality can be replicated is that the intrinsic value
of the software that provides such functionality
does not amount to much. In cases like these, OSS
offers the opportunity for an e-entrepreneur to
focus on services that are enabled by or based on
technology rather than wasting resources devel-
oping technology which will soon be replicated
and widely available anyway. Certainly, it is still
possible to try and sell technology, as Google has
done. But this involves ensuring that one’s tech-
nology is constantly evolving at a rapid enough
pace to consistently stay ahead. As pointed out
by Interviewee B, such research and develop-
ment (R&D) can be prohibitively expensive for
e-entrepreneurs, particularly in the Australian
market where capitalisation can be harder to come
by than, say, in the United States.

Teamwork amongst a diverse mix of people
with varied skill sets and experience is another
commonly cited e-base of competitive advantage
(Andal & Yip, 2002). Apart from the contribu-
tions from team members within the organization,

making software available in open source form
allows participation from the wider community.
One of Interviewee A’s open source projects has
built up a virtual community of users, some of
whom are able to contribute by asking questions
and reporting errors that enabled Company A to
enhance the quality of their product. In some cases,
they are even able to offer “patches” — snippets
of software code that add functionality or repair
an error. Interviewee B also is aware of this effect
and mentioned that Company B is an organization
that tries to contribute its expertise and knowledge
to the improvement and enhancement of OSS that
they deploy. Interviewee B considers the process
a way of “bartering IP.” In this sense, releasing
software developed by an e-entrepreneur as OSS
is not giving away something at no charge, it is an
offer to exchange and share expertise, knowledge,
and time with the possibility of mutual benefit
to the developer(s) of the software and the wider
community. Successfully trading IP with the
global community is potentially a very powerful
way of harnessing the synergy arising from a team
of diverse backgrounds and abilities.

Based on the understanding developed from
the experiences of the interviewees, the authors
have identified the following three key require-
ments for being a successful e-entrepreneur in
the field of OSS.

1. Being Technically Competent
 Both interviewees recognised the critical

importance of technical ability. Interviewee
B mentioned the depth of knowledge re-
quired and the “wizards” on Company
B’s staff. Interviewee A also is emphatic
on the need to be “technically sound.”
By definition, e-entrepreneurial activities
are strongly dependent on the underlying
technology. The e-entrepreneur must not
only be thoroughly familiar with the state
of the art of the relevant technology but
also possess a deep understanding of the
underpinning principles in order to be able

 2577

How E-Entrepreneurs Operate in the Context of Open Source Software

to analyse trends and foresee opportunities.
Interviewee B does caution that in the con-
text of Company B, high quality technical
ability is often found in people who are
unable to liase well with customers, and it
can be a challenge to find staff that strike
the right balance between being “tech” and
“suit.” Hence, the latter can act as a market-
ing challenge when “tech experts” need to
explain their product in layman’s language
to their customers.

2. Taking the Customer Service Perspec-
tive

 Interviewee A, while emphasising technical
ability of the product, insisted that the focus
should be on what the technology can do
for the consumer. Ideally, the technology
should be transparent and the customer
should see the benefits of the technology
without needing to understand the details.
In many cases, they should not even have to
care whether the solution is open source or
not. What should be clear to the consumer
is what the technology can enable them to
do and what the e-entrepreneur can make
possible for them via the services related
to the technological product. These views
hold for Interviewee A’s e-entrepreneurship
plans in embedded media – small, portable
devices which must, by their very nature, be
consumer specific. They are also relevant to
Company A’s online content management
system products. The base product itself is
available to everyone, but the true source
of revenue comes from consumers wanting
services based on the existing product. These
services include maintaining the customers’
online presence and customisation of the
base product to deal with customer-specific
requirements.

 Interestingly, while Company B operates
in a slightly different arena, the customer
service and technology transparency issues
are the ones that they strongly identify with.

For instance, they have a product called the
small business server. This is meant to be a
turnkey solution that can be set up quickly
and easily. It provides small businesses the
most commonly needed functionality such
as Internet connection sharing and accelera-
tion, e-mail, anti-virus, fire walling, and file
and printer sharing. It so happens that the
software installed on the server is all OSS.
However, in Interviewee B’s experience, the
customer does not necessarily care — or
need to know — that this is the case, as long
as they are instructed on how to use and
administer it. Further, Interviewee B asserts
that the open source nature of the software
in this product ensures that they have full
access and complete control over all aspects
of the software functionality, thus placing
them in a position to provide maintenance
and service as long as the customer is will-
ing to pay for such services.

3. Being Clear on the Reasons for Going
OSS

 Neither interviewee recommends OSS as
a panacea. It is clear from both their inter-
views that a number of factors influence
their choice of whether a solution is made
OSS or not. In fact, while doing some con-
sulting work, Interviewee B recalls being
specifically asked to provide proprietary
software-based solutions, which Company
B was comfortable providing. Hence e-
entrepreneurs should not perceive OSS
as the next “bandwagon” or something to
be done purely out of ideological reasons.
The interviewers, as well as some existing
literature (see Cusumano, 2004), caution
against this. Still, there can be solid business
reasons for focussing on OSS as evidenced
by the activities of big business such as
IBM, Sun, Red Hat, and Novell (Mahoney
& Naughton, 2004). In fact, both Companies
A and B produce or have produced offer-
ings and services based on proprietary and

2578

How E-Entrepreneurs Operate in the Context of Open Source Software

open source software. One or more of the
following reasons have been compelling
enough for both Companies A and B to go
open source:
• To harness the distribution and mar-

keting power of the Internet Interview-
ee A decided to release Company A’s
content management system under an
open source license over the Internet.
The idea was to make it easy and obli-
gation free for prospective customers
to download and use the product. If
they were technically inclined, they
also could inspect the source and as-
sure themselves that the product was
technically sound. While there are
a large number of people who have
chosen to use this for free, they have
at least become aware of the existence
of the product and Company A. Fur-
ther, some of the users have requested
services and support for which they
have paid Company A. Interviewee
B made the observation that in order
to get commercial entities to try out
one’s software, the fact that it is open
source gives them further incentive.
This is because a potential customer
is ensured that they can make some
use of the software even if the original
vendor is not readily available because
they have the code and can modify
it to suit their purposes, if the need
arises.

• Avoid re-inventing the wheel. When
the functionality of the product and
the services are paramount (such as
Company B’s turnkey product), the
software itself is the means to an end.
Therefore, it makes sense for an e-en-
trepreneur to make use of the readily
available OSS rather than having to
devote valuable resources to rebuild
what has already been done (and of-

ten done well). For e-entrepreneurs
seeking to move quickly and offer
novel services, this can be a major
motivation. Interviewee B finds that
by avoiding a lot of duplicated R&D,
they are able to provide cost-effective
solutions.

• Interaction with the community.
Interviewee A acknowledges that
Company A has indeed benefited
from the questions, suggestions, and
contributions of the online community
that uses their open source content
management product. Interviewee
B views his Company B’s building
solutions based on existing OSS as
bartering IP. Company B benefits from
the IP of the developers of existing
OSS and in turn feeds back expertise
to these open source projects.

• Get an edge over proprietary software
vendors. An e-entrepreneur may have
an idea for a new product or service
that can be enabled by a software
package (or, indeed, the product may
be a software package itself). It is often
the case that the e-entrepreneur would
struggle against the big businesses
that offer similar products/services
based on proprietary software. By
releasing their product as OSS, the
e-entrepreneur can get the attention
of some potential customers who
are deterred by the higher prices or
the closed nature of the proprietary
vendors. These potential customers
could become a source of revenue
based on custom modifications and
other support-related activities. Of
course, if there are already a number
of OSS solutions available, then the
e-entrepreneur should try to come up
with a different idea.

 2579

How E-Entrepreneurs Operate in the Context of Open Source Software

Apart from the discussed business reasons, a
strong ethical undercurrent did seem to underlie
some of the issues outlined by the interviewees.
For instance, Interviewee A saw releasing a
proprietary product as OSS after it had reached
its end of life as one way of letting customers
know that they were not being left in the lurch.
By granting access to software that Company A
had previously developed under a proprietary
license, users of that software would be able to
continue to use and maintain the product well
after Company A declared it as discontinued, if
they so wish. For Interviewee B trying to “make
the world a better place” is more important than
“making a buck.”

Another common factor is the passion for tech-
nology and the excitement that comes from devel-
oping new technology or watching the technology
evolve by following and perhaps collaborating
with the open source software community.

As a result of these findings, we agree with
Mahoney and Naughton (2004) when they say
that for some companies, OSS can be a strategi-
cally valuable weapon. However, the idealistic
tendencies of both interviewees would cause us
to stop short of agreeing completely with them
when they say that it is difficult to find the “ide-
als of freedom, volunteerism, and a shared com-
munity of values in today’s world of Monetized
Open Source.”

conclusIon

In this chapter, we have examined the increasing
usage and growing acceptance of open source
software within the technological world. E-entre-
preneurship is a growing field and the experiences
of two e-entrepreneurs trying to survive in this
competitive field were presented. The underlying
attributes and skills necessary for an e-entre-
preneur are very similar to that of becoming an
entrepreneur. These include: being a visionary; the

ability to develop short- and long-term strategic
plans; providing leadership; developing flexible
structures; and remaining responsive to changing
environmental and market demands.

Presented next are the recommendations
we have elicited from the interviewees that can
enable e-entrepreneurs to be successful in their
ventures.

flexibility in strategic planning and
the work Environment

There is a need for maintaining flexibility when
doing business irrespective of the organisational
size. Especially in this technologically-dominated
business world, the organisation needs to have a
flexible structure so as to be able to respond to
the ever-dynamic and ever-changing environment.
At the same time, long-term strategic decisions
should be made which reinforce the vision of the
company.

provision of high levels of service

A high emphasis needs to be placed on provid-
ing regular and outstanding service to clients.
A company’s reputation (communicated though
“word-of-mouth”) plays a major part in obtaining
repeat business from existing clients and attract-
ing new clients.

developing basic Management skills

A successful e-entrepreneur must acquire ba-
sic management skills and attributes such as
leadership, negotiation, and business planning.
Furthermore, a balance needs to be maintained
between the technical demands and the business
demands of the company, especially those relating
to people management — customers, suppliers,
and employees. Motivating employees will remain
a key task for managers regardless of the type of
organization.

2580

How E-Entrepreneurs Operate in the Context of Open Source Software

taking the long-term perspective

Establishing a new business requires significant
commitment in terms of effort and financial re-
sources over a significant period of time. Hence,
returns in the short-term should not be the moti-
vating factor. Building a robust and stable busi-
ness requires patience. One way of maintaining
motivation over a long period is to ensure that all
individuals involved keep an open mind and enjoy
the journey that can provide numerous challenges
and highly satisfying outcomes.

listening to technologists

In order to maintain a competitive advantage, it is
imperative that managers regularly communicate
with their technical personnel since they are ones
who will have firsthand knowledge of what is
happening in the technological world.

This chapter has contributed to our understand-
ing of OSS and e-entrepreneurship. The literature
highlights the need for further research in this
area, particularly to do with small businesses
with Internet usage (Steinberg, 2003). Gaps in
the existing literature in the area of OSS and
e-entrepreneurship needs to be filled with more
studies. One way this could be initiated is by more
qualitative studies incorporating both in-depth
case studies and focus-group discussions explor-
ing experiences of e-entrepreneurs in the current
technological environment. The experiences of
entrepreneurs who have now become e-entrepre-
neurs also need to be further explored.

rEfErEncEs

Amazon.com (2004). Amazon.com. Retrieved
October 28, 2004, from www.amazon.com/exec/
obidos/subst/home

Andal, A.A., & Yip, S. (2002). Advantage amnesia.
Business Strategy Review, 13(1), 1-11.

Anonymous (2002). eEntrepreneurship key to
growth. Dubai, UAE, Khaleej Times Online. Re-
trieved August 16, 2004, from www.khaleejtims.
co.ae/ktarchive/291003/finance.htm

Anonymous (2003a). Class of 2000: Dot-com IPOs
learn tough lesson in survival. USA Today.

Anonymous (2003b). The ten rules for e-entre-
preneurship in the countries of South-Eastern
Europe. Athens, Greece, Work group D5, e-Busi-
ness Forum.

Anonymous (2004). Proprietary software. Re-
trieved October 6, 2004, from http://en.wikipedia.
org/wiki/proprietary-software

Becker, M.C., & Knudsen, T. (2004, June 14-16).
The role of entrepreneurship in economic and
technological development: The contribution of
Schumpeter to understanding entrepreneurship.
Paper presented at the DRUIID Summer Confer-
ence 2004: Industrial Dynamics, Innovation and
Development, Elsinore, Denmark.

Bolan, S. (2002). Artists need business know-how:
HP, OnTarget partner for new media entrepreneur-
ship. Computing Canada, 28, 19.

Borders (2004). Borders Australia: Books Music
Movies Cafe. Australia. Retrieved October 28,
2004, from www.bordersstores.com

Burns, R.B. (1998). Introduction to research
methods. Australia: Addison Wesley Longman,
Australia Pty Ltd.

Busenitz, L.W., & Lau C. (1996). A cross-cul-
tural cognitive model of new venture creation.
Entrepreneurship: Theory and Practice, 20(4),
25-40.

Cherwitz, R.A., & Sullivan, C.A. (2002). Intel-
lectual entrepreneurship: A vision for graduate
education. Change, 34(6), 22-27.

Conry-Murray, A. (2001). Keeping IT alive
through the dot-com bust: Ten types of hacks.
Network Magazine, 16, 38.

 2581

How E-Entrepreneurs Operate in the Context of Open Source Software

Corbett, L.M., & Cutler, D.J. (2000). Environ-
mental management systems in the New Zea-
land plastics industry. International Journal of
Operations & Production Management, 20(2),
204-224.

Cusumano, M.A. (2004). Reflections on free and
open source software. Communications of the
Association for Computing Machinery, 47(10),
25-27.

Derekgnu (2004). The GNU General Public Li-
cense. Retrieved November 8, 2004, from www.
gnu.org/copyleft/gpl.htm

Duck, P.M. (2004). The dot-com boom: Was it
really all wrong?” Behavioral Health Manage-
ment, 24(2), 14-15.

Dvorak, J.C. (2001). Dot-com season of the witch.
PC Magazine, 20, 67.

Foster, J., & Lin, A. (2003). Individual differences
in learning entrepreneurship and their implica-
tions for Web-based instruction in e-business
and e-commerce. British Journal of Educational
Technology, 34(4), 455-465.

FSF (2004). Categories of free and non-free
software. Retrieved October 6, 2004, from www.
gnu.org/philosophy/categories.htm

Gannon, J.C. (2000). Strategic use of open source
information: A corporate strategy that leverage
the best practices. Vital Speeches of the Day, 67,
153-157.

Halloran, J.W. (1991). Why entrepreneurs fail:
Avoid the 20 fatal pitfalls of planning your busi-
ness. USA: Liberty Hall Press (an imprint of
McGraw-Hill).

Infante, V.D. (2001). How dot-coms learned to
value the tried and true. Workforce, 80, 15.

Jablecka, J. (2001). Entrepreneurship, innovation
and quality: The successful strategy of a newly
established institution: The example of Wyzsza
Szkola Biznesu-National Louis University in

Nowy Sacz. Higher Education in Europe, 26(3),
367-379.

Kitazawa, S., & Sarkis, J. (2000). The relationship
between ISO 14001 and continuous source reduc-
tion program. International Journal of Operations
& Production Management, 20(2), 225-248.

Kuratko, D.F., & Hodgetts, R.M. (2001). Entre-
preneurship a contemporary approach (5th ed.).
South-Western (a division of Thomas Learn-
ing).

Legge, J., & Hindle, K. (1997). Entrepreneurship:
How innovators create the future. Australia:
Macmillan Education Australia Pty Ltd, Sup-
ported by the Department of Industry, Science
& Tourism.

Mahoney, I.G., & Naughton, E.J. (2004). Open
source software monetized: Out of the bazaar and
into the big business. The Computer and Internet
Lawyer, 21(10), 1-17.

May, T. (1993). Social research: Issues, methods
and process. USA: Open University Press.

McCutcheon, D.M., & Meredith, J.R. (1993).
Conducting case studies research in operations
management. Journal of Operations Manage-
ment, 11, 239-256.

McGuire, L. (1995). Case studies for research:
Story telling or scientific method. Working Paper
June 1995. Victoria, Australia, Department of
Management, Faculty of Business & Economics,
Monash University.

McNiff, J. (1988). Action research: Principles and
practice. Hong Kong: MacMillan Education.

McQueen, R.J. (2004). E-entrepreneurship:
Proposed use of the Internet in a business plan
competition in New Zealand. Hamilton, New
Zealand: Department of Management Systems,
University of Waikato.

Mills, D.Q. (2001). Who’s to blame for the bubble.
Harvard Business Review.

2582

How E-Entrepreneurs Operate in the Context of Open Source Software

Morrison, A. (2000). Entrepreneurship: What trig-
gers it? International Journal of Entrepreneurial
Behaviour & Research, 6(2), 59-71.

Mottl, J.N. (2000). Brick ‘n mortar vs. dot-com.
informationweek.com, 61, 64, 66, 68, 72.

Mulcahy, K.V. (2003). Entrepreneurship or cultural
Darwinism? Privatization and American cultural
patronage. The Journal of Arts Management, Law,
and Society, 33(3), 165-184.

Murray, G. (1996). A synthesis of six exploratory,
European case studies of successful existed,
venture capital-financed, new technology-based
firms. Entrepreneurship: Theory and practice,
20(4), 41-61.

MySQL (2004). MySQL case studies. Retrieved
October 6, 2004, from http://www.mysql.com/it-
resources/case-studies/

Neofotistos, G., & Yagoulis, N. (2003, June).
e-entrepreneurship and Southeastern Europe:
Executive summary. Athens, Greece, e-business
Forum: 4th Working Round, Working Group
WG D5.

OSI (2004a). Open Source Initiative: Welcome.
Retrieved October 6, 2004, from www.open-
source.org

OSI (2004b). Open Source Initiative: The open
source definition. Retrieved October 6, 2004, from
www.opensource.org/docs/def-print.php

Palmer, J., & France, C. (1999). Informing smaller
organizations about environmental management:
An assessment of government schemes. Journal
of Environmental Planning and Management,
41(3), 355-374.

Peil, M.P., Mitchell, K., et al. (1982). Social sci-
ence research methods: An African handbook.
UK: Holdder & Stoughton.

Reddy, C.R. (1987). Research methodology in
social sciences. Delhi, India: Daya Publishing
House.

Spencer, D.L. (1982). Researcher’s guide: How
and why. College-Hill Press.

Spiegel, R. (2002). Where have all the dot-coms
gone? Electronic News, 48, 30.

Steinberg, A. (2003). Success and decision repre-
sentations: Sense-making in e-entrepreneurship
in the wake of the doctom crash. Doctoral thesis,
London School of Economics and Political Sci-
ence, Houghton St. Retrieved August 16, 2004,
from http://personal.lse.ac.uk/steinbea/overview.
htm

Steinberg, A. (2004). Entrepreneurship and suc-
cess in e-business: On changing meanings of
expertise and community in e-entrepreneurship.
London: Department of Social Psychology, The
London School of Economics and Political Sci-
ence, Houghton Street.

Tams, E. (2002). Creating divisions: Creativity,
entrepreneurship and gendered inequality - A
Sheffield case study. Carfax Publishing, Taylor
& Francis Group, 6(3), 393-402.

Telstra (2004). Welcome to Telstra. Australia.
Retrieved October 28, 2004, from www.telstra.
com/index.php

Thompson, A.A., & Stickland, A.J. (2003).
Strategic Management: Concepts and Cases.
MCGraw-Hill Irwin.

Thompson, P., & Randall, B. (2001). Can e-learn-
ing spur creativity, innovation and entrepreneur-
ship. Education Media International, 38(4),
289-292.

Thornton, P.H. (1999). The sociology of entre-
preneurship. Annual Review of Sociology, 25,
19-46.

Wallace, R.M. (1984). The use and value of quali-
tative research methods. Industrial Marketing,
13, 181-185.

Web site 1, Company A (Date accessed: Septem-
ber 15 2004)

 2583

How E-Entrepreneurs Operate in the Context of Open Source Software

Web site 2, Company B (Date accessed: Septem-
ber 12 2004)

Yin, R.K. (1994). Case study research: Design
and methods. CA: Sage Publications.

EndnotE

1 Netcraft (www.netcraft.com), in fact, re-
ports a 67.92% market share for the open
source Apache Web server in October 2004,
which is a bare 0.07% change since October
2003.

AcronyMs usEd

ERP: enterprise resource planning
IP: intellectual property
MYOB: Mind Your Own Business (accounting

software package)
OSS: open source software
SAP: “Systeme, Anwendungen, Produkte in der

Datenverarbeitung,” meaning “Systems -
Applications - Products in data processing”
[url:wiki_sap]

SQL: structured query language

This work was previously published in Entrepreneurship and Innovations in E-Business: An Integrative Perspective, edited by
F. Zhao, pp. 62-88, copyright 2006 by IGI Publishing (an imprint of IGI Global).

2584

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6.15
Channel Optimization for On

Field Sales Force by Integration
of Business Software on Mobile

Platforms
Rishi Kalra

Symbiosis International University, India

Amit Nanchahal
Symbiosis International University, India

AbstrAct

Marketing and sales channels are a significant
lifeline for the sales force of a business. Sales
professionals work on the concept of creating and
widening channels that are then fed by the supply
chain and distribution network of the businesses.
Sales teams are constantly pushed to meet cus-
tomer expectations while generating revenue for
the company. As companies grow, these pressures
increase. Sales teams are now looking at Mobile
Sales Force Automation technologies to handle
the ever increasing customer demands. Companies
want to keep costs low, increase productivity and
efficiency through mobile devices for the much
needed edge on the field. This chapter is based
on literature review of channel optimization as

well as mobile software platforms and challenges
faced by the sales force. This chapter discusses
the need for integrating business software on
mobile platforms that will optimize and enhance
the performance of sales processes.

IntroductIon

The concept of the mobile enterprise is growinga
in today’s corporate world taking interest in tools
supporting enterprise mobility for their sales
force. These mobile enterprise solutions promise
efficiency and productivity gains resulting from
the sales function optimization. The change in
mindset towards mobile applications in business
has created a strong opportunity for companies to

 2585

Channel Optimization for On Field Sales Force by Integration of Business Software on Mobile Platforms

extend their core data and applications through
smart phones, cell phones, and personal digital
assistants (PDAs). This extension of the busi-
ness process applications results in creation of
location independent links between the office
(or a centralized location) with an increasingly
dispersed workforce – notably the sales force
which is continuously on the move.

The reason why companies are looking at
incorporating such small handheld devices in
their business processes is because by increased
usage of mobile phones, PDAs and laptops, the
company can keep in constant touch with its
staff and managers who are spending more and
more time away from the corporate network.
These devices also provide vital access to these
staff for email and the Internet. Istart Technology
research found that:

• 27% of e-mail requires immediate actionb

• 40% of the workforce is mobile
• 60% of senior management time is spent away

from the deskc

Sales force management is the art of manag-
ing sales team on the field that enable an organiza-
tion to generate revenue by selling their products to
customers and increase customer satisfaction.

Companies are spending huge resources
on their sales force and incorporating the new
systems and applications into their operations
management that help automate business pro-
cesses. These applications are combined with the
existing CRM functions in the organization which
help enhancing the selling tactics of the on field
sales force across industries by providing up to
date information helping them win in the global
business battlefield.

On field sales force for any company is
concerned with all the stages of the sales pro-
cess, starting from contact management, sales
forecasting, recording sales, product solution
details, integration of the various departments
companywide.

A sales force personnel on the field requires
constant communication with the home office for
sales leads, invoicing, inventoryd tracking, order
fulfillment, and other supporting information.
Recent advances in wireless technology field staff
had to make do with laptops that required a physi-
cal connection and voice-based mobile phones
neither providing the added value of mobility.

A new breed of user friendly Internet capable
applications on smart phones and mobile devices
are freeing the traditional sales force from their
desks and allowing them to be incredibly effec-
tive. Sales personnel now have access to the same
information and tools as their peers back at the
office. This chapter discusses the various aspects
in the channel for sales in an organization and
the intervention of mobile devices to increase
productivity.e

chAnnEl optIMIzAtIon
chAllEngE

Distribution channel is the structure that the
company uses to reach its products/services to
customers through intermediaries at the right
place, at the right time with special consideration
for profit and effectiveness. As shown in Figure 1
products of a company may be passed from one
intermediary channel member to another after
keeping a certain margin for their services. The
optimization of the distribution channel poses a
challenge to organizations with different entities
trying to transfer the product title and risk to the
next successive channel member. The coordina-
tion and smooth working for optimum output for
the company is the job of the sales team.

Distribution channels basically provide three
functions: information flow (outward information
about the supplier’s offering and inward flow about
customers’ needs), logistics to get the supplier’s
product to the end customer, and value-added
services that augment the supplier’s product (local
selling, financing, customization, after-sales parts

2586

Channel Optimization for On Field Sales Force by Integration of Business Software on Mobile Platforms

Figure 1. Distribution channel for a packaged goods industry

MANUFACTURING FACILITY

DISTRIBUTOR/BULK DEALER

ON FIELD SALESMAN WHOLESALE OUTLETS

RETAILERS GROCERY STORES

CONSUMERS

REGIONAL WAREHOUSE

ON FIELD SALESMAN

HUB

KEY ACCOUNTS

Reference: Report by Rishi Kalra on “Entry Stratefy for Haats/Shandies as a distribution channel in Orissa” at
ITC Ltd Vizag Branch in June 2007.

Figure 2. Physical flow of goods in a distribution channel

 2587

Channel Optimization for On Field Sales Force by Integration of Business Software on Mobile Platforms

and service, etc.). When improved alternatives for
providing these functions evolve or when customer
expectations rise, the failure of existing channels
to respond prevents the supplier from adequately
satisfying the customer. Figure 2 describes the
flow from the manufacturer to the retail point in
Fast moving consumer goods category.

The shortcomings in a distribution channel
are shown below:

• Excessive time taken for order processing
due to lack of proper and effective com-
munication between order procuring and
order processing.f

• Inefficient forecasting techniques as calcu-
lated using past data rather than current on
field inputs from sales force.

• Insufficient information supplied by sales
personnel to retailers while pushing for sales;
due to incomplete product knowledge and
changing product lines.

• Increased threat of cannibalization and mar-
ket fragmentation by inefficient order track-
ing and stock management techniques.

• Demographically heterogeneous consumers
with changing habits, behavior and wants
which are ineffectively monitored and stored
by the sales force.

• Declining margins due to price erosion and
increased costs due to excessive paperwork
for completing the sales process leading to
lost sales time.

Sales team for a company requires a lot of
data support from the office or central location
to close a deal or sell the company’s products to
demanding clients. The systems available now as
shown in Figure 3 incorporated on mobile devices
enable the sales person to re-quote proposals,
negotiate prices, manage orders and constantly
update product knowledge on the move. Today
the requirements from the sales force are more
demanding and focused on monitoring all new
business opportunities in the area, client reviews,

marketing activities, competitor analysis and
strategies for business development.

The various roles of a sales person are:g

• Generate Sales: Pre sales call planning,
prospecting, presentations, entertain, clos-
ing sales, arrange delivery, collect pay-
ment.

• Provide Service: Technical consulting /
solution formulation, arrange & oversee
installation, train users, testing & monitor-
ing.

• Territory management: Gather & analyze
industry data – on customers & competitors,
map distribution coverage, forecast.

• Professional development: Take part in
sales meetings, trade shows, update product
knowledge, upgrade skills, changing sales
plan.

• Other services: Train new sales persons,
counseling juniors, prepare manuals, and

Figure 3. Process flow followed by sales force

2588

Channel Optimization for On Field Sales Force by Integration of Business Software on Mobile Platforms

represent company in sponsored civic/social
events.

The shortcomings of the on field sales force
are mentioned below:h

•	 Figure 4 shows the various challenges faced
by the on field sales force.

•	 Faster decision making required at the time
of sales, access to information about price,
product and stock to help close the sale on
the spot.

•	 Need to remain as one point of contact for
the company and the customer.

•	 Inefficiently addressing customer require-
ments and problems during interactions due
to lack of proper negotiation and problem
solving support on field.

•	 Challenge in identifying new sales oppor-
tunities at existing client accounts and at
noncustomer, or whitespace, for companies
due to lack of access to market data and
current trends.

•	 Improper communication for receiving
scheduled alerts about sales performance

leading to inefficient planning and manag-
ing sales activity.

•	 Lack of access to customer/channel partner
requirements and payment track record to
manage the clients better on field.

•	 Inefficient use of field timei: A manual sys-
tem requires a lot of time for data capture
leading to lower efficiency. Moreover, loss
of time is the most important edge against
competition; increased efficiency allows
sales force more time to generate sales.

•	 Possibility of human error: There are
multiple jobs being performed by the sales
force personnel while on the field which
require manual data entry or estimation.
Human error is critical when the decisions
are made by the sales force for stock, sales
forecasting, order due date, recording sales,
and competition benchmarking.

•	 Lack of effective coordination during prepa-
ration of sales proposal due to improper flow
of information between the various depart-
ments and the central database to on field
agents making sales.

Figure 4. Challenges with the existing sales process system

 2589

Channel Optimization for On Field Sales Force by Integration of Business Software on Mobile Platforms

•	 Inefficient monitoring and coordination of
channel partners and sales force personnel
on the field due to dispersed data.

The goal of Small Handheld Devices (SHD)
is to streamline the entire sales process by inte-
grating business software on the mobile devices
to make businesses function efficiently, improve
customer interaction, increase customer satisfac-
tion, and save time.

Key research findings of mobile device man-
agement leader Mformation Technologies, Inc: j

•	 US enterprises reported more than half of
managers using company-supplied mobile
devices and nearly one-third of staff, with
56 percent reported increased usage among
managers and 60 percent reporting increases
in staff usage. k

•	 Mobile email, Internet and calendar applica-
tions are already pervasive, with more than
90 percent of companies using them, and
businesses are set to significantly increase
the use of new mobile applications such as
sales force applications and company file
share systems.

•	 81 percent of respondents reported signifi-
cant productivity increases from current mo-
bile investments, with more than one-third
of these reported increase higher than 20
percent.

•	 Four-fifths of CIOs interviewed look for
improved management of mobile devices,
applications, and data to accelerate the
productivity trend, and more than 8 out
of 10 US CIOs believe the mobile opera-
tor should take the lead in providing these
device management services.

The major benefits of Small Handheld De-
vices for the on field sales force are:

•	 Data capture process optimization by pre
drafted e-forms instead of manual filling of

sales orders, reports, activity reports, and/or
call sheets by on field sales peoplel.

•	 Seamless information transmission from
field to the central location rather than print-
ing out reports and taking them to the sales
manager. m

•	 Efficient response to client queries by use
of hand held devices rather than waiting
for paper based product inventory data and
sales prospect lists resulting in long-lasting,
profitable customer relationships.

•	 Ease of data entry mechanisms improve
sales staff morale by reducing the amount
of record keeping and/or increase the rate
of closing.

•	 Sales staff can be easily trained with product
information and sales technique training us-
ing SHD tools faster and more efficiently.

•	 Better communication and co-operation be-
tween sales personnel facilitates successful
team selling.

•	 More and better qualified sales leads could be
automatically generated by the software.

•	 This technology increases the sales person’s
ratio of selling time to non-selling time.
Non-selling time includes activities like
report writing, travel time, internal meet-
ings, training, and seminars.

•	 Mobile technology providing instant access
to information, applications, and services
anytime and anywhere. This saves a lot of
time most important business commodity.

•	 Improved supply chain efficiency by inte-
grating various levels of corporate activi-
tyn

•	 Digital catalogue of products (including
pictures) with sales representatives at all
times.

•	 Orders placed by sales representatives
can be automatically assigned to the sales
representative that placed the order, thus
streamlining the commission calculations
and incentives.

2590

Channel Optimization for On Field Sales Force by Integration of Business Software on Mobile Platforms

•	 Improves cash flow by accelerating payments
from customers – increasing efficiency of
gathering data needed to create and deliver
invoices customers.

•	 Since the data is collected in an electronic
format the chances of errors are considerably
reduced. These devices reduce human error
by instructing the user with logic structure-
based informational questions.

Table 1.

Sales Process Challenges SHD Optimizations
Contact
Management

1. Inefficient classification of contacts on
the field
2. Cumbersome to develop new contacts
from prospects with improper data
capturing.
3. Difficult to remember old transactions
with the contacts.

1. Efficient classification using the central
database and parameters
2. Ease of recording data from prospects
3. Complete access to all transactions with the
contact and customization of solution.

Order
Management

1. Increased lead time in order processing
due to time lag in information flow
2. Inefficient cumbersome order booking
3. Human error in recording data leading to
incorrect demand estimation
4. Lack of real time access to client orders

1. Faster delivery due to reduced lead time
2. Effortless order capture
3. Increased accuracy in order processing
4. Access to past data of client orders and
delivery dates.

Sales
Forecasting

1. Micro level knowledge and view of the
sales in the region.
2. Outdated information about targets of
the served region

1.Integrated timely sales forecast generation
from on field sales force (hourly, daily etc)
2. Coordinated updating of data from all
mobile devices providing a holistic view of
the database to sales force.

Recording
Sales

1. Sales recorded manually on sale books
and transferred to the database at the end
of the day.
2. Human errors while recording data due
to time constraints

1. Directly transferred to the database on a
periodic basis synchronizing with the central
database.
2. Less chances of human error due to efficient
data entry mechanisms.

Charting
Proposals

1. No data available from past interactions
2. Lack of access to latest sales data (product
details, pricing, schemes, etc) available to
field agents for preparing proposal.

1. Quicker access to past client interactions.
2. Access to latest sales data from the central
database to give the client the most competitive
quote.

Negotiation
and
Re-quote

1. Inefficient support on the field from the
office during negotiations.
2. Decision making postponed till approved
from higher authorities thus delaying the
sales cycle,

1. Instant access to relevant sales data on the
move.
2. Decision making and approval process
streamlined.

 2591

Channel Optimization for On Field Sales Force by Integration of Business Software on Mobile Platforms

•	 Due to the compact form factor it can easily
carried by the field work force. Handheld
devices also score over notebooks as they
are lightweight and fit easily into pockets.
An SHD can provide quick, convenient,
discreet Internet access.

MobIlE plAtforMs rEvIEw

With any new technology/solution, it is important
to match requirements̀ with the benefits and
limitations of the solution. The operating system
determines a phone’s features, performance, and
security, providing APIs for add-on applications
and technical hooks to manage it all. Decision
makers face a tough choice when weighing which
mobile platform or operating system to deploy
to mobilize the workforce. There’s BlackBerry,
Windows Mobile, Palm OS, Symbian, Linux
and J2ME.

blackberry

BlackBerry offers the best combination of mobile
phone, server software, push e-mail, and security
from a single vendor. It integrates well with other
platforms, it works with several carriers, and it can
be deployed globally for the sales force which is
on move. It is easy to manage, has a longer than
usual battery life, and has a small form-factor with
an easy-to-use keyboard. BlackBerry is good for
access to some of the simpler applications, such
as contact list, time management, and field force
applications. It’s a good device for doing e-mail,
but it would be a bad choice if what you’re looking
for is a way to deploy business-critical applica-
tions to mobile workers.

windows Mobile

Windows Mobile comes in two flavors. A smart
phone edition is good for wireless e-mail, cal-
endaring, and voice notes. A Pocket PC edition

adds mobile versions of Word, Excel, PowerPoint,
and Outlook. Palm’s Treo 700w, with the full
functionality of the Pocket PC edition, is a better
choice for sales force professionals.

The main draw of the Windows Mobile operat-
ing system is its maker Microsoft. For a Windows
or Microsoft shop, it’s a wise decision, since it’s
fairly easy to add into the mix if a company has an
affinity to other Windows applications, like Word
and Excel. Windows Mobile also actively syncs
to the Exchange and SQL servers. This augurs
very well for use by the sales force.

Mobile sales force solutions for Windows
Mobile are available from companies like SAP,
Siebel, PeopleSoft, and Salesforce.com as well as
other leading solution providers.

palm os

Palm OS is the most sensibly laid out and easy-
to-use operating system on a smartphone today.
This might suit the business requirement of some
sales force implementations. Palm brings an open
approach to business with two enterprise-ready,
non-proprietary operating systems: classic Palm
OS platform and the familiar Windows Mobile
platform. Both platforms deliver secure mobile
email, Palm’s ease of use, access to thousands
of industry-specific enterprise applications, and
the ability to build custom applications using
your existing development resources. The Palm
OS does not allow for multitasking, which many
enterprises could find a great hindrance. For ex-
ample, if a user is working in an application and
the phone rings, the application has to be closed
down in order to take the call.

symbian

Symbiano is one of the most widely used platforms.
Its plug-in architecture makes it easier for manu-
facturers to add technology of their own which
hastens delivery of new and in-demand features.
Although Symbian is feature rich, it doesn’t inte-

2592

Channel Optimization for On Field Sales Force by Integration of Business Software on Mobile Platforms

grate well with corporate back-end systems such
as VPN connections and other enterprise-oriented
tools. These devices work well for many traveling
professionals, managers, knowledge workers and
sales teams, but enterprise IT departments may
find Symbian OS devices to be too expensive and
too feature rich for verticalized field-force appli-
cations. Symbian has a strong feature set and is
relatively easy to use. Its main stumbling blocks
are the limited number of Symbian devices and
its lack of support for CDMA. However, Symbian
will start making its way to mobile workforces,
even if it can’t conquer the enterprise market.

linux

Mobile Linux is not really a mobile operating
system, but a kernel that can be a central part
of any number of different operating systems.
Mobile Linux cannot really be weighed against
other mobile operating systems like Palm OS and
Windows Mobile, simply because there are many
flavors of Linux. Linux has an advantage over
other mobile operating systems: a far-reaching
community of developers ready to write smart-
phone applications. One can say things like ‘Palm
OS has an intuitive user interface’ or ‘Windows
Mobile requires a more powerful processor,’ but
these generalizations can’t be made about mobile
Linux because it can have many different user
interfaces depending on the distribution.

J2ME

J2ME is also not an operating system, it is a
platform. The main selling point for J2ME is
that it’s lightweight and has a simple methodol-
ogy for designing applications. Because it is
lightweight, it requires very little storage. There
are a few key applications that perform well in a
J2ME environment, namely those from SAP AG,
Oracle Corp. and IBM. What holds Java back is
similar to what keeps Linux from infiltrating the
enterprise as a viable mobile platform. The issue

is there’s no single party in charge of Java. In a
company with a deployment of several different
devices, that could create issues, since applica-
tions written to Java would have to be tested
and tweaked for each, creating more work and
potentially introducing performance issues if it
is not tweaked just right.

google’s Android Mobile platform

Google’s Android Mobile platform is the latest
mobile platform on the block. This open-source
development platform is built on the Linux kernel,
and it includes an operating system (OS), middle-
ware stack and a number of mobile applications.
Enterprises will benefit from Android because
the availability of open-source code for the en-
tire software stack will allow the existing army
of Linux developers to create special-purpose
applications that will run on a variety of mobile
devices. If Android makes it into phones designed
specifically for the enterprise, those products
will have to include technology from the likes
of Sybase, Intellisync or another such company
to enable security features like remote data wipe
functionality and forced password changes.

busInEss softwArE
IntEgrAtIon

The heart of the SHD device is its software and
companies want employees on the field to get a
feel of familiar applications they are trained to
use on their mobile devices. Applications be-
ing developed in the SHD space depend upon
the companies’ requirements. There are indus-
try-specific applications being developed; for
instance, applications for an FMCG sales force,
for insurance agents, the police, the military, and
for e-governance. However, the applications have
to be simple and effective. A salesman capturing
information during a sales call has to complete
all information, then and there, in a short span of

 2593

Channel Optimization for On Field Sales Force by Integration of Business Software on Mobile Platforms

time. Hence it is very important for the applica-
tions to be simple and effective.

SHDs have proved to be a boon for the sales
force of many organizations. Prior to having a
handheld device the sales force had to depend
on manual, paper-based systems. It used to take
a month to compile data collected from different
sources such as dealers, distributors etc. Software
loaded in the SHD enable each member of the
SF to maintain, store and feed information, and
then transfer the same to central location. There
are several protocols that sales people have to
meet in different set-ups when they contact a
distributor or retailer during their visits. They
have to get information about products based on
re-launch, regular purchase and different schemes.
A salesperson does not spend much time with each
channel partner and the challenge of recording all
the parameters is automated and this has reduced
the time required.

We’ll understand the business software in-
tegration through an example from Insurance
industryp. Gathering assets through partnerships
and affiliations is critical for insurers to increase
revenue. Third-party distribution continues to
dominate the distribution of insurance products.
Sales personnel spend most of their workday in
the field in prospecting the customers. These sales
personnel come back to home office periodically
to update the office records which in turn would
trigger the processing cycle. This often induces
delay in the policy processing and increases the
chances of data related errors. These work customs
compel insurance carriers to seek cost-effective
ways to deliver “anytime, anywhere” interactions
between sales personnel, their home office, and
their clients.

Mobile solutionsq are being adopted in areas of
new business acquisition and claims processing.
It can improve day-to-day service levels for sales
field force as it thwarts the need for duplicate data
recording. Mobility lessens the need for multiple
local offices in the same city which are frequently
established for convenience of sales personnelr.

Instead of sales personnel shuttling between local
offices and client they can assess the insurability
on site and immediately communicate with the
carrier.

Exhibit illustrates a typical new business acqui-
sition process flow using mobile devices to move
data and information from the field to the home
office of the agent. By instantly notifying under-
writings office of a new customer application and
assigning them the case dynamically, Insurancet
companies could expedite new policy processing.
Through secure mobile environment, carriers can
transmit applicant’s demographics information,
health information and other key details. The
sales personnel can accept the business in real
time, thereby improving the continuity between
the sales activities and underwriting office.

As the sales agent can collect detailed informa-
tion on the spot, it often improves the accuracy
of data and transactions. Mobile technology
streamlines new business acquisition; increas-
ing productivity in the process and reducing the
potential for delayed policy processing and caus-
ing discontent among newly acquired customers.
Both life and P&C carriers need to examine how a
business process will work with handheld devices
and then optimize these processes. Companies will
have to do this optimization in perspective of the
mobile wireless existing infrastructure available
with the company and in the country, and how
much is the company willing to spend on new
mobile devices and wireless networks.

vAlIdAtIon cAsE

To illustrate the effectiveness of Mobile handheld
devices in Sales-force management the following
case has been chosen.

In a typical Consumer packaged goods com-
pany the sales force of the distributor typically
perform the functions of Order Capture, Order
Entry, Business Development and transfer of pro-
motions designed by the company to the dealer. A

2594

Channel Optimization for On Field Sales Force by Integration of Business Software on Mobile Platforms

typical day of the sales force is spent visiting outlets
making calls, booking orders manually, collection
of pending claims, checking display efficiency.
After covering his beat the sales person returns to
the office to make the order entry for the day and
plan the dispatch for the next morning. In addition
to this he prepares invoices to be handed out to
the retailers once Pros are dispatched. Since there
is a time lag of 7-10 days between the dispatch
and payment of the invoice the sales person also
needs to keep a track of pending claims which
is currently done manually and then fed into the
system. If we analyze the current system there are
gaps in terms of: duplication of effort when the
order entry is done both at the dealer’s premises
and the office, manual entry of figures which can

be mishandled. Moreover additional effort needs
to be undertaken in terms of preparing statement
claims, interpreting these and analysis of the
offtake levels is adhoc.

Let us consider a scenario when handheld
devices are used by the organization. The sales-
force of the organization is equipped with portable
devices. The first capability of the device is to-
wards enhancing the order booking process. The
device can either be ‘always on’ – permanently
connected to office servers wirelessly – allow-
ing users to dispatch their orders real-time. Or
it can connect and synchronize at various times
during the day – sending orders and receiving
relevant sales information and emails etc. The
order process will in many ways mimic what was

Figure 5. Architecture for a possible mobile sales force application

 2595

Channel Optimization for On Field Sales Force by Integration of Business Software on Mobile Platforms

once done with paper orders, however, instead of
faxing them in or delivering them to the office by
hand, the orders are sent wirelessly. The suite of
tools & information available in a mobile sales
application include sales orders, customer sales
history, corporate email, (typically synchronized
with Microsoft Outlook or Lotus Notes), sales op-
portunities and promotions, often with the ability
to record proposals and quotes, and marketing
information like special trade promotions relevant
to that particular customer. These modules contain
potentially useful information about past promo-
tions, their effectiveness with the customer and
various options which may be customized to the
buying pattern of the concerned customer.

This means the order dispatch process begins
almost as soon as the order is taken, and it also
means office bound order entry staff don’t have to
re-key orders (and potentially make mistakes while
doing so) which ultimately means less credits and
more satisfied customers. This is a significant
improvement over the manual process where
in the sales person had to replicate the effort in
order booking and order entry which doubled the
time required and the risk of inaccurate entries.
Moreover when linked with the database main-
tained at the distributor/stockist premises reports
related to the claims pending, off-take levels,
success of promotional schemes can be tracked
and used seamlessly by the company to make
decisions. Another application is the automatic
replenishment of stocks at the distributor level
once the stocks reach a certain level. This helps
in seamlessly integrating information across the
supply chain and improving efficiency of channel
partners and the manufacturing organization

This apart one major benefit is better utilization
of a sales rep’s time. The new operation enables
the sales representative to undertake more calls,
enhance the value of each order and gather com-
petitive intelligence with the saved time.

We attempt to evaluate the benefit of investing
in mobile technology. Let us assume the hypotheti-

cal example of a team of 20 sales reps, making
an average of eight sales calls a day. Assuming
that a sales person spends 15 minute per outlet
visited to transfer the order information into an
order sheet and this plus the travel time spent in
driving to the office premises at the end of the
day would amount to two hours wasted in a day.
Even if the additional time generated by using as
mobile application allowed the sales representa-
tive to make an additional sales call each day,
or an additional $40 profit per sales (including
the additional profits made due to better service)
call made, this would amount to a staggering
additional profit of $41,600 made in a year by
the team. Add to this the additional benefits of
better reporting, information synergies which
help in designing strategies by the company and
the reduced chances of stock unavailability at the
distributor premises and the application brings
excellent value. Assuming an investment of $800
per mobile device and the additional cost of alter-
ing the IT infrastructure the fixed one time cost
would amount to $20000; thus illustrating the
profitability of the technology.

conclusIon

An integral part of any mobile device system
trying to automate the company’s processes
is companywide integration among different
departments. If the systems aren’t adopted and
properly integrated to all departments, there
might be a lack of communication which could
result in different departments contacting the
same customer for the same purpose. In order
to mitigate this risk, sales force mobile devices
must be fully integrated and kept up to date from
all departments that deal with customer service
management. The applications that are transferred
or made mobile ready should be chosen such that
they provide the most relevant, effective and up to
date information to the on field sales force rather

2596

Channel Optimization for On Field Sales Force by Integration of Business Software on Mobile Platforms

than over burdening the sales team member with
other administrative tasks.

Some of the applications available for the
mobile devices are:

•	 There is a growing breadth of specialist
applications on or coming to the market
which enable fast efficient interface with
your customers.

• These include specialist Sales Force Au-
tomation, Field Service Automation, Job
dispatch and Tracking, Mobile Sales Force
Management, Easy Order Software and
Transport and Logistics Management. These
applications all ensure delivery of a higher
customer service level or increase the ef-
ficiency of the remote team your company
has on the ground.

• To attain a sustainable advantage over
competition, as the geographical boundar-
ies become redundant, it is medium like
telecommunication which will define the
rules of the game.

rEfErEncEs

Author, Cynthia Saccocia & Author, Bob
Egan(2006). Handheld device trends in the US
Insurance Industry: TowerGroup Inc.Microsoft
(2006). Mobile Field Sales. Redmond, WA: Mi-
crosoft Corporation

Frost and Sullivan report on mobile business on
www.allbusiness.com, 7 Feb. 2007 Retrieved on
4th January 2008. http://www.expresscomputer-
online.com/20021223/indtrend1.shtml, pricing
and applications will drive PDA growth retrieved
7th January 2008.

IDC (2006). Enterprise mobility - Not a packaged
solution. Network Magazine India. Retrieved
January 16, 2008, from http://www.networkmaga-
zineindia.com/200601/index.shtml

Informal telephonic survey carried out in compa-
nies in India like Cognizant and ITC Ltd.

Jennifer O’Brien (2007). Evolving to a mobile
enterprise platform. ARN. Retrieved January
16, 2008, from http://www.arnnet.com.au/index.
php/id;346556794;pp;1

LOMA (2006), Supporting the Insurer’s Distribu-
tion Systems. Chapter 7, LOMA-290: Life Office
Management Association, USA

LOMA (2006), The process of underwriting,
Chapter 8, LOMA-290: Life Office Management
Association, USA

Mobile Business Application Usage to Surge by
2009, Driving Need for Device Management,
Business wire, Monday, July 23 2007 retrieved
on 6th January 2008.

Mobile Business Application Usage to Surge by
2009, Driving Need for Device Management,
publication: Business Wire, Date: Monday, July
23 2007 retrieved on 13th January 2008.

Mobile Business solution overview retrieved from
www.istart.com on 19th Jan 2008.

Mobile business solutions from http://www.istart.
co.nz/index/HM20/PC0/PV22447 Retrieved on
7th January 2008

Nokia, The Symbian platform (2000). Finland:
Nokia Group

Retrieved from http://www.istart.co.nz/mobile-
business.htm on 19th Jan 2008

Rohit Prakash (2006). PDA Applicability for the
Sales Field Force. Marico, India.

Sales Force Automation Software, retrieved from
http://www.stylusinc.com/Common/Scenarios/
pda.php on 18th January 2008.

Sales on the move, David McNickel investigates
the inherent power of today’s mobile sales ap-

 2597

Channel Optimization for On Field Sales Force by Integration of Business Software on Mobile Platforms

plications, September 2006 retrieved on 7th
January 2008.

Slide presentation on the sales force by Professor
of marketing Mr Abhijit Ranade, SIBM, pune.

Smartphones add to mobile productivity, by Ab-
hinav Singh, 2001 Business Publications Division
(BPD) of the Indian Express Newspapers

TCS (2007). Handheld Solution on Symbian
Platform: Tata Consultancy Services

KEy tErMs

Claim Processing: The process of obtain-
ing all the information necessary to determine
the appropriate amount to pay on a given claim.
Process of determining an insurance company’s
liability for each claim.

New Business Acquisition: The risk evalua-
tion an MCO performs when it first issues cover-
age to a group.

Underwriting: Assessing and classifying
the degree of risk represented by a proposed
insured

EndnotEs

1 Retrieved from http://www.istart.co.nz/mo-
bile-business.htm on 19th Jan 2008

2 Frost and Sullivan report on mobile busi-
ness on www.allbusiness.com, 7 Feb. 2007
Retrieved on 4th January 2008.

3 Mobile Business solution overview retrieved
from www.istart.com on 19th Jan 2008.

4 Sales on the move, David McNickel inves-
tigates the inherent power of today’s mobile
sales applications, September 2006 retrieved
on 7th January 2008.

5 Slide presentation on the sales force by
Professor of marketing Mr Abhijit Ranade,
SIBM, pune.

6 Mobile Business Application Usage to Surge
by 2009, Driving Need for Device Manage-
ment, Business wire, Monday, July 23 2007
retrieved on 6th January 2008.

7 Rohit Prakash (2006). PDA Applicability
for the Sales Field Force. Marico, India.

8 Mobile Business Application Usage to
Surge by 2009, Driving Need for Device
Management, publication: Business Wire,
Date: Monday, July 23 2007 retrieved on
13th January 2008.

9 Smartphones add to mobile productivity,
by Abhinav Singh, 2001 Business Publica-
tions Division (BPD) of the Indian Express
Newspapers

10 TCS (2007). Handheld Solution on Symbian
Platform: Tata Consultancy Services

11 ht tp://www.expresscomputeronline.
com/20021223/indtrend1.shtml, pricing
and applications will drive PDA growth
retrieved 7th January 2008.

12 Sales Force Automation Software, retrieved
from http://www.stylusinc.com/Common/
Scenarios/pda.php on 18th January 2008.

13 Nokia, The Symbian platform (2000). Fin-
land: Nokia Group

14 Author, Cynthia Saccocia & Author, Bob
Egan(2006). Handheld device trends in
the US Insurance Industry: TowerGroup
Inc.Microsoft (2006). Mobile Field Sales.
Redmond, WA: Microsoft Corporation

15 Jennifer O’Brien (2007). Evolving to a mo-
bile enterprise platform. ARN. Retrieved
January 16, 2008, from http://www.arnnet.
com.au/index.php/id;346556794;pp;1

16 IDC (2006). Enterprise mobility - Not a pack-
aged solution. Network Magazine India. Re-
trieved January 16, 2008, from http://www.
networkmagazineindia.com/200601/index.
shtml

2598

Channel Optimization for On Field Sales Force by Integration of Business Software on Mobile Platforms

17 LOMA (2006), The process of underwriting,
Chapter 8, LOMA-290: Life Office Manage-
ment Association, USA

18 LOMA (2006), Supporting the Insurer’s
Distribution Systems. Chapter 7, LOMA-
290: Life Office Management Association,
USA

This work was previously published in Handbook of Research in Mobile Business: Technical, Methodological and Social Per-
spectives, Second Edition, edited by B. Unhelkar, pp. 182-193, copyright 2009 by Information Science Reference (an imprint
of IGI Global).

 2599

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6.16
Revenue Models in the Open

Source Software Business
Risto Rajala

Helsinki School of Economics, Finland

Jussi Nissilä
University of Turku, Finland

Mika Westerlund
Helsinki School of Economics, Finland

AbstrAct

Profit-oriented business behavior has increased
within the open source software movement.
However, it has proved to be a challenging and
complex issue due to the fact that open source
software (OSS) business models are based on
software that typically is freely distributed or
accessed by any interested party, usually free
of charge. It should be noted, however, that like
all traditional software businesses, the business
models based on OSS ultimately aim at generating
profits. The aim of this chapter is to explore the
key considerations in designing profitable revenue
models for businesses based on OSS. We approach
the issue through two business cases: Red Hat and
MySQL, both of which illustrate the complexity
and heterogeneity of solutions and options in

the field of OSS. We focus on the managerial
implications derived from the cases, discussing
how different business model elements should be
managed when doing business with OSS.

IntroductIon

Whereas the business models of the traditional
providers of proprietary software are grounded in
one way or another on the distribution of access to
the use of software-related intellectual property
(IP) protected by copyrights, business models
within the open source movement have to rely
on other types of revenue models. This is due to
the fact that open source software (OSS) business
models are based on software that typically is
freely distributed or accessed by any interested

2600

Revenue Models in the Open Source Software Business

party, usually free of charge. OSS is often mistaken
for shareware or freeware, but there are significant
differences between the licensing models and
the processes between and within these types of
software. It should be noted, however, that like
all traditional software businesses, the business
models based on OSS ultimately aim at generating
profits. However, profitability and business models
of OSS are still poorly understood phenomena, and
there is no single framework that would explain
the potential determinants of firm-level revenue
model choices.

In this chapter, we make an attempt to iden-
tify key considerations in designing successful
revenue models in the OSS business. We explore
the revenue models of two selected OSS business
cases. Through these cases, we aim at identifying
the firm-specific business model elements that
guide, enable and constrain the choice of revenue
model options in OSS business. As a limitation
to the analysis presented in this chapter, we leave
the exogenous factors (such as competition and
other environmental factors) beyond the scope of
our consideration.

bAcKground

In this chapter, we discuss the background of the
OSS business, typical licence OSS choices, and
the potential for conducting for-profit business
with OSS.

development of oss business

The history of the open source movement goes
back to the early ages of computing. In the 1960s
and 1970s, it was common for programmers in
certain academic institutions (e.g., Berkeley,
MIT) and corporate research centers (e.g., Bell
Labs, Xerox’s Palo Alto Research Center) to
share computer program source codes with other
programmers. It was not until the early 1980s
that proprietary software became very popular,

thus causing problems with cooperative software
development (Lerner & Tirole, 2002). The pre-
decessor of the open source movement, the Free
Software Foundation (FSF), was founded in 1983
by MIT employee Richard Stallman in his attempt
to formalize cooperative software development
and create a complete free1 operating system
with necessary software development tools. This
project was called the GNU Project. Stallman’s
general concept of free software possesses four
essential freedoms (Stallman, 1999):

• Freedom to run the program
• Freedom to modify the program
• Freedom to redistribute the program
• Freedom to distribute modified versions of

the program

Stallman didn’t want to release software with
restrictive copyright terms because it would
prevent certain forms of valuable cooperation.
On the other hand, releasing software to the
public domain would leave it vulnerable to be
copyrighted and included in proprietary pack-
ages. Thus, Stallman came up with the idea of
copyleft, or protecting the freedom of software
with the means of copyright laws. In addition,
copyleft ensures that the modified works are also
released under copyleft terms and, therefore, to the
use of the community. Stallman, (2002) argues,
“Proprietary software developers use copyright to
take away the users’ freedom; we use copyright to
guarantee their freedom. That’s why we reverse
the name, changing ‘copyright’ into ‘copyleft.’” To
implement this idea, the FSF developed the GNU
General Public License (GNU GPL), the first of
the now extensive selection of copyleft licenses
that are used to protect free/OSS. Meanwhile, the
open anticommercialism of FSF led to a group of
free software movement leaders deciding to find
new ways to strengthen their cause, but with less
radical means. They came up with the term “open
source,” which they thought would better describe
the software ideals, and founded the Open Source

 2601

Revenue Models in the Open Source Software Business

Initiative (OSI). The idea of the organization was
to promote the Open Source Definition (OSD), a
set of terms for licences, which is more adaptable
to commercial use than the approach FSF took.
OSI has since registered a certification mark, and
there is a variety of OSI-certified licenses (includ-
ing GNU GPL and other copyleft licenses).

What motivated the birth of OSI was the
way free software was being developed in such
projects as the Linux operating system since the
beginning of the 1990s. The new development
model introduced in the Linux project was first
described in “The Cathedral and the Bazaar,” an
essay written by Eric Steven Raymond, one of the
founders of the OSI (Raymond, 2001). The Linux
development model was seen as a better way of
software development that could lead to higher
quality and rapid advancement. Cooperational
software development was not only for the ideolo-
gists and community-spirited anymore, but rather
something also to be used in more commercial
projects. The new emphasis born with the OSI
made it possible for the business world to inten-
sively embrace OSS. Before 1998, relatively few
people in the IT industry knew about free software;
however, a couple years later, open source was
on many people’s lips. With the participation of
big IT companies such as IBM, Hewlett Packard,
and Nokia, open source has become a credible
player in the IT field.

oss licensing

OSS, exactly defined, is software fulfilling the
terms of distribution given in the OSD and adopt-
ing a license approved by the OSI (Open Source
Initiative, 2004). Summarizing the ideas behind
the terms in OSD, the software license must
generate the following effects:

• Source code must be readable and avail-
able, either included with the binary code
or publicly downloadable

• Free distribution of the software by any
party, on any medium, to any party, gratis
or for a fee

• Derivative works must be allowed, either
under similar license or not, depending on
the specific OSS license type

• No discrimination against persons, groups,
or fields of endeavor

The nature of OSS is in the licensing terms
and not just the accessible source code, which is
just one part of the features the licensing terms
generate. In addition, the licensing terms allow
the free use, redistribution, and modification of
the software. The copyright owner preserves
the moral rights and some economic rights, such
as the right to dual-license the software, but
transfers many important rights to the users and
developers of the software in order to enable the
development of the software and to increase its
adoption. It is important to understand that the
OSD licensing terms allow the creation of many
types of OSS licenses, each with different quali-
ties. Välimäki (2005) categorizes OSS licenses
into three functionality classes, ranging from the
most liberal to the most restrictive. The categories
are permissive licenses, licenses with standard
reciprocity obligation, and licenses with strong
reciprocity obligation. Standard reciprocity means
that the distribution terms of the source code must
be maintained in further developed versions,
which is also called the “copyleft” effect. Strong
reciprocity obligation means that in addition to
standard reciprocity effects, derivative works and
adaptations must keep the licensing terms intact,
also called the “viral” effect.

Välimäki (2005) has studied the prevalence of
different OSS license types. Table 1 presents the
most popular licenses as surveyed in his study
at SourceForge.net in 2004 (Välimäki 2005),
together with their functionality and relative
popularity in project licensing.

In Table 1, the popularity percentage refers
to the occurrences of these license types among

2602

Revenue Models in the Open Source Software Business

all OSS licenses (surveyed at the SourceForge.
net in late 2004).

special characteristics of oss
business

One of the most critical issues for OSS business is
that the licensing terms allow free redistribution
of the licensed software (i.e., the licenser doesn’t
necessarily gain any revenue from these copies
of the software). In fact, charging a fee for OSS
is usually not feasible, because (1) any buyer may
start to resell the software or give it away and (2)
fees could severely diminish the rate at which both
developers and users adopt the software product
(De Laat, 2005), which often is the motivation
behind licensing a product as OSS. Therefore, it
is usually not feasible to base the revenue logic
on licensing fees. It is also possible to use OSS as
part of a firm’s other products; namely, software

packages, hardware, and/or services. This ap-
proach is not free of challenges either, since the
unique licensing of OSS may create risks as well
as opportunities.

Many firms conducting business with OSS are
in some way dependent on the OSS community
for developing software in their product offerings,
for support, or for customers. However, the OSS
community is outside the hierarchical control of
the firms since there are normally no contractual
agreements between them. In addition, the idea of
exploiting the financial value of a jointly developed
community might go against the values of the
community (Dahlander & Magnusson, 2005) in
which the code is actively protected from being
appropriated by commercial firms through the use
of legal and normative mechanisms (O’Mahony,
2003). However, the attitudes and policies toward
the commercial exploitation within the OSS com-
munity range from the critical attitudes of FSF

License Functionality Popularity
GNU GPL strong reciprocity 66.50%

GNU LGPL standard reciprocity 10.60%
BSD permissive 6.90%

Public domain permissive 2.70%
Artistic permissive 2.00%

MIT permissive 1.70%
Mozilla standard reciprocity 1.50%

Common Public
License strong reciprocity 0.60%

Zlib permissive 0.50%
QPL strong reciprocity 0.40%

Open Software
License strong reciprocity 0.40%

Python License permissive 0.40%
Academic Free

License permissive 0.30%

Table 1. Most popular OSS licenses and their functionality (Source: Adapted from Välimäki, 2005)

 2603

Revenue Models in the Open Source Software Business

and copyleft licensing to the more liberal attitude
of OSI and permissive licenses.

Dahlander and Magnusson (2005) propose
three approaches a firm can use to relate to the OSS
community. In question is the parasitic approach in
which the firm focuses on its own benefits without
considering possible damages to the community.
Since the firm doesn’t share the norms, values, or
rules of the community, the possibility to influence
community development does not exist. The com-
mensalistic approach is about benefiting from the
community while leaving it otherwise indifferent.
Since the firm isn’t considered hostile, influencing
the community is possible but difficult. Also in
question is the symbiotic approach in which the
firm tries to co-develop itself and the community.
This demands heavy involvement in community
development and sharing of norms and values but
also allows influencing community development
in a desired direction. These approaches are il-
lustrated in Table 2.

MAIn focus of thE chAptEr

According to recent studies, the business-model
concept includes some elements of business
strategy and aims to describe the business as

a manifestation derived from strategy (Rajala,
Rossi, & Tuunainen, 2003; Osterwalder, 2004;
Morris, Schindehutte, & Allen, 2005). It has
also been defined as an abstraction of business
(Seddon & Lewis, 2003), which characterizes
revenue sources and specifies where the com-
pany is positioned in its value-creating network
in a specific business. The essential elements of
various business models are defined in differ-
ent words by several researchers (Rajala et al.,
2003; Hedman & Kalling, 2003; Osterwalder,
2004; Morris et al., 2005, Rajala & Westerlund,
in press). Many of the studies identify a number
of elements that are characteristic of various
business models. These elements, expressed in
different words by different authors, include the
following: (1) offerings; (2) resources needed to
develop and implement a business model; and (3)
relationships with other actors (Timmers, 2003;
Osterwalder, 2004; Morris et al., 2005). Finally,
these elements are interconnected with (4) the
revenue model, including sources of revenue,
price-quotation principles, and cost structures,
which is characteristic of a particular business.
Grounded on the previous review and summation
of the prior research literature, we identify three
business model elements in order to describe
the revenue models in the OSS business. These

Approaches Description Nature of Relationship

Parasitic approach
Focuses on firm’s own benefits without
considering possible damages to the com-
munity

Search for useful input without
obeying norms, values, and rules

Commensalistic approach Firm aims to benefit from the community Search for useful input from the
community

Symbiotic approach Firm tries to codevelop itself and the
community

Give something to the community,
often through a firm-established
community

Table 2. Firm-community relationship (Source: Modified from Dahlander & Magnusson, 2005)

2604

Revenue Models in the Open Source Software Business

business model elements are key considerations
on which firms should focus after the decision to
participate in an OSS business. In the following
we discuss these elements in detail.

offering

In the literature of business and management,
the concepts of product strategies and product
offerings are discussed widely (Cravens, 1987;
Kotler, Armstrong, Saunders, & Wong, 1996). We
see that offerings embody several aspects within
the concept of a business model and, thus, affect
the revenue model. Generally, type of offering,
target market, product vs. service orientation,
licensing model, and so forth, can be consid-
ered as aspects related to the product strategy.
Likewise, the product offering includes aspects
such as complexity, the essential benefit that the
customer is really buying, and product features,
styling, quality, brand name, and packaging of the
product offered for sale (Kotler et al., 1996).

From the business model perspective, a defin-
ing characteristic of OSS as a product is that it is
not a physical but rather an information product.
Information, or digital, products have unique
characteristics that differ largely from physical
product characteristics. However, certain open
source business models, such as widget-frosting
and accessorizing (see the following), consist also
of physical products. In addition, OSS revenue
models such as support selling, service enabling,
and software franchising, are comprised mostly
of service components, which also have a very
different nature.

In addition to the type of offering, license types
are considered part of the offering element in our
conceptual model as a determinant of revenue
model choices. Indeed, the licensing issues and
commitment to the principles of OSS licenses
(GPL, etc.) are key issues related to information
products such as OSS solutions (Lee, 1999).

resources

The development of resources in the indus-
trial-network perspective is linked to its strat-
egy (Håkansson & Snehota, 1995; Gadde &
Håkansson, 2001; Sallinen, 2002). According
to this view, resources vary according to the
business and product strategy. The resources
and capabilities of a firm are among the central
issues in understanding and analyzing its busi-
ness. This accentuates the essence of resources
in core competencies (Selznick, 1957; Prahalad
& Hamel, 1990), as they are generally seen as
firm-specific property that is subordinate to the
core competencies. The resource-based view of
the firm originated from the work of Penrose
(1959) and was further developed by Wernerfelt
(1984). According to Penrose (1959), bundles of
resources that are activated in different ways lead
to incoherent performance and heterogeneous
outputs in various organizational settings.

In our analysis of the resources in the OSS
business, we share the view of Metcalfe and
James (2000), who define tangible and intangible
assets as physical and nonphysical resources, and
capabilities as intangible knowledge resources.
Furthermore, we see that the increasing complex-
ity of OSS markets makes it difficult for firms to
have all the necessary resources in their possession
to compete effectively. This view is consistent
with the research of Ariño and de la Torre (1998).
These resource-related approaches provide us with
a basis on which to identify key resources in vari-
ous types of OSS business models. They deepen
our understanding, especially of how resources
are applied and combined by a firm, and take
inimitable resources as a basis for the creation
of sustainable capabilities as described in other
technology-intensive industries such as those by
Hart (1995) and Gabrielsson (2004).

 2605

Revenue Models in the Open Source Software Business

relationships

We see that the elements in our conceptual model
are interrelated with each other and, therefore,
are consistent with Håkansson and Snehota
(1995) and Rosenbröijer (1998) that capabilities
of a company reflect its success in combining
resources to perform activities through internal
and external relationships.

As pointed out in the previous discussion, we
need to consider the interaction of companies with
other actors as an inseparable part of a business
model, similar to offerings and resources. Tim-
mers (2003) points out that in the context of busi-
ness models, the focus shifts from creating value
through internal activities to creating value through
external relations. He identifies these relationships
within the value-creating network as an important
element in the development and distribution of of-
ferings. In addition to being an important intangible
company asset, a firm’s network offers access to
the resources of other network actors (Foss, 1999;
Gulati, Nohria, & Zaheer, 2000; Chetty & Wilson,
2003, Möller & Svahn, 2003).

revenue Model

Discussion of the revenue models in the context of
OSS has traditionally been problematic since the
OSS movement emphasizes free distribution of in-
tellectual property. However, since the emergence
of the OSS movement, there has also coexisted
a favorable attitude toward earning money and,
more generally, toward profit-oriented behavior
based on the OSS (Raymond, 2001).

Concerning open source as an economic phe-
nomenon, De Laat (2005) argues that whether an
enterprise involved in the open source business
chooses to license its own software product as
open source or tries to benefit from existing OSS
products, the ways of making money with open
source are basically the same. These ways include

selling services to facilitate OSS use, selling con-
nected hardware, and selling commercial closed
applications to use with OSS. However, Hecker
(1999) has identified eight possible revenue mod-
els to be applied in conjunction with OSS. These
models are described in Table 3.

Although Hecker’s list of OSS revenue models
(summarized in Table 3) was published as early
as 1999, it still remains one of the most compre-
hensive classifications of OSS revenue models. It
clearly points out that a company has a multitude
of options to capture revenue with OSS.

cAsE EXAMplEs

In our literature review, we identified three
endogenous business model elements (i.e., of-
fering, resources, and relationships) that affect
the revenue models in the OSS business. In this
chapter, we illustrate these determinants and their
interconnectedness with the revenue model in two
empirical examples: MySQL and RedHat. We see
that these case examples improve understanding
of the interrelatedness of these business model
elements, and especially their role as determinants
in setting up the revenue model. Furthermore, the
cases illustrate the complexity and heterogeneity
of solutions and options related to revenue models
in the field of OSS business.

MysQl

The MySQL trademark and copyright are owned
by the Swedish company MySQL AB. Two
Swedes, David Axmark and Allan Larsson,
founded MySQL AB, together with Michael
“Monty” Widenius, a Finn who is broadly ap-
preciated as the chief designer and developer of
the system. The company develops and maintains
its key product offering, the MySQL open source
database system, in close collaboration with the

2606

Revenue Models in the Open Source Software Business

OSS community over the Internet. Unlike projects
such as Apache, MySQL is owned and sponsored
by a single for-profit firm, MySQL AB. In addition

to providing the database product under the GPL
license, the company sells support through service
contracts as well as commercially-licensed copies

Revenue
Model Description License

Types Revenue Sources

Support
selling

A for-profit company provides support for a soft-
ware that is distributed free of charge. Any

Revenue comes from media
distribution, branding,
training, consulting, custom
development, and post-sales
support for physical goods
and services.

Loss-leader

A no-charge open source product is used as a loss
leader for traditional commercial software (i.e.,
the software is made free by hoping that it will
stimulate demand for a related offering of the
company).

Varies
Complementary offerings
(e.g., other software prod-
ucts)

Widget-
frosting

Companies that are in business primarily to sell
hardware can use this model to enable software
such as driver and interface code. By making the
needed drivers open, the vendor can ensure that
they are debugged and kept up to date.

Any

The company’s main busi-
ness is hardware. This is
quite similar to the loss-
leader model.

Accessoriz-
ing

Companies that distribute books, computer hard-
ware, and other physical items associated with and
supportive of OSS.

Any Supplementary offerings

Service
enabler

OSS is created and distributed primarily to sup-
port access to generating revenue from consulting
services and online services.

Any Service fees

Brand
licensing

A company charges other companies for the right
to use its brand names and trademarks in creating
derivative products.

Strong
reci-

procity
Copyright compensations

Sell it, Free
it

A company’s software products start out their
product life cycle as traditional commercial
products and then are converted to open source
products when appropriate.

Altera-
tion of
license

type

Initial revenue from software
product offerings converted
into other models (e.g., the
loss-leader model)

Software
franchising

A combination of several of the preceding models
(in particular, brand licensing and support sellers)
in which a company authorizes others to use its
brand names and trademarks in creating associated
organizations doing custom software develop-
ment; in particular, geographic areas or vertical
markets.

Strong
reci-

procity

The franchiser supplies
franchisees with training and
related services in exchange
for franchising fees of some
sort

Table 3. Summary of OSS revenue models (Source: Modified from Hecker, 1999; Välimäki, 2005)

 2607

Revenue Models in the Open Source Software Business

of the MySQL database software, and employs
people all over the world to communicate about
the use and development of the product.

Offering

The offering of MySQL AB is a multithreaded,
multiuser SQL (structured query language) re-
lational database server (RDBS) software. The
software is available either under the GNU GPL
or under other licenses when the GPL is inap-
plicable to the intended use. MySQL provides
database products for integrating software vendors
and original component manufacturing (OCM)
partners, enterprise organizations, and private
users in the OSS community. To distribute its
offering to a large number of users worldwide,
MySQL AB has applied a dual licensing prin-
ciple by making the MySQL database software
available for free on the Internet under the GPL
and selling it under proprietary licenses when
the GPL is not an ideal option and in situations
such as inclusion of MySQL technology in closed
source products. In summary, the core offering
of MySQL AB embodies an in-house developed
software product and related services.

Resources

As a symbol of the key resources of MySQL AB,
chief technology officer Widenius began program-
ming databases in 1981. He worked previously in
Tapio Laakso Oy developing systems that needed
data storage. Similarly, Axmark and Larsson, his
two colleagues and later cofounders of MySQL,
collaborated in programming projects from 1983
to 1995 and accumulated knowledge about data-
base systems. By licensing the MySQL product
under an OSS license, the company transferred
some of its internal intellectual property resources
to the open source community, thus gaining
possible future clients as well as developers and
enthusiasts to support its offering. The internal
programming resources can still be considered

the key element in the MySQL business model.
Currently, 80% of the source code in the MySQL
core database product (version 4.0) is programmed
by in-house programming resources; the com-
pany has systematically invested in professional
management resources to successfully manage
its growing for-profit business.

Relationships

As already described, the collaboration based on
personal relationships between key individuals
can be seen as the key determinant of success in the
early phases of the MySQL product development.
This open atmosphere and knowledge-sharing
culture between the cofounders of MySQL AB
provided a sound base for enlarging the network
to OSS-oriented Internet communities. At pres-
ent, partners in the business network of MySQL
include companies such as suppliers, distributors,
outsourcing service providers, other key compa-
nies in the OSS field, commercial research institu-
tions, and other strategic partners. Relationships
with these actors are based on commercial multi-
or bilateral activity. Furthermore, relationships
in the business network include collaboration
with public (government) organizations, research
institutes, and so forth.

Relationships within the OSS community are a
multifaceted phenomenon. According to the com-
pany CEO, the community of 5 million MySQL
users includes several groups that produce MySQL
books and articles as well as conduct courses and
presentations. Furthermore, these ecosystems
develop applications in different OSS projects.
Currently, MySQL AB is balancing between the
OSS community and commercial business net-
works that have somewhat disparate needs and
values. We see that MySQL AB depends on the
OSS community for its ecosystems and even more
for the customer base, but they mostly conduct
the product development in-house. However, the
company also has made a significant contribution
to the OSS community by licensing the database as

2608

Revenue Models in the Open Source Software Business

an OSS. Therefore, we define MySQL’s approach
toward the OSS community as a symbiotic one.

The Revenue Model

MySQL AB is often cited as the champion of
the second generation of open source projects.
These projects are open source but are directed
by for-profit companies. The revenues of these
corporations derive from selling consulting
services for their products. MySQL AB makes
MySQL available under the GPL for free and
sells it under proprietary licenses for clients when
the GPL is not an ideal option (e.g., inclusion of
MySQL technology in a closed source product).
Currently, MySQL AB receives more income
from proprietary license sales than from its other
income sources, branding, and services. Its main
income seems to come from embedded commer-
cial users (Välimäki, 2003). In terms of Hecker
(1999), the revenue models of MySQL AB include
features from support selling and dual licensing,
both of which can be considered incarnations of
the loss-leader model.

red hat

The U.S.-based Red Hat is one of the world’s
leading Linux software provider and one of the
highest profile companies employing OSS in its
business model. Red Hat’s offerings resemble
those of a classical software vendor: software
distributed on CDs or over the Internet, deploy-
ment support, add-on products, and so forth. The
unique aspect of the business model is that, for
the most part, Red Hat has neither developed the
software offering itself nor paid the development
for suppliers. The role of Red Hat in its value net-
work is related to its main activities in packaging,
branding, and distributing the open source Linux
operating system, thus making it usable for those
who are not familiar with the ins and outs of the
constantly evolving project.

Offering

Red Hat offers Linux and open source solutions
into the mainstream by making high-quality,
low-cost technology accessible (Rappa, 2005).
In particular, Red Hat provides operating system
software along with middleware, applications,
and management solutions. In recent years, the
target market has shifted mainly to corporate
customers, thus influencing the heavy emphasis
on enterprise Linux and network tools. Major parts
of the software offering are provided under the
GPL, which governs the redistribution of source
code as well as monetary licensing rights for the
binaries (Microsoft, 2005). In addition, Red Hat
offers support, training, and consulting services
to its customers worldwide and through top-tier
partnerships. These services range from complete
Linux migration to client-directed engineering
to custom software development, especially in
industry-specific solutions.

Resources

From the perspective of Red Hat’s business model,
it is obvious that key resources are related to brands
and their development and management, as well
as to marketing and business management. The
funding provided by investors has enabled Red
Hat to systematically develop these resources. In
addition to marketing and management capabili-
ties, relationships with OSS communities as the
supplier network form a key resource in Red Hat’s
business model. Indeed, the company makes an
extensive use of external resources for developing
the software in its offering. The internal produc-
tion resources include personnel and technology
aimed at producing services.

Relationships

Red Hat has succeeded in establishing strong
ties with large enterprise and academic custom-

 2609

Revenue Models in the Open Source Software Business

ers such as Amazon.com, AOL, Merrill Lynch,
Credit Suisse First Boston, DreamWorks, Veri-
Sign, Reuters, and Morgan Stanley. In addition,
its customer portfolio includes local, state, and
federal governments in various countries. The
company also maintains key industry relation-
ships with hardware and middleware suppliers.
In June 2002, Red Hat, Oracle, and Dell formally
launched a combined Linux effort that includes
joint development, support, and hardware and
software certification. It was considered as an
emphatic declaration in the strategy of Red Hat
to focus on enterprise customers. Due to the in-
herent sharing nature of OSS, Red Hat considers
balance as a key aspect in building a successful
business without sacrificing customer trust, and
in creating shareholder value without severing
ties to the open source community.

Red Hat is gaining significantly from the
software produced in the OSS community. It
participates in OSS and Linux development by
collaborating in standards creation as well as
sponsoring the Fedora Project. According to the
classification of Dahlander and Magnusson (2005)
presented in the theoretical part of the study, the
company’s approach toward the OSS community
could be defined as a symbiotic relationship,
although the emphasis on enterprise customers
embodies commensialistic elements.

The Revenue Model

Despite the release of software under the GPL-
license mode, the services employed by Red
Hat for commercial viability places a layer of
restriction upon the binary and source code usage
based on support contracts. This hybrid approach
enables the company to provide OSS solutions in
a commercial way (Microsoft, 2005). Thus, the
primary revenue model is currently what Red Hat
calls “subscriptions,” which allows the company
to effectively develop and deliver its technology
based on customer feedback, as well as to provide

support to customers over the life of an agree-
ment. In terms of Hecker (1999), we identify this
revenue model as support selling.

It has been claimed that this is a high-margin
activity demanding only a little investment (Man-
tarov, 1999). On the other hand, little investment
means lower entry barriers, and support offers a
very weak basis for differentiation to gain sus-
tainable competitive advantage. Microsoft clearly
has nearly a monopoly on desktop operating
systems, but its market share in services related
to desktop operating systems is much smaller.
Thus, there is potential for revenue models based
on service provisioning, as in some OSS-based
businesses.

conclusIon

This chapter aims at identifying the key deter-
minants of OSS revenue model choices. On the
basis of our literature review and through our
case studies, we see that there are several motives
for firms to participate and contribute to the OSS
movement.

In this chapter, we identify three business
model elements that affect firms’ revenue model
choices. These identified elements are offering,
resources, and relationships. The type of offering
in terms of the user environment and, thus, the
target market of the software (private vs. enterprise
applications and desktop vs. server applications)
constrain the possibilities to form a revenue
model. Furthermore, the licensing model affects
the revenue model choice through defining the
free and commercial components, as well as the
use and further development terms and conditions
of the software.

In addition to the type of offering, we argue
that a firm’s resources are an important factor
affecting the revenue model. We see that the
internal resources and capabilities of firms are
essential determinants of the actor-driven devel-

2610

Revenue Models in the Open Source Software Business

opment activity in the collection and integration
of divergent OSS components into commercial
offerings. Our cases illustrate that they strongly
enable and constrain the possibilities to collect
revenue based on OSS. Furthermore, relationships
between business actors and the OSS community
form the essential external resource and capability
base of the firm. The importance of relationship
management is emphasized in balancing between
the noncommercial culture of OSS communities
and the for-profit business networks. The objec-
tives and characteristics of these two networks
differ in terms of the development of loyalty, trust,
and motivation of actors into activities in which
some actors may benefit economically.

The managerial implications of this chapter
suggest that profit-seeking firms in the field of OSS
must maintain a balance between their profit-ori-
ented business objectives and the noncommercial
principles of the OSS community. This is consis-
tent with Dahlander and Magnusson (2005), who
argue that an intention to control the community
development may allow a firm to manipulate the
development toward its strategic goals, but might
also diminish the creativity and general interest
of the community toward the project.

Our empirical observations from the two
case examples indicate that the selection of the
revenue model is dependent on other business
model elements. The case of MySQL illustrates

Business
Model Ele-

ments
MySQL Red Hat

Offering
Core offering embodies an in-house devel-
oped database software product and related
services.

Operating system software maintenance and
services along with operating system software.

Resources The internal programming resources and
professional management resources.

Resources related to the development and
management of brands, as well as to marketing
and business management.

Relation-
ships

Balancing between the OSS community and
commercial business networks that have
somewhat disparate needs and values. De-
pendence on the OSS community mainly as
a user community.

OSS community as significant product devel-
oper.

Revenue
model

A majority of revenue originates from
proprietary license sales, and a smaller
proportion stems from other sources such as
services. The main income seems to come
from business users. The revenue model in-
cludes features from support selling and dual
licensing, both of which can be considered
incarnations of the loss-leader model.

The primary revenue model is currently what
Red Hat calls “subscriptions,” which allows
the company to effectively develop and deliver
its technology based on customer feedback, as
well as to provide support to customers over
the life of an agreement. The revenue model is
identified as support selling.

Table 4. Summary of the cases

 2611

Revenue Models in the Open Source Software Business

that the need to maintain relationships with both
the OSS community and the business network has
led to a revenue model based on dual licensing.
In this model, the community has access to the
software for free, but business users may buy a
software license for their commercial purposes.
Furthermore, the dual-licensing model used by
MySQL illustrates that a change in any of the
elements of the identified key determinants may
affect the revenue model choice. In this model,
the company owns all copyrights to the software
and, therefore, can license the software with two
licenses, one allowing gathering of revenue from
sold copies of the software and the other based on
the principles of the loss-leader model.

The lesson learned from the Red Hat case is
that internal resources (e.g., well-known brands)
and superior commercialization capabilities allow
a company to benefit from the development efforts
of the OSS community. The business model of Red
Hat is based on the ecosystem developing the core
product collaboratively. The role of Red Hat in this
collaboration is to deliver the results of the devel-
opment work commercially added with service
elements essential for the users of software.

rEfErEncEs

Ariño, A., & de la Torre, J. (1998). Learning
from failure: Towards an evolutionary model of
collaborative ventures. Organization Science, 9,
306-325.

Chetty, S. K., & Wilson, H. I. M. (2003). Col-
laborating with competitors to acquire resources.
International Business Review, 12, 61-81.

Cravens, D. W. (1987). Strategic marketing.
Homewood, IL: Richard D. Irwin, Inc.

Dahlander, L., & Magnusson, M.G. (2005). Rela-
tionships between open source software compa-
nies and communities: Observations from Nordic
firms. Research Policy, 34(4), 481-493.

de Laat, P. B. (2005). Copyright or copyleft? An
analysis of property regimes for software develop-
ment. Research Policy, 34(10), 1511-1532.

Feller, J., & Fitzgerald, B. (2002). Understand-
ing open source software development. Pearson
Education Limited.

Foss, N. J. (1999). Networks, capabilities, and
competitive advantage. Scandinavian Journal
of Management, 15, 1-16.

Gabrielsson, P. (2004). Globalizing internationals:
Product strategies of ICT companies. Series A:
229, Helsinki: Helsinki School of Economics.

Gadde, L.-E., & Håkansson, H. (2001). Supply
network strategies. Chichester, UK: Wiley.

Gulati, R., Nohria, N., & Zaheer, A. (2000). Stra-
tegic networks. Strategic Management Journal,
21, 203-215.

Håkansson, H., & Snehota, I. (1995). Analyzing
business relationships. In D. Ford (Ed.), Under-
standing business marketing and purchasing (3rd
ed., pp. 162-182). London: Thomson Learning.

Hart, S.L. (1995). A natural-resource-based view
of the firm. Academy of Management Review,
20, 986-1014.

Hecker, F. (1999). Setting up shop: The business of
open source software. IEEE Software, 16(1), 45-
51. Retrieved August 24, 2000, from http://www.
hecker.org/writings/setting-up-shop.html

Hedman, J., & Kalling, T. (2003). The business
model concept: Theoretical underpinnings and
empirical illustrations. European Journal of
Information Systems, 12, 49-59.

Kotler, P., Armstrong, G., Saunders, J., & Wong,
V. (1996). Principles of marketing. Hertfordshire,
UK: Prentice Hall.

Lee, S. H. (1999). Open source software licensing.
Retrieved February 14, 2006, from http://eon.law.
harvard.edu/openlaw/gpl.pdf

2612

Revenue Models in the Open Source Software Business

Lerner, J., & Tirole, J. (2002). Some simple
economics of open source. Journal of Industrial
Economics, 50(2), 197-234.

Mantarov, B. (1999). Open source software as
a new business model: The entry of Red Hats
Software, Inc. on the operating system market
with Linux. Retrieved August 24, 2000, from
http://www.lochnet.net/bozweb/academic/dis-
sert.htm

Metcalfe, J. S., & James, A. (2000). Knowledge and
capabilities: A new view of the firm. In N. J. Foss
& P. L. Robertson (Eds.), Resources, technology
and strategy: Explorations in the resource-based
perspective. New York: Routledge.

Microsoft. (2005). Software licensing models.
Retrieved March 23, 2006, from http://www.
microsoft.com/resources/sharedsource/licens-
ingbasics/licensingmodels.mspx

Möller, K., & Svahn, S. (2003). Managing stra-
tegic nets: A capability perspective. Marketing
Theory, 3, 201-226.

Morris, M., Schindehutte, M, & Allen, J. (2005).
The entrepreneur’s business model: Toward a uni-
fied perspective. Journal of Business Research,
58, 726-735.

O’Mahony, S. (2003). Guarding the commons:
How community managed software projects
protect their work. Research Policy, 32(7), 1179-
1198.

Open Source Initiative. (2004). The open source
definition (Version 1.9). Retrieved March 5, 2004,
from http://www.opensource.org/docs/definition.
php

Osterwalder, A. (2004). The business-model ontol-
ogy: A proposition in design science approach.
Academic dissertation, Universite de Lausanne,
Ecole des Hautes Etudes Commerciales, Lau-
sanne, France.

Pateli, A. G., & Giaglis, G. M. (2004). A research
framework for analysing eBusiness models. Euro-
pean Journal of Information Systems, 13(4).

Penrose, E. (1959). The theory of the growth of the
firm. New York: Oxford University Press.

Perens, B. (1999). The open source definition. In
C. DiBona, S. Ockman, & M. Stone (Eds.), Open
sources: Voices from the open source revolution.
Sebastobol, CA: O’Reilly & Associates, Inc.

Prahalad, C. K., & Hamel, G. (1990). The core
competence of the corporation. Harvard Business
Review, 32, 79-91.

Rajala, R., Rossi, M.., & Tuunainen, V.K. (2003).
Software vendor’s business model dynamics
case: TradeSys. Annals of Cases on Information
Technology, 5, 538-549.

Rajala, R., & Westerlund, M. (In press). A busi-
ness model perspective on knowledge-intensive
services in the software industry. International
Journal of Technoentrepreneurship.

Rappa, M. (2005). Case study: Red Hat. Manag-
ing the digital enterprise. Retrieved November
20, 2002, from http://digitalenterprise.org/cases/
redhat.html

Raymond, E. S. (2001). The cathedral and the
bazaar: Musings on Linux and Open Source by
an accidental revolutionary. Sebastopol, CA:
O’Reilly & Associates, Inc.

Rosenbröijer, C.-J. (1998). Capability develop-
ment in business networks. Doctoral dissertation,
Swedish School of Economics and Business
Administration, Helsinki.

Rossi, M. A. (2004). Decoding the “ free/open
source (F/OSS) software puzzle” a survey of
theoretical and empirical contributions. Quad-
erni, Siena: Dipartimento di Economica Politica,
Università di Siena.

 2613

Revenue Models in the Open Source Software Business

Sallinen, S. (2002). Development of industrial
software supplier firms in the ICT cluster. Doctoral
dissertation, University of Oulu, Oulu.

Seddon, P. B., & Lewis, G. P. (2003). Strategy
and business models: What’s the difference. In
Proceedings from the 7th Pacific Asia Confer-
ence on Information Systems, Adelaide, South
Australia (pp. 1-30).

Selznik, P. (1957). Leadership in administra-
tion: A sociological interpretation. New York:
Harper Row.

Stallman, R. M. (1999). The GNU operating
system and the free software movement. In C.
DiBona, S. Ockman, & M. Stone (Eds.), Open
sources: Voices from the open source revolution.
Sebastobol, CA: O’Reilly & Associates, Inc.

Stallman, R. M. (2002). What is copyleft? Re-
trieved November 20, 2002, from http://www.
gnu.org/licenses/licenses.html

Timmers, P. (2003). Lessons from e-business
models. ZfB—Die Zukunft des Electronic Busi-
ness, 1, 121-140.

Välimäki, M. (2003). Dual licensing in open
source software industry. Systemes d´Information
et Management, 8(1), 63-75.

Välimäki, M. (2005). The rise of open source
licensing. A challenge to the use of intellectual
property in the software industry. Helsinki: Hel-
sinki University of Technology.

Wernerfelt, B. (1984). A resource-based view
of the firm. Strategic Management Journal, 5,
171-180.

KEy tErMs

Business Model: An abstraction of business,
or the manifestation of strategy, that characterizes
the business and specifies in which the company
is positioned in its value-creating network.

Offering: An inseparable part of a business
model that includes aspects such as complexity;
the essential benefit that the customer is really
buying; and product features, styling, quality,
brand name, and packaging of the product of-
fered for sale.

Relationships: The ties and interaction of
companies with other actors.

Resources: Specific properties that are subor-
dinate to the core competencies of companies.

Revenue Model: The method of value captur-
ing that includes the description of the sources
of revenue, price-quotation principle, and cost
structure.

Software Licensing: The definition and
agreement of rights to use, redistribute, or modify
software.

Source Code: The programming that allows
software to perform a particular function or
operation.

EndnotE

1 The adjective “free” refers to freedom, not
price.

This work was previously published in Handbook of Research on Open Source Software: Technological, Economic, and Social
Perspectives, edited by K. St.Amant & B. Still, pp. 541-554, copyright 2007 by Information Science Reference (an imprint of
IGI Global).

2614

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 6.17
Knowledge Management and

Organizational Performance in
the Egyptian Software Firms

Ahmed Seleim
Alexandria University, Egypt

Omar Khalil
Kuwait University, Kuwait

AbstrAct

Management research has often overlooked the
role of knowledge and knowledge management
(KM) in the analysis of organizations and their
performance. Also, the literature on KM is short
of empirical evidence on the likely interrelatedness
of the KM processes. This investigation adopted
a research model and used data from 38 Egyptian
software firms to examine: (1) the relationship
of the KM processes of knowledge acquisition,
documentation, transfer, creation, and application
to organizational performance, and (2) a number
of relationships within the KM processes them-
selves. The results suggest that knowledge ap-
plication influences organizational performance,
knowledge acquisition and knowledge creation
influence knowledge application, and knowledge
acquisition and knowledge transfer influence

knowledge creation. Although they provide a
limited support to the research mode, the results
signify the value of continued examination and
enhancement of such a model.

IntroductIon

Knowledge is an asset that needs to be effectively
managed (Davenport & Prusak, 1998; Drucker,
1993). Interest in knowledge management (KM)
has grown dramatically in the recent years, as
more researchers and practitioners have become
aware of the knowledge potential to drive inno-
vation and improve performance (e.g., Cavaleri,
2004; Machlup, 1962, 1983; Penrose, 1959). For
an organization to remain competitive, it must
effectively practice the activities of creating, ac-
quiring, documenting, transferring, and applying

 2615

Knowledge Management and Organizational Performance in the Egyptian Software Firms

knowledge in solving problems and exploiting
opportunities (e.g., Sambamurthy & Subramani,
2005; Zack, 1999).

Argote and Ingram (2000) argue what the orga-
nization comes to know explains its performance.
The ultimate test of any business concept, such
as KM, is whether it improves business perfor-
mance. If organizations cannot use knowledge to
improve performance, knowledge does not have
measurable value (Gorelick & Tantawy-Monsou,
2005). However, management research has often
overlooked the role of knowledge and KM in the
analysis of organizations and their performance
(Nonaka, 1994; Spender, 1996). Most of KM
research consists of either theoretical analyses
of KM issues or case-based reviews of organiza-
tions’ KM practices. Consequently, KM research
is short of offering an unambiguous understanding
of the role of KM in improving organizational
performance (Kalling, 2003).

On the other hand, effective KM entails an
understanding of the interrelationships that may
exist among KM processes such as knowledge
acquisition, knowledge creation, knowledge docu-
mentation, knowledge transfer, and knowledge
application (e.g., Lee, Lee & Kang, 2005; Seleim,
Ashour & Khalil, 2005a). These processes are
not necessarily sequential but rather iterative and
overlapping (Holsapple & Joshi, 1999, p. 7-1; Lee
& Choi, 2003). Furthermore, an analysis for the
purpose of understanding the relationship of the
KM processes to organizational performance is
incomplete if it does not also include the analysis
of the interrelationships among the KM dimen-
sions themselves. In other words, effective KM
requires an understanding of the direct and indi-
rect influence of KM processes on organizational
performance.

Thus far, the literature on KM is short of a
cohesive theoretical framework that provides a
structure that can be used to understand how to
enhance KM within an organization as well as
to assess the potential impact of KM efforts on
organizational effectiveness (Hoffman, Hoelscher

& Sherif, 2005). This research proposes and tests
a model to explore the interrelationships among
the KM processes as well as the relationship of
the KM processes to organizational performance
in the Egyptian software industry. The explora-
tion of the possible interrelationships among the
KM processes is believed to be an extension to
the absorptive capacity theory (Cohen & Levin-
thal, 1990), which attends to the organizational
processes and activities by which organizations
acquire, absorb, transfer, and exploit organiza-
tional knowledge, and the SECI— socialization,
externalization, combination, and internaliza-
tion—model of knowledge creation (Nonaka &
Takeuchi, 1995).

The article is organized accordingly. A back-
ground on KM is presented first, followed by the
research method, research results, implications,
and conclusions.

bAcKground

KM processes

KM is a natural function in human organizations.
Gorelick and Tantawy-Monsou (2005) view KM
as a system or framework that integrates people,
processes and technology to achieve sustainable
results by increasing performance through learn-
ing. Therefore, effective KM requires viewing
knowledge as a process rather than a resource
(e.g., Alavi & Leidner, 2001; Davenport & Prusak,
1998; Lee & Choi, 2003; Spender, 1996).

Researchers have adopted different views
of what the KM process entails. Johnston and
Blumentritt (1998), for example, define the KM
process to comprise knowledge identification,
acquisition, generation, validation, capture, dif-
fusion, embodiment, realization, and use. Zack
(1999) asserts that KM includes the acquisition,
refinement, storage, retrieval, distribution, and
presentation of knowledge. Bennett and Gabriel
(1999) view KM as a process that involves the cap-

2616

Knowledge Management and Organizational Performance in the Egyptian Software Firms

ture, storage (i.e., documentation), dissemination,
and use of knowledge. Also, Gold, Malhotra, and
Segars (2001) view KM as a knowledge process
capability that consists of knowledge acquisition,
conversion, application, and protection. More
recently, Salojarvi, Furu, and Sveiby (2005) view
KM as a perspective on the management of the
firm as a whole that encompasses activities in all
relevant managerial areas.

Based on the aforementioned varying views of
KM, these researchers classify the five fundamen-
tal dimensions of the KM process as knowledge
acquisition (KA), knowledge creation (KC),
knowledge documentation (KD), knowledge
transfer (KT), and knowledge application (KAP).
These five KM processes are likely interdependent
(e.g., Darroch, 2003; Lee et al., 2005). Successful
KM systems, which can be IT or non-IT based
and aim to manage organizational knowledge,
should support the performance of these KM
processes (Alavi & Leidner, 2001; Edward, Feng
& Liou, 2005; Jennex & Olfman, 2005). Moreover,
organizational outcomes are a function of how
well organizations can use, apply, and leverage
what they know.

KM and organizational
performance

The conceptualization of the relationship between
KM and organizational performance can be traced
back to the resource-based theory of the firm,
the knowledge based theory of the firm, and the
organizational learning theory. These schools of
thought view organizations as systems for creat-
ing, using, and distributing knowledge (e.g., Grant,
1996; Spender, 1996); the success/performance
of a firm is attributable to superior capabilities
in knowledge processing (e.g., Hedlund, 1994;
Reinmoreller & Chong, 2002).

According to the resource-based theory of the
firm, the possession of unique resources such as
knowledge within organizations is an important
source of competitive advantage (Barney, 1991;

Penrose, 1959; Prahalad & Hamel, 1990). Also,
the knowledge-based theory of the firm focuses
on applied knowledge as the most strategically
significant resource of the firm. It postulates that
the primary rationale for the firm is to produce,
create, and transfer knowledge (e.g., Bierly &
Chakrabarti, 1996; Choi & Lee, 2003; Demsetz,
1991; Grant, 1996; Nonaka, 1994; Nonaka &
Takeuchi, 1995; Spender, 1994). Consequently,
differences in the firms’ performances are at-
tributed to differences in the rules that the firms
apply to knowledge creation, development, dis-
tribution, and usage.

Similarly, the organizational learning theory
emphasizes the need for an organization to build
its learning capabilities. Organizational learn-
ing is the process by which firms develop new
knowledge and insights (e.g., Davenport & Prusak
1998; Garvin, 1994; Huber, 1991; Tippins & Sohi,
2003). From this perspective, KM is viewed as
a process of capturing an organization’s knowl-
edge and using it to foster innovation through
organizational learning (Nonaka, 1994; Nonaka
& Takeuchi, 1995).

Scholars argue that the acquisition, creation,
documentation/codification, transfer, and ap-
plication of knowledge are the keys to achieving
competitive advantage (e.g., Argote & Ingram,
2000; Connor & Prahalad, 1996; Darroch &
McNaughton, 2002; Davenport & Prusak, 1998;
Grant, 1996; Powell & Dent-Micallef, 1997; Ras-
togi, 2002; Spender, 1994), to improving organi-
zational performance (e.g., Bassie, 1997; Teece,
1998), and to fostering innovation (e.g., Antonelli,
1999; Nonaka & Takeuchi, 1995). Holsapple and
Jones (2004, 2005) propose a knowledge chain
model that links KM to organizational perfor-
mance. The model identifies five primary activities
(acquisition, selection, generation, assimilation,
and emission) and four secondary activities
(leadership, coordination, control, and measure-
ment) as focal points in improving organizational
competitiveness. However, the model has yet to
be empirically validated.

 2617

Knowledge Management and Organizational Performance in the Egyptian Software Firms

A number of researchers investigated the rela-
tionship between KM and different performance
outcome measures. Gold et al. (2001) reported that
KM capability, including knowledge acquisition,
conversion, application, and protection are related
to organizational effectiveness. Wiig (2002) em-
pirically investigated how KM enhances decision
making in public services, aids the public in par-
ticipating effectively in decision making, builds
competitive societal intellectual capital capabili-
ties, and develops a knowledge management work
force. Wiig’s findings suggest the importance of
having a comprehensive KM function in support
of a public administration that allows the society
to prosper and increase its viability by making its
people and institutions work smarter.

Jennex and Olfman (2002) found information
systems that incorporated organizational memory
and knowledge improve productivity. Kremp and
Mairesse (2004) found KM to influence a firm’s
innovative performance and productivity. Also,
Liu, Chen, and Tasi (2004) found a positive and
significant correlation between KM capability
factors—for example, obtaining knowledge, re-
fining knowledge, storing knowledge, and shar-
ing knowledge—and competitiveness. Cavaleri
(2004) underscores that reports of major cost
reductions and performance increases as a result
of KM initiatives have helped KM gain the atten-
tion of managers worldwide.

More recently, Edward et al. (2005) found that
the adopters of KM systems gain a competitive
advantage over the nonadopters. Salojarvi et al.
(2005) examined the relationship between sustainable
sales growth and KM activities in Finnish small and
medium-sized enterprises, and found higher levels of
KM maturity to be positively correlated with long-
term sustainable growth. Lee et al. (2005) found a
significant correlation between the KM activities
of knowledge creation, accumulation, sharing,
utilization, and internalization and three finan-
cial performance measures. In addition, Zhang,
Tian, and Qi (2006) suggest a conceptual model

describing the impact of organizational memory
on organizational performance. The model was
tested using data from Chinese manufacturing
companies, and the results confirmed that orga-
nizational memory had a strong positive impact
on organizational performance.

the Interrelationships among KM
processes

An understanding of the interrelationships among
the KM processes is essential to the discovery
of knowledge gaps, unused knowledge, and the
development of knowledge maps in organizations
(Liebowitz, 2005). This understanding helps
organizations avoid randomized and unsystem-
atic knowledge processes so that organizational
knowledge is consistently and systematically
developed (Ichijo, Krogh & Nonaka, 1998, p. 197).
In addition, the coordination of KM dimensions
is critical, since the shortage of any dimension
may result in less than optimum outcomes of
KM efforts (Darroch, 2003). Such coordination,
however, requires a thorough understanding of the
strength and direction of the relationships among
the KM processes from a holistic perspective (Lee
& Choi, 2003).

A number of scholars have conceptually
deliberated on the interrelatedness of the KM
processes. KM is viewed as a cross-functional,
multifaceted phenomenon (Lee & Choi, 2003),
and therefore, KM processes appear to be inter-
connected. Each KM process seems to depend
on one or more of the other processes (Darroch,
2003). Beckman (1999, pp. 1-7) asserts that the
KM processes often work simultaneously rather
than sequentially.

Gold et al. (2001) present an integrative view of
KM as a one knowledge process capability, which
implies that the KM processes are complementary.
For example, once knowledge is acquired, it needs
to be documented in knowledge repositories in
order to be transferred/shared, combined with

2618

Knowledge Management and Organizational Performance in the Egyptian Software Firms

other knowledge to create new knowledge, and
applied. Also, documented knowledge constitutes
an important input for creating new knowledge
and facilitating knowledge transfer, which, in
turn, fosters knowledge creation and application.
Furthermore, knowledge transfer and knowledge
creation are critical elements and inputs for suc-
cessful knowledge application.

Besides, the SECI model of knowledge cre-
ation (Nonaka & Takeuchi, 1995), which focuses
on socialization, externalization, combination,
and internalization, can provide another theme
to establish the interrelationships among the
KM processes. The common factor of the four
processes of the model is knowledge sharing.
Socialization is the process of converting new
tacit knowledge through shared experience that
allows non communicated knowledge to be com-
municated (Nonaka & Takeuchi, 1995); therefore,
it involves knowledge transfer. Externalization
is the process of articulating tacit knowledge
into explicit knowledge that can be shared with
others.

Combination and internalization are the pro-
cesses of converging explicit knowledge into more
complex and systematic sets of explicit knowledge.
In these processes, knowledge is exchanged and
reconfigured through documents, meetings, or
communication networks, and the focus is on
knowledge utilization (Nonaka & Reinmoeller,
2000, p. 90). Lee and Choi (2003) add that the
SECI model includes not only knowledge creation
but also knowledge transfer. Knowledge transfer,
which is enabled by knowledge acquisition and
documentation, is seen as a key element towards
a better understanding of the knowledge creation
process (Marr, Gupta, Pike & Roos, 2003). Also,
transferring and sharing of knowledge from
various sources is essential for knowledge ap-
plication.

On the other hand, Alavi and Leidner (2001)
argue that knowledge creation and codification
do not necessarily lead to improved performance,

nor do they create value. Value is created only
when knowledge is located and transferred from
its previous site and applied where it is needed.
The creation, codification, and storage of new
knowledge without its exploitation (e.g., appli-
cation) lead to its underutilization as a driver of
performance (Alavi & Tiwana, 2000).

Empirically, however, only few investigations
aimed at exploring the interrelatedness of KM
processes. Liu et al. (2004) found a significant
correlation among all knowledge management
capability factors of obtaining, refining, storing,
and sharing knowledge. Faraj and Sproull (2000),
for example, investigated the importance of coor-
dination of expertise knowledge in 69 software
development teams, and the results revealed that
expertise coordination correlated strongly with
team performance. Syed-Ikhsan and Rowland
(2004) found knowledge that was created and
stored on paper and electronic documentation to be
positively related to knowledge transfer. They also
found a negative but nonsignificant relationship
between the status of knowledge documentation
and the accessibility of knowledge assets.

To summarize, the review of the existing KM
literature reveals that the direct relationship
between KM processes and organizational per-
formance has yet to be empirically explored and
validated (Lee & Choi, 2003). In addition, the
literature on KM is short of empirical evidence on
the probable interrelatedness of the KM processes. A
significant number of the cited relationships within
KM processes and between KM processes and
organizational performance are hypothetical.
Therefore, the validation of such relationships
is deemed important. Empirical evidence on the
strength and direction of the interrelationships among
KM processes and between KM processes and
organizational performance should enhance
our understanding of the KM dynamics, enable
knowledge managers to justify resources alloca-
tion to KM, and achieve the required effective
integration of KM processes.

 2619

Knowledge Management and Organizational Performance in the Egyptian Software Firms

rEsEArch MEthod

the research Model

Figure 1 depicts the research model used in this
study, including the research variables and the
hypothesized relationships. The model is drawn
based on the relevant KM literature reviewed in
the previous section. The research model depicts
two groups of relationships: (1) relationships
between the five KM processes (KA, KD, KT,
KC, and KAP) and organizational performance
(OP), and (2) relationships among the five KM
processes themselves. The model also implies
indirect relationships between the KM processes
and organizational performance.

research hypotheses

The KM Processes and OP
Hypotheses (H1-H5)

1. KA and OP. KA was found to be related to
innovation (Darroch & McNaughton, 2002).
In addition, knowledge strategies (e.g., ex-
plorers, exploiters, loners, and innovators)
were reported to influence organizational
performance (Bierly & Chakrabarti, 1996;
Pablos, 2002), where innovators and explor-
ers tended to be more profitable than loners.
In the international business field, Lyes and
Salk (1996) found a significant relationship
between KA and performance indicators.

Organizational
Performance
 (OP)

 Knowledge
 Creation
 (KC) Knowledge

 Transfer
 (KT)

 Knowledge
documentation
 (KD)

 Knowledge
 Application
 (KAP)

Knowledge
Acquisition
 (KA)

Figure 1. The research model

2620

Knowledge Management and Organizational Performance in the Egyptian Software Firms

Makino and Delios (1996) found that part-
nering with local firms could be a primary
strategy for accessing local knowledge and
improving joint venture performance.

 KA activities—for example, active par-
ticipation in professional networks or as-
sociations, regular attendance of courses,
seminars or other training programs, col-
lection of information about the needs of
customers, hiring of consultants and new
staff members, and so forth–are expected to
enhance organizational performance. This
expectation is formulated in the following
hypothesis:

H1. KA positively influences OP.

2. KD and OP. KM research emphasizes KD
as a critical KM process. Staff turnover is
frequently cited as the main cause of the
institutional memory loss (e.g., Mason &
Pauleen, 2003), and the loss of organizational
tacit knowledge (Stovel & Bontis, 2002).
Therefore, KD is used as an important
strategy to manage through the turnover
dilemma, which could influence organi-
zational performance (Hansen, Nohria &
Tierney, 1999).

 Skandia Insurance Company, for example,
was able to set up its office in Mexico in
six months using formerly acquired and
documented knowledge, whereas the task
was expected to take seven years (Loer-
mans, 2002). Documented knowledge is
one form of the knowledge storage bins
in the organizational memory that enables
firms to avoid mistakes and capitalize on
past experience (Walsh & Ungson, 1991).
Therefore, KD is expected to be related to
OP. This expectation is formulated in the
following hypothesis:

H2. KD positively influences OP.

3. KT and OP. Wagner (2003) argues for the
importance of knowledge transfer as a
KM process. The foundation of knowledge
transfer can be traced back to the past re-
search on technology transfer, research and
development (R&D) collaboration (Amabile,
Nasco, Mueller, Wojcik, Odomirok, Marsh,
et al. 2001), and strategic alliances (Borys &
Jemison, 1989; Das, Sen & Sengupta, 2003).
Such research provides evidence of the
benefits of knowledge transfer. Bloodgood
and Salisbury (2001) posit that knowledge
transfer is beneficial to the organizations.
Teece (2000) asserts that knowledge which
is inside the minds of employees, the files,
databases, and the like is of little value if
it is not transferred to the right people at
the right time. Also, Sveiby (2001) argues
that knowledge transfer between individu-
als does not only benefit the organization
but also improves the competences of the
individuals that are involved in the process
of knowledge transfer.

 Darr, Argote, and Epple (1995) found that
knowledge transfer between the organiza-
tional units within the same corporation
was essential to increased productivity.
Tsai (2001) investigated the influence of
knowledge sharing within organizations
on outcome variables, and found that the
absorptive capacity improved innovation
and performance. Andersen Consulting
saves millions of dollars a year in FedEx
bills alone by using an intranet and other
knowledge sharing tools (Stewart, 1997).
Nelson and Cooprider (1996) found that
increasing the level of shared knowledge
between the information systems (IS) group
and line groups improves IS performance.
The ability to transfer and diffuse knowledge
is expected to improve OP. This expectation
is formulated in the following hypothesis:

 2621

Knowledge Management and Organizational Performance in the Egyptian Software Firms

H3. KT positively influences OP.

4. KC and OP. KC has become a critical element
for organizational competitive advantage
(Alavi & Leidner, 2001; Nonaka & Takeu-
chi, 1995; Syed-Ikhsan & Rowland, 2004).
Linderman, Zaheer, Leidtke, and Choo
(2004) speculate that quality management
practices create knowledge that, in turn,
contributes to organizational performance.
Hussi (2004) adds that successful companies
create sustainable value through the cre-
ation of knowledge. Kim and Kogut (1996)
indicate that the capability of a company
to improve its products relies on the accu-
mulated knowledge from past experience,
research, and experimentation.

 In addition, KC is perceived as an impor-
tant element to new products development
(Camelo-Ordaz, Fernandez-Alles, Martín-
Alcázar, Romero-Fernández & Cabrera,
2004; Kim & Kogut, 1996), and an essential
factor for the continuity and survival of the
organization (Nonaka, Byosiere & Konno,
1994; Sharkie, 2003). Empirically, Lee and
Choi (2003) found that KC was positively
related to organizational creativity, which, in
turn, was positively related to organizational
performance. Therefore, organizations are
expected to improve their performance
outcomes through KC activities. This ex-
pectation is formulated in the following
hypothesis:

H4. KC positively influences OP.

5. KAP and OP. The knowledge-based theory
of the firm focuses on applied knowledge as
the most strategically significant resource of
the firm. In KM, emphasis should be on the
application of knowledge, not merely on the
acquisition and protection of such knowledge
(Grant, 1996; Spender, 1994; Teece, 1998;
Wiig, 1997). Demarest (1997) states that

the application of knowledge should be the
ultimate goal of any effective KM system.
A firm that treats knowledge as a by-product
of its operations rather than a purpose of
those operations, especially in the knowl-
edge intensive firms, will fail, not because
it could not create knowledge, but because
it could not apply it to create market-valued
delivery in the marketplace.

 Hasan and Al-hawari (2003) speculate on
the strong relationship between KM and
organizational performance through making
knowledge applicable to all organizational
activities. Lopez, Peon, and Ordas (2004)
add that the firm’s ability to create and
put knowledge into practice is a principal
capacity in order to attain a sustainable
competitive advantage. In addition, effec-
tive reuse of knowledge is frequently cited
as an organizational concern that is related
to organizational effectiveness (Markus,
2001). Therefore, organizations that em-
phasize the strategic value of managing the
application of their knowledge (Bartlett &
Ghoshal, 2000), and systematically apply
their knowledge, are expected to capitalize
on their performance. This expectation is
formulated in the following hypothesis:

H5. KAP positively influences OP.

The KM Processes-Interrelationships
Hypotheses (H6-H9)

The investigation of the interrelationships among
KM processes is an extension to the absorptive
capacity theory (Cohen & Levinthal, 1990) that
stresses the organizational processes and ac-
tivities, by which organizations acquire, absorb,
transfer, and exploit organizational knowledge.
The KM processes often work simultaneously
rather than sequentially (Beckman, 1999, p. 1-7;
Holsapple & Joshi, 1999, p. 7-1; Lee & Choi, 2003),
are likely interrelated, and the ineffectiveness of

2622

Knowledge Management and Organizational Performance in the Egyptian Software Firms

one or more of the processes may turn KM inef-
fective (Darroch, 2003).

The existing KM literature appears to be short
of well-defined and broadly acceptable theories
and frameworks that guide the formulation of
hypotheses describing possible interrelationships
among the KM processes. As a result, the research-
ers propose the following four hypotheses (H6-H9)
in order to explore four sets of interrelationships
among the KM processes.

6. The relationship of KA to KD. Once knowl-
edge is acquired, it needs to be documented
in knowledge repositories so that it can
be transferred/shared and combined with
other knowledge to create new knowledge
(e.g., Nonaka & Takeuchi, 1995). When
knowledge is acquired and becomes avail-
able (KA), it is expected to be codified and
documented (KD) in order to be transferred
and reused. This expectation is formulated
in the following hypothesis:

H6. KA positively influences KD.

7. The relationship of KA and KD to KT. For
knowledge to be transferred and shared
(KT) by people and organizational units, the
knowledge must exist (KA) in a form (KD)
that facilitates its transfer. Syed-Ikhsan and
Rowland (2004) found the knowledge that
was acquired and documented positively
related to KT. Therefore, KA and KD are
believed to be important processes for KT.
This expectation is formulated in the fol-
lowing hypothesis:

H7. KA and KD positively influence KT.

8. The relationship of KA, KD, and KT to KC.
Knowledge cannot be created in a vacuum.
To create new knowledge (KC) through
experience, research, and experimentation,
prior knowledge (KA) must be available in

a form (KD) that can be transferred and
shared (KT) by those who are responsible
for performing tasks and/or conducting re-
search. Nonaka and Takeuchi’s (1995) SECI
model of knowledge creation establishes the
interrelationships among the KM processes.
The common factor of the four processes of
the model is KT (Lee & Choi, 2003), which
is seen as a key element towards a better
understanding of the knowledge creation
process (Marr et al., 2003). The expected
relationships of KA, KD, and KT to KC are
formulated in the following hypothesis:

H8. KA, KD, and KT positively influence KC.

9. The relationship of KA, KD, KT, and KC to
KAP. Knowledge application is the ultimate
goal of KM. For knowledge to be used and
applied (KAP), it must be acquired (KA)
and/or created (KC), documented (KD),
and transferred (KT). Value is created only
when knowledge is located, transferred,
and applied where it is needed (Alavi &
Tiwana, 2000). Gold et al. (2001) add that
knowledge transfer and knowledge creation
are critical elements and inputs for success-
ful knowledge application. Documented
knowledge constitutes an important input
for creating new knowledge and facilitating
knowledge transfer, which, in turn, fosters
knowledge creation and application. The
expected relationships of KA, KD, KT, and
KC to KAP are formulated in the following
hypothesis:

H9. KA, KD, KT, and KC positively influence
KAP.

research variables

a. Organizational performance (OP). OP is the
dependent variable in the research model,
and refers to an organization-level perfor-
mance relative to the competition.

 2623

Knowledge Management and Organizational Performance in the Egyptian Software Firms

b. KM variables. The five KM variables are
defined as follow:
1. KA includes activities that select and

acquire external knowledge (e.g., via
journals, magazines, books, Web sites,
professional meetings, etc.).

2. KD involves activates that institu-
tionalize knowledge in the form of
an organizational memory so that it
can be transferred and reused in the
future.

3. KT includes activities that enable the
exchange of knowledge between indi-
viduals, groups, organizational units,
and at the different organizational
levels.

4. KC comprises activities that develop
and create insights, skills, and relation-
ships in the organization as well as the
generation of internal knowledge (e.g.,
through experience, experimentation,
special groups such as R&D, etc.).

5. KAP refers to the organization’s use
of the available knowledge in order to
improve its processes, products and
services, and organizational perfor-
mance.

Measurement

1. OP. Measurement of organizational perfor-
mance is one of the most difficult issues that
researchers have to deal with. Performance
measures can be obtained from either pri-
mary or secondary sources. Also, these
measures can be objective or subjective.
Subjective or indirect measures for OP may
represent an adequate alternative for objec-
tive or direct measures, especially when the
financial data are unavailable (Dess, 1987;
Dess & Robinson, 1984; Powell, 1992;
Powell & Dent-Micallef, 1997; Spanson &
Lioukas, 2001; Tippins & Sohi, 2003).

 In addition, Venkatraman and Ramanujam

(1987) demonstrate that managers tend to
be less biased in their assessments of their
organizational performance than what
researchers had believed. They state that
perceptual data from senior managers can be
used as acceptable criteria for organizational
performance. Other researchers found the
measurements of perceived organizational
performance to have positive and significant
correlations with objective measures of fi-
nancial performance (Delaney & Huselid,
1996; Dollinger & Golden, 1992; Hansen &
Wernerfelt, 1989; Powell, 1992).

 Because objective measures of OP were
unavailable in the investigated firms, the
researchers had to use a self-reported item
that asked each respondent to indicate the
performance of the respondent’s firm relative
to the competitors in the software market.
The question used a five-point Likert scale,
whereas 1 = very low and 5 = very high.

 2. The KM variables. A generally accepted
measuring instrument for KM constructs
is currently lacking. The scale used in
this investigation is a modified version of
the original survey of Filius, de Jong, and
Roelofs (2000). The items that measure the
five KM constructs use a 5-point Likert-type
scale (1 = very low practice and 5 = very
high practice). A number of items have been
added in order to strengthen the original
survey and fit it to the Egyptian context.

 In the course of modifying the instrument,
one item (item 3, knowledge gap diagnostic)
has been adopted from Hall and Andriani
(2002) and added to the KA items. Another
item (item 15, use of knowledge maps and
networks) has been added to the KD items.
In addition, four items (items 17, 18, 20, and
25) have been added to the KT part of the
instrument. These four items include state-
ments regarding extraction of experience and
knowledge of experts, keeping knowledge
and know-how away from others in the firm,

2624

Knowledge Management and Organizational Performance in the Egyptian Software Firms

distributing knowledge in formal ways, and
using methods and mechanisms for knowl-
edge exchange among employees.

 Furthermore, four items (items 30, 33, 35,
and 36) have been added to modify the KC
part. The added items cover the existing
idiosyncratic knowledge resources in the
firm, development of important knowledge
at the industry level, conducting benchmark-
ing analysis, and data mining. In addition,
four items (items 43, 44, 45, and 46) have
been added to strengthen the KAP section
of the instrument. The four items address
knowledge integration, leveraging and
improving knowledge usage, discovering
problems that cause gaps between targets
and achievements, and the ability of the firm
to use its knowledge in different projects.

 The instrument was tested and revised a
number of times in order to fit the context of
the study. The final instrument (in Arabic)
includes two sets of questions. The first set
consists of 46 items to measure KM vari-
ables. The second set comprises questions
that are designed to gather data on each firm’s
performance and the firm’s background such
as age, number of software developers, and
the number of other employees in the firm.
Appendix A includes an English copy of the
adopted KM survey.

sampling

A cross-sectional field survey strategy was chosen
for this investigation. This investigation focused
on the software companies in the Egyptian private
sector as the primary population. Software firms
were selected because of the relevance and useful-
ness of KM practice in software industry, which
is a knowledge intensive industry (Mathiassen &
Pourkomeylian, 2003). In addition, the software
development in Egypt is a promising industry.
With more than 200 software firms and over 2,000
programmers, Cairo, Egypt has established itself

as the software development hub of the Arab world
(Albrecht, 1996). In the year 2000, the software
exports were estimated at $50 million, and ex-
pected to eventually reach as high as $600 million
within a year (Howeidy, 1999). Moreover, Egypt
has thousands of qualified software profession-
als and has become a major supplier of software
products, services, and software developers to its
neighboring Arab countries.

The research population consisted of 107
software companies which were members in the
Egyptian Chamber of Software Industry. Upon
an initial contact with these firms, which are lo-
cated in the Cairo and Alexandria areas, 38 firms
agreed to participate in this investigation. The
firms’ CEOs or their representatives were asked
to answer the survey questions in a structured
interview setting.

The research sample (n = 38) represents 35.5%
of the total population. Most of the firms in the
entire sample are relatively small, with averages of
62 total employees and approximately 26 software
developers. The largest firm has 300 employees,
80 of whom are software developers, and the
smallest firm has only 5 employees, 2 of whom
are software developers. In addition, the firms
in the sample are relatively young (the average
age in the sample is less than eight years), with
the oldest firm only seventeen years old, and the
youngest two years old. However, the relatively
high standard deviations suggest wide dispersions
in the firms’ number of employees and ages.

Tables 1 and 2 summarize the respondents’
characteristics, including level and type of edu-
cation and tenure in the firm and in the software
field.

reliability and validity

The reliability of the KM scales was assessed
by estimating the latent variables’ composite
scale reliability, which is a measure of internal
consistency reliability analogous to Cronbach’s
alpha. Table 3 shows that all the composite scale

 2625

Knowledge Management and Organizational Performance in the Egyptian Software Firms

reliability coefficients for the five KM variables
were higher than .70, the criterion recommended
by Fornell and Larcker (1981). Fornell and Larcker
(1981) also recommend the use of average variance
extracted (AVE) by the latent variables from the
observed or manifest variables as another index
of internal consistency reliability. In Table 3, the
AVEs for the five KM variables (KA, KD, KT,
KC, and KAP) are .468, 486, .447, .527, and .518,
respectively. The AVEs are either greater than the
recommended 0.5 (House, Spangler & Woycke,
1991) or close to it. In addition, the factor loading
of the indicators associated with the five KM vari-
ables are all higher than the recommended level

(0.55) for adequate practical significance (Hair,
Anderson, Tatham & Black, 1998, p. 111).

This procedure has lead to the exclusion of
17 items in order to improve the reliability and
validity of the KM instrument (Table 3). The final
scale consists of 29 items that measure the five
KM constructs.

To assess its content and face validity, the in-
strument was pretested and refined several times
as a result of feedback received from a number of
experts in software development in Egypt as well
as from a number of academicians at Alexandria
University, who were asked to comment on the
clarity and the relevance of the measures. After

Respondents’ Characteristics Frequency Percentage
Level of Education:
 Graduate
Undergraduate

7
31

18.4
81.6

Total 38 100
Educational background:
 Engineering
 Business
 Computer and Informa-
tion
 Science
 Other

18
13
4
2
1

47.4
34.2
10.5
5.3
2.6

Total 38 100

Table 1. The respondents’ educational characteristics (N = 38)

Years of experiences Minimum Maximum Average Standard
Deviation

Tenure in the firm 1 22 5.28 4.88
Tenure in the industry/
field 1 32 10.86 7.36

Table 2. The respondents’ experiences

2626

Knowledge Management and Organizational Performance in the Egyptian Software Firms

the preliminary test, a pilot study was conducted
with the participation of six software firms in order
to evaluate the instrument and its administrative
procedures.

The convergent validity was assessed by exam-
ining the factor loading of each manifest variable
on its latent variable. If the manifest variables load
high on the latent variable, there is evidence for

Constructs and Items Factor
Loading Composite Scale Reliability Average Variance

Extracted
Knowledge acquisition (KA)
2
3
5
6
8

0.7082
0.7788
0.6368
0.6646
0.6201

.814 .468

Knowledge documentation (KD)
9
12
14
15

0.6486
0.6247
0.6907
0.8090

0.789 0.486

Knowledge transfer (KT)
16
20
21
22
23
24

0.5928
0.6248
0.7126
0.8324
0.5933
0.6230

.827 .447

Knowledge creation (KC)
30
31
33
34
35
36

 0.6186
 0.6191
 0.6574
 0.7706
 0.8481
 0.8069

0.868 0.527

Knowledge application (KAP)
37
38
39
40
41
42
43
44

0.5103
0.6597
0.7440
0.7749
0.6976
0.7675
0.7823
0.7799

0.894 0.518

Organizational performance (OP) 0.9950 1 1

Table 3. Internal consistency reliability and factor loadings for the research variables

 2627

Knowledge Management and Organizational Performance in the Egyptian Software Firms

the convergent validity of the measure (e.g., House
et al., 1991). As shown in Table 3, all observed
variables had factor loadings on their respective
latent variables greater that .5, which has been
traditionally accepted in principle component
factor analysis and exploratory factor analysis.

The discriminant validity of the measures
was examined following the recommendation of
House et al. (1991); discriminant validity exists if
the correlation between two composite constructs
is not higher than their respective reliability
estimate. Using this criterion, the comparison
between the reliability estimates (Cronbach’s
alpha) for the research variables in Table 3 (.814,
.789, .827, .868, .894, and 1, respectively), and the
correlations among the variables (Table 4) shows

that the correlation coefficient are not higher than
the reliability estimates.

Discriminant validity can also be demonstrated
if the square root of the average variance extracted
in the measurement model is higher than the
correlation between the construct and the other
constructs in the correlation matrix (Fomell &
Larcker, 1981). The diagonal elements are the
square roots of the average variance extracted.
Off-diagonal elements are the correlations be-
tween constructs. In Table 5, the square root of
the AVEs for KA, KD, KT, KC, KAP, and OP are
.684, .697, .668, .725, .719, and 1, respectively.

While KD and KT satisfy the discriminant
validity criterion, the AVEs for KA, KC, and
KAP are slightly lower than their correlations with

The Variables KA KD KT KC KAP OP
1. KA 1.000
2. KD .280 1.000
3. KT .393* .212 1.000
4. KC .684** .343* .531** 1.000
5. KAP .706** .282 .575** .750** 1.000
6. OP .065 .331* .168 .073 .255 1.000

Con-
structs KA KD KT KC KAP OP

1. KA .684
2. KD .280 .697
3. KT .393 .212 .668
4. KC .684 .343 .531 .725
5. KAP .706 .282 .575 .750 .719
6. OP .065 .331 .168 .073 .255 1.000

Table 4. The correlation matrix of the research variables

Table 5. Discriminant validity of the latent variables in substantive model

*p <.05; **p < .01

2628

Knowledge Management and Organizational Performance in the Egyptian Software Firms

some of the other KM variables in their respective
rows and columns. Based on the results of the two
discriminant validity tests, we may conclude that
the KM measures used in this investigation have
adequate discriminant validity.

rEsults

descriptive statistics

Table 6 display a summary description of the
mean, standard deviation, maximum value, and
minimum value for each of the five KM variables
and the organizational performance (OP) variable.
The results indicate that the respondents generally
agree that their firms moderately practice the five
KM processes, and their practice of KD (mean =
3.51) and KAP (mean = 3.51) is slightly higher than
their practice of KA (mean = 3.19). In addition,
KC practice (standard deviation = .66) seems to
be the most dispersed and KT practice (standard
deviation = .48) to be the least dispersed practice
in the investigated firms.

On the other hand, the respondents feel that, on
average, their firms perform well (mean = 4.18),
compared to the competitors, and the performance
scores seem to slightly fluctuate from one firm to
another (standard deviation = .69).

Testing the Research Hypotheses

The partial least squares (PLS) method was used to
test the hypothesized relationships in the research
model (Figure 1). PLS is a technique for estimating
path models involving latent variables indirectly
observed by multiple indicators (Fornell & Cha,
1994). It maximizes the explanatory power of a
conceptual model by examining the R2 values for
the dependent (endogenous) variables (Hulland,
1999). PLS was chosen in the present study because
it does not require multivariate normal data, and
it is appropriate for the analysis of a small sample
size (e.g., House et al., 1991).

testing the hypotheses on the
relationships of KM processes to
op

Figure 2 displays the final research model in a
structural equation map. The PLS results show that
the KM processes explain 19.7% of the variance
in OP, the endogenous variable. The explanatory
power of the model is relatively reasonable for such
new measures and phenomenon. This result also
supports the significance of the KM processes to
organizational performance.

The examination of the effect of each KM
process on OP (Table 7) reveals that only the path
from KAP to OP (H5) has a positive and significant

Research Variables N Minimum Maximum Mean Standard Deviation
KA 38 1.86 4.29 3.1955 .5592
KD 38 1.57 4.43 3.5075 .5404
KT 38 2.27 4.27 3.3852 .4761
KC 38 1.73 5.00 3.3876 .6616
KAP 38 2.00 4.80 3.5053 .5927
OP 38 3.00 5.00 4.1842 .6919

Table 6. Descriptive statistics for the research variables

 2629

Knowledge Management and Organizational Performance in the Egyptian Software Firms

 KAP
R2 = 0.692

.342
.043

.273 .518
.354

.364

-.218

 .302

.520 .033 -.306

.350 . 169
.106

.295

OP
R2 = 0.197

 KC
R2 = 0.593 KT

R2 = 0.160

 KD
R2 = 0.132

KA

Figure 2. The research model results

Dependent variable Independent Variables R2 Hypotheses
OP All KM variables .197 H1-H5

Table 7. The relationships of KM processes to OP

Dependent
Variables

Independent
Variables

Hypothesis
Number

Predicted
Path
Coefficient

Standardized
Path
Coefficient

OP KA H1 _ .218
T =. 8106

KD H2 + .302
T = 1.1106

KT H3 + .033
T = .1764

KC H4 _ -.306
T = .8784

KAP H5 + .518
T = 2.1185

2630

Knowledge Management and Organizational Performance in the Egyptian Software Firms

beta coefficient of .618 (T = 2.1185). These results
suggest that, since KAP influences OP, there must
be processes and systems that facilitate knowledge
application in order to enhance organizational
performance. Accordingly, the results support
the acceptance of H5.

The other paths from KA, KD, KT, and KC
to OP are not significant. There is a negative but
insignificant beta coefficient of .218 (T = .8106)
between KA and OP (H1), a positive but insignifi-
cant beta coefficient of .302 (T = 1.11106) between
KD and OP (H2), a positive but insignificant beta
coefficient of .033 (T = .1764) between KT and
OP (H3), and a negative but insignificant beta
coefficient of -.306 (T = .8748) between KC and
OP (H4).

These nonsignificant paths suggest that KA,
KT, and KC do not directly influence organiza-
tional performance, and therefore, the results do
not support the acceptance of H1, H2, H3, and
H4.

testing the KM Interrelationships
hypotheses

• The relationship of KA to KD (H6): In
Table 8, the PLS results show a positive

but insignificant beta coefficient of .364 (T
= 1.3063) between KA and KD. Although
it has no significant influence on KD, KA
explains 13.2% of the variance in KD, as the
endogenous variable. Therefore, the results
fail to support the acceptance of H6.

• The relationship of KA and KD to KT
(H7): The PLS results in Table 9 confirm
that KA and KD explain 16.1% of the vari-
ance in KT, as the endogenous variable. In
addition, there is a positive but insignificant
beta coefficient of .350 (T = 1.3929) between
KA and KT, and a positive but insignificant
beta coefficient of .106 (T = .3969) between
KD and KT. KA and KD appear to have no
influence on KT, and therefore, these results
fail to support the acceptance of H7.

• The relationship of KA, KD, and KT to
KC (H8): The PLS results of Table 10 in-
dicate that KA, KD, and KT explain 59.3%
of the variance in KC, as the endogenous
variable. This model has a relatively high
explanatory power. As to the effect of the
individual processes on KC, there is a posi-
tive and significant beta coefficient of .520
(T = 3.6433) between KA and KC, a positive
and significant beta coefficient of .295 (T =

The Dependent
Variable Independent Variables R2 Hypothesis

Number
KD KA .132 H6

Depen-
dent
Variable

Indepen-
dent
Variables

Hypoth-
esis

Number

Predicted
Path
Coefficient

Standardized
Path
Coefficient

KD KA H6 + .364
T = 1.3063

Table 8. The relationship of KA to KD

 2631

Knowledge Management and Organizational Performance in the Egyptian Software Firms

Dependent Variable Independent Variables R2 Hypothesis Number
KT KA and KD .161 H7

The Dependent
Variable

Independent
Variables

Hypothesis
Number

Predicted Path
Coefficient

Standardized Path
Coefficient

KT KA H7 + .350
T = 1.3929

KD H7 + .106
T = .3969

Table 9. The relationship of KA and KD to KT

 Dependent Variable Independent Variables R2 Hypothesis Number
KC KA, KD, and KT .593 H8

Dependent
Variable

Independent
Variables

Hypothesis
Number

Predicted Path
Coefficient

Standardized Path
Coefficient

KC KA H8 + .520
T = 3.6433

KD H8 + .169
T = 1.1403

KT H8 + .295
T = 2.0413

Table 10. The relationship of KA, KD, and KT to KC

Dependent Variable Independent Variables R2 Hypothesis Number
KAP KA, KD, KT, and KC .692 H9

Dependent
Variable

Independent
Variables

Hypoth-
esis

Number

Predicted
Path

Coefficient

Standardized
Path

Coefficient

KAP KA H9 + .342
T = 2.1549

KD H9 + .043
T = .2713

KT H9 + .273
T = 1.8014

KC H9 + .354
T = 2.4152

Table 11. The Relationship of KA, KD, KT, and KC to KAP

2632

Knowledge Management and Organizational Performance in the Egyptian Software Firms

2.0413) between KT and KC, and a positive
but insignificant beta coefficient of .169(T
= 1.1403) between KD and KC. Therefore,
the results demonstrate that only KA and
KT have a significant positive influence on
KC, and consequently, the results provide
support for a partial acceptance of H8.

• The relationship of KA, KD, KT, and KC
to KAP (H9): From Table 11, the PLS results
show that KA, KD, KT, and KC explain
69.2% of the variance in KAP, as the en-
dogenous variable in this model. Therefore,
this model appears to have a relatively high
explanatory power.

The results of the individual effect of each
of the four KM processes on KAP show a posi-
tive and significant beta coefficient of .342 (T =
2.1549) between KA and KAP, and a positive and
significant beta coefficient of .354 (T = 2.4152)
between KC and KAP. However, there is a posi-
tive but insignificant beta coefficient of .043 (T =
.2713) between KD and KAP, and a positive but
insignificant beta coefficient of .273 (T = 1.8014)
between KT and KAP. Therefore, the results reveal
that only KA and KC have a significant positive
influence on KC, and consequently, provide sup-
port for a partial acceptance of H9.

To summarize, the PLS results lend support
to the acceptance of H5, a partial acceptance of
H8, and a partial acceptance of H9. The results,
however, fail to support H1, H2, H3, H4, H6,
and H7. These results are further discussed in
the next section.

dIscussIons

This investigation examined the relationship of
the KM processes to organizational performance
as well as the interrelationships within the KM
processes in the form of nine hypotheses. The
results of the final models, depicted in Figure 2,
show that: (1) the five KM processes of knowl-

edge acquisition (KA), knowledge documenta-
tion (KD), knowledge transfer (KT), knowledge
creation (KC), and knowledge application (KAP)
explain approximately 20% of the variance in
the organizational performance (OP) of the in-
vestigated software firms; (2) KA, KD, KT, and
KC explain 69% of the variance in KAP; and (3)
KA, KD, and KT explain 59% of the variance in
knowledge creation.

Although relatively low (approximately 20%),
the explained OP variance is significant because
it is the first empirically based evidence on the
contribution of KM processes to OP in the Egyp-
tian software industry. This finding can be inter-
preted in light of the assumption that knowledge
is not always used, and does not always result in
improved performance when used. As Kalling
(2003) explains, if knowledge is not utilized, it
will not contribute much to performance (e.g.,
profit); and even if knowledge is utilized, it
might not contribute to improved performance.
In order for knowledge to improve performance,
knowledge application decisions should be made
in light of the software firms’ strategic processes
and products-enhancement plans.

The relatively low explained variance in OP
may be also attributed to the research design
employed in this investigation. First, OP has been
operationalized and measured using a subjec-
tive single-item measure. Such a measure may
not effectively reflect all possible contributions
that KM processes may have on OP. Second, the
proposed causal relationship between KAP and
OP is not necessarily straightforward. The effect
of KAP may occur over several layers of causal
relationships that should be identified and explic-
itly incorporated when modeling the relationships
between KM processes and OP. Third, there may
be other factors—such as environment, leader-
ship, and organizational culture—that may as well
influence OP (Yeo, 2003), and are not accounted
for in the research model or the data analysis.

Among the KM processes, only KAP was
found to directly influence OP. This finding

 2633

Knowledge Management and Organizational Performance in the Egyptian Software Firms

confirms the theoretical argument that knowl-
edge application is a strategic resource of the
firm, and that the primary rationale for the firm
is to produce and apply knowledge (Choi & Lee,
2003; Grant, 1996; Nonaka, 1994; Nonaka &
Takeuchi, 1995; Spender, 1994). It also supports
Alavi and Leidner’s (2001) argument that knowl-
edge creation and codification do not necessarily
contribute to improved performance or created
value. Performance is improved and value is cre-
ated only when knowledge is applied. In addition,
this finding confirms Markus’ (2001) assertion that
knowledge usage associates with organizational
effectiveness, and Alavi and Tiwana’s (2000) ob-
servation that knowledge becomes underutilized
as a driver of performance when it is not put into
application.

Zack (1999) points out that the ability of an
organization to create knowledge and to continue
to learn from it may become a competitive advan-
tage, since the innovative knowledge developed
today becomes the core knowledge of tomorrow.
However, the finding of no direct influence of
knowledge creation on organizational perfor-
mance may be attributed to the possible “gap”
between knowledge creation and knowledge
application. Components of the newly created
knowledge in the software firms are perhaps still
in an informational form and need to be further
modified in order to become applied knowledge.
Sveiby (1996) adds that newly created knowledge
should be explored and used in order to find more
appropriate applications for it.

Although they did not directly influence OP,
KA, KT, and KC were found to indirectly influ-
ence organizational performance. KA indirectly
influenced OP through its direct influence on both
KC and KAP, which directly influenced OP. In
addition, KT indirectly influenced OP through its
direct influence on KC, which, in turn, influenced
KAP. Also, KC indirectly influenced OP through
its direct influence on KAP.

These findings are consistent with those of
Gold et al. (2001), who found that knowledge ac-

quisition, conversion, application, and protection
are positively related to performance variables.
They also confirm the research results of Kremp
and Mairesse (2004), who found KM to influ-
ence innovative performance and productivity.
These findings are also consistent with the other
empirical studies that confirmed the importance
of KM processes and activities in improving or-
ganizational performance or effectiveness (e.g.,
Edward et al., 2005; Jennex & Olfman, 2002;
Kremp & Mairesse, 2004; Lee et al., 2005; Liu
et al., 2004; Salojarvi et al., 2005).

As to the interrelationships among the KM
processes, KA was found to positively influence
KC and KAP. KT was found to positively influence
KC. And KC was found to positively influence
KAP. This means knowledge that is acquired from
outside sources and transferred/shared within the
firm facilitates the creation of new knowledge
as well as the application of such knowledge to
improve the performance of the software firms.

These findings support Nonaka and Takeuchi’s
(1995) SECI model of knowledge creation that
establishes the interrelationships among the KM
processes. Knowledge transfer is perceived to be
the common factor that facilitates the four pro-
cesses of knowledge creation in the model (Lee &
Choi, 2003; Marr et al., 2003). These findings also
agree with the argument that firms normally seek
additional knowledge in the same area in which
they already have a knowledge base and they may
seek knowledge in a complementary area (Shenkar
& Li, 1999), which is a prerequisite for knowledge
search and use. In addition, these findings sup-
port the argument that existing knowledge bases
facilitate new knowledge creation (Shenkar & Li,
1999; Cohen & Levinthal, 1990).

KA and KT appear to be essential processes
to knowledge creation in the software firms. In
order to create and build new knowledge, software
firms need to acquire and transfer knowledge.
Sources for knowledge acquisition and creation
in the investigated software firms were found
to include visitation with customers, secondary

2634

Knowledge Management and Organizational Performance in the Egyptian Software Firms

information on demand and trends of software,
market research, the Internet, individual initiatives
of software developers, and R&D activities. Also,
the firms were found to use e-mail, voice mail,
forums, traditional meetings, groupware, on and
off-the-job training, and education as methods
for internal knowledge transfer (Seleim, Ashour
& Khalil, 2005b).

On the other hand, KD is the only KM process
that was found to have no direct or indirect influ-
ence on organizational performance and the other
four KM processes of KA, KT, KC and KAP. This
finding is inconsistent with the knowledge reuse
theory (Markus, 2001), where organizational
memory plays an important role in organizational
success (Stein & Zwass, 1995).

One possible reason for the insignificant impact
that KD had on OP and the other KM processes
in the investigated firms is the lack of quality
systems for knowledge documentation within the
investigated software firms. Although the CEOs of
a number of these firms recognize the important
role of IT-based systems in building relation-
ships, facilitating the exchange of information,
and sharing experience and knowledge, the firms
are currently not fully utilizing the capabilities
of such systems (Seleim et al., 2005a).

IMplIcAtIons

The findings of this investigation contribute to
the growing empirical KM research. Measuring
scales for KM processes were adopted, revised,
validated, and used to empirically examine the
interrelationships between KM processes (in the
form of antecedents and consequences) and their
influence on the Egyptian software firms’ perfor-
mance. This is a step forward towards a future
adoption, revision, and validation of a compre-
hensive KM measuring instrument and producing
a generally accepted instrument that facilitates
the accumulation of an empirically-based and
consistent body of knowledge on KM.

Wiig (1999, p. 6) argues the need for a new
theory of the firm in order to effectively man-
age knowledge and link it to the firm’s strategy,
tactics, and daily operations. The findings of this
investigation extend and substantiate the absorp-
tive capacity theory (Cohen & Levinthal, 1990)
that emphasizes the organizational processes and
activities, by which organizations acquire, absorb,
transfer, and exploit knowledge. In particular,
this research explored a number of relationships
within the KM processes. Although they provide
limited support for the proposed relationships, the
findings indicate the value of continued investi-
gation and refinement of the proposed research
model in order to enhance our understanding of
a phenomenon that is as complex as KM.

The findings of this research further support the
significance of the knowledge-based theory of the
firm as a paradigm to investigate and understand
organizations in the knowledge economy context.
It confirms the core of the knowledge-based theory
of the firm because software firms not only cre-
ate knowledge but also emphasize knowledge
application (Grant, 1996; Spender, 1994).

For practitioners in the Egyptian software
companies, the findings of this investigation
demonstrate the importance of the KM processes,
especially knowledge application to organiza-
tional performance. Software firms should adopt
knowledge strategies in order to create value by
generating and applying knowledge. These knowl-
edge strategies may be guided by Hamel’s (1991)
recommended ways for creating value through
knowledge utilization and application:

1. apply new knowledge to old or existing
software products and services in order to
add new functionalities and characteristics
that better fulfill users’ needs,

2. develop new software products and services
through knowledge,

3. create value by globalizing or exporting
deeply embedded local knowledge such as
leading business practices, software prod-

 2635

Knowledge Management and Organizational Performance in the Egyptian Software Firms

ucts, software development techniques and
methods, and the like to the other Middle
Eastern countries, and

4. convert knowledge into strategic knowledge
to create shareholders’ wealth through effec-
tive leverage of organizational knowledge.

The Egyptian software firms need to adopt
KM strategies—codification, personalization, or
both—in order to guide knowledge acquisition,
creation, and transfer practices in the software
firms. Codification strategies should emphasize
the systematization and storage of knowledge
and make it available for software developers
and other employees in the firms (Hansen et al.,
1999). The development of comprehensive and
formal KM systems that capture, edit, store, update,
and disseminate knowledge is essential to improve
the knowledge documentation process (Seleim et
al., 2005b).

Software firms should also capitalize on
the Egyptian national culture and adopt per-
sonalization KM strategies in order to develop
a collaborative knowledge culture that allows
knowledge creation and transfer within the firms.
The Egyptian culture, which is rich in its social
capital and interpersonal relationships (House
et al., 2002; Javidan & House, 2001; Nahapiet &
Ghoshal, 1998), encourages software developers
and managers to assist each other and exchange
experience and knowledge. It also encourages
openness, trust, and mutual respect, which are
vital in enabling knowledge transfer and learning
(Kautz, Thaysen & Vendelo, 2002).

Finally, since the findings of this investigation
provide some evidence on the interrelatedness
of the KM processes, managers in the software
firms need to manage knowledge from a holistic
perspective that takes into consideration that
KM processes are interrelated and transcend the
departmental boundaries within the firm. Formal
and informal integrating mechanisms must be
adopted in order to facilitate a coordinated and
balanced KM processes, since the deficiency of

one or more of the KM processes may negatively
affect the result in less than optimum outcome of
the KM efforts in the firm.

rEsEArch lIMItAtIons And
futurE rEsEArch

Due to the lack of well-defined and broadly
accepted theories and frameworks in the KM
literature to guide the formulation of hypotheses
describing possible interrelationships among the
KM processes, only a selected number of interrela-
tionships were included and tested in our research
model. In addition, our results failed to detect a
number of the hypothesized relationships. These
undetected relationships may be due to possible
measurement errors, the relatively small sample
size, or contextual factors that were not accounted
for in the research model. Future research should
use research designs that employ larger samples
to further validate the KM measuring instrument
used in this investigation, hypothesize, and test
new sets of relationships within KM processes,
and investigate the role of the intermediary effect
of the organizational context (e.g., organizational
culture and climate, organizational size, organi-
zational age, and business environment)on the
relationships between knowledge application and
organizational performance.

The use of an exclusive indicator to measure or-
ganizational performance represents a limitation
to this research (de Pablos, 2002). Using multiple
variables to measure organizational performance
may help to get a more accurate representation of
the relationship between KM and organizational
performance. Future research may measure orga-
nizational performance as a function of multiple
financial variables, such as return on investment
(ROI), return on equity (ROE), sales growth, and
profit growth. Or, since the financial measures
may be confounded by other business, economic,
and environmental factors, future research may
adopt less confounded nonfinancial measures,

2636

Knowledge Management and Organizational Performance in the Egyptian Software Firms

such as the fourteen-item scale developed by
Gold et al. (2001), to measure KM contributions
to organizational performance.

Furthermore, a cross-sectional data was
used in this research with assumed causal flows
within KM processes and from KM processes to
organizational performance. There is, however,
a possibility that the relationships may occur
in reverse order. Therefore, future longitudinal
investigations are recommended in order to
conclusively replicate the findings presented in
this research. In addition, future research may
investigate alternative paths that connect KM
processes and organizational performance. For
instance, the application of knowledge may result
in the creation of new knowledge (Gold et al.,
2001), and the transfer of more knowledge among
the individuals in an organization. Organizational
learning may also mediate the relationship be-
tween knowledge application and organizational
performance.

conclusIon

This investigation examined the relationship of
the KM processes of knowledge acquisition, docu-
mentation, transfer, creation, and application to
organizational performance and the interrelation-
ships among the KM processes themselves in the
form of nine hypotheses. Although the findings
provide limited support for the proposed research
model, they indicate the value of continued in-
vestigation and refinement of the model. Only
knowledge application, among the KM processes,
has a significant, direct and positive influence on
organizational performance. This implies that KM
is most effective in the Egyptian software firms
when their employees not only receive and share
knowledge but also apply it, and, thus, affects
organizational performance.

Given the exploratory nature of this investiga-
tion, the proposed research model is considered
adequate in explaining the variance in the orga-

nizational performance of the Egyptian software
firms, as a function of the KM processes. Also,
two submodels of the research model exhibit high
power in explaining the variance in knowledge
application and knowledge creation as functions
of the other KM processes.

With the exception of knowledge documen-
tation, the KM processes have either direct or
indirect influence on organizational performance.
Also, knowledge acquisition and knowledge cre-
ation directly influence knowledge application,
while knowledge application and knowledge
transfer directly influence knowledge creation.
Therefore, KM processes within the Egyptian
software firms should be viewed and managed
as integrated, rather than separate, processes.
Follow up research is warrant in order to validate
and extend our research model.

rEfErEncEs

Albrecht, K. (1996, April 25). Bits and bytes from
the Nile. Middle East.

Alavi, M., & Leidner, D.E. (2001). Review: Knowl-
edge management and knowledge management
systems: Conceptual foundations and research
issues. MIS Quarterly, 25, 107-136.

Alavi, M., & Tiwana, A. (2000). Knowledge in-
tegration in virtual teams: The potential role of
KMS. Journal of the American Society for Infor-
mation Science and Technology, 53, 1029-1037.

Amabile, T.M., Nasco, C.P., Mueller, J., Wojcik,
T., Odomirok, P.W., Marsh, M., et al. (2001). Aca-
demic-practitioner collaboration in management
research: A case of cross- profession collabora-
tion. Academy of Management Journal, 44(2),
418-431.

Antonelli, C. (1999). The Evolution of the indus-
trial organization of the production of knowledge.
Cambridge Journal of Economics, 23, 243-260

 2637

Knowledge Management and Organizational Performance in the Egyptian Software Firms

Argote, L., & Ingram, P. (2000). Knowledge trans-
fer: A basis for competitive advantage in firms.
Organizational Behavior and Human Decision
Processes, 82, 15-169.

Barney, J. (1991). Firm resources and sustained
competitive advantage. Journal of Management,
17(1), 99-120.

Bartlett, C., & Ghoshal, S. (2000). Going global
lesson from late movers. Harvard Business Re-
view, 78, 132-142.

Bassie, L.J. (1997). Harnessing the power of
intellectual capital. Training & Development,
51, 25-30.

Beckman, T. (1999). The current state of knowl-
edge management. In J. Liebowitz (Ed.), Knowl-
edge management handbook (pp. 1-22). Boca
Raton, FL: CRC Press.

Bennett, R., & Gabriel, H. (1999). Organizational
factors and knowledge management within large
marketing departments: An empirical study. Jour-
nal of Knowledge Management, 3(3), 212-25.

Bierly, P., & Chakrabarti, A. (1996). Generic
knowledge strategies in the U.S. pharmaceuti-
cal industry. Strategic Management Journal, 17
(Winter Special Issue), 123-135.

Bloodgood, J.M., & Salisbury, W.D. (2001).
Understanding the influence of organizational
change strategies on information technology
and knowledge management strategies. Decision
Support Systems, 31, 55-69.

Borys, B., & Jemison, D.B. (1989). Hybrid ar-
rangements as strategic alliances: Theoretical
issues in organizational combinations. Academy
of Management Review, 14(2), 234-250.

Camelo-Ordaz, M.C., Fernandez-Alles, M.,
Martín-Alcázar, F., Romero-Fernández, P.M.,
& Cabrera, R. V. (2004). Internal diversifica-
tion strategies and the processes of knowledge
creation. Journal of Knowledge Management,
8(1), 77-93.

Cavaleri, S.A. (2004). Leveraging organizational
learning for knowledge and performance. The
Learning Organization, 11(2), 159-176.

Choi, B., & Lee, H. (2003). An empirical investi-
gation of KM styles and their effect on corporate
performance. Information & Management, 40(5),
403-417.

Cohen, W.M., & Levinthal, D.A. (1990). Absorp-
tive capacity: A new perspective learning and
innovation. Administrative Science Quarterly,
35(1), 128-152.

Connor, K.R., & Prahalad, C.K. (1996). A re-
source-based theory of the firm: Knowledge
versus opportunism. Organizational Science,
7, 477-501.

Darr, E.D., Argote, L., & Epple, D. (1995). The
acquisition, transfer, and depreciation of knowl-
edge in service organizations: Productivity in fran-
chises. Management Science, 41(11), 1750-62.

Darroch, J. (2003). Developing a measure of
knowledge management behaviors and prac-
tices. Journal of Knowledge Management, 7(5),
41-54.

Darroch & McNaughton (2002). Developing a
measure of knowledge management. In N. Bon-
tis (Ed.), World congress of intellectual capital
readings (pp. 226-242). Boston: Butterworth-
Heinemann-KMCI Press.

Das, S., Sen, P.K., & Sengupta, S. (2003). Stra-
tegic alliances: A valuable way to manage intel-
lectual capital. Journal of intellectual capital,
4(1), 10-19.

Davenport, T.H., & Prusak, L. (1998). Working
knowledge: How organizations manage what they
know. Boston: Harvard Business School Press.

Delaney, J.T., & Huselid, M.A. (1996). The impact
of human resource management practices on per-
ceptions of organizational performance. Academy
of Management Journal, 39, 949-69.

2638

Knowledge Management and Organizational Performance in the Egyptian Software Firms

Demarest, M. (1997). Understanding knowledge
management. Long Range Planning, 30, 374-
84.

Demsetz, H. (1991). The theory of the firm re-
visited. In O.E. Williamson & S. Winter (Eds.),
The nature of the firm (pp. 159-78). New York:
Oxford University Press.

de Pablos, P.O. (2002). Knowledge management
and organizational learning: Typologies of knowl-
edge strategies in the Spanish manufacturing
industry from 1995 to 1999. Journal of Knowledge
Management, 6(1), 52-62.

Dess, G. (1987). Consensus on strategy formula-
tion and organizational performance: Competitors
in fragmented industry. Strategic Management
Journal, 8(3), 259-277.

Dess, G.G., & Robinson, R.B. (1984). Measur-
ing organizational performance in the absence
of objective measures. Strategic Management
Journal, 5, 265-73.

Dollinger, M.J., & Golden, P.A. (1992). Interor-
ganizational and collective strategies in small
firms: Environmental effects and performance.
Journal of Management, 18, 695-713.

Drucker, P.F. (1993). Post-capitalist society. New
York: HarperCollins.

Edward, C., Feng, K., & Liou, W. (2005). Imple-
mentation of knowledge management systems
and firm performance: An empirical investiga-
tion. Journal of Computer Information Systems,
45(2), 92-104.

Faraj, S., & Sproull, L. (2000). Coordinating
expertise in software development teams. Man-
agement Science, 46(12), 59-85.

Filius, R., de Jong, J., & Roelofs, E. (2000).
Knowledge management in the HRD office: A
comparison of three cases. Journal of Workplace
Learning, 12(7), 286-295.

Fornell, C., & Larcker, D. F. (1981). Evaluating
structural equation models with unobservable
variables and measurement error. Journal of
Marketing Research, 18, 39-50.

Fornell, C., & Cha, J. (1994). Partial least square.
In R. P. Bagozzi (Ed.), Advanced methods of mar-
keting research. Oxford: Basil Blackwell Ltd.

Garvin, D.A. (1994). Building a learning organi-
zation. Business Credit, 96(1), 19-28.

Gold, A.H., Malhotra, A., & Segars, A.H. (2001).
Knowledge management: An organizational ca-
pabilities perspective. Journal of Management
Information Systems, 18, 185-214.

Gorelick, C., & Tantawy-Monsou, B. (2005).
For performance through learning, knowledge
management is the critical practice. The Learn-
ing Organization: International Journal, 12(2),
125-139.

Grant, R.M. (1996). Toward a knowledge-based
theory of the firm. Strategic Management Journal,
17(Winter Special Issue), 109-122.

Hair, J.F., Anderson, R.E., Tatham, R.L., & Black
W.C. (1998). Multivariate data analysis. Upper
Saddle River, N.J: Prentice Hall.

Hall, R., & Andriani, P. (2002). Managing knowl-
edge for innovation. Long Range Planning, 35,
29-48

Hamel, G. (1991). Competition for competence
and inter-partner learning within international
strategic alliances. Strategic Management Jour-
nal, 12(Summer Special Issue), 83-103.

Hansen, M.T., Nohria, N., & Tierney, T. (1999).
What’s your strategy for managing knowledge?
Harvard Business Review, 77, 106-116.

Hansen, G., & Wernerfelt, B. (1989). Determinants
of firm performance: The relative importance of
economic and organizational factors. Strategic
Management Journal, 10(5), 399-411.

 2639

Knowledge Management and Organizational Performance in the Egyptian Software Firms

Hasan, H., & Al-hawari, M. (2003). Management
styles and performance: A knowledge space
framework. Journal of Knowledge Management,
7(4), 15-28.

Hedlund, G. (1994). A model of knowledge man-
agement and the n-form corporation. Strategic
Management Journal, 15, 73-90.

Hoffman, J.J., Hoelscher, M., & Sherif, K. (2005).
Knowledge management and sustainable superior
performance. Journal of Knowledge Manage-
ment, 9(3), 93-100.

Holsapple, C.W., & Joshi, K.D. (1999). Knowledge
selection: Concepts, issues, and technology. In J.
Liebowitz (Ed.), (pp, 7-1, 7-17). New York: CRC
Press.

Holsapple, C.W., & Jones, K. (2004). Exploring
primary activities of the knowledge chain. Knowl-
edge and Process Management, 11(3), 155-174.

 Holsapple, C.W., & Jones, K. (2005). Exploring
the secondary activities of the knowledge chain.
Knowledge and Process Management, 12(1),
3-31.

House, R., Spangler, W., & Woycke, J. (1991,
September). Personality and charisma in U.S
presidency: A psychological theory of leader ef-
fectiveness. ASQ, 36(3), 364-396.

Howeidy, A. (1999, September 1). The software
challenge. Al-Ahram Weekly, (447), 16-22.

Huber, G.P. (1991). Organizational learning: The
contributing processes and the literatures. Orga-
nization Science, 2(1), 88-115.

Hulland, J. (1999). Use of partial least squares
(PLS) in strategic management research: A review
of four recent studies. Strategic Management
Journal, 20, 195-204.

Hussi, T. (2004). Reconfiguring knowledge
management-combining intellectual capital, in-
tangible assets and knowledge creation. Journal
of Knowledge Management, 8, 36-52.

Ichijo, K., Krogh, G.V., & Nonaka, I. (1998).
Knowledge enablers. In G.V. Krogh, J. Roos, &
D. Kleine, (Eds.), Knowing in firms: Understand-
ing, managing and measuring knowledge (pp.
174-203). Thousand Oaks, CA: AGE Publication
INC.

Javidan, M., & House, R. (2001). Culture acumen
for the GLOBE manager: Lessons from project
GLOBE. Organizational Dynamics, 29(4), 289-
305.

Jennex, M.E., & Olfman, L.(2002). Organizational
memory/knowledge effects on productivity, a
longitudinal study. In Proceedings of the 35th
Hawaii International conference on System Sci-
ences, 10 pgs.

Jennex, M.E., & Olfman, L. (2005). Assessing
knowledge management success. International
Journal of Knowledge Management, 1(2), pp.
33-49.

Johnston, R., & Blumentritt, R. (1998). Knowledge
moves to centre stage. Science Communication,
20(1) 99-105.

Kalling, T. (2003). Knowledge management
and the occasional links with performance.
Journal of Knowledge Management, 7, 67-81.
Kautz, K., Thaysen, K., & Vendelo, M.T. (2002).
Knowledge creation and IT systems in a small
software firm. OR Insight, 15, 11-17.

Kim, D., & Kogut, B. (1996). Technological plat-
forms and diversification. Organization Science,
7(3), 283-301.

Kogut, B., & Zander, U. (1996). What firms do?
Coordination, identity, and learning. Organization
Science, 7(5), 502-518.

Kremp, E., & Mairesse, J. (2004, January). Knowl-
edge management, innovation and productivity:
A firm level exploration based on French manu-
facturing CIS 3 data (Working Paper No. 10237).
Cambridge, MA: National Bureau of Economic
Research.

2640

Knowledge Management and Organizational Performance in the Egyptian Software Firms

Lee, H., & Choi, B. (2003). Knowledge manage-
ment enablers, processes, and organizational
performance: An integrative view and empirical
examination. Journal of Management Information
Systems, 20(1), 179-229

Lee, K.C., Lee, S., & Kang, I.W. (2005). KMPI:
Measuring knowledge management performance.
Information & Management, 42, 469-482.

Liebowitz, J. (2005). Linking social network
analysis with the analytic hierarchy process for
knowledge mapping in organizations. Journal of
Knowledge Management, 9(1), 76-86.

Linderman, K., Schroeder, R.G., Zaheer, S.,
Leidtke, C., & Choo, A.S. (2004). Integrating
quality management practices with knowledge
creation processes. Journal of Operations Man-
agement. 22(6), 589-607.

Liu, P., Chen, W., & Tasi, C. (2004). An empiri-
cal study on the correlation between knowledge
management capability and competitiveness in
Taiwan’s industries. Technovation, 24(12), 971-
977.

Loermans, J. (2002). Synergizing the learning or-
ganization and knowledge management. Journal
of Knowledge Management, 6, 285-294.

Lopez, S.P., Peon, J.M.M., & Ordas, C. J.V. (2004).
Managing knowledge: The link between culture
and organizational learning. Journal of Knowl-
edge Management, 8(6), 93-104.

Lyes, M.A., & Salk, J.E. (1996). Knowledge
acquisition from foreign parents in international
joint ventures: An empirical examination in the
Hungarian context. Journal of International
Business, 27(5), 877-903.

Machlup, F. (1962). The production and distribu-
tion of knowledge in the United States. Princeton,
NJ: Princeton University Press.

Machlup, F. (1983). Knowledge, its creation, dis-
tribution and economic significance. Princeton,
NJ: Princeton University Press.

Makino, S., & Delios, A. (1996). Local knowledge
transfer and performance: Implications for alli-
ances formation in Asia. Journal of International
Business, 27(5), 905-927.

Markus, M.L. (2001). Toward a theory of knowl-
edge reuse, types of knowledge reuse situation and
factors in reuse success. Journal of Management
Information Systems, 18, 57-93.

Marr, B., Gupta, O., Pike, S., & Roos, G. (2003).
Intellectual capital and knowledge management
effectiveness. Management Decision, 41, 771-
781.

Mason, D., & Pauleen, D.J. (2003). Perceptions
of knowledge management: A qualitative analy-
sis. Journal of Knowledge Management, 7(4),
38-48.

Mathiassen, L., & Pourkomeylian, P. (2003).
Managing knowledge in a software organiza-
tion. Journal of Knowledge Management, 7(2),
63-80.

Nahapiet, J., & Ghoshal, S. (1998). Social capi-
tal, intellectual capital, and the organizational
advantage. Academy of Management Review,
23(2), 242-266.

Nelson, K.M., & Cooprider, J.G. (1996). The
contribution of shared knowledge to IS group
performance. MIS Quarterly, 20(4), 409-432.

Nonaka, I. (1994). A dynamic theory of organiza-
tional knowledge creation. Organization Science,
5(10), 14-37.

Nonaka, I., Byosiere, P., & Konno, N. (1994).
Organizational knowledge creation theory: A
first comprehensive test. International Business
Review, 3, 337-351.

Nonaka, I., & Reinmoeller, P. (2000). Dynamic
business systems for knowledge creation and
utilization. In C. Despres & D. Chauvel (Eds.),
Knowledge horizons: The present and promise of

 2641

Knowledge Management and Organizational Performance in the Egyptian Software Firms

knowledge management (pp.89-112). New York:
Butter-worth-Heinemann,.

Nonaka, I., & Takeuchi, H. (1995). The knowledge
creating company-how Japanese companies create
the dynamics of innovation. Oxford University
Press.

Pablos, P.O. (2002). Evidence of intellectual
capital measurement from Asia, Europe and the
Middle East. Journal of Intellectual Capital, 3,
287-302.

Penrose, E.T. (1959). The theory of the growth of
the firm. Oxford: Basil Blackwell.

Powell, T.C. (1992). Organizational alignment as
competitive advantage. Strategic Management
Journal, 13, 119-34.

Powell, T.C., & Dent-Micallef, A. (1997). Informa-
tion technology and competitive advantage: The
role of human, business, and technology resources.
Strategic Management Journal, 18(5), 375-405.

Prahalad, C.K., & Hamel, G. (1990). The core
competence of the corporation. Harvard Business
Review, 68(3), 79-91.

Rastogi, P.N. (2002). Knowledge management and
intellectual capital. Human Systems Management,
22, 229-240.

Reinmoreller, P., & Chong, L.C. (2002). Managing
the knowledge-creating context: A strategic time
approach. Creative and Innovation Management,
11, 165-174.

Salojarvi, S., Furu, P., & Sveiby, K. (2005).
Knowledge management and growth in Finnish
SMEs. Journal of Knowledge Management, 9(2),
103-122.

Sambamurthy, V., & Subramani, M. (2005).
Special issue on information technologies and
knowledge management. MIS Quarterly, 29(1),
1-7.

Seleim, A., Ashour, A., & Khalil, O. (2005a).
Knowledge documentation and application in the
Egyptian software firms. Journal of Information
& Knowledge Management, 4, 47-59.

Seleim, A., Ashour, A., & Khalil, O. (2005b).
Knowledge acquisition and transfer in Egyptian
software firms. International Journal of Knowl-
edge Management, 1(4), forthcoming.

Sharkie, R. (2003). Knowledge creation and its
place in the development of sustainable competi-
tive advantage. Journal of Knowledge Manage-
ment, 7(1), 20-31.

Shenkar, O., & Li, J. (1999). Knowledge search in
international cooperative ventures. Organization
Science, 10(2), 134-143.

Spanson, Y.E., & Lioukas, S. (2001). An exami-
nation into the causal logic of rent generation:
Contrast Porter’s competitive strategy framework
and the resources based perspective. Strategic
Management Journal, 22(10) 907-934.

Spender, J.C. (1996). Competitive advantage
from tacit knowledge? Unpacking the concept
and its strategic implications. In B. Moingeon &
A. Edmondson (Eds), Organizational learning
and competitive advantage (pp. 56-73). London:
Sage.

Stein, E.W., & Zwass, V. (1995). Actualizing or-
ganizational memory with information systems.
Information Systems Research, 6(2), 86-117.

Stewart, T.A. (1997). Intellectual capital: The
new wealth of organizations. New York: Double
Day Publishing Group, Inc.

Stovel, M., & Bontis, N. (2002). Voluntary turn-
over: Knowledge management-friend or foe?
Journal of Intellectual Capital, 3, 303-322.

Sveiby, K.E. (2001). A knowledge-based theory of
the firm to guide in strategy formulation. Journal
of Intellectual Capital, 2(4), 344-58.

2642

Knowledge Management and Organizational Performance in the Egyptian Software Firms

Syed-Ikhsan, S.O., & Rowland, F. (2004). Knowl-
edge management in a public organization: A
study on the relationship between organizational
elements and the performance of knowledge
transfer. Journal of Knowledge Management,
8, 95-111.

Teece, D.J. (1998). Capturing value from knowl-
edge assets: The new economy, markets for
know-how and intangible assets. California
Management Review, 40, 55-79.

Teece, D.J. (2000). Strategies for managing
knowledge assets: The role of firm structure
and industrial context. Long Range Planning,
33, 35-54.

Tippins, M.J., & Sohi, R.S. (2003). IT competence
and firm performance: Is organizational learning
a missing link. Strategic Management Journal,
24(8), 745-761.

Tsai, W. (2001). Knowledge transfer in intraorga-
nizational networks: Effects of network position
and absorptive capacity on business unit innova-
tion and performance. Academy of Management
Journal, 44(5), 996-1004.

Venkatraman, N., & Ramanujam, V. (1987). Mea-
surement of business economic performance: An
examination of method convergence. Journal of
Management, 13, 109-23.

Wagner, B.A. (2003). Learning and knowledge
transfer in partnering: An empirical case study.
Journal of Knowledge Management, 7(2), 97-113
Walsh, J.P., & Ungson, G.R. (1991). Organizational
memory. Academy of Management Review, 16,
57-91.

Wiig, K.M. (1997). Integrating intellectual capital
and knowledge management. Long Range Plan-
ning, 30(3), 399-405.

Wiig, K.M. (2002). Knowledge management in
public administration. Journal of Knowledge
Management, 6, 224-39.

Yeo, R. (2003). The tangibles and intangibles of
organizational performance. Team Performance
Management, 9(7/8), 199-204.

Zack, M. (1999). Developing a knowledge strategy.
California Management Review, 41(3), 125-46.

Zhang, L., Tian, Y., & Qi, Z. (2006). Impact of
organizational memory on organizational perfor-
mance: An empirical study. The Business Review,
5(1), 227-232.

 2643

Knowledge Management and Organizational Performance in the Egyptian Software Firms

AppEndIX A.

An English form of the KM practice Measuring Instrument Adopted in this
Investigation*

 (1 = very low practice, and 5 = very high practice)

Knowledge acquisition (KA):
1. To what extent the members in your firm actively participate in professional networks or associations.
2. To what extent your firm regularly collects information about the needs of its customers.
3. To what extent your firm regularly conducts knowledge gab analysis.
4. To what extent your firm hires consultants when important skills/information are not available in-house.
5. To what extent your firm hires new staff members who possess missing knowledge.
6. To what extent your firm conduct research (i.e., with universities and/or research centers) to explore

future possibilities or to gain technical knowledge.
7. To what extent the employees in your firm regularly attend courses, seminars, or other training programs

to remain informed.
8. To what extent your firm considers competitors as a source of inspiration for developing new methods

and/or products.
Knowledge documentation (KD):
9. To what extent your firm uses brainstorming sessions for problem solving.
10. To what extent your firm evaluates failures and successes and “lesson learned” are set down.
11. To what extent your firm has available up-to-date handbooks, manuals, CDs, and so forth, which are

frequently used.
12. To what extent your firm informs its members systematically of changes in procedures, handbook, and so

forth.
13. To what extent your firm has documented the specific knowledge and skills of its individual members.
14. To what extent your firm encourages its experts to make explicit the methods they use in developing

software products.
15. To what extent your firm keeps and maintains knowledge maps, knowledge networks, and data ware-

houses.
Knowledge transfer (KT):
16. To what extent your firm assigns mentors to the new hires to help them find their way in the organization.
17. To what extent your firm extracts the experiences of its experts and shares them with others in the orga-

nization.
18. To what extent the employees in your firm share with colleagues and others their knowledge/know how.
19. To what extent the knowledge in your firm is distributed in informal ways.
20. To what extent the knowledge in your firm is distributed in formal ways.
21. To what extent your firm holds regular business update meetings to discuss software development issues.
22. To what extent the members in your firm regularly inform each other about positive experiences and suc-

cessful work methods.

2644

Knowledge Management and Organizational Performance in the Egyptian Software Firms

23. To what extent your firm conducts intercollegual review in which members discuss their methods of
working.

24. To what extent the members in your firm change jobs regularly in order to distribute their know-how.
25. To what extent your firm uses mechanisms and means for knowledge exchange across individuals,

groups, and organizational levels.
Knowledge creation (KC):
26. To what extent Individual performances are assessed regularly and discussed in individual evaluative

conferences.
27. To what extent problems, failures, and doubts are discussed openly in your firm.
28. To what extent that new ideas lead to re-design of work methods and processes in your firm.
29. To what extent members are assigned to new projects depending on know-how and availability.
30. To what extent your firm endeavors to find knowledge combination that contributes to its identity.
31. To what extent the members in your firm are rewarded for developing new knowledge and testing new

ideas.
32. To what extent your firm promotes and stimulates a learning climate among employees.
33. To what extent your firm contributes to the development of the important ideas and knowledge in the

industry.
34. To what extent the important issues in your firm are explored using scenario- or simulation techniques.
35. To what extent your firm analyzes benchmark at the industry level.
36. To what extent your firm conducts data mining to discover new knowledge and insights.
Knowledge application (KAP):
37. To what extent selling knowledge, products, or services gets explicit attention in your firm.
38. To what extent customer feedback is used to improve products/services in your firm.
39. To what extent your firm uses existing know-how in a creative manner for new applications.
40. To what extent your firm does marketing research among potential clients before developing new prod-

ucts or services.
41. To what extent your firm tries to conquer dysfunctional beliefs within the organization.
42. To what extent your firm utilizes multi-disciplinary teams to perform tasks and/or make decisions.
43. To what extent your firm has capabilities to integrate its knowledge across different areas.
44. To what extent your firm maximizes knowledge use through its organizational structure, management

systems, and practices.
45. To what extent your firm attempts to discover the problems that cause gabs between targets and achieve-

ments.
46. To what extent your firm attempts to use its stocks of knowledge across different software projects.

* Note: The items that have been added to the original scale are written in italics.

This work was previously published in the International Journal of Knowledge Management, edited by M. Jennex, Volume 3,
Issue 4, pp. 37-66, copyright 2007 by IGI Publishing (an imprint of IGI Global).

Section VII
Critical Issues

This section addresses conceptual and theoretical issues related to the field of software applications,
which include ethics in software engineering, software piracy, and morality in free and open source
software. Within these chapters, the reader is presented with analysis of the most current and relevant
conceptual inquires within this growing field of study. Overall, contributions within this section ask
unique, often theoretical questions related to the study of software applications and, more often than
not, conclude that solutions are both numerous and contradictory.

2646

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.1
A Survey of Object-Oriented
Design Quality Improvement

Juan José Olmedilla
Almira Lab, Spain

AbstrAct

The use of object-oriented (OO) architecture
knowledge such as patterns, heuristics, principles,
refactorings and bad smells improve the quality
of designs, as Garzás and Piattini (2005) state in
their study; according to it, the application of those
elements impact on the quality of an OO design
and can serve as basis to establish some kind of
software design improvement (SDI) method. But
how can we measure the level of improvement? Is
there a set of accepted internal attributes to mea-
sure the quality of a design? Furthermore, if such a
set exists will it be possible to use a measurement
model to guide the SDI in the same way software
processimprovement models (Humphrey, 1989;
Paulk, Curtis, Chrissis, & Weber, 1993) are guided
by process metrics (Fenton & Pfleeger, 1998)?
Since (Chidamber & Kemerer, 1991) several OO
metrics suites have been proposed to measure
OO properties, such as encapsulation, cohesion,

coupling and abstraction, both in designs and in
code, in this chapter we review the literature to
find out to which high level quality properties are
mapped and if an OO design evaluation model has
been formally proposed or even is possible.

IntroductIon

In the last two decades there has been a growing
interest and effort put after the idea of improving
the quality of the software processes (Humphrey,
1989). This increasing trend had it origin in the ap-
plication of statistical process control techniques
(Oakland, 1990) from the manufacturing industry
to our sector, thus creating a new discipline that
has been called software process improvement
(SPI) (Humphrey, Snyder & Willis, 1991). This
discipline aids organisations to improve their
software producing processes by, firstly, identify-
ing all the broad areas of the process, their goals

 2647

A Survey of Object-Oriented Design Quality Improvement

and the activities and sub-activities needed to
achieve them and secondly by establishing a path
through which the process can be incrementally
improved, this path is a set of quality levels, each
of them defined by the areas and their associated
goals to be accomplished. Fundamental to the SPI
are the associated metrics (Fenton & Pfleeger,
1998) that are the tool by which the organisation
can tell at each moment where it is in the path,
each of the aforementioned goals has an associ-
ated set of metrics that help to tell if it has been
achieved and to what extent. Although there are
alternative SPI models and methods, like CMMI
(Paulk et al., 1993) or SPICE (ISO/IEC, 1999),
an organisation can always adhere to a concrete
definition of process quality and a way to measure
it and improve it.

However the product arena does not seem to
be so established in terms of quality improvement
models. A fundamental question that managers
and developers often face is when it is worth to
improve a software product by reegineering it
or on the contrary start it all over from scratch.
Fowler (2000) states that

There are times when the existing code is such
a mess that although you could refactor it, it
would be easier to start from the beginning ...
I admit that I don’t really have good guidelines
for it. (p. 66)

In this case Fowler was talking about the refac-
toring technique but something similar can be said
about other OO design knowledge elements. There
is plenty of knowledge, more or less formalised,
about identifying situations in which to apply an
specific design improvement (Brown, Malveau,
Brown, McCormick & Mowbray, 1998; Fowler,
2000; Gamma, Helm, Johnson & Vlissides,
1995; Riel, 1996), but is there a formal method
to know which design transformations should be
applied first or are more important? Is it possible
to establish which design transformations, pattern

applications, refactorings, and so forth, are more
important in a certain quality level?

An organisation or a project could be interested
in attaining only a moderate quality level that is
acceptable for the time being and it is foreseeable
that will consume only a limited amount of re-
sources. Such an organisation could be interested
in a guide that tells what quality indicators are
really crucial to that quality level, to what extent,
in terms of a measurable quantity, how to measure
them and which design transformation affect the
properties object of the measurements.

First of all it would be necessary to define what
is design quality, by identifying what general
properties or high level indicators comprise it;
second, to organise those indicators in sets that
constitute an incremental ladder of quality, so
that depending on the situations, the (non-func-
tional requirements and the resources a designer
can choose the target level for his or her design;
thirdly, choose the metrics that help in the assess-
ment of the goals accomplishment; and finally,
define the OO knowledge elements that apply in
each case. We are talking here about something
that we could call an OO design maturity model
that would help designers to assess and improve
a design before having to implement it.

Product quality has been defined in ISO
9126 (ISO/IEC, 2001) by external and internal
attributes that describe the quality of the final
software product and its intermediate subproducts,
such as design; according to that, design quality
should be measured through internal attributes
that will predict, somehow, the final outcome of
the external attributes. Some authors (Bansiya
& Davis, 2002; Basili, Briand & Melo, 1996)
have proposed numerical relations between some
internal quality attributes and general OO prop-
erties, such as coupling or cohesion, for which
there are already defined metrics. Other authors
(Miller, Hsia & Kung) have proposed directly to
measure the levels of accomplishment of certain
OO knowledge elements like design principles,

2648

A Survey of Object-Oriented Design Quality Improvement

using some of the existing OO metrics and map
them to internal quality attributes. If the first
approach was used then it would be necessary to
establish how much each OO knowledge element
impacts each OO property or, at least, know what
design transformations are directed to which
properties and re-measure after applying them
and repeat the process until the level of quality is
reached (see Figure 1). This chapter will review
the state of the art to see whether there is an ac-
cepted set of internal quality properties as high
level indicators or goals for the assessment of
OO micro architecture design quality and if there
are already assessment models that map metrics,
OO properties and these high level indicators. A
secondary objective of the review is the identifi-
cation of what role the OO knowledge elements
play in the assessment. There might be evaluation
models based on the detection of the elements in
the design so that they will not only be part of the
improvement model but also of the appraisal. The
sources of review will be journals, transactions,
conference proceedings, and other periodicals
published in the main areas of knowledge affected
by this study which are object orientation design,
metrics, and software maintenance.

In the next section a background on software
product quality and OO metrics and OO knowl-
edge will be presented, the method followed to
perform the review will be explained one section
later and the results exposed along with critical
comments on the most relevant studies, and con-
clusions will be drawn in the closing section.

bAcKground

software product Quality

Quality can be measured at a process or product
level, although there are obvious relationships
among them, as Figure 2 illustrates. There are
other quality aspects besides those two but are not
of interest to us. ISO/IEC has issued two standards
that refer to software product and process quality
respectively, ISO 14598 (ISO/IEC, 1999) and ISO
9126. As is usual with these kind of standards the
authors do not give an explicit assessment meth-
odology nor do they give guidelines to achieve
quality through specific software processes or
development methodologies. Rather they simply
put in places what is understood by quality, in
terms of attributes that must be measured, in each

Figure 1. Measurement and improvement model for object-oriented design

Quality Attributes Assess Assess Measure
Object Oriented

Design Properties

O
bj

ec
t O

ri
en

te
d

M
et

ri
cs

O
O

 D
es

ig
n

C
om

po
ne

nt
s

Id
en

tit
y

al
re

ad
y

ap
p

lie
d

Im
pr

ov
ePr

io
ri

ti
ze

Id
en

tif
y w

hi
ch

ar
e

ap
p

lic
ab

le

Object Oriented Architecture Knowledge

 2649

A Survey of Object-Oriented Design Quality Improvement

of the cases. The CMMI model connects with
ISO 14598 in being a classification of maturity
levels in the software process and giving a set
of specific guidelines to assess and evaluate the
quality of a software process.

ISO 9126 states that software product quality
can be evaluated by measuring internal attributes,
or by measuring external attributes; the former
are obtained through metrics defined on interme-
diate products, such as design, and the latter are
based on the behavior of the final executing code.
It also takes in account “quality in use” which
deals with the perspective of behavioral quality
of the finished product in a speciûc environment
under a user’s perspective. In both cases, internal
and external, quality is defined as a set of six
characteristics:

• Functionality: The capability of the soft-
ware product to provide functions which
meet stated and implied needs when the
software is used under specified condi-
tions.

• Reliability: The capability of the software
product to maintain a specified level of
performance when used under specified
conditions.

• Usability: The capability of the software
product to be understood, learned, used,
and attractive to the user, when used under
specified condition.

• Efficiency: The capability of the software
product to provide appropriate performance,
relative to the amount of resources used,
under stated conditions.

• Maintainability: The capability of the
software product to be modified. Modifica-
tions may include corrections, improvements
or adaptation of the software to changes
in environment, and in requirements and
functional specifications.

• Portability: The capability of the software
product to be transferred from one environ-
ment to another.

These characteristics are general for any kind
of software product and being object-oriented or

Figure 2. Quality in the software lifecycle

2650

A Survey of Object-Oriented Design Quality Improvement

structured does not affect the choice of character-
istics, although it will affect the way to measure
them. These characteristics are further divided in
subcharacteristics as shown in Figure 3. But we
are centered in the design quality in early stages
of the development cycle and certain attributes
in that list, apparently, should not be addressed
yet. Let us see which of them are addressable at
the design stage and which are not:

• The correct coverage of all user requirements
should be addressed in previous phases of
the life cycle, such as analysis, and verified
during testing; therefore, it is logical to sup-
pose that the quality of a design should not
be measured by the functionality attribute,
as defined in ISO 9126. In fact the OO design
improvement techniques always state that
to apply them, first the current design must
behave “mostly” correctly (Fowler, 2000) (in
terms of functionality and in terms of reli-

ability). But how can we decide if a design
is better than another, for the same require-
ments? If one of them does not implement
the full set of requirements as described in
the corresponding specifications then the
design is not “worse” than the other, it is
simply not correct or incomplete.

• Again we tend to suppose that reliability
should not be one of the internal attributes
that define design quality, given that reliabil-
ity has been traditionally measured during
testing; however, McCabe (1976) introduced
the cyclomatic complexity (CC) metric
which has been used to calculate, for a given,
software program, the minimum set of tests
that are necessary to ensure a certain level
of test coverage and therefore a prediction
of the ratio of defects yet uncovered. Later
works (Chidamber & Kemerer, 1991) cre-
ated equivalent metrics for OO software and
there are certain studies that try to predict

Figure 3. ISO 9126 Quality characteristics and sub-characteristics

 2651

A Survey of Object-Oriented Design Quality Improvement

reliability (Basili et al., 1996; Briand, Wust,
Daly, & Victor Porter, 2000; Brito e Abreu
& Melo, 1996) from design. These and other
works1 establish a relationship between the
complexity, as an OO property, and the
defect density or fault prone-ness, which
we interpret as synonyms for reliability.

• Usability deals with the way the final user
feels about the finished product. No evidence
was found in the sense of establishing us-
ability as an internal attribute for design
quality. Understandability is mentioned
in the literature (Bansiya & Davis, 2002;
Deligiannis, Shepperd, Roumeliotis, &
Stamelos, 2003; Dumke & Kuhrau, 1994)
as a desired property to have in a design.
However, it is more than arguable that it
refers to the ISO 9126 sub-characteristic
of usability, and it must be understood
as “analysability.” However, other voices
(Fowler, 2000) claim that the “user” of a
design is not the same as the user of the ûnal
product. He or she could be the developer
that has to implement the specified design,
or that same designer (or other) in the future
when a new feature has to be introduced in
the system or the design must be modified
for whatever reason, the latter case is already
contained under “maintainability,” but the
former is not so clear.

• Efficiency is divided into “time behavior”
and “resource utilisation” which has made
this attribute a clear measuring target in the
testing phases; however, there are propos-
als, mostly in the real-time systems area,
to measure efficiency, usually addressed
as “performance,” early in the design stage.
This could be a good candidate quality at-
tribute for a higher level of design quality
and not for a basic one. Making an OO de-
sign more understandable by, for instance,
introducing patterns, introduces indirections
which in turn penalises performance, so it
looks like they are opposite. However if a

design is more understandable thanks to be-
ing decomposed in more entities, that allows
a better isolation and identification of those
spots where most of the performance issues
tend to be (Fowler, 2000).

• Maintainability is a clear focus of most of the
OO knowledge dedicated to improve designs
as we will see, this is intuitive since most
design efforts in OO paradigm are centred
around ideas such as data hiding, encapsula-
tion and abstraction which enhance a better
understand ability (analysability) through
domain concept representation, separation of
components in testable units, and so forth.

• Portability looks completely out of the scope
of the design stage since the design must
remain conceptually separated from the
actual implementation environment. In any
case, we have not found sufficient evidence
to support that this attribute is important,
quality wise, during early design phases.

In Bansiya & Davis (2002), a set of six design
quality attributes are derived from ISO 9126 qual-
ity characteristics, although they are not taken
exactly but rather adapted to the particularity of
design. Two are discarded as not measurable in
design, two are changed for equivalent ones, and
two are added from general concepts present in
software design literature.

These quality attributes are abstract concepts
and, therefore, not directly observable, so we
need some properties that can be observed and
quantified and that are particular of object-ori-
ented design. In many of the OO metrics suites
the speciûc metrics are implicitly mapped to
general design properties as cohesion, coupling,
encapsulation, complexity, and inheritance, al-
though not all of them are specific to OO design
and could be applied to modular design as well.
Measurements are proposed in different works
for those properties and in some cases there is
an explicit mapping from the former to the latter,
as in Bansiya & Davis (2002) where each design

2652

A Survey of Object-Oriented Design Quality Improvement

property is measured by a single metric. In Miller
et al. (1999), 11 properties were chosen. In fact,
object-oriented design principles, which according
to Garzás and Piattini (2005) are part of the OO
architecture knowledge, as we previously said, and
five measurements, all of them at class level, are
used to assess their degree of fulfillment. On the
contrary, Bansiya and Davis (2002) choose not
only classes but also class attributes, methods,
and packages.

A very sound set of object-oriented design
properties could be:

• Design size
• Hierarchies
• Abstraction
• Encapsulation
• Coupling
• Cohesion
• Composition
• Inheritance
• Polymorphism
• Messaging
• Complexity

But these quality attributes and OO design
properties must be measured on specific com-
ponents or entities of the design (see Figure1),
thus it is important to define what a design is or
what components are in a design susceptible to
be measured. Purao and Vaishnavi (2003) survey
product metrics for OO systems and propose a
framework and a formalism, according to which,
the product goes through different “states” dur-
ing the development process and in each of them
different components that he calls “entities,”
are produced or modified. In his work, Purao,
reviewed all the different metrics suites to see
what entities where measured in each state and
gathered an extensive set of which we only recall
here those in the design state, along with the their
attributes (see Table 1).

object-oriented Metrics

We are going to present a summary of the most
important object-oriented metrics and identify
which OO properties they can measure.

Chidamber and Kemerer’s Metrics
Suite

Chidamber and Kemerer (C&K henceforth) first
proposed in 1991a suite of six metrics. All except
one were applied to the class entity and measured
complexity, coupling, cohesion, inheritance, and
messaging (see Table 2).

Henderson-Sellers Metrics

Another important suite was given by Henderson-
Sellers, Constantine, and Graham (1996) but it
was related to coupling and cohesion. Only AID
(average inheritance depth of a class) was an In-
heritance measure. AID was defined as zero, for
a class without ancestors and the average AID of
its parent classes increased by one.

Conclusion on Metrics

In Purao and Vaishnavi (2003) and Briand et al.
(2000), a detailed listing of metrics is presented.
An important conclusion drawn after reviewing
these metrics is that, although they claim, in many
cases, to be OO design metrics they are not since
they need source code to be analysed or measure
code size. Another important conclusion is that
most metrics suites focus just in a very constrained
set of properties, namely, coupling, cohesion and
inheritance. There are some exceptions like Briand
et al. (2000), which gives a set of metrics taken
partly from previous suites that cover all properties
considered in their assessment model.

 2653

A Survey of Object-Oriented Design Quality Improvement

Table 1. Measurable entities in design and their attributes
Entity Attribute

Association Size
Attribute Position
Class Abstractness

 roivaheB
 stnemmoC

 troffE

 noitcaretnI

 ecafretnI

 ecnamrofreP

 noitisoP

 esueR

 eziS

 erutcurtS

Hierarchy Structure

Link Arity

Method Abstractness

 troffE

 noitcaretnI

 ecafretnI

 ecnamrofreP

 noitisoP

 esueR

 eziS

 erutcurtS

Package Abstractness

 noitcaretnI

 eziS

 erutcurtS

Parameter Size

Scenario Size

System Behavior

 egnahC

 stnemmoC

 scimanyD

 troffE

 ecafretnI

 ecnamrofreP

 stnemeriuqeR

 esueR

 eziS

 erutcurtS

Use case Interface

 eziS

 erutcurts

2654

A Survey of Object-Oriented Design Quality Improvement

Table 2. Metrics of the C&K suite

M seitreporP noitinifeD cirte

W eighted method s per class
(WMC)

Consider a class 1C with methods nMMM ,...,, 21 . Let

nccc ,...,, 21 be the static complexity of the methods.

Then:
=

=
n

i icWMC
1

The static complexity can be

measured in many ways, one of them being CC(McCabe,
1976).

Complexity

D epth of inheritance tree
(DIT)

The DIT metric of a class A is its depth in the inheritance
tree. If A is involved in a multiple inheritance the maximum
length to the root of the tree will be the DIT.

Inheritanc e

N umber of chi ldren (NOC)
NOC of a class is the number of immediate subclasses
subordinated to a class in the class hierarchy.

Inheritanc e

C oupling betw een object
classes (CBO)

CBO for a class is a count of the number of other classes
to which is coupled. One class is coupled to another if it
uses its methods or instance variables, excluding inheritance
related couples.

Coupling

R esponse for a class (RFC) RSRFC = where RS is the response set for the

class, given by { } { }
iall iRMRS = wh ere { } =iR set

of methods called by method i and { }M is the set of

all methods in the class. The response set of a class is
the set of all methods that can potentially be executed
in response to a message received by an object of that
class.

M essagin g

Lack of cohesion in methods
(LCOM) Consider a Class iC with n methods nMMM ,...,, 21 . Let

{ }jI be the set of instance variables used by method iM .

There are n such sets { } { }nII ,...,1 .

Let (){ }Ø, == jiji IIIIP

and (){ }Ø,= jiji IIIIQ . If all n sets

{ } { }nII ,...,1 are Ø then let

Ø=P . QPLCOM = , if QP > or 0

otherwise.

Cohesion

Table 3. Li and Henry’s metrics

 seitreporP noitinifeD cirteM

Message passing coupling

(MPC)
MPC= the number of method

invocations in a

clas.s Coupling/ Messaging

Data abstraction coupling
(DAC)

The number of attributes in

a class

that have as their

 type
another class.

Coupling/ Abstraction

 denifed)edoC fo seniL(COL lanoitidart fo noitairav a si tI 1EZIS
specifically for the Ada language. We obviate its definition.

Design size

 .sdohtem lacol fo rebmun + setubirtta fo rebmun = 2EZIS 2EZIS Design

 size

 2655

A Survey of Object-Oriented Design Quality Improvement

currEnt stAtE of thE Art In
dEsIgn QuAlIty AssEssMEnt
ModEls

review Questions

The objective behind this review is to find out if
there is any solid research to relate software design
high level indicators with OO design knowledge
(patterns, heuristics, bad smells, best practices,
rules, and principles). The future trend of research,
on the one hand, is to relate current (or new) OO
metrics with ISO 9126 internal characteristics, or
establish a new set if necessary, and see if they can
be measured through them. On the other hand, we
are after the relation between the application of
OO knowledge and the impact of those metrics,
and therefore, the quality characteristics.

The review tries to determine if this gap ex-
ists or not in the OO area of knowledge. We are
constrained exclusively to the design phase and
more specifically to OO micro architecture.2 We

are not interested in metrics or models for process
quality, effort, estimation, or project tracking
metrics. The area of research is always focused
on metrics intended for design improvement.

The primary question of research is:
Research Question 1: Are there object-oriented

design quality assessment models that use a set of
metrics, based only in design entities,3 to measure
levels of accomplishment in internal product qual-
ity attributes (as those in ISO 9126)? And what
are those attributes or high level indicators?

Needless to say, we are interested in quanti-
fied models, so that those metrics are numerically
related to the characteristics, directly or through
other numerical relations with intermediate ele-
ments, such as OO properties, which, on the other
hand, is what is found in all cases as we have
advanced in the Background section.

The secondary question of research is:
Research Question 2: Do those models use

any of the OO knowledge elements in Garzás &
Piattini (2005) as part of that assessment model
and how?

Table 4. Bansiya and Davis metric model

 seitreporP noitinifeD cirteM

 ezis ngiseD ngised eht ni sessalc fo rebmun latoT)CSD(sessalc fo ezis ngiseD
Number of hierarchies (NOH) Number of class Hi erarchies
Average number of ancestors
(ANA)

Average number of ancestors Ab straction

Data access metric (DAM) Ratio of the number of private (protected) attributes to the
total number of attributes declared in the class

Encapsulatio n

Direct class coupling (DCC) Count of different number of classes that a class is directly
related to. The metric includes classes that are directly related
by attribute declarations and message passing (parameters) in
methods

Coupling

Cohesion among methods of
class (CAM)

This metric computes the relatedness methods of a class
based upon the parameter list of the methods. The metric is
computed using the summation of the intersection of
parameters of a method with the maximum independent set of
all parameter types in the class.

Cohesion

Measure of aggregation (MOA) This metric measures the extent of the part-whole relationship,
realised by using attributes. The metric is a count of the
number of data declarations whose types are user de?ned
classes.

Composit ion

Measure of functional
abstraction (MFA)

Ratio of the number of methods inherited by a class to the
total number of methods accessible by member methods of
the class

Inheritance

Number of polymorphic meth-
ods (NPM)

Number of methods that can exhibit polymorphic behaviour
(virtual in C++ and non ?nal in Java)

Polymorphis m

Class interface size (CIS) Count of the number of public methods in a class Messaging

Number of methods (NOM) Count of methods de?ned in a class. Complexity

2656

A Survey of Object-Oriented Design Quality Improvement

This secondary question leads necessarily to
models where there is a detection of those elements
in the design by using speciûc metrics. Since the
future work will establish a way to improve the
design through the application of design trans-
formations based on those knowledge elements,
it is very useful to know in advance how much
that will impact the desired quality attributes
and if those transformations are already present
in the design.

review Methods

A systematic review protocol following Kitch-
enham (2004) was used. The sources consulted
were all digital, and the intention was to cover
as many periodicals and conference proceedings
related with metrics, software quality, OO knowl-
edge, and software maintenance as possible. The
sources chosen were IEEE Digital Library, ACM
Digital Library, Journal of Systems and Software
(Elsevier), Journal of Software Maintenance and
Evolution (Wiley) and Software Practice and
experience (Wiley).

Our search strategy was to compose queries
that included in different Boolean expressions
the following terms:

• Object-oriented design
• Metrics
• Quality
• High level indicators
• Assessment
• Method
• Patterns
• Heuristics
• Bad smells
• Principles
• Rules
• Refactoring
• Lessons learned
• Best practice

Different synonyms were chosen for some

of the above terms like assessment for which
we chose “assess,” “assessing,” “evaluation,”
“evaluate,” and “evaluating”; also, “method” had
different synonyms. The singular was chosen
as in “pattern” instead of “patterns” in order to
obtain expressions that included both variations,
since the first is a substring of the second. Dif-
ferent queries were created with these terms and
executed in the search engines. However, some
of them had to be expanded, like in the case of
the Journal of Systems and Software given to
obtain a decent set of results and afterwards the
selection had to be manually reviewed to exclude
publications that were completely out of the scope.
Several different queries were tried in both engines
and the search was broaden more than initially
thought given the initial low number of results,
for instance in IEEE Digital Library the following
query was executed:

“(metrics<in>metadata)<and>(object-oriented
design<in>metadata).” Surprisingly enough,
this query threw only 62 results (in IEEE Digital
Library) which was less than other more restric-
tive ones. One first conclusion of the first round of
searches was that, although there are many metrics
suites for OO systems there are very few centered
exclusively in the design phase and using only
design entities as the measurable elements.

Repetitions were taken out since there were
references to the same study from different sources
(i.e., from IEEE and ACM Digital Libraries), the
same can be said about those studies that were
different publications of the same work, where we
always took the most recent one, as Kitchenham
(2004) advises. Once repetitions were taken out
481 studies remained. After obtaining this initial
list of results we did a quick review of abstracts
when available or the introduction of the paper and
directly discarded those elements not having to
do with object-oriented metrics. After that initial
review we did a more thorough review by reading
one by one the publications and using the exclu-

 2657

A Survey of Object-Oriented Design Quality Improvement

sion criteria explained in section “Included and
excluded studies” to discard those not interesting
to us. We recorded the reason for each discard
whether it was in the first quick review or in the
thorough one.

For the ones not discarded, that is, the primary
sources object of our review, we recorded its
type according to a set quality assessment levels
suggested by Kitchenham (2004) according to
the experimental data they included. The set of
quality levels is given in Table 5.

After the review we could verify that all
primary sources were below three (concurrent
cohort). We decided not to establish a quality
threshold and take into account all studies that
passed the exclusion criteria regardless of their
experimental (quality) level.

Included and Excluded studies

The exclusion criteria used in the more thorough
review were:

Exclusion criterion 1: Study not focused on
metrics for design improvement, like those too
general and including effort and quality assur-
ance.

Exclusion criterion 2: It does not propose
an assessment model with quality attributes as
target of the metrics

Given the low number of studies (only 23) that
passed the exclusion criteria we decided to record
as well those studies that, not proposing a general
assessment model, were focused on prediction
of one or two quality attributes, recording those
attributes as well.

Data Extraction

We were interested primarily in obtaining the high
level indicators or internal quality attributes that
could be utilised in a design improvement meth-
odology, so we recorded all those indicators in the
primary studies. We also recorded which of these
studies, or “primary sources,” were proposing an
explicit model of assessment with a full mapping of
metrics to intermediate properties and from there
to high level indicators or attributes. Although the
selected studies proposed a method for quality
evaluation based on high level indicators and their
associated metrics, only four of them proposed
formally a complete mapping with explicit map-
pings or relations to the high level indicators, we
called them “full models” (see Table 6). Later on
we also recorded attributes for those discarded
studies that were focused only on the prediction
of one or two attributes, that we have indicated in
Table 7 as “secondary sources”; in that table we
can see all the indicators or attributes collected
from both sources.

Table 5. Quality levels for primary sources, as in Kitchenham (2004)

Level Name Description

1 Randomised trial Evidence obtained from at least one properly-designed randomised
controlled trial

2 Pseudo-randomised trial Evidence obtained from well-designed pseudo-randomised controlled trials
3 Concurrent cohort Evidence obtained from comparative studies with concurrent controls and

allocation not randomised, cohort studies, case-control studies or
interrupted time series with a control group.

4 Historical control Evidence obtained from comparative studies with historical control, two
or more single arm studies, or interrupted time series without a parallel
control group

5 Randomised experiment E vidence obtained from a randomised experiment performed in an
artificial setting

6 Case series E vidence obtained from case series, either post-test or pre-test/post-test

7 Pseudo-randomised experiment Evidence obtained from a quasi-random experiment performed in an
artificial setting

8 Expert opinion Evidence obtained from expert opinion based on theory or consensus

2658

A Survey of Object-Oriented Design Quality Improvement

It can be observed that there are many attri-
butes that are really synonyms, as for example
analysability, comprehensibility, and understand
ability. As we expected, maintainability is the
most referred in both kinds of studies by itself
or adding their subcharacteristics, analysability,
comprehensibility, changeability, stability, and
testability. On the other hand, it must be taken
into account that all these attributes refer to de-
sign and that, for instance, “understandability”
means in this context that the design is easily

understandable by a software developer other
than its author; therefore it must not be taken
as the sub-characteristic beneath “usability” in
ISO 9126.

Results: Description of Primary Studies
and Findings

From the data obtained in Table 7 we can conclude
that, for the so called full models, maintainability,
counting its subcharacteristics, was the highest

Table 6. Summary of data collected

secruoS yramirP seidutS detpeccA seidutS fo rebmuN

Total Accepted Discarded Primary Sources Secondary Sources Full Model Bas ic

481 58 4 23 2 3 35 4 1 9

Table 7. Collected high level indicators

Property Name Full
Model Primary Sources Secondary Sources

Adaptability 0 1 0
Analysability 1 1 0
Change proneness 0 0 1
Changeability 1 2 3
Completeness 0 2 0
Complexity 0 3 0
Comprehensibility 1 1 0
Consistency 0 2 0
Correctness 0 2 0
Effectiveness 1 1 0
Efficiency 0 0 1
Extensibility 1 4 3
Flexibility 1 1 2
Functionality 1 1 0
Maintainability 1 10 10
Performance 1 2 0
Realisability 0 1 0
Reliability 0 4 9
Reusability 2 5 5
Security 0 1 0
Stability 1 1 2
Testability 1 5 2
Traceability 0 1 0
Unambiguity 0 1 0
Understandability 1 4 3
Usability 0 1 0
Verifiability 0 0 1

 2659

A Survey of Object-Oriented Design Quality Improvement

scoring quality attribute with a total of eight
appearances. Maintainability is comprised of
analysability, changeability, stability, and test-
ability, and, in this context, an analysability,
comprehensibility, and understandability are
synonyms, or at least that was the semantic
behind the word in the selected studies, and the
same can be said about changeability, flexibility,
and extensibility. Another important attribute or
high level indicator is reusability.

In primary studies, those not stating explicit
relation between OO properties and quality at-
tributes, maintainability and reusability were
the two most important indicators and reliability
appears as the next one. In the secondary studies,
reliability outperforms reusability. Apparently
reliability and, in decreasing importance, per-
formance and efficiency (and effectiveness as its
synonym) take more importance as the studies
try to predict a specific quality attribute instead
of evaluating the overall quality.

Apparently, when trying to establish a quality
evaluation method, reliability, defect proneness,
and functional correctness and consistency are
way less important than maintainability. On the
other hand, there are many studies that try to
predict and decrease defects early in the design
phases. One possible interpretation is that quality
evaluation methods, as we said before, are not seen
as a replacement for software quality assurance
and try to establish a way to measure and compare
different designs that are semantically equivalent,
that is, built for the same functional requirements,
and mostly correct (defect-free).

Given the resulting figures, a statistical analysis
was not considered relevant. Only four studies
were considered relevant to our study and they
will be summarised. In Table 8, a brief summary
is shown about the use these studies make of the
OO micro architecture knowledge; only those
elements that have appeared in at least one of the
studies is listed.

bansiya and davis’s QMood

Bansiya and Davis (2002) propose a model for
the assessment of high level design quality at-
tributes in object-oriented designs called quality
model for object-oriented design (QMOOD). It is
decomposed in four levels, OO design components
(level 4 or L4), OO design metrics (level 3 or L3),
OO design properties (level 2 or L2) and finally
design quality attributes (level 1 or L1), and links
between adjacent levels, L3 4 (from L3 to L4), L2 3
(from L3 to L2) and L12 (from L2 to L1). This model
is very similar to that depicted in Figure 1 and the
quality attributes are taken partly from the ISO
9126 quality attributes: reusability, flexibility,
understandability, functionality, extendability,
and effectiveness.

In each of the links, Bansiya and Davis iden-
tify explicit relation between components of both
levels, for L2 3 the mapping is exactly one to one,
one metric for each of the properties (design size,
hierarchies, abstraction, encapsulation, coupling,
cohesion, composition, inheritance, polymor-
phism, messaging, and complexity), and in L12

Table 8. Use of OO knowledge in the four full models

scitsirueH snrettaP selpicnirP Bad smel ls

Bansiya & Davis No No No No
Miller, Hsia & Kung Yes No No No

Barber & Graser No Indirectly Yes No

Marinescu & Ratiu No Partially No Yes

2660

A Survey of Object-Oriented Design Quality Improvement

the mapping is even more explicit because each
quality attribute (from ISO 9126) is the result of
the sum of each of the calculated metrics multiplied
by its weight, for instance, Reusability equals
0.25*Coupling +0.25*Cohesion+ 0.5*Messaging
+0.5*Design Size.

The weights can be positive or negative and
were calculated somehow intuitively; in fact,
the study states that the weights, as well as other
mappings, can be changed to reflect the goals of
the organisation.

On the other hand, relative importance of
each quality attribute is not stated and is left to
the designer’s decision.

Finally, there is no use in the model of OO
knowledge such as design patterns, principles,
refactorings, or other such elements.

Miller, Hsia and Kung OO Architecture
Measures

Miller, Hsia, and Kung (1999) define an OO archi-
tecture quality measurement method that fills, in
a way, the gap that Bansiya and Davis had. They
use quantitatively OO architecture knowledge, in
the form of well known principles. Again there
are defined design components, metrics (they
call them measurements) and OO principles;
they substitute the OO properties for these latter.
Unfortunately, they stop there, not quantifying
the impact of those principles in general quality
attributes; in fact, they do not identify quality at-
tributes or refer to ISO 9126, although they give
high importance to the extendability, flexibility,
and maintainability of the architecture.

The design components they use are hier-
archies, relationship, classes, methods, and at-
tributes (they call the operations) but in defining
how to obtain the measures, they give a high
importance to operations, and the impact on all
of the measures. Their measurements are class
abstractness, hierarchy chain brittleness, class
abstraction cohesion, pure inheritance index,
and relationship abstraction index. As for the

principles used: open-closed, Liskov substitution,
dependency inversion, interface segregation,
reuse/release equivalency, common closure, com-
mon reuse, stable abstractions, least astonishment,
deep abstract hierarchies, and Demeter (see Miller
et al., 1999 for references).

In summary, this study is not really a qual-
ity evaluation model since it does not calculate
(explicitly) internal or external software quality
attributes. It does not use general OO properties
either but it is interesting because it uses some
OO knowledge in a quantitative way.

Barber and Graser’s RARE

Barber and Graser’s (2000) study is not, strictly
speaking, a quality evaluation model or method
but a tool for creating evaluation models by speci-
fying which quality attributes are the target for
the designer. This tool is called RARE (Refer-
ence Architecture Representation Environment).
Barber and Graser state that quality attributes
have an impact on each other and that not all of
them can be maximised at the same time and,
therefore, the designer must explicitly solve the
conflicts that arise. The idea behind this study is
that no single quality model can be established
given that, for instance, flexibility or extensibility
will negatively impact on performance and there
are application domains where one or the other
can be more important. As a matter of example,
the study mentions reusability, extensibility,
comprehensibility, and performance as the main
quality attributes to work with, although it does
not imply that others cannot be added.

As in the other models there are mappings
that drive calculations from OO design metrics to
quality attributes, but in this case the intermediate
elements are OO knowledge elements: heuristics
and strategies (as refactorings and design trans-
formations that guide the application of heuris-
tics). Thus, Barber and Graser incorporate OO
knowledge not as a goal, as in Miller et al. (1999),
but rather as a tool to achieve quality attribute

 2661

A Survey of Object-Oriented Design Quality Improvement

enhancement. The quality attributes chosen by the
designer and their associated importance weights
are quality goals; the metrics calculate the degree
of achievement of the heuristics, which are used
to calculate the level of achievement of the goals.
This tool uses strategies to help the designer to
change design in order to increase certain heu-
ristics, and the order in which they are suggested
to the designer is driven by the goals.

Unfortunately the study talks about a tool
still under construction and, in our searches, we
have not seen further notice of it. No quantitative
measures are given in the paper about the calcula-
tion of each heuristic, nor a list of heuristics and
strategies is given for it; although promising, we
must discard this study as incomplete.

Marinescu and Ratiu’s Factor Strategy
Model

In Marinescu and Ratiu (2004),yet another
perspective is given, this time an indirect mea-
surement of the quality is proposed, instead of
measuring the quality of the design, Marinescu
and Ratiu measure the lack of quality by detecting
common design flaws. The model is comprised of
OO metrics, design flaws and, finally, quality fac-
tors and goals. The first two set of elements are tied
together through principles, rules, and heuristics
and with them design flaws are quantified through
detection strategies. Each quality factor has an
associated formula for calculating its level from
the set of design flaws (quantified from metrics
through detection strategies) and the total quality is
given by the quality goals chosen (ISO 9126 quality
attributes such as maintainability or reliability)
and the weight given to each one. Quality goals
are divided into factors exactly as in ISO 9126,
and the study refers to it and gives two example
formulae for maintainability from its sub-factors
(changeability, testability, analysability, and sta-
bility) exemplifying that different weights could be
used for each subfactor according to experience.
There are similar formulae to associate factors

and detection strategies and the relative weights
must be provided by the designers.

This is probably the most promising of all
the selected studies since it takes into account
OO knowledge as a tool for improvement and
measurement of the design quality and establishes
that quality is decomposed in general software
quality attributes that can be derived from those
knowledge elements. OO properties are not quan-
titatively present in the model, although there is
a table identifying which design flaws impact on
what properties (only coupling, cohesion, com-
plexity, and encapsulation are listed).

We see that, on the one hand, quantification
of the different mappings must be provided by
the developer and, on the other hand, the design
flaws (and detection strategies) are categorised
according to the design component they are tied
to; however, we see that OO knowledge is not
properly classified and there are missing elements
(only “bad smells” and some “patterns” are used).
Probably a better ontology could be used as rules
used instead of detection strategies, for that Garzás
and Piattini (2005) could be used.

conclusIon And futurE worK

With all the sources, primary, secondary, and
discarded ones, we can conclude that studies
dealing with OO quality evaluation and metrics
can be classified as follows:

• True quality evaluation models based on
quality attributes quantification

• Prediction models for a single or few OO
properties or quality factors

• Design flaw detection methods and their as-
sociated refactorings or design transforma-
tions

• OO metrics suites

The first set is the one that interests us and
can be further subdivided in models that favor

2662

A Survey of Object-Oriented Design Quality Improvement

specific quality indicators or those that propose
a flexible model in which the user (i.e., designer
or other stakeholder) must set the quality factors
and their weights.

One important conclusion of our review is that
maintainability is the most used high-level qual-
ity indicator, which is logical given that Object
Orientation has been seen as a paradigm that
favors flexibility and reuse. Other quality indica-
tors or attributes, such as efficiency or portability
are missing in the full models, which can be due
to the fact that all the studies are biased by the
fact that different application domains are not
considered.

Surprisingly reliability is also very important
in those studies that are just prediction models.

Only four studies establish a full quality evalu-
ation model and, of them, no one establishes an
explicit hierarchy between the high-level indica-
tors. Two of the four studies are flexible models
and three of the four use, partially, OO micro
architecture knowledge.

In future works two main objective can be
targeted, on the one hand, by trying to establish
hierarchies between quality attributes, which may
be according to different hierarchy sets corre-
sponding to application domains, and on the other
hand a better application of OO micro architecture
knowledge in the construction of the evaluation
methods through the use of ontologies.

rEfErEncEs

Abran, A., James, W. M., Bourque, P., & Dupuis,
R. (2004). Guide to the software engineering
body of knowledge. 2004 version. SWEBOK:
IEEE Press.

ACM Digital Library. (2005). Retrieved from
http://portal.acm.org

Bansiya, J., & Davis, C. G. (2002). A hierarchical
model for object-oriented design quality assess-

ment. IEEE Transaction on Software Engineer-
ing, 28(1), 4.

Barber, K. S., & Graser, T. J. (2000). Tool support
for systematic class identification in object-ori-
ented software architectures. Paper presented at
the 37th International Conference on Technology
of Object-Oriented Languages and Systems,
Sydney, NSW, Australia.

Basili, V. R., Briand, L. C., & Melo, W. L. (1996).
A validation of object-oriented design metrics as
quality indicators. IEEE Transactions on Software
Engineering, 22(10), 751.

Briand, L. C., Wust, J., Daly, J. W., & Porter, D.
(2000). Exploring the relationships between design
measures and software quality in object-oriented
systems. Journal of Systems and Software, 51(3),
245.

Brito e Abreu, F., & Melo, W. (1996). Evaluating
the impact of object-oriented design on software
quality. Paper presented at the Software Metrics
Symposium, Berlin, Germany.

Brown, W. J., Malveau, R. C., Brown, W. H.,
McCormick, H. W., & Mowbray, T. J. (1998).
Antipatterns: Refactoring software, architectures
and projects in crisis. NY: John Wiley & Sons.

Chidamber, S. R., & Kemerer, C. F. (1991). To-
wards a metrics suite for object-oriented design.
Paper presented at the OOPSLA ’91, Conference
Proceedings on Object-orientedProgramming
Systems, Languages, and Applications, New
York.

Deligiannis, I., Shepperd, M., Roumeliotis, M.,
& Stamelos, I. (2003). An empirical investiga-
tion of an object-oriented design heuristic for
maintainability. Journal of Systems and Software,
65(2), 127.

Dumke, R. R., & Kuhrau, I. (1994). Tool-based
quality management in object-oriented software
development. Paper presented at the Symposium
Assessment of Quality Software Development
Tools, Washington, DC.

 2663

A Survey of Object-Oriented Design Quality Improvement

Fenton, N. E., & Pfleeger, S. L. (1998). Software
metrics: A rigorous and practical approach.
Boston: PWS Publishing Co.

Fowler, M. (2000). Refactoring: Improving the
design of existing code: Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1995). Design patterns: Elements of reusable
object-oriented software. Boston: Addison-Wes-
ley Longman Publishing.

Garzás, J., & Piattini, M. (2005). An ontology
for microarchitectural design knowledge. IEEE
Software, 22(2), 28.

Henderson-Sellers, B., Constantine, L. L., &
Graham, I. M. (1996). Coupling and cohesion
(towards a valid metrics suite for object-oriented
analysis and design). Object-oriented Systems,
3, 142-158.

Humphrey, W. S. (1989). Managing the software
process. Boston: Addison-Wesley Longman
Publishing.

Humphrey, W. S., Snyder, T. R., & Willis, R. R.
(1991). Software process improvement at hughes
aircraft. IEEE Software, 8(4), 11-23.

IEEE Digital Library. (2005). Retrieved from
http://ieeexplore.ieee.org

ISO/IEC. (1999). Information technology — soft-
ware product evaluatiom — part 1: General
overview. Geneva, Switzerland: ISO/IEC.

ISO/IEC. (2001). Software engineering — product
quality — part 1: Quality model. Geneva, Swit-
zerland: ISO/IEC.

Journal of Systems and Software. (2005). Re-
trieved from http://ees.elsevier.com/jss/

Journal of Software Maintenance and Evolution.
(2005). Retrieved from http://www3.interscience.
wiley.com/cgi-bin/jhome/77004487

Kitchenham, B. (2004). Procedures for perform-
ing systematic reviews (Joint Tech. Rep. No.
0400011T.1): Keele University and Empirical
Software Engineering National ICT Australia,
Software Engineering Group, Department of
Computer Science.

Li, W., & Henry, S. (1993). Maintenance metrics
for the object-oriented paradigm. Paper presented
at the Software Metrics Symposium, Baltimore,
MD.

Marinescu, R., & Ratiu, D. (2004). Quantifying
the quality of object-oriented design: The fac-
tor-strategy model. Paper presented at the 11th
Working Conference on Reverse Engineering.

McCabe, T. J. (1976). A software complexity
measure. IEEE Transactions on Software Engi-
neering, 2, 308-320.

Miller, B. K., Hsia, P., & Kung, C. (1999). Object-
oriented architecture measures. Paper presented
at the Hawaii International Conference on System
Sciences.

Oakland, J. S. (1990). Statistical process control:
A practical guide. Oxford: Butterworth-Heine-
man.

Paulk, M., Curtis, B., Chrissis, M., & Weber, C.
(1993). Capability maturity model for software
(version 1.1) (Tech. Rep. No. CMU/SEI-93-TR-
024). Carnegie Mellon University, Software
Engineering Institute.

Purao, S., & Vaishnavi, V. (2003). Product met-
rics for object-oriented systems. ACM Computer
Survey, 35(2), 191-221.

Riel, A. J. (1996). Object-oriented design heuris-
tics. Reading, MA: Addison-Wesley.

Software design, part 2. (2004) IEEE Software,
21(6), c3.

2664

A Survey of Object-Oriented Design Quality Improvement

Software: Practice and Experience. (2005). Re-
trieved from http://www3.intersci ence.wiley.
com/cgi-bin/jhome/1752

Subramanyam, R., & Krishnan, M. S. (2003). Em-
pirical analysis of ck metrics for object-oriented
design complexity: Implications for software
defects. IEEE Transactions on Software Engi-
neering, 29(4), 297.

This work was previously published in Object-Oriented Design Knowledge: Principles, Heuristicsand Best Practices, edited
by M. Piattini, pp. 282-306, copyright 2007 by IGI Publishing (an imprint of IGI Global).

 2665

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.2
Software Quality

and the
Open Source Process

Sameer Verma
San Francisco State University, USA

AbstrAct

This chapter introduces the open source software
development process from a software quality per-
spective. It uses the attributes of software quality
in a formal model and attempts to map them onto
the principles of the open source process. Many
stages of the open source process appear to have
an ad-hoc approach. Although open source is
not considered to be a formal methodology for
software development, it has resulted in the de-
velopment of very high quality software, both in
the consumer and in the enterprise space. In this
chapter, we hope to understand the open source
process itself, and apply it to other methodologies
in order to achieve better software quality. Ad-
ditionally, this chapter will help in understanding
the “Wild West” nature of open source and what
it may hold for us in the future.

IntroductIon

The concept of quality is an abstract one. While
quantity can be specified in standard terms such
as a gram or a gallon, quality is usually a relative
term. It is relative to the assessment of the product
or process, as perceived by an individual or an
organization (Barbacci et al., 1995). Quality is
sometimes defined as compliance to a standard
(Perry, 1991). It seems that the implications of
quality vary from one task to another, and so
does its assessment. However, generally speak-
ing, we can agree on the direction it takes when
the quality of an entity improves or degrades. In
the case of software, the quality of software can
be assessed by its characteristics. Several models
exist that either measure software quality using
a quantitative surrogate, or in terms of attribute
sets. In this chapter, we use a model (Bass et al.,
2000), where the quality of software is assessed
by its attributes. These attributes include per-

2666

Software Quality and the Open Source Process

formance, security, modifiability, reliability, and
usability of a particular system. We will explore
these attributes, the challenges they pose to the
open source development process and how the
open source community measures up to these
challenges.

bAcKground

The importance of information systems and tech-
nology is well-established in our society, both in
personal and professional space. It is difficult to
imagine a society without access to information.
Software forms an important cog of that system.
While hardware such as desktops, laptops, and
PDAs provide a platform for implementing com-
puting power, software is the flexible component
that is responsible for expression of innovation,
creativity, and productivity (Lessig, 2005). Rang-
ing from word-processing to number-crunching,
the quality of software influences and impacts our
lives in many different ways. It is no surprise that
software quality has become the subject of many
studies (Halloran & Scherlis, 2002).

software Quality

While the quantitative side of software can be
measured and optimized in terms of its capabil-
ity to solve mathematical formulations and ren-
der graphics (Wong & Gokhale, 2005), it is the
qualitative perception that matters to the end user
and the organization (Bass et al., 2000). Quality
is also harder to assess, so it is often ignored or
replaced by quantitative measurements such as
lines of code. Obviously, more lines of code do
not always imply better quality (Samoladas et
al., 2004).

In this chapter, we will use a model that uses
five attributes, namely, performance, security,
modifiability, reliability, and usability, to assess
the quality of software. Performance involves
adjusting and allocating resources to meet system

timing requirements (Bass et al., 2000). Security
can be described as freedom from danger, that
is, safety. It may also be viewed as protection
of system data against unauthorized disclosure,
modification, or destruction (Barbacci et al.,
1995). Modifiability is the ability of a system to
be changed after it has been deployed. Requests
can reflect changes in functions, platform, or
operating environment (Bass et al., 2000). Reli-
ability of a system is the measure of the system’s
ability to keep operating over time (Barbacci et
al., 1995). Usability is a basic separation of com-
mand from data. It relies on explicit models for
task, user, and system (Bass et al., 2001). These
attributes put together can assist in assessing the
quality of a software project. Of course, these
attributes apply to all kinds of software, whether
open source or proprietary.

open source process

Next, let us examine the open source process. The
purpose of looking at open source as a process,
as opposed to a product, is that the open source
ideology permeates well beyond software produc-
tion (DiBona et al., 1999). The proponents of open
source believe in a philosophy of open source
more so than simply the software. They look upon
software as an enabler of change in a society that
increasingly relies on information technology
for its survival and growth (Lessig, 2005). The
following sections are by no means exhaustive,
but should provide a substantial background to
understanding the tenets of quality in the open
source context.

Open source software (OSS) is largely de-
veloped by freelance programmers, who create
freely distributed source code by collaborating
and communicating over the Internet (Moody,
2001; Raymond, 1999; Sharma et al., 2002). A
small, but significant proportion of the software
is also developed in software companies such as
IBM, Sun Microsystems, and Intel. Open source
software is generally fashioned in what is often

 2667

Software Quality and the Open Source Process

classified as the bazaar style as opposed to the
cathedral style, which is more commonly ob-
served in proprietary software development. In his
collection of essays, Raymond (1999) postulates
that the proprietary style of software development
follows the cathedral model, complete with plans,
schedules, resources, and deliverables. In contrast,
the bazaar model lacks an explicit blueprint. Work
begins with an idea, followed by a series of short
release cycles of software, which is prototypical
at best. Over time this software development
process gains momentum, in some cases, partly
due to the availability of source code and partly
due to common interest in the application of the
software (Feller & Fitzgerald, 2002).

This development process is akin to shopping
at a bazaar-like marketplace and purchasing ingre-
dients as needed. Just as one would shop for olive
oil, basil, pine nuts, lemons, parmesan cheese,
and garlic to make pesto (Technorati, 2005), one
could look for an operating system, a Web server,
database server, and a programming language to
build a Web application (Associates, 2005). The
fact that this style of software development actu-
ally works comes as a pleasant surprise to many
who are accustomed to working with traditional
methods of software development1. A more subtle
message from Raymond’s essay is that while the
cathedral approach may result in a grand and
impressive application, it becomes somewhat
outdated by the time it is completed (Raymond &
Trader, 1999). The application may be complete,
but the nature of the original problem may have
changed significantly over time.

Failure to maintain a time schedule and contain
the scope are often cited as reasons for the failure
of information systems (Applegate et al., 2002).
Open source’s course-correction approach makes
minor changes frequently to continually address
the changing nature of the problem at hand. In
some ways, the bazaar approach might alleviate
the ills of the traditional software development
process (Feller & Fitzgerald, 2000).

proprietary vs. open source
software

Proprietary software, including the source code
used to create it, is often protected by a patent
(Perens, 2005). The patent, not to be confused with
copyright, is not free of distribution restrictions,
and is rarely free of cost. Proprietary software is
also defined as the software whose source code
is kept secret and belongs to a specific individual
or a company (Barahona et al., 1999). In the case
of proprietary software, the source code is not
distributed. The software is only made available
in the form of compiled, object files to end users
(Feller & Fitzgerald, 2002). The ownership of the
software belongs to a specific company, group,
or individual. Software cannot be redistributed,
modified, or sold without the explicit permis-
sion of the owner. This “permission” is usually
specified in the end user licensing agreement,
also called EULA.

Enterprises use similar licenses, except that
enterprise licenses apply to all end users in an
enterprise, and even if the source code is given
to the client company for maintenance purposes,
the client is not allowed to make it available to
third parties, let alone the entire world (Goth,
2001). These descriptions are largely applicable
to proprietary software, although many variations
do occur and must be treated on a case-by-case
basis (Rosen, 2005). The owner entity (usually a
software company) decides on the release cycles
of the proprietary software, which in most cases
is based on market pressures and upgrade revenue
(Applegate et al., 2002). Closely guarded source
code becomes the basis of this revenue stream.

The development framework for open source
leverages communication facilities of the Internet.
Independent software developers examine exist-
ing source code and make modifications to fulfill
immediate needs in their own environment. In
the case of open source software, the licensing
allows distribution in source code as well as object
form. When a product is not distributed with its

2668

Software Quality and the Open Source Process

source code, there is usually a well-publicized
means of obtaining the source code for no more
than a reasonable reproduction cost, preferably
downloadable via the Internet.

Proprietary Licensing

Companies that practice the traditional software
approach typically use proprietary software
licenses. The EULA2 assures that any software
given to a customer cannot be copied, redistrib-
uted, or modified without the explicit permission
of the company. Since commercial software
products are in the form of object and not source
code, software products can be licensed per-user,
per-machine, per-processor, or for an entire orga-
nization under closed-source software licensing.
A closed-source license may require a royalty fee,
and in some versions it has an expiration date by
which the customer should purchase the software
again or upgrade to a new version of the product.
Proprietary licensing is designed to generate a
continuous revenue stream, while protecting the
source code, and thereby controlling its use in
the market.

Open Source Licensing

In contrast, the nature of the open source software
is that no right-to-use license fee or right-to-redis-
tribute license fee is solicited from the users. No
royalty is charged for businesses or individuals
if they sell the source code of any open source
software. However, open source must not be con-
fused with public domain (Rosen, 2005). When the
developer releases the source code to the public
under the terms of an open source license, he or
she does not relinquish the copyright. Open source
licenses grant conditional rights to members of the
general public willing to comply with the terms of
the open source license. Developers can still sell
private licenses to individuals and companies that
are unwilling or unable to comply with the terms
of the open source license (Rosen, 2005).

thE opEn sourcE MEchAnIsM

The open source community is a collection of
individuals who may have any level of interest in
open source software. These interests may lead
them to play different roles. The involvement
varies from being providers of ideas and code to
simply users of the code (Dotzler, 2003). Open
source communities pattern their operations off
virtual organizations. In most cases, virtual orga-
nizations refer to new organizational forms that
rely on strategic alliances and external partners
to collaborate to achieve business goals or to
serve customer needs (Davidow & Malone, 1992;
Grenier & Metes, 1995; Lucas, 1996).

In order to achieve “spatial and temporal inde-
pendence” (Robey et al., 1998), information and
communication technologies tend to be heavily
utilized to facilitate the coordination across time
and space boundaries (Mowshowitz, 1997). Gal-
livan (2001, p. 281) defines virtual organizations
as “goal directed and consisting of geographi-
cally distributed agents who may or may not ever
meet face to face”, which is very apt in the case
of open source communities. Additionally, the
gift culture within the open source community
features giving away source code (Bergquist &
Ljungberg, 2001), voluntarily testing and debug-
ging the software (Dotzler, 2003), and supporting
fellow users by promptly answering their posted
questions through mailing lists and Internet Relay
Chat sessions (Raymond & Trader, 1999).

producer of software

Open source software development is often ini-
tiated by individuals or small cliques of people
for their own limited purpose (Mui et al., 2005).
A phrase often used to describe this approach is
“Every good work of software starts by scratching
a developer’s personal itch” (Raymond, 1999, p.
23). The itch metaphor is indicative of a small,
yet focused need that an individual developer
may have, as opposed to a grand plan for soft-

 2669

Software Quality and the Open Source Process

ware development. If the software that results
from this process (scratch) proves to be useful,
then others join in and contribute. The producer
community is usually made up of individuals who
are bound together by an open source project and
little else. Often, these “producers” never meet in
person. It is a modern marvel that entire pieces
of software projects are negotiated, developed,
managed, and disseminated completely online
(Dotzler, 2003).

Based on the control structure of most open
source software projects, a handful of individuals
are given write-access to the software repository.
These are the producers of software, also called
maintainers in OSS parlance. Projects in the
open source world adopt the walled server ap-
proach (Halloran & Scherlis, 2002). The server
that hosts the software repository is visible to the
entire world. Anybody can read from it. However,
only the maintainers hold the right to implement
recommended changes. Information flows freely
from the producers, but not all feature requests
or bug fixes are necessarily implemented into the
project itself.

This approach seems to work well for control-
ling software development practices of the project.
It does not limit the behavior of developers in their
own environment. It does limit changes that the
maintainers can make on the project itself. The
walled server idea embodies critical aspects of
software best practices such as process, manage-
ment, design, and architecture as defined by the
project leaders. This enables effective engineering
management despite the fact that the engineers
are self-selected and largely self-managed. It also
allows for a more rigorous approach to quality
control and assurance.

consumer of software

Oddly enough, the primary consumer base of
open source software is the open source com-
munity itself. Thus, one way to classify open
source development is to study it as an innovation

(Verma & Jin, 2004). Considering the traditional
methods of software development, there is plenty
of evidence that the open source methodology
is indeed an innovation. Taking this idea one
step further, we can look at this development as
a process that happens where the consumers of
software are from the same group as the produc-
ers. In most production and consumption-based
economies, the producer group is quite different
from the consumer group.

This holds true in the world of traditional
software as well. The stack of communities is
vertically connected from producer to distributor
to consumer. Consumers of software are rarely
skilled in the art and science of software produc-
tion, hence the segmented innovation approach,
where the innovators are different from the end
users. However, the open source community is
different. A large proportion of the open source
community falls in an intersection of producers
and consumers of the software (Feller, 2001).
This is inherent in the open source process. Us-
ers are treated as co-developers. Both parties
subscribe to the same community. These shared
innovation networks have a great advantage over
the segmented innovation systems. Furthermore,
individual users do not have to develop everything
they need on their own; they can benefit from in-
novations developed by others and freely shared
within and beyond the user network.

peer review process

The software development process is commu-
nity-driven, where the community size may vary
from a small group of 2, to a large group of over
100 developers. An interesting departure from
other traditional approaches is that OSS users
are treated as co-developers or peers (Dotzler,
2003). Since the source code is freely available,
a community of peers is able to partake in a peer
review process somewhat similar to the academic
peer review process conducted to publish research
(Raymond & Trader, 1999). The role of members

2670

Software Quality and the Open Source Process

of the community varies based on their skill sets,
interest, and availability of resources. Different
roles can be approximately categorized into four
groups, including project owners/core develop-
ers, patch submitters, source code testers, and
end users (Verma & Jin, 2004). Project own-
ers/core developers are a small group of people
who contribute most of the code and control the
software releases.

Let us look at two examples to comprehend the
proportion of members across different functional
roles. The first example is the Apache project,
which is an open source project for developing a
Web server. It began as a series of patches or fixes
to the original Web server developed at National
Center for Supercomputing Applications at Uni-
versity of Illinois, Urbana-Champaign (Audris,
2003). Eventually, the patches became so numer-
ous that it was suggested the server be named a
“patchy” server; hence the name Apache (Dotzler,
2003). The core developers of Apache account for
over 80% of the coding. Patch submitters involve
a relatively wider development community who
examine the source code in detail and submit bug
fixes (Mockus et al., 2000).

Source code testers are comprised of an even
larger group who download and compile the
source code and report the bugs. Lastly, end us-
ers, who may constitute the largest group of all,
are only interested in using precompiled object
code. End users may also report problems, but
the problems are based on precompiled software.
Another example is the Mozilla project, which
came out of the original Netscape Web browser
code (Dotzler, 2003). Mozilla developed into a
significantly different browser since its inception
in 1998. Mozilla has about 25 core developers,
over 400 patch submitters, over 10,000 quality
assurance testing contributors, and around over
500,000 end users involved (Dotzler, 2003).

debugging and feedback

Bug reporting methods adopted by the open
source community are designed for public view.
All feedback is made public, thereby allowing
someone on the outside to review the code and
submit a change, usually called a fix or a patch.
Such patches are usually maintained in parallel
with existing software, so that users may pick and
choose patches that are necessary for a particular
scenario. The walled server approach (Halloran
& Scherlis, 2002) mentioned before, provides an
asymmetric channel for flow of bug-related infor-
mation. The number of inputs from the community
outnumbers the number of fixes implemented by
the core group. Patches are usually written by
one of the core members, or by patch submitters.
Only core developers are allowed to make the
decision to include a patch into the main software
code base. Irrespective of the decision to include
the patch into the main code base, the patch is
always made available as an option. If a project
requires some esoteric feature set provided by a
patch, the developers can choose to include it at
the time of compilation.

Evolutionary survival

When the demands for features and bug fixes from
the community go unanswered, the project may
split or fork into a parallel development stream.
Most open source licensing allows for a project
fork, which is a split in the code development
process into a new branch. A fork allows for
independent and parallel development following
two different approaches. It is theorized that the
most useful branch will thrive while the less use-
ful one will wither away (Torvalds & Diamond,
2001). This is similar to the process of genetic
evolution where dominant traits get adopted and
recessive ones diminish over generations.

A popular example is PHPNuke, a portal
framework written in PHP, with a database back-

 2671

Software Quality and the Open Source Process

end to store content. PHPNuke started as a creation
of one person to fulfill the need for a free and open
source content management system. PHPNuke got
popular very quickly. The application soon grew
to a size that was beyond one person’s ability to
manage. The maintainer accepted help from other
programmers but did not give them credit where it
was due. He also failed to fix bugs they repeatedly
pointed out, even when they submitted bug fixes.
A number of these programmers became annoyed
and disappointed with the general unresponsive-
ness of the project owner and decided to fork
PHPNuke (Krubner, 2003). This version came to
be known as PostNuke. With its own community,
PostNuke implemented all the patches that were
previously ignored. As PostNuke became more
feature rich and less buggy, PHPNuke picked up
momentum in order to compete with its forked
creation. While forking does create a division of
resources, it also creates a healthy competitive
environment. Eventually, which version of the
fork will dominate (i.e., used by the majority)
will depend on the adaptability of the software
to its environment3.

QuAlIty And thE opEn sourcE
procEss

To reiterate our approach to examining open
source via the lens of quality attributes, we propose
five key attributes: modifiability, usability, secu-
rity, performance, and reliability. We would like
to map these attributes to the primary principles
of open source (Figure 1). Three most widely sited
principles of OSS development include:

• Treating users as co-developers.
• Release early and release often.
• Given enough eyeballs, all bugs are shal-

low.

These three principles explain the essence of
open source development model. Other observa-
tions are comparatively minor in their impact on
the open source process as a whole.

Figure 1. Mapping of open source principles and quality attributes

2672

Software Quality and the Open Source Process

users As co-developers

The first principle of treating users as co-devel-
opers stems from the fact that many members of
the open source community are also involved in
the development process. They may be program-
mers or simply bug testers. Either way, the users
are treated as an integral part of the development
process. This approach makes it easier to com-
municate with the community on a deeper level
of software development. For example, instead of
telling users to wait for a month or two, a project
member may simply ask members to download
untested code from the software repository. Re-
peated testing and use by co-developers provides
valuable feedback that plays an essential role in
the quality assurance process. Often, co-devel-
opers test software on a variety of software and
hardware combinations. For example, programs
written for the 386 class of Intel processors running
a form of Linux operating system will typically
run without any problems on 486 and Pentium
class processors as well. Similarly, software writ-
ten for the 32-bit version of Windows (Windows
95) will typically run on Windows 98, Windows
2000, and Windows XP.

Each co-developer would often have different
setup of software and hardware. The combinations
of hardware and software as a testing platform
make for a very rich testing process. Working with
co-developers has other advantages. Every time a
significant problem is solved, a patch is applied to
the existing code which is re-released every night
in versions dubbed as nightly releases (Dotzler,
2003). Each nightly release is based on the very
latest improvements and is targeted toward the
co-developer community. Each nightly build is
tested and goes through a rigorous testing process
conducted by the co-developers.

By treating users as co-developers, the open
source community strives to create a better per-
forming piece of software (fewer bugs) with higher
levels of usability. A good example of improved
performance is the Linux kernel. After its 624 it-

erative incarnations (Kendrick, 2005), the version
2.6.10 of Linux has come to support many form
factors ranging from cell phones to mainframes
(Pranevich, 2003). The performance of Linux
is equally good in either of these environments.
The availability of source code and feedback
from co-developers has made it possible to get
performance levels on par with industry giants
from the proprietary world.

Similarly, the Mozilla Firefox project is an
example of improved usability. The Mozilla
project was started in 1998 as a spin-off of the
Netscape Communicator product from Netscape
Communications (Dotzler, 2003). The idea was
to open source the code-base in order to foster
innovation. Over the last seven years, the Mozilla
project has evolved from a sluggish, bloated
piece of software to a much more usable product
in the stand-alone version of the browser called
Firefox4. The usability of Firefox is considered
so much better than the leading browser (Internet
Explorer) from Microsoft that Firefox has been
downloaded over 78 million times since its original
release in 2004.

The OSS community follows an incremental
model of quality and payoff. With each incremen-
tal change comes a change in quality. After all, a
large proportion of the feedback comes from the
user community. This high degree of involve-
ment relies on a legal mechanism of the right to
modify any piece of software. It is only under the
auspices of an open source license, that software
creators provide their source code and hence a
large share of their intellectual property rights.
This sharing is done for a greater good of a much
better expected payoff in the long run.

release Early, release often

Open source licenses are primarily designed to
encourage modification and redistribution of soft-
ware in source code form. The process of releasing
several versions of the software in rapid cycles
is aptly captured in the second principle: release

 2673

Software Quality and the Open Source Process

early and release often. For example, over its life
cycle of almost 14 years, it is estimated that the
Linux kernel has been released 624 times (Ken-
drick, 2005). Each release attempts to improve
upon the previous one. In some projects, versions
are released every week during rapid testing and
bug fixing. The general thinking is that instead
of providing the end user with a feature complete
version of the software, the creators release very
rudimentary versions to get the discussions go-
ing. Small changes are incorporated quickly and
released often to the public.

Another such example can be seen with the
NoCatAuth project (Ishii et al., 2002), a very vis-
ible project that provides open source routing for
wireless networks. In its initial incarnation, the
software was written in Perl. The first few ver-
sions did not even work. However, it presented
the idea to a group of people who then worked
on improving it. After over 25 revisions, the
software was stable enough to run for months
on end without a reboot. NoCatAuth gained this
stability through rapid release cycles with simple
bug fixes implemented in each cycle.

Most open source projects use version num-
bers that mirror the policy of rapid releases. For
example, in case of the Linux kernel, the version
numbers take the form of x.y.z where x begins at
0, and y and z are nested subcategories (Torvalds,
2005). The first release of Linux was dubbed ver-
sion 0.01 and has reached version 2.6.10 today5.

Such incremental versioning supports in-
cremental changes and timely assimilation of
feedback through the quality assurance process.
Features are therefore implemented and bugs are
fixed in a more organized fashion.

Another outcome of rapid release cycles is
that over time, the proportion of critical system
errors decreases. This observation has been tested
using randomly-generated commands (called the
Fuzz approach) on different operating systems,
including Microsoft Windows Family, UNIX,
and Linux (Miller et al., 2000). The outcome is
interesting. It shows that over time, the reliability

of Linux-based operating systems has improved
tremendously. Better stability and increased time
between crashes improves stability and reliability
of the system as a whole.

The most visible downside of the rapid release
process is that it does not allow for long-term
thinking in some cases. For example, the Jabber
project was initially created to address the problem
of instant messaging (Adams, 2001). However,
as the project grew, the developer community
realized that the project could be extended to
much more than just instant messaging. In its
next major release beyond the 1.4 series, the
Jabber Software Foundation decided to release
a version 2.0, a complete rewrite of the design
and its code (XMPP.org, 2005). Both series 1.4
and 2.0 co-exist and are actively used based on
feature preferences.

given Enough Eyeballs…

Feedback is a very important cornerstone of
the OSS process. Since the source code is made
available for peer review, skilled programmers
not only find problems but also fix them on their
own. Even the non-programmer community can
contribute by looking for the odd behavior in
performance and user interface design. This is
the essence of the third principle: given enough
eyeballs, all bugs are shallow, also called Linus’
Law after Linus Torvalds, the founder of Linux
(Raymond, 1999).

Easy access to source code facilitates rigor-
ous peer review and parallel debugging among
many geographically dispersed programmers,
therefore enabling rapid evolution of high quality
software (Koch & Schneider, 2002; Stamelos et
al., 2002). In addition, the mass of software users
are directly and actively involved in the develop-
ment process. Their bug reports tend to be very
detailed because they generally cover problems
that originated in different kinds of systems with
various hardware/software configurations. Their
suggestions and feedback regarding features

2674

Software Quality and the Open Source Process

and solutions of the software also promote more
functional and user-friendly design.

This approach also goes against the grain of
the security through obscurity concept that is
often leveraged by proprietary software compa-
nies (Hissam et al., 2002). This is a controversial
principle in security since it attempts to use se-
crecy to ensure security (Wikipedia, 2005). The
essence of this concept is that since proprietary
software does not make source code available,
the risk of discovering security vulnerabilities
is minimized. However, this approach is also
akin to the practice of hiding the key under the
doormat, so that it remains hidden. It is almost
universally known that the first place to look for
keys is under the doormat. Once the vulnerability
is discovered, all is lost, until the vendor chooses
to fix the problem. With open source projects,
vulnerabilities get fixed either by the vendor, or
by someone in the community. It appears that
the open source process fosters better notions of
security from the code perspective.

coMpArIson of softwArE
MEthodologIEs

Many approaches within the open source com-
munity are similar to the ones followed within pro-
prietary processes. It is important to understand

that the programming language or framework that
is used in either case is not significantly differ-
ent. Programs written as open source or closed
are essentially only instructions for a computer.
What differs is its visibility and management.
Closed source projects have programmers and
reviewers, but these members are most likely
paid employees of the same organization, where
the goal is to maximize profit. OSS communities
are not driven by monetary incentives. They are
largely driven by ego, trust (Mui et al., 2005), and
a desire to produce free code.

Open source software development has formal-
ized in the last few years, but most of the work
is done based on the direction from a very small
core group as in the benevolent dictator model
(Hamm, 2004) or by a group of developers who
take on roles based on their quality of work and
intentions as in the meritocracy model (Perens,
1997; Young, 1958). Linux is the primary ex-
ample of a project where the central authority is
Linus Torvalds, who relies on the consensus of
a few other core contributors. Linus is therefore
considered to be the benevolent dictator. On
the other hand, a project like Debian, which
is a community-driven distribution of Linux,
chooses a team to lead the project every few
years. The individuals elected to these positions
are chosen based on their merit; hence the term
meritocracy. In either case, the projects start with

Table 1. Comparing software methodologies (Adapted from Abrahamsson et al., 2002)
Entity A gile Methods Open Source-based

(bazaar style)
Plan-driven
(cathedral style)

Producers Rapid, Localized,
Collaborative

Geographically distributed,
Collaborative, Rapid

Adequate skill-set, plan-
oriented, usually localized

Consumers Dedicated, Knowledgeable,
Collaborative, Empowered

Dedicated, Knowledgeable,
Collaborative, Empowered

Representative, plan-driven

Design
approach

Based on current
environment

Based on current environment,
but open for change

Based on current and
foreseeable environments

Team
management

Smaller team dynamics,
Face-to-face

Dispersed teams, loose team
dynamics

Larger teams

Goal Rapid Value Challenging problem (itch
metaphor)

High assurance

Time scale Short Short Long

 2675

Software Quality and the Open Source Process

a vested interest at solving a single problem (the
itch metaphor), and then evolves into something
larger, if found useful.

Similar methods exist that rely on quick
cycles of feedback and very rapid development
schedules. Agile methods are primarily fostered
by groups that are customer-oriented, and prefer
to work in face-to-face environments that are
usually well-funded (Alliance, 2001). Extreme
programming is perhaps the most well-known
of all agile methods. Table 1 presents a side-by-
side comparison of open source methods, agile
methods, and the classic plan-driven methods
(Abrahamsson et al., 2002).

futurE trEnds

In the early days of open source, it was strongly
believed that the entire open source movement
was being shouldered by altruistic programmers
who burned the midnight oil to keep their ideals
intact, an ideal of software free from bugs and
free from the clutches of the enterprise (Himanen,
2001). Those stereotypes are changing rapidly
(Dahlander & Magnusson, 2005). It is no longer
a fly-by-night operation. Large organizations such
as IBM, Oracle, General Motors, and the U.S.
Department of Defense are playing a major role
in the creation and maintenance of open source
software (MITRE, 2002). Companies such as Sun
Microsystems, known for their proprietary soft-
ware, are testing the waters with different business
models. Sun Microsystems recently announced the
OpenSolaris project (Sun Microsystems, 2005),
which aims at releasing the Solaris version 10
operating system under an open source license.
These are big steps for the software industry, and
it looks like this trend is moving up.

Other companies are getting into the business
of providing a test platform (often called a stack)
where they test a combination of software for
enterprise level performance and security. The
primary complaint with open source software is

its lack of a guarantee. The software is provided
as-is. Companies such as SpikeSource test com-
binations of open source Web servers, databases,
and scripting environments for performance and
security. Such approaches bolster confidence by
providing guarantees that enterprises need. In such
cases, open source is no longer viewed as unwar-
ranted code written by lone programmers.

Enterprise involvement brings with it the
question of legality. Given that code is written
by so many different people, it is very difficult to
avoid the conflict with an existing patent. In recent
cases, SCO has taken IBM and DaimlerChrysler to
court over intellectual property claims (Groklaw,
2005). Given that the legal standing of open source
software is still largely untested in court, some
companies shy away from using open source.

conclusIon

While the open source approach is more along the
lines of the untamed “Wild West”, it presents a
compelling alternative to developing high quality
software. Projects such as Apache, Mozilla, and
Linux have produced equal if not better quality
software when compared with their proprietary
counterparts. Apache commands over 65% of
the world’s Web server market share (Netcraft,
2005), while Mozilla Firefox and Linux have
demonstrated very rapid growth in their own
domains. In spite of the risks of a community-
driven project, open source presents a favorable
picture from a quality perspective. Over time,
open source software improves in usability, per-
formance, security, and reliability. Additionally, it
is the modifiability of open source that stands out
as the prime attribute. It would be well worth the
effort to take a closer look at the open source world
and attempt to accommodate its idiosyncrasies
into more well-established, formalized methods
to gain a “best of both worlds” advantage.

2676

Software Quality and the Open Source Process

rEfErEncEs

Abrahamsson, P., Salo, O., Ronkainen, J., &
Warsta, J. (2002). Agile software development
methods: Review and analysis. Retrieved De-
cember 1, 2005, from http://www.inf.vtt.fi/pdf/
publications/2002/P478.pdf

Adams, D. (2001). Programming jabber. Sebas-
topol, CA: O’Reilly & Associates.

Alliance, A. (2001). Principles behind the Agile
Manifesto. Retrieved December 1, 2005, from
http://www.agilemanifesto.org/principles.html

Applegate, L. M., Austin, R. D., & McFarlan, W.
F. (2002). Creating business advantage in the in-
formation age. New York: McGraw-Hill Irwin.

Associates, O. R. (2005). OnLAMP.com. Re-
trieved December 1, 2005, from http://www.
onlamp.com/

Audris, M. (2003). Two case studies of open source
software development: Apache and Mozilla.
ACM Transactions on Software Engineering and
Methodology, 11(3), 309-346.

Barahona, J. M. G., Quiros, P. d. l. H., & Bollinger,
T. (1999). A brief history of free software and open
source. IEEE Software, 16(1), 32-34.

Barbacci, M., Klein, M. H., Longstaff, T. A.,
& Weinstock, C. B. (1995). Quality attributes.
Pittsburgh, PA: Software Engineering Institute,
Carnegie Mellon University.

Bass, L., Klein, M., & Bachmann, F. (2000).
Quality attribute design primitives. Pittsburgh,
PA: Software Engineering Institute, Carnegie
Mellon University.

Bass, L., Klein, M., & Bachmann, F. (2001, Oc-
tober 4). Quality attribute design primitives and
the attribute driven design method. Proceedings
of the 4t h Conference on Product Family Engi-
neering, Bilbao, Spain.

Bergquist, M., & Ljungberg, J. (2001). The power
of gifts: Organising social relationships in open
source communities. Information Systems Jour-
nal, 11(4), 305-320.

Dahlander, L., & Magnusson, M. G. (2005).
Relationships between open source software
companies and communities: Observations from
Nordic firms. Research Policy, 34(4), 481.

Davidow, W. H., & Malone, M. S. (1992). The
virtual corporation. New York: Harper Collins.

DiBona, C., Ockman, S., & Stone, M. (Eds.).
(1999). Open sources: Voices for the open source
revolution. Sebastapol, CA: O’Reilly.

Dotzler, A. (2003). Getting involved with Mozilla:
The people, the tools, the process. In L. U. G. O.
Davis (Ed.), [electronic] Presentation at the Linux
User Group of Davis. Davis, CA. Mozilla.org.

Feller, J. (2001). Thoughts on studying open source
software communities. In N. L. Russo, B. Fitzger-
ald, & J. I. DeGross (Eds.), Realigning research
and practice in information systems development:
The social and organizational perspective (pp.
379-388). Boise, ID: Kluwer.

Feller, J., & Fitzgerald, B. (2000). A framework
analysis of the open source software develop-
ment paradigm. Proceedings of the the 21s t In-
ternational Conference in Information Systems
(ICIS 2000), Brisbane, Queensland, Australia
(pp. 58-69).

Feller, J., & Fitzgerald, B. (2002). Understand-
ing open source software development. London:
Addison-Wesley.

Gallivan, M. J. (2001). Striking a balance between
trust and control in a virtual organization: A con-
tent analysis of open source software case studies.
Information Systems Journal, 11(4), 277-304.

Goth, G. (2001). The open market woos open
source. IEEE Software, 18(2), 104-107.

Grenier, R., & Metes, G. (1995). Going virtual:

 2677

Software Quality and the Open Source Process

Moving your organization into the 21s t century.
Upper Saddle River, NJ: Prentice Hall.

Groklaw. (2005). SCO vs. IBM Case: 2:03cv00294.
Retrieved December 1, 2005, from http://www.
groklaw.net/staticpages/index.php?page=legal-
docs#scovibm

Halloran, T. J., & Scherlis, W. S. (2002, May).
High quality and open source software practices.
Proceedings of the International Conference on
Software Engineering, Orlando, FL.

Hamm, S. (2004). Linus Torvalds’ benevolent
dictatorship. Retrieved December 1, 2005, from
http://www.businessweek.com/print/technology/
content/aug2004/tc20040818_1593.htm

Himanen, P. (2001). The hacker ethic and the
spirit of the information age. London: Secker &
Warburg.

Hissam, S. A., Plakosh, D., & Weinstock, C.
(2002). Trust and vulnerability in open source
software. IEE Proceedings — Software, 149(1),
47-51.

Ishii, H., Chang, P., & Verma, S. (2002). Imple-
menting secure services over a wireless network
(Tech. Rep. No. BICS 699). San Francisco State
University.

Kendrick, B. (2005). Linux releases as of
2005.02.08. Retrieved December 1, 2005, from
http://www.sonic.net/~nbs/linux-releases.txt

Koch, S., & Schneider, G. (2002). Effort, coopera-
tion and coordination in an open source software
project: GNOME. Information Systems Journal,
12(1), 27-42.

Krubner, L. (2003). Editorial history on PHP-
Nuke and Post-Nuke. Retrieved December 1, 2005,
from http://www.nukecops.com/article65.html

Lessig, L. (2005). Free culture: The nature and
future of creativity. New York: The Penguin
Press.

Lucas, H. C. (1996). The T-Form organization.
San Francisco: Jossey-Bass Publishers.

Miller, B. P., Koski, D., Lee, C. P., Maganty, V.,
Murthy, R., Natarajan, A., et al. (2000). Fuzz
revisited: A re-examination of the reliability of
UNIX utilities and services (Web). Madison:
University of Wisconsin, Madison.

MITRE. (2002). Use of free and open-source
software (FOSS) in the U.S. Department of
Defense (Web No. MP 02 W0000101). Defense
Information Systems Agency.

Mockus, A., Fielding, R. T., & Herbsleb, J. (2000,
June). A case study of open source software de-
velopment: The Apache Server. Proceedings of
the the 22n d International Conference on Software
Engineering, Limerick, Ireland (pp. 263-272).

Moody, G. (2001). Rebel code: Linux and the open
source revolution. London: Penguin.

Mowshowitz, A. (1997). Virtual organization.
Communications of the ACM, 40(9), 30-37.

Mui, L., Verma, S., & Mohtashemi, M. (2005,
February). A multi-agents model of the open
source development process. Proceedings of the
International Conference on Technology, Knowl-
edge and Society, Berkeley, CA.

Netcraft. (2005). Web server market share.
Retrieved December 1, 2005, from http://news.
netcraft.com/archives/web_server_survey.html

Perens, B. (1997). Debian social contract. Re-
trieved December 1, 2005, from http://www.
debian.org/social_contract

Perens, B. (2005). The problem of software patents
in standards. Retrieved December 1, 2005, from
http://perens.com/Articles/PatentFarming.html

Perry, W. E. (1991). Quality assurance for in-
formation systems. New York: QED Technical
Publishing Group.

2678

Software Quality and the Open Source Process

Pranevich, J. (2003). The wonderful world of
Linux 2.6. Retrieved December 1, 2005, from
http://kniggit.net/wwol26.html

Raymond, E. S. (1999). The cathedral and the
bazaar (Vol. 1). Sebastopol, CA: O’Reilly &
Associates.

Raymond, E. S., & Trader, W. C. (1999). Linux
and open-source success. IEEE Software, 16(1),
85-89.

Robey, D., Boudreau, M.-C., & Storey, V. C. (1998).
Looking before we leap: Foundations for a research
program on virtual organizations and electronic
commerce. In G. St-Amant & M. Amami (Eds.),
Electronic commerce: Papers from the Third
International Conference on the Management of
Networked Organizations (pp. 275-290).

Rosen, L. (2005). Open source licensing: Software
freedom and intellectual property law. Upper
Saddle River, NJ: Prentice Hall.

Samoladas, I., Stamelos, I., Angelis, L., &
Oikonomou, A. (2004). Open source software
development should strive for even greater code
maintainability. Communications of the ACM,
47(10), 83.

Sharma, S., Sugumaran, V., & Rajagopalan, B.
(2002). A framework for creating hybrid-OSS
communities. Information Systems Journal,
12(1), 7-26.

Stamelos, I., Angelis, L., Oikonomou, A., &
Bleris, G. L. (2002). Code quality analysis in
open-source software development. Information
Systems Journal, 12(1), 43-60.

Sun Microsystems. (2005). OpenSolaris (Version
10) [Web]. Palo Alto, CA: Author.

Technorati, I. (2005). Tag: Pesto. Retrieved
December 1, 2005, from http://www.technorati.
com/tag/pesto

Torvalds, L. (2005). Kernel Number Versioning.
Retrieved December 1, 2005, from http://kernel-

trap.org/mailarchive/1/message/29288/thread

Torvalds, L., & Diamond, D. (2001). Just for fun.
London: Texere.

Verma, S., & Jin, L. (2004). Diffusion and adoption
of open source software within the open source
community. Proceedings of the 35t h Annual Meet-
ing of the Decision Sciences Institute, Boston.

Wikipedia. (2005). Security through obscu-
rity. Retrieved December 1, 2005, from http://
en.wikipedia.org/wiki/Security_through_ob-
scurity

Wong, W. E., & Gokhale, S. (2005). Static and
dynamic distance metrics for feature-based code
analysis. The Journal of Systems and Software,
74(3), 283.

XMPP.org. (2005). History of XMPP. Retrieved
December 1, 2005, from http://www.xmpp.org/
history.html

Young, M. (1958). The rise of the meritocracy
(reprint ed.). Somerset, NJ: Transaction Publish-
ers.

EndnotEs

1 This document was authored using OpenOf-
fice Writer, a component of the open source
productivity suite available at http://www.
openoffice.org/

2 EULA is the generic term used for pro-
prietary software licenses. Open source
licenses are classified based on one of the
fifty-six different licenses as certified by the
Open Source Initiative. There is no common
body that certifies proprietary software
licenses.

3 There appears to be some recent discussion
amongst the core developers of PHPNuke
to completely re-write the application and
to avoid all the problems they faced with

 2679

Software Quality and the Open Source Process

the original design. This is a significant
drawback of the open source model.

4 Mozilla still exists as a complete suite
(codenamed SeaMonkey), but is used by
a smaller proportion of users. The larger
and more visible component is the Mozilla
Firefox product.

5 As of version 2.6.11, Linus Torvalds has
proposed the use of a quad notation, wherein
a release will be versioned as x.y.z.a, thereby
adding one more loop to the quality assur-
ance process.

This work was previously published in Measuring Information Systems Delivery Quality, edited by E. Duggan & J. Reichgelt,
pp. 291-310, copyright 2006 by IGI Publishing (an imprint of IGI Global).

2680

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.3
Agile Software Development

Quality Assurance:
Agile Project Management,

Quality Metrics, and
Methodologies

James F. Kile
IBM Corporation, USA

Maheshwar R. Inampudi
IBM Corporation, USA

AbstrAct

Of great interest to software development profes-
sionals is whether the adaptive methods found in
agile methodologies can be successfully imple-
mented in a highly disciplined environment and
still provide the benefits accorded to fully agile
projects. As a general rule, agile software develop-
ment methodologies have typically been applied to
non-critical projects using relatively small project
teams where there are vague requirements, a high
degree of anticipated change, and no significant
availability or performance requirements (Boehm
& Turner, 2004). Using agile methods in their pure
form for projects requiring either high availability,
high performance, or both is considered too risky

by many practitioners (Boehm et al., 2004; Paulk,
2001). When one investigates the various agile
practices, however, one gets the impression that
each may still have value when separated from
the whole. This chapter discusses how one team
was able to successfully drive software develop-
ment quality improvements and reduce overall
cycle time through the introduction of several
individual agile development techniques. Through
the use of a common-sense approach to software
development, it is shown that the incorporation of
individual agile techniques does not have to entail
additional risk for projects having higher avail-
ability, performance, and quality requirements.

 2681

Agile Software Development Quality Assurance

IntroductIon

Traditional software development approaches,
perhaps best represented by the capability ma-
turity model for software (SW-CMM) (Paulk,
Curtis, Chrissis, & Weber, 1993) and its successor
the capability maturity model for software inte-
gration (CMMI®) (Chrissis, Konrad, & Shrum,
2003), focus on a disciplined approach to software
development that is still widely used by organiza-
tions as a foundation for project success. While
the strength of traditional development methods
is their ability to instill process repeatability and
standardization, they also require a significant
amount of organizational investment to ensure
their success. Organizations that have done well
using traditional approaches can also fall victim
of their success through a strict expectation that
history can always be repeated (Zhiying, 2003)
when the environment becomes uncertain.

Agile development practices have frequently
been presented as revolutionary. There is some
evidence, however, that they can offer an alter-
native common-sense approach when applied to
traditional software engineering practices (Paulk,
2001). Perhaps they can be used in part to improve
the development processes of projects that do not
fit the usual agile model (e.g., critical systems
with high availability requirements)? Indeed, it
has been suggested that project risk should be the
driving factor when choosing between agile and
plan-driven methods (Boehm et al., 2004) rather
than overall project size or criticality. This implies
that certain components of any project may be
well suited to agility while others may not.

This chapter discusses how agile methods were
used on one team to successfully drive software
development quality improvements and reduce
overall cycle time. This is used as a framework for
discussing the impact of agile software develop-
ment on people, processes, and tools. Though the
model project team presented is relatively small
(eight people), it has some decidedly non-agile

characteristics: It is geographically distributed,
it has no co-located developers, the resulting
product has high performance and reliability re-
quirements, and the organization’s development
methodology is decidedly waterfall having gained
CMM® Level 5 compliance. Therefore, some of the
fundamental paradigms that serve as the basis for
successful agile development—extreme program-
ming (Beck & Andres, 2005), for example—do
not exist. Nevertheless, they were successfully
able to implement several agile practices while
maintaining high quality deliverables and reduc-
ing cycle time.

chapter organization

This chapter is organized as follows:

1. Background: Some history is given about
our model project team and what led them
to investigate agile methods. The concept
of using a hybrid plan- and agile-driven
method is also introduced.

2. Approaching Selection: How did our model
project team decide which agile practices to
use and which ones to discard? This section
discusses the risk-based project management
and technical approach used.

3. Implementation: This section presents how
each selected agile practice was incorporated
into the software development process.

4. Impact: How did the project team know the
implemented agile practices were providing
some benefit? This section talks generically
about some of the metrics that were used
to compare the project to prior projects
performed by the same team and the impact
the selected methods had on the project.

5. Future Trends: A brief discussion about
what path will be taken to approach follow-
on projects.

6. Conclusion.

2682

Agile Software Development Quality Assurance

bAcKground

How doth the little busy bee
Improve each shining hour,
And gather honey all the day
From every opening flower!

Isaac Watts, Divine Songs, 20, Against Idleness
and Mischief, 1715

This chapter introduces several concepts about
integrating agile software development tech-
niques into a project that does not have typical
agile characteristics. The information provided
identifies the conditions that were present at the
time our profiled project team began to incorporate
agile practices into their decidedly traditional
development approach. We begin with a history
of a project development team that was unable
to meet the expectations of its customer and was
unsatisfied with the progress they were making
toward meeting their goal of quickly develop-
ing a quality product that supported both high
availability and high performance. Though the
conditions identified are specific to this project
and project team, one will most likely find them
familiar.

Following an overview of the project and proj-
ect team, a brief summary is given of some of the
existing alternative development methodologies
that formed the basis of the team’s decision to
attempt to integrate agile techniques. Though a
short section, it provides some additional insight
into the investigatory nature underway to improve
the team’s results.

This background presents the reader with a
contextual overview that will serve to ground the
topics discussed later in the chapter. It provides a
starting point from which the remaining discus-
sions are based. Because a real project team is
being profiled, both the name of the project and
the product has been obscured throughout the
chapter.

project and historical context

In 2003, a project was undertaken to replace an
existing Web application used almost daily by a
significant number of individuals (almost 450,000
users). This would not be an ordinary application
rewrite, however. When the business analyzed
how the product was being used and what its
perceived shortcomings were, it became clear
that the application needed to be taken in a whole
new direction. A project was therefore undertaken
to create an entirely new application—one that
would incorporate the base functionality of the
original application, yet include a significant
number of functional improvements, usability
enhancements, and external dependencies. This
was not the first attempt at replacing this applica-
tion (a prior attempt ended in failure), but it was
certainly the most bold.

This original rewrite project became troubled
as requirements seemed to never stabilize and criti-
cal milestones were continuously missed. Though
it was a medium-sized project with approximately
18 individuals on the development team, there were
almost as many analysts, testers, and reviewers
and perhaps an equal number of stakeholders. It
had the classic characteristics of what Ed Your-
don calls a “death march”—a project in which an
unbiased risk assessment would determine that
the likelihood of failure is extremely high (Your-
don, 2004). Though the project was considered a
success both in delivery and quality, the personal
sacrifices were extremely costly. It left the entire
team feeling that there needed to be a change in
how future projects would be managed and how
to adapt to rapid change in the future.

Back to Basics

Interestingly, even though it was recognized that
things would have to change, the first change that
was made was to be sure the team adhered to what
they did not hold fast to the first time: the tradi-
tional software engineering life cycle. Though

 2683

Agile Software Development Quality Assurance

this may seem somewhat counterintuitive, part
of the problems faced during the original “death
march” project had to do with not maintaining
proper control over changes, agreeing to a scope
that could not possibly be contained within the time
allotted for the project, and not properly evaluating
risks and dependencies. In other words, the project
team needed to be able to walk before it could
run. Since traditional development methodologies
were well known and had generally predictable
results, they would provide the basis upon which
any future process changes would be based.

Several Small Successes

In our experience, it is a common occurrence that
several smaller upgrade releases follow large ap-
plication enhancements or new application imple-
mentations—this was no exception. As the project
team was re-learning the basics of the software
engineering process, there were two opportunities
to immediately put it to work and identify which
areas were ripe for true improvement. The first
was a 2-month cycle of enhancements. It was
a small project, but there was still a significant
staff on board to complete the work. Unlike the
first project, this one adhered to the traditional
software engineering process and was successful
with respect to schedule, cost, and quality. The
business customer was satisfied and somewhat
relieved that the delivery was uneventful.

The second project of enhancements was
slightly larger in scope, but used less staff and,
therefore, had a longer duration. Again, a tradi-
tional software development process was followed
and the project was successful with regard to
schedule, cost, and quality. This second project
became a true proof point for the team and was a
source of confidence in their abilities. They proved
that they could maintain control over these types
of projects and deliver high quality work. On the
other hand, even though requirements change ac-
tivity was similar to what occurred in the original
project, their ability to control the change was

through rejection or re-negotiation—they were
unable to accept late changes that might have
improved the overall product. A prime example
of this was in the area of end user usability. In the
traditional software development process being
used, ensuring that an application is usable had
to be done after the application was essentially
complete (during user acceptance). Unfortunately,
this meant that there would be no time remaining
in the development cycle to address any changes
prior to releasing the upgraded product. The im-
plication was that these types of “enhancements”
would always have to wait for a follow-on release
to be implemented.

The project team also began to recognize that
their integration and subsequent testing phases
consumed a significant part of the development
schedule. Even though the project was generally
under control, integration had become a time of
heroic sleep deprivation to ensure the schedule was
met. It was not the same situation as occurred in
the original rewrite project, but it was significant
enough that the team recognized that this part of
the development process needed to be addressed
differently.

Rapidly Changing Business Needs

Though our profiled project team could now be
considered successful—after all, they were able
to deliver on a set of scope within a defined period
of time at a defined cost and with good quality
results—the process modifications that they made
did not allow them to keep up with the rapidly
changing needs of the business. The business could
not afford to have 6-9 month development cycles
with no changes to the original scope. The releases
they sought to put out were time sensitive. They
also wanted the amount of functionality contained
within each release to remain somewhat flexible.
Instead, as new ideas arose, they would be added
to a list of ever-increasing “future requirements”
or handled as changes that would adjust the end
date of the release. There was also the nagging

2684

Agile Software Development Quality Assurance

problem of not being able to incorporate usability
defect corrections easily into the release where
the defects were found without adding a separate
“usability” test period with corrections prior to the
final user acceptance test period. As it was, they
were subjecting users to usability issues that would
not be corrected until a follow-on release.

Finally, the business was looking for more out
of the team and the team was looking for a better
way to do things. Traditional software develop-
ment practices appeared to be only part of the
solution. They had learned to walk, but weren’t
sure yet how to run.

Delivery Challenges

As more and more functional enhancements were
requested by the business, the team began to run
into additional delivery challenges. Though qual-
ity, cost, and schedule were under control, they
were unable to build in the most important features
fast enough for the business. In fact, they found
that their cycle time to complete a project had
actually elongated. In essence, they had traded the
chaos of the original schedule for its opposite and
found that both didn’t really solve their problem
(though not being in chaos was infinitely better).
They also found that just “following the process”
had a chilling effect on their customer relationship.
The practice of locking down requirements and
stopping change made them appear unresponsive
and prone to not delivering value. Though the
initial releases following the large rewrite were
successful, the sense of pending frustration was
becoming palpable. Again, the team recognized
that they needed to do something different.

Technical Challenges

Technical challenges do not always get the same
attention as other facets of software development
when discussing the speed of delivery or quality
for the final product, but it was a real concern to
our profiled project team. Their customer was

not only business-savvy, but had a keen inter-
est in directing which technologies were used.
This meant that some portion of the technical
solution was imparted to the development team
through the requirements gathering process.
This could include individual technologies or,
in one instance, the final production platform’s
specifications. To accommodate these types of
requirements required a bit of experimentation
to ensure they would work. This was something
that the traditional development process did not
easily support since some of the requirements
themselves would derive additional requirements
once investigated.

hybrid Methodologies

Using a hybrid of adaptive and traditional software
development methodologies is not as new and
radical as it may at first appear. Though some of
the concepts related to iterative development and
other agile-like techniques can be traced back to at
least two decades before the first mass-produced
computer was even built (Larman & Basili, 2003),
the “traditional” waterfall software development
model had gained acceptance by the late 1960s
when it was proposed that engineering disciplines
should be used to tame wild software schedules
(Naur & Randell, 1968). It derives its name from
the fact that each step has distinct input and exit
criteria that is supported by the surrounding steps
(Figure 1). Unfortunately, the model assumes that
a project goes through the process only once and
that the implementation design is sound (Brooks,
1995).

Soon after being proposed, enhancements
started to appear. Over time, several evolutionary
techniques were developed as a compliment or
replacement to the basic waterfall model including
modified waterfalls, evolutionary prototyping,
staged delivery, and the spiral model (Boehm,
1988; McConnell, 1996). Each enhancement
recognized a failing in the original waterfall ap-

 2685

Agile Software Development Quality Assurance

proach and proceeded to address them within the
replacement models.

Why Use a Hybrid?

Why use a hybrid development model and not
adopt a single approach? The answer to this ques-
tion is related to the amount of risk one can afford
in their project schedule, cost, and quality. Pure
waterfall models operate best with systems that
require high reliability and need to be scaleable
(McConnell, 1996). Our profiled project team
and application has high reliability and high
performance as key requirements, but they also
have a highly volatile business environment in
which the priority of functional enhancements
frequently changes.

There is also a bit of a comfort factor in alter-
ing something one already understands; One need
only learn the new techniques that replaces the
original rather than an entirely new process. Over
time as new techniques are introduced, the old
process will no longer exist in its original form
and the organization may be following a totally
new methodology—one that meets their needs.

ApproAchIng sElEctIon

Guess if you can, choose if you dare.

Pierre Corneille, Héraclius, act IV, sc. IV, 1674

Great deeds are usually wrought at great risks.

Herodotus, Histories, VII, 50, c. 485 – c. 425
B. C.

One of the most difficult things when imple-
menting process change is deciding which changes
to make. The entire exercise is a study in risk
management since choosing the wrong thing may
impact the team’s ability to deliver. Recall that
after the tumultuous project of 2003, our profiled
project team was able to deliver on time, on cost,
and at a reasonable level of quality—though there
was some room for improvement in the area of
quality. Their challenge was to deliver faster and
be more adaptable to changes that were brought
forward within the development cycle. They rec-
ognized that changes needed to be made to make
the team’s delivery better, but they wanted to be
sure that those changes did not undo the predict-
ability they had worked so hard to attain.

The team approached these changes from two
perspectives: Project management and technical.
From a project management perspective, selected
changes would need to be those that would en-
hance the delivery or quality of the project. From
a technical perspective, the changes would need
to be reasonable and able to enhance practitioner
productivity and delivery. Making changes to
one’s development process is a unique experi-
ence; No two projects are the same. However,
there seems to be at least two constants that we
will address in the following sections prior to
discussing process selection: Fear of change and
overcoming that fear.

Figure 1. A traditional waterfall development
model

2686

Agile Software Development Quality Assurance

fearing change

Though our profiled project team recognized
that there was something that needed to be done
to make them a better team that could adapt to
changes, deliver more quickly, and produce high
quality results, some feared that tinkering with
what was working could push them toward the
ad hoc development process that they had already
rejected. Even though they were not delivering
quickly and the customer could not be character-
ized as completely happy, their projects seemed
under control and they were no longer working
90-hour weeks.

The fear of change was manifest in several
dimensions for our profiled project team. Each
one, though, could be counterbalanced with a
fear of not changing. This made for an interesting
dance of conflicting emotions around what should
be changed and what should be left alone. On one
hand, they had proven their competence to their
executive management. If they changed the way
they do things and failed, they risked something
that was tied directly to their self worth. Coun-
tering that emotion was the fear of not changing:
If their customer was unhappy, the view of their
competence may erode regardless.

overcoming fear

Fortunately for our profiled project team, their
fear of not changing eventually outweighed their
fear of change. They were able to recognize that
if they did nothing, the situation they would find
themselves in would be far worse than if they
had not tried at all. Their customer was looking
for something new and if the changes could be
presented in that light, small bumps in the road
may be looked upon more as a learning experi-
ence, than failure.

The project management and technical lead-
ership team began to brainstorm. They came up
with a plan that would make any change they
implemented participative at all levels of the

project and conservative so that they could assess
the impact and determine if the change was good
for the project. Agile practices seemed to make a
lot of sense, but a piecemeal approach to change
(advocated by those same agile practices) also
seemed prudent. They decided that before they
implemented any change, they would make sure
their customer understood what they were doing
and was supportive. In a sense, this approach
helped them bridge the chasm between fear of
change and the consequences of not changing.

It should be noted that although the project
team was able to come to the conclusion that they
should change and was able to overcome their fears
by making some practical decisions, this was not
an easy or quick process. It developed over time
and with the help of the relationships they had
built with others in the organization.

process selection

Implementing changes within any organization
takes time and must be participative at all levels
to be successful (Manns & Rising, 2005). To
overcome the fear of making changes, the team
had decided to do it in small steps—a conserva-
tive approach that would assist their evaluation
of the change when the project was complete.
They began by addressing two areas that seemed
to cause the most trouble: Requirements priori-
tization and putting out a version of the release
to the customer early so that initial tests—and
more importantly usability tests—could be
completed in time to provide feedback that could
then be incorporated into the code base prior to
deployment. Changes would still be controlled,
but because there were to be multiple iterations,
there would also be multiple integrations and
system tests; they would have some flexibility to
incorporate small changes from the first cycle into
the second assuming they could keep the quality
of the release high and they planned enough time
for these anticipated changes.

When the team found they had some suc-

 2687

Agile Software Development Quality Assurance

cess (see “Impact”) with their initial changes,
they became more emboldened. They suggested
and implemented more changes. We discuss the
areas that were addressed earliest in the next
several sections. They are presented along with
the reasoning behind each so that the reader can
understand why each was chosen by the project
team. Later in the chapter, a discussion ensues
about how each practice was specifically imple-
mented from a technical standpoint and the cycle
time and quality impacts of each.

Prioritizing Requirements

One of the most difficult things facing our pro-
filed project team was their joint ability with
their customer to prioritize their requirements.
On any given day, the priority may change. What
seemed to be missing was a way to quantify the
requirements in a manner that would permit a
reasonable prioritization. In some cases, a require-
ment may be highly desired, but its cost would
make implementation prohibitive. In other cases,
a requirement may be somewhat desired, but its
cost would make implementation highly desirable.
A process was needed to quickly assess require-
ments and have the customer prioritize them so
that the team was always aware of what features
and functions were desired next.

Iterative Development

Partially to address their overall product quality
and to gain early feedback on how a release was
progressing, the team decided that some form of
iterative development should be implemented.
Creating products iteratively goes back to an in-
vention theory from the 1920s and 1930s (Larman
et al., 2003). It is a proven technique for address-
ing product quality and change. As you will see,
the team’s first foray into iterative development
was only partially successful and required some
additional process changes.

Continuous Integration

Perhaps the most frustrating part of the develop-
ment process for our profiled project team was the
“integration” cycle. This was where the system
was put together so that it could be functionally
tested as a whole. Part of the frustration with this
process was that there was no easy way to see
the entire system in operation from end to end
without going through a lot of tedious build steps.
To address this, the team decided that they would
need to automate their builds and would need to
permit any team member to create a locally run-
ning version of the full system at any time.

Addressing integration took on additional
importance with respect to iterative development.
If the team wished to create rapid iterations in the
future, they could not do so without addressing
the integration and build process.

Automation

One area the team thought they could gain im-
provements in both quality and cycle time was
in the area of automation. It has long been un-
derstood that design and code inspections could
significantly and positively impact the quality of
a product, but the time to perform the inspections
could be prohibitive for a large product. Indeed,
testing also fell into this same category—large
benefit, but time consuming. To address the
latter concerns, the team identified automating
critical reviews and testing as one of their top
priorities. Tools such as JUnit, JTest, Rational
Performance Tester, Findbugs (http://findbugs.
sourceforge.net/), SA4J (http://www.alphaworks.
ibm.com/tech/sa4j), and Parasoft’s WebKing
would be used (and re-used) to reduce their cycle
time while improving quality.

2688

Agile Software Development Quality Assurance

IMplEMEntAtIon

For the things we have to learn before we can do
them, we learn by doing them.

Aristotle, Nicomachean Ethics, II, 1, ca. 384-322
B. C.

Deciding which processes to alter as discussed
in “Approaching Selection” was only one facet of
implementing change. Each area that was selected
required a corresponding implementation action
(or actions). This section of our chapter focuses on
those actions that were taken to address overall
quality and cycle time. Of interest are some of
the reasons why certain actions were taken. As
you will see, the way agility was worked into
our profiled project team’s project can serve as a
model for other project using a hybrid develop-
ment methodology where teams are looking for
incremental or evolutionary (rather than revolu-
tionary) process improvements.

Improving Quality

Perhaps one of the most vexing problems faced
after the tumultuous 2003 project and even in
the small step enhancement projects undertaken
in 2004, was the fact that defects were being
discovered and corrected late in the development
cycle when they were most time consuming and
most expensive to correct. Adjusting the defect
detection curve such that it afforded an earlier
indication into what was wrong and provided the
ability to make early corrections was considered
of paramount importance to improving overall
code and product quality.

After taking a retrospective look back at
how the product itself was developed, it became
clear that not everything had been created in a
manner that would be considered optimal. There
were architectural and design flaws that were not
necessarily apparent when the original version of
the application was created, but began to impose

limitations on development as enhancements were
being considered—limitations that had the result
of increasing the amount of time and money it
would take to make those enhancements.

In addition, the original project team that
worked on the first version of the product in 2003
was quite large. Due to the ad hoc nature of that
project, no coding standards had been defined or
adhered to. This meant that each functional area
of the application was implemented and behaved
differently. In effect, the application had internal
vertical silos of discrete functionality.

Changes surrounding the quality of the ap-
plication needed to address each of these issues:
Defect detection and correction, architectural
and design dependencies, and the silo effect of
independently created functions. The sections that
follow provide a general overview of what was
implemented to address each of these concerns.
We begin with a discussion about the project’s
quality management plan. From there, we intro-
duce the concept of “technical stories” as a way
the project team codified the refactoring of existing
inefficient architectural and design constructs.
Next is a description of what was done to move
the defect detection and correction curve earlier
in the development cycle. This is followed by a
description of some of the methods and tools that
would be used to enforce best coding practices.
Finally, an explanation of how continuous inte-
gration might be used to improve overall code
quality is given.

Quality Management plan

Being a traditional waterfall project with a struc-
tured approach to development meant that our
profiled project team had implemented a qual-
ity management plan for each of their projects.
Typically, this plan would identify, along industry
standard lines, the percentage and aggregated
number of defects that one could expect by project
phase, how those defects would be detected (e.g.,
inspection, testing, etc.) and how they would be

 2689

Agile Software Development Quality Assurance

removed.
Rather than discard the quality management

plan, the team thought it important to take the time
to update it with the strategy they would employ
to address the quality of the product. Though
such a document may be derided as defying the
“barely sufficient” nature of an agile project, the
team found it useful to document an internal goal
for the overall detection and correction of defects
and the strategy they were going to use for their
early elimination from the product. This docu-
ment also gave them a baseline from which they
could measure their intended results with their
actual results.

The quality management plan, therefore,
became a document that identified the goals the
team would strive to achieve and the techniques
they would employ to integrate agile practices
into their development process. It no longer
specified only industry standard information to
which the project would attempt to comply, but a
much higher standard to which the project team
wished to be held. These changes are evident in
each of he implementation practices outlined in
the following sections. Each, however, was first
identified as part of the project’s quality manage-
ment plan.

technical stories

One thing that was identified quickly by the
profiled project team was that innovation could
often be introduced into a project that would also
satisfy a business requirement. In other words, the
way new function was added began to have both
a technical component in addition to the business
component. These so-called “technical stories”
became part of the requirements gathered after
each release and, later on, iteration. They were
influenced by a retrospective look at what went
well and what did not go so well during each de-
velopment cycle. As a result of these reflections,
the architecture of the application was reduced
and simplified through refactoring. This had the

net effect of reducing the cost of ownership and
change while improving the overall quality of the
application by consolidating change points. The
approach the team took is similar to the “user
stories” concept in extreme programming.

A few possible outcomes of these “technology
stories” include:

• Cost reduction as a result of simplifica-
tion.

• Architecture simplification through refactor-
ing.

• Improvement in the throughput or perfor-
mance of an individual application module
or area.

• Architectural changes that will re-align the
application with the long-term strategy of
the organization.

defect detection and correction

The continuous feedback provided to the devel-
opment team through the use of iterative devel-
opment and continuous integration paired with
automation and reuse supplied them with the
opportunity to detect and correct defects earlier
in the development cycle and improve overall
quality. Recalling some of the difficulties the
project team had with late usability changes and
the difficulty they had integrating the system,
two practices were introduced: Test case reuse
and test case automation.

Test Case Reuse

When a project is undertaken to enhance an
existing product, a common scenario that many
developers face is the re-introduction of defects
from prior releases when a new feature is added
without understanding the overall purpose of the
module (or function). One way to combat this is
to retain the unit and functional test cases from
release to release and execute them prior to and
during each build of the system. By integrating

2690

Agile Software Development Quality Assurance

Figure 2. Technology-based proposals in release planning

Figure 3. Test case reuse process

execution of the test cases with the build process,
one can be assured that existing functionality is
not compromised by changes made to the product;
Either the new changes are incorrect or the test
case is no longer valid. This reduces the number
of undetected defects in a release and improves
the overall quality of the application. Instead of
finding issues during integration or system test-
ing, they can be found and corrected prior to or
during each system build. The theory is that the
closer the defect is detected to when the change
is made, the easier it will be to recall what was
changed and fix it. An example of the process
followed appears in Figure 3.

Automated Test Case Execution

Agile principles encourage developers to adopt
test-driven development. Whether a project fol-
lows a pure agile approach, a hybrid approach (as
was used here), or a traditional methodology, there
is value in testing code in an automated fashion
at the unit and function level. Retaining these test
cases so that all developers can execute them in

 2691

Agile Software Development Quality Assurance

an automated fashion to ensure that their changes
do not break the system is an agile principle that
was implemented for this project team to measure
project progress, address interim code quality,
and assist in the development of new classes or
methods. It should be noted that since these test
cases were being built upon an existing product
that did not have them initially, they were first
built against those areas that required change.
Those cases remained available as subsequent
projects were undertaken.

Two tools were used to automate test case ex-
ecution. The first, not surprisingly, was JUnit for
unit testing. For functional testing, IBM’s Rational
Function Tester was used. This latter tool easily
integrates with the build process and provides an
automated functional regression testing platform
for client-based and Web-based applications. A
sample report appears in Figure 4.

Enforce coding practices

One area of quality that is oftentimes not ad-
dressed by a project team is the way code will
be written. Documenting the coding standards
up front is helpful, but it will not ensure that an
individual will not violate the project’s standards
or best coding practices in general. Rather than
implement a series of manual code inspections,
several tools were implemented to ensure best
practice compliance.

Automated Code Reviewers

Tools such as Parasoft’s JTest, RAD Code Re-
viewer, and WebKing can be plugged right into
the developer’s IDE. They help ensure that code
is written according to a standard the team has
set. They also can catch common mistakes and
identify problem areas that may need to be ad-

Figure 4. Automated functional test cases using Rational Functional Tester

2692

Agile Software Development Quality Assurance

dressed. Each developer on the project team was
required to install the plug-ins into their develop-
ment environment and execute the review process
prior to checking the code in or integrating it into
the system build. An example of some of the rules
used appears in Figure 5.

Tools such as IBM’s Rational Application
Developer Code review tool can be used to show
the details and the nature of a violation including
the class name and the line number of the code
where the violation occurred (see Figure 6).

Automated Static and Stability Analysis

Static analysis tools such as Findbugs (http://find-
bugs.sourceforge.net/) and Structural Analyzer
for Java (SA4J) (http://www.alphaworks.ibm.
com/tech/sa4j) can be embedded into the build
process to verify the quality of the build. These
tools produce reports for the development team
that help them understand potential run time

defects either due to the way something was
implemented or by finding architectural anti-pat-
terns that can reduce the application’s stability in
the production environment.

“continuous” Integration

One of the extreme programming practices that
our profiled project team readily adopted was
the concept of continuous integration. Recall
that one of the most difficult project activities
was the integration of created components into
a functioning whole. It was felt that if the inte-
gration of the application could become more
continuous—more agile—it would be possible
to see the system working earlier, identify and
remove integration defects in closer proximity
to when they were introduced, and enforce the
view that the system must always be kept in an
operational state.

Figure 5. Example automated code review rules

 2693

Agile Software Development Quality Assurance

Automating the Build

The primary barrier to continuous integration was
an onerous build process. One of the technical
stories, therefore, was to automate the product
build such that it could be started by any developer
in their own workspace and in the integration
environment (under the proper controls). Apache’s
ANT (http://ant.apache.org), as the de facto stan-
dard for build automation, would be used as the
foundation for this automated build process. In
addition to automating the build itself, the script
would also incorporate several of the code verifi-
cation steps identified earlier: functional analysis,
structural analysis, functional test verification,
coding practices, etc.

the build process

The following process provides a general overview
of the steps to be followed by the automated build

process identified in several technical stories for
the application.

• Pull the latest checked-in source software
from the library control system (CVS).

• Execute automated code analysis tools on the
extracted code to verify the code’s look and
feel and identify any anti-patters violations
of best practices in the code base.

• Build an EAR package and execute all exist-
ing JUnit test cases against the code package
and push the results to a build status Web
page.

• Install the application into the runtime en-
vironment.

• Execute the automated functional test cases
using Rational Functional Tester and publish
the results to the build status Web page.

• Execute an overall architectural quality
check using structural analysis tools (e.g.,
SA4J).

Figure 6. Example code review automation (IBM Rational Code Reviewer)

2694

Agile Software Development Quality Assurance

Figure 7. Example static analysis report

Figure 8. Automated build tools stack

Automated Structural Analysis
(using SA4J like tools)

Automated Functional Test Case Execution
(using Rational Functional Tester like tools)

Automated Unit Test Cases
(using JUnit/JUnitEE like tools)

Automated Code Analysis
(using RAD Code Reviewer and FindBugs like tools)

Build Process—Foundation
(Based on ANT scripts)

Figure 9. Continuous integration using automated tools

New features

Release Plan

Unfinished
Tasks

Iteration
Planning

New funtionality or pending
features, if containable as per

the time-box planning

User stories

Pending work from
previous iteration

To the next fix pack or release planning

New Iteration

Iteration Plan

Add more code

Automated functional, unit
testing, & quality analysis

Development Build
Process

 2695

Agile Software Development Quality Assurance

A graphical representation of this process
appears in Figure 8.

Mapping the build framework to the
development process

Every time a developer adds code to the system
either as part of an iteration or as part of a release,
the overall integration with existing code (and code
written by others) is taken care of by the build
process. This process is depicted in Figure 9.

IMpAct

Nothing quite new is perfect.

Marcus Tullius Cicero, Brutus, 71, c. 106 B.C.-
43 B.C.

What was the overall impact of the changes that
were made? By and large, the impact was positive.
The team proved they could successfully integrate
agile techniques into a traditional development
process. What follows is a summary of some of
the results. It should be noted that these are results
from one team and that the experiment would need
to be expanded to others to assess its validity in a
broader context. Regardless, some of the results
are rather remarkable.

requirements prioritization:
time boxing the schedule

As identified in the “Approaching Selection”
section, instead of beginning with a fixed set of
requirements from which a project sizing and
project plan was derived, the most important
requirements were identified and given a rough
sizing. Based upon this rough sizing, the require-
ments were re-ordered. The schedule was broken
down into discrete “time boxes” that dictated how
much would be spent and how many features
could be contained within a particular iteration

or a project. Anything that could not fit would be
re-prioritized into a follow-on project (or iteration).
This method permitted the customer to introduce
what they considered the most important features
into the product and regularly deliver function to
the business. Since the estimation at the beginning
was by necessity a rough order of magnitude,
as the team began the work additional adjust-
ments would be made to the scope. If the size of
a feature grew beyond what could be contained
within a project, it would be discarded (or, if truly
important, the date would change). If the size of
a feature was smaller than what was originally
anticipated, additional features would be added
from the prioritized list (see Figure 10).

Using this approach, customer satisfaction
increased from essentially failing on the first
project to 97.3% on the first project that used
this approach—they recognized that the project
team was willing to help them meet their goals
and change the way they do things in support of
those goals. (Note: This satisfaction rating was
for the entire release and most likely reflects the
improvement in quality—discussed later—as well
as the way requirements were prioritized.)

Iterative development

Breaking each release into smaller iterations
had a three-fold impact on the projects. First, the
customer was able to see the results of built-in
features earlier. This allowed them to re-assess
the priority of the remaining requirements against
changes that they may wish to implement. From
a customer satisfaction perspective, the team was
beginning to be seen as much more flexible—yet,
the project was still under control.

The second area of positive impact area was the
team’s ability to have usability testing done on the
parts of the application as they were produced. This
meant that any usability defects identified could
be rolled in to the next iteration and would be in
the final build rather than waiting six months for
a follow-on project to be commissioned. This had

2696

Agile Software Development Quality Assurance

the net effect of improving end user satisfaction to
above 85%—which was a significant improvement
from 76% given the size of the population.

The third area of impact was in the quality of
the final product. Since the system was being “put
together” more frequently (also see the discussion
on continuous integration results), the amount of
time spent cleaning up integration errors was sig-
nificantly reduced. While the initial 2003 project
had greater than 400 user acceptance defects, less
than a year later the user acceptance phase for all
of the iterations combined had three defects (one
of severity 3 and two of severity 4).

As we mentioned, not everything was posi-
tive. The way the team initially implemented
iterations was not as clean as it could be. They
were rushing at the end of the first iteration to get
function working. This lesson learned was built
into their second project—they more discretely
planned the iterations so that they would have
enough time to put the system together prior to
the interim review by the customer. Interestingly,
when they automated the build and began to use
a more continuous form of integration, this ad-
ditional planning was no longer required.

continuous Integration

Perhaps one of the biggest gains the project
team saw from a quality perspective was as a
result of implementing their version of continu-
ous integration. As previously discussed, this
involved automating the build process such that
testing occurred at each run and the system
always remained in a workable state. Creating
the build process cost approximately 100 labor

hours to the team. The amount of time saved in
integration and integration testing, however, was
300 hours and almost two weeks cycle time. On
the project it was implemented in, the additional
time was used to contain additional features that
originally did not fit in the planned time boxes.
For future projects, the additional time will be
factored into the schedule as available for general
development.

Automation

Although automation took on various forms
including the creation of the automated build
used for continuous integration, there were some
additional positive impacts to cost and quality.
For example, even though there was a cost to
modifying automated test cases from release to
release, that cost was minimal compared to creat-
ing a new test suite each time or executing all of
the test cases manually. Some interesting statis-
tics were gathered from project to project. The
original project in 2003 used 12.7% of its overall
budget (hours) to conduct functional and system
testing (not user acceptance testing where most
of the defects were eventually found). Through
automation and reuse of the test case library, the
two subsequent similarly sized projects consumed
5.8% and 5.2% of their budget on function and
system testing respectively.

Recall that automation also added several tools
that checked the stability and quality of the code.
Perhaps the best measure of impact on the project
is that after incorporating the recommendations
for coding standard best practices and address-
ing structural weaknesses, the amount of time

Figure 10. Time boxed requirements prioritization

Create a list of features during
pre-concept phase of a project

Work with the customer team
to prioritize the features and the
delivery time expectations for

each of those features

Bundle these requirements to
create versions or releases of

the product

Create project plans based
on schedule expectations of

the customer

 2697

Agile Software Development Quality Assurance

required to maintain it was reduced by almost
10%. In a world where operation budgets are con-
strained, this was considered a significant under
run. Most of it related to the reduced amount of
call support from people who were having trouble
using the application or finding obscure errors
that had not been caught in the project team’s
own testing.

futurE trEnds

In our opinion, the trend toward using agile soft-
ware development practices in general and as a
way to enhance the quality of products developed
using traditional practices will continue. As with
the profiled project team used as the basis for this
chapter, we also see a trend toward using risk to
identify which practices may work best in a par-
ticular environment. That will mean that projects
that are not thought of as being able to easily use
agile practices to enhance quality or reduce cycle
time and cost today—such as those with high
availability requirements or high performance
requirements—may have an agile component in
the future.

smaller and More frequent releases

Developing a product in a piecemeal fashion
predates computing by several decades. The
concept of creating incremental releases to
products initially grew from a desire to improve
quality (Larman et al., 2003). Recent evidence
has continues to show that smaller, more frequent
releases have a positive impact on the overall
quality of a software development project (see
Madsen, 2005, for example). Several “heavier”
methodologies such as the rational unified process
always embraced iterations and even that has had
its share of agile practices introduced as process
improvements (Ambler, 2006). We expect this
trend toward smaller, incremental releases with
agile components to continue.

reviews

Another future trend in agile quality management
seems to be the return of peer reviews. Agile prac-
tices typically rely on up front test cases to ensure
quality, but some of the current literature indicates
that peer reviews still play an important role in
software development. Some recent research has
been conducted on focusing reviews on the most
important aspects of a particular project based
upon risk and the perceived value of a particular
review (Lee & Boehm, 2005). This suggests that
reviews themselves may also be moving toward
a sufficiency model similar to agile. It will be
interesting to see if a review structure will appear
as part of pure agile practices.

More hybrids

As with our profiled project team, not everyone
is willing or able to move to completely agile
approaches for their software development either
due to perceived complexity or performance and
availability requirements. We believe that the
evolutionary introduction of agile practices into
traditional organizations will continue, but altera-
tions may be required for an organization to derive
value as in Svensson and Host (2005). Perhaps the
largest focus area in the next couple of years will
be in project management. Project managers will
need to not only drive the implementation of agile
practices, but also need to understand their impact
on their project(s) (Coram & Bohner, 2005). In all
of these cases, we believe risk will most likely be
the deciding factor for when agile methods are
used and when they are not.

conclusIon

This chapter discussed how one team was able to
successfully drive software development quality
improvements while reducing overall cycle time
through the introduction of several individual

2698

Agile Software Development Quality Assurance

agile development techniques. Through piecemeal
change to their existing development processes,
they were able to make significant improvements
over time. This common-sense approach to soft-
ware development showed that the incorporation
of agile techniques does not have to entail addi-
tional risks for projects that have high availability,
performance, and quality requirements.

rEfErEncEs

Ambler, S. W. (2006). The agile edge: Unified and
agile. Software Development Retrieved January
8, 2006, from http://www.sdmagazine.com/docu-
ments/s=9947/sdm0601g/0601g.html

Beck, K., & Andres, C. (2005). Extreme pro-
gramming explained: Embrace change (2nd ed.).
Boston: Addison-Wesley.

Boehm, B., & Turner, R. (2004). Balancing agility
and discipline: A guide for the perplexed. Boston:
Addison-Wesley.

Boehm, B. W. (1988). A spiral model of software
development and enhancement. Computer, 21(5),
61-72.

Brooks, F. P. (1995). The mythical man-month (An-
niversary Edition). Boston: Addison-Wesley.

Chrissis, M. B., Konrad, M., & Shrum, S. (2003).
CMMI: Guidelines for process integration and
product improvement. Boston: Addison-Wesley.

Coram, M., & Bohner, S. (2005, April 3-8). The
impact of agile methods on software project
management. Paper presented at the 12th IEEE
International Conference and Workshops on
the Engineering of Computer-Based Systems
(ECBS’05), Greenbelt, Maryland, USA.

Larman, C., & Basili, V. R. (2003). Iterative and
incremental development: A brief history. Com-
puter, 36(6), 47-56.

Lee, K., & Boehm, B. (2005, May 17). Value-based
quality processes and results. Paper presented at
the 3rd Workshop on Software Quality (3-WoSQ),
St. Louis, Missouri.

Madsen, K. (2005, October 16-20). Agility vs.
stability at a successful start-up: Steps to prog-
ress amidst chaos and change. Paper presented
at the 20th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems,
Languages, and Applications (OOPSLA ’05),
San Diego, CA,.

Manns, M. L., & Rising, L. (2005). Fearless
change: Patterns for introducing new ideas.
Boston: Addison-Wesley.

McConnell, S. (1996). Rapid development: Taming
wild software schedules. Redmond, Washington:
Microsoft Press.

Naur, P., & Randell, B. (1968, October 7-11).
Software engineering: Report on a Conference
Sponsored by the NATO Science Committee. Paper
presented at the 1st NATO Software Engineering
Conference, Garmisch, Germany.

Paulk, M. C. (2001). Extreme programming
from a CMM perspective. IEEE Software, 18(6),
19-26.

Paulk, M. C., Curtis, B., Chrissis, M. B., & Weber,
C. V. (1993). Capability maturity model for soft-
ware, Version 1.1. Software Engineering Institute:
Capability Maturity Modeling, 82.

Svensson, H., & Host, M. (2005, March 21-23).
Introducing an agile process in a software main-
tenance and evolution organization. Paper pre-
sented at the 9th European Conference on Software
Maintenance and Reengineering (CSMR’05),
Manchester, UK.

Yourdon, E. (2004). Death march (2nd ed.). Upper
Saddle River, NJ: Prentice Hall.

 2699

Agile Software Development Quality Assurance

Zhiying, Z. (2003). CMM in uncertain envi-
ronments. Communications of the ACM, 46(8),
115-119.

This work was previously published inAgile Software Development Quality Assurance, edited by I. Stamelos & P. Sfetsos, pp.
186-205, copyright 2007 by Information Science Reference (an imprint of IGI Global).

2700

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.4
Teaching Agile Software

Development Quality Assurance
Orit Hazzan

Technion–Israel Institute of Technology, Israel

Yael Dubinsky
IBM Haifa Research Lab, Israel

Technion–Israel Institute of Technology, Israel

AbstrAct

This chapter presents a teaching framework for
agile quality—that is, the way quality issues
are perceived in agile software development
environments. The teaching framework consists
of nine principles, the actual implementation
of which is varied and should be adjusted for
different specific teaching environments. This
chapter outlines the principles and addresses
their contribution to learners’ understanding of
agile quality. In addition, we highlight some of
the differences between agile software develop-
ment and plan-driven software development in
general, and with respect to software quality in
particular. This chapter provides a framework
to be used by software engineering instructors
who wish to base students learning on students’
experiences of the different aspects involved in
software development environments.

IntroductIon

Quality assurance (QA) is an integral and essential
ingredient of any engineering process. Though
there is a consensus among software practitioners
about its importance, in traditional software de-
velopment environments conflicts may still arise
between software QA people and developers (Van
Vliet, 2000, p. 125).

Agile software development methods emerged
during the past decade as a response to the char-
acteristics problems of software development
processes. Since the agile methods introduced a
different perspective on QA, we will call the agile
approach toward quality issues agile quality—AQ,
and will focus, in this chapter, on the teaching of
AQ. By the term AQ, we refer to all the activities
(e.g., testing, refactoring, requirement gathering)
that deal with quality as they are manifested and
applied in agile software development environ-
ments. It is important to emphasize that the term

 2701

Teaching Agile Software Development Quality Assurance

AQ does not imply that quality changes. To the
contrary, the term AQ reflects the high standards
that agile software methods set with respect to
software quality.

Based on our extensive experience of teach-
ing agile software development methods both
in academia and in the software industry1, we
present a teaching framework for AQ. The teach-
ing framework consists of nine principles, the
actual implementation of which is varied and
should be adjusted for different specific teach-
ing environments (e.g., academia and industry to
different sizes of groups). This chapter outlines
the principles and addresses their contribution to
learners’ understanding of AQ.

In the next section, we highlight some of the
differences between agile software development
and plan-driven2 software development in general,
and with respect to software quality in particu-
lar. Then, we focus on the teaching of AQ. We
start by explaining why quality should be taught
and, based on this understanding, we present
the teaching framework for AQ, which suggests
an alternative approach for the teaching of AQ.
Finally, we conclude.

Agile vs. plan-driven software
development

In this section, we highlight some of the main
differences between agile software development
and traditional, plan-driven software develop-
ment. Before we elaborate on these differences,
we present our perspective within which we wish
to analyze these differences.

Traditional software development processes
mimic traditional industries by employing some
kind of production chain. However, the failure
of software projects teaches us that such models
do not always work well for software develop-
ment processes. In order to cope with problems
that result from such practices, the notion of a
production chain is eliminated in agile software
development environments and is replaced by

a more network-oriented development process
(Beck, 2000). In practice, this means that in agile
teams, the task at hand is not divided and allo-
cated to several different teams according to their
functional description (for example, designers,
developers, and testers), each of which executes
its part of the task. Rather, all software develop-
ment activities are intertwined and there is no
passing on of responsibility to the next stage in
the production chain. Thus, all team members are
equally responsible for the software quality. We
suggest that this different concept of the develop-
ment process results, among other factors, from
the fact that software is an intangible product,
and therefore it requires a different development
process, as well as a different approach toward
the concept of software quality, than do tangible
products.

Agile development Methods vs.
plan-driven development Methods

During the 1990s, the agile approach toward soft-
ware development started emerging in response
to the typical problems of the software industry.
The approach is composed of several methods and
it formalizes software development frameworks
that aim to systematically overcome characteristic
problems of software projects (Highsmith, 2002).
Generally speaking, the agile approach reflects the
notion that software development environments
should support communication and information
sharing, in addition to heavy testing, short releases,
customer satisfaction, and sustainable work-pace
for all individuals involved in the process. Table 1
presents the manifesto for agile software develop-
ment (http://agilemanifesto.org/).

Several differences exist between agile
software development methods and plan-driven
methods. Table 2 summarizes some of these dif-
ferences.

2702

Teaching Agile Software Development Quality Assurance

AQ vs. plan-driven QA

In plan-driven software development environ-
ments, the main concept related to software
quality is quality assurance, which, according
to Sommerville (2001), is “The establishment of
a framework of organizational procedures and
standards which lead to high-quality software”
(p. 537). Though this definition inspires an orga-
nizational roof for quality assurance processes,
in reality, in many software organizations quality
assurance is associated with a specific stage of
a typical software development process and is
usually carried out by the QA people who are
not the developers of the code whose quality is
being examined.

To illustrate the agile software development ap-
proach toward quality, we quote Cockburn (2001),
who describes quality as a team characteristic:

Quality may refer to the activities or the work
products. In XP, the quality of the team’s program
is evaluated by examining the source code work
product: “All checked-in code must pass unit tests
at 100% at all times.” The XP team members also
evaluate the quality of their activities: Do they
hold a stand-up meeting every day? How often
do the programmers shift programming partners?
How available are the customers for questions? In
some cases, quality is given a numerical value, in
other cases, a fuzzy value (“I wasn’t happy with
the team moral on the last iteration”) (p. 118).

As can be seen, within the framework of
agile software development, quality refers to the
entire team during the entire process of software
development and it measures the code as well
as the actual activities performed during the
development process, both in quantitative and
in qualitative terms. Accordingly, the term qual-

Table 1. Manifesto for agile software development

We are uncovering better ways of developing software by doing it and helping
others do it. Through this work we have come to value:
	Individuals and interactions over processes and tools.
	Working software over comprehensive documentation.
	Customer collaboration over contract negotiation.
	Responding to change over following a plan.

That is, while there is value in the items on the right, we value the items on the
left more.

Table 2. Several differences between agile and plan-driven software development methods

Agile Software Development Methods Plan-Driven Software Development Methods
Process orientation The development process is formulated in

terms of activities that all team members
apply on a daily basis.

The development process is formulated in terms
of stages, in which each team member has one
defined role in the process.

Formulation of requirements Requirements are formulated in a gradual
process during which customers and
developers improve their understanding
of the developed product. This process
enables natural evolution.

Requirements are formulated in one of the first
stages of the project. Therefore, the cost of
implementing a change in requirements increases
the later in the process it is introduced.

Customer involvement Customers are available for discussion,
clarifications, etc., in all stages of the
software development process.

Primary contact with the customers occurs at the
beginning of the development process.

 2703

Teaching Agile Software Development Quality Assurance

ity assurance does not appear in agile software
development as a specific stage.

In Table 3, we summarize some of the no-
ticeable differences between the attitude toward
quality of agile software development methods
and of plan-driven methods, as it is manifested
in many software organizations.

 We note that these previous perspectives are
clearly also reflected in the cultures of the two
approaches toward software development. While
in the context of plan-driven development, confer-
ences are held that are dedicated to QA issues,
conferences that target the community of agile
software developers subsume all aspects of the de-
velopment process, including AQ. This difference
might, of course, be attributed to the maturity of
the plan-driven software development approach;
still, the observation is interesting by itself.

tEAchIng AgIlE softwArE
dEvElopMEnt QuAlIty

why teach QA?

Naturally, software engineers should be educated
for quality. The importance of this belief is re-
flected, for example, in the Software Engineer-
ing volume3 of the Computing Curricula 2001,

in which software quality is one of the software
engineering education knowledge areas (p. 20),
and is described as follows:

Software quality is a pervasive concept that af-
fects, and is affected by all aspects of software
development, support, revision, and maintenance.
It encompasses the quality of work products de-
veloped and/or modified (both intermediate and
deliverable work products) and the quality of the
work processes used to develop and/or modify the
work products. Quality work product attributes
include functionality, usability, reliability, safety,
security, maintainability, portability, efficiency,
performance, and availability. (p. 31)

Furthermore, the software engineering code of
ethics and professional practice4, formulated by an
IEEE-CS/ACM Joint Task Force, addresses qual-
ity issues and outlines how software developers
should adhere to ethical behavior. Table 4 presents
the eight principles of the Code. Note especially
Principle 3, which focuses on quality.

Based on the assumption that the concept of
quality should be taught as part of software engi-
neering education, the question that we should ask
at this stage is, How should quality be taught? Later
in this section, we present our perspective on this
matter. We suggest that the nature of the software

Table 3. Some differences between AQ and plan-driven QA

Agile Quality (AQ) Plan-Driven QA
Who is responsible for
software quality?

All development team members The QA team

When are quality-related
topics addressed?

During the entire software development
process; quality is one of the primary
concerns of the development process

Mainly at the QA/testing
stage

Status of quality-related
activities relatively to
other software development
activities

Same as other activities Low (Cohen, Birkin, Gar-
field, & Webb, 2004)

Work style Collaboration between all role holders Developers and QA
people might have con-
flicts (Cohen et al., 2004)

2704

Teaching Agile Software Development Quality Assurance

development methods that inspire a curriculum
is usually reflected in the curriculum itself. For
example, in traditional software engineering and
computer science programs, QA is taught as a
separate course, similar to the way in which it is
applied in reality in plan-driven software devel-
opment processes. Based on our teaching experi-
ence of agile software development methods, we
propose that when teaching the concept of quality
is integrated into a software engineering program
that is inspired by agile software development,
quality-related issues should and are integrated
and intertwined in all topics. This idea, as well as
others, is illustrated in the next section in which
we present the teaching framework we have de-
veloped for teaching agile software development
and illustrate how AQ integrated naturally into
this teaching framework.

teaching framework for AQ

This section is the heart of our chapter. In what
follows, we introduce our teaching framework,
which is composed of nine principles, presented

in Table 5 as pedagogical guidelines. Each of
the principles is illustrated with respect to the
teaching of AQ.

As can be seen, all principles put the learners
at the center of the discussion while referring to
two main aspects—cognitive and social. Spe-
cifically, Principles 1, 2, 3, and 7 emphasize the
learning process from a cognitive perspective
while Principles 4, 5, 6, 8, and 9 highlight the
learning process from a social perspective. We
note that this is not a dichotomy, but rather, each
principle addresses both aspects to some degree.
Accordingly, in what follows, the principles are
presented in such an order that enables a gradual
mental construction of the learning environment
that this teaching framework inspires.

Specifically, for each principle we first de-
scribe how it is expressed when agile software
development concepts are taught, and then how
it is applied in the teaching of AQ.

This presentation style is consistent with our
perspective of the teaching of AQ. As mentioned
previously, agile software development inspires
a development environment in which all activi-

Table 4. Principles of the software engineering code of ethics and professional practice

1. Public: Software engineers shall act consistently with the public interest.
2. Client and Employer: Software engineers shall act in a manner that is in the best

interests of their client and employer, consistent with the public interest.
3. Product: Software engineers shall ensure that their products and related modifi-

cations meet the highest professional standards possible.
4. Judgment: Software engineers shall maintain integrity and independence in their

professional judgment.
5. Management: Software engineering managers and leaders shall subscribe to

and promote an ethical approach to the management of software development and
maintenance.

6. Profession: Software engineers shall advance the integrity and reputation of the
profession consistent with the public interest.

7. Colleagues: Software engineers shall be fair to and supportive of their col-
leagues.

8. Self: Software engineers shall participate in lifelong learning regarding the prac-
tice of their profession and shall promote an ethical approach to the practice of the
profession.

 2705

Teaching Agile Software Development Quality Assurance

ties involved in software development processes
are intertwined, and the notion of a production
chain is eliminated. Accordingly, when we teach
AQ we do not separate it from the teaching of the
software development process (in our case, agile
software development) but, rather, AQ is taught as
part of the software development process in the
same spirit in which the entire agile development
process is taught.

This section presents, in fact, the application of
our teaching framework for software development
methods (presented in Dubinsky & Hazzan, 2005
and in Hazzan & Dubinsky, 2006) for the case
of AQ. In Dubinsky and Hazzan (2005), we also
outline the evolutionary emergence of the teach-
ing framework and describe its implementation
in a specific course (including detailed schedule
and activities).

Principle 1: Inspire the Agile
Concept Nature

This is a meta-principle that integrates several of
the principles described later on in this section and,
at the same time, is supported by them. It suggests
that complex concepts in software development,
such as quality or a software development method,
should not be lectured about, but rather, their spirit
should be inspired. In other words, the teaching
of a complex (agile) concept should not be based
solely on lecturers but rather, the learning of the

main ideas of such concepts is more valuable if a
“learning by doing” approach is applied and the
(agile) concept is applied, performed, and used
by the learners. Such an experience improves the
learners experience and skills in the said agile
concept, and at the same time, provides the teacher
with opportunities to elicit reflection processes.

The application of this principle is expressed
by active learning (Silberman, 1996) on which
the next principle elaborates, and should take
place in an environment that enables the actual
performance of the agile concept.

In the case of teaching AQ, this principle im-
plies that the learning occurs in an environment
in which it would be natural to illustrate and feel
the interrelation between AQ and the other activi-
ties that take place in agile software development
environments. For example, the extreme program-
ming practice of whole team, which states that “a
variety of people work together in interlinking
ways to make a project more effective” (Beck &
Andres, 2004, p. 73), should be applied in order
to inspire agile software development. In such
software development environments, when the
teacher asks the learners to expose and reflect on
the relationships between AQ and the other activi-
ties, connections between AQ and other activities
performed in this environment become clear.

Table 5. Teaching framework

• Principle 1: Inspire the agile concept nature.
• Principle 2: Let the learners experience the agile concept as much as possible.
• Principle 3: Elicit reflection on experience.
• Principle 4: Elicit communication.
• Principle 5: Encourage diverse viewpoints.
• Principle 6: Assign roles to team members.
• Principle 7: Be aware of cognitive aspects.
• Principle 8: Listen to participants’ feelings toward the agile concept.
• Principle 9: Emphasize the agile concept in the context of the software world.

2706

Teaching Agile Software Development Quality Assurance

Principle 2: Let the Learners
Experience the Agile Concept as Much
as Possible

This principle is derived directly from the previous
one. In fact, these two principles stem from the
importance attributed to the learners’ experimen-
tal basis, which is essential in learning processes
of complex concepts. This assertion stands in line
with the constructivist perspective of learning
(Davis, Maher, & Noddings, 1990; Confrey, 1995;
Kilpatrick, 1987), the origins of which are rooted
in Jean Piaget’s studies (Piaget, 1977).

Constructivism is a cognitive theory that
examines learning processes that lead to mental
constructions of knowledge based upon learners’
knowledge and experience. According to this
approach, learners construct new knowledge by
rearranging and refining their existing knowledge
(Davis et al., 1990; Smith, diSessa, & Roschelle,
1993). More specifically, the constructivist ap-
proach suggests that new knowledge is constructed
gradually, based on the learner’s existing mental
structures and in accordance with feedback that
the learner receives both from other people with
whom he or she interacts and from the different
artifacts that constitute the learning environments.
In this process, mental structures are developed
in steps, each step elaborating on the preceding
ones. Naturally, there may also be regressions
and blind alleys.

We suggest that quality in general, and AQ
in particular, are complex concepts. Therefore,
their gradual learning process should be based
on the learners’ experience. One way to support
and enhance such a gradual mental learning
process is to adopt an active-learning teaching
approach according to which learners are active
to the extent that enables a reflective process
(which is addressed by another principle later on
in this chapter).

We do not claim that lecturing should be ab-
solutely avoided in the process of teaching AQ; in
fact, some aspects of AQ can and should be taught

by means of lectures. Our experience, however,
teaches us that the more learners experience AQ
and reflect upon it, the more they improve their
understanding of the essence of the topic, as well
as their professional skills.

To illustrate how this principle is applied in
the case of AQ, we focus on acceptance tests.
Here, active learning is expressed in several
ways. First, learners are active in the definition
of the software requirements. Second, learners
define the acceptance tests and verify that they
meet the requirements. Third, they develop the
acceptance tests. And fourth, they are guided to
reflect both on each individual step and on the
entire process. Such a complete process provides
learners with a comprehensive message that both
highlights each element of the AQ process and
at the same time connects each of its elements
to the others.

Principle 3: Elicit Reflection on
Experience

The importance of introducing reflective pro-
cesses into software development processes has
been already discussed (Hazzan, 2002; Hazzan
& Tomayko, 2003). This approach is based on
Schön’s Reflective Practitioner perspective
(Schön, 1983, 1987). Indeed, it is well known in
the software industry that a reflective person,
who learns both from the successes and failures
of previous software projects, is more likely to
improve his or her own performance in the field
(Kerth, 2001).

According to this principle, learners should be
encouraged to reflect on their learning processes
as well as on different situations in the software
development process in which they participated.
We note that reflection processes should not be
limited to technical issues, but rather should
also address feelings, work habits, and social
interactions related to the software development
processes.

 2707

Teaching Agile Software Development Quality Assurance

In order to elicit learners’ reflective processes,
learners should be offered verbal and written
means for self-expression. The ability to express
one’s reflections and impressions gives learners
the feeling that their thoughts and feelings are
of interest to the instructors. Naturally, such
reflective processes might also elicit criticism
and complaints. In this spirit, learners should be
encouraged to express not only positive ideas,
but also negative feelings and suggestions for
improvement.

The teaching of AQ is a good opportunity to
illustrate this principle since it allows us to address
the different facets of AQ. First, we can address
the technical aspect of AQ, asking learners to
reflect on the actual processes of applying AQ.
Specifically, learners can be asked to describe the
process they went through, to indicate actions that
improved their progress and actions that blocked
progress and should be improved, and to suggest
how the AQ process itself could be improved.
Second, affective aspects can be referred to dur-
ing the reflection process. For example, learners
can be asked to describe their feelings during the
AQ process and specifically indicate actions that
encouraged them, as well as actions that discour-
aged them, in their pursuit of the AQ process.
Finally, social issues can be addressed in such
reflection processes. For example, learners can
be asked to indicate what teamwork actions sup-
ported the AQ process and which interfered with
that process and to suggest how such interactions
should be changed so as to support the AQ process.
Furthermore, experience learners can be asked to
reflect both during the AQ process and after it is
completed—processes that Schön calls in-action
and on-action reflection, respectively.

Principle 4: Elicit Communication

Communication is a central theme in software de-
velopment processes. Indeed, the success or failure
of software projects is sometimes attributed to
communication issues. Accordingly, in all learn-

ing situations we aim at fostering learner-learner,
as well as learner-teacher communication.

When communication is one of the main in-
gredients of the learning environment, the idea
of knowledge sharing becomes natural. Then, in
turn, knowledge sharing reflects back on com-
munication. This principle can be applied very
naturally in the context of AQ since it is a multi-
faceted concept. During the AQ learning process,
learners can be asked to identify its different
facets (such as, the developer perspective, the
customer perspective, its fitness to the organiza-
tional culture) and to allocate the learning of its
facets to different team members—first learning
them, and then subsequently teaching them to the
other team members in the stage that follows. In
the spirit of agile software development, it is ap-
propriate to assign the different aspects that are
to be learned to pairs of learners (rather than to
individuals) in order to foster learning processes.
When the team members present what they have
learned to their teammates, not only do they share
their knowledge, but further communication is
enhanced.

Another way to foster communication is to
use metaphors or “concepts from other worlds.”
Metaphors are used naturally in our daily life, as
well as in educational environments. Generally
speaking, metaphors are used in order to under-
stand and experience one specific thing using the
terms of another thing (Lakoff & Johnson, 1980;
Lawler, 1999). Communication, which is based
on the metaphor’s concept-world, refers not only
to instances in which both concept-worlds cor-
respond to one another, but also to cases in which
they do not. If both concept-worlds are identical,
the metaphor is not a metaphor of that thing, but
rather the thing itself. Specifically, metaphors can
be useful even without specifically mentioning the
concept of metaphor. For example, the facilitator
may say: “Can you suggest another concept-world
that may help us understand this unclear issue.”
Our experience indicates that learners have no
problem suggesting a varied collection of con-

2708

Teaching Agile Software Development Quality Assurance

cept-worlds, each highlighting a different aspect
of the said problem and together supporting the
comprehension of the topic under discussion.

Principle 5: Encourage Diverse
Viewpoints

This perspective is based on management theo-
ries that assert the added value of diversity (cf.
the American Institute for Managing Diversity,
http://aimd.org). In the context of agile software
development, it is appropriate to start by quoting
Beck et al. (2004):

Teams need to bring together a variety of skills,
attitudes, and perspectives to see problems and
pitfalls, to think of multiple ways to solve prob-
lems, and to implement the solutions. Teams need
diversity. (p. 29)

We argue that this perspective is correct also
with respect to AQ, as explained next.

Naturally, the more diverse a team is, the more
diverse the perspectives elicited are. These diverse
viewpoints may improve software development
processes in general, and the execution of AQ in
particular. Specifically, in this context diversity
has several benefits. First, learners are exposed
to different perspectives that they can use when
communicating with people from different sectors
and of different opinions. Second, the developed
software product itself may be improved because
when different perspectives are expressed with
respect to a specific topic, the chances that subtle
issues will emerge are higher. Consequently, ad-
ditional factors are considered when decisions are
made. Third, the creation process is questioned
more when diverse opinions are expressed and,
once again, this may result in a more argument-
based process based on which specific decisions
are made. Finally, we believe that diversity reduces
resistance to new ideas and creates an atmosphere
of openness toward alternative opinions. In the
case of learning AQ, which inspires different work

habits than the ones most learners are familiar
with, such openness to a different perspective is
especially important.

Principle 6: Assign Roles to Team
Members

This principle suggests that each team member
should have an individual role in addition to the
personal development tasks for which he or she
is responsible. Based on our agile teaching and
research practice, we have identified 12 roles, each
of which is related to at least one aspect of software
development, several of which are related to AQ
(Dubinsky & Hazzan, 2004a). See Table 6.

The role assignment serves as a means for
distributing the responsibility for the project
progress and quality among all team members.
The rationale for this practice stems from the fact
that one person (or a small number of practitioners)
can not control and handle the great complexity
involved in software development projects. When
accountability is shared by all team members, each
aspect of the entire process is treated by single
team member, yet, at the same time, each team
member feels personally responsibility for every
such aspect. Indeed, both the software project
and all team members benefit from this kind of
organization.

More specifically, our research shows that
the accumulative impact of these roles increases
the software quality both from the customer’s
perspective and from the development perspec-
tive, for several reasons. First, the roles address
different aspects of the development process
(management, customer, code) and together en-
compass all aspects of a software development
process. Second, such a role assignment increases
the team members’ commitment to the project. In
order to carry out one’s role successfully, each
team member must gain a global view of the de-
veloped software, in addition to the execution of
his or her personal development tasks. This need,
in turn, increases one’s responsibility toward the

 2709

Teaching Agile Software Development Quality Assurance

development process. Third, the need to perform
one’s role successfully increases the team mem-
bers’ involvement in all parts of the developed
software and leads him or her to become familiar
with all software parts. If team members have
only a limited view and are aware only of their
own personal development tasks, they will not
be able to perform their personal roles properly.
Alternatively, the proposed role scheme supports
knowledge sharing, participants’ involvement and
enhanced performances.

The software quality and the quality of the de-
velopment process are reflected by three measures
that serve as AQ teaching-metrics. The first is the
role time measure (RTM). The RTM measures
the development-hours/role-hours ratio, or in other

words, the time invested in development tasks
relative to the time invested in role activities.
The second measure is the role communication
measure (RCM), which measures the level of
communication in the team at each development
stage. The third measure is the role management
measure (RMM), which measures the level of the
project management. Data illustration of these
metrics, taken from a specific academic project,
can be found in Dubinsky and Hazzan (2004b).

Principle 7: Be Aware of Cognitive
Aspects

This principle addresses two issues. The first deals
with the idea of inspiring a process of on-going

Table 6. Roles in agile teams
Role Description
Leading Group
Coach Coordinates and solves group problems, checks the Web forum and

responds on a daily basis, leads development sessions.
Tracker Measures the group progress according to test level and task estima-

tions, manages studio boards, manages the group diary.
Customer Group
End user Performs on-going evaluation of the product, collects and processes

feedback received from real end-users.
Customer Tells customer stories, makes decisions pertaining to each iteration,

provides feedback, defines acceptance tests.
Acceptance
tester

Works with the customer to define and develop acceptance tests, learns
and instructs test-driven development.

Maintenance Group
Presenter Plans, organizes, and presents iteration presentations, demos, and time

schedule allocations.
Documenter Plans, organizes, and presents project documentation: process docu-

mentation, user’s guide, and installation instructions.
Installer Plans and develops an automated installation kit, maintains studio

infrastructure.
Code Group
Designer Maintains current design, works to simplify design, searches for refac-

toring tasks and ensures their proper execution.
Unit tester Learns about unit testing, establishes an automated test suite, guides

and supports others in developing unit tests.
Continuous
integrator

Establishes an integration environment, publishes rules pertaining to
the addition of new code using the test suite.

Code
reviewer

Maintains source control, establishes and refines coding standards,
guides and manages the team’s pair programming.

2710

Teaching Agile Software Development Quality Assurance

and gradual improvement. The second addresses
the fact that software development should be ad-
dressed by the individuals involved on different
levels of abstraction.

It is clear that software development is a
gradual process conducted in stages, each one
improving upon those preceding it. In many cases,
this improvement takes place in parallel to an
improvement in the developers understanding of
the developed application. Indeed, this principle is
closely derived from the constructivist approach
presented in the previous discussion of Principle
2. Accordingly, the learning environment should
specifically inspire that feeling of gradual learning
and elicit reflection processes when appropriate
(cf. Principle 3).

We briefly present two illustrative scenarios
that describe how this principle can be applied in
practice. When learners try to achieve a consen-
sus with respect to a topic of which their current
knowledge is insufficient, the instructor/facilitator
should guide them to postpone their final deci-
sion until a later stage. Sometimes, the instruc-
tor should guide the team to make a temporary
decision based on their current knowledge, and
explicitly state that in the future they will be
able to update, refine, and even change the deci-
sion just made. In other cases when learners are
deadlocked the moderator/instructor can stop
the discussion, reflect on what has transpired,
and suggest to move on, explaining that it might
make more sense to readdress the issue currently
blocking the development progress at a later stage
when the learners’ background and knowledge
can solve the said problem.

As mentioned before, this principle is also re-
lated to thinking on different levels of abstraction.
In a previous paper (Hazzan & Dubinsky, 2003),
we suggested that during the process of software
development, developers are required to think on
different abstraction levels and to shift between
abstraction levels, and explain how several agile
practices (such as, refactoring and planning game)
support this shift between abstraction level. In

other words, developers must shift from a global
view of the system (high level of abstraction) to
a local, detailed view of the system (low level of
abstraction), and vise versa. For example, when
trying to understand customers’ requirements
during the first stage of development, develop-
ers should have a global view of the applica-
tion (high level of abstraction). When coding
a specific class, a local perspective (on a lower
abstraction level) should be adopted. Obviously,
there are many intermediate abstraction levels
in between these two levels that programmers
should consider during the process of software
development. However, knowing how and when
to move between different levels of abstraction
does not always come naturally, and requires some
degree of awareness. For example, a developer may
remain at an inappropriate level of abstraction for
too long a time, while the problem he or she faces
could be solved immediately if the problem were
viewed on a different (higher or lower) level of
abstraction. The required shift to that different
abstraction level might not be made naturally,
unless one is aware that this may be a possible
step toward a solution.

This principle suggests that instructors or
workshop facilitators who teach agile AQ should
be aware of the abstraction level on which each
stage of each activity is performed. Based on this
awareness, they then should decide whether to
remain on this abstraction level, or, alternatively,
whether there is a need to guide the participants to
think in terms of a different level of abstraction.
For example, when learners are engaged in design
activities and tend to move to details related to
the code level, it is important to guide them to
stay at the appropriate (higher) level of abstrac-
tion. It is further suggested that the instructor
or facilitator explicitly highlight the movement
between abstraction levels and discuss with the
learners the advantages that can be gained from
such moves.

We note that the role assignment mentioned in
the discussion of Principle 6 can also be viewed

 2711

Teaching Agile Software Development Quality Assurance

as a means to encourage learners to look, think
and examine the development process from
different abstraction levels. More specifically,
if a team member wishes to perform his or her
individual role successfully, that is, to lead the
project in the direction that the role specifies, he
or she must gain a more global (abstract) view of
the developed application.

Principle 8: Listen to Participants’
Feelings Toward the Agile Concept

The adoption of AQ requires a conceptual change
with respect to what a software development
process is. In practice, when learners express
emotional statements against some aspect of AQ,
we propose to take advantage of this opportunity
and encourage participants to describe the subject
of the said statement as it is manifested in their
current software development environment. As
it turns out, in many cases these descriptions
elicit problems in the currently used approach.
Then, we explain how AQ attempts to overcome
the problematic issues just raised. For example,
when a statement is made against the test-driven
development approach, it is a good opportunity to
ask the person making this statement to describe
the testing process that he or she is currently us-
ing. In some cases, this in itself is sufficient: The
question highlights the test-driven development
approach toward the discussed issue, and conse-
quently, in many cases, the facial expression of
the person expressing the objection immediately
changes.

In all teaching situations, we propose to try
sympathizing with and legitimizing learners’
feelings, and being patient until learners start
becoming aware of the benefits that can be gained
from the new approach. In many cases, learners’
objections disappeared in part after a short while.
One plausible explanation is that they begin to
realize that the new approach might actually sup-
port their work and improve the quality of their
developed products.

Principle 9: Emphasize the Agile
Concept in the Context of the Software
World

This principle closes the circle that opened with the
first principle—Inspire the nature of the learned
concept, in our case—AQ. We believe that part
of this inspiration is related to the connections
made between the concept taught and the world of
software engineering. Since the world of software
engineering has witnessed relatively many cases
in which new terms emerged and shortly after
turned out to be no more than buzzwords, when
teaching a new concept that requires developers
to adopt a different state of mind, it is preferable
to connect the new idea to the world of software
development, and in our case, to connect AQ to
other agile ideas. This can be done, for example,
by presenting the learners with specific problems
faced by the software industry (for example,
the high rate of software projects that do not
fit customer requirements), illustrating how the
taught idea may help overcome them. Learners
will then, hopefully, feel that, on the one hand,
they are being introduced to a new idea that is
not detached from the software industry world
and is not just a passing fashion, and on the other
hand, that the new approach toward quality is-
sues emerged as a timely answer to the needs of
the software industry and that it will be useful to
them in the future.

In the case of teaching AQ, the need for AQ
may be first explained and some problems related
to traditional QA processes may be outlined.
Such a broad perspective enables learners to
understand the place of the agile approach in the
software industry in general, and in particular, to
observe that AQ is a topic that is still undergoing
development.

2712

Teaching Agile Software Development Quality Assurance

suMMAry

The set of principles presented in this chapter
aims to establish a teaching framework within
which we teach agile software development in
general, and AQ in particular. A closer look at
the teaching framework reveals that, in fact, its
nature is similar to that of agile software develop-
ment environments. Specifically, as agile software
development inspires the notion of a single com-
prehensive framework in which all activities are
performed by all team members in short cycles,
with the different activities mutually contribut-
ing to one another, the framework described in
this chapter also inspires an integrative teaching
framework in which all principles should be ad-
hered to at the same time, with different focuses
as appropriate. Furthermore, as the assimilation
of agile software development takes place in
stages, the adoption of this teaching framework
should also be carried out gradually, according
to the culture of the environments into which the
teaching framework is assimilated.

AcKnowlEdgMEnts

Our thanks are extended to the Technion V.P.R.
Fund—B. and the G. Greenberg Research Fund
(Ottawa) for their support of this research.

rEfErEncEs

Beck, K. (2000). Extreme programming explained:
Embrace change. Boston: Addison-Wesley.

Beck, K., & Andres, C. (2004). Extreme pro-
gramming explained: Embrace change (2nd ed.).
Boston: Addison-Wesley.

Boehm, B., & Turner, R. (2004). Balancing
agility and discipline. Reading, MA: Pearson
Education Inc.

Cockburn, A. (2001). Agile software development.
Boston: Addison-Wesley.

Cohen, C. F., Birkin, S. J., Garfield, M. J., & Webb,
H. W. (2004). Managing conflict in software test-
ing, Communications of the ACM, 47(1), 76-81.

Confrey J. (1995). A theory of intellectual de-
velopment. For the Learning of Mathematics,
15(2), 36-45.

Davis, R. B., Maher, C. A., & Noddings, N. (1990).
Constructivist views on the teaching and learning
of mathematics. Journal for Research in Math-
ematics Education, Monograph Number 4, The
National Council of Teachers of Mathematics.

Dubinsky, Y., & Hazzan, O. (2004a). Roles in agile
software development teams. The 5th International
Conference on Extreme Programming and Agile
Processes in Software Engineering (pp. 157-166).
Garmisch-Partenkirchen, Germany.

Dubinsky, Y., & Hazzan, O. (2004b). Using a
roles scheme to derive software project metrics.
Quantitative Techniques for Software Agile Pro-
cesses Workshop, Proceedings (and selected for
the Post-Proceedings) of SIGSOFT 2004, Newport
Beach, CA.

Dubinsky, Y., & Hazzan, O. (2005). A framework
for teaching software development methods. Com-
puter Science Education, 15(4), 275-296.

Fowler, M., & Beck, K. (2002). Planning extreme
programming. Boston.

Hazzan, O. (2002). The reflective practitioner
perspective in software engineering education.
The Journal of Systems and Software, 63(3),
161-171.

Hazzan, O., & Dubinsky, Y. (2003). Bridging
cognitive and social chasms in software develop-
ment using extreme programming. Proceedings
of the 4th International Conference on eXtreme
Programming and Agile Processes in Software
Engineering (pp. 47-53). Genova, Italy.

 2713

Teaching Agile Software Development Quality Assurance

Hazzan, O., & Dubinsky, Y. (2006). Teaching
framework for software development methods.
Poster presented at the ICSE Educator’s Track.
Proceedings of ICSE (International Conference
of Software Engineering) (pp. 703-706), Shang-
hai, China.

Hazzan, O., & Tomayko, J. (2003). The reflective
practitioner perspective in eXtreme programming.
Proceedings of the XP Agile Universe 2003 (pp.
51-61). New Orleans, LA.

Highsmith, J. (2002). Agile software developments
ecosystems. Boston: Addison-Wesley.

Kerth, N. (2001). Project retrospective. New York:
Dorset House Publishing.

Kilpatrick, J. (1987). What constructivism might
be in mathematics education. In J. C. Bergeron, N.
Herscovics, & C. Kieran (Eds.), Proceedings of the
11th International Conference for the Psychology
of Mathematics Education (PME11) (Vol. I, pp.
3-27). Montréal.

Lakoff, G., & Johnson, M. (1980). Metaphors we
live by. The University of Chicago Press.

Lawler, J. M. (1999). Metaphors we compute by.
In D.J. Hickey (Ed.), Figures of thought: For col-
lege writers. Mountain View, California: Mayfield
Publishing.

Piaget, J. (1977). Problems of equilibration. In
M. H. Appel, & L. S. Goldberg (Eds.), Topics in
cognitive development, volume 1: Equilibration:
Theory, research, and application (pp. 3-13). New
York: Plenum Press.

Schön, D. A. (1983). The reflective practitioner.
New York: BasicBooks.

Schön, D. A. (1987). Educating the reflective
practitioner: Toward a new design for teaching

and learning in the profession. San Francisco:
Jossey-Bass.

Silberman, M. (1996). Active learning: 101 strate-
gies to teach any subject. Boston: Pearson Higher
Education.

Sommerville, I. (2001). Software engineering (6th
ed.). Reading, MA: Addison-Wesley.

Smith, J. P., diSessa, A. A., & Roschelle, J. (1993).
Misconceptions reconceived: A constructivist
analysis of knowledge in transition. The Journal
of the Learning Sciences, 3(2), 115-163.

Van Vliet, H. (2000). Software engineering:
Principles and practice. New York: John Wiley
& Sons.

EndnotEs

1 For further information about our work,
please visit our Web site Agile Software
Development Methods and Extreme
Programming (http://edu.technion.ac.il/
Courses/cs_methods/eXtremeProgram-
ming/XP_Technion.htm).

2 The term “plan-driven” was introduced by
Boehm et al. (2004), who divide the software
development methods prevalent today into
“agile” and “plan-driven.”

3 This volume is part of the Joint Task Force
on Computing Curricula 2001 carried out
by the Computer Society of the Institute for
Electrical and Electronic Engineers (IEEE-
CS) and the Association for Computing
Machinery (ACM): http://sites.computer.
org/ccse/SE2004Volume.pdf

4 ACM Code of Ethics and Professional Con-
duct: http://www.acm.org/constitution/code.
html

This work was previously published in Agile Software Development Quality Assurance, edited by I. Stamelos & P. Sfetsos, pp.
171-184, copyright 2007 by Information Science Reference (an imprint of IGI Global).

2714

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.5
Software Quality Modeling with

Limited Apriori Defect Data
Naeem Seliya

University of Michigan, USA

Taghi M. Khoshgoftaar
Florida Atlantic University, USA

AbstrAct

In machine learning the problem of limited data
for supervised learning is a challenging problem
with practical applications. We address a similar
problem in the context of software quality mod-
eling. Knowledge-based software engineering
includes the use of quantitative software quality
estimation models. Such models are trained using
apriori software quality knowledge in the form
of software metrics and defect data of previously
developed software projects. However, various
practical issues limit the availability of defect data
for all modules in the training data. We present
two solutions to the problem of software quality
modeling when a limited number of training mod-
ules have known defect data. The proposed solu-
tions are a semisupervised clustering with expert
input scheme and a semisupervised classification
approach with the expectation-maximization al-
gorithm. Software measurement datasets obtained

from multiple NASA software projects are used
in our empirical investigation. The software qual-
ity knowledge learnt during the semisupervised
learning processes provided good generalization
performances for multiple test datasets. In addi-
tion, both solutions provided better predictions
compared to a supervised learner trained on the
initial labeled dataset.

IntroductIon

Data mining and machine learning have numerous
practical applications across several domains, es-
pecially for classification and prediction problems.
This chapter involves a data mining and machine
learning problem in the context of software qual-
ity modeling and estimation. Software measure-
ments and software fault (defect) data have been
used in the development of models that predict
software quality, for example, a software quality

 2715

Software Quality Modeling with Limited Apriori Defect Data

classification model (Imam, Benlarbi, Goel, &
Rai, 2001; Khoshgoftaar & Seliya, 2004; Ohlsson
& Runeson, 2002) predicts the fault-proneness
membership of program modules. A software
quality model allows the software development
team to track and detect potential software defects
relatively early-on during development.

Software quality estimation models exploit the
software engineering hypothesis that software
measurements encapsulate the underlying quality
of the software system. This assumption has been
verified in numerous studies (Fenton & Pfleeger,
1997). A software quality model is typically built
or trained using software measurement and defect
data from a similar project or system release previ-
ously developed. The model is then applied to the
currently under-development system to estimate
the quality or presence of defects in its program
modules. Subsequently, the limited resources
allocated for software quality inspection and
improvement can be targeted toward low-qual-
ity modules, achieving cost-effective resource
utilization (Khoshgoftaar & Seliya, 2003).

An important assumption made during typi-
cal software quality classification modeling is
that fault-proneness labels are available for all
program modules (instances) of training data, that
is, supervised learning is facilitated because all
instances in the training data have been assigned a
quality-based label such as fault-prone (fp) or not
fault-prone (nfp). In software engineering practice,
however, there are various practical scenarios
that can limit availability of quality-based labels
or defect data for all the modules in the training
data, for example:

•	 The cost of running data collection tools
may limit for which subsystems software
quality data is collected.

•	 Only some project components in a dis-
tributed software system may collect soft-
ware quality data, while others may not be
equipped for collecting similar data.

•	 The software defect data collected for some
program modules may be error-prone due
to data collection and recording problems.

•	 In a multiple release software project, a given
release may collect software quality data for
only a portion of the modules, either due to
limited funds or other practical issues.

In the training software measurement dataset
the fault-proneness labels may only be known for
some of the modules, that is, labeled instances,
while for the remaining modules, that is, unlabeled
instances, only software attributes are available.
Under such a situation following the typical su-
pervised learning approach to software quality
modeling may be inappropriate. This is because
a model trained using the small portion of labeled
modules may not yield good software quality
analysis, that is, the few labeled modules are not
sufficient to adequately represent quality trends
of the given system. Toward this problem, perhaps
the solution lies in extracting the knowledge (in
addition to the labeled instances) stored in the
software metrics of the unlabeled modules.

The above described problem represents the
labeled-unlabeled learning problem in data mining
and machine learning (Seeger, 2001). We present
two solutions to the problem of software quality
modeling with limited prior fault-proneness de-
fect data. The first solution is a semisupervised
clustering with expert input scheme based on
the k-means algorithm (Seliya, Khoshgoftaar,
& Zhong, 2005), while the other solution is a
semisupervised classification approach based on
the expectation maximization (EM) algorithm
(Seliya, Khoshgoftaar, & Zhong, 2004).

The semisupervised clustering with expert
input approach is based on implementing con-
straint-based clustering, in which the constraint
maintains a strict membership of modules to
clusters that are already labeled as nfp or fp. At the
end of a constraint-based clustering run a domain
expert is allowed to label the unlabeled clusters,
and the semisupervised clustering process is iter-

2716

Software Quality Modeling with Limited Apriori Defect Data

ated. The EM-based semisupervised classification
approach iteratively augments unlabeled program
modules with their estimated class labels into the
labeled dataset. The class labels of the unlabeled
instances are treated as missing data which is
estimated by the EM algorithm. The unlabeled
modules are added to the labeled dataset based
on a confidence in their prediction.

A case study of software measurement and
defect data obtained from multiple NASA software
projects is used to evaluate the two solutions. To
simulate the labeled-unlabeled problem, a sample
of program modules is randomly selected from
the JM1 software measurement dataset and is
used as the initial labeled dataset. The remaining
JM1 program modules are treated (without their
class labels) as the initial unlabeled dataset. At
the end of the respective semisupervised learn-
ing approaches, the software quality modeling
knowledge gained is evaluated by using three
independent software measurement datasets.

A comparison between the two approaches for
software quality modeling with limited apriori
defect data indicated that the semisupervised
clustering with expert input approach yielded
better performance than EM-based semisu-
pervised classification approach. However, the
former is associated with considerable expert
input compared to the latter. In addition, both
semisupervised learning schemes provided an
improvement in generalization accuracy for in-
dependent test datasets.

The rest of this chapter is organized as follows:
some relevant works are briefly discussed in the
next section; the third and fourth sections respec-
tively present the semisupervised clustering with
expert input and the EM-based semisupervised
classification approaches; the empirical case study,
including software systems description, modeling
methodology, and results are presented in the fifth
section. The chapter ends with a conclusion which
includes some suggestions for future work.

rElAtEd worK

In the literature, various methods have been
investigated to model the knowledge stored in
software measurements for predicting quality of
program modules. For example, Schneidewind
(2001) utilizes logistic regression in combina-
tion with Boolean discriminant functions for
predicting fp program modules. Guo, Cukic,
and Singh (2003) predict fp program modules
using Dempster-Shafer networks. Khoshgoftaar,
Liu and Seliya (2003) have investigated genetic
programming and decision trees (Khoshgoftaar,
Yuan, & Allen, 2000), among other techniques.
Some other works that have focused on software
quality estimation include Imam et al. (2001),
Suarez and Lutsko (1999) and Pizzi, Summers,
and Pedrycz (2002).

While almost all existing works on software
quality estimation have focused on using a su-
pervised learning approach for building software
quality models, very limited attention has been
given to the problem of software quality model-
ing and analysis when there is limited defect
data from previous software project development
experiences. In a machine learning classifica-
tion problem when both labeled and unlabeled
data are used during the learning process, it is
termed as semisupervised learning (Goldman,
2000; Seeger, 2001). In such a learning scheme
the labeled dataset is iteratively augmented with
instances (with predicted class labels) from
the unlabeled dataset based on some selection
measure. Semisupervised classification schemes
have been investigated across various domains,
including content-based image retrieval (Dong &
Bhanu, 2003), human motion and gesture pattern
recognition (Wu & Huang, 2000), document cat-
egorization (Ghahramani & Jordan, 1994; Nigam
& Ghani, 2000), and software engineering (Seliya
et al., 2004). Some of the recently investigated
techniques for semisupervised classification
include the EM algorithm (Nigam, McCallum,
Thrun, & Mitchell, 1998), cotraining (Goldman

 2717

Software Quality Modeling with Limited Apriori Defect Data

& Zhou, 2000; Mitchell, 1999; Nigam & Ghani,
2000), and support vector machine (Demirez &
Bennett, 2000; Fung & Mangasarian, 2001).

While many works in semisupervised learning
are geared toward the classification problem, a
few studies investigate semisupervised cluster-
ing for grouping of a given set of text documents
(Zeng, Wang, Chen, Lu, & Ma, 2003; Zhong,
2006). A semisupervised clustering approach has
some benefits over semisupervised classification.
During the semisupervised clustering process
additional classes of data can be obtained (if
desired) while the semisupervised classification
approach requires the prior knowledge of all pos-
sible classes of the data. The unlabeled data may
form new classes other than the pre-defined classes
for the given data. Pedrycz and Waletzky (1997)
investigate semisupervised clustering using fuzzy
logic-based clustering for analyzing software
reusability. In contrast, this study investigates
semisupervised clustering for software quality
estimation.

The labeled instances in a semisupervised
clustering scheme have been used for initial seed-
ing of the clusters (Basu, Banerjee, & Mooney,
2002), incorporating constraints in the clustering
process (Wagstaff & Cardie, 2000), or providing
feedback subsequent to regular clustering (Zhong,
2006). The seeded approach uses the labeled data
to initialize cluster centroids prior to clustering.
The constraint-based approach keeps a fixed-
grouping of the labeled data during the clustering
process. The feedback-based approach uses the
labeled data to adjust the clusters after executing
a regular clustering process.

sEMIsupErvIsEd clustErIng
wIth EXpErt Input

The basic purpose of a semisupervised approach
during clustering is to aid the clustering algorithm
in making better partitions of instances in the given
dataset. The semisupervised clustering approach

presented is a constraint-based scheme that uses
labeled instances for initial seeding (centroids)
of some clusters among the maximum allowable
clusters when using k-means as the clustering
algorithm. In addition, during the semisupervised
iterative process a domain (software engineering)
expert is allowed to label additional clusters as
either nfp or fp based on domain knowledge and
some descriptive statistics of the clusters.

The data in a semisupervised clustering
scheme consists of a small set of labeled instances
and a large set of unlabeled instances. Let D be
a dataset of labeled (nfp or fp) and unlabeled (ul)
program modules, containing the subsets L of
labeled modules and U of unlabeled modules.
In addition, let the dataset L consist of subsets
L_nfp of nfp modules and L_ fp of fp modules.
The procedure used in our constraint-based
semisupervised clustering approach with k-means
is summarized next:

1. Obtain initial numbers of nfp and fp
clusters:
•	 An optimal number of clusters for

the nfp and fp instances in the initial
labeled dataset are obtained using the
Cg criterion proposed by Krzanowski
and Lai (1988).

•	 Given L_nfp, execute the Cg criterion
algorithm to obtain the optimal number
of nfp clusters among {1, 2, …, Cin_nfp}
number of clusters, where Cin_nfp is
the user-defined maximum number
of clusters for L_nfp. Let p denote
the obtained number of nfp clusters.
Given L_ fp, execute the Cg criterion
algorithm to obtain the optimal number
of fp clusters among {1, 2, …, Cin_ fp}
number of clusters, where Cin_ fp is
the user-defined maximum number
of clusters for L_ fp. Let q denote the
obtained number of fp clusters.

2. Initialize centroids of clusters: Given the
maximum number of clusters, Cmax, allowed

2718

Software Quality Modeling with Limited Apriori Defect Data

during the semisupervised clustering pro-
cess with k-means,
•	The centroids of p clusters out of Cmax are

initialized to centroids of the clusters
labeled as nfp.

•	The centroids of q clusters out of {Cmax
- p} are initialized to centroids of the
clusters labeled as fp.

•	The centroids of the remaining r (i.e.,
Cmax – p – q) clusters are initialized to
randomly selected instances from U.
We randomly select 5 unique sets of
r instances each for initializing cen-
troids of the unlabeled clusters. Thus,
centroids of the {p + q + r} clusters
can be initialized using 5 different
combinations.

•	The sets of nfp, fp, and unlabeled clusters
are thus,

C_nfp = {c_nfp1, c_nfp2, …, c_nfpp},
C_ fp = {c_ fp1, c_ fp2, …, c_nfpq}
C_ul = {c_ul1, c_ul2, …, c_ulr}

3. Execute constraint-based clustering:
•	 The k-means clustering algorithm with

the Euclidean distance function is run
on D using the initialized centroids
for the Cmax clusters, and under the
constraint that the existing member-
ship of a program module to a labeled
cluster remains unchanged. Thus, at a
given iteration during the semisuper-
vised clustering process, if a module
already belongs (initial membership or
expert-based assignment from previ-
ous iterations) to a nfp (or fp) cluster,
then it cannot move to another cluster
during the clustering process of that
iteration.

•	 The constraint-based clustering process
with k-means is repeated for each of
the 5 centroid initializations, and the
respective SSE (sum-of-squares-error)
values are computed.

•	 The clustering result associated with the
median SSE value is selected for con-
tinuation to the next step. This is done
to minimize the likelihood of working
with a lucky/unlucky initialization of
cluster centroids.

4. Expert-based labeling of clusters:
•	 The software engineering expert is

presented with descriptive statistics of
the r unlabeled clusters, and is asked to
label them as either nfp or fp. The spe-
cific statistics presented for attributes
of instances in each cluster depends on
the expert’s request, and include data
such as minimum, maximum, mean,
standard deviation, and so forth.

•	 The expert labels only those clusters
for which he/she is very confident in
the label estimation.

•	 If the expert labels at least one of the r
(unlabeled) clusters, then go to Step 2
and repeat, otherwise continue.

5. Stop semisupervised clustering: The itera-
tive process is stopped when the sets C_nfp,
C_ fp, and C_ul remain unchanged. The
modules in the nfp (fp) clusters are labeled
and recorded as nfp (fp), while those in the
ul clusters are not assigned any label. In ad-
dition, the centroids of the {p + q} labeled
clusters are also recorded.

sEMIsupErvIsEd clAssIfIcAtIon
wIth EM AlgorIthM

The expectation maximization (EM) algorithm is a
general iterative method for maximum likelihood
estimation in data mining problems with incom-
plete data. The EM algorithm takes an iterative
approach consisting of replacing missing data with
estimated values, estimating model parameters,
and re-estimating the missing data values. An
iteration of EM consists of an E or Expectation

 2719

Software Quality Modeling with Limited Apriori Defect Data

step and an M or Maximization step, with each
having a direct statistical interpretation.

We limit our EM algorithm discussion to a
brief overview, and refer the reader to Little and
Rubin (2002) and Seliya et al. (2004) for a more
extensive coverage. In our study, the class value
of the unlabeled software modules is treated as
missing data, and the EM algorithm is used to
estimate the missing values. Many multivariate
statistical analysis, including multiple linear
regression, principal component analysis, and
canonical correlation analysis are based on the
initial study of the data with respect to the sample
mean and covariance matrix of the variables.
The EM algorithm implemented for our study
on semisupervised software quality estimation is
based on maximum likelihood estimation of miss-
ing data, means, and covariances for multivariate
normal samples (Little et al., 2002).

The E and M steps continue iteratively until
a stopping criterion is reached. Commonly used
stopping criteria include specifying a maximum
number of iterations or monitoring when the
change in the values estimated for the missing
data reaches a plateau for a specified epsilon value
(Little et al., 2002). We use the latter criteria and
allow the EM algorithm to converge without a
maximum number of iterations, that is, iteration
is stopped if the maximum change among the
means or covariances between two consecutive
iterations is less than 0.0001. The initial values
of the parameter set are obtained by estimating
means and variances from all available values
of each variable, and then estimating covari-
ances from all available pairwise values using
the computed means.

Given the L (labeled) and U (unlabeled) da-
tasets, the EM algorithm is used to estimate the
missing class labels by creating a new dataset
combining L and U and then applying the EM
algorithm to estimate the missing data, that is,
the dependent variable of U. The following pro-
cedure is used in our EM-based semisupervised
classification approach:

1. Estimate the dependent variable (class la-
bels) for the labeled dataset. This is done by
treating L also as U, that is, the unlabeled
dataset consists of the labeled instances but
without their fault-proneness labels. The
EM algorithm is then used to estimate these
missing class labels. In our study the fp and
nfp classes are labeled 1 and 0, respectively.
Consequently, the estimated missing values
will approximately fall within the range 1
and 0.

2. For a given significance level α, obtain con-
fidence intervals for the predicted dependent
variable in Step 1. The assumption is that the
two confidence interval boundaries delineate
the nfp and fp modules. Record the upper
boundary as ci_nfp (i.e., closer to 0) and the
lower boundary as ci_ fp (i.e., closer to 1).

3. For the given L and U datasets, estimate the
dependent variable for U using EM.

4. An instance in U is identified as nfp if it’s
predicted dependent variable falls within
(i.e., is lower than) the upper boundary,
that is, ci_nfp. Similarly, an instance in U
is identified as fp if it’s predicted dependent
variable falls within (i.e., is greater than) the
lower bound, that is, ci_ fp.

5. The newly labeled instances of U are used
to augment L, and the semisupervised clas-
sification procedure is iterated from Step 1.
The iteration stopping criteria used in our
study is such that if the number of instances
selected from U is less than a specific number
(that is, 1% of initial L dataset), then stop
iteration.

EMpIrIcAl cAsE study

software system descriptions

The software measurements and quality data used
in our study to investigate the proposed semisu-
pervised learning approaches is that of a large

2720

Software Quality Modeling with Limited Apriori Defect Data

NASA software project, JM1. Written in C, JM1
is a real-time ground system that uses simulations
to generate certain predictions for missions. The
data was made available through the Metrics Data
Program (MDP) at NASA, and included software
measurement data and associated error (fault or
defect) data collected at the function level.

A program module for the system consisted
of a function or method. The fault data collected
for the system represents, for a given module,
faults detected during software development.
The original JM1 dataset consisted of 10,883
software modules, of which 2,105 modules had
software defects (ranging from 1 to 26) while the
remaining 8,778 modules were defect-free, that is,
had no software faults. In our study, a program
module with no faults was considered nfp and
fp otherwise.

The JM1 dataset contained some inconsistent
modules (those with identical software mea-
surements but with different class labels) and
those with missing values. Upon removing such
modules, the dataset was reduced from 10,883 to
8,850 modules. We denote this reduced dataset
as JM1-8850, which consisted of 1,687 modules
with one or more defects and 7,163 modules with
no defects.

Each program module in the JM1 dataset
was characterized by 21 software measurements

(Fenton et al., 1997): the 13 metrics as shown in
Table 1 and 8 derived Halstead metrics (Halstead
length, Halstead volume, Halstead level, Halstead
difficulty, Halstead content, Halstead effort, Hal-
stead error estimate, and Halstead program time.
We used only the 13 basic software metrics in
our analysis. The eight derived Halstead metrics
were not used. The metrics for the JM1 (and other
datasets) were primarily governed by their avail-
ability, internal workings of the projects, and the
data collection tools used. The type and numbers
of metrics made available were determined by
the NASA Metrics Data Program. Other metrics,
including software process measurements, were
not available. The use of the specific software
metrics does not advocate their effectiveness, and
a different project may consider a different set of
software measurements for analysis (Fenton et
al., 1997; Imam et al., 2001).

In order to gauge the performance of the
semisupervised clustering results, we use software
measurement data of three other NASA projects,
KC1, KC2, and KC3, as test datasets. These soft-
ware measurement datasets were also obtained
through the NASA Metrics Data Program. The
definitions of what constituted a fp and nfp module
for these projects are the same as those of the JM1
system. A program module of these projects also
consisted of a function, subroutine, or method.
These three projects were characterized by the
same software product metrics used for the JM1
project, and were built in a similar software de-
velopment organization. The software systems of
the test datasets are summarized next:

•	 The KC1 project is a single CSCI within
a large ground system and consists of 43
KLOC (thousand lines of code) of C++ code.
A given CSCI comprises of logical groups
of computer software components (CSCs).
The dataset contains 2107 modules, of which
325 have one or more faults and 1782 have
zero faults. The maximum number of faults
in a module is 7.

Line Count Metrics

Total Lines of Code
Executable LOC
Comments LOC
Blank LOC
Code And Comments LOC

Halstead Metrics

Total Operators
Total Operands
Unique Operators
Unique Operands

McCabe Metrics
Cyclomatic Complexity
Essential Complexity
Design Complexity

Branch Count Metrics Branch Count

Table 1. Software measurements

 2721

Software Quality Modeling with Limited Apriori Defect Data

•	 The KC2 project, written in C++, is the
science data processing unit of a storage
management system used for receiving and
processing ground data for missions. The
dataset includes only those modules that
were developed by NASA software develop-
ers and not commercial-of-the-shelf (COTS)
software. The dataset contains 520 modules,
of which 106 have one or more faults and
414 have zero faults. The maximum number
of faults in a software module is 13.

•	 The KC3 project, written in 18 KLOC of
Java, is a software application that collects,
processes, and delivers satellite meta-data.
The dataset contains 458 modules, of which
43 have one or more faults and 415 have zero
faults. The maximum number of faults in a
module is 6.

Empirical setting and Modeling

The initial L dataset is obtained by randomly select-
ing LP number of modules from JM1-8850, while
the remaining UP number of modules were treated
(without their fault-proneness labels) as the initial U
dataset. The sampling was performed to maintain
the approximate proportion of nfp:fp = 80:20 of the
instances in JM1-8850. We considered different
sampling sizes, that is, LP = {100, 250, 500, 1000,
1500, 2000, 3000}. For a given LP value, three
samples were obtained without replacement from
the JM1-8850 dataset. In the case of LP = {100, 250,
500}, five samples were obtained to account for their
relatively small sizes. Due to space consideration,
we generally only present results for LP = {500,
1000}; however, additional details are provided in
(Seliya et al., 2004; Seliya et al., 2005).

When classifying program modules as fp or
nfp, a Type I error occurs when a nfp module is
misclassified as fp, while a Type II error occurs
when a fp module is misclassified as nfp. It is
known that the two error rates are inversely pro-
portional (Khoshgoftaar et al., 2003; Khoshgoftaar
et al., 2000).

semisupervised clustering
Modeling

The initial numbers of the nfp and fp clusters,
that is, p and q, were obtained by setting both
Cin_nfp and Cin_ fp to 20. The maximum number
of clusters allowed during our semisupervised
clustering with k-means was set to two values:
Cmax = {30, 40}. These values were selected based
on input from the domain expert and reflects a
similar empirical setting used in our previous work
(Zhong, Khoshgoftaar, & Seliya, 2004). Due to
similarity of results for the two Cmax values, only
results for Cmax = 40 are presented.

At a given iteration during the semisupervised
clustering process, the following descriptive statis-
tics were computed at the request of the software
engineering expert: minimum, maximum, mean,
median, standard deviation, and the 75, 80, 85,
90, and 95 percentiles. These values were com-
puted for all 13 software attributes of modules
in a given cluster. The expert was also presented
with following statistics for JM1-8850 and the U
dataset at a given iteration: minimum, maximum,
mean, median, standard deviation, and the 5, 10,
15, 20, 25, 30, 35, 40, 45, 55, 60, 70, 75, 80, 85, 90
and 95 percentiles. The extent to which the above
descriptive statistics were used was at the disposal
of the expert during his labeling task.

Semisupervised Classification
Modeling

The significance level used to select instances
from the U dataset to augment the L dataset is
set to α = 0.05. Other significance levels of 0.01
and 0.10 were also considered; however, their
results are not presented as the software quality
estimation performances were relatively similar
for the different α values. The iterative semisu-
pervised classification process is continued until
the number of instances added to U is less than
1% of the initial unlabeled dataset.

2722

Software Quality Modeling with Limited Apriori Defect Data

semisupervised clustering results

The predicted class labels of the labeled program
modules obtained at the end of each semisuper-
vised clustering run are compared with their
actual class labels. The average classification
performance across the different samples for each
LP and Cmax = 40 is presented in Table 2. The table
shows the average Type I, Type II, and Overall
misclassification error rates for the different LP
values. It was observed that for the given Cmax
value, the Type II error rates decreases with an
increase in the LP value, indicating that with a
larger initial labeled dataset, the semisupervised
clustering with expert input scheme detects more
fp modules.

In a recent study (Zhong et al., 2004), we inves-
tigated unsupervised clustering techniques on the
JM1-8850 dataset. In that study, the k-means and
Neural-Gas (Martinez, Berkovich, & Schulten,
1993) clustering algorithms were used at Cmax =
30 clusters. Similar to this study, the expert was
given descriptive statistics for each cluster and
was asked to label them as either nfp or fp. In
(Zhong et al., 2004), the Neural-Gas clustering
technique yielded better classification results than
the k-means algorithm.

For the program modules that are labeled
after the respective semisupervised clustering

runs, the corresponding module classification
performances by the Neural-Gas unsupervised
clustering technique are presented in Table 2. The
semisupervised clustering scheme depicts better
false-negative error rates (Type II) than the un-
supervised clustering method. The false-negative
error rates of both techniques tend to decrease
with an increase in LP. The false-positive error
rates (Type I) of both techniques tends to remain
relatively stable across the different LP values.

A z-test (Seber, 1984) was performed to com-
pare the classification performances (populations)
of semisupervised clustering and unsupervised
clustering. The Overall misclassifications ob-
tained by both techniques are used as the response
variable in the statistical comparison at a 5%
significance level. The proposed semisupervised
clustering approach yielded significantly better
Overall misclassifications than the unsupervised
clustering approach for LP values of 500 and
greater.

The KC1, KC2, and KC3 datasets are used as
test data to evaluate the software quality knowl-
edge learnt through the semisupervised clustering
process as compared to unsupervised clustering
with Neural-Gas. The test data modules are
classified based on their Euclidean distance from
centroids of the final nfp and fp clusters at the
end a semisupervised clustering run. We report

Sample
Size

Semisupervised Unsupervised

Type I Type II Overall Type I Type II Overall

100 0.1491 0.4599 0.2058 0.1748 0.5758 0.2479

250 0.1450 0.4313 0.1989 0.1962 0.5677 0.2661

500 0.1408 0.4123 0.1913 0.1931 0.5281 0.2554

1000 0.1063 0.4264 0.1630 0.1778 0.5464 0.2431

1500 0.1219 0.4073 0.1759 0.1994 0.5169 0.2595

2000 0.1137 0.3809 0.1641 0.1883 0.5172 0.2503

2500 0.1253 0.3777 0.1725 0.1896 0.4804 0.2440

3000 0.1361 0.3099 0.1687 0.1994 0.4688 0.2499

Table 2. Average classification performance of labeled modules with semisupervised clustering.

 2723

Software Quality Modeling with Limited Apriori Defect Data

the averages of the respective number of random
samples for LP = {500, 1000}. A similar classifi-
cation is made using centroids of the nfp and fp
clusters labeled by the expert after unsupervised
clustering with the Neural-Gas algorithm.

The classification performances obtained by
unsupervised clustering for the test datasets are
shown in Table 3. The misclassification error rates
of all test datasets are rather unbalanced with a
low Type I error rate and a relatively high Type
II error rate. Such a classification is obviously not
useful to the software practitioner since among
the program modules correctly detected as nfp
or fp, most are nfp instances—many fp modules
are not detected.

The average misclassification error rates ob-
tained by the respective semisupervised clustering
runs for the test datasets are shown in Table 4. In
comparison to the test data performances obtained
with unsupervised clustering, the semisupervised
clustering approach yielded noticeable better
classification performances. The Type II error
rates obtained by our semisupervised cluster-
ing approach were noticeably lower than those
obtained by unsupervised clustering. This was
accompanied, however, with higher or similar
Type I error rates compared to unsupervised
clustering. Though the Type I error rates were
generally higher for semisupervised clustering,
they were comparable to those of unsupervised
clustering.

Semisupervised Classification
results

We primarily discuss the empirical results ob-
tained by the EM-based semisupervised software
quality classification approach in the context of
a comparison with those of the semisupervised
clustering with expert input scheme presented in
previous section. The quality-of-fit performances
of the EM-based semisupervised classification
approach for the initial labeled datasets are
summarized in Table 5. The corresponding mis-
classification error rates for the labeled datasets
after the respective EM-based semisupervised
classification process is completed are shown in
Table 6.

As observed in the Tables 5 and 6, the EM-
based semisupervised classification approach
improves the overall classification performances
for the different LP values. It is also noted that
the final classification performance is (generally)
inversely proportional to the size of the initial
labeled dataset, that is, LP. This is perhaps indica-
tive of the presence of excess noise in the JM1-
8850 dataset. A further insight into the presence
of noise in JM1-8850 in the context of the two
semisupervised learning approaches is presented
in (Seliya et al., 2004; Seliya et al., 2005).

The software quality estimation performance
of the semisupervised classification approach for

Dataset Type I Type II Overall

KC1 0.0617 0.6985 0.1599

KC2 0.0918 0.4151 0.1577

KC3 0.1229 0.5116 0.1594

Table 3. Data performances with unsupervised
clustering

Dataset Type I Type II Overall

LP = 500

KC1 0.0846 0.4708 0.1442

KC2 0.1039 0.3302 0.1500

KC3 0.1181 0.4186 0.1463

LP = 1000

KC1 0.0947 0.3477 0.1337

KC2 0.1304 0.2925 0.1635

KC3 0.1325 0.3488 0.1528

Table 4. Average test data performances with
semisupervised clustering

2724

Software Quality Modeling with Limited Apriori Defect Data

the three test datasets is shown in Table 7. The table
shows the average performance of the different
samples for the LP values of 500 and 1000. In the
case of LP = 1000, semisupervised clustering (see
previous section) provides better prediction for the
KC1, KC2, and KC3 test datasets. The noticeable
difference between the two techniques for these
three datasets is observed in the respective Type
II error rates. While providing relatively similar
or comparable Type I error rates, semisupervised
clustering with expert input yields much lower
Type II error rates than the EM-based semisu-
pervised classification approach.

For LP = 500, the semisupervised cluster-
ing with expert input approach provides better
software quality prediction for the KC1 and KC2
datasets. In the case of KC3, with a comparable

Type I error rate the semisupervised clustering
approach provided a better Type II error rate. In
summary, the semisupervised clustering with
expert input generally yielded better performance
than EM-based semisupervised clustering.

We note that the preference of selecting one of
the two approaches for software quality analysis
with limited apriori fault-proneness data may also
be based on criteria other than software quality
estimation accuracy. The EM-based semisuper-
vised classification approach requires minimal
input from the expert other than incorporating
the desired software quality modeling strategy. In
contrast, the semisupervised clustering approach
requires considerable input from the software
engineering expert in labeling new program
modules (clusters) as nfp or fp. However, based
on our study it is likely that the effort put into
the semisupervised clustering approach would
yield fruitful outcome in improving quality of
the software product.

conclusIon

The increasing reliance on software-based
systems further stresses the need to deliver
high-quality software that is very reliable dur-
ing system operations. This makes the task of

LP Type I Type II Overall

100 0.1475 0.4500 0.2080

250 0.1580 0.4720 0.2208

500 0.1575 0.4820 0.2224

1000 0.1442 0.5600 0.2273

1500 0.1669 0.5233 0.2382

2000 0.1590 0.5317 0.2335

3000 0.2132 0.4839 0.2673

LP Type I Type II Overall

100 0.0039 0.0121 0.0055

250 0.0075 0.0227 0.0108

500 0.0136 0.0439 0.0206

1000 0.0249 0.0968 0.0428

1500 0.0390 0.1254 0.0593

2000 0.0482 0.1543 0.0752

3000 0.0830 0.1882 0.1094

Dataset Type I Type II Overall

LP = 500

KC1 0.0703 0.7329 0.1725

KC2 0.1072 0.4245 0.1719

KC3 0.1118 0.5209 0.1502

LP = 1000

KC1 0.0700 0.7528 0.1753

KC2 0.1031 0.4465 0.1731

KC3 0.0988 0.5426 0.1405

Table 5. Average (initial) performance with
semisupervised classification

Table 6. Average (final) performance with semisu-
pervised classification

Table 7. Average test data performances with
semisupervised classification

 2725

Software Quality Modeling with Limited Apriori Defect Data

software quality assurance as vital as delivering
a software product within allocated budget and
scheduling constraints. The key to developing
high-quality software is the measurement and
modeling of software quality, and toward that
objective various activities are utilized in software
engineering practice including verification and
validation, automated test case generation for
additional testing, re-engineering of low-qual-
ity program modules, and reviews of software
design and code.

This research presented effective data mining
solutions for tackling very important yet unad-
dressed software engineering issues. We address
software quality modeling and analysis when
there is limited apriori fault-proneness defect data
available. The proposed solutions are evaluated
using case studies of software measurement and
defect data obtained from multiple NASA soft-
ware projects, made available through the NASA
Metrics Data Program.

In the case when the development organization
has experience in developing systems similar to
the target project but has limited availability of
defect data for those systems, the software quality
assurance team could employ either the EM-based
semisupervised classification approach or semisu-
pervised clustering approach with expert input.
In our comparative study of these two solutions
for software quality analysis with limited defect
data, it was shown that semisupervised clustering
approach generally yielded better software quality
prediction that the semisupervised classification
approach. However, once again, the software
quality assurance team may also want to consider
the relatively higher complexity involved in the
semisupervised clustering approach when mak-
ing their decision.

In our software quality analysis studies with
the EM-based semisupervised classification and
semisupervised clustering with expert input
approaches, an explorative analysis of program
modules that remain unlabeled after the different
semisupervised learning runs provided valuable

insight into the characteristics of those modules.
A data mining point of view indicated that many
of them were likely noisy instances in the JM1
software measurement dataset (Seliya et al., 2004;
Seliya et al., 2005). From a software engineer-
ing point of view we are interested to learn why
those specific modules remain unlabeled after the
respective semisupervised learning runs. How-
ever, due to the unavailability of other detailed
information on the JM1 and other NASA software
projects a further in-depth analysis could not be
performed.

An additional analysis of the two semisuper-
vised learning approaches was performed by
comparing their prediction performances with
software quality classification models built by
using the C4.5 supervised learner trained on the
respective initial labeled datasets (Seliya et al.,
2004; Seliya et al., 2005). It was observed (results
not shown) that both semisupervised learning
approaches generally provided better software
quality estimations compared to the supervised
learners trained on the initial labeled datasets.

The software engineering research presented
in this chapter can lead to further related research
in software measurements and software quality
analysis. Some directions for future work may
include: using different clustering algorithms for
the semisupervised clustering with expert input
scheme, using different underlying algorithms
for the semisupervised classification approach,
and incorporating the costs of misclassification
into the respective semisupervised learning ap-
proaches.

rEfErEncEs

Basu, S., Banerjee A., & Mooney, R. (2002).
Semisupervised clustering by seeding. In Pro-
ceedings of the 19th International Conference
on Machine Learning, Sydney, Australia (pp.
19-26).

2726

Software Quality Modeling with Limited Apriori Defect Data

Demirez, A., & Bennett, K. (2000). Optimization
approaches to semisupervised learning. In M.
Ferris, O. Mangasarian, & J. Pang (Eds.), Ap-
plications and algorithms of complementarity.
Boston: Kluwer Academic Publishers.

Dong, A., & Bhanu, B. (2003). A new semisu-
pervised EM algorithm for image retrieval. In
Proceedings of the IEEE International Conference
on Computer Vision and Pattern Recognition
(pp. 662-667). Madison, WI: IEEE Computer
Society.

Fenton., N. E., & Pfleeger, S. L. (1997). Software
metrics: A rigorous and practical approach (2nd
ed.). Boston: PWS Publishing Company.

Fung, G., & Mangasarian, O. (2001). Semisu-
pervised support vector machines for unlabeled
data classification. Optimization Methods and
Software, 15, 29-44.

Ghahramani, Z., & Jordan, M. I. (1994). Su-
pervised learning from incomplete data via an
EM approach. In J. D. Cowan, G. Tesauro, & J.
Alspector (Eds.), Advances in neural informa-
tion processing systems (Vol. 6, pp. 120-127).
San Francisco.

Goldman, S., & Zhou, Y. (2000). Enhancing
supervised learning with unlabeled data. In
Proceedings of the 17th International Conference
on Machine Learning, Stanford University, CA
(pp. 327-334).

Guo, L., Cukic, B., & Singh, H. (2003). Predicting
fault prone modules by the dempster-shafer belief
networks. In Proceedings of the 18th International
Conference on Automated Software Engineering,
Montreal, Canada (pp. 249-252).

Imam, K. E., Benlarbi, S., Goel, N., & Rai, S.
N. (2001). Comparing case-based reasoning
classifiers for predicting high-risk software
components. Journal of Systems and Software,
55(3), 301-320.

Khoshgoftaar, T. M., Liu, Y., & Seliya, N. (2003).
Genetic programming-based decision trees for

software quality classification. In Proceedings
of the 15th International Conference on Tools
with Artificial Intelligence, Sacramento, CA (pp.
374-383).

Khoshgoftaar, T. M., & Seliya, N. (2003). Analogy-
based practical classification rules for software
quality estimation. Empirical Software Engineer-
ing Journal, 8(4), 325-350. Kluwer Academic
Publishers.

Khoshgoftaar, T. M., & Seliya, N. (2004). Com-
parative assessment of software quality clas-
sification techniques: An empirical case study.
Empirical Software Engineering Journal, 9(3),
229-257. Kluwer Academic Publishers.

Khoshgoftaar, T. M., Yuan, X., & Allen, E. B.
(2000). Balancing misclassification rates in classi-
fication tree models of software quality. Empirical
Software Engineering Journal, 5, 313-330.

Krzanowski, W. J., & Lai, Y. T. (1988). A criterion
for determining the number of groups in a data
set using sums-of-squares clustering. Biometrics,
44(1), 23-34.

Little, R. J. A., & Rubin, D. B. (2002). Statistical
analysis with missing data (2nd ed.). Hoboken, NJ:
John Wiley and Sons.

Martinez, T. M., Berkovich, S. G., & Schulten,
K. J. (1993). Neural-gas: Network for vector
quantization and its application to time-series
prediction. IEEE Transactions on Neural Net-
works, 4(4), 558-569.

Mitchell, T. (1999). The role of unlabeled data
in supervised learning. In Proceedings of the 6th
International Colloquium on Cognitive Science,
Donostia. San Sebastian, Spain: Institute for
Logic, Cognition, Language and Information.

Nigam, K., & Ghani, R. (2000). Analyzing the
effectiveness and applicability of co-training. In
Proceedings of the 9th International Conference
on Information and Knowledge Management,
McLean, VA (pp. 86-93).

 2727

Software Quality Modeling with Limited Apriori Defect Data

Nigam, K., McCallum, A. K., Thrun, S., &
Mitchell, T. (1998). Learning to classify text
from labeled and unlabeled documents. In Pro-
ceedings of the 15th Conference of the American
Association for Artificial Intelligence, Madison,
WI (pp. 792-799).

Nigam, K., McCallum, A. K., Thrun, S., & Mitch-
ell, T. (2000). Text classification from labeled
and unlabeled documents using EM. Machine
Learning, 39(2-3), 103-134.

Ohlsson, M. C., & Runeson, P. (2002). Experience
from replicating empirical studies on prediction
models. In Proceedings of the 8th International
Software Metrics Symposium, Ottawa, Canada
(pp. 217-226).

Pedrycz, W., & Waletzky, J. (1997a). Fuzzy clus-
tering in software reusability. Software: Practice
and Experience, 27, 245-270.

Pedrycz, W., & Waletzky, J. (1997b). Fuzzy clus-
tering with partial supervision. IEEE Transactions
on Systems, Man, and Cybernetics, 5, 787-795.

Pizzi, N. J., Summers, R., & Pedrycz, W. (2002).
Software quality prediction using median-ad-
justed class labels. In Proceedings of the Inter-
national Joint Conference on Neural Networks,
Honolulu, HI (Vol. 3, pp. 2405-2409).

Schneidewind, N. F. (2001). Investigation of logis-
tic regression as a discriminant of software quality.
In Proceedings of the 7th International Software
Metrics Symposium, London (pp. 328-337).

Seber, G. A. F. (1984). Multivariate observations.
New York: John Wiley & Sons.

Seeger, M. (2001). Learning with labeled and
unlabeled data (Tech. Rep.). Scotland, UK: Uni-
versity of Edinburgh, Institute for Adaptive and
Neural Computation.

Seliya, N., Khoshgoftaar, T. M., & Zhong, S.
(2004). Semisupervised learning for software
quality estimation. In Proceedings of the 16th IEEE
International Conference on Tools with Artificial
Intelligence, Boca Raton, FL (pp. 183-190).

Seliya, N., Khoshgoftaar, T. M., & Zhong, S.
(2005). Analyzing software quality with limited
fault-proneness defect data. In Proceedings of
the 9th IEEE International Symposium on High
Assurance Systems Engineering, Heidelberg,
Germany (pp. 89-98).

Suarez, A., & Lutsko, J. F. (1999). Globally optimal
fuzzy decision trees for classification and regres-
sion. Pattern Analysis and Machine Intelligence,
21(12), 1297-1311.

Wagstaff, K., & Cardie, C. (2000). Clustering with
instance-level constraints. In Proceedings of the
17th International Conference on Machine Learn-
ing, Stanford University, CA (pp. 1103-1110) .

Wu, Y., & Huang, T. S. (2000). Self-supervised
learning for visual tracking and recognition of
human hand. In Proceedings of the 17th National
Conference on Artificial Intelligence, Austin, TX
(pp. 243-248) .

Zeng, H., Wang, X., Chen, Z., Lu, H., & Ma, W.
(2003). CBC: Clustering based text classification
using minimal labeled data. In Proceedings of the
IEEE International Conference on Data Mining,
Melbourne, FL (pp. 443-450).

Zhong, S. (2006). Semisupervised model-based
document clustering: A comparative study. Ma-
chine Learning, 65(1), 2-29.

Zhong, S., Khoshgoftaar, T. M., & Seliya, N.
(2004). Analyzing software measurement data
with clustering techniques. IEEE Intelligent
Systems, 19(2), 22-27.

This work was previously published in Knowledge Discovery and Data Mining: Challenges and Realities, edited by X. Zhu and
I. Davidson, pp. 1-15, copyright 2007 by Information Science Reference (an imprint of IGI Global).

2728

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.6
Integrating Quality Criteria and

Methods of Evaluation for
Software Models

Anna E. Bobkowska
Gdańsk University of Technology, Poland

AbstrAct

Successful realization of the model-driven soft-
ware development visions in practice requires high
quality models. This chapter focuses on the quality
of models themselves. It discusses context-free
and context-dependent quality criteria for mod-
els and then moves on to methods of evaluation
which facilitate checking whether a model is good
enough. We use linguistic theories to understand
groups of criteria and their impact on other mod-
els, software product and the process of software
development. We propose a strict distinction of
the impacts of visual modeling languages, models
of the system and tools for quality criteria. This
distinction is helpful when designing the meth-
ods of evaluation and making decision about the
point in time, scope and personnel responsible
for quality assessment. As the quality criteria and
several methods of evaluation has usually been
considered separately we propose a methodol-
ogy which integrates them. Such an integrated

approach provides the following benefits. It al-
lows for designing methods of evaluation based
on quality criteria and elements of the model (or
modeling language) in the context of specific
needs. It can be applied for management of the
scope of evaluation with quality criteria as well
as configuration of the method to a specific situ-
ation. It allows for flexible and efficient conduct
of the evaluation with selection of the methods
of evaluation. Finally, this chapter presents case
studies which illustrate the approach.

IntroductIon

Models play the central role in model-driven
software development approaches. However, only
good models really support work of analysts,
managers and developers. Only good models have
the potential to facilitate dealing with complexity,
direct micro-process of software development,
enable more efficient performance of the difficult

 2729

Integrating Quality Criteria and Methods of Evaluation for Software Models

tasks, facilitate management and increase satis-
faction at work. On the opposite, “bad” models
may cause mistake, waste time and be annoying
in use. Despite that, much research has been done
in the area of technology of model transforma-
tions and tools supporting this task. We argue that
there is a need to focus on the quality of visual
modeling languages (VML), which are used for
creating the models as well as quality of models
themselves.

This chapter takes a practical perspective
to quality in modeling. In order to improve the
quality of models one needs to understand qual-
ity criteria for models, know efficient methods
for conducting evaluation and understand rela-
tions between them for effective configuration
and management. The level of maturity of the
technology is not satisfactory nowadays and one
can observe several problems from the point of
view of project and general knowledge.

From the point of view of the software project,
there are several unrelated methods with limited
scope of application. It is unclear what could be
benefits of using them and how they could be
integrated. Perhaps the most popular method for
improving model quality are inspections or re-
views with checklists. However, one often needs
to customize the checklist provided with method-
ologies for a specific project. It is easy to remove
unnecessary checkpoints, but the problem remains
when deciding which checkpoints need to added.
The problem of inflexible methods of evaluation
appears even more clearly in the perspective of
the current trend of software process configura-
tion. It assumes that companies do not choose
a process but rather they make a configuration
of roles, artifacts and tasks for a given type of
project within a framework. It means that model
artifacts, modeling activities and model checking
activities are objects of configuration. Thus, we
need objective criteria to make decisions about
the scope of modeling as well as methods of
evaluation for software models.

From the point of view of maturity of mod-
eling technology, some objective criteria and
practical methods of evaluation are needed in
order to provide frameworks for customization
of the concrete software projects. There is a need
to understand criteria why modeling languages
should have such elements, diagrams, visualiza-
tions, etc. The methods of evaluation are useful
for making efficient evaluation and quality criteria
behind such decision allow for trade-offs when
compromises are necessary. They could be applied
by Object Management Group (OMG) members
working on modeling standards, e.g., Unified
Modeling Language (UML) and its profiles or
Business Process Modeling Notation (BPMN).
As these standards influence advances in prac-
tice, the increase of the maturity of modeling
technology should result in better perception of
this technology and more successful application
in practice. This approach could be useful also
for committees which work on application-type
modeling languages, e.g., internet applications;
special type of models, e.g., task models for user
behavior modeling; and models for emerging
technology, e.g., aspect-oriented technology. Fi-
nally, they could be applied in the area of domain
specific modeling. The tasks of designing and
evaluating modeling languages in this case are
performed in software companies which means
a universal application of the methods of visual
modeling language evaluation.

The objective of this chapter is to present an
approach to dealing with model quality in a way
which integrates quality criteria and methods
of evaluation. The quality criteria are useful
for understanding which aspects are evaluated
and for managing the scope of evaluation. The
methods of evaluation are necessary for efficient
conduct of evaluation. The integrated approach
should provide the following benefits. It should
allow for designing methods of evaluation based
on quality criteria and elements of the model (or
modeling language) in the context of specific

2730

Integrating Quality Criteria and Methods of Evaluation for Software Models

needs. It should be applicable for management the
scope of evaluation with quality criteria as well as
configuration of the method to a specific situation.
It should allow for flexible and efficient conduct
of the evaluation with selection of the methods
of evaluation. The most important features of the
solution include:

•	 Improved understanding of the quality
of models in the perspective of selected
linguistic theories and separating impacts
modeling language, model and modeling
tools for the quality criteria;

•	 Proposition of a methodology for designing
methods of evaluation based on quality cri-
teria and elements of the model (or modeling
language).

bAcKground

Although several quality criteria and some meth-
ods for evaluating models have been already
proposed, the practical integrated approach is
still missing. They solve one kind of problems
but fail to satisfy other requirements. This section
discusses related work in the area of identifying
quality criteria for both models and visual mod-
elling languages, and then available methods of
evaluation.

Traditionally, software engineering research-
ers proposed technical quality criteria for models
and visual modeling languages (VML). It was typi-
cal, that they were related to modeling technology
in general. It can be illustrated with the following
examples. Models should be expressive enough
to allow developers to capture all interesting
strategic and tactical decision (Booch, 1994) and
notation should allow to create complete, correct
and consistent models (McGregor, 1998). The
diagrams should be executable (Martin, 1993). A
set of characteristics of a good notation include:
clear and uniform mapping of concepts to symbols,

ease to draw by hand, good look when printed,
faxed and copied using monochrome images,
consistency with past practice and self-consis-
tency, simplicity of common case modeling, not-
to-subtle distinctions, no overloading of symbols
and suppressible details (Rumbaugh, 1999). More
attempts to answer the question of the quality of
models can be found (Firesmith et al. 1996; Hong,
1993). The set of desirable criteria for models also
include: precision, constructability, expressive-
ness, executability, traceability, inspectability,
and usability. A more recent research proposes
the following key characteristics of engineering
models (Selic 2003):

•	 Abstraction – possibility to remove or hide
details irrelevant for a given viewpoint, it
constitutes the means for coping with com-
plexity;

•	 Understandability – presenting in a form
that directly appeals to our intuition and
thus reduces intellectual effort;

•	 Accuracy – true-to-life representation of the
system;

•	 Predictiveness – possibility to predict
system’s features;

•	 Small cost – models should be significantly
cheaper to construct and analyze than mod-
eled system.

Analysis of the proposed criteria suggests that,
in general, models should be easy to understand
for software developers, integrators and maintain-
ers, and on the other hand, they should be precise
enough to allow for automatic transformations
by the tools. However, it is not clear how these
criteria could be satisfied. Separating impacts of
visual modeling language, model and tools can be
helpful in the analysis and allow for higher level
of precision and more practical application. Not
much work on systematic approaches has been
done. The only exception was an attempt to dis-
tinguish between goals and means in conceptual

 2731

Integrating Quality Criteria and Methods of Evaluation for Software Models

modeling and to define syntactic, semantic and
pragmatic quality (Lindland et al. 1994).

Many factors have impact on the models.
The process of creating them, education and
experience of designers, their purpose of use,
and developer’s subjective decisions are just a
few examples. However, models quality depends,
first of all, on the quality of visual modelling lan-
guages, which define syntax of correct models,
their semantics and notation. In the area of VML
evaluation, several methods of evaluation or just
evaluations has been described in the literature,
e.g. a method based on cognitive dimensions (Cox,
2000), comparative studies (De Champeaux et. al.
1992; Gu et.al. 2002; Kutar et al. 2002), compar-
ing to ontology of systems (Opdahl et al. 2002)
or evaluation based on a set of model quality
criteria for business process modelling notation
(Hommes et.al. 2003).

Several approaches to checking model qual-
ity has been proposed, e.g. checklists (Rational
Unified Process, 2001), heuristics (Grotehen),
object-oriented metrics with thresholds (Lorenz
et al. 1994). Usually when applying them one
finds out they are not complete and one misses
a kind of framework for checking completeness.
The problem is one does not know according
to which quality criteria evaluations are made.
Another problem in current approaches is that it
is difficult to manage scope of evaluation when
scope of models in the documentation or type of
system under development changes.

The level of understanding of the quality cri-
teria for models and usefulness of the proposed
methods of evaluation is not satisfactory nowadays
and the progress in this area is expected. But even
assuming that universal lists of the quality criteria
for models are possible to be defined, it is very
likely that concrete evaluation will require only
limited scope of them. Therefore, instead of at-
tempting to define yet another “final set of quality
criteria”, we want to present a kind of framework
for dealing with these issues.

confIgurAtIon of MEthods of
EvAluAtIon bAsEd on QuAlIty
crItErIA

The objective of our research was to provide a
practical solution for increasing quality in the
modeling technology. We assume that in order to
achieve it one can manipulate on models or visual
modeling languages. In this section we identify
the requirements for the methods and their appli-
cation area and then we describe a methodology
for designing methods of evaluation.

With the current trend in the area of software
processes to provide a framework with best prac-
tices, e.g. IBM Rational Unified Process, which
could be customized and configurated for a given
type of projects depending on its characteristics,
particular models, modeling and model checking
activities are just a result of decisions made by
process engineer. This observation leads to for-
mulation of the first requirement for the methods
of evaluation. They should be configurable for
artifacts under evaluation.

The practice of software project shows that
most projects are performed in the tough market
conditions, they must meet limitation of resources
and increasing quality requirements. On the other
hand, it is known that quality assessment activities
are essential, but there is an optimal point on the
curve describing cost-to-effect. This perspective
leads to the next requirements for the methods of
evaluation. They should be as effective and ef-
ficient as possible. Since more advanced methods
require more time to be performed, the methods of
evaluation should be additionally manageable with
respect to the scope and time of evaluation.

Furthermore, process engineer should be
delivered with a solid knowledge about the con-
sequences of using a given method of evaluation.
Such knowledge would enable making rational
decisions instead of using a coincidental set of
checkpoints.

The above requirements can be fulfilled when
delivering a methodology for designing methods

2732

Integrating Quality Criteria and Methods of Evaluation for Software Models

of evaluation customizable for selected objects
under evaluation which check out these objects
against desired quality criteria. The methodology
can be summarized operationally in the follow-
ing steps:

1. Define objectives for your method of evalu-
ation

2. Identify means you can manipulate – objects
under evaluation

3. Define quality criteria
4. Make configuration of the method of evalu-

ation.

This methodology applied to design of the
method of evaluation for models during the
software project can be used by software process
engineers once during the configuration of the
process for a given type of projects or when the
changes to this process are introduced. Then,
several evaluations of models can be made by
members of the quality assurance group in several
projects of this type. The methodology applied
for designing methods of evaluation for visual
modeling languages can be used by the members
of the standard committees as well as language
engineers working on visual modeling languages.
The application in the area of support for improve-
ment of the standard modeling languages is not
a common activity but it has a great impact on
usefulness of technology used by many users.
With the increasing popularity of domain specific
languages, the design of the modeling languages
and methods of their evaluation becomes a more
common activity.

Definition of the Objectives and
Identification of Objects Under
Evaluation

The first important thing when designing a
method of evaluation is to define objectives. It
requires making realistic decisions about expected
results and elements to be manipulated. Hardly

ever the process engineer has the freedom to
make configuration of the process from scratch
without any limitations. Without this specific
point of reference, hardly any evaluation can be
successful. The distinction between quality of
language and quality of models increases preci-
sion in evaluation. It is useful to understand a
language as an expression space and a model as a
kind of expression. Thus, examples of objectives
for models include:

•	 Find defects in the design diagrams,
•	 Analyze fit to the purpose of the documented

system,
•	 Support domain expert in validation of

analysis documents,
•	 Evaluate understandability of documenta-

tion for a project,
•	 Predict functional quality of a system on

the basis of its documentation.

Depending on the expected results different
methods would be useful.

As examples of objectives for visual modeling
languages one can state:

•	 Evaluate application of a subset of UML for
a given type of projects with respect to the
fit to needs,

•	 Evaluate usability of UML diagrams,
•	 Compare expressiveness of several proposi-

tions for a domain specific language,
•	 Compare maturity of modeling technology

using BPMN and business use case modeling
including tool support and fit to software
development process.

It is important to have realistic expectation
what can be achieved by manipulating VML,
models and tools. For example, in order to achieve
“executable diagrams” one needs a VML which
allows to make executable specifications, then
models which are precise enough to deliver data for
transformations, and finally the tools which make

 2733

Integrating Quality Criteria and Methods of Evaluation for Software Models

the transformations to the executable form. When
attempting to assess correctness with respect to
syntax it is useful to understand that VML defines
correct models, then one can check models against
the syntax, and tools support checking correctness
against the syntax. They can disable incorrect
constructions but additional check is needed in
order to assess lack of incomplete work-in-prog-
ress ones. When evaluating expressiveness, VML
defines what is possible to express and it can be
evaluated against the fit of the expression space
to the domain or purpose of modeling; models
are kinds of expression within VML and they can
be evaluated against how they use possibilities of
VML to represent a system, and the role of tools is
neutral – they just facilitate making models. When
evaluating inspectability, VML can be checked
against ease of defining criteria for inspection
and relating them the model elements, the most
important for models is understandability for
inspectors and tools can be evaluated whether
they support making inspections. Depending on
the quality aspect the role of VML, models and
tools changes.

Quality criteria

Once decided about objectives and objects under
evaluation the next step is to define quality criteria.
It is difficult to define an orthogonal and complete
set of quality criteria. The solution depends on
several circumstances as well as internal aspects
of VMLs. In order to understand better impact of
quality criteria for models we use the following
linguistic inspirations:

•	 Distinction into content and expression areas
- which enables to predict consequences of
several types of defects;

•	 Model of syntax, semantics and notation -
and its application to evaluation of several
aspects of VML; and

•	 Pragmatics – a promising approach which
allows to define context of model usage

and make more precise context-dependent
evaluation.

For describing the quality model one can use,
for example, McCall’s framework or Goal Ques-
tion Metric (GQM) approach.

Content and Expression Areas

Distinction between content and expression areas
was inspired by the work of Hjelmslev (semiotician
and linguist living in 1899-1965). In his percep-
tion of a language, a sign is a function between
two forms, a content form and an expression
form and every sign function is manifested by
two substances: the content substance and the
expression substance. The content substance is
the psychological and conceptual manifestation of
the sign, whereas the expression substance is the
material substance wherein a sign is manifested.
In simple words, it is a distinction between what
one communicates and the means one uses to
do it, e.g. sound, text, pictures, sign language,
gestures, etc.

The implication for model quality evaluation
is we can evaluate separtely content of models
from their expression form. It allows to split
apart these characteristics which have impact
on solution from those which are only concerned
with understanding. In the first group there are:
completeness, correctness with respect to goals of
the system etc. While the second group includes
understandability, precision, adequate symbols
and simplicity.

The content has direct impact on the system
and these criteria can be used in order to predict
quality of software. For example, the lack of com-
pleteness of use case diagram will result in the
lack of functions in the system, the consequence
of incorrect class diagram will be incorrect struc-
ture of the system, incorrect dynamic models will
propagate to incorrect interactions between the
user and the system. The expression criteria are
indirectly concerned with the system quality, but

2734

Integrating Quality Criteria and Methods of Evaluation for Software Models

they indicate for likely problems with understand-
ing by their users and resulting defects.

Syntax, Semantics and Notation

The distinction between syntax, semantics, nota-
tion and pragmatics is inspired by the work of
semioticians such as Morris and Peirce and chap-
ters of contemporary books on linguistics which
study separately syntax (grammar) when dealing
with relations between signs, semantics concerned
with relations between signs and reality, differ-
ent forms of expressions and their rules (speech,
writing, gestures) and pragmatics—dependence
of communication on interpreters. The distinction
between syntax, semantics and notation is success-
fully applied in formulation of UML description.
An attempt to use distinction between syntax, se-
mantics and pragmatics for understanding model
quality has already been proposed (Lindland et al.
1994). However, this distinction has much greater
potential for performing more precise methods of
evaluation from the perspective of a given area as
well as the perspective of relationships between
given two areas.

Pragmatics

Pragmatics is the study of language which focuses
attention on the users and the context of language
use rather than on reference, truth, or grammar’
(The Oxford Companion to Philosophy). It stud-
ies the use of language in context, and the con-
text-dependence of various aspects of linguistic
interpretation. Context is the situation in which
language is used and it includes extralinguistic
factors: social, psychological and environmental
ones. One of the topics of debate in linguistics is the
semantics-pragmatics distinction (Bach). Seman-
tics concerns context-independent meaning (the
relation of signs to objects) and pragmatics deals
with context-dependent meaning (the relation of
signs to their interpreters). This distinction is best
reflected in the following pairs of expressions:

sentence vs. utterance; meaning vs. use; context-
invariant vs. context-sensitive meaning; linguistic
vs. speaker’s meaning; literal vs. nonliteral use;
or saying vs. implying.

Pragmatics in linguistics allows to deal with
the context of use. It enables understanding
aspects dependent on people who take part in
conversations and their situations. It could play
similar role in research on modeling in software
engineering. VMLs also have several kinds of
users with different social, psychological and
environmental factors. The perception of models
might differ depending on expectations related to
the roles they play in software development activi-
ties. Application of pragmatics in practice would
require definition and description of pragmatics
profiles and evaluation of VML in the context of
these pragmatics profiles.

design of the Method of Evaluation

The input for the method of evaluation are objec-
tives, quality criteria and objects under evaluation
which can be changed depending on the results of
evaluation. The results depend on the objectives.
They include: lists of defects, metrics, suggestions
of improvement, comparison results etc. The es-
sence of the design of the method of evaluation
is combination of the all relevant quality criteria
with objects under evaluation. This can be as
simple as intersection of criteria and objects under
evaluation or as difficult as using several basic
methods supporting the quality improvement and
integrating them.

In our opinion, the method of evaluation is
basically a support for human information pro-
cessing. Although some tools automatically collect
diagram metrics or automatically discover some
kinds of low-level defects, still majority of model
evaluation tasks and almost all VML evaluation
tasks must be performed by professionals.

Thus, it is useful to have a look at a cogni-
tive inspiration (without going into details of
cognitive modeling.) One can notice that within

 2735

Integrating Quality Criteria and Methods of Evaluation for Software Models

an evaluation without any support two different
types of information processing processes are
performed:

•	 An organizational process – which is con-
cerned with issues ‘What shall I do next?
What should be checked? How to do it? Is
it enough?’

•	 A checking process – which performs several
basic checks according to the organizational
process.

These processes take place concurrently and
can be informal, implicit and unordered. They
might be more or less conscious and casual. Main
problems and most of ‘awaiting’ are associated
with the organizational process. The role of the
method of evaluation is to deliver a pattern for
the organizational process, and, thus, to make it
more explicit, conscious, ordered and repeatable.
As the most waste of time is concerned with this
process, the method should result in improvement
of the efficiency of evaluation.

Furthermore, modeling concepts and quality
concepts are usually placed in different conceptual
models in our minds. The role of the methods of
evaluation which combine model elements with
quality criteria is to drive evaluator’s attention
step by step to facilitate checking all important
aspects. Any of these combinations is less prone
for forgetting when there are lots of them or
evaluator is working in hurry or has another
motivation to finish the evaluation soon. Thus,
the method supports effectiveness by forcing
complete check.

Additionally, some strategies are useful when
designing methods of evaluation, e.g. ‘most im-
portant things first’ which takes into consideration
that people get tired during evaluation and their
productivity can decrease, or the idea of ‘build-
ing evaluators’ knowledge’ and thus checking
related aspects together in time. A good practice
is to design a space for ‘other comments’ just in
case of finding by evaluators defects which are

not covered by the method or to allow them to
express their comments on the method.

One more important group of aspects to be
taken into account when designing methods of
evaluation are human factors: evaluators, their
characteristics, their knowledge and their context
of work. The differences might depend on culture
or language. The evaluators might prefer e.g. com-
mand style or question style, long questionnaires
with very simple questions or shorter question-
naires with more open and complex questions,
discussions with authors or just formal reports
from evaluation.

An interesting issue related to the design of
the methods of evaluation is whether it is possible
to automatically generate appropriate checklists.
As tools can be designed to support any task, it
is useful to pose additional questions about the
quality of the generated checklists and effective-
ness of generation, i.e. comparison of the effort
required for the development of such tools and
inserting necessary data with the effort required
for re-designing the checklists when context of
application or requirements change. Large benefits
can be achieved with low-cost manually-made
methods of evaluation. The tools can add the value
of easy generation of multiple variants of checklists
and allow for relating results of evaluation with
the items of the method and processing them.
However, one should be skeptical to automatically
generated checklists and review them carefully
for accuracy and style.

The main idea of the method to support orga-
nizational process during evaluator’s work and to
drive their attention seems to be universal, how-
ever more research on strategies and evaluator’s
preferences would be useful.

cAsE studIEs

In order to demonstrate the practical application of
the methodology of designing methods of evalua-
tion, we present three case studies with design of

2736

Integrating Quality Criteria and Methods of Evaluation for Software Models

diverse methods of evaluation. Two of them are
related to models, but they have different objec-
tives. The first method is a simple manageable
checklist for the purpose of finding defects and the
second uses every information on the models in
order to deliver quality predictions (Bobkowska,
2001). The third case study summarizes a method
for evaluating visual modeling languages from a
cognitive perspective (Bobkowska, 2005).

Quality criteria-based checklist

The objective of this method design was to pro-
vide a simple checklist for verification of analysis
models to be applied in teaching classes of systems
modeling and analysis. It was required that the
method fits well to the diagrams under evaluation
and quality criteria for models should be explicitly
stated. Additionally, the method should be efficient
and easy to modify.

 The object under evaluation was documen-
tation of the analysis, which consisted of the vi-
sion of the system (goals, scope, context) in the
textual form, use case diagram for presentation
of the system’s functionality, class diagram and
sequence diagrams for all use cases. Apart from
the diagrams, non-functional requirements were
specified in the textual form.

The quality criteria reflected the distinction
between content and expression areas. The con-
tent group included: completeness, correctness,
consistency and fit to the vision of the system.
The expression group included: understandability
of diagrams, their elegance, precision, simplicity
and adequate level of abstraction.

While designing the method we have used
additionally two ‘strategies’ which allowed for
effective and efficient evaluation: ‘direct users
to check most important aspects first’ and ‘order
questions around the diagrams not the quality
criteria’. This resulted in a checklist to check
content of the use case diagram, then content of
the class diagram and sequence diagrams. Later
consistency between all diagrams and fit to the

vision were evaluated, and finally - expression
criteria for all diagrams. The checklist ended with
some space for summary. Each subsection related
to checking a given diagram with a selected qual-
ity criterion included direct instructions for users
informing them what they should do.

For example, section ‘1. Content of use case
diagram’ consists of two subsections ‘1.1 Com-
pleteness of use case diagram’ with instruction
to identify missing actors, missing use cases
and missing relationships and subsection ‘1.2
Correctness of use case diagram’ with instruc-
tion to identify incorrect actors, use cases and
relationships, i.e. spurious, these with wrong
scope, wrong labels, wrong directions of arrows
in relationships. Section ‘6. Expression of use case
diagram’ consists of the following subsections
‘6.1. Precision and understandability of labels
and descriptions’ with instruction to identify
unclear, vague and difficult to understand labels
and descriptions, ‘6.2. Elegance of icon place-
ment on the diagram’ with instruction to find
defects related to placements and aesthetics of
the diagram, ‘6.3. Simplicity’ with instruction
to identify unnecessarily complex descriptions
and constructions on the diagram and finally
subsection ‘6.4 Adequate level of abstraction’ with
instruction to identify mismatch of elements in
respect to level of abstraction, e.g. some elements
too general or others too detailed.

This checklist satisfies the requirements for-
mulated when stating objectives. It is simple, it
fits exactly for the diagrams under evaluation and
it explicitly indicates for the criteria of evaluation.
It is as efficient as possible and easy to modify
when documentation or quality criteria change.
We collected opinions of users of this checklist
who have also used fragments of general purpose
RUP checklist for these diagrams. The users
said that clear instructions in context of these
subsections facilitate finding defects and give a
good understanding according to which criteria
evaluation is made. The checklist was leading
them through the review and without it they

 2737

Integrating Quality Criteria and Methods of Evaluation for Software Models

wouldn’t find so many defects. They claimed it
suited better to the diagrams under evaluation
then the RUP checklist.

software Quality prediction

The objective of this method design was to use
every information on the models indicating for
quality of the final software to be developed and
use it in order to make software quality predictions
in early phases of software development. Such
predictions should allow managers to control the
development process with quantitative measures
of software product (together with measures of
software process taken from other sources).

The objects under evaluation were documents
of software analysis and design. The scope of
analysis was similar to one described in the pre-
vious section, and the documentation of design
consisted of systems design which consisted of

subsystem diagram and interactions between sub-
systems, decisions about environment, boundary
conditions, style and trade-offs. Other documents
contained user interface design, database design
and subsystems design.

Since the objective was to predict quality
factors of system under development, the mean-
ingful attributes were functionality, maintain-
ability and usability. They needed to be related to
quality criteria of models such as completeness,
correctness, precision, adequate structure, flex-
ibility to probable changes, adequacy of designed
algorithms etc. Additionally, the requirement of
quantitative measurement leaded to introduction
of quality metrics for both quality factors and
quality criteria in scale 0.1.

The schema of the relationships between items
of the method for software quality prediction is
shown in Fig. 1. The design integrates the quality
model (made with the use of McCalls framework

Documentation

Quality model

Factors

Criteria

Quality metrics

UML diagrams Textual specifications

Elementary quality data

Diagram metrics

Expected values

Defects

Defect metrics

Evaluation

scale

Figure 1. Elementary quality data in context of the quality model and documentation with UML (©2007
Anna Bobkowska. Used with permission)

2738

Integrating Quality Criteria and Methods of Evaluation for Software Models

with its terms of quality factors, criteria and met-
rics) with UML model elements and related textual
specifications, e.g. these which describe vision of
the system or system design decisions.

The link between them consists of elementary
quality data, which can be diagram metrics and
their expected values, model evaluation in a scale
and the lists of defects together with their metrics.
Diagram metrics cover the idea of measurement of
the UML diagrams and use of this information to
reason about quality by comparing the results of
measurements with expected values, which can be
derived from historical data about similar projects.
Diagram metrics are also the basis for local size
calculation which can be used for defect metrics
calculation. The diagram metrics are example of
optimal features, and expected values indicate
the right range. Evaluations with comments are
concerned with the criteria that are difficult to
measure objectively. Evaluations are numbers
that represent subjective feelings about some
aspects of the work, e.g. ease of understanding,
aesthetics, precision, etc. They can be given in the
scale and described as comments. They represent
positive features. Defect collection according to
the defect classification is an instantiation of the
negative features in the model. These defects can
be then counted and combined with the diagram
size metrics.

Two steps are performed during the quality
prediction:

•	 Elementary quality data collection which
allows to gather elementary quality data on
the basis of documentation;

•	 Reasoning about quality, which allows to
transform elementary quality data into
quality metrics, which can be made manu-
ally by quality expert or can be calculated
according to formulas with parameters
which represent the impact of given metrics
or evaluations.

This method requires more work comparing
to the previous case study. However, it satisfies
its goal of delivering quantitative predictions of
the software quality in early phases of software
development. It allows to see consequences of
defects in the documentation for the software
quality and supports the control of the process of
software development. The problem of software
quality prediction is quite complicated and when
designing a solution one meets the questions of
missing data and thus uncertainty of predictions
as well as the problem of subjectivity of evalua-
tions and reasoning. However, with questionnaires
supporting elementary quality data collection
and reasoning, even students of experimental
group have performed predictions with satisfy-
ing results.

Evaluating vMls from a cognitive
perspective

The objective of this method design was to pro-
pose a tool for visual modeling language (VML)
evaluation from a cognitive perspective and then
evaluate with this method use case diagram. It
is believed that cognitive fit of the technology to
its users can increase efficiency, decrease cost,
improve software quality and allow for easier
learning, use and maintenance.

Since the methodology is configurable the ob-
ject under evaluation can be any visual modeling
language or any of its diagrams. In this case study
we present customization for use case diagram,
thus we operate are at meta-model level and objects
under evaluation are UML model elements.

The quality criteria for this methodology
were defined by a set of cognitive dimensions
(Blackwell, Green, 2000):

•	 Viscosity - resistance to change,
•	 Visibility - ability to view components eas-

ily,
•	 Premature commitment - constraints on the

order of doing things,

 2739

Integrating Quality Criteria and Methods of Evaluation for Software Models

•	 Hidden dependencies - important links
between entities are not visible,

•	 Role-expressiveness - the purpose of an
entity is readily inferred,

•	 Error-proneness - the notation invites
mistakes and the system gives little protec-
tion,

•	 Abstraction - types and availability of ab-
straction mechanisms,

•	 Secondary notation - extra information in
means other than formal syntax,

•	 Closeness of mapping - closeness of repre-
sentation to domain,

•	 Consistency - similar semantics are ex-
pressed in similar syntactic forms,

•	 Diffuseness - verbosity of language,
•	 Hard mental operations - high demand on

cognitive resources,
•	 Provisionality - degree of commitment to

actions or marks,
•	 Progressive evaluation - work-to-date can

be checked at any time,

A schema of the approach to the design of the
method is presented in Fig. 2. CD-VML template
is a product of customization of the original cog-
nitive dimensions (CD) questionnaire for visual
modeling languages. It required some modifica-
tion to increase precision of questions and their
fit to visual modeling language terminology.
Then, the next step in design is customization
for the method of evaluation for a specific visual

modeling language or one of its diagrams. We
have designed a CD-VML-UC questionnaire - a
product of the CD-VML methodology for the use
case (UC) model in the default context of use of
creating models, their usage and change.

In order to give an example, we present
questions from the section of the questionnaire
related to error-proneness. It starts with questions
to find common mistakes whilst modeling and
using diagrams: ‘Whilst modeling, what kinds
of mistakes are particularly common or easy
to make? Which kinds of mistakes you must
be careful not to make? Whilst using diagrams,
which misunderstandings are very likely to hap-
pen?’ They were followed by a table with listing
of all model elements and notation elements
and space for problem descriptions. The table
was headed with the questions: ‘Which model
elements or constructions or notation element or
visual mechanisms are these mistakes concerned
with? What are the problems?’ Below the table
there was a space for explanations, examples,
comments and suggestions for improvement of
the VML or suggestions for special features of
the CASE tool.

This method was verified in an experiment
with students as participants. Students confirmed
simplicity and usefulness of use cases, but they
also discovered a large number of problems, gave
reasonable explanations to them and quite often
made suggestions for improvements. Their dis-
coveries covered all the problems reported in the

Figure 2. Schema of the CD-VML methodology (©2007 Anna Bobkowska. Used with permission)

Original CD

CD-VML
template

CD-VML-XX-YY

(meta-meta-model)

XX
(meta-model)

2740

Integrating Quality Criteria and Methods of Evaluation for Software Models

related work. The level of detail of the individual
answers was satisfactory: problems usually were
described with details and examples and even
simple diagrams for illustration of the problem
were added. In the section of comments they stated
the following strengths of the methodology: the
precision of questions, large area of covered issues
and ease of use. Usefulness of the method was
evaluated as high and results were considered as
important for use case model improvement.

futurE trEnds

In our opinion, the following areas need to be
integrated into the research on quality of software
models:

•	 Proper configuration of modeling tasks
and artefacts in the context of software
project;

•	 Integration of reuse technology with model-
ing technology;

•	 Need for methods which enable evaluation
of the fit between the problem and modeling
technology;

•	 Usability of the modeling technology;
•	 Visual modeling language engineering.

There is a need for knowledge which would
enable proper configuration of the modeling ar-
tefacts and modeling tasks within the software
project depending on the type of project. Modeling
takes time and often does not result in increase
of code (except from the situation where the full
code is generated by tools). Thus, the suggestion
is that the use of models is efficient and beneficial
only to certain limits. Furthermore, unlike sug-
gestions in pure modeling solutions, in realistic
projects still a lot of documentation is made in the
textual form. It is worth to mention that quality of
models and thus the quality of the system which is
represented by these models depends on whether
analysts and developers have enough time for mak-

ing them. It depends also on the proper scope of
modelling. Understanding of this impact requires
more research and should result in guidelines on
the scope of application of models in the software
project depending on the project characteristics.
Once the development process is customised, the
proposed methodology of designing methods of
model evaluation can be used to create proper
methods of evaluation.

Integration of the reuse technology with the
modeling technology is the next of the challenges.
We have a lot of evidence about benefits of re-
use for both efficiency and quality of software.
However, there are some risks as well. The most
important reuse solution related to modeling are
patterns and components. The related questions
include: How to use patterns effectively for the
purpose of software development? How to study
their impact for software quality? How the fit
between a problem and the applied patterns mat-
ters? How components could be incorporated into
models? How to analyse their impact for quality
of software? The proposed method can facilitate
approach to evaluation, but several new factors
must be defined e.g. fit of the reuse method to the
solution of the problem.

There is a need for methods which enable
evaluation of the fit between a problem and given
technical modeling solution. It is not a surprise
that a problem which can be difficult in one tech-
nology can be easy to solve in another. Expert’s
knowledge is necessary to evaluate modeling
solutions against the problem at hand. Examples
of decisions include: whether to use UML or
a domain specific language, object-oriented or
aspect-oriented solutions; how to choose between
several technical spaces? It is worth to remember
that this perspective sets the space of achievable
effects.

Much more work should be done on the us-
ability side of modeling methods. Most decisions
so far are technology-driven and result in difficult
to use methods and tools. Focus on users of the
modeling technology could surely result in better

 2741

Integrating Quality Criteria and Methods of Evaluation for Software Models

fit of the technology to support several roles of
software development process and their activities.
This area of research can use pragmatics by the
means of identifying pragmatics profiles and their
tasks and then evaluating how they are supported
by modelling technology.

And finally, we would like to support the
research in the discipline of visual modelling
language engineering. The technology changes,
modeling paradigms are passing by, but the ac-
tivity of modeling is useful anyway. The role of
visual modeling language engineering would be
to capture the knowledge about modeling which
is technology invariant. It could collect universal
and consistent knowledge about models in the
areas including:

•	 understanding the role of models;
•	 quality of models;
•	 guidelines for creating visual modeling

languages;
•	 quality of visual modeling languages;
•	 guidelines for use of modeling technology

in the software project.

The proposed method could be a part of visual
modeling language engineering.

conclusIon

The objective of this chapter was to present an
approach to dealing with model quality in a way
which integrates quality criteria and methods
of evaluation. The methodology for designing
methods of evaluation customized for selected
objectives and objects under evaluation which
check out these objects against desired quality
criteria fulfills the requirements which were stated
before it. It is explicitly configurable to different
objectives and objects under evaluation and thus it
fits to configurable software development process
in which particular models, modeling and model
checking activities are results of decisions made

by process engineer. With integrating quality
criteria and methods of evaluation it is easy to
manage scope of inspection and enable better
fit to the objects under evaluation. Inspirations
from linguistic theories provide a framework for
understanding impact of given criteria for the qual-
ity of software under development and software
development process. The proposed methodology
is flexible and universal. The case studies have
delivered an evidence of feasibility of the meth-
odology and its coverage for a diversity of cases
as well as usefulness of the results achieved with
the use of designed methods of evaluation.

rEfErEncEs

Bach, K. The Semantics-Pragmatics Distinction:
What It Is and Why It Matters, Retrieved in June
2005, from http://userwww.sfsu.edu/~kbach/sem-
prag.html

Blackwell, A.F. & Green, T.R.G. (2000) A Cog-
nitive Dimensions questionnaire optimised for
users. In: Proceedings of the Twelth Annual Meet-
ing of the Psychology of Programming Interest
Group (pp.137-152).

Bobkowska, A.E. (2005) A methodology of Visual
Modeling Language Evaluation, In: Proceedings
of SOFSEM 2005, LNCS 3381 (pp. 72-81).

Bobkowska, A.E. (2001) Software Quality Predic-
tion with UML, Unpublished doctoral dissertation,
Gdansk University of Technology.

Booch, G. (1994) Object-Oriented Analysis
and Design with Applications. Benjamin/Cum-
mings.

Cox, K. (2000) Cognitive Dimensions of use
cases: feedback from a student questionnaire. In:
Proceedings of the Twelth Annual Meeting of the
Psychology of Programming Interest Group.

De Champeaux, D.& Faure, P. (1992) A compara-
tive study of object-oriented analysis methods.

2742

Integrating Quality Criteria and Methods of Evaluation for Software Models

In: Journal of Object-Oriented Programming,
1(5) 21-33.

Firesmith, D., Henderson-Sellers, B., Graham, I.&
Page-Jones, M. (1996) OPEN Modeling Language
(OML). Reference Manual.

Gu A., Henderson-Sellers B.& Lowe D. (2002)
Web Modeling Languages: The Gap Between
Requirements And Current Exemplars. In Pro-
ceedings Of The Eighth Australian World Wide
Web Conference.

Grotehen, T. & Dittrich, K.R. The MeTHOOD
Approach: Measures, Transformation Rules,
and Heuristics for Object-Oriented Design,
Technical Report., retrieved in October 2003
from http://www.ifi.unizh.ch/groups/dbtg/MeT-
HOOD/index.html

Hommes, B.J.& van Reijswoud, V. (2000) As-
sessing the Quality of Business Process Modeling
Techniques, In Proceedings of the 33rd Hawaii
International Conference on System Sciences.

Hong, S. & Goor, G. (1993) A Formal Approach
to the Comparison of Object-Oriented Analysis
and Design Methodologies. In Proceedings of the
26th International Hawaii International Confer-
ence on System Sciences.

Kutar, M., Britton, C.& Barker, T. A. (2002)
Comparison of Empirical Study and Cognitive
Dimensions Analysis in the Evaluation of UML
Diagrams. In Proceedings of the Fourteenth An-
nual Meeting of the Psychology of Programming
Interest Group.

Lorenz, M. & Kidd, J. (1994) Object-oriented
Software Metrics. A Practical Guide., Prentice
Hall.

 Lindland, O.I., Sindre, G. & Sølvberg, A. (1994)
Understanding Quality in Conceptual Modeling,
IEEE Software.

Martin, J. (1993) Principles of object-oriented
analysis and design, Prentice Hall

McGregor, J.D. (1998), The fifty-foot look at the
analysis and design models, Journal of Object-
Oriented Programming 11(4) 10-15.

Opdahl, A.L.& Henderson-Sellers, B. (2002)
Ontological Evaluation of the UML Using the
Bunge –Wand –Weber Model. Journal of Software
and System Modeling, 1.

Rumbaugh, J. (1999) Notation Notes: Principles for
choosing notation, In Journal of Object-Oriented
Programming, 12, 4,.

Selic, B. (2003) The Pragmatics of Model-Driven
Development, IEEE Software 9, 19-25.

Rational Unified Process (RUP) is a trademark
of IBM

Unified Modeling Language (UML) and Busi-
ness Process Modeling Notation (BPMN) are
registered marks of OMG

AddItIonAl rEAdIng

Basili, V., Green, S., Laitenberger O., Shull F.,
Sorumgaard S., & Zelkowitz M, (1996) The
Empirical Investigation of Perspective-Based
Reading, Empirical Software Engineering: An
International Journal, vol. 1, 2 (pp.133-164)
Another approach to reviews which is based on
perspectives of people involved in the process.

Fenton N.E. & Pfleeger S.L. (1998), Soft-
ware Metrics: A Rigorous and Practical Ap-
proach, Revised, Course Technology; 2 edition
A book for quick and solid introduction to the
role of metrics in software engineering.

Gilb T. & Graham D. (1993), Software In-
spection. Workingham: Addison-Wesley.

 2743

Integrating Quality Criteria and Methods of Evaluation for Software Models

An introduction to inspections and reviews in
software engineering.

Unhelkar B. (2005) Verification and Validation for
Quality of UML 2.0 Models, John Wiley & Sons
Inc. A book describing checklists for syntactical
correctness, semantics and aesthetics of models.

This work was previously published in Model-Driven Software Development: Integrating Quality Assurance, edited by J. Rech
and C. Bunse, pp. 78-94, copyright 2009 by Information Science Reference (an imprint of IGI Global).

2744

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.7
Software Security Engineering:

Towards Unifying Software Engineering
and Security Engineering

Mohammad Zulkernine
Queens University, Canada

Sheikh I. Ahamed
Marquette University, USA

AbstrAct

The rapid development and expansion of network
based applications have changed the computing
world in the last decade. However, this over-
whelming success has an Achilles’ heel: almost
every software controlled system faces threats
from potential adversaries both from internal and
external users of the highly connected computing
systems. These software systems must be engi-
neered with reliable protection mechanisms, while
still delivering the expected value of the software
to their customers within the budgeted time and
cost. The principal obstacle in achieving the above
two different but interdependent objectives is that
current software engineering processes do not
provide enough support for the software devel-

opers to achieve security goals. In this chapter,
we reemphasize the principal objectives of both
software engineering and security engineering,
and strive to identify the major steps of a software
security engineering process that will be useful
for building secure software systems. Both soft-
ware engineering and security engineering are
ever evolving disciplines, and software security
engineering is still in its infancy. This chapter
proposes a unification of the process models of
software engineering and security engineering
in order to improve the steps of the software life
cycle that would better address the underlying
objectives of both engineering processes. This
unification will facilitate the incorporation of the
advancement of the features of one engineering
process into the other. The chapter also provides

 2745

Software Security Engineering

a brief overview and survey of the current state
of the art of software engineering and security
engineering with respect to computer systems.

IntroductIon

With the proliferation of connectivity of computer
systems in the applications where the quality of
service depends on data confidentiality, data
integrity, and protection against denial of service
attack, the need for secure networks is evident. In
these applications, the consequences of a security
breach may range from extensive financial losses
to dangers to human life. Due to heavy dependence
of computer network based applications on vari-
ous software and software controlled systems,
software security has become an essential issue.
Almost every software controlled system faces
potential threats from system users, both insiders
and outsiders. It is well accepted that “the root of
most security problems is software that fails in
unexpected ways when under attack” (McGraw,
2002). Therefore, software systems must be
engineered with reliable protection mechanisms
against potential attacks while still providing
the expected quality of service to their custom-
ers within the budgeted time and cost. Software
should be designed with the objective not only
of implementing the quality functionalities
required for their users but also of combating
potential and unexpected threats. The principal
obstacle in achieving the above two different but
interdependent objectives is that current software
engineering processes do not provide enough
support for the software developers to achieve
security goals.

Some of the principal software engineering
objectives are usability, performance, timely
completion, reliability, and flexibility in software
applications (Finkelstein & Kramer, 2000; Press-
man, 2001; IEEE, 1999). On the other hand, some
of the major objectives of security engineering

are customized access control and authentication
based on the privilege levels of users, traceability
and detection, accountability, non-repudiation,
privacy, confidentiality, and integrity (Pfleeger &
Pfleeger, 2003; Viega & McGraw, 2001). Having
stated that, software security engineering objec-
tives are to design a software system that meets
both security objectives and application objec-
tives. However, software security engineering
is still considered a difficult task due to inherent
difficulties associated with the addressing of
the security issues in the core development and
maintenance of software systems. Both soft-
ware engineering and security engineering are
ever evolving disciplines and software security
engineering is still in its infancy. A precise and
well-accepted understanding of software security
engineering does not yet exist (ISSEA, 2003;
Wolf, 2004).

The principal objectives of software security
engineering need to be reinvestigated, and a
methodology is required that can be employed
for building secure software systems. Software
security engineering is a practice to address soft-
ware security issues in a systematic manner. We
believe that the security issues must be addressed
in all the stages of software system development
and maintenance life cycle such as requirements
specifications, design, testing, operation, and
maintenance to provide secure software systems.
This chapter identifies some possible ways to
adapt readily the current practices of security
engineering into a software engineering process
model. In other words, this chapter suggests a
unification of the process models of software
engineering and security engineering. The uni-
fication is desirable between the two processes
by removing the unnecessary differences in their
corresponding steps that obscure the fundamental
principles of the development and maintenance
of secure software systems. This unification will
help system designers to employ the techniques
and tools of software engineering and security

2746

Software Security Engineering

engineering in a complementary fashion. It will
also help to incorporate the advancement of the
features of one engineering process into the
other. In our attempt, we suggest to incorporate
new, more intuitive but well-defined steps in the
software security engineering process in order to
build secure software systems. It may be noted
here that a number of studies have already proved
that “end-to-end integration” of security aspects
in the software life cycle have significant benefits
with respect to the quality of the end software
products (Devanbu & Stubblebine, 2000; Viega
& McGraw, 2001).

In this chapter, we describe a software security
engineering process, which is primarily based
on the famous waterfall software development
process model (Royce, 1987). The major steps
of the proposed software security engineering
process model are described in detail. The ratio-
nale for choosing the waterfall model as a basis
for the description is that it contains most of the
fundamental steps present in all other software
process models that currently exist in the litera-
ture. Therefore, our idea of a software security
engineering process which incorporates security
issues in all the steps of software life cycle will
work fine in other software process models. For
example, the incremental model is widely used
in industry with a view to reducing the delay
in delivering software products. It consists of
several increments or builds, where each incre-
ment follows the waterfall model. Similarly, in
an incremental model based software security
engineering process, each increment may adopt
the steps described in this chapter.

The rest of the chapter is organized as follows.
Section 2 provides a brief overview of software
engineering and security engineering, and pres-
ents a brief synopsis of the current state of the art
of other related efforts towards software security
engineering. Section 3 provides the details of the
proposed software security engineering process
model. The chapter concludes in Section 4 with a

summary of current research and future recom-
mendations.

bAcKground

A glimpse of software Engineering

In the IEEE Standard Glossary of Software En-
gineering Terminology (IEEE Std. 610.12-1990),
software engineering is defined as follows (IEEE,
1999): “(1) Software engineering is the application
of a systematic, disciplined, quantifiable approach
to the development, operation, and maintenance
of software; that is, the application of engineer-
ing to software. (2) The study of approaches as
in (1)”. It primarily focuses on applying an engi-
neering approach to the design, implementation
and maintenance of software systems. Software
engineering is an engineering discipline, which
is concerned with all aspects of software produc-
tion, from the early stages of system specification
to maintenance of the system after it has been
deployed for use (Finkelstein & Kramer, 2000).
Software engineering is a subset of system engi-
neering, which focuses on overall system (both
software and hardware), while software engineer-
ing only focuses on the software aspects of the
system development.

There are different software development life
cycle models such as the waterfall, incremental,
spiral, and rapid prototyping (Pressman, 2001).
Among these models, the waterfall model (Royce,
1987) is the most widely used and discussed.
Most models consist of steps for requirement
gathering and analysis, software architecture,
implementation, and testing. Stakeholders in-
volved in a software engineering process influ-
ence software engineers to follow certain process
models to address and solve different issues of
the software in an effective way. The stakehold-
ers include analysts, designers, programmers,
testers, maintenance personnel, project managers,
and end users or customers. The project manager

 2747

Software Security Engineering

leads the whole software development group of
analysts, designers, programmers, testers, and
maintenance personnel. An analyst collects and
analyses the requirements, and a designer forms
the architecture with a view to leading the require-
ments towards the implementation. A programmer
implements the architecture or design provided
by the designer, and testers test the software for
ensuring high quality end product. Maintenance
personnel deploy and maintain the software so that
the operators can use the software effectively.

Software engineering refers to techniques
intended for making software development more
orderly, systematic, and organized. It also helps
to reduce time and cost for developing software
in a scientific way. In summary, low cost, high
quality, and rapid software development are the
key goals of software engineering. The rapid
development and expansion of the software are
possible with effective use of a software engineer-
ing process; however, security issues have not yet
been incorporated or addressed in the software
development processes.

A glimpse of security Engineering

The IFIP (International Federation for Information
Processing) working group WG10.4 on dependable
computing and fault tolerance considers security
as one of the attributes of software ‘depend-
ability’, where dependability is defined as the
“trustworthiness of a computer system such that
reliance can be justifiably placed in the service
it delivers” (Laprie, 1992). The other principal
attributes of dependability are reliability, avail-
ability, and safety, while security professionals
usually consider safety and reliability as attributes
of security. The threats to security are identified
as interception, interruption, modification, and
fabrication of data (Pfleeger & Pfleeger, 2003). The
threats are usually defined based on some security
policy of the organizations, while the violations
of any security policy are combated using dif-

ferent security mechanisms such as encryption,
authentication, authorization, and auditing.

Security engineering is a discipline for “build-
ing systems to remain dependable in the face of
malice, error, or mischance”, where the discipline
“emphasizes the tools, processes, and methods
needed to design, implement, and test complete
systems, and to adapt existing systems as their
environment evolves” (Anderson, 2001). Security
engineering deals with a number of issues such
as intrusion protection and detection. It ensures
a system to be secured from both software and
hardware perspectives. System security is becom-
ing increasingly more important due to the new
trend of ubiquitous/pervasive computing that
has evolved during the last few years; numerous
mobile or embedded devices such as PDAs and
cell phones are connected via internet, incurring
enormous security vulnerabilities.

Security engineering addresses the complete
lifecycle for building a secure system: require-
ments specification and analysis, design, de-
velopment, integration, operation, maintenance
and re-engineering (ISSEA, 2003). It requires
expertise in inter-disciplinary areas such as
computer system management and development,
software and hardware security, networking and
cryptography, applied psychology, organizational
management, and law. Without incorporating the
security engineering principles derived from the
relevant cross-disciplinary areas to every level
of a software development process, it is nearly
impossible to deliver a secure software system
in its first release.

related Effort to Address security
Issues in software Engineering
context

We begin this section with the following ques-
tion that was asked in (Wolf, 2004): “Is security
engineering really just good software engineer-
ing?” We also believe in their concluding ob-

2748

Software Security Engineering

servation that security engineering cannot be
differentiated from software engineering if “the
underlying mathematics and higher-level policy
and human factor issues” are not considered.
Our approach of software security engineering
is along the line of the following research chal-
lenges outlined in (Finkelstein & Kramer, 2000;
Devanbu & Stubblebine, 2000): integration of
security requirements with software require-
ments into early development life cycle; design of
adaptive software systems to handle new attacks
and changing security policies of any organiza-
tions; testing security requirements of software
systems; derivation of intelligent and responsive
framework for operational stage monitoring and
maintenance. A number of other related efforts
towards incorporating security engineering prin-
ciples into software development life cycles are
discussed in the following paragraphs.

In (Viega & McGraw, 2001), a software risk
management process is proposed for assessing,
quantifying, and establishing an acceptable level
of risk in an organization. The proposed process
is inspired by Boehm’s spiral software process
model (Boehm, 1988). In this process, security
aspects are considered when software require-
ments are derived. The most severe security
risks are evaluated and strategies are planned
for resolving those risks. The risks are addressed
through prototyping, and validated that the risks
of those security violations are eliminated. Then,
the solution to the security risks is applied for the
next version of the software requirements, design,
or source code. Finally, the planning for the next
phase is outlined.

In (Flechals, Sasse, & Hailes, 2003), a process
for usable and secure software systems called
‘Appropriate and Effective Guidance in Informa-
tion Security (AEGIS)’ is proposed. The AEGIS
involves the context in which the system is going
to be used, and analyzes the potential risks to help
developers handle security related issues. Similar
to the risk management process proposed in (Viega

& McGraw, 2001), the AEGIS is also based on
Boehm’s spiral software process model. It requires
communication among a system’s stakeholders in
the risk analysis and the selection of appropriate
defense mechanisms so that the developers gain
a better understanding of the security and usabil-
ity requirements. The AEIGS employs Unified
Modeling Language (UML) (Jacobson, Booch, &
Rumbaugh, 1999) to describe a way to perform
“risk-usability-design” simultaneously.

Software Security Assessment Instrument
(SSAI) project (Gilliam, Wolfe, & Sherif, 2003)
identifies five important entities with respect to
software security engineering: software security
checklist (SSC), vulnerability matrix (Vmatrix),
flexible modeling framework (FMF) for veri-
fication of requirements, property-based tester
(PBT) for testing vulnerabilities, and security
assessment tools (SATs). Similar to our objective
in this chapter, the SSC “provides instrument to
integrate security as a formal approach to the
software life cycle”.

The System Security Engineering Capabil-
ity Maturity Model (SSE-CMM) (ISSEA, 2003)
proposes a unified process of practicing security
engineering in the context of software develop-
ment. In the systems security engineering process,
the security engineering task is divided into three
interrelated but separate basic process areas: risk
process, engineering process, and assurance pro-
cess. The risk process identifies and prioritizes
the risks inherent to the product under develop-
ment; the engineering process interfaces with the
other engineering disciplines to provide solution
to the identified risks; and the assurance process
improves the level of confidence of the product
developer as well as the customers with respect to
the proposed security solutions. The SSE-CMM
describes the characteristics of five capability
levels, which are inspired by the CMM used to
evaluate software engineering practices.

The Unified Modeling Language (UML)
(Jacobson, Booch, & Rumbaugh, 1999) has cur-

 2749

Software Security Engineering

rently become the de facto standard to specify,
visualize, and document models of software
systems including their structure and design.
More specifically, it is suitable for object oriented
analysis and design. The UML defines twelve
types of diagrams of three categories. Neverthe-
less, the UML does not provide a framework that
can address the issues with respect to developing
secure software system. A number of efforts are
taking place in order to enrich the UML based
software development processes. Some of them are
as follows: UMLSec (Jürjens, 2003), Misuse and
Abuse cases (Sindre & Opdahl, 2000; Dermott &
Fox, 1999), Secure UML (Lodderstedt, Basin, &
Jurgen, 2002; Basin, Doser, & Lodderstedt, 2003),
and Security Integrated Rational Unified Process
(Oikinomopoulos & Giritzails, 2004).

To address security issues in the context of
software development processes, some of the ele-
ments of UML such as use case, class, sequence,
state chart, package and deployment diagrams are
extended (Jürjens, 2003). This UML extension for
secure software development is called UMLSec.
The extensions included in the UMLSec are based
on using stereotypes and tag values, which enrich
the existing UML diagrams with security related
information.

Standard use case diagrams are often use-
ful for eliciting functional requirements, while
they are not that suitable for describing security
requirements (Jacobson, Booch, & Rumbaugh,
1999). The security requirements are usually
related to prohibited activities. Therefore, an
extension to standard UML use case notations is
proposed in (Sindre & Opdahl, 2000) in order to
include unwanted use case scenarios. A use case
describes a sequence of actions that represents a
service to the user. On the other hand, a misuse
case in the context of security requirements is
defined as a sequence of actions that results in
security violations for the organization or some
specific stakeholder. They also define “mis-actor”
as just the opposite of an actor and it initiates the

misuse cases. In (Dermott & Fox, 1999), a use
case based object-oriented modeling technique is
used to represent significant forms of abuses that
need to be prevented. However, security issues
are not addressed in every phase of the software
engineering process.

Secure UML (Lodderstedt, Basin, & Doser,
2002; Basin, Doser, & Lodderstedt, 2003) de-
scribes a methodology for modeling access control
policies and integrating it into a model-driven soft-
ware development process. This work is inspired
by the idea of using UML to model Role Based
Access Control (RBAC) policies. The unique
feature of the Secure UML is that it also includes
elements to be used in behavioral models.

A number of above extensions of the UML
for the purpose of security are compared and
contrasted in (Oikinomopoulos & Giritzails,
2004). We agree to their view that most of those
extensions are concerned with the presentation
(notational) issues of security related information
rather than a methodology, which emphasizes the
activities to be performed for software security
engineering. In most of the above work, there is
very little or no guideline about how and in what
phase of the development cycle the extended UML
notations will be utilized. In (Oikinomopoulos &
Giritzails, 2004), they incorporate security engi-
neering to the Rational Unified Process (RUP).
The RUP divides the software development ef-
fort in phases and major workflows. They extend
each workflow with additional security related
activities, and identify the artifacts that should
be produced. To support these activities, they
also introduce the role of a “security engineer”
in their methodology.

softwArE sEcurIty
EngInEErIng

Having discussed both software engineering and
security engineering, it is important to note that

2750

Software Security Engineering

“while software engineering is about ensuring that
certain things happen, security is about ensuring
that they don’t” (Anderson, 2001). Neverthe-
less, following the IEEE Standard 610.12-1990
(IEEE, 1999) definition of software engineering,
software security engineering can be defined
as “the application of a systematic, disciplined,
quantifiable approach to the development, op-
eration, and maintenance of” secure software;
i.e, “the application of engineering” to obtain
secure software (Anderson, 2001). In the software
security engineering process, the principles and
specialties of other engineering disciplines with
respect to software and security are integrated to
achieve the “trustworthiness” in software systems.
This process will help software development to
proceed in a way where it will have less chance
to expose itself to security related loopholes. It
will endorse low cost, high quality, and a rapid
software development process where the security
issues will be addressed in every phase of the
process. Software security engineering involves
the stakeholders of software engineering while
actively involving security engineers in most of
its phases. Similar to both software engineer-
ing and security engineering, software security
engineering incorporates expertise from various
other cross-disciplinary areas such as computer
system management and development, software
and hardware security, computer networks, orga-
nizational management, psychology, and law.

We describe a software security engineering
process, which is primarily based on the famous
waterfall software development process model.
The waterfall model contains most of the funda-
mental steps present in other software process
models currently used in industries and academia.
The major steps of the proposed model are as fol-
lows: system engineering, requirements specifica-
tion, software design, program implementation,
and system operation. The steps are presented
schematically in Figure 1. While the following
paragraphs provide a brief introduction to the

steps, all of the steps are further detailed in the
following subsections.

System Engineering. The software concerns
of a system development are separated from its
hardware concerns. Then both functionality is-
sues and security issues are identified based on
the users’ or stakeholders’ needs and in the con-
text of other system elements such as hardware,
software, people, database, documentation, and
procedure.

Requirements Specification. The security
requirements of a software system are specified,
analyzed, and integrated along with the other
functional and nonfunctional requirements of
the software system. It is recommended that both
security requirements and the other software
requirements should be specified using the same
formal language . The requirements are expressed
as a set of scenarios.

Software Design. Both functionality and se-
curity issues should be considered when deciding
where the application components are deployed
and how they communicate with each other. A
scenario based software architecture is designed
based on functional scenarios from users’ perspec-
tive and attack scenarios from intruders’ perspec-
tive. The architecture should be compositional
so that whenever a new attack is encountered,
the system architecture can be easily adapted to
defend against the attack.

Program Implementation. The system is
implemented to meet the specified requirements,
and the correctness and effectiveness of security
mechanisms along with functional characteristics
are verified with respect to the requirements
specification. When the required functionalities
are implemented, the source code is refactored
(changed) to control any number of vulnerabilities
against threats from attackers, while still meeting
all of the functional acceptance tests.

System Operation. The software is monitored
for security violation or conformance to its func-
tional requirements based on the specification

 2751

Software Security Engineering

Figure 1. A waterfall based software security engineering process model

Figure 2. The system engineering phase of the software security engineering process

formalized in the requirements specification
phase. In other words, the software monitor is
equipped with different intrusion detection ca-
pabilities. The monitor also measures whether
the operational impacts due to security vulner-
abilities or residual software faults in a system
are acceptable or not.

system Engineering

Software engineering deals with the software
aspects of system engineering while security
engineering focuses on the overall system engi-
neering (both software and hardware). Similar
to software engineering, the end product of the

System Engineering

Requirements
Specification

Program
Implementation

System Operation

Software Design

Informal software and
security requirements

Combined formal software and
security requirements specification

Scenario-based compositional
architecture

Refactored code
for security

Monitor for failure and
intrusion detection

Figure 1. A waterfall based software security engineering process model.

Needs and constraints
w.r.t. the software and

hardware

Analyze
security
threats

Informal
security

requirements

Informal
functional

requirements

Software
aspects of the

system

Analyze
functional

requirements

Figure 2. The system engineering phase of the software security engineering process.

2752

Software Security Engineering

software security engineering process is software.
The system engineering phase of the software se-
curity engineering process identifies the software
aspects of the system to be developed. Obviously,
this phase equally focuses on both functionalities
and security issues of the software system based
on the users’ or stakeholders’ needs and in the
context of other system elements such as hardware,
software, people, database, documentation, and
procedure. Both software engineers and security
engineers closely work in this phase.

Similar to IEEE Standard 1220-1998 for
system engineering (Thayer, 2002), this phase
of the software security engineering process
involves defining the system requirements that
determine the needs and constraints of the soft-
ware and hardware. This is accomplished through
analyzing the functional requirements and all
the aspects of security related threats (see Figure
2). The outcomes of this phase are the informal
functional and security requirements. These
informal requirements then become the input of
the requirements specification phase.

Requirements Specification

Software requirements are usually referred to as
functional requirements that specify the behavior
of the system, that is, the relationship between
inputs and outputs. A nonfunctional software

requirement describes not what the software
will perform, but how effectively the software
will perform. For example, usability, reliability,
interoperability, scalability, and security are
some of the nonfunctional properties of software
systems. Like most other nonfunctional require-
ments, security is regarded as an important factor
to the success of any software project, and it is
usually incorporated in the system development
in a subjective manner.

There are some inherent difficulties associated
with security requirements specification: security
requirements are often difficult to be specified in
the early phases of the software development life
cycle since the software model tends to be very
abstract, and is usually presented in an informal
manner. In addition, security risks are difficult
to be estimated, and as the software development
progresses, developers receive new information
about the system security (Zhang & Zulkernine,
2004). Given that, it is often difficult to specify
security measures and integrate them into the
actual system from the very beginning of the
software development process. In most cases,
security requirements are not addressed at all
during the early design phases.

 In the software security engineering process,
both security and functional requirements are
specified in the requirements specification phase
(see Figure 3). We believe that the weaknesses of

Figure 3. The requirements specification phase of the software security engineering process

Informal
security

requirements

Identify
attack

scenarios

Formal security
specification

Formal requirements
(security & functional)

specification
Reconciliation
& integration

Formal
functional

specification

Identify
usage

scenarios

Informal
functional

requirements

Figure 3. The requirements specification phase of the software security engineering process.

 2753

Software Security Engineering

software controlled systems with respect to the
software security can be alleviated by specifying
functional and security requirements using formal
methods, and then by reconciling and integrat-
ing the two sets of formal specifications at an
abstract level. As the software design evolves, the
specifications are refined to reflect the progressive
changes towards the end product. In this way,
security requirements get closely involved in the
later stages of software development.

Scenarios have been widely used as a technique
for elicitation, analysis, and documentation of
software requirements. A scenario is a sequence of
a limited number of related events or actions that
represents some meaningful high level operation
in a system. The length of a scenario may vary
from a single event to all the events of a system.
However, all the events of a single scenario must
occur during a particular run of the system. In
this phase of the software security engineering
process, two types of scenarios are identified
based on the corresponding requirements: us-
age scenarios and attack scenarios. The usage
scenarios are selected based on the operational
profile of the intended software system. The attack
scenarios can incorporate expert knowledge on
security, and they may be ranked based on their
importance in the system being implemented. For
example, defending against denial of service at-
tack in a client machine may not be as important
as it is in a server machine.

A scenario can be represented in various
forms: natural language, pseudo code, data
flow diagrams, state machine based notations,
communicating event based notations, etc. To
avoid inconsistency and redundancy, it is highly
recommended that both usage scenarios and
attack scenarios should be defined using the
same specification language. In the literature,
we find a number of formal software specifica-
tion languages and a relatively fewer number of
attack languages to describe attack scenarios
(Eckmann, 2001; Vigna, Eckmann, & Kemmerer,

2000). However, currently available software
specification languages are not completely suit-
able for specifying the security related aspects
of software systems, nor are attack specifica-
tion languages suitable in specifying functional
requirements. As an initial attempt, software
specification languages can be translated to at-
tack languages and vice versa. For example, in
(Zhang & Zulkernine, 2004), a formal software
requirements specification language of Microsoft
called Abstract State Machine Language (AsmL)
(Barnett, Grieskamp, Gurevich, Schulte, Tillman,
& Veanes, 2003) are automatically transformed to
a high level attack specification language called
State Transition Analysis Technique Language
(STATL) (Vigna, Eckmann, & Kemmerer, 2000),
which can be preprogrammed and loaded into
an intrusion detection system at runtime. The
translation scheme will initially help to close the
gap between security requirements and functional
requirements with respect to their modeling and
implementation.

software design

A software architecture or software design de-
fines the software components of a system and
the interactions among these components. The
examples of application components include user
interfaces, databases, and middleware (Kazman,
Carriere, & Woods, 2000). Both functionality
and security issues are interconnected to where
the software components are deployed and how
they communicate with each other. For example,
the architecture and its protection mechanisms
depend on whether the system will operate as
a centralized or a distributed one. The software
components should be deployed based on the
trustworthiness and information flow among
them following the principle: “what needs to be
protected and from whom those things need to be
protected, and for how long protection is needed”
(Viega & McGraw, 2001).

2754

Software Security Engineering

In the software security engineering process,
a software system should be designed based on
the following two principles: compositional soft-
ware architecture and scenario based software
architecture. The following paragraphs discuss
these two principles in the context of software
security engineering.

New attacks are made to the software systems
and security loopholes may be discovered at any
point during the life of software. Flexible software
architectures are desirable to make the design
changes in those situations. A compositional
software architecture is one in which the changes
required for the whole system can be obtained
by applying the changes to its components. As
a result, whenever a new attack is encountered,
the system architecture can be easily adapted to
defend against the attack if a clear and clean notion
of component is present. This is only possible if
the principle of compositionality and the security
concerns were taken into consideration in defining
each software component in the software design
phase. This adaptive architecture is very useful
for rapidly evolving security policies in the post
deployment system administration period, and to
facilitate the re-engineering of security features
into legacy systems. We define the concept of
compositionality with respect to software security
engineering following the definition of composi-
tional specification and verification (de Roever,
1997). Assume that a system C is composed of
the components C1, C2,..., and Cn by employing
a set of composition operators. Let the security
requirements of C1, C2,..., and Cn be S1, S2,..., and
Sn respectively. A compositional design implies
that the whole system C satisfies the complete
specification S if each component Ci satisfies Si
for i= 1,...,n. Therefore, any change of security
requirements in any of the components can be ad-
dressed and verified without modifying the other
components (in a true compositional case).

Scenarios are employed to build the software
architecture of a system with a view to incorporat-

ing different features described by each scenario
(Kazman, Carriere, Woods, 2000). Scenarios are
very useful to compare design alternatives, and
to understand a legacy system by analyzing the
system responses in the context of different envi-
ronments. Booch et al compared scenario-based
design to “making a film” (Jacobson, Booch, &
Rumbaugh, 1999). However, scenario-based de-
sign of a software system is more than making a
single movie as scenarios may be composed in
parallel, alternative, or iterative manner in order
to build the desired composite system. Similarly,
the potential attacks to a system can be specified
using attack scenarios, which initially may be
abstract, and are refined as the design evolves by
considering all security relevant issues.

Implementation

Security requirements define the behavior of a
system, which should not occur. A programmer
working for a particular implementation or an
intruder who somehow manages to gain access to
the source code can initiate certain actions in the
program that may cause target system behavior
which should not be allowed. During program-
ming, we should ensure that potential security
flaws, identified as security requirements and
avoided in the earlier phases of the software se-
curity engineering process are not re-introduced
in the source code. Any unexpected behavior with
respect to program security is called ‘security
flaw’, while ‘vulnerability’ is considered as a
special security flaw (Pfleeger & Pfleeger, 2003).
In (Landwehr, Bull, McDermott, & Choi, 1994),
the surveyed ‘program security flaws’ are divided
into two categories: intentional and inadvertent.
Intentional flaws are categorized as malicious
and non-malicious, while inadvertent flaws are
divided into the following six types: incomplete
or inconsistent validation error, domain error,
serialization or aliasing, insufficient identification
or authentication, boundary condition violation,
and other potential exploitable logic errors.

 2755

Software Security Engineering

Given the varying and intricate nature of the
above mentioned security flaws, security engi-
neers should participate in coding or understand
the code well enough to identify potential security
flaws, and convey those to software developers.
Security engineers may participate in formal
code inspection and review processes to docu-
ment any security relevant issues present in the
source code. More specifically, in the software
security engineering process, we propose to fol-
low the principle of code refactoring successfully
employed in the context of extreme programming
(Beck, 1999). In extreme programming, code
refactoring refers to the practice of restructuring
the source code without changing the intended
functionalities of the system such as removing any
duplicate or unreachable code and re-organizing
code for simplicity and flexibility. It is important
to confirm that refactoring does not introduce
any new faults or security flaws into the code.
Therefore, individual refactoring steps should be
small to address the above mentioned security
flaws, and each change should be tested to ensure
that the implementation is as functional and self-
protected as it was before the refactoring. Note

that refactoring is not intended to replace testing
in the software security engineering process but
rather to complement testing by increasing the
confidence in the source code of security critical
applications. Once the functionalities required
for the system are implemented, refactoring
is employed to change the program so that the
software can control its vulnerabilities against
attacks from intruders while still passing all of
the functional requirements tests.

The software should be tested for both func-
tional and security requirements. Based on these
requirements along with other non-functional
requirements such as performance and quality of
service identified in the early phases of the soft-
ware security engineering process, the test cases
for the software system are derived. Vulnerability
scenarios of the software that can be exploited
for intrusions or security violations are tested. A
“read teaming” approach may be used whereby a
system is tested using simulated scenarios under
which it may be attacked (Viega & McGraw, 2001).
We have to ensure that the system is tested in the
network environment in which the system will
actually run. Keeping that in mind, the testing of

Figure 4. Monitoring an operational software application using a specification based monitor

Reconciliation & integration

Software
Application

Specification Based
Monitor

Observation results
Failure &
intrusion report

Formal requirements
specification

New attack
specification

Acquire knowledge
Design & implement

Figure 4. Monitoring an operational software application using a specification based monitor.

2756

Software Security Engineering

the software can be divided into two steps: unit
testing that tests a host for security; and integration
testing that tests the whole system by deploying
the system in the target network configuration
guided by the applicable security policies.

system operation

A number of studies have shown that profession-
ally written programs may contain between one
and ten faults per thousand lines of codes. More-
over, despite rigorous use of different ‘protective
shields’, there exist security loopholes which elude
those protection efforts, and unauthorized intru-
sions may occur when the network is operational.
The difficulty in releasing correct and secure
software has resulted in a growing interest in
the usefulness of operational stage monitoring
of software systems. However, existing intru-
sion detectors cannot monitor the behavior of
software systems, while the current software
monitors cannot detect security violations in the
target systems.

 In software security engineering, a software
monitor should also have the capability of detect-
ing intrusions (see Figure 4). The monitor passively
observes some of the actual events occurring in
a software application at runtime and reports the
occurrences of intrusions or behavioral failure. To
detect any intrusion or behavioral failure in a target
system, the monitor must have the knowledge of
what is the ideal or normal behavior of the moni-
tored system. This knowledge can be obtained
from the system’s formal (behavioral and secu-
rity) specification identified in the requirements
specification phase. Note that this requirements
specification was originally used to design and
implement the software application as shown in
Figure 4. During system operation, the behavior
of the monitored system when it is under attack
by the intrusions known later on can be specified.
Similar to previously considered intrusions, it is
also obvious that the newly discovered intrusions

may change the behavioral profile of a host or a
network. Therefore, new attack specifications
are reconciled with the existing formal require-
ments specification. The monitor interprets the
formal specification using the observed events
of the monitored host or the network in order to
generate a report on intrusive activities as well
as unexpected behavior.

conclusIons And
rEcoMMEndAtIons

In this chapter, we have presented a software se-
curity engineering process based on the waterfall
software process model. The adaptation of the
proposed process into other existing software
engineering process models is straightforward.
It is worth mentioning here that many new en-
gineering disciplines such as software engineer-
ing and security engineering have incorporated
many concepts and principles from other mature
engineering disciplines. Similarly, the individual
concepts and techniques suggested in the proposed
process are not completely new. What is new in
this chapter is their systematic integration and
organization into a process that will lead to secure
software systems.

It is very difficult to achieve two sets of de-
sired objectives while they “trade off against one
another” (Viega & McGraw, 2001). For example:
an application software may require root level ac-
cess privileges in a system to run the application
while in some cases it may mean weakening the
security of the target system. We believe that the
trade off among these goals is very application de-
pendent. The potential conflict between software
characteristics and network defenses should be
resolved early in the development phase, that is,
in the requirements specification phase. In other
words, security measures must not hamper the
expected quality of service of a system, while
at the same time any functionality should not be

 2757

Software Security Engineering

achieved at the cost of weakening security. Given
that, a software security engineering process
should be employed, where functionalities of a
system must be specified and defined by consider-
ing the security concerns or requirements with
respect to the system.

Currently available specification languages
are not completely suitable for defining secu-
rity related aspects of software behavior. The
standardized formal software specification lan-
guages used in industry should be investigated
and extended (if needed) for expressing security
related features of target systems. However, it may
not be always feasible to formally specify all of
the suspicious activities occurring in the target
system. Therefore, the formal specification may
be supplemented by the statistical components of
the operational profiles of the system, users, or
intruders. Statistical analysis may be performed
to detect any additional intrusions.

History of well-established engineering disci-
plines shows the key role that automatic develop-
ment tools played in their advancement. Automatic
tools can play a similar role in the area of software
security engineering to improve the productivity
and quality of the software with respect to security.
Existing Computer Aided Software Engineering
(CASE) tools cannot be used for software security
engineering since their focus is solely on software
not security. Both security and software along with
productivity and quality, need to be addressed in
the CASE tools. The availability of such tools is
likely to provide support to further the evolution
of software security engineering.

Though we have described the proposed
process independent of the current software
development paradigms such as procedural,
object oriented, or component based, it is worth
mentioning here the issue of trustworthiness of
software components. With the increase in compo-
nent based software development, the security of
components has become an important issue due to
design of software systems composed of untrusted
components from independent sources. It is still an

open question as to the level of security one can
achieve when integrating third party components
of a software system (Lindqvist & Jonsson, 1998).
In component based software development, com-
ponents interact to accomplish the functionalities
of software systems. In future, a metadata based
approach can be used to address the security is-
sues in component interactions since metadata
describes the static and dynamic aspects of the
components including the accessibility by their
users (Orso, Harrold, & Rosenblum, 2001).

rEfErEncEs

An Early Iteration, Proc. of the Workshop on
Specification and Automated Processing of Se-
curity Requirements - SAPS’04, Linz, Austria.

Anderson, R. (2001). Security Engineering - A
Guide to Building Dependable Distributed Sys-
tem, Wiley.

Barnett, M., Grieskamp, W., Gurevich, Y., Schulte,
W., Tillman, T., & Veanes, M. (2003). Scenario-
oriented modeling in AsmL and its instrumen-
tation for Testing, Proc. of 2nd International
Workshop on Scenarios and State Machines:
Models. Algorithms, and Tools, 8-14.

Basin, D., Doser, J., & T. Lodderstedt. (2003).
Model Driven Security for Process Oriented Sys-
tems, Proc. of the 8thACM symposium on Access
control models and technologies.

Beck, K. (1999). eXtreme Programming Ex-
plained: Embrace Change, Addison Wesley.

Boehm, B. W. (1988). A spiral model of software
development and Enhancement, IEEE Computer,
21(5), 61-72.

de Roever, W. (1997). The Need for Compositional
Proof Systems: A Survey, Compositionality: The
Significant Difference (COMPOS ‘97), Lecture
Notes in Computer Science, 1536, 1-22, Springer-
Verlag.

2758

Software Security Engineering

Dermott, J., Fox, C. (1999). Using Abuse Case
Models for Security Requirements Analysis, Proc.
of the 15th Annual Computer Security Applications
Conference, Phoenix, Arizona.

Devanbu, P. T. & Stubblebine, S. (2000). Software
Engineering for Security: A Roadmap, The Future
of Software Engineering, Anthony Finkelstein
(Ed.), International Conference on Software
Engineering, Limerick, Ireland, 227-239.

Eckmann, T. (2001). Translating snort rules to
STATL scenarios, Proc. of the 4th International
Symposium on Recent Advances in Intrusion De-
tection (RAID 2001), Lecture Notes in Computer
Science, 2001, 69-84.

Finkelstein, A. & Kramer, J. (2000). Software
Engineering: A Roadmap. The Future of Software
Engineering, Anthony Finkelstein (Ed.), Inter-
national Conference on Software Engineering,
Limerick, Ireland, 5-22.

Flechals, I., Sasse, M. A., & Hailes, S. M. V.
(2003). Bringing Security Home: A process for
Developing Secure and Usable Systems, Proc. of
the New Security Paradigms Workshop, Ascona,
Switzerland.

Gilliam, D. P., Wolfe, T. W., & Sherif, J. S. (2003).
Software Security Checklist for the Software
Life Cycle, Proc. of the Twelfth IEEE Interna-
tional Workshop on Enabling Technologies:
Infrastructure for Collaborative Enterprises,
(WETICE ’03).

IEEE. (1999). Software Engineering: Customer
and Terminology Standards, 1, IEEE.

ISSEA (2003). SSE-CMM: Model Description
Document, Version 3.0, SSE-CMM – ISO/IEC
21827, International Systems Security Engineer-
ing Association, http://www.sse cmm.org/model/
model.asp.

Jacobson, I., Booch, G., & Rumbaugh, J. (1999).
The Unified Software Development Process,
Addison Wesley.

Jürjens, J. (2003). Secure Systems Development
with UML, Springer-Verlag, December 2003.

Kazman, R., Carriere, S. J., & Woods, S. G.
(2000). Toward a Discipline of Scenario-Based
Architectural Engineering, Annals of Software
Engineering, 9, 5-33.

Landwehr, C. E., Bull, A. R., McDermott, J. P.,
& Choi, W. S. (1994). A taxonomy of computer
program security flaws, ACM Computing Surveys,
26(3). 211-254.

Laprie, J. (1992). Dependability: Basic Concepts
and Terminology - In English, French, German,
and Japanese, Vienna, Springer-Verlag.

Lindqvist, U. & Jonsson, E. (1998). A Map of Se-
curity Risks Associated with Using COTS, IEEE
Computer, 60-66, http://downloads.securityfocus.
com/library/cots98.pdf

Lodderstedt, T., Basin, D., & Doser, J. (2002).
SecureUML: A UMLBased Modeling Language
for Model-Driven

McGraw, G. (2002). Managing Software Security
Risks, IEEE Computer, 99-101.

Oikinomopoulos, S. & Giritzails, S. (2004). Inte-
gration of Security Engineering Into the Rational
Unified Process –

Orso, A., Harrold, M.J., & Rosenblum, D. (2001).
Component Metadata for Software Engineering
Tasks, Proceedings of the EDO 2000, Lecture
Notes in Computer Science, 1999, Springer-
Verlag.

Pfleeger, C. P. & Pfleeger, S. L. (2003). Security
in Computing, Prentice-Hall.

Pressman, R. P. (2001). Software Engineering – A
Practitioner’s Approach, McGraw Hill.

Royce, W. W. (1987). Managing the develop-
ment of large software systems: Concepts and
techniques, In WESCON Technical Papers,

 2759

Software Security Engineering

1970, (Reprinted) Proceedings of the Ninth In-
ternational Conference on Software Engineering,
1987, 328–338.

Security, Proceedings of the Fifth International
Conference on the Unified Modeling Language
- the Language and its applications, Germany.

Sindre, G. & Opdahl, A. L. (2000). Eliciting
security requirements by misuse cases, Pro-
ceedings of the 37th International Conference on
Technology of Object-Oriented Languages and
Systems, 174-183.

Thayer, R. H. (2002). Software System Engi-
neering: A Tutorial, Computer, IEEE Computer
Society Press, California, USA.

Viega, J. & McGraw, G. (2001). Building Secure
Software: How to Avoid Security Problems the
Right Way, Addison-Wesley Pub Co.

Vigna, G., Eckmann, S. T., & Kemmerer, R.
A. (2000). Attack languages, Proceedings of
the IEEE Information Survivability Workshop,
Boston, MA.

Wolf. A. L. (2004). Is Security Engineering Re-
ally Just Good Software Engineering?. Keynote
Talk, ACM SIGSOFT ‘04/FSE-12, Newport Beach,
CA, USA.

Zhang, Q. & Zulkernine, M. (2004). Applying
AsmL Specification for Automatic Intrusion De-
tection, Proc. of the Workshop on Specification
and Automated Processing of Security Require-
ments – SAPS’04, Linz, Austria.

EndnotEs

1 For brevity, functional software require-
ments are mentioned as software require-
ments or functional requirements.

2 IEEE definitions (IEEE, 1999) of ‘fault’
and ‘failure’ are defined from a different
perspective. However, (Wolf, 2004) view
“vulnerability” as a “fault” since an attack
cannot cause a security failure if no vulner-
ability exists.

This work was previously published in Enterprise Information Systems Assurance and Systems Security: Managerial and
Technical Issues, edited by M. Warkentin, pp. 215-233, copyright 2006 by IGI Publishing (an imprint of IGI Global).

2760

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.8
Trusting Computers Through

Trusting Humans:
Software Verification in a

Safety-Critical Information System

Alison Adam
University of Salford, UK

Paul Spedding
University of Salford, UK

AbstrAct

This article considers the question of how we may
trust automatically generated program code. The
code walkthroughs and inspections of software
engineering mimic the ways that mathematicians
go about assuring themselves that a mathematical
proof is true. Mathematicians have difficulty ac-
cepting a computer generated proof because they
cannot go through the social processes of trusting
its construction. Similarly, those involved in ac-
cepting a proof of a computer system or computer
generated code cannot go through their traditional
processes of trust. The process of software verifi-
cation is bound up in software quality assurance
procedures, which are themselves subject to com-
mercial pressures. Quality standards, including
military standards, have procedures for human

trust designed into them. An action research case
study of an avionics system within a military
aircraft company illustrates these points, where
the software quality assurance (SQA) procedures
were incommensurable with the use of automati-
cally generated code.

IntroductIon

They have computers, and they may have other
weapons of mass destruction. Janet Reno, former
US Attorney General

In this article our aim is to develop a theo-
retical framework with which to analyse a case
study where one of the authors was involved,
acting as an action researcher in the quality as-

 2761

Trusting Computers Through Trusting Humans

surance procedures of a safety-critical system.
This involved the production of software for
aeroplane flight systems. An interesting tension
arose between the automatically generated code
of the software system (i.e., ‘auto-code’—pro-
duced automatically by a computer, using CASE
[Computer Aided Software Engineering] tools
from a high level design) and the requirement
of the quality assurance process which had built
into it the requirement for human understanding
and trust of the code produced.

The developers of the system in the case
study designed it around auto-code—computer
generated software, free from ‘human’ error,
although not proved correct in the mathematical
sense, and cheaper and quicker to produce than
traditional program code. They looked to means of
verifying the correctness of their system through
standard software quality assurance (SQA) pro-
cedures. However, ultimately, they were unable
to bring themselves to reconcile their verification
procedures with automatically generated code.
Some of the reason for this was that trust in
human verification was built into (or inscribed
into [Akrich, 1992]) the standards and quality
assurance procedures which they were obliged
to follow in building the system. Despite their
formally couched descriptions, the standards and
verification procedures were completely reliant on
human verification at every step. However these
‘human trust’ procedures were incompatible with
the automated production of software in ways we
show below. The end result was not failure in the
traditional sense but a failure to resolve incom-
mensurable procedures; one set relying on human
trust, one set on computer trust.

Our research question is therefore: How may
we understand what happens when software de-
signers are asked to trust the design of a system,
based on automatically generated program code,
when the SQA procedures and military standards
to which they must adhere demand walkthroughs
and code inspections which are impossible to
achieve with auto-code?

The theoretical framework we use to form
our analysis of the case study is drawn from
the links we make between the social nature of
mathematical proof, the need to achieve trust in
system verification, the ways in which we achieve
trust in the online world, the methods of software
engineering, and within that, the software qual-
ity movement and the related highly influential
domain of military standards.

In the following section we briefly outline the
social nature of mathematical proof. The next sec-
tion discusses the debate over system verification
which encapsulates many of the ideas of math-
ematical proof and how such proofs can be trusted
by other mathematicians. The article proceeds to
consider ‘computer mediated’ trust, briefly detail-
ing how trust has been reified and represented in
computer systems to date, mainly in relation to the
commercial interests of e-commerce and informa-
tion security. Trust is particularly pertinent in the
world of safety-critical systems, where failure is
not just inconvenient and financially damaging,
although commercial pressures are still evident
here, but where lives can be lost. The model of trust
criticised by e-commerce critics is more similar to
the type of trust we describe in relation to safety-
critical systems, than one might, at first, expect.
Understandably, we would like to put faith in a
system which has been mathematically proved to
be correct. However computer generated proofs,
proofs about correctness of computer software,
and automatically generated code are not neces-
sarily understandable or amenable to inspection
by people, even by experts. The question then
arises of whether we can bring ourselves to trust
computer generated proofs or code, when even
a competent mathematician, logician,or expert
programmer cannot readily understand them.

Following this, we describe the evolution of
software development standards and the SQA
movement. We argue that the development of
quality assurance discourse involves processes of
designing human ways of trusting mathematical
evidence into standardisation and SQA. Military

2762

Trusting Computers Through Trusting Humans

standards are an important part of the SQA story,
having consequences far beyond the military
arena. Standards are political devices with par-
ticular views of work processes inscribed (Akrich,
1992) in their design. We note the way that military
standards, historically, moved towards formal
verification procedures only to move back to rely
more on ‘human’ forms of verification such as
code walkthroughs and inspections in the later
1990s. The story is shot through with a tension
between finding ways to trust the production of
information systems and finding ways to control
them. Formal methods, based on mathematical
proof offer the promise of control, but only if we
can bring ourselves to trust a proof generated
by a machine rather than a proof constructed by
another person. We present the background to
the case study in terms of a description of the
complex ‘post cold war’ military and commercial
environment. This is followed by a description
of the action research methodology employed in
the project, an outline of the case study and an
analysis of the case study findings in terms of
our theoretical framework. In the conclusion we
briefly note that mathematicians and others are
gradually finding ways of trusting computers.

thE socIAl nAturE of
MAthEMAtIcAl proof

At first sight, the concept of mathematical proof
appears to be relatively simple. The idea of a
logical and rigorous series of steps, leading from
one or more starting positions (previous theorems
or axioms) to the final conclusion of the theorem
seems to be the basis of mathematics. The concept
of mathematical proof leading inexorably to true
and incontrovertible truths about the world is very
compelling. It is not surprising that we would like
to apply the apparent certainty and exactness of
mathematical approaches to computer program-
ming. However if we consider briefly how agree-
ment on mathematical proof and scientific truth

is achieved by communities of mathematicians,
then the social and cultural dimension of proof, as
an agreement amongst trusted expert witnesses,
reveals itself.

With the epistemological and professional suc-
cess of mathematical proof, many of the cultural
processes which go into making a proof true sink
from consciousness and are only rendered vis-
ible in times of dispute; for example as in claims
to the proof of Kepler’s conjecture or Fermat’s
last theorem (Davies, 2006; Kuhn, 1962; Singh,
1997). Only on the margins then do we call into
question our ability to trust these people when a
mathematical proof cannot be agreed to be true
by an expert community of mathematicians, as
sometimes happens.

The apparently pure and abstract nature of
mathematical proof fairly quickly breaks down
when we inspect it more closely. In particular,
when there is disagreement about a proof, the
nature of proof is revealed as a social and cultural
phenomenon; the matter of persuading and con-
vincing colleagues. DeMillo, Lipton, and Perlis
(1977, p. 208) wrote

Mathematicians talk to each other. They give
symposium and colloquium talks which attempt to
convince doubting (sometimes hostile) audiences
of their arguments, they burst into each others’
offices with news of insights for current research,
and they scribble on napkins in university cafete-
rias and expensive restaurants. All for the sake of
convincing other mathematicians. The key is that
other mathematicians are inclined to listen!

This traditional approach towards mathemati-
cal proof, which could be described as one of
persuasive rigorous argument between math-
ematicians leading to trust, is not the only way
to address the idea of proof. A quite different
approach appeared in the 1950s and was based
on the work on logic developed by Bertrand
Russell and others in the 1930s and used the
newly invented electronic computer. This new

 2763

Trusting Computers Through Trusting Humans

logic-based approach was not dependent on the
computer, but the computer’s speed and accuracy
had a major impact on its application to the proof
of theorems in replacing the persuasive rational
argument of competent mathematicians with a
formal approach which sees any mathematical
proof as a number of steps from initial axioms
(using predicate logic), to the final proof statement
(based purely on logical inference) without the
requirement of a human being.

Many proofs can be completed by either
method. For instance, many persuasive rigorous
argument proofs can be converted to formal proofs
(MacKenzie, 2004). It should be emphasised,
however, that there is a real difference between
the two types of proof. We are not simply talking
about a machine taking on the role of a competent
mathematician. Some proofs which are readily
accepted by mathematicians rely on arguments of
symmetry and equivalence, analogies, and leaps
of imagination, which humans are very good at
understanding but which a formal logic approach
cannot replicate. Symmetry and analogy argu-
ments of this type cannot be established by formal
methods based on logical progression because
symmetry relies on understanding semantics and
cannot be gleaned from the syntax of a proof.

Whereas the persuasive rigorous argument, the
‘human’ approach, has been used for thousands
of years, the formal or ‘computer generated’
approach has been in use for only about half a
century. Clearly, the two methods are not treated
in the same way by the expert community of
mathematicians. With a rigorous argument type
of proof, although one may expend much energy
convincing one’s colleagues of the validity of
the proof, the potential for coming to agree-
ment or trust of the proof is there. Essentially,
in trusting that a mathematical proof is correct,
mathematicians are demonstrating their trust in
other competent mathematicians. However, expert
mathematicians clearly have trouble bringing
themselves to trust computer proofs, for good

reason, as a computer cannot explain the steps
in its reasoning (Chang, 2004).

coMputEr systEM
vErIfIcAtIon:
trust And thE socIAl

The preceding section contrasted the use of com-
puter technology in a claimed proof: the formal
method and the human ‘rigorous argument’ ap-
proach to proof. Although this is not the same
thing as the proof or verification of a computer
system itself, in other words the formal, computer
generated proof that the computer system matches
the specification, the question of whether we can
trust the computer is exactly the same.

The idea of proof or verification of a program
is quite different from simply testing the program.
Typically, a large suite of programs might have
thousands or millions of possible inputs, and so
could be in many millions or even billions of states.
Exhaustive testing cannot be possible. If a com-
puter system is to be used in the well-funded and
high-profile military field to control a space craft,
aeroplane, or a nuclear power station, it is highly
desirable if the system can be actually proved to
be correct, secure, and reliable. Since testing,
although vital, can never prove the system’s cor-
rectness, more mathematical methods involving
the notion of proof became of great interest in the
late 1960s and have remained so ever since.

In fact the history of the verification of com-
puter systems echoes that of mathematical proof,
with basically the same two approaches: those who
support the rigour of formal methods and those
who believe that the purely formal, mechanised
proof lacks the crucial element of human under-
standing (Tierney, 1993). In a paper to an ACM
Symposium, DeMillo et al. (1977) argued that
the two types of proof were completely different
in nature, and that only the persuasive rigorous
argument proof with its strong social aspect will

2764

Trusting Computers Through Trusting Humans

ultimately be believable and capable of earning
trust

coMputEr-MEdIAtEd trust

In ethical terms, trust is a complex phenomenon
and is essentially a human relationship (Nis-
senbaum, 1999; Stahl, 2006). We think of trust
in terms of a trustor who does the trusting and
a trustee who is trusted. The trustee does not of
course have to be human, but Nissenbaum (1999)
suggests that the trustee should be a being to whom
we ascribe human qualities such as intentions and
reasons, what might be termed an ‘agent.’ Trust
allows meaningful relationships and a vast range
of intuitions to work. Nissenbaum (1999) argues
that when we are guaranteed safety trust is not
needed: ‘What we have is certainty, security,
safety – not trust. The evidence, the signs, the cues
and clues that ground the formation of trust must
always fall short of certainty; trust is an attitude
without guarantees, without a complete warrant.’
Intrusive regulation and surveillance are attempts
at control and bad for building trust.

This generalised definition of trust clearly
maps onto our description of mathematicians
trusting proofs. They may not have complete
certainty over the correctness of a mathemati-
cal proof, but they have good reason to trust a
competent member of the community of expert
mathematicians. Therefore they can trust the proof
supplied by such a person.

Understandably, there has been much interest
in trust in the online world, both in terms of online
security and trust in e-commerce transactions.
Nissenbaum (1999) suggests that excessive safety
controls, say in e-commerce, may encourage
participation but they limit experience: ‘Through
security we may create a safer world, inhospitable
to trust not because there is distrust, but because
trust cannot be nourished in environments where
risk and vulnerability are, for practical purposes,
eradicated.’

Stahl’s (2006) take on trust in e-commerce
shows another example of the intangible human
nature of trust, which has become reified and
commodified, so that it can be measured and
exchanged in machine transactions. Like Nissen-
baum (1999), Stahl points to the way that a trustor
does not have complete control over a trustee;
vulnerability and uncertainty must be accepted
in a trusting relationship. This of course includes
business transactions, and is especially important
in e-commerce as many of the traditional ways of
developing trust are absent from online transac-
tions. Trust becomes a way of generating profit;
small wonder that trust, including technological
ways of creating trust and maintaining it, has been
of so much interest in e-commerce. In the world
of e-commerce research, trusts lose its relational
aspects and becomes a form of social control. ‘If
trust is limited to calculations of utility maximi-
sation in commercial exchange, then most of the
moral underpinnings of the mechanisms of trust
become redundant. Trust changes its nature and
loses the binding moral quality that it has in face-
to-face interaction.’ (Stahl, 2006, p. 31)

Although, on the face of it, Nissenbaum’s and
Stahl’s arguments on the problems of online trust
in e-commerce are not the same as the issue of
trust described in the body of this article, there
are important congruencies which are very di-
rectly applicable to our characterisation of trust.
Whether it is a human trusting another human or
an expert mathematician trusting another expert
mathematician to supply an accurate proof, the
same relationship between trustor and trustee
obtains.

For Nissenbaum and Stahl, the issue is what
happens to trust when it is commodified within an
online relationship. In other words, what happens
when the human-trusting-human relationship is
mediated by technology? In this article we also
consider what happens when the human-trust-
ing-human relationship—in terms of a human
trusting another human’s mathematical proof,
or computer program—is replaced by a human

 2765

Trusting Computers Through Trusting Humans

having to trust a machine. Of course, in this trus-
tor-trustee relationship, the trustee, that is, the
machine, cannot be understood in the way that
another person can be.

The pressure to create computer-mediated
trust is completely bound up with commercial
pressures. The maximisation of profit drives the
reification of trust in e-commerce. Similarly in
the world of military avionics we describe, it is
the commercial pressure of building systems
more cheaply and faster which provides the im-
petus to turn over proofs, testing of programs,
and automatic generation of code to a machine.
A third aspect of similarity between Stahl’s and
Nissenbaum’s view of computer-mediated trust
and ours relates to the tension between trust and
control. This is clearly present in the debate over
trust in e-commerce. But it is also present in soft-
ware quality discourse as we discuss below.

In the following section we briefly discuss
some of the ways in which human trust has tra-
ditionally been built into procedures designed to
verify program correctness, and how this can be
seen to mirror an ideal group of mathematicians
agreeing upon a mathematical proof.

buIldIng trust Into A
coMputEr systEM

We argue that, historically, much of the devel-
opment of the software engineering discipline
can be understood in terms of the development
of procedures, through which we can convince
ourselves to trust, and control, the development
of information systems and the production of
software. For instance, Myers’ (1979) classic
book on software testing explores the topic of hu-
man testing in detail, justifying methods such as
formal code inspections and code walkthroughs.
The differences between the two methods depend
on different usages of the terms ‘inspection’ and
‘walkthrough,’ but the important point is that both

involve a small group of professionals carefully
reading through code together. We argue that this
can be viewed as an imitation of the social (persua-
sive rigorous argument) form of proof described
earlier where ‘mathematicians talk to each other’
in symposia and colloquia and so on (DeMillo et
al., 1977). The original programmer should be in
the group, analogous to the mathematician demon-
strating a proof or principle to expert colleagues.
The aim (as originally suggested by Weinberg
[1971]—an ‘egoless’ approach) is to discover
as many errors as possible rather than to try to
demonstrate that there are none. So the team is to
act as an idealised group of ‘Popperian’ scientists
looking for ‘refutations’ (Popper, 1963). Under
such an approach, one can never be entirely sure
that the code is correct. But, as the walkthrough
proceeds, the original programmer and the code
inspection team can gradually come to trust the
code as bugs are weeded out and fixed.

Myers claims positive advantages of code in-
spections and walkthroughs, including the value
of the original programmer talking through the
design (and thus spotting the errors). He also notes
the ability of human testers to see the causes and
likely importance of errors (where a machine
might simply identify symptoms) and also the
likelihood that a batch of errors will be identified
simultaneously. Also the team is able to empathise
with and understand the thought processes of the
original programmer in a way which a machine
arguably cannot. Importantly, the team can be
creative in its approach. In working together they
also, inevitably, form something of a sharing and
trusting community (even if it is disbanded after
a day or two).

The lesson gleaned from human verification
techniques, such as walkthroughs and code in-
spections, is that these have been regarded, for
some time, as reliable, if not exhaustive, ways of
ensuring reliability of software.

2766

Trusting Computers Through Trusting Humans

softwArE QuAlIty
AssurAncE And MIlItAry
stAndArds for softwArE

The software verification techniques of code
walkthroughs and inspections are important parts
of the armoury SQA. Effectively, we argue that
SQA is a branch of software engineering which
formalises and standardises the very human
methods of trust, and ultimately control outlined
above, which we need to build into software
engineering procedures. The SQA movement
is an important part of the story of the growth
of software engineering because of its quest for
rigour and control of potentially unruly programs
and programmers.

First of all, SQA offers a promise of rational
control over software, the software development
process, and those who produce software. Soft-
ware quality criteria include features for direct-
ing, controlling, and importantly, measuring the
quality of software (Gillies, 1997). ‘Qualifica-
tion’ is achieved when a piece of software can
be demonstrated to meet the criteria specified in
these quality procedures. An important aspect of
SQA involves demonstrating that software meets
certain defined independent standards.

The development and adherence to software
standards is a very important part of the story
of SQA. Generic industry standards are avail-
able, but also of much interest—particularly for
the case study set out later in the article—are
military standards. Indeed, the defence industry
is so influential that Tierney (1993) argues that
military standards influence software engineer-
ing far beyond applications in defence. Hence
military standards are a very important part of
SQA, and ultimately are important in formalising
ways in which designers of computer systems can
come to trust the systems and the production of
correct software.

A number of military standards have been
developed to regulate and control the use of
software in defence applications. For instance,

US standards DOD-STD-2167A (1988), MIL-
STD-498 (1994), and ISO/IEC 12207 (1995)
respectively established the requirements for
software development and documentation in all
equipment to be used by the US military (and
effectively that of all Western armed forces),
introduced object oriented development (OOD)
and rapid application development (RAD), then
broadened the scope of international standards
to include acquisition and maintenance. (DSDM
Consortium, 2006).

The relevant UK standard 00-55, (MoD, 1997)
Requirements for Safety Related Software in
Defence Equipment, was published in 1997 and
echoes much of MIL-STD-498, but moves the
discussion on provably correct software in a par-
ticular direction. At first sight, this seems highly
significant to the current argument, because it
clearly expressed a preference for formal methods,
in other words mathematical procedures whereby
the software is proved to be correct by a machine
(MacKenzie, 2001).

Tierney (1993) argues that the release of UK
Defence Standard 00-55 in draft in 1989 had
the effect of intensifying the debate over formal
methods in the UK software engineering com-
munity. It devoted as much space to regulating
and managing software development labour
processes as the techniques and practices to
be used for formal designs. This reinforces our
argument that SQA is concerned with control of
work processes and those who perform them,
the software developers. On the one hand, many
argued that mathematical techniques for soft-
ware development and verification could only
ever be used sparingly, as there simply was not
enough suitable mathematical expertise in most
organisations and it increased software quality at
the expense of programmer productivity. On the
other side, those from a more mathematical camp
argued that there was commercial advantage in
proving software correctness as errors could be
trapped earlier in the software development cycle
(Tierney, 1993, p. 116).

 2767

Trusting Computers Through Trusting Humans

Designed into the MoD (UK Ministry of
Defence) standard was a view of safety-critical
software as an important area of regulation and
control. Some of the reason for this was a change
in its own organisation from the 1980s. The UK
government sought to open up work traditionally
done in-house by the MoD in its own research
establishments to private contractors (Tierney,
1993, p. 118). Given that it had to offer its soft-
ware development to the private sector, it built in
ways of controlling it within its defence standards
(Tierney, 1993, p. 118). Further political impetus
was offered by the introduction of consumer
protection legislation in the UK in the late 1980s
which required software developers to demon-
strate that their software had not contributed, in
the event of an accident enquiry, and that they had
demonstrably attended to safety. Thus we can see
that in Def Stan 00-55, politics, in the shape of
the MoD’s need to open up software development
to the private sector and also to avoid being held
responsible for inadequate software in the event
of an accident, played an important role.

However, more significantly, this document
has itself been superseded in 2004 by (draft)
standard 00-56 (MoD, 2004). Def Stan 00-55 has
now become obsolete. The changes involved in
Def Stan 00-56 are of great interest, in that the
preference for formal method is lessened. In the
new standard, it is accepted that provably correct
software is not possible in most cases and that
we are inevitably involved in a human operation
when we attempt to show that code is reliable in
a safety-critical environment. Without a more
detailed consideration of the history of formal
methods in the UK over the last decade, which is
beyond the scope of the present article, a strong
claim that the move back to more human meth-
ods of verification might be difficult to sustain.
Nevertheless it is interesting to note the way that
Def Stan 00-5, with its emphasis on formal ap-
proaches and attendant onerous work practices,
has been consigned to the history books with a
clear move back to human verification.

cAsE study contEXt

The case study relates to a large European mili-
tary aircraft company (MAC) with which one
of the authors was engaged as a researcher in a
joint research project, lasting around three years,
during the mid to late 1990s. A high proportion of
the senior management were men and its culture
was masculine in style, particularly emphasising
an interest in engineering and technical mastery
(Faulkner, 2000). Indeed there was much interest,
pleasure, and admiration for elegant products of
engineering (Hacker, 1991). When one of their
fighter planes flew over (an event difficult to
ignore on account of the engine noise), offices
would clear as employees went outside to admire
the display of a beautiful machine. A certain
amount of military terminology was used, some-
times ironically, in day-to-day work. A number
of employees had links with the armed forces.
MAC was exclusively involved in the defence
industry, with the UK’s MoD being its largest
customer and other approved governments buy-
ing its products.

As a manufacturing company in an economy
where manufacturing was in steep decline and
with its ties to the defence industry, if a major
defence contract went elsewhere, jobs would
be on the line. Despite the ‘hi-tech’ nature of
its work, MAC had a traditional feel to it. The
company had existed, under one name or an-
other, right from the beginning of the avionics
industry. The defence industry, and within that
the defence aerospace industry, faced uncertain
times as the UK government was redefining its
expectations of the defence industry in post-Cold
War times. It quickly came to expect much clearer
demonstrations of value for money (Trim, 2001).
Therefore, the ‘peace dividend’ brought about by
the end of the Cold War meant uncertain times
for the defence aerospace industry as military
spending was reduced significantly (Sillers &
Kleiner, 1997). Yet, as an industry contributing
huge amounts to the UK economy (around £5

2768

Trusting Computers Through Trusting Humans

billion per annum in export earnings Trim (2001,
p. 227)), the defence industry is hugely important
in terms of revenue and employment. Defence
industries have civil wings (which was the case
with MAC) and it was seen as important that the
defence side of the business did not interfere with
civil businesses. For instance, BAE Systems is a
partner in a European consortium and was pledged
£530 million as a government loan to develop the
A3XXX aircraft to rival the USA’s Boeing 747
(Trim, 2001, p. 228).

Although not strictly a public sector organisa-
tion itself, its location in the defence industry put
MAC’s business in the public sector. However, in
the UK, views of public sector management were
undergoing rapid change in the mid 1990s and it
was seen as no longer acceptable that the taxpayer
should underwrite investment (Trim, 2001). Such
firms were required to be more competitive and
to be held more accountable financially. Hence,
quality management and value for money were
becoming key concepts in the management rep-
ertoire of the UK defence industry from the mid
1990s onwards. As we discuss in the preceding
section, this was at the height of the UK MoD’s
interest in formal approaches to the production
of software. In a climate where post-Cold War
defence projects were likely to demand a shorter
lead time, there was considerable interest in speed-
ing up the software development process.

Computer technology and related activity
clearly played a central role in MAC. One divi-
sion of MAC, the Technical Directorate (TD),
developed most of the airborne software (much
of it real-time). This software clearly has a central
role in ensuring aircraft performance and safety.
Around 100 people were involved in developing
systems computing software. It was in this divi-
sion that Software Development System (SDS), a
safety-critical airborne software system for flying
military aircraft, was developed.

research Methodology

The methodological approach of the research was
based on action research (Myers & Avison, 2002).
As several successful participant observation stud-
ies in technology based organisations have been
reported in the literature (Forsythe, 2001; Low
& Woolgar, 1993; Latour & Woolgar, 1979), an
ethnographic approach holds much appeal. How-
ever, a strict ethnographic approach was neither
feasible nor desirable in this study. As someone
with technical expertise, the researcher could
not claim to be the sociologist or anthropologist,
more typical of reported ethnographic studies of
technological systems (Low & Woolgar, 1993;
Forsythe, 2001). This also meant that he was not
‘fobbed off’ by being directed into areas that the
participants thought he wanted to look at or where
they thought he should be interested in as happened
in the Low and Woolgar (1993) case study. Based
in the Quality Assurance Division (QAD) in the
SQA team, early in his research, the researcher
proved his technical credentials by helping run
a workshop on software metrics and this helped
to gain him full inclusion in the technical work.
Although as a technical researcher, rather than
a social researcher, it was arguably difficult for
him to maintain the ‘anthropological strangeness’
which ethnographers look for in explaining the
common sense and every day logistics of working
life. In any case, he had been invited, through this
research, to make a contribution to the improve-
ment of SQA procedures. Therefore the research
can be characterised as a form of action research
(Baskerville & Wood-Harper, 1996), where po-
tential improvements to SQA were to be seen as
the learning part of the action research cycle.

Although action research receives a mixed
press from the IS research community (Basker-
ville & Wood-Harper, 1996; Lau, 1999), it is
nevertheless seen as a way of coming to grips
with complex social settings where interactions
with information technologies must be understood

 2769

Trusting Computers Through Trusting Humans

within the context of the whole organisation.
Baskerville (1999) notes the growing interest in
action research methods in information systems
research. Two key assumptions are that complex
social settings cannot be reduced for meaning-
ful study and that action brings understanding
(Baskerville, 1999). The culture of MAC was
extremely complex, as we characterise above and
discuss again in what follows. Arguably, key ele-
ments would be lost were the researcher to have
adopted a more distant role, relying on interviews
and questionnaires rather than becoming fully
immersed and contributing to the detail of the
project. The researcher adopted an interpretivist
approach, looking to the interpretations of the
other participants of the research. But by allowing
for social intervention he became part of the study,
producing shared subjective meanings between
researcher and subjects as coparticipants in the
research (Baskerville, 1999).

For a period of over one year out of the three
that the whole project lasted, the researcher spent,
on average, one day per week working with MAC
staff with access to a variety of staff across the
organisation, and was therefore able to participate
in a range of meetings and workshops and to gain
a familiarity with the individuals concerned. This
could not easily have been gained from interviews
or surveys. These events included meetings where
software quality staff considered quality policy,
such as the implication of international standards,
to broader meetings where technical staff were
considering development methods in detail. Free
access was allowed to relevant policy and devel-
opment documents. This permitted an overview
of the detailed practices and culture of this large
and complex organisation.

Analysis of case study findings

The initial remit of the researcher was to work
with staff to optimise the use of software quality
assurance within the organisation. The use of

cost benefit analysis was originally suggested by
senior management. Given our characterisation
of the UK defence industry’s particular focus on
management of quality and value for money, as
described above, it is entirely in keeping with the
industry’s changing needs that the researcher was
initially directed into these areas. The researcher
viewed it as problematic to assign monetary
cost to SQA activities, and even harder to assign
monetary benefits. However, these concerns
were never addressed directly in the project as it
soon emerged that there was greater interest in
a new approach to software development being
pioneered by MAC.

Ince (1994, p. 2-3) tells the story of a junior
programmer’s first day in a new job. A senior
programmer shows him around, advising him
where to buy the best sandwiches at lunchtime,
where to find the best beer after work, and other
similarly important matters. Then the senior
colleague points to a door. ‘Whatever you do
don’t go through that door, the people there have
been given the job of stifling our creativity.’
The door, of course, led to the quality assurance
department.

The staff of MAC’s Quality Assurance Divi-
sion expressed some similar feelings, albeit less
dramatically. They wanted to act as consultants,
offering a measure of creativity to the technical
development process, although safely wrapped
in appropriate quality assurance processes, but
all too often they felt like the police. The strong
awareness of the safety-critical nature of software
development, and the related fairly advanced or-
ganisation of quality assurance in MAC, thanks
in no small measure to the necessity to adhere to
MoD standards, meant that SQA was never going
to get quite the negative press that it attracted in
Ince’s (1994) anecdote. Nevertheless, there was
still some feeling that the Quality Assurance
Division could be brought on board in a project
some time after the Technical Division had time
to do the creative part.

2770

Trusting Computers Through Trusting Humans

Hence, TD had been prototyping the new SDS
system for about a year when they decided to bring
in Quality Assurance Division. As we explain
below, the newness of the style of development
in SDS made it unclear how it was to be quality
assured. Unsure of how to proceed, the SQA
manager turned to the researcher for suggestions.
The researcher now became involved in investi-
gating the use of the new software development
approach, which would involve the inclusion of
computer generated program code (‘auto-code’)
in safety-critical airborne software systems,
leading to the approval of the new approach and
its incorporation into MAC’s software quality
assurance systems.

Although there has been a long tradition of
using computers to aid the process of software
engineering itself, such CASE tools (Pressman,
2005) have not generally been used to generate
safety-critical code (this was always written by
human programmers). The new MAC SDS was an
ambitious system whose targets were principally
to reduce avionics systems development time by
40% and the cost by 30%, whilst maintaining
the very high quality standards necessary for
computer-based system which fly—and therefore
can crash—military aircraft.

A key aspect of SDS was process integration
using an integrated modeling environment. There
was consequentially a heavy reliance on auto-
mated methods. A specification was developed in
a formal modeling language and this generated
programming code automatically. In particular,
automatic code generation was eventually to lead
to aircraft flying ‘auto-code’ in safety-critical
systems. Two aspects of SDS stand out in the
climate of defence spending of the mid 1990s.
First, there was pressure to reduce costs and
show value for money. Second, the use of formal
methods in computer programming received a
huge boost in the mid-1990s through the Defence
standard DEF Stan 00-55 which mandated the use
of formal methods base approaches in safety-criti-

cal software. It is not surprising that there was
considerable interest in a system which offered
the promise of considerably reduced software
production times.

MAC invested a great deal of money and time
in SDS in the hope that the improved time-scales
which SDS promised, together with reduced costs,
could keep major current aircraft developments on
course. This was particularly important in an envi-
ronment of political intervention and considerable
public interest and concern over escalating costs
and delivery times in the public sector, including
the defence industry. These benefits could only
accrue to MAC if the quality, that is, correctness
of the software, could be assured.

SDS was heavily dependent on software
(CASE) tools. MAC had used these for many years,
and had procedures in place for their qualifica-
tion (i.e., acceptance) in certain circumstances.
However, these applied to mission-critical rather
than safety-critical systems. Furthermore, the
movement towards auto-generated code led to
a different environment than one where tools
improved and speeded up the design process,
but where failure would show up and be merely
time-wasting. There was seen to be a need for a
major improvement/update of these procedures, a
quantum change, before they would be acceptable
for safety-critical applications.

Some tools being used had major world-wide
user communities, associated academic confer-
ences, and came from supposedly secure and
reliable suppliers. Others might not be so well
supported, both intellectually and commercially.
(For instance, it might be no use having an ideal
tool if the supplier was small and unlikely to
survive for many years.) Methods already existed
for supplier qualification. These methods were
undertaken by software quality staff. However, the
qualification of these suppliers could be a crucial
issue in the qualification of the tool and ultimately
the integrity of the avionics system. The issue was
not merely one of qualification, it was also one

 2771

Trusting Computers Through Trusting Humans

of demonstration of qualification to customers.
Ultimately, the need in some sense to prove the
new methods became paramount. Hence we can
see that quality procedures did not just involve
procedures, such as code walkthroughs through
which software teams could persuade themselves
to trust program code, they also applied to the
question of choosing and trusting suppliers.

A number of meetings took place with mem-
bers of the SDS team. This discussion was very
useful for an understanding of SDS and gave the
researcher a richer understanding of the SQA
needs. It soon became apparent that the necessary
fundamental problems with SQA in SDS were
going to be difficult to answer.

The difficulties were centred around two
conflicting ideas. The first of these was that for
the persuasive rational argument approach to be
successful there would be a need for a group of
professionals to participate in code walkthroughs,
with consequent discussion and persuasion. On
the face of it, this was simply not possible, since
the computer which wrote the auto-code could
not take part in such a discussion. Alternative
approaches were considered. Clearly there would
be a stage before the auto-code (at the require-
ments specification level) where human agents
were involved, but this was found to be too high
level to meet the relevant military standards (the
US MIL-STD-498 [1994] and the UK standard
00-55 [MoD, 1997]). Both standards are very
specific about the exact conduct of the necessary
walkthrough. It had to be a code walkthrough.

On the other hand, for the formal proof ap-
proach method to work, there would first need to
be such a formal proof. This did not seem within
the capability of the QAD itself, despite the divi-
sion being quite well resourced. MAC referred
back to the auto-code tools suppliers, but once
again there was no such proof and no realistic
possibility of achieving such a proof. Although
MAC was an important customer for the auto-code
tool suppliers, they were not prepared to expend

the necessary resources. Furthermore, a ‘weakest
link’ argument demonstrates a fundamental flaw
with the formal approach in computer systems. If
the auto-code tool itself could be formally verified,
it would then become necessary also to consider
the operating system on which the tool would run
and the hardware systems involved. Potentially
this could involve a seemingly infinite regression
of hardware and software systems having to be
proved correct, where the system is only as good
as its weakest link. Frustration grew as no solu-
tion was forthcoming and ultimately SDS was
shelved indefinitely.

We have argued that mathematical proof is es-
sentially a human achievement between members
of the expert mathematical community who are
persuaded of the correctness of mathematical
proofs because they trust each other. These pro-
cesses of trust are replicated in the procedures that
have been developed in software engineering, and
within that, software quality assurance. As part
of the defence industry, developing safety-critical
systems, MAC had highly developed SQA proce-
dures which were obliged to follow international
military standards. Their code walkthroughs,
which are analogous to the ways mathematicians
achieve trust in a proof, were an important part
of such quality procedures. Formal methods offer
the promise of an attractive certainty and control
over software production and hence control over
the work processes of human programmers. They
also offer the promise of automatic verification
of software systems which, potentially, could be
much cheaper than traditional human based ap-
proaches to the verification of software through
traditional SQA procedures.

SDS achieved very little despite the huge ef-
forts put into it by the many people working for
MAC. Although it was not, at the time, formulated
in such stark terms, success was elusive because
an attempt was being made to achieve the impos-
sible: namely using auto-code whilst being held
to quality assurance procedures which demanded

2772

Trusting Computers Through Trusting Humans

code walkthroughs which could not possibly be
achieved in an auto-code system. Attempts were
made to consider formally proving the correctness
of the auto-code. In addition to supplier reluctance,
this raised the spectre of the infinite regress. If
one looks to proving the auto-code correct, then
the operating system must be proved correct, the
hardware platform and so on.

This was at the height of interest in formal
methods for safety-critical systems for defence,
a view embodied in Def Stan 00-55. The rise of
formal methods is crucially linked to the defence
industry. The interest in formal methods and auto-
mated approaches arrived as pressure mounted on
Western governments to prove cost effectiveness
due to the changing nature of defence develop-
ments after the end of the Cold War and the need
to avoid litigation for software that might be
implicated in an accident. Yet the difficulties of
applying formal methods in systems of any level
of complexity and the need to trust the program
code acted as a spur to maintain complex human
centred software quality assurance procedures.

conclusIon:
trustIng coMputErs

There is much evidence that we already do trust
computers in many walks of life without formal
proof or other formal demonstration, even to the
extent of trusting safety-critical systems such
as the ‘fly by wire’ software in the Boeing 777
airliner, two million lines of code which have not
been fully proved (Lytz, 1995). Expert mathemati-
cians have begun to accept computer generated
proofs, albeit in qualified ways (Chang, 2004).
As MacKenzie (2001, p. 301) argues, ‘moral
entrepreneurs’ of computerised risk ensure that
warnings about computerised risk are heeded
so that safety-critical software is avoided and,
where it is unavoidable, much care is taken over
its development. Military standards, so detailed

about the use of formal methods in software design
and attendant work processes in the 1990s, have
moved a decade later to be much less prescriptive
about the work methods of ensuring software
quality, thereby allowing for the crucial element
of human inspection in order that the software
may be trusted. As Collins (1990) notes, we are
remarkably accommodating to computers, mak-
ing sense of them and involving them in our social
networks, and will continue to find imaginative
ways of doing so. This echoes Nissenbaum’s (1999)
view that we may trust computers if we can treat
them as ‘agents.’ We may meaningfully ascribe
intentions and reasons to them.

In this article we have sought to tell a story of
trust, in particular how software may be trusted
when it is not produced by a human program-
mer. This involves consideration of a complex
set of discourses including the question of math-
ematical proof and how proof is achieved within
mathematical communities. We see a similar
need to replicate such human processes of trust
in trusting computer systems. We have argued
that the making of standards to be applied within
software quality assurance procedures shows
ways in which mechanisms of trust are inscribed
in software standards. Our case study, an action
research project in a military aircraft company,
demonstrates the difficulties which occur when
quality assurance procedures involving code
walkthroughs—procedures with built-in human
trust mechanisms—are incommensurable with
a system which relies on auto-code. The climate
of defence research and spending was a major
influence, both on our case study and the wider
development of standards. There is a continued
tension between needing to trust and trying to
control: trusting the software and controlling its
production. The story which we tell here is one
of continuing human ingenuity in finding ways
of trusting computer software.

 2773

Trusting Computers Through Trusting Humans

rEfErEncEs

Akrich, M. (1992). The de-scription of techni-
cal objects. In W. E. Bijker & J. Law (Eds.),
Shaping technology/building society: Studies in
sociotechnical change (pp. 205-224). Cambridge,
MA/London: MIT Press.

Baskerville, R. Investigating information sys-
tems with action research. Communications of
the Association for Information Systems, 19(2).
Retrieved October 5, 2006, from http://www.cis.
gsu.edu/~rbaskerv/CAIS_2_19/CAIS_2_19.htm

Baskerville, R., & Wood-Harper, A.T. (1999). A
critical perspective on action research as a method
for information systems research. Journal of
Information Technology, 11, 235-246.

Chang, K. (2004, April 6). In math, computers
don’t lie. Or do they? New York Times. Retrieved
October 5, 2006, from http://www.math.bingham-
ton.edu/zaslav/Nytimes/+Science/+Math/sphere-
packing.20040406.html

Collins, H.M. (1990). Artificial experts: Social
knowledge and intelligent machines. Cambridge,
MA: MIT Press.

Davies, B. (2006, October 3). Full proof? Let’s
trust it to the black box. Times higher education
supplement.

De Millo, R.A., Lipton, R.J., & Perlis, A.J. (1977).
Social processes and proofs of theorems and pro-
grams. In Proceedings of the 4th ACM Symposium
on Principles of Programming Language (pp.
206-214).

DSDM Consortium. (2006). White papers. Re-
trieved October 5, 2006, from http://www.dsdm.
org/products/white_ papers.asp

Faulkner, W. (2000). The power and the pleasure?
A research agenda for ‘making gender stick.’
Science, Technology & Human Values, 25(1),
87-119.

Forsythe, D.E. (2001). Studying those who study
as: An anthropologist in the world of artificial
intelligence. Stanford University Press.

Gillies, A.C. (1997). Software quality: Theory
and management (2nd ed.). London/Boston: In-
ternational Thomson Computer Press.

Hacker, S. (1989). Pleasure, power and technol-
ogy: Some tales of gender, engineering, and the co-
operative workplace. Boston: Unwin Hyman.

Ince, D. (1994). An introduction to software qual-
ity assurance and its implementation. London:
McGraw-Hill.

Kuhn, T.S. (1962). The structure of scientific
revolutions. University of Chicago Press.

Latour, B., & Woolgar, S. (1979). Laboratory
life: The social construction of scientific facts.
Princeton University Press.

Lau, F. (1999). Toward a framework for action
research in information systems studies. Informa-
tion Technology & People, 12(2), 148-175.

Low, J., & Woolgar, S. (1993). Managing the socio-
technical divide: Some aspects of the discursive
structure of information systems development.
In P. Quintas (Ed.), Social dimensions of systems
engineering: People, processes and software
development (pp. 34-59). New York/London:
Ellis Horwood.

Lytz, R. (1995). Software metrics for the Boeing
777: A case study. Software Quality Journal,
4(1), 1-13.

MacKenzie, D.A. (2001). Mechanizing proof:
Computing, risk, and trust. Cambridge, MA/
London: MIT Press.

MacKenzie, D.A. (2004). Computers and the
cultures of proving. Paper presented at the Royal
Society Discussion Meeting, London.

Ministry of Defence (MoD). (1997). Requirements
for safety related software in defence equipment

2774

Trusting Computers Through Trusting Humans

Retrieved October 5, 2006, from http://www.
dstan.mod.uk/data/00/056/01000300.pdf

Ministry of Defence (MoD). (2004). Interim
defence standard 00-56. Retrieved October
5, 2006, from http://www.dstan.mod.uk/
data/00/056/01000300.pdf

Myers, G.J. (1979). The art of software testing.
New York: Wiley.

Myers, M.D., & Avison, D.E. (Eds). (2002).
Qualitative research in information systems: A
reader. London: Sage Publications.

Nissenbaum, H. (1999). Can trust be secured on-
line? A theoretical perspective. Etica e Politica,
2. Retrieved October 5, 2006, from http://www.
units.it/~etica/1999_2/nissenbaum.html

Popper, K.R. (1963). Conjectures and refutations.
New York: Harper.

Pressman, R. (2005). Software engineering: A
practitioner’s approach (6th ed.). London/New
York: McGraw Hill.

Sillers, T.S., & Kleiner, B.H. (1997). Defence
conversion: Surviving (and prospering) in the
1990s. Work Study, 46(2), 45-48.

Singh, S. (1997). Fermat’s last theorem. London:
Fourth Estate.

Stahl, B.C. (2006). Trust as fetish: A Critical
theory perspective on research on trust in e-com-
merce. Paper presented at the Information Com-
munications and Society Symposium, University
of York, UK.

Tierney, M. (1993). The evolution of Def Stan
00-55: A socio-history of a design standard for
safety-critical software. In P. Quintas (Ed.), So-
cial dimensions of systems engineering: People,
processes and software development (pp. 111-143).
New York/London: Ellis Horwood.

Trim, P. (2001). Public-private partnerships and
the defence industry. European Business Review,
13(4), 227-234.

Weinberg, G. (1971). The psychology of com-
puter programming. New York: Van Nostrand
Reinhold.

This work was previously published in International Journal of Technology and Human Interaction, Vol. 3, Issue 4, edited by B. Stahl, pp.
1-14, copyright 2007 by IGI Publishing (an imprint of IGI Global).

 2775

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.9
Access Control

Specification in UML
Manuel Koch

Free University of Berlin, Germany

Francesco Parisi-Presicce
George Mason University, USA and University of Rome “La Sapienza”, Italy

Karl Pauls
Free University of Berlin, Germany

AbstrAct

Security requirements have become an integral
part of most modern soft¬ware systems. In or-
der to produce secure systems, it is necessary to
provide soft¬ware engineers with the appropri-
ate systematic support. This chapter discusses
a methodology to integrate the specification of
access control policies into UML. The methodol-
ogy, along with the graph-based formal semantics
for the UML access control specification, allows
to reason about the coherence of the access con-
trol spec¬ification. The chapter also presents a
procedure to modify policy rules to guarantee
the satisfaction of constraints, and shows how
to generate access control requirements from
UML diagrams. The main concepts in the UML

access control specification are illustrated with
an example access control model for distributed
object systems.

IntroductIon

Security requirements are an important aspect in
the development of software systems that are not
used in completely trusted environments. In order
to increase the overall system security and to bet-
ter satisfy security constraints, security policies
should be specified in terms of security models that
are integrated with the general software engineer-
ing models. Modelling techniques that are well
known to software engineers should be used, to
prevent them from specifying mistakes in security

2776

Access Control Specification in UML

specifications due to inadequate expertise of the
particular specification technique. The reasoning
about and the verification of security properties
require a formal semantics for the specification
technique.

Since the UML is nowadays the de-facto stan-
dard modelling language, the usage of UML for
the specification of security aspects is particularly
attractive, since software engineers are used to the
UML notation and the accompanying tools (Brose,
Koch, & Lohr, 2002; Devanbu & Stubblebine,
2000; Epstein & Sandhu, 1999; Jurjens, 2001;
Lodderstedt, Basin, & Doser, 2002). We identify
in this chapter the parts necessary to specify
an access control policy and propose a UML
specification for these parts. In our framework,
we use only existing UML model elements and
extension mechanisms to ensure compatibility
with UML tools that can then be directly used
for the access control specification. The UML
specification of an access control model makes
use of UML class diagrams, object diagrams,
some additional stereotypes and OCL constraints
(OMG, 2003).

Access control constraints restrict an access
control model and prevent the system from reach-
ing unwanted protection states. The expression
and specification of access control constraints is a
difficult task and existing languages are often too
complex for administrators to determine whether
a set of constraints really satisfies the requirement.
Therefore, access control languages have been
proposed which have a manageable complexity
and are understandable by administrators but
still expressive enough to capture most practical
access control constraints (Ahn & Sandhu, 2001;
Jaeger & Tidswell, 2001; Koch, Mancini, & Pari-
si-Presicce, 2002c). We present in this chapter an
approach to specify access control constraints in
UML. We consider OCL constraints as a textual
presentation of access control constraints, but
present also visual constraint specification by
UML object diagrams (Koch et al., 2002c; Ray,
Li, France, & Kim, 2004).

In our approach, access control models are
specified on several levels, depending on the
added application domain information similar to
the UML meta-modelling architecture (without
the metametamodel). On the metamodel level,
there is no application domain information and
the access control specification shows only the
policy rules and constraints. This is the level at
which the generic access control model, such
as Role-Based, Mandatory, Discretionary, are
described. The model level is an instance of the
meta access control model and refines it using
application domain information. At this level, the
specific roles used in RBAC or the clearance, and
categories used to construct the labels in MAC
are defined depending on the application. The last
level is an instance of the access control model in
a specific information domain. This is the level at
which principals are assigned to roles or labels, or
specific permissions are assigned to roles.

To verify that an access control policy satis-
fies all the access control constraints (i.e., the
policy permits only system states that satisfy all
the constraints) an appropriate formal semantics
for the UML access control model is needed. We
give a graph-based formal semantics (Rozenberg,
1997) to the UML access control specification by a
transformation of UML class and object diagrams,
respectively, into graphs and graph rules. The
graph-based semantics enables us to use several
verification concepts to verify the constraints
with respect to the access control model (Koch,
Mancini, & Parisi-Presicce, 2001; Koch, Mancini,
& Parisi-Presicce, 2002b).

To know how to model access control require-
ments into UML is only part of the problem.
Another essential part is to determine the access
control requirements themselves. We present
an approach to generate automatically access
control requirements from UML use case, class,
and sequence diagrams. The extracted access
control information is the basis for the UML ac-
cess control model.

 2777

Access Control Specification in UML

The remainder of the chapter is organized as
follows: the next section briefly discusses access
control policies and introduces View Based Ac-
cess Control as the access control model used in
this chapter as the running example. The follow-
ing section gives an overview of our approach,
introducing the three specification levels of access
control models. The two subsequent sections pres-
ent the UML specification of the access control
metamodel and its refinement to an application
domain specific access control model. Our
example application domain is a small hospital
information system. The model is then further
refined with the specification of access control
constraints in UML. The section on Verification
briefly mentions graph transformations as an
effective way to give a formal semantics for an
UML access control specification. The next sec-
tion illustrates the generation of access control
requirements from UML diagrams, whereas the
penultimate section provides a brief discussion of
other approaches and of related work. The chapter
closes with a summary of its contents and pointers
and suggestions for open problems.

AccEss control In
obJEct-orIEntEd systEMs

Access control is the typical approach to limit
access to resources in general, and to objects in
particular. The restrictions include preventing
principals from reading the contents of a file to
protect the confidentiality of the data, or from
modifying entries in a database to maintain the
integrity of the data and the trustworthiness of
the information contained. Access control policies
describe which states of the system are deemed
acceptable (safe), in which authorized principals
can access entities in the appropriate manner (e.g.,
in read mode for confidential data, in write mode
for trusted data), and security mechanisms are
designed to implement the security policies.

View-based access control (VBAC) is an
access control model specifically defined to
support the design and management of access
control policies in object-oriented systems (Brose
2000; Brose 2001a). VBAC relies on roles as
abstractions of callers and can be regarded as an
extension of role-based access control (RBAC)
(Sandhu, Coyne, & Feinstein, & Youman, 1996)
to distributed object systems. Rolebased access
control reduces the complexity and cost of se-
curity administration in large systems because
roles serve as a link between access modes for

Figure 1. VBAC example

2778

Access Control Specification in UML

objects (e.g., read or write access if the object is
a file, the print command for a printer, a method
of a distributed object etc.) and subjects (users or
processes that run on behalf of them). A subject
can access an object if it has been authorized for,
and has activated, a role that has been assigned
the required permissions for the access.

The principal new feature of VBAC is that of
a view for the description of fine-grained access
rights, which are permissions for calling opera-
tions of objects. Views on objects are assigned
to roles, and a subject can call an operation of an
object if it has a view on the object with a permis-
sion for the operation. The subject has no access
to the operation if the operation is not in a view
assigned to one of the subject’s roles.

Figure 1 illustrates a small access control
example for CIS objects providing the operations
newPR(), list() and getPR() (the meaning of these
objects will be explained in more detail in a later
section). The CIS represents a hospital central
information system used to manage the records
of patients.

The permissions get, list and new give the ac-
cess right to call the operations getPR() (returns
the patient record of a patient for a given ID),
list() (lists all patient records) and newPR() (cre-
ates a new patient record). There are two views
in this example: the view Reading contains the
permissions get and list, and the view Extending
has the permission new. The view Reading is as-
signed to both the role Nurse and the role Doctor,
while the view Extending only to the role Doctor.
Therefore, any user in the role Doctor can call
any operation of CIS objects, while a user in the
role Nurse has access to read the patient records,
but cannot create a new one.

VBAC access policies are deployed (via de-
scriptor files) together with applications in the
target environments, as in approaches like EJB
(Sun Microsystems, 2000) or the CORBA Com-
ponent Model (OMG, 1999). These policies are
initially designed by developers and subsequently

used and possibly adapted by deployers and se-
curity managers. The deployment and manage-
ment infrastructure designed for this approach
is called Raccoon (Brose 2001a; Brose, 2001b).
A deployment tool processes policy descriptors,
and stores static view and role definitions in re-
positories that can be managed using graphical
management tools. At runtime, role membership
is represented by digital certificates, issued by a
role server. Access decisions are made locally in
the server processes that host application objects,
based on policy information supplied by the
policy servers, which rely on the deployed policy
information. Policies can be managed in terms
of roles and views using graphical management
tools. A more detailed presentation of the policy
enforcement infrastructure can be found in (Brose
2001a; Brose 2001b; Brose 2002).

outlInE of our ApproAch

An access control policy consists of a set of policy
rules that define the choices in the individual and
collective behaviour of the entities in the system.
To specify an access control policy, it is necessary
to model the entities in the system, the policy rules
for the behaviour of these entities and (possibly)
additional constraints. We model all these parts
of an access control policy using UML in order
to integrate them easily into the UML software
process. The entities on which the policy operates
are specified in a UML class diagram, the policy
rules are specified by specially annotated object
diagrams, and the access control constraints are
specified either textually by Object Constraint
Language (OCL) constraints or visually by ob-
ject diagrams. Therefore, a UML access control
specification ACS = (T, PRules, Constr) consists
of the following UML diagrams:

• T , called type diagram, is a class diagram
that specifies the available entities,

 2779

Access Control Specification in UML

• PRules is a set of object diagrams for the
specification of the policy rules,

• Constr is a set of object diagrams or OCL
constraints to model Access Control con-
straints.

In general, an access control model is in-
dependent of an application. For example, the
RBAC model describes a general concept of
how to manage access on resources that can be
applied to many application domains. Therefore,
we use a threelayer model structure consisting of
an access control metamodel (ACMM), an ac-
cess control model (ACM) and an access control
instance model (ACIM). Each of these models
(ACMM, ACM, and ACIM) consists of a type
diagram and object diagrams for policy rules
and constraints, but describes the access control
policy on a different abstraction level. The ac-
cess control metamodel defines the language for
specifying access control models such as VBAC,
RBAC, Discretionary or Mandatory Access Con-
trol models. The ACMM is independent of any
information or application domain. The access
control model is an instance of the access control
metamodel and introduces the information and
application domains. If the metamodel specifies
an RBAC model, doctor and nurse would be roles

specific to a medical information domain. The
instance access control model is an instance of
the access control model in a specific informa-
tion or application domain. Examples would be
orthopaedist, surgeon, internist, etc., as doctor
role instance objects. The following table sum-
marizes the three layers.

Figure 2 shows the relations between the access
control diagrams on the different layers.

We focus here on the access control meta-
model and the access control model and introduce,
in the next sections, their specification for the
example of the VBAC model described in the
previous section. The application domain for the
access control model is a medical information
system.

The three-layer model structure gives a method
to specify access control policies in UML, but it
leaves open the question of what a system designer
has to specify in a concrete access control policy
while developing a concrete application since,
so far, there is no support for access control re-
quirement analysis. In the last section, we briefly
present a model-driven approach to access control
specification which supports a system designer
in developing an access control model for a given
application domain.

Layer Description Example

Access control meta-
model (ACMM)

Access control model independent of an
information/application domain

VBAC, RBAC,
etc.

Access control
model (ACM)

Access control model regarding an information/
application domain

Nurses, Doctor,
etc. for roles in
RBAC

Access control
instance model
(ACIM)

Instance of the access control model in a specific
information/application domain

surgeon,
internist, etc. for
role Doctor

Table 1.

2780

Access Control Specification in UML

ModEllIng AccEss control
EntItIEs

This section concerns the modelling of access
control entities in UML on both the metamodel
and the model layer. The access control entities
are, for example, the objects on which access
must be controlled, the subjects, which try to
access the objects and the permissions that al-
low or deny access. In the Access Control List
implementation, known from Unix operating
systems, the entities are mainly users, groups,
processes, and files/directories with their read,
write and execute permissions. In a Role based
access control model, the main entities are the
roles and their assigned permissions, the users, the
sessions and the objects. In the sequel, the VBAC
model serves as the example for the access control
model, a hospital application as the application
domain for the application model.

Access control Metamodel

The access control entities are modeled in a class
diagram, which we call a type diagram. The as-
sociations between the class diagram elements
specify the relations between the access control
entities. Therefore, the class diagram constrains

already all the access control relations, since a
relation that does not occur in the type diagram is
forbidden. Figure 3 shows the specification of the
entities of the VBAC model by a type diagram.
The intended meaning of the access control enti-
ties is given next.

In a concrete application, the classes in the
type diagram are specialized to classes taken
from the application class diagram. For example,
the role class in the VBAC type diagram must
be specialized to the concrete roles of the given
application (e.g., to the roles Doctor or Nurse of
Figure 1).

Application-Specific Access Control
Model

The access control metamodel defines a language
for specifying access control models and is in-
dependent of an information domain. The access
control metamodel for VBAC defined above has,
as metaobjects, Subject, Role, View, Permission,
and Object. In an information domain, these
metaobjects are mapped to application dependent
objects.

The access control entities in the metamodel
are specified in a class diagram. The access control

Figure 2. Diagram overview

 2781

Access Control Specification in UML

Figure 3. The VBAC model

Object:
Used to represent the distributed objects in the system to which access must be
controlled by a policy. Objects can be related (e.g., an object can be a sub-object of
another object).

Subject: Used to represent the system users and the processes that run on behalf of the users.
Subjects may have references to objects to access them.

Permission: A permission specifies a right to access an object, and is uniquely assigned to that
object. An object, however, can be associated to several permissions.

View: A view groups a number of permissions belonging to the same object (no view can
contain permissions defined for different objects).

Role:

Used to represent the access control roles, which are assigned to subjects. A role
can be played by several subjects, and a subject can play several roles. A view
can be assigned to different roles and a role may have several views. Roles can be
related by an inheritance relation, where the extended role inherits all the views of
the base role.

Table 2.

Figure 4. Class diagram for the application

2782

Access Control Specification in UML

entities in the access control model are also speci-
fied in a class diagram, which is an instance of
the metamodel class diagram and which contains
information and application domain specific ac-
cess control entities.

Figure 4 shows an instance of the VBAC
metamodel applied to a medical information
domain. We consider a small part of a hospital
in which patients are medicated by doctors and
nurses. Each ward has a department head. The

following table shows the mapping of the metao-
bjects to the objects in the access control model
with a brief description of their meaning. We
keep the hospital application small, but detailed
enough to demonstrate the specification of the
VBAC model. A more detailed discussion to the
hospital application can be found in Brose, Koch,
and Lohr (2003).

Metamodel Model Description

View CISView PatientRecord
View

View for CIS permissions.
Views for PatientRecord permissions.

Objects

CIS

Patient-Record

The central information system (CIS) contains the
electronic patient records. Patient records can be created
by the operation newPR() if it is the patient’s first visit
in the hospital. The list of all the patient records can be
requested by listPR(), a specific patient record is returned
by getPR().
The (textual) contents of a patient record can be requested
with the operation show(). Whenever findings for a patient
are created due to new examinations, the findings are added
to the patient record with the operation addFinding().

Permission

CIS-Permission

Patient-Record
Permission

Permissions for object CIS. The attribute right contains
the name of the operation, to which the permissions grant
access.
Permissions for the object PatientRecord.

Metamodel Model Description

Subject Person A person has a name and an address. The class is abstract.

Staff Specialization of Person. Specifies the staff in the
hospital. The attribute ward specifies on which ward the
staff member is currently working.

Patient Specialization of Person. Patients are identified by a
patient identifier patientID.

Role Nurse Role for nurses.

Doctor A specialization of the role nurse from which it inherits
the permissions. The attribute specialistArea, e.g. surgery
or orthopaedy, describes the doctor’s specialization.

Head Specialization of the role Doctor, assigned to the
department head of a ward.

Table 3.

 2783

Access Control Specification in UML

ModEllIng AccEss control
polIcy rulEs

An access control protection state is generally
not fixed, but changes during the system lifetime.
Possible causes for changes in the protection state
are the addition or deletion of users or roles, the
modification of permissions associated with roles,
changes in access requirements of objects, etc.
Access control policy rules define the permitted
state changes and therefore Control the behavior
of the system.

Access control Metamodel

Policy rules are specified in object diagrams us-
ing the stereotypes <<create>> and <<destroy>>.
The intended meaning of an object or link with a
stereotype <<create>> is that the object or link is
created by the system. The intended meaning of
an object or link with stereotype <<destroy>> is
that the object or link is removed from the sys-
tem. Our approach in representing the actions of

a policy rule is similar to the representation of
post-conditions for actions in the Catalysis ap-
proach (D’Souza & Wills 1998). To visualize an
action in Catalysis, one diagram is used to present
the state before and after the action. Catalysis,
however, uses a presentation of the “after” state
by bold elements or different colors instead of
stereotypes.

Figure 5 (role management) and Figure 6
(view management) show the policy rules for
the VBAC model. Their intended meaning is
described next.

Access control Model rules

The policy rules of the access control model are
derived from the object diagrams for the policy
rules of the metamodel. Metaobjects are instan-
tiated with information domain specific objects
specified in the type diagram of the access control
model. The object diagram obtained by instantiat-
ing a policy rule must be an instance of the type
diagram of the access control model.

Figure 5. VBAC policy rules

2784

Access Control Specification in UML

Table 4.

create permission: The rule create permission creates a new permission instance which is immediately
connected to an object, since a permission must always belong to a unique object.

remove permission The rule remove permission specifies the removal of a permission

assign view: The assignment of a view instance to a role instance is specified by a link created
by the rule assign view between an existing role and an existing view

remove view: The rule remove view specifies the removal of a view from a role by destroying
the link between the role and the view

create view View instances can be created analogously to subjects.

destroy view: View instances can be removed analogously to subjects.

extend view: The assignment of a permission to a view instance is specified by a link inserted
by the rule extend view between the view and the permission instance

restrict view: The rule restrict view removes a permission from a view by removing the
connecting link

create subject:

The object diagram for the policy rule create subject consists of one subject instance
with the stereotype <<create>> which specifies that the subject instance is created
by the rule. The creation of new subjects is unconditional and does not depend on
the current system state (no context conditions)

destroy subject: The object diagram for the rule destroy subject is similar to the create-subject but
with stereotype <<destroy>>.

create object: Object instances can be created with a rule similar to the one for subjects.

destroy object: Object instances can be removed from the system with a rule similar to the one for
subjects.

assign role:

The rule assign role specifies the assignment of a subject to a role, modeled by a
link between the subject instance and the role instance. The link is created (carries
stereotype <<create>>) while the subject and the role must already exist (no
<<create>> stereotype).

remove role:
The rule remove role specifies the removal of the assignment of a subject to a role
by deleting the link between the role and the subject. Both the subject and the role
instance remain in the system, since they do not carry a <<destroy>> stereotype.

 2785

Access Control Specification in UML

For example, the rule assign role in Figure 5
can be specialized to a rule in which the metaob-
ject s:Subject is instantiated by the object s:Staff
and the metaobject r:Role by d:Doctor. Another
example is the metarule create permission. The
metaobject o:Object can be instantiated by a CIS
object, the permission object p:Permission by a
CISPermission with a value list for the attribute

right. Figure 7 shows this policy rule and other
examples.

Not all instantiations are valid. The following
are examples of invalid instantiations:

• The instantiation of the metaobject s:Subject
to p:Person is not valid since the class Person
is abstract (i.e., it has no instances).

Figure 6. VBAC policy rules for view management

Figure 7. Policy rules in the access control model

2786

Access Control Specification in UML

• The instantiation of the metaobject s:Subject
to p:Patient and the metaobject r:Role to d:
Doctor in rule assign role is not acceptable
since the type diagram of the access control
model does not permit links between patient
and doctor objects.

The policy rules of the access control model
are given by all the object diagrams that can be
derived from the policy rules of the metamodel,
where the objects are taken from the access con-
trol model type diagram, which are instances of
the type diagram.

ModEllIng AccEss control
constrAInts

The access control policy rules determine the
acceptable system states. In some situations, how-
ever, it is necessary to reduce the system states
generated by the policy rules. For example, the
policy rule assign role of the VBAC model can
be used to assign any number of subjects to the
same role (by repeated application to the same
rule). In many applications, however, there are
role cardinality constraints that limit the number
of subjects in a role. Some cardinality constraints
are already included in the access control type
diagram of a UML AC specification (e.g., Figure
3 requires a unique object for each permission).
But a requirement for at least one permission for a
view assigned to a role is a prerequisite constraint
not expressible by cardinalities. Therefore, it must
be specified separately.

Possible representatives of constraints for our
running example are:

1. In VBAC, if the view is assigned to a role,
then this view must have at least one per-
mission; otherwise permissionless views
are allowed.

2. In the hospital application, there can be at
most one department head for each ward.

The first constraint concerns the access control
metamodel since it is a constraint that must be
satisfied by all VBAC policies in any application
domain. The second constraint concerns a special
application domain (here a hospital domain) and is
specified in the access control model. Therefore,
access control constraints are specified on both
the metamodel and the model levels. Before we
consider the difference between these two levels,
however, we discuss some ways to specify ac-
cess control constraints in UML present in the
literature, namely the Object Constraint Lan-
guage (Ahn & Shin, 2001) as a representative of
a textual constraint language and two different
approaches based on object diagrams (Koch et
al., 2002c; Ray et al., 2004) as representatives of
visual constraint languages.

Textual Specification of Access
control constraints by ocl

The object constraint language (OCL) (OMG
2003), a part of the UML specification, is a
powerful specification language, based on first-
order Logic, in which complex constraints can be
textually expressed and attached to the graphical
UML diagrams.

By using the OCL, the first of the two example
constraints previously can be described with the
following OCL expressions:

context View inv
(self.role->notEmpty) implies (self.permission-

>notEmpty)

This OCL constraint specifies that if a view is
related to a role, then there is at least one permis-
sion related to this view. Note that the constraint
does not place restrictions on views unrelated
to roles. The second constraint is represented in
OCL as:

 2787

Access Control Specification in UML

context Head inv self.staff->size() < 2

This OCL constraint forbids more than one
person from the staff assigned to the application
domain specific role Head.

Visual Specification of Access
control constraints

Visual specification languages to specify access
control constraints in UML start from the observa-
tion that OCL is difficult to understand and does
not integrate well with the remaining visual UML
diagrams. Therefore, Ray et al. (2004) present a
visualization of access control constraints using
UML object diagrams. In their approach, object
diagram templates describe object structure
patterns that are violations of access control

constraints. These patterns are used to check for
violations of a constraint, as such an object dia-
gram pattern represents a system structure which
must not occur in the system state.

Figure 8 shows the object diagram for the
two example constraints. On the left-hand side,
the object diagram for the prerequisite constraint
is specified. It shows the invalid state in which
a view is assigned to a role, but there is no per-
mission assigned to the view. On the right-hand
side, the cardinality constraint is specified by the
invalid state of two staff objects assigned to the
role Head object.

The visualization of access control constraints
presented in Koch et al. (2002c) also uses object
diagrams. Similar to Ray et al. (2004) object dia-
grams are used to specify invalid system states
which must not occur in a system state for the

Figure 8. Object diagram patterns

Figure 9. A metamodel constraint and an instance of this metamodel constraint in the hospital access
control model

2788

Access Control Specification in UML

constraint to be satisfied. The difference between
the approach of Koch et al. (2002c) and that of
Ray et al. (2004) are additional object diagrams for
required states and a formal semantics based on
graph transformations (Rozenberg, 1997) which
can be used to apply verification concepts on ac-
cess control constraints. The semantics will be
explained in more detail in the next section.

An object diagram for a required state specifies
an object structure that must occur in a system
state. A system state satisfies such a constraint
if the required object structure occurs as a sub-
state. The existence of this object structure may
be conditional, i.e., the object structure is required
only in certain substates. The object diagrams
for required states are called positive constraints
and use the stereotype <<exists>> in the follow-
ing way: all objects and links labeled with this
stereotype must exist in a system state when the
remaining (i.e., the non <<exists>>labeled) objects
and links occur, as well.

Figure 9 shows the visual specification of the
viewpermission requirement by a positive con-
straint. It shows the assignment of a permission p
to a view v, which in turn is assigned to a role r.
The permission object p and its link to the view v
carry the <<exists>> stereotype. Both must exist
whenever the view v is assigned to a role r. If no
role is assigned to the view, the assigned permis-
sion need not exist. The object diagram for the
invalid system state of two users in role Head is
the same as the one shown in Figure 8.

Access control Metamodel and
Access control Model

As previously mentioned, constraints may refer
to, and be specified for, the metamodel level if
they must be satisfied by all access control models
independently of a specific application, or they
may concern only a specific application and
therefore must be valid only in a specific access
control model.

Since metamodel constraints must be valid in
any access control model, they must be part of a
given access control model for a certain applica-
tion, as well. Therefore, access control model
constraints are derived from the access control
constraints of the metamodel, as is the case for the
policy rules: The metaobjects in the metamodel
constraint are instantiated with objects given in
the access control model type diagram, so that the
resulting object diagram is a valid instance of the
ACM type diagram. An example is the specialisa-
tion of the VBAC metamodel constraint in Figure
9 in which the metaobject role is specialized to a
Nurse object, the metaobject view is specialized
to a CISView object and the permission is a CIS-
Permissiom. An invalid instantiation, according
to the ACM type diagram, would be a CISView
object for the view and a PatientRecPermission
object for the permission, since it would be in
conflict with the type diagram.

The access control constraints of an access
control model, therefore, consist of a) all the
object diagrams obtained by instantiating the
metamodel constraint diagrams using objects
specified in the access control model (ACM) type
diagram, so that the resulting object diagrams
are instances of the ACM type diagram and b)
a set of object diagrams for information domain
specific constraints.

vErIfIcAtIon of AccEss
control constrAInts

The access control constraints restrict the possible
system states that can be produced by the policy
rules. Whether a set of object diagrams for the
policy rules of a UML access control specification
satisfies all the access control constraints should
be checked automatically as much as possible. To
have an automatic verification, it is necessary to
have a formal semantics for both the UML access
control model and the UML constraints, on which
an automatic verification support can be built.

 2789

Access Control Specification in UML

Consider, as an example, the policy rules for
the access control metamodel shown in Figure 5
and Figure 6. These object diagrams are special-
ized to application specific objects given in the
access control model type diagram in Figure 4.
One possible specialization is the instantiation of
the policy rule assign role in Figure 5 with a Staff
instance as subject and Head as role. Applying
this rule several times to the same Head role but
with different staff member instances, would
produce several staffers who play the role Head
for the same department. The negative constraint
in Figure 8 on the right-hand side, however,
forbids more than one subject in the role Head.
Therefore, the UML access control specification
is not correct since the policy rules can construct
a system state that does not satisfy all the access
control constraints.

We have developed (Koch et al., 2001) a graph-
 based, formal semantics for a UML access control
specification which allows us to check statically
if the set of object diagrams for the policy rules
satisfy the constraints (Koch et al., 2002a; Koch
et al., 2002c). To use these verification concepts
we need to transform UML diagrams into graphs,
UML object diagrams for policy rules into
graph transformation rules and (visual) UML
constraints into graphical constraints (for trans-
formation details see (Koch & Parisi-Presicce
2002d). Due to the graphical notation of UML
diagrams, the transformation of these diagrams
into graphs is natural. Access control constraints
are transformed into graphical constraints. The
transformation of visually specified UML con-
straints can be done in a natural way. The trans-
formation of OCL constraints is more difficult,
but possible for a part of the OCL constraints.
These are mainly those OCL constraints used to
express properties on the object structure of the
system state. In Bottoni, Koch, Parisi-Presicce,
& Taentzer (2001), the interested reader can find
a more detailed presentation on the visualization
of (most) OCL constraints

The checking algorithm (Koch et al., 2002c)
determines, for each policy rule and access control
constraint, whether the policy rule can construct
a system state that violates the constraint. In this
case, the algorithm modifies the rule by adding
an additional condition to the rule, to ensures that
the policy rule, whenever it is applied to a valid
system state, will always construct a new system
state which again satisfies the constraint. The
policy rule condition forbids the application of the
rule to system states that would lead to an invalid
new system state. If we consider the example,
mentioned above, of the policy rule assign role
and the negative constraint which forbids two or
more staffer in the role Head, then the checking
algorithm adds a condition to the policy rule assign
role to prevent its application to the Head role if
there is already a staffer assigned to this role.

We have built a prototype of an RBAC ad-
ministration tool, which implements the checking
algorithm as well. The tool has been implemented
according to the proposed NIST standard for
RBAC (Ferraiolo, Sandhu, Gavrila, Kuhn, &
Chandramouli, 2001) and is based on the general
graph transformation engine AGG (Taentzer,
Ermel, & Rudolf, 1999). It allows a security ad-
ministrator to define graph-based policy rules and
constraints, including several kinds of authoriza-
tion constraints identified in the literature (Ahn &
Sandhu, 2001) such as various types of separation
of duty (SoD) properties (simple static SoD, simple
dynamic SoD, sessionbased dynamic SoD, and
objectbased static SoD), cardinality constraints,
and prerequisite roles and permissions.

AccEss control rEQuIrEMEnt
AnAlysIs

So far, we have described how to model an access
control policy in UML. We use a metamodel for
the access control model and refine this metamodel
to a model that considers the application specific
access control requirements. To determine the ac-

2790

Access Control Specification in UML

cess control requirements (i.e., what to model) is
a difficult task, especially since system designer
are usually not security experts. Therefore, the
designer should be supported in the software de-
velopment process to obtain the necessary access
control requirements.

In Koch and Pauls (2005a) and Koch and Pauls
(2005b), we have presented a model-driven ap-
proach to derive access control requirements from
the UML diagrams for the functional system anal-
ysis and design. For example, access control roles
are based on the actors in the use case diagrams,
access rights are based on the class diagrams and
the access control permissions are based on the
operation calls in the sequence diagrams. The
access control information can be automatically
extracted from these UML diagrams and is pre-
sented in UML diagrams for access control as
shown in the previous sections.

We present next the generation of views from
UML sequence diagrams as an example of this
generation process. For a more detailed presen-
tation of the model-driven approach we refer to
Koch et al. (2005a) and Koch and Pauls (2005b).
Sequence diagrams contain inherent access in-
formation by specifying the access required of
actors to call the operations. The sequence diagram
in Figure 10 shows the accesses required of a nurse
to read a patient record. The nurse role must be
able to call the operations list() and getPR() on the
class CIS to retrieve the list of all available patient
records and a single patient record, respectively.

To read the patient records, the nurse role needs
the permission to call the operation show() on the
class PatientRecord.

The algorithm for the generation of access
control views from a sequence diagram considers
all the objects in the sequence diagram on which
operations are called: For each of these objects, a
view on the class of the object is generated which
contains the permissions to call the operations on
the objects of this class. In our example sequence
diagram in Figure 10 we generate two views: one
on the class CIS with CISPermissions to call the
operations list() and getPR() and one view on the
class PatientRecord with PatientRecPermission
to call the operation show(). The views for all
the remaining sequence diagrams are generated
in a similar way.

The generated views are usually incomplete
in the sense that they do not give a complete ac-
cess control specification. This is due to the fact
that sequence diagrams show only scenarios the
designer is interested in. On the other hand, the
views may also be redundant in the sense that
the same view may be generated from different
sequence diagrams. Therefore, the designer uses
the generated views as a starting point to be refined
into the final access control specification.

rElAtEd worK

A few authors have addressed the problem of
integrating security requirements into UML.

Figure 10. A sequence diagram

 2791

Access Control Specification in UML

Jurjens presents the integration of security
into UML in Jurjens (2005), where he shows
how to model several security aspects by UML
model elements as, for example, stereotypes or
tagged values. His approach is more general than
ours since it is not restricted to access control but
considers, for example, also security protocols.
Furthermore, Jurjens considers a wider variety of
UML diagrams (e.g., also deployment diagrams)
since his concern is with the integration of se-
curity into the UML in general. Our approach
is focused on access control, and the generation
and enforcement of access control policies in
distributed systems, and, therefore, we only use
the UML diagrams necessary to meet our objec-
tive. In contrast to our approach and the one by
Basin, Doser, and Lodderstedt (2004), Jurjens
does not consider a model-driven approach and
does not provide tool support or an infrastructure
to generate security policies from UML models
or to enforce security policies.

Moreover, Jurjens (2002) has extended UML
for specifying aspects of multilevel secure systems
and security protocols, where he proposes a tai-
lored formal semantics to evaluate UML diagrams
and to indicate possible weaknesses. Unlike our
approach, there is no model-driven integration
of security and the verification does not provide
an automatic consistency construction to resolve
unsatisfied security constraints.

Fernandez-Medina, Martinez, Medina, and
Piattini (2002) extend UML to support the design
of secure databases. They consider a multilevel
database model in which all model elements have
a security level and a security role, both modeled
by tagged values. They extend the OCL to be able
to represent multilevel system constraints. Unlike
the approach in Fernandez-Medina et al. (2002)
which is developed for multilevel databases, our
approach is more general, dealing with any access
control model and is not restricted to databases. In
contrast to Fernandez-Medina et al. (2002), which
extends the OCL by nonstandard features, we use

standard OCL for the specification of constraints.
The OCL extension has the advantage of a clearer
and more legible specification in the particular
context of multilevel databases, but does not
ensure compatibility.

Epstein and Sandhu (1999) introduce a UML-
 based notion for RBAC, but this notion is not
suitable for the verification of security properties
and cannot easily be used for the generation of
access control specifications.

An approach closely related to ours is Secu-
reUML (Lodderstedt et al., 2002). SecureUML
is a UML-based modelling language for the
model-driven development of secure systems. It
provides support for specifying constraints, as
well. The security information integrated in the
UML models is used to generate access control
infrastructures. In contrast to our approach,
SecureUML focuses on static design models,
which are closely related to implementations.
Therefore, there is no support for detecting se-
curity requirements (e.g., which roles are needed
and which permissions they need). Unlike our
approach, which is suitable for arbitrary access
control models, SecureUML is based on RBAC,
and does not have a formal semantics to verify
security properties.

Work related to our model-driven development
approach to security engineering is presented by
Basin et al. (2004), to describe a model driven ap-
proach, called SecureUML, to develop role based
access control policies for J2EE applications. A
formal basis allows the designer to reason about
access control properties, and tool support is
given by an integration of SecureUML into the
ArcStyler tool (Interactive-Objects, 2005). In
contrast to our approach, however, the analysis
stage of the software process is not considered
and the process starts with the design models. The
role based model in (Basin et al., 2004) is more
coarse-grained compared with the view based
access control model here, in which access rights
are fine-grained on the level of operations and

2792

Access Control Specification in UML

operation parameters. Basin et al. use the J2EE
infrastructure to enforce the generated policies,
but their approach makes it difficult to modify
a policy dynamically: the modified policy must
be changed manually in the XML-based EJB
descriptor files. Dynamic changes of the access
control policy, however, are an integral part of
our approach. On the one hand, the concept of
schemas considers the changing of rights already
in the model; on the other hand, our proposed
infrastructure supports policy changes at runtime,
immediately enforced without interrupting the
application and the system.

conclusIon

This chapter has presented an approach to the
specification of Access Control policies in UML
by means of UML class and object diagrams that
can be modelled with existing UML tools. It has
been shown how the framework models the access
control entities, the rules of the access control
policy, and the access control constraints. By us-
ing a layered model structure, we have been able
to model the different components at an abstract
(metamodel) level that is application independent,
and at a concrete (model) level that includes
application specific information. A translation
of the UML Access Control specification into
a graph-based security framework permits the
application of verification concepts from graph
transformations to reason about the coherence
of a UML Access Control specification. In par-
ticular, it allows the modification of the context
of application of existing rules to ensure that the
new state satisfies all the constraints (if the old
one did). The chapter closes with an indication of
how to extract access control requirements from
UML diagrams.

The UML Access Control specification can
be modelled using existing UML CASE tools.
One possible direction of future work is the
transformation of the XMI export (obtained from

the CASE tool) into a XML format for graphs
(Taentzer, 2001). Then, graph transformation
tools (Ehrig, Engels, Kreowski, & Rozenberg,
1999) can be used for the automatic verification
of Access Control requirements.

rEfErEncEs

Ahn, G. J., & Sandhu, R. (2001). RoleBased
authorization constraints specification. ACM
Transactions on Information and System Security,
3(4), 207-226.

Ahn, G. J., & Shin, M. (2001). Rolebased autho-
rization constraints specification using object
constraint language. Proceedings of the WET-
ICE’01 (pp. 157-162).

Basin, D., Doser, J., & Lodderstedt, T. (2004).
Model driven security. In M. Broy, J. Grunbauer,
D. Harel, & T. Hoare (Eds.) Engineering Theories
of Software Intensive Systems. Springer.

Bottoni, P., Koch, M., Parisi-Presicce, F., &
Taentzer, G. (2001). A visualization of OCL us-
ing collaborations. Proceedings of the UML 2001
(pp. 257-271). The Unified Modeling Language
(LNCS 2185). Springer.

Brose, G. (2000). A typed access control model
for CORBA. Proceedings of the 6th European
Symposium on Research in Computer Security
(ESORICS) (LNCS 1895, pp. 88-105). Springer

Brose, G. (2001a). Access control management
in distributed object systems. PhD thesis, Freie
Universität Berlin.

Brose, G. (2001b). Raccoon—An infrastruc-
ture for managing access control in CORBA.
Proceedings of the International Conference
on Distributed Applications and Interoperable
Systems (DAIS). Kluwer.

Brose, G. (2002). Manageable access control for
CORBA. Journal of Computer Security, 10(4),
301-337.

 2793

Access Control Specification in UML

Brose, G., Koch, M., & Lohr, K. P. (2002). Inte-
grating access control design into the software
development process. Proceedings of the 6th
International Conference on Integrated Design
and Process Technology (IDPT)

Brose, G., Koch, M., & Lohr, K. P. (2003, Janu-
ary 3). Entwicklung und Verwaltung von Zug-
riffsschutz in verteilten Objektsystemen–eine
Krankenhausfallstudie. In Praxis der Informa-
tionsverarbeitung und Kommunikation (PIK),
26, 1. KG Saur Publishing.

D’Souza, D., & Wills, A. (1998). Components and
frameworks: The catalysis approach. Boston:
Addison Wesley.

Devanbu, P. T., & Stubblebine, S. (2000). Software
engineering for security: A roadmap. In A. Finkel-
stein (Ed.), The future of software engineering.
New York: ACM Press.

Ehrig, H., Engels, G., Kreowski, H. J., & Rozen-
berg, G. (1999). Handbook of graph grammars
and computing by graph transformations. Vol. II:
Applications, Languages, and Tools. Singapore:
World Scientific.

Epstein, P., & Sandhu, R. (1999). Towards a UML
based approach to role engineering. Proceedings
of the ACM RBAC. New York: ACM Press.

Fernandez-Medina, E., Martinez, A., Medina, C.,
& Piattini, M. (2002). UML for the design of secure
databases: Integrating security levels, user roles,
and constraints in the database design process. In
J. Jurjens, M. V. Cengarle, E. B. Fernandez, B.
Rumpe, & R. Sandner (Eds.), Proceedings of the
CSDUML02 (pp. 93-106). Number TUMI0208 in
Technical Report TU Munchen.

Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D.
R., & Chandramouli, R., (2001). Proposed NIST
standard for rolebased access control. ACM
Transactions on Information and System Security,
4(3), 224-274.

Harrison, M., Ruzzo, M., & Ullman, J. (1976).
Protection in operating systems. Communications
of the ACM, 19(8), 461-471.

Interactive-Objects. (2005). Arcstyler. Retrieved
from www.interactive-objects.com

Jaeger, T., & Tidswell, J. (2001). Practical safety
in flexible access control models. ACM Transac-
tions on Information and System Security, 4(2),
158-190.

Jurjens, J. (2001). Towards development of se-
cure systems using UMLsec. Proceedings of the
FASE’01 (pp. 187-200). (LNCS 2029). Springer.

Jurjens, J. (2002). UMLsec: Extending UML for
secure systems development. Proceedings of the
UML 2002 (pp. 412-425). Number 2460 in Lect.
Notes in Comp. Sci., Springer.

Jurjens, J. (2005). Secure systems development
with UML. Heidelberg: Springer-Verlag.

Koch, M., Mancini, L.V., & Parisi-Presicce, F.
(2001). Foundations for a graphbased approach to
the specification of access control policies. In F.
Honsell & M. Miculan (Eds.), Proceedings of the
Foundations of Software Science and Computa-
tion Structures (FoSSaCS 2001), (LNCS 2030,
pp. 287-302). Springer.

Koch, M., Mancini, L.V., & Parisi-Presicce, F.
(2002a). Conflict detection and resolution in ac-
cess control specifications. In M. Nielsen & U.
Engberg (Eds.), Proceedings of the Foundations
of Software Science and Computation Structures
(FoSSaCS 2002) (LNCS 2303, pp. 223-237).
Springer

Koch, M., Mancini, L.V., & Parisi-Presicce, F.
(2002b). Decidability of safety in graphbased
models for access control. Proceedings of the
7th European Symposium on Research in Com-
puter Security (ESORICS) (LNCS 2502, pp.
229-243).

2794

Access Control Specification in UML

Koch, M., Mancini, L. V., & Parisi-Presicce, F.
(2002c, August). A graph based formalism for
RBAC. ACM Transactions on Information and
System Security (TISSEC), 5(3), 332-365.

Koch, M., & Parisi-Presicce, F. (2002d). Access
control policy specification in UML. In Jurjens,
Cengarle, Fernandez, Rumpe, & Sandner (Eds.),
Proceedings of CSDUML02 (pp. 63-78). Technical
Report TUMI0208, TU Munchen.

Koch, M., & Pauls, K. (2005). An access control
language for dynamic systems modeldriven de-
velopment and verification. Proceedings of the
12th SDL Forum.

Koch, M., & Pauls, K. (2005). Modeldriven devel-
opment of access control aspects. Proceedings of
the Sicherheit 2005 (pp. 273-284). Lecture Notes
in Informatics.

Lodderstedt, T., Basin, D., & Doser, J. (2002).
SecureUML: A UML based modeling language
for modeldriven security. Proceedings of the 5th
International Conference on the Unified Modeling
Language,(LNCS 2460). Springer.

OMG. (1999, October). CORBA 3.0 New Com-
ponents Chapters, TC Document ptc/991004.
OMG.

OMG. UML 2.0 Specification. OMG, 2003.

Ray, I., Li, N., France, R., & Kim, D. K. (2004).
Using UML to visualize rolebased access control
constraints. Proceedings of the SACMAT’04 (pp.
115-124). ACM.

Rozenberg, G. (1997). Handbook of graph gram-
mars and computing by graph transformation
(Vol. 1). Foundations. Singapore: World Scien-
tific.

Sandhu, R., Coyne, E. J., Feinstein, H. L., &
Youman, C. E. (1996). Role-based access control
models. IEEE Computer, 29(2), 38-47.

Sun Microsystems. (2000, October). Enterprise
JavaBeans Specification, Version 2.0, Final Draft.
Retrieved from http://java.sun.com/products/ejb/
docs.html

Taentzer, G (2001). Towards common exchange
formats for graphs and graph transformation
systems. Proceedings of Uniform Approaches
to Graphical Process Specification Techniques
UNIGRA’01, (ENTCS 47). Elsevier.

Taentzer, G., Ermel, C., & Rudolf, M. (1999). The
AGG approach: Language and tool environment.
In H. Ehrig, G. Engels, H.-J. Kreowski, & G.
Rozenberg (Eds.), Handbook of graph grammars
and computing by graph transformation (Vol. 2).
Singapore: World Scientific.

This work was previously published in Integrating Security and Software Engineering: Advances and Future Visions, edited by H. Mouratidis
& P. Giorgini, pp. 220-243, copyright 2007 by Information Science Publishing (an imprint of IGI Global).

 2795

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.10
Ethics in Software Engineering

Pankaj Kamthan
Concordia University, Canada

IntroductIon

As software becomes pervasive in our daily lives,
its values from a purely human perspective are
brought to light. Ethical conduct is one such hu-
man value.

There are various reasons for discussing the
issue of ethics within a software engineering
context. By participating in a software develop-
ment process, software engineers can influence
the final product, namely the software itself, in
different ways including those that may be con-
trary to public interest. In other words, they could
engage in an unethical behavior, inadvertently or
deliberately. This could lead to personal harm, and
potentially result in loss of confidence in software
and loss of trust in organizations that own them.
This can adversely affect the acceptance of soft-
ware as a useful product, question the credibility
of software engineering as a profession, lead to

legal implications, and impact the bottom line of
the software industry at-large.

This article is organized as follows. We
first outline the background necessary for later
discussion. This is followed by a proposal for a
quality-based framework for addressing ethics,
and software quality treatment of a software
engineering code of ethics. Next, avenues and
directions for future research are outlined, and
finally, concluding remarks are given.

bAcKground

By viewing software engineering as a profession,
we define ethics as a code of professional stan-
dards, containing aspects of fairness and duty to
the profession and the general public.

Since a software can either be a benefit or a
hazard to its potential users, the issue of ethics in

2796

Ethics in Software Engineering

its engineering arises. Software failures (Sipior
& Ward, 1998) that have led to loss of human
life, rendered computer systems unusable, led to
financial collapse, or caused major inconveniences
are grim reminders of that.

In this article, we discuss the issue of ethics
from the viewpoint of software product quality
considerations in practice. There is an apparent
symbiosis between ethics and quality. For ex-
ample, the causes of the aforementioned failures
were attributed to violations of one or more quality
attributes such as reliability, safety, and so forth,
and/or to lack of proper validation/verification
of these.

Indeed, in the Software Engineering Body of
Knowledge (SWEBOK) (Abran, Moore, Bourque,
& Dupuis, 2001), ethics has been placed within
the software quality “knowledge area.” The issue
of information technology in general, and the role
of quality in software development in particular,
have been addressed in (Reynolds, 2003; Tavani,
2004). Moreover, software quality is viewed as
an ethical issue from a philosophical perspective
(Peslak, 2004). However, these efforts are limited
by one or more of the following issues: quality
and ethics are often viewed as a tautology, treat-
ment of software quality is at a very high level
and often as a single entity, and there is lack of
specific guidance for improvement of software
quality within the domain of software ethics.

One way to enforce ethical standards in a
software project is by explicitly documenting the
ethical expectations from stakeholders such as via
a code of ethics. The Software Engineering Code
of Ethics and Professional Practice (SECEPP) is
a recommendation of the ACM/IEEE-CS Joint
Task Force on Software Engineering Ethics and
Professional Practices. SECEPP puts forth eight
categories of principles decomposed further into
clauses that software engineers should adhere to
in teaching and practicing software engineering.
However, these principles and associated clauses

suffer from several issues (expounded in the next
section): lack of separation (of concerns), recency,
precision, completeness, reachability (to certain
audience), and specificity, which makes their re-
alization difficult. The relevance of SECEPP for
practical purposes has been questioned (Qureshi,
2001), however the view is largely managerial
rather than oriented towards the software prod-
uct.

EthIcs In softwArE
EngInEErIng And softwArE
product QuAlIty

For the purpose of this article, our understanding of
the discussion on ethics in software engineering is
based on the following interrelated hypothesis:

Hypothesis 1. Ethical behavior is dynamic,
rather than static. Specifically, by appropriate
means (such as code of ethics), ethical actions of
software engineers could be regulated and with
education even be instilled.

Hypothesis 2. Ethics is a “meta-concern”
(Qureshi, 2001) leading us to adoption of steps
for software quality assurance and evaluation.
Specifically, ethics and software quality are
related by direct proportionality, and so overall
improvement in the quality of a software product
leads to an improvement in ethical considerations
related to that product.

A theoretical framework for
Addressing Ethics from a software
product Quality perspective

In order to address the practicality of introducing
the ethical dimension in software engineering, we
first need a theoretical foundation. To do that, we
separate the concerns involved as follows:

 2797

Ethics in Software Engineering

1. View ethics as a qualitative aspect and at-
tempt to address it via quantitative means
so as to minimize the potential for heuristics
and to make the evaluation repeatable.

2. Select a theoretical basis for communication
of information, and place ethics within its
setting.

3. Address software product quality in a sys-
tematic and practical manner by means of
adopting a quality model. In particular, select
the quality model that separates internal and
external quality attributes.

Using this as a basis, we propose a framework
for ethics from the perspective of software product
quality (see Table 1).

We now describe each of the components of
the framework in detail.

semiotic levels

The first column of Table 1 states the semiotic
levels. Semiotics (Stamper, 1992) is concerned
with the use of symbols to convey knowledge.
From a semiotics perspective, a representation
can be viewed on six interrelated levels: physi-
cal, empirical, syntactic, semantic, pragmatic,

and social, each depending on the previous one
in that order.

The physical level is concerned with the
physical representation of signs in hardware and
is not of direct concern here. The empirical level
is responsible for the communication properties
of signs. The syntactic level is responsible for the
formal or structural relations between signs. The
semantic level is responsible for the relationship
of signs to what they stand for. The pragmatic
level is responsible for the relation of signs to
interpreters. The social level is responsible for the
manifestation of social interaction with respect
to signs.

software product Quality Attributes
and Examples

The second column of Table 1 draws the relation-
ship between semiotic level and software product
quality attributes.

The first level of quality attributes gives the
external attributes, which on decomposition leads
to second level of quality characteristics called
internal attributes that are directly measurable via
quality metrics. External attributes are extrinsic
to the software product and are directly the user’s

Table 1. A framework for ethics in a semiotic approach to software product quality

Ethical
Concern Software Product

Semiotic
Level

Levels of Quality
Attribute Example(s) of Quality Attributes Decision

Support

Social

External: Tier 1 Credibility, Trust

Feasibility

External: Tier 2 Legality, Safety

External: Tier 3 Privacy, Security

Pragmatic
External: Tier 1 Accessibility, Maintainability, Usability

External: Tier 2 Interoperability, Portability, Reliability

Semantic Internal Completeness, Validity

Syntactic Internal Correctness

Empirical Internal Characters, Character Set

Physical Internal Hardware Characteristics

2798

Ethics in Software Engineering

concern, while internal attributes are intrinsic to
the software product and are directly the software
engineer’s concern.

Now, external attributes in the collection are
not all at the same level. For example, security
is a necessary condition for safety, which in turn
is a necessary condition for credibility of a soft-
ware product. Therefore, credibility of a software
product is at a higher echelon than safety, which
in turn is higher than security. So we extend the
traditional software product quality models by
introducing a further decomposition of external
attributes into different tiers.

The third column of Table 1 includes examples
of quality attributes at different semiotic levels
based upon our experience from past software
projects in different domains, observations
from several software product quality models
(Lindland, Sindre, & Sølvberg, 1994; Fenton
& Pfleeger, 1997), and most importantly, those
that have a direct impact on stakeholders. Their
purpose is only to make the argument concrete,
not to mandate a required list (that could be
shortened or lengthened based on the application
domain anyway).

decision support

The practice of software engineering must take
into account organizational constraints (person-
nel, infrastructure, schedule, budget, and so on).
These, along with external forces (market value
or competitors), force us to make software-related
decisions that could cross over on either side of
the ethical boundaries. Therefore, the practice
of ethics (say, enforcement via code of ethics)
must also be feasible and is acknowledged in the
last column of Table 1. There are well-known
techniques for carrying out feasibility analysis,
but further discussion of this aspect is beyond the
scope of this article.

Ethics and software product Quality:
Making sEcEpp practical

The following issues inherent to principles and
associated clauses SECEPP make their realiza-
tion difficult:

• Separation: The concerns are not separated
clearly, and there are apparent overlaps across
principles. For example, cost estimation is
addressed in both Principle 3: PRODUCT
and Principle 5: MANAGEMENT.

• Recency: The last version of SECEPP was
announced in 1999 and is seemingly not
constantly maintained.

• Precision: The clauses often include termi-
nology that is either vague or open to broad
interpretation, and many of the terms therein
lack links/references to standard definitions.
For example, Principle 3: PRODUCT states
that “software engineers shall ensure that
their products and related modifications
meet the highest professional standards pos-
sible.” However, it is unclear what “highest”
means in this context and by whose mea-
sure, the reason for the distinction between
“products and related modifications,” and
which “professional standards” are being
implied.

• Completeness: SECEPP does not address
certain classical practices such as (ethics in
the light of) software reuse, reengineering,
or reverse engineering, or current practices
such as software modeling, and therefore
needs to be extended. In retrospective, SE-
CEPP does point out that the list of principles
and clauses in it are not exhaustive.

• Reachability: The principles and/or clauses
are often at a high level of abstraction that
can make them prohibitive for novices such
as beginning software engineering students

 2799

Ethics in Software Engineering

that need to start on the right foot. In this
sense, SECEPP resembles the problems
inherent in the use of guidelines per se.

• Specificity: In order to be applicable to the
field of software engineering, SECEPP had
to be both abstract and general. It does not
include concrete examples for or against
ethical conduct for development scenarios
for specific software such as Web applica-
tions.

One of the main purposes of the article is to
tackle some of these issues, particularly as they
relate to the software product.

The commentary on SECEPP is structured
as follows. Each principle and associated clause
(and any sub-statements) in SECEPP that is seen
within the scope of non-trivial quality consider-
ations is listed verbatim in italics. This is followed
by corresponding [Issues] and [Resolutions] for
every case. The resolutions vary in their coverage
where some address the issues better and in a more
complete manner than others. We do not claim
that the resolutions as being absolute, and their
limitations are pointed out where necessary.

Principle 1: PUBLIC. Software engineers shall
act consistently with the public interest. In par-
ticular, software engineers shall, as appropriate

1.07. Consider issues of physical disabili-
ties…that can diminish access to the benefits of
software.

[Issues] It is unclear why only physical dis-
abilities are being addressed when software is also
used by people with other forms of disabilities
(such as visual, auditory, and cognitive/neurologi-
cal) as well. Also, there are no details on means
for addressing accessibility concerns.

[Resolutions] For the Web applications do-
main, the Web Content Accessibility Guidelines
(WCAG) and its ancillary specifications or the
Section 508 mandate of the U.S. Government Fed-

eral Access Board provide detailed guidelines and
examples/non-examples of assuring accessibility.
There are tools available that can automatically
test for conformance to these guidelines.

3.02. Ensure proper and achievable goals and
objectives for any project on which they work or
propose.

[Issues] In absence of further details, it is
unclear what are considered as achievable goals,
how to define and achieve them, and when they
are considered having been achieved.

[Resolutions] A goal-oriented software project
is seen as a set {goals, means} to be satisfied.
Indeed, one view of goal-oriented software engi-
neering in general and measurement in particular
is given by the Goal-Question-Metrics (GQM)
approach (Van Solingen & Berghout, 1999). In
GQM, a set of measurement goals are stated,
corresponding to each of one or more questions
asked, followed by one or more metrics to tackle
each question. One of the limitations of GQM,
however, is that it does not explicitly address the
issue of feasibility.

3.07. Strive to fully understand the specifica-
tions for software on which they work.

[Issues] The term fully understand is not de-
fined. If it means each software engineer must
comprehend all aspects of a given specification
at all times, then this goal is unrealistic.

[Resolutions] For our purpose, a working defi-
nition of comprehension is the acquisition of the
explicit knowledge inherent in a specification. For
a non-trivial specification, it is not realistic that
each stakeholder will be able to comprehend each
statement made by the specification in its entirety
at all times. A comprehension is feasible (Lindland
et al., 1994) if the cost of reducing the incompre-
hensible statements in a specification does not
exceed the drawbacks of retaining them.

2800

Ethics in Software Engineering

3.11. Ensure adequate documentation, includ-
ing significant problems discovered and solutions
adopted, for any project on which they work.

[Issues] It is unclear what adequate or signifi-
cant means here. There is also no suggestion as to
what kind of documentation is being addressed,
and how and where such documentation should
appear.

[Resolutions] All documentation should be
minimal in the sense that if there is some docu-
mentation, then that must correspond to a prob-
lem/solution, and vice versa, and it should not be
redundant (never appear in more than one place).
This can be addressed via the “single source ap-
proach.” All documentation should be modular in
the sense that semantically similar aspects should
be cohesive, and clearly separated from others.
For example, all design decisions, including the
ones not included, corresponding to each software
requirement must be uniquely identified and
rationalized, and appear in the software design
description document. All documentation should
be “globally” (anybody, anywhere, any device, any
time) reachable. This could, for example, be done
by representing software process documentation
in the Extensible Markup Language (XML). The
guidance for structuring and presenting techni-
cal documents has been given (Houp, Pearsall,
Tebeaux, and Dragga, 2005).

3.12. Work to develop software and related
documents that respect the privacy of those who
will be affected by that software.

[Issues] In absence of details, it is non-trivial
to address privacy concerns.

[Resolutions] One of the main privacy con-
cerns that the users have is not knowing how or
by whom the personal information that they have
voluntarily or involuntarily released will be used.
The Platform for Privacy Preferences Project

(P3P) enables providers to express their privacy
practices in a format that can be retrieved auto-
matically and interpreted easily by user agents.
This ensures that users are informed about privacy
policies before they release personal information.
A P3P Preference Exchange Language (APPEL)
complements P3P and allows a user to express
his or her preferences in a set of preference-rules
that are placed in a profile document. This can
then be used by the user agent to make decisions
regarding the acceptability of machine-readable
privacy policies from P3P-enabled applications.

challenges to a software Quality
Approach to Addressing Ethics in
software Engineering

Open Source Software (OSS) suffers from
various quality issues (Michlmayr, Hunt, &
Probert, 2005), including that of usability and
maintainability. Since there are modest oppor-
tunities, if any, for enforcing ethical regulations
in the OSS realm, this brings into question the
ways in which OSS can be used.

Due to constraints not imposed by choice but
by technical considerations in practice of software
engineering, quality attributes in technical and
social tiers compete. For example, the pairs of
usability–security or maintainability–efficiency
are often in competition.

Finally, we note that there are ethical pre-
dicaments in software development that are ir-
reconcilable from a software quality perspective.
For example, a software engineer working for a
company producing defense software could, when
asked to make a decision on including a certain
feature in software that will lead to striking im-
provement in a certain weapon capability, find his
or her ethical commitments to the organization
in conflict with his or her ethical obligations to
society at-large. Therefore, alternative means of
tackling such scenarios are desirable.

 2801

Ethics in Software Engineering

futurE trEnds

Since project and process quality is not mutually
exclusive from the product quality, it would be
worth examining them in general and within the
SECEPP framework. For example, according
to the Capability Maturity Model (CMM), the
organizations below Level 3 do not have formal
quality evaluation practices, such as inspections,
in place.

In a similar spirit of organizational quality
management, it would of interest to study the
interplay between ethics and the Total Quality
Management (TQM) that focuses on the optimi-
zation of industrial processes under economic
considerations in such a way as to achieve cus-
tomer satisfaction.

Finally, it would be of interest to closely in-
vestigate the ethical concerns in specific software
domains such as mobile or Web applications
(Johnson, 1997). The issue of ethics is also impor-
tant to these applications as they are increasingly
being used as technological means for persuading
consumers (Fogg, 2003). To that regard, a recast
of SECEPP applicable to Web engineering is also
highly desirable.

conclusIon

Software engineers are expected to share a com-
mitment to software quality as part of their culture
(Wiegers, 1996). There needs to be a regulatory
and/or educational shift to accommodate mak-
ing ethics a first-class member of this culture
as well.

The improvement of software quality is techni-
cal as well as an ethical imperative. By addressing
software product quality in a systematic manner,
ethical concerns can be largely attended to.

Organizations that are engaged in software
production from an engineering standpoint need
to adhere to a code of ethics and monitor its prac-

tice. Institutions that have software engineering
as part of their curriculum must include the role
of ethics on the forefront. A code of ethics such
as SECEPP can be helpful in that regard, but
it needs to evolve to be more effective in such
practical situations.

rEfErEncEs

Abran, A., Moore, J.W., Bourque, P., & Dupuis,
R. (2001). Guide to the software engineering
body of knowledgeSWEBOK. IEEE Computer
Society.

Fenton, N.E., & Pfleeger, S.L. (1997). Software
metrics: A rigorous & practical approach. Inter-
national Thomson Computer Press.

Fogg, B.J. (2003). Persuasive technology: Using
computers to change what we think and do. San
Francisco: Morgan Kaufmann.

Houp, K.W., Pearsall, T.E., Tebeaux, E., & Dragga,
S. (2005). Reporting technical information (11th
ed.). Oxford: Oxford University Press.

Johnson, D.G. (1997). Ethics online. Communica-
tions of the ACM, 40(1), 60-65.

Lindland, O.I., Sindre, G., & Sølvberg, A. (1994).
Understanding quality in conceptual modeling.
IEEE Software, 11(2), 42-49.

Michlmayr, M., Hunt, F., & Probert, D.R. (2005,
July 11-15). Quality practices and problems in
free software projects. Proceedings of the 1st
International Conference on Open Source Systems
(OSS 2005), Genova, Italy.

Peslak, A.R. (2004, April 22-24). Improving
software quality: An ethics based approach.
Proceedings of the 2004 SIGMIS Conference on
Computer Personnel Research: Careers, Culture,
and Ethics in a Networked Environment (SIGMIS
2004), Tucson, AZ.

2802

Ethics in Software Engineering

Qureshi, S. (2001). How practical is a code of eth-
ics for software engineers interested in quality?
Software Quality Journal, 9(3), 153-159.

Reynolds, G. (2003). Ethics in information tech-
nology. Thompson Publishing Group.

Sipior, J.C., & Ward, B.T. (1998). Ethical respon-
sibility for software development. Information
Systems Management, 15(2), 68-72.

Stamper, R. (1992, October 5-8). Signs, organi-
zations, norms and information systems. Pro-
ceedings of the 3rd Australian Conference on
Information Systems, Wollongong, Australia.

Tavani, H.T. (2004). Ethics and technology:
Ethical issues in an age of information and com-
munication technology. New York: John Wiley
& Sons.

Van Solingen, R., & Berghout, E. (1999). The
goal/question/metric method: A practical method
for quality improvement of software development.
New York: McGraw-Hill.

Wiegers, K. (1996). Creating a software engineer-
ing culture. Dorset House.

KEy tErMs

Code of Ethics: A resource that describes the
ethical and professional obligations with respect
to which the public, colleagues, and legal entities
can measure the behavior of and decisions made
by a professional.

Quality: The totality of features and charac-
teristics of a product or a service that bear on its
ability to satisfy stated or implied needs.

Quality Model: A set of characteristics and
the relationships between them that provide the
basis for specifying quality requirements and
evaluating quality of an entity.

Semiotics: The field of study of signs and
their representations.

Software Engineering: A discipline that
advocates a systematic approach of developing
high-quality software on a large scale while tak-
ing into account the factors of sustainability and
longevity, as well as organizational constraints
of time and resources.

Software Failure: A departure from the
software system’s required behavior from a user’s
perspective.

Software Fault: A human error in performing
some software activity from a software engineer’s
perspective. A fault is not a sufficient condition
for a software failure.

This work was previously published in Encyclopedia of Information Ethics and Security, edited by M. Quigley, pp. 266-272, copyright 2007
by Information Science Reference (an imprint of IGI Global).

 2803

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.11
Free Access to Law and Open

Source Software

Daniel Poulin
Université de Montréal, Canada

Andrew Mowbray
University of Technology, Sydney, Australia

Pierre-Paul Lemyre
Université de Montréal, Canada

AbstrAct

Law consists of legislation, judicial decisions, and
interpretative material. Public legal information
means legal information produced by public bod-
ies that have a duty to produce law and make it
public. Such information includes the law itself
(so-called primary materials) as well as various
secondary (interpretative) public sources such as
reports on preparatory work and law reform and
resulting from boards of inquiry and available
scholarly writing. The free access to law move-
ment is a set of international projects that share
a common vision to promote and facilitate open
access to public legal information. The objectives
of this chapter are to outline the free access to
law movement, to set out the philosophies and

principles behind this, and to discuss the role that
open source software has played both in terms of
its use and development.

 IntroductIon

The free access to law movement is a set of inter-
national projects that share a common vision to
promote and facilitate open access to public legal
information. There are direct synergies between
the notion of “freeing the law” by providing an
alternative to commercial systems and the ideals
that underpin open source software. In addition,
open source software has been an essential foun-
dation for the work that has been done and new
open source code has been developed.

2804

Free Access to Law and Open Source Software

The objectives of this chapter are to outline
the free access to law movement, to set out the
philosophies and principles behind this, and to
discuss the role that open source software has
played both in terms of its use and development.
It concludes with an assessment of what has
been achieved and of the similarities between
the free access to law and open source software
movements.

bAcKground

Law consists of legislation, judicial decisions and
interpretative material. Public legal information
means legal information produced by public
bodies that have a duty to produce law and make
it public. This includes the law itself (so-called
primary materials) as well as various secondary
(interpretative) public sources such as reports on
preparatory work and law reform and resulting
from boards of inquiry and available scholarly
writing. It also includes legal documents created
as a result of public funding.

Lawyers have been interested in the electronic
publication of legal materials and associated in-
formation retrieval systems for a very long time.
The earliest reported experiment is generally said
to have been done by John Horty at the University
of Pittsburgh in the late 1950s (Bing, 2004). The
first major commercial system appeared in 1973
with the launch of Lexis (now LexisNexis). This
was based on an earlier system developed by the
Ohio Bar (OBAR) which had been established in
1969. OBAR was acquired by Mead Data Central
and redesigned to become Lexis. LexisNexis is
now one of the largest commercial text databases
in the world. It is currently owned by the Reid
publishing group. Lexis was followed by Westlaw
in 1976. Westlaw is now owned by Thomson Pub-
lishing and is the major business competitor to
Lexis. Several other commercial and government
based systems also appeared about this time, but

were largely ultimately unsuccessful such as the
now defunct European system EUROLEX and the
Australian system SCALE (Greenleaf, Mowbray,
& Lewis, 1988).

In the 1980s and 1990s, Lexis and WestLaw
expanded the scope of their services to include
international collections and in their original
jurisdiction (the United States) established a near
duopoly (McKnight, 1997; Arewa, 2006). At-
tempts were made in various other places such as
Australia and Canada to create either government
or government sanctioned commercial monopolies
(Greenleaf et al., 1988).

The resulting environment was, and to some
extent still is one that is characterised by limited
access to basic legal materials. Whilst the com-
mercial systems provide a very sophisticated set
of services they are for the most part targeted
at the legal profession, they require significant
training in order to use them. The services are
very expensive and generally are not available
for casual use. Non-lawyers seldom access the
commercial systems and even lawyers can often
not afford to use them.

why is free Access to legal
Information Important?

At the most fundamental level, access to public
legal information supports the rule of law. Citizens
are governed by laws and so have a need and right
for effective access to these laws. Businesses also
generally operate in a regulated environment and
have similar needs. Effective access to basic legal
information is essential both from a social perspec-
tive and also to facilitate the proper operation of
business and commerce.

Apart from being able to access domestic
laws, there is also increasingly a need to access
law from other jurisdictions. Business operates
on an international basis. Corporations need to
be aware of international regulatory requirements
and countries need to make their legal systems

 2805

Free Access to Law and Open Source Software

transparent to encourage international investment
and trade. Particularly in the case of developing
countries, there is a major need for access to
international laws to assist with law reform and
development (Poulin, 2004).

the free Access to law Movement

The free access to law movement has grown out
of a set of projects that have attempted to address
these issues and to provide alternatives to the com-
mercial legal publishers’ systems. Most of these
projects are called legal information institutes
(or LIIs for short).

The earliest initiatives were in the United
States and Canada. In 1992, Tom Bruce and
Peter Martin established the Cornell Legal In-
formation Institute (Bruce, 2000). This service
was initially based on Gopher and provided free
access to decisions of the United States Supreme
Court and the United States code. It moved to the
Web in 1994. In Canada, Daniel Poulin and his
team at LexUM started publishing the full text
of decisions of the Canadian Supreme Court in
1993 (Poulin, 1995).

Both systems helped to identify a strong
demand for free public access to primary legal
materials. In Australia, Graham Greenleaf and
Andrew Mowbray founded AustLII (the Aus-
tralasian Legal Information Institute) in 1995
(Greenleaf, Mowbray, King, & van Dijk, 1995).
By the end of the year, AustLII was publishing
some 16 databases including the decisions of most
of the major Australian federal courts as well as
federal and state legislation and by 1998 became
the first LII to achieve national coverage. It now
includes over 200 databases covering virtually
all courts and tribunals in the country.

Other systems adopting a similar approach fol-
lowed. These included the British and Irish Legal
Information Institute (BAILII) in 1999, the Pacific
Islands Legal Information Institute (PACLII) and
the Canadian Legal Information Institute in 2000,

and the Hong Kong Legal Information Institute
(HKLII) in 2003. Various meta-systems were also
built that drew upon the information contained
in the other LIIs (WorldLII, Droit francophone
and CommonLII).

The free access to law movement was pro-
claimed at the annual Law via the Internet confer-
ence in Montreal in 2002. The current terms of
the Montreal Declaration (as amended in Sydney,
November 29, 2005 and Paris November 5, 2004)
are (in part):

Legal information institutes of the world, meeting
in Montreal, declare that:
• Public legal information from all countries

and international institutions is part of the
common heritage of humanity maximising
access to this information promotes justice
and the rule of law;

• Public legal information is digital common
property and should be accessible to all on
a non-profit basis and free of charge;

• Independent non-profit organisations have
the right to publish public legal information
and the government bodies that create or
control that information should provide
access to it so that it can be published.

...
Legal information institutes:
• Publish via the internet public legal informa-

tion originating from more than one public
body;

• Provide free, full and anonymous public
access to that information;

• Do not impede others from publishing public
legal information; and

• Support the objectives set out in this Dec-
laration.

Each LII is responsible for publishing legal
materials for a particular country or geographical
region. AustLII, for example, publishes materials
for Australasia (i.e., Australia and New Zealand).

2806

Free Access to Law and Open Source Software

Apart from providing access to the full-text deci-
sions of all major courts (such as the High Court,
Federal Court, and State Supreme Courts), as has
been said, AustLII also publishes decisions of
nearly all Australian tribunals. Access to consoli-
dated (and in some cases, point in time) legislation
and regulations from all nine jurisdictions is also
available. Other content includes: Law Reform
Commission reports from most States; access to
most Australian law journals; and a database of
all bilateral and multi-party treaties.

Like most of the other LIIs, AustLII uses auto-
mated processes to add rich hypertext markup to
its materials. In all, the system currently includes
around 40 million internal hypertext links. Free
text searching is available over the entire system or
selected databases. AustLII is the major source of
legal information in Australia and accounts for 25-
30% of all legally related traffic in the country.

At the time of writing, the various LIIs to-
gether publish around 663 databases containing
legal materials from 86 countries as well as 21
international collections. The total number of
individual documents exceeds 3 million. Total
usage is estimated to be in the vicinity of 3.5 mil-
lion direct hits (or page accesses) per day.

The content of these databases consists mainly
of primary materials—that is, court decisions,
legislation and treaties, but increasingly secondary
materials such as law journals, law reform com-
mission reports, and the like are being added.

The LIIs have changed the way that law is
made available to the public. Whereas in the past,
there was exclusive reliance upon commercial
publishers as conduits for the dissemination of
this information, primary legal information now
flows directly from courts and governments to
consumers. The LIIs freely offer a level of value
adding that establishes a new baseline for com-
mercial publishers. Examples of this value adding
include hypertext markup and search capabilities.
The citator created by LexUM for CanLII (Re-

flex) provides a further example (Poulin, Paré, &
Mokanov, 2005).

Each LII concentrates on making available
domestic laws, but beyond these local endeavors
all LIIs collaborate to expand the freely accessible
law space internationally. This collaboration takes
many forms. First of all, they all participate in
promoting and supporting free access to the law
by lobbying data providers such as courts, govern-
ments, and other bodies. They also provide, within
their means, technical assistance and advice and
training to other organizations. They hold annual
conferences in order to exchange information and
share knowledge. These conferences are public
and all those interested can register to take part.
Since many LIIs are based in universities, a sig-
nificant part of those conferences is set aside for
academic exchange of research results.

This cooperative spirit can be easily illustrated
by the collaboration between the University of
the South Pacific and AustLII to establish PacLII.
Robynne Blake had worked for a number of years
to build a substantial collection of South Pacific
legal materials. AustLII assisted by provision of
technical know-how and their software. In 2006,
after many years of progress PacLII obtained a
large grant from New Zealand Aid to expand its
reach towards making the laws of the various
states of the area freely accessible on the Internet.
PacLII is now (in terms of the number of staff)
one of the largest of the LIIs.

Similarly, LexUM collaborated with many
interested parties in Burkina Faso to establish
Juriburkina. Today, Juriburkina is operated from
Ouagadougou by the local bar association and
with the support of the higher courts, government
general secretariat and a local Internet startup
called ZCP informatique. A similar approach
is being followed in Senegal and the project has
reached implementation stage.

 2807

Free Access to Law and Open Source Software

MAIn focus of thE chAptEr

development of Interest in open
source software

The LII promoters and developers were not always
early adopters of open source software. Although
most of the LIIs were Unix based, the significance
of open source software only started to become
more evident towards the end of the 1990s. Today,
not only is most of the software used by LIIs open
source, but the LIIs have themselves started to
offer elements of their own production software
under open source licences.

Many reasons may be put forward to explain
the initial caution. First of all, in the early 1990s,
open source was not as developed and mature as
it is today. At the time, the LIIs rightly set “mak-
ing the law accessible for free” as their principal
agenda item. To achieve this, the most effective
software, proprietary or otherwise was deployed.
The reluctance towards more generally embrac-
ing open source by the LIIs, was partly based on
the lack of maturity of the available open source
software and partly attributable to the dominant
prevailing prejudice towards conventional cor-
porate approaches.

There was a major reappraisal of the initial at-
titude towards open source software from around
1998. At the time, for example, the operating sys-
tem of choice for the LexUM’s servers was Solaris
from Sun Microsystems (this was also in use at
AustLII and the Cornell LII). However, LexUM’s
programmers were mostly undergraduates and
some of them had Linux installed on their home
computers. These programmers were aware of
the value of open source and argued strongly for
the adoption of GNU/Linux. In the course of this
campaign, they had even installed for demonstra-
tion purposes another open source flagship of the
time, the already well respected—Apache Web
server to replace the Netscape Enterprise server
that was then in use. But despite the apparent

functioning of Apache, LexUM, was reluctant
to abandon the safety of using a proprietary so-
lution for what appeared to be a more risky free
alternative.

Then as today, LexUM was working with
the Supreme Court of Canada (SCC) to make its
decisions available for free in a timely manner.
A long-awaited SCC judgment was expected on
August 20, 1998 when the court’s decision on the
legality of a unilateral secession of Quebec from
Canada was to be published. The morning the
decision became available, the LexUM Netscape
Enterprise based server went down at the moment
the decision became available. The server was
unable to cope with the rise in demand. After
over an hour of rebooting the server, LexUM’s
student programmers brought up the Apache based
sever. The move saved the day, and Apache kept
running without failure for many weeks. From
then on, LexUM used Apache as its Web server.
In the following years, LexUM switched all of its
servers to Linux and Apache.

The other LIIs had similar experiences. Most
either had already or were soon to adopt Apache.
Many moved to Linux and to generally adopt open
source software as the basis of their production
systems.

current use of open
source software

Although the commitment to open source has
never been a religious one, most of the LIIs are
nevertheless strongly reliant upon open source
software. Although this is partly a matter of
simple economics, this is not of itself sufficient
to drive the adoption of open source as even free
bad software is still obviously a poor choice. The
open source orientation leads to a twofold benefit:
savings in licence costs, but more importantly it
led to the provision of reliable tools and powerful
products to achieve the vision of freely accessible
law. The current approaches used by the LIIs

2808

Free Access to Law and Open Source Software

closely match open source trends. Open source
developers develop many tools targeted for the
Web that closely meet the needs of LIIs.

As has been said above, most of the LIIs
use GNU/Linux and Apache. In addition some
commonly used open source programs include
database and indexing programs such as Post-
greSQL, Open LDAP, Apache Lucene, and
Nutch; programming languages and tools that
include: perl, python, gcc, Eclipse, mod_perl, and
Mason; and various other tools such as FastCGI
and Mason.

Proprietary software is still used but only
where a suitable open source solution cannot be
identified. For example, most LIIs still rely upon
proprietary software for a significant part of basic
document preparation and conversion (such as
Microsoft Word) and for some aspects of network
security (for example, AustLII uses Check Point
and Tripwire).

futurE trEnds

development of open source
software by lIIs

Prior to the World Wide Web, the publishing of
databases of legal information was essentially
the work of commercial publishers who used
specialised software that had often been developed
in-house. The Web brought with it a number of
generic publishing tools such as conversion tools,
search tools and Web servers. However, tools to
support more specialised legal publishing needs
remained rare. This led a number of the LIIs to
develop the tools they needed.

One of the first of these was Sino (short for
“size is no object”). Sino is a high performance
free text search engine. It was originally written
in 1995 and has been mainly used to provide
production level search facilities for most of the
Legal Information Institutes that form part of

the free access to law movement. Sino went to
a major rewrite in 2006 that makes it even faster
and adds new functionality. Sino from its initial
release has always been a very fast search engine
and its indexing and searching time have been kept
at the level of the fastest proprietary products.

Sino is designed to be easy to interface with
via a simple C/Perl API as well as a ready written
interactive interface for testing or for actual use
on Unix sockets. The tool is relatively small and
easy to understand at about 12K lines of ANSI/
POSIX.1 compliant C code. Sino concordances
(indexes) are portable across platforms with
different architectures. Sino has been in use on
a number of major Web sites answering many
millions of requests for the past 10 years and so
is robust and reliable.

Sino is a tool aimed at improving the access
to the law. It was at the heart of AUSTLII from
the very beginning and has been subsequently
adopted by BAILII, PacLII and HKLII. LexUM
used it for CanLII for many years. From 1995
until 2006, Sino and its source code were made
available for free to anybody wanting to publish
the law openly and for free. With its last rewrite,
Sino became open source and it is now licensed
under the GNU General Public Licence (GPL).

LexUM has also developed a number of pieces
of open source software. LexEDO is a legal pub-
lishing platform aimed at providing a ready-made
and easy to use solution for small-scale publica-
tion projects particularly in the developing world.
LexEDO provides a means to manage legislation,
caselaw, and legal periodicals as simple databases,
to automatically convert documents to PDF and
HTML and to generate a Website accordingly. All
of these tasks can be accomplished by lawyers or
law students acting as editors through Web-based
management interfaces.

LexEDO has been distributed to such organisa-
tions as the Bar of Burkina Faso, the government
general secretariat of Burkina Faso and the Bar
of Senegal. In the context of these projects, the

 2809

Free Access to Law and Open Source Software

availability of the source code was critical for
capacity building purposes. In Burkina Faso for
instance, LexEDO has been maintained locally for
a period of over two years by a private host called
ZCP Informatique. To some extent, the fact that
LexEDO source code is available allows ZCP to
develop local solutions to local problems without
requiring LexUM’s assistance. It also provides
them with the means to control the evolution of
their project, or even to replicate it elsewhere thus
spreading free access to law. As is the case for
Sino, LexEDO is distributed under the GPL.

LexUM has also developed a program called
NOME to assist with the anonymisation of
judicial decisions. In many jurisdictions some
or all judgments must not contain the names of
parties or accused. For instance, anonymisation
of judicial decisions involving young offenders
is mandatory in Canada. To efficiently achieve
this result, LexUM worked with the Computer
Science Department at the University of Montreal
(Plamondon, Lapalme, & Pelletier, 2004). The
result was a small program which is capable of
guessing and initialising proper names in Word
documents. NOME is now distributed for free
with its source code.

In respect to software developed in LIIs, Sino
is certainly the most mature. Sino, LexEDO, and
NOME are distributed under the GPL. Various
other software tools have been developed and
are distributed by the LIIs to various partner
organisations. As other tools become of more
general application, they will become candidates
to become new open source offerings.

conclusIon

The use of open source software by the LIIs reflects
the fact that both movements are well aligned and
in many senses similar. The most evident of these
similarities can be listed as follows:

Avoiding Monopolistic
control over the Information

Legal information, similarly to source code, wants
to be free (Williams, 2002). Both the free access
to law and the open source software movements
were conceived in reaction to the seizure of in-
formation by entities (state or commercial) not
willing to share it freely with others.

promote the reuse of
Information by third parties

As is the case for source code, legal informa-
tion is useful only if it can be reused for various
purposes. Users need the possibility to save legal
documents in different formats, to send them to
colleagues and to present them in courts. Some
users might even need the right to reuse documents
in a commercial context (for the publication of a
paper based law report, e.g.).

promote the development
of standards

As for software development, the dissemination
of legal information is improved by the adop-
tion of standards by the players involved. These
standards can take the form of uniform citation
mechanisms, drafting practices or workflow
models. Historically, LIIs are at the center of
such initiatives.

need to share tools

Organizations involved in free access to law
all face the same difficulties. They constitute a
community tied together by the need to edit and
convert large volume of legal documents, to pub-
lish them on the Web and to provide information
retrieval tools to their users. Similarly to every
open source software community, LIIs have in-

2810

Free Access to Law and Open Source Software

centives to share their efforts in the achievement
of common goals.

proponents do not derive
revenue from selling
Information as a product

The source of revenue of LIIs and open source
software developers is the same. It flows not
from the information they publish but from the
expertise they developed doing so.

Considering all these similarities, the use
of open source software can easily be seen as a
complementary strategy to strengthen free access
to law. It allows the LIIs to achieve near complete
transparency by opening-up not only the legal
information, but also their publication process. By
doing so, the LIIs achieve several goals at once:
they guarantee (to a certain degree) the integrity
of their data; they facilitate interactions with the
other players in the field; and finally, they help
foster the emergence of additional free access to
law projects.

For people or organisations that would like to
pursue free access to law projects in their own
country or region, the required software is now
available. There are many high quality resources
available from the open source community that
can be used to establish Web services. The major
distributions of Linux (and other open source
operating systems) and the Apache Web server
are of world-class quality. There are a number of
suitable search engines available. The Web and
the availability of open source software means
that it is now relatively straight forward to dis-
seminate information.

For the more specialized requirements involved
in publishing the law such as the conversion of
data, hypertext markup, metadata extraction, and
the like, the LIIs are able to make a contribution.
As a result, it is increasingly the case that for those
who wish to make the law more accessible, there
are available tools.

rEfErEncEs

Arewa, O. (2006). Open access in a closed uni-
verse, Lexis, Westlaw and the law school. Case Le-
gal Studies Research Paper No. 06-03. Retrieved
from http://ssrn.com/abstract=888321

Bing, J. (Ed.). (1994). Handbook of legal informa-
tion retrieval. Amsterdam: North Holland.

Bruce, T. (2000). Public legal information: Focus
and future. Journal of Information, Law and
Technology, (1).

Greenleaf, G., Mowbray, A., King, G., & van Dijk,
P. (1995). Public access to law via Internet: The
Australasian Legal Information Institute. Journal
of Law & Information Science, 6(1).

Greenleaf, G., Mowbray, A., & Lewis, D. (1988).
Australasian computerised legal information
handbook. Sydney: Butterworths.

McKnight, J. (1997). Wexis versus the Net. Illinois
Bar Journal, 85(4).

Plamondon, L., Lapalme, G., & Pelletier, F. (2004).
Anonymisation de décisions de justice. TALN
Conference Proceedings, Fès. Retrieved from
http://www.lpl.univ-aix.fr/jep-taln04/proceed/ac-
tes/taln2004-Fez/Plamondon-etal.pdf

Poulin, D. (1995). Legal resources for Canadian
lawyers on the Internet. CSALT Review—Ca-
nadian Society for the Advancement of Legal
Technology, 9(1).

Poulin, D. (2004). CanLII: How law societies
and academia can make free access to the law a
reality. Journal of Information, Law and Tech-
nology, (1).

Poulin, D, Paré, E., & Mokanov, I. (2005, Novem-
ber 17-19). Reflex: Bridging open access with a
legacy legal information system. In Proceedings
of the 7th Law via the Internet International Con-
ference, Port Vila, Vanuatu.

 2811

Free Access to Law and Open Source Software

Williams, S. (2002). Free as in freedom: Richard
Stallman’s crusade for free software. Sebastopol,
CA: O’Reilly & Associates.

KEy tErMs

Jurisdiction: The geopolitical region in which
the laws of a certain governing body are recog-
nized as legitimate and can be enforced.

Law: A body of knowledge consisting of
legislation, judicial decisions, and interpretative
material.

License: Permission needed to use or modify
materials in a way that is recognized as legitimate

by the owner of such materials and by an overall
community familiar that recognized a similar
understanding of legitimate use.

Primary Materials: Court decisions, legisla-
tion, and treaties.

Public Access: Making materials available
for all members of the general public to read and
review.

Public Legal Information: Legal informa-
tion produced by public bodies that have a duty
to produce law and make it public.

Secondary Materials: Public sources, such as
reports on preparatory work, that report on and
often interpret legal developments.

This work was previously published in Handbook of Research on Open Source Software: Technological, Economic, and Social
Perspectives, edited by K. St.Amant & B. Still, pp. 373-381, copyright 2007 by Information Science Reference (an imprint of
IGI Global).

2812

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.12
Ethical, Cultural and

Socio-Economic Factors of
Software Piracy Determinants in

a Developing Country:
Comparative Analysis of Pakistani and

Canadian University Students

Arsalan Butt
Simon Fraser University, Canada

Adeel I. Butt
Simon Fraser University, Canada

AbstrAct

Consumer software piracy is widespread in many
parts of the world. P2P based websites have made
it easier to access pirated software, which has
resulted in an increased emphasis on the issue of
software piracy in both the software industry and
research community. Some factors that determine
piracy include poverty, cultural values, ethical
attitudes, and education. Earlier empirical studies
have looked at software piracy as an intentional
behaviour. This study explores the demographic,

ethical and socio-economical factors that can
represent software piracy as a social norm among
a developing country’s university students. The
authors have conducted a comparative analysis
of university students from Pakistan and Canada,
two countries that differ economically, socially,
and culturally. The results of the study indicate
that software piracy behaviour is different in
both groups of students, but that there are also
some similarities. Future research directions and
implications are also presented.

 2813

Ethical, Cultural and Socio-Economic Factors of Software Piracy Determinants in a Developing Country

If nature has made any one thing less susceptible
than all others of exclusive property, it is the ac-
tion of the thinking power called an idea, which
an individual may exclusively posses as long as he
keeps it to himself; but the moment it is divulged,
it forces itself into the possession of everyone, and
the receiver cannot dispossess himself of it. Its
peculiar character, too, is that no one possesses
the less, because every other possesses the whole
of it. He who receives an idea from me, receives
instruction himself without lessening mine; as he
who lights his taper at mine, receives light without
darkening me. That ideas should freely spread
from one to another over the globe, for the moral
and mutual instruction of man, and improvement
of his condition, seems to have been peculiarly
and benevolently designed by nature, when she
made them, like fire, expansible over all space,
without lessening their density at any point, and
like the air in which we breathe, move, and have
our physical being, incapable of confinement or
exclusive appropriation. Invention then cannot,
in nature, be a subject of property.

-Thomas Jefferson

Congress shall have power … to promote the
progress of science and useful arts, by securing
for limited times to authors and inventors the
exclusive right to their respective writings and
discoveries.

-The Constitution of the United States, Article
1, Section 8, 1788

IntroductIon

Ethicist Richard Mason (1986) identified four
main ethical issues of the information age: privacy,
accuracy, property and accessibility. It has been
suggested that Mason’s work was very significant
in the field of Management Information Systems
ethics (Freeman & Peace, 2005). Mason (1986)

considered intellectual property (IP) “as one of
the most complex issues we face as a society” (p.
9). Mason identified bandwidth as the real threat
in the digital world and viewed it as a scarce and
fixed commodity at the time. However, with the
rapid progress of hardware and software technol-
ogy, bandwidth has increased immensely and has
therefore made peer-to-peer (P2P) technology
possible making e-file sharing a matter of few
mouse clicks.

According to Husted (2000), knowledge and
information are now more important factors in
a national economy than the traditional physical
assets that used to indicate economic well-being.
Therefore, the protection of intellectual property
(IP) has received increased attention in the recent
past. Intellectual property refers to “the results of
intellectual activity in the industrial, scientific,
literary or artistic fields” (Forester & Morrison,
1990, p. 31). A government plays its role to protect
the rights of owners by preventing unauthorised
use of this intellectual property for a limited period
of time (Seyoum, 1996) by using different mea-
sures such as copyrights, trade agreements and
patents. Legality aside, there are ethical and moral
issues that have risen from the use of software
and its unauthorised copying both at the consumer
and commercial level. The concept of Techno-
ethics1 deals with such aspects of technology. “It
designates that portion of ethics which deals with
questions arising from technological development
and activities. More precisely, technoethics deals
with moral questions governing or resulting from
the conception, production, distribution and the
use of artifacts or technological systems” (Findeli,
1994, p. 50). In our chapter’s context technoethics
or ethics refers to the moralities and ethical values
presumed or perceived with the use and copying
of commercial software.

Software is a form of intellectual property and
its unauthorized duplication is a crime. However,
the practice of making illegal copies of software
amounts to high rates in various parts of the
world and in environments such as universities,

2814

Ethical, Cultural and Socio-Economic Factors of Software Piracy Determinants in a Developing Country

businesses, and government, the behaviour has
become socially acceptable (Sims, Cheng, and
Teegen 1996; Cheng, Sims, and Teegen 1997;
Hinduja 2001; Christensen and Eining 1991).

Cheng et al (1996) and Husted (2000) suggested
that economics play a vital role in determining
software piracy. Other studies have however
shown that low national income and low personal
incomes are not the only reasons for which soft-
ware is pirated. Swinyard, Rinne, and Kau (1990)
observed that attitudes towards software piracy
are affected by cultural standards and customs.
Hence, “the neglect of culture as an explanation
of software piracy seems odd given the fact that
cultural values have such a significant impact
on a wide array of business practices in differ-
ent countries” (Husted, 2000, p. 200). Thus, this
chapter will not only look into the relationship
between economic factors and software piracy,
but will also reflect on the cultural and ethical
values and social norms that affect the trends of
software piracy amongst students.

rEsEArch QuEstIon

This study focuses on software piracy amongst
university students – specifically with regard to
its occurrence over the Internet, sharing (copy-
ing or borrowing) software on physical media
such as floppy disks and CD-ROMs and buy-
ing pirated software from retail outlets2. This
research explores the question whether software
piracy behaviour among university students of
a developing country can be conceptualized in
terms of social and cultural norms rather than
in terms of intentions as has been described (for
piracy amongst university students) in most of
the literature (e.g. Kwong & Lee, 2002; Rahim,
Seyal & Rahman, 2001; Limayem, Khalifa &
Chin, 1999; Tang & Farn, 2005; Gopal, Sanders
& Bhattacharjee, 2004).

rEsEArch JustIfIcAtIon

Empirical studies have been done on the subject
of software piracy in different countries such as
Saudi Arabia (Al-Jabri & Abdul-Gader, 1997),
Thailand (Kini, Ramakrishna & VijayaRama,
2003; Leurkittikul, 1994), People’s Republic of
China (Wang, Zhang, Zang & Ouyang, 2005) and
India (Gopal & Sanders, 1998). Other empirical
studies include those done by Gan & Koh (2006);
Ki, Chang & Khang (2006); and Mishra, Ak-
man & Yazici (2006). Although Husted (2000)
and Proserpio, Salvemini & Ghiringhelli (2004)
included Pakistan as one of the countries in their
respective analytical studies, empirical studies on
software piracy issues of Pakistan do not exist in
the literature. A comparative study can provide
a means of highlighting differences and possible
similarities of software piracy determinants
between a developed and a developing country.
Therefore Canada was chosen for this purpose as
it is culturally and economically in contrast with
Pakistan. Moreover, there hasn’t been any recent
Canadian scholarly literature3 in this context. This
research can therefore help fill a part of that void
and the results can provide a better understanding
of a developing country’s software piracy issues
that can help the policy makers to address the
problem more effectively.

lItErAturE rEvIEw

Intellectual property and its
protection

According to Merriam-Webster’s Dictionary of
Law, intellectual property (IP) is a “property that
derives from the work of the mind or intellect”.
Basically IP “refers to a legal entitlement which
sometimes attaches to the expressed form of an
idea, or to some other intangible subject matter”

 2815

Ethical, Cultural and Socio-Economic Factors of Software Piracy Determinants in a Developing Country

(Wikipedia, 2006, para. 1). Moreover, IP law
“regulates the ownership and use of creative
works, including patent, copyright and trademark
law” (Nolo, 2006). Simply put, intellectual prop-
erty is a realization of someone’s idea or thought.
Composed music, lyrics, paintings, published
written work, and software are the intellectual
property of the artists or the professionals that
produced or developed them.

Several authors, however, still debate the
justifiability of the intellectual property laws
(Siponen, 2004; Hettinger, 1989; Ladd, 1997;
Stallman, 1995; Weckert, 1997). Although detailed
discussion on their arguments is out of the scope
of this research, it is important to have a broad
view of some of the important concepts.

There are several IP protection organizations
across the world, such as Business Software Al-
liance (BSA), Canadian Alliance Against Soft-
ware Theft (CAAST), International Intellectual
Property Alliance (IIPA), Software & Information
Industry Association (SIIA), and World Intel-
lectual Property Organization (WIPO). Many
countries have their own intellectual property
laws protecting the rights of individuals and or-
ganizations alike. The Copyright Act of Canada
(Department of Justice Canada, 2006) provides
protection to intellectual property in Canada. It
considers computer programmes (or software)
to be literary work and therefore has several
laws controlling their unauthorized copying and
distribution. Similarly, computer programmes
are considered literary work under the Copy-
right Ordinance, 1962 of Pakistan. A significant
amendment was made to this ordinance in 1992
called the Copyright (Amendment) Act, 1992.
This amendment addressed the copyright issues
of computer software in more detail than the
original Copyright Ordinance. However, some
laws are also considered debatable. For example,
the Digital Millennium Copyright Act (DMCA)
is usually seen as a controversial law approved
by the U.S. Congress in 19984 (SearchCIO.com,
2006).

With society’s transition to a digital world,
copyright protection has become an important
area of IP law (Blanke, 2004). It is evident from
the discussion above that intellectual property
rights hold immense importance in today’s world
but justification of IP rights and laws continues to
be a debate among the subject experts. “On one
hand are those who believe that anything they
conjure up, anything that transforms an idea into
form, is intellectual property. On the other are
the individuals who believe just as passionately
that the entire notion of intellectual property is
at best a farce, at worst just another way to suck
profits out of the ether” (Gantz & Rochester,
2004, p. xxiii). For example, Hettinger (1989),
Ladd (1997), Stallman (1995) and Weckert (1997)
view software as an intangible commodity and
therefore favour its copying. Weckert reflected on
intellectual property rights concerning software
as unjustifiable. Hettinger holds similar views on
IP rights and their protection. Hettinger suggested
that patents and trade secrets are more difficult to
justify than copyrights which “restrict only copy-
ing an expression of an idea” (Hettinger, 1989, p.
52). Siponen however argues that “it is fair and
just for people to claim financial rewards for their
creations” (Siponen, 2004, “Concluding remarks”
section) and that respecting IP laws and rights is
necessary for the society to live in harmony.

software piracy

Sims et al (1996) define software piracy as “the
illegal copying of computer software” (p. 839).
Copying software is easy and can be carried out
in many forms. Moores (2003) identified common
forms of software piracy as counterfeiting, Inter-
net piracy, and softlifting. He further noted, that
“counterfeiting and Internet piracy both involve
creating bootlegged copies of licensed software
for sale or distribution. Internet piracy makes
use of the Internet to distribute the software,
and has become a particular concern for vendor
organizations” (Moores, 2003, p. 208). Softlifting

2816

Ethical, Cultural and Socio-Economic Factors of Software Piracy Determinants in a Developing Country

is also a very common type of software piracy
among businesses that install single-user licensed
software on multiple machines (Rahim, Seyal,
& Abdul-Rahman, 2001; Simpson, Banerjee,
& Simpson, 1994). Another kind of software
piracy involves software installation by retailers
onto the hard disk drives of customers’ personal
computers (PCs) in order to encourage the sale
of hardware.

Can Software Piracy be Justified?

As is the case with intellectual property, issues
surrounding software piracy are debated as well.
For example, worldwide software piracy figures
reported by BSA are cited by almost every pub-
lished article on software piracy.5 However, many
authors consider BSA’s methodology for calculat-
ing the levels of software piracy and the amount
of reported monetary losses incurred as highly
controversial (Locklear, 2004; The Economist,
2005). Even IDC (www.idc.com), an organization
which has worked for BSA on the latter’s several
world software piracy reports, has commented
that the conclusions presented in the 2004 BSA
study were exaggerated (Locklear, 2004). Some
authors, however, have argued that software piracy
increases the popularity of the product itself as
suggested by Slive and Bernhardt (1998) that “a
software manufacturer may permit limited piracy
of its software. Piracy can be viewed as a form of
price discrimination in which the manufacturer
sells some of the software at a price of zero” (p.
886).

A similar opinion was voiced by Microsoft
Founder, Chairman, and Chief Software Archi-
tect Bill Gates in 1998. Gates reportedly said,
“Although about three million computers get
sold every year in China, people don’t pay for the
software. Someday they will, though. And as long
as they’re going to steal it, we want them to steal
ours. They’ll get sort of addicted, and then we’ll
somehow figure out how to collect sometime in
the next decade” (CNN.com, 2001). This may

also suggest that software manufacturers can
allow initial piracy of their product as a strategy
to enter or monopolize the market by making
consumers attached to a particular software only
(as could be the case for Microsoft’s operating
system Windows), since the purchasing power
of the average consumer does not allow him/her
to purchase the legal product at full price. Bill
Gates faced a lot of criticism for his comments
as Microsoft itself is probably the strongest
advocate of the anti-software piracy campaign,
the company’s products being widely pirated all
around the world.

Givon, Mahajan and Muller (1995) stated that
“software piracy permits the shadow diffusion
of a software parallel to its legal diffusion in the
marketplace, increasing its user base over time.
Because of this software shadow diffusion, a
software firm loses potential profits, access to a
significant proportion of the software user base,
opportunities for cross-selling, and marketing its
other products and new generations of the soft-
ware. However, shadow diffusion may influence
the legal diffusion of the software. Software pirates
may influence potential software users to adopt
the software, and some of these adopters may be-
come buyers” (p. 1). LaRue (1985) also suggested
that software publishers could eventually benefit
by adopting a shareware marketing strategy of
their software. This strategy is currently adopted
by many software manufacturers and as Karon
(1986) noted, the idea of such marketing strategies
has also been supported by the president of an
education software firm who believes that some
pirates may eventually buy their products due to
value-added benefits. Slive and Bernhardt (1998)
also stated that piracy of software by home users
can be viewed as a price discrimination strategy
by the manufacturer (selling software for free)
which will eventually increase the demand for
the software by business users.

According to The Linux Information Project
[LINFO] (2006), the critics of the concept of soft-
ware piracy argue that the terminology associated

 2817

Ethical, Cultural and Socio-Economic Factors of Software Piracy Determinants in a Developing Country

with this concept is deliberately manipulated by
the major commercial software developers. “That
is, use of the term piracy itself is also highly
controversial in a software context” (The Linux
Information Project [LINFO], 2006, “Inappropri-
ate Terminology” section, para. 1). And “this is
also because it implies that people or organizations
that create or use copies of programs in violation
of their [end user licensing agreement] EULAs
are similar to pirates. Pirates are violent gangs
that raid ships at sea in order to steal their cargoes
and rob their crews; they also frequently injure
or kill the crews and sink their ships. Critics of
this terminology claim that it was chosen for its
dramatic public relations value rather than because
of any relationship to the traditional use of the
word” (LINFO, 2006, “Inappropriate Terminol-
ogy” section, para. 2).

Another factor that has been shown to associate
directly with computer abuse is called the Robin
Hood Syndrome (Forester & Morrison, 1990; Per-
rolle, 1987; U.S. Department of Justice, National
Institute of Justice, 1989a, 1989b). Harrington
(2002) describes the Robin Hood syndrome as
“the belief that harming a large organization to the
benefit of an individual is the right behavior” (p.

180). In her study of software piracy, Harrington
found that people high in Robin Hood Syndrome
are more likely to pirate software as this syndrome
allows an “individual to neutralize ethical judg-
ments about software piracy and copy software
offered for sale by large organizations” (p.181).
The Robin Hood Syndrome could be applied in
the context of developing countries as well, where
software piracy is justified on the grounds “that it
is unfair to charge prices in low income countries
that are comparable to those in the higher income
countries, and thus virtually unaffordable by most
citizens and many businesses in such countries”
(LINFO, 2006, “Reasons and Justifications For”
section, point 4).

The purpose of this research is not to justify
software piracy in a developing country such as
Pakistan or any other part of the world. The authors
believe that software piracy in any form is illegal
and an unethical behaviour. However, it is equally
important to stress the fact that depending upon
the circumstances, individuals either inevitably
have to indulge in this behaviour, reasons for
which will be discussed later; or they have the
option of pirating software, that is to say they do it
because they can. Another important clarification

Figure 1. Can software piracy be justified?

2818

Ethical, Cultural and Socio-Economic Factors of Software Piracy Determinants in a Developing Country

that needs to be established at this point is that
this research mainly focuses on individual piracy
rather than commercial piracy (organizations
producing pirated software on a large scale for
selling purposes) which is purely done for profit.
Commercial piracy however is a crucial element
that creates a piracy facilitating environment in
a society and will therefore be discussed where
relevant. However as stated earlier, the focal point
of this research is individual piracy by university
students.

software piracy in pakistan and
canada

Developed nations such as U.S. or Canada have
anti-piracy policies and organizations to control
unauthorized publishing or copying of software.
However, “developing countries are passive in
addressing computer ethics in general and intel-
lectual property rights in particular” (Al-Jabri et
al., 1997, p. 335). Al-Jabri et al. also suggested
that developing countries lack interest groups
that combat software piracy. However, it has also
been observed that even the presence of these
organizations and the existing copyright laws of
the country cannot make a significant difference
in developing countries (IIPA, 2004). According to

IIPAA (2006) Canada also falls short in meeting
the objectives laid down in the WIPO Copyright
Treaty (WCT) and the WIPO Performances and
Phonograms Treaty (WPPT). IIPA notes that the
Canadian government introduced Bill C-60 in
order to comply with these treaties but the bill
eventually died as a result of a call for federal
elections in November 2005. IIPA further points
out that “Canada remains far behind virtually all
of its peers in the industrialized world with respect
to its efforts to bring its copyright laws up to date
with the realities of the global digital networked
environment. Indeed, most of the major develop-
ing countries have progressed further and faster
than Canada in meeting this challenge” (IIPA,
2006, p. 2). As per the IIPA recommendation,
Canada remains on the Watch List of countries.
As indicated in Figure 2, the software piracy rates
have remained nearly constant over the past few
years in Pakistan and Canada.

rEsEArch ModEl

Theory of reasoned action (TRA) suggested by
Fishbein & Ajzen (1975) and theory of planned
behaviour (TPB) later developed by Ajzen (1991)
have been used extensively in the literature to

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

pi
ra

cy
 r

at
es

2000 2001 2002 2003 2004 2005 2006

years

comparison of pakistan & canada

Pakistan
Canada

Figure 2. Software piracy levels in Pakistan & Canada (Source: BSA 2005, 2007)

 2819

Ethical, Cultural and Socio-Economic Factors of Software Piracy Determinants in a Developing Country

explain software piracy behaviour and intentions.
Both of these theories look at behaviour as an
intentional act. While it is true that the literature
on software piracy (significant portion of which
is based on TRA and TPB) has helped in under-
standing various aspects of the matter, there have
been no empirical studies to prove that software
piracy can be conceptualized as an unintentional
behaviour or as a behaviour that is the product of
the social and cultural environment within which
the behaviour is carried out.

The model developed for this research6 is
shown in Figure 3. It includes social norms as
one of the variables. The basic structure of this
model has been adopted and modified from a
model that was used by Proserpio et al. (2004).
Their model was based on a multi-causality ap-
proach to determine software piracy factors in 76
countries (including Pakistan and Canada) and is
therefore appropriate for this research.

rEsEArch hypothEsEs

Economic development

According to Marron and Steel (2000), intellectual
property rights encourage novelty and economic

growth. In a study on the relationship between na-
tional economy and piracy levels, they concluded
that a strong inverse correlation existed between
piracy rates and the income level of the country.
Bezmen & Depken (2006) also found a negative
relationship between software piracy and income,
tax burdens, and economic freedom. Therefore,
it is hypothesized that:

H1: Income will have an inverse influence on
piracy intention of subjects.

H2: High price of original software will have a
direct influence on the piracy intention of
subjects.

Culture

Culture has been defined as “the collective pro-
gramming of the mind which distinguishes the
members of one group or category of people from
another” (Hofstede, 1997, p.260); yet culture is
a very broad concept, and has little power if it is
used as a residual category (Child, 1981). Marron
& Steel (2000) and Shin et al. (2004) concluded
that the collectivistic culture is to blame for the
high software piracy rates. Therefore, social norms
and culture will be taken into consideration and
the following is hypothesized.

Figure 3. Software piracy behavior model (Source: Butt, 2006)

2820

Ethical, Cultural and Socio-Economic Factors of Software Piracy Determinants in a Developing Country

H3: Social/Cultural norms will have a direct
influence on the piracy behaviour of sub-
jects.

other piracy facilitating factors

Besides the effects of social and cultural norms
and poor economy on software piracy, the avail-
ability of pirated products is a very important
factor that could be significantly related to higher
piracy rates. For instance, Rainbow Market in
Karachi, and Hafeez Centre in Lahore are two
of the biggest and best-known hardware and
software malls in Pakistan. Each of these malls
comprises hundreds of retailers selling pirated
software. The Canadian software market’s situ-
ation is totally different from the one described
above. There are few, if any retailers openly
selling pirated software. However, according to
a CAAST news release (CAAST, 2005), forty
seven percent of the surveyed students admitted
to pirating software.

Moores & Dhaliwal (2004) suggested that
high availability of illegal software, absence of
legal punishments and high cost of legal software
reflect the high piracy rates of the regions being
studied. Simpson et al. (1994) also included the
element of legal factors in the piracy model they
proposed, and found that these factors have an
effect on the ethical decision process, which leads
to the actual piracy behaviour. The following is
therefore hypothesized in regards to the avail-
ability and legal factors.

H4: There will be a positive influence of the
availability of pirated software on the intent
of subjects.

H5: Legal enforcement will have a negative influ-
ence on the piracy intent of the subjects.

H6: Legal enforcement will have a positive
influence on the social norms.

Previous studies have also suggested that gen-
der is an important demographic factor that affects

one’s intention to pirate software. In a survey of
moral intentions towards software piracy, Kini et
al. (2003) found that males were more inclined
towards pirating software, and similar results
were proposed by Higgins and Makin (2004).
Therefore, the following is considered as the null
hypothesis for gender.

H7: There will be no difference between males
and females regarding their software piracy
behaviour.

“People’s perceptions of a particular behaviour
are shaped by the existing value system of the
society” (Lau, 2003, p. 234). The decision-mak-
ing model proposed by Jones (1991) suggested
that an individual’s attitude toward ethical issues
will affect the individual’s ethical judgement
and then their ethical behaviour. It is therefore
hypothesized that:

H8: There will be a direct relationship between
attitudes towards piracy and the piracy
behaviour of subjects.

The discussion that has been presented so far
in this research elaborates on the fact that current
literature regards piracy behaviour as intentional.
To conform to the current literature, the following
final hypothesis is made.

H9: Intention to pirate software will have a posi-
tive influence on the actual piracy behaviour
of subjects.

rEsEArch MEthodology

site selection

As is the case with many research projects, this
study also had limited resources in terms of time
and money. The sites for the study were therefore
chosen with these factors taken into consideration.

 2821

Ethical, Cultural and Socio-Economic Factors of Software Piracy Determinants in a Developing Country

For the Canadian part of the study, the authors’
home university was chosen. For the Pakistani
study, the city of Lahore was chosen since it has
one of the biggest pirated software markets in
Pakistan and also has several IT institutions. Five
universities were chosen in Lahore.

sampling characteristics

Students were chosen as the target population in
order to conform to the existing research, most
of which is based on samples of college and uni-
versity students. Students at both undergraduate
and graduate levels from information technology
and computer science departments were included
in this study.

pilot & Actual studies

A self-administered survey instrument/question-
naire was developed. This questionnaire consisted
of closed-ended questions that were used to
collect demographic details about the research
participants. The questionnaire also consisted
of, 31 items, each rated on a 5-point Likert scale
to assess respondents’ attitude towards ethical,
economical and demographic implications of
software piracy. Negatively worded items were
included to detect response patterns. Various
items in the questionnaire were adopted from
current literature including Moores & Dhaliwal
(2004), Siegfried (2005) and Al-Jabri et al. (1997).
Based on the feedback of pilot study (conducted in
Canada), minor changes were made to the format
and content of the questionnaire, and it was also
modified to make it adaptable in Pakistan.

While conducting the study in Pakistan,
hard copies of the questionnaire were physically
distributed at the same time in four classrooms
and one computer laboratory at each of the five
universities. The questionnaire at the university
in Canada was administered through the Inter-
net with the use of a secure program written in
PHP/CGI to capture responses.

dAtA AnAlysIs

descriptive statistics

The online survey conducted at the university in
Canada returned 208 responses out of which 196
were usable. Most of the Canadian respondents
were under the age of 26 (n=172, 88%).7 There were
122 (62%) males and 74 (38%) female respondents.
The survey in five Pakistani universities returned
365 responses out of which 339 (n=339) were
usable. As was the case in Canadian data, most
of the respondents were under the age of 26 (n =
325, 96%). There were 221 (65%) males and 118
(35%) female respondents.

hypotheses testing

For testing hypothesis, the questionnaire items
in both Pakistani and Canadian questionnaire
were grouped together to make the statistical
tests feasible. The groupings (Table 1) were made
based on (1) the face validity, i.e. interpretabil-
ity; (2) factor loadings; and (3) reliability aka
Cronbach’s alpha.

Structural Equation Modelling (SEM) with
LISREL was used to test the relationships between
the above groups/variables. Based on composite
scores, the ‘Norm-attd’ group in the Pakistani
data was further split into ‘socnorm’ for ‘social
norms’ and ‘attit’ for ‘attitude’. In the SEM for
the Pakistani group, a latent variable called
‘sociomor’ was created which was composed of
‘socnorm’ and ‘attit’.

fitting data on structural Models

In addition to fit statistics, structural equation
modelling (SEM) produces estimates for partial
regression coefficients (referred to as path coef-
ficients), standardized regression coefficients
and estimates of squared multiple correlations”
(Wagner & Sanders, 2001, p. 165). LISREL was
used to fit the data on a structural equation model.

2822

Ethical, Cultural and Socio-Economic Factors of Software Piracy Determinants in a Developing Country

The resulting path coefficients for Pakistan and
Canada are shown in Figure 4.9 The structural
models developed in this research represent the
direction and strength of independent variables’
relationship with dependent variables.

In the Pakistani model, the price factor (price
 piracy behaviour, 0.03) does not seem to
have any effect at all on the piracy behaviour,
therefore rejecting hypothesis 2. Price also has
a fairly strong negative relationship (-.047) with
the intent variable, thus contradicting hypoth-
esis 1. In the Canadian model, price has very
weak relationships with intent (.01) and piracy
behaviour (.02), therefore rejecting hypotheses 1
and 2 for Canadian students. Legal issues have a
fairly strong influence on intent (0.54) and not so
strong (although it is in the right direction) on the
sociomor variable (0.40) in the Pakistani model.
Hypothesis 5 and hypothesis 6 are accepted and
rejected respectively. The Canadian legal con-
struct has a weak relationship with intent (0.07)
and a fairly strong relationship with ethical beliefs
and attitudes (0.46), thus rejecting hypothesis 5
but accepting hypothesis 6. The gender piracy
behaviour paths in both models have very weak
coefficients indicating no difference in piracy
behaviour between males and females, thus ac-
cepting hypothesis 7.

The availability of pirated software has a very
small effect on the intent of Pakistani (0.13) and
Canadian (0.23) students rejecting hypothesis

4. Intentions in the Pakistani model have a very
high negative relationship (-0.76) with the piracy
behaviour. Hypothesis 9 is therefore rejected. The
sociomor construct, despite having a positive re-
lationship (0.39) with the piracy behaviour, is not
strong enough to accept hypotheses 3 and 8 in the
Pakistani model. As far as the Canadian model
is concerned, the norms variable has a strong
influence (0.52) on ethics and attitudes toward
piracy but negligible effect on piracy behaviour
with a path coefficient of 0.05. Intent on the other
hand shows a relationship in the correct direction
(though not very strong) with a path coefficient of
0.34 with the piracy behaviour of the students.

dIscussIon

This research has focused on the cultural di-
mension of software piracy and its effect on the
behaviour of university students. Two structural
models that incorporate social and cultural norms,
economic conditions, ethical attitudes towards
piracy and the availability of software piracy
have been developed and tested. Since Canada
and Pakistan are culturally and economically dif-
ferent, they were chosen to provide a contrasting
view of the software piracy phenomenon.

The IT industry in Pakistan is progressing,
though not at a rapid pace. Still in its infancy,
it began in Pakistan with the introduction of

Pakistani Study – Variable (Group) Names Canadian Study – Variable (Group) Names

Availability Availability

Legal Legal

Intent Intent

Norm-attd (i.e. Norms and socially or culturally mediated attitudes
grouped together) Ethical beliefs and Attitudes

Price Price

Piracy Behaviour Piracy Behaviour

- Norms

Table 1. Composite variables in the study8

 2823

Ethical, Cultural and Socio-Economic Factors of Software Piracy Determinants in a Developing Country

the Internet in 1996. The analysis of economic
factors (high price of legal software and low
income) in this study provides a rationale for the
reluctance of Pakistani government in enforcing
intellectual property rights. Despite being aware
of the rampant software piracy, governments of
countries such as Pakistan are aware of the eco-
nomic conditions of the mass population. People
(students, in the context of this research) in the
developing countries need to have cheap access to
resources (software) in order to keep up with the
rapid pace of technological advancement in the
developed world. It can therefore be assumed that
governments of developing countries are aware
of this and therefore are always reluctant to enact
and enforce strict IP protection laws.

The empirical evaluation provides support that
social norms and positive attitudes towards piracy
are correlated with the actual piracy behaviour
of Pakistani students.10 This finding is similar

to that of Proserpio et al., (2004), Seale et al.,
(1998) and Al-Jabri, I. & Abdul-Gader (1997).
Intentions proved to be stronger predictors of
piracy behaviour of Canadian students and this
finding conforms to the literature which regards
piracy behaviour as intentional. The achieved
results indicate that software piracy behaviour
in Pakistan cannot be regarded as purely inten-
tional. It should rather be conceptualized as a
consequential behaviour resulting from various
elements, with customs or social norms being the
strongest of them all. This also indicates that in
two culturally different countries, the conditions
that are responsible for creating a piracy-favouring
environment are essentially different. Due to a
lack of IP related awareness (unlike the developed
world), this culture of copyright infringement is
deeply rooted in the Pakistani society in such a
way that students buy or share pirated software
without even realizing that their action might

Figure 4. Pakistani and Canadian SEMs

2824

Ethical, Cultural and Socio-Economic Factors of Software Piracy Determinants in a Developing Country

be considered illegal and/or unethical. It is an
established norm: a custom; the way an act is
supposed to be normally carried by a member
of the society.

Gopal and Sanders (1998) correctly identified
the need for a behavioural model for software
piracy activity that would help software publish-
ers gain insight into the behavioural dynamics of
software pirates. However, as they also found that
their economical model was appropriate for the
U.S. and not for India, caution should be prac-
ticed in all future research that attempts to study
piracy behaviour. This study was an exploratory,
cross-cultural investigation of piracy in two very
different cultures. The applicability of Western
constructs such as ‘attitudes’ and ‘intentions’ to
collectivist societies must always be critically
examined. Future research should look at the
questions left unanswered by this study. Subjects
from more countries should be included in future
cross-country studies of software piracy behav-
iour so that the results of this study could not only
be generalized for the general student population
but also to the population at large.

Authors of this chapter feel necessary to reflect
upon the fact that a discovery or invention of a
new technology cannot be blamed for its eventual
uses. Albert Einstein reportedly said, “My name
is linked to the atomic bomb in two different
ways. Almost fifty years ago I discovered the
equivalence of mass and energy, a relationship
which served as the guiding principle in the work
leading to the release of atomic energy. Secondly,
I signed a letter to President Roosevelt, stressing
the need for work in the field of the atomic bomb.
I felt this was necessary because of the dreadful
danger that the Nazi regime might be the first to
come into possession of the atomic bomb” (Na-
than & Norden, 1960, p. 569). Einstein however
considered signing the letter a “great mistake”
(Tobar-Arbulu, 1984). Technology itself can
therefore not be blamed for its eventual uses.

futurE trEnds

Findeli (1994) correctly argued that technoethical
issues have been continuously rising from the
unparalleled developments in technology. One
could argue that such issues can act as catalysts to
invoke other socio-political and ethical dilemmas.
It is not only in software or computer technology
that further development will raise ethical ques-
tions, but other walks of life such as medicine,
engineering, journalism, etc. can have equally
grave issues: human cloning, embryonic stem
cells research, and inappropriate use of media to
shape public opinion during conflicts (e.g. in a
war), are only a handful of examples. It is a mat-
ter of time before such conflicts will give birth to
new unforeseen technoethical issues.

conclusIon

This study has found that there are more ways than
one of understanding piracy behaviour across dif-
ferent countries. Although poor national economy
plays a substantial role in software piracy rates,
culture is also part of the equation. This study
has also suggested that software piracy behaviour
in a developing country such as Pakistan should
not be conceptualized in terms of intentions
alone. Caution should be practiced in all future
research that attempts to study piracy behaviour
as the applicability of Western constructs such
as ‘attitudes’ and ‘intentions’ to collectivist
societies must always be critically examined.
Subjects from more countries should be included
in future cross-country studies of software piracy
behaviour so that the results of this study could
not only be generalized for the general student
population but also for the population at large.
There is also a lack of longitudinal research and
also of other forms of electronic piracy, such as
the availability of pirated e-books on the Internet.

 2825

Ethical, Cultural and Socio-Economic Factors of Software Piracy Determinants in a Developing Country

Future research could therefore attempt to study
both of these domains as well.

rEfErEncEs

Ajzen, I. (1991). The theory of planned behavior.
Organizational Behavior and Human Decision
Processes, 50(2), 179-211.

Al-Jabri, I. & Abdul-Gader, A. (1997). Software
copyright infringements: An exploratory study of
the effects of individual and peer beliefs. Omega,
25, 335-344.

Bezmen, TL. & Depken, CA. (2006). Influences
on software piracy: Evidence from the various
United States. Economic Letters, 90, 356-361.

Blanke, JM. (2004). Copyright law in the digital
age. In Brennan, L. L. & Johnson, V.E. (Eds.),
Social, ethical and policy implications of infor-
mation technology, (pp. 223-233). Hershey, PA:
Idea Group Inc.

Business Software Alliance (BSA). (2005). Sec-
ond annual BSA and IDC global software piracy
study. Retrieved January 7, 2006 from http://www.
bsa.org/globalstudy/upload/2005-Global-Study-
English.pdf

Business Software Alliance (BSA). (2007). Fourth
annual BSA and IDC global software piracy
study. Retrieved July 27, 2007 from http://www.
ifap.ru/library/book184.pdf

Butt, A. (2006). A cross-country comparison of
software piracy determinants among university
students: Demographics, ethical attitudes & so-
cio-economic factors, emerging trends and chal-
lenges in information technology management.
Proceedings of the 2006 Information Resources
Management Association International Confer-
ence. Hershey: Idea Group Publishing.

Canadian Alliance Against Software Theft
(CAAST). (2005). Software piracy runs rampant

on canadian university campuses. Retrieved Nov
1, 2005 from http://www.caast.org/release/default.
asp?aID=139

Cheng, HK. Ronald, RS. & Hildy, T. (1997). To
purchase or to pirate software: An empirical study.
Journal of Management Information Systems,
13(4), 49-60.

Child, J. (1981). Culture, contingency and capital-
ism in the cross-national study of organization.
Research in Organization Behavior, 3, 303-356.

Christensen, AL. & Martha, M.E. (1991). Factors
influencing software piracy: Implications for
accountants. Journal of Information Systems, 5
(spring), 67-80.

CNN.com. (2001). Microsoft in China: Clash of
titans. Retrieved March 19, 2006 from http://ar-
chives.cnn.com/2000/TECH/computing/02/23/
microsoft.china.idg/

Department of Justice Canada (2006). Copyright
Act, R.S., 1985, c. C-42. Retrieved March 4, 2006
from http://laws.justice.gc.ca/en/C-42/index.
html

Findeli, A. (1994). Ethics, aesthetics, and design.
Design Issues, 10(2), 49-68.

Fishbein, M., & Ajzen, I. (1975). Belief, attitude,
intention and behavior: An introduction to theory
and research. Reading, MA: Addison-Wesley.

Forester, T. & Morrison, P. (1990). Computer
ethics: Cautionary tales and ethical dilemmas in
computing. Cambridge, MA: The MIT Press.

Freeman, L. A. & Peace, A. G. (2005). Revisiting
Mason: The last 18 years and onward. In Freeman,
L. A. & Peace, A.G. (Eds.), Information ethics:
Privacy and intellectual property, (pp. 1-18).
Hershey, PA: Idea Group Inc.

Gantz, J. & Rochester, J. B. (2004). Pirates of
the digital millennium. Upper Saddle River, NJ:
Prentice Hall.

2826

Ethical, Cultural and Socio-Economic Factors of Software Piracy Determinants in a Developing Country

Gan LL. & Koh. HC. (2006). An empirical study
of software piracy among tertiary institutions
in Singapore. Information & Management, 43,
640-649.

Givon, M., Mahajan, V. & Muller, E. (1995).
Software piracy: Estimation of lost sales and the
impact on software diffusion. Journal of Market-
ing, 59(1), 29-37.

Gopal, R. D. & Sanders, G. L. (1998). Interna-
tional software piracy: Analysis of key issues
and impacts. Information Systems Research,
9(4), 380-397.

Gopal, R. D., Sanders, G. L. & Bhattacharjee,
S. (2004). A behavioral model of digital music
piracy. Journal of Organizational Computing and
Electronic Commerce, 14(2), 89-105.

Harrington, S. J. (2002). Software piracy: Are
robin hood and responsibility denial at work?
In Salehnia, A. (Ed.), Ethical issues of informa-
tion systems, (pp. 177-188). Hershey, PA: IRM
Press.

Hettinger, E. C. (1989). Justifying intellectual
property. Philosophy and Public Affairs, 18(1),
31-52.

Higgins, G. E. & Makin, D. A. (2004). Does
social learning theory condition the effects of
low self-control on college students’ software
piracy? Journal of Economic Crime Manage-
ment, 2(2), 1-22.

Hinduja, S. (2001). Correlates of internet soft-
ware piracy. Journal of Contemporary Criminal
Justice, 17(4), 369-82.

Hofstede, G. (1997), Cultures and organizations:
Software of the mind. New York: McGraw
Hill.

Husted, B. W. (2000). The impact of national
culture on software piracy. Journal of Business
Ethics, 26, 197-211.

International Intellectual Property Alliance
(IIPA). (2004). 2004 special 301 report: Pakistan.
Retrieved November 20, 2005 from http://www.
iipa.com/rbc/2004/2004SPEC301PAKISTAN.
pdf

International Intellectual Property Alliance
(IIPA). (2006). 2006 special 301: Canada. Re-
trieved March 21, 2006 from http://www.iipa.
com/rbc/2006/2006SPEC301CANADA.pdf

Jones, T. M. (1991). Ethical decision making for
individuals in organizations: An issue contingent
model. Academy of Management Review, 16(Feb-
ruary), 366-395.

Karon, P. (1986). Software industry groups set
sail against pirates in academe. PC Week, 9 De-
cember, 62.

Ki E., Chang B., & Khang K. (2006). Exploring
influential factors on music piracy across coun-
tries. Journal of Communication, 56, 406-426.

Kini, R. B., Ramakrishna, H.V. & Vijayaraman,
B. S. (2003). An exploratory study of moral in-
tensity regarding software piracy of students in
Thailand. Behavior & Information Technology,
22(1), 63-70.

Kwong, T. C. H. & Lee, M. K. O. (2002). Behavioral
intention model for the exchange mode internet
music piracy. Proceedings of the 35th Annual Ha-
waii International Conference on System Sciences
-Volume 7, 191. Washington, DC, USA.

Ladd, J. (1997). Ethics and the computer world: A
new challenge for philosophers. ACM Computers
& Society, 27(3), 8-13.

Lau, E. K. W. (2003). An empirical study of soft-
ware piracy. Business Ethics, 12(3), 233-245.

LaRue, J. (1985). Steal this program. Library
Software Review, 4(5), 298-301.

Leurkittikul, S. (1994). An empirical comparative
analysis of software piracy: The United States

 2827

Ethical, Cultural and Socio-Economic Factors of Software Piracy Determinants in a Developing Country

and Thailand. Unpublished doctoral dissertation,
Mississippi State University.

Limayem, M., Khalifa, M., & Chin, W. W. (1999).
Factors motivating software piracy: A longitudinal
study. International Conference on Information
systems (pp. 124-131). Association for Informa-
tion Systems.

Locklear, F. Z. (2004). IDC says piracy loss figure
is misleading. Retrieved March 21, 2006 from
http://arstechnica.com/news.ars/post/20040719-
4008.html

Mason, R. O. (1986). Four ethical issues of the
information age. MIS Quarterly, 10(1), 5-12.

Marron, D. B. & Steel, D. G. (2000). Which coun-
tries protect intellectual property? The case of
software piracy. Economic Inquiry, 38, 159-174.

Mishra, A. Akman, I. & Yazici, A. (2006). Soft-
ware piracy among IT professionals in organi-
zations. International Journal of Information
Management, 26(5), 401-413.

Moores, T. T. (2003).The effect of national culture
and economic wealth on global software piracy
rates. Communications of the ACM, 46(9), 207-
215.

Moores, T. T. & Dhaliwal, J. (2004). A reversed
context analysis of software piracy issues in
Singapore. Information & Management, 41,
1037-1042.

Nathan, O. & Norden, H. (1960) Einstein of peace.
New York: Simon and Schuster.

Nolo. (2006). Intellectual property. Retrieved
March 19, 2006 from http://www.nolo.com/defi-
nition.cfm/Term/519BC07C-FA49-4711-924FD-
1B020CABA92/alpha/I/

Perrolle, J. (1987). Computers and social change:
Information, property, and power. Belmont, CA:
Wadsworth Publishing.

Proserpio, L., Salvemini, S. & Ghiringhelli,
V. (2004). Entertainment pirates: Understand-
ing piracy determinants in the movie, music
and software industries. The 8th International
Conference on Arts & Cultural Management.
Retrieved January 7, 2006 from http://www.hec.
ca/aimac2005/PDF_text/ ProserpioL_SalveminiS
_GhiringhelliV.pdf

Rahim, M. M., Seyal, A. H. & Abd. Rahman, M.
N. (2001). Factors affecting softlifting intention of
computing students: An empirical study. J. Educa-
tion Computing Research, 24(4), 385-405.

Seale, D. A., Polakowski, M., & Schneider, S.
(1998). It’s not really theft: Personal and workplace
ethics that enable software piracy. Behavior &
Information Technology, 17, 27-40.

SearchCIO.com. (2006). Digital Millennium
Copyright Act. Retrieved March 19, 2006 from
http://searchcio.techtarget.com/sDefinition/
0,290660,sid19_ gci904632,00.html

Seyoum, B. (1996). The Impact of intellectual
property rights on foreign direct investment.
Columbia Journal of World Business, 31[1], 50.
Elsevier Science Publishing Company, Inc.

Siegfried, R. M. (2004). Student attitudes on
software piracy and related issues of computer
ethics. Ethics and Information Technology, 6,
215–222

Simpson, P. M., Banerjee, D. & Simpson Jr., C. L.
(1994). Softlifting: A model of motivating factors.
Journal of Business Ethics, 13(6), 431-438.

Sims, R. R., Cheng, H. K., & Teegen, H. (1996).
Toward a profile of student software piraters.
Journal of Business Ethics, 15, 839-849.

Siponen, M. (2004). A justification for software
rights. ACM Computers and Society, 34(3), 3.

Slive, J. & Bernhardt, D. (1998). Pirated for
profit. Canadian Journal of Economics, 31(4),
886-899.

2828

Ethical, Cultural and Socio-Economic Factors of Software Piracy Determinants in a Developing Country

Stallman, R. (1995). Why software should be
free. In Johnson, D. & Nissenbaum, H. (Eds.),
Computers, Ethics & Social Values, (pp. 190-199).
Englewood Cliffs, NJ: Prentice Hall.

Swinyard, W. R., Rinne, H., & Kau, A. K. (1990).
The morality of software piracy: A cross-cultural
analysis. Journal of Business Ethics, 9(8), 655-
664.

Tang, J. & Fam, C. (2005). The effect of interper-
sonal influence on softlifting intention and behav-
ior. Journal of Business Ethics, 56, 149-161.

The Copyright Ordinance, 1962 (of Pakistan).
Retrieved November 11, 2005 from http://www.
pakistanlaw.com/Copyright_Ordinance_1962.
php

The Economist (2005). Dodgy software piracy
data. Retrieved March 21, 2006 from http://www.
economist.com/research/articlesBySubject/dis-
playStory.cfm?story_ID=3993427&subjectid=1
198563

The Linux Information Project (LINFO). (2006).
The “software piracy” controversy. Retrieved
February 27, 2006 from http://www.bellevuelinux.
org/ software_piracy.html

Tobar-Arbulu, J. F. (1984). Plumbers, technolo-
gists, and scientists. Research in Philosophy and
Technology, 7, 5-17.

Tobar-Arbulu, J.F. (n.d.). Technoethics. Retrieved
September 23, 2007 from http://www.euskomedia.
org/PDFAnlt/riev/3110811103.pdf

U. S. Department of Justice, National Institute of
Justice (1989a). In J. T. McEwen (Ed.), Dedicated
computer crime units. Washington, DC: U.S.
Government Printing Office.

U. S. Department of Justice, National Institute of
Justice (1989b). In D. B. Parker (Ed.), Computer
crime: Criminal justice resource manual (2nd
ed.). Washington, DC: U.S. Government Print-
ing Office.

Wang, F., Zhang, H., Zang, H. & Ouyang, M.
(2005). Purchasing pirated software: An initial
examination of chinese consumers. Journal of
Consumer Marketing, 22(6), 340-351.

Weckert, J. (1997). Intellectual property rights and
computer software. Journal of Business Ethics,
6(2), 101-109.

Wikipedia - The free encyclopaedia. (2006).
Intellectual property. Retrieved March 16,
2006 from http://en.wikipedia.org/wiki/Intel-
lectual_property

KEy tErMs

Culture: Source: Hofstede (1997): “The col-
lective programming of the mind which distin-
guishes the members of one group or category of
people from another.”

Individualism and Collectivism: Source:
www.Geert-Hofstede.com, An individualistic
society is one in which the ties between individu-
als are loose: everyone is expected to look after
him/herself and his/her immediate family. On the
collectivist side, we find societies in which people
from birth onwards are integrated into strong,
cohesive in-groups, often extended families (with
uncles, aunts and grandparents) which continue
protecting them in exchange for unquestioning
loyalty. The word ‘collectivism’ in this sense has
no political meaning: it refers to the group, not
to the state. Again, the issue addressed by this
dimension is an extremely fundamental one,
regarding all societies in the world.

Intellectual Property: Source Forester &
Morrison (1990): Results of intellectual activity
in the industrial, scientific, literary or artistic
fields.

P2P: Source (www.tech-faq.com): Peer-to-
peer (P2P) file sharing is a system of sharing files

 2829

Ethical, Cultural and Socio-Economic Factors of Software Piracy Determinants in a Developing Country

directly between network users, without the as-
sistance or the interference of a central server.

Software Piracy: Unauthorized duplication
of computer for personal and/or commercial
purposes. Types of software piracy addresses in
this chapter (Source: www.siia.net):

a. Softlifting: It occurs when a person pur-
chases a single licensed copy of a software
program and loads it on several machines,
in violation of the terms of the license
agreement. Typical examples of softlifting
include, “sharing” software with friends
and co-workers and installing software on
home/laptop computers if not allowed to do
so by the license. In the corporate environ-
ment, softlifting is the most prevalent type
of software piracy - and perhaps, the easiest
to catch.

b. Hard-Disk Loading: It occurs when an
individual or company sells computers pre-
loaded with illegal copies of software. Often
this is done by the vendor as an incentive to
buy certain hardware.

c. CD-R Piracy: It is the illegal copying of
software using CD-R recording technology.
This form of piracy occurs when a person
obtains a copy of a software program and
makes a copy or copies and re-distributes
them to friends or for re-sale. Although there
is some overlap between CD-R piracy and
counterfeiting, with CD-R piracy there may
be no attempt to try to pass off the illegal
copy as a legitimate copy - it may have
hand-written labels and no documentation
at all.

d. Internet Piracy: It is the uploading of com-
mercial software (i.e., software that is not
freeware or public domain) on to the Internet
for anyone to copy or copying commercial
software from any of these services. Internet
piracy also includes making available or
offering for sale pirated software over the

Internet. Examples of this include the offer-
ing of software through an auction site, IM,
IRC or a warez site. Incidences of Internet
piracy have risen exponentially over the last
few years.

EndnotEs

1 For a detailed discussion on technoethics,
see Tobar-Arbulu (n.d.) and Findeli (1994).

2 These types of software piracy are defined
at the end of this chapter.

3 There was only one Canadian empirical
(scholarly) study found in the literature (see
Limayem et al., 1999). This study however
relied on 98 research participants only and
therefore cannot be considered very exten-
sive.

4 For more discussion on the controversial
aspects of DMCA, see http://www.eff.
org/IP/DMCA/20020503_dmca_conse-
quences.pdf; http://chronicle.com/free/v48/
i47/47b00701.htm

5 This chapter also cites BSA figures but
does not rely on any one of them as a major
argument.

6 It is important to emphasize here that the
model shown in Figure 1 presents a very basic
structure which represents the theoretical
base of this research.

7 All percentages are rounded off.
8 Factors with Cronbach’s alpha >= .70 were

only retained.
9 The positive paths between two variables

indicate a positive relationship between them
and vice versa. The closer the coefficient is
to 1, the stronger the relationship. Authors
feel the need to emphasize that the structural
models were modified until an acceptable fit
was achieved. The model was modified be-
cause (1) some of the independent variables
had significantly non-normal distributions
and (2) the relatively small sample size in the

2830

Ethical, Cultural and Socio-Economic Factors of Software Piracy Determinants in a Developing Country

Canadian case made parameter estimation in
more complex models more difficult. This
is due to the under-identification problems
that often arise when the number of degrees
of freedom—a function of sample size and
number of free parameters—is small. In
SEM, structural coefficients between ob-
served variables and latent variables and
between latent variables and other variables
are parameters to be estimated. For these
reasons as well as for parsimony, a less
complex SEM model was adopted.

10 Absence of very strong relationships in
SEMs can be attributed to small sample sizes
in both studies. Nonetheless, the direction
of relationships supported the underlying
hypothesis: intentional vs. un-intentional
piracy behaviour.

This work was previously published in the Handbook of Research on Technoethics, edited by R. Luppicini and R. Adell, pp.
354-372, copyright 2009 by Information Science Reference (an imprint of IGI Global).

 2831

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.13
Legal and Economic

Justification for Software
Protection

Bruno de Vuyst
Vrije Universiteit Brussel, Belgium

Alea Fairchild
Vrije Universiteit Brussel, Belgium

AbstrAct

This chapter discusses legal and economic ratio-
nale in regards to open source software protection.
Software programs are, under TRIPS1, protected
by copyright (reference is made to the Berne Con-
vention2). The issue with this protection is that,
due to the dichotomy idea/expression that is typical
for copyright protection, reverse engineering of
software is not excluded, and copyright is hence
found to be an insufficient protection. Hence,
in the U.S., software makers have increasingly
turned to patent protection. In Europe, there is
an exclusion of computer programs in Article
52 (2) c) EPC (EPO, 1973), but this exclusion is
increasingly narrowed and some call for aban-
doning the exclusion altogether. A proposal by
the European Commission, made in 2002, called
for a directive to allow national patent authori-

ties to patent software in a broader way, so as to
ensure further against reverse engineering; this
proposal, however, was shelved in 2005 over ac-
tive opposition within and outside the European
parliament. In summary, open source software
does not fit in any proprietary model; rather, it
creates a freedom to operate. Ultimately, there
is a need to rethink approaches to property law
so as to allow for viable software packaging in
both models.

IntroductIon

copyright protection of software

A software program is foremost a sequence of
orders and mathematical algorithms emerging
from the mind of the innovator, hence creating

2832

Legal and Economic Justification for Software Protection

a link with copyright law as a prime source of
intellectual property protection.

According to Article 10 TRIPS, computer
programs, whether in source or object code, shall
be protected as literary works under the Berne
Convention provided that they are (1) original and
(2) tangible. In light of Article 9 TRIPS, which
states that copyright protection shall extend to
expressions, but not to ideas, procedures, methods
of operation or mathematical concepts as such,
copyright protects the actual code of the computer
program itself, and the way the instructions have
been drawn up, but not the underlying idea thereof
(Overdijk, 1999).

Hence, an author can protect his original work
against unauthorized copying. Consequently,
an independent creation from another person
would not automatically be seen as a copyright
infringement (Kirsch, 2000a; Leijnse, 2003).
With respect to software programs this could
have as consequence that a person disassembles
and decompiles an existing software program to
determine the underlying idea and uses this idea
to build his own program (reverse engineering).
As he only uses the idea, which is not copyright-
able, no infringement will result.

bAcKground

patent law protection of software

Software is a novel form in the technology world,
and may make a claim to patent protection from
that angle. The conditions to be met to enjoy patent
protection are more stringent than those to enjoy
copyright protection. In Europe3, for example, an
invention will enjoy protection from patent law
provided that the invention (1) is new (i.e., never
been produced before), (2) is based on inventor
activity (i.e., not have been before part of prior
art), and (3) makes a technical contribution (i.e.,
contribute to the state of the art). In the U.S., the
patent requirements to be met are (1) novelty,

(2) non-obviousness, and (3) the innovations
must fall within the statutory class of patentable
inventions.

Pursuant to patent law, a patent holder can
invoke the protection of his patent to exclude
others from making, using or selling the patented
invention. As opposed to copyright protection, the
inventor’s patent is protected regardless whether
the software code of the patented program was
copied or not.

the Evolution of the legal
protection of software

Prior to the 1980s, U.S. courts unanimously
held that software was not patentable and that
its only protection could be found in copyright.
Indeed, the U.S. Supreme Court ruled in two
landmark decisions, Gottschalk vs. Benson (1972)
and Parker vs. Flook (1978), that software was
similar to mathematics and laws of nature (both
excluded from being patented) and, therefore,
was unpatentable.

In Diamond vs. Diehr (1981), however, the
court reversed course, deciding that an invention
was not necessarily unpatentable simply because
it utilized software. Since this decision, U.S.
courts as well as the US Patent Office gradually
broadened the scope of protection available for
software-related inventions (Kirsch, 2000). The
situation evolved to the current status in which it
is expected to obtain a patent for software-related
inventions. Since the State Street Bank and Trust
Co. vs. Signature Financial Group Inc. (1996)
case even mathematical algorithms and business
methods have been found to be patentable (see
also the Amazon One-click case IPXL Holding,
plc vs. Amazon.com, Inc., 2005; Bakels , 2003).
As from this decision, the U.S. focus, for patent-
ability, is “utility based,” which is defined as “the
essential characteristics of the subject matter”
and the key to patentability is the production of
a “useful, concrete and tangible result” (Hart,
Holmes, & Reid, 1999). The evolution resulted in

 2833

Legal and Economic Justification for Software Protection

a rush of patent applications for software-related
inventions and business methodologies.

Contrary to the U.S., Europe has been unwill-
ing to grant patents for ideas, business processes
and software programs. The most important rea-
sons are their (in-) direct exclusion from patent
protection, as stated in Article 52 (2)(c) European
Patent Convention (EPC)4. Nevertheless, the Eu-
ropean Patent Office (EPO) also reversed course.
Its view on patentability of software programs
and, more particularly, the interpretation of the
“as such” limitation as described below, has been
under revision, especially driven by the context
of computer programs (the so-called computer-
implemented inventions).

Following three landmark cases, Vicom/Com-
puter Related Invention (1987), Koch & Sterzel/X-
ray apparatus (1988), and SOHEI/General purpose
management system (1995), the European Patent
Office concluded:

a claim directed to a technical process is carried
out under the control of a program (whether
implemented in hardware or software) cannot
be regarded as relating to a computer program
as such within the meaning of Article 52 EPC,
(emphasis added)

and

an invention must be assessed as a whole. If it
makes use of both technical and non-technical
means, the use of non-technical means does not
detract from the technical character of the overall
teaching.

Notwithstanding this enlargement in Euro-
pean patent law, patens have, contrary to the
U.S., never been granted for software programs
“as such,” the main reason being that in Europe
an invention has to be technical in nature. This
requirement of technicality is not explicitly stated
in the EPC, but can be deduced from Article 52
(2) EPC. Indeed, this provision contains a list of

subject matters that are not patentable “as such”
(among them programs for computers). The list is
not meant to be exclusive, as it only gives examples
of materials that are non-technical and abstract
in nature and, thus, cannot be patented (Sarvas
& Soininen, 2002).

In the U.S. on the other hand, a patentable
invention must simply be within the techno-
logical arts. No specific technical contribution
is required. The mere fact that an invention uses
a computer or software makes it become part of
the technological arts if it also provides a “useful,
concrete and tangible result” (Hart et al., 1999;
Meijboom, 2002).

In Europe, a number of software developers
desire patent protection to be enlarged in such a
way that software programs become eligible. One
of the arguments of supporters of the patentability
of software is that patent law provides inventors
with an exclusive right to a new technology in
return for publication of the technology. Thus,
patent law rewards innovators for the investment
and encourages continued investment of time and
money. Opponents of patent protection argue that
such protection is not needed, indeed appropriate
in an industry such as software development, in
which innovations occur rapidly, can be made
without a substantial capital investment and tend
to be creative combinations of previously-known
techniques (Pilsch, 2005).

The opponents of software patents also in-
dicate practical problems in administering the
patent system, as software is voluminous and
incremental. Indeed, an invention can only enjoy
patent protection provided that it is not part of
the prior art. To verify whether this condition is
met or not, it is required to know the prior art.
However, knowledge about software is widespread
and unbundled (very often either tacit or embed-
ded) and may thus be insufficiently explicit for
the patent system to work well. In other words,
there is too much software, not enough informa-
tion about it, and what there is, is hard to find
(Kahin, 2003). As transaction costs are high, a

2834

Legal and Economic Justification for Software Protection

patent system will favor those with enough re-
sources to verify whether their software can be
patented and, afterwards, to search for and deal
with possible infringers.

Next to these financial impediments, there are
some theoretical issues that concern the install-
ing of a system of software patents. These have
to do, first, with the basic, global instrument for
intellectual property protection, in other words,
TRIPS, and second with the specific legislation
in Europe and the U.S.

Although according to Article 10 TRIPS,
computer programs are protected by copyright,
it is the intention of TRIPS not to exclude from
patentability any inventions, whether products or
processes, in all fields of technology, provided
that they are new, involve an inventive step, and
are capable of industrial application (Article 27
TRIPS) (Janssens, 1998). Consequently, TRIPS
states, implicitly, that computer programs may
also be the subjects of patent protection.

From what is stated previously, it is clear
that the U.S. legislation allows patentability of
software. In Europe, however, Article 52 (2) EPC
remains an obstacle for such a protection, however
regretted by even EPO. Indeed, in its decision of
February 4, 1999, the Board of Appeals of EPO
(hereafter the “Board”) stated5:

The fact that Article 10 is the only provision in
TRIPS which expressly mentions programs for
computers and that copyright is the means of
protection provided for by said provisions, does
not give rise to any conflict between Articles 10
and 27 TRIPS. Copyright and protection by patents
constitute two different means of legal protection,
which may, however, also cover the same subject
matter (e.g., programs for computers), since each
of them serves its own purpose. (…) The Board
has taken due notice of the developments in the
U.S. (and Japanese) patent offices, but wishes to
emphasize, that the situation under these two legal
systems differs greatly form that under the EPC in
that it is only the EPC which contains an exclusion

as the one in Article 52 (2) and (3). Nevertheless,
these developments represent a useful indication
of modern trends. In the Board’s opinion they may
contribute to the further highly desirable (world-
wide) harmonization of patent law.

This decision makes it clear that if software
“as such” must be protected on the basis of pat-
ents, the exclusion under Article 52 (2)c EPC
shall have to be deleted. Which brings one to the
question of whether one should want this to hap-
pen and whether one perceives its consequences
favorably.

Supporters of software patents would like to
win a first battle in the race for software patentabil-
ity by endorsing the proposal for a directive on the
protection by patents of computer-implemented
inventions currently being discussed within the
European Union. They are aware that approving
this directive will not immediately result in pat-
entability of software “as such,” however, it will
form “a new development that may contribute
to the further highly desirable (world-wide) har-
monization of patent law,” which can end up in
a deletion of the exclusion now stated in Article
52 EPC. Obviously, opponents will do anything
to avoid this evolution, however oblique, from
taking place.

Currently the latter have the wining hand: a
proposal to allow patents for computer-imple-
mented inventions was rejected on July 6, 2005 by
the European Parliament, and any new proposal
will take time to develop, if ever again (Perens,
2005)6.

MAIn focus of thE chAptEr

Economic Justifications for Software
protection as part of Intellectual
property (Ip) protection?

If the European Union may want to strike a bal-
ance, it must on the one hand take into account

 2835

Legal and Economic Justification for Software Protection

societal needs, and on the other hand the reward
of the inventor.

The theoretical foundations of intellectual
property rights are debatable, to say the least.
Classical philosophy has attempted to explain
why intellectual property rights exist, but neither
Hegel—the Germanic, idealistic school—nor
Locke—the English, empirical school—has been
able to provide a coherent, suitable philosophical
basis for intellectual property rights—not for
lack of trying by themselves or their more recent
adherents (Radin, 1982; Schnably, 1993; Het-
tinger, 1989; Gordon, 1993). The explanation
may ultimately occur, not out of law, which is in
any event but a mechanic’s framework, and not
out philosophical theory, but out of the theory of
economic pragmatism. Indeed, it may be argued
that intellectual property rights, among them
software protection, are what they are because
they are based on, and fundamentally about,
incentives to create and invest.

The United States Supreme Court summed it
up in Marer vs. Stein (1954):

“The copyright law, like the patent statutes, makes
reward to the owner a secondary consideration.”
United States v. Paramount Pictures, 334 U.S. 131,
158 . However, it is “intended definitely to grant
valuable, enforceable rights to authors, publish-
ers, etc., without burden-some requirements; ‘to
afford greater encouragement to the production
of literary [or artistic] works of lasting benefit
to the world.’” Washingtonian Co. v. Pearson,
306 U.S. 30, 36 .

The economic philosophy behind the clause
empowering Congress to grant patents and
copyrights is the conviction that encouragement
of individual effort by personal gain is the best
way to advance public welfare through the talents
of authors and inventors in “Science and useful
Arts.” Sacrificial days devoted to such creative
activities deserve rewards commensurate with
the services rendered. (emphasis added)

Hence, it appears that the utilitarian, economic
incentive perspective is the key driver in the grant-
ing of intellectual property laws. But are these
incentives really necessary to ensure and sustain
creation and invention? In the 1970s, professor (and
later justice) Stephen Breyer argued that lead time
advantages and the threat of retaliation reduced
the cost advantages of copiers, hence obviating if
not eliminating the need for copyright protection
of books (Breyer, 1970, 1972; Tyerman, 1971).
Advances in technology may not have strength-
ened Breyer’s argument. George Priest argued
that economic analysis (in his case of patent law)
is “one of the least productive lines of inquiry in
all of economic thought” because of the lack of
adequate empirical bases for the assessment of
theoretical models of innovation (Priest, 1986).
Still, this view does not undo the fact that the
pragmatic utilitarian/economic incentive perspec-
tive may remain if not the only, then at least the
most useful underpinning for IP rights. These
rights inescapably clash with a libertarian view
that “information wants to be free” (Barlow, 1994)
while those arguing against such freedom cry insist
that creation and incentive will be hampered by
the diminishing of intellectual property rights.
Extremism has polarized views on both sides of
the argument, while in the end balanced IP laws
may be what are being sought (Lessig, 2004).

Enter open source software

The open source software approach differs radi-
cally from the IP protection approach stated above
in that it, in the words of Richard Stallman, flips
it over to serve the opposite of its usual purpose:
instead of a means of “privatizing” software—as
Stallman puts it—through IP (copyright or pat-
ent) protection, it becomes a means of keeping
software free (Stallman, 1999).

In effect, it is meant to create, at least initially,
what in patent terms would be deemed a freedom
to operate. In other words, open source creates an
at least initial space that is open for users. Whether

2836

Legal and Economic Justification for Software Protection

this is a public domain space or another, similar
form may be debated. If it is a public domain
space, such an approach does not necessarily
keeps open all that it touches (Friedman & Kreft,
2000). Open source software as such does not,
as it does with a General Public License (GPL),
have this “viral” effect.

If open source may mean the creation of a space
to all users, the effect of the different licenses
granted to users limits the grant of freedom to
operate. There may be free software under a GPL.
There may also be Open Source Initiative (OSI)
licenses, which require nine elements to qualify
for approval as an OSI certified license:

1. Free redistribution (no royalties or fees)
2. Access for any party to a source code
3. The license must allow modifications and

derived works.
4. The license may restrict a source code,

however, from being distributed in modi-
fied form but only if certain conditions are
fulfilled.

5. There may be no discrimination against
groups or persons.

6. Or against fields of endeavour
7. It is prohibited to require any additional

licenses from users to whom a program is
redistributed.

8. The license must not be specific to a prod-
uct.

9. The license must not restrict other soft-
ware.

Next to OSI licenses, there are others that
may be copying features of such licenses, but
differ, for example, as to treatment of derivative
work7. In effect, there appear to be over 50 dif-
ferent open source licenses, and no clear guide
(Gormulkiewicz, 1999, 2002, 2004). This is a first
challenge—one that has not yet been overcome by
any centralized system or standardisation.

This first challenge leads to a second one, as the
licensing of open source software poses a number

of legal challenges that are not necessary resolved
at present. First, there is the issue of validity—a
classical one that is also known in the proprietary
would and goes back to the use of shrink wrap and
click wrap agreements to use—assuming accep-
tance of the user when she/he opens the software.
If this constitutes sufficient an agreement remains
a question (Trompenaars, 2000).

Coupled with validity is the issue of enforce-
ability, which is more pregnant in a open source
model, because the end user may not have, or
even be aware, of any license agreements unless
he downloads the source code and starts using
the software.

Open source software moral rights—rights
related to the inventor’s personality—include in
patent law the right to attribution (also known as
a paternity right) and in copyright include in ad-
dition at least the right to resist deformation and
defamation (de Vuyst & Steuts, 2005; Metger &
Jaeger, 2001). Moral rights being inalienable (i.e.,
non transferable) they may never be put to a user.
If a user were to apply a software package for a
use that the author/inventor did not like, the latter
could, particularly on the European continent,
where the notion of moral rights remains strongest,
enforce an injunction for such use (e.g., in violent
games or pornographic displays).

A third issue that is particular to an open
source software approach, from a legal viewpoint,
is that of representations and warranties. In a
proprietary, particularly a patented would, it is
inherent that the invention has been reduced to
practice—that is works—before patent publica-
tion. No such warranty can necessarily be given
in an open source model. In effect, the GPL does
not state explicitly that the GPL code can be
run—paradoxically, it does state that one may
modify and redistribute. As liability is inherent
in a proprietary atmosphere, it is not so inherent
in an open source model (Kennedy, 2001) where
limitations of liability and disclaimers of warran-
ties may be more rightfully expected—but many
limit attractiveness to users.

 2837

Legal and Economic Justification for Software Protection

However, open source licensing on the basis
of the principle of “no liability” is paramount to
the success of open source software development.
The fact that a developer of open source code has
the ability to distribute work accompanied by
little or no warranties effectively shifts the risk
from the licensor of the code to the recipient of
the code.

This is important:

Valid reasons underlie this risk-shifting strategy
… . Individual hackers are unwilling to assume
the risk of a multi-million dollar class action law
suit as the consequences of pursuing their passion
for hacking code. “Low Risk” also means low bar-
riers to entry; anyone can contribute code to the
process, not just those that can afford insurance
or lawyers … . (Gormulkiewicz, 2002)

If open source software developers were not
able to disclaim liability on their code, it might
substantially increase development costs on ac-
count of legal risks and greatly discourage open
source development.

It is however questionable whether disclaimers
and limitations of liability work in all jurisdic-
tions. Choice of jurisdiction in business open
source software licenses is therefore essential, but
remains problematic in a consumer atmosphere
and certainly in cross-border licensing.

Last but not least, the issue of derivative work
is, in all cases but in the GPL, an issue. The
GPL’s “viral effect,” in which any modification
to the source code must also be under the GPL is
unique—and hard to enforce: who can find out
but a disgruntled customer faced with a violation?
The explanations given by the Free Software
Foundation8 refer to the judiciary for an answer to
the question as to what constitutes a contribution
of two parts into another program. But the courts
may not be the best, certainly not the most efficient
means of interpreting open source model licenses
(Costello, 2002). In effect, a single German case

giving effect to the GPL may not yet be an end to
the relative quiet for GPL infringers (Shankland
2004). The lack of clarity in GPL licensing (not to
speak of other forms, e.g., BSD or LGPL licens-
ing) makes for uncertainty in derivative work’s
proprietary or non-proprietary status.

In a proprietary model, the answer, under pat-
ent law, is forthright: any derivative work is an
infringement of the patent owner’s rights. In the
open source model, the question is the reverse:
can derivative work, including interoperable work
as decompiled from the source code, become
proprietary in nature? In other words, can reverse
engineering lead to proprietary software as it
is based only on the idea encompassed in open
source software?

If one reverses this risk, one should acknowl-
edge that open source software may have the abil-
ity to expose software developers to risk if they
use open source licenses improperly. This may
be a disincentive to use open source software as
a base platform for future development.

futurE trEnds

discussion: open source and the
balance of Ip rights

Free distribution and an open source code propel
the open source software movement. It is a fact
that software patents are expensive to prosecute
and take time to publish, hampering development
effort—even being bypassed by events in a quickly
developing world.

The benefits of open source software also
provide it its soft legal underbelly. The plethora of
open source licenses, the lack of clarity and a de-
pendence on court interpretation are a disincentive
to users, but more importantly, to developers.

The solution may be in a more formal descrip-
tion—a restatement or standardisation, if one
wants—of open source software terms of use

2838

Legal and Economic Justification for Software Protection

and licenses. But this appears not to occur yet or
in the near future, although efforts to state best
practices are in the make (Kennedy, 2005).

More fundamentally to the discussion of open
source versus proprietary rights, a restatement of
the debate as one on excessive rent seeking and a
consequent imbalance of rights may point to a way
to set the stage for a meaningful discussion which
may lead to long-term policy framing, likely at
the level of a WTO’s TRIPS—a new one, with a
more globally accepted balance of interest. If one
addresses, in this mindset, software protection
and IP rights in general, in terms of its value as
an economic good to society, one is bound to find
a balanced view. As Judge Posner put it:

granting property rights in intellectual property
increases the incentive to create such property,
but the downside is that those rights can inter-
fere with the creation of subsequent intellectual
property (because of the tracing problem and
because the principal input into most intellectual
property rights is previously created intellectual
property). Property rights can limit the distribution
of intellectual property and can draw excessive
resources into the creation of intellectual property,
and away from other socially valuable activities,
by the phenomenon of rent seeking.

Striking the right balance, which is to say
determining the optimal scope of intellectual
property rights, requires a comparison of these
benefits and costs—and really, it seems to me,
nothing more:

The problems are not conceptual; the concepts
are straightforward. The problems are entirely
empirical. They are problems of measurement.
In addition, we do not know how much intel-
lectual property is in fact socially useful, and
therefore we do not know how extensive a set
of intellectual property rights we should create.
For all we know, too many resources are being
sucked into the creation of new biotechnology,

computer software, films, pharmaceuticals, and
business methods because the rights of these dif-
ferent forms of intellectual property have been
too broadly defined. (Posner, 2002)

The socio-economic measurements, in empiri-
cal studies to be undertaken, set a daunting task in
terms of methodology as well as in terms of execu-
tion. But they point to the way forward: a need to
measure the impact of IP rights to determine the
optimally needed scope vis-à-vis society.

For software protection, a know-nothing at-
titude that denies all rights to inventors will be a
disincentive to valorise. As became clear to the
first author during his tenure at the Common
Fund for Commodities, what is put in the public
domain is most often left there, as it is difficult
to invest the time and energy to shape a competi-
tive advantage from an invention known to and
ready to use by all.

That appears to be the case at present: open
source would not exist if it was not out of dissat-
isfaction with an excessively proprietary business
model that ignores societal needs. The balance
is indeed one between rights and societal needs.
Unbalancing in one way or another risks, the
wrong investment, or disinvestments, in software
development or any other form of IP.

It is open source software that pushes towards
this balance by its very existence on alternative
to a proprietary business model.

Indeed, it may in three ways contribute to this
balancing act already: first, though the so-called
Open Patent Review it may involve the citizen in
making sure patents represent progress over prior
art. This is being accomplished by an alerting
system that activates from the USPTO Web site
(front of the AppFT database). It will enhance a
public view, and review, of applications and as-
sists in preserving safeguards against flooding
strategies by would-be patent holders.

Second, open source software Prior Art, an
initiative by IBM, Novell, Red Hat and Source-
Force aims at developing a system that stores

 2839

Legal and Economic Justification for Software Protection

source code in an electronically searchable
format, exposing open source software—mil-
lions of lines of publicly available computer
source code—as prior art to examiners and the
public, so as to assist in ensuring that patents
are issued only for actual software inventions
and not for appropriations—expropriations, if
one wants—of existing open source software
(Noveck, 2004).

Finally, a patent quality index, in other words,
a numeric index in respect of the quality of
patents and patent applications, as a resource
for the patent system9, may be of interest if it
proves an objective and data-driven tool. Patent
rights, if put to the test, might show their true
worth—and there may be a readiness to re-evalu-
ate European and U.S. patent law—if there is
a tool which assists citizens and examiners in
finding the necessary balance between prop-
erty rights and innovative freedom to operate,
through the application of economic tools, such
as a rent-seeking methodology.

conclusIon

While it may not be a panacea, open source
software is clearly a sufficient counterweight
to excessive IP creation, which in the words of
professor Jeremy Phillips, does to the public do-
main—and to innovation—what men do to the
Amazon forest (Phillips, 1996).

rEfErEncEs

Bakels, R. B. (2003). Van software tot erger: Op
zoek naar de grenzen van het octrooirecht. IER,
August(4), 214.

Barlow, J. P. (1994). The economy of ideas. 2.03
Wired, 84.

Breyer, S. (1970). The uneasy case for copyright:
A study in copyright of books, photocopies and
computer programs. Harvard Law Review, 281.

Breyer, S. (1972). Copyright: A rejoinder. UCLA
Law Review, 75.

Costello, S. (2002). Settlement nears in open
source GPL suit. Retrieved January, 20 2006,
from http://www.networkworld.com/news/2002/
0305settleGPL.html

Diamond vs. Diehr, 450 US 175. (1981).

De Vuyst, B., & Steuts, L. (2005). De notie morele
rechten in een internationale, vergelijkende en
transactionele context. Intellectuele Rechten—
Droits Intellectuels, 8.

EPO. (1973). Convention on the grant of Euro-
pean patents (European Patent Convention) of 5
October 1973. Retrieved January, 20 2006, from
http://www.european-patent-office.org/legal/
EPC/e/ma1.html

Fink, M. (2003). The business of economics of
limited open source. Upper Saddle River, NJ:
Prentice Hall.

Friedman, D., & Kreft, B. M. (2000). Open
source software: Background, licensing and
practical implications. Retrieved May 10, 2000,
from http://www.daviddfriedman.com/Academic/
Course_Pages/21st_century_issues/legal_issues_
21_2000_pprs_web/Kreft_Open_Source.html.

Gomulkiewicz, R. W. (1999). How copyleft uses
licence rights to succeed in the open source soft-
ware revolution and the implications for Article
2B. Houston Law Review, 179.

Gormulkiewicz, R. W. (2002). De-bugging open
source software licensing. University of Pittsburg
Law Review, 75.

Gormulkiewicz, R. W. (2004). Entrepreneur
open source software hackers: MYSQL and its

2840

Legal and Economic Justification for Software Protection

dual licensing. Retrieved from http://www.law.
washington.ed/faculty/gomulikiewicz/publica-
ters/entopensources1.pdf

Gordon, W. J. (1993). A property right in self-
expression: Equality and individualism in the
natural law of intellectual property. Yale Law
Journal, 1533.

Gottschalk vs. Benson, 409 US 63 (1972).

Hart, R., Holmes, P., & Reid, J. (1999). The
economic impact of patentability of computer
programs (Report to the European Commission).
Retrieved February 18, 2004, from http://europa.
eu.int/comm/internal_market/en/indprop/comp/
study.pdf (pp. 20-23 of full report)

Hettinger, E. C. (1989). Justifying intellectual
property. Phil. & Publ. Aff.

IPXL Holding, plc vs. Amazon.com, Inc., US Fed.
App. Ct. 05-1009, -1487, November 21, 2005.

Janssens, M. C. (1998). Bescherming van compu-
terprogramma’s: (lang) niet alleen maar auteurs-
recht. T.B.H., 421-422.

Kahin, B. (2003). Information process patents in
the U.S. and Europe: Policy avoidance and policy
divergence. First Monday, 8(3). Retrieved March
6, 2004, from http://www.firstmonday.org/is-
sues/issue8_3/kahin/

Kennedy, D. M. (2001). A primer on open source
licensing legal issues: Copyright, CopyLeft,
copyfuture. Retrieved from http://www.denni-
skennedy.com/opensourcedmk.pdf

Kennedy, D. (2005). Best legal practices for open
source software. Retrieved November 20, 2005,
from http://www.llrx.com/features/opensource.
htm

Kirsch, G. J. (2000a). Software protection: Patents
versus copyrights. Retrieved January 20, 2006,
from http://www.gigalaw.com/articles/2000/
kirsch-2000-03.html

Kirsch, G. J. (2000b). The software and e-com-
merce patent revolution. Retrieved February
18, 2004, from http://www.gigalaw.com/ar-
ticles/2000/kirsch-2000-01.html on February
18, 2004.

Koch & Sterzel/X-ray apparatus T 0026/86, OJ
EPO 1988, 19.

Leijnse, B. (2003, January 16). Een patente oploss-
ing voor uw patentprobleem. Softwarepatenten.
be. Trends. Retrieved February 27, 2004, from
http://www.softwarepatenten.be/pers/trends_
20030116.html

Lessig, L. (2004). Be wary of IP extremists.
Computerworld. Retrieved March 26, 2004,
from http://www.computerworld.com.au/index.
php?id=43841790&fp=16&fpid=0

Marer vs. Stein 347 U.S. 201 (1954).

Meijboom, A. P. (2002). Bang voor software-oc-
trooien. Computerrecht, 2002(2), 66.

Metger, T., & Jaeger, A. (2001). Open source soft-
ware and German copyright law. Int’l Journal of
Industrial Property and Copyright Law, 32(1).

Noveck, B. (2004). Unchat: Democratic solutions
for a wired world. In P.M. Shane (Ed.), The pros-
pects of political renewal through the Internet.
Oxford, UK: Routledge.

Overdijk, T. F. W. (1999). Europees Octrooibu-
reau verruimt mogelijkheden voor octrooiering
van computersoftware. Computerrecht, 1999(3),
158-159.

Parker vs. Flook, 437 US 584 (1978).

Perens, B. (2005, January 31). The open-source
patent comundrum. News.Com.

Phillips, J. (1996). The diminishing domain. Eu-
ropean Intellectual Property Review, 429.

Pilch, H. (2005). Quotations on software patents.
Logical Patent Web site. Retrieved February 4,

 2841

Legal and Economic Justification for Software Protection

2006, from http://swpat.ffii.org/vreji/quotes/in-
dex.en.html

Posner, R. A. (2002). The law & economics of
intellectual property. Daedalus, 5, 12.

Priest, G. (1986). What economists can tell
lawyers about intellectual property. Res. Law &
Econ., 19.

Radin, M. J. (1982). Property and personhood.
Stanford Law Review, 957.

Sarvas, R., & Soininen, A. (2002, October 15-16).
Differences in European and U.S. patent regu-
lation affecting wireless standardization. Paper
presented at the International Technology and
Strategy Forum Workshop on Wireless Strategy
in the Enterprise: An International Research
Perspective, Berkeley, CA. Retrieved on March
9, 2004, from http://www.hiit.fi/de/core/Pat-
entsWirelessStandardization.pdf

Schnably, S. J. (1993). Property and pragmatism:
A critique of Radin’s theory of property and per-
sonhood. Stanford Law Review, 347.

Shankland, S. (2004, April 22). GPL gains clout
in German legal case. News.com.

Sohei/General Purpose Management System T
0796/92, OJ EPO 1995, 525.

Stallman, R. (1999). The GNU operating system
and the free software movement. In C. Dibona
et al. (Eds.), Open sources: Voices from the open
source revolution. O’Reilly. Retrieved from
(http://www.oreilly.com/catalog/opensources/
book/stallman.html)

State Street Bank and Trust Co. vs. Signature Fi-
nancial Group Inc., 927 F. Supp. 502, 38 USPQ2d
1530 (D. Mass. 1996).

Trompenaars, W. M. B. (2000). Legal support for
online contracts. In B. Hugenholtz (Ed.), Copy-
right and electronic commerce. Legal aspects of
electronic copyright management. Amsterdam,
The Netherlands: Kluwer.

Tyerman, L. (1971). The economic for copyright
protection for published books: A reply to Profes-
sor Breyer. UCLA L. Revs., 1100.

Vicom / Computer Related Invention, T O208/84,
OJ EPO 1987, 1.

WIPO. (1971). The Berne Convention for the
protection of literary and artistic works. Paris.

WTO. (1994). The Agreement on Trade-Related
Aspects of International Property, Annex 1C of
the Marrakech Agreement of April 15, 1994 estab-
lishing the World Trade Organization (“WTO”).
Retrieved January 20, 2006, from http://www.wto.
org/english/docs_e/legal_e/04-wto.pdf

KEy tErMs

Copyright: A set of exclusive rights regulating
the use of a particular expression of intellectual
property.

EPC: Convention on the grant of European
patents (European Patent Convention) of October
5, 1973.

EPO: European Patent Office (München)
established by the EPC.

Patent: A grant made by a government that
confers upon the creator of an invention the sole
right to make, use, and sell that invention for a
set period of time, through letters patent which
protect an invention by such a grant.

TRIPS: The Agreement on Trade-Related
Aspects of International Property, Annex 1C of the
Marrakech Agreement of April 15, 1994 establish-
ing the World Trade Organization (“WTO”).

USPTO: United States Patent and Trademark
Office.

WTO: World Trade Organization, established
on April 15, 1994.

2842

Legal and Economic Justification for Software Protection

EndnotEs

1 The Agreement on Trade-Related Aspects
of International Property, Annex 1C of the
Marrakech Agreement of April 15, 1994
establishing the World Trade Organization
(“WTO”).

2 The Berne Convention for the Protection of
Literary and Artistic Works (1971).

3 By Europe, we mean the European national
patent and the system pursuant to the Euro-
pean Patent Convention so that patents can
be applied centrally for all contracting states
of the European Patent Office (EPO).

4 Article 52 (2) (c) EPC states that programs
for computers shall not be regarded as in-
ventions within the meaning of Article 52
(1) EPC and are, therefore, excluded from
patentability. Article 52 (3) EPC establishes,
however, an important limitation to the scope
of this exclusion. According to this provi-
sion, the exclusion applies only to the extent

to which a European patent application or
a European patent relates to programs for
computers “as such.”

5 Technical Chamber of the Board of Appeals
of EPO, February 4, 1999, Computerrecht
1999/6, 306-310 with Note of D.J.B. BOSS-
CHER, 310-312.

6 See also Free Software Foundation, Software
patents in Europe at http://www.fsfeurope.
org/projects/swput/swput.en.htm.

7 See An overview of “Open Source” Soft-
ware License, Report of the Software
Licensing Committee of the American Bar
Association’s Intellectual Property Section,
at http://www.abanet.org/intelprop/open-
source.html.

8 Free Software Foundation, FAQ on the GNU
GPL, at http://www.fsf.org/licenses/GPL-
faq.html.

9 See the work of Prof. Polk at www.law.upenn.
edu/blogs/polk/pqi/documents/2006_1_
presentation.pdf

This work was previously published in the Handbook of Research on Open Source Software: Technological, Economic, and
Social Perspectives, edited by K. St.Amant and B. Still, pp. 328-339, copyright 2007 by Information Science Reference (an
imprint of IGI Global).

 2843

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.14
How Can We Trust Agents in
Multi-Agent Environments?
Techniques and Challenges

Kostas Kolomvatsos
National and Kapodistrian University of Athens, Greece

Stathes Hadjiefthymiades
National and Kapodistrian University of Athens, Greece

AbstrAct

The field of Multi-agent systems (MAS) has been
an active area for many years due to the importance
that agents have to many disciplines of research
in computer science. MAS are open and dynamic
systems where a number of autonomous software
components, called agents, communicate and
cooperate in order to achieve their goals. In such
systems, trust plays an important role. There must
be a way for an agent to make sure that it can
trust another entity, which is a potential partner.
Without trust, agents cannot cooperate effectively
and without cooperation they cannot fulfill their
goals. Many times, trust is based on reputation.
It is an indication that we may trust someone.
This important research area is investigated in
this book chapter. We discuss main issues con-
cerning reputation and trust in MAS. We present

research efforts and give formalizations useful
for understanding the two concepts.

IntroductIon

The technology of Multi-agent systems (MAS)
offers a lot of advantages in computer science
and more specifically in the domain of coopera-
tive problem solving. MAS are systems that host
a number of autonomous software programs
that are called agents. Agents act on behalf of
their owners giving them access to information
resources easily and efficiently. Users state their
requirements and agents are responsible to fulfill
them. Hence, MAS include many entities trying
to solve their problems that are beyond of their
capabilities. For this reason, in many cases, agents
must cooperate with others in order to find the

2844

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges

appropriate information and services to achieve
their goals.

It is obvious that MAS are dynamic and
distributed environments where agents may co-
operate and communicate with others in order to
complete their tasks. A key challenge arises from
this nature of MAS. In such open systems, entities
change their behavior dynamically. Thus, there
is a requirement for trust between agents when
they must exchange information Therefore, the
basic question in such cases is: How and when
can we trust an agent? Agents, in the majority of
cases are selfish and their intentions and beliefs
change continually.

We try to address this dilemma throughout
this chapter. Specifically, we cover the fields of
reputation and trust in MAS. This is an active
research area, which is very important due to
the fact that these two concepts are used in com-
mercial applications. However, open issues exist
in many cases, as it is difficult to characterize an
agent as reliable or not.

In our work, we try to provide a detailed over-
view of reputation and trust models highlighting
their importance to open environments. Due to
the abundance of the relevant models, only the
basic characteristics of models are discussed.
We discuss basic concepts concerning MAS,
reputation and trust. Accordingly, we present
efforts, formalizations, and models related to the
mentioned concepts. Finally, we discuss about
trust engineering issues and we present future
challenges and our conclusions.

bAcKground

Multi-Agent systems (MAs)

Software agents and agency have been active
research areas for many years due to their im-
portance in various domains. The Web and the
recently emerged Semantic Web are the most ap-
propriate examples of such systems. In this section,

basic characteristics of MAS are described. Our
goal is to provide necessary knowledge about these
systems and their requirements for security.

With the rapid evolution of the Internet,
Software agents are a very important research
area in Computer Science. Software agents are
components of software or hardware which are
capable of acting on behalf of a user in order to
accomplish tasks (Nwana, 1996). The owner of
an agent may be a human or another computa-
tional entity. Tasks are requested by the owners
of agents in order to fulfill their needs. There are
different kinds of agents. One can meet informa-
tion agents that search for information sources,
mobile agents that move from an environment
to another, intelligent agents that can learn from
their owners and the environment and so forth.
For an extensive discussion of the different types
of agents one can refer to Nwana (1996).

In the most cases, agents must deal with
complicated tasks that demand cooperation with
others. A Multi-agent system (MAS) can be
defined as a loosely coupled network of problem
solvers that interact to solve problems that are
beyond the individual capabilities or knowledge
of each problem solver (Durfee & Lesser, 1989).
In such systems agents can cooperate or compete
with others to complete their tasks. We must note
that such systems are open. An open system is
one in which the structure of the system is ca-
pable of dynamically changing (Sycara, 1998).
In open MAS, the basic components may change
over time such as information sources or agents’
behaviors. From this point of view, it can be as-
sumed that in open MAS (Huynh, Jennings, &
Shadbolt, 2006):

• Agents have different owners and for this
reason they are selfish and may be unreli-
able;

• There is no knowledge about the environ-
ment in which agents must interact with
each other; and

 2845

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges

• There is no central authority that controls
the agents.

The last point is important for the cooperation
among agents. Cooperation is often presented as
one of the key concepts which differentiates MAS
from other systems (Doran, Franklin, Jennings, &
Norman, 1997). Through cooperation agents are
able to obtain the necessary information needed
for their tasks. Of course, interactions are the key
issue for the cooperation.

It is obvious that there is an increasing need
for the definition of trustworthy entities. In an
open environment like MAS, agents change their
intentions, goals and behaviors continually thus
rendering imperative the need to define meth-
ods based on which each agent can be enabled
to recognize nontrustworthy entities. The most
important thing in such cases is to find ways to
acquire information related to others’ behavior.
For example, an agent must communicate with
the candidate partner or with others, in order to
infer its trustworthiness. We describe methods
to achieve this goal, and we give their basic
characteristics.

reputation in MAs

Reputation is an important factor in many re-
search fields. Especially in computer science,
reputation mechanisms are used either in research
efforts or in commercial applications. In MAS,
agents have to interact with others in order to
fulfil their owners’ needs for information. In such
cases, reputation plays an important role.

According to a dictionary “reputation is the
state for a person of being held in high esteem
and honour.” From a social point of view “repu-
tation is the general estimation that the public
has for a person” (Wordnet, http://wordnet.
princeton.edu).

In MAS, reputation refers to a perception that
an agent has of the intentions and norms of another
(Mui, Halberstadt, & Mohtashemi, 2002). This is

critical for the cooperation among autonomous
components in open environments, where the
knowledge about the plans of others is limited.

One can find a categorisation of reputation in
Wang and Vassileva (2003). Authors distinguish
reputation models as centralised or decentralised,
according to who has the responsibility to derive
a reputation value. It should be noted that authors
consider that trust is elicited through reputation.
Therefore, their categorisation concerns both
reputation and trust models.

• Centralised. In centralised reputation and
trust models, the system is responsible to
collect ratings for agents and publish them.
Through this procedure, all ratings are
evident to all members of the community
and there is little need for communication
among agents. Also, an aggregation pro-
cedure is performed by the system. The
aggregation procedure aims to combine
the different opinions in a final reputation
level. Centralised models are characterised
by simplicity and are mainly encountered
in the area of e-commerce, where the main
transactions are between sellers and buy-
ers.

• Decentralized or Distributed. In de-
centralised systems there is not a central
responsible authority and for this reason
each agent develops its own reputation level
for other community members. This means
that there is an increased need for interac-
tions between agents. Through them, agents
form a subjective trust in their potential
partners.

 Mui et al. (2002) discern reputation based
on which experiences and ratings are taken into
consideration, and through what procedure infor-
mation for the opponents is extracted. According
to authors, reputation models can be divided into
the following:

2846

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges

• Individual Reputation. Individual reputa-
tion is the description of the reputation level
of a simple entity by another. This level is
computed based on actions and informa-
tion related to an agent and not a group of
agents.

• Group Reputation. Group reputation de-
picts the social dimension of reputation. In
these models, reputation is a function of the
aggregated ratings taken from a group of
entities. Entities rate others having their own
experiences. These ratings may be utilised
to provide information to an agent, when it
needs to cooperate with others.

• Direct Reputation. Direct reputation is
based on straight experiences with an entity.
Usually, these observations are taken by in-
teractions held between two entities. Direct
reputation may be observed or encounter-
derived. We have observed reputation when
feedbacks through direct experiences of oth-
ers consists a reference of the reputation of
an agent. On the other hand, entities’ ratings,
after an interaction with others, may affect
the reputation level of an agent. In this case,
we have encounter-derived reputation.

• Indirect Reputation. With the lack of
direct experiences for an entity, reputation
can be derived from information gathered
indirectly. There are three basic models for
indirect reputation. The first model uses
prior beliefs that agents carry about their
interactions with strangers while the second
model takes into consideration the group that
an agent belongs to. Finally, the third model
uses the information taken about an agent
from the entities in the environment.

trust in MAs

Trust is a common theme in computer science
research, and refers to a range of different issues. It
has important impact on domains such as security,
e-commerce and Semantic Web. Trust is also an

important concept for MAS. While in general trust
refers to an aspect of the relationship of individu-
als, the concept has a completely different meaning
depending on the context is used (Deriaz, 2006).
Hence, trust has different meaning when we use
it to characterize that humans’ actions are trusted
or when an agent decides to rely on another in
order to obtain some resources.

Trust can be seen as the extent to which one
entity intends to depend on somebody in a given
situation (McKnight & Chervany, 1996). Trust
can be defined as the belief that one can rely
on someone else to accomplish a task. There is,
however, a possibility that unfavourable issues can
arise from interactions with a trusted person.

In this point, we describe a list of trust cat-
egories found in the literature.

According to Ramchourn, Huynh, and Jen-
nings (2004) trust may be categorised, based on
the part which decides the grade of trust, into
the following:

• Individual Level Trust: Each agent decides
which entity can be trusted based on its be-
liefs. These beliefs derive from interactions
held between agents. Individual level trust
can be further divided into:
a. Learning based. Agents may interact

with each other many times before
deciding to trust someone. From this
procedure, useful conclusions can
be derived for the potential partners.
Through repeated games, agents are
able to analyze their opponents’ moves
in order to reach a conclusion. There
are different kinds of metrics used in
such models, as bi-stable values (good
or bad) or fuzzy mechanisms with
which one can decide to trust someone
else for various acts.

b. Reputation based. Reputation-based
models use ratings from the members
of a community in order to derive a
trust level. Important issues concern-

 2847

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges

ing this type of trust are the collection
of ratings, their aggregation and the
diffusion of members’ opinions. First
of all, an agent must collect ratings
from the members of the community
through the use of referrals. Referrals
are the opinions of community mem-
bers about a certain entity. After that,
he must use an aggregation method in
order to extract a result. In this point,
there are issues that can complicate the
whole procedure, as the lying witness-
es or the absence of ratings. Finally, an
important issue is the propagation of
reputation in a community based on
reputation scores that agents have for
a set of other entities.

c. Socio-cognitive based. Contrary to
previous types, where trust is comput-
ed taking into consideration the results
and the components of interactions
between agents, socio-cognitive-based
trust is computed based on beliefs that
an agent has for their opponents. These
beliefs are: competence, willingness,
persistence, and motivation belief.

• System Level Trust: Agents are selfish com-
ponents which want to obtain as much profit
as possible. For this reason, it is imperative
to force them to follow some rules when
interacting in the context of a system. This
is the system level trust. In consequence,
they will be trustworthy, thus minimizing
the danger to interact with liars. System
level trust can be further divided into:
a. Truth-eliciting protocols. These pro-

tocols may be used to elicit trustworthy
behaviour of an agent. Agents must
conform to certain protocols’ steps in
order to complete transactions in the
system.

b. Reputation mechanisms develop-
ment. Reputation may be used in
system level trust. There are rules

posed by the system concerning the
three key elements of reputation mod-
els (collection of ratings, aggregation
and propagation). In such systems, the
entities responsible to store ratings
may be centralised or decentralised.
All agents working in the system have
access to these entities either to read
ratings or to publish their own.

c. Security mechanisms development.
In these model types, a number of
features are taken into consideration
in order to provide a reliable security
mechanism that ensures trust in sys-
tem entities. The essential elements
that make an agent trustworthy can
be identity proof, access permissions,
content integrity and content privacy
(Poslad, Calisti, & Charlton, 2002).
Additionally, certificates may be used
to provide a higher level of security.
The system forces members to give
the necessary information as for the
aforementioned elements in order to
have an acceptable degree of safety.

Artz and Gil (2006) note that there are two
methods to derive trust:

• Based on credentials. Credentials are ele-
ments that can be used to elicit information
for an entity. A credential may be simple as
a signature or complex relationships between
elements in an open environment as the
Semantic Web. For example, an agent may
have an identifier with which may interact
with others. This identifier may be used in
a system to provide to an agent permissions
or rights to work with specific information
sources. An extensive review of systems
that use credentials-based trust models is
presented in Artz and Gil (2006).

• Based on Reputation. This model uses
reputation to assign trust to members of

2848

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges

a community. An agent utilizes personal
experiences taken from interactions held
between potential partners, and ratings
from other members of the system. There
are two ways to extract the trust level for
an entity. One can rely on a central author-
ity to have access in reputation ratings or
on himself. Few efforts in literature use
the first method. The second one describes
the decentralised model where each entity
must develop methods for the aggregation
of ratings taken from the community.

In Osman (2006), authors specify the differ-
ence between trusting an agent, and trusting an
interaction. They provide a categorization and a
specific connection with the categories presented
in Ramchourn et al. (2004). Two new categories
are presented:

• Local Deontic Level. It concerns the con-
straints and permissions that an agent must
follow when interacting in a multi-agent
system. Agents are dynamic components and
their goals, intentions and plans change con-
tinually. This means that when they work in
an open environment, they have obligations,
permissions and prohibitions, posed by the
system. Through this, the system defines a
security level concerning the transactions
held among the potential partners.

• Global Interaction Level. Apart from the
internal deontic model of each agent, there
is another interaction model that specifies
the rules based on which interactions are
held. Every agent must conform to these
rules in order to gain access to interactions
with others, useful for the completion of its
goals. Specifically, the interaction model is
a protocol that determines steps to carry out
interactions.

Grandison and Sloman (2000) presented a set
of trust classes which are:

• Provision Trust. It describes the trust that
an entity may have to a service provider.

• Access Trust. It describes the trust that an
entity may have for the purposes of access-
ing resources.

• Delegation Trust. It describes the trust that
an entity may have to an agent that works
on its behalf.

• Identity Trust. It describes the belief that
an identity is as claimed.

• Context Trust. It describes that the relying
entity has confidence in a system in which
transactions are held. Moreover, each entity
can rely on system, when problems may arise
in transactions.

Finally, another categorisation found in Wang
and Vassileva (2003) has already been presented,
where trust quantification may be held either by a
central authority or by each agent individually.

A significant amount of work on trust has
been performed in the area of Normative MAS
(NMAS). NMAS is an extension of classical MAS
which combines traditional MAS with norma-
tive systems where concepts such as obligations,
commitments, permissions and rights are used to
describe the behaviour of an entity (Boella, Van
Der Torre, & Verhagen, 2006). Thus, every agent
acting in a community has some obligations and
commitments that should be fulfilled. In such
systems, norms are defined to describe when the
behaviour of an agent is acceptable. While the
agent follows these norms its trust level increases
in the community. In reverse, the agent’s trust
level decreases when its actions do not conform
to the specified rules of normal behaviour. These
rules aim to force agents to do the right thing
cooperating with others in the broader environ-

 2849

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges

ment. However, norms can be violated for various
reasons and thus there is a dynamic trust valuation
(Boella & Van Der Torre, 2005).

IssuEs concErnIng
rEputAtIon

Reputation level can be derived based on three
elements: the experiences of the evaluator, the
referrals of others and the combination of the
experiences and the referrals (Josang et al.,
2006). There are methods that deal with all these
three issues. Generally speaking, in MAS a set
of agents A={a1, a2, …, an} want to interact with
others in order to complete their goals. For each
potential partner, every agent must calculate its
reputation degree which is extracted through a
reputation function:

Reputation_value=f(R, E, S) (1)

where R represents ratings from other members
of the community, E are the individual experi-
ences taken from direct interactions with the
target entities, and S represents ratings retrieved
from the system.

The factor R is computed based on aggrega-
tion of ratings. Namely, there is an aggregation
function which derives a final value from a set of
witness agents WA={wa1, wa2, …, wam}.

R=g(r1, r2, …, rm) (2)

where ri denotes the referrals of the ith witness
agent. In literature, there are models that use
only one of the above mentioned elements or a
combination of them. As discussed below, every
reputation model uses a function in order to
calculate the final result, which follows the gen-
eral form depicted in (1). For example, an agent
may be based only on direct experiences with
the target agent, without paying attention to the
ratings of others. In order to define efficiently

final reputation value, a model must be based on
a combination of the above mentioned features
(e.g., referrals, the system’s ratings and direct
interactions). The majority of systems in the
literature follow this direction. Their difference
is located to the form of the referred functions
and the type of the computed values. Hence, in
all models we can find a reputation function that
produces a value that can be either discrete (e.g.,
“Confident,” “Non-Confident”) or continuous
(represented through a real number).

A short description of reputation models fol-
lows. Furthermore, we present our point of view
related to their advantages and disadvantages.

simple Mathematical Models

They are the simplest models. In these models
simple calculations are used in order to compute
reputation values. For example, the system may
store the number of positive and negative opin-
ions for agents and compute the final score. If
the positive opinions are P={p1, p2, …, pk} and
the negative are N={n1, n2, …, nm} then the final
score is:

| | | |Score P N= − (3)

where |x| denotes the cardinality of set x. The
higher the value of Score is the more reliable the
agent is considered. For example, if an agent has
received 10 positive and 2 negative referrals, it
has a reputation degree of 8. This agent is more
reliable than another that has a reputation degree
of 5. However, these models do not take into con-
sideration the initial numbers from which the final
result is computed. Let us examine an agent that
may have received 100 positive and 90 negatives
opinions. This means that the agent has approxi-
mately 47% negative opinions in the community.
Nevertheless, this agent is more reliable than
another with 10 positives and 1 negative referral
(approximately 9% negative opinions).

2850

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges

In order to cover these disadvantages, advanced
mechanisms use a weighted sum to compute an
average which shows the reputation level. These
mechanisms use the information related to the
ratings such as the age of each rating, the distance
between rating and current reputation value, and
so forth (Josang, Roslam, & Colin, 2006).

It should be noted that such systems do not
take into consideration critical issues concern-
ing the selfish and dynamic nature of agents.
It is possible that agents may form coalitions in
order to exchange positive marks thus achieving
better reputation scores. Furthermore, the simple
mathematical models do not examine in depth the
referrals retrieved from the community members
in order to extract useful information about the
behaviour of an agent.

bayesian reputation systems

Bayesian systems are based on statistics. They
compute reputation using the Beta probability
density function. This function can be used to
describe probability distributions of binary events.
For simplicity, we give only a short description
of such systems.

A Bayesian reputation system takes binary rat-
ings and uses the a priori reputation score and the
current ratings to compute the a posteriori result
(Josang & Ismail, 2002; Mui, Mohtashemi, Ang,
Szolovtis, & Halberstadt, 2001; Whitby, Josang,
& Indulska, 2004). In agent systems, we can
describe the behaviour of an agent as “Honest”
vs “Dishonest,” or as “Reliable” vs “Unreliable”
which constitute binary events. If, for one agent,
there are x positive and y negative observations,
then the reputation score can be computed as
follows:

α=x+1, β=y+1 with x,y≥ 0 (4)

the probability expectation value is:

E(p) = + (5)

for the Beta distribution, which can be expressed
as:

B(p|α,β) = 1 1() (1)
() ()

p p− −Γ +
⋅ −

Γ ⋅Γ (6)

where p∈[0..1], α,β>0, p≠ 1 when b<1 and p≠
0 when a<1.

When the a priori probability does not exist,
then we consider α=1 and β=1. From this func-
tion, each agent can compute the possibility that
a potential partner is reliable based on previous
values of reputation. For example, if the expecta-
tion value E(p) has a score of 0.9 means that the
most likely value of positive outcomes in the future
is 0.9, but the actual outcomes are uncertain.

Bayesian models give a computational theo-
retical framework for the reputation score good
for autonomous computational entities as agents
are. It is an efficient mechanism to combine
evidences. An entity must keep track of the out-
comes of others and compute the reliability pos-
sibility through the above referred functions. A
full description of a system representative of this
kind of model can be found in Josang and Ismail
(2002). However, these models are complicated
due to the calculations that must be performed
in order to derive a final reputation value. Also,
the definition of a priori probability used for the
calculations is necessary. The probability value is
important for these models and must be derived
by a subjective method.

social networks

Social networks are originated in sociology. Social
networks can be represented as graphs that depict
relations between members of a community. Social
networks analysis emerged as a set of methods
for the analysis of social structures (Sabater &
Sierra, 2002). In MAS, agents must retrieve data

 2851

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges

concerning the relation among the members of
the system in order to decide the reputation level
of a potential partner. However, it is difficult to
use methods taken from sociology in order to
poll information for the network architecture. For
example, sociologists use methods as the opinion
poll or interviews. In cases where autonomous
computational components are the nodes of a
social network, more “computational” ways must
be found to extract the necessary information.

The procedure that agents adopt for building
the network is critical for the success of such
systems. They must describe as much relational
data as they can in order to have a significant
view of the system. We must also note, that these
networks change dynamically due to the open
nature of MAS. Agents may enter or leave at
every time and, moreover, may alter their goals,
behaviours and intentions.

Generally speaking, in systems based on social
networks there is a set A={a1, a2, a3, …, an} of
agents that want to obtain information from oth-
ers in order to complete their goals. Each agent
builds a social network G={d1, d2, …, dn}, with
nodes di representing the members of the system.
Edges that connect nodes show a relation between
them. For example, edge ei,j denotes that there is
a relation among nodes i and j. Next, it finds its
potential partners and tries to collect information
about them. It may be based on referrals or on the
system or on a combination of them. Referrals are
taken from other members that have interaction
history with the target agents, and after a care-
ful selection. These referrals must be aggregated
in order to extract a final value through which
reputation is computed.

Three critical factors must be taken into ac-
count: the possibility that agents may tell lies, the
possibility that agents may conceal information
about others and the careful selection of refer-
ral agents. In these cases, social networks may
be constructed based on false values as for the
reputation degree of each member. Also, there

are cases in which agents ally with others and
for this reason may hide the bad reputation that
an examined agent acquired. A method to allevi-
ate the problem of lying in MAS is presented in
Schillo, Funk, and Rovatsos (2000).

As mentioned above, in MAS social networks
agents appear as nodes and their relationships as
edges. Each edge has a value which represents
the weight of the relationship between the two
connected agents. After the graph creation, the
construction of the network and the computation
of reputation follow. Such computation is based
on the weights assigned to edges. An extensive
survey on reputation mechanisms based on so-
cial networks can be found in Ramchourn et al.
(2004).

In this point, we present two simple examples
of social networks models. A first example of such
model is presented in Pujol and Sanguesa (2002).
Authors describe an algorithm which is named
NodeRanking and is used to extract a reputation
value for members in a community. Its main
idea is that every node and, respectively, agents
have an authority degree which is an importance
measure. For example, the authority of a node x
is computed as a function of the total measure of
authority presented in the network and the author-
ity of the nodes pointing in x. The main rationale
is that if a node has a lot of edges pointing to
it, this means that the node is important in the
community because this means that it cooper-
ates with many other members. Another critical
issue is that every authority value is propagated
through the out-edges. The reputation value is
computed based on the authority value of each
node, taking into consideration the importance
and hence the number of agents that are related
to the examined entity.

Another system that uses social information in
order to compute reputation is REGRET (Sabater
& Sierra, 2002). Reputation in REGRET has three
dimensions, the individual, the social—according
to the source of the information used to extract a

2852

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges

reputation value—and the ontological dimension,
which helps to transfer the reputation between
related contexts. While the individual dimen-
sion takes into consideration the results of direct
interactions between potential partners, the social
dimension utilizes information taken from the
other members of the community. In the second
dimension of reputation, agents may use witnesses
from others or consider neighbourhood reputation.
Furthermore, the system assigns a reputation level
to every role defined in it. Hence, agents that have
a specific role in the system inherit the reputation
level assigned to the role.

System reputation is the easiest to compute
but is dangerous because a role held by an agent
does not convey information about its intentions.
In the REGRET system, reputation is combined
with a domain and calculated using a table in
which rows are the potential roles and columns
are the reputation types. More complicated are
the remaining two methods. Witnesses reputation
uses the referrals of others in order to establish a
reputation level. REGRET gives the opportunity to
an agent to define a set of witnesses and aggregate
their referrals based on fuzzy rules. Of course,
witnesses are entities that have interacted in the
past with the target agent and they are taken into
account based on the same event, if it is possible.
Neighbourhood reputation is not related to the
physical location of the agents but to the links
created by interactions. These interactions and
the relations between agents are very useful to
compute reputation level for a target agent. Fuzzy
rules are also used in this case.

belief theory Models

Belief theory characterizes the remaining of
the subtraction between 1 and the summary of
the possibilities of the all possible outcomes, as
uncertainty. In these models, agents use their
beliefs about the behaviour of another entity. In
Yu and Singh (2002), authors propose the use of

Dempster-Shafer theory (Dempster, 1968; Shafer,
1976) for the computation of reputation degree.
There are two kinds of belief in their model: Lo-
cal and Total. Local belief is obtained from direct
interactions with the target agent and Total belief
is extracted from the opinions of others combined
with local belief. Witnesses from others are nec-
essary when interactions are not available. Each
agent models the information from others using
belief functions. There are two outcomes related
to the reliability of an agent: Trustworthy or Not
Trustworthy, each of them has a belief value m(T)
and m(¬ T) respectively, taken from the cor-
respondent belief function. The reputation score
for an agent A is:

Γ(A)=βΑ({ΤΑ})-βΑ({¬ΤΑ}) (7)

where βΑ is the cumulative belief result computed
using the testimonies from a set of L neighbor-
hoods. When no testimonies are available, then
the reputation score is 0. Also, authors present the
reputation value of a set of K agents, which is:

Group_Reputation =
[1..]

1 ()i
i K

A
K ∈

Γ∑ (8)

These models are able to exhibit the beliefs of
agents, accumulated from past experiences or
others, in functions that combine them and pro-
duce the final result. However, the definition of a
threshold value is critical. This threshold defines
when an agent may be characterized as trustwor-
thy or not. Moreover, the assumption of only two
possible outcomes limits the model.

fuzzy Models

Fuzzy models try to catch the subjective point
of view of an agent related to another member
of a community. In these models, reputation is
presented through linguistic fuzzy values in con-
trast to other models in which common reputation
levels are defined by means of real numbers. For

 2853

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges

example an agent may be characterised as “reli-
able” or “not reliable.” Fuzzy logic (Zadeh, 1989)
is very important because it provides reasoning
techniques for the extraction procedure. Rules
may have the next form:

IF andecent THEN consequent

where andecent is represented with fuzzy sets.
Fuzzy logic techniques depend on subjective

criteria that may lead an agent to cooperate based
on its thoughts about others. This means that if an
agent has very optimistic views of the community
he may rely on others that have bad intentions.

In Rubiera, Molina Lopez, and Muro (2001) a
method for the computation of reputation based on
a fuzzy model is presented. Each agent retrieves
opinions only from entities that are highly ap-
preciated. Based on their answers it computes a
value that is extracted from a fuzzy set according
to its point of view. The result is the weight of an
agent’s opinion. Furthemore, there is interest on
combination of the new and the old reputation
values. The old reputation score of the candidate
partner is taken into consideration and, hence, the
final result is the average of two fuzzy values:
the old and the new one. The agent is responsible
to decide on defection. Usually, if a threshold is
reached, cooperation is held.

Another system that relies on fuzzy rules is
REGRET, which was briefly described in the
previous section.

role-based reputation

In some models, reputation can be seen as a value
of a role fulfilment. A role is a set of obligations
and actions that an entity has in the community.
If an agent acts and behaves as a role dictates,
then it has the reputation level that this role of-
fers. In Carter and Ghorbani (2004) a framework
for the role fulfilment measurement is presented.
Three roles are investigated: The Assistant, the

Provider and the Citizen. A general overview
of how measurements take place in each role is
given by the authors. In order to compute the final
value of reputation, authors examine the satisfac-
tion degree of each role for a specific entity and
combine these partial results. The reputation is
a weighted sum of each value that reflects the
fulfilment of each role.

The main problem with these models is that
they do not examine in depth the intentions that
agents have. Meeting the requirements of a role
by an agent does not mean that the agent will not
change its behaviour.

unfair ratings: deception

As mentioned above in distributed reputation
models, when a central authority is absent each
agent that wants to cooperate with others must
collect ratings from the environment in order to
decide the reputation degree of an entity. In these
cases important issues are:

• The possibility that some agents provide
unfair ratings for others. These ratings may
be unfairly positive or unfairly negative
(Dellarocas, 2000).

• The possibility that an agent deludes oth-
ers.

According to Whitby et al. (2004), methods
of avoiding unfair ratings are divided into endog-
enous and exogenous.

Endogenous methods are based on the statisti-
cal analysis of the rating values. They can give
or exclude ratings that are possible to be unfair.
Classical examples of this kind of systems are
Bayesian reputation systems. Authors describe an
algorithm that filters unfair ratings in a Bayesian
model. Exogenous methods are based on factors
that are related to external elements such as the
reputation of the witness. The main idea is that an
entity with low reputation is likely to give unfair

2854

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges

ratings and vice versa. In the relevant literature,
one can find a lot of works falling in the afore-
mentioned categories.

Another algorithm for the detection of decep-
tive agents is proposed in Yu and Singh (2003).
This method uses exogenous characteristics of the
witnesses as we presented above. The algorithm
assigns weights to witnesses and makes a predic-
tion based on the weighted sum of their ratings.
The second idea is to tune these weights when a
prediction fails. In this case, the weight of suc-
cessful witnesses is increased and the weight for
the unsuccessful is decreased. We must note that
the ratings that an agent takes are belief functions
and for this reason the algorithm maps belief
functions to probabilities in order to be able to
compute and update the weights of each witness.
Moreover, authors study the number of witnesses
and its effect to the system’s prediction values.

IssuEs concErnIng trust

Trust is usually researched in the security domain.
The main reason is that these two concepts are
related, but they have different orientations. How-
ever, trust and security provide protection against
malicious components. In this sense, trust can be
considered as a soft security mechanism. This
term first appeared in Rasmusson and Jansson
(1996). Authors discern hard and soft security
mechanisms. Hard tools are authentication, cryp-
tography, and so forth, and soft tools are those
that take into consideration social control issues,
as they are trust and reputation.

In MAS, trust plays an important role because
agents need to cooperate with other members of
the community. The importance of trust in MAS
is shown in Castelfranchi and Falcone (1998).
Critical questions arise such as: When can I trust
another entity? Which entity is trustworthy?
What are the elements that can be used in order
to conclude a trust level? What methods should be

used to conclude trust level? Such questions are
addressed in the fourth section of our chapter.

discussion

The main differences between trust and reputa-
tion are:

a. Usually, trust is a score that reflects the
subjective view of an entity from another,
whereas reputation is a score that reflects
the view of the community.

b. In trust systems, transitivity is considered
explicitly while in reputation systems is seen
implicitly (Wang, Hori, & Sakurai, 2006).

The common element between the two con-

cepts is that both of them try to help someone
that wants to find trustworthy partners to achieve
its goals through cooperation. However, trust is
more complicated concept that involves many
parameters. For this reason, it is very difficult to
assign a strict definition to trust.

As mentioned above, trust is a subjective
view of an entity. It is based on some beliefs
that an entity has for another, but it is not clear
where such beliefs originated. This means that
an agent may be reliable only for a set of other
agents and not for all of them. The level of trust
is also depended on the context in which it is
being studied. For example, an agent may be
trustworthy when providing information but it
is nontrustworthy when selling products. These
two factors are basic to open systems and must
be taken into consideration. Moreover, trust is
dynamic. An agent may consider another entity
as reliable in a specific time but its opinion may
change accordingly based on the behaviour of
the target entity.

The simplest form of trust is centralized. In
such systems, there is a central authority that
keeps the trust level of entities who rate each
other after every transaction. Soft mathematical

 2855

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges

calculations are held to provide the final result.
It is a scheme that must take into account issues
concerning lying entities or unfair ratings. Also,
there must be a high security level to prevent
violations in central database where ratings are
kept. On the other hand, decentralized trust
models are complex and require effort from the
side of each entity that tries to find partners. In
such systems, critical issues are the storage of
trust values, the location of witnesses and the
inference procedure.

In general, a trust function has the following
parameters: the beliefs of the examiner (B), the
reputation of the examinee (R), previous trust
values (P) and the context (C).

Trust_value=f(B, R, P, C) (9)

An interesting value is B. B may be extracted
from direct experiences through communication
or past experiences with the target entity. It may
be a positive or a negative belief. Relation (9)
concerns a general function form. As we discuss
in the following paragraphs all the described
models use a function that follows this general
form and takes into consideration one or more
values from B, R, P or C.

The result of the referred function may be
discrete or continuous values. For example, in
discrete models, as fuzzy models are, a trust-
worthy behaviour may be characterized as “Very
Trustworthy,” “Trustworthy,” “Untrustworthy,” or
“Very untrustworthy,” for direct trust between two
entities, or “Very good,” “Good,” “Bad,” or “Very
bad” for recommender trust (Abdul-Rahman &
Hailes, 2000). Either discrete or continuous, the
final trust value reflects a confidence over the
knowledge we have about an entity.

Trust mechanisms vary from these that use
simple computations to those that use more com-
plicated characteristics of the entities involved in
such situations. However, the common procedure
among them is that they map a set of features to

trust information. In the following paragraphs, we
give a description of some important categories
of trust and examples of each one.

A key issue concerning trust is its dynamic
nature. Trust evolves over time as entities coop-
erate with others. For this reason, it is critical to
define a trust update procedure. Especially in open
environments like MAS, where goals, intentions
and beliefs of each agent change continually,
there is a need for dynamic adaptation of the
trust level. This means that in every model that
is used to compute trust, developers must take
into consideration how trust levels evolve over
time and transactions. The evolution of trust may
be based on the experiences of the trustor or on
new information taken from other members of
the community.

In conclusion, in the computing trust proce-
dure, the phases that an agent may handle are:

a. Trust Discovery Phase (TDP);
b. Trust Aggregation Phase (TAP); and
c. Trust Evolution Phase (TEP).

In TDP, each agent tries to find the appropri-
ate sources for referrals and may communicate
with the target agents in order to elicit useful
information about their behaviour. In this phase
it is important to have mechanisms to identify
if a group of agents have formed a coalition and
share good referrals among them. In TAP, the most
important issue is to use an appropriate aggrega-
tion function in order to derive the final value of
trust. This function may take into consideration
the results of direct experiences and of course the
referrals of peers. Finally, the TEP is a continuous
procedure through which an initial trust level is
evolving over time based on observations. Its great
importance relies on the dynamic nature of MAS.
If an agent is trusted in a specific time this does
not mean it is to be trusted forever. Agents are
selfish and may change their behaviour without
warning or may ally with others.

2856

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges

trust propagation

MAS can be viewed as graphs where their agents
are represented by nodes. Edges consist of their
relationship in the community and weights rep-
resent the trust value between the two connected
nodes. Graphs may be used to transfer trust in-
formation among members. Every agent trusts
some others in the network. Estimated trust belief
is derived through the trust network based on
inferences while expected trust belief is the ideal
target (Ding, Kolari, Ganjugante, Finin, & Joshi,
2004). It is very difficult to achieve the expected
trust belief due to the lack of global knowledge
of the community and its members. As the trust
network evolves over time and more information
is gathered from the agents, the ultimate goal is
gradually approached.

Propagation of trust is very important in such
networks because it gives the opportunity to derive
beliefs about agents through the combination of
values taken from multiple sources. The most
common method for trust propagation is referrals.
Referrals have been investigated in reputation
mechanisms (see Section “Issues Concerning
Reputation”). An agent, having collected opinions
from a set of peers, needs an aggregation method
in order to define the final estimated value of trust.
Through this procedure, trust information can be
propagated over the network. Additionally, we
must take into consideration that agents may ally
with others and give positive recommendations for
their allies. However, when an agent establishes
trust based on recommendations from others, this
trust value cannot be greater than the trust value
between the agent and the recommender, and
neither the trust value between the recommender
and the target agent (Lindsay, Yu, Han, & Ray
Liu, 2006). Another effort on trust propagation
is discussed in Guha, Kumar, Raghavan, and
Tomkins (2004).

simple trust Models

Simple trust models try to determine relations
that depict the behaviour of an entity as a function
of positive and negative opinions. The simplest
form, found in Deriaz (2006), is:

Trust_score = (10)

| |

| | | |
Positive Ratings

Positive Ratings Negative Ratings+

where |Positive Ratings| and |Negative Ratings|
represent the number of positive and negative
ratings, respectively.

Whenever an certain agent has only positive
ratings and no negatives, then the trust score is
equal to 1. Therefore, Trust_score can take values
ranging from 0 to 1. An extension to this model
that take into consideration the time in which these
ratings are provided gives more efficient trust com-
putation because it can exclude obsolete ratings.
Furthermore, trust can be computed if we scale
recent events. Accordingly, if in Deriaz’s model
we set a=b=c=1, which are the default values of
parameters a, b, c, then the following holds:

 (11)_
| | (1)

| | (1) | | (1)
p

p n

Trust score
PosRatings A

PosRatings NegRatings B

=
⋅ + +

⋅ + + ⋅ + +

where

 (12)
[1..| |]

1 ()i
i PosRatings

A t po
T ∈

= ∑

[1..| |] [1..| |]

1 (() ())i i
i PosRatings i NegRatings

B t po t pn
T ∈ ∈

= +∑ ∑
 (13)

 2857

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges

and δp, δn are the statistical variance of the posi-
tive and negative outcomes, T is the current time,
poi, pni are positive and negative rating received
at time i, |PosRatings| and |NegRatings| are the
cardinality of positive and negative ratings, re-
spectively.

The disadvantage of this mechanism is that it
does not take into account the context in which
these ratings were made. The above forms deal
with the positive and the negative opinions without
separating them into the context fields for which
ratings are formulated. Furthermore, the model
does not notice cases where entities may ally with
others in order to elicit positive outcomes or the
case that an entity is neutral to another.

Entropy-based & probability-based
trust Model

In this section, we present two models of trust
based on the work reported in Lindsay et al.
(2006). Authors, influenced by information
theory, present Entropy-based and probability-
based trust. The trust relationship between two
entities is represented by T(S,A,AC), where S is
the subject which examines the trust level of the
agent A for an action AC. Similarly, the prob-
ability that and agent A will perform the action
AC in the subject’s S point of view is represented
by P(S,A,AC). The entropy based value of trust
is calculated as follows:

T(S,A,AC) = (14)

2 2

2 2

1 log () (1) log (1) 0.5 1
log () (1) log (1) 1 0 0.5
p p p p p

p p p p p
+ ⋅ + − ⋅ − ≤ ≤

− ⋅ − − ⋅ − + ≤ <

where

p = P(S,A,AC) (15)

The final trust value is a real number in the in-
terval [-1,1]. Some important examples that show
the trust level of an agent are:

1 1
0 1

0.5 0

Subject trusts the agent p and T
C Subject distrusts the agent the most p and T

Subject has no trust p and T

= =
= = = −
 = =

 (16)

In general, the following holds:

0 [0..0,5)
(, ,) 0 (0,5..1]

0 0,5

when p
T S A AC when p

when p

< ∈
= > ∈
= = (17)

We should note that the probability P(S,A,AC)
represents the view of a specific subject which
means that different agents have different opinions
about a target agent.

The entropy-based model depends on the
trust value described above. Especially for the
propagation of trust, a simple product is used
where the two factors are the recommendation
value of another agent multiplied by the trust
value of the recommender. For multipath recom-
mendations, the final result is the weighted sum
of each recommendation. In the probability-based
model, the probability that an agent will perform
the specific tasks combined with the probability
that a recommender make correct recommenda-
tions is adjusted.

reputation-based trust Models

Reputation based trust models are used in dis-
tributed systems where there is little information
on the overall network. If an entity has a high
reputation level in a community then others may
trust it more easily than another that has lower
reputation value. For the computation of trust, an
agent depends on opinions of a set of community
members. Important issues in these cases are the
collection method of ratings and the aggregation
procedure. It should be reminded that trust is a
concept derived from direct interactions between
two entities, while reputation is the view of a
member from the community side.

2858

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges

Reputation-based models rely on methods
that give the opportunity to an entity to gather
referrals from other members and apply an ag-
gregation function in order to calculate the final
value of trust. It is wiser to combine these results
with values obtained from direct experiences. In
Ramchourn et al. (2004), authors give an exten-
sive review describing methods for the retrieval
of ratings and the aggregation procedure from a
social network point of view.

Reputation models are discussed in previous
section.

bayesian network trust Models

A Bayesian network is a network where probability
relationships of some entities are presented (Ben-
Gal, 2007). The final trust value is represented by
the root of the network and leafs are the sources
in which the beliefs of the examiner are based. A
formalization of Bayesian trust networks is given
in Melaye and Demazeau (2005). Each agent forms
its basic beliefs investigating a number of belief
sources. We have:

Basic_Beliefi=f(Bi1, Bi2, …, BiN) (18)

where i∈[1..number_of_basic_beliefs] and N are
the number of belief sources. An important point
is that the function f is depended on conditional
probabilities, which means that a tree node may
be more influential than another. Each trust
component is associated with a probability of
satisfaction. Accordingly, the final trust value is
calculated as follows:

Trust_value=g(BB1, BB2, …, BBN) (19)

where BBi is the i-th basic belief taken from (18).
It is obvious that in such cases a bottom-up ap-
proach is adopted, starting from the belief sources
and concluding with the final result.

Another representative example is shown in
Wang and Vassileva (2003). Each agent builds

a Bayesian network for every potential partner.
Each network has a root with two values. The first
represents the satisfaction level while the second
the nonsatisfaction degree. The satisfaction level
is derived from the number of the successful
interactions divided by the total number of inter-
actions. The leaf nodes in the network represent
the different capabilities that potential partners
have. In this model, the recommendations of other
agents are taken into consideration.

belief and fuzzy Models

In belief models, we meet methods that use the
beliefs of an agent that another entity is trust-
worthy or not. In belief theory, each opinion
may be represented as a triplet (belief, disbelief,
uncertainty). The sum of probabilities of these
three values is 1:

belief+disbelief+uncertainty=1 (20)

Agents use their and others’ beliefs in order to
extract the final score. This score is computed
through the use of belief theory and consists of a
subjective certainty of the pertinent beliefs. An
example of a belief trust model one can be found
in Josang (1999, 2001). Josang names his trust
model “subjective logic” and combines belief
theory with Bayesian probabilities. The forms
used for this purpose are:

belief = 2
p

p n+ + (21)

disbelief = 2
n

p n+ + (22)

uncertainty =
2

2p n+ + (23)

where p and n are the positive and negative ratings,
respectively. These two parameters are also used in
the beta probability density function (see Section
titled “Bayesian Reputation Systems”). For the
combination of beliefs, external or internal, an ag-
gregation function is used. “Majority consensus”

 2859

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges

functions are well-known for handling beliefs with
discrete values while numerical functions are more
appropriate for handing beliefs with continuous
values (Ding et al., 2004). The authors in Josang
(1999, 2001) use operators for the combination of
opinions that are not based on Dempster-Shaffer
theory as Yu and Singh do (2002).

In fuzzy models trust and reputation are de-
scribed with linguistic fuzzy values. Reasoning
is used in order to achieve the definition of a trust
level. The most important and completed example
is the system REGRET, which is described in the
“Social Networks” section.

role-based trust

These models are based on the notion of role and
its assigned permissions to operate in a system.
Hence, credentials are used to define access to
a system such as identity, authentication, and so
forth. Thus, an entity can be uniquely identified by
the system and can obtain a specific role. Roles are
used to give information about an entity. The key
is the trust management mechanism that employs
different languages and engines for reasoning on
rules for trust establishment. It is a model used in
access control systems and tries to determine the
trust level of an entity based on credentials and
security policies. A framework based on roles is
presented in Li and Mitchell (2003).

rEputAtIon And trust
EngInEErIng

Modeling trust requirements is the most important
issue in developing efficient systems. Especially
in cases where open systems are examined (e.g.,
MAS), this feature receives more attention. This
section of our work aims to show the basic elements
in which a requirements engineering procedure
must be based.

As mentioned, MAS are open systems with
members that change their behaviours continually.

They are characterized by openness, heterogene-
ity, and dynamic character. Selfish agents try to
locate partners in order to achieve their goals.
Main issues that must be taken into consideration
in MAS are:

• Agents’ identity. Each autonomous com-
ponent that interacts in a system should
have a unique name and should be able to
prove its identity. Identity is a requirement
when agents communicate with others,
because it shows to the potential partner
that the component is a registered user of
the system. Of course, a critical issue is the
administration of the names. For example, an
agent having bad reputation in a community
may change its name in order to avoid the
consequences.

• Agents’ communication. Agents’ com-
munication is also important. Developers of
MAS should introduce standards for com-
munication. A security policy is necessary
in order to avoid problems in the exchange
of messages. Corrupted messages should be
recognised by the recipients. Mechanisms
that can be use for safe communication
are authentication, cryptography, and so
forth.

• Agents’ context. The context in which each
agent is activated should be defined. Mecha-
nisms that take the context into consideration
should be developed. This could provide
efficiency in the cooperation procedure.

• Agents’ behaviour. Agents’ behaviour
should be observed by the interested mem-
bers and from the system. It is imperative to
have the opportunity to observe and recog-
nize bad or good behaviours in the system.
Based on behaviour, trust is developed and
members obtain a high reputation value in
the community. Constructive trust must be
promoted through the observation of interac-
tions of an agent in the society. Also, from
the systems’ point of view, mechanisms

2860

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges

that “punish” bad behaviours should be
developed.

In Wong and Sycara (1999), the authors pres-
ent a number of possible threats in MAS and
their potential solutions. The basic threats that
MAS may meet are related to corrupted naming
of agents, insecure communication channels,
insecure delegation and lack of accountability.
Synoptically, the proposed solutions are:

• The use of trusted agent name servers and
matchmakers.

• The provision of methods for the unique
identification of each agent and proofs for
their identifications.

• Secure the communication channels through
the authentication of messages.

• Force agents to prove their owners.
• The provision of methods through which

owners of the agents may be liable for their
actions.

Authors give a full description of these solu-
tions and explain the mechanisms with which
these goals will be achievable.

A methodology for agent-based software
development is described in Giorgini, Massacci,
and Zannone (2005) and Giorgini, Mouratidis,
and Zannone (2007). In TROPOS there are
phases through which the trust establishment is
feasible. The first phase is the requirement phase.
In this stage, the functional and the nonfunctional
requirements are determined in two subphases:
the early requirements phase and the late re-
quirements phase. The key concepts in secure
TROPOS are:

• Actor. It is an entity that represents a physi-
cal or software agent as well as a role or
position, having its goals and intentions.

• Goal. Represents actors’ interests that they
wish to accomplish.

• Plan. It concerns a number of steps targeting
to achieve a goal.

• Resource. It is a physical or an information
entity.

• Dependency. Indicates that an actor depends
on some other entity in order to complete
their goals.

Accordingly, in TROPOS four new relation-
ships are defined, which are: Ownership which
indicates that an actor has a goal, provisioning
which is the capability of an actor to achieve a goal
or to have a plan or to provide some information,
trust which indicates the belief of an actor that
another entity will perform some task according
to their goals and plans and delegation which
shows that an actor delegates to some other to
achieve its goals.

In TROPOS methodology, basic operations
are:

• The definition of the actor’s model and the
dependency model. The essential actors
should be recognised as well as the depen-
dencies among them from the point of view
of achieving their goals.

• The trust and delegation models. They de-
termine the relationships between actors.

• The goal and plan models. Such models
identify, from the viewpoint of actors, goals
and plans that are necessary to achieve
(sub)goals. Moreover, the resources needed
to this procedure are recognised.

An extension to classic TROPOS is the secu-
rity constraint modeling, which involves security
constraints posed by the actors and the system.
The architectural design development process for
this extension relies on the following:

1. Secure Architectural style model.
2. Actor model, Goal/plan model, and security

constraint model.

 2861

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges

3. Capability and secure capability model.
4. Agent model.

In this chapter, due to the space constraints,
we have presented only a short description of the
TROPOS methodology. For a full discussion the
interested reader should refer to the Giorgini et
al. (2005, 2007).

futurE dIrEctIons

Reputation and trust are important concepts in
today’s dynamic systems. However, there are some
open issues that must be addressed in order to
develop efficient methods for adoption in MAS.

First of all, for the construction of a theo-
retical framework that covers all the aspects of
reputation and trust generation, manipulation and
propagation is necessary. This model will set basic
specifications in which developers may be based
on, in order to construct efficient and productive
systems. Such a framework will set the essentials
that will allow the comparison of existing mod-
els. Today, this comparison is very difficult to
accomplish, because the existing models come
from specific domains and they are not based on
a common theoretical framework.

The social network dimension in MAS presents
new opportunities in reputation and trust man-
agement. However, it must be validated in real
applications in order to discover its advantages
and disadvantages. In social networks, there is an
extensive need to deal with problems related to
strategic lying and strategic coalition formation.
This domain must be further studied in order to
produce effective methods to deal with. Moreo-
ver, there is a need to define basic mechanisms
through which opinions of members can be
stored and secured in order to provide a higher
security level.

Interactions of agents are held in a system
under specific context. Context must be taken

into consideration when defining the trust and
reputation level of an entity. To the best of our
knowledge, only a few works deal with this issue.
Additionally, concern should be posed in trust
propagation in specific contexts. Propagation
allows the building of relations between all the
agents communicating in a system. New meth-
ods for propagation should be developed with
regard to the combination of the aforementioned
models such as statistical functions, belief and
fuzzy theory.

conclusIon

This chapter introduces the reader to the domain
of reputation and trust in Multi-agent systems. It
presents the existing reputation and trust quan-
tification methods that are used in commercial
and research applications. We show the impor-
tance of these two concepts especially in open
systems where control over the actions of agents
is limited. Also, the environment, where agents
act, may change at any time due to the nature
of the involved entities, which are autonomous
components trying to serve their owners. For this
reason, they are selfish and change their behavior
subject to new conditions. A lot of models have
been proposed for reputation and trust extraction
in specific domains. We shortly present the most
important of them, giving their basic character-
istics. Certain models are very simple, while
others are more sophisticated and utilize statisti-
cal functions, belief or fuzzy theory. Finally, we
discuss key contribution in the domain of trust
and reputation engineering. It is a critical field that
leads to more efficient and productive systems.
The engineering process must drive developers
to construct systems that pay special attention
to issues that ensure secure communication and
fair ratings for all.

Reputation and trust will play an important
role in future systems. Such concepts will be

2862

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges

extensively adopted and used for gaining access
to information sources in open environments like
MAS and the Semantic Web.

rEfErEncEs

Abdul-Rahman, A., & Hailes, S. (2000). Support-
ing trust in virtual communities. In Proceedings
of the Hawaii International Conference on System
Services (Vol. 6, pp. 6007).

Artz, D., & Gil, Y. (2006). Survey of trust in com-
puter science and the Semantic Web. Submitted
for publication, Information Sciences Institute,
University of Southern California. Retrieved
April 3, 2008, from http://www.isi.edu/~dono/pdf/
artz06survey.pdf

Ben-Gal, I. (2007). Bayesian networks. In F. Rug-
geri, F. Faltin, & R. Kenett (Eds.), Encyclopedia
of statistics in quality and reliability. John Wiley
& Sons.

Boella, G., & Van Der Torre, L. (2005). Normative
multiagent systems and trust dynamics. Trusting
agents for trusting electronic societies, LNAI
3577, (pp. 1-17).

Boella, G., Van Der Torret, L., & Verhagen, H.
(2006). Introduction to normative multiagent
systems. Computational & Mathematical Or-
ganisation Theory, 12(2-3), 71-79.

Carter, J., & Ghorbani, A. A. (2004). Value centric
trust in multiagent systems. In Proceedings of
the IEEE/WIC International Conference on Web
Intelligence, (pp. 3-9).

Castelfranchi, C., & Falcone, R. (1998). Social
trust: Cognitive anatomy, social importance,
quantification, and dynamics. In Proceedings of
the First International Workshop on Trust, Paris,
France, (pp. 72-79).

Dellarocas, C. (2000). Immunizing online reputa-
tion reporting systems against unfair ratings and

discriminatory behavior. In Proceedings of the
ACM Conference of Electronic Commerce, (pp.
150-157).

Dempster, A. P. (1968). A generalisation of Bay-
sianBayesian inference. Journal of the Royal
Statistical Society, Series B, 30, 205-247.

Deriaz, M. (2006). What is trust? My own point
of view. University of Geneva. Retrieved April
3, 2008, from http://cui.unige.ch/ASG/publica-
tions/TR2006/

Ding, L., Kolari., P., Ganjugunte, S., Finin, T., &
Joshi, A. (2004). Modeling and evaluating trust
network inference. In Proceedings of the 7th In-
ternational Workshop on Trust in Agent Societies
at AAMAS 2004, New York.

Doran, J. E., Franklin, S., Jennings, N. R., & Nor-
man, T. J. (1997). On cooperation in multi-agent
systems. The Knowledge Engineering Review,
12(3), 309-314.

Durfee, E. H., & Lesser, V. (1989). Negotiating
task decomposition and allocation using partial
global planning. In L. Gasser & M. Huhns (Eds.),
Distributed artificial intelligence (Vol. 2, pp. 229-
244). San Francisco: Morgan Kaufmann.

Giorgini, P., Massacci, F., & Zannone, N. (2005).
Security and trust requirements engineering.
Foundations of security analysis and design
III—tutorial lectures, LNCS 3655 (pp. 237-272).
Springer-Verlag.

Giorgini, P., Mouratidis, H., & Zannone, N.
(2007). Modelling security and trust with secure
TROPOS. Integrating security and software en-
gineering: Advances and future vision. Hershey,
PA: Idea Group.

Grandison, T., & Sloman, M. (2000). A survey
of trust in Internet applications. IEEE Commu-
nications Surveys and Tutorials, 4th Quarter,
3(4), 2-16.

 2863

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges

Guha, R., Kumar, R., Raghavan, P., & Tomkins,
A. (2004). Propagation of trust and distrust. In
Proceedings of the 13th International Conference
on World Wide Web (WWW 2004), New York,
(pp. 403-412).

Huynh, D., Jennings, N. R., & Shadbolt, N. R.
(2006). An integrated trust and reputation model
for open multi-agent systems. Autonomous Agents
and Multi-Agent Systems, 13(2), 119-154.

Josang, A. (1999). Trust-based decision making
for electronic transactions. In L. Yngstrm & T.
Scensson (Eds.), Proceedings of the 4th Nordic
Workshop on Secure Computer Systems. Stock-
holm, Sweden: Stockholm University Report
99-005.

Josang, A. (2001). A logic for uncertain prob-
abilities. International Journal of Uncertainty,
Fuzziness and Knowledge-Based Systems, 9(3),
279-311.

Josang, A., & Ismail, R. (2002). The Beta repu-
tation system. In Proceedings of the 15th Bled
Conference on Electronic Commerce, Slovenia,
(pp. 324-337).

Josang, A., Roslam, I., & Colin, B. (2006). A
survey of trust and reputation systems for online
service provision. Decision support systems.

Li, N., & Mitchell, J. C. (2003). RT: A role-based
trust-management framework. In Proceedings of
the 3rd DARPA Information Survivability Confer-
ence and Exposition (DISCEX III).

Lindsay, Y., Yu, W., Han, Z., & Ray Liu, K. J.
(2006). Information theoretic framework of trust
modelling and evaluation for the ad hoc networks.
IEEE International Journal on Selected Areas in
Communications, 24(2), 305-317.

McKnight, D. H., & Chervany, N. L. (1996). The
meanings of trust (Tech. Rep.). University of
Misessota, Management Information Systems
Research Center. Retrieved April 3, 2008, from
http://www.misrc.umn.edu/workingpapers/

Melaye, D., & Demazeau, Y. (2005). Bayesian dy-
namic trust model. In Proceedings of Multi-agent
Systems and Applications IV: 4th International
Central and Eastern European Conference on
Multi-agent Systems, CEEMAS 2005, (pp. 480-
489). Springer-Verlag, LNCS 3690.

Mui, L., Halberstadt, A., & Mohtashemi, M.
(2002). Notions of reputation in multi-agent
systems: A review. In Proceedings of the 1st
International Joint Conference on Autonomous
Agents and Multiagent Systems, Bologna, Italy,
(pp. 280-287).

Mui, L., Mohtashemi, M., Ang, C., Szolovtis, P.,
& Halberstadt, A. (2001). Ratings in distributed
systems: A bayesian approach. In Proceedings of
the Workshop on Information Technologies and
Systems (WITS), Miami, Fl.

Nwana, H. S. (1996). Software agents: An over-
view. The Knowledge Engineering Review, 11(3),
205-244.

Osman, N. (2006). Formal specification and veri-
fication of trust in multi-agent systems. School of
Informatics, University of Edinburgh. Retrieved
April 3, 2008, from http://homepages.inf.ed.ac.
uk/s0233771/trust.pdf

Poslad, S., Calisti, M., & Charlton, P. (2002).
Specifying standard security mechanisms in
multi-agent systems. In Proceedings of the
Workshop on Deception, Fraud and Trust in
Agent Societies, AAMAS 2002, Bologna, Italy,
(pp. 122-127).

Pujol, J. M., & Sanguesa, R. (2002). Reputation
measures based on social networks metrics for
multi agent systems. In Proceedings of the 4th
Catalan Conference on Artificial Intelligence
CCIA-01, Barcelona, Spain, (pp. 205-213).

Ramchourn, S. D., Huynh, D., & Jennings, N. R.
(2004). Trust in multi-agent systems. The Knowl-
edge Engineering Review, 19(1), 1-25.

2864

How Can We Trust Agents in Multi-Agent Environments? Techniques and Challenges

Rasmusson, L., & Jansson, S. (1996). Simulated
social control for secure Internet commerce. In
C. Meadows (Ed.), Proceedings of the 1996 New
Security Paradigms Workshop, (pp. 18-26).

Rubiera, J. C., Molina Lopez, M. J., & Muro D. J.
(2001). A fuzzy model of reputation in multi-agent
systems. In Proceedings of the 5th International
Conference on Autonomous Agents, Montreal,
Quebec, Canada, (pp. 25-26).

Sabater, J., & Sierra, C. (2002). Reputation and
social network analysis in multi-agent systems.
In Proceedings of the 1st International Joint Con-
ference on Autonomous Agents and Multiagent
Systems, Bologna, Italy, (pp. 475-482).

Schillo, M., Funk, P., & Rovatsos, M. (2000). Us-
ing trust for detecting deceitful agents in artificial
societies. Applied Artificial Intelligence, Special
Issue on Trust, Deception and Fraud in Agent
Societies, 14(8), 825-848.

Shafer, G. (1976). A mathematical theory of evi-
dence. Princeton University Press.

Sycara, K. P. (1998). Multiagent systems. Artificial
Intelligence Magazine, 19(2), 79-92.

Wang, Y., Hori, Y., & Sakurai, K. (2006). On
securing open networks through trust and repu-
tation–architecture, challenges and solutions. In
Proceedings of the 1st Joint Workshop on Infor-
mation Security, Seoul, Korea.

Wang, Y., & Vassileva, J. (2003). Bayesian net-
work-based trust model. In Proceedings of IEEE
International Conference on Web Intelligence,
Hallifax, Canada.

Whitby, A., Josang, A., & Indulska, J. (2004).
Filtering out unfair ratings in bayesian reputation
systems. In Proceedings of the AAMAS 2004,
New York.

Wong, H. C., & Sycara, K. (1999). Adding security
and trust to multi-agent systems. In Proceedings
of Autonomous Agents ’99 Workshop on Decep-
tion, Fraud, and Trust in Agent Societies, (pp.
149-161).

Yu, B., & Singh, P. M. (2002). An evidential
model of distributed reputation management. In
Proceedings of the 1st International Joint Con-
ference on Autonomous Agents and Multiagent
Systems, Bologna, Italy, (pp. 294-301).

Yu, B., & Singh, P. M. (2003). Detecting decep-
tion in reputation management. In Proceedings
of the 2nd International Joint Conference on
Autonomous Agents and Multiagent Systems,
Melbourne, Australia, (pp. 73-80).

Zadeh, L. A. (1989). Knowledge representation
in fuzzy logic. IEEE Transactions on Knowledge
and Data Engineering, 1(1), 89-100.

This work was previously published in Intelligence Integration in Distributed Knowledge Management, edited by D. Król and
N. Nguyen, pp. 132-153, copyright 2009 by Information Science Reference (an imprint of IGI Global).

 2865

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.15
Improving Credibility of

Machine Learner Models in
Software Engineering

Gary D. Boetticher
University of Houston – Clear Lake, USA

AbstrAct

Given a choice, software project managers fre-
quently prefer traditional methods of making
decisions rather than relying on empirical software
engineering (empirical/machine learning-based
models). One reason for this choice is the per-
ceived lack of credibility associated with these
models. To promote better empirical software
engineering, a series of experiments are conducted
on various NASA datasets to demonstrate the
importance of assessing the ease/difficulty of a
modeling situation. Each dataset is divided into
three groups, a training set, and “nice/nasty”
neighbor test sets. Using a nearest neighbor ap-
proach, “nice neighbors” align closest to same
class training instances. “Nasty neighbors” align
to the opposite class training instances. The “nice”,
“nasty” experiments average 94% and 20% ac-
curacy, respectively. Another set of experiments

show how a ten-fold cross-validation is not suf-
ficient in characterizing a dataset. Finally, a set
of metric equations is proposed for improving
the credibility assessment of empirical/machine
learning models.

IntroductIon

software project Management:
state-of-practice

Software project management has improved over
the years. For example, the Standish Group, a
consulting company, which has been studying
IT management since 1994 noted in their latest
release of the Chaos Chronicles (The Standish
Group, 2003) that, “2003 Project success rates
improved by more than 100 percent over the 16
percent rate from 1994.” Furthermore, “Project

2866

Improving Credibility of Machine Learner Models in Software Engineering

failures in 2003 declined to 15 percent of all
projects. This is a decrease of more than half of
the 31 percent in 1994.”

Even with these successes, there are still
significant opportunities for improvement in
software project management. Table 1 shows
several “state-of-practice” surveys collected in
2003 from IT companies in the United States (The
Standish Group, 2003); South Africa (Sonnekus
& Labuschagne, 2003); and the United Kingdom
(Sauer & Cuthbertson, 2003).

According to the Chaos Chronicles (The
Standish Group, 2003), successful projects refers
to projects that are completed on time and within
budget with all features fully implemented; project
challenged means that the projects are completed,
but exceed budget, go over time, and/or are lack-
ing some/all of the features and functions from
the original specifications; and project failures
are those projects which are abandoned and/or
cancelled at some point.

Applying a weighted average to Table 1 results
in 34% of the projects identified as successful,
50% are challenged, and 16% end up in failure.
Thus, about one-third of the surveyed projects end
up as a complete success, half the projects fail to
some extent, and one sixth end up as complete
failures. Considering the role of computers in vari-
ous industries, such as the airlines and banking,
these are alarming numbers.

From a financial perspective,1 the lost dollar
value for U.S. projects in 2002 is estimated at $38
billion with another $17 billion in cost overruns
for a total project waste of $55 billion against $255

billion in project spending (The Standish Group,
2003). Dalcher and Genus (2003) estimate the
cost for low success rates at $150 billion per year
attributable to wastage arising from IT project
failures in the Unites States, with an additional
$140 billion in the European Union. Irrespective
of which estimate is adopted, it is evident that
software project mismanagement results in an
annual waste of billions of dollars.

Empirical software Engineering

One of the keys for improving the chances of
project development success is the application of
empirical-based software engineering. Empiri-
cal-based software engineering is the process
of collecting software metrics and using these
metrics as a basis for constructing a model to
help in the decision-making process.

Two common types of software metrics are
project and product metrics. Project metrics refer
to the estimated time, money, or resource effort
needed in completing a software project. The
Standish Group (2003) perceives software cost
estimating as the most effective way to avoid cost
and schedule. Furthermore, several studies (Jones,
1998; The Standish Group, 2003) have shown that
by using software cost-estimation techniques, the
probability of completing a project successfully
doubles. Thus, estimating the schedule, cost, and
resources needed for the project is paramount for
project success.

Product metrics are metrics extracted from
software code and are frequently used for soft-

Table 1. State-of-practice surveys

Year Successful Challenged Failure Projects Surveyed

United States (Chaos Chronicles III) 34% 51% 15% 13,522

South Africa 43% 35% 22% 1,633

United Kingdom 16% 75% 9% 421

 2867

Improving Credibility of Machine Learner Models in Software Engineering

ware defect prediction. Defect prediction is a
very important area in the software development
process. The reason is that a software defect
dramatically escalates in cost over the software
life cycle. During the coding phase, finding and
correcting defects costs $977 per defect (Boehm
& Basili, 2001). In the system-testing phase, the
cost jumps to $7,136 per defect (Boehm et al.,
2001). If a defect survives to the maintenance
phase, then the cost to find and remove increases
to $14,102 (Boehm et al., 2001).

From an industry perspective, Tassey (2002)
estimates that the annual cost of software defects
in the United States is $59.5 billion and that
“feasible” improvements to testing infrastruc-
tures could reduce the annual cost of software
defects in the United States by $22.2 billion. The
Sustainable Computing Consortium (SCC), an
academic, government, and business initiative
to drive IT improvements, estimates that from a
global perspective, defective computer systems
cost companies $175 billion annually. Thus, there
are major financial incentives for building models
capable of predicting software defects.

There are primarily two methods for construct-
ing models in empirical software engineering.
The first adopts an empirical approach which
emphasizes direct observation in the modeling
process and results in one or more mathematical
equations. Common examples of this approach
include COCOMO I (Boehm, 1981), COCOMO
II (Boehm et al., 2000), function points (Albre-
cht, 1979; Albrecht & Gaffney, 1983), and SLIM
(Putnam, 1978) for effort estimation. The second
method automates the observation process by us-
ing a machine learning approach to characterize
relationships. Examples of machine learners in-
clude Bayesian belief networks (BBN), case-based
reasoners (CBR), decision tree learners, genetic
programs, and neural networks. The by-product
of applying these learners include mathematical
equations, decision trees, decision rules, and a set
of weights as in the case of a neural network. For
the purpose of this chapter, a cursory description

will suffice; further details regarding the applica-
tion of machine learners in software engineering
may be found at Khoshgoftaar (2003), Pedrycz
(2002), and Zhang and Tsai (2005).

Although the financial incentives are huge,
empirical software engineering has received
modest acceptance by software practitioners. A
project manager may estimate a project by using
a human-based approach, an empirical approach,
or a machine learning approach. Even though
popular models, such as COCOMO or function
points, have existed for 25 or more years their
application is rather low. In 2004, Jørgensen
(2004) compiled a series of studies regarding the
frequency of human-based estimation and found
it is used 83% (Hihn & Habib-Agahi, 1991), 62%
(Heemstra & Kusters, 1991), 86% (Paynter, 1996),
84% (Jørgensen, 1997), and 72% (Kitchenham,
Pfleeger, McColl, & Eagan, 2002). It is evident that
human-based estimation is the dominant choice
relative to empirical or machine learning-based
estimation. Furthermore, Jørgensen (2004) states
the empirical-based estimation ranges from about
7 to 26% and machine learning-based estimation
is only about 4 to 12%.

A key question is “Why haven’t empirical-
based models and particularly machine learner
models gained greater acceptance by software
practitioners?”

One possible answer to this question is the
difficulty in assessing the credibility of these
models. A model may boast accurate results, but
these results may not be realistic. Thus, the lack
of perceived credibility makes it difficult for
software practitioners to adopt a new technology
within their software development process.

It may be argued that “credibility processes”
exist in the form of n-fold cross validation and
accuracy measures. Unfortunately, none of
these approaches address the issue of a dataset’s
difficulty (how easy or hard it is to model). An
empirical model that produces spectacular results
may be the consequence of a test set that closely
resembles a training set rather than the capabil-

2868

Improving Credibility of Machine Learner Models in Software Engineering

ity of empirical learner. The outcome is a set of
unrealistic models that is unlikely to be adopted
by industry. Without a mechanism for assessing
a dataset’s difficulty, empirical/machine learning
models lose credibility.

This chapter introduces several credibil-
ity metrics which may be incorporated into the
model formulation process with the goal of giv-
ing greater credibility. Before introducing these
metrics, a series of experiments are conducted
to demonstrate some of the difficulties in using
a dependent variable for making sampling deci-
sions. The dependent variable, also known as
the class variable, is the attribute we are trying
to predict from a set of independent (non-class)
variables. The initial set of experiments demon-
strates the importance of sampling on non-class
attributes. These experiments examine the “best
case” versus “worst case” for a NASA-based defect
repository dataset.

Next, a second set of experiments demonstrates
that a ten-fold cross validation may not be suf-
ficient in building realistic models.

After demonstrating some of the inadequacies
of current validation processes, several credibility
metrics are introduced. These metrics measure
the difficulty of a dataset. Adoption of these met-
ric equations will lead to more realistic models,
greater credibility to models, and an increased
likelihood that software practitioners will embrace
empirical software engineering.

rElAtEd rEsEArch

This section provides a general overview of differ-
ent sampling/resampling techniques, a description
of the K-nearest neighbor (KNN) algorithm, and
an overview of assessing models for accuracy.

Traditional sampling typically adopts a
random, stratified, systematic, or clustered
approach. The randomized approach, which is
the simplest, randomly selects tuples to be in the
test set. One way to improve estimates obtained

from random sampling is by arranging the popu-
lation into strata or groups. A non-class attribute
(e.g., age, gender, or income) is used to stratify
samples. Systematic sampling orders data by an
attribute, then selects every ith element on the
list afterwards. Cluster sampling is a method of
selecting sampling units in which the unit contains
a cluster of elements (Kish, 1965). Examples of
cluster samples may include all students of one
major from all university students or residents
from a particular state.

When extracting samples for a test set, sys-
tematic and cluster sampling focus on the class
(or dependent) variable. Stratified sampling may
use a non-class variable, but typically this is lim-
ited to at most one of the non-class variables and
does not consider the non-class attribute in light
of the class attribute. The problem is that non-
class (independent) variables contain a lot of vital
information which needs to be considered when
partitioning tuples into training and test sets.

An n-fold cross validation is a resampling
method for validating a model. For this technique,
data is partitioned into n-classes, and n models
are constructed with each of the n-classes rotated
into the test set. N-fold cross validation addresses
the issue of data distribution between training
and test sets, but does not consider difficulty in
modeling the training data.

The K-nearest neighbor (KNN) algorithm is
a supervised learning algorithm which classifies
a new instance based upon some distance formula
(e.g., Euclidean). The new instance is classified to
a category relative to some majority of K-nearest
neighbors. Traditionally, the KNN algorithm is
viewed as a machine learner, rather than a method
for dividing training and test data.

Regarding approaches for measuring accuracy,
Shepperd, Cartwright, and Kadoda (2000) discuss
the merits of various methods for measuring ac-
curacy including TotalError, TotalAbsoluteError,
TotalRelativeError, BalancedMMRE, MMRE,
Pred(X), Mean Squared Error, and R2. There is
validity in using one or more of these accuracy

 2869

Improving Credibility of Machine Learner Models in Software Engineering

methods. However, they do not provide any in-
formation regarding the difficulty in modeling
a dataset.

A sIMplE EXAMplE

To illustrate why it is important to consider the
relationship between non-class attributes over a
training and test set, consider the dataset in Table
2. It consists of three attributes: source lines of
code (SLOC); v(g), also known as cyclomatic
complexity, which equals the number of decision
points within a program plus one; and defects.
For this example, defects refer to the number of
software defects present in a software component.
If a software component has zero defects, then
it is classified as an A, otherwise it is classified
as a B.

Figure 1 plots these points. The points form
4 clusters of As and Bs, respectively.

If the goal is to build a model for predicting
software defects, a systematic sampling approach
may be applied, which generates the training and
test sets in Tables 3a and 3b.
Applying a nearest neighbor approach to the non-
class attributes, it is clear that the As in the test set
match the As in the training set. This is depicted
as arrows between Tables 3a and 3b. The same is
true for those defects in the B class. It is expected
that such an experiment would produce very
good results irrespective of the machine learner
selected. Figure 2 highlights training samples
with gray boxes.

Suppose a second experiment is conducted us-
ing stratified sampling and produces the training
and test sets in Tables 4a and 4b.

Applying a nearest neighbor approach to the
non-class attributes, it is clear that the As in the
test set match a B instance in the training set. Also,
the Bs in the test set match an A instance in the
training set. It is expected that such an experiment
would generate very poor results irrespective of
the machine learner selected. Figure 3 highlights

training samples with gray boxes.
By ignoring nearest neighbors when build-

ing models, success/failure may be a function of
the nearest neighbor distribution rather than the
capability of the algorithm/machine-learner.

To illustrate the importance of considering
nearest neighbor in training/test distribution,
a series of experiments are conducted using
NASA-based defect data. Although the focus is
on defect data, the idea easily extends to other
types of software engineering data (e.g., effort
estimation data).

nAsA dAtAsEts

To demonstrate how non-class attributes dra-
matically impact the modeling process, a series
of experiments are conducted against five NASA
defect datasets. These experiments fall into two
categories. The “nice” experiments use a test set
where the non-class attributes of the test data have
nearest-neighbors in the training set and are the
same class value. The “nasty” experiments use a
test set where the non-class attributes of the test
data have nearest-neighbors in the training set
with an opposite class value.

All experiments use five public domain defect
datasets from the NASA Metrics Data Program
(MDP) and the PROMISE repository (Shirabad
& Menzies, 2005). These five datasets, referred to
as CM1, JM1, KC1, KC2, and PC1, contain static
code measures (e.g., Halstead, McCabe, LOC)
along with defect rates. Table 5 provides a project
description for each of these datasets.

Each dataset contains 21 software product
metrics based on the product’s size, complexity,
and vocabulary. The size metrics include total
lines of code, executable lines of code, lines of
comments, blank lines, number of lines contain-
ing both code and comments, and branch count.
Another three metrics are based on the product’s
complexity. These include cyclomatic complex-
ity, essential complexity, and module design

2870

Improving Credibility of Machine Learner Models in Software Engineering

complexity. The other 12 metrics are vocabulary
metrics. The vocabulary metrics include Halstead
length, Halstead volume, Halstead level, Halstead
difficulty, Halstead intelligent content, Halstead
programming effort, Halstead error estimate,
Halstead programming time, number of unique

operators, number of unique operands, total
operators, and total operands.

The class attribute for each dataset refers to
the propensity for defects. The original MDP
dataset contains numeric values for the defects,
while the PROMISE datasets convert the numeric

Table 2. Simple dataset

SLOC v(g) Defects

81 13 A

87 13 A

182 33 A

193 32 A

53 10 B

58 10 B

140 30 B

150 27 B

Figure 1. Plot of tuples from Table 2

Table 3a. Training data

SLOC v(g) Defects SLOC v(g) Defects

81 13 A 87 13 A

182 33 A 193 32 A

58 10 B 53 10 B

150 27 B 140 30 B

Table 3b. Test data

 2871

Improving Credibility of Machine Learner Models in Software Engineering

values to Boolean values where TRUE means a
component has one or more defects and FALSE
equates to zero defects. The reason for the con-
version is that the numeric distribution displayed
signs of an implicitly data-starved domain (many
data instances, but few of interest) where less
than 1% of the data has more than five defects
(Menzies, 2005a).

dAtA prE-procEssIng

Data pre-processing removes all duplicate tuples
from each dataset along with those tuples that
have questionable values (e.g., LOC equal to 1.1).
Table 6 shows the general demographics of each
of the datasets after pre-processing.

nEArEst nEIghbor
EXpErIMEnts

training and test set formulation

To assess the impact of nearest-neighbor sampling
upon the experimental process, 20 experiments
are conducted on each of the five datasets.

For each experiment, a training set is con-
structed by extracting 40% of data from a given
dataset. Using stratified sampling to select 40%
of the data maintains the ratio between defect/
non-defect data. As an example, JM1 has 8,911
records, 2,007 (22.5%) of which have one or more
defects. A corresponding training set for the JM1
project contains 3,564 records, 803 (22.5%) of
which are classified as having one or more de-
fects (TRUE).

Figure 2. Plot of training and test sets (Square boxes are training samples)

Table 4a. Training data

SLOC v(g) Defects SLOC v(g) Defects

81 13 A 182 33 A

87 13 A 193 32 A

140 30 B 53 10 B

150 27 B 58 10 B

Table 4b. Test data

2872

Improving Credibility of Machine Learner Models in Software Engineering

It could be argued that a greater percentage
(more than 40%) of the data could be committed
to the training set. There are several reasons for
choosing only 40%. First, Menzies claims that
only a small portion of the data is needed to build
a model (Menzies, Raffo, Setamanit, DiStefano,
& Chapman, 2005b). Second, since the data is
essentially a two-class problem, there was no
concern about whether each class would receive
sufficient representation. Finally, it is necessary
to insure that there is a sufficient amount of test
data for assessing the results.

Once a training set is established, the remain-
ing 60% of the data is partitioned into two test
groups. Prior to splitting the test data, all of the
non-class attributes are normalized by dividing
each value by the Difference (Maximumk – Mini-

mumk for each column k). This guarantees that
each column receives equal weighting. The next
step loops through all the test records. Each test
record is compared with every training record to
determine the minimum Euclidean Distance for
all of the non-class attributes. If the training and
test tuples with the smallest Euclidean Distance
share the same class values (TRUE/TRUE or
FALSE/FALSE), then the test record is added to
the “nice neighbor” test set, otherwise add it to
the “nasty neighbor” test set. Figure 4 shows the
corresponding algorithm.

Essentially, this is the K-nearest neighbor
algorithm that determines a test tuple’s closest
match in the training set. Nearest neighbors from
the same class are considered “nice”, otherwise
they are classified as “nasty.”

Figure 3. Plot of training and test sets (Square boxes are training samples)

Table 5. Project description for each dataset

Project Source
Code Description

CM1 C NASA spacecraft instrument

KC1 C++ Storage management for receiving/processing ground data

KC2 C++ Science data processing. No software overlap with KC1.

JM1 C Real-time predictive ground system

PC1 C Flight software for earth orbiting satellite

 2873

Improving Credibility of Machine Learner Models in Software Engineering

All experiments use the training data to build a
model between the non-class attributes (e.g., size,
complexity, or vocabulary) and the class attribute
defect (which is either True or False).

After constructing 300 datasets (one train-
ing set and two tests sets; 20 trials per software
project; five software projects), attention focuses
on data mining tool selection.

data Mining tool selection

Since the data contains 20-plus attributes and
only two class values (TRUE/FALSE), the most
reasonable data mining tool in this situation is
a decision tree learner. A decision tree selects
an attribute which best divides the data into
two homogenous groups (based on class value).

Project
Original

Size
Size w/ No

Bad, No Dups
0

Defects
1+

Defects
%

Defects

CM1 498 441 393 48 10.9%

JM1 10,885 8911 6904 2007 22.5%

KC1 2109 1211 896 315 26.0%

KC2 522 374 269 105 28.1%

PC1 1109 953 883 70 7.3%

Table 6. Data pre-processing demographics

Figure 4. Nice/nasty neighbor algorithm

2874

Improving Credibility of Machine Learner Models in Software Engineering

The split selection recursively continues on the
two or more subtrees until all children of a split
are totally homogenous (or the bin dips below a
prescribed threshold). Decision tree learners are
described as greedy in that they do not look ahead
(two or more subtree levels) due to the associated
computational complexity.

One of the most popular public domain
data mining tools is the Waikato environment
for knowledge analysis (Weka) tool (Witten &
Franks, 2000). Weka is an open-source machine
learning workbench. Implemented in Java, Weka
incorporates many popular machine learners
and is widely used for practical work in machine
learning. According to a recent KDD poll (KDD
Nuggets Web site, 2005), Weka was rated number
two in terms of preferred usage as compared to
other commercial and public domain tools.

Within Weka, there are many learners avail-
able. The experiments specifically use the naïve
Bayes and J48 learners for analysis. There are
reasons for adopting these tools. First, these tools
performed very well in more than 1,000 data min-
ing experiments conducted by the author. Second,
success in using these particular learners was
noted by Menzies et al. (2005b) in their analysis
of the NASA defect repositories.

A naïve Bayes classifier uses a probabilistic
approach to assign the most likely class for a
particular instance. For a given instance x, a
naïve Bayes classifier computes the conditional
probability

 P (C = ci | x) = P(C = ci | A1 = ai1,…An = ain)
 (1)

for all classes ci and tries to predict the class
which has the highest probability. The classifier
is considered naïve (Rish, 2001) since it assumes
that the frequencies of the different attributes are
independent.

A second learner, J48, is based on Quinlan’s
C4.5 (Quinlan, 1992).

Assessment criteria

The assessment criterion uses four metrics in all
experiments to describe the results. They are:

• PD, which is the probability of detection.
This is the probability of identifying a mod-
ule with a fault divided by the total number
of modules with faults.

• PF, which is the probability of a false alarm.
This is defined as the probability of incor-
rectly identifying a module with a fault
divided by the total number of modules with
no faults.

• NF, which is the probability of missing an
alarm. This is defined as the probability of
incorrectly identifying a module where the
fault was missed divided by the total number
of modules with faults.

• Acc, which is the accuracy. This is the
probability of correctly identifying faulty
and non-faulty modules divided by the total
number of modules under consideration.

Each of these metrics is based on simple equa-
tions constructed from Weka’s confusion matrix
as illustrate by Table 7.

PD is defined as:

 PD = A / (A+B) (2)

PF is defined as:

 PF = C / (C + D) (3)

NF is defined as:

 NF = A / (A + B) (4)

and Acc is defined as:

 Acc = (A + D) / (A + B + C + D) (5)

 2875

Improving Credibility of Machine Learner Models in Software Engineering

Based on the example in Table 7, the corre-
sponding values would be:

 PD = 50 / (50 + 200) = 20% (6)

 PF = 100 / (100 + 900) = 10% (7)

 NF = 200 / (200 + 50) = 80% (8)

 Acc = (50 + 900) / (50 + 100 + 200 + 900
) = 76% (9)

results

Table 8 shows the accuracy results of the 20 experi-
ments per project. As might be expected, the “nice”
test set did very well for all five projects for both
machine learners averaging about 94% accuracy.
Its counterpart, the “nasty” test set, did not fare
very well, averaging about 20% accuracy.

It is interesting to note that the JM1 dataset,
with 7 to 20 times more tuples than any of the
other projects, is above the overall average for the
“nice” datasets, and below the overall average
on the “nasty” datasets. Considering the large
number of tuples in this dataset and how much of
the solution space is covered by the JM1 dataset,
it would seem that a tuple in the test set would
have difficulty aligning to a specific tuple in the
training set.

Regarding PD, the results as expressed in Table
9 for the “nice” test set are superior to the “nasty”

test set for the learners. An overall weighted aver-
age is preferred over a regular average in order
not to bias the results towards those experiments
with very few defect samples.

The results in Table 9 can be misleading.
Seventy-six of the 100 “nice” test sets contained
zero defect tuples. Of the remaining 24 “nice” test
sets, only 2 of these 24 had 20 or more samples
with defects.

The “nice” test set did very well at handling
false alarms as depicted in Table 10. The “nasty”
test set triggered alarms about 18 to 37% of the
time depending upon learner. Overall, the sample
size is small for the “nasty” test sets. Ninety per-
cent (from the 100 experiments) of the “nasty”
test sets contain zero instances of non-defective
data. For the remaining 10 “nasty” datasets, only
three contain 10 or more instances of non-defec-
tive modules.

To better understand these results, consider
Tables 11 and 12. These tables show the weighted
averages (rounded) of all confusion matrices for
all 100 experiments (20 per test group). In the
“nice” test data, 99.6% are defined as having
no defects (FALSE). Less than 1% of the tuples
actually contain defects. Although the “nice” test
sets fared better than the “nasty” test sets regard-
ing defect detection, the relatively few samples
having one or more defects in the “nice” test sets
discount the results.

Analyzing the “nasty” datasets in Tables 11 and
12 reveal that 97.2% (e.g., (50 + 249)/(50+249+2+7))
of the data contains one or more defects.

Table 7. Definition of the confusion matrix

A Defect is Detected. A Defect is not Detected.

A Defect is
Present.

A = 50
Predicted=TRUE
Actual= TRUE

B = 200
Predicted= FALSE

Actual= TRUE

A Defect is not
Present.

C = 100
Predicted= TRUE
Actual=FALSE

D = 900
Predicted= FALSE

Actual= FALSE

2876

Improving Credibility of Machine Learner Models in Software Engineering

Table 8. Accuracy results from all experiments

“Nice” Test Set “Nasty” Test Set

J48 Naïve
Bayes J48 Naïve

Bayes

CM1 97.4% 88.3% 6.2% 37.4%

JM1 94.6% 94.8% 16.3% 17.7%

KC1 90.9% 87.5% 22.8% 30.9%

KC2 88.3% 94.1% 42.3% 36.0%

PC1 97.8% 91.9% 19.8% 35.8%

Average 94.4% 93.6% 18.7% 21.2%

Table 9. Probability of detection results

“Nice” Test Set “Nasty” Test Set

J48 Naïve
Bayes J48 Naïve

Bayes

CM1 0.0% 0.0% 5.9% 37.4%

JM1 71.9% 92.9% 14.9% 16.4%

KC1 45.8% 87.5% 22.7% 31.0%

KC2 100.0% 100.0% 42.2% 36.0%

PC1 11.7% 75.0% 10.9% 30.8%

Overall
Weighted
Average

45.6% 60.8% 16.8% 20.0%

Table 10. Probability of false alarms results

“Nice” Test Set “Nasty” Test Set

J48 Naïve
Bayes J48 Naïve

Bayes

CM1 2.6% 11.7% 0.0% 50.0%

JM1 5.1% 5.0% 61.7% 66.1%

KC1 9.0% 12.5% 46.4% 91.7%

KC2 11.8% 5.9% 0.0% 50.0%

PC1 1.7% 7.9% 1.9% 70.6%

Overall
Weighted
Average

5.4% 6.3% 18.5% 37.1%

 2877

Improving Credibility of Machine Learner Models in Software Engineering

Referring back to the right-most column of
Table 6, the percentage of defects to the total
number of modules ranged from 7.3 to 28.1%.
Considering that all training sets maintained
their respective project ratio of defects to total
components, it is quite surprising that the “nice”
and “nasty” datasets would average such high
proportions of non-defective and defective com-
ponents, respectively.

To better understand these results, two addi-
tional experiments are conducted using the KC1
dataset. The first experiment randomly allocates
60% of the data to the training set, while the sec-

ond allocates 50% of the data. Both experiments
maintain a defect/non-defective ratio of 26% (see
Table 6). For both experiments, the test data is
divided into eight groups using a three-nearest
neighbor approach. For each test vector, its three
closest neighbors from the training set are deter-
mined. These neighbors are ranked based on first,
second, to third closest neighbor. A “P” means
that there is a positive match (same class), and an
“N” means there is a negative match (opposite
class). Thus, a “PPN” means that the first and
second closest matches are from the same class
and the third closest match is from the opposite

Table 12. Confusion matrix, nasty test set (rounded)

J48 Naïve Bayes

50 249 60 241

2 7 3 5

Table 11. Confusion matrix, nice test set (rounded)

J48 Naïve Bayes

2 3 3 2

58 1021 68 1011

Table 13. KC1 data, KNN=3, 60% of training data

Accuracy

Neighbor
Description

of
TRUEs

of
FALSEs J48

Naïve
Bayes

PPP None None NA NA

PPN 0 354 88 90

PNP 0 5 40 20

NPP None None NA NA

PNN 3 0 100 0

NPN 13 0 31 100

NNP 110 0 25 28

NNN None None NA NA

2878

Improving Credibility of Machine Learner Models in Software Engineering

class. Thus, the best case would be a “PPP” where
the three closest training vectors are all from the
same class.

Tables 13 and 14 show the results from these
experiments. It is interesting to note that all eight
bins contain homogenous (all TRUEs, or all
FALSEs) data. There is a general trend for the
bin configuration to change from all non-defec-
tive tuples (all FALSEs) to all defective tuples
(TRUEs) as the neighbor status changes from
all positives (PPP) to all negatives (NNN). Also,
the accuracy seems positively correlated to the
nearest neighbor classifications.

These last two sub-experiments confirm the
results achieved in Tables 11 and 12.

ten-fold/duplicates Experiment

The next experiment demonstrates that a ten-fold
cross validation does not provide a total perspec-
tive regarding the validation of a dataset.

This experiment uses the five NASA data-
sets described in the earlier sections. For each
dataset, two types of experiments are conducted:
the first uses the original dataset (less bad data)
with duplicates, and a second where duplicates
are removed. Note that each original dataset had
only one bad data sample. Each experiment uses
a ten-fold cross validation for each of the 20 trials.
A defect prediction model is constructed based
on the C4.5 learner from Weka (J48) using the
default settings.

Table 14. KC1 data, KNN=3, 50% of training data

Accuracy

Neighbor
Description

of
TRUEs

of
FALSEs J48

Naïve
Bayes

PPP 0 19 89 84

PPN 0 417 91 91

PNP 0 13 23 0

NPP None None NA NA

PNN None None NA NA

NPN 18 0 100 100

NNP 132 0 20 20

NNN 7 0 0 29

Table 15. Duplicate/no duplicate experimental results

 Accuracy Average of 29 Runs

With
Duplicates

No
Duplicates

CM1 88.07% 87.46%

JM1 79.68% 76.56%

KC1 84.29% 74.03%

KC2 81.65% 76.22%

PC1 93.43% 91.65%

 2879

Improving Credibility of Machine Learner Models in Software Engineering

Table 15 shows the results from these experi-
ments. For all five NASA datasets, the learner
produces a better model with the inclusion of
duplicates. A t-test shows that these differences
are statistically significant for all five NASA
datasets.

In these experiments, the duplicates are the
“nice neighbors” described in the previous set of
experiments. Performing a ten-fold cross valida-
tion insures that datasets with duplicates will
have a distinct advantage over datasets without
duplicates.

dIscussIon

In general, project managers are reluctant to
embrace empirical-based models in their decision-
making process. Jørgensen (2004) estimates more
than 80% of all effort estimation is human-based
and only about 4% is machine learning-based. If
empirical software engineering is going to have
any hope of gaining favor with project managers,
then it is critical that the modeling process be
understood very well.

The first set of experiments shows the extreme
range of answers in corresponding best case/worst
case scenarios. These experiments clearly indicate
how significantly nearest-neighbor sampling in-
fluences the results despite the fact that no dataset
had any duplicates.

The second set of experiments reflects a more
realistic situation where an empirical software
engineer may (or may not) include duplicates in
the modeling process. The difference in results
is statistically significant. For some learners, the
issue of duplicates is not a problem. However, as
seen with the C4.5 learner, it is a problem.

In order to avoid building artificial models,
perhaps the best approach would be to not allow
duplicates within datasets. Another attribute could
be added to the dataset, Number of Duplicates,
so that information regarding duplicates is not
lost.

This solves the issue of duplicates within
datasets, however it does not address the issue
regarding the synergy between testing and train-
ing datasets (“nice” versus “nasty” test sets). The
next section addresses this issue.

bEttEr crEdIbIlIty through
nEArEst nEIghbor-bAsEd
sAMplIng

As demonstrated in the first set of experiments, it is
evident that nearest-neighbor test data distribution
dramatically impacts experimental results. The
question is How may nearest-neighbor sampling
be incorporated into the project development
process in order to generate realistic models?

There are at least two possible solutions: one of
which adapts to an organization’s current software
engineering processes; the second solution offers
an alternative process.

In the first approach, a software engineer
determines the nearest neighbor for each of the
tuples in the test set (based on non-class attributes),
relative to the training set. If the test tuple’s nearest
neighbor in the training set shares the same class
instance value, then add 1 to a variable called
Matches. Matches will be used to define a metric
called Experimental Difficulty (Exp_Difficulty)
as follows:

 Exp_Difficulty = 1 - Matches / Total_Test_In-
stances (10)

The Experimental Difficulty provides a
qualitative assessment of the ease/difficulty for
modeling a given dataset. Combining this metric
with an accuracy metric would offer a more re-
alistic assessment of the results. For example, a
“Exp_Difficulty * Accuracy” would give a more
complete picture regarding the goodness of a
model leading to better model selection and more
credible models. For an n-fold cross validation,

2880

Improving Credibility of Machine Learner Models in Software Engineering

the Experimental Difficulty could be calculated
for each fold, then averaged over the n folds.

A second approach starts with the whole
dataset prior to partitioning into training and
test sets. For each tuple in the dataset, its nearest
neighbor (with respect to the non-class attributes)
is determined. Add 1 to the Match variable if a
tuple’s nearest neighbor is from the same class.
Modifying Equation 10 results in the following
equation:

 Overall_Difficulty = 1 - Matches / Total_
Data_Instances (11)

This gives an idea of the overall difficulty of
the dataset. A software engineer may partition the
data in order to increase (or decrease) Experimen-
tal_Difficulty. In the context of industrial-based
benchmarks, the Experimental_Difficulty may
be adjusted to coincide to a value adopted by
another researcher. This lends greater credibility
to comparing experimental results.

Considering an estimated 99% of the world’s
datasets are proprietary, this approach provides
an additional benchmark for those models con-
structed on private datasets. Furthermore, these
metric equations provide a means for assessing
the robustness of the results.

conclusIons

Most datasets are proprietary in nature, making
it impossible to replicate results in this situation.
As demonstrated by the NASA experiments, not
all data distributions result in similar results. This
work extends previous research in defect predic-
tion (Khoshgoftaar, 2003; Porter & Selby, 1990;
Srinivasan & Fisher, 1995; Tian & Zelkowitz,
1995) by conducting nearest-neighbor analysis for
gaining a deeper understanding of how datasets re-
late to each other, and thus the need for developing
more realistic empirical/machine learning-based

models. In the first set of NASA experiments,
the “nice” dataset experiments (easy datasets to
model) resulted in an average accuracy of 94.0%
and the “nasty” dataset experiments (difficult
datasets to model) produced an average accuracy
of 19.5%. These results suggest that success in
modeling a training dataset may be attributable
to the ease/difficulty of the dataset, rather than
the capability of the machine learner.

Including duplicates within a dataset reduces
the difficulty of a dataset since similar tuples may
appear in both the training and test sets. This
research proposes removing duplicates in order
to eliminate any bias.

Finally, this work proposes a set of metric
equations for measuring the difficulty of a da-
taset. Benefits of using these metric equations
include:

• The creation of more realistic models.
These metrics will help the software engi-
neering community better gauge the robust-
ness of a model.

• Greater credibility for models based on
private datasets. Since most datasets are
proprietary, it is difficult to assess the qual-
ity of a model built in this context. Using
the proposed metrics will make it easier
to compare experiment results when the
replication is impossible.

• Greater chances of adoption by the in-
dustrial community. As mentioned earlier,
human-based estimation is still the method
of choice. By providing a difficulty metric
with a set of results, project managers will be
able to assess the goodness of an empirical
model. This will make it easier for a proj-
ect manager to trust an empirical/machine
learning-based model. Thus making it easier
for the industrial community to more read-
ily adopt empirical software engineering
approaches.

 2881

Improving Credibility of Machine Learner Models in Software Engineering

futurE dIrEctIons

This work could be extended from a two-class
to an n-class problem. For example, the NASA
datasets could be divided into four classes, (0, 1,
2, 3+ defects).

Another common type of software engineer-
ing dataset estimates programming effort. Thus,
a likely future direction would examine these
types of datasets.

Finally, it would be interesting to see whether
accuracy results could be scaled by the “dataset
difficulty metrics” in order to make better com-
parisons over datasets of varying difficulty.

rEfErEncEs

Albrecht, A. J. (1979). Measuring application
development productivity. In the Proceedings of
the Joint SHARE, GUIDE, and IBM Application
Development Symposium.

Albrecht, A. J., & Gaffney, J. E. (1983). Software
function, source lines of code, and development
effort prediction: A software science validation.
IEEE Transactions on Software Engineering,
9(2).

Boehm, B. (1981). Software engineering econom-
ics. Englewood Cliffs, NJ : Prentice-Hall. ISBN
0-13-822122-7.

Boehm, B., Abts, C., Brown, A., Chulani, S.,
Clark, B., Horowitz, E., Madachy, R., Reifer, D.,
& Steece, B. (2000). Software cost estimation
with Cocomo II. Pearson Publishing.

Boehm, B., & Basili, V. (2001). Software defect
reduction top 10 list. IEEE Computer, 34(1),
135-137.

Dalcher, D., & Genus, A. (2003). Avoiding IS/IT
implementation failure. Technology Analysis and
Strategic Management, 15(4), 403-407.

Heemstra, F. J., & Kusters, R. J. (1991). Function
point analysis: Evaluation of a software cost esti-
mation model. European Journal of Information
Systems, 1(4), 223-237.

Hihn, J., & Habib-Agahi, H. (1991). Cost estima-
tion of software intensive projects: A survey of
current practices. In International Conference on
Software Engineering (pp. 276-287). Los Alami-
tos, CA: IEEE Computer Society Press.

Jones, C. (1998). Estimating software costs.
McGraw Hill.

Jørgensen, M. (1997). An empirical evaluation of
the MkII FPA estimation model. In Norwegian
Informatics Conference, Voss, Norway, Tapir,
Oslo (pp. 7-18).

Jørgensen, M. (2004) A review of studies on expert
estimation of software development effort. Jour-
nal of Systems and Software, 70(1-2), 37-60.

KDD Nuggets Website. (2005). Polls: Data mining
tools you regularly use. Knowledge Discovery
and Data Mining Poll. Retrieved 2005, from
http://www.kdnuggets.com/polls/data_min-
ing_tools_2002_june2.htm

Khoshgoftaar, T. M. (Ed.). (2003). Computational
intelligence in software engineering, Annals of
software engineering. Kluwer Academic Publish-
ers, ISBN 1-4020-7427-1.

Khoshgoftaar, T. M., & Allen, E. B. (2001).
Model software quality with classification trees.
In H. Pham (Ed.), Recent advances in reliability
and quality engineering (pp. 247–270). World
Scientific.

Kish, L. (1965). Survey sampling. New York: John
Wiley and Sons, Inc.

Kitchenham, B., Pfleeger, S. L., McColl, B., &
Eagan, S. (2002). A case study of maintenance
estimation accuracy. To appear in the Journal of
Systems and Software.

2882

Improving Credibility of Machine Learner Models in Software Engineering

Menzies, T. (2005a). Personal conversation.

Menzies, T., Raffo, D., Setamanit, S., DiStefano,
J., & Chapman, R. (2005b). Why mine reposito-
ries. Submitted to the Transactions on Software
Engineering.

Paynter, J. (1996). Project estimation using screen-
flow engineering. In the International Conference
on Software Engineering: Education and Prac-
tice, Dunedin, New Zealand (pp. 150-159). Los
Alamitos, CA: IEEE Computer Society Press.

Pedrycz, W. (2002). Computational intelligence as
an emerging paradigm of software engineering.
In the Proceedings of the 14th international con-
ference on Software engineering and knowledge
engineering, Ischia, Italy (pp. 7-14). ACM.

Porter, A. A., & Selby, R. W. (1990). Empirically
guided software development using metric-based
classification trees. IEEE Software, 46-54.

Putnam, L. H. (1978). A general empirical solu-
tion to the macro software sizing and estimating
problem. IEEE Transactions on Software Engi-
neering, 345-361.

Quinlan, J. R. (1992). C4.5: Programs for ma-
chine learning. San Francisco, CA: Morgan
Kaufmann.

Rish, I. (2001). An empirical study of the naive
Bayes classifier, T. J. Watson Center. In the IJCAI-
01 Workshop on Empirical Methods in Artificial
Intelligence, Seattle.

Sauer, C., & Cuthbertson, C. (2003). The state
of IT project management in the UK. Oxford:
Templeton College.

Shepperd, M., Cartwright, M., & Kadoda, G.
(2000). On building prediction systems for software
engineers. In Empirical Software Engineering (pp.
175-182). Boston: Kluwer Academic Publishers.

Shirabad, J. S., & Menzies, T. J. (2005) The
PROMISE repository of software engineering
databases school of information technology
and engineering. University of Ottawa, Canada.
Retrieved 2005, from http://promise.site.uottawa.
ca/SERepository

Sonnekus, R., & Labuschagne, L. (2003). IT
project management maturity versus project
success in South Africa. RAU Auckland Park,
Johannesburg, South Africa: RAU Standard Bank
Academy for Information Technology, ISBN:
0-86970-582-2.

Srinivasan, K., & Fisher, D. (1995). Machine
learning approaches to estimating software de-
velopment effort. IEEE Transactions on Software
Engineering, 126-137.

The Standish Group. (2003). The Chaos Chron-
icles III.

Tassey, G. (2002). The economic impacts of
inadequate infrastructure for software testing
(Planning Report 02-3). Prepared by RTI for the
National Institute of Standards and Technology
(NIST). Retrieved 2005, from http://www.nist.
gov/director/prog-ofc/report02-3.pdf

Tian, J., & Zelkowitz, M. V. (1995). Complexity
measure evaluation and selection. IEEE Transac-
tion on Software Engineering, 21(8), 641-649.

Witten, I., & Franks, E. (2000). Data mining:
Practical machine learning tools with Java
implementations. San Francisco, CA: Morgan
Kaufmann.

Zhang, D., & Tsai, J. J. P. (2005). Machine learn-
ing applications in software engineering. World
Scientific Publishing, ISBN: 981-256-094-7.

EndnotE

1 All monetary amounts are depicted in U.S. dollars.

This work was previously published in Advances in Machine Learning Applications in Software Engineering, edited by D.
Zhang and J. Tsai, pp. 52-72, copyright 2007 by IGI Publishing (an imprint of IGI Global).

 2883

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.16
Morality and Pragmatism in

Free Software and Open Source

Dave Yeats
Auburn University, USA

AbstrAct

This chapter analyzes the differences between
the philosophy of the Free Software Foundation
(FSF) as described by Richard Stallman and the
open source movement as described in the writ-
ings of Eric Raymond. It argues that free software
bases its activity on the argument that sharing
code is a moral obligation and open source bases
its activity on a pragmatic argument that sharing
code produces better software. By examining the
differences between these two related software
movements, this chapter enables readers to con-
sider the implications of these differences and
make more informed decisions about software
use and involvement in various software devel-
opment efforts.

IntroductIon

As governments around the world search for an
alternative to Microsoft software, the open source

operating system Linux finds itself in a perfect
position to take market share from Microsoft
Windows. Governments in France, Germany, The
Netherlands, Italy, Spain, and the United Kingdom
use Linux to encourage open standards, promote
decentralized software development, provide
improved security, and reduce software costs
(Bloor, 2003). The Chinese government strongly
supports Linux as its operating system of choice
because Chinese experts have complete access to
the source code and can examine it for security
flaws (Andrews, 2003). In Brazil, leftist activ-
ists gathered to promote the use of open source
software (OSS) (Clendenning, 2005).

There is a connection between the technologi-
cal reasons for choosing open source software and
the political ones. Many governments see open
source as a way to promote a socialistic agenda
in their choices of technology. Open source ad-
vocates, however, do not necessarily make these
connections between the software development
methods involved in open source and political
movements of governments. There is evidence,

2884

Morality and Pragmatism in Free Software and Open Source

however, that leaders in the open source move-
ment have expressed their rationale for advocating
opening the source code of software.

The open source movement can trace its roots
back to an alternate, still very active, software
movement known as free software. While open
source and free software can (and do) coexist in
many ways, there are some essential differences
that distinguish the two groups from one another.
Perhaps most notably, the free software movement
is based on a belief in a moral or ethical approach
to software development, while open source takes
a much more pragmatic view. While both groups
argue for the open sharing of source code, each
has its own reason for doing so. Understanding
the differences between open source and free
software can help open source researchers use
more precise terminology and preserve the intent
of each of these groups rather than assuming that
they are interchangeable.

The following chapter begins with a brief
historical overview of the free software and
open source movements and highlights some of
the main beliefs of each. The chapter then offers
an examination of both the moral and pragmatic
aspects of open source software. The conclusion
invites readers to consider the implications of the
differences between the two viewpoints and sug-
gests ways for readers to apply this information
when making choices about software.

bAcKground

The open source movement grew out of the soft-
ware development practices in academic settings
during the 1970s. During those early years of soft-
ware development, computer scientists at colleges
and universities worked on corporate-sponsored
projects. The software developed for these projects
was freely shared between universities, fostering
an open, collaborative environment in which many
developers were involved in creating, maintaining,
and evaluating code (Raymond, 1999).

In his A Brief History of Open Source article,
Charlie Lowe (2001) describes the end of open
and collaborative methods of developing computer
software in the 1980s when the corporate sponsors
of academic software projects began to copyright
the code developed for them. Corporations claimed
that the university-run projects created valuable
intellectual property that should be protected un-
der law. This, of course, was just one of the signs
of the shift from the commodity-based economy
in the U.S. to a knowledge-based one. The wave
of copyrights threatened to end the collaboration
between computer scientists and slow the evolution
of important projects. It looked as if the computer
scientists would be required to work in smaller
groups on proprietary projects.

Richard Stallman (1999) reports that he cre-
ated the GNU General Public License (GPL) to
maintain the ability to collaborate with other
computer scientists on software projects, without
restriction. The name GNU is a self-reflexive
acronym meaning “GNU’s Not UNIX,” a play
on words that pays homage to and differentiates
itself from the UNIX legacy.1 Stallman was con-
cerned that the UNIX operating system, created
during the collaborative era of the 1970s, would
no longer be supported by new programs that used
its stable and robust architecture when access to
the source code was cut off. Stallman started the
GNU initiative (which enabled the establishment
of the Free Software Foundation [FSF]) to ensure
that new software would be freely available.

The GNU GPL gave programmers the free-
dom to create new applications and license them
to be freely distributable. Specifically, the GNU
GPL gives anyone the right to modify, copy, and
redistribute source code with one important re-
striction: Any new version or copy must also be
published under the GNU GPL to insure that the
improved code continues to be freely available.
Many programmers (both those accustomed to the
academic practices of the 1970s and new computer
enthusiasts) adopted the GNU GPL and continued
to work in open, collaborative systems.

 2885

Morality and Pragmatism in Free Software and Open Source

Arguably the most important piece of software
developed under the GNU GPL is the Linux
operating system. Linus Torvalds, while still a
student at the University of Helsinki in 1991,
created a new operating system based on the
ideas found in the UNIX operating system. This
new piece of software, Linux, not only proved
the success of GNU GPL, but it also represented
a further shift toward a widely cooperative ef-
fort in software development. According to Eric
Raymond, Linux debunked the myth that there
were software projects with an inherent “critical
complexity” that necessitated a “centralized, a
priori approach” (Raymond, 2001, p. 21). With
wide adoption among software developers and
computer scientists, Linux proved to be a stable
and powerful system despite its complexity and
rapid development schedule.

In 1998, when Netscape decided to make its
source code public as part of the Mozilla proj-
ect, Eric Raymond and Bruce Perens suggested
the use of the term “open source” in response
to confusion over the term “free.” Stallman, in
many cases, found himself explaining that he was
using the term “free” in the sense of “freedom”
or “liberty” rather than “without monetary cost.”
Raymond and Perens founded the Open Source
Initiative (OSI) to differentiate the new group
from the FSF.

While there are many other active voices in
the free software and open source movements
such as Linus Torvalds (originator of the Linux
operating system) and Robert Young (co-founder
and CEO of Red Hat), Richard Stallman and Eric
Raymond continue to be the most influential and
widely cited. While Stallman and Raymond do
agree at some level that software development
benefits from the free distribution of source code,
they see this free distribution in two completely
different ways.

thE dEbAtE

Many people have written about the debate be-
tween Eric Raymond and Richard Stallman. It is
widely reported (Williams, 2002) that Stallman
disagrees with Raymond’s pragmatic reasons
for promoting the term “open source” over “free
software.” In fact, Raymond’s Shut Up and Show
Them the Code and Stallman’s Why “Free Soft-
ware” is Better Than “Open Source” are two
examples of the heated exchange between the
two writers, each defending his own position on
the issue of freely available source code. Bruce
Perens reports that it is “popular to type-case
the two as adversaries” (Perens, 1999, p. 174).
While most studies emphasize that the term “open
source” was adopted simply to avoid confusing
the word “free” in “software” (DiBona, Ockman,
& Stone, 1999; Feller & Fitzgerald, 2002; Fink,
2003), others are careful to point out that the shift
in terminology really signaled a shift in strategy
for open source advocates.

Perhaps the best work done on the differences
between these groups is David M. Berry’s (2004)
work, The Contestation of Code: A Preliminary
Investigation into the Discourse of the Free/Libre
and Open Source Movements. By analyzing the
discourse of the two movements (in the words of
Stallman and Raymond), Berry concludes that the
discourse of the free software movement more
closely identifies with the user, is more utopian,
and advocates a communal, socialist approach.
The discourse of the open source movement, on
the other hand, advocates a more individualistic
approach that identifies with the “owners” or
creators of software, resulting in a more libertar-
ian emphasis.

In any case, the rift between those who choose
to use the term free software and those who choose
to use the term open source has resulted in some
scholars choosing sides on the issue. Lawrence

2886

Morality and Pragmatism in Free Software and Open Source

Lessig (2004), an important scholar in the area of
intellectual property law, discusses open source at
great length in his work, Free Culture. However, he
quotes only Stallman’s writings, not Raymond’s.
To Lessig, at least, the open source movement
is more about Stallman’s rhetoric of freedom
than Raymond’s pragmatism. Understanding
the rationale behind such choices is important in
understanding the impact of open source software
outside of the software industry.

opEn sourcE And
frEE softwArE

In The GNU Operating System and the Free
Software Movement, Stallman suggests that the
two terms “describe the same category of software
… but say different things about the software,
and about values” (Stallman, 1999, p. 70). The
following sections examine the work of Richard
Stallman and Eric Raymond to investigate the
different philosophical approaches to software
development espoused by each.

free software: the works
of richard stallman

Stallman’s (Stallman, 2002c) theorizing about
software rests on what he identifies as the four
main “freedoms” of his “Free Software Defini-
tion.” According to Stallman (2002c, p. 18), these
freedoms are:

• Freedom 0: The freedom to run the program,
for any purpose

• Freedom 1: The freedom to study how the
program works, and adapt it to your needs
(access to the source code is a precondition
to this)

• Freedom 2: The freedom to redistribute
copies so you can help your neighbor

• Freedom 3: The freedom to improve the
program, and release your improvements

to the public, so that the whole community
benefits (access to the source code is a pre-
condition to this)

In other words, Stallman directly relates his
views about software development to a set of
freedoms for users of that software. In the rheto-
ric of these main “freedoms,” at least, Stallman
is concerned more with the users of a software
program than with the program itself.

In The GNU Manifesto, Richard Stallman
makes impassioned arguments about his stance
toward software development. “I consider that
the golden rule requires that if I like a program
I must share it with other people who like it”
(Stallman, 2002a, p. 32), he writes. “So that I
can continue to use computers without dishonor,
I have decided to put together a sufficient body
of free software so that I will be able to get along
without any software that is not free” (Stallman,
2002a, p. 32). He constructs his call for radical
change in the way software development occurs
with several ideological claims. Specifically, Stall-
man claims that sharing is fundamental and that
free software offers the only ethical alternative
for software programmers.

Stallman’s rationale for calling programmers
to work on an alternative to proprietary software
is based on what he calls the “fundamental act
of friendship of programmers”: the “sharing of
programs” (Stallman, 2002a, p. 33). Stallman sug-
gests that “[m]any programmers are unhappy about
the commercialization of system software. It may
enable them to make more money, but it requires
them to feel in conflict with other programmers in
general rather than feel as comrades” (Stallman,
2002a, p. 32-33). More than simply suggesting
that the sharing of programs is ideal or simply
important, Stallman argues that it is a fundamental
imperative and a source of conflict. He goes so
far as to suggest that programmers “must choose
between friendship and obeying the law” (Stall-
man, 2002a, p. 33), implying that the law, on the
issue of software availability, is in error.

 2887

Morality and Pragmatism in Free Software and Open Source

The metaphors Stallman uses to expand on the
idea of the centrality of sharing among develop-
ers makes it sound as if restricting software use
is against nature itself. He writes: “Copying …
is as natural to a programmer as breathing, and
as productive. It ought to be as free” (Stallman,
2002a, p. 34). He goes on to equate software with
air itself: “Once GNU is written, everyone will
be able to obtain good system software free, just
like air” (Stallman, 2002a, p. 34). Denying people
the right to free software, in other words, would
be like trying to regulate and restrict breathing
itself. According to Stallman, restricting software
use results in a kind of “police state” employing
“cumbersome mechanisms” (Stallman, 2002a, p.
34) in the enforcement of copyright law.

While Stallman characterizes a software
development community that shares all of its re-
sources as a utopian society, he harshly criticizes
proprietary software. He claims that restricting
use of a program through intellectual property
law constitutes “deliberate destruction” (Stall-
man, 2002a, p. 36) and a failure to be a good
citizen. Stallman’s rhetoric sets a scene with
only two alternatives: free software based on
the ideas of camaraderie, friendship, freedom,
good citizenship, community spirit, and sharing
of proprietary software based on the ideas of
restriction, destruction, commercialization, and
materialism. Clearly, Stallman’s purpose is to set
up a binary in which the only good is free software
and the only evil is proprietary software. Any
programmer who chooses to develop software in
the capitalist proprietary software environment
is choosing to be less moral than his or her free
software counterparts.

open source software: raymond’s
cathedral and bazaar

Eric Raymond’s The Cathedral and the Bazaar
(2001), promotes open source software using two
pragmatic claims that compliment each other: the
promotion of the individual and the conscription

of others. Unlike Stallman’s emphasis on sharing
and morality, Raymond emphasizes the practical
aspects of open source that leads to its technical
superiority. Specifically, Raymond describes the
importance of the lead developers of projects
while at the same time emphasizing the necessity
of using others to complete work on projects. In
neither case does Raymond express a belief in
the moral superiority of open source develop-
ment. Instead, all of the benefits of open source
are described in terms of the development of a
superior technological artifact.

Throughout The Cathedral and the Bazaar,
Raymond (2001) promotes an egocentric view
of technological development that emphasizes
the role of the individual in the process. This
egoistic approach is revealed in many ways—
from Raymond’s own self-congratulation, to his
description of how developers find incentive to
volunteer to participate in projects. Raymond’s
tendency to promote individuals over the group
begins with his own tendency to describe himself
as a gifted individual. While some of his claims
may be true, it is unusual for a person to sing their
own praises quite as blatantly as Raymond does.
Usually, modesty does not allow for such open
self-congratulation. In describing the personality
traits common to good leaders for open source
software projects, Raymond points to his own
abilities. “It’s no coincidence that I’m an energetic
extrovert who enjoys working a crowd and has
some of the delivery and instincts of a stand-up
comic” (Raymond, 2001, p. 49). His infatuation
with his own charming personality illustrates how
much he values the individual over the group.
More than once, Raymond cites instances where
his superior programming skills enabled him to
make extraordinarily wise decisions that a lesser
programmer might miss. For his programming
and writing skills, Raymond mentions that he got
“fan mail” (Raymond, 2001, p. 38) and “help[ed]
make history” (Raymond, 2001, p. 61). Clearly,
Raymond’s focus on the individual begins with
himself.

2888

Morality and Pragmatism in Free Software and Open Source

Raymond goes beyond his own egoism, how-
ever, when he generalizes about what constitutes
a good open source software project. According
to Raymond, “every good software project starts
by scratching a developer’s personal itch” (Ray-
mond, 2001, p. 23). This aphorism is the first of
the 19 rules of open source software development.
It is interesting that Raymond recognizes that
the motivation behind good software comes not
from a need in the community but rather from a
personal interest or desire. Raymond reiterates
this emphasis on the individual developer’s pri-
macy in starting a project in tenet 18: “To solve
an interesting problem, start by finding a problem
that is interesting to you.”(Raymond, 2001, p. 49)
Again, nowhere in Raymond’s writing does he
refer to moral behavior or developers and a need
to share. Instead, he believes that the curiosity of
an individual developer is enough to justify work
in the open source model.

The natural conclusion to a system that en-
courages individuals to involve themselves in
only those projects which they find personally
interesting is a hierarchical system that promotes
these individuals. Open source developers who
choose to take on a particular software problem
promote themselves to the role that Raymond
calls the “core developer” (Raymond, 2001, p.
34). This role bestows the leadership upon a single
individual who is, in turn, supported by a “halo
of beta-testers” who exist to serve the needs of
the leader (Raymond, 2001, p. 34). Naturally, this
leader wields considerable power over his or her
user community. And, according to Raymond,
not every developer possesses the skills to be a
good project leader. Raymond presupposes that
any good project leader has superior technical
abilities that are generally recognized in the open
source community. Further, he suggests that the
core developers have skills “not normally associ-
ated with software development”—people skills
(Raymond, 2001, p. 48).

What Raymond calls people skills is actually
an ability to provide incentive to other develop-

ers to enlist their help with a project. Raymond
posits that the success of the Linux project came
largely from core developer Linus Torvalds’ abil-
ity to keep his volunteer developers “stimulated
and rewarded” by giving them “an ego-satisfying
piece of the action” (Raymond, 2001, p. 30). In his
own fetchmail project, Raymond says he made a
habit of “stroking [users] whenever they sent in
patches and feedback” (Raymond, 2001, p. 38).
In his analysis of how to encourage participa-
tion in members of the open source community,
Raymond asserts that hackers find rewards in
“the intangible of their own ego satisfaction and
reputation among other hackers” (Raymond, 2001,
p. 53). A project leader must “connect the selfish-
ness of individual hackers as firmly as possible to
the difficult ends” involved in software develop-
ment (Raymond, 2001, p. 53). Rather than provide
monetary incentive, then, Raymond encourages an
approach that enables project leaders to conscript
users’ assistance through a coercive appeal to their
egoistic, selfish desire for glory. This approach
simultaneously reinforces the leader’s domination
over other developers and de-emphasizes any
development practice based on goals related to
benefit to the community.

Raymond discusses how the paradigm of
encouraging egoistic behavior of volunteer de-
velopers affects the individual reputation in the
leader in the following passage:

Interestingly enough, you will quickly find that if
you are completely and self-deprecatingly truthful
about how much you owe other people, the world
at large will treat you as though you did every
bit of the invention yourself and are just being
becomingly modest about your innate genius.
(Raymond, 2001, p. 40)

It is difficult to believe that Raymond would
ever be mistaken as “becomingly modest.” Even
when he encourages leaders to give credit to those
that assist with the project, he reveals the underly-

 2889

Morality and Pragmatism in Free Software and Open Source

ing motive of additional glory and recognition in
the open source community.

The dominating force that goes hand-in-hand
with Raymond’s suggestion that project leaders
should appeal to a volunteers’ selfishness is
the idea that these users must be recruited and
conscripted in order to create a successful open
source project. Raymond quotes Linus Torvalds
as saying, “I’m basically a very lazy person who
likes to take credit for things that other people
actually do” (Raymond, 2001, p. 27). While
Torvalds is obviously speaking tongue-in-cheek
here, it reveals a common theme that Raymond
continues to espouse. Two of the 19 development
practices include, “If you treat your beta-testers
as if they’re your most valuable resource, they
will respond by becoming your most valuable
resource” (Raymond, 2001, p. 38), and “The next
best thing to having good ideas is recognizing
good ideas from your users” (Raymond, 2001,
p. 40). Both of these statements imply that the
volunteer developers belong to and work for the
project leader. In addition, the project leader can
use these volunteers for his or her own purposes
like a natural resource.

The idea of individual ownership extends
beyond the volunteers on a particular project to
the software itself. Despite the fact that projects
are “co-developed” by many individual develop-
ers, the lead project coordinator actually “owns”
the technology. This idea is present in another
one of Raymond’s main tenets: “When you lose
interest in a program, your last duty to it is to
hand it off to a competent successor” (Raymond,
2001, p. 26). Therefore, the technology can be
bequeathed and inherited much like a traditional
patriarchal succession of ownership. And when
a software project is passed down to the next
generation of leadership, the volunteer user base
comes with it.

Speaking of this volunteer user base, Ray-
mond suggests that “[p]roperly cultivated, they
can become co-developers” (Raymond, 2001, p.
26). In addition to cultivating, Raymond suggests

that users can be “harnessed” (Raymond, 2001, p.
50) to do work for the lead developer. Essentially,
Raymond espouses conscripting volunteers to do
the work of the lead developer. Tenet 6 summarizes
his position: “Treating your users as co-developers
is your least-hassle route to rapid code improve-
ment and effective debugging” (Raymond, 2001,
p. 27). The implication of that statement is not that
users really are co-developers but rather that users
should be treated as if they were co-developers
in order to ensure that they will do work for the
improvement of the system. Raymond seems to
believe that core developers could build open
source software projects on their own, but enlisting
the help of users provides a less difficult way to
achieve the goal of creating a powerful system.
Conspicuously absent in this method of project
management is the idea that these volunteer users
are better served by participating in the develop-
ment process. Instead, Raymond’s main concern
is with the system itself.

According to Raymond, the true benefit of
this conscription model of development comes
from the advantages of using a large body of
volunteers to detect and fix bugs in the system.
Tenet 7 is, “Release early. Release often. And
listen to your customers” (Raymond, 2001, p. 29).
However, Raymond’s description of the value of
this rule does not include a plea for technology
that is sensitive to users’ needs. Instead, he as-
serts that this innovation is simply an effective
way to test the software for technological bugs,
not usability problems. The goal is to “maximize
the number of person-hours thrown at debug-
ging and development, even at the possible cost
of instability in the code” (Raymond, 2001, p.
30). Raymond suggests that a “program doesn’t
have to work particularly well. It can be crude,
buggy, incomplete, and poorly documented” (p.
47). Therefore, he promotes systems exposed to
“a thousand eager co-developers pounding on
every single new release. Accordingly you release
often in order to get more corrections, and as a
beneficial side effect you have less to lose if an

2890

Morality and Pragmatism in Free Software and Open Source

occasional botch gets out the door” (Raymond,
2001, p. 31).

His suggestion that less-than-usable software
can be released shows that his interest is not in
the value of the software to users. His interest is
in the value of the users to the software.

MorAlIty And prAgMAtIsM

While Stallman’s emphasis in advocating for the
free software movement is clearly one of moral
behavior and obligation, Raymond’s characteriza-
tion of the open source movement emphasizes
the technological superiority of a decentralized
development process. Stallman’s argument sets
up free software as a superior and more ethical
alternative to proprietary software development
that focuses on the rights and freedoms of users
and developers. Nowhere in Raymond’s writings
does he suggest that proprietary software is less
ethical. That is not to say Raymond isn’t critical
of proprietary software. However, his main con-
cern is always the technological implications of
software rather than the moral.

Table 1 outlines a few of the more important
differences between the two movements:

Faced with two very different value systems
surrounding these related movements, open source
software users should pay careful attention to the
software they choose to use or the software com-
munities in which they participate. While the two
approaches to software development adopt similar
practices, they represent two different viewpoints
that are often at odds with one another. If a user
is making a choice to use open source software
because of a belief that it is more moral to sup-
port open intellectual property policies, they may
want to seek out like-minded projects that use the
Stallman approach. If a user is more concerned
about the technological superiority of open source
software even if that superiority comes at the cost
of an emphasis on equality among users, then
they may want to seek out projects that are run

by maintainers that use the Raymond style.
In either case, users should be aware that

the choices they make in their affiliations also
signal to others that they adopt the worldview
represented in those choices. While there may
be many instances of individual developers and
software projects that blend the ideas and beliefs
of both Raymond and Stallman, it is still impor-
tant to understand that these philosophies often
result in development approaches at odds with
each other. Though the practices are admittedly
similar, a difference in why one would choose to
develop open source software can affect how one
carries out that choice.

Perhaps the most important thing to realize,
however, is that neither the Raymond nor the Stall-
man approach is inherently superior for all users.
Instead, the choice to adopt one of the approaches
over the other rests entirely upon the needs and
situation of the individual user. While the rhetoric
of both Stallman and Raymond suggest that their
understanding of software development represents
a truly enlightened and superior approach, neither
one can be said to offer the final word.

futurE trEnds

The most inclusive and technically accurate de-
scription of software with freely available source
code is free/libre open source software (F/LOSS or
FLOSS) because it accurately maintains portions
of each of the various movements in the software
community. However, the term open source has
proven to be the most popular, partly because of
the deliberate attempt by open source advocates
to make the licensing structures more business-
friendly. Apart from its popularity, many choose
the term open source almost exclusively due to its
influence on the broader culture; open source has
been used as a descriptor for everything from yoga
to t-shirt designs.2 When these non-technological
instances of open source are used, the suggestion
is that the development of these particular creative

 2891

Morality and Pragmatism in Free Software and Open Source

endeavors is open to many. More than FLOSS,
open source represents both a software develop-
ment phenomenon and a cultural one.

However, when popular culture adopts open
source to mean an open, sharing community of
creative invention, it misses the main emphasis
of the movement. According to Raymond, the
movement is less about the moral imperative to
share with others and more about the benefit of
harnessing the creative energy of individuals
who are free to choose their own work. Rather
than seeing open source as good for the public,
Raymond emphasizes the benefit of the process
for the technology. In other words, Raymond is
more interested in product than people.

Unfortunately, it is likely too late to correct
the trend in popular culture to equate the term
open source with “sharing intellectual property”
even though open source refers to a process and
value system much more complicated than simply
sharing. While the term open source government”
certainly carries with it a grandiose image of
participatory, shared government in which each
member of a community has a voice, but it is
unclear how open source government is different
from a healthy democracy.

Members of the open source community can
contribute to the increased use of the term open
source by helping others understand where new
uses of the term open source resonate with simi-
larities in the software movement and where they
miss the mark. Very few creative endeavors have

anything akin to the source code found in software
development, so making the source code freely
available, the essential meaning of the phrase open
source, cannot be replicated in other fields. How-
ever, the idea that creative work should be shared
and that sharing can be protected with creative
licensing is a contribution from the open source
movement that can be adopted by others. Rather
than adopting open source, other communities
may benefit by using more precise and applicable
language such as Creative Commons to refer to
the sharing of intellectual property.

conclusIon

While many researchers and developers of open
source software (myself included) typically lump
free software and open source software together,
both Stallman and Raymond adamantly insist that
there are fundamental differences between the
two groups. In his essay Why “Free Software” is
Better than “Open Source,” Stallman explains that
the two groups “disagree on the basic principles,
but agree more or less on the practical recom-
mendations” (Stallman, 2002b, p. 55). In other
words, free software and open source software
are essentially the same in practice, but not in
principle.

Because open source and free software appear
to operate the same way to outside observers, there
is very little insight into when a piece of software

Table 1. The morality and pragmatism of the free software and open source movements

Morality

Free Software/Stallman

Pragmatism

Open Source/Raymond

Defines the benefit of free software as a superior moral choice. Defines the benefit of open source as a pragmatic way to develop
superior software.

Emphasizes developers’ moral obligation to share with others. Emphasizes satisfying developers’ personal and individual
desires.

Understands the development process as a shared, communal,
group effort based on socialistic principles.

Understands the development process as one driven by one or a
small group of leaders who conscript volunteers to assist with the
project.

2892

Morality and Pragmatism in Free Software and Open Source

should be labeled open source and when it should
be labeled free software. Often, both use the same
licensing structures. The essential difference is
not a technological one; it is one of philosophies.
Only the developers themselves can attest to the
reasons they choose to develop software with
freely available source code. However, it is useful
for outside observers to be more precise in their
allegiances. It could mean the difference between
freedom and pragmatism.

rEfErEncEs

Andrews, P. (2003, November 24). Courting
China. U. S. News and World Report, p. 44-45.

Berry, D. M. (2004). The contestation of code: A
preliminary investigation into the discourse of the
free/libre and open source movements. Critical
Discourse Studies, 1, 65-89.

Bloor, R. (2003, June 16). Linux in Eu-
rope. IT-Director.com. Retrieved February 7,
2005, from http://www.it-director.com/article.
php?articleid=10929

Clendenning, A. (2005, January 30). Activists urge
free open-source software. World Social Forum.
Retrieved February 7, 2005, from http://www.
commondreams.org/headlines05/0130-03.htm

DiBona, C., Ockman, S., & Stone, M. (1999).
Introduction. In C. DiBona, S. Ockman, & M.
Stone (Eds.), Open sources: Voices from the open
source revolution (pp. 1-17). Sebastopol, CA:
O’Reilly & Associates.

Feller, J., & Fitzgerald, B. (2002). Understand-
ing open source software development. London:
Addison-Wesley.

Fink, M. (2003). The business and economics of
Linux and open source. Upper Saddle River, NJ:
Prentice Hall PTR.

Lessig, L. (2004). Free culture: How big media
uses technology and the law to lock down cul-
ture and control creativity. New York: Penguin
Press.

Lowe, C. (2001). A brief history of open source:
Working to make knowledge free. Kairos: A
Journal for Teachers of Writing and Webbed
Environments, 6(2). Retrieved October 25, 2005,
from http://english.ttu.edu/KAIROS/6.2/news/
opensource.htm

Luman, S. (2005, June). Open source softwear.
Wired 13.06.

Pallatto, J. (2005, May 13). Yoga suit settlement
beggars open source ideals. eWeek. Retrieved
October 25, 2005, from http://www.eweek.com/
article2/0,1759,181,5971,00.asp

Perens, B. (1999). The open source definition. In
C. DiBona, S. Ockman, & M. Stone (Eds.), Open
sources: Voices from the open source revolution
(pp. 171-188). Sebastopol, CA: O’Reilly & As-
sociates.

Raymond, E. (1999). A brief history of hackerdom.
In C. DiBona, S. Ockman, & M. Stone (Eds.),
Open sources: Voices from the open source
revolution (pp. 19-30). Sebastopol, CA: O’Reilly
& Associates.

Raymond, E. (2001). The cathedral and the bazaar.
The cathedral and the bazaar: Musings on Linux
and open source by an accidental revolutionary
(rev. ed., pp. 19-64). Sebastopol, CA: O’Reilly
& Associates.

Stallman, R. (1999). The GNU operating system
and the free software movement. In C. DiBona,
S. Ockman, & M. Stone (Eds.), Open sources:
Voices from the open source revolution (pp. 53-
70). Sebastopol, CA: O’Reilly & Associates.

Stallman, R. (2002a). The GNU Manifesto. In J.
Gay (Ed.), Free software free society: Selected

 2893

Morality and Pragmatism in Free Software and Open Source

essays of Richard M. Stallman (pp. 31-39). Boston:
Free Software Foundation.

Stallman, R. (2002b). Why “free software” is
better than “open source.” In J. Gay (Ed.), Free
software free society: Selected essays of Richard
M. Stallman (pp. 55-60). Boston: Free Software
Foundation.

Stallman, R. (2002c). The GNU Project. In J. Gay
(Ed.), Free software free society: Selected essays
of Richard M. Stallman (pp. 15-30). Boston: Free
Software Foundation.

Williams, S. (2002). Free as in freedom: Richard
Stallman’s crusade for free software. Sebastopol,
CA: O’Reilly & Associates.

KEy tErMs

Free/Libre and Open Source Software
(FLOSS): A more inclusive term for all software
with freely available source code.

Free Software (FS): Software with freely
available source code developed in the tradition
of the Free Software Foundation and influenced
by the writings of Richard Stallman.

Morality: An appeal to the fundamental good-
ness of an act; primary rationale behind the free
software movement.

Open Source Software (OSS): Software
with freely available source code developed in
the tradition of the Open Source Initiative (OSI)
and influenced by the ideas of Eric Raymond and
Bruce Perens.

Proprietary Software (PS): Software without
publicly available source code, commonly seen as
the opposite of free and open source software.

Pragmatism: An appeal to the usefulness of
an act; primary rationale behind the open source
movement.

EndnotEs

1 It is common for developers to use reflex-
ive acronyms, partly as a tongue-in-cheek
recognition of the overuse of acronyms in
technology. Other examples include PHP
(PHP hypertext protocol) and WINE (WINE
Is Not an Emulator).

2 For more information about some of the
ways open source is being used outside of
software, see Stuart Luman’s article “Open
Source Softwear” (2005, Wired 13[06]) and
John Pallatto’s article “Yoga Suit Settlement
Beggars Open Source Ideals” (2005, eWeek,
May 13).

This work was previously published in Handbook of Research on Open Source Software: Technological, Economic, and Social
Perspectives, edited by K. St.Amant and B. Still, pp. 23-33, copyright 2007 by Information Science Reference (an imprint of
IGI Global).

2894

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.17
A Metamorphic Testing

Approach for Online Testing of
Service-Oriented Software

Applications

W. K. Chan
Hong Kong University of Science and Technology, Hong Kong

S. C. Cheung
Hong Kong University of Science and Technology, Hong Kong

Karl R. P. H. Leung
Hong Kong Institute of Vocational Education, Hong Kong

AbstrAct

Testing the correctness of services assures the
functional quality of service-oriented applica-
tions. A service-oriented application may bind
dynamically to its supportive services. For the
same service interface, the supportive services
may behave differently. A service may also need
to realize a business strategy, like best pricing,
relative to the behavior of its counterparts and
the dynamic market situations. Many existing

works ignore these issues to address the problem
of identifying failures from test results. This
article proposes a metamorphic approach for
online services testing. The off-line testing deter-
mines a set of successful test cases to construct
their corresponding follow-up test cases for the
online testing. These test cases will be executed
by metamorphic services that encapsulate the
services under test as well as the implementa-
tions of metamorphic relations. Thus, any failure
revealed by the metamorphic testing approach

 2895

A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications

will be due to the failures in the online testing
mode. An experiment is included.

IntroductIon

The service-oriented architecture (SOA) is an
architectural reference model (Bass et al., 2003)
for a kind of distributed computing such as the
Web services (W3C, 2002). It promises to al-
leviate the problems related to the integration of
heterogeneous applications (Kreger et al., 2003;
Mukhi et al., 2004). In this reference model, a
SOA application is denoted by a collection of self-
contained communicating components, known as
services. The model also emphasizes that each
service should make little or no assumption about
its collaborating services. This setting advocates
the dynamic composition of a service by using
different configurations of supportive services,
creating behavioral differences amongst different
invocations of a service. Typical end-users of a
SOA application, such as bank customers using
an online foreign exchange trading service, may
expect consistent outcomes each time they use
the service. The customers may further compare
the online foreign exchange service of a bank to
similar services of other banks to judge whether
the service is of good quality. If a B2B service
provider is driven by a predefined business strat-
egy to, for example, maintain its market share,
then the criteria to define functional correctness
of the service may vary according to its environ-
ment. In other words, testers need to integrate the
environment of a service to check test results.

Services may be subject to both the off-line
testing and the online testing. Unlike the testing
of conventional programs, services bind dynami-
cally to other peer services when it is tested online.
While the off-line testing of services is analogous
to the testing of conventional programs, the online
testing of services needs to address new issues
and difficulties.

Testers may generally apply certain static
analyses or testing techniques to assure the cor-
rectness of a software application. The evalu-
ation criteria of the functional correctness, on
the other hand, must be predefined. For a unit
testing, testers also want to address the test case
selection problem and the test oracle problem
(Beizer, 1990). We restrict our attention to the
latter problem in this article.

A test oracle is a mechanism that reliably
decides whether a test succeeds. For services, as
we will discuss, formal test oracle may be un-
available. The expected behavior of a service that
represents business goods and services changes
according to the environment. Such an expected
behavior is relative to the behaviors of compet-
ing services or other services. Intuitively, it is
hard to define the expected behavior explicitly
in the first place. Tsai et al., (2004) for example,
suggest using a progressive ranking of similar
implementations of a service description to al-
leviate the test oracle problem. The behaviors of
different implementations of the same service
vary in general. Test results of a particular group
of implementations cannot reliably be served as
the expected behavior of a particular implemen-
tation of the same service on the same test case.
Also, a typical SOA application may comprise
collaborative services of multiple organizations,
knowing all the implementations are impractical
(Ye et al., 2006). For example, a travel package
consultant may wrap up services of various hotels,
airlines, and entertainment centers to personalize
tour packages for a particular client. Without the
implementation details, static analysis appears
infeasible to assure the implementation quality.
The black box approach for test results checking
remains viable and popular to assure the correct-
ness of a software application.

Metamorphic testing is a promising approach
to the test oracle problem in the testing of con-
ventional scientific programs (Chan et al., 1998;
Chen et al., 1998, 2002). Instead of relating an

2896

A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications

output to its input, metamorphic testing relates
multiple input-output pairs via well-defined rela-
tions, called metamorphic relations.

 This article extends the preliminary version
(Chan et al., 2005a) to propose an online testing
approach for testing services. The main contri-
butions of the preliminary version (Chan et al.,
2005a) include:

1. It proposes to apply the notion of meta-
morphic testing to services computing to
alleviate the test oracle problem. It constructs
more test cases to reveal faults than those
ordinarily required when test oracles are
known.

2. It proposes to realize the metamorphic test-
ing mechanism as a metamorphic service
in services computing that encapsulates a
service under test, executes test cases and
cross-validates their test results. Such real-
ization seamlessly integrates the existing
SOA framework. It automates the construc-
tion of follow-up test cases and their test
results checking.

The main extended contributions of this article
include:

3. It devises the use of the successful test
cases for off-line testing as the original test
cases for online testing. Since, in an off-line
testing, the environment of services can be
controlled by testers, test oracle could be
defined. Thus, any failure revealed by our
metamorphic testing approach will be due
to the failures in the online testing mode.

4. It refines the testing approach presented in
the preliminary version of this article to take
the successful test cases from the off-line
testing phase into account.

5. It evaluates the revised proposal against a
control experiment having no prior confir-
mation of test results through an experiment.
The experimental result indicates that our

proposal is superior to the control experi-
ment. The control approach suffers from an
extra 16% effort to check test results and a
13% reduction of failure detection.

The rest of the article is organized as fol-
lows. The next section introduces the concepts
of services, metamorphic testing and other pre-
liminaries. After that, we describe our testing
proposal. Our approach will be illustrated by a
sample scenario, followed by an experiment on
the feasibility of applying the proposal in a SOA
application. Based on the experimental results,
we compare our approach to related work, and
discuss our experience. Finally, we conclude the
article and outline the future work.

prElIMInArIEs

In this section, we briefly introduce the notion of
service, metamorphic relation, and metamorphic
testing. We also discuss how a metamorphic re-
lation can be aligned with the notion of service
and discuss our assumptions. Finally, we clarify
our terminologies on online testing and off-line
testing.

service

A service in SOA is a self-contained application
function, packaged as a reusable component, for
the use in a business process (Colan, 2004). It can
describe itself so that other services may discover
and locate the service. Services also use simple
and self-contained messages with well-defined
interfaces for communications. Those interfaces
are neutral to different hardware or software
platforms to support the execution of a service.
Meta-models, such as XML Schema (W3C, 2001),
are often used to govern the syntactic validity of
the messages.

For example, the Web services (Curbera et al.,
2002; W3C, 2002) use the Web service defini-

 2897

A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications

tion language or WSDL (W3C, 2005) to let each
service of an application define the syntactic and
interoperability requirements. It also uses the
universal description, discovery and integration
or UDDI (OASIS, 2005) to offer applications a
unified and systematic way to locate services
from common registries. The simple object ac-
cess protocol or SOAP (W3C, 2003) is then used
to support XML2-based messaging between peer
services.

In general, there are two types of services,
namely stateless and stateful. They are analogues
to conventional programs and object-oriented
programs, respectively. Both types are popular in
these days.3 Intuitively, in terms of modeling, one
may use a stateless service with self-addressing
stateful messages to simulate a stateful service.
We thus restrict ourselves to consider stateless
services in this article.

Metamorphic relation (Mr)

As a service is a self-contained and function-
oriented component, some functional properties
of the service should be identifiable; otherwise,
it would be difficult for collaborating services to
identify the usefulness of the service. One way
to display the functional properties of a service
is to show the connection of multiple invocations
of the service.

A metamorphic relation, or MR, is an existing
or expected relation over a set of distinct inputs and
their corresponding outputs for multiple execu-
tions of the target function (Chen et al., 1998, 2002,
2003). For example, consider a sorting program
Sort() that sorts the input list of integers into a
list of integers in ascending order. The expected
result of Sort(〈1,4,3〉) is 〈1,3,4〉, which is same as
that of Sort(〈1,3,4〉). Generalizing the scenario
would lead to the formulation of the relation:
Sort(X) = Sort(Sort(Y)) if X = Y.

Readers can easily observe that in the above
example, the expected output of the input 〈1,4,3〉
is only induced implicitly. This relieves testers to

predetermine the expected behavior of a test case
in an absolute term. It is particularly important
when a tester is conducting the online testing of a
service, for the reason that the concrete expected
behavior of a service may depend on other peer
services, which may not be under the control of
the software developers or testers of the service
under test.

A metamorphic relation can be formally de-
scribed as follows:

Suppose that f is an implemented function under
test. Given a relation r over n distinct inputs
x1, x2, …, xn, the corresponding n computation
outputs f(x1), f(x2), …, f(xn) must induce a
necessary property rf.

A metamorphic relation MRf of f over n inputs
and n outputs can be defined as follows:

MRf = {(x1, x2, …, xn, f(x1), f(x2), …, f(xn))
 |r(x1, x2, …, xn) ⇒ rf(x1, x2, …, xn, f(x1), f(x2),

…, f(xn))}

We observe that, when a service is seen to be
a function, and all input and output messages are
self-contained, the notion of metamorphic rela-
tion readily applies to services. We will give an
example after the introduction of metamorphic
testing in the following section.

Metamorphic testing (Mt)

Metamorphic testing or MT (Chen et al., 1998,
2002, 2004) is a program testing technique that
employs the mathematical relations, namely
metamorphic relations, to conduct testing. It has
been applied to numerical applications (Chan et
al., 1998) and context-aware applications (Chan
et al., 2005c).

It uses successful test cases to alleviate the test
oracle problem when a test oracle is unavailable
or expensive. Given a program P of target func-
tion f with input domain D. A set of test cases T,

2898

A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications

{t1,…,tk} (⊂ D), can be selected according to any
test case selection strategy. Executing the program
P on T produces outputs P(t1), . . . , P(tk). When
they reveal any failure, testing stops and debug-
ging begins. On the other hand, when no failure
is revealed, these test cases will be termed as
successful. A set of successful test cases is called
a successful test set.

Testers may apply the metamorphic testing
approach to continue to verify whenever some
necessary property of the target function f is satis-
fied by the implementation P. The metamorphic
testing approach constructs the follow-up test
set T’, {t’1,…,t’m} (⊂ D), automatically from the
initial successful test set T, with the reference to
some given metamorphic relation.

Let us cast an example in the services com-
puting setting. Suppose that S is an expected
USD−HKD exchange service, accepting deal
orders in USD and returning deal orders in HKD;
x and y are two deal orders; g() is a function
that accepts a deal order and returns its deal or-
der amount. Further suppose that the following
metamorphic relation sample is given, meaning
that doubling the deal order in USD, doubling the
resultant amount in HKD:

MRa(x, y, S(x), S(y)) :
2g(S(y)) = g(S(x)) if g(x) = 2g(y)

Consider a successful test case x1 = “a deal
order of US$20,000.” The metamorphic testing
approach constructs automatically another test
case y1 = “a deal order of US$10,000” based on
the condition g(x) = 2g(y) of MRa. Suppose P is an
implementation of S. If the comparison 2g(P(y1))
= g(P(x1)) fails, the MT approach reveals a failure
due to the pair of failure-causing inputs x1 and y1.
As x1 is successful in the first place, the identified
failure should be due to the test case y1.

In the MT terminology, x1 is termed as the
original test case, and y1 is termed as the follow-
up test case. By checking the results amongst

multiple input-output pairs, metamorphic testing
bypasses the need to define the expected result
explicitly to alleviate the test oracle problem.
We refer readers to (Chan et al., 2005c; Chen et
al, 2002, 2003, 2004; Tse et al., 2004) for more
details about metamorphic testing.

In this article, we assume that MRs are pro-
vided by testers. Verification is generally undecid-
able, thus, we further assume that the provided
MRs describe some necessary conditions of the
expected behavior of the program under test. In
practice, we recommend testers to define their
MRs in a style so that they are directly coded in
certain executable specification languages such
as Prolog. As such, the implementation of MRs is
a non-issue when testers use our methodology. In
the next section, we further describe a few major
assumptions of our proposal.

Assumptions and terminologies

In this section, we list out a few major assump-
tions to establish our model for the online testing
of services. These assumptions facilitate us to
propose an infrastructure, namely metamorphic
service, to be discussed in the metamorphic ser-
vice section. We also clarify our terminologies
on off-line testing and online testing.

We make the following assumptions: A ser-
vice could be wrapped up by another (wrapper)
service. It is based on the understanding that
services are loosely coupled amongst themselves
and they recognize one another through the
common service registries. We assume that in
the common service registries, the entries of the
former service are replaced by those of the latter
service for the testing purpose. This allows the
latter service to query and catch messages for the
former one. In our model, we use a message as
a test case or test result of a service. This kind
of treatment is also adapted by other researchers
(Tsai et al., 2004; Offutt & Xu, 2004). It enables
the wrapper service to construct test cases and
evaluate their test results.

 2899

A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications

Furthermore, we agree with other researchers
that a service is self-contained and independent
to the contexts of other services. It also outputs
results on every input.

We refer the term online testing to the test-
ing of a service under the SOA environment,
and the term off-line testing to the testing of a
service without interaction with other services
relevant to the service under test. We also term
off-line testing and testing in the off-line mode
interchangeably, and online testing and testing in
the online mode interchangeably. Moreover, for
the off-line testing, we refer a stub service as a
service, since it is obvious in the context that the
service under test does not interact with any other
peer services of the SOA application when it is
subject to an off-line testing. In the next section,
we will present our testing proposal.

An onlInE tEstIng ApproAch

In this section, an online testing methodology
will be presented. We propose to test a service
in two distinct modes, namely off-line mode and
online mode. Informally, we propose to use the
test oracle available to the off-line testing and
make it also available to the online testing via
metamorphic relations. In the overview section,
we first introduce the two modes of testing. Next,
in the metamorphic service section, we propose
a core design artifact of our approach, the meta-
morphic service, which serves as a surrogate of
the services under test to relay messages. At the
same time, it constructs follow-up test cases and
evaluates results accordingly. It then summarizes
the methodology in the testing in the online mode
section.

overview

The off-line mode tests a service in the absence
of interacting services. We view that it strongly

resembles the convention techniques for the unit
test of a conventional program. Many test data
selection strategies (such as dataflow testing
(Beizer, 1990; Zhu et al., 1997)) and test oracle
construction for the unit test of conventional pro-
grams have been researched for years. As testers
could control the off-line environment (such as
providing test drivers and stub services, and mes-
sages), it is relatively easier to define test sets to
test a service and validate the test results in such
a mode. Thus, whether a test case reveals a failure
or not, for off-line testing, can be determined
through the checking of their test results against
certain test oracle.

The above observation motivates us to apply
the successful test cases of an off-line testing as
the original test cases for the online testing mode.
In the sequel, we restrict ourselves to discuss
the online testing mode. We presume that a set
of successful test cases for the off-line testing is
available.

For online testing, as these original test cases
are determined to be successful in advance, any
violation of a corresponding metamorphic rela-
tion should be due to the failures of the follow-
up test cases. Thus, when their corresponding
follow-up test cases are for online testing, our
approach pinpoints the online failure-causing
inputs automatically even if the test oracle for
online testing is not available. Figure 1 depicts the
relation between off-line testing and our proposal
for online testing.

Interested readers may compare the above
strategy and the strategy that an original test case
is unknown to be successful. In the latter strat-
egy, when a violation of a metamorphic relation
is detected, testers still need to further evaluate
whether the violation is due to the original test
case (no matter if it is in the off-line or online
testing mode) or the follow-up (online) test case.
Therefore, this alternative strategy may incur
more overheads than our proposal. We will further
study this issue in our empirical experiment in
the experiment section.

2900

A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications

We will introduce a fundamental building box
of our approach in the metamporphic services
section, and then elaborate our online testing
approach in the rest of this section. To ease our
discussion, in the sequel, we use a metamorphic
relation with two input-output pairs. The extension
of the approach to more than one input-output
pair is not hard.

Metamorphic service (Ms)

We formulate a metamorphic service as a service
that has the characteristics of being an access
wrapper (Mecella & Pernici, 2001; Umar, 1997)
and being an agent to conduct metamorphic test-
ing. A metamorphic service imitates all the data
and application access paths of the service being
encapsulated. It also embodies the program log-
ics, which is the implementation of metamorphic
relations, to compute follow-up test cases based
on an incoming (or outgoing) message, and evalu-
ates test results according to the implemented
metamorphic relations.4

Since a metamorphic service is a service, which
dynamically discovers a service implementation
to receive a follow-up test case. The result of the
follow-up test case will be sent to the metamorphic
service for the detection of failures. The metamor-
phic service checks the test results against other

test cases by using its metamorphic relations.
Any violation of an implemented metamorphic
relation reveals a failure.

testing in the online Mode

The testing in the online mode validates whether
a service can interact correctly with other ser-
vices. The following shows the self-explanatory
methodological steps for this mode.

(ON-1). For a service under test S, collect the set
of service descriptions DS that represents the
services interacting with S.

(ON-2). Design a metamorphic relations MRi ap-
plicable to test S in the online mode.

(ON-3). Implement MRi in the metamorphic ser-
vice MS of the service S.

(ON-4). Repeat Steps (ON-2) to (ON-3) until no
additional metamorphic relation is required
for online testing.

(ON-5). For each available successful off-line
test case to, do
i. MS uses applicable MRi to construct

the following-up test case tf of to.
ii. MS invokes S to execute tf.
iii. MS obtains the corresponding results

tf

Offline TestingTest Driver
offline test case

failed offline
test case

Debugging

Online Testing

successful original offline test case

Metamorphic Testing Follow-up
online test case
violating
a metamorphic
relation

Follow-up online test case which
does not violate any metamorphic relation

passed

Offline TestingTest Driver
offline test case

failed offline
test case

Debugging

Online Testing

successful original offline test case

Metamorphic Testing Follow-up
online test case
violating
a metamorphic
relation

Follow-up online test case which
does not violate any metamorphic relation

passed

Figure 1. The Integration between off-line and online testing

 2901

A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications

iv. If MS detect a failure by using MRi,
then report the failure and go to Step
(ON-7).

v. Repeat Steps (On-5-i) to (On-5-iv) until
no more applicable MRi.

(ON-6). Report that no failure is found.
(ON-7). Exit

Step (ON-1) collects the service description
that the service under test intends to collaborate.
They facilitate testers to define and implement
relevant metamorphic relations5 in Steps (ON-2)
and (ON-3) respectively.

If a tester does not identify any further meta-
morphic relation, Step ON-4 naturally stops,
because there is no additional metamorphic re-
lation in the tester’s context. On the other hand,
if a tester knows a metamorphic relation, but is
incompetent to implement such a relation, it is
obvious that the tester cannot use such a meta-
morphic relation according to our methodology;
unless the tester seeks helps to implement the
metamorphic relation.

Step (ON-5) uses an original test case to con-
struct a follow-up test case. It also invokes the
service under test to execute the follow-up test
case, and collects the test result of the follow-up
test case. Next, it evaluates the results until no
more implemented and applicable metamorphic
relation is available. When it detects a violation
of any metamorphic relation, in Step (On-5-iv), it
reports the failure and stops the testing. Otherwise,
the process iterates, using another original test
case until no more original test case is available.
If no failure could be detected by any test case,
the process will report such a case in Step (ON-6)
and stop at Step (ON-7).

After presenting our approach in this section,
the next section will demonstrate a way to use
metamorphic testing to reveal failures related to
the relative correctness for the testing of a service.
We will then present an empirical experiment of
our proposal in the experiment section.

An IllustrAtIon scEnArIo

In this section, our proposal for online testing
will be further illustrated by an example. We first
describe an application and its faults. Then, we
illustrate how these faults can be revealed.

Figure 2 shows a foreign exchange dealing ser-
vice application with five services, namely FXDS1
to FXDS5. In particular, FXDS2 is embraced by
a metamorphic service. We denote the metamor-
phic service as MS. It has three metamorphic
relations, namely MR1, MR2 and MR3. To ease
our discussion, we restrict ourselves to discuss
the exchange of US dollars to Renminbi.

A bank normally offers cross-currency rates
inquiry services. A sample USD−RMB exchange
rate is a pair of values such as 8.2796/8.2797. The
first value and the second value in the pair refer
to the bid rate and the ask rate, respectively. The
difference between the two values in such a pair
is known as the spread. We will use this rate for
the following illustration, and assume these rates
to be provided by the service FXDS4.

Suppose the expected behaviors of FXDS2
include:

1. A uniform exchange rate for any deal or-
der.

2. A better, or at least the same, exchange rate
to its clients than its rivals (e.g., the service
FXDS3).

3. Checks on the exchange rates from central
banks dynamically (e.g., the service FXDS4
for Central Bank of China, or FXDS5 for
European Central Bank).

Also suppose that the implementation FXDS2
contains the following two faults (see (Table 2):

a. It uses the bid rate or the ask rate to process
a deal order non-deterministically.

b. The rate provider logic has faults to cause it
to use the minimum (that is, the worst rate)

2902

A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications

instead of the maximum (that is, the best
rate) for its rate calculations.

To test the service FXDS2, testers can apply our
testing proposal, which is illustrated as follows.

Testers first formulate metamorphic relations.
For the requirement (i), testers can check whether
the output amount of service FXSD2 for a deal
order is proportional to the deal order size. It
forms the first metamorphic relation:

MR1: nFXDS2(x) = FXDS2(nx).

Consider an original test message to: a deal order
of x (= US$100). FXDS2 correctly uses the above
bid rate to output a message FXDS2(US$100) =
827.96 = 8.2796 × 100 in the off-line testing mode
by using stubs. The metamorphic service MS
constructs a follow-up test case tf: a deal order
of US$200 = 2 × x. It then passes this message
to FXDS2 to execute in the online testing mode.
(This is shown as the top-right dotted arrow in
Figure 2).

Suppose, unfortunately, FXDS2 incor-
rectly uses the above ask rate and outputs

FXDS2(US$200) = 1655.94 = 2× 827.97. Since both
messages FXDS2(US$100) and FXDS2(US$200)
can be checked by MS via MR1, we have,
2 × FXDS2(US$100) = 1655.92 ≠ 1655.94 =
FXDS2(US$200). It violates the equation MR1.
Hence, a failure related to the fault (a) is revealed
and reported by the metamorphic service.

Readers may be interested to know the results
of other combinations of using bid and ask rates
for either the original or the follow-up test cases.
When the original test case and the follow-up test
cases use the bid rate or the ask rate, the equation
MR1 will be ineffective to reveal the fault. How-
ever, when the original test case incorrectly uses
the ask rate and the follow-up test case correctly
uses the bid rate, MR1 would reveal the fault.

Let us continue to describe the scenarios to
reveal the fault (b). We also begin with the for-
mulations of two metamorphic relations. For the
requirement (ii), testers may enlarge or shrink a
deal order size by a multiplier. (In practice, a deal
order size applicable to a global bank may not be
applicable to a small foreign exchange shop at a
street corner.) Such a follow-up deal order will be
forwarded to a competing service (e.g., FXDS3).
Next, one can determine whether the output of

FXDS2 by
HKG Bank

FXDS4 by
CBC

FXDS3 by
Japanese Bank

FXDS1 by
US Bank

FXDS5 by
ECU

deal with $ x

FXDS2(x)

m o =
RMB rate
request

FXDS4(RMB)

deal with $ n x MR1

MR1: n FXDS2(x) = FXDS2(nx)

FXDS2(n x)

deal with $ nx

MR2
FXDS3(nx)

FXDS2(x)

MR2: n FXDS2(x) ≥ FXDS3(nx)

m f =
RMB
rate
request

MR3

FXDS5(RMB)

MR3: FXDS2(x, m o) >
FXDS2(x, m f)

Figure 2. A foreign exchange services system.

 2903

A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications

FXDS2 of the same order size is better than or
equal to that provided by a rival service. This
formulates the metamorphic relation:

MR2: nFXDS2(x) ≥ FXDS3(n x).

For the requirement (iii), testers may formulate
the metamorphic relation:

MR3: value(FXDS2(x)) > value(FXDS2(y))
 i f cent ralbank(FXDS2(x)) = m o and

centralbank(FXDS2(y)) = mf

Alternatively, in a shorthand notation:

MR3: FXDS2(x, mo) > FXDS2(x, mf)

MR3 means that if the target exchange is be-
tween USD and RMB, then the rate, provided by
the Central Bank of China via the rate request mo,
should be strictly better than that due to any other
rate request mf from other central banks. We note
that we choose to show the outgoing messages that
interact with other services as parameters in the
metamorphic relation in the shorthand notation
to ease our discussion. We also deliberately use
a different notation (that is, mo and mf , instead
of to and tf) for outgoing messages that serve as
test cases for the metamorphic testing being il-
lustrated.

According to MR2, a follow-up test case mf
can be formulated: Deal order of US$60 = 0.3
× 200. Suppose that an implementation of the
service FXDS3 is discovered dynamically, and
the latter correctly receives mf and returns a mes-
sage FXDS3(US$60) = 60 × 8.2796 = 496.776
to MS. Both messages FXDS2(US$200) and
FXDS3(US$60) are verified by the metamorphic
service via MR2. We have, 0.3 × FXDS2(US$200)
= 496.782 > 496.776 = FXDS3(US$60). It satisfies
MR2. Hence, no failure will be reported by MS
for this particular follow-up test case.

On the other hand, for online testing, in the
execution of a deal order as the input, FXDS2
needs to communicate with services of central
banks to collect relevant exchange rates. Thus,
the original test case to will trigger an outgoing
message mo, a USD−RMB rate request, for such
a purpose. Suppose that FXDS2 discovers both
FXDS4 and FXDS5 to provide the quotes of
exchange rates for USD−RMB. For the illustra-
tion purpose, further suppose that the exchange
rate provided by the European Central Bank via
FXDS5 for USD−RMB is 8.2795/8.2798. This
spread is wider than that provided by FXDS4,
and thus is poorer.

MS uses the metamorphic relation MR3 to
produce the follow-up test case mf of mo. Owing
to the faults (a) and (b), FSDS2 incorrectly selects
the ask rate of the service FXDS4 to process
the deal order. FSDS2 will output a message
FXDS2(US$100) = 827.98 = 8.2798 × 100. We
have, in the shorthand notation, FXDS2(US$100,
mo) = 827.96 < 827.98 = FXDS2(US$100, mf). It
violates MR3, and MS reports a failure due to the
combination of faults (a) and (b).

We have illustrated the usefulness of using a
metamorphic service for the testing of services.
In reality, there are domain-specific rounding
practices compliant to the international ac-
counting practice. Since rounding rules are a
part of the application domain, it is natural for
the designed metamorphic relations to take this
type of rounding rules into account. This type
of domain-specific rounding does not affect the
metamorphic approach for services testing. It is
worth mentioning that there could be implementa-
tion-specific rounding errors also. We refer readers
to a previous work on metamorphic testing (Chen
et al., 2003) for using a metamorphic approach
to identify failures in the presence of the imple-
mentation-specific rounding errors. In the next
section, we report an experiment that applies our
proposal and discuss observations.

2904

A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications

EXpErIMEnt

In this section, we examine two issues in our pro-
posal through an empirical experiment. We would
like to study the testing overhead when some of the
original test cases have failed. This is to validate
our proposal to use successful test cases applicable
to off-line testing as the original test cases for on-
line testing. Our rationale is that if the overhead,
on the contrary, is marginal; it is unnecessary to
predetermine the successfulness of original test
cases. This also helps reduce the testing effort for
the online testing of services.

the subject program

The subject service implements a service-ori-
ented calculator of arithmetic expressions. It is
developed in C++ on Microsoft Visual Studio for
.NET 2003 as a Web services. It consists of 16
classes with 2,480 lines of code.

Functionally, the calculator accepts an
arithmetic expression consisting of constants of
designated data type and arithmetic operators.
The set of supported operators are {+,−,×,÷} in
which each operator is overloaded to enable every
operand belonging to different data types. Five
data types of operands are supported: integer,
long integer, decimal, floating-point number, and
floating-point number with double precision. Each
operator is implemented as a supportive service
of the subject service.

The subject service parses the inputted arith-
metic expressions, locates other services, and
composes the results from the results returned
by its individual supportive services. In the case
where different data types are associated with
an operator in a sub-expression, the subject
service is responsible to resolve the appropriate
data types and to pass the sub-expression to an
applicable supportive service. In the design of
the application, we choose to allow at most three
concurrent instances of the above logic in the
subject service. They, together with an expres-

sion dispatcher instance, compose our subject
service. The expression dispatcher discovers the
above supportive services of the subject service,
and sends outgoing and receives incoming mes-
sages for the latter services. The metamorphic
service for the subject service is composed of the
dispatcher and a program unit that implements
a set of metamorphic relations, which will be
explained in the next section.

All the above services are developed by a team
of five developers. They have completed certain
formal software engineering training. Before
doing the experiment, they have gained at least
one year of research-oriented and application
software development to develop location-based
systems, mobile positioning systems and common
business applications.

Experimental setup

In this section, we describe the setup configuration
for the testing of the subject service. Specifically,
we present the selection of the original test cases,
the metamorphic relations, and our experience
in finding and implementing the metamorphic
relations for the experiment.

As described previously, every instance of
services is executed on a designated machine.
In total, 14 personal computers are used. All the
machines to collect our data are located in the
Compuware Software Testing Laboratory of the
Hong Kong Institute of Vocational Education
(Tsing Yi).

The selection of the set of the original test cases
is a black-box combinatorial testing approach.
This allows the test cases to serve as the original
test cases for both the off-line testing mode and
online mode. Consider an arithmetic expression
of length 3, which we mean to have an expression
having three values and two operators (e.g., 13 +
0.45 − 7). In our experiment, there are five types
of data type and four types of operator. In total,
there are 2,000 (that is, 53 × 42) combinations, not
counting the possible choices of value to initialize

 2905

A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications

each variable. Since the length of an arithmetic
expression could be ranged from zero to a huge
figure, we choose to fix the length to three in this
experiment. This minimizes the potential prob-
lem of using a very long expression to compare
with a very short expression in our subsequent
analysis. We also initialize test cases that do not
cause integer value overflow, and the overflow
of other data types alike. We are aware that we
have implemented some design decisions in the
test case selection process. We minimize these
highlighted threats by designing our metamorphic
relations neutral to these design decisions.

In ideal cases, a user would perceive every
calculation as if it is derived analytically using
mathematics. However, some expressions would
incur rounding errors due to the limitation of
programming or system configuration. Different
orders of evaluations of an expression could thus
produce inconsistent results. A good calculator
would provide consistent results to its users. For
example, the arithmetic expression “(1 ÷ 3) × 3”
would be evaluated as “(1 × 3) ÷ 3” by a good
calculator.

We follow the above general guideline to
formulate our metamorphic relations. We first
describe how we determine and implement
metamorphic relations. Next, we will describe
the chosen metamorphic relations.

The arithmetic operators for the calculator
application domain naturally define associative
and commutative properties amongst arithmetic
operators. We use these properties as the basis
to design our metamorphic relations. This aligns
with our objective to design such relations neutral
to the selection of the original test cases. Since
these properties naturally occur in the domain
application, we experience a marginal effort to
design associative and commutative relations and
convert them into their corresponding formats in
the sense of metamorphic relation. Furthermore,
since the .NET framework for C++ directly sup-
ports the chosen operators, the effort to implement

the metamorphic relations in our experiment is
also marginal.

The types of metamorphic relation used in the
experiment are as follows. Suppose A, B and C
are operands of some data type in the set {inte-
ger, long integer, floating point number, floating
point number with double precision}, and θ1 and
θ2 are overloaded operators in the set {+, −, ×, ÷}.
Consider the expression “(A θ1 B) θ2 C.” A com-
mutative-property rule to generate the follow-up
test cases is: “(A θ1 B) θ2 C” ⇒ “C θ2 (A θ1 B)”.
It derives the follow-up test case “C θ2 (A θ1 B)”
based on the original test case “(A θ1 B) θ2 C.”

Let us denote our subject service by S. The
corresponding metamorphic relation of the above
commutative rule would be: S(“(A θ1 B) θ2 C”) =
S(“C θ2 (A θ1 B)”). A metamorphic relation derived
from an associative rule is S (“(A θ1 B) θ2 C”) =
S(“A θ1 (B θ2 C)”). We also design variants of the
follow-up test case derivation rules to deal with
the division operator: “(A × B) ÷ C)” ⇒ “(1 ÷
C) × (A × B),” and other similar rules alike. The
generation of test cases is implemented as logic
in our program.

Let us continue the discussion on the execution
of test cases. Even a program is ideal; messages
could still be lost or corrupt in a distributed envi-
ronment. Our subject application does not imple-
ment a sophisticated fail-and-retry strategy to
handle these anticipated scenarios. To compensate
the lacking of this kind of strategy, we choose to
abort the execution of a test case when a service
returns no output after a timing threshold. After
some trials-and-errors in our laboratory environ-
ment, we choose the threshold to be 50 seconds
per execution of a pair of (original and follow-up)
test cases. A typical test case will yield the result
with three seconds.

Based on the implementation of the subject
application, we create additionally six consecutive
faulty versions of the set of supportive services.
Each version injects one additional mutation fault
to its immediate ancestor. The six consecutive

2906

A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications

faults are created in the following order: chang-
ing a “+” operator to the operator “−”; changing a
“−” operator to the “+” operator’; changing a “×”
operator to a “−” operator; swapping the operand
of a “÷” operator; changing a “−” operator to the
“×” operator; and changing a “×” operator to a
“+” operator. These faults support operands of the
following data types respectively: floating-point
number with double precision, integer, decimal,
floating-point number with single precision, long
integer, and floating-pointer number with single
precision.

The following configurations were deployed
for off-line testing and online testing.

• The subject application (the subject service
with the original version of the supportive
services) simulates an off-line testing envi-
ronment. The original non-faulty versions of
the supportive services serve as stub services
for the off-line testing, in the sense of con-
ventional testing. Inexperienced developers
implement the subject service and, thus, it
naturally contains real faults. Some random
test cases do reveal failures from the subject
service. We however have reviewed that a
set of test cases for the subject service for
off-line testing are successful. This set of test
cases could be used as the original test cases
for online testing according to our approach.
We refer this set of test cases to as the set of
original test cases in the experiment.

• A faulty application (the subject service with
a faulty version of the supportive services)
simulates an online testing environment.
A faulty version of the supportive services
is not identical in behavior to its original
counterpart (the test stub used in the off-line
testing). The six faulty versions therefore
facilitate us to re-use the above set of origi-
nal test cases yet provide failed test results
for some of the elements. This allows us to
compare the effect of failed original test
cases. In order to avoid biases towards a

particular faulty implementation, we put all
original test cases and their results of the
faulty versions in the same pool for analysis
and treat them homogenously.

In total, we executed 22,503 follow-up test
cases and also 22,503 original test cases. These
two figures are the same because we use meta-
morphic relations with two input-output pairs
in this experiment. For the original version, we
execute 3,987 pairs of test cases, and for each
faulty version, we execute 3,086 pairs of test
cases. To facilitate us to evaluate the effectiveness
of test cases, we also mark every test case to be
successful or failed, according to the expected
result of the arithmetic expression. The result is
shown in the next section.

Empirical results

In this section, we will present the empirical results
of the experiment and discuss our observations
from the results. In summary, our experimental
result shows that our approach uses 16% less in
terms of effort to detect 13% more in terms of
failures, compared to the control experiment
having no prior confirmation of test results of
original test cases.

We first analyze the overhead, including failed
original test cases for online testing. According to
the previously mentioned experimental setup, we
have collected a pool of 18,516 (= 3,086 × 6) pairs
of test cases from the six faulty versions. Some
of the pairs contain failed original test cases. We
evenly partition the pool into 18 groups so that each
group consists of around 1,000 test cases. For the
i-th group (for i = 1 to 18), we use database queries
to help us randomly draw around 5i percent of
its elements having failed original test cases and
all elements having successful original test cases
to calculate the overhead in terms of test result
checking. The total number of elements drawn
from each group is shown in Table 1.

 2907

A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications

The calculation of the overhead of a test pair
is as follows.

• If no violation of the associated metamorphic
relation is detected, then the overhead value
is zero. It is because the test pair cannot
reveal any failure.

• If a violation of the associated metamorphic
relation is detected, then the overhead value
is equal to the number of actual failure-caus-
ing test case(s) in the test pair. In other words,
if both test cases are failure-causing inputs,
the overhead value will be two; otherwise,
it will be one.

We further define that the number of additional
test result checking to confirm the failure-caus-
ing inputs for a set of test pairs, denoted by Ω,

is the sum of the overhead of every test pair in
the set.

 Figure 3 shows the value of Ω for 10%, 20%
and up to 90% of total number of the failed origi-
nal test cases of a group for the calculation. The
mean value is 141 and the standard derivation
is 29.4. (We are aware that there are inadequate
numbers of data to calculate a good standard
derivation statistically. We show the value just
to give readers an impression about the skewness
of data set.)

As expected, the value of Ω increases when the
percentage increases. When more failed original
test cases are added to a set for the calculation of
Ω, the chance to detect a failure increases.

However, as we increase the number of test
cases from 762 (for group 2) to 997 (for group
18), the change in Ω is moderate and is equal

Numer of additional test result checking to
confirm the failure-causing inputs

0

50

100

150

200

250

10% 20% 30% 40% 50% 60% 70% 80% 90%

Figure 3. The overheads for different percentages of failed original test cases

Group 2 4 6 8 10 12 14 16 18 Total

Percentages of failed
test cases drawn 10% 20% 30% 40% 50% 60% 70% 80% 90% -

No. of elements drawn 767 791 809 839 885 904 945 973 997 7,910

Table 1. No. of elements drawn from selected groups

2908

A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications

to 77 (= 173 – 96). When around 10% of failed
original test cases are included, the value of Ω is
96. This initial value, 96, is even larger than the
cumulated change, 77, increasing the percentages
from 10% to 90%.

It confirms our assertion that the inclusion
of small percentages of failed original test cases
for the online testing of a service accounts for a
major source of overhead in terms of additional
test result checking. This substantiates our rec-
ommendation of using successful original test
cases only for online testing to alleviate the test
oracle problem.

We also observe that the overall percentage
is not high. The mean is 15.9%. It suggests that
even testers had to include inevitably some failed
original test cases; measures should be taken to
minimize such an inclusion.

We further examine the chance that we would
miss to detect a failure if some failed original
test cases are used for online testing. In our
experiment, we use simple equations (instead of
inequality) as metamorphic relations deliberately.
We recall that, in our methodology, an original test
case is known to be successful. It follows that any
failure detected by the metamorphic testing ap-

proach would be due to the failure of the follow-up
test case. On the other hand, when no violation of
a metamorphic relation (in the form of equation)
could be detected, the follow-up test case will be
regarded as successful in the experiment.

For a set of test pairs, we define ω as the number of
test pairs that each pair consists of one failed original
test case and one follow-up test case, and at the same
time, the associated metamorphic relation cannot
detect the failure. The ω thus measures the missed
opportunities to detect failures for online testing.

We also use the data sets reported in Table 1 to
calculate ω for each group. The results are shown
in Figure 4. The mean value is 118.7, that is, 13%
of all failure-causing cases. The corresponding
standard derivation is 64.2. The minimum is 25 for
Group 2 (that is, the 10% group) and the maximum
is 212 for Group 18 (that is, the 90% group).

The trend of missed detection of failures ω is
increasing as the percentage of failed original test
cases included in a group increases. Moreover, the
number of missed detection appears proportional
to the percentages of failed original test cases in
the data set. This observation looks interesting
and warrants further investigations.

Number of failure-causing inputs that are
missed when the corresponding original

test cases are failed

0

50

100

150

200

250

10% 20% 30% 40% 50% 60% 70% 80% 90%

Figure 4. The number of missed detection of failure-causing inputs

 2909

A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications

rElAtEd worK

Literatures on function testing research for SOA
applications or Web services are not plenty.
Bloomberg (2002) overviews a few major types
of testing activity for testing Web services. We
refer interested readers to the work of Bloomberg
(Bloomberg, 2002) for the overview. In the rest
of the section, we review selected related work
on providing tools for testing, exception handling
testing, generation of test cases and test result
evaluation for service-oriented programs.

The use of the testing tool is an indispens-
able part to automate testing activities. Dustar
and Haslinger (2004) propose to develop an
experimental testing tool prototype to conduct
batch mode and online mode testing. Their tool
is reported to expect to handle several types of
testing such as functional test and reliability test.
Deng et al., (2004) extend AGENDA, a database
application testing tool that populates database
instances as a part of a test case, to test Web-based
database applications. Rather than populating test
database instances, SOATest (Parasoft, 2005)
also reads data from different data sources to
conduct testing. On the Internet, there are quite
a few tools to conduct load and stress tests for
Web services. Their discussions are not within
the scope of this article.

To generate test cases, Offutt and Xu (2004)
propose a set of mutation operators to perturb
messages of Web services. They also suggest three
types of rules to develop test cases based on the
XML schema of messages. Their initial result on
a sample application shows that 78% of seeded
faults can be revealed. These faults include com-
munication faults in SOAP, faults in statements
for database query languages and conventional
faults. The mutated messages could be considered
as a method to construct follow-up test cases in
the sense of metamorphic testing. Their empirical
study of their approach is valuable. Rather than
injecting faults to messages, Looker and Xu (2003)

inject faults in SOAP-based programs to test the
programs for robustness.

Chen et al., (2004a) also aim at testing for
robustness. They focus on testing the exception
handling of Java Web services through a data flow
coverage approach. They propose to inject faults
to system calls to trigger exception throws and
require test cases to cover the exception-oriented
def-use relations. Through their subject programs
are Java-based Web service program; their tech-
niques are not specialized to services testing.

Tsai et al., (2004, 2005) propose an approach
to testing Web services that each service has
multiple implementations with the same intended
functionality. They apply test cases to a set of
implementations of the same intended function-
ality progressively. Their test results are ranked
by a majority voting strategy to assign a winner
as the test oracle. A small set of winning imple-
mentations is selected for the integration testing
purpose. At an integration testing level, they fol-
low the same approach except using a weighted
version of the majority voting strategy instead.
To deal with the test case selection problem, their
research group (Tsai et al., 2002a) proposes to
generate test cases based on WSDL. Although
WSDL-based testing has been proposed for a
few years and implemented in testing tools such
as SOATest (Parasoft, 2005), their version of
WSDL (Tsai et al., 2002b) extends the standard-
ized WSDL (W3C, 2001) to include features to
express semantics. It is not difficult to use other
voting strategies instead of the majority voting
strategy in their approach.

The advantages of semantics checking are
also observed by other researchers. An immedi-
ate example is our adaptation of metamorphic
relation in this article. Keckel and Lohmann
(2005), on the other hand, propose to apply the
notion of design by contract to conduct testing
for Web services. They suggest defining formal
contracts to describe the behavior of functions
and interactions of Web services. Based on the

2910

A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications

contracts, combinatorial testing is suggested to
apply to conduct conformance testing against the
contracts of intended services.

Our approach uses metamorphic relations to
construct follow-up test cases. It is not a fault-based
approach; whereas Looker and Xu (2003) suggest
a fault-based approach to testing for program
robustness. In addition, unlike the work of Offutt
and Xu (2004), these follow-up test cases in our
approach are intentional to allow automated test
result evaluations. A follow-up test case triggers
a service to produce an output. The output of
a follow-up test case is allowed to be different
from the output of the original test case. Hence,
it can be applied to configurations when multiple
implementations of the same functionality are too
expensive to be used. This distinguishes our work
from Tsai et al., (2005). Our approach checks test
results amongst themselves; whereas the work
of Keckel and Lohmann (2005) checks the test
results against some formal contract specifica-
tions. Chen et al., (2004a) is a white-box-centric
approach; whereas ours is a black-box-centric
approach. The tools (Dustar & Haslinger, 2004;
Parasoft, 2005) appear to be developed as an
integrated testing tool that includes a number of
different testing modules. Their architectures are
unclear to us at this moment. Our metamorphic
service is an access wrapper to facilitate off-line
and online testing of a service. We aim at reduc-
ing the amount of non-core elements from our
metamorphic service. In this way, when exposing
the function to other services, we would like to
develop the approach further so that it enjoys a
good scalability.

dIscussIon

We have presented an approach to online testing
and an experiment on a simple application to
study metamorphic testing for services testing
in the previous sections. The approach is useful
for the online testing of a service if testers have

difficulties to obtain the expected results of a test
case in a cost-effective manner. The test oracle
problem has been identified for many years (see
also (Beizer, 1990)). In practice, many testers
validate their software without a formal test oracle.
Metamorphic testing is an approach towards the
problem when a metamorphic relation exists and
could be identified. We believe that this trend will
continue for services testing.

In the rest of this section, we discuss the threat
to validity of the experiment. The evaluation of us-
ing the metamorphic testing approach for services
testing in the online mode is conducted in a small
application. The application domain of the subject
application is generic that it uses the basic com-
puting functionality, namely a fundamental set of
arithmetic operations and basic (communicative
and associative) properties to define metamorphic
relations. It is unknown about the impact on the
results when certain domain-specific knowledge
is taken into account to both define metamorphic
relations and selections of test cases. We merely
use a small number of faulty versions to conduct
the experiment to discuss our findings. The sta-
tistics may be different if other faulty versions are
used. Our subject program does contain real faults
and hence some metamorphic relation instances
are violated even if the original version is used.
We believe that it is common for a typical testing
of a newly-coded software program. However, the
assumption is not valid if other rigorous quality
assurance techniques such as rigorous regres-
sions, code inspections or formal methods have
been applied to a software development project.
We have evaluated our approach on the Microsoft
.NET 2003 platform only. The present implemen-
tation of the subject program is not portable to
other platforms. There is a threat to interpret the
empirical results in other configurations. We have
reviewed the set test cases and the set follow-up
test cases, and use a commercial spreadsheet to
help us to check whether the target relation is
maintained in the reviewed samples.

 2911

A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications

conclusIons And futurE
worK

Testing services in a services-computing environ-
ment needs to deal with a number of issues. They
include: (i) The unknown communication partners
until the service discovery; (ii) the imprecise black-
box information of software components; (iii) the
potential existence of non-identical implementa-
tions of the same service; and (iv) the expected
behavior of a service potentially depending on the
behavior of competing services. In this article, we
treat a service as a reusable software module with
a well-defined function. A service can introduce
itself so that other services can discover and use
the service. Services communicate amongst
themselves through well-defined messages and
interfaces. A message is an input or an output of
a service.

We have presented a testing approach to the
online testing support of service-oriented applica-
tions. We formulate the notion of metamorphic
service; the service that has the characteristics of
being an access wrapper, the wrapper encapsulates
the access for the service under test and imple-
ments the metamorphic testing approach. We also
propose to use the successful test case for off-line
testing as the original test case for online testing,
as test oracle is much more likely to be available
for off-line testing. Using our online testing meth-
odology, testers builds a bridge between the test
oracle available in the off-line testing mode and
the test oracle problem encountered in the online
testing mode. The services approach to conducting
an online test alleviates the problem (i). It delays
the binding of communication partners of the
follow-up test cases after service discovery. Our
realization of the metamorphic testing approach
alleviates the problems (ii), (iii) and (iv).

We have also conducted an experiment to
evaluate the feasibility of our proposal. The ex-
perimental results encouragingly indicate that,
on average, when the set of original test cases are
unknown to be successful, an extra 16% effort to

check test results and a 13% reduction of failure
detection are observed. This supports our proposal
that original test cases should be (much) better
to be successful, particularly when the checking
is (much) less costly when it can be conducted in
the off-line testing mode.

There are quite a number of future directions
of research. We have not evaluated our proposal
extensively. We plan to conduct more experi-
ments. The way to control the chain reaction of
the follow-up test cases generations due to inter-
ferences of multiple metamorphic services war-
rants more researches. We also plan to measure
the degree of code coverage or fault coverage of
our approach.

AcKnowlEdgMEnt

We would like to thank the program co-chairs
of The First International Workshop on Services
Engineering (SEIW 2005) for inviting us to ex-
tend the preliminary version (Chan et al., 2005a)
to contribute to the special issue. We would also
like to thank anonymous reviewer of the article.
Special thanks should be given to Mr. Kwong–Tim
Chan, Mr. Hoi-Shun Tam, Mr. Kwun-Ting Lee,
Mr. Yuk-Ching Lam and Mr. King–Lun Yiu of
the Hong Kong Institute of Vocational Education
(Tsang Yi) who do the experiments presented in
this article. Part of the research was done when
Chan was with The University of Hong Kong. This
research is supported by grants of the Research
Grants Council of Hong Kong (Project Nos.
HKUST 6170/04E and CITYU1195/03E).

rEfErEncEs

Bass, L., Clements, P., & Kazman, R. (2003). Soft-
ware architecture in practice. Addison Wesley.

Beizer, B. (1990). Software Testing Techniques.
New York:Van Nostrand Reinhold.

2912

A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications

Bloomberg, J. (2002). Testing web services today
and tomorrow. Retrieved from http://www-106.
ibm.com/developerworks/rational/library/con-
tent/rationaledge/oct02/webtesting_theration-
aledge_oct02.pdf .

Chan, F.T., Chen, T.Y., Cheung, S.C., Lau, M.F.,
& Yiu, S.M. (1998). Application of metamorphic
testing in numerical analysis. In Proceedings of
IASTED International Conference on Software
Engineering (SE 1998),(pp. 191−197). Calgary,
Canada: ACTA Press.

Chan, W. K., Cheung, S. C., & Leung, K. R. P. H.
(2005a). Towards a metamorphic testing method-
ology for service-oriented software applications,
The First International Workshop on Services
Engineering (SEIW 2005). In Proceedings of the
5th Annual International Conference on Quality
Software (QSIC 2005). Los Alamitos, CA:IEEE
Computer Society.

Chan, W. K., Cheung, S. C., & Tse, T. H. (2005b).
Fault-based testing of database application pro-
grams with conceptual data model. In Proceed-
ings of the 5th Annual International Conference
on Quality Software (QSIC 2005). Los Alamitos,
CA:IEEE Computer Society.

Chan, W. K., Chen, T. Y., Lu, Heng, Tse, T. H.,
& Yau, S. S. (2005c). A metamorphic approach
to integration testing of context-sensitive middle-
ware-based applications. In Proceedings of the
5th Annual International Conference on Quality
Software (QSIC 2005). Los Alamitos, CA: IEEE
Computer Society.

Chen, F., Ryder, B., Milanova, A., & Wannacott,
D. (2004a). Testing of java Web services for
robustness. In Proceedings of the International
Symposium on Software Testing and Analysis (IS-
STA 2004), (pp. 23−34).New York: ACM Press.

Chen, T. Y., Huang, D. H., Tse, T. H., & Zhou, Z.
Q. (2004b). Case studies on the selection of useful
relations in metamorphic testing. In Proceedings
of the 4th Ibero-American Symposium on Software

Engineering and Knowledge Engineering (JIISIC
2004), (pp. 569−583). Madrid, Spain: Polytechnic
University of Madrid.

Chen, T. Y., Tse, T. H., & Zhou, Z. Q. (2002).
Semi-proving: An integrated method based on
global symbolic evaluation and metamorphic
testing. In Proceedings of the ACM SIGSOFT
International Symposium on Software Testing
and Analysis (ISSTA 2002). (pp. 191−195). New
York:ACM Press.

Chen, T. Y., Tse, T. H., & Zhou, Z. Q. (2003).
Fault-based testing without the need of oracles.
Information and Software Technology, 45 (1),
1−9.

Chen, T.Y., Cheung, S.C., & Yiu, S.M. (1998).
Metamorphic testing: A new approach for
generating next test cases (Tech. Rep. HKUST-
CS98-01). Hong Kong: Hong Kong University of
Science and Technology, Department of Computer
Science.

Chunyang Ye, S.C. Cheung & W.K. Chan (2006).
Publishing and composition of atomicity-equiva-
lent services for B2B collaboration. In Proceed-
ings of the 28th International Conference on Soft-
ware Engineering (ICSE 2006). Los Alamitos,
CA:IEEE Computer Society.

Colan, M. (2004). Service-oriented architecture
expands the vision of Web Services, part 1:
Characteristics of service-oriented architecture.
Retrieved from http://www-128.ibm.com/de-
veloperworks/webservices/library/ws-soaintro.
html.

Curbera, F., Duftler, M., Khalaf, R., Nagy, W.,
Mukhi, N. & Weerawarana, S. (2002). Unraveling
the web services web: An introduction to SOAP,
WSDL, and UDDI. IEEE Internet Computing, 6
(2), 86−93.

Deng, Y., Frankl, P., & Wang, J. (2004). Testing
web database applications, SECTION: Workshop
on testing, analysis and verification of web ser-

 2913

A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications

vices (TAV-WEB) papers. SIGSOFT Software
Engineering Notes, 29 (5).

Dustar, S., & Haslinger, S. (2004). Testing of ser-
vice-oriented architectures: A practical approach.
In Proceedings of the 5th Annual International
Conference on Object-Oriented and Internet-
Based Technologies, Concepts, and Applications
for a Networked World (NODe 2004), (pp. 97−112).
Berlin, Heideberg: Springer-Verlag.

Frankl, P. G. & Weyuker, E. J. (1988). An appli-
cable family of data flow testing criteria. IEEE
Transactions on Software Engineering, 14 (10),
1483−1498.

Kapfhammer, G. M., & Soffa, M. L. (2003). A fam-
ily of test adequacy criteria for database-driven
applications. In Proceedings of the 9th European
software engineering conference held jointly with
11th ACM SIGSOFT international symposium on
Foundations of software engineering (ESEC/FSE
2003) (pp. 98–107). New York: ACM Press.

Keckel, R. & Lohmann, M. (2005). Towards
contract-based testing of Web services. Elec-
tronic Notes in Theoretical Computer Science,
116, 145−156.

Kreger, H. (2003). Fulfilling the web services
promise. Communications of the ACM, 46 (6),
29−34.

Looker, N., & Xu, J. (2003, October). Assessing the
dependability of SOAP RPC based Web services
by fault injection. In Proceeding of IEEE Interna-
tional Workshop on Object-Oriented, Real-Time
and Dependable Systems, Capri Island.

Mecella, M. & Pernici, B. (2003), Designing
wrapper components for e-services in integrat-
ing heterogeneous systems. The VLDB Journal,
10 (1), 2−15.

Mukhi, N. K., Konuru, R., & Curbera, F. (2004).
Cooperative middleware specialization for service
oriented architectures. In Proceedings of the 13th
international World Wide Web conference on

Alternate track papers & posters (WWW 2004),
(pp. 206−215) New York: ACM Press.

OASIS (2005). Universal Description, Discovery
and Integration (UDDI) version 3.0.2, retrieved
from http://uddi.org/pubs/uddi_v3.htm.

Offutt, J. & Xu, W. (2004). Generating test cases
for web services using data perturbation, SEC-
TION: Workshop on testing, analysis and verifica-
tion of web services (TAV-WEB) papers, SIGSOFT
Software Engineering Notes, 29 (5).

Parasoft Corporation (2005). SOATest, Retrieved
from http://www.parasoft.com/jsp/products/
home.jsp?product=SOAP&itemId=101 .

Rajasekaran, P., Miller, J. A., Verma, K., Sheth,
A. P. (2004). Enhancing Web services descrip-
tion and discovery to facilitate composition. In
Proceeding of The First International Workshop
on Semantic Web Services and Web Process
Composition (SWSWPC 2004), LNCS 3387, (pp.
55-68). Berlin, Heideberg: Springer-Verlag.

Tsai, W. T., Chen, Y., Paul, R., Huang, H., Zhou,
X., & Wei, X. (2005). Adaptive testing, oracle
generation, and test case ranking for Web services.
In Proceedings of the 29th Annual International
Computer Software and Applications conference
(COMPSAC 2005), (pp. 101−106). Los Alamitos,
CA :IEEE Computer Society.

Tsai, W. T., Chen, Y., Cao, Z. Bai, X., Hung,
H., & Paul, R. (2004). Testing Web services us-
ing progressive group testing. In Proceedings
of Advanced Workshop on Content Computing
(AWCC 2004), LNCS 3309, (pp. 314−322). Berlin,
Heideberg:Springer-Verlag.

Tsai, W. T., Paul, R., Wang, Y., Fan, C., 7 Wang,
D. (2002a). Extending WSDL to facilitate Web
services testing. In Proceedings of The 7th IEEE
International Symposium on High-Assurance
Systems Engineering (HASE 2002), (pp. 171−172)
Los Alamitos, CA: IEEE Computer Society.

2914

A Metamorphic Testing Approach for Online Testing of Service-Oriented Software Applications

Tsai, W. T., Paul, R., Song, W., & Cao Z. (2002b).
Coyote: An XML-based framework for Web
services testing. In Proceedings of The 7th IEEE
International Symposium on High-Assurance
Systems Engineering (HASE 2002), (pp. 173−176).
Los Alamitos, CA: IEEE Computer Society.

Tse, T. H., Yau, S. S., Chan, W. K., Lu, H., &
Chen T. Y. (2004). Testing context-sensitive
middleware-based software applications. In
Proceedings of the 28th Annual International
Computer Software and Applications Conference
(COMPSAC 2004), (pp. 458−466). Los Alamitos,
CA:IEEE Computer Society.

W3C (2003). SOAP Version 1.2 Part 1: Mes-
saging Framework. Retrieved from http://www.
w3.org/tr/soap12-part1/.

W3C (2002). Web Services Activity, Retrieved
from: http://www.w3.org/2002/ws .

W3C (2005). Web Services Description Language
(WSDL) Version 2.0 Part 1: Core Language. Re-
trieved from http://www.w3.org/tr/wsdl20/ .

W3C (2004). Extensible Markup Language (XML)
1.0 (Third Edition). Retrieved from http://www.
w3.org/TR/2004/REC-xml-20040204/ .

W3C (2001). XML Schema. Retrieved from http://
www.w3.org/xml/schema .

Umar, A. (1997). Application reengineering.
Building web-based applications and dealing with
legacy. Cliffs, NJ: Prentice-Hall, Englewood

Zhu, H., Hall, P. A. V., & May, J. H. R. (1997).
Software unit test coverage and adequacy. ACM
Computing Survey, 29 (4), 366−427.

EndnotEs

1 All correspondence should be addressed to
Dr. W. K. Chan at Department of Computer
Science and Engineering, Hong Kong Uni-
versity of Science and Technology, Clear
Water Bay, Kowloon, Hong Kong. Tel: (+852)
2358 7016. Fax: (+852) 2358 1477. Email:
wkchan@cse.ust.hk .

2 XML stands for Extensible Markup Lan-
guage (W3C, 2004).

3 IBM also proposes to design stateless Web
services when it introduces service-oriented
architecture (see http://www-128.ibm.com/
developerworks/webservices/library/ws-
soaintro.html .)

4 We refer readers to Section 0 for the role
of a tester in the design and implementation
of metamorphic relations, and refer readers
to Section 0 for the illustration to construct
test cases in the metamorphic approach.

5 Although services are highly recommended
to publish their functional properties for
other services to judge its usefulness in their
areas of concerns and to subscribe to use
the service, yet the design of metamorphic
relations, the implicit form of functional
properties, is not within the scope of this
paper. We refer interested readers to a case
study (Chen et al., 2004) on the selection of
effective metamorphic relations for more
details.

This work was previously published in International Journal of Web Services Research, Vol. 4, Issue 2, edited by L. Zhang,
pp. 61-81, copyright 2007 by IGI Publishing (an imprint of IGI Global).

 2915

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

AbstrAct

Deductive semantics is a novel software semantic
theory that deduces the semantics of a program in
a given programming language from a unique ab-
stract semantic function to the concrete semantics
embodied by the changes of status of a finite set
of variables constituting the semantic environ-
ment of the program. There is a lack of a generic
semantic function and its unified mathematical
model in conventional semantics, which may be
used to explain a comprehensive set of program-
ming statements and computing behaviors. This
article presents a complete paradigm of formal
semantics that explains how deductive semantics
is applied to specify the semantics of real-time
process algebra (RTPA) and how RTPA challenges
conventional formal semantic theories. Deductive
semantics can be applied to define abstract and
concrete semantics of programming languages,
formal notation systems, and large-scale software

systems, to facilitate software comprehension
and recognition, to support tool development, to
enable semantics-based software testing and veri-
fication, and to explore the semantic complexity
of software systems. Deductive semantics may
greatly simplify the description and analysis of
the semantics of complicated software systems
specified in formal notations and implemented in
programming languages.

IntroductIon

Semantics in linguistics is a domain that studies
the interpretation of words and sentences, and
analysis of their meanings. Semantics deals with
how the meaning of a sentence in a language is
obtained, hence the sentence is comprehended.
Studies on semantics explore mechanisms in the
understanding of languages and their meanings on
the basis of syntactic structures (Chomsky, 1956,

Chapter 7.18
Deductive Semantics of RTPA

Yingxu Wang
University of Calgary, Canada

2916

Deductive Semantics of RTPA

1957, 1959, 1962, 1965, 1982; Tarski, 1944).
Software semantics in computing and compu-

tational linguistics have been recognized as one of
the key areas in the development of fundamental
theories for computer science and software engi-
neering (Bjoner, 2000; Gries, 1981; Hoare, 1969;
McDermid, 1991; Slonneg & Kurts, 1995; Wang,
2006b, 2007c). The semantics of a programming
language is the behavioral meaning that constitute
what a syntactically correct instructional state-
ment in the language is supposed to do during
run time. The development of formal semantic
theories of programming is one of the pinnacles
of computing and software engineering (Gunter,
1992; Meyer, 1990; Louden, 1993; Bjoner, 2000;
Pagan, 1981).

Definition 1. The semantics of a program in a
given programming language is the logical conse-
quences of an execution of the program that results
in the changes of values of a finite set of variables
and/or the embodiment of computing behaviors in
the underpinning computing environment.

A number of formal semantics, such as the
operational (Marcotty & Ledgard, 1986; Ollon-
gren, 1974; Wegner, 1972; Wikstrom, 1987), de-
notational (Bjorner and Jones, 1982; Jones, 1980;
Schmidt, 1988, 1994, 1996; Scott, 1982; Scott &
Strachey, 1971), axiomatic (Dijktra, 1975, 1976;
Gries, 1981; Hoare, 1969), and algebraic (Goguen,
Thatcher, Wagner, & Wright, 1977; Gougen &
Malcolm, 1996; Guttag & Horning, 1978), have
been proposed in the last three decades for defining
and interpreting the meanings of programs and
programming languages. The classic software
semantics are oriented on a certain set of software
behaviors that are limited at the level of language
statements rather than that of programs and soft-
ware systems. There is a lack of a generic semantic
function and its unified mathematical model in
conventional semantics, which may be used to
explain a comprehensive set of programming
statements and computing behaviors. The math-

ematical models of the target machines and the
semantic environments in conventional semantics
seem to be inadequate to deal with the semantics
of complex programming requirements, and to
express some important instructions, complex
control structures, and the real-time environ-
ments at run time. For supporting systematical
and machine enabled semantic analysis and code
generation in software engineering, the deductive
semantics is developed that provides a systematic
semantic analysis methodology.

Deduction is a reasoning process that discovers
new knowledge or derives a specific conclusion
based on generic premises such as abstract rules
or principles (Wang, 2006b, 2007a, 2007c). The
nature of semantics of a given programming
language is its computational meanings or em-
bodied behaviors expressed by an instruction in
the language. Because the carriers of software
semantics are a finite set of variables declared
in a given program, program semantics can be
reduced onto the changes of values of these
variables over time. In order to provide a rigor-
ous mathematical treatment of both the abstract
and concrete semantics of software, a new type
of formal semantics known as the deductive se-
mantics is presented.

Definition 2. Deductive semantics is a formal
semantics that deduces the semantics of a pro-
gram in a given programming language from a
generic abstract semantic function to the concrete
semantics, which are embodied onto the changes
of status of a finite set of variables constituting
the semantic environment of computing.

This article presents a comprehensive theory
of deductive semantics of software systems. The
mathematical models of deductive semantics and
the fundamental properties are described. The
deductive models of semantics, semantic function,
and semantic environment at various composing
levels of programs are introduced. Properties of
software semantics and relationships between

 2917

Deductive Semantics of RTPA

the software behavioral space and the semantic
environment are studied. New methods such as
the semantic differential and semantic matrix
are developed to facilitate deductive semantic
analyses from a generic semantic function to a
specific semantic matrix, and from semantics of
statements to those of processes and programs.
The establishment of the deductive semantic
rules of RTPA (Wang, 2002, 2003, 2006a, 2006b,
2007a, 2007b, 2008a, 2008b) is described, where
the semantics of a comprehensive set of processes
is systematically modeled.

thE thEory of dEductIvE
sEMAntIcs

This section presents the theory of deductive
semantics (Wang, 2006b, 2007c). A generic
mathematical model of deductive semantics of
software is developed, and the concepts of se-
mantic environment and semantic function are
rigorously defined. Based on them, deductive
semantics of programs at different composition
levels are rigorously modeled. Then, common
properties of software semantics are analyzed.

the semantic Environment and
semantic function

Definition 3. A semantic environment Θ of a
programming language is a logical model of a
set of identifiers I and their values V bound in
pairs, i.e.:

#

1

1 1 2 2 # #

: ,

{ (,)}

{(,),(,),...,(,)}

I

k k
k

I I

f I V V

i v

i v i v i v

R

 (1)

where is the set of real numbers, ik ∈ I, vk ∈ V
⊆ , and #I the number of elements in I.

Note the big-R notation is adopted to denote a
set of recurring structures or repetitive behaviors
(Wang, 2002, 2007c, 2008a). The semantic envi-
ronment constituting the behaviors of software is
inherently a three dimensional structure known as
those of operations, memory space, and time.

Definition 4. The behavioral space Ω of a pro-
gram executed on a certain machine is a finite
set of variables operated in a 3-D state space
determined by a triple, i.e.:

Ω (OP, T, S) (2)

where OP is a finite set of operations, T is a finite set
of discrete time points of program execution, and S
is a finite set of memory locations or their logical
representations by identifiers of variables.

According to Definitions 3 and 4, the set of
variables of a program, S, plays an important role
in semantic modeling and analysis, because they
are the objects of software behavioral operations
and the carriers of program semantics. Variables
can be classified as free and system variables. The
former are user defined and the latter are language
provided. From a functional point of view, vari-
ables can be classified into object representatives,
control variables, result containers, and address
locaters. The life spans or scopes of variables
can be categorized as persistent, global, local,
and temporal. The persistent variables are those
that their lifespan are longer than the program
that generates them, such as data in a database
or files in a distributed network.

A new calculus introduced in deductive se-
mantics is the partial differential of sets (Wang,
2006b, 2007c), which is used to facilitate the
instantiation of abstract semantics by concrete
ones, as described below.

Definition 5. Given two sets X and U, X ⊆ ÞU, a
partial differential of X on U with elements x, x ∈

2918

Deductive Semantics of RTPA

X, denoted by ∂U/∂x, is an elicitation of interested
elements from U as specified in X, i.e.:

,

 , Þ

U X U x X
x

X X U

∂
∩ ∈

∂
= ⊆

 (3)

where ÞU denotes a power set of U.
The partial differential of sets can be easily

extended to double, triple, or more generally,
multiple partial differentials as defined below.

Definition 6. A multiple partial differential of X1,
X2, …, and Xn on ÞU with elements x1 ∈ X1, x2 ∈
X2, ..., and xn ∈ Xn, denoted by

n

1 ... 2 n

U
x x x

∂
∂ ∂ ∂ ,

is a Cartesian product of all partial differentials
that select interested elements from U as specified
in X1, X2, …, and Xn, respectively, i.e.:

n

1

...
 ... 1 2 n

2 n

U X X X
x x x

∂
× × ×

∂ ∂ ∂

 (4)

where X1, X2,..., Xn ⊆	þU and ∀i≠ j, l≤i, j≤n, Xi∩
Xj=∅.

For example,
2

x y
U = X Y, x X, y Y, and X, Y U∂

× ∈ ∈ ⊆
∂ ∂

þ

and
3

and
x y

U = X Y Z, x X, y Y, x X, X, Y, Z U.
z

∂
× × ∈ ∈ ∈ ⊆

∂ ∂ ∂
þ

On the basis of the definitions of software
behavioral space and partial differential of sets,
the semantic environment of software can be
formally described.

Definition 7. The semantic environment Θ of a
program on a certain target machine is its run-time
behavioral space Ω projected onto the Cartesian
plane determined by T and S, i.e.:

2

2

,

(, ,)

t T s S
t s

OP T S
t s

T S

∂ Ω
Θ = ∈ ∧ ∈

∂ ∂
∂ Ω

=
∂ ∂

= ×
 (5)

As indicated in Definition 7, the semantic
environment of a program is a dynamic space
over time, because following each execution of a
statement in the program, the semantic environ-
ment Θ, particularly the sets of variables S and
their values V, may be changed.

In semantic analysis, the changed part of the
semantic environment Θ is particularly interested,
which is the embodiment of software semantics.
A generic semantic function is developed below,
which can be used to derive a specific and concrete
semantic function for a given statement, process,
or program by mathematical deduction.

Definition 8. A semantic function of a program
℘, fθ(℘), is a function that maps the semantic
environment Θ into a finite set of values V deter-
mining by a Cartesian product on a finite set of
executing steps T and a finite set of variables S, i.e.:

11 12 1

1 1

() :

m

n n nm

f f T S V

v v v

v v v

1 2 m

0

1

n

s s s
t
t

t

 (6)

where T = {t0, t1, …, tn}, S = {s1, s2, …, sm}, and
V is a finite set of values v(ti, sj), 0 ≤ i ≤ n, and
1 ≤ j ≤ m.

 2919

Deductive Semantics of RTPA

In Equation 6, all values of v(ti, sj) at t0 is un-
defined for a program as denoted by the bottom
symbol ⊥, i.e. v(0, sj) = ⊥,	1	≤	j ≤	m. However,
for a statement or a process, it is usually true that
v(0, sj) ≠ ⊥ dependent on the context of previous
statement(s) or the initialization of the system.

According to Definitions 7 and 8, the semantic
environment and the domain of a semantic func-
tion can be illustrated by a semantic diagram as
described below (Wang, 2006b, 2007c).

Definition 9. A semantic diagram is a sub Car-
tesian-plane in the semantic environment Θ that
forms the domain of the semantic function for a
given process P with fθ(P) = f: TP × SP → VP.

For example, the semantic diagram of an ab-
stract process P, fθ(P), as defined in Definition
9 can be illustrated in Figure 1, where VP is the
domain of dynamic variable values of process P
over time, i.e., VP = TP × SP. The semantic dia-
gram of two sequential processes, P → Q, can be
referred to Figure 3.

The semantic diagram can be used to analyze
complex semantic relations, and to demonstrate
semantic functions and their semantic environ-
ments. Observing Figures 1 and 3, the flowing
properties of process relations can be derived.

Lemma 1. The variables of two arbitrary processes
P and Q, SP and SQ, in the semantic environment

Θ possess the following properties:

a. The entire set of variables:
 S = SP ∪ SQ (7)

b. Global variables:
 SG ⊆ SP ∩ SQ (8)

c. Local variables:
 SL = S - SG, SL ⊆ SP ⊕ SQ ,

where SLp = SL \ SQ and SLq = SL \ SP
 (9)

deductive semantics of programs at
different levels of compositions

According to the generic model and the hierarchi-
cal architecture of programs, the semantics of a
program in a given programming language can
be described and analyzed at various composi-
tion levels, such as those of statement, process,
and system from the bottom-up (Wang, 2007c,
2008b).

Definition 10. The semantics of a statement p,
θ(p), on a given semantic environment Θ is a
double partial differential of the semantic function
fθ(p) on executing steps T and the set of variables
S, i.e.:

1 2 m

01 02 0

2

() # ()

0 1
#{s , s , ..., s }1

0 1

11 12 1

() ()

 (,)

 (,)

m

T p S p

p i j
i j

p i j
i j

m

v v v

P f p
t s

v t s

v t s

v v v

R R

R R

1 2 m

0

0 1

s s s
t

(t , t]

 (10)

 t

s

TP

 (P)

0

P

VP

Figure 1. The semantic diagram of a process

2920

Deductive Semantics of RTPA

where t denotes the discrete time immediately
before and after the execution of p during (t0,
t1), and # is the cardinal calculus that counts the
number of elements in a given set, i.e. n = #T(p)
and m=#S(p).

In Definition 10, the first partial differential
selects all related variable S(p) of the statement
p from Θ. The second partial differential selects
a set of discrete steps of p’s execution T(p) from
Θ. According to Definition 10, the semantics of
a statement can be reduced onto a semantic func-
tion that results in a 2-D matrix with the changes
of values of all variables over time of program
execution.

On the basis of Definitions 8 and 10, semantics
of individual statements can be analyzed using
Equation 10 in a deductive process.

Example 1. Analyze the semantics of Statement 3,
θ(p3), in the following program entitled sum:

void sum;
{
 (0) int x, y, z;
 (1) x = 8;

 (2) y = 2;
 (3) z := x + y;
}

According to Definition 10, the semantics of
Statement p3 is as follows:

3

3

3

2

3 3

()3

2 1

#{ , , }3

2 1

2

() ()

 (,)

 (,)

8 2
8 2 10

S p

p i j
i j

x y z

p i j
i j

p f p
t s

v t s

v t s

R R

R R
= =

= =

⊥

∂
=
∂ ∂

=

=

 =

 2 3

x y z
t

(t , t]

 (11)

This example shows how the concrete seman-
tics of a statement can be derived on the basis
of the generic and abstract semantic function as
given in Definition 10.

Definition 11. The semantic effect of a statement
p, θ* (p), is the resulted changes of values of vari-

()

1
1

()

1 1
1

* = ((,) (,))

(,) (,) | (,) (,)

S p

p i j p i j
j

S p

p i j p i j p i j p i j
j

(p) v t s v t s

v t s v t s v t s v t s

R

R

+
=

+ +
=

⊕

= < → ≠ >

 (12)

Box 1.

3

3 3 3 3

3 3 3 3

3 3

()

3 2 3 2 3
1

#(, ,)

2 3 2 3
1

2 3

*() = (,) (,) | (,) (,)

 = (,) (,) | (,) (,)

{ (,) (,) 10 }

S p

p j p j p j p j
j

x y z

p j p j p j p j
j

p p

p v t s v t s v t s v t s

v t s v t s v t s v t s

v t z v t z

R

R
=

=

< → ≠ >

< → ≠ >

= < =⊥ → = >

Box 2.

 2921

Deductive Semantics of RTPA

ables by its semantic function θ(p) during the time
interval immediately before and after the execution
of p, ∆t = (ti, ti+1), see Box 1, where → denotes a
transition of values for a given variable.

Example 2. For the same statement p3 as given in
Example 1, determine its semantic effect θ*(p3).

According to Equation 12, the semantic effect
θ*(p3) is seen in Box 2.

It is noteworthy in Examples 1 and 2 that
deductive semantics can be used not only to
describe the abstract and concrete semantics of
programs, but also to elicit and highlight their
semantic effects.

Considering that a program or a process is
composed by individual statements with given
rules of compositions, the definition and math-
ematical model of deductive semantics at the
statement level can be extended onto the higher
levels of program hierarchy.

Definition 12. The semantics of a process P, θ(P), on
a given semantic environment Θ is a double partial
differential of the semantic function fθ(P) on the
sets of variables S and executing steps T, see Box
3, where Vpk

, 1≤ k ≤ n-1, is a set of values of local

variables that belongs to processes Pk, and VG is a
finite set of values of global variables.

On the basis of Definition 12, the semantics of
a program at the top-level composition can be de-
duced to the combination of the semantics of a set
of processes, each of which can be further deduced
to the composition of all statements’ semantics as
described below.

Definition 13. The semantics of a program ℘, θ(℘),
on a given semantic environment Θ, is a combina-
tion of the semantic functions of all processes θ(Pk),
1≤ k ≤ n, i.e.:

2# ()

1
()

1
() # ()# ()

1 0 1

() ()

 ()

 [(,)]
k k

k

K

k
K

k
k

T P S PK

P i j
k i j

f
t s

P

v t s

R

R

R R R

℘

=

℘

=

℘

= = =

∂
℘ = ℘

∂ ∂

=

=

 (14)

where #K(℘) is the number of processes or com-
ponents encompassed in the program.

It is noteworthy that Equation 14 will usually
result in a very large matrix of semantic space,

1

2

2 21

1
() # () # () # ()1

1 0 1 0 1

() ()

 {[()] [()]}, 1

 {[(,)] [(,)]}
k k l l

k l

n

k kl l
k

T P S P T P S Pn

P i j kl P i j
k i j i j

P f P
t s

f P r f P l k
t s t s

v t s r v t s

R

R R R R R

−

−

=

−

= = = = =

∂
=
∂ ∂

∂ ∂
= = +

∂ ∂ ∂ ∂

=

 =

1

2

n

p G

p G

p G

V V

V V

V V

 (13)

Box 3.

2922

Deductive Semantics of RTPA

which can be quantitatively predicated as fol-
lows.

Definition 14. The semantic space of a program
SΘ(℘) is a product of #S(℘) variables and #T(℘)
executing steps, i.e.:

() # ()

k=1 k=1

() = # () # ()

= # () # ()
K K

k k

S S T

S T

Θ

℘ ℘

℘ ℘ • ℘

℘ • ℘∑ ∑
 (15)

The semantic space of programs provides a
useful measure of software complexity. Due to
the tremendous size of the semantic space, both
program composition and comprehension are
innately a hard problem in terms of complexity
and cognitive difficulty.

properties of software semantics

Observing the formal definitions and mathemati-
cal models of deductive semantics developed
in previous subsections, a number of common
properties of software semantics may be elicited,
which are useful for explaining the fundamental
characteristics of software semantics.

One of the most interesting characteristics
of program semantics is its invariance against
different executing speeds as described in the
following theorem.

Theorem 1. The asynchronicity of program se-
mantics states that the semantics of a relatively
timed program is invariant with the changes of
executing speed, as long as any absolute time
constraint is met.

Theorem 1 asserts that, for most non real-time
or relatively timed programs, different executing
speeds or simulation paces will not alter the seman-
tics of the software system. This explains why a
programmer may simulate the run-time behaviors
of a given program executing at a speed of up to
109 times faster than that of human beings. It also
explains why computers with different system
clock frequencies may correctly run the same
program and obtain the same behavior.

Definition 15. The behavior of a computational
statement is a set of observable actions or changes
of status of objects operated by the statement.

According to Definition 4, the behavioral space
of software, Ω, is three dimensional, while as
given in Definition 7, the semantic environment
Θ is two dimensional. Therefore, to a certain
extent, semantic analysis is a projection of the
3-D software behaviors into the 2-D semantic
environment Θ as shown in Figure 2.

The theory of deductive semantics can be
systematically applied to formally and rigorously
model and describe the semantics of the RTPA

 t

s
Θ = T × S

t

s

op

Ω = OP × T × S

The behavior space (Ω) The semantic environment (Θ)
0 0

Figure 2. Relationship between software behavior space and the semantic environment

 2923

Deductive Semantics of RTPA

metaprocesses and the process relations (opera-
tions). On the basis of the mathematical models and
properties of deductive semantics, the following
sections formally describe a comprehensive set
of RTPA semantics, particularly the 17 metapro-
cesses and the 17 process relations (Wang, 2002,
2003, 2007c, 2008a, 2008b). This work extends
the coverage of semantic rules of programming
languages to a complete set of features that en-
compasses both basic computing operations and
their algebraic composition rules. Because RTPA
is a denotational mathematical structure based on
process algebra that covers a comprehensive set of
computing and programming requirements, any
formal semantics that is capable to process RTPA
is powerful enough to express the semantics of
any programming language.

dEductIvE sEMAntIcs of rtpA
MEtAprocEssEs

Metaprocesses of RTPA are elicited from basic
computational requirements. Complex processes
can be composed with multiple metaprocesses.
RTPA identified 17 metaprocesses, P, on funda-
mental computing operations such as assignment,
system control, event/time handling, memory
and I/O manipulation, i.e., P = {:=, , ⇒, ⇐,
, , , |, |, @, , ↑, ↓, !, Ä, , §}. Detailed
descriptions of the metaprocesses of RTPA and
their syntaxes may be referred to (Wang, 2002,
2007c, 2008b), where each metaprocess is a basic
operation on one or more operands such as vari-
ables, memory elements, or I/O ports. Based on
Definitions 8 and 12, the deductive semantics of
the set of RTPA metaprocesses can be defined in
the following subsections.

the Assignment process

Definition 16. The semantics of the assignment
process on a given semantic environment Θ,

θ(yRT := xRT), is a double partial differential of
the semantic function fθ(yRT := xRT) on the sets
of variables S and executing steps T, i.e.:

2

(y := x) # (y := x)

0 1

1 2

0 1

(y := x) (y := x)

 (,)

 (,)

T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x x

R R

R R
= =

= =

⊥

∂
∂ ∂

=

=

 =

0

0 1

x y
t

(t , t]

RT RT RT RT

RT RT RT RT

RT RT

RT

RT RT

 (16)

where the size of the matrix is #T • #S.

the Evaluation process

Definition 17. The semantics of the evaluation
process on Θ, θ(exp →), is a double partial
differential of the semantic function fθ(θ(exp →
) on the sets of variables S and executing steps
T in the following two forms, i.e.:

2

() # ()

0 1

1 2

0 1

1 2

1 2 '

(()) (())

 (,)

 (,)

()
()

T exp S exp

i j
i j

i j
i j

exp

exp f exp
t s

v t s

v t s

exp
exp

R R

R R

→ →

= =

= =

∂
→ →

∂ ∂

=

=

 ⊥ =

0 1(t , t]
(t , t]
(t , t]

BL BL BL B L

BL BL BL BL

B BL BL

BL BL

T T

F F

 (17a)

or

2924

Deductive Semantics of RTPA

2

() # ()

0 1

1 2

0 1

1 2

() ()

 (,)

 (,)

()
()

T exp S exp

i j
i j

i j
i j

exp

exp f exp
t s

v t s

v t s

exp
exp
n n

R R

R R

→ →

= =

= =

⊥

∂
→ →

∂ ∂

=

=

 =

0 1(t , t]
(t , t]

 (17b)

where (expBL) is the Boolean evaluation function
on expBL that results in T or F. (exp) is a more
general cardinal or numerical evaluation func-
tion on exp that results in = {N, Z, R, B}, i.e.,
in types of nature number, integer, real number,
and byte, respectively (Wang, 2002).

the Addressing process

Definition 18. The semantics of the addressing
process on Θ, θ(idS ⇒ ptrP), is a double partial
differential of the semantic function fθ(idS ⇒
ptrP) on the sets of variables S and executing
steps T, i.e.:

2

(id p tr) # (id ptr)

0 1

1 2

0 1

)

() (id ptr)

 (,)

 (,)

(

T S

i j
i j

i j
i j

id ptr f
t s

v t s

v t s

id
id id

R R

R R

⇒ ⇒

= =

= =

⊥

∂
⇒ ⇒

∂ ∂

=

=

 =

0

0 1

id ptr
t

(t , t]

S P S P

S P S P

S P

S

S S H

 (18)

where π(idS)H is a function that associates a de-
clared identifier idS to its hexadecimal memory
address located by the pointed ptrP.

the Memory Allocation process

Definition 19. The semantics of the memory al-
location process on Θ, θ(idS ⇐ MEM(ptrP)RT),
is a double partial differential of the semantic
function fθ(idS ⇐ MEM(ptrP)RT) on the sets
of variables S and executing steps T, see Box
4. Where π(idS)H is a mapping function that
associates an identifier idS to a memory block
starting at a hexadecimal address located by the
pointed ptrP. The ending address of the allocated
memory block, ptrP+size(RT)-1, is dependent on
a machine implementation of the size of a given
variable in type RT.

the Memory release process

Definition 20. The semantics of the memory
release process on Θ, θ(idS MEM(⊥)RT), is a
double partial differential of the semantic function
fθ(idS MEM(⊥)RT) on the sets of variables S
and executing steps T, i.e.:

2

(MEM[]) # (MEM[])

0 1

1 3

0 1

() MEM()

(MEM[]) (MEM[])
 (,)

 (,)

()

T id S id

i j
i j

i j
i j

id ptr

id f id
t s

v t s

v t s

id

R R

R R
= =

= =

⊥

∂
∂ ∂

=

=

 =
 ⊥ ⊥

0

0 1

id ptr MEM
t

(t , t]

S RT S RT

RT P RT

S S H P RT

S RT S RT

 (20)

the read process

Definition 21. The semantics of the read pro-
cess on Θ, θ(MEM(ptrP)RTxRT), is a double
partial differential of the semantic function
fθ(MEM(ptrP)RTxRT) on the sets of variables S
and executing steps T, see Box 5.

 2925

Deductive Semantics of RTPA

the write process

Definition 22. The semantics of the write pro-
cess on Θ, θ(MEM(ptrP)RTxRT), is a double
partial differential of the semantic function
fθ(MEM(ptrP)RTxRT) on the sets of variables S
and executing steps T, i.e.:

2

(MEM[ptr] x) # (MEM[ptr] x)

0 1

1 3

0 1

(MEM[ptr] x)

(MEM[ptr] x)

 (,)

 (,)

T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x ptr x

R R

R R
= =

= =

∂
∂ ∂

=

=

 = ⊥ ⊥

0

0 1

x ptr MEM[ptr]
t

(t , t]

P RT RT P RT RT

P RT RT

P RT RT

RT P P RT

RT

RT P RT

 (22)

2

(id MEM[ptr]) # (id MEM[ptr])

0 1

1 3

0 1

(id MEM[ptr]) (id MEM[ptr])

 (,)

 (,)

() MEM[]

T S

i j
i j

i j
i j

f
t s

v t s

v t s

id
id id ptr

R R

R R

⇐ ⇐

= =

= =

⊥ ⊥

∂
⇐ ⇐

∂ ∂

=

=

 =

0

0 1

id ptr MEM
t

(t , t]

S P RT S P RT

S P RT

S

S S H P RT

S P RT S P RT

 (19)

Box 4.

2

(MEM[ptr] x) # (MEM[ptr] x)

0 1

1 3

0 1

(MEM[ptr] x)

(MEM[ptr] x)

 (,)

 (,)

MEM[] MEM[]

T S

i j
i j

i j
i j

f
t s

v t s

v t s

ptr
ptr ptr ptr

R R

R R
= =

= =

∂
∂ ∂

=

=

 = ⊥ ⊥

0

0 1

ptr MEM(ptr) x
t

(t , t]

P RT RT P RT RT

P RT RT

P RT RT

P P RT RT

P

P P RT P RT

 (21)

Box 5.

2926

Deductive Semantics of RTPA

the Input process

Definition 23. The semantics of the input pro-
cess on Θ, θ(PORT(ptrP)RT|xRT), is a double
partial differential of the semantic function
fθ((PORT(ptrP)RT|xRT) on the sets of variables
S and executing steps T, i.e.:

2

(PORT[ptr] x) # (PORT[ptr] x)

0 1

1 3

0 1

(PORT[ptr] x)

(PORT[ptr] x)

 (,)

 (,)

PORT[] PORT[]

T S

i j
i j

i j
i j

f
t s

v t s

v t s

ptr
ptr ptr ptr

R R

R R
= =

= =

∂
∂ ∂

=

=

 = ⊥ ⊥

0

0 1

ptr PORT[ptr] x
t

(t , t]

P RT RT P RT RT

P RT RT

P RT RT

P P RT RT

P

P P RT P RT

 (23)

the output process

Definition 24. The semantics of the output pro-
cess on Θ, θ(xRT | PORT(ptrP)RT), is a double
partial differential of the semantic function fθ(xRT
| PORT(ptrP)RT) on the sets of variables S and
executing steps T, i.e.:

2

(x PORT[ptr]) # (x PORT[ptr])

0 1

1 3

0 1

(x PORT[ptr])

(x PORT[ptr])

 (,)

 (,)

T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x ptr x

R R

R R
= =

= =

∂
∂ ∂

=

=

 = ⊥ ⊥

0

0 1

x ptr PORT[ptr]
t

(t , t]

RT P RT RT P RT

RT P RT

RT P RT

RT P P RT

RT

RT P RT

 (24)

the timing process

Definition 25. The semantics of the timing
process on Θ, θ(@tTM @ §tTM), is a double par-
tial differential of the semantic function fθ(@tTM
@§tTM) on the sets of variables S and executing
steps T, i.e.:

2

(@ t @§t) # (@ t @§t)

0 1

1 2

0 1

(@ t @§t) (@ t @§t)

 (,)

 (,)

§t
§t §t

T S

i j
i j

i j
i j

f
t s

v t s

v t s

R R

R R
= =

= =

⊥

∂
∂ ∂

=

=

 =

0

0 1

§t @t
t

(t , t]

TM T M TM TM

TM T M TM TM

TM TM
TM
TM TM

 (25)

where TM represents the three timing types, i.e.,
TM = {yy:MM:dd, hh:mm:ss:ms, yy:MM:dd:hh:mm:
ss:ms}.

the duration process

Definition 26. The semantics of the duration
process on Θ, θ(@tTM§tTM+∆dZ), is a double
partial differential of the semantic function fθ(@
tTM§tTM+∆dN) on the sets of variables S and
executing steps T, i.e.:

2

(@ t §t) # (@ t §t)

0 1

1 3

0 1

d

(@ t §t + d)

(@ t §t + d)

 (,)

 (,)

§t
§t d §t

T S

i j
i j

i j
i j

f
t s

v t s

v t s

d

R R

R R

∆ ∆

= =

= =

∆ ⊥

∆ ∆

∂
∆ ∆

∂ ∂

=

=

∆
 =
 ∆ + ∆

0

0 1

§t d @t
t

(t , t]

TM T M TM TM

TM T M Z

TM T M Z

N
TM N TM
TM
TM N TM N

 (26)

 2927

Deductive Semantics of RTPA

where TM = {yy:MM:dd, hh:mm:ss:ms, yy:MM:dd:
hh:mm:ss:ms}.

the Increase process

Definition 27. The semantics of the increase pro-
cess on Θ, θ(↑(xRT)), is a double partial differential
of the semantic function fθ(↑(xRT)) on the sets of
variables S and executing steps T, i.e.:

2

((x)) # ((x))

0 1

1 1

0 1

((x)) ((x))

 (,)

 (,)

1

T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x

R R

R R

↑ ↑

= =

= =

∂
↑ ↑

∂ ∂

=

=

 =
 +

0

0 1

x
t

(t , t]

RT RT

RT RT

RT

RT

RT

 (27)

where the run-time type RT = {N, Z, B, H, P, TM}

the decrease process

Definition 28. The semantics of the decrease pro-
cess on Θ, θ(↓(xRT)), is a double partial differential
of the semantic function fθ(↓(xRT)) on the sets of
variables S and executing steps T, i.e.:

2

((x)) # ((x))

0 1

1 1

0 1

-

((x)) ((x))

 (,)

 (,)

1

T S

i j
i j

i j
i j

f
t s

v t s

v t s

x
x

R R

R R

↓ ↓

= =

= =

∂
↓ ↓

∂ ∂

=

=

 =

0

0 1

x
t

(t , t]

RT RT

RT RT

RT

RT

RT

 (28)

where the run-time type RT = {N, Z, B, H, P, TM}

the Exception detection process

Definition 29. The semantics of the exception
detection process on Θ, θ(!(@)eS), is a double
partial differential of the semantic function
fθ(!(@)eS)) on the sets of variables S and execut-
ing steps T, i.e.:

2

(!(@e) # (!(@e)

0 1

1 3

0 1

(!(@e) (!(@e)

 (,)

 (,)

@
@ @

T S

i j
i j

i j
i j

f
t s

v t s

v t s

e
e ptr e

R R

R R
= =

= =

∂
∂ ∂

=

=

 = ⊥ ⊥

0

0 1

@e ptr PORT(ptr)
t

(t , t]

S S

S S

P P S

S

S P S

S

 (29)

Equation 29 indicates that the semantics of
exception detection is the output of a string @
eS to a designated port PORT[ptrP]S, where the
pointer ptrP points to a CRT or a printer. There-
fore, the semantics of exception detection can be
described based on the semantics of the output
process as defined in Equation 24, i.e.:

θ ((!(@eS)) =θ (@eS | PORT[ptrP]S)
 (30)

the skip process

Definition 30. The semantics of the skip process
on Θ, θ(Ä), is a double partial differential of the
semantic function fθ(Ä) on the sets of variables
S and executing steps T, i.e.:

2928

Deductive Semantics of RTPA

1 1

1

1

1

2
1

() # ()

0 1

1 2

0 1

() ()

()

 (,)

 (,)

\

k k k k

k k

k k

k k

k k

T P P S P P

i j
i j

i j
i j

P P

P P

S

P P

f P P
t s

v t s

v t s

S
S S

R R

R R

− −

−

−

−

−

= =

= =

⊥

∂
=
∂ ∂

=

=

=

k-1 kP P

0

0 1

S S
t

(t , t]

 (31)

where Pk is a process P at a given embedded
layer k in a program with P0 at the uttermost
layer, and denotes the jump process relation
where its semantics will be formally defined in
the next section.

According to Definition 30, the skip process
Ä has no semantic effect on the current process
Pk at the given embedded layer k in a program,
such as a branch, loop, or function. However, it
redirects the system to jump to execute an up-
per-layer process Pk-1 in the embedded hierarchy.
Therefore, skip is also known as exit or break in
programming languages.

the stop process

Definition 31. The semantics of the stop process
on Θ, θ (∯), is a double partial differential of the
semantic function fθ() on the sets of variables S
and executing steps T, i.e.:

2

(§) # (§)

0 1

1 2

0 1

() (§)

(§)

 (,)

 (,)

\
P

T P S P

i j
i j

i j
i j

§

§ P

S

P

f P
t s

v t s

v t s

S
S S

R R

R R
= =

= =

⊥

∂
=
∂ ∂

=

=

=

§ P

0

0 1

S S
t

(t , t]

 (32)

where the stop process does nothing but returns
the control of execution to the system.

dEductIvE sEMAntIcs of rtpA
procEss rElAtIons

The preceding section provides formal defini-
tions of metaprocesses of RTPA for software
system modeling. Via the composition of multiple
metaprocesses by the 17 process relations, R = {→,
, |, |…|…,

*R , R +

,
iR , , , ||, ∯, |||, », , t,

 e, i}, complex architectures and behaviors of
software systems, in the most complicated case,
a real-time system, can be sufficiently described
(Wang, 2002, 2006a, 2007c, 2008b). On the ba-
sis of Definitions 8 and 12, the semantics of the
RTPA process relations can be formally defined
and analyzed as follows.

 2929

Deductive Semantics of RTPA

the sequential process relation

Definition 32. The semantics of the sequential
relation of processes on Θ, θ(P→Q), is a double
partial differential of the semantic function fθ(P→
Q) on the sets of variables S and executing steps
T, i.e.:

2

2 2

() # () # () # ()

0 1 0 1

() # ()

0 1

() ()

() ()

 (,) (,)

 (,)

T P S P T Q S Q

P i j Q i j
i j i j

T PQ S P Q

i j
i j

1P 1PQ

2Q 2PQ

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V
V V

R R R R

R R

= = = =

∪

= =

∂
→ →

∂ ∂
∂ ∂

= →
∂ ∂ ∂ ∂

= →

=

 ⊥ ⊥ ⊥ = −
 −

=

P Q PQ

0

0 1

1 2

P PQ

s s s
t

(t , t]
(t , t]

V V
V

 Q PQV

 (33)

where PQ indicates a concatenation of these two
processes over time, and in the simplified notation
of the matrix, VP = v(tP, sP), 0 ≤ tP ≤ nP, 1 ≤ sP ≤

Figure 3. The semantic diagram of the sequential
process relation

 t

 s

t2

 (P→Q)

0 t1

Q

P
SP

SQ

SPQ

0 0 5 51 1

0 1 5

0 1

2

0 1 5 0 1 5

2 2 2

0 1 5

() # () # () # ()# () # ()

0 1 0 1 0 1

(..

0

(...) (...)

() () ... ()

 (,) (,) ... (,)
T P S P T P S PT P S P

P i j P i j P i j
i j i j i j

T P P

i

P P P f P P P
t s

f P f P f P
t s t s t s

v t s v t s v t sR R R R R R
= = = = = =

=

∂
→ → → = → → →

∂ ∂
∂ ∂ ∂

= → → →
∂ ∂ ∂ ∂ ∂ ∂

= → → →

=

5 0 1 5.) # (...)

1

5 4

0 1

 (,)

 (,)

[]

2
2 8
2 8 10
2 8 20
2 8 20 20

P S P P P

i j
j

i j
i j

v t s

v t s

R R

R R

∪ ∪ ∪

=

= =

⊥ ⊥ ⊥ ⊥

⊥ ⊥ ⊥

⊥ ⊥

⊥

⊥

=

=

0

0 1

1 2

2 3

3 4

4 5

x y z PORT CRT
t

(t , t]
(t , t]
(t , t]
(t , t]
(t , t]

P N

 (34)

Box 6.

2930

Deductive Semantics of RTPA

mP; VQ = v(tQ, sQ), 0 ≤ tQ ≤ nQ, 1 ≤ sQ ≤ mQ; and
VPQ = v(tPQ, sPQ), 0 ≤ tPQ ≤ nPQ, 1 ≤ sPQ ≤ mPQ.

In Equation 33, the first partial differential
selects a set of related variables in the sequen-
tial processes P and Q, S(P ∪ Q). The second
partial differential selects a set of time moments
T(P Q). The semantic diagram of the sequen-
tial process relation as defined in Equation 33 is
illustrated in Figure 3 on Θ.

The following example shows the physical
meaning of Equation 33 and how the abstract
syntaxes and their implied meanings are embodied
onto the objects (variables) and their dynamic
values in order to obtain the concrete semantics
in deductive semantics.

Example 3. Analyze the semantics of the se-
quential processes P0 through P5 in the following
program:

void sequential_sum;
 {
 int x, y, z; // P0

x = 2; // P1
y = 8; // P2
z := x + y; // P3
z := x + y + z; // P4
print z; // P5

 }

According to Definition 32, the semantics of the
above program can be analyzed as seen in Box 6.

Where PORT[CRTP]N denotes a system monitor
of type N located by the pointer CRTP.

the Jump process relation

Definition 33. The semantics of the jump rela-
tions of processes on Θ, θ(P Q), is a double
partial differential of the semantic function fθ(P
 Q) on the sets of variables S and executing
steps T, i.e.:

2

2 2

() # () # () # ()

0 1 0 1

() # ()

0 1

() ()

() ()

 (,) (,)

 (,)

()

T P S P T Q S Q

P i j Q i j
i j i j

T PQ S P Q

i j
i j

1P 1PQ

3Q 3PQ

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V
Q

V V

R R R R

R R

= = = =

∪

= =

⊥ ⊥

∂
∂ ∂

∂ ∂
=
∂ ∂ ∂ ∂

=

=

=
− − −
−

P Q PQ

0 1

1 2

2 3

S S S addr
[t , t]
(t , t]
(t , t]

H

S H

 (35)

where π(QS)H is a system addressing function of
the system that directs the program control flow
to execute the new process Q, which physically
located in a different memory address at addrH
= π(QS)H.

The semantic diagram of the jump process
relation as defined in Equation 35 is illustrated in
Figure 4 on Θ(P Q).

The jump process relation is an important pro-
cess relation that forms a fundamental part of many
other processes and constructs. For instances, the
jump process relation has been applied in express-
ing the semantics of the skip and stop processes in
the preceding section.

Figure 4. The semantic diagram of the jump
process relation

t

 s

t1 t2 t3

Θ (P Q)

0

Q

P

π(QS)H

SQ

 SP
SPQ

 addrH

 2931

Deductive Semantics of RTPA

the branch process relation

Definition 34. The semantics of the branch rela-
tion of processes on Θ, θ(expBL = T → P | ~
→ Q), abbreviated by θ(P|Q), is a double partial
differential of the semantic function fθ(P|Q) on the
sets of variables S and executing steps T, see Box
7, where δ(expBL) is the evaluation function on the
value of expBL, δ(expBL) ∈ {T, F}.

The semantic diagram of the branch process
relation as defined in Equation 34 is illustrated in
Figure 5 on Θ(expBL → P | ¬ expBL → Q).

the switch process relation

Definition 35. The semantics of the switch rela-
tions of processes on Θ, θ(expiRT → Pi | ~ →
∅), abbreviated by θ(Pi | ∅), is a double partial
differential of the semantic function fθ(Pi | ∅) on the
sets of variables S and executing steps T, i.e.:

2

2

2

() # ()

0 1

(| ~) (| ~)

 ()

 | ~ ()

 (,)

 | ~

T P S P

P i j
i j

exp P Q f exp P Q
t s

exp f P
t s

f Q
t s

exp v t sR R
= =

∂
→ → → →

∂ ∂
∂

= →
∂ ∂

∂
→

∂ ∂

= →

RT RT

BL

BL

() # ()

0 1

2

 (,)

()

-

T Q S Q

Q i j
i j

2P PQ

3Q 3PQ

v t s

exp
V V

- V V

R R
= =

⊥ ⊥ ⊥

→

 =

P Q PQ

0 1

1 2

1 2'

exp S S S
(t , t]
(t , t]
(t , t]

BL

BL

T

F

 (36)

Box 7.

Figure 5. The semantic diagram of the branch
process relation

t

 s

t2’

Θ (expBL → P | ~ →Q)

0 t1 t2

Q

P
SP

SQ

expBL

Figure 6. The semantic diagram of the switch
process relation

t

 s

t2n-1

Θ (expiRT → Pi | ~ → ∅))

0 t20

Pn-1

P0

 t1

 …

 …

SP0

SPn-1

expRT

2932

Deductive Semantics of RTPA

0

i i
2

i i

2

2

1

2

() # ()

0 1

(P | ~)

(P | ~)

= ()

 | ...

 | 1 ()

 | ()

= (,)

 | ...

 |

0 0

0

n

T P S P

P i j
i j

exp

f exp
t s

exp 0 f P
t s

exp n f P
t s

exp n f
t s

exp 0 v t s

exp

R R

−

= =

→ →

∂
→ →

∂ ∂
∂

= →
∂ ∂

∂
= − →

∂ ∂
∂

= →
∂ ∂

= →

RT

RT

RT

RT

RT

RT

RT

1 1

1

1

() # ()

0 1
1 (,)

 |

(exp)

1

n n

n

0

n

T P S P

P i j
i j

2 P G

2 P G

G

n v t s

exp n

0 V V

n V V

n V

R R
− −

−

−

= =

⊥ ⊥ ⊥

= − →

= →∅

 −
 =

− −
 − −

0 n-1

0

n-1

n

P P G

0 1

1 2

1 2

1 2

exp S S S

[t , t]
(t , t]

(t , t]

(t , t]

RT

RT
RT

 (37)

where VG is a set of global variables shared by
P0, P1, and Pn-1.

The semantic diagram of the switch process
relation as defined in Equation 37 is illustrated in
Figure 6 on Θ(expiRT → Pi | ~ → ∅).

the while-loop process relation

Definition 36. The semantics of the while-loop
relations of processes on Θ,

θ(
exp =

*()PR
F

BL T

),

is a double partial differential of the semantic
function

fθ(
exp =

*()PR
F

BL T

)

on the sets of variables S and executing steps T,
i.e.:

2

exp = exp =

2

exp =

() # ()

0 1exp =

* *(()) (())

*(())

*((,))

(exp)

(exp)

T P S P

P i j
i j

P

P

P f P
t s

f P
t s

v t s

V

V

R RR

R R
R

= =

∂
∂ ∂

∂
=

∂ ∂

=

 ⊥

=

−

P

0 1

1 2

1 2'

3 4

4 5

4 5'

exp S
[t , t]
(t , t]
(t , t]

(t , t]
(t , t]
(t , t]

F F

BL T BL T

F

BL T

F

BL T

BL

T
F

T
F

BL

BL

 (38)

where ∅ denotes exit, and δ(expBL) is the evalua-
tion function on the Boolean expression, δ(expBL)
∈ {T, F}.

The semantic diagram of the while-loop pro-
cess relation as defined in Equation 38 is illustrated
in Figure 7 on Θ.

the repeat-loop process relation

Definition 37. The semantics of the repeat-loop
relations of processes on Θ,

Figure 7. The semantic diagram of the while-loop
process relation

t

 s

0

PP
exp

*()PR
F

BL T

 t1 t2’ t2 t3 t4 t5’ t5

∅

expBL

SP

Θ

 2933

Deductive Semantics of RTPA

θ(
exp =

()PR+
F

BL T

),

is a double partial differential of the semantic
function

fθ(
exp =

()PR+
F

BL T

)

on the sets of variables S and executing steps T,
i.e.:

2

exp = exp =

2

exp =

() # ()

0 1exp =

'

(()) (())

(())

*((,))

(exp)

(exp)

P

T P S P

P i j
i j

P

P

V

P f P
t s

f P
t s

P v t s

V

V

R R

R R

R
R

= =

⊥

∂+ +
∂ ∂

∂+=
∂ ∂

= →

−

=

−

P

0 1

1 2

2 3

2 3'

4 5

5 6

5 6

exp S
[t , t]
(t , t]
(t , t]
(t , t]

(t , t]
(t , t]
(t , t]

F F

BL T BL T

F

BL T

F

BL T

BL

T

T

BL

F

BL

 F

 (39)

The semantic diagram of the repeat-loop
process relation as defined in Equation 39 is il-
lustrated in Figure 8 on Θ .

the for-loop process relation

Definition 38. The semantics of the for-loop rela-
tions of processes on Θ,

θ(
n

i =1
R
N

P(i)),

is a double partial differential of the semantic
function

fθ(
n

i =1
R
N

P(i))

on the sets of variables S and executing steps T,
i.e.:

n n

n

n

2

i =1 i =1

2

k = 1
() # ()

0 1k =1

(P(i)) (P(i))

 (())

((,))

1
1

Pk Pk

k

i

T S

P i j
i j

P

P

f
t s

f P
t s

v t s

V

n
n V

R R

R R

R
R

= =

⊥

∂
∂ ∂

∂
=

∂ ∂

=

=

 −

P

0 1

1 2

n-2 n-1

n-1 n

k S
[t , t]
(t , t]

(t , t]
(t , t]

N N

N

N

N

 (40)

Figure 8. The semantic diagram of the repeat-loop
process relation

Figure 9. The semantic diagram of the for-loop
process relation

 t

 s

0 t1 t2 t3’ t3 … t4 t5 t6’ t6

PP

…

P
exp

()R
F

BL T
∅

expBL

SP

 s

 t1 t2 t3 t4 … tn-2 tn-1 tn

1
(())

n

k
k

PR
N

0

 P(1) P(2) … P(n)

 iN

SP

 t

Θ

2934

Deductive Semantics of RTPA

The semantic diagram of the for-loop process
relation as defined in Equation 40 is illustrated
in Figure 9 on Θ .

the function call process
relation

Definition 39. The semantics of the function call
relations of processes on Θ, θ(P Q), is a double
partial differential of the semantic function fθ(P
 Q) on the sets of variables S and executing
steps T, i.e.:

1 2 2 3

2

2 2

() # () # () # ()

0 1 0 1

([] (] (]) # ()

0 1

() ()

() ()

 (,) (,)

 (,)
0 1

T P S P T Q S Q

P i j Q i j
i j i j

T t ,t t ,t t ,t S P Q

i j
i j

1P 1PQ

2Q 2

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V
v V

R R R R

R R

= = = =

∪

= =

⊥ ⊥ ⊥

∂
∂ ∂

∂ ∂
=
∂ ∂ ∂ ∂

=

=

−=
−

P Q PQ

0

0 1

1 2

S S S
t

(t , t]
(t , t]

PQ

3P 3PQV V

 − 2 3(t , t]

 (41)

The semantic diagram of the procedure call
process relation as defined in Equation 41 is il-
lustrated in Figure 10 on Θ(P Q).

the recursive process relation

Definition 40. The semantics of the recursive
relations of processes on Θ, θ(PP), is a double
partial differential of the semantic function
fθ(PP) on the sets of variables S and executing
steps T, i.e.:

1

0

' 1

'

2

2 2

() # () # () # ()

0 1 0 1

() # ()

0 1

() ()

() ()

 (,) (,)

 (,)

n

n

n

n

T P S P T P S P

i j i j
i j i j

T P S P

i j
i j

P

P

P

P

P

P P f P P
t s

f P f P
t s t s

v t s v t s

v t s

V
V

V

V
V

R R R R

R R

−

−

= = = =

= =

∂
∂ ∂
∂ ∂

=
∂ ∂ ∂ ∂

=

=

=

P

0 1

1 2

3 4

5 6

6 7

S
[t , t]
(t , t]

(t , t]

(t , t]
(t , t]

 (42)

The semantic diagram of the recursive process

relation as defined in Equation 42 is illustrated in
Figure 11 on Θ(PP).

Figure 10. The semantic diagram of the function
call process relation

Figure 11. The semantic diagram of the recursive
process relation

 t

 s

t3 t20 t1

 Q

P

Θ(P Q)

SP

VPQ

VQ

t

 s Θ (P P)

0 t1 t2…t3 t4…t5 t6 t7

 Pn Pn-1. ... P0 ... Pn-1’ Pn’
SP

 2935

Deductive Semantics of RTPA

the parallel process relation

Definition 41. The semantics of the parallel
relations of processes on Θ, θ(P||Q), is a double
partial differential of the semantic function fθ(
P||Q) on the sets of variables S and executing
steps T, i.e.:

2

2 2

() # () # () # ()

0 1 0 1

max(# (),# ()) # ()

0 1

1

(||) (||)

() || ()

 (,) || (,)

 (,)

T P S P T Q S Q

P i j Q i j
i j i j

T P T Q S P Q

i j

0P 0Q 0PQ

1P 1Q PQ

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V V
V V V

R R R R

R R
= = = =

∪

= =

∂
∂ ∂

∂ ∂
=
∂ ∂ ∂ ∂

=

=

=

P Q PQ

0

0 1

1 2

S S S
t

(t , t]
(t , t]

2 2Q PQV V

 −

 (43)

where t2 = max(#T(P), (#T(Q)) is the synchroniza-
tion point between two parallel processes.

The semantic diagram of the parallel process
relation as defined in Equation 43 is illustrated
in Figure 12 on Θ(P||Q).

It is noteworthy that parallel processes P and
Q are interlocked. That is, they should start and
end at the same time. In case t1 ≠ t2, the process
completed earlier, should wait for the completion

of the other. The second condition between parallel
processes is that the shared resources, in particu-
lar variables, memory space, ports, and devices
should be protected. That is, when a process oper-
ates on a shared resource, it is locked to the other
process until the operation is completed. A variety
of interlocking and synchronization techniques,
such as semaphores, mutual exclusions, and
critical regions, have been proposed in real-time
system techniques (McDermid, 1991).

the concurrent process relation

Definition 42. The semantics of the concurrent
relations of processes on Θ, θ(P ∯ Q), is a double
partial differential of the semantic function fθ(P
∯ Q) on the sets of variables S and executing
steps T, i.e.:

2

2 2

() # () # () # ()

0 1 0 1

max(# (),# ()) # ()

0 1

 () ()

() ()

 (,) (,)

 (,)

T P S P T Q S Q

P i j Q i j
i j i j

T P T Q S P Q

i j
i j

0P 0P 0P 0com

1P 1

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V V V
V V

R R R R

R R
= = = =

∪

= =

∂
∂ ∂
∂ ∂

=
∂ ∂ ∂ ∂

=

=

−=

∫∫ ∫∫

∫∫

∫∫

P Q PQ

0

0 1

S S S com
t

(t , t]

RT

PQ 1com

2P 2Q 2PQ 2com

3P 3PQ 3com

V
V V V V
V V V

 −

1 2

2 3

(t , t]
(t , t]

 (44)

Figure 12. The semantic diagram of the parallel
process relation

Figure 13. The semantic diagram of the concur-
rent process relation

 t

 s
Θ (P||Q)

0 t1 t2

Q

P
SP

SQ

SPQ

t

 s Θ (P Q)

0 t1 t2 t3

P

Q

 tP

 tQ

 sQ

SQ

SP

 SPQ

 comRT

2936

Deductive Semantics of RTPA

where comRT is a set of interprocess communi-
cation variables that are used to synchronize P
and Q executing on different machines based on
independent system clocks.

The semantic diagram of the concurrent
process relation as defined in Equation 44 is il-
lustrated in Figure 13 on Θ(P ∯ Q).

the Interleave process relation

Definition 43. The semantics of the interleave
relations of processes on Θ, θ(P ||| Q), is a double
partial differential of the semantic function fθ(P
||| Q) on the sets of variables S and executing
steps T, i.e.:

0 1 1 2 2 3 3 4 4 5

2

2 2

() # () # () # ()

0 1 0 1

([t ,t] (t ,t] (t ,t] (t ,t] (t ,t]) # ()

0 1

(|||) (|||)

() ||| ()

 (,) ||| (,)

 (,)

T P S P T Q S Q

P i j Q i j
i j i j

T S P Q

i j
i j

0P 0Q 0PQ

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V V

R R R R

R R

= = = =

∪

= =

∂
∂ ∂

∂ ∂
=
∂ ∂ ∂ ∂

=

=

=

P Q PQ

0

0

S S S
t

(t

'

'

''

''

'''

1P 1PQ

2Q 2PQ

3P 3PQ

4Q 4PQ

5P 5PQ

V V
V V

V V
V V

V V

 −

−
 −

−
 −

1

1 2

2 3

3 4

4 5

, t]
(t , t]
(t , t]
(t , t]
(t , t]

 (45)

The semantic diagram of the interleave process
relation as defined in Equation 45 is illustrated in
Figure 14 on Θ(P ||| Q).

the pipeline process relation

Definition 44. The semantics of the pipeline rela-
tions of processes on Θ, θ(P >> Q), is a double
partial differential of the semantic function fθ(P

>> Q) on the sets of variables S and executing
steps T, i.e.:

2

2 2

() # () # () # ()

0 1 0 1

() # ()

0 1

() ()

() ()

= (,) (,)

 (,)

T P S P T Q S Q

P i j Q i j
i j i j

T PQ S P Q

i j
i j

0P 0PQ 0Q

1P 1PQ

2PQ 2Q

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V V

V V

V V

R R R R

R R

P Po Qi Q

0

0 1

1 2

S S = S S
t

(t , t]
(t , t]

 (46)

where
oPS and iQS denote a set of n one-to-one

connections between the outputs of P and inputs
of Q, respectively, as follows:

1

0
 (() ())o i

n

k
P i Q iR

−

=
= (47)

The semantic diagram of the pipeline process
relation as defined in Equation 46 is illustrated
in Figure 15 on Θ(P >> Q).

the Interrupt process relation

Definition 45. The semantics of the interrupt rela-
tions of processes, θ(P Q), on a given semantic
environment Θ is a double partial differential

Figure 14. The semantic diagram of the interleave
process relation

 t

 s

t1 t2 t3 t4 t5

Θ (P ||| Q)

0

 Q’ Q’’

P’ P’’ P’’’
SP

SQ

SPQ

 2937

Deductive Semantics of RTPA

of the semantic function fθ(P Q) on the sets of
variables S and executing steps T, i.e.:

2

2 2

() # () # () # ()

0 1 0 1

(' '') # ()

0 1

'

() ()

() ()

 (,) (,)

 (,)

[,

T P S P T Q S Q

P i j Q i j
i j i j

T P Q P S P Q

i j
i j

1P 1PQ

2PQ 2

P Q f P Q
t s

f P f Q
t s t s

v t s v t s

v t s

V V
V V

R R R R

R R

= = = =

∪

= =

∂
∂ ∂
∂ ∂

=
∂ ∂ ∂ ∂

=

=

⊥ ⊥
− −

=

P Q PQ

0 1

1 2 int

S S S int
t t]

(t , t]
(t

'

''

3Q 3PQ

4PQ 4

5P 5PQ

V V
V V

V V

− −
 − −
 − −

2 3

3 4 int

4 5

, t]
(t , t]
(t , t]

 (48)

The semantic diagram of the interrupt process
relation as defined in Equation 48 is illustrated
in Figure 16 on Θ(P Q), where C(int') and
C’(int') are the interrupt and interrupt-return
points, respectively.

The deductive semantics of the three system
dispatch process relations will be presented in
the next section.

dEductIvE sEMAntIcs of
systEM-lEvEl procEssEs of
rtpA

The deductive semantics of systems at the top
level of programs can be reduced onto a dispatch
mechanism of a finite set of processes based on
the mechanisms known as time, event, and inter-
rupt. This section first describes the deductive
semantics of the system process. Then, the three
system dispatching processes will be formally
modeled.

the system process

Definition 46. The semantics of the system process
§ on Θ, θ(§), is an abstract logical model of the
executing platform with a set of parallel dispatched

Figure 15. The semantic diagram of the pipeline
process relation

t

 s

t2

Θ (P >> Q)

0 t1

Q

P

.
SP

SQ

SPo=SQi

Figure 16. The semantic diagram of the interrupt
process relation

t

 s Θ (P Q)

0

Q

P’ P’’

 t1 t2 t3 t4 t5

 C
 C’

SQ

SP

int
SPQ

2938

Deductive Semantics of RTPA

processes based on internal system clock, external
events, and system interrupts, i.e.:

int

-1

-1

-1

2

2

0

0

0

(§) (§)

 { (@)

 || (@)

 || (@)

 }

e

t

n

i i
i
n

j j
j

n

k k
k

SysShuntDow

f
t s

f e P
t s

t P

int P

R

R

R

=

=

=

∂
∂ ∂
∂

=
∂ ∂

=

N

N

N

N

N

N

S

TM

S

int

-1

-1

-1

0

0

0

{ (@)

 || (@)

 || (@)

 }

e

t

n

i i
n i

n

j j
j

n

k k
k

e P

t P

int P

R R

R

R

= =

=

=

NT

BL F N

N

N

N

N

S

TM

S

 (49)

where the semantics of the parallel relations has
been given in Definition 41, and those of the sys-
tem dispatch processes will be described in the
following subsections.

the time-driven dispatching
process relation

Definition 47. The semantics of the time-driven
dispatching relations of processes on Θ, θ(@

tkTM t Pk), is a double partial differential of the
semantic function fθ(@tkTM t Pk) on the sets of
variables S and executing steps T, i.e.:

 t f

1

2

2

() # ()

0 1

(

1
0

(@ P) (@ P)
 (@ ())

 (@ (,))

 @

1

1

k k

k

k k k k k k

k k

T P S P

k P i j
i j

T P

i

t
t s

t f P
t s

t v t s

t

n

k
n

k
R R

R

R
= =

=

∂
∂ ∂

∂
= →

∂ ∂

= →

= →

=

=

TM TM

TM

TM

TM

1

1

1

) # ()

1

() # ()

0 1

 (,)

 | ...

 | @ (,)

...

()

n n

n

S P

P i j
j

T P S P

n P i j
i j

k

k

1 P

v t s

t v t s

@t
@t V

R R

R R

=

= =

⊥ ⊥

→

−=

1 nP P

0 1

1 2

@ S S

[t , t]
(t , t]

TM

TM
TM

t

nn P@t V

 − 1 n(t , t]

 (50)

where (@tkTM) = (@tkN) is the evaluation
function as defined in Equation 17b.

The semantic diagram of the time-driven dis-
patching process relation as defined in Equation
50 is illustrated in Figure 17 on Θ.

the Event-driven dispatching
process relation

Definition 48. The semantics of the event-driven
dispatching relations of processes on Θ, θ(@

Figure 17. The semantic diagram of time-driven
dispatch relation

Figure 18. The semantic diagram of the event-
driven dispatch relation

t

 s Θ (@tkTM t Pk)

0 t2 … tn

Pn

P1

 t1

 …

 …

SP1

SPn

@tkTM

t

 s Θ (@ekS e Pk)

0 t2 … tn

Pn

P1

 t1

 …

 …

SP1

SPn

@eiS

 2939

Deductive Semantics of RTPA

ekS e Pk), is a double partial differential of the
semantic function fθ(@ekS e Pk) on the sets of
variables S and executing steps T, i.e.:

1

2

2

() # ()

0 1

()

1
0

(@e P) (@e P)
 (@ ())

() ()

 (@ (,))

 @

1

1

k k

k

k e k k e k

k k
k k

T P S P

k P i j
i j

T P

i

f
t s

e f P
t P s P

e v t s

e

n

k
n

k
R R

R

R

R
= =

=

∂
∂ ∂

∂
= →

∂ ∂

= →

= →

=

=

S S

S

S

S

1

1

1

()

1

() # ()

0 1

(,)

 | ...

 | @ (,)

...

()

n n

n

S P

P i j
j

T P S P

n P i j
i j

k

1 P

n

v t s

e v t s

@e
@e V

@e

R

R R

=

= =

⊥ ⊥

→

−=

−

1 nP P

0 1

1 2

1 n

@ S S

[t , t]
(t , t]

(t , t]

S

S
S

ke

nPV

 (51)

The semantic diagram of the event-driven
process relation as defined in Equation 51 is il-
lustrated in Figure 18 on Θ.

the Interrupt-driven dispatching
process relation

Definition 49. The semantics of the interrupt-
driven dispatching relations of processes on Θ,
θ(@intkS i Pi), is a double partial differential of

the semantic function fθ(@intkS i Pi) on the sets
of variables S and executing steps T, i.e.:

2

i i

2

() # ()

0 1

1

(@ P) (@ P)
 (@ ())

() ()

 (@ (,))

 @

1

1

k k

k

k k k k

k k
k k

T P S P

k P i j
i j

int f int
t s

int f P
t P s P

int v t s

int

n

k
n

k
R R

R

R
= =

∂
∂ ∂

∂
= →

∂ ∂

= →

=

=

=

S S

S

S

1 1

1

() # ()

0 1

() # ()

0 1

 (,)

 | ...

 | @ (,)

...

()

n n

n

T P S P

P i j
i j

T P S P

n P i j
i j

k

v t s

int v t s

@int
@

R R

R R

= =

= =

⊥ ⊥

→

→

=

1 nP P

0 1

1 2

@ S S

[t , t]
(t , t]

S

S

S
S

kint

1

n

1 P

n P

e V

@e V

 −

 − 1 n(t , t]

 (52)

The semantic diagram of the interrupt-driven
process relation as defined in Equation 52 is il-
lustrated in Figure 19 on Θ.

conclusIon

Semantics plays an important role in cognitive
informatics, computational linguistics, comput-
ing, and software engineering theories. Deductive
semantics is a formal software semantics that
deduces the semantics of a program in a given
programming language from a generic abstract
semantic function to the concrete semantics,
which are embodied by the changes of statuses of
a finite set of variables constituting the semantic
environment of computing. Based on the math-
ematical models and architectural properties of
programs at different composing levels, deductive
models of software semantics, semantic environ-
ment, and semantic matrix have been formally
defined. Properties of software semantics and
relations between the software behavioral space
and semantic environment have been discussed.

Figure 19. The semantic diagram of the interrupt-
driven dispatch relation

 t

 s Θ (@intkS Pk)

0 t2 … tn

Pn

P1

 t1

 …

 …

SP1

SPn

@intiS

2940

Deductive Semantics of RTPA

Case studies on the deductive semantic rules of
RTPA have been presented, which serve not only
as a comprehensive paradigm, but also the veri-
fication of the expressive and analytic capacity
of deductive semantics.

A rigorous treatment of deductive semantics
of RTPA has been presented in this article, which
enables a new approach towards deductive rea-
soning of software semantics at all composing
levels of the program hierarchy (i.e., statements,
processes, and programs) from the bottom up.
Deductive semantics has greatly simplified the
description and analysis of the semantics of
complicated software systems implemented in
programming languages or specified in formal
notations. Deductive semantics can be used to
define both abstract and concrete semantics of
large-scale software systems, facilitate software
comprehension and recognition, support tool
development, enable semantics-based software
testing and verification, and explore the semantic
complexity of software systems.

AcKnowlEdgMEnt

The author would like to acknowledge the Natu-
ral Science and Engineering Council of Canada
(NSERC) for its partial support to this work. The
author would like to thank anonymous reviewers
for their valuable comments and suggestions.

rEfErEncEs

Bjorner, D. (2000, November). Pinnacles of soft-
ware engineering: 25 years of formal methods. In
Y. Wang & D. Patel (Eds.), Annals of software en-
gineering: An international journal,10, 11-66.

Bjorner, D., & Jones, C. B. (1982). Formal speci-
fication and software development. Englewood
Cliffs, NJ: Prentice Hall.

Chomsky, N. (1956). Three models for the de-
scription of languages. I.R.E. Transactions on
Information Theory, 2(3), 113-124.

Chomsky, N. (1957). Syntactic structures. The
Hague, The Netherlands: Mouton.

Chomsky, N. (1982). Some concepts and conse-
quences of the theory of government and binding.
Cambridge, MA: MIT Press

Dijkstra, E. W. (1975). Guarded commands,
nondeterminacy, and the formal derivation of
programs. Communications of the ACM, 18(8),
453-457.

Dijkstra, E. W. (1976). A discipline of program-
ming. Englewood Cliffs, NJ: Prentice Hall.

Goguen, J. A., & Malcolm, G. (1996). Algebraic
semantics of imperative programming. Cam-
bridge, MA: MIT Press.

Goguen, J.A., Thatcher, J. W., Wagner, E. G., &
Wright, J. B. (1977). Initial algebra semantics
and continuous algebras. Journal of the ACM,
24(1), 68-59.

Gries, D. (1981). The science of programming.
Berlin, Germany: Spinger Verlag

Gunter, C. A. (1992). Semantics of programming
languages: Structures and techniques. In M. Garey
& A. Meyer (Eds.), Foundations of computing.
Cambridge, MA: MIT Press.

Guttag, J. V., & Horning, J. J. (1978). The alge-
braic specification of abstract data types. Acta
Informatica, 10, 27-52.

Hoare, C. A. R. (1969). An axiomatic basis for
computer programming. Communications of the
ACM, 12(10), 576-580.

Jones, C. B. (1980). Software development: A
rigorous approach. London: Prentice Hall In-
ternational.

 2941

Deductive Semantics of RTPA

Louden, K. C. (1993). Programming languages:
Principles and practice. Boston: PWS-Kent.

Marcotty, M., & Ledgard. H. (1986). Program-
ming language landscape (2nd ed.). Chicago:
SRA.

McDermid, J. A. (Ed.). (1991). Software engineer’s
reference book. Oxford, England: Butterworth-
Heinemann.

Meyer, B. (1990). Introduction to the theory of
programming languages. Englewood Cliffs, NJ:
Prentice Hall

Ollongren, A. (1974). Definition of programming
languages by interpreting automata. New York:
Academic Press.

Pagan, F. G. (1981). Semantics of programming
languages: A panoramic primer. Englewood
Cliffs, NJ: Prentice Hall.

Schmidt, D. (1988). Denotational semantics:
A methodology for language development.
Dubuque, IA: Brown.

Schmidt, D. (1996, March). Programming lan-
guage semantics. ACM Computing Surveys,
28(1).

Schmidt, D. A. (1994). The structure of typed
programming languages. Cambridge, MA: MIT
Press.

Scott, D. (1982). Domains for denotational seman-
tics. In Automata, languages and programming
IX (pp. 577-613). Berlin, Germany: Springer
Verlag.

Scott, D. S., & Strachey, C. (1971). Towards a
mathematical semantics for computer languages.
(Programming Research Group Tech. Rep. PRG-
1-6). Oxford University.

Slonneg, K., & Kurts, B. (1995). Formal syntax
and semantics of programming languages. Ad-
dison-Wesley.

Tarski, A. (1944). The semantic conception of
truth. Philosophic Phenomenological Research,
4, 13-47.

Wang, Y. (2002). The real-time process algebra
(RTPA). Annals of Software Engineering: A In-
ternational Journal, 14, 235-274.

Wang, Y. (2003). Using Process algebra to describe
human and software system behaviors. Brain and
Mind, 4(2), 199-213.

Wang, Y. (2006a). Cognitive informatics and
contemporary mathematics for knowledge repre-
sentation and manipulation (Invited plenary talk).
In Proceedings of the First International Confer-
ence on Rough Set and Knowledge Technology
(RSKT’06) (LNAI 4062, pp. 69-78). Chongqing,
China: Springer.

Wang, Y. (2006b). On the informatics laws and
deductive semantics of software, IEEE Transac-
tions on Systems, Man, and Cybernetics (C),
36(2), 161-171.

Wang, Y. (2007a). The Cognitive Processes of
Formal Inferences. The International Journal of
Cognitive Informatics and Natural Intelligence,
1(4), 75-86.

Wang, Y. (2007b). Keynote speech on theoretical
foundations of software engineering and denota-
tional mathematics. In Proceedings of the Fifth
Asian Workshop on Foundations of Software (pp.
99-102). Xiamen, China:

Wang, Y. (2007c). Software engineering founda-
tions:A software science perspective. Auerbach
Publications, NY., July.

Wang, Y. (2008a). On the big-R notation for de-
scribing iterative and recursive behaviors. The
International Journal of Cognitive Informatics
and Natural Intelligence, 2(1),17-28.

Wang, Y. (2008b, April). RTPA: A denotational
mathematics for manipulating intelligent and

2942

Deductive Semantics of RTPA

computational behaviors. The International
Journal of Cognitive Informatics and Natural
Intelligence, 2(2), 44-62.

Wegner, P. (1972). The Vienna definition language.
ACM Computing Surveys, 4(1), 5-63.

Wikstrom, A. (1987). Functional programming
using standard ML. Englewood Cliffs, NJ: Pren-
tice Hall.

This work was previously published in International Journal of Cognitive Informatics and Natural Intelligence, Vol. 2, Issue
2, edited by Y. Wang, pp. 95-121, copyright 2008 by IGI Publishing (an imprint of IGI Global).

 2943

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.19
RTPA:

A Denotational Mathematics for
Manipulating Intelligent and

Computational Behaviors

Yingxu Wang
University of Calgary, Canada

AbstrAct

Real-time process algebra (RTPA) is a deno-
tational mathematical structure for denoting
and manipulating system behavioral processes.
RTPA is designed as a coherent algebraic system
for intelligent and software system modeling,
specification, refinement, and implementation.
RTPA encompasses 17 metaprocesses and 17
relational process operations. RTPA can be used
to describe both logical and physical models of
software and intelligent systems. Logic views of
system architectures and their physical platforms
can be described using the same set of notations.
When a system architecture is formally modeled,
the static and dynamic behaviors performed
on the architectural model can be specified by
a three-level refinement scheme at the system,
class, and object levels in a top-down approach.
RTPA has been successfully applied in real-world
system modeling and code generation for software

systems, human cognitive processes, and intel-
ligent systems.

IntroductIon

The modeling and refinement of software and
intelligent systems require new forms of deno-
tational mathematics that possess enough ex-
pressive power for rigorously describing system
architectures and behaviors. Real-time process
algebra (RTPA) is a new denotational math-
ematical structure for software system modeling,
specification, refinement, and implementation for
both real-time and nonreal-time systems (Wang,
2002b, 2007d; Wang & King, 2000). An impor-
tant finding in formal methods is that a software
system can be perceived and described as the
composition of a set of processes, which are
constructed on the basis of algebraic operations.
Theories on process algebras can be traced back

2944

RTPA

to Hoare’s Communicating Sequential Processes
(CSP) (Hoare, 1978, 1985) and Milner’s Calculus
of Communicating Systems (CCS) (Milner, 1980).
The process metaphor of software systems has
evolved from concurrent processes to real-time
process systems in the area of operating system
research and formal methods (Boucher & Gerth,
1987; Hoare, 1978, 1985; Milner, 1980, 1989; Reed
& Roscoe, 1986; Schneider, 1991).

Definition 1. A process is an abstract model of a
unit of meaningful system behaviors that repre-
sents a transition procedure of the system from one
state to another by changing values of the sets of
inputs, outputs, and/or internal variables.

It is recognized that generic computing prob-
lems are 3-D problems, known as those of the
behavior, space, and time dimensions, which
require a denotational mathematical means for
addressing the requirements in all dimensions,
particularly the time dimension (Wang, 2002b,
2003b, 2007d). However, conventional process
models are hybrid (Hoare, 1985), which do not
distinguish the concepts of fundamental metapro-
cesses and process operations between them. The
CSP notation models a major part of elementary
software behaviors that may be used in system
specification and description. However, it lacks
many useful processes that are perceived essential
in system modeling, such as addressing, memory
manipulation, timing, and system dispatch. CSP
models all input and output (I/O) as abstract chan-
nel operations that are not expressive enough to
denote complex system interactions, particularly
for those of real-time systems.

A number of timed extensions and variations
of process algebra have been proposed (Baeten
& Bergstra, 1991; Boucher & Gerth, 1987; Ce-
rone, 2000; Corsetti, Montanari, & Ratto, 1991;
Dierks, 2000; Fecher, 2001; Gerber, Gunter,
& Lee, 1992; Jeffrey, 1992; Klusener, 1992;
Nicollin & Sifakis, 1991; Reed & Roscoe, 1986;
Schneider, 1991; Vereijken, 1995). It is found that

the existing work on process algebra and their
timed variations can be extended and refined to
a new form of denotational mathematics, RTPA,
based on a set of algebraic process operations
and laws (Wang, 2002b, 2003b, 2006a, 2006c,
2007d, 2008a). RTPA can be used to formally
and precisely describe and specify architectures
and behaviors of software systems on the basis
of algebraic process notations and rules.

Definition 2. A process P in RTPA is a composed
component of n metastatements si and sj, 1 ≤ i
< n, j = i + 1, according to certain composing
relations rij, i.e.:

1 12 2 23 3 1,(...((())) ...)n n nP s r s r s r s−=

 (1)

where rij ∈ℜ, which is a set of relational process
operators of RTPA that will be formally defined
in Lemma 2.

Definition 2 indicates that the mathematical
model of a process is a cumulative relational
structure among computing operations. The
simplest process is a single computational state-
ment. Further discussion will be provided in the
section on the unified mathematical model of
programs.

Definition 3. RTPA is a denotational mathemati-
cal structure for algebraically denoting and ma-
nipulating system behavioral processes and their
attributes by a triple, i.e.:

 T P N(, ,)RTPA (2)

where T is a set of 17 primitive types for modeling
system architectures and data objects, P is a set
of 17 metaprocesses for modeling fundamental
system behaviors, and R is a set of 17 relational
process operations for constructing complex
system behaviors.

 2945

RTPA

RTPA provides a coherent notation system and
a formal engineering methodology for modeling
both software and intelligent systems. RTPA can
be used to describe both logical and physical
models of systems, where logical views of the
architecture of a software system and its opera-
tional platform can be described using the same
set of notations. When the system architecture
is formally modeled, the static and dynamic be-
haviors that perform on the system architectural
model can be specified by a three-level refinement
scheme at the system, class, and object levels in
a top-down approach.

This article presents the RTPA structure
and methodology for modeling software and
intelligent system behaviors. The type system,
process notations, process relations, and process
composing rules of RTPA are described. The
type system and formal type rules of RTPA
are formally described, and their usage in data
object and system architectural modeling are
demonstrated. The fundamental processes and
their denotational functionality in modeling both
human and system behaviors are presented. A
set of algebraic process operations is introduced
for constructing complex processes and systems.
Then, applications of RTPA in computing and
intelligent system modeling and manipulation are
explored with case studies. A unified mathematic
model of software and programs is derived based
on the RTPA theories. The system specification
and refinement methodology of RTPA and case
studies on real-world problems are provided,
which demonstrate the descriptive power of
RTAP as a precise and neat algebraic system for
software engineering.

thE typE systEM of rtpA

Computational operations of systems can be clas-
sified into the categories of data object, behav-
ior, and resource modeling and manipulations.
Based on this view, programs are perceived as

the coordination of data objects and behaviors in
computing. Data object modeling is a process to
creatively extract and abstractly represent a real-
world problem by computing objects based on the
constraints of given computing resources. Using
types to model the natural world can be traced
back to the mathematical thought of Bertrand
Russell (Russell, 1961; Schilpp, 1946) and Godel
(van Heijenoort, 1997). A type is a category of
variables that share a common property, such as
kinds of data, domain, and allowable operations.
Types are an important logical property shared
by data objects in programming. Although data
in their most primitive form is a string of bits,
types are found expressively convenient for data
representation at the logical level in computing
and software engineering.

the type system for data objects
Modeling in rtpA

A type is a set in which all member data objects
share a common logical property or attribute. The
maximum range of values that a variable can as-
sume is a type, and a type is associated with a set
of predefined or allowable operations. A type can
be classified as primitive and derived (complex).
The former is the most elemental of types that
cannot further be divided into simpler ones; the
latter is a compound form of multiple primitive
types based on given type rules. Most primitive
types are provided by programming languages
while most user-defined types are derived ones.

Definition 4. A type system is a set of predefined
templates and manipulation rules for modeling
data objects and system architectures.

RTPA types, syntaxes, and properties are given
in Table 1, where the 17 primitive types in comput-
ing and human cognitive process modeling have
been elicited (Cardelli & Wegner, 1985;Martin-
Lof, 1975; Mitchell, 1990; Wang, 2002a, 2002b,
2003b, 2006a, 2007d, 2007e). In Table 1, the first

2946

RTPA

11 primitive types are for mathematical and logical
manipulation of data objects, and the remaining
6 are for system architectural modeling.

Lemma 1. The primary types of computational
objects state that the RTPA type system T encom-
passes 17 primitive types elicited from fundamental
computing needs, i.e.:

int
{ ,

@ , @ , @ , }e t s
T N, Z, R, S, BL, B, H, P, TI, D, DT, RT, ST

S TM BL
 (3)

RTPA adopts the type suffix convention in
which every variable x declared in a type T, x : T,
by a bold type label attached to the variable in all
invocations in the form xT, where T is any valid
primitive as defined in Table 1 or a derived type
based on the table. The advance of the type suf-
fix convention is the improvement of readability.
Using the type suffixes, system analysts may
easily identify if all variables in a statement or
expression are equivalent or compatible without
referring to earlier declarations, which may be
scattered in a system model across hundreds of
pages in a large-scale software. The type suffix
convention also greatly simplifies type checking
requirements during parsing the RTPA specifica-
tions by machines (Tan, Wang, & Noglah, 2004,
2006).

An essence of type theory is that types can be
classified into the domains of mathematical (logi-
cal) Dm, language defined Dl, and user defined Du
, as shown in Table 1 (2007d).

Theorem 1. The domain constraints of data ob-
jects states that the following relationship between
the domains of any data object in computing is
always held, i.e.:

Du ⊆ Dl ⊆ Dm (4)

It is noteworthy that although a generic comput-
ing behavior is constrained by Dm, an executable

program is constrained by Dl, and, at most time,
it is further restricted by the user defined domain
Du, where Du ⊆ Dl. According to Theorem 1, the
following corollary can be derived.

Corollary 1. The precedence of domain deter-
minations and type inferences in computing and
software engineering is always as follows:

Du ⇒ Dl ⇒ Dm (5)

Advanced types of rtpA

The most common and powerful derived type in
computing is a record, also known as a construct,
because its flexibility to accommodate different
data fields in different primary or composed
types. System architectures can be modeled on
the basis of structured records. There are also a
number of special advanced types introduced in
RTPA, such as the system type, dynamic run-
time type, and event, interrupt, and status types
(Wang, 2002b, 2007d).

Definition 5. The run-time type RT is a non-
deterministic type at compile-time that can be
dynamically bound during run-time with one of
the predefined primitive types.

The run-time type RT provides programmers
a powerful means to express and handle highly
flexible and nondeterministic computing objects
in data modeling. Some languages such as Java
and IDL (OMG, 2002) label the dynamic type RT
as the anytype, for which a specific type may be
bound until run time.

Definition 6. An event is an advanced type in
computing that captures the occurring of a pre-
defined external or internal change of status,
such as an action of users, an external change of
environment, and an internal change of the value
of a specific variable.

 2947

RTPA

No. Type Syntax Dm Dl Equivalence

1 Natural number N [0, +∞] [0, 65535]
Arithmetic,
mathematic,
assignment

2 Integer Z [-∞, +∞] [-32768, +32767]

3 Real R [-∞, +∞] [-2147483648,
 2147483647]

4 String S [0, +∞] [0, 255] String and character
operations

5 Boolean BL [T, F] [T, F] Logical, assignment

6 Byte B [0, 256] [0, 256]
Arithmetic,
assignment,
addressing

7 Hexadecimal H [0, +∞] [0, max]

8 Pointer P [0, +∞] [0, max]

9 Time TI = hh:mm:ss:ms
hh: [0, 23]
mm: [0, 59]
ss: [0, 59]
ms: [0, 999]

hh: [0, 23]
mm: [0, 59]
ss: [0, 59]
ms: [0, 999]

Timing, duration,
arithmetic

(A generic abbrevia-
tion:

 TI={TI, D, DT})

10 Date

D = yy:MM:dd yy: [0, 99]
MM: [1, 12]
dd: [1, 31}

yy: [0, 99]
MM: [1, 12]
dd: [1, 31}

11 Date/Time
DT = yyyy:MM:dd:
 hh:mm:ss:ms

yyyy: [0, 9999]
MM:[1, 12]
dd: [1, 31]
hh: [0, 23]
mm: [0, 59]
ss: [0, 59]
ms: [0, 999]

Yyyy: [0, 9999]
MM:[1, 12]
dd: [1, 31]
hh: [0, 23]
mm: [0, 59]
ss: [0, 59]
ms: [0, 999]

12 Run-time determin-
able type RT – – Operations suitable at

run-time

13
System architec-
tural
type

ST – – Assignment
(field reference by ‘.’)

14 Random event @eS [0, +∞] [0, 255] String operations

15 Time event @tTM [0ms, 9999
yyyy] [0ms, 9999 yyyy] Logical

16 Interrupt event @int [0, 1023] [0, 1023] Logical

17 Status ⓢsBL [T, F] [T, F] Logical

Table 1. RTPA primitive types and their domains

The event types of RTPA can be classified
into those of operation (@eS), time (@tTM), and
interrupt (@int), as shown in Table 1, where
@ is the event prefix, and S, TM, and ⊙ the cor-
responding type suffixes, respectively.

A special set of complex types known as the
system type ST is widely used for modeling system
architectures in RTPA, particularly real-time,

embedded, and distributed systems architectures.
All the system types are nontrivial data objects
in computing, rather than simple data or logical
objects, which play a very important role in the
whole lifecycle of complex system development
including design, modeling, specification, re-
finement, comprehension, implementation, and
maintenance of such systems.

2948

RTPA

Definition 7. A system type ST is a system archi-
tectural type that models the architectural com-
ponents of the system and their relations.

A generic ST type is the Component Logical

Model (CLM), as defined in RTPA (Wang, 2002b,
2007d). CLMs are powerful modeling means in
system architectural modeling.

Definition 8. CLMs are a record-structured ab-
stract model of a system architectural component
that represents a hardware interface, an internal
logical model, and/or a common control structure
of a system.

CLMs can be used for unifying user defined
complex types in system modeling. A formal
treatment of CLMs will be provided in Defini-
tion 12.

It is recognized that any form of intelligence
is memory based (Wang, 2002a, 2203a, 2006b,
2007c, 2007d, 2007e). All data objects, no mat-
ter language generated or user created, should
be implemented as physical data objects and be
bound to specific memory locations. Therefore,
memory models play an important role in system
modeling.

Definition 9. The generic system memory model,
MEMST, can be described as a special system type
ST with a finite linear space, i.e.:

1 2MEM [...]addr addrST H H RT

 (6)

where addr1H and addr2H are the start and end
addresses of the memory space, and RT is the type
of each of the memory elements, which is usually
in Byte B in computing.

Another special system type is the I/O port
type for modeling hardware architectures and
their interfaces.

Definition 10. The generic system I/O port model,
PORTST, can be described as a system type ST
with a finite linear space, i.e.:

1 2PORT [...]ptr ptrST H H RT
 (7)

where ptr1H and ptr2H are the start and end ad-
dresses of the port space, and RT is the type of
each of the port I/O interfaces, which is usually
in Byte B in computing.

formal type rules of rtpA

A type system specifies the data objects modeling
and composing rules of a programming language
as that of a grammar system which specifies
the program behavior modeling and compos-
ing rules of the language. The basic properties
of type systems are decidable, transparent, and
enforceable (Cardelli & Wegner, 1985; Martin-
Lof, 1975; Mitchell, 1990). Type systems should
be decidable by a type checking system, which
ensures that types of variables are both well-
declared and referred. Type systems should be
transparent that helps for diagnoses of reasons
for inconsistency between variables or variables
and their declarations. Type systems should be
enforceable in order to check type inconsistence
as much as possible.

A formal type system is a collection of all
type rules for a given programming language or
formal notation system. A type rule is a math-
ematical relation and the constraints on a given
type. Type rules are defined on the basis of a type
environment.

Definition 11. The type environment Θt of RTPA
is a collection of all primitive types in the formal
notation system, i.e.:

int

t

{ ,

@ , @ , @ , }e t s

T

=

N, Z, R, S, BL, B, H, P, TI, D, DT, RT, ST
S TM BL

 (8)

 2949

RTPA

where T is the set of primary types as defined in
Table 1.

Complex and derived types of RTPA can be
described by composing type rules based on those
of the primitive types.

As given in Definition 8, a CLM is a generic
system architectural type for modeling and ma-
nipulating data objects and system architectures
(Wang, 2002b, 2007d).

Definition 12. The type rule of a CLM type, CLM,
is a complex system type ST in RTPA derived from
Θt, i.e.:

t

t CLM

ST

ST

 (9)

The declaration of a variable, ClmID, with a
given CLM type can be denoted by using the fol-
lowing type rule as given in Equation 10, where
the ClmIDST is defined by the string type label
ClmIDS with an n-field structure, each of them
specifies a metavariable IDi in type Ti, and its
constraints denoted by Constraint(IDiTi), which
are a set of expressions.

A process in RTPA is a basic behavioral unit
for modeling software system operations onto
the data objects. A process can be a metaprocess
or a complex process composed with multiple
metaprocesses by relational process operators.
Because processes are so frequently used in sys-
tem modeling, a derived type in RTPA known as

the process type can be introduced as a special
system type.

Definition 13. The type rule of a process type,
PROC, is a complex system type ST in RTPA
derived fromΘt, i.e.:

t

t PROC

ST

ST (11)

The declaration of a variable, ProcID, with
the PROC type can be denoted by using the fol-
lowing type rule as given in Equation 11, where
the ProcIDST is defined by the string type label
ProcIDS with a set of n inputs and a set of m
outputs in a specific type, as well as a set of q I/O
constructs or CLMs in a specific ST type.

MEtAprocEssEs of rtpA

On the basis of the process metaphor, this section
elicits the most general and fundamental system
behaviors in computing and intelligent systems.
Computational operations in conventional process
algebra, such as CSP (Hoare, 1985), Timed-CSP
(Boucher & Gerth, 1987; Reed & Roscoe, 1986;
Schneider, 1991), and other proposals are treated
as a set of processes at the same level. This ap-
proach results in an exhaustive listing of processes.
Whenever a new operation is identified or required
in computing, the existing process system must
be extended.

RTPA adopts the foundationalism in order to
find the most primitive computational processes

t t t t
n

 t i i i ii=1

, , ,

 R
ClmID ID

ClmID ClmID ID ID

ST T ST T

ST S T T

 (10)

Box 1.

2950

RTPA

known as the metaprocesses. In this approach,
complex processes are treated as derived pro-
cesses from these metaprocesses, based on a set
of algebraic process composition rules known as
the process relations.

Definition 14. A metaprocess in RTPA is a
primitive computational operation that cannot
be broken down to further individual actions or
behaviors.

A metaprocess is an elementary process that

serves as a basic building block for modeling
software behaviors. Complex processes can be
composed from metaprocesses using process
relations. In RTPA, a set of 17 metaprocesses has
been elicited as shown in Table 2, from essential
and primary computational operations commonly
identified in existing formal methods and modern
programming languages (Aho, Sethi, & Ullman,
1985; Higman, 1977; Hoare et al., 1987; Louden,
1993; Wilson & Clark, 1988; Woodcock & Davies,
1996). Mathematical notations and syntaxes of the
metaprocesses are formally described in Table 2,
while formal semantics of the metaprocesses of
RTPA may be found in Wang (2006c, 2008a).

Lemma 2. The RTPA metaprocess system P

encompasses 17 fundamental computational op-
erations elicited from the most basic computing
needs, i.e.:

P = {:=, , ⇒, ⇐, , , , |, |, @, , ↑, ↓,
!, Ä, , §}

 (13)

As shown in Lemma 2 and Table 2, each
metaprocess is a basic operation on one or more
operands such as variables, memory elements, or
I/O ports. Structures of the operands and their al-
lowable operations are constrained by their types,
as described in previous sections.

It is noteworthy that not all generally important
and fundamental computational operations, as
shown in Table 2, had been explicitly identified
in conventional formal methods (e.g., the evalu-
ation, addressing, memory allocation/release,
timing/duration, and the system processes). How-
ever, all these are found necessary and essential
in modeling system architectures and behaviors
(Wang, 2007d).

AlgEbrAIc procEss
opErAtIons In rtpA

The metaprocesses of RTPA developed in the
preceding section identified a set of fundamental
elements for modeling the most basic behaviors of
computing and intelligent systems. It is interest-
ing to realize that there is only a small set of 17
metaprocesses in system modeling. However, via
the combination of a number of the metaprocesses
by certain algebraic operations, any architecture
and behavior of real-time or nonreal-time systems

t

t
qn m

i i j j k ki=1 j=1 k=1
 (I::< >; O::< >; CLM::< >)R R R

ProcID
ProcID ProcID

ID ID ClmID

ST
ST S

T T ST

 (12)

Box 2.

 2951

RTPA

can be sufficiently described (Wang, 2002b,
2003b, 2006a, 2007d).

Definition 15. A process relation in RTPA is an
algebraic operation and a compositional rule
between two or more metaprocesses in order to
construct a complex process.

A set of 17 fundamental process relational
operations has been elicited from fundamental
algebraic and relational operations in computing
in order to build and compose complex processes
in the context of real-time software systems.
Syntaxes and usages of the 17 RTPA process rela-

tions are formally described in Table 3. Deductive
semantics of these process relations may be found
in Wang (2006c, 2008a).

Lemma 3. The software composing rules state that
the RTPA process relation system R encompasses
17 fundamental algebraic and relational opera-
tions elicited from basic computing needs, i.e.:

R = {→, , |, |…|…, R*,R+,Ri, ,
 , ||, ∯, |||, », , t, e, i}
 (14)

As modeled in Lemma 3 and Table 3, the first
seven process relations—i.e., sequential (#1), jump

No. Meta Process Notation Syntax

1 Assignment := y := x

2 Evaluation

exp →

3 Addressing ⇒ id ⇒ MEM[ptrP]

4 Memory allocation ⇐ id ⇐ MEM[ptrP]

5 Memory release id MEM[⊥]

6 Read
 MEM[ptrP] x

7 Write
 x MEM[ptrP]

8 Input | PORT[ptrP] | x

9 Output | x | PORT[ptrP]

10 Timing

@

@tTM @§tTM
TM = yy:MM:dd
 | hh:mm:ss:ms
 | yy:MM:dd:hh:mm:ss:ms

11 Duration
 @tnTM §tnTM + ∆nTM

12 Increase ↑ ↑(n)

13 Decrease ↓ ↓(n)

14 Exception detection ! ! (@eS)

15 Skip
 Ä Ä

16 Stop

17 System § §(SysIDST)

Table 2. RTPA Metaprocesses

2952

RTPA

Table 3. RTPA process relations and algebraic operations

No. Process Relation Notation Syntax

1 Sequence → P → Q

2 Jump
 P Q

3 Branch | expBL = T → P
| ~ → Q

4 Switch
|

…
|

 exp =
 i → Pi
| ~ →
 where ∈ {N, Z, B, S}

5 While-loop
*R

exp =
R

F

BL T
 P

6 Repeat-loop R +

P →
exp =
R

F

BL T
 P

7 For-loop
iR

1

n

i
R

N

N
P(iN)

8 Recursion
0

i n
R

N N
PiN PiN-1

9 Function call P F

10 Parallel || P | | Q

11 Concurrence ∯ P ∯Q

12 Interleave ||| P ||| Q

13 Pipeline
 » P » Q

14 Interrupt P Q

15 Time-driven dispatch t @tiTM t Pi

16 Event-driven dispatch e @eiS e Pi

17 Interrupt-driven dispatch i @intj i Pj

(#2), branch (#3), switch (#4), and iterations (#5
through #7)—may be identified as the Basic Con-
trol Structures (BCSs) of system behaviors (Aho
et al., 1985; Hoare et al., 1987; Wilson & Clark,
1988). To represent the modern programming
structural concepts, CSP (Hoare, 1985) identified
the following seven additional process relations
such as recursion (#8), function call (#9), parallel
(#10), concurrency (#11), interleave (#12), pipeline
(#13), and interrupt (#14). However, these process

relations or operations were treated as the same
of the metaprocesses in existing formal methods.
That is, the conventional notation systems are
not an algebraic production system rather than
an exhaustive instruction system, which do not
distinguish the basic computational operations
and their composing rules.

RTPA (Wang, 2002b) extends the BCS’s and
process relations to time-driven dispatch (#15),
event-driven dispatch (#16), and interrupt-driven

 2953

RTPA

dispatch (#17) in order to model the top-level
system behaviors, particularly those of real-time
systems. The 17 process relations (BCSs) are
regarded as the foundation of programming and
system behavioral design, because any complex
process can be combinatory implemented by the
algebraic process composing operations onto
the set of the 17 metaprocesses. In Table 3, the
big-R used in process relations #5 through #8 is
a special calculus recently created for denoting
iterative and recursive behaviors of software
systems (Wang, 2008b).

Theorem 2. The express power of algebraic
modeling states that the total number of the pos-
sible computational behaviors (operations)
is a set of combinations between two arbitrary
metaprocesses 1, 2 ∈ P composed by each of
the process relations ∈ R in RTPA, i.e.:

P
R

#

2
#=

17!
= 17 •

2!(17-2)!
= 17 • 136

= 2,312

C

 (15)

Theorem 2 demonstrates the expressive
power of the algebraic structure of RTPA towards
computational behavior modeling and program-
ming. It is noteworthy that an ordinary high-level
programming language may introduce about
150 to 300 individual instructions. However,
the expressive power of RTPA is much higher
than those of programming languages and other
exhaustive formal notation systems, although it
just adopts a small set of 17 metaprocesses and
17 process relations.

MAnIpulAtIon of
coMputAtIonAl bEhAvIors by
rtpA

As presented in previous sections, RTPA provides
a neat and powerful denotational mathematics
structure, which is capable to be used as a generic
notation system for system architecture and be-
havior modeling and specifications. This section
describes the usage and methodology of RTPA
for software system modeling and refinement.
Its applications in formally modeling intelligent
systems and human cognitive processes will be
presented in the next section.

the universal Mathematical Model of
programs based on rtpA

Program modeling is on coordination of compu-
tational behaviors with given data objects. On the
basis of RTPA, a generic program model can be
described by a formal treatment of statements,
processes, and complex processes from the bot-
tom up in the program hierarchy.

Definition 16. A process P is the basic unit of an
applied computational behavior that is composed
by a set of statements si, 1 ≤ i ≤ n-1, with left-as-
sociated cumulative relations, i.e.:

1

1

1 12 2 23 3 1,

 (s), 1

(...((() s) s) ... s)

n

i ij j
i

n n n

P s r j i

s r r r

R
−

=

−

= = +

=

 (16)

where si ∈ P and rij ∈ R.

With the formal process model as defined
above, the universal mathematical model of pro-
grams can be derived below.

Definition 17. A program ℘ is a composition of
a finite set of m processes according to the time-,

2954

RTPA

event-, and interrupt-based process dispatching
rules of RTPA, i.e.:

1

(@)
m

k k
k

e PR
=

=℘

 (17)

Equations 16 and 17 indicate that a program is
an embedded relational algebraic entity, where
a statement s in a program is an instantiation of
a metainstruction of a programming language
that executes a basic unit of coherent function
and leads to a predictable behavior.

Theorem 3. The Embedded Relational Model
(ERM) states that a software system or a pro-
gram ℘ is a set of complex embedded relational
processes, in which all previous processes of a
given process form the context of the current
process, i.e.:

1
1

1 1

 (@)

 [@ (() () ())], 1

m

k k
k
m n

k i ij j
k i

e P

e p k r k p k j i

R
R R
=

−

= =

℘=

= = +

 (18)

The ERM model presented in Theorem 3 re-
veals that a program is a finite and nonempty set
of embedded binary relations between a current
statement and all previous ones that formed the
semantic context or environment of computing.
Theorem 3 provides a unified software model,
which is a formalization of the well accepted but
informal process metaphor for software systems
in computing.

ADT Modeling and Specification in
rtpA

Abstract data types (ADTs) are perfect software
architectures at component level that will be used
to explain the modeling methodology of comput-
ing architectures and behaviors in RTPA. An ADT
is a logical model of complex and/or user defined

data type with a set of predefined operations on
it. A queue as a typical ADT is presented in this
subsection to demonstrate how the RTPA notation
system is used to model and specify the architec-
ture, static behaviors, and dynamic behaviors of
software systems.

There are a number of approaches to the
specification of ADTs, which can be classified
into the logical and algebraic approaches. The
logic approach is good at specifying the static
properties of ADT operations, usually in forms
of preconditions and post-conditions of operations
of ADTs; while the algebraic approach is good
at describing dynamic and run-time behaviors
of ADTs.

A queue in RTPA is modeled as an algebraic
entity, which has predefined operations on a set
of data objects in given types. Unlike the con-
ventional approaches to ADT specifications that
treat ADTs as static data types, ADTs in RTPA
are treated as dynamic finite state machines,
which have both architectures and behaviors, in
order to model both structural and operational
components in system design.

Architectural Modeling in RTPA
At the top level, an RTPA specification of the
queue, QueueST, has three parallel facets, which
are architecture, static behaviors, and dynamic
behaviors, as given below.

QueueST QueueST.Architecture
 || QueueST.StaticBehaviors

 || QueueST.DynamicBehaviors
 (19)

Then, QueueST can be further refined by
detailed specifications according to the RTPA
methodology (Wang, 2007d).

The key modeling methodology for system
architectures in RTPA is CLMs, as described in
the subsection of advanced types. Any system ar-
chitecture and data object, including their control
structures, internal logic model, and hardware

 2955

RTPA

interface model can be rigorously described and
specified by using a set of CLMs.

Example 1. The architecture of QueueST mod-
eled in RTPA is given in Figure 1, where both
the architectural CLM and an access model are
provided for the Queue.

In Figure 1, the access model of QueueST is a
logic model for supporting external invocation of
the QueueST in operations, such as enqueue and
service. The other parts of the model are designed
for internal manipulation of the QueueST, such
as creation, memory allocation, and memory
release.

Static Behavior Modeling in RTPA
System static behaviors in RTPA are valid op-
erations of systems that can be determined at

compile-time, which describe the configuration
of processes of the component and their relations.
The set of static behaviors of QueueST can be
modeled by a set of behavioral processes encom-
passing create, release, enqueue, serve, clear,
empty test, and full test.

Example 2. The detailed specification of one of
the Queue’s static behaviors, QueueST.serve, is
given in Figure 2.

Contrasting the static behavior model of
QueueST.serve in RTPA as shown in Figure 2
and in conventional propositional logic (Stubbs
& Webre, 1985), the advances of RTAP method
and notations may be well demonstrated. Among
them, the most important advantage is that an
RTPA model may be seamlessly refined into code

Figure 1. The architectural model of the Queue in RTPA

Queue ST.Architecture CLM : ST
 || AccessModel : ST
 || Events : S
 || Status : BL

QueueST.Architecture.CLM QueueIDS :
 (<Size : N | SizeN ≥ 0>,
 <Element : RT>,
 <CurrentPos : P | 0 ≤ CurrentPosP ≤ SizeN-1>
)

Queue ST.Architecture.AccessModel QueueIDS(CurrentPosP)RT

QueueST.Serve (<I :: QueueInstS>;
 <O :: ⓢQueueID.ServedBL, ElementRT>)
{
 QueueIDS := QueueInstS
 → (ⓢQueueExistBL = T ∧ CurrentPosP > 0
 → (QueueID(1))RT ⋗Element RT
 → QueueID(i))RT ⋗QueueID(i-1)RT
 → ↓ (QueueID.CurrentPosP)
 → ⓢQueueID.ServedBL := T
 | ~
 → ⓢQueueID.ServedBL := F
 → ! (@’QueueIDExistBL = F ∨ QueueEmptyBL = T’)
)
}

Figure 2. The static behavioral model of the Queue in RTPA

2956

RTPA

in a programming language in the succeeding
phase of software engineering.

Dynamic Behavior Modeling in RTPA
System dynamic behaviors in RTPA are process
relations determined at run time. According to the
RTPA system modeling and refinement scheme,
models of system static behaviors are process
models of the system. To put the component
processes into a live and interacting system, the
dynamic behaviors of the system in terms of
process deployment and dispatch are yet to be
specified.

Example 3. The dynamic behaviors of QueueST
are specified in RTPA as shown in Figure 3, where
the process dispatch mechanisms of the Queue
specifies detailed dynamic process relations at
run time by a set of event-driven relations.

Figures 1 through 3 model an ADT, QueueST,
in a coherent system from three facets. With the
RTPA specification and refinement methodology
and the expressive power of the RTPA notation
system, the features of ADTs as both static data
types and dynamic finite machines can be speci-
fied formally and precisely.

MAnIpulAtIon of
IntEllIgEnt bEhAvIors by rtpA

RTPA may be used not only for modeling and
description of computing behaviors but also for
modeling and denoting the cognitive processes of
the brain in cognitive informatics (Wang, 2002a,
2003a, 2003b, 2006a, 2006b, 2007a, 2007e, 2007f;
Wang & Wang, 2006; Wang et al., 2006). A formal
treatment of memorization as a cognitive process
is presented in this section by a rigorous RTPA
model based on the cognitive model of human
memorization (Wang, 2007a).

the cognitive process of
Memorization

Memorization as a cognitive process can be de-
scribed by two phases: the establishment phase and
the reconstruction phase. The former represents
the target information in the form of an object-at-
tribute-relation (OAR) model (Wang, 2007c) and
creates a memory in long-term memory (LTM).
The letter retrieves the memorized information
and reconstructs it in the form of a concept in the
short-term memory (STM). Therefore, memori-
zation can be perceived as the transformation of
information and knowledge between STM and
LTM, where the forward transformation from
STM to LTM is for memory establishment, and

QueueST.DynamicBehaviors { § →
 (@CreateQueueS ↳ Queue.Create (<I:: QueueInstS, ElementInstRT, SizeInstN>;
 <O:: ⓢQueueID.AllocatedBL, ⓢQueueID.ExistBL>)
 | @ReleaseQueueS ↳ Queue.Release (<I:: QueueInstS>; <O:: ⓢQueueID.ReleasedBL>)
 | @EnqueueS ↳ Queue.Enqueue (<I:: QueueInstS, ElementInstRT>; <O:: ⓢQueueID.EnqueuedBL>)
 | @ServeS ↳ Queue.Serve (<I:: QueueInstS>; <O:: ⓢQueueID.ServedBL, ElementRT>)
 | @ClearS ↳ Queue.Clear (<I:: QueueInstS>; <O:: ⓢQueueID.ClearedBL>)
 | @QueueEmptyS ↳ Queue.EmptyTest (<I:: QueueInstS>; <O:: ⓢQueueID.FullBL>)
 | @QueueFullS ↳ Queue.FullTest (<I:: QueueInstS>; <O:: ⓢQueueID.FullBL>)
) → §
}

Figure 3. The dynamic behavioral model of the Queue in RTPA

 2957

RTPA

the backward transformation from LTM to STM
is for memory reconstruction.

Algorithm 1. The cognitive process of memoriza-
tion can be carried out by the following steps:

(0) Begin.
(1) Encoding: This step generates a represen-

tation of a given concept by transferring it
into a sub-OAR model;

(2) Retention: This step updates the entire OAR
in LTM with the sub-OAR for memorization
by creating new synaptic connections be-
tween the sub-OAR and the entire OAR;

(3) Rehearsal test: This step checks if the memo-
rization result in LTM needs to be rehearsed.
If yes, it continues to practice Steps (4) and
(5); otherwise, it jumps to Step (7);

(4) Retrieval: This step retrieves the memorized
object in the form of sub-OAR by search-
ing the entire OAR with clues of the initial
concept;

(5) Decoding: This step transfers the retrieved
sub-OAR from LTM into a concept and
represents it in STM;

(6) Repetitive memory test: This step tests if
the memorization process was succeeded
or not by comparing the recovered concept
with the original concept. If need, repetitive
memorization will be called.

(7) End.

It is noteworthy that the input of memorization
is a structured concept formulated by learning or
other cognitive processes (Wang, 2007d, 2007f;
Wang et al., 2006).

formal description of the
Memorization process in rtpA
The cognitive process of memorization described
in Algorithm 1 can be formally modeled using
RTPA as given in Figure 4. According to the
LRMB model (Wang et al., 2006) and the OAR
model (Wang, 2007c) of internal knowledge rep-

resentation in the brain, the input of the memori-
zation process is a structured concept c(OS, AS,
RS)ST, which will be transformed to update the
entire OAR model of knowledge in LTM in order
to create a permanent memory. Therefore, the
output of memorization is the updated OAR’ST
in LTM.

In the RTPA memorization process, as shown
in Figure 4, the encoding subprocess is modeled
as a function that maps the given concept cST into
a sub-OAR, sOARST. The retention subprocess
composes the sOARST with the entire OARST in
LTM that maintains the whole knowledge of an
individual. In order to check the memorization
quality, rehearsals are usually needed. In a re-
hearsal, the retrieval subproecss searches a related
sOARST in LTM by giving clues of previously
memorized objects and attributes in cST. Then,
the decoding subprocess transfers the sOARST
into a recovered concept c’ST. In the repetitive
memory test subprocess, the reconstructed c’ST
will be compared with the original input of cST
in order to determine if further memorization is
recursively needed.

According to the 24-hour law of memorization
as stated in Wang and Wang (2006), the memo-
rization process may be completed with a period
at least 24 hours by several cycles of repetitions.
Although almost all steps in the process shown in
Figure 4 are conscious, the key step of retention
is subconscious or nonintentionally controllable.
Based on the LRMB model (Wang et al., 2006),
the memorization process is closely related to
learning (Wang, 2007f). In other words, memo-
rization is a back-end process of learning, which
retains learning results in LTM and retrieves them
when rehearsals or applications are needed. The
retrieve process is search-based by contents or
sOARST matching.

The cognitive process of memorization for-
mally modeled in RTPA provides a rigorous de-
scription of one of the important and complicated
mental processes of the brain. This case study
explains the second usage of RTPA in intelligent

2958

RTPA

system modeling and human behavioral manipu-
lation. Further models and applications of RTPA
in intelligent system modeling may be referred
to (Wang, 2007d; Wang & Ngolah, 2002, 2003).
The applications of RTPA in modeling cognitive
processes of the brain and natural intelligence may
be found in Wang (2003b, 2007a, 2007f).

conclusIon

RTPA has been developed as a denotational
mathematical means, which can be used as al-
gebra-based, expressive, easy-to-comprehend,
and language-independent notation system, and
a practical specification and refinement method
for software and intelligent system modeling.
RTPA is capable to support top-down software

system design and implementation by algebraic
modeling and seamless refinement methodologies.
The RTPA methodology covers the entire system
lifecycle from high-level design to code generation
in a coherent algebraic notation system.

This article has demonstrated that RTPA is not
only useful as a generic notation and methodology
for computing and software system modeling but
is also good at modeling human cognitive pro-
cesses and intelligent systems. A number of case
studies on large-scale software system modeling
and specifications have been carried out, such as
the Telephone Switching System (TSS) (Wang,
2003b), the Lift Dispatching System (LDS) (Wang
& Ngolah, 2002), and the Automated Teller Ma-
chine (ATM) (Wang & Zhang, 2003). The appli-
cation results have encouragingly demonstrated
that RTPA is a powerful and practical algebraic

The Memorization Process

Memorization (I:: c(OS, AS, RS)ST; O:: OAR’ST)
{I. Encoding
 c(OS, AS, RS)ST ⇒ sOARST
 // Concept representation

 II. Retention

 → OAR’ST := OARST sOARST
 // Update OARST in LTM

 III. Rehearsal

 → RehearsalBL = T
 (IV. Retrieval
 Search (I:: OARST;
 O:: sOARST | (OS, AS, RS)ST ⊆ OARST))
 // Retrieval sOARST in LTM

 V. Decoding
 → (sOARST → c’(OS, AS, RS)ST)
 // Concept reconstruction
)

VI. Repeat

→ (c’(OS, AS, RS)ST) ~ c(OS, AS, RS)ST)
 → ⊗ // Memorization succeed

 | ~ // Retry
 → Memorization (I:: c(OS, AS, RS)ST; O:: OAR’ST)
}

Figure 4. Formal description of the memorization process in RTPA

 2959

RTPA

system for both academics and practitioners in
software and intelligent system engineering.

A set of support tools for RTPA have been
developed (Ngolah, Wang, & Tan, 2005b, 2006;
Tan & Wang, 2006; Tan, Wang, & Ngolah, 2004a,
2004b, 2005, 2006), which encompasses the RTPA
parser, type checker, and code generator in C++
and Java. The RTPA code generator enables sys-
tem specifications in RTPA to be automatically
translated into fully executable code. The RTPA
tools will support system architects, analysts,
and practitioners for developing consistent and
correct specifications and architectural models
of large-scale software and intelligent systems,
and the automatic generation of code based on
formal models and rigorous specifications in the
denotational mathematical notations.

AcKnowlEdgMEnt

The author would like to acknowledge the Natu-
ral Science and Engineering Council of Canada
(NSERC) for its partial support to this work. The
author would like to thank anonymous reviewers
for their valuable comments and suggestions.

rEfErEncEs

Aho, A. V., Sethi, R. & Ullman, J. D. (1985).
Compilers: Principles, techniques, and tools. New
York: Addison-Wesley.

Baeten, J. C. M., Bergstra, J. A. (1991). Real time
process algebra. Formal Aspects of Computing,
3, 142-188.

Boucher, A., & Gerth, R. (1987). A timed model
for extended communicating sequential pro-
cesses. In Proceedings of ICALP’87 (LNCS 267).
Springer.

Cardelli, L., & Wegner, P. (1985). On understanding
types, data abstraction and polymorphism. ACM

Computing Surveys, 17(4), 471-522.

Cerone, A. (2000). Process algebra versus axiom-
atic specification of a real-time protocol (LNCS
1816, pp. 57-67). Berlin, Germany: Springer.

Corsetti, E., Montanari, A., & Ratto, E. (1991).
Dealing with different time granularities in formal
specifications of real-time systems. The Journal
of Real-Time Systems, 3(2), 191-215.

Dierks, H. (2000). A process algebra for real-time
programs (LNCS 1783, pp. 66/76). Berlin, Ger-
many: Springer.

Fecher, H. (2001). A real-time process algebra
with open intervals and maximal progress, Nordic
Journal of Computing, 8(3), 346-360.

Gerber, R., Gunter, E. L., & Lee, I. (1992). Imple-
menting a real-time process algebra In M. Archer,J.
J. Joyce, K. N. Levitt, & P. J. Windley (Eds.),
Proceedings of the International Workshop on
the Theorem Proving System and its Applications
(pp. 144-145). Los Alamitos, CA: IEEE Computer
Society Press.

Higman, B. (1977). A comparative study of pro-
gramming languages (2nd ed.). MacDonald.

Hoare, C. A. R. (1978). Communicating sequential
processes. Communications of the ACM, 21(8),
666-677.

Hoare, C. A. R. (1985). Communicating sequential
processes. London: Prentice Hall International.

Hoare, C. A. R., Hayes, I. J., He, J., Morgan, C. C.,
Roscoe, A. W., Sanders, J. W., et al. (1987). Laws
of programming, Communications of the ACM,
30(8), 672-686.

Jeffrey, A. (1992). Translating timed process algebra
into prioritized process algebra. In J. Vytopil (Ed.),
Proceedings of the Second International Sym-
posium on Formal Techniques in Real-Time and
Fault-Tolerant Systems (LNCS 571, pp. 493-506).
Nijmegen, The Netherlands: Springer-Verlag.

2960

RTPA

Klusener, A. S. (1992). Abstraction in real time
process algebra. In J. W. de Bakker, C. Huizing,
W. P. de Roever, & G. Rozenberg (Eds.), Proceed-
ings of Real-Time: Theory in Practice (LNCS, pp.
325-352). Berlin, Germany: Springer.

Louden K. C. (1993). Programming languages:
Principles and practice. Boston.: PWS-Kent.

Martin-Lof, P. (1975). An intuitionistic theory of
types: Predicative part. In H. Rose & J. C. Shep-
herdson (Eds.), Logic Colloquium 1973. North-
Holland.

Milner, R. (1980). A calculus of communicating
systems (LNCS 92). Springer-Verlag.

Milner, R. (1989). Communication and concur-
rency. Englewood Cliffs, NJ: Prentice Hall.

Mitchell, J. C. (1990). Type systems for program-
ming languages. In J. van Leeuwen (Ed.), Hand-
book of theoretical computer science (pp.365-458).
North-Holland.

Nicollin, X., & Sifakis, J. (1991). An overview and
synthesis on timed process algebras. In Proceed-
ings of the Third International Computer Aided
Verification Conference (pp. 376-398).

OMG. (2002, July). IDL syntax and semantics.
1-74.

Reed, G. M., & Roscoe, A. W. (1986). A timed
model for communicating sequential processes.
In Proceedings of ICALP’86 (LNCS 226). Berlin,
Germany: Springer-Verlag.

Russell, B. (1961). Basic writings of Bertrand Rus-
sell. London: George Allen & Unwin Ltd.

Schneider, S. A. (1991). An operational semantics
for timed CSP (Programming Research Group
Tech. Rep. TR-1-91). Oxford University.

Schilpp, P. A. (1946). The philosophy of Bertrand
Russell. American Mathematical Monthly, 53(4),
7210.

Stubbs, D. F., & Webre, W. R. (1985). Data
structures with abstract data types and Pascal.
Monterey, CA: Brooks/Cole.

Tan, X., Wang, Y., & Ngolah, C. F. (2004). A novel
type checker for software system specifications
in RTPA. In Proceedings of the 17th Canadian
Conference on Electrical and Computer Engineer-
ing (CCECE’04).(pp. 1549-1552). Niagara Falls,
Ontario, Canada: IEEE CS Press.

Tan, X., Wang, Y., & Ngolah, C. F. (2006). Design
and implementation of an automatic RTPA code
generator. In Proceedings of the 19th Canadian
Conference on Electrical and Computer Engineer-
ing (CCECE’06) (pp. 1605-1608). Ottawa, Ontario,
Canada: IEEE CS Press.

van Heijenoort, J. (1997). From Frege to Godel,
a source book in mathematical logic 1879-1931.
Cambridge, MA: Harvard University Press.

Vereijken, J. J. (1995). A process algebra for hybrid
systems. In A. Bouajjani & O. Maler (Eds.), In
Proceedings of the Second European Workshop
on Real-Time and Hybrid Systems. Grenoble:
France.

Wang, Y. (2002a). On cognitive informatics (Key-
note speech). In Proceedings of the First IEEE
International Conference on Cognitive Informat-
ics (ICCI’02) (pp. 34-42). Calgary, Canada: IEEE
CS Press.

Wang, Y. (2002b). The real-time process algebra
(RTPA). Annals of Software Engineering: An
International Journal, 14, 235-274.

Wang, Y. (2003a). On cognitive informatics. Brain
and Mind: A Transdisciplinary Journal of Neuro-
science and Neurophilosophy, 4(3), 151-167.

Wang, Y. (2003b). Using process algebra to describe
human and software system behaviors. Brain and
Mind, 4(2), 199-213.

 2961

RTPA

Wang, Y. (2006a). Cognitive informatics and
contemporary mathematics for knowledge repre-
sentation and manipulation (Invited plenary talk).
In Proceedings of the First International Confer-
ence on Rough Set and Knowledge Technology
(RSKT’06) (LNAI 4062, pp. 69-78). Chongqing,
China: Springer.

Wang, Y. (2006b). Cognitive informatics—To-
wards the future generation computers that think
and feel (Keynote speech). In Proceedings of the
Fifth IEEE International Conference on Cognitive
Informatics (ICCI’06) (pp. 3-7). Beijing, China:
IEEE CS Press.

Wang, Y. (2006c). On the informatics laws and
deductive semantics of software. IEEE Transac-
tions on Systems, Man, and Cybernetics (C), 36(2),
161-171.

Wang, Y. (2007a). Formal description of the cogni-
tive process of memorization. In Proceedings of
the Sixth International Conference on Cognitive
Informatics (ICCI’07) (pp. 284-293). Lake Tahoe,
CA: IEEE CS Press.

Wang, Y. (2007b). Keynote speech, on theoretical
foundations of software engineering and denota-
tional mathematics,. In Proceedings of the Fifth
Asian Workshop on Foundations of Software (pp.
99-102). Xiamen, China.

Wang, Y. (2007c). The OAR Model of neural
informatics for internal knowledge representa-
tion in the brain. The International Journal of
Cognitive Informatics and Natural Intelligence,
1(3), 64-75.

Wang, Y. (2007d). Software engineering founda-
tions: A software science perspective. In CRC series
in software engineering: Vol. 2. CRC Press.

Wang, Y. (2007e). The theoretical framework of
cognitive informatics. The International Journal
of Cognitive Informatics and Natural Intelligence,
1(1), 1-27.

Wang, Y. (2007f). The Theoretical framework and
cognitive process of learning. In Proceedings of
the Sixth International Conference on Cognitive
Informatics (ICCI’07) (pp. 470-479). Lake Tahoe,
CA: IEEE CS Press.

Wang, Y. (2008a). Deductive semantics of RTPA.
The International Journal of Cognitive Informatics
and Natural Intelligence, 2(2), 95-121.

Wang, Y. (2008b). On the big-R notation for de-
scribing iterative and recursive behaviors. The
International Journal of Cognitive Informatics
and Natural Intelligence, 2(1), 17-28.

Wang, Y., & King, G. (2000). Software engineering
processes: Principles and applications In CRC Se-
ries in Software Engineering: Vol. I.. CRC Press.

Wang, Y., & Noglah, C. F. (2002). Formal specifica-
tion of a real-time lift dispatching system. In Pro-
ceedings of the 2002 IEEE Canadian Conference on
Electrical and Computer Engineering (CCECE’02)
(pp.669-674). Winnipeg, Manitoba, Canada.

Wang, Y., & Noglah, C. F. (2003). Formal descrip-
tion of real-time operating systems using RTPA.
In Proceedings of the 2003 Canadian Confer-
ence on Electrical and Computer Engineering
(CCECE’03) (pp.1247-1250). Montreal, Canada:
IEEE CS Press

Wang, Y., & Wang, Y. (2006). Cognitive informatics
models of the brain. IEEE Transactions on Systems,
Man, and Cybernetics (C), 36(2),203-207.

Wang, Y., Wang, Y., Patel, S., & Patel, D. (2006). A
layered reference model of the brain (LRMB). IEEE
Transactions on Systems, Man, and Cybernetics
(C), 36(2),124-133.

Wang, Y., & Zhang, Y. (2003). Formal description
of an ATM system by RTPA. In Proceedings of
the 16th Canadian Conference on Electrical and
Computer Engineering (CCECE’03) (pp. 1255-
1258). Montreal, Canada: IEEE CS Press.

2962

RTPA

Wilson, L. B., & Clark, R. G. (1988). Comparative
programming language. Wokingham, England:
Addison-Wesley.

This work was previously published in the International Journal of Cognitive Informatics and Natural Intelligence, Vol. 2, Issue
2, edited by Y. Wang, pp. 44-62, copyright 2008 by IGI Publishing (an imprint of IGI Global).

Woodcock, J., & Davies, J. (1996). Using Z:
Specification, refinement, and proof. London:
Prentice Hall International.

 2963

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.20
Measuring the Efficiency of Free

and Open Source Software
Projects Using Data

Envelopment Analysis
Stefan Koch

Vienna University of Economics and Business Administration, Austria

AbstrAct

In this chapter, we propose for the first time a
method to compare the efficiency of free and open
source projects, based on the data envelopment
analysis (DEA) methodology. DEA offers several
advantages in this context, as it is a non-paramet-
ric optimization method without any need for the
user to define any relations between different
factors or a production function, can account for
economies or diseconomies of scale, and is able
to deal with multi-input, multi-output systems in
which the factors have different scales. Using a
data set of 43 large F/OS projects retrieved from
SourceForge.net, we demonstrate the application
of DEA, and show that DEA indeed is usable
for comparing the efficiency of projects. We
will also show additional analyses based on the
results, exploring whether the inequality in work
distribution within the projects, the licensing
schem,e or the intended audience have an effect

on their efficiency. As this is a first attempt at us-
ing this method for F/OS projects, several future
research directions are possible. These include
additional work on determining input and output
factors, comparisons within application areas,
and comparison to commercial or mixed-mode
development projects.

IntroductIon

In the last years, free and open source software
(also sometimes termed libre software) has gath-
ered increasing interest, both from the business
and academic world. As some projects in differ-
ent application domains like most notably the
operating system Linux together with the suite
of GNU utilities, the office suites GNOME and
KDE, Apache, sendmail, bind, and several pro-
gramming languages have achieved huge success
in their respective markets, both the adoption by

2964

Measuring the Efficiency of Free and Open Source Software Projects

commercial companies, and also the development
of new business models by corporations both small
and large like Netscape or IBM have increased.

Currently, any comparison of free and open
source (F/OS) software projects is very difficult.
There is increased discussion on how the success
of F/OS projects can be defined (Stewart, 2004;
Stewart and Ammeter, 2002; Crowston et al.,
2004; Crowston et al., 2003), using for example
search engine results as proxies (Weiss, 2005).
In addition, the process applied in these projects
can differ significantly.

In this paper, we propose to compare F/OS
projects according to their efficiency in trans-
forming inputs into outputs. For any production
process, this efficiency and productivity is a key
indicator in comparison to other processes. For
F/OS projects, two levels of analysis are of inter-
est: The F/OS process in general is different to
commercial software development processes, and
the process variance between F/OS projects is
also high. In both cases, a main difference, and a
main argument for adopting a process or elements
from it, is the efficiency. Neither a commercial
enterprise, nor an F/OS project would knowingly
and willingly waste scarce resources by using an
inefficient development process. This necessitates
to compute and compare the efficiency of F/OS
projects to gain an understanding of the results
any process decision has on the outputs, which
could lead to identifying best practices, and thus
to increasing the overall efficiency and thus output
of all projects.

To this end, we propose to apply the method
of Data Envelopment Analysis (DEA), which is
a non-parametric optimization method for effi-
ciency comparisons without any need for the user
to define any relations between different factors
or a production function. In addition, DEA can
account for economies or diseconomies of scale,
and is able to deal with multi-input, multi-output
systems in which the factors have different scales.
Efficiency and productivity in software develop-
ment is most often denoted by the relation of an

effort measure to an output measure, using either
lines-of-code (Park, 1992) or, preferably due
to independence from programming language,
function points (Albrecht and Gaffney, 1983).
While this approach can be problematic in an
environment of commercial software development
as well due to missing components especially
of the output, for example also Kitchenham and
Mendes (2004) agree that productivity measures
need to be based on multiple size measures, there
are additional problems in the context of F/OS
development which point towards DEA as an
appropriate method.

In F/OS projects, normally the effort invested
is unknown, and therefore might need to be esti-
mated (Koch, 2004; Koch, 2005), and is also more
diverse than in commercial projects, as it includes
core team member, committers, bug reporters
and several other groups with varying intensity
of participation. Besides that, also the outputs can
be more diverse. In the general case, the inputs of
an F/OS project can encompass a set of metrics,
especially concerned with the participants. So,
in the simplest case, the number of programmers
and other participants can be used. The output of
a project can be measured using several software
metrics like most easily the number of LOC, files,
checkins to the source code control system, post-
ings, bug reports, characteristics of development
speed (e.g. coefficients of a software evolution
equation estimated) or even metrics for product
attributes like McCabe’s cyclomatic complexity
(McCabe, 1976) or object-oriented metrics, e.g.
the Chidamber-Kemerer suite (Chidamber and
Kemerer, 1994). This range of metrics both for
inputs and outputs, and their different scales ne-
cessitates application of an appropriate method,
which DEA can be.

The main result of applying DEA for a set of
projects is an efficiency score for each project.
This score can serve different purposes as men-
tioned above: First, single projects can be com-
pared accordingly, but also groups of projects, for
example those following similar process models,

 2965

Measuring the Efficiency of Free and Open Source Software Projects

located in different application domains or simply
of different scale can be compared to determine
whether any of these characteristics lead to higher
efficiency. Lastly, this method could also be used
for a comparison with traditional, commercial
or even hybrid projects, which in addition to
volunteer resources also feature monetary input
from an organization. In this way, important
questions concerning software development in
general and especially in F/OS projects can be
answered: Which methods allow for the most ef-
ficient application of the available manpower? Is
F/OS software development a new, more efficient
way of producing software? Are projects on a
larger scale more efficient than those on smaller
scale? Is a high concentration of work on a small
number of heads efficient?

In this paper, we will demonstrate a first ap-
plication of DEA to compare the efficiency of a
set of F/OS projects. After a short introduction
to F/OS, we will describe the method of DEA in
general. Based on this, the application will be
detailed, starting with a description of the meth-
odology of data retrieval and the respective data
set to be used. We will then discuss how to set up
the DEA model in this case, taking into account
the available data, and give the results. In a section
on future research, possible enhancements to this
work will be given, in addition to applications of
the results obtained.

frEE And opEn sourcE
softwArE

For a quick definition of free and open source
software, both terms needs to be analyzed
(Laurent, 2004; Dixon, 2003; Rosen, 2004). The
term open source as used by the Open Source
Initiative (OSI) is defined using the Open Source
Definition (Perens, 1999), which lists a number
of rights which a license has to grant in order to
constitute an open source license. These include
most notably free redistribution, inclusion of

source code, to allow for derived works which
can be redistributed under the same license,
and integrity of author’s source code. The Free
Software Foundation (FSF) advocates the term
free software (Stallman, 2002). A software is
defined as free if the user has the freedom to
run the program, for any purpose, to study how
the program works, and adapt it to his needs, to
redistribute copies and to improve the program,
and release these improvements to the public.
Access to the source code is a necessary precon-
dition. In this definition, open source and free
software are largely interchangeable. The GNU
project itself prefers copylefted software, which
is free software whose distribution terms do not
let redistributors add any additional restrictions
when they redistribute or modify the software.
This means that every copy of the software, even
if it has been modified, must be free software, a
prescription embodied in the most well-known
and important license, the GNU General Public
License (GPL).

Not only is F/OS software unique in its licenses
and legal implications, but also in its development
process. The main ideas of this development model
are described in the seminal work of Raymond
(1999), ‘The Cathedral and the Bazaar’, in which
he contrasts the traditional type of software de-
velopment of a few people planning a cathedral
in splendid isolation with the new collaborative
bazaar form of open source software development.
In this, a large number of developer-turned users
come together without monetary compensation
(Raymond, 1999; Hertel et al., 2003) to cooperate
under a model of rigorous peer-review and take
advantage of parallel debugging that leads to in-
novation and rapid advancement in developing
and evolving software products. In order to allow
for this to happen and to minimize duplicated
work, the source code of the software needs to
be accessible which necessitates suitable licenses,
and new versions need to be released often. To-
day, agile methods like eXtreme Programming
or the strict release processes in place in several

2966

Measuring the Efficiency of Free and Open Source Software Projects

open source projects (Holck & Jorgensen, 2004)
give evidence to mixed forms of development.
Currently, empirical research on similarities and
dissimilarities between F/OS development and
other development models is still proceeding
(Mockus et al., 2002; Koch, 2004).

dAtA EnvElopMEnt AnAlysIs

Production and Efficiency

The production of a good or service can be for-
malized using a production function, which gives
the maximum possible output for a given amount
of input (Varian, 2005). Several mathematical
forms for production functions have been used
in literature, including a linear form or a Cobb-
Douglas production function, necessitating an
appropriate number of parameters for defining
the function in a concrete case. The notion of
returns to scale is intimately linked to this con-
cept: If the inputs are scaled by a constant factor,
e.g. twice as much input is used, constant returns
to scale would mean that the output is scaled by
the same amount. If increasing returns to scale
are present, the output would increase more than
that, less with decreasing returns to scale (Varian,
2005). Of course, the returns to scale might be
different at different levels of production, leading
to an ideal size of production (or firm). The term
of economies of scale refers to the decreased per
unit cost as output increases. Both the production
function to be used (Hu, 1997), and the returns
to scale (Banker & Kemerer, 1989; Banker &
Slaughter, 1997) have long been a topic of discus-
sion in software development.

For comparing the efficiency of different
firms (or units), the most basic approach is to
compute the ratio of an output to an input. Those
firms (or units) exhibiting the highest ration are
able to produce the most output given an input,
thus are most efficient. For the area of software
development, efficiency or productivity is most

often denoted as lines-of-code, or preferably func-
tion points (Albrecht and Gaffney, 1983) due to
their technology neutrality, per person-month of
effort. Problems with this approach are that it is
computationally not usable for multi-input, multi-
output situations, and that it assumes constant
returns to scale.

Main concepts of dEA

The principle of the border production function
was introduced by Farell (1957) for measuring the
technical efficiency and enhanced by Charnes,
Cooper and Rhodes (1978a) into the first Data
Envelopment Analysis model (the CCR model).
The term DEA is used for the first time in an
evaluation of school programs for the support of
handicapped children. The object of analysis the
DEA considers is very generally termed Deci-
sion Making Unit (DMU). This term includes
relatively flexibly each unit which is responsible
for the transformation of inputs into outputs. As
different applications show, this definition covers
therefore hospitals, supermarkets, schools, bank
branches and others.

The basic principle of DEA can be understood
as a generalization of the normal efficiency evalu-
ation as described above by means of the relation-
ship from an output to an input into the general
case of a multi-output, multi-input system without
a any given conversion rates or same units for all
factors. For the area of software development, this
can be understood as adding for example pages
of documentation to lines-of-code and function
points as an output factor. In contrast to other
approaches, which require the parametric speci-
fication of a production function, DEA measures
production behavior directly and uses this data for
the evaluation of all DMUs. The DEA derives a
production function from mean relations between
inputs and outputs (whereby it is only assumed
that the relation is monotonous and concave), by
determining the outside cover of all production
relations, while for example a regression analysis

 2967

Measuring the Efficiency of Free and Open Source Software Projects

estimates a straight line through the centre of all
production relations. The DEA identifies “best
practicing” DMUs, which lie on the production
border. Thus any outliers and measuring and /
or data errors may exert a strong influence on
the results, and therefore special attention is
to be given to sensitivity analyses. In order to
determine the production function, the efficient
DMUs are linked in sections with one another.
A DMU is understood as being efficient if none
of the outputs can be increased, without either or
several of the inputs increasing or other outputs
being reduced, as well as none of the inputs can
be reduced, without reducing either one or more
outputs or increasing other inputs.

computation

For each DMU an individual weighting procedure
is used over all inputs and outputs. These form a
weighted positive linear combination, whereby
the weights are specified in such a way that they
maximize the production relationship of the
examined unit, in order to let these become as
efficient as possible. The efficiency of an exam-
ined unit is limited with 1. That means it that no
a-priori weightings are made by the user, and that
the weights between the DMUs can be different.
However, the definition of the relevant inputs and
outputs is necessary. For each evaluation object
the DEA supplies a solution vector of weighting
factors and a DEA efficiency score. If this score
is equal to 1, then the DMU is DEA efficient. In
this context, DEA efficiency means that within
the selected model variant no weighting vector
could be found which would have led to a higher
efficiency value. DEA efficient are thus all those
DMUs which are not clearly DEA inefficient
compared with the others. Any inefficiency can
therefore not be ruled out completely. For inef-
ficient DMUs weighting factors were found in
the context of the selected model variant which
resulted in a higher efficiency value in the case
of at least another DMU.

For each inefficient DMU the DEA returns
a set of efficient DMUs which exhibit a similar
input/output structure and lie on the production
border near to the inefficient DMU (this is also
termed reference set or DEA benchmark). Using
this information, an idea in which direction an
increase in efficiency is possible can be gained.
Because the relative efficiency measure is based
on the distances from actually existing DMUs and
is thus easily comprehensible, DEA is suitable as
an analysis tool better than other methods.

Models of dEA

The first model of the DEA was introduced by
Charnes, Cooper and Rhodes (1978b) and is des-
ignated with the initial letters of their surnames
as CCR model. They pose four assumptions for
the production possibility set, which are convexity
(each linear combination of two DMUs results in
a production possibility within the valid range),
possibility for inefficient production (all produc-
tion possibilities which are more inefficient than
the known DMUs are permissible), constant
returns to scale and minimum extrapolation (the
production possibility range covers all observed
DMUs). The CCR model measures the efficiency
of each DMU by examining the relationship of
the outputs to the inputs, optimally weighted
for the DMU. This optimization happens under
the constraint that equivalent conditions for no
other DMU result in a value exceeding 1. By this
maximization each DMU receives the optimum
weighting given the constraint.

The different basic models of the DEA can
be divided on the basis of two criteria: This is on
the one hand the orientation of the model, on the
other hand the underlying assumption regarding
the returns to scale of the production process.
With input-oriented models the reduction of the
input vector maximally possible with the given
manufacturing technology is determined, whereas
with output-oriented models the maximally pos-
sible proportional increase of the output vector is

2968

Measuring the Efficiency of Free and Open Source Software Projects

determined. Input orientation is generally present,
if an enterprise function (for example manufac-
turing) is to be analyzed which minimizes the
resources consumption, but can only affect the
output in a limited way. The returns to scale can
be assumed either as being constant as in the CCR
model described above, or variable. With constant
returns to scale size-induced productivity differ-
ences are considered into the efficiency evalua-
tion, with variable returns to scale the differences
are neutralized by the model. The most common
example of a model with variable returns to scale
is an advancement to the CCR model by Banker,
Charnes and Cooper (1984), the BCC model. This
model includes an additional measuring variable
in the fundamental equation to capture rising,
falling or constant returns to scale.

Applications

DEA models are generally used where scarce
resources are to be used goal-oriented. The first
DEA models were developed to measure the
efficiency of non-profit units, for whose inputs
and outputs no clear market prices exist and also
otherwise no clear evaluation relations are pres-
ent. The entire public sector therefore represents
a typical area of application. Emphases of the first
investigations were therefore health service, in
particular hospitals, as well as school advance-
ment programs (Charnes et al., 1978a). In further
consequence the DEA was also applied to the
evaluation of the efficiency of private business
units as for instance branches of banks or super-
markets, especially if the efficiency is not only
to be measured in profit, but also by parameters
as for instance environmental condition, down-
times or customer satisfaction.

In the area of software development, DEA was
so far only rarely applied. Banker and Kemerer
(1989) use this approach in order to prove the
existence of both rising and falling returns to
scale. First arise in small, the others in larger soft-
ware development projects. Based on published

collections of project data records the authors
compute in each case the point of the maximum
productivity (most productive scale size) within
the set of projects, starting from which the re-
turns to scale begin to fall. Banker and Slaughter
(1997) use the DEA in the area of maintenance
and enhancement projects. It can be proven that
rising returns to scale are present, which would
have made a cost reduction of around 36 per cent
possible when utilized. This was prevented how-
ever by organizational constraints, for example
high punishments for exceeding the completion
date. Mayrhauser et al. (2000) also report apply-
ing DEA on a data set consisting of 46 software
projects from the NASA-SEL database to analyze
objective variables and their impact on efficiency.
They suggest combining this with the results of
applying principal component analysis (PCA) in
an analysis of subjective variables. An investiga-
tion of ERP projects was done by Myrtveit and
Stensrud (1999). They used 30 SAP R/3-projects
of a consulting firm for the application of the
DEA. Kitchenham (2002) gives an in-depth dis-
cussion on the application of DEA in software
development.

ApplIcAtIon of dEA for frEE
And opEn sourcE softwArE
proJEcts

Methodology

For performing the proposed efficiency compari-
son of F/OS software projects, the information
contained in software development repositories
will be used. These repositories contain a plethora
of information on the underlying software and
the associated development processes (Cook et
al., 1998; Atkins et al., 1999). Studying software
systems and development processes using these
sources of data offers several advantages (Cook
et al., 1998): This approach is very cost-effective,
as no additional instrumentation is necessary, and

 2969

Measuring the Efficiency of Free and Open Source Software Projects

it does not influence the software process under
consideration. In addition, longitudinal data is
available, allowing for analyses considering the
whole project history.

Depending on the tools used in a project, pos-
sible repositories available for analysis include
source code versioning systems, bug reporting
systems, or mailing lists. Many of these have
already been used as information sources for
closed source software development projects.
For example, Cook et al. (1998) present a case
study to illustrate their proposed methodology
of analyzing in-place software processes. They
describe an update process for large telecommu-
nications software, analyzing several instances
of this process using event data from customer
request database, source code control, modifica-
tion request tracking database and inspection
information database. Atkins et al. (1999) use data
from a version control system in order to quantify
the impact of a software tool, a version-sensitive
editor, on developer effort.

In open source software development projects,
repositories in several forms are also in use, in
fact form the most important communication
and coordination channels, as the participants in
any project are not collocated. Therefore only a
small amount of information can not be captured
by repository analyses because it is transmitted
inter-personally. As a side effect, the repositories in
use must be available openly and publicly, in order
to enable as many persons as possible to access
them and to participate in the project. Therefore
open source software development repositories
form an optimal data source for studying the as-
sociated type of software development.

Given this situation, repository data have
already been used in research on open source
software development. This includes in-depth
analyses of small numbers of successful projects
like Apache and Mozilla (Mockus et al., 2002),
GNOME (Koch and Schneider, 2002) using
mostly information provided by version-control-
systems, but sometimes in combination with other

repository data like from mailing list archives.
Large-scale quantitative investigations spanning
several projects going into software development
issues are not yet as common, and have mostly
been limited to using aggregated data provided
by software project repositories (Crowston and
Scozzi, 2002; Hunt and Johnson, 2002; Krish-
namurthy, 2002), meta-information included in
Linux Software Map entries (Dempsey et al.,
2002), or data retrieved directly from the source
code itself (Ghosh and Prakash, 2000).

data collection and data set

For this efficiency comparison, a data set covering
several projects was needed. Therefore, we used
a subset of a data set already available from prior
research derived from SourceForge.net, the soft-
ware development and hosting site. The mission
of SourceForge.net is ‘to enrich the open source
community by providing a centralized place for
open source developers to control and manage
open source software development’. To fulfill
this mission goal, a variety of services is offered
to hosted projects, including tools for managing
support, mailing lists and discussion forums, web
server space, shell services and compile farm,
and source code control. While SourceForge.net
publishes several statistics, e.g. on activity in their
hosted projects, this information was not detailed
enough for the proposed analysis. For example,
Crowston and Scozzi (2002) used the available
data for validating a theory for competency ral-
lying, which suggests factors important for the
success of a project. Hunt and Johnson (2002)
have analyzed the number of downloads of proj-
ects occurring, and Krishnamurthy (2002) used
the available data of the 100 most active mature
projects for an analysis.

The data collection method utilized is de-
scribed in detail in Hahsler and Koch (2005). It is
based on automatically extracting data from the
web pages and especially the source code control
system, in the form of CVS, and subsequently

2970

Measuring the Efficiency of Free and Open Source Software Projects

parsing the results and storing the relevant results,
e.g. size, date and programmer of each checkin,
in a database. Most of this work was done using
Perl scripts. This resulted in a number of 8,621
projects for which all relevant information could
be retrieved. More detailed analyses of these data
can be found in Koch (2004). For this research,
we chose to use the subset of largest projects,
in order to have a limited set exhibiting similar
characteristics. We therefore defined a threshold
of at least five developers and 500,000 lines-of-
code, which resulted in 43 projects. Table 1 gives
descriptive statistics for these projects. While most
of the variables are self-descriptive, a few notes
are in order: The total number of programmers
gives all different persons who have over the
complete lifetime contributed code. In contrast,
a programmer is defined to be active in a month
if he showed activity during this time interval.
The mean number of programmers per month is
based on this definition, as are the cumulated ac-
tive programmers. This last number can be seen

as an effort indicator, denoting the sum of the
active programmers for each month over the total
lifetime. It is also given in person-years, although
an F/OS programmer active in a given month will
not necessarily have worked 40 hours per week.
For example, Hertel et al. (2003) report that in
the developer group of Linux kernel contributors
participating in their survey, about 18.4 hours
per week are spent on open source development
by each person. This number could be used to
convert the effort to “real” person-years, but, as
only F/OS projects are to be compared here, this
is not done. The status is an indicator assigned by
the project administrator within SourceForge.net
and aims at reflecting the phase of a project in the
development lifecycle. It has seven possible values,
reaching from planning, pre-alpha, alpha, beta
to production/stable and mature, and to inactive.
The last variable is used to depict the inequal-
ity of work distribution within the development
team (Robles et al., 2004), with values nearer to
1 showing higher inequality.

Table 1. Descriptive statistics of data set (n=43)

 Min. Max. Mean std. dev.

size (loc) 533321,00 7669643,00 2014731,09 2124643,99

total of loc added 541148,00 10773710,00 2478442,26 2447076,77

total of loc deleted 7827,00 3104067,00 463711,16 571624,21

number of files 904,00 23594,00 6381,79 5683,65

start date 1990/08/09 2001/04/17 1999/01/16 n/a

checkins 1897,00 133759,00 27485,40 26986,30

total number of programmers 5,00 88,00 18,35 15,62

Mean number of programmers

per month
1,40 13,00 4,39 2,86

cumulated active

programmers (person-years)
1,00 55,40 9,78 9,79

number of months 5,00 133,00 27,44 22,12

status ,00 6,00 4,21 1,55

Inequality (based on checkins) ,05 ,87 ,33 ,24

 2971

Measuring the Efficiency of Free and Open Source Software Projects

DEA Model Definition

For computing DEA models, different software
products are available, some of which are freeware.
In this case, the program accompanying the book
by Cooper, Seiford and Tone (2000) was used,
which can solve different DEA models, input or
output-oriented, as well as with constant or vari-
able returns to scale.

The first choices to be taken concern the
definition of input and output factors, as well as
the model to be applied. Banker and Kemerer
(1989) have demonstrated the existence of both
increasing and decreasing returns to scale in
software projects, also Myrtveit and Stensrud
(1999) recommend to use a model with variable
returns to scale. Using a data set of maintenance
and extension projects Banker and Slaughter
(1997) have found increasing returns to scale.
Kitchenham (2002) gives an overview of research
result and reasons for differences on economies
and diseconomies of scale in software develop-
ment. Regarding the orientation of the model, an
output-orientation might seem more appropriate.
Given a certain input which can be acquired, i.e.
participants attracted, the output is to be maxi-
mized. According to this reasoning, the BCC-O
model is applied.

Regarding the definition which factors are to
be used as inputs and outputs, it is to be consid-
ered that with an increase in the number of fac-
tors more DMUs, i.e. projects, are estimated to

be efficient, in particular if the database is small
in relation. Also the availability of factors in the
data set limits the possibilities. In this case, we
selected to use the total number of programmers
and their effort as inputs, and size, LOC added
and deleted, files, checkins and status as output
factors. Naturally, this selection is based on the
available data, and could be changed. This point
will be discussed in more detail within the section
on future research.

results

The results of a DEA analysis give for each DMU,
in this case F/OS project, an efficiency measure
as defined above, i.e. of value 1 if no possibilities
for improvements in transforming inputs into
outputs have been detected given the data. As
the DEA model set up in this paper is output-
oriented, any other value below 1 means that a
proportional increase of outputs seems possible
given the inputs of a project. A DEA efficiency of
0,75 would translate into a possible output increase
of 25% for this project. In addition, a reference set
is reported, which contains DMUs with similar
input-output relations and lie on the production
border near to the inefficient DMU. Table 2 gives
an extract of the DEA results on project level from
the data set, showing two different projects, one of
which is deemed DEA efficient. As can be seen,
project number 27, mysql, is DEA efficient, while
number 3, berlin, has a lower efficiency score of

Table 2. Results from DEA on project level (extract)

no. dMu score reference set

…

3 berlin 0,518 gkernel 0,211 mysql 0,597 python 0,192

…

27 mysql 1,000 mysql 0,999

…

2972

Measuring the Efficiency of Free and Open Source Software Projects

0,518 which translates into a respective possible
increase in outputs. The reference set reported
contains the efficient projects mysql, gkernel and
python, which also have weights assigned relating
to their relative importance in showing the inef-
ficiency of berlin. In this case, mysql is the most
important project, which means that it is most
similar in input-output relation, and orienting at

this project would show the most promising path
for efficiency increase.

From all DEA efficiency scores, an efficiency
ranking over all projects can be derived, which
is given in Table 3 for the data set used here. As
can be seen, several projects are deemed DEA ef-
ficient, therefore have a value of 1 and are ranked
at the top. This list gives two major informations

rank dMu score

1 aaf, crossfire, gkernel, lpr, musickit, mysql, nfs, python,

u4x, winex

1,000

11 ceps, mesa3d, tcl 0,999

14 linuxsh 0,995

15 linux-apus 0,963

16 Xfce 0,954

17 linux-mac68k 0,903

18 jboss 0,896

19 firebird 0,878

20 cvsgui 0,866

21 enlightenment 0,860

22 quake 0,852

23 sdcc 0,852

24 zangband 0,847

25 opensta 0,840

26 lesstif 0,837

27 ghostscript 0,835

28 qpe 0,833

28 htdig 0,833

30 wf-gdk 0,829

31 dri 0,823

32 crystal 0,769

33 lsb 0,742

34 acs-pg 0,701

35 mahogany 0,691

36 squid 0,670

37 omseek 0,671

38 clocc 0,667

39 linux-vr 0,574

Table 3. Ranking of projects according to DEA efficiency

 2973

Measuring the Efficiency of Free and Open Source Software Projects

per project: Their rank is a measure of the stand-
ing within the total group, while the efficiency
score gives an indication of the amount of output
increase possible.

For an overview of the results, see also Table
4. In this table, statistics on the efficiency scores
in the total population are given. Overall, 10
different projects have been classified as DEA
efficient (which is also visible from Table 3), the
mean efficiency score with 0,828 seems relatively
high. For each efficient project, the number of
times it appears in the reference sets of non-ef-
ficient projects is also given. This can be used
as an indicator of the relative importance of this
project in determining efficiency scores, and
would also be important for performing sensitiv-
ity analyses.

These results, besides demonstrating that dif-
ferences in efficiency between F/OS projects do
indeed exist, can then be used in several ways:

First, for each single project, both an easy-to-in-
terpret examination of the current status is given,
and an indication for possible improvements in
form of the reference set of similar but efficient
projects is offered. Secondly, and more important,
the results allow for additional analyses beyond
single projects, but spanning groups of projects.
Using measures of centrality like the mean or
median efficiency score, groups of projects can
be compared. The groups to be considered can
be based on different characteristics available,
including software process, application domains,
scale or even license. Using any of the criteria, the
population can be divided in two or more groups,
and the distribution of efficiency scores can be
compared statistically, using the hypothesis that
the dividing variable has an effect on efficiency.
If any statistically significant difference in ef-
ficiency shows up, the hypothesis is validated,
meaning that indeed projects showing a certain

Table 4. Overview of DEA results for data set

no. of dMus 43

Average 0,828

std. dev. 0,196

Maximum 1,000

Minimum 0,085

Number of DEA-efficient DMUs 10

frequency in reference set

peer set frequency to other dMus

aaf 4

crossfire 8

gkernel 24

lpr 3

musickit 3

mysql 28

nfs 2

python 18

u4x 1

winex 0

2974

Measuring the Efficiency of Free and Open Source Software Projects

characteristic tend to be more (or less) efficient.
In this paper, first an example is detailed based

on comparing different software process designs,
using the inequality of contributions within proj-
ects as dividing factor. We will therefore compute
a correlation coefficient between the inequality
measure as given above, and the efficiency score
of projects. In this case, the underlying hypoth-
esis, that a relationship between group working
style as depicted by the resulting inequality and
efficiency exists, can not be confirmed: There is
no significant correlation between both measures,
which shows that a higher inequality does not
have any effect on efficiency.

As a second example, the hypothesis that a
very stringent copyleft-licensing scheme increases
the productivity of the participants is explored.
We therefore divide the set of projects into two
groups, one consisting of projects licensed under
GNU GPL only, resulting in 18 projects out of
43, the other with all remaining projects. Then,
a non-parametric Mann-Whitney U-test is em-
ployed to test the distribution of the efficiency
scores between the groups. In this case, there is
no significant difference, so the hypothesis that
a copyleft-licensing scheme has an impact on
efficiency has to be discarded.

As a last example, we base the grouping of
projects on the intended audience, with one group
targeting developers and system administrators
only, resulting in 20 projects, and others, to explore
whether this characteristic has any impact on ef-
ficiency. Also in this case, there is no significant
difference in efficiency between the two groups,
again showing that the intended audience does
not lead to a change in efficiency.

futurE rEsEArch

As this has been a very first attempt of applying
DEA to the context of F/OS projects, numerous

directions for future research exist. The first area
of research identified with the data set in this pa-
per is the definition of relevant input and output
factors. We propose to add at least two additional
factors, the first one being contributors other than
programmers as an input factor, the second one
being a mix of different product metrics to capture
aspects of the software system produced. This
could include concepts like McCabe’s cyclomatic
complexity (McCabe, 1976) or object-oriented
metrics, e.g. the Chidamber-Kemerer suite (Chi-
damber and Kemerer, 1994). Also other outputs
could be measured and included, for example
postings to mailing lists, website metrics, and
even popularity measures (Weiss, 2005).

In this paper, we have compared a set of
relatively large F/OS projects. It would also be
interesting to include smaller projects, in which
case the issue of variable or constant returns to
scale would increase in importance. A comparison
might also be useful to be done within a certain
application area only, for example frameworks
for web service implementation, to eliminate
additional influences.

Of maybe even more interest than those con-
siderations given above on setting up a DEA might
be analyses based on the respective results. After
having computed efficiency scores for a set of
projects, other characteristics of these can be used
in order to explore reasons for any differences in
efficiency. Possible characteristics would include
mostly aspects of the software development pro-
cess employed, similar to this paper, which used
the inequality within the development team as
explanatory variable. Respective comparisons
could also be extended to include projects follow-
ing very different approaches, like commercial
projects employing for example agile methodolo-
gies, or projects with mixed participation from
volunteers and paid contributors. To allow for
these comparisons, additional characteristics of
the projects considered need to be collected.

 2975

Measuring the Efficiency of Free and Open Source Software Projects

conclusIon

In this paper, we have proposed for the first time
a method to compare the efficiency of F/OS
projects. The method used is the DEA, which is
well-established in other fields and offers several
advantages in this context as well: It is a non-para-
metric optimization method without any need for
the user to define any relations between different
factors or a production function, can account for
economies or diseconomies of scale, and is able
to deal with multi-input, multi-output systems in
which the factors have different scales. Using a
data set of 43 large F/OS project retrieved from
SourceForge.net, we have demonstrated the ap-
plication of DEA. Results show that DEA indeed
is usable for comparing the efficiency of projects
in transforming inputs into outputs, that differ-
ences in efficiency exist, and that single projects
can be judged and ranked accordingly. We have
also detailed additional analyses based on these
results, which stated that neither the inequality
in work distribution within the projects, nor the
licensing scheme, nor the intended audience has
an effect on the efficiency of a project. As this
is a first attempt at using this method for F/OS
projects, several future research directions are
possible. These include additional work on deter-
mining input and output factors, and additional
analyses based on the results using other project
characteristics. These could include comparisons
within application areas, different project scales,
and also comparisons to commercial or mixed-
mode development projects.

rEfErEncEs

Albrecht, A.J., & Gaffney, J.E. (1983). Software
Function, Source Lines of Code, and Development
Effort Prediction: A Software Science Validation.
IEEE Transactions on Software Engineering,
9(6), 639-648.

Atkins, S., Ball, T., Graves, T., & Mockus, A.
(1999). Using Version Control Data to Evaluate
the Impact of Software Tools. In Proceedings of
the 21st International Conference on Software
Engineering (pp. 324-333), Los Angeles, CA.

Banker, R.D., Charnes, A., & Cooper, W. (1984).
Some Models for Estimating Technical and Scale
Inefficiencies in Data Envelopment Analysis.
Management Science, 30, 1078-1092.

Banker, R.D., & Kemerer, C. (1989). Scale
Economies in New Software Development. IEEE
Transactions on Software Engineering, 15(10),
416-429.

Banker, R.D., & Slaughter, S.A. (1997). A Field
Study of Scale Economies in Software Mainte-
nance. Management Science, 43(12), 1709-1725.

Charnes, A., Cooper, W., & Rhodes, E. (1978a). A
Data Envelopment Analysis Approach to Evalua-
tion of the Program Follow Through Experiments
in U.S. Public School Education (Management
Science Research Report No. 432). Pittsburgh,
PA: Carnegie-Mellon University.

Charnes, A., Cooper, W., & Rhodes, E. (1978b).
Measuring the Efficiency of Decision Making
Units. European Journal of Operational Re-
search, 2, 429-444.

Chidamber, S.R., & Kemerer, C.F. (1994). A
Metrics Suite for Object Oriented Design. IEEE
Transactions on Software Engineering, 20(6),
476-493.

Cook, J.E., Votta, L.G., & Wolf, A.L. (1998). Cost-
effective analysis of in-place software processes.
IEEE Transactions on Software Engineering,
24(8), 650-663.

Cooper, W., Seiford, L., & Tone, K. (2000). Data
Envelopment Analysis: A Comprehensive Text
with Models, Applications, References and DEA-
Solver Software, Boston, MA: Kluwer Academic
Publishers.

2976

Measuring the Efficiency of Free and Open Source Software Projects

Crowston, K., Annabi, H., & Howison, J. (2003).
Defining Open Source Software Project Success.
In Proceedings of ICIS 2003, Seattle, WA, 14-17
December

Crowston, K., Annabi, H., Howison, J., & Ma-
sango, C. (2004). Towards A Portfolio of FLOSS
Project Success Measures. In Collaboration,
Conflict and Control: The 4th Workshop on Open
Source Software Engineering, International Con-
ference on Software Engineering (ICSE 2004),
Edinburgh, Scotland, May 25.

Crowston, K., & Scozzi, B. (2002). Open source
software projects as virtual organizations: Com-
petency rallying for software development. IEE
Proceedings - Software Engineering, 149(1),
3-17.

Dempsey, B.J., Weiss, D., Jones, P., & Greenberg, J.
(2002). Who is an open source software developer?
Communications of the ACM, 45(2), 67-72.

Dixon, R. (2003). Open Source Software Law.
Norwood, Massachusetts: Artech House.

Farell, M.J. (1957). The Measurement of Produc-
tive Efficiency. Journal of the Royal Statistical
Society, Series A 120(3), 250-290.

Ghosh, R., & Prakash, V.V. (2000). The Orbiten
Free Software Survey. First Monday, 5(7).

Hahsler, M., & Koch, S. (2005). Discussion of
a Large-Scale Open Source Data Collection
Methodology. In Proceedings of the Hawaii
International Conference on System Sciences
(HICSS-38), Big Island, Hawaii.

Hertel, G., Niedner, S., & Hermann, S. (2003).
Motivation of software developers in open source
projects: An internet-based survey of contribu-
tors to the Linux kernel. Research Policy, 32(7),
1159-1177.

Holck, J., & Jorgensen, N. (2004). Do Not Check
in on Red: Control Meets Anarchy in Two Open
Source Projects. In Koch, S. (ed.), Free/Open

Source Software Development, Hershey, Penn-
sylvania: Idea Group Publishing.

Hu, Q. (1997). Evaluating Alternative Software
Production Functions. IEEE Transactions on
Software Engineering, 23(6), 379-387.

Hunt, F., & Johnson, P. (2002). On the pareto
distribution of Sourceforge projects. In Proceed-
ings of the Open Source Software Development
Workshop (pp. 122-129), Newcastle, UK.

Kitchenham, B. (2002). The question of scale
economies in software - why cannot research-
ers agree? Information & Software Technology,
44(1), 13-24.

Kitchenham, B., & Mendes, E. (2004). Software
Productivity Measurement Using Multiple Size
Measures. IEEE Transactions on Software Engi-
neering, 30(12), 1023-1035.

Koch, S. (2004). Profiling an open source project
ecology and its programmers. Electronic Markets,
14(2), 77-88.

Koch, S. (2005). Effort Modeling and Programmer
Participation in Open Source Software Projects
(Arbeitspapiere zum Tätigkeitsfeld Informa-
tionsverarbeitung, Informationswirtschaft und
Prozessmanagement, Nr. 03/2005). Department
für Informationsverarbeitung und Prozessman-
agement, Wirtschaftsuniversität Wien, Vienna,
Austria.

Koch, S., & Schneider, G. (2002). Effort, Co-
operation and Coordination in an Open Source
Software Project: GNOME. Information Systems
Journal, 12(1), 27-42.

Krishnamurthy, S. (2002). Cave or community?
an empirical investigation of 100 mature open
source projects. First Monday, 7(6).

Laurent, L.S. (2004). Understanding Open Source
and Free Software Licensing. Cambridge, Mas-
sachusetts: O’Reilly & Associates.

 2977

Measuring the Efficiency of Free and Open Source Software Projects

Mayrhauser, A., Wohlin, C., & Ohlsson, M.
(2000). Assessing and Understanding Efficiency
and Success of Software Production. Empirical
Software Engineering, 5(2), 125-154.

McCabe, T.J. (1976). A complexity measure.
IEEE Transactions on Software Engineering,
2(4), 308-320.

Mockus, A., Fielding, R., & Herbsleb, J. (2002).
Two case studies of open source software devel-
opment: Apache and Mozilla. ACM Transactions
on Software Engineering and Methodology, 11(3),
309-346.

Myrtveit, I., & Stensrud, E. (1999). Benchmarking
COTS Projects Using Data Envelopment Analysis.
In Proceedings of 6th International Software-
Metrics-Symposium (pp. 269-278), Boca-Raton.

Park, R.E. (1992). Software size measurement:
A framework for counting source statements
(Technical Report CMU/SEI-92-TR-20). Software
Engineering Institute, Carnegie Mellon Univer-
sity, Pittsburgh, PA.

Perens, B. (1999). The Open Source Definition.
In DiBona, C. et al. (eds.), Open Sources: Voices
from the Open Source Revolution, Cambridge,
Massachusetts: O’Reilly & Associates.

Raymond, E.S. (1999). The Cathedral and the
Bazaar. Cambridge, Massachusetts: O’Reilly &
Associates.

Robles, G., Koch, S., & Gonzalez-Barahona, J.M.
(2004). Remote analysis and measurement of libre

software systems by means of the CVSanalY
tool. In ICSE 2004 - Proceedings of the Second
International Workshop on Remote Analysis and
Measurement of Software Systems (pp. 51-55),
Edinburgh, Scotland.

Rosen, L. (2004). Open Source Licensing: Soft-
ware Freedom and Intellectual Property Law.
Englewood Cliffs, New Jersey: Prentice Hall
PTR.

Stallman, R.M. (2002). Free Software, Free So-
ciety: Selected Essays of Richard M. Stallman.
Boston, Massachusetts: GNU Press.

Stewart, K.J. (2004). OSS Project Success: From
Internal Dynamics to External Impact. In Collabo-
ration, Conflict and Control: The 4th Workshop
on Open Source Software Engineering, Interna-
tional Conference on Software Engineering (ICSE
2004), Edinburgh, Scotland, May 25.

Stewart, K.J., & Ammeter, T.A. (2003). An Explor-
atory Study of Factors Affecting the Popularity and
Vitality of Open Source Projects. In Proceedings
of the 23rd International Conference on Informa-
tion Systems, Barcelona, Spain.

Varian, H.R. (2005). Intermediate Microeconom-
ics: A Modern Approach. Seventh Edition, New
York, N.Y.: W. W. Norton & Company.

Weiss, D. (2005). Measuring Success of Open
Source Projects Using Web Search Engines. In
Proceeding of the 1st International Conference on
Open Source Systems (pp. 93-99), Genoa, Italy.

This work was previously published in Emerging Free and Open Source Software Practices, edited by S. Sowe, I. Stamelos,
and I. Samoladas, pp. 25-46, copyright 2007 by IGI Publishing (an imprint of IGI Global).

2978

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.21
Examining Open Source

Software Licenses through
the Creative Commons

Licensing Model
Kwei-Jay Lin

University of California, USA

Yi-Hsuan Lin
Creative Commons Taiwan Project, Taiwan

Tung-Mei Ko
OSSF Project, Taiwan

AbstrAct

In this chapter, the authors present a novel per-
spective by using the Creative Commons (CC)
licensing model to compare 10 commonly used
OSS licenses. The authors also propose a license
compatibility table to show that whether it is
possible to combine OSS with CC-licensed open
content in a creative work. By using the CC licens-
ing concept to interpret OSS licenses, the authors
hope that users can get a deeper understanding
on the ideas and issues behind many of the OSS
licenses. In addition, the authors hope that by

means of this table, users can make a better de-
cision on the license selection while combining
open source with CC-licensed works.

IntroductIon

With the rapid growth of the open source software
(OSS) community in the past decade, many users
now are convinced that OSS is a practical and at-
tractive alternative to proprietary software. Since
almost all OSS licenses allow worldwide, royalty-
free usage and encourage users to copy, modify,

 2979

Examining Open Source Software Licenses through the Creative Commons Licensing Model

and enhance original codes, OSS has attracted
many users and programmers. Some other benefits
include significantly lower development and de-
ployment cost, and software quality improvement
due to open inspections and discussions.

To meet the needs of various authors and users,
different software licenses have been defined. The
diversity and complexity of these licenses, on the
other hand, create confusions for many potential
OSS authors and users. It has been a constant
community effort through articles, reviews, and
books to discuss and to elaborate on the subtle
differences among these licenses.

For non-software publications, such as Web
sites, graphics, music, film, photography, literature,
courseware, and so on, that normally fall under the
current copyright law, some authors may want to
open up part of their rights to the public with a spirit
similar to those of OSS licenses. To allow for such
possibilities, Creative Commons (CC) was founded
in 2001 to define the licenses beyond the traditional
“all rights reserved” copyright definition. CC licenses,
motivated in part by the GNU General Public License
(GPL) of the Free Software Foundation (FSF), provide
a similar function to OSS licenses for non-software
creative works.

Both OSS and CC licensing models are about
promoting the ideas of free access. Therefore,
it is not a rare case to combine open software
released under OSS licenses with CC-licensed
creative material. Nevertheless, there are differ-
ences between these two models. For users who
combine these two types of materials to create a
new resulting work, some questions are of deep
concern. For example, whether a specific OSS
license is compatible with CC licenses? Which
license should the resulting work apply to?
Unfortunately, so far there is hardly any study
discussing these issues in depth.

As participants of the open source movement
in Taiwan, we have witnessed the flourishing in-

novation and creativity of OSS activities in Taiwan.
However, the license selection issue has continued
to be an obstacle for many potential local contribu-
tors. Part of the charters of the Open Foundry project
in Taiwan (called OSSF, http://www.openfoundry.
org) is to help people easily capture a basic under-
standing of the licenses that govern OSS, related
documentations and open content.

In this chapter, we present a novel perspective
by using the CC licensing model to compare 10
commonly-used OSS licenses. Specifically, we
have defined a license compatibility table that
shows whether it is possible to combine OSS with
CC-licensed open content in a creative work. The
idea of comparing the two types of licenses is
partly inspired by Rosen (2004). In Chapter 10 (pp.
244-251) of his book, Rosen takes four commonly
used OSS licenses as examples and discusses the
compatibility of these licenses. Similarly, our study
may help people understand if they can re-license
a resulting work under a specific CC license. The
reason for our study on the compatibility table is
from the observation that many new OSS con-
tributors are primarily interested in getting their
software known and accepted by the community,
and circulated as widely as possible. They do not
want to interfere with licensees’ use of the software
nor constraining the licensing of derivative works.
Their goal is to create works that people may share
and enjoy, much like open content. Therefore, by
using the CC licensing concept (such as attribution
and share alike) to interpret OSS licenses, people
may get a deeper understanding on the ideas and
issues behind many of the OSS licenses, and make
a better decision on the license selection.

The rest of the chapter is organized as follows.
The following section reviews the basic elements
of OSS licenses and CC licenses. Subsequently, the
comparison of the two licenses classes is presented.
Next, we discuss two new license concepts, then
the chapter is concluded in the last section.

2980

Examining Open Source Software Licenses through the Creative Commons Licensing Model

bAcKground: froM gpl
to AttrIbutIon

oss licenses and fdl

There are many types of OSS licenses. According
to the statistics from FSF and the Open Source
Initiative (OSI), there are over 60 OSS licenses. In
general, these licenses have three common char-
acteristics (Free Software Foundation, 2005a; The
Open Source Initiative, 2006a):

1. No royalties
2. No geographical restrictions on distribution
3. No specific licensees

Among them, we have chosen 10 more com-
monly-used OSS licenses (including GNU Gen-
eral Public License, GNU Library/Lesser General
Public License, BSD license, MIT license, Apache
Software License 1.1, zlib/libpng License, Artistic
License, Common Public License, Qt Public Li-
cense, and Mozilla Public License) plus the GNU
Free Documentation License (FDL) for discussion
in this paper. These licenses, excluding the FDL,
have all been approved by the OSI and conform
to the Open Source Definition (OSD) (The Open
Source Initiative, 2006b).

The most well-known OSS license is GPL,
which was drafted by Richard M. Stallman, the
founder of the FSF and the Project GNU. The
GPL is developed on the basis of the copyleft
mechanism. According to the copyleft mecha-
nism, a licensee has to adopt the same license
as that of the licensor for his (or her) program.
Using the copyleft mechanism, source code can
always remain open and royalty free. The GNU
Library/Lesser General Public License 2.1 (LGPL)
is the other OSS license implementing the copyleft
mechanism (Free Software Foundation, 2005b).
The LGPL is designed specifically for library
code, and is less strict than the GPL.

On the other hand, the copyleft mechanism
does not limit any right arising from fair use.
Thus, when an author uses GPL-licensed or
LGPL-licensed codes as examples in a book or
as references, he (or she) may not have to apply
the GPL or LGPL to the book as long as the ap-
plication falls within the scope of fair use. Under
this circumstance, the author can choose a license
at his (or her) will, for example, any traditional
proprietary copyright license or any CC license
for the book. Similarly, in accordance with the fair
use doctrine, when the author attaches a whole
copy of the GPL-licensed or LGPL-licensed codes
with the book while published or distributed, the
license adoption of the book will not be restricted
to the GPL or LGPL.

Compared with the GPL, the BSD license,
another popular OSS license, does not impose any
restriction on the licensee in terms of future license
selection. In other words, the licensee is allowed to
use any license (even make it proprietary) for his (or
her) program and is also allowed to collect royalties.
The Apache Software License 1.1 (Apache 1.1), zlib/
libpng License (zlib/libpng), and MIT License have
similar characteristics as that of the BSD license.

The other four licenses discussed in this chapter
are the Mozill Public License 1.1 (MPL), Common
Public License 1.0 (CPL), Qt Public License 1.0
(QPL), and the Artistic License (Artistic). Basi-
cally, the MPL, CPL, and QPL are all designed
for the commercial use of OSS, thus their regula-
tions about licensees’ rights and obligations are
very similar. The MPL employs a partial copyleft
mechanism in that the licensee can only use the
MPL for his (or her) program in principle (Mozilla.
org, 2006). However, the licensee is allowed to
adopt another license for certain parts of the pro-
gram. The CPL adopts the copyleft mechanism
and is the first license to regulate commercial
distribution of OSS with separate terms. Artistic
has its own legal logic, which is different from
the other nine OSS licenses.

 2981

Examining Open Source Software Licenses through the Creative Commons Licensing Model

Same as the GPL, the FDL is drafted by Stall-
man and also adopts the copyleft mechanism.
However, the FDL is normally used for textbooks
or teaching materials written for some equipment
or software (Free Software Foundation, 2005b).
Wikipedia, a famous online encyclopedia, adopted
the FDL for its text content, is a noted example
(Wikipedia, 2006).

the Inception of creative commons

A group of professionals from various fields, in-
cluding intellectual property and cyberlaw experts
James Boyle, Michael Carroll, and Lawrence
Lessig, and MIT science professor Hal Abelson,
founded Creative Commons in 2001 (Lessig, 2005).
CC advocates the “some rights reserved” concept
in contrast to the default “all rights reserved” in
current copyright laws. CC also takes ideas in part
from the FSF and produces a series of copyright
licenses to help creators declare to the world what
freedom they want their works to carry. These free-
doms are composed by four elements: Attribution
(denoted as “by” or by:), noncommercial (“nc” or
$), no derivatives (“nd” or =) and share alike

(“sa” or). When CC licenses v. 1 were first
released in December 2002, these four elements
were all optional. Later on, CC found that 98% of
the adopters have chosen “attribution” as a requisite;
thus CC sets “attribution” as a default in v. 2, and
offers six licenses (Lessig, 2005).

cc licenses

CC licenses are designed to bridge creators
and users in that users have no need to ask for
creators’ prior permission to use the works as
long as they follow the rules the creators set. For
example, if a work is released under the “by-nc”
CC license (i.e., attribution and noncommercial),
a user can freely make use of the work under
the condition that the user uses this work for

noncommercial purposes only and must always
credit the original creator. The six CC licenses
are defined as follows:

1. Attribution: It means that a user can freely
use the work, provided that he (or she) credits
the creator.

2. Attribution-share alike: It means that a user
can freely use the work, provided that he (or
she) credits the creator and also licenses any
derivative under the same license as that of
the original work.

3. Attribution-no derivatives: It means that a
user can only make use of verbatim copies
of the work and have to credit the creator.

4. Attribution-noncommercial: It means that a
user can only use the work for noncommercial
purpose, and have to credit the creator.

5. Attribution-noncommercial-no deriva-
tives: It means that a user can only make
use of verbatim copies of the work, for
noncommercial purposes only, and have to
credit the creator.

6. Attribution-noncommercial-sharealike:
It means that a user can only use the work for
noncommercial purposes, credit the creator,
and license any derivative under the same
license as that of the original work.

In addition to the above six licenses, CC also
offers other licenses for more specialized situa-
tions. For example, sampling licenses allow people
to use a part of some creative works and mix with
some original or other parts to create a new work.
One can use founders copyright to free works
from copyright completely, after it has been cre-
ated for 14 or 28 years. In general, CC provides
the vehicle that “does not mean giving up your
copyright. It means offering some of your rights
to any member of the public but only on certain
conditions” (Creative Commons, n.d.).

2982

Examining Open Source Software Licenses through the Creative Commons Licensing Model

reviews of Issues on oss
and cc licenses

Since the OSS licensing model appeared in
the 1990s, it has started a lot of discussion, for
example: What is the free/open source software
movement? How does it run? How does it work
with the current legal system? (Hill, 1999).
Many have questioned about the enforceability
of OSS licenses (Nadan, 2002; Ravicher, 2000).
Later, because of the lack of precedents regard-
ing OSS licenses’ enforceability, Gomulkiewicz
(2002) proposes to create an open source license
organization (OSLO) to solve issues relating to
OSS licenses. Gomulkiewicz thinks that the
OSLO could play a role in calling programmers
and lawyers together to built up useful licensing
practices of OSS and further solve related licens-
ing problems.

Among these various OSS licenses, the GPL
receives the most attention. Stoltz (2005) discusses
the scope of derivative works under current US
copyright laws and how the extent of derivative
works affects the GPL. Besides, along with the ris-
ing number of successful open source commercial
cases, the issues about OSS license policies started
to get much attention. For example, Satchwell
(2005) provides users a basic understanding of
OSS; how to choose a suitable OSS license and
how to establish an appropriate OSS policy.

With the increase of OSS licenses, there are
more and more articles discussing issues of OSS
licenses. However, among these articles, only a
few have addressed the OSS license compatibility.
Perens (1999) and Maher (2000) point out that
OSS license compatibility is a noteworthy issue,
but neither offers any concrete solution to the
compatibility problem. Rosen (2004) provides
some discussion on the issue of OSS license com-
patibility but does not come up with any concrete
solution. Therefore, sensing the need of a simple
and clear explanation for various OSS licenses,
we use a relatively intuitive licensing model, CC
licenses, to examine OSS licenses.

Since CC licenses’ release in December 2002,
these licenses spread quickly and dramatically.
There have been more than 50 million Web
pages linked to CC licenses as of August 2005
(Katz, 2006). However, with the rising popular-
ity of CC licenses, many skeptical views have
appeared. Some challenge the compatibilities
between certain CC licenses or between different
free-content contracts (e.g., Elkin-Koren, 2005;
Katz, 2006); while others question that a variety
of CC licenses will cause confusion or increase
the information cost (e.g., Elkin-Koren, 2005;
Katz, 2006). Moreover, license translation and
legal adaptation may undermine the success of
CC licensing (Valimaki, 2005).

Katz (2006) questions that a variety of CC
licenses would puzzle users in that users may
run into difficulties in determining which CC
license is the most suitable for them. Elkin-Ko-
ren (2005) challenges the consistency of CC’s
strategy over license selection. He argues that
CC attempts to reduce external information cost
by its license choosing platform, but the variety
of CC licenses would on the contrary impose
extra informational burden on authors. He uses
musical works as an example: In addition to six
CC core licenses composed of four elements (i.e.,
attribution, noncommercial, no derivatives, and
share alike), there are the other three sampling
licenses (i.e., sampling, sampling plus, and non-
commercial sampling plus). To find out which
license is the most suitable one for musical works
would unwittingly increase information costs.
Elkin-Koren (2005) further states that the lack
of standardization in CC licenses would increase
the cost of ascertaining the rights and obligation
related to any specific work.

In addition, Katz (2006) argues about the in-
compatibilities of CC licenses. He concludes that
the viral effect of the “share alike” element will
result in the incompatibilities problem between
different share alike licenses and would further
restrict the distribution of derivative works.

 2983

Examining Open Source Software Licenses through the Creative Commons Licensing Model

Some of the above mentioned literatures
discuss the compatibility among different CC
licenses, but none offers a systematic analysis
on the problem of CC license incompatibility or
combining OSS with CC-licensed content. There-
fore, we attempt to illustrate what license a user
may choose when he (or she) combines OSS with
CC-licensed content by a clearly defined table to
be discussed next.

MAIn focus of thE chAptEr

Examining compatibility between
oss and cc licenses

Our study in this chapter is to define a license
compatibility table that shows whether the com-
bination of OSS and CC-licensed open content
in a creative work may be properly licensed. The
table (Table 1) may help people understand if they
can continue to re-license a derived work under
a specific CC license.

In Table 1, we use “by,” “nd,” “nc,” and “sa”
to denote CC’s four elements “attribution,” “no
derivatives,” “noncommercial,” and “share alike”

respectively. The mark “○” indicates that when a
derivative work incorporates two or more works
under licenses listed in a specific column and a
specific row, it can be re-licensed under the CC
license shown in the column. The mark “X,” on
the other hand, shows that a derivative work,
incorporating two or more works under licenses
listed in a specific column and a specific row, can-
not be re-licensed under the license shown in the
column. For example, if one combines a program
A released under the GPL, with an open content
B issued under the CC attribution license, and
produces a new work C. One may not re-license
C under the CC attribution license because the
GPL requires that GPL-applied program or its
derivative work must always be governed by the
GPL.1 Thus, A and C must be licensed similarly,
and C work will not be able to release under any
CC license.

In the following sections, we discuss the table
entries in details.

no derivatives

The 10 OSS licenses chosen to compare with CC
licenses in this chapter are all approved by the

Table 1. License compatibility table

by by-nd by-nd-nc by-nc by-nc-sa by-sa FDL
GPL X X X X X X X
LGPL X X X X X X X
MPL X X X X X X X
QPL O X X X X O O
CPL O X X X X O O
Artistic O X X X X O O
Apache O X X X X O O
Zlib/libpng O X X X X O O
BSD O X X X X O O
MIT O X X X X O O

2984

Examining Open Source Software Licenses through the Creative Commons Licensing Model

OSI. An OSI-certified license must conform to
the OSD (The Open Source Initiative, 2006b).
Under criterion 3 of the OSD, the license must
permit making modifications and derived works
(The Open Source Initiative, 2006c). Therefore,
these 10 OSS licenses allow modification to the
original program. Thus, any of the six CC licenses
which contains “No Derivative” element (i.e., CC
attribution-no derivatives license, CC attribu-
tion-no derivatives-noncommercial license) is
not compatible with any of the 10 OSS licenses,
and “X” is shown in all cells of the “by-nd” and
“by-nd-nc” columns in the table.

noncommercial

Criterion 1 of the OSD states that an OSS license
should not “restrict any party from selling or
giving away the software as a component of an
aggregate software distribution containing pro-
grams from several different sources” (The Open
Source Initiative, 2006c). It thus implies that any
OSD-compliant license should not restrict any
use of commercial purposes. This results in the
conflict between 10 OSS licenses and any CC
license with “noncommercial” element (i.e., CC
attribution-noncommercial licenses, CC attribu-
tion-noncommercial-share alike licenses). An “X”
is shown in all cells of “by-nc” and “by-nc-sa” in
the table.

copyleft

The copyleft mechanism provides that anyone
will be granted the rights to use, copy, modify,
or distribute a program or its derivative works on
the condition that when redistributing a program,
with or without change, all rights he (or she)
gained must be passed on to subsequent users
(Free Software Foundation, 2005b). The GPL,
LGPL, FDL, and CPL are terms to implement
the copyleft mechanism. The implemented result
will be the original work and its derivative works

must be redistributed under the same license as
the original work.

Although not originated from the FSF, the
MPL partially employs a copyleft mechanism.
MPL requires that modifications to MPL-licensed
program must be governed by MPL (Mozilla.org,
2006). Because of this viral nature of copyleft, the
GPL, LGP, MPL, and CPL is not compatible with
any of the CC licenses, and thus “X” is shown in
all cells of the top four rows.

Author credit

The Apache, zlib/libpng, BSD, and MIT explicitly
indicate that the authors of original work must be
credited (Lin, Ko, Chuang, & Lin, 2006). QPL,
CPL, and Artistic have copyright notices related
regulations, and do not exclude the authors’
names of the original work from the copyright
notices.Yet, CPL implements copyleft mechanism.
Therefore, GPL, LGPL, MPL, in addition to CPL
are not compatible with CC attribution licenses.
A work incorporating a program licensed under
the QPL, Artistic, Apache, zlib/libpng, BSD, or
MIT with other works issued under CC attribution
license could be re-licensed under CC attribution
license. Excluding the GPL, LGPL, CPL, and
MPL, “○” is shown in the other cells of the “by”
column in the table.

share Alike

The compatibility between the 10 OSS licenses
and the CC attribution-share alike license is dis-
cussed next. The GPL, LGPL, CPL, and MPL
implement the copyleft mechanism. But the other
six OSS licenses do not explicitly adopt it and do
not have the viral effect on the resulting derivative
work. Thus, when a work incorporates a program
licensed under the QPL, Artistic, Apache, zlib/
libpng, BSD, or MIT with the other work issued
under the CC attribution-share alike license, this
newly created work may be re-licensed under the

 2985

Examining Open Source Software Licenses through the Creative Commons Licensing Model

CC attribution-share alike license. Except the top
four cells, the mark “○” is shown in the other cells
of the “by-sa” column in the table.

fdl

Finally, we examine the compatibility between
the 10 OSS licenses and the FDL.

Even though the GPL, LGPL and FDL are
all developed by the FSF, because of copyleft
mechanism’s viral effect, when a work incorpo-
rates a GPL-licensed or LGPL-licensed program
with other FDL-released work, the resulting work
may not be re-licensed under the FDL. The same
result applies to CPL because CPL implements
copyleft as well. The MPL partially employs the
copyleft mechanism; thus, a created derivative
work incorporating a MPL-licensed program
with the other FDL-released work may not be
re-licensed under the FDL, either.

In principle, the FDL enables the same freedom
as the CC attribution-share alike license (Creative
Commons, 2005). Due to the copyleft mechanism,
when a work incorporates a program licensed
under the GPL, LGPL, CPL, or MPL with the
other FDL-released work, this resulting deriva-
tive work may not be re-licensed under the FDL.
Except the GPL, LGPL, CPL, and MPL, a work
incorporating a program governed by the QPL,
CPL, Artistic, Apache, zlib/libpng, BSD, or MIT
with the other work issued under the FDL, this
new created work could be re-licensed under the
FDL. Except the top four cells, “○” is shown in the
other cells of the “FDL” column in the table.

using license compatibility
table for license selection

From Table 1, we could identify the following
license selection strategies. If a user would like
a creative work which combines OSS with CC-
licensed open content to be re-licensed under the
CC license or the FDL, he (or she) should avoid
using OSS licensed under GPL, LGPL, or MPL.

In other words, if a creative work is combining
OSS licensed under the GPL, LGPL, CPL, or
MPL with CC-licensed open content, this work
is not possible to be re-licensed under any CC
license.

If a user would like a creative work which
combines OSS with CC-licensed open content
to be re-licensed under some CC licenses, he (or
she) should choose OSS licensed under the QPL,
Artistic, Apache, zlib/libpng, BSD, or MIT. How-
ever, not all CC licenses are compatible with the
QPL, Artistic, Apache, zlib/libpng, BSD, or MIT;
only CC by and by-sa licenses are compatible with
these six licenses. In other words, a creative work
combing an OSS license under QPL, Artistic,
Apache, zlib/libpng, BSD, or MIT with CC by or
by-sa licensed open content, the resulting work
could be re-licensed under CC license identical
to the original open content. Similar to CC by
or by-sa license, FDL is not compatible with the
GPL, LGPL, CPL, or MPL, but is compatible with
QPL, Artistic, Apache, zlib/libpng, BSD, or MIT.
Therefore, if a user would like a creative work
which combines OSS with FDL-licensed open
content to be re-licensed under the FDL, he (or
she) may use OSS licensed under any of these
six OSS licenses.

From the above discussions, we can make two
simple conclusions. Firstly, OSD-compliant OSS
licenses should not restrict any use of commercial
purposes2, and OSD-compliant OSS licenses must
allow modifications and derived works.3 There-
fore, CC licenses containing “noncommercial” or
“no derivatives” element are not compatible with
10 OSS licenses discussed in this chapter.

The second conclusion is that the copyleft’s
viral effect requires the original work and its
derivative works to be redistributed under the
same license as the original work. Thus, the GPL,
LGPL, CPL, and FDL, which adopt the copyleft
mechanism completely, plus MPL, which partially
adopts the copyleft mechanism, are not compatible
with any CC license.

2986

Examining Open Source Software Licenses through the Creative Commons Licensing Model

For authors that are not combining OSS with
open content, the above discussion may provide
some useful insights as well. The copyleft mecha-
nism is a strong license requirement that may pre-
vent others from producing derivative works mixed
with even the “share alike” element. It is probably
better to select other licenses if such a requirement
may present a problem in the future.

futurE trEnds

open Access publishing

CC licenses are inspired from the GPL. In addition
to OSS and CC licensing models, other models
have been developed in different fields sharing
similar notions with that of OSS and CC. Open
access publishing is one of them.

Typically, publishers charge readers a subscrip-
tion fee, and sometimes also charge authors a
page fee. Open access publishing, on the contrary,
allows the author to retain his (or her) article’s
copyright; at the same time, authors or their spon-
sors, not the users, pay the publishers.

Although the open access publishing model
will make authors bear more cost than traditional
publishing models, the charged fees are possible
to be transferred to the authors’ sponsor institutes
or even be waived (Suber, 2004). Moreover, open
access publishing will increase the possibility
that the authors’ articles are searched, and help to
build the authors’ prestige (Harmel, 2005). Recent
studies also show the same result: online articles
are more frequently cited (Lawrence, 2001) and
more often used than offline articles (Lawrence,
2001; Walker, 2004). Therefore, more and more
leading publishers, such as the Public Library of
Science (PLoS) and BioMed Central have joined
the open access movement.

Science Commons, a newly launched project
of Creative Commons, was founded to support
the sharing of scientific research, such as the field
of biotechnology, medicine, and even law4, with

the same “some rights reserved” spirit Creative
Commons holds.

Studies have found that the open access pub-
lishing model is practicable (Gonzalez, 2005;
Odlyzko, 1998), and there are already publishers
gain profits from it (Walker, 2004). It is foresee-
able that with the increasing subscription fees of
academic journals the open access publishing
model will continue to gain more support, espe-
cially on academic content.

new oss Elements

Compared with numerous OSS licenses, the
CC licensing model built on the basis of four
elements is relatively simple. However, although
these four elements are less complex and easier
to understand, they are not broad enough to cover
all major considerations of OSS licenses. Here we
include two new concepts, “no endorsement” and
“modification record” that should be considered
by OSS users when selecting a license.

no Endorsement

One of the OSS’s common characteristics is that
anyone is free to create derivative works (The
Open Source Initiative, 2006c). Because of this,
the quality of derivatives is hard to control. When
the quality of a derivative is not as good as the
original program, but the name of the original
developer or the copyright holder is still shown
on the derivative, new users may not have enough
acknowledgement of this and relies on the name of
the original developer or the copyright holder to
evaluate the derivatives. Under the circumstance,
it may harm the reputation of the original developer
or the copyright holder. Sometimes, the developer
of the derivatives may intentionally show the name
of the original developer or the copyright holder
on the derivative work to endorse or promote his
(or her) own works.

Therefore, to prevent OSS adopters from using
the authorship to implicitly or explicitly show the

 2987

Examining Open Source Software Licenses through the Creative Commons Licensing Model

support, association of the initial developers or to
promote their derivative work, and, even more,
to prevent the derivatives from being wrongly
trusted, the original program’s developer should
choose a license which contains “no endorsement”
or disclaimer clause5, such as BSD and Artistic.
The Creative Archive License developed by BBC
adopts the main ideas of CC licenses but injects
such a new element into the license.6

Modification Record

We also notice that many OSS licenses have regu-
lations regarding the modification records.7 Take
the 10 OSS licenses we analyze in this chapter
for example. Only the QPL does not require that
a modification record must be made. Instead, the
QPL forbids users to directly make modifica-
tions to the original works and requires that all
modifications be in a form that is separate from
the original works (e.g., patches).8 All of the other
nine licenses have modification record related
regulation. These records are very helpful for the
convenience of follow-up software modifications.
Moreover, they are beneficial to maintain the
original works’ integrity.9

conclusIon

OSS licenses have triggered a lot of discussions
in the past few years because of their complicacy.
The OSI even appeals to reduce the number of
approved OSI-licenses to allow programmers and
users to understand OSS licenses more easily. In
contrast with OSS licenses, CC licenses provide
a cleaner licensing model. In this chapter we
investigate the compatibility between the six CC
licenses and 10 commonly-used OSS licenses
including the FDL. OSS authors may use the
table to identify which CC license he (or she) can
use for his (or her) work that combines OSS with
CC-licensed work.

However, CC’s four simple elements do not
capture all major issues of OSS. We thus raise
two new issues, “no endorsement” and “modi-
fication record”, to address some main concerns
by OSS. We believe that by employing CC’s four
elements, plus our proposed two new elements,
OSS community, including both authors and us-
ers, will be able to get a more complete picture
of OSS licenses.

rEfErEncEs

Creative Commons. (n.d.). Choosing a license.
Retrieved March 30, 2006, from http://creative-
commons.org/about/licenses/

Creative Commons. (2005). Discussion draft:
Proposed license amendment to avoid content
ghettos in the commons. Retrieved March 30,
2006, from http://creativecommons.org/Weblog/
entry/5701

Elkin-Koren, N. (2005). What contracts cannot
do: The limits of private ordering in facilitating
a creative commons. Fordham Law Review, 74,
375-422.

Free Software Foundation. (2005a). FSF: Licenses.
Retrieved March 30, 2006, from http://www.fsf.
org/licensing/licenses/index_html

Free Software Foundation. (2005b). What is
copyleft? GNU Project: Free Software Foun-
dation (FSF). Retrieved March 30, 2006, from
http://www.gnu.org/copyleft/copyleft.html

Gomulkiewicz, R. W. (2002). De-bugging open
source software licensing. University of Pittsburg
Law Review, 64, 75-103.

Gonzalez, A. G. (2005). The digital divide: It’s the
content, stupid: Part 2. Computer and Telecom-
munications Law Review, 11(4), 113-118.

Harmel, L. A. (2005). The business and legal ob-
stacles to the open access publishing movement for

2988

Examining Open Source Software Licenses through the Creative Commons Licensing Model

science, technical, and medical journals. Loyola
Consumer Law Review, 17, 555-570.

Hill, T. (1999). Fragmenting the copyleft move-
ment: The public will not prevail. Utah Law
Review, 1999, 797-822.

Katz, Z. (2006). Pitfalls of open licensing: An
analysis of Creative Commons licensing. IDEA:
The Intellectual Property Law Review, 46, 391-
413.

Lawrence, S. (2001). Free online availability sub-
stantially increases a paper’s impact. Retrieved
July 10, 2006, from http://www.nature.com/na-
ture/debates/e-access/Articles/lawrence.html

Lessig, L. (2005). CC in review: Lawrence Lessig
on supporting the commons. Retrieved March
30, 2006, from http://creativecommons.org/We-
blog/entry/5661

Lin, Y. H., Ko, T. M., Chuang, T. R., & Lin, K.
J. (2006). Open source licenses and the Creative
Commons framework: License selection and
comparison. Journal of Information Science and
Engineering, 22, 1-17.

Maher, M. (2000). Open source software: The
success of an alternative intellectual property
incentive paradigm. Fordham Intellectual Prop-
erty, Media and Entertainment Law Journal, 10,
619-695.

Mozilla.org. (2006). MPL FAQ. Retrieved March
30, 2006, from http://www.mozilla.org/MPL/mpl-
faq.html

Nadan, C. H. (2002). Open source licensing:
Virus or virtue? Texas Intellectual Property Law
Journal, 10, 349-377.

Odlyzko, A. (1998). The economics of electronic
journals. In R. Ekman & R. Quandt (Eds.), Tech-
nology and scholarly communication. University
of California Press.

Perens, B. (1999). The open source definition. In
C. DiBona, S. Ockman, & M. Stone (Eds.), Open

sources: Voices from the open source revolution
(pp. 171-188). Sebastopol, CA: O’Reilly & As-
sociates.

Ravicher, D. B. (2000). Facilitating collaborative
software development: The enforceability of mass-
market public software licenses. Virginia Journal
of Law & Technology, 115, 1522-1687.

Rosen, L. (2004). Open source licensing: Software
freedom and intellectual property law. Upper
Saddle River, NJ: Prentice Hall.

Satchwell, M. D. (2005). The tao of open source:
Minimum action for maximum gain. Berkeley
Technology Law Journal, 20, 1757-1798.

Stoltz, M. L. (2005). The penguin paradox: How
the scope of derivative works in copyright af-
fects the effectiveness of the GNU GPL. Boston
University Law Review, 85, 1439-1477.

Suber, P. (2004) Open access overview. Re-
trieved July 10, 2006, from http://www.earlham.
edu/~peters/fos/overview.htm

The Open Source Initiative. (2006a). Open
Source Initiative OSI-licensing. Retrieved
March 30, 2006, from http://www.opensource.
org/licenses/

The Open Source Initiative. (2006b). Open Source
Initiative OSI—Certification Mark and Program.
Retrieved March 30, 2006, from http://www.
opensource.org/docs/certification_mark.php

The Open Source Initiative. (2006c). Open Source
Initiative OSI—The Open Source Definition.
Retrieved March 30, 2006, from http://www.
opensource.org/docs/definition.php

Valimaki, M. (2005). The rise of open source
licensing: A challenge to the use of intellectual
property in the software industry. Helsinki, Fin-
land: Turre Publishing.

Walker, T. J. (2004). Open access by the article:
An idea whose time has come? Retrieved July 10,

 2989

Examining Open Source Software Licenses through the Creative Commons Licensing Model

2006, from http://www.nature.com/nature/focus/
accessdebate/13.html

Wikipedia. (2006). Wikipedia: Copyrights—
Wikipwdia, the free encyclopedia. Retrieved
March 30, 2006, from http://en.wikipedia.org/
wiki/Wikipedia:Copyrights

KEy tErMs

Copyleft: Copyleft is a kind of licensing
mechanism, with which licensees have to apply
the same license the original works adopted to
the derivative works.

Creative Commons Licenses: Creative
Commons licenses are a kind of licensing model
which applies to open content. Creative Com-
mons licenses are composed by four elements
(attribution, noncommercial, no derivatives, and
share alike). Creative Commons licenses allow the
licensees to make use of CC-licensed works with
no need to get prior permission from the licensors
as long as the licensees follow the conditions the
licensors chose for the works.

License: It is a legal permission to commit
some act.

License Compatibility: It is an abstract idea
to illustrate whether two portions of content regu-
lated by two different licenses can be combined
within a work compatibly and produce the other
resulting work.

Open Access Publishing: Open access pub-
lishing is a kind of publishing model, under which
journals open access to the public immediate on
publication and usually the authors of the journal
articles do not need to pay the page fee for the
publication.

Open Content: Open content describes the
creative work which allows copying and modify-
ing with no need to get extra permission from the

licensors, such as works licensed under Creative
Commons licenses.

Open Source Software Licenses: Open
source software licenses apply to open source
software. Open source software licenses feature
that licensees can use, copy, distribute, and
modify the regulated software on a royalty-free,
worldwide basis.

EndnotEs

1 Article 2(b) of the GPL stipulates that “You
(licensee) must cause any work that you distrib-
ute or publish, that in whole or in part contains
or is derived from the Program (GPL-applied
program) or any part thereof, to be licensed as
a whole at no charge to all third parties under
the terms of this License (GPL).”

2 OSD # 1 states that an OSS license should
not “restrict any party from selling or giv-
ing away the software as a component of an
aggregate software distribution containing
programs from several different sources.”

3 OSD # 3 states that “The license must al-
low modifications and derived works, and
must allow them to be distributed under the
same terms as the license of the original
software.”

4 Open Access Law Project is established
under Science Commons’ publishing project
to promote open access to legal scholarship.
For more detailed information about Open
Access Law Program, please see http://sci-
encecommons.org/literature/oalaw

5 Our “no endorsement” wordings are moti-
vated by BBC’s Creative Archive License.
The detailed terms can be found on http://
creativearchive.bbc.co.uk/licence/nc_sa_
by_ne/uk/prov/.

6 BBC proposes five rules for Creative Archive
Group License, which comprises “non-com-
mercial,” “share alike,” “crediting” (attribu-

2990

Examining Open Source Software Licenses through the Creative Commons Licensing Model

tion), “no endorsement and no derogatory
use” and “UK.” The first three rules are
very similar to CC’s; the last two are inno-
vations created by BBC. For more details,
please see http://creativearchive.bbc.co.uk/
archives/2005/03/the_rules_in_br_1.html

7 “Modification record” in this chapter in-
cludes several possible meanings, e.g., the
record about who did the modification; the
record about when the modification was
made; the record about which part of the
original programs has been changed.

8 See article 2,3 of QPL.

9 According to Andrew M. St. Laurent’s
opinion, QPL’s requirement that a licensee
distributes modifications separately with
the initial work can protect the reputation
of the initial developers and make clear the
primacy of the initial developers’ works. See
Andrew M. St. Laurent, “Understanding
Open Source & Free Software Licensing”
(2004, p. 87, O’Reilly). In this chapter, we
further extend St. Laurent’s viewpoints and
come up with the new element “modification
record” for OSS’s licenses.

This work was previously published in Handbook of Research on Open Source Software: Technological, Economic, and Social
Perspectives, edited by K. St.Amant & B. Still, pp. 382-393, copyright 2007 by Information Science Reference (an imprint of
IGI Global).

 2991

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.22
Integration of Libre Software

Applications to Create a
Collaborative Work Platform for

Researchers at GET
Olivier Berger

GET/INT, France

Christian Bac
GET/INT, France

Benoît Hamet
GET/INT, France

AbstrAct

Libre software provides powerful applications
ready to be integrated for the build-up of platforms
for internal use in organisations. We describe
the architecture of the collaborative work plat-
form which we have integrated and designed for
researchers at GET. We present the elements we
have learned during this project in particular, with
respect to contribution to external libre projects,
in order to better ensure the maintainability of
the internal applications, and to phpGroupware
as a framework for specific applications develop-
ment.

IntroductIon

ProGET is a collaborative work platform, built out
of a set of specialised libre software applications
integrated together. ProGET is designed for the
whole of teachers/researchers at GET. It provides
every GET research project with the best features
found in each application (wiki, mailing-lists
management, shared WebDAV folders, Web
portal, etc.).

We start with a description of the libre compo-
nents that have been integrated and of the features
that have been selected, as well as elements of
architecture of the developed platform. We will

2992

Integration of Libre Software Applications to Create a Collaborative Work Platform for Researchers at GET

then introduce the strategy for collaboration that
we have devised for our contribution to phpGroup-
ware. We finish with a first evaluation at the end
of the initial development phase.

rEsEArch At gEt

The Groupe des Écoles des Télécommunications1
(GET) is composed of several engineering and
business schools together with research centers in
Paris (ENST), Brest (ENST Bretagne), and Évry
(INT), in France. The research teams are made
up of more than 600 full-time research equiva-
lents. The range of the researchers’ expertise is
from technologies to social sciences, and enables
an integrated approach of characteristic of GET
research and fosters its adaptability to new ap-
plication sectors and new usages in response to
current challenges in the fields of information
and communication.

To give a clearer view of research at GET,
the Research Office started to catalogue the
activities from the different locations so that the
research may be described in terms of research

projects and programmes. A project is made-up
of a group of people working together on closely
related subjects. For example the authors belong
to the “Collaborative Platforms for Research”
(PFTCR) project. A programme associates dif-
ferent projects loosely related. For example our
project is related to the “Web and Information
Society” programme. Due to the fact that GET
teams are located in different areas, the research
office also decided to propose a Web platform to
help researchers collaborate through groupware
tools and animate their research work.

progEt IntEgrAtEd plAtforM
for collAborAtIvE worK

ProGet has been launched in July 2003 with the
following goals:

1. Provide all research teams in GET and their
external partners (more than 1,250 users)
with cutting-edge technologies in terms of
Web based groupware tools

Figure 1. Homepage of the GET public research portal

 2993

Integration of Libre Software Applications to Create a Collaborative Work Platform for Researchers at GET

2. Allow the Research Office to manage the
administrative records describing research
projects

3. Generate a public Web portal based on
information extracted from both previous
components.2 The home page of the Web
portal is shown Figure 1.3

groupware tools for researchers/
teachers

The following features have been selected as corre-
sponding to the basic needs for collaborative work
in the context of research activities at GET:

• Document sharing: People in the same
project must have a way to share the docu-
ments they produce, whatever the type of
document.

• Asynchronous communication: Each
project manages predefined mailing lists and
may also create mailing lists as it needs.

• Online editing: People in the same project
group are allowed to write easily and col-
laborate on simple hypertext pages using
their Web browsers, to create a collaborative
Web, in a wiki-type tool.

• Publishing short announcements: The
project manager can write short news items
about the project, and have the project news
published online on the public Web portal
very easily.

The platform must provide secure access, from
any point on the Internet, to a set of tools. These
tools will have to be accessible through a Web
interface, to allow people to use them without
the need to install any specific application on the
computer from which they are connected.

Some features must also be accessible through
non-Web client tools, in the Microsoft Windows™,
or GNU/Linux environments. For instance, as
explained in the section entitled, Project Docu-
ments Repository Accessible through WebDAV,

access to the DAV repositories through DAV-
compatible file managers. Information generated
in this collaborative part of the platform may be
made accessible to the public portal directly by
the research teams, without further interaction
with a Webmaster.

Tools for the Research Office

The Research Office is supervising the setup and
evolution in time of the research projects and
programs. In ProGET, it uses, for this purpose,
a dedicated tool, which helps managing the life
cycle of the project description forms.

This module does not provide a replacement
for the research information system under devel-
opment at the present time at GET. It only allows
the management of information on the projects
which are necessary for the other parts of the
platform. It handles the initial list of persons
participating in projects teams, people who are
project managers, the projects’ descriptions, and
their yearly goals.

The project description forms are initially filled
by the researchers who will be responsible for the
projects. They are then validated by the research
offices. This validation allows the creation of the
collaboration projects in the platform. Those forms
are also used to feed the contents of the research
public Web portal.

public web portal

The platform publishes a public Web portal which
reflects the state of research activity at GET. This
portal describes essential information relating to
the research programmes and projects at GET.
Figure 1 shows the home page of the portal.

This public Web site corresponds to a dynamic
extraction of the contents of the project descrip-
tion forms stored in the database. That is why it
will be updated immediately whenever the GET
Research Office validates new projects creation,
or updates the contents of existing forms.

2994

Integration of Libre Software Applications to Create a Collaborative Work Platform for Researchers at GET

Since the data extraction is dynamic, this portal
Web site can be duplicated in several flavors ac-
cording to the origin of the visit. So when the Web
site is browsed from inside the GET intranet, it
will provide more detailed information, including
some facts about the research projects which are
considered to be published to a restricted audience
only (teams composition, detailed yearly goals of
the projects, etc.).

prEvIous worK wIth lIbrE
softwArE collAborAtIon
tools

As described by Cousin, Ouvradou, Pucci, and
Tardieu (2001), we and other GET researchers and
students contributed in the development of a col-
laborative platform called PicoLibre. This platform
is targeted at collaborative software development,
to help students in computer science curricula and
researchers to develop and host their software
projects. It provides the necessary collaboration
tools (mailing lists, CVS repository, issue trackers,
etc.) in a similar way to SourceForge. Another
goal of the PicoLibre project was to foster the
publication of projects as libre software, since
it would be a way to introduce the users to the
practice of the common tools used everyday by
libre software developers.

This platform was created as a free software
tool (published under the GNU GPL license4),
using free software components and adapting
them for PicoLibre. Several PicoLibre instances
are in operation since Fall 2001 in GET sites and
outside.

In some aspects, PicoLibre is a very success-
ful project, since it allows GET to host a large
number of software projects with a minimum
burden for its administrators. It is also some-
times used for projects not specifically targeted
at software development, for teams that need a
collaboration space and associated groupware
tools. The PicoLibre project has helped us attain

a better knowledge of the specifics of the design
and development, but also the administration, of
a collaborative Web-based platform in the context
of a higher education institution.

But PicoLibre also failed to certain extents,
especially with respect to its maintainability, and
in its capacity to be integrated into a libre software
distribution. The project was done in such short
time that developers only concentrated on the in-
novative parts and spent too few efforts in keeping
the software they developed in the mainstream
of the libre projects it was based on (in particular
with respect to phpGroupware [phpgw]).

Although having been used intensively by
teams of researchers or students investigating soft-
ware development, PicoLibre was not well suited
for generic needs of teams of nonsoftware develop-
ers. For example, the CVS5 revision management
repository is a central tool in PicoLibre. It is very
useful for software development, but does not fit
well for casual researchers’ use. For example,
although it is possible with CVS to manage the
revisions of a document written with an office
suite, it is not very convenient, since it requires
installation of a specific CVS client program. Most
nonsoftware developers (e.g., researchers in the
field of finance or business administration) are
thus not comfortable in using such a tool.

To build on top of our previous developments,
and considering the aforementioned perspective,
we proposed to start and build the ProGet platform
using some of the free software modules that had
been used to create PicoLibre, and to combine
these modules with other existing libre software
projects to fulfill new capabilities. We intended
also to do our developments and the integration
of the numerous applications necessary in a much
more maintainable way.

structurE of thE plAtforM

The ProGET platform is composed of several spe-
cialised software applications, installed together

 2995

Integration of Libre Software Applications to Create a Collaborative Work Platform for Researchers at GET

on a dedicated machine running the GNU/Linux
operating system (Debian). This article does
not describe all of the components of the system,
but only the modules which provide the highest
level features, and the way they have been inte-
grated into a single platform.

The development team has been participat-
ing for a long time in communities of research
and practice in libre software: development of
PicoLibre (see previous work with libre software
collaboration tools), organisation of the Autour du
Libre conference, participation in the CALIBRE
FP6 European project,6 and so forth. We have
then naturally preferred to use exclusively libre
software for the development of the platform,
in order to ensure the complete control of all
technical aspects, and the conformance to open
standards.

Integration principles

To deliver the required features, we have integrated
different existing libre software applications that
we will list in the section entitled, Integrated Libre
Software High-level Applications. Most of these
applications rely on the Apache Web server, in
particular for the PHP execution engine.

Each one of the products, taken apart, was often
not covering all required features. So instead of
trying to add to one of these applications the miss-
ing features, we have preferred to integrate several
rather specialised applications. We are therefore
able to take advantage of the best aspects of each,
even if there is a risk of partial redundancy. For
instance, phpGroupware provides a wiki module,
but a rather limited one. We have preferred to plug
phpGroupware and TWiki, an advanced wiki
engine, instead of engaging in a tougher effort
of enhancement of phpGroupware.

In each integrated libre software application,
we have been careful to allow the possibility of a
logical partition of the data stored in the applica-
tion, to ensure that the research projects can be

kept autonomous and enhance privacy (see data
partition).

To make sure users will not have to deal with
a set of authentication tokens (login + password),
the authentication will be done in the same way
in all the modules, although they may be oper-
ated by separate applications. This is done in a
classical way, by relying on interaction with a
dedicated directory implemented by OpenLDAP.
Some components also share a database stored in
a dedicated MySQL server.

Integration of the applications for the realisa-
tion of ProGET was done in a rather traditional
way, by sharing the lowest layers (OpenLDAP,
MySQL) and with adapters (code: glue), when the
applications themselves were rather monolithic.
It would have been preferable to take advantage
of libre applications organised in a more modular
way and supporting a Web service paradigm. But
very few mature versions of libre software which
may have been integrated offered such interop-
erability mechanisms at the start of our project.
Even today, this kind of interface is not always
entirely present, even if this approach seems to be
preferred now for the future versions of projects
like phpGroupware or Sympa, for instance.

Integrated libre software high-level
Applications

The main libre software applications that have
been integrated in the ProGET platform are:

• The Apache Web server. The server
provides the link between the client tools
(browsers) and the Web applications.

• A WebDAV repository. The mod _ dav7A-
pache module implements the shared Web
folders which implement the documents
repositories for the projects (see Project
Documents Repository Accessible Through
WebDAV).

2996

Integration of Libre Software Applications to Create a Collaborative Work Platform for Researchers at GET

• The phpGroupware engine and applica-
tions. PhpGroupware provides the Web
interface of the “virtual desktop” of the
collaborative workspace (see Researchers/
teachers Virtual Desktop in phpGroup-
ware), and brings in standard groupware
components. It also serves as the basis for
the software infrastructure of the public por-
tal. In addition to standard phpGroupware
modules, we have added two new modules
developed for the needs of GET. One module
which extracts information out of the col-
laborative work applications to deliver the
public portal (see Public Web Portal) and a
module which enables the administrative
management for the Research Office (see
Tools for the Research Office).

• The Sympa mailing list manager (Sympa).
This powerful mailing-list manager provides
some asynchronous communication means
inside and outside of the projects.

• The TWiki wiki server (Wiki). This wiki
system, among the most advanced, provides
a whiteboard-like interface to implement the
“knowledge base” of the projects.

• The Agata Reports reporting tool.8 It helps
the Research Office to issue queries on the
projects description forms in order to answer
internal or external requests about research
activity at GET.

We hereafter describe some of the character-
istics of the ProGET modules and the obtained
features.

researchers/teachers virtual
desktop in phpgroupware

Each researcher who connects to the platform
gets access to the user’s own “virtual desktop,”
provided through phpGroupware. Figure 2 shows
this start page for a researcher who belongs to two
research projects (here LICIP and PFTCR).

The user will then be provided directly, for
each project the user belongs to, with a set of
collaboration tools (with the corresponding links
in the central column of Figure 2):

• Direct access to browsing of the contents of
the documents repository of the project (see

Figure 2. ProGET Collaborative workspace start page

 2997

Integration of Libre Software Applications to Create a Collaborative Work Platform for Researchers at GET

Project Documents Repository Accessible
Through WebDAV);

• Web-based file manager (Web interface
for the management of the contents of this
repository);

• Mailing lists (access to the Web interface
of Sympa for the lists of the project);

• News (management of the project’s news
displayed in the public portal);

• Project’s wiki (see Project’s Wiki);
• Project’s specific Web pages (see Project

Dedicated Web Sites);
• Access to the project’s description page in the

GET research portal (see Project Dedicated
Web Sites;

• Shared address book and calendar (standard
phpGroupware tool);

• Printable project form (including restricted
access information).

Some of these tools are described in more
detail hereafter.

project documents repository
Accessible through webdAv

As described in Dridi and Neuman (1999), Web-
DAV suits well to create a groupware portal that
helps people share their documents. In ProGet
each project is provided, for its internal use,
with a unique secured documents repository,
in the form of a specific Web folder. It is shared
among members of the project team. It can be
accessed via HTTPS for browsing or through
WebDAV (Goland, Whitehead, Faizi, & Jensen,
1999) (over HTTPS) for modification of contents
of the repository. Figure 3 shows the contents of
a repository through HTTPS in a Web browser
(here, the public _ html subfolder in project
PFTCR’s folder).

The use of the WebDAV protocol enables
transparent access in browsing or modification
in the office applications, allowing for instance
drag-and-drop in file managers for uploading.
The uploading is thus extremely simplified9 com-

Figure 3. Contents of a project’s DAV folder (Web folder)

2998

Integration of Libre Software Applications to Create a Collaborative Work Platform for Researchers at GET

pared to the use of protocols like FTP or CVS.
DAV compatible clients exist on all platforms,
for instance, under KDE (see Figure 4) or on
Windows XP.

A simple file manager is also available as a Web
application in the phpGroupware collaborative
work environment of the project, for cases where
the nomad users will not have the possibility to
access the repository with DAV clients.

A specific subsection of each project’s docu-
ments repository, corresponding to the public_
html subdirectory, may contain the public Web
site specific to the project (see Project Dedicated
Web Sites). This subtree can then host a set of
public pages very easily maintained, in addition
to the stereotyped information displayed in the
project’s form on the portal. Figure 3 shows the
contents via DAV of this subdirectory, which is
displayed, in this case, as the contents of a folder, a
list of documents, instead of as a set of Web pages
(pages would be displayed as in Figure 6).

project’s wiki

Each project is provided, internally, with a wiki10
which can be used to share, in an authenticated
way, in the form of Web pages, a set of simple
hypertext documents, not necessarily very struc-
tured up front.

This wiki can serve many uses. Each project
may for example use it as a hypertext repository
to set up a knowledge base, which will hold all
elements of the project’s life, its productions, and
ongoing works. The wiki enables the progressive
elaboration of information, in a way less struc-
tured and more open than by using the project’s
documents repository.

Of course, the TWiki wiki engine provides
all classical features of these tools (most recent
modifications list, notifications, search tool, back-
links, etc.) allowing users to better apprehend the
mass of hypertextual information such a tool can
host. Figure 5 shows an example of a list of most
recent changes in a project’s wiki.

Figure 4. Contents of a project’s DAV folder in KDE

 2999

Integration of Libre Software Applications to Create a Collaborative Work Platform for Researchers at GET

A portion of the wiki can be used to put online
hypertextual contents in the project’s public Web
site, in an automated way (see Project Dedicated
Web Sites). To this end, the wiki pages must have
been identified individually as public. This feature
may be used for instance to prepublish on the

Web some of the information being elaborated
inside the project, which has not yet achieved a
sufficiently finalised or structured form required
for publication of the documents available on the
project’s Web site. This is a way to offer some
means of transparency on the research works,

Figure 5. Most recent changes in a project’s wiki

Figure 6. Dedicated project’s Web site for project PFTCR

3000

Integration of Libre Software Applications to Create a Collaborative Work Platform for Researchers at GET

by allowing the public to directly view the “lab
notepads” of the projects.

project dedicated web sites

On the same platform, each research project ben-
efits from several dedicated publication spaces,
for its external communication on the Web.

Stereotyped Page in the Public Portal

This page describes briefly the research activity
and the team. It represents a stereotyped descrip-
tion of a project which has been validated by the
Research Office. In addition, the page contains
a dedicated news zone for the project which is
updated directly by each project manager. This
zone helps spreading news about the life of the
project. To this end, an RSS11 feed comes alongside
each project’s news pages.

Project stereotyped pages are created in the
research portal through a phpGroupware module
named sitemgr. This module is configured specifi-
cally and relies on information extracted from the
administrative database of project forms.

Specific Web Space

This Web site is made of static HTML pages. The
content of this space is managed directly by each
project, at will. It may be produced with the HTML
editing software of its choice. The upload is made
directly by members of the project via publica-
tions in the public _ html12 subdirectory of the
project’s WebDAV folder (see Project Documents
Repository Accessible Through WebDAV).

No specific competence is required in the teams
to be able to contribute to the project’s Web site.
Figure 6 shows an example of such a Web page.
The URL to access this Web space is stereotyped
from the project’s acronym: http://proget.int-
evry.fr/projects/PROJECT _ NAME/

Wiki Excerpts Publication Space

This space complements the previous spaces by
allowing the direct publication of excerpts (pages
declared public) of the resources elaborated by
the project inside its internal wiki (see Project’s
Wiki). This may help with prepublishing, issuing
short reference papers, providing a knowledge
base, and so forth.

GET Research Projects Administrative
Management Module

Whereas other modules of the platform existed
previously as generic libre software tools fulfill-
ing the classical needs of every organisation, this
project administrative management module has
been developed specifically for the needs of the
GET Research Office. This module implements
the workflow of the contents of research projects
forms, during the life cycle of GET research proj-
ects (creation, approval, yearly updates, etc.). It
was developed in PHP on top of the phpGroupware
API, by using the templates component, which
allows the creation of input masks and screens
for the update of the data stored in the underlying
MySQL database.

It also uses a set of query and report templates
built with Agata Reports, a tool for creation of
database queries without programming skills, in
Web mode. An expert of the domain, who knows
the database schema, can then improve the set
of queries initially integrated in ProGET, for
instance, to produce complex reports in the form
of spreadsheet files or even synthetic booklets in
the form of word-processor or PDF files.

data partition

Inside the same collaborative work platform,
each research project must be able to host its
own information and documents, which may be
confidential. Thus, a partition of the whole data
handled by ProGET was set up, relative to the

 3001

Integration of Libre Software Applications to Create a Collaborative Work Platform for Researchers at GET

project groups. This applies in particular to the
documents stored in the document repositories
(including its dedicated Web site), the messages
on the mailing lists in Sympa, the information
from the projects description forms in restricted
access, and some of the information in the php-
Groupware tools.

In a classical way, the OpenLDAP directory
is used to allow the authentication of the user’s
work sessions with a unique password for the
different tools integrated in the same platform.
The directory is also used as a reference for the
description of project teams and their access au-
thorisation for the data handled by the different
applications. The system relies on persons and
groups defined in a single place, in the LDAP
directory. The information are managed through
the users and groups management modules in
phpGroupware.

A list of persons responsible for the project
and a list of participants are associated to each
research project. Members of the first group have
the right to modify the list of members of the
second group via the Web interface in phpGroup-
ware, and to add new co-opted members in their
group of responsible persons. The management
of the teams for the collaborative work is then
done directly in the projects, in an autonomous
way, for a better reactivity.

In each of the applications integrated in the
platform, access to the data relating to the research
projects is controlled by checking if one belongs to
these groups. For instance, Sympa is configured to
query OpenLDAP directly, which helps defining
automatic subscription of members of a project
group to a mailing list. That way, each research
project receives automatically a discussion list
whenever it is created. The record of discussions
on this list is only accessible to its subscribers,
the members of this research project.

For the phpGroupware tools (calendar, ad-
dress book, news, etc.), the partition of the data
is implemented on the basis of stereotyped php-
Groupware categories. So each project group

defined in the underlying OpenLDAP directory
receives a corresponding phpGroupware category
automatically, which is then used as an umbrella
for classifying the information.

In TWiki, this principle is implemented
through standard mechanisms which are devised
to host several autonomous wikis on the same
site (known as Webs in TWiki). All the pages
of a project are contained in a TWiki Web, that
is a dedicated autonomous wiki. The creation of
this space is done at the time a group of users is
created, and corresponding privileges are granted
to this group (allowed to modify pages, to add
new members to the group, etc.). Unlike the other
applications integrated in ProGET, it was not pos-
sible to let TWiki (at least the standard version we
used) interface directly with the LDAP directory
for the definition of groups of persons. An adapter
module has been developed, to synchronise the
groups defined in TWiki with the contents of the
research project teams.

Modification and Customisation
Efforts

Most of our software development effort has been
targeted on:

• phpGroupware custom components for
administrative management of research
projects (see Tools for the Research Office)
and Web portal (see Public Web Portal).
These developments were very specific to the
needs of GET, and should not be released.

• phpGroupware low-level components. We
have in particular improved the interaction
mechanisms between phpGroupware and
OpenLDAP, and the code used to access
WebDAV. These developments do not spe-
cifically fit only our own needs, and improve
in a sensible way the standard phpGroupware
platform.

• Bug fixes and modifications to the other
components. Many small modifications

3002

Integration of Libre Software Applications to Create a Collaborative Work Platform for Researchers at GET

and bug fixes were necessary in particular
on the WebDAV server, and in the LDAP
server interface of Apache, or on the TWiki
and Sympa programs. These modifications
make it easier to integrate these components
on top of OpenLDAP. These developments
were contributed to the community in the
form of patches when they were of general
interest.

strAtEgy for contrIbutIon

This section deals with some methodological
aspects of the development project of the ProGET
platform. Our project is more an in-house project
than an Open Source project and thus case studies
like Mockus, Fielding, and Herbsleb (2002), do not
always apply to it. Despite the fact that the project
was not open to outsiders, it relies profoundly
on libre software and we felt the need to set up
a strategy for contributing to libre projects. The
strategy was adopted in order to establish the
conditions of a greater maintainability of the
developed system and a clean integration of our
patches and improvements to the original proj-
ects. These aspects have been described in more
detail by the authors in a previous article; see Bac,
Berger, Deborde, and Hamet (2005).

Benefits of Libre Software for Their
Integration in In-house Applications

Libre software offer today an opportunity to lower
the duration and cost of software projects. They
also help to raise the quality of the applications
(Bauer & Pizka, 2003). The software components
are numerous and available for integration or
adaptation in order to create applications that
fit the needs of organisations (Wheeler, 2005).
The development of the initial version of an
in-house application can be done quickly, even
in a “brutal” way, by modifying components in
order to combine them. To be able to use them

for its internal projects, one may not be forced
to participate directly, or in an indirect way, to
their development in the libre communities.13
These tasks of integration can then be done in
a classical way, as if the components had been
completely developed internally, without trying
to contribute to the initial “upstream” projects.
But it is also possible, and even advisable, to
contribute, whenever it is possible.

Maintainability of In-House Specific
developments

After the initial integration phase comes the issue
of the midterm evolution of the obtained product.
This issue becomes crucial when it becomes nec-
essary to react to recurring external evolutions of
the integrated components (for instance in case
of a published fix for a security problem). We
profess, out of the experience gained during this
project, that it is necessary to define a policy for
contributions on the most important integrated
components.

This active contribution brings the possibility
of transferring the evolutions that were required by
the internal developments into the libre modules
that were used. Once they have been adopted by
the external projects, they will become part of all
future releases of these components, which will
remove the need to keep on applying internally
some specific patches each time a new update is is-
sued for the original module. In this respect, some
amount of the maintenance effort for the internal
solution is “outsourced” to the libre community,
which helps lower the internal costs.

strategy Adopted

To make some adaptation on phpGroupware
components, we have not limited ourselves to
only modifying internally this software (as it
had been done before for PicoLibre), but on the
contrary, we have decided to collaborate actively
with the phpGroupware project. This led us to

 3003

Integration of Libre Software Applications to Create a Collaborative Work Platform for Researchers at GET

undertaking the process for the official application
of a member of our team to the phpGroupware
project, and the transfer of the copyright on our
developments to the FSF which holds the rights
for phpGroupware.

Again, our goal, by doing so, is to have our
modifications integrated in the standard code
base of phpGroupware, so that they will be part
of future releases of the software, and we may not
have to apply again and again the same changes
whenever a new version of phpGroupware is re-
leased. This way, we intend to lower the cost for
the future maintenance of ProGET.

fIrst outcoMEs And
prospEcts

Even if integration of existing applications re-
quires extensive adaptation (Adams, Boldyreff,
Nutter, & Rank, 2005), the effort is far lower than
what would have been necessary for a project
entirely developed internally. The vast range of
features that we thought necessary for our plat-
form was only achievable at a reasonable cost by
taking advantage of existing libre software. This
platform brings generic tools for nonprogrammer
researchers but also features appealing to the most
demanding researchers, like DAV repositories
or a wiki.

The ProGET platform is in production now and
opened for its users since June 2005. The GET
research portal and the projects administrative
management application are already used on a day
to day basis. It is however too early to proceed
to an assessment of the use of collaborative work
tools, which are still used regularly by only a few
research projects.

The use of the collaborative work environment
is at the present time proposed for volunteers. Its
roll-out to the whole GET research teams is not yet
envisioned, some uncertainties remaining on the
general infrastructure to be set up, for instance, for
the necessary training phase of the users, or the

financial costs to ensure the maintenance of the
production platform with maximum availability.
Some findings can still be learned from the return
on experience of the first users.

conformance to requirements

The tools which have been integrated offer a
far range of features, which address most of the
generic needs of the research teams at GET. The
TWiki tool, quite versatile, provides in particular
a great potential, although it requires some amount
of training. Some shortcomings have however
appeared during the first months of usage of the
platform.

ProGET was devised by focusing on an organi-
sation structured around the notion of research
project with a clearly defined perimeter, validated
by the GET Research Office. However, needs for
collaborative work tools also come from contexts
outside the precise boundaries of already validated
research projects. Thus, during upstream explor-
atory phases leading to the creation of projects,
for instance, some collaboration is often necessary
between members of teams which have already
been established independently, and who often
work part-time on these exploratory activities.
Several users have requested that the kind of tools
available in ProGET be offered also for these
upstream phases, where they could greatly facili-
tate participation, reactivity, and communication
between various actors. It then seems necessary to
be able to handle also collaborative work groups
linked to exploratory phases, outside the rigid
frame of validated research projects already ap-
proved for the GET research portal.

It was also identified, through the first steps
of take-up of the tools by research teams, that the
principle of partition of data that was implemented,
based on a lowest granularity corresponding to the
research projects, was not fitting that well. Inside
a GET research project, teams have to work for
different research contracts, which all have their
own list of partners, and their own privacy require-

3004

Integration of Libre Software Applications to Create a Collaborative Work Platform for Researchers at GET

ments. The granularity chosen for teams which
have to access the same set of documents and
information in the project is thus not well adapted
in the current version of the platform. It seems
necessary to be able to define, for collaborative
work, some subprojects more or less autonomous
in the realm of the same research project, which
will each define a specific list of participants and
associated access privileges.

Evolution towards other
collaborative Activities

The users of the platform are also participating,
besides their research activities, in teaching
activities, and numerous other work groups, for
which Web-based collaborative work tools may
not always be available, either at GET or at its
partners.’

There is thus a need for the availability of
one or more platforms supporting collaborative
work, which would be as feature-full as the Pro-
GET platform, but which may allow the easy and
quick creation of projects and their work groups,
progressively, in a loose environment, as was the
case with the PicoLibre platforms.

Need for such a platform could lead to the
creation of a “new generation” PicoLibre system,
which could integrate the whole set of generic
components that have been integrated in ProGET,
together with a generic module for creation of col-
laborative work spaces, and which could be more
maintainable than the previous generation.

The ProGET platform could then be split
in two parts: on the one hand a module for the
administrative management of GET research
projects and a GET research Web portal, and on
the other hand the use of a “PicoLibre V2” kind
of platform, in which the groups corresponding
to the GET research projects could be hosted,
among others.

constraints for Administration

The ProGET platform was devised in an effort
for reuse and modularisation in integrating the
existing libre components, in order to lower the
maintenance efforts to be made internally (see
Strategy for Contribution). However, the installa-
tion and maintenance tasks for such a platform are
quite demanding and require specific competence
(good knowledge of the internals of the various
integrated software), which imply a necessary
precise planning in the event of the outsourcing
of its administration to the regular IT depart-
ment which is in charge of the GET information
systems.

In this respect, one first hypothesis for improve-
ment would be the availability of the whole set
of components in a standard packaging. It would
be interesting to have all the components used,
and their new adapters, available in the form of
packages for the libre software distributions al-
ready known by the support teams. For instance,
in the Debian distribution, the phpGroupware,
Sympa, and TWiki tools are already packaged
in the ordinary way. It would be interesting if all
modules that have been developed for ProGET
were packaged too. This could be achieved by
taking advantage of the recent efforts made to
package the modules of the PicoLibre application
for Debian.

phpgroupware for the development
of custom Applications

Several findings can be stated, looking at the use
of phpGroupware as the basis for the development
of custom applications. PhpGroupware brings a
large choice of components which have not all
achieved a common level of quality. Some func-
tions suffered from numerous bugs preventing
them to be put into production as such, in particular
regarding the conditions required for ProGET,
for instance if using underlying OpenLDAP and
WebDAV layers.

 3005

Integration of Libre Software Applications to Create a Collaborative Work Platform for Researchers at GET

In addition, the structure of data in phpGroup-
ware is in general organised from the perspective
of one phpGroupware instance deployed in an
organisation where, by default, the whole of the
information handled by the system will be avail-
able to all the users. This may fit, for instance, to
SMEs or very small virtual organisations where
all actors have to be informed of everything hap-
pening in the organisation. This model happened
however to be poorly convenient in our case
which requires that projects hosted on the same
phpGroupware platform be kept separate, and that
a strong level of confidentiality be preserved on
the information (see Data Partition).The use of
phpGroupware categories partially helps to solve
this kind of constraint, but by paying the price of
some usage precautions which degrade the global
usability of the application.

PhpGroupware provides an interesting API for
the PHP developer, for Web based collaborative
work applications that will be relatively simple.
It happens to be somehow limited though, for
advanced needs for the development of complex
applications, in particular concerning the ACLs,
the corresponding data model, and the indepen-
dence of the lowest level modules. PhpGroupware
lacks also of a module providing applicative
workflow facilities.

The use of the template “RAD tool” integrated
in phpGroupware turns out a poor choice in the
case of a complex application, despite its ease of
use for relatively simple needs. Indeed, its associ-
ate documentation and tutorial only scarcely refer
to the MVC model which is however generalised
in the more complex modules of phpGroupware.
In the latest modules developed for ProGET, we
thus have preferred to use these more classic MVC
patterns and rely more on the HTML templating
system, that happen to be more maintainable.
This choice was made with a midterm vision,
as the learning curve for developers is bigger in
this case.

PhpGroupware is still an interesting project for
a rather simple use of its existing modules. And

although it provides rich and quite generic APIs,
which allow the development of new applications,
it cannot constitute a really generic application
development framework like other libre environ-
ments (Zope, Apache Tomcat, etc.).

conclusIon

Although it may be enhanced on numerous as-
pects, the ProGET platform delivers a range of
features without competition in existing libre
software collaborative work platforms, for a
modest development cost.

There are strong needs in higher-grade research
and teaching institutions for tools supporting
collaborative work. ProGET can then constitute
a reference point for organisations wishing to
integrate, for their custom needs, existing libre
software applications for collaborative work.

Even if a policy is adopted for the contribution
to the libre software projects used, in order to lower
certain maintenance costs, the generalisation of
the use of the present platform at GET and the
future developments necessary to enhance it will
only be possible through a substantial investment,
which may be far more important than what was
spent for the first initial developments.

One possibility for the reduction of these costs
could be the mutualisation of the development be-
tween several organisations. It could be articulated
around the industrialisation as well-packaged libre
software programs of the most generic elements
of ProGET, leading the way to a new generation
PicoLibre platform.

rEfErEncEs

Adams, P., Boldyreff, C., Nutter, D., & Rank, S.
(2005, May 17). Adaptive reuse of libre software
systems for supporting on-line collaboration. In
Proceedings of the 5th Workshop on Open Source
Software Engineering, St. Louis, Missouri.

3006

Integration of Libre Software Applications to Create a Collaborative Work Platform for Researchers at GET

Bac, C., Berger, O., Deborde, V., & Hamet, B.
(2005, July 11-15). Why and how to contribute
to libre software when you integrate them into
an in-house application? In Proceedings of the
First International Conference on Open Source
Systems, Genova.

Bauer, A., & Pizka, M. (2003). The contribution of
free software to software evolution. In Proceed-
ings of the International Workshop on Principles
of Software Evolution (IWPSE).

Cousin, E., Ouvradou, G., Pucci, P., & Tardieu, S.
(2002). PicoLibre: A free collaborative platform to
improve students’ skills in software engineering.
In Proceedings of the IEEE International Confer-
ence on Systems, Man and Cybernetics.

Dridi, F., & Neumann, G. (1999, June). How to
implement Web-based groupware systems based
on WebDAV. In Proceedings of the IEEE 8th In-
ternational Workshops on Enabling Technologies:
Infrastructure for Collaborative Enterprises.

Mockus, A., Fielding, R.T., & Herbsleb, J.D.
(2002). Two case studies of open source software
development: Apache and Mozilla. ACM Trans-
actions on Software Engineering Methodology,
11(3), 309-346.

Goland, Y., Whitehead, E., Faizi, A., & Jensen, D.
(1999). HTTP extensions for distributed authoring.
In Proceedings of WEBDAV. Retrieved June 16,
2006, from http://Webdav.org/

Wheeler, D.A. (2005). Why open source software/
free software (OSS/FS, FLOSS, or FOSS)? Look
at the numbers! Retrieved June 16, 2006, from
http://www.dwheeler.com/oss_fs_why.html

AddItIonAl rEsourcEs

Web site of the OpenLDAP project: http://www.
openldap.org/

Web site for the phpGroupware project: http://
www.phpgroupware.org/

Web site for project PicoLibre: http://www.pico-
libre.org/

SourceForge project hosting platform: http://
sourceforge.net/

Sympa project’s Web site: http://www.sympa.
org/

TWiki project’s Web site: http://twiki.org/

 “Wiki” article in the Wikipedia encyclopedia:
http://fr.wikipedia.org/wiki/Wiki

EndnotEs

1 http://www.get-telecom.fr/
2 The GET research portal can be accessed

at http://proget.int-evry.fr/.
3 The screenshots of the application provided

in figures of this chapter display pages in
French. Not all interface elements have been
provided with a translation to English yet in
the ProGET application.

4 GNU General Public licence: http://www.
gnu.org/copyleft/gpl.html

5 Concurrent Versions System: http://www.
nongnu.org/cvs/

6 FP6 IST Project 00433 “Coordination Action
for Libre Software”: http://www.calibre.ie/

7 DAV module for Apache: http://www.Web
Webdav.org/mod_dav/

8 http://agata.org.br/
9 The counterpart of this simplification, com-

pared to CVS in particular, is that the reposi-
tory does not support documents versioning
on its own. This could be enhanced in a future
version of ProGET by using Subversion
(http://subversion.tigris.org/) instead of the
mod_dav module used today, which would
bring the platform closer to what exists in the

 3007

Integration of Libre Software Applications to Create a Collaborative Work Platform for Researchers at GET

recent Trac software development platform
(http://projects.edgewall.com/trac/), which
combines a Wiki and Subversion.

10 The authors assume that the reader is already
familiar with this kind of tool which has
become very popular in the latest years.
For more details, refer to (wiki) and to the
Wikipedia project which hosts it, for a good
example of application of wikis.

11 Really Simple Syndication: http://blogs.law.
harvard.edu/tech/rssVersionHistory

12 The name “public_html” is a convention
adopted after Web server Apache’s naming
policy.

13 Note that contrary to some rumors, it is in
no way mandatory to publish the modifica-
tions that one has made on a libre software
program, as long as this software is not
distributed to third parties, even if it was
initially published under the GNU GPL.

This work was previously published in the International Journal of Information Technology and Web Engineering, edited by E.
Damiani & G. Succi, Volume 1, Issue 3, pp. 1-16, copyright 2006 by IGI Publishing (an imprint of IGI Global).

3008

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.23
Exploring the Effects of

Process Characteristics on
Product Quality in Open Source

Software Development
Stefan Koch

Vienna University of Economics and Business Administration, Austria

Christian Neumann
Vienna University of Economics and Business Administration, Austria

AbstrAct

There has been considerable discussion on the pos-
sible impacts of open source software development
practices, especially in regard to the quality of the
resulting software product. Recent studies have
shown that analyzing data from source code re-
positories is an efficient way to gather information
about project characteristics and programmers,
showing that OSS projects are very heterogeneous
in their team structures and software processes.
However, one problem is that the resulting process
metrics measuring attributes of the development
process and of the development environment do
not give any hints about the quality, complexity,

or structure of the resulting software. Therefore,
we expanded the analysis by calculating several
product metrics, most of them specifically tailored
to object-oriented software. We then analyzed the
relationship between these product metrics and
process metrics derived from a CVS repository.
The aim was to establish whether different vari-
ants of open source development processes have
a significant impact on the resulting software
products. In particular we analyzed the impact on
quality and design associated with the numbers of
contributors and the amount of their work, using
the GINI coefficient as a measure of inequality
within the developer group.

 3009

Effects of Process Characteristics on Product Quality in Open Source Software Development

IntroductIon

In recent years, free and open source software
(OSS) has drawn increasing interest, both from
the business and academic worlds. Projects in dif-
ferent application domains, like most notably the
operating system Linux, together with the suite of
GNU utilities, the office suites GNOME and KDE,
Apache, sendmail, bind, and several programming
languages, have achieved huge successes in their
respective markets. Undeniably, they constitute
software systems of high quality. This has led
to discussions and analyses of the underlying
development process, as OSS is unique not only
in its licenses and legal implications.

The main ideas of this development model are
described in the seminal work of Raymond (1999),
The Cathedral and the Bazaar, first published in
1997. Raymond contrasts the traditional model of
software development, which he likens to a few
people planning a cathedral in splendid isolation,
with the new ‘collaborative bazaar’ form of open
source software development. In the latter model,
a large number of developer-turned-users come
together without monetary compensation to coop-
erate under a model of rigorous peer review and
take advantage of parallel debugging, which alto-
gether leads to innovation and rapid advancement
in developing and evolving software products. In
order to enable this while minimizing duplicated
work, the source code of the software needs to be
accessible, which necessitates suitable licenses,
and new versions need to be released often. Most
often, the license a software is under is used to
define whether it is open source software, ap-
plying for example the open source definition
(Perens, 1999) or the approach of free software
as embodied in the GNU GPL (Stallman, 2002).
Nevertheless, usually a certain development style
and culture are also implicitly assumed, although
no formal definition or description of an open
source development process exists, and there is
considerable variance in the practices actually
employed by open source projects. Also the re-

lationship to and insights regarding practices of
agile software development (Erickson, Lyytinen,
& Siau, 2005; Turk, France, & Rumpe, 2005;
Merisalo-Rantanen, Tuunanen, & Rossi, 2005)
have been discussed (Koch, 2004a).

Possible advantages and disadvantages to the
development of software of this new development
model have been hotly debated (Vixie, 1999; Mc-
Connell, 1999; Bollinger, Nelson, Self, & Turnbull,
1999; Cusumano, 2004; Feller, Fitzgerald, Hissam,
& Lakhani, 2005). For example the question of
whether open source development positively or
negatively impacts quality and security has been
a topic of several analyses (Witten, Landwehr,
& Caloyannides, 2001; Hansen, Köhntopp, &
Pfitzmann, 2002; Payne, 2002; Stamelos, Angelos,
Oikonomou, & Bleris, 2002; Koru & Tian, 2004;
Feller et al., 2005). Different viewpoints have
also developed regarding whether or not the open
source development approach increases efficiency
of software production (Feller et al., 2005). Crit-
ics argue that the largely missing requirements
engineering and design phases, together with
the trend to search for bugs in the source code
late in the lifecycle, lead to unnecessarily high
effort hidden by the relative ease of spreading it
throughout the world (McConnell, 1999; Vixie,
1999). Proponents of the OSS development model
counter with arguments of very high modularity,
fast release cycles, and efficient communication
and coordination using the Internet (Bollinger et
al., 1999; Raymond, 1999).

Currently, much empirical research is proceed-
ing on OSS processes. Often, the research relies
on data available through mining the communica-
tion and coordination tools and their repositories
(Cook, Votta, & Wolf, 1998; Dutoit & Bruegge,
1998; Atkins, Ball, Graves, & Mockus, 1999; Ke-
merer & Slaughter, 1999) in place in OSS projects
in order to describe and characterize the develop-
ment team and processes. Most notably, the source
code control systems used have been found to be
a source of information, together with mailing
lists and bug tracking systems. These analyses

3010

Effects of Process Characteristics on Product Quality in Open Source Software Development

have been useful in providing an indication of
how OSS development works in practice. Work
performed has included both in-depth analyses of
small numbers of successful projects (Gallivan,
2001) like Apache and Mozilla (Mockus, Fielding,
& Herbsleb, 2002), GNOME (Koch & Schneider,
2002), or FreeBSD (Dinh-Tong & Bieman, 2005)
and also large data samples, such as those derived
from Sourceforge.net (Koch, 2004; Long & Siau,
2007). Primarily, information provided by version
control systems has been used, but so have ag-
gregated data provided by software repositories
(Crowston & Scozzi, 2002; Hunt & Johnson, 2002;
Krishnamurthy, 2002), meta-information included
in Linux Software Map entries (Dempsey, Weiss,
Jones, & Greenberg, 2002), or data retrieved
directly from the source code itself (Ghosh &
Prakash, 2000). Other approaches taken include
ethnographic studies of development communi-
ties (Coleman & Hill, 2004; Elliott & Scacchi,
2004), sometimes coupled with repository mining
(Basset, 2004). Indeed, it can be shown that im-
portant information about project characteristics
and participating programmers can be retrieved
in this fashion.

However, a key problem is that the resulting
process metrics (Conte, Dunsmore, & Shen, 1986;
Fenton, 1991; Henderson-Seller, 1996) measuring
attributes of the development process and of the
development environment, such as distinct pro-
grammers, number of commits, or inequality, do
not address the quality, complexity, or structure
of the resulting software product. Therefore, we
expanded the analysis in this article by selecting
and calculating several product metrics pertaining
to these characteristics of the software product.

This allows us to analyze whether different
development practices have an impact on prod-
uct quality. We will use process metrics derived
from the respective source code control systems
as predictors for quality as portrayed by relevant
product metrics. Uncovering these relationships
will answer the question of which values for
these variablesfor example, low inequality in

participationlead to a higher product quality.
For this analysis, we use OSS Java frameworks
as a data set. The most similar work available
is by Koru and Tian (2005), who have used two
large open source projects as a dataset to uncover
a relationship between high-change modules and
those modules rating highly on several structural
measures. They used, among others, size measures
such as lines-of-code or number of methods, cou-
pling measures such as coupling between objects,
cohesion measures such as lack of cohesion in
methods, and inheritance measures such as depth
in inheritance tree.

The research objective of this article therefore
is as follows: We investigate whether there is
an influence of different forms of open source
software development processes characterized
by process metrics on the resulting software.
Most importantly, we check for impacts on dif-
ferent quality aspects as measured by appropriate
product metrics. A comparison with proprietary
products and processes is out of scope and will
not be treated in this study.

In the following section the method employed
for arriving at the necessary data is described,
starting with the data set chosen and its impor-
tance, and proceeding to the data collection of both
product and process metrics and their combina-
tion. Then we present the analysis regarding any
relationship between process and product metrics,
both on the level of classes and of projects, fol-
lowed by a discussion. The article finishes with
conclusions and future research directions.

MEthod

data set

For this empirical study, a certain fixed domain
of OSS was chosen, in order to limit variance to
the areas of interest by holding the application
domain constant. All projects included therefore
roughly implement the same requirements and

 3011

Effects of Process Characteristics on Product Quality in Open Source Software Development

with the same programming language, so differ-
ences in software design and quality can directly
be attributed to different development practices
in place.

We examine 12 OSS frameworks for the
presentation layer of Web applications. A frame-
work is a reference architecture for a concrete
application which offers basic structures and
well-defined mechanisms for communication.
Only specific application functionality has to
be implemented by the programmer, which is
achieved by using abstract classes and interfaces
that have to be overridden (Johnson, 1997; Fayad
& Schmidt, 1997). All frameworks are based on
J2EE components like JSP, Servlets, and XML,
and can be used within every Servlet container
that implements the J2EE standard. The frame-
works are: ActionServlet, Barracuda, Cocoon,
Expresso, Jetspeed, Struts, Tapestry, Turbine,
Japple, Jpublish, Maverick, and Echo.

Besides having a fixed domain thus reduc-
ing any noise in the results, frameworks are an
important part in modern software development.
Frameworks are one possibility of reusing exist-
ing software, thus promising reduced costs, faster
time to market, and improved quality (Morisio,
Romano, & Stamelos, 2002). OSS especially lends
itself to white box reuse (Prieto-Diaz, 1993), as
it per definition contains the source code, offers
a deeper view into the architecture, and may be
modified or adapted. This reduces the disadvan-
tages encountered with using components-off-
the-shelf (COTS) offered by software companies.
Another critical issue that can be solved by using
OSS is the maintenance of frameworks, which is
usually done by the contributors of project. On the
other hand, although the source code is available
and the program could be maintained by the com-
munity, some serious problems could accompany
the development process, due to low-quality code,
design, or documentation. Object-oriented metrics
as used here provide a capability for assessing
these qualities (Chidamber & Kemerer, 1991,

1994) and may help to estimate the development
effort for adaptation and adjustment.

First, all classes are treated as a single data set;
afterwards an analysis on project level is presented.
An analysis on class level is performed for two
reasons: As we analyze the development process
and style, the differences between classes might
be larger than those between projects, and indeed
for some metrics the variation is higher within
the projects than between them. For example an
abstract class for database access might be devel-
oped similarly in all projects. We therefore might
find paired classes among different projects. In
addition, using a framework does not necessarily
mean adopting all classes within this framework.
Therefore an analysis on this detailed level is of
interest out of a reuse perspective. Afterwards, we
will try to consolidate both perspectives by using
multilevel modeling which explicitly incorporates
effects on both levels.

data collection

For the following analysis, several steps of data
collection were conducted. As mentioned above,
this study focuses on frameworks for Web ap-
plications written in an object-oriented language.
Many of the available frameworks are not writ-
ten in object-oriented languages but scripting
languages like Perl or PHP. This would preclude
using most of the product metrics designed for
object-oriented languages. Therefore we focused
on frameworks written in Java. We conducted
preliminary research to identify potential candi-
dates that fulfilled the criteria of both language
and application area. This initial phase consisted
of performing extended Web research (online
developer forums, search engines) and perusing
reports in professional publications for developers.
This led to the identification of 12 frameworks. The
functions and features of the resulting frameworks
were compared in a prior study (Neumann, 2002)
and are not part of this article.

3012

Effects of Process Characteristics on Product Quality in Open Source Software Development

After the data set as defined above had been
identified, both product and process metrics had
to be retrieved and merged for further analysis. In
order to calculate the product metrics, the latest
stable version of each framework was determined
and downloaded as a packed distribution. We used
the metric plug-in (http://metrics.sourceforge.
net/) for the Eclipse SDK (http://www.eclipse.
org) to calculate these product metrics. The neces-
sary compilation of the downloaded source files
required utilization of stable versions over the
current snapshot from the source code repository,
the latter of which might produce complications
due to inconsistent code and the exclusion of ad-
ditional libraries. The plug-in creates an XML
representation of the calculated metrics which
we used in our study. This is done for source

code files only (i.e., .java-files in Java). A simple
Java program was written to process this XML
file and to store the metrics on class level into a
database. The resulting product metrics will be
described in the next section.

To retrieve the required process metrics, we
used the methodology applied in other studies
(Mockus et al., 2002; Koch & Schneider, 2002;
Robles-Martinez, Gonzalez-Barahona, Centeno-
Gonzalez, Matellan-Olivera, & Rodero-Merino,
2003; Dinh-Tong & Bieman, 2005; Hahsler &
Koch, 2005), relying on mining the source code
control repositories, for the data set in all cases
of the concurrent version system (CVS). First, we
looked up the CVS tag associated in the repository
with the stable version already downloaded. Us-
ing this information, a local checkout of the files

Project
list

1. Project
download
(stable)

2. Product
metric

calculation

3. CVS tag
determiation

4. CVS log
download

5. Log
analysis

(process metrics)

CVS tags
list

CVS logs

Project
Source
Codes

Database

Project
CVS

Server

Figure 1. Data-collection process

 3013

Effects of Process Characteristics on Product Quality in Open Source Software Development

was performed, and a log file was generated from
the initial check-in until the corresponding date
of the stable release. This assures that the same
source code is used to calculate both the product
and process metrics. Data from the log files were
extracted for every check-in for every available
file in the local CVS repository. Once extracted,
these were stored in a normal database as has
been done in prior studies (Fischer, Pinzger, &
Gall, 2003; Koch & Schneider, 2002; Koch, 2004;
Hahsler & Koch, 2005). Each database entry
therefore consists of the filename, the name of
the committer which was anonymized for privacy
reasons (Thuraisingham, 2005), LOC added
and deleted, and the date. The end result was a
total of 45,164 records within a single table. We
then used database queries to calculate process
metrics, for example, overall commits, number
of different committers, and so on, for each class
(i.e., .java-file). Using another program, additional
metrics like the standardized GINI coefficient
were computed for every file and again stored in
the database. The product and process metrics
were merged using the file name as a unique key,
resulting in one entry for every class containing
both types of metrics. We therefore only consider
source code files (i.e., .java-files) and exclude ad-
ditional files possibly found in the CVS repository,
like documentation files or the projects’ Web
sites. Figure 1 gives a graphical overview of the
data-collection process.

description of process Metrics

In selecting the metrics used in this study, we
both considered the goals of the analysis (i.e., to
be able to both characterize the software process
and quality aspects of the resulting product) and
the availability of metrics within the data. We use
several well-discussed process metrics to char-
acterize the OSS development processes in the
projects analyzed. The metric of commit refers to
a single change of a file by a single programmer.
Therefore the number of commits of a file is the

sum of changes conducted over a certain period
of time and is also an indicator for the activity of a
file. In our study we cover the time from the initial
commit of a file until the last commit before the
stable version was released. The total lifetime of
a file includes all the time elapsed, not only that
time which was spent on developing and coding.
Another important process metric is the total num-
ber of distinct programmers involved in writing
and maintaining a file. A programmer is defined
by counting those people committing source code
changes through their CVS account, thus only
people with such accounts are measured. In some
projects, depending on the change and commit
policy in place, people could be contributing code
without CVS account, which sometimes is only
granted to long-time participants, by sending it
to one of those persons who then does the actual
commit. For example, German (2006) found that
110 out of 364 modification records of a user were
patches submitted by 46 different individuals.
Therefore, the number of programmers might
actually be higher than the number reported here.
This fact is very problematic to check. In general,
there are several possibilities of attributing au-
thorship of source code to persons, which are to
use the associated CVS account (as done here),
to mine the versioning system comments for any
additional attributions, to infer from attributions
in the source code itself, or by questionnaires
or intimate knowledge of a project and its par-
ticipants. Attributions in source code or commit
comments are highly dependent on existence and
form of a project’s standards, and therefore are
also difficult to implement for larger data sets.
Ghosh and Prakash (2000) have implemented a
solution based on source code attributions for a
set of more than 3,000 projects, with about 8.4%
of the code base remaining uncredited, and with
the top authors containing organizations like the
Free Software Foundation or Sun Microsystems.
Nevertheless, they have found a similar distribu-
tion of participation as found in this study’s data
set, as have most other approaches like question-

3014

Effects of Process Characteristics on Product Quality in Open Source Software Development

naires (Hertel, Niedner, & Hermann, 2003) or
case studies of larger projects (Mockus et al.,
2002, Koch & Schneider, 2002; Dinh-Trong &
Bieman, 2005). In a case study of the OpenACS
project under participation of project insiders and
using the strict standards for CVS comments,
Demetriou, Koch, and Neumann (2006) have
found that only 1.6% of revisions pertained to
code committed for someone without CVS privi-
lege. In this study, we have used two approaches
for checking the validity of this measure: Using
simple heuristics, we have checked all commit
comments for attributions. This shows that 11.7%
of revisions seem to be contributed by other people.
We have also manually inspected all revisions of
the Maverick project: no revision seemed to have
been committed for somebody else, which was
identical to the heuristics result.

As the participation of programmers in open
source projects is less continuous than in com-
mercial development, the number of program-
mers alone does not adequately reflect the effort
invested. Therefore we include the open source
software person month (OSSPM) as a new pro-
cess metric that characterizes the amount of work
that is committed to the object considered. This
is defined as the cumulated number of distinct
active programmers per month over the lifetime
of the object of analysis. As Koch and Schneider
(2002) have shown, this number of active pro-
grammers can be used as an effort predictor. It
should be noted that this measure assumes that
the mean time spent is constant between objects
of analysis.

As several prior studies (Koch, 2004; Mockus
et al., 2002; Ghosh & Prakash, 2000; Dinh-Tong
& Bieman, 2005) have shown the distribution of
effort between participants to be highly skewed
and differing from commercial software devel-
opment, we add an additional process metric to
characterize the development style. We used the
normalized GINI coefficient (Robles-Martinez et
al., 2003), a measure of concentration, for this.
The GINI coefficient is a number between 0 and

1, where 0 is an indicator for perfect equality and
1 for total inequality or concentration. We cal-
culated the GINI coefficient both based on LOC
added per person (which can be extracted from
the CVS repository) and on the number of com-
mits a person has done. As the further analyses
did not show significant differences between both
measures, we will only report the findings for the
GINI coefficient based on LOC added. Therefore
in the terms of OSS development, a GINI coef-
ficient of 1 means that one person has written all
the code. We performed a slight modification: As
some files only have one author, calculating the
normalized GINI coefficient results in 0 (equal-
ity). For these cases we changed the value from 0
to 1 because, for us, the fact that one person has
written all the code is an indicator of inequality
rather than equality.

description of product Metrics

The most popular product metric is the size of a
program, which can be derived by counting the
number of lines-of-code (LOCs). There are many
different ways to count LOCs (Humphrey, 1995;
Park, 1992; Jones, 1986). In this analysis we ap-
ply the definition used by the CVS repository,
therefore including all types of LOCs: source
code lines as well as commentaries (Fogel, 1999).
The size of the largest method (LOCm) is another
important descriptor in object-oriented classes
which can also be measured by counting LOCs.
These size metrics can be regarded as indicators
for complexity as it is very difficult to read and
understand classes with long methods and many
fields (Henderson-Seller, 1996). Other indicators
are the number of regular/static methods (NOM/
NSM) and the number of regular/static fields
(NOF/NSF). We propose that these size measures
are affected by nearly all process metrics: If more
people are working on a class, its size will increase.
The same will tend to be true for the time the class
exists and the number of commits performed.
Especially the amount of effort invested in the

 3015

Effects of Process Characteristics on Product Quality in Open Source Software Development

class will increase the size. Most importantly,
we propose that the inequality in contributions
will affect different size measures: If the class is
programmed and maintained by a small team, or a
small core group within a team, these participants
will tend not to see the need for promoting higher
modularity. This would presumably lead to them
not splitting up a class, thus affecting LOC, or a
method, thus affecting LOCm.

The probably most well-known complex-
ity metric is McCabe’s definition of cyclomatic
complexity (VG) (McCabe, 1976). VG counts the
number of flows through a piece of code, (i.e., a
method). Each time a branch occurs (if, for, while,
do, case, catch, and logic operators), this metric is
incremented by one. We determined the maximum
(VGmax) and the average (VGavg) method com-
plexity on class level. Weighted Methods per Class
(WMC) are part of the Chidamber and Kemerer
suite, but they leave the weighting scheme as an
implementation decision (Chidamber & Kemerer,
1994). In our study WMC is defined as the sum of
all method’s complexities (VG) that occur within
a class. VG and WMC are indicators of how much
time and effort must be spent to understand, test,
maintain, or extend this component (Chidamber
& Kemerer, 1991; 1994), with McCabe giving
VG = 10 as a reasonable limit for proper testing
(McCabe, 1976). But this measure should be
treated with special care, as this metric is based
on experiences in procedural languages including
C or COBOL (Lorenz & Kidd, 1995). Subraman-
yam and Krishnan (2003) have shown that WMC
is highly correlated to LOC, which supports the
thesis that LOC can be used as a low-level com-
plexity metric. The influence of WMC on software
quality was examined in several studies (Basili,
Briand, & Melo, 1996; Subramanyam & Krishnan,
2003). Regarding the relationship of complexity
measures with process metrics, the most important
effect is proposed to exist in connection with the
inequality: Analogous to the reasoning for size,
complexity reduction will not be a high priority
when a small core group who would know the code

in any case is present. Also, classes, and software
overall, tend to accumulate more complexity as
time passes, if no counter-measures are taken.
This will decrease maintainability, which again
is less of an issue if the software is consistently
maintained by a small group.

The object-oriented product metrics we investi-
gated are mostly based on a subset of the Chidam-
ber-Kemerer-Suite (Chidamber & Kemerer, 1991,
1994; Chidamber, Darcy, & Kemerer, 1998). The
authors argued that the product metrics commonly
used before were not suitable for object-oriented
development (Chidamber & Kemerer, 1991). From
their point of view, the modern object-oriented
analysis, design, and programming processes,
which encapsulate functionality and entities in
objects, were too different from the traditional
software engineering process. The prior product
metrics were not designed to measure object-
oriented characteristics like classes, inheritance,
and the usage of methods and attributes. They
proposed six metrics, derived from a theoretical
analysis, which should be able to assist in making
predictions about the complexity and quality of
object-oriented programs. We used a subset of the
CK-suite (NOC, DIT, WMC) for which concrete
threshold values were suggested. The remaining
metrics (LCOM, RFC, CBO) are not part of this
study, as no threshold values are available. In
addition, CBO and RFC have been found to be
highly correlated with WMC (Chidamber et al.,
1998), so they would not give additional infor-
mation. These CK-metrics for our analysis are
complemented by some of the metrics defined
by Lorenz and Kidd (1995).

Number of Children (NOC) and Depth in
Inheritance Tree (DIT) are metrics for the level
of inheritance of a class. Chidamber and Kemerer
(1994) state that the deeper a class in the hierarchy,
the more complicated it is to predict its behavior
and the greater its design complexity. Though
this may lead to greater effort in maintenance
and testing, it has greater potential for the reuse
of inherited methods. In a Java environment, DIT

3016

Effects of Process Characteristics on Product Quality in Open Source Software Development

is defined as the longest path from the class to
the root in the inheritance hierarchythat is, the
class Object. Some studies have shown that DIT
is related to fault-proneness (Basili et al., 1996;
Briand, Wüst, Ikonomovski, & Lounis, 1998).
NOC counts the number of classes inherited
from a particular ancestorthat is, the number
of children in the inheritance hierarchy beneath
a class. A class implementing an interface counts
as a direct child of that interface. Chidamber and
Kemerer (1991) expose a similar relationship be-
tween design complexity and NOC. The greater
the number of children of a class, the greater is the
reuse. However, an excessive number of children
may indicate the misuse of sub-classing. NOC
also hints to the importance of that class within
the application, as well as to the corresponding
additional effort likely required for testing and
maintaining. NOC was evaluated by Basili et
al. (1996) and Briand et al. (1998), who differ in
their findings related to fault-proneness. NORM,
like NOC and DIT, is an inheritance metric for
class design (Lorenz & Kidd, 1995). It measures
the number of inherited methods overridden by
a subclass. Lorenz and Kidd (1995) state that,
especially in the context of frameworks, methods
are often defined in a way that requires them to
be overridden. However, very high values may
indicate a design problem because a subclass
should extend new abilities to its super-class that
should result in new method names. Similar to
the other product measures, we again propose
a relationship of the process metrics with these
object-oriented metrics. Especially the metrics
giving an indication of the use of inheritance
will be affected by different process attributes,
most importantly on project level. The correct
use of inheritance helps in achieving a modular
design which in turn allows for parallel work by
many participants. In addition, it significantly
enhances maintainability. We therefore propose
that analogous mechanisms will be found here as
for complexity measures.

We suggest two additional metrics that can be
used to describe the interior design of a class. The
number of classes (NCL) counts the number of
classes within a class and should be either 0 for
interfaces or 1 for classes. Other values indicate
the utilization of interior classes, which should
be avoided in object-oriented design. The num-
ber of interfaces within a class (NOI) aims at
the same direction. Interfaces are used to define
entry points within or even across applications
and therefore should not be defined within a class
but in separate files.

Most of these product metrics presented are
discrete variables, where increasing (or decreas-
ing) values are not necessarily a sign of good
or bad quality, or aspects thereof. For example,
whether the cyclomatic complexity VG of an entity
is 4 or 6 is mostly determined by its function, and
does not signal any deviation from good practice
or negatively influence maintainability. Only if a
certain value is surpassed does this metric give
an indication of possible problems. Therefore,
most of these metrics can be assigned a threshold
for this purpose. Currently, there is a paucity of
threshold values for the defined metrics provided
by literature based on empirical studies, especially
using Java. This requires us for most metrics to
use the values proposed by Lorenz and Kidd
(1995) for C++ classes.

Based on the threshold values in Table 1, we
created dummy variables that take on the value
of one or zero, depending on whether the associ-
ated metric values exceed the threshold value for
that class. These dichotomous variables try to
categorize the given metrics based on different
aspects to be explored like size or complexity
(see Box 1).

MSIZE and CSIZE depend on metrics that
measure size, MCOMP on complexity, CINH
on inheritance, and CDESIGN on interior class
design.

 3017

Effects of Process Characteristics on Product Quality in Open Source Software Development

Metric Name
Thresh-
old

Definition

NOC Number of Children
Total number of direct subclasses of a
class

NOI Number of Interfaces Total number of interfaces of the file

DIT Depth of Inheritance Tree < 6
Distance from class Object in the inheri-
tance hierarchy

NORM Number of Overridden Methods < 3
Total number of methods that are overrid-
den from an ancestor class

NOM Number of Methods < 30-40 Total number of methods
NOF Number of Fields < 3-9 Total number of class variables
NSM Number of Static Methods < 4 Total number of static methods
NSF Number of Static Fields < 3 Total number of static variables

LOCm Lines of Code < 24
Total lines of code of the greatest method
in the selected scope

VG-
max

McCabe Cyclomatic Complexity
Maximum

< 10
Maximum VG for all methods within a
class

VGavg
McCabe Cyclomatic Complexity
Average

< 10 Average VG for all methods within a class

WMC Weighted Methods per Class < 65
Sum of the McCabe Cyclomatic Com-
plexity for all methods in a class

NCL Number of Classes = 1 Indicates possible interior classes

Table 1. Overview of metrics with corresponding threshold values

1 / 18 24
0

1 max 10 10
0

1 30 4 9 4
0

1 6 15
0

1 1 1
0

MSIZE if LOC NOM > LOCm >
else

MCOMP if VG > VGavg >
else

CSIZE if NOM > NSM > NOF > NSF >
else

CINH if DIT > (NOC DIT) >
else

CDESIGN if NCL > NOI >
else

∨

∨

∨ ∨ ∨

∨ ∗

∨

Box 1.

3018

Effects of Process Characteristics on Product Quality in Open Source Software Development

AnAlysIs on clAss lEvEl

In total, 6,235 Java classes (i.e., distinct files)
have been analyzed, for which a total of 45,164
commits were made, with 2,109,989 LOCs added
and 913,455 LOCs deleted. A total of 133 distinct
programmers have contributed with at least one
commit. The number of classes investigated
therefore is considerably higher than the datasets
used in former studies on object-oriented metrics
(634 by Chidamber & Kemerer, 1994; 97 by Chi-
damber et al., 1998; 180 by Basili et al., 1996; 698
by Subramanian & Corbin, 2001; 180 by Briand,
Wüst, Daly, & Porter, 2000).

descriptive statistics

Descriptive statistics for all product and process
metrics can be found in Table 2. The highest
number of commits (209) can be found in the
Barracuda project. This file is a change history
in Java format containing only comments. The
file with the second highest number of commits
(188) is also the class with the highest value of
LOCs added (19,252), LOCs deleted (11,706),
and the largest file overall (7,546 LOCs). This
file is one of the most important classes of the
Expresso framework (DBObject.Java) and is re-
sponsible for DB communication. The class that

Process Metrics
N Min Max Mean s.d. 75% Percentile Median

Authors 6,235 1.00 15.00 2.66 1.59 3.00 2.00
Commits 6,235 1.00 209.00 7.24 9.96 8.00 5.00
Days 6,235 0.00 1,628.91 357.44 298.90 459.81 350.78
GINI 6,235 0.00 1.00 0.78 0.24 0.98 0.85
OSSPM 6,235 1.00 58.00 4.80 4.02 6.00 4.00
Product Metrics

N Min Max Mean s.d. 75% Percentile Median
LOC 6,235 0.00 7,546.00 207.99 279.44 237.00 124.00
DIT 5,339 1.00 10.00 2.60 1.58 3.00 2.00
NCL 5,339 1.00 51.00 1.16 1.24 1.00 1.00
NOF 5,339 0.00 119.00 2.50 4.67 3.00 1.00
NOI 915 1.00 28.00 1.07 1.19 1.00 0.00
NOM 5,339 0.00 252.00 8.37 12.32 10.00 4.00
NORM 5,339 0.00 65.00 0.61 1.89 1.00 0.00
NOC 5,339 0.00 185.00 1.18 7.05 0.00 0.00
NSF 5,339 0.00 69.00 1.54 4.30 1.00 0.00
NSM 5,339 0.00 69.00 0.71 3.03 0.00 0.00
VGavg 5,339 0.00 42.00 2.41 2.60 2.77 1.67
WMC 5,339 0.00 871.00 20.77 37.22 23.00 10.00
LOCm 5,339 0.00 601.00 22.96 35.85 30.00 24.00
VGmax 5,339 0.00 159.00 5.51 8.38 7.00 3.00

Table 2. Descriptive statistics for all classes

 3019

Effects of Process Characteristics on Product Quality in Open Source Software Development

is responsible for dispatching the requests of the
Struts framework (ActionServlet.Java) is the file
with the third highest number of commits (150).
An abstract class of the Jetspeed framework that
forms the behavior of a portlet has another high
value of commits. It is obvious that components
providing key functionalities need a special
amount of interest because they are usually en-
gaged with several other objects. In accordance
with prior studies, all of the process metrics are
not ‘normal distributed’ which can be ascertained
using a Kolmogorov-Smirnov test.

In accordance with other studies (Koch, 2004),
the number of distinct programmers is quite small
with low standard deviation. The histogram of
distinct programmers per file shows a heavily
skewed distribution. Only 12.2% of the files have
more than three distinct authors. Most of the files
have one (24.0%) or two (56.1%) programmers,
and only 3% have more than five distinct authors.
The number of commits per file follows a simi-
lar distribution. Only 16.3% have more than 10
commits. Although our values depend on files’
respective classes, there are similarities to other
studies that have investigated the distribution of
distinct authors and commits (Koch, 2004; Krish-
namurthy, 2002; Mockus et al., 2002; Ghosh &
Prakash, 2000) on the project level.

All of the product metrics are clearly not ‘nor-
mal distributed’ as well. The distribution of LOC
is also heavily skewed, which is in accordance
with other studies (Koch, 2004; Krishnamurthy,
2002).

Due to the fact that most of the metrics men-
tioned above measure attributes of classes, we
regard real interfaces as missing values (NOI
= 1 and NCL = 0). Classes that have interior
interfaces are valid. Most of the median values
are below the threshold suggested by Lorenz and
Kidd (1995), as are most of the values for the
75% percentile. The only metric that exceeds this
recommendation is the 75% percentile of the size
of a method (30>24). The median of the average
method complexity per class VGavg (1.67) and of

the maximum method complexity (3) are below
the threshold of 10 suggested by McCabe (1976),
and only 11.5% of the classes have a maximum
method’s complexity greater than 10. Most of the
studies which investigate object-oriented metrics
used C++ source files (Briand et al., 2000; Chi-
damber & Kemerer, 1994), so our results cannot
directly be compared to them. We are aware
of only one study that investigates Java classes
(Subramanyam & Krishnan, 2003). Compared to
that study we have higher WMC values and our
classes are more deeply nested in the inheritance
hierarchy. One possible reason for this may be the
fact that we examined frameworks that provide
abstract classes that are meant to be overrid-
den. The percentage of classes that exceed our
dichotomous variables are 5.3% (CINH), 6.0%
(MCOMP), 6.1% (CDESIGN), 14.9% (CSIZE),
and 34.9% (MSIZE). The fact that one-third of the
classes investigated do not meet the requirements
for small method size gives rise to the question
whether these threshold values are suitable for
object-oriented Java programs. Our data set
consists of frameworks that provide functionality
for a lot of different scopes. Therefore the aver-
age and maximum values may be greater than in
normal applications. However we do not adjust
the threshold value as it is an indicator for easy
understanding and maintenance. The remaining
values for the dichotomous variables seem to be
reasonable.

rEsults

In this analysis, we explore relationships between
the metrics mentioned above. Results for correla-
tions between the different process metrics can
be found in Table 3, respectively Figure 2, using
ellipses (Murdoch & Chow, 1996). Due to the fact
that all metrics are not ‘normal distributed’, we
used the nonparametric Spearman coefficient.

The correlation analysis shows expected re-
lationships, like the older a file the more distinct

3020

Effects of Process Characteristics on Product Quality in Open Source Software Development

programmers are involved (0.471), the more com-
mits are conducted (0.685), and the more work
is contributed (0.689). The amount of work (OS-
SPM) is highly correlated to authors, commits,
and the active time, what is indeed reasonable.
More interesting are the relations between the
inequality as measured by the GINI coefficients
and the remaining process metrics. The results

show that the older a file, the more homogeneous
is the distribution of the added input. The negative
correlation between authors and GINI reveals the
same tendencies. The more people are involved,
the more the work is equally distributed among
the participating authors. The number of commits
only has slight influence on the GINI coefficient.
The correlation between product metrics is not

Figure 2. Correlation between process metrics (Spearman coefficient, black showing significance level
of p<0.01)

Authors Commits Days GINI OSSPM
Authors 1.000
Commits 0.554 1.000
Days 0.471 0.685 1.000
GINI -0.524 -0.370 -0.528 1.000
OSSPM 0.639 0.925 0.689 -0.393 1.000

Table 3. Correlation between process metrics (Spearman coefficient, all at a significance level of
p<0.01)

 3021

Effects of Process Characteristics on Product Quality in Open Source Software Development

that important, but it should be mentioned that
metrics that measure size attributes of a class
(NOM, NSM, NOF, and NSF) are positively
correlated to the total size in LOC. Furthermore
there is a very strong correlation of WMC to LOC
(0.734), which is almost identical to the correlation
coefficient of 0.741 found by Subramanyam and
Krishnan (2003). More importantly, correlations
between product and process metrics have been
explored, and the results are shown in Table 4,
respectively Figure 3, using ellipses (Murdoch
& Chow, 1996).

The complexity metrics WMC and VGavg have
a slight correlation to the number of authors and
commits as well as to the effort indicator OSSPM.
A similar slight relationship appears regarding
the group of metrics that measure the size of a

class like LOC, LOCm, or NOM. The influence
of the active time on the product metrics can be
disregarded. Metrics concerned with the use of
inheritance (DIT and NOC) do not seem to be
correlated to any of the process attributes. As DIT
and NOC are important indicators of reuse and
well-structured programming, a deeper look into
source code is necessary to gather that kind of
information. The GINI coefficient does not seem
to be correlated to any product metric.

As described above we created dichotomous
variables that indicate whether a class exceeds
a certain quality threshold or not and compared
these two samples with a non-parametric rank-
sum test, the Mann-Whitney-U test, also known as
Wilcoxon rank-sum test, for example also applied
by Koru and Tian (2005). The test assesses whether

Authors Commits Time GINI OSSPM
LOC **0.157 **0.379 **0.179 **0.057 **0.370
DIT 0.015 0.019 0.025 *−0.027 0.021
LCOM **0.109 **0.102 0.020 **0.044 **0.137
LOCm **0.237 **0.432 **0.181 **−0.058 **0.408
NBD **0.273 **0.290 **0.138 **−0.152 **0.292
NCL **0.092 **0.139 **0.042 **0.048 **0.131
NOF **0.149 **0.199 **0.071 **0.038 **0.199
NOI **−0.080 **−0.097 0.001 **−0.034 **−0.119
NOM **0.103 **0.253 **0.066 **0.037 **0.232
NORM **0.095 **0.169 **0.108 **−0.078 **0.181
NOC **0.085 **0.084 **0.091 *−0.029 **0.093
NSF **0.129 **0.244 **0.155 −0.022 **0.235
NSM −0.019 **0.044 *0.027 0.006 0.018
SIX **0.076 **0.149 **0.108 **−0.086 **0.162
VGavg **0.242 **0.332 **0.168 **−0.112 **0.337
WMC **0.214 **0.389 **0.163 *−0.032 **0.366

Table 4. Correlation between selected process and product metrics (Spearman coefficient, * p < 0.05,
** p < 0.01)

3022

Effects of Process Characteristics on Product Quality in Open Source Software Development

the degree of overlap between the two observed
distributions is less than would be expected by
chance. The resulting hypotheses are:

H0: There is no difference in process characteris-
tics between the group S1 that exceeds the thresh-
old values and the group S0 that does not.

HA: There is a difference between these
groups.

If H0 is rejected, an additional, one-sided
Mann-Whitney U-test is used with the hypoth-
eses:

HA1: The rank-sum in S1 is greater than in S0,
indicating that high values of process metrics
foster bad quality.

HA0: The rank-sum in S1 is lesser than in S0,
indicating that high values of process metrics
foster good quality.

The results of these tests are shown in Table 5.
Except for the combinations MCOMP/GINI and
CSIZE/GINI, the significance is smaller than 0.05,
so in these cases we can accept the alternative
hypothesis HA that the corresponding process
metrics have an influence on the product metric.
In this case we performed a one-sided Mann-

Figure 3. Correlation between selected process and product metrics (Spearman coefficient, grey p <
0.05, black p < 0.01)

 3023

Effects of Process Characteristics on Product Quality in Open Source Software Development

Whitney U-test to determine the direction of
relationshipthat is, whether the process metrics
have a positive (accept HA1) or negative (accept
HA0) influence on the product metrics.

In case of a positive relationship (↑), the sum
of the ranks in the group that exceeds the limit

is higher than in the group that does not. In qual-
ity terms, these results indicate that the higher
the process metric is, the lower the quality is.
Therefore a higher number of distinct program-
mers, commits, time, and invested effort have a
negative influence on the quality.

Authors Commits Time GINI OSSPM
MSIZE

relationship (HA)
accepted
(p<0.01)

accepted
(p<0.01)

accepted
(p<0.01)

accepted
(p<0.01)

accepted
(p<0.01)

direction
↑, HA1
(p<0.01)

↑, HA1
(p<0.01)

↑, HA1
(p<0.01)

↓, HA0
(p<0.01)

↑, HA1
(p<0.01)

MCOMP

relationship (HA)
accepted
(p<0.01)

accepted
(p<0.01)

accepted
(p<0.01)

rejected
accepted
(p<0.01)

direction
↑, HA1
(p<0.01)

↑, HA1
(p<0.01)

↑, HA1
(p<0.01)

↑, HA1
(p<0.01)

CSIZE

relationship (HA)
accepted
(p<0.01)

accepted
(p<0.01)

accepted
(p<0.01)

rejected
accepted
(p<0.01)

direction
↑, HA1
(p<0.01)

↑, HA1
(p<0.01)

↑, HA1
(p<0.01)

↑, HA1
(p<0.01)

CINH

relationship (HA)
accepted
(p<0.01)

accepted
(p<0.01)

accepted
(p<0.01)

accepted
(p<0.01)

accepted
(p<0.01)

direction
↑, HA1
(p<0.01)

↑, HA1
(p<0.01)

↑, HA1
(p<0.01)

↓, HA0
(p<0.01)

↑, HA1
(p<0.01)

DESIGN

relationship (HA)
accepted
(p<0.01)

accepted
(p<0.01)

accepted
(p<0.01)

accepted
(p<0.01)

accepted
(p<0.01)

direction
↑, HA1
(p<0.01)

↑, HA1
(p<0.01)

↑, HA1
(p<0.01)

↑, HA1
(p<0.01)

↑, HA1
(p<0.01)

Table 5. Results of Mann-Whitney U-tests (↑ indicates that high values of the process metrics foster bad
quality and ↓ indicates good quality)

3024

Effects of Process Characteristics on Product Quality in Open Source Software Development

To validate our results we performed the
same tests only with classes that have at least
five different authors (n=668). The results are
mainly the same, but we could not reject H0 for
the combinations MCOMP/Time, CSIZE/Authors,
and CSIZE/Time. The change in the number of
authors had an influence on the relationship be-
tween GINI and the dichotome product metrics.
All combinations had a positive influence (accept
HA1 with p<0.01), which confirms our prior re-
sults that the more the work is concentrated, the
worse is the quality of software. Or the other way
around, an equal distribution of commits fosters
good quality. We will discuss this important find-
ing in more detail later on.

AnAlysIs on proJEct
lEvEl

For an analysis on project level, we aggregated the
product metrics from class level and calculated
the process metrics for the whole project, based
on those files that were examined in the former
section. We stored these results in another table
in the database.

descriptive statistics

Cocoon is the project with the highest number of
distinct programmers, commits, and Java classes.
The project ActionServlet, Jpublish, and Echo only
have one author. Whether these should be included
in further analysis can be discussed. Using a defini-
tion of OSS based on the respective license, these
projects constitute open source projects, but they
conflict with the development model normally as-
sociated. On the other hand, these projects might
possibly have more participants but a very central
control regarding the source code, such that any
change must be reviewed and committed by the
single maintainer, although other people actually
write the code and submit it to this person. We
have already discussed this problem with the
respective metric description. In the following,
we base the analysis on both the full set and a
subset with these projects removed.

Struts is the framework with the lowest GINI
coefficient, which is an indicator for equality of
input. Cocoon, Jetspeed, Struts, Tapestry, and
Turbine are projects that are hosted by the Apache
Software Foundation. The great popularity of the
Apache Web server may explain the encourage-

Authors Commits Days GINI Files OSSPM
cocoon-2.1 40.00 10,131.00 439.49 0.85 2,298.00 244.00
jakarta-jetspeed 17.00 4,962.00 1,637.92 0.68 677.00 160.00
jakarta-turbine-2 17.00 2,621.00 748.17 0.81 388.00 83.00
jakarta-struts 16.00 3,092.00 1,122.33 0.60 496.00 146.00
expresso 10.00 6,389.00 761.08 0.84 649.00 94.00
jakarta-tapestry 9.00 3,001.00 409.62 0.85 535.00 53.00
Barracuda 9.00 3,543.00 1,279.08 0.75 453.00 71.00
japple 7.00 1,612.00 450.10 0.68 238.00 56.00
maverick 6.00 358.00 1,137.92 0.71 78.00 27.00
ActionServlet 1.00 199.00 223.15 1.00 106.00 4.00
echo 1.00 1,690.00 894.92 1.00 220.00 27.00
jpublish 1.00 886.00 1,172.03 1.00 97.00 34.00

Table 6. Process metrics for all projects (ordered by number of authors)

 3025

Effects of Process Characteristics on Product Quality in Open Source Software Development

ment of these frameworks. The very low number
of commits for the ActionServlet is an indicator
for inactivity of the project.

Table 7 shows the mean values of the most
important product metrics. The Japple framework
has the largest files and the highest WMC. As we
have discussed in the previous chapter, there is a
very strong linear relationship between LOC and

WMC. Therefore this combination is not astonish-
ing. Struts and Jetspeed are the projects with the
highest DIT, which indicates extensive usage of
subclassing, a form of reuse. The number of chil-
dren differs across the projects. The frameworks
with the lowest average number of children only
have one author (ActionServlet, Jpublish).

DIT NORM NOC SIX VGavg WMC
cocoon-2.1 2.54 0.50 1.13 0.24 2.30 18.02
jetspeed 2.97 0.81 0.81 0.45 2.63 22.41
turbine 2.53 0.42 1.40 0.26 1.82 16.33
struts 3.39 0.69 0.72 0.53 2.97 23.01
expresso 2.82 0.78 1.07 0.49 2.59 30.22
tapestry 2.28 0.29 0.92 0.18 1.65 13.49
Barracuda 2.44 1.29 2.88 0.27 2.83 26.74
japple 1.97 0.77 1.22 0.13 3.16 32.60
maverick 2.40 0.29 1.27 0.33 1.86 9.62
ActionServlet 1.87 0.23 0.33 0.12 2.73 17.01
echo 1.92 0.50 1.75 0.17 2.23 18.44
jpublish 1.97 0.24 0.46 0.10 1.73 13.70

Table 7. Product metrics for projects (mean values)

MSIZE MCOMP CSIZE CINH CDESIGN
cocoon-2.1 24.06 4.05 11.27 4.35 7.57
jetspeed 37.08 6.06 15.36 8.71 2.81
turbine-2 26.55 1.55 12.37 4.12 2.32
jakarta-struts 34.68 8.67 17.34 3.63 1.61
expresso 45.30 8.01 15.25 4.47 2.77
tapestry 17.38 0.75 5.05 1.87 3.36
Barracuda 33.55 9.71 18.32 6.84 17.44
japple 53.78 7.98 13.03 1.26 3.36
maverick 17.95 0.00 10.26 14.10 11.54
ActionServlet 23.58 4.72 3.77 0.94 4.72
echo 28.18 5.45 22.27 3.18 15.00
jpublish 19.59 2.06 6.19 2.06 1.03

Table 8. Percentage of classes that exceeds the limits of quality metrics

3026

Effects of Process Characteristics on Product Quality in Open Source Software Development

To get an indication of quality and design, we
again apply the dichotomous variables used for
capturing different possible problem areas (MSIZE,
MCOMP, CSIZE, CINH, and DESIGN). As the
total number of classes that exceed our limits is
not appropriate due to different numbers of classes
between projects, we calculated the relative amount
of faulty classes within a project (see Table 8).
Metric MSIZE depicting problems with method
size has rather high values for all projects, but more
than 35% of the classes of Japple, Expresso, and
Jetspeed exceed the limit. These three frameworks
also have a large amount of methods that outrun the
upper bound for complexity. The relative amount
of misuse of inheritance CINH is small except for
the Maverick framework (14.1%). The number of
classes with interior classes or interfaces is small
except for Barracuda, Maverick, and Echo.

results

Due to the fact that only a small data set on project
level is available, the usage of correlation analysis
is not sufficient as the small number precludes

any statistically significant findings. Therefore
we performed a simple ranking based on the rela-
tive amount of classes that exceed our threshold
values. High relative amounts of ‘faulty’ classes
result in high ranks (i.e., the project with the high-
est percentage of classes violating the threshold
is ranked on the first place in this variable), and
therefore the higher the sum of ranks the higher
the overall quality. We do not weight the quality
indicators. This ranking can be used to choose
the best alternative among concurrent projects
depending on their software quality. This ranking
is on an ordinal scale and therefore should not
be misused to perform any kind of quantitative
comparisons, but we try to find some indicators
for our findings on class level.

It is interesting that the two projects with only
one author have the highest rank overall. Jpublish
and ActionServlet also have very low numbers of
Java-files and commits, and the OSS development
effort is rather low as well. In contrast to these
one-man-projects, Tapestry has nine distinct au-
thors but the same Ranksum as Jpublish. But this
project is not that old and the invested development

MSIZE MCOMP CSIZE CINH CDESIGN Ranksum
jakarta-tapestry 12 11 11 10 6 50
jpublish 10 9 10 9 12 50
ActionServlet 9 7 12 12 5 45
jakarta-turbine-2 7 10 7 6 10 40
maverick 11 12 9 1 3 36
cocoon-2.1 8 8 8 5 4 33
japple 1 4 6 11 7 29
jakarta-struts 4 2 3 7 11 27
expresso 2 3 5 4 9 23
nextappecho 6 6 1 8 2 23
jakarta-jetspeed 3 5 4 2 8 22
Barracuda 5 1 2 3 1 12

Table 9. Ranks and sum (ordered by decreasing ranksum)

 3027

Effects of Process Characteristics on Product Quality in Open Source Software Development

effort is rather small. This can be seen as another
proof for the hypothesis that over project lifetime,
the quality decreases due to a missing necessary
redesign of the software structure.

The largest project overall with 40 distinct
authors, more than 10,000, commits and 244
OSSPM is Cocoon. Cocoon is ranked in sixth
placeright in the middleso that we cannot
state the quality as extremely bad or good. The
second largest project measured by OSSPM and
.java-files is Jetspeed, which has the second worst
quality ranking, which supports the findings on
class level.

In order to statistically underline these results,
we used the order produced by the ranksum to
compare those projects ranking highly overall
to those ranking very low. This was done by a
set of Mann-Whitney U-tests as applied above.
This time, membership in a project was used as a

dividing factor for the classes, and the distribution
of relevant process metrics was tested to uncover
whether the top projects consistently have differ-
ent distributions than the lower rated ones. We
tested each of the top three projects against each
of the bottom three projects, resulting in nine
comparisons per process metric. For validation,
we also eliminated the one-person projects within
the top group, using the next lower ones with more
participants. The results indicate that projects
in the high-quality region have more authors
and commits, but consistently lower GINI coef-
ficient representing more equal distributions (in
six, respectively seven, out of nine comparisons
in the validation sample). While the first result
seems in contradiction with the results on class
level, the effects of a high concentration are valid
on both levels. These results will be discussed in
the following section.

Figure 4. Ranking of projects based on the dichotomous variables (high relative amounts result in low
ranks, the higher the sum of the ranks the better the quality)

(a) ranks (b) sum

3028

Effects of Process Characteristics on Product Quality in Open Source Software Development

MultIlEvEl AnAlysIs

Multilevel models (also sometimes termed nested
or mixed-effect models) are statistical models with
parameters arranged in a hierarchical structure
(Goldstein, 1999; Snijders & Bosker, 2003; Kreft
& de Leeuw, 2002). They are appropriate for
data which involves multiple levels, for example
on individual level and group level. A classical
example is a study of students from different
schools, attributes of which might have an impact
on individual performance, or research in organi-
zational science (Klein, Tosi, & Cannella, 1999).
Multilevel models can account for direct effects
of variables on each other within any one level,
and also cross-level interaction effects between
variables located at different levels.

In our study, we have data within two dis-
tinct levels: class and project, with classes being
grouped into projects. Therefore, it is possible
that aspects of a project like different processes
or practices have an influence on the quality of
a class. Using a multilevel model, these effects
can be accounted for and tested. In the follow-
ing, we use Akaike’s information criterion (AIC)
to compare the goodness of fit of the estimated
models, which incorporates the number of param-
eters in selecting the best model, thus penalizing
overfitting. For all analysis, we employed R, a
freely available language and environment for
statistical computing, using the nlme package for
multilevel modeling.

First, we computed for comparison classical
linear models without hierarchical effects for each
dichotomous quality metric (MSIZE, MCOMP,
etc.), using the independent factors Authors, Com-
mits, Time, and GINI. The results are congruent
with the class-level analysis and show the same
general trend of negative effects on quality: In
general, all of the parameters are significant, posi-
tive, and introducing them in a stepwise linear
regression increases model quality significantly
(all at p< 0.01). The following exceptions apply:

Time has generally a positive effect on quality
(except for CINH where the effect is negative,
and for CDESIGN where it is not significant),
and for MSIZE the GINI coefficient has a posi-
tive influence as well (again congruent with the
prior analysis). The GINI coefficient also does
not have a significant effect on CINH. Overall,
the resulting models only account for a relatively
small part in overall variation, as the R-squared
value ranges from about 0.05 to 0.10.

Following from this, we expand the analy-
sis into multilevel models. We therefore both
introduce additional fixed variables from the
project level (i.e., the overall effort OSSPM of a
project); the total number of programmers, files,
and commits; total lifetime and GINI coefficient;
and define an increasing range of first-level vari-
ables as random. This implies that for each unit,
a different slope and intercept is estimated, so
that the effect of these can differ between units.
These different setups resulted in more than 10
different models being estimated for each quality
indicator. Using statistical tests based on AIC,
these models were compared with each other and
also with the linear models without hierarchical
effects computed before.

The first result is that the inclusion of project
attributes like total number of programmers does
not increase model quality. In all cases, these pa-
rameters are not significant in the regression. In the
model comparison, introducing these terms does
therefore lead to a significant reduction in model
fit measured by AIC (except for introducing the
project’s GINI coefficient, where the reduction is
not significant) due to the penalty associated with
a higher number of parameters. In comparison to
the linear models without hierarchical effects, the
results are generally slightly better if no or a small
number of project attributes are included, due to
the random slope introduced. This underlines that
differences between the projects are significant.
If the models which define more variables like
authors as random (i.e., these are allowed to have a

 3029

Effects of Process Characteristics on Product Quality in Open Source Software Development

different intercept and slope depending on project)
are inspected, the model quality does in all cases
increase significantly. This is, with a few excep-
tions, true for an increasing number of variables
becoming random, even though more parameters
are penalized by AIC. The exceptions are: the
GINI coefficient for both MCOMP and CINH
does not exhibit significant random effects. This
again shows that the differences between projects
are manifold and encompass the effects of several
attributes like concentration or number of develop-
ers. If the random effects estimated are evaluated
further, we find that there are even differences
in effect direction between projects: for example,
the number of authors has a positive effect on
method size in six projects, a negative effect in
the others. For problems in inheritance structure
on the other hand, the number of authors almost
uniformly shows a negative effect throughout
the projects. Also the concentration has negative
effects almost throughout the project set.

From this analysis, we can draw the conclu-
sion that the results achieved by other means hold
mostly valid, but that the multilevel approach
shows additional insights. We found that there
are indeed differences between the projects in
the way that the different process metrics have a
relationship with product quality concepts, which
can be accounted for with this analysis. We also
found that the mechanisms and attributes of proj-
ects mitigating these effects do not currently seem
to be captured by the measurements performed,
as the metrics like total number of developers of
projects did not show a significant impact. The
reasons for the different effects might therefore
lie in other attributes like process design which
need to be incorporated in future analyses and
models.

dIscussIon

The analyses on class and project level showed
several results which need to be discussed in their

reasons and in their implications. As shown, a high
number of programmers and commits, as well as
a high concentration, is associated with problems
in quality on class level, mostly to violations of
size and design guidelines. This underlines the
results of Koru and Tian (2005), who have found
that modules with many changes rate quite high
on structural measures like size or inheritance.
On project level, there is a distinct difference:
those projects with high overall quality ranking
have more authors and commits, but a smaller
concentration than those ranking poorly. We
will first address the effects associated with high
concentration on few heads, which turn out on
both levels, afterwards touching on the differ-
ences found.

A high concentration is often seen as a trade-
mark of open source software development and
has turned up in almost any study of open source
projects (e.g., Koch, 2004; Ghosh & Prakash, 2000;
Dinh-Tong & Bieman, 2005). Mockus et al. (2002)
have shown this difference to commercial projects
in a comparison. Reasons for this concentration
are manifold: they reach from motivational aspects
like status games which lead to different invested
effort between participants, hugely different skills
sets of participants in combination with self-selec-
tion for tasks, the founding process by one or a
few people, to possible delays in achieving com-
miter status in some projects. On the other hand,
we find that a high concentration is correlated
with possible problems in the product quality and
maintainability. It has to be noted that the direc-
tion of this relationship between design aspects
and development organization is not determined:
If the architecture is not modular enough, a high
concentration might show up as a result of this,
as it can preclude more diverse participation.
The other explanation is that classes that are
programmed and/or maintained by a small core
team are more complex due to the fact that these
programmers ‘know’ their own code and do not
see the need for splitting large and complex meth-
ods. One possibility in this case is a refactoring

3030

Effects of Process Characteristics on Product Quality in Open Source Software Development

(Fowler, 1999) for a more modular architecture
with smaller classes and more pronounced use
of inheritance. This would increase the possible
participation, thus maybe in turn leading to lower
concentration and maintainability, together with
other quality aspects. At the beginning of the
development process, a core developer team sets
up the design which is not adjusted to cope with
the increasing number of classes and complexity.
In this case it might be better to split huge classes
into several subclasses, which may also improve
the quality of inheritance and abstraction.

Underlining these results, MacCormack,
Rusnak, and Baldwin (2006) have in a similar
study used design structure matrices to study
the difference between open source and propri-
etary developed software, without further dis-
crimination in development practices. They find
significant differences between Linux, which is
more modular, and the first version of Mozilla.
The evolution of Mozilla then shows purposeful
redesign aiming for a more modular architecture,
which resulted in modularity even higher than
Linux. They conclude that a product’s design
mirrors the organization developing it, in that a
product developed by a distributed team such as
Linux was more modular compared to Mozilla
developed by a collocated team. Alternatively, the
design also reflects purposeful choices made by
the developers based on contextual challenges,
in that Mozilla was successfully redesigned for
higher modularity at a later stage.

Regarding the number of authors, the results
need to be explored further and put into context of
the findings on concentration: We found on class
level a negative impact, while on project level a
positive effect. This underlines a central statement
of open source software development on a general
level, that as many people as possible should be
attracted to a project. On the other hand, these
resources should, from the viewpoint of product
quality, be organized in small teams. Ideally, on
both levels, the effort is not concentrated on too
few of the relevant participants. This is certainly

not contrary to conventional software engineering
knowledge, which can be found to hold in this
context as well.

The implications of these findings need to be
discussed in two different contexts, the first one
being within open source projects, and also in gen-
eral. These two settings differ significantly, most
relevantly in the general aims, the possibilities
for intervention by project management, and also
the motivation of participants. In an open source
project, a management in classical form does not
exist, although often a maintainer, inner circle,
or other authority (although with mostly minimal
impact) could be interested in the organization of
work within the project. Also the aims of a project,
and interwoven with this, the motivations of par-
ticipants are very much different from commercial
settings, and they need to be considered. Therefore
there are very limited possibilities for any central
agency to manage and steer the participants, or
they might lose motivation and leave the project.
On the other hand, management responsibilities
are often taken up by the founding group of a
project. In case of early phases of a project, the
design should therefore strive to allow for these
teams to form by providing an appropriate number
of classes within a modular architecture, termed
by MacCormack et al. (2006) as “architecture
of participation.” Executing a refactoring within
the context of a large and well-established open
source project often might prove difficult, but
a central agency should carefully monitor the
respective metrics as described in this article to
gain an understanding of possible future problems,
both in quality and participation aspects. If those
are identified, soft measures might be applied to
encourage the participants to adjust, for example
by using increased reputation and recognition for
people participating in such efforts. In addition,
the lack of formal design specification often
associated with open source projects should be
overcome. Again, taking up these tasks should be
rewarded within the reputation structure, while
other possible motivational factors like training

 3031

Effects of Process Characteristics on Product Quality in Open Source Software Development

are naturally offered in this context. MacCormack
et al. (2006) have shown with the Mozilla case
that such efforts can be successful. In our study,
we have found evidence for a refactoring having
taken place in the Maverick project based on log
messages, which is now top ranking in method
size and complexity measures.

In a commercial context, many of the problems
as discussed above do not apply, so manage-
ment has more possibilities to enforce a certain
organization of work or a necessary refactoring.
The organizational form of ‘chief programmer
team organization’ (Mills, 1971; Baker, 1972),
also termed ‘surgical team’ by Brooks (1995),
has system development divided into tasks each
handled by a chief programmer who is responsible
for the most part of the actual design and coding,
supported by a larger number of other specialists
like a documentation writer or a tester. A similar
form of development seems to be adopted by open
source projects, although a too highly concentrated
form does not perform well given the negative ef-
fects associated with high concentration. Possibly
the single-author projects in our sample form an
example of this organization. Only one person
has access to the source code and is assisted by
a larger number of other participants.

In arriving at the results of this study, we
found that the creation of dichotomous variables
helped in several ways, although the thresholds
remain a problematic point. The huge number of
available and sometimes highly correlated product
metrics can be aggregated into a more manage-
able and interpretable set in this way, and effects
on quality can more easily be analyzed. For the
process metrics applied, we found that different
calculation approaches for the GINI coefficient
did not change the results in a significant way. The
effort indicator OSSPM introduced did not give
much additional information as well, although
the high correlation to other metrics like commits
need not be present in all data sets. We propose
that the invested effort might still be considered
as an important factor.

conclusIon

The analysis described in this article has tried
to enhance prior studies on OSS by providing
an empirical validation of relationships between
process attributes and product quality. We pre-
sented and applied a method to calculate and merge
both metrics, addressing both dimensions from
online versioning repositories. In this article we
have focused on the investigation of frameworks
for the development of Web-based applications,
which therefore offer similar functionalities and
are suitable for a comparison. The results clearly
show that it is possible to gather the necessary
information to find relationships between process
and product metrics. Using mostly object-oriented
product metrics focusing on quality by employing
a subset of the well-known Chidamber and Ke-
merer (1994) metrics, complemented with several
metrics proposed by Lorenz and Kidd (1995) and
several process metrics including total number of
commits and the number of distinct programmers
as well as the GINI coefficient as a measure of
inequality within the developer group, we found
that indeed significant relationships exist. This un-
derlines the results of MacCormack et al. (2006).
We identify the number of commits, the number
of distinct programmers, and the active time as
factors of influence which have a negative effect
on quality. In particular, complexity and size are
negatively influenced by these process metrics.
Furthermore a high concentration of added work
fosters bad quality. In discussing reasons for this
finding, one explanation for this relationship might
be found in a missing necessary refactoring of the
design. We have also discussed the reasons for
this and implications for practice.

Limitations of this work can certainly be found
in the thresholds applied for defining methods as
faulty based on experiences with C++ projects.
Using preliminary sensitivity analysis, we have
explored the impact of small changes of up to 20%
on the threshold values and found that the main
results presented here are still valid. Nevertheless,

3032

Effects of Process Characteristics on Product Quality in Open Source Software Development

more work should be invested in this area to ar-
rive at sensible thresholds, especially for Java and
related programming languages. Another issue
to be further explored in later studies are effects
on different levels: we have tried to account for
project-level influences on classes using a multi-
level modeling approach, but the fact that some
classes might be matched pairs across projects,
while others are not, might still pose a problem.
We have also found that differences between the
projects in the effects of process metrics exist,
but the attributes mitigating these still remain to
be explored. Although we have tried to achieve a
relatively homogeneous set of projects, differences
in functionality and other aspects persist. Natu-
rally, larger data samples would also be of high
interest, especially a comparison of OSS projects
with commercial software development, which
might more prominently show differences in the
development process. Furthermore, a longitudinal
study of both product and process metrics over the
lifetime and evolution of a project might provide
more insights, as well as exploring the influence
of process metrics on maintainability, which has
been investigated in some studies (Deligiannis,
Shepperd, Roumeliotis, & Stamelos, 2003;
Fioravanti & Nesi, 2001; Samoladas, Stamelos,
Angelis, & Oikonomou, 2004). Our study only
gives qualitative evidence of maintainability.

Overall, we think that this study provides a first
step despite these limitations. We have provided
evidence regarding relationships between process
and product measures in open source software
development, and pointed out several characteris-
tics tending to lead to lower product quality. This
serves as a starting point for devising strategies to
effectively manage projects for achieving higher
quality and maintainability. Additional research
can also benefit from observations regarding the
method applied in this study, and might yield even
more insights, leading to improvements in OSS
and other software development processes.

rEfErEncEs

Atkins, D., Ball, T., Graves, T., & Mockus, A.
(1999). Using version control data to evaluate the
impact of software tools. Proceedings of the 21st
International Conference on Software Engineer-
ing (pp. 324–333). Los Angeles: ACM Press.

Baker, F.T. (1972). Chief programmer team
management of production programming. IBM
Systems Journal, 11(1), 56–73.

Basili, V.R., Briand, L.C., & Melo, W.L. (1996).
A validation of object-oriented design metrics as
quality indicators. IEEE Transactions on Software
Engineering, 22(10), 751–761.

Basset, T. (2004). Coordination and social struc-
tures in an open source project: Videolan. In S.
Koch (Ed.), Open source software development
(pp. 125-151). Hershey, PA: Idea Group.

Bollinger, T., Nelson, R., Self, K.M., & Turn-
bull, S.J. (1999). Open-source methods: Peering
through the clutter. IEEE Software, 16(4), 8–11.

Briand, L., Wüst, J., Ikonomovski, S., & Lounis, H.
(1998). A comprehensive investigation of quality
factors in object-oriented designs: An industrial
case study. Technical Report ISERN-98-29, In-
ternational Software Engineering Network.

Briand, L.C., Wüst, J., Daly, J.W., & Porter, D.V.
(2000). Exploring the relationship between design
measures and software quality in object-oriented
systems. Journal of Systems and Software, 51(3),
245–273.

Brooks, F.P. Jr. (1995). The mythical man-month:
Essays on Software engineering (anniv. ed.).
Reading, MA: Addison-Wesley.

Chidamber, S., & Kemerer, C.F. (1994). A metrics
suite for object oriented design. IEEE Transactions
on Software Engineering, 20(6), 476–493.

 3033

Effects of Process Characteristics on Product Quality in Open Source Software Development

Chidamber, S.R., Darcy, D.P., & Kemerer, C.F.
(1998). Managerial use of metrics for object-ori-
ented software: An exploratory analysis. IEEE
Transactions on Software Engineering, 24(8),
629–639.

Chidamber, S.R., & Kemerer, C.F. (1991). To-
wards a metric suite for object oriented design.
Proceedings of the 6th ACM Conference of Object
Oriented Programming, Systems, Languages
and Applications (pp. 197–211). Phoenix, AZ:
ACM Press.

Coleman, E.G., & Hill, B. (2004). The social
production of ethics in debian and free software
communities: Anthropological lessons for vo-
cational ethics. In S. Koch (Ed.), Open source
software development (pp. 273–295). Hershey,
PA: Idea Group.

Conte, S.D., Dunsmore, H., & Shen, V. (1986).
Software engineering metrics and models. Menlo
Park, CA: Benjamin/Cummings.

Cook, J.E., Votta, L.G., & Wolf, A.L. (1998). Cost-
effective analysis of in-place software processes.
IEEE Transactions on Software Engineering,
24(8), 650–663.

Crowston, K., & Scozzi, B. (2002). Open source
software projects as virtual organizations: Com-
petency rallying for software development. IEE
Proceedings—Software Engineering, 149(1),
3–17.

Cusumano, M.A. (2004). Reflections on free and
open software. Communications of the ACM,
47(10), 25–27.

Deligiannis, I., Shepperd, M., Roumeliotis, M., &
Stamelos, I. (2003). An empirical investigation of
an object-oriented design heuristic for maintain-
ability. Journal of Systems and Software, 65(2),
127–139.

Demetriou, N., Koch, S., & Neumann, G. (2006).
The development of the OpenACS community.
In M. Lytras & A. Naeve (Eds.), Open source for

knowledge and learning management: Strate-
gies beyond tools (pp. 298–318). Hershey, PA:
Idea Group.

Dempsey, B.J., Weiss, D., Jones, P., & Greenberg, J.
(2002). Who is an open source software developer?
Communications of the ACM, 45(2), 67–72.

Dinh-Tong, T.T., & Bieman, J.M. (2005). The
FreeBSD project: A replication case study of
open source development. IEEE Transactions on
Software Engineering, 31(6), 481–494.

Dutoit, A.H., & Bruegge‚ B. (1998). Communi-
cation metrics for software development. IEEE
Transactions on Software Engineering, 24(8),
615–628.

Elliott, M.S., & Scacchi, W. (2004). Free soft-
ware development: Cooperation and conflict in a
virtual organizational culture. In S. Koch (Ed.),
Open source software development (pp. 152–172).
Hershey, PA: Idea Group.

Erickson, J., Lyytinen, K., & Siau, K. (2005). Agile
modeling, agile software development, and ex-
treme programming: The state of research. Jour-
nal of Database Management, 16(4), 88–99.

Fayad, M.E., & Schmidt, D.C. (1997). Object-ori-
ented application frameworks. Communications
of the ACM, 40(10), 32–39.

Feller, J., Fitzgerald, B., Hissam, S.A., & Lakhani,
K.R. (Eds.). (2005). Perspectives on free and open
source software. Cambridge, MA: MIT Press.

Fenton, N.E. (1991). Software metrics—a rigorous
approach. London: Chapman & Hall.

Fioravanti, F., & Nesi, P. (2001). Estimation and
prediction metrics for adaptive maintenance effort
of object-oriented systems. IEEE Transactions on
Software Engineering, 27(12), 1062–1084.

Fischer, M., Pinzger, M., & Gall, H. (2003). Popu-
lating a release history database from version
control and bug tracking systems. Proceedings
of the 19th IEEE International Conference on

3034

Effects of Process Characteristics on Product Quality in Open Source Software Development

Software Maintenance (pp. 23–32), Amsterdam,
The Netherlands.

Fogel, K. (1999). Open source development with
CVS. Scottsdale: CoriolisOpen Press.

Fowler, M. (1999). Refactoring: Improving the de-
sign of existing code. Boston: Addison-Wesley.

Gallivan, M.J. (2001). Striking a balance between
trust and control in a virtual organization: A con-
tent analysis of open source software case studies.
Information Systems Journal, 11(4), 277–304.

German, D. (2006). A study of contributors of
PostgreSQL. Proceedings of the International
Workshop on Mining Software Repositories
(MSR’06), Shanghai.

Ghosh, R.A., & Prakash, V.V. (2000). The Orbiten
free software survey. First Monday, 5(7).

Goldstein, H. (1999). Multilevel statistical models.
London: Arnold.

Hahsler, M., & Koch, S. (2005). Discussion of a
large-scale open source data collection method-
ology. Proceedings of the Hawaii International
Conference on System Sciences (HICSS-38), Big
Island, HI.

Hansen, M., Köhntopp, K., & Pfitzmann, A.
(2002). The open source approach—opportuni-
ties and limitations with respect to security and
privacy. Computers & Security, 21(5), 461–471.

Henderson-Seller, B. (1996). Object-oriented
metrics: Measures of complexity. Upper Saddle
River, NJ: Prentice Hall.

Hertel, G., Niedner, S., & Hermann, S. (2003).
Motivation of software developers in open source
projects: An Internet-based survey of contribu-
tors to the Linux kernel. Research Policy, 32(7),
1159–1177.

Humphrey, W. (1995). A discipline for software
engineering. Reading, MA: Addison-Wesley.

Hunt, F., & Johnson, P. (2002). On the pareto
distribution of sourceforge projects. Proceed-
ings of the Open Source Software Development
Workshop (pp. 122–129), Newcastle, UK.

Johnson, R. (1997). Frameworks=(components+
patterns). Communications of the ACM, 40(10),
39–42.

Jones, C. (1986). Programming productivity. New
York: McGraw-Hill.

Kemerer, C.F., & Slaughter, S. (1999). An em-
pirical approach to studying software evolution.
IEEE Transactions on Software Engineering,
25(4), 493–509.

Klein, K.J., Tosi, H., & Cannella, A.A. Jr. (1999).
Multilevel theory building: Benefits, barriers,
and new development. Academy of Management
Review, 24(2), 243–248.

Koch, S. (2004). Profiling an open source project
ecology and its programmers. Electronic Markets,
14(2), 77–88.

Koch, S. (2004a). Agile principles and open source
software development: A theoretical and empiri-
cal discussion. Extreme Programming and Agile
Processes in Software Engineering: Proceedings
of the 5th International Conference XP 2004 (pp.
85–93). Berlin: Springer-Verlag (LNCS 3092).

Koch, S., & Schneider, G. (2002). Effort, coopera-
tion and coordination in an open source software
project: GNOME. Information Systems Journal,
12(1), 27–42.

Koru, A.G., & Tian, J. (2004). Defect handling
in medium and large open source projects. IEEE
Software, 21(4), 54–61.

Koru, A.G., & Tian, J. (2005). Comparing high-
change modules and modules with the highest
measurement values in two large-scale open-
source products. IEEE Transactions on Software
Engineering, 31(8), 625–642.

 3035

Effects of Process Characteristics on Product Quality in Open Source Software Development

Kreft, I., & de Leeuw, J. (2002). Introducing
multilevel modeling. London: Sage.

Krishnamurthy, S. (2002). Cave or community?
An empirical investigation of 100 mature open
source projects. First Monday, 7(6).

Long, Y., & Siau, K. (2007). Social network
structures in open source software development
teams. Journal of Database Management, 18(2),
25–40.

Lorenz, M., & Kidd, J. (1995). Object oriented
metrics. Upper Saddle River, NJ: Prentice Hall.

MacCormack, A., Rusnak, J., & Baldwin, C.Y.
(2006). Exploring the structure of complex soft-
ware designs: An empirical study of open source
and proprietary code. Management Science, 52(7),
1015–1030.

McCabe, T. (1976). A complexity measure. IEEE
Transactions on Software Engineering, 2(4),
308–320.

McConnell, S. (1999). Open-source methodol-
ogy: Ready for prime time? IEEE Software,
16(4), 6–8.

Merisalo-Rantanen, H., Tuunanen, T., & Rossi, M.
(2005). Is extreme programming just old wine in
new bottles: A comparison of two cases. Journal
of Database Management, 16(4), 41–61.

Mills, H.D. (1971). Chief programmer teams:
Principles and procedures. Report FSC 71-5108,
IBM Federal Systems Division, USA.

Mockus, A., Fielding, R.T., & Herbsleb, J.D.
(2002). Two case studies of open source software
development: Apache and Mozilla. ACM Transac-
tions on Software Engineering and Methodology,
11(3), 309–346.

Morisio, M., Romano, D., & Stamelos, I. (2002).
Quality, productivity and learning in framework-
based development: An exploratory case study.
IEEE Transactions on Software Engineering,
28(8), 340–357.

Murdoch, D.J., & Chow, E.D. (1996). A graphical
display of large correlation matrices. The Ameri-
can Statistician, 50(2), 178–180.

Neumann, C. (2002). Jsp- und Servlet-basierte
frameworks für Web-applikationen. Master’s
Thesis, Universität Karlsruhe, Germany.

Park, P. (1992). Software size measurement:
A framework for counting source statements.
Technical Report CMU/SEI-92-TR-20, Software
Engineering Institute, Carnegie Mellon Univer-
sity, USA.

Payne, C. (2002). On the security of open source
software. Information Systems Journal, 12(1),
61–78.

Perens, B. (1999). The open source definition. In
C. DiBona, S. Ockman, & M. Stone (Eds.), Open
sources: Voices from the open source revolution
(pp. 171–188). Cambridge, MA: O’Reilly & As-
sociates.

Prieto-Diaz, R. (1993). Status report: Software
reusability. IEEE Software, 10(3), 61–66.

Raymond, E.S. (1999). The cathedral and the
bazaar: Musings on Linux and open source by
an accidental revolutionary. Sebastopol, CA:
O’Reilly & Associates.

Robles-Martinez, G., Gonzalez-Barahona, J.M.,
Centeno-Gonzalez, J., Matellan-Olivera, V., &
Rodero-Merino, L. (2003). Studying the evolution
of libre software projects using publicly available
data. Proceedings of the 3rd Workshop on Open
Source Software Engineering—25th Interna-
tional Conference on Software Engineering (pp.
111–115), Portland, OR.

Samoladas, I., Stamelos, I., Angelis, L., &
Oikonomou, A. (2004). Open source software
development should strive for even greater code
maintainability. Communications of the ACM,
47(10), 83–87.

3036

Effects of Process Characteristics on Product Quality in Open Source Software Development

Snijders, T.A.B., & Bosker, R.J. (2003). Multilevel
analysis: An introduction to basic and advanced
multilevel modeling. London: Sage.

Stallman, R.M. (2002). Free software, free so-
ciety: Selected essays of Richard M. Stallman.
Boston: GNU Press.

Stamelos, I., Angelis, L., Oikonomou, A., &
Bleris, G.L. (2002). Code quality analysis in
open source software development. Information
Systems Journal, 12(1), 43–60.

Subramanian, G., & Corbin, W. (2001). An em-
pirical study of certain object-oriented software
metrics. Journal of Systems and Software, 59(1),
57–63.

Subramanyam, R., & Krishnan, M.S. (2003). Em-
pirical analysis of ck metrics for object-oriented
design complexity: Implications for software

defects. IEEE Transactions on Software Engi-
neering, 29(4), 297–309.

Thuraisingham, B. (2005). Privacy-preserving
data mining: Development and directions. Journal
of Database Management, 16(1), 75–87.

Turk, D., France. R., & Rumpe, B. (2005). As-
sumptions underlying agile software-development
processes. Journal of Database Management,
16(4), 62–87.

Vixie, P. (1999). Software engineering. In C.
DiBona, S. Ockman, & M. Stone (Eds.), Open
sources: Voices from the open source revolu-
tion (pp. 91–100). Cambridge, MA: O’Reilly &
Associates.

Witten, B., Landwehr, C., & Caloyannides, M.
(2001). Does open source improve system secu-
rity? IEEE Software, 18(5), 57–61.

This work was previously published in the Journal of Database Management, edited by K. Siau, Volume 19, Issue 2, pp. 31-57,
copyright 2008 by IGI Publishing (an imprint of IGI Global).

 3037

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.24
A Graphical User Interface (GUI)

Testing Methodology
Zafar Singhera

ZAF Consulting, USA

Ellis Horowitz
University of Southern California, USA

Abad Shah
R & D Center of Computer Science, Pakistan

AbstrAct

Software testing in general and graphical user
interface (GUI) testing in particular is one of the
major challenges in the lifecycle of any software
system. GUI testing is inherently more difficult
than the traditional and command-line interface
testing. Some of the factors that make GUI testing
different from the traditional software testing and
significantly more difficult are: a large number of
objects, different look and feel of objects, many
parameters associated with each object, progres-
sive disclosure, complex inputs from multiple
sources, and graphical outputs. The existing test-
ing techniques for the creation and management of
test suites need to be adapted/enhanced for GUIs,
and new testing techniques are desired to make
the creation and management of test suites more

efficient and effective. In this article, a methodol-
ogy is proposed to create test suites for a GUI.
The proposed methodology organizes the testing
activity into various levels. The tests created
at a particular level can be reused at higher
levels. This methodology extends the notion
of modularity and reusability to the testing
phase. The organization and management of
the created test suites resembles closely to the
structure of the GUI under test.

IntroductIon

Graphical user interfaces (GUl) are an important
part of any end-user software application today
and can consume significant design, develop-
ment, and testing activities. As much as half

3038

A Graphical User Interface (GUI) Testing Methodology

of the source code of a typical user-interaction
intensive application can be related to user inter-
faces (Harold, Gupta, & Soffa, 1993; Horowitz
& Singhera, 1993). GUIs provide an easier way
of using various functions of the application by
organizing them in a hierarchy of options and
presenting only the options which make sense
in the current working context. GUIs help users
concentrate on the problem instead of putting
efforts in remembering all the options provided
by the software application that is being used to
solve the problem, or searching for the right op-
tion from a huge list of options provided by the
application. Graphical user interfaces organize
the standard user actions and working paradigms
into various components that are presented
graphically to the user during various usage and
application contexts. GUIs enhance the usability
of an application significantly. However it also
makes application development, testing and
maintenance significantly more difficult (My-
ers, 1993; Wittel & Lewis,1991). The nature of
GUI applications, their asynchronous mode of
operation, nontraditional input and output, and
hierarchical structure for user interaction make
their testing significantly different and difficult
from the traditional software testing.

Functional and regression testing of graphi-
cal user interfaces is significantly more complex
than testing of traditional non-GUI applications
because of the additional complexities mentioned
in the previous paragraph. A number of commer-
cial tools, like Mercury Interactive’s WinRunner,
XRunner and Segue Software’s SilkPerformer,
are used in the industry to test graphical user
interfaces. These tools provide capture/replay
capabilities to test a graphical user interface.
Although functionality provided by these tools
is sufficient for typical recored/replay scenarios
but they lack an underlying model that can pro-
vide more information about the test coverage
or to determine the quality of the user interface
from a particular functional or implementation

perspective. These tools also do not provide a
framework that assists in organized and modular
testing. The methodology presented in this article
uses user interface graphs (UIG) as a framework
for organization of test scripts, generation of
modular test suites, and coverage analysis of a
test execution.

In this article, we propose a methodology for
regression testing of graphical user interfaces,
with and without a formal specification of the ap-
plication under test. The remainder of this article is
organized as follows: Section 2 highlights some of
the best practices and recommendations that help
in testing a GUI application in an organized fash-
ion, improve efficiency and effectiveness of test-
ing, reduces possibility of errors, and minimizes
repeated work. Section 3 describes the major steps
of the proposed methodology. It also introduces
a sample X application, called Xman, which is
used to demonstrate the effectiveness of the sug-
gested strategy. Section 4 demonstrates the testing
methodology when formal specifications of the
application under test are not available. Section 5
illustrates the proposed testing methodology when
the formal specifications of the application under
test are available. This section also describes the
way statistics are collected during a testing activity
and how those can be used to improve the quality
of the testing. Section 6 points out the situations
when a modification to the application under test
might require tuning or recapturing of some of
the test scripts. Section 7 concludes the article
by summarizing our contribution and providing
hints about the future related work.

GuI testInG: best PrActIces
And recommendAtIons

In this section, we highlight some of the sought
features, well-knows best practices and recom-
mendations for planning a testing activity for a
graphical user interface.

 3039

A Graphical User Interface (GUI) Testing Methodology

• Every element of the GUI should be consid-
ered as an object uniquely identifiable by a
name. The objects should have a well-defined
set of parameters and their response to the
outside events should also be well defined.

• The testing activity should be planned
carefully around a formal model of the
application under test. This model should
be powerful enough to provide automatic
test generation and coverage analysis.

• Testing of a GUI should be performed in
a layered fashion. The list of objects to be
tested at a particular level, is either built
dynamically while testing at lower levels
or from the specifications of the application
under test. The list of objects for the lowest
level is the basic widget, supported by the
underlying toolkit. While testing the highest
level, it considers the entire application as a
single object. The decision about the number
of testing levels and the qualifying criteria
for a particular testing level must be made
before creating any tests.

• The tests should be organized as a hierarchy
of scripts, that is, files containing commands
to simulate user actions and verify results.
This hierarchy should closely correspond to
the object hierarchy of the application under
test. Each directory in the hierarchy holds
scripts that are related to a particular object
and its descendents. The individual scripts
should be as small as possible and should
test one particular feature of each object.
However, if the features are related and
simple, then they can be grouped together
in the same script.

• Each script should begin with a cleat and
precise description of the intended purpose
of the script and the state of the application
required for its proper execution. A script
should be divided into three sections. The
first section of the script builds the environ-
ment required to test the particular feature of

the application, the script is intended for. The
second section of the script tests the intended
feature of the application being tested by the
script. The third section restores the state
of the AUT and the operating environment,
to a point that existed before entering the
script.

• A script should be created in such a way
that some or all the sections of the script
can be executed by calling the script from
another script. It provides reusability feature
in testing also.

• Instead of manually capturing or replaying
the test scripts, a tool should be used to
perform these functions automatically and
verify the behavior of the application under
test. The tool should be capable of addressing
an object in the GUI by its symbolic name,
instead of its location, dimensions or any
other contextual information.

• The data for the result verification should be
captured in terms of object attributes when
possible and only those attributes should
be captured which are critical to verify the
functions of the application, being tested by
the current script. If image comparisons are
unavoidable, then the images should be cap-
tured with reference to the smallest enclosing
object and area of the captured images should
not be more than absolutely required. The
number of verifications should also be kept
to an absolute minimum especially when
image comparisons are involved.

• The script commands to simulate user
actions during the replay and the data for
verification of the AUT behavior should be
kept separately. This separation is required
because the verification data might change
depending on the environment while the
script commands should be independent of
the environment and should be valid across
multiple platforms. If script commands and
verification data are stored separately, then

3040

A Graphical User Interface (GUI) Testing Methodology

it is easier to port a test suite across mul-
tiple platforms. In fact, a good tool should
automatically perform the porting from one
hardware platform to the other.

Proposed methodology for GuI
testing

This section proposes a methodology for the
testing of a graphical user interface (GUI). This
proposed methodology is suitable particularly
when one has a tool similar to Xtester (Horowitz
& Singhera, 1993). It follows the recommendations
provided in the previous section. The methodology
works in the following two scenarios:

i. Testing without formal specifications/model
of the application under test

ii. Testing with a formal model of the applica-
tion.

Both these scenarios are described in the fol-
lowing subsections.

testing without a Formal model

Creation of formal specifications of a GUI ap-
plication for its testing purposes is a difficult
task and requires a significant amount of effort.
It is also not feasible to invest resources in creat-
ing the formal specifications of the application;
hence the testing has to be performed without it.
The best thing that can be done in such a situa-
tion is to incrementally build a test hierarchy for
the application, by capturing-user sessions in
an organized way. Automatic test generation or
coverage analysis is not possible without formal
specifications of the application under test. The
major steps of the proposed methodology to test
an application without a specification are given
below:

Step 1: Initialization

Make basic decisions about the testing activity.
Some of the most important decisions, which must
be taken at this point, are:

• The number of testing levels and criteria to
build list of objects for a particular level.

• Initialize a list of objects for each level that
holds the names and some information
about the objects of the user interface. The
information includes the way the object can
be mapped on the screen, the mechanism to
unmap it from the screen, and if it has been
tested or not.

• The location of the test suite and its organi-
zation.

• The application resources that will be
used during this testing activity should be
listed.

Step 2: Building the Initial Object List

Go through the documentation of the application
under test and find all the top-level windows,
which might appear as starting windows of the
application. These windows and, their related
information is added to the list of objects for the
first testing level and marked as tested.

Step 3: Building Test Suite

Take the first object from the top of the object list,
which has not been tested, and create test scripts
for it. The procedure for creating test scripts for
a particular object is given in Figure 1. The sub-
objects of the object under test are added to the list
of objects by scanning the object from left to right
and top to bottom. Keep on taking objects from
the top of the object list and testing them until all
the objects in the list are marked as tested. When
the list associated with a particular level has no

 3041

A Graphical User Interface (GUI) Testing Methodology

untested object, start testing objects from the list,
associated with the next higher level. This process
continues until all the levels are tested.

Step 4: Creating Script Drivers

Write higher level scripts for all the top level
windows for any other complex objects, each
of the testing levels and for the entire test suite.
These scripts will replay all the scripts related to
the object and its descendents. The highest-level
script driver should replay each and every script
in the suite.

Step 5: Testing the Test Suite

Make sure that all the scripts and script drivers
work properly and cover all the features of the
application, which needs to be tested. One cannot
do much automatically to determine the quality
of a test suite, in the absence of a formal model
of the application under test. After the creation of

the test suite, run the highest-level script driver
to verify that all the scripts in the suite are ca-
pable of properly replaying and trying to match
the features covered by the test suite with those
included in the test requirements or application
documentation

testing with a Formal model

The strategy to build test scripts without a formal
specification, discussed in the previous subsection,
puts a lot of responsibility on the person creating
those scripts. The strategy also requires that the
application under test should be running reliably
before the capturing of script is even started. The
scripts created without any formal specification
are also vulnerable to any modification in the
application, which affects its window hierarchy.
It requires that after making any changes to the
application under test, the affected scripts should
be located manually and recaptured or tuned to
offset the modification in the application. It is also

Display the_ object on the screen and verify its ap-
pearance;
If the object has sub-objects
 Add its immediate sub-objects at the top of the
list;
If the object qualifies for a higher testing level
Add it to the list of objects for the higher level;
Send expected events to the object and verify its
response;
If a new object appears in response to the event
if the new object is not listed as a tested object
 Add it to the end of the list;

Figure 1. Strategy for testing without specifications

3042

A Graphical User Interface (GUI) Testing Methodology

not possible to create test scripts automatically or
to get a coverage measure after running a set of
test suites. To overcome these drawbacks and get
access to advanced features like automatic test
generation and coverage analysis, one has to invest
some effort to formally specify the application
under test. This section provides a methodology
to test an application when its formal specifica-
tion is provided or resources are available to
build such a specification. The following are the
major steps of the testing methodology when a
formal specification of an application under test
is available.

Step1: Building the Model

Build a user interface graph of an application
under test. When resources permit, the very first
step in testing the application should be to build
a formal model of the application under test.
XTester provides such a formal model, called user
interface graph (UIG). UIG provides information
about the object hierarchy of the application. It
also provides information about the nature of a
particular object and the effects of an event in an
object to the other objects in the user interface.
A UIG can be built manually by creating a user
interface description language (UIDL) file, or it
can be created semi-automatically by steering
through the application under test and filling in
the missing information about the objects (see
Horowitz & Singhera, 1993) for more details on
syntax of UIDL and UIG).

Step 2: Initialization

Make basic decisions about the testing activity.
Some of the most important decisions, which must
be taken at this point, are listed as follows:

• The number of testing levels and qualifying
criteria for each testing level.

• The location of the test suite and its organi-
zation.

• The application resources that will be used
during this testing activity.

Step 3: Build Object Lists

Build a list of objects for each testing level. After
building the formal model, it is possible to build
the object lists for all testing levels. The procedure
for building those lists is to start from the root
of the UIG and perform a post-order walk of the
object hierarchy. Add each visited node to the
object lists associated with the levels, for which
it qualifies.

Step 4: Building Test Suite

The strategy for capturing scripts without any
formal specification, which has been discussed
in the previous section, can also be used for
capturing scripts when the application has been
specified formally. However, capturing scripts
with formal specifications provides us some ad-
ditional advantages over the scripts which have
been captured without any specification. These
advantages include an overall picture of the ap-
plication under test, and hence a more efficient
test suite, a test suite which is less affected by the
changes in the application, automatic test genera-
tion, and coverage analysis.

Step 5: Creating Script Drivers

Write higher level scripts for all the top level
windows or any other complex objects, each of
the testing levels and for the entire test suite.
These scripts will replay all the scripts related
to the object and its descendents. A highest-level
script driver should replay each and every script
in the suite. These scripts can also be created
automatically.

 3043

A Graphical User Interface (GUI) Testing Methodology

Step 6: Coverage Analysis

Once a test suite has been created; it should be
replayed in its entirety to determine the coverage
provided by the test suite. This coverage should
be performed at each level, that is, the coverage
criteria for level-I should be the verification of all
the objects in the application that have been cre-
ated, mapped, unmapped and destroyed, at least
once and every event expected by an object, has
been exercised on it at least once. The criteria for
higher levels is to make sure that all the interac-
tions and side effects among objects which make
a composite object at the corresponding level, has
been verified.

An IntroductIon to XmAn

In this section, we introduce the application Xman,
which is used to demonstrate the effectiveness
of the methodology, discussed in the previous
section. Xman is a small application which is dis-
tributed with the standard X release. It provides a
graphical user interface to the UNIX man utility.
It has been developed using the Athena widget
set and some of its windows are shown in Figure
1. The following paragraphs briefly describe the
functionality of Xman.

When Xman is started, it displays its main
window, called Xman, by default. This main
window contains three buttons: Help, Manual
Page and Quit. Clicking on the manual page but-
ton, it displays a window, called manual page. A
Help window is displayed when the help button
is clicked. The quit button is used to exit from
Xman.

The manual page window is organized into
various sections. A breathe top of the window
contains two menu buttons, options and sections,
in the left half and a message area in the right. The
rest of the area below the bar, called text area, is
used to display the names of the available manual

pages in the currently selected section, and the
contents of the currently selected manual page.
Both the names and contents portions of the text
area are resizable and have vertical scrollbars
on the left.

The Options menu contains the following
entries:

• Display Directory: It displays names of
manual pages in the entire text area.

• Display Manual Page: It displays contents
of the currently selected manual page in the
entire text area.

• Help: It displays a help window.
• Search: It displays a dialog box to enter the

name of a manual page to search for.
• To show both screens, the area is vertically

divided into two halves, with the upper half
showing the directory contents of currently
selected man page section and the lower
half showing the contents of the currently
selected manual page. This option toggles
to Show One Screen and also disables menu
entries Display Directory and Display
Manual Page.

• Remove This Manpage: It removes the
Manual Page window from the screen.

• Open New Manpage: It creates another
Manual Page window.

• Show Version: It displays the current ver-
sion ofXman in the Message area

• Quit: exits from the Xman application.

The Sections menu contains one option for
each manual page section available on the system.
The standard options are User Commands, System
Calls, Subroutines, Devices, File Format, Games,
Miscellaneous, and System Administration.

The Help window displays a limited version
of the Manual Page window. The window has
exactly the same structure as the Manual Page
window but the Sections menu button and the first
five options in the Opt ions menu are disabled.

3044

A Graphical User Interface (GUI) Testing Methodology

It displays man page for Xman itself. No more
than one Help window can exist at a time while
an arbitrary number of Manual Page windows
can be created.

The testing of Xman has been organized in
three layers. The first layer verifies the behavior of
individual GUI objects. The second layer verifies
the inter-object effects among objects belonging
to the same top level window. The third layer
verifies the inter-object effects among objects
belonging to different top level windows. The
following sections provide details of this testing
activity.

testInG wIthout FormAl
sPecIFIcAtIons

This section provides a demonstration for the test-
ing of Xman, when no formal model is available
for it. The following subsections demonstrate
each step of the methodology, described in Sec-
tion 2.

Initialization

• Number of testing levels: As Xman is a
fairly small and simple application, so the
testing activity is organized in three (3)
levels. The first level tests the individual
objects in Xman. The second and third levels
verify the interactions and side effects of the
objects which belong to the same top level
window and different top level windows,
respectively.

• Location of the test suite: Suppose that the
root directory for the test suite being cap-
tured, is Xman Test. This directory contains
resource file(s) used during testing, and the
result files are created in the directory, by
default. It also has three subdirectories, that
is, Leve1-1, Leve1-2 and Leve1-3, one for
each testing level.

• Object list: A list of objects, called Obj List, is
initialized. This list contains information about
the objects and is initialized to be empty.

• Application resources: ~/XmanTest/
Xman.Defau1ts is the file which contains
the default application resources of Xman
for this testing activity and these resources
always remains the same.

building the Initial object list

By default, Xman starts with a top box, called
Main Window in Figure 2. However, a com-
mand line option, -notopbox, is available which
can be used to bypass the Main Window and
display the Manual Page window directly. As
Main Window and Manual Page window are the
only windows, which can appear when Xman
is started, so the initial object list contains only
these two objects.

building the test suite

This section provides the details on building
all the three testing levels for Xman. To make
things simple, we only discuss the creation of test
suites related to the Main Window of Xman. We
ignore any keyboard accelerators to which Xman
responds. The test suites for other windows can
be created in a similar way. Figure 3 provides the
hierarchy of scripts related to the Main Window
for all the three testing levels.

First Level

Suppose that the initial object list is built in such
a way so that Xman Main Window is on the
top of the list. We select it as the object under
test and create a new directory, called ~/Xman
Test/Leve1-1/Xman to build test scripts related to
the first level testing. The scripts related to XMan
Main window object display itself the window
on the screen, exercise all the window manager

 3045

A Graphical User Interface (GUI) Testing Methodology

operations on it, and then finally pop-down the
window. DspXmanWin.scr script pop-up the
Xman window and verifies that looks right Re-
moveXman Win.scr pops down the Xman window.
The script XmanMain.scr ruses DspXmanWin.scr
in its entering section to display the Xman window.
It verifies the window manager operations in its
core section and then uses RemoveHe1p Win.
scr script in its leaving section to pop-down the
Xman Window. As soon as the Xman window
pops up on the screen, we see that it contains four
objects, i.e., Manual

Browser Label, Help

There are buttons which are Quit and Manual
Page. Manual Browser label is a static piece
of text and does not respond to any user actions,
so we do not need a script for it. The other three
(3) objects are active objects and respond to user
events so we create one script for each of them.
The entering section of each one of these scripts
calls DspXmanWin.scr to display the Xman
Main Window on the screen. The ending section
of each of these scripts call RemoveXmanwin.

Figure 2. Main windows of Xman

3046

A Graphical User Interface (GUI) Testing Methodology

XmanTest

All.scr

Level-1

All.scr

Xman Help Search

All.scr

DspXmanWin.scr XmanMain.scr RemoveXmanWin.scr

HelpButton.scr QuitButton.scr MainPageButton.scr

Level-2

All.scr

Xman Help Serach

All.scr

MainWindow.scr XmanOrder.scr

Level-3

All.scr

Xman Help Search

All.sc

Help.scr ManualPage.scr Quit.scr

Figure 3: Test Suite Hierarchy of Xman

 3047

A Graphical User Interface (GUI) Testing Methodology

scr to remove the Xman Main Window from
the screen. The core section of Help Button.scr
script verifies the behavior of Help button in
Xman Main Window when it is clicked on by a
mouse button. The core sections of QuitButton.
scr and ManPageBut ton.scr scripts verify the
same thing for Qui t and Manual Page buttons in
Xman Main Window.

Second Level

The object list of the second level contains all the
top level windows of Xman. As we are considering
the Main Window only in this discussion so we
assume that it is at the top of the list and is selected
for the testing. There is not much interaction going
on in the objects which belong to the Xman Main
Window. The only interaction is the disappear-
ance of Main Window, in response to click on
the Quit button. So there will be only one script
related to the Main Window which will verify
that a click on the Quit button actually destroys
the Main Window of Xman. This script is called
MainWindow.scr and is located in ~/XmanTest/
Level2/. This script is also used DspXmanWin.
scr and RemoveXman.scr script to display and
remove the Main Window from the screen. An-
other potential script, let us call it XmanOrder.
scr, related to the Main Window verifies that the
order in which Help or Manual Page buttons are
pressed is insignificant. No matter the Help button
is pressed before or after the Manual Page button,
it displays the Help window properly. The same is
also true for the Manual Page button.

Third Level

The object list of the third level includes the root
object only, and tests any interactions among the
top level windows of Xman can be done. Such
interactions which involve the Main Window of
Xman include display of the Help window and
the Manual Page window in response to mouse

clicks on the Help and the Manual page buttons,
respectively. Similarly, it also includes disap-
pearance of all the windows related to Xman in
response to a click on the Quit button. The three
scripts provided at this level, that is, Help.scr,
ManualPage.scr and Quit.scr, verify the behavior,
related to the corresponding button, mentioned
above. This level might also include scripts which
verify application behavior, like multiple clicks
on the Help button and do not create more than
one Help windows while each click on the Manual
Page button create a new Manual Page window.

Creating Script Drivers

Once all the scripts for Xman has been captured,
we need driver scripts so that all the scripts in
the entire suite, all the scripts in a particular test-
ing level or all the scripts related to a particular
object can be executed automatically in the de-
sired sequence. For example, we create a script
driver, at each testing level, which executes all
the scripts created for testing Xman Main Window
and its descendents, at that particular level. These
scripts are ~/XmanTest/Level-l/Xman/All.scr,-/XmanTest/
Level-2/Xman/All. scr, and ~/XmanTest/Level-3/Xman/All.
scr, respectively. The script ~/ XmanTest/Level-l/All.scr
drive all the scripts created for the first testing level
and similarly the other two drivers execute scripts
related to the other two levels. The script ~/Xman-
Test/All.scr drives all the scripts in all the three levels
of the test suite.

testing the test suite

After the creation of the test suite, it is necessary
to replay all the scripts in the suite and verify if
they work properly and also to make sure that
they cover all the features which need to be tested.
Although, without a formal specification, it is
impossible to perform any reasonable automatic
coverage analysis but at least the replayed events
and the objects which appear during the replay,

3048

A Graphical User Interface (GUI) Testing Methodology

can be matched against application documentation
to determine if any object or event has not been
covered by the generated test suite.

testInG wIth FormAl
sPecIFIcAtIons

This section demonstrates the testing of Xman
when we have enough resources to build a formal
model for Xman. The following subsection il-
lustrates each step of the methodology, described
in Section 2.2.

building the model

When the resources permit, the first step for testing
is building a formal model for the application under

test. Figure 4 displays a User Interface Graph built
for Xman. The Root node of the graph represents
the root window of the screen. The children of
the Root node represent the six top level windows
of Xman. The nodes at lower levels in the graph
represent the descendents of the top level windows.
Let us take the main window of Xman as an ex-
ample. It is represented as MainWin node in the User
Interface Graph. The child of the MainWin node is
the Form node which acts as a container widget
for the buttons and the label in the main window.
The ManPage, Quit and Help nodes represent the
Manual. Page, Quit and Help command buttons
in the main window, respectively. The label node
represents the Manual Browser label in the main
window. The dark black arc from the Manpage
noqe to the Manual Page node represents the fact
that clicking a mouse button over the Manpage

LikeToSav Help

 Root

Manual Page Search StandBy MainWin Section Option

Message Form Form

Form

Form

Help Label ManuBar Quit MainPage 1 2 3

Apropos Cancel MainPage

SCWin 3

Label

Form

MainPage

Message Section Option Scrollbar

TopSW 3 BtmSW 5ManuBar

TopSB TopForm

Text

Message Section Option Scrollbar

 Legend

Parent/Child

Mouse Click:

Text Entry:

2 3 4

Figure 4. User interface graph built for Xman

 3049

A Graphical User Interface (GUI) Testing Methodology

button in the main window affects the top level
window, called Manual Page. The arc from the Quit
node to the Root node represents that a click on
the Quit button affects all the top level windows
of Xman. The type of event represented by an arc
is reflected by the drawing pattern of the arc. The
two arcs mentioned above have the same pattern
and represent button clicks. An arc with a different
pattern is the arc from the Text node to the search
node. This pattern represents text entry and the
arc represents that entering text in the Text node
affect the search dialog box.

Initialization

All the decision and actions taken at the initializa-
tion step, that is, the number of testing levels and
their organization, the location of the test suite
and the application default resources, is kept the
same as for testing without a formal specification,
described in Section 4.1.

building object lists

After building the user interface graph for Xman,
it is possible to build object lists for all levels of
testing. This can be done either manually or auto-
matically by scanning each and every node in the
User Interface Graph and verifying if it qualifies
to be tested on a particular testing level. All the
objects in Xman qualify for the first testing level
and hence are placed on the list associated with
it. The qualifying criterion for the second level
is that the object must be a top level window,
that is, its corresponding node must be a child of
the root of the user interface graph. Some of the
objects which qualify for the second testing level
are Xman Main Window, Manual Page window,
Help window, Search dialog box and so forth. The
third level treats the entire Xman application as
a single object, and its corresponding node, the
root, is the only object which qualifies for the
third level of testing.

building test suite

The strategy for capturing scripts without any
formal specifications, discussed in Section 4.3, can
be used for capturing scripts when the application
has been specified formally. However, capturing
scripts with formal specifications also provides us
the capability to write the test scripts manually
or generate test scripts automatically by using
the formal model and the test requirements. All
of these three techniques for building a test suite
are explained in the following section.

Capturing Scripts

A tool can be used for capturing user sessions for
building a test suite, in exactly the same way as for
capturing without a formal model, as mentioned
in Section 4.3. However, the presence of a formal
model makes the generated scripts more robust
and easy to follow and debug. A formal model
also provides the flexibility that the captured
scripts can be executed in any order without any
conflict in window names. It becomes easier to
modify the test suite in case of a modification to
the application under test. In fact in most cases
the modification can be reflected in the specifica-
tion file and the test suite remains valid without
making any changes.

Writing Scripts Manually

The formal specifications of the application, under
test, also allows the user to write scripts manually,
even for the first level of testing. This feature is
particularly helpful when the test scripts need to
be created in parallel with the application devel-
opment in order to reduce the total development
time. The way it can be organized is to formally
specify the graphical user interface of the applica-
tion once the design is complete. The developers
and testers agree on this formal specification and
any future changes are properly communicated

3050

A Graphical User Interface (GUI) Testing Methodology

between the two groups. Having the formal speci-
fication of the graphical user interface at hand,
the testers can develop the scripts manually in
parallel with the application development. Once
the object hierarchy and the behavior of the objects
is known, the manual writing of test scripts is as
easy as writing a UNIX shell script.

Automatic Test Generation

The formal specifications of an application un-
der test also provide capabilities to generate test
scripts automatically. A tool can be developed,
which will read the specifications of an applica-
tion and create test scripts for a particular level of
testing or the entire test suite. Similar tools can be

developed and used to generate test scripts to test
all the objects of a particular type or all the user
actions of a particular type. For example, such a
tool can generate test scripts to exercise clicks on
each command button in an entire application. A
similar tool can generate a suite of test scripts to
verify that all windows in an application under test
are displayed on the screen at least once. Another
tool might generate scripts to individually select
all the options of each menu in the application
and verify that the application responds in the
expected manner. There can be another tool that
will create scripts for the selection of multiple
menu options and/or command buttons in differ-
ent sequences to verify the application response.
All the mentioned tools will only create scripts

Figure 5. Pseudo Code for Automatic Test Generator

Build the User Interface Graph of the application under

test;

Build an object list by a pre-order traversal of the User
Interface Graph using parent-child relationship arcs.

for each "element on the list

do

If the element is a top level window

Create a new directory and change to the

directory.

Display the element on the screen.
fi

if the element accepts any user events

Create a script for the element

for each kind of user event accepted by the
element

do

Add commands in script to

 Generate the event on the element;

Verify the effect of that event;

Undo the effect of the event;

 done
 fi
done

 3051

A Graphical User Interface (GUI) Testing Methodology

and validation data that have to be captured by
replaying these scripts and by using caprep
(Horowitz & Singhera, 1993) or a similar tool to
replay these scripts in Update mode.

The logic behind these automatic test genera-
tion tools is the same as it is used in Section 5
for manual creation of test suites. The tool starts

at the root of the UIG and builds a list of GUI
elements by performing a pre-order walk of the
UIG. During this walk only the arcs that represent
parent-child relationships are considered. After
building this list, its entries are taken one by
one to create test scripts for them. If the current
GUI element, taken from the list, is a top-level

Legend:
CW=Create Window DW=Destroy Window MW=Map Window
UMW=Unmap Window BP=Button Press BR=Button Release
KP=Key Press KR=Key Release
 Object Name CW DW MW UMWBP BR KP KR
Xman : 1 0 2 1 0 0 0 0
Xman*Form : 1 0 2 1 0 0 0 0
Xman*ManualPage : 1 0 2 1 50 50 0 0
Xman*Quit : 1 0 2 1 0 0 0 0
Xman*Help : 1 0 2 1 10 10 0 0
Xman*Label : 1 0 2 1 0 0 0 0
StandBy : 28 23 2 1 0 0 0 0
StandBy*Message : 28 23 2 1 0 0 0 0
LikeToSave : 1 0 0 0 0 0 0 0
LikeToSave*Form : 1 0 0 0 0 0 0 0

LikeToSave*Message : 1 Q 0 0 0 0 0 0

LikeToSave*Yes : 1 0 0 0 0 0 0 0
LikeToSave*No : 1 0 0 0 0 0 0 0
Help : 1 0 7 7 0 0 0 0
Help*Form : 1 0 7 7 0 0 0 0
Help*MenuBar : 1 0 7 7 0 0 0 0
Help*Options : 1 0 7 7 20 2 0 0
Help*Seetions : 1 0 7 7 0 0 0 0
Help*Message : 1 0 7 7 0 0 0 0
Help*TextArea : 1 0 7 7 0 0 0 0
Help*Serollbar : 1 0 7 7 10 10 0 0
Help. Form. 3 : 1 0 7 7 0 0 0 0
Manpage : 27 23 27 1 0 0 0 0
ManPage*Form : 27 23 27 1 0 0 0 0
ManPage*MenuBar : 27 23 27 1 0 0 0 0
ManPage*Options : 27 23 27 1 92 6 0 0
ManPage*Seetions : 27 23 27 1 18 2 0 0
Manpage*Message : 27 23 27 1 0 0 0 0
ManPage*TextArea : 27 23 27 1 0 0 0 0
ManPage*Serollbar : 27 23 27 1 8 8 0 0
ManPage.Form.3 : 27 23 27 1 0 0 0 0
ManPage*DirArea : 27 23 27 1 0 0 0 0
ManPage*DirList : 27 23 27 1 0 0 0 0
ManPage*List : 27 23 27 1 0 0 0 0

Figure 6. Statistics file created by XTester

3052

A Graphical User Interface (GUI) Testing Methodology

window, then a separate directory is created for
it and the scripts for the element and all of its
descendents are created in that directory. If the
currently selected element belongs to the category
for which a script is required, then following the
arcs that represent user actions on the element
creates one. Figure 4 shows the pseudo code for
such an automatic test generator.

coverage Analysis

No testing activity is useful unless it provides
some coverage measures/analysis. This cover-
age measure reflects the quality of the testing
activity. The UIG provides us with a framework
to determine such a coverage. During capture
or replay of scripts, XTester keeps track of the
user actions and their effects on individual ob-
jects. This information is available in a .stt file
at the end of the testing activity. Currently, the
information captured in .stt about a particular
object includes the number of times it was cre-
ated, mapped, unmapped, and destroyed. It also
accumulates the number of times a mouse button
or keyboard key was pressed or released over the
object. This information helps the user to locate
any particular objects in the application which have
not been created, destroyed, mapped, unmapped,
or received a user event. These statistics can also
be used for improving the efficiency of the test
suite by removing the repetitive testing of the same
characteristics, whenever possible. Figure 6 shows
a file created by XTester after replaying a certain
test suite for Xman. The legend is displayed at the
top of the file to describe acronyms for various
actions. The next line after the legend provides
the heading for the table. Each line in the table
provides statistics about a particular object. For
example, the very first line of the table provides
statistics about the Main Window of Xman, named
Xman. This particular line shows that the object
named Xman was created once, never destroyed,
mapped twice on the screen and unmapped once,
by the corresponding test script. It also shows

that the corresponding test suite never exercised
a button press/release or key press/release events
on the Xman object.

Tools can be developed to extract information
from a .stt file. Analysis tools are developed that
take a .uidl file to build a UIG of the application
under test, and a .stt file to get statistics collected
from a particular test run. The tool maps the
collected statistics on to the object hierarchy
and produces an annotated graph. Queries can
be run on this annotated graph to determine the
effectiveness of the test suite. For example, one
can see how many nodes and arcs in the object
hierarchy have not been exercised by this particu-
lar test suite, or see the objects and inter-object
arcs to determine objects that did not receive an
expected user action. Similarly, one can filter out
the objects that did not receive an expected user
event to create an annotated graph that satisfies
a particular criterion.

InvAlIdAtIon oF test dAtA

XTester captures information as two entities,
script commands and verification data and saves
them in different files, .scr and .img, respectively.
This section describes the scenario in which
created test script(s) might fail and has to be re-
captured or re-written. The following scenarios
invalidate some of the captured scripts:

• An application is modified in such a way that
WM _NAME property of a top-level win-
dow is changed. This modification will only
affect the scripts that have been captured
without a specification and are related to the
window whose WM _NAME property was
changed. The scripts captured with a formal
specification remain unaffected, provided
the relevant specifications are also modified
to reflect the change in the application.

• The application is changed so that the order
or number of children of a particular node

 3053

A Graphical User Interface (GUI) Testing Methodology

is changed. The scripts that are captured
without a specification and address objects
in the modified hierarchy, are affected and
have to be recaptured or tuned. However,
the scripts captured with a formal speci-
fication remain unaffected provided the
specification is also modified accordingly.
XTester provides option to build either full
or short object names. If the application is
modified so that the depth of a hierarchy is
changed, then all the fully qualified names
belonging to that hierarchy will no longer
be valid names and has to be modified to
reflect the change. However, short names
that are relative to their immediate parents
will still remain valid.

• If object information has been captured as
an image, then trying to replay the scripts
on another workstation that is incompatible
with the workstation on which image was
captured will give false alarms. The scripts
work fine across multiple platforms, how-
ever, verification data is the platform specific
in case of images. An easier way of creating
verification data for a new hardware platform
will be to replay all the scripts in Update

mode that replaces the current verification
data with the newly available one.

conclusIon And Future
dIrectIons

In this article, we have suggested guidelines
that are useful in planning a testing activity for
a graphical user interface (GUI). We have also
presented a methodology for testing a GUI, both
when specifications of an application under test
is not available, and when such specifications are
provided or resource code is available to build such
a specification. This article also demonstrates the
use of the proposed methodology to test a sample
X application, Xman, with or without specifica-
tions. It also illustrates how the model is helpful
in automatic test generation and coverage analysis.
In the end, we describe the situations in which the
scripts captured by XTester become invalid.

The methodology and the underlying UIG
framework discussed in this article can be very
effectively used to model and test web sites and
web applications. We are actively working to
extend this proposed methodology to be used

Figure 7. Pseudo code for quality analyzer

Read in the required criteria for analysis;
Build the User Interface Graph of the application
under test;
Read in the specified statistics file(s);
for each element in the User Interface Graph
do
 If the element qualifies for the given criteria
 Display the required information in proper

3054

A Graphical User Interface (GUI) Testing Methodology

for testing web-based applications and semantic
web applications.

reFerences

Berstel, J., Reghizzi, S. C., Roussel, G., & San
Pietro, P. (2001). A scalable formal method for
design and automatic checking of user interfaces.
In Proceedings of the 23rd International Confer-
ence on Software Engineering, (pp. 453-462).

Campos J., & Harrison, M. (2001). Model check-
ing interactor specifications. Automated Software
Engineering, 3(8), 275-310.

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1995). Design patterns. Addison Wesley
Publishers.

Horowitz, E.& Singhera, Z. (1993). Graphical
user interface testing. In proceedings of the Elev-
enth Annual Pacific Northwest Software Quality
Conference.

Horowitz, E.& Singhera, Z. (1993). XTester – A
System for Testing X Applications. Technical
Report No. USC-CS-93-549, Department of Com-
puter Science, University of Southern California,
Los Angeles, CA.

Horowitz, E. & Singhera, Z. (1993). A Graphical
User Interface Testing Methodology. Technical

Report No. USC-CS-93-550, Department of Com-
puter Science, University of Southern California,
Los Angeles, CA.

Harold, M. J., Gupta, R., & Soffa, M. L. (1993).
A methodology for controlling the size of a test
suite. ACM Transactions on Software Engineer-
ing and Methodology, 2(3), 270-285.

Mercury Interactive, Mountain View, CA., http://
www.mercury.com

Myers, B. A. (1993). Why are human-computer
interfaces difficult to design and implement?
Technical Report CS-93-183, Carnegie Mellon
University, School of Computer Science.

Myers, B. A., Olsen, D. R., Jr., & Bonar, J. G.
(1993). User interface tools. In proceedings of
ACM INTERCHI’93 Conference on Human Fac-
tors in Computing Systems, Adjunct Proceedings,
Tutorials, (p. 239).

Sommervill, I. (2001). Software engineering (6th
ed.) Addison Wesley Publishers.

Segue Software Inc., Newton, MA, http://www.
segue.com

Wittel, W. I., Jr. & Lewis, T. G. (1991). Integrat-
ing the mvc paradigm into an object-oriented
framework to accelerate gui application develop-
ment. Technical Report 91-60-D6, Department of
Computer Science, Oregon State University.

This work was previously published in the International Journal of Information Technology and Web Engineering, edited by
G. Alkhatib & D. Rine, Volume 3, Issue 2, pp. 1-18, copyright 2008 by IGI Publishing (an imprint of IGI Global).

 3055

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.25
On Concept Algebra:

A Denotational Mathematical Structure
for Knowledge and Software Modeling

Yingxu Wang
University of Calgary, Canada

AbstrAct

Concepts are the most fundamental unit of cogni-
tion that carries certain meanings in expression,
thinking, reasoning, and system modeling. In
denotational mathematics, a concept is formally
modeled as an abstract and dynamic mathemati-
cal structure that encapsulates attributes, objects,
and relations. The most important property of
an abstract concept is its adaptive capability to
autonomously interrelate itself to other concepts.
This article presents a formal theory for abstract
concepts and knowledge manipulation known as
“concept algebra.” The mathematical models of
concepts and knowledge are developed based on
the object-attribute-relation (OAR) theory. The
formal methodology for manipulating knowledge
as a concept network is described. Case studies
demonstrate that concept algebra provides a ge-
neric and formal knowledge manipulation means,
which is capable to deal with complex knowledge

and software structures as well as their algebraic
operations.

IntroductIon

In cognitive informatics, logic, linguistics, psy-
chology, software engineering, and knowledge
engineering, concepts are identified as the basic
unit of both knowledge and reasoning (Anderson,
1983; Colins & Loftus, 1975; Ganter & Wille,
1999; Hampton, 1997; Hurley, 1997; Matlin,
1998; Murphy, 1993; Wang, 2006a, 2006b, 2006c,
2007a, 2007c; Wang & Wang, 2006; Wilson &
Keil, 1999). The rigorous modeling and formal
treatment of concepts are at the center of theories
for knowledge presentation and manipulation
(Smith & Medin, 1981; Wille, 1982; Murphy, 1993;
Codin, Missaoui, & Alaoui, 1995; Wilson & Keil,
1999; Yao, 2004; Chen & Yao, 2005). A concept
in linguistics is a noun or noun-phrase that serves

3056

On Concept Algebra

as the subject of a to-be statement (Hurley, 1997;
Wang, 2002a, 2006a, 2006c, 2007d). Concepts
in cognitive informatics (Wang, 2002a, 2006c,
2007b, 2007e) are an abstract structure that carries
certain meaning in almost all cognitive processes
such as thinking, learning, and reasoning.

Definition 1. A concept is a cognitive unit to
identify and/or model a real-world concrete entity
and a perceived-world abstract subject.

Based on concepts and their relations, mean-
ings of real-world concrete entities may be rep-
resented and semantics of abstract subjects may
be embodied. Concepts can be classified into two
categories, known as the concrete and abstract
concepts. The former are proper concepts that
identify and model real-world entities such as the
sun, a pen, and a computer. The latter are virtual
concepts that identify and model abstract subjects,
which cannot be directly mapped to a real-world
entity, such as the mind, a set, and an idea. The
abstract concepts may be further classified into
collective concepts, such as collective nouns and
complex concepts, or attributive concepts such
as qualitative and quantitative adjectives. The
concrete concepts are used to embody meanings
of subjects in reasoning while the abstract con-
cepts are used as intermediate representatives or
modifiers in reasoning.

A concept can be identified by its intension and
extension (Hurley, 1997; Smith & Medin, 1981;
Wang, 2006c; Wille, 1982; Yao, 2004).

Definition 2. The intension of a concept is the at-
tributes or properties that a concept connotes.

Definition 3. The extension of a concept is the
members or instances that the concept denotes.

For example, the intension of the concept
pen connotes the attributes of being a writing
tool, with a nib, and with ink. The extension of
the pen denotes all kinds of pens that share the

common attributes as specified in the intension
of the concept, such as a ballpoint pen, a fountain
pen, and a quill pen.

In computing, a concept is an identifier or a
name of a class. The intension of the class is a set
of operational attributes of the class. The exten-
sion of the class is all its instantiations or objects
and derived classes. Concept algebra provides a
rigorous mathematical model and a formal se-
mantics for object-oriented class modeling and
analyses. The formal modeling of computational
classes as a dynamic concept with predesigned
behaviors may be referred to “system algebra”
(Wang, 2006b, 2007d, 2008b, 2008d).

This article presents a formal treatment of
abstract concepts and an entire set of algebraic
operations on them. The mathematical model of
concepts is established first. Then, the abstract
mathematical structure, concept algebra, is
developed for knowledge representation and ma-
nipulation. Based on concept algebra, a knowledge
system is formally modeled as a concept network,
where the methodology for knowledge manipulat-
ing is presented. Case studies demonstrate that
concept algebra provides a denotational math-
ematical means for manipulating complicated
abstract and concrete knowledge structures as
well as their algebraic operations.

the mAthemAtIcAl model oF
AbstrAct concePts

This section describes the formal treatment of ab-
stract concepts and a new mathematical structure
known as concept algebra in cognitive informatics
and knowledge engineering. Before an abstract
concept is defined, the semantic environment or
context (Chen & Yao, 2005; Ganter & Wille, 1999;
Hampton, 1997; Hurley, 1997; Medin & Shoben,
1988) in a given language, is introduced.

Definition 4. Let denote a finite or infinite
nonempty set of objects, and be a finite or in-

 3057

On Concept Algebra

finite nonempty set of attributes, then a semantic
environment or context Θ is denoted as a triple,
i.e.:

() , ,
 = | | |
Θ

→ → → →:

 (1)

where is a set of relations between and ,
and | demotes alternative relations.

According to the Object-Attribute-Relation
(OAR) model (Wang, 2007c, 2007d; Wang &
Wang, 2006), the three essences in Θ can be
defined as follows.

Definition 5. An object o is an instantiation of a
concrete entity and/or an abstract concept.

In a narrow sense, an object is the identifier
of a given instantiation of a concept.

Definition 6. An attribute a is a subconcept that
is used to characterize the properties of a given
concept by more specific or precise concepts in
the abstract hierarchy.

In a narrow sense, an attribute is the identifier
of a subconcept of the given concept.

Definition 7. A relation r is an association be-
tween any pair of object-object, object-attribute,
attribute-object, and/or attribute-attribute.

On the basis of OAR and Θ, an abstract concept
is a composition of the above three elements as
given below.

Definition 8. An abstract concept c on Θ is a
5-tuple, i.e.:

(, , , ,)c i oc O A R R R (2)

where

• O is a nonempty set of objects of the concept,
O = {o1, o2, …, om} ⊆ Þ, where Þ denotes
a power set of .

• A is a nonempty set of attributes, A = {a1,
a2, …, an} ⊆ Þ.

• Rc = O × A is a set of internal relations.
• Ri ⊆ C′ × C is a set of input relations, where

C′ is a set of external concepts.
• Ro ⊆ C × C′ is a set of output relations.

The structure of the concept model c = (O, A,
Rc, Ri, Ro) can be illustrated in Figure 1, where c,

 Rc

 A

 O Ri Ro Other Cs Other Cs

 c

 Θ

Figure 1. The structured model of an abstract concept

3058

On Concept Algebra

A, O, and R, R = {Rc, Ri, Ro}, denote the identifier
of the concept, its attributes, objects, and inter-
nal/external relations, respectively.

It is interesting to compare the formal model
of abstract concepts as given in Definition 8 with
the notion of the concept lattice proposed by Wille
(1982). Wille defined a formal concept as a pair
of sets of objects and attributes, i.e.:

c (O, A), O ⊆ ∧ A ⊆ (3)

It is obvious that the abstract concept ex-
tends Wille’s concept model from a pair to a
triple, where the set of relations is explicitly and
formally modeled in three categories known as
the internal, input, and output relations. The I/O
relations enable a conventional static concept to
be dynamically associated to other concepts in
order to represent and manipulate complicated
concept operations and compositions in a concept
network and knowledge hierarchy.

Theorem 1. The dynamic and adaptive property
of concepts states that an abstract concept is a
dynamic mathematical structure that possesses the
adaptive capability to interrelate itself to other
concepts via Ri and Ro.

Based on Definition 8, an object derived from
a concept and the intension/extension of a concept
can be formally defined as follows.

Definition 9. An object of a concept o is a derived
instantiation of the concept that implements an
end product of the concept,o ⊂ O, i.e.:

(, , , ,), . , ,c i o o
i i oc O A R R R o c o o O R∀ = ⊂ ≡ ∅

 ⇒o(Ao, R
c
o, R

i
o| Ao ⊇ A, Rc

o= o × Ao, R
i
o =

 {(c, o)}) (4)

Equation 4 indicates that an object is a tailored
end-product of a concrete concept where there is no
any output-oriented relation to another concept.

Definition 10. The intension of a concept c =
(O, A, Rc, Ri, Ro), c*, is represented by its set of
attributes A, i.e.:

#

1

() = Þ
j

O
c i o

o
i

c* O,A,R ,R ,R A A
=

⊆

 (5)

where Þ denotes a power set of , and # is the
cardinal operator that counts the number of ele-
ments in a given set.

Definition 10 indicates that the narrow sense
or the exact semantics of a concept is determined
by the set of common attributes shared by all of
its objects. In contrary, the broad sense or the
rough semantics of a concept is referred to the
set of all attributes identified by any of its objects
as defined below.

Definition 11. The complete set of attributes of
a concept c = (O, A, Rc, Ri, Ro), or the instant at-
tributes denoted by all objects of c, is a closure
of all objects’ intensions, A*, i.e.:

j

#O

o
j=1

A* A

 (6)

Definitions 10 and 11 specify that (a) The inten-
sion of a concept is a finite set of objectively identi-
fiable attributes at a given level of abstraction, and
(b) the intension of a concept is dynamic. When
more objects for the same concept are denoted,
the domain of the intension is usually shrinking
in order to accommodate the new objects in the
same structure of the concept.

Conventionally, the domain of a concept’s
intension is used to be perceived subjectively in
literature (Hurley, 1997; Matlin, 1998). In this
approach, it is deemed that a concept connotes
the attributes, which occur in the minds of people
who use that concept, or where something must
have in order to be denoted by the concept. Both
the above informal perceptions are not objec-
tively operational in defining a complete and
unambiguity domain of intensions. To solve this

 3059

On Concept Algebra

fundamental problem, Definition 10 provides a
unique and objective determination of any given
concept.

Definition 12. The extension of a concept c =
(O, A, Rc, Ri, Ro), c+, is represented by its set of
objects O, i.e.:

() = { } Þ+ c i o
1 2 mc O,A,R ,R ,R O o , o , ..., o ⊆

 (7)

A formal and objective definition of the domain
of intension is provided below.

Definition 13. The domain of a concept c = (O,
A, Rc, Ri, Ro) is a set of attributes with a narrow
sense Dmin referring to its intension and a broad
sense Dmax referring to its closure, i.e.:

#

min
1

max

()
()

() *

j

j

O

o
j

#O

o
j=1

D c A A
D c

D c A A

=

= =

 = =

 (8)

It is noteworthy that in conventional literature,
it is only believed that the intension of a concept
determines its extension (Hurley, 1997; Matlin,
1998). However, Definition 13 reveals that the
extension of a concept, particularly the common
attributes elicited from the extension, determines
its intension as well.

Theorem 2. The nature of concept hierarchy states
that in an abstraction hierarchy, the higher the
level of a concept in abstraction, the smaller the
intension of the concept; and vice versa.

Relationships between concepts in a concept
hierarchy can be illustrated in Figure 2 at three
levels known as the knowledge, object, and attri-
bute levels. The internal relations of concepts, Rc
= O × A can be formally represented by concept
matrixes.

Example 1. The concept matrix of concept c1 is
given in Table 1. According to Definition 13, the
intension and extension of concepts c1 as speci-
fied in Table 1 can be objectively and uniquely

Figure 2. The hierarchical relations of concepts and their internal structures

c1

 o11 o13 o12

a4a3 …A5 A6 an

 o22 o21

c2

c3

Knowledge
 level (K)

Attribute level
 (M)

Object level
 (U)

O1 O2

 A1
A2

a1 a 2

 Ri, Ro

 Rc
1 Rc

2

3060

On Concept Algebra

determined as: Ac1 = {a2, a4} and Oc1 = {o11, o12,
o13}.

Definition 14. The identification of a new concept
c(O, A, Rc, Ri, Ro) is the elicitation of its objects
O, attributes A, and internal relations Rc, from the
semantic environment Θ = (, ,), i.e.:

c

(, , , , | , ,c i o cO A R R R O U A M R⊂ ⊂ =
, ,)i cO A R R× = ∅ = ∅ (9)

In Definition 14, Ri = Ro = ∅ denotes that the
identification operation is an initialization of a
newly created concept where the input and output
relations may be established later.

Definition 15. A qualification of a concept c(O,
A, Rc, Ri, Ro), denoted by *c, is the identification
of its domain, i.e.:

#

min
1

max

()
* ()

() *

j

j

O

o
j

#O

o
j=1

D c A A
c D c

D c A A

=

= =

=
 = =

 (10)

Definition 16. A quantification of a concept
c(O, A, Rc, Ri, Ro), denoted by #c, is the cardinal
evaluation of its domain in term of the number of
attributes included in it, i.e.:

#

min
1

max

() # #()
()

() # * #()

j

j

O

o
j

#O

o
j=1

D c A A
c D c

D c A A

=

= =

=
 = =

 (11)

Example 2. According to Definitions 15 and 16,
the qualification and quantification of concept c1 as
given in Figure 2 are as follows, respectively:

1

1

min 1 2 4
1 1

max 1 1 2 3 4

() { , }
* ()

() * { , , , }
c

c

D c A a a
c = D c

D c A a a a a

= == = =
1

1

min 1
1 1

max 1

() # 2
()

() # * 4
c

c

D c A
c = D c

D c A

= == = =

Concept algebra is an abstract mathematical

structure for the formal treatment of concepts and
their algebraic relations, operations, and associa-
tive rules for composing complex concepts.

Definition 17. A concept algebra CA on a given
semantic environment Θ is a triple, i.e.:

r c(, ,) = ({ , , }, { , },)c i oCA C OP O A R , R , RΘ • • Θ
 (12)

where OP = {•r, •c}are the sets of relational and
compositional operations on abstract concepts.

Concept algebra provides a denotational math-
ematical means for algebraic manipulations of
abstract concepts. Concept algebra can be used
to model, specify, and manipulate generic “to be”
type problems, particularly system architectures,
knowledge bases, and detail-level system designs
in computing, software engineering, system engi-
neering, and cognitive informatics. The relational
and compositional operations on concepts will be
formally described in the following sections.

c1 a1 a2 a3 a4
o11 1 1 1 1
o12 1 1 1
o13 1 1 1

Table 1. The concept matrix of c1

 3061

On Concept Algebra

relAtIonAl oPerAtIons oF
concePts

The relational operations of abstract concepts
are static and comparative operations that do not
change the concepts involved. It is recognized
that relationships between concepts are solely
determined by the relations of both their inten-
sions A and extensions O. The relational opera-
tions on abstract concepts in concept algebra are
described below.

Lemma 1. The relational operations •r in concept
algebra encompasses 8 comparative operators
for manipulating the algebraic relations between
concepts, i.e.:

 r { } (13)

where the relational operators stand for related,
independent, subconcept, superconcept, equiva-
lent, consistent, comparison, and definition,
respectively.

Definition 18. The related concepts c1 and c2
on Θ, denoted by ↔, are a pair of concepts that
share some common attributes in their intensions
A1 and A2 , i.e.:

1 2 1 2c c A A ↔ ∩ ≠ ∅ (14)

Definition 19. The independent concepts c1 and c2
on Θ, denoted by , are two concepts that their
intensions A1 and A2 are disjoint, i.e.:

1 2 1 2c c A A∩ = ∅ (15)

It is obvious that related and independent
concepts are mutually exclusive. That is, if c1 ↔
c2, then ¬ (c1 c2); and vice versa.

Definition 20. A subconcept c1 of concept c2 on
Θ, denoted by , is a concept that its intension
A1 is a superset of A2, i.e.:

1 2 1 2c c A A⊃ (16)

Definition 21. A superconcept c2 over concept c1
on Θ, denoted by , is a concept that its intension
A2 is a subset of A1, i.e.:

2 1 2 1c c A A⊂ (17)

According to Definitions 20 and 21, a subcon-
cept and a superconcept are reflective. That is, if
c1 c2, then c2 c1.

Definition 22. The equivalent concepts c1 and c2
on Θ, denoted by =, are two concepts that their
intensions (A1 , A2), and extensions (O1 , O2) are
identical, i.e.:

1 2 1 2 1 2c = c A A O O= ∧ =() () (18)

Definition 23. The consistent concepts c1 and c2 on
Θ, denoted by @, are two concepts with a relation
of being either a sub- or superconcept, i.e.:

@ ∨ ()1 2 1 1 1 2

1 1 1 2

c c c c c c
A A A A= ⊂ ∨ ⊃

()
() ()

 (19)

Definition 24. A comparison between two concepts
c1 and c2 on Θ, denoted by ~, is an operation that
determines the equivalency or similarity level of
their intensions, i.e.:

()
()

1 2
1 2

1 2

A Ac c * 100%
A A

∩
∪

 (20)

The range of equivalency between two con-
cepts is among 0 to 100 %, where 0% means no
similarity and 100% means a full similarity. Ac-
cording to Definition 24, It is obvious that:

3062

On Concept Algebra

 =

1 2

2
1 2 1 2

1

1
1 2

2

100%, c c
#Ac c = 100%, c c
#A
#A 100%, c c
#A

 (21)

Definition 25. A definition of a concept c1 by c2 on
Θ, denoted by , is an association between two
concepts where they are equivalent, i.e.:

1 2 1 2

c i i o o
1 1 1 1 2 1 2

(| O = O ,A = A ,

 R = O × A ,R = R ,R = R)

c i o c i o
1 1 1 1 1 1 2 2 2 2 2 2

c i o
1 1 1 1 1 1

c O , A , R , R , R c O , A , R , R , R

c O , A , R , R , R

() ()

 (22)

comPosItIonAl oPerAtIons oF
concePts

The compositional operations of concept alge-
bra are dynamic and integrative operations that
always change all concepts involved in parallel.

Compositional operations on concepts provide a
set of fundamental mathematical means to con-
struct complex concepts on the basis of simple
ones or to derive new concepts on the basis of
exiting ones.

Lemma 2. The compositional operations •c in
concept algebra encompasses nine associative
operators for manipulating the algebraic com-
positions among concepts, i.e.:

 c { , } (23)

where the compositional operators stand for inheri-
tance, tailoring, extension, substitute, composition,
decomposition, aggregation, specification, and
instantiation, respectively.

The compositional operations of concept algebra
can be illustrated in Figure. 3. In Figure 3, R = {Rc,
Ri, Ro}, and all nine compositional operations define
composing rules among concepts, except instantia-
tion that is an operation between a concept and a
specific object.

Figure 3. The compositional operations of concept algebra as concept manipulation rules

c1

O1

A1

R1

c2

O2

A2

R2

o21

A21R21

⇒
Inheritance

 Tailoring

 Extension

Substitute

 Composition

 Decomposition

Aggregation

Specification

Instantiation

+

⇒

⇒

⇒

 3063

On Concept Algebra

Definition 26. An inheritance of concept c2 from
concept c1, denoted by ⇒, is the creation of the new
concept c2 by reproducing c1, and the establishment
of new associations between them in parallel, see
Box 1, where c1 is called the parent concept, c2 is
the child concept, and || denotes that an inheritance
creates new associations between c1 and c2 in parallel
via (Ro

1, R
i
2) and (Ro

2, R
i
1).

Definition 27. The multiple inheritance of concept
c from n parent concepts c1, c2, …, cn, denoted by
⇒, is an inheritance that creates the new concept c
via a set of n conjoint concepts and establishes new
associations among them, see Box 2, where ()

n

i
i=1

 xR is
known as the big-R notation (Wang, 2002b, 2008c)
that denotes a repetitive behavior or recurrent
structure.

Definition 28. The tailoring of concept c2 from
the parent concept c1, denoted by , is a special
inheritance that creates the new concept c2 based
on c1 with the removal of the subsets of objects O′
and attributes A′; at the same time, it establishes
new associations between the two concepts, see
Box 3.

Definition 29. The extension of concept c2 from
the parent concept c1, denoted by , is a special
inheritance that creates the new concept c2 based
c1 with additional objects O′ and/or attributes A′,
and establishes new associations between the two
concepts, see Box 4.

Definition 30. The substitute of concept c2 from
the parent concept c1, denoted by , is a special

 {

1 1 1 1 1 1 2 2 2 2 2 2

2 2 2 2 2 2 2 1 2 1 2 2 2

2 1 1 2 2 1 2 1
' ' ' '

1 1 1 1 1 1 1 1 2 1 1 1 1 2

(, , , ,) (, , , ,)

(, , , , | , , ,

 (,)}, {(,)})

 | | (, , , , | {(,)}, {(,)})

c i o c i o

c i o c

i i o o

c i o i i o o

c O A R R R c O A R R R
c O A R R R O O A A R O A

R R c c R R c c
c O A R R R R R c c R R c c

⇒

= = = ×

= ∪ = ∪

= ∪ = ∪

 (24)

Box 1.

1

1 1

1 11 1

' ' ' '

1

 (, , , ,)

(, , , , | , , ,

 { (,)}, { (,)})

 | | (, , , , | {(,)}, {(

i i

i i

n
c i o

i
i

n n
c i o c

c c
i i

n nn n
i i o o

c i c i
i ii i

n
c i o i i o o

i i i i i i i i i i i i
i

c c O A R R R

c O A R R R O O A A R O A

R R c c R R c c

c O A R R R R R c c R R c

R

R R

R

=

= =

= == =

=

⇒

= = = ×

= ∪ = ∪

= ∪ = ∪

,)})c

 (25)

Box 2.

3064

On Concept Algebra

inheritance that creates the new concept c2 based
on c1 by replacing the inherited subsets of objects
O′c1 and attributes A′c1 with corresponding ones
O′c2 and A′c2 that share the same identifiers but
possess different objects or attributes; at the same
time, it establishes new associations between the

two concepts, see Box 5, where O′c1 ⊂ O1 ∧ O′c2
⊂ O2 ∧ #O′c1 = #O′c2 and A′c1 ⊂ A1 ∧ A′c2 ⊂ A2 ∧
#A′c1 = #A′c2.

Binary concept tailoring, extension, and sub-
stitution can be extended to corresponding n-nary

1 1 1 1 1 1 2 2 2 2 2 2

2 2 2 2 2 2 2 1 2 1 2 2 2 1

2 1 1 2 2 1 2 1
' ' ' '

1 1 1 1 1 1 1 1 2 1 1 1

(, , , ,) (, , , ,)

(, , , , | \ ', \ ', ,

 {(,)}, {(,)})

 | | (, , , , | {(,)}, {(

c i o c i o

c i o c c

i i o o

c i o i i o o

c O A R R R c O A R R R
c O A R R R O O O A A A R O A R

R R c c R R c c
c O A R R R R R c c R R

= = = × ⊂

= ∪ = ∪

= ∪ = ∪

⇒

1 2,)})c c
 (26)

Box 3.

1 1 1 1 1 1 2 2 2 2 2 2

2 2 2 2 2 2 2 1 2 1 2 2 2 1

2 1 1 2 2 1 2 1
' ' ' '

1 1 1 1 1 1 1 1 2 1 1 1

(, , , ,) (, , , ,)

(, , , , | ', ', ,

 {(,)}, {(,)})

 | | (, , , , | {(,)}, {

c i o c i o

c i o c c

i i o o

c i o i i o o

c O A R R R c O A R R R

c O A R R R O O O A A A R O A R
R R c c R R c c

c O A R R R R R c c R R

+

= ∪ = ∪ = × ⊃

= ∪ = ∪

= ∪ = ∪

⇒

1 2(,)})c c
 (27)

Box 4.

1 2 1 2

1 1 1 1 1 1 2 2 2 2 2 2

2 2 2 2 2 2 2 1 2 1

2 2 2 2 1 1 2 2 1 2 1
' ' '

1 1 1 1 1 1 1 1 2

(, , , ,) (, , , ,)

(, , , , | (\ ') ' , (\ ') ' ,

 , {(,)}, {(,)})

 | | (, , , , | {(,

c i o c i o

c i o
c c c c

c i i o o

c i o i i

c O A R R R c O A R R R
c O A R R R O O O O A A A A

R O A R R c c R R c c
c O A R R R R R c c

= ∪ = ∪

= × = ∪ = ∪

= ∪

⇒

'
1 1 1 1 2)}, {(,)})o oR R c c= ∪

 (28)

Box 5.

 3065

On Concept Algebra

operations, similar to that of inheritance as given
in Definition 27.

Definition 31. The composition of concept c from
n subconcepts c1, c2, …, cn, denoted by , is an
integration of them that creates the new super
concept c via concept conjunction; at the same
time, it establishes new associations between
them, see Box 6.

It is noteworthy that, according to the calculus
of incremental union (Wang, 2006b, 2008b), the

composition operation as given in Definition 31
results in the generation of new internal relations,
which do not belong to any of its subconcepts.
This is the most important property of concept
composition.

Corollary 1. The composition of multiple con-
cepts is an incremental union operation, where
the newly generated internal relations ∆Rc can
be determined as:

1

{(,), (,)}
n

c
i i

i

R c c c c
=

∆ =

 (30)

1

1 1 1

1 1

' ' '

1

(, , , ,) (, , , ,)

= (, , , , | , , {(,), (,)},

 ,)

 | | (, , , , | {(,)},

i i i

i i

n
c i o c i o

i i i i i i
i

n n n
c i o c c

c c c i i
i i i

n n
i i o o

c c
i i

n
c i o i i

i i i i i i i i i
i

c O A R R R c O A R R R

c O A R R R O O A A R R c c c c

R R R R

c O A R R R R R c c RR

=

= = =

= =

=

= = = ∪

= =

= ∪

' {(,)})o o
i i iR c c= ∪

 (29)

Box 6.

1

' ' ' '

1

' ' ' '

1

' '

1

(, , , ,)

{ (, , , , | {(,)}, {(,)})

 | | (, , , , | (\{(,)(,)}),

 { (,)}, {

i

n
c i o

i
i

n
c i o i i o o

i i i i i i i i i i i i
i

n
c i o c c

c i i
i

n
i i o o

i
i i

c O A R R R c

c O A R R R R R c c R R c c

c O A R R R R R c c c c

R R c c R R

R
R

R

=

=

=

=

= ∪ = ∪

=

= ∪ = ∪

1

(,)})

 \ (, , , ,)
 }

n

i

c i o
i i i i i i

c c

c O A R R R

R
=

 (31)

Box 7.

3066

On Concept Algebra

A concept decomposition is an inverse opera-
tion of concept compositions.

Definition 32. The decomposition of concept c
into n subconcepts c1, c2, …, cn, denoted by ,
is a partition of the superconcept into multiple
subconcepts; at the same time, it establishes new
associations between them, see Box 7.

As specified in Definition 32, the decomposi-
tion operation results in the removal of all internal
relations

1

{(,), (,)}
n

c
i i

i

R c c c c
=

∆ =
 that are no longer belong

to any of its subconcepts.

Definition 33. The aggregation of concept c1 from
concept c2, denoted by , is a creation of c1 via
abstraction of c2 with a reduced intension of more
generic attributes; at the same time, it establishes
new associations between them, see Box 8.

Concept aggregation is also known as concept
generalization, abstraction, or elicitation. Binary
aggregations can be extended to n-nary parallel
or serial aggregations.

Definition 34. The parallel aggregation of a
concept c from a set of n concepts c1, c2, …, cn,

1 1 1 1 1 1 2 2 2 2 2 2

1 1 1 1 1 1 1 2 1 2 1 1 1

1 2 2 1 1 2 2 1 1 2 1 2
' ' '

2 2 2 2 2 2 2 2 1 2

(, , , ,) (, , , ,)

(, , , , | , , ()

 {(,), (,)}, {(,)}, {(,)})

 | | (, , , , | {(,)},

c i o c i o

c i o c

i i o o

c i o i i

c O A R R R c O A R R R
c O A R R R O O A A R O A

c c c c R R c c R R c c
c O A R R R R R c c R

⊃ ⊂ = × ∪

= ∪ = ∪

= ∪

'
2 2 2 1{(,)})o oR c c= ∪

 (32)

Box 8.

1

1 1 1

1 1
n

' ' '

i=1

(, , , ,)

(, , , , | , , ({(,), (,)}),

 ({(,)}), ({(,)}),

 | | (, , , , | {(,)}

i

i i

n
c i o

i
i

n n n
c i o c c

i i c i i
i i i

n n
i i o o

c i c i
i i

c i o i i
i i i i i i i i i

c O A R R R c

c O A R R R O O A A R R c c c c

R R c c R R c c

c O A R R R R R c c

R

R

=

= = =

= =

= = = ∪

= ∪ = ∪

= ∪

', {(,)})o o
i i iR R c c= ∪

 (33)

Box 9.

 3067

On Concept Algebra

denoted by , is an aggregation of c with the
elicitation of all concepts in the set, see Box 9.

Based on Definition 34, a concept may be
inductively generalized by a series of aggrega-
tions with a smaller set of more abstract (super)
attributes.

Definition 35. The serial aggregation of a concept
c from a set of n concepts c1, c2, …, cn, denoted by
, is an aggregation with a total order of a series
of decreasing intensions of the concepts by more
abstract and generic attributes, see Box 10.

A concept specification is an inverse operation
of concept aggregations.

Definition 36. The specification of concept c1 by
concept c2, denoted by , is a deductive refine-
ment of c1 by an increasing intension with more
specific and precise attributes in c2; at the same
time, it establishes new associations between
them, see Box 11.

Binary specifications can be extended to n-
nary parallel or serial aggregations.

Definition 37. The parallel specification of concept
c by a set of n concepts c1, c2, …, cn, denoted by
, is a specification of c with the elicitation of all
concepts in the set, see Box 12.

1 2

1 2 1 2

1 1 1
1

1
1

' '

1

(, , , ,) (...)

(, , , , | ... , ... ,

 () {(,), (,)}, { (,)},

 { (,)})

 | | (, , , , |

c i o
n

c i o
n n

n
c i i

i
i

n
o o

i
i

n
c i o i

i i i i i i
i

c O A R R R c c c
c O A R R R O O O O A A A A

R O A c c c c R R c c

R R c c

c O A R R R R

R
R

R

=

=

=

⊃ ⊃ ⊃ ⊃ ⊂ ⊂ ⊂ ⊂

= × ∪ = ∪

= ∪

' '{(,)}, {(,)})i o o
i i i i i iR c c R R c c= ∪ = ∪

 (34)

Box 10.

1 1 1 1 1 1 2 2 2 2 2 2

2 2 2 2 2 2 2 1 2 1 2 2 2

2 1 1 2 2 1 1 2 2 1 2 1
' ' '

1 1 1 1 1 1 1 1 1

(, , , ,) (, , , ,)

(, , , , | , , ()

 {(,), (,)}, {(,)}, {(,)})

 | | (, , , , | {(,)},

c i o c i o

c i o c

i i o o

c i o i i o

c O A R R R c O A R R R
c O A R R R O O A A R O A

c c c c R R c c R R c c
c O A R R R R R c c R

⊂ ⊃ = × ∪

= ∪ = ∪

= ∪

'
1 1 1{(,)})oR c c= ∪

 (35)

Box 11.

3068

On Concept Algebra

Definition 38. The serial specification of concept
c by a set of concepts c1, c2, …, cn, denoted by ,
is a specification with a total order of a series of
refinements by increasing intensions of the con-
cepts with more specific and precise attributes,
see Box 13.

The binary, parallel, and series specifications

and aggregations of concepts provide a generic

means for forming a hierarchical structure of
concepts in knowledge engineering.

Theorem 3. A totally ordered series of decreas-
ing intensions in a serial concept aggregation is
reversely proportional to a totally ordered series
of increasing extensions, i.e.:

1

1 1 1

1 1
n

' ' ' '

i=1

 (, , , ,)

(, , , , | , , ({(,), (,)}),

 ({(,)}), ({(,)}))

 | | (, , , , | {(,)},

i

i i

n
c i o

i
i

n n n
c i o c c

i i c i i
i i i

n n
i i o o

c i c i
i i

c i o i i o
i i i i i i i i i

c c O A R R R

c O A R R R O O A A R R c c c c

R R c c R R c c

c O A R R R R R c c R

R

R

=

= = =

= =

⊂ = = ∪

= ∪ = ∪

= ∪

{(,)})o
i i iR c c= ∪

 (36)

Box 12.

2 1

2 1 2 1
n

i=1
n n

i=1 i=1
n

'

i=1

(...) (, , , ,)

(, , , , | ... , ... ,

 () {(,), (,)},

 {(,)}), {(,)})

 | | (, , , ,

c i o
n

c i o
n n

c
i i

i i o o
n i n i

c i o
i i i i i

c c c c O A R R R
c O A R R R O O O O A A A A

R O A c c c c

R R c c R R c c

c O A R R R

R R

R

R

⊃ ⊃ ⊃ ⊃ ⊂ ⊂ ⊂ ⊂

= × ∪

= ∪ = ∪

' ' '| {(,)}, {(,)})i i o o
i i i i i i iR R c c R R c c= ∪ = ∪

 (37)

Box 13.

 3069

On Concept Algebra

1 2 n

1 2 n 1 2 n

c c c ... c ,
 A A A ... A O O O ... O
∀

⊂ ⊂ ⊂ ⊂ ⇒ ⊃ ⊃ ⊃ ⊃

 (38)

Example 3. The relationships between series of
specifications and aggregations on the concept
animal can be described as follows:

()
)

animal mammal feline tiger
animal mammal feline tiger

⇒
 (

where, according Theorem 3, it can be ob-
tained:

 , andanimal mammal feline tiger

animal mammal feline tiger

A A A A

O O O O

⊂ ⊂ ⊂

⊃ ⊃ ⊃

The compositional operations of concepts
formally defined so far are those among abstract
concepts. The remainder of this section describes

a special compositional operation between a given
concept and its objects.

Definition 39. The instantiation of a concept c,
denoted by , is an embodiment of its generic
semantics onto a specific case or implementation
known as an object o, see Box 14.

It is noteworthy that the output relation of an
object is always empty (i.e., Ro

o ≡ ∅), which means
that the object is an end product of a concept where
there is no further deduction of meanings in the
hierarchy of the inheritance chain.

Definition 40. The multiple instantiation of a
concept c onto n objects, denoted by , is a
compound parallel instantiation that creates a
set of new objects {o1, o2, …, on} based on c, and
establishes new associations between them, see
Box 15.

' '

' ' ' '

(, , , ,) (, ,)

(, , | , , , {(,)})

 | | (, , , , | {(,)}, {(,)})

c i o c i
o o o

c i c i i
o o o o o o o o

c i o i i o o

c O A R R R o A R R
o A R R o O A A R o A R R c o
c O A R R R R R o c R R c o

⊂ = = × = ∪

= ∪ = ∪

 (39)

Box 14.

1

'

1
'

' ' ' '

1 1

(, , , ,) (, ,)

(, , | , , ,

 { (,)})

 | | (, , , , | { (,)}, { (,)})

i i i

i i i i i i

i i

n
c i o c i

i o o o
i

n
c i c

i o o o i o o i o
i

i i
o o i

n n
c i o i i o o

i i
i i

c O A R R R o A R R

o A R R o O A A R o A

R R c o

c O A R R R R R o c R R c o

R
R

R R

=

=

= =

⊆ = = ×

= ∪

= ∪ = ∪

 (40)

Box 15.

3070

On Concept Algebra

concePt AlGebrA For
KnowledGe mAnIPulAtIon

This section describes applications of concept
algebra in the manipulation of abstract models of
knowledge and the methodology for knowledge
representation and manipulation.

the mathematical model of
Knowledge

In cognitive informatics (Wang, 2002a, 2006a,
2007e), particularly the OAR model (Wang, 2007c;
Wang & Wang, 2006) on internal knowledge
representation in the brain, human knowledge
is modeled as a concept network, where concept
algebra is applied as a set of rules for knowledge
composition in order to construct complex and
dynamic concept networks.

Definition 41. A generic knowledge K is an n-
nary relation ℜ among a set of n concepts and
the entire set of concepts C, i.e.:

: X i
i=1

K = C Cℜ →
n

() (41)

where
1

n

i
i

C C
=

= , and

c { , }

 .

According to Definition 41, the most simple
knowledge k is a binary relation ℜ between two
concepts in C, i.e.:

:k = C C C.ℜ × → (42)

Definition 41 indicates that the compositional
operations of concept algebra, •c, provide a set of
coherent mathematical means and rules for knowl-
edge manipulation. Because the relations between
concepts are transitive, the generic topology of
knowledge is a hierarchical network as shown in
Figures 2 and 3.

Theorem 4. The generic topology of abstract knowl-
edge systems K is a hierarchical concept network.

Theorem 4 can be proved by the nine com-
positional rules in concept algebra, particularly
the composition/decomposition and aggregation/
specification operations, as defined in the previous
section.

Corollary 2. The property of the hierarchical
knowledge architecture K in the form of concept
networks is as follows:

a. Dynamic: The knowledge network may be
updated dynamically along with information
acquisition and learning without destructing
the existing concept nodes and relational
links.

b. Evolvable: The knowledge network may
grow adaptively without changing the over-
all and existing structure of the hierarchical
network.

the hierarchical model of concept
networks

A concept network as a generic knowledge model
has been widely studied in linguistics, computing,
and cognitive informatics. The notion of the se-
mantic network model for knowledge representa-
tion is first proposed by Quillian in 1968 (Matlin,
1998; Quillian, 1968; Reisberg, 2001), where the
semantic memory is perceived as information
represented in network structures with conceptual
nodes and interrelations. The meaning of a given
concept depends on other concepts to which it is
connected in the network. The semantic network
has been extended by a number of theories such
as the hypothetical network (Colins & Loftus,
1975), the adaptive control of thought - star
(ADT*) model (Anderson, 1983, 1991). The latter
proposes that all cognition processes in thought
are controlled by unitary network models.

 3071

On Concept Algebra

This subsection develops the concept network
model based on concept algebra and Wang’s OAR
model (Wang, 2007c; Wang & Wang, 2006) for
knowledge representation, which treat a concept as
a basic and adaptive unit for knowledge representa-
tion and thinking.

Definition 42. A concept network CN is a hierarchi-
cal network of concepts interlinked by the set of nine
composing rules ℜ concept algebra, i.e.:

: X Xi j
i=1 j=1

CN = C Cℜ →
n n

 (43)

Theorem 5. In a concept network CN, the abstract
levels of concepts c form a partial order of a
series of superconcepts, i.e.:

1 2 n (c c c)c = ...∅ Ω ...
 (44)

where ∅ is the empty concept ∅ = (⊥, ⊥), and Ω
the universal concept, Ω = (,).

According to Theorem 5 and Definition 42, a
hierarchical structure of concepts in a given se-
mantic environment Θ can be formally described
by concept algebra. The algebraic relations and
compositional operations of concept algebra enable
the construction of hierarchical concept networks
in a dynamic process.

Example 4. A concrete concept network, pen and
printer, can be illustrated in Figure 4. The concept
network may be dynamically extended along with the
development of related knowledge such as to extend
it to a more abstract concept network of stationery. In
Figure 4, concept c1(pen) may be formally described
in concept algebra, see Box 16.

 c1

 o11 o13 o12

a4 a3 … A5 A6 A7

 o22 o21

 c2

 c3
Knowledge
 level (K)

Attribute level
 (M)

Object level
 (U)

O1 O2

A1
A2

a1 a2

 stationery

 pen printer

ballpoint
 fountain

brush Ink-jet

 laser

Figure 4. A concrete concept network

3072

On Concept Algebra

It is noteworthy that, according to Definition 10,
the intension of c1(pen) does not include the attribute
a4, because it is not commonly shared by all objects
of the given concept. However, A1* does include a4 in
the closure of attributes of the given concept pen.

Example 5. An abstract concept network that is

formed by the composition and aggregation of a set

Figure 5. An abstract concept network

 c0

o3

o1

o2

 ⇒

+

-

C2

c1

c7

c8

c6

 c9

c4

c5

c3

1 1 1 1 1 1 1

1 11 12 13

1 1 2 3

1 1 2 3 4

() (, , , ,)
where { , , } { };
 { , , } { };
 * { , , , } {

c i oc pen c O A R R R
O o o o ballpoinbt, f ountain, brush
A a a a a_writing_tool, using_ink, having_a_nib
A a a a a A with_an_ink_contain

=
= =

= =
= = ∪

1 1 1 11 1 11 2 11 3

12 1 12 2 12 3 13 1 13 2 13 3

};

 {(,), (,), (,)}
 {(,), (,), (,)} {(,), (,), (,)}

c

er
R O A o a o a o a

o a o a o a o a o a o a
= × = ∪

∪
 (45)

Box 16.

of related concepts c0 through c9, as well as objects
o1 through o3, can be expressed in Figure 5.

A formal description corresponding to the
above concept network can be carried out using
concept algebra as given below:

 3073

On Concept Algebra

 0 1 3 6 1 1 4 2

 2 5 7 8 3

9 6 7

(() || ())
 || ((|| ())

(||)

c c c c o c c o
c c c c o

c c c

+
⇒ ⇒ ⇒

 (46)

The case studies in Examples 4 and 5 demon-
strate that concept algebra and concept network
are a generic and formal knowledge manipulation
means that are capable to deal with complicated
abstract or concrete knowledge structures and
their algebraic operations. Further, detailed
concept operations of concept algebra may be
extended into a set of inference processes, which
can be formally described by RTPA (Wang, 2002b,
2003, 2006a, 2007b, 2007d, 2008a, 2008d) as a
set of behavioral processes.

conclusIon

A new mathematical structure, known as concept
algebra, has been presented for abstract concepts
and knowledge representation and manipulation.
Concepts have been treated as the basic unit of
cognition that carries certain meanings in almost
all cognitive processes such as thinking, learn-
ing, reasoning, and system design. Abstract con-
cepts have been formally modeled as a dynamic
mathematical structure with internal attributes,
objects, and their relations that possess the adap-
tive capability to grow in concept networks. The
formal methodology for manipulating knowledge
has been developed using concept algebra and
concept networks. A number of case studies have
been used to demonstrate the expressive power
of concept algebra in knowledge representation
and manipulation. A wide range of applications
of concept algebra has been identified for solving
common problems in cognitive informatics, logic,
linguistics, psychology, knowledge engineering,
data mining, software engineering, and intelli-

gence science. One of the important applications
of concept algebra is the formalization of object-
oriented methodologies and the development of a
rigorous semantics of UML as an industrial OO
design languages. Autonomic machine learning
and searching engines can be developed on the
basis of concept algebra.

AcKnowledGment

The author would like to acknowledge the Natu-
ral Science and Engineering Council of Canada
(NSERC) for its partial support of this work. The
author would like to thank anonymous reviewers
for their valuable comments and suggestions.
The author is grateful to Dr. Y. Y. Yao for many
insightful discussions.

reFerences

Anderson, J. R. (1983). The architecture of
cognition. Cambridge, MA: Harvard University
Press.

Anderson, J. R. (1991). Is human cognition adap-
tive? Behavioral and Brain Science, 14, 71-517.

Chen, Y., & Yao, Y. Y. (2005). Formal concept
analysis based on hierarchical class analysis. In
Proceedings of the Fourth IEEE International
Conference on Cognitive Informatics (ICCI’05)
(pp. 285-292). Irvin, CA: IEEE CS Press.

Codin, R., Missaoui, R., & Alaoui, H. (1995).
Incremental concept formation algorithms based
on Galois (concept) lattices. Computational In-
telligence, 11(2), 246-267.

Colins, A. M., & Loftus, E. F. (1975). A Spread-
ing-activation theory of semantic memory. Psy-
chological Review, 82, 407-428.

Ganter, B., & Wille, R. (1999). Formal concept
analysis. Berlin, Germany: Springer.

3074

On Concept Algebra

Hampton, J. A. (1997). Psychological represen-
tation of concepts of memory (pp. 81-11). Hove,
England: Psychology Press

Hurley, P. J. (1997), A concise introduction to logic
(6th ed.). Belmony, CA: Wadsworth.

Matlin, M. W. (1998). Cognition (4th ed.). New
York: Harcourt Brace.

Medin, D. L., & Shoben, E. J. (1988). Context and
structure in conceptual combination. Cognitive
Psychology, 20, 158-190.

Murphy, G. L. (1993). Theories and concept for-
mation. In I. V. Mechelen et al. (Eds.), Categories
and concepts, theoretical views and inductive
data analysis (pp. 173-200). New York: Academic
Press.

Quillian, M. R. (1968). Semantic memory. In M.
Minsky (Ed.), Semantic information processing.
Cambridge, MA: MIT Press.

Reisberg, D. (2001). Cognition: Exploring the sci-
ence of the mind (2nd ed.). New York: Norton.

Smith, E. E., & Medin, D. L. (1981). Categories
and concepts. Cambridge, MA: Harvard Uni-
versity Press.

Wang, Y. (2002a). Keynote lecture: On cognitive
informatics. In Proceedings of the First IEEE
International Conference on Cognitive Infor-
matics (ICCI’02) (pp. 34-42). Calgary, Canada:
IEEE CS Press.

Wang, Y. (2002b). The real-time process algebra
(RTPA). The International Journal of Annals of
Software Engineering, 14, 235-274.

Wang, Y. (2003). Using process algebra to describe
human and software system behaviors. Brain and
Mind, 4(2), 199-213.

Wang, Y. (2006a, July). Cognitive informatics and
contemporary mathematics for knowledge repre-
sentation and manipulation, invited plenary talk.
In Proceedings of the First International Confer-

ence on Rough Set and Knowledge Technology
(RSKT’06) (LNAI 4062, pp. 69-78). Chongqing,
China: Springer.

Wang, Y. (2006b). On abstract systems and sys-
tem algebra. In Proceedinngs of the Fifth IEEE
International Conference on Cognitive Informat-
ics (ICCI’06) (pp. 332-343). Beijing, China: IEEE
CS Press.

Wang, Y. (2006c). On concept algebra and knowl-
edge representation. In Proceedings of the Fifth
IEEE International Conference on Cognitive
Informatics (ICCI’06) (pp. 320-331), Beijing,
China: IEEE CS Press.

Wang, Y. (2006d, March). On the informatics
laws and deductive semantics of software. IEEE
Transactions on Systems, Man, and Cybernetics
(C), 36(2), 161-171.

Wang, Y. (2007a). The cognitive processes of
formal inferences. The International Journal of
Cognitive Informatics and Natural Intelligence,
1(4), 75-86.

Wang, Y. (2007b). Keynote speech: On theoretical
foundations of software engineering and denota-
tional mathematics. In Proceedings of the Fifth
Asian Workshop on Foundations of Software (pp.
99-102). Xiamen, China:.

Wang, Y. (2007c). The OAR model of neural
informatics for internal knowledge representa-
tion in the brain. The International Journal of
Cognitive Informatics and Natural Intelligence,
1(3), 64-75.

Wang, Y. (2007d, July). Software engineering
foundations: A software science perspective.
In CRC Series in Software Engineering: Vol. 2.
CRC Press.

Wang, Y. (2007e). The theoretical framework of
cognitive informatics. The International Journal
of Cognitive Informatics and Natural Intelligence,
1(1), 1-27.

 3075

On Concept Algebra

Wang, Y. (2008a, April). Deductive semantics
of RTPA. The International Journal of Cogni-
tive Informatics and Natural Intelligence, 2(2),
96-121.

Wang, Y. (2008b, April). On system algebra: A
denotational mathematical structure for abstract
system modeling. The International Journal of
Cognitive Informatics and Natural Intelligence,
2(2), 20-43.

Wang, Y. (2008c). On the big-R notation for de-
scribing iterative and recursive behaviors. The
International Journal of Cognitive Informatics
and Natural Intelligence, 2(1), 17-18.

Wang, Y. (2008d, April). RTPA: A denotational
mathematics for manipulating intelligent and
computational behaviors. The International
Journal of Cognitive Informatics and Natural
Intelligence, 2(2), 44-62.

Wang, Y., & Wang, Y. (2006, March). On cog-
nitive informatics models of the brain. IEEE
Transactions on Systems, Man, and Cybernetics
(C), 36(2), 203-207.

Wille, R. (1982). Restructuring lattice theory: An
approach based on hierarchies of concepts. In I.
Rival (Ed.), Ordered sets (pp. 445-470). Reidel,
Dordrecht

Wilson, R. A., & Keil, F. C. (Eds.). (1999). The
MIT encyclopedia of the cognitive sciences.
Cambridge, MA: The MIT Press.

Yao, Y. Y. (2004). Concept formation and learn-
ing: A cognitive informatics perspective. In
Proceedings of the Third IEEE International
Conference on Cognitive Informatics (ICCI’04)
(pp. 42-51). Victoria, British Columbia, Canada:
IEEE CS Press.

This work was previously published in the International Journal of Cognitive Informatics and Natural Intelligence, edited by
Y. Wang, Volume 2, Issue 2, pp. 1-19, copyright 2008 by IGI Publishing (an imprint of IGI Global).

3076

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.26
On System Algebra:

A Denotational Mathematical Structure
for Abstract System Modeling

Yingxu Wang
University of Calgary, Canada

AbstrAct

Systems are the most complicated entities and
phenomena in abstract, physical, information, and
social worlds across all science and engineering
disciplines. System algebra is an abstract math-
ematical structure for the formal treatment of
abstract and general systems as well as their al-
gebraic relations, operations, and associative rules
for composing and manipulating complex systems.
This article presents a mathematical theory of
system algebra and its applications in cognitive
informatics, system engineering, software engi-
neering, and cognitive informatics. A rigorous
treatment of abstract systems is described, and
the algebraic relations and compositional opera-
tions of abstract systems are analyzed. System
algebra provides a denotational mathematical
means that can be used to model, specify, and
manipulate generic “to be” and “to have” type
problems, particularly system architectures and
high-level system designs, in computing, software

engineering, system engineering, and cognitive
informatics.

IntroductIon

Systems are the most complicated entities and
phenomena in abstract, physical, information,
and social worlds across all science and engineer-
ing disciplines. Systems are needed because the
physical and/or cognitive power of an individual
component or a person is not enough to carry out
a work or solve a problem. System philosophy
intends to treat everything as a system, and it
perceives that a system always belongs to other
super system(s) and contains more subsystems.

The system concept can be traced back to the
17th century, when René Descartes (1596-1650)
noticed the interrelationships among scientific
disciplines as a system. The general system notion
was then proposed by Ludwig von Bertalanffy in
the 1920s (von Bertalanffy, 1952; Ellis & Fred,

 3077

On System Algebra

1962). The theories of system science have evolved
from classic theories (Ashby, 1958, 1962; Ellis
& Fred, 1962; Heylighen, 1989; G. J. Klir, 1992;
R. G. Klir, 1988; Rapoport, 1962) to contempo-
rary theories in the mid-20th century, such as I.
Prigogine’s dissipative structure theory (Prigogine
et al., 1972), H. Haken’s synergetics (Haken, 1977),
and Eigen’s hypercycle theory (Eigen & Schus-
ter, 1979). Then, during the late part of the last
century, there are proposals of complex systems
theories (G. J. Klir, 1992; Zadeh, 1973), fuzzy
theories (Zadeh, 1965, 1973), and chaos theories
(Ford, 1986; Skarda & Freeman, 1987).

System algebra is an abstract mathematical
structure for the formal treatment of abstract and
general systems as well as their algebraic relations,
operations, and associative rules for composing
and manipulating complex systems. System al-
gebra (Wang, 2005, 2006a, 2006b, 2007a, 2007c)
presented in this article is the latest attempt to
provide a formal and rigorous treatment of abstract
systems and their properties. This article treats
systems as a mathematic entity and it studies the
generic rules and theories of abstract systems. A
new mathematical structure of abstract systems
as the most complicated mathematical entities
beyond sets, functions, and processes is presented.
Properties of abstract systems are modeled and
analyzed. System algebra is introduced as a set of
relational and compositional operations for ma-
nipulating abstract systems and their composing
rules. The relational operations of system algebra
are described encompassing independent, related,
overlapped, equivalent, subsystem, and super-
system. The compositional operations of system
algebra are explored encompassing inheritance,
tailoring, extension, substitute, difference, com-
position, decomposition, aggregation, and speci-
fication. A wide range of applications of system
algebra are identified in cognitive informatics,
system science, system engineering, computing,
software engineering, and intelligent systems.

the AbstrAct sYstem theorY

This section demonstrates that systems may be
treated rigorously as a new mathematical structure
beyond conventional mathematical entities. Based
on this view, the concept of abstract systems and
their mathematical models are introduced.

Definition 1. An abstract system is a collection of
coherent and interactive entities that has stable
functions and a clear boundary with the external
environment.

An abstract system forms the generic model
of various real-world systems and represents the
most common characteristics and properties of
them.

Lemma 1. The generality principle of system ab-
straction states that a system can be represented
as a whole in a given level k of reasoning, 1 ≤ k ≤
n, without knowing the details at levels below k.

Definition 2. Let be a finite or infinite nonempty
set of components, and a finite or infinite non-
empty set of behaviors, then the universal system
environment U is denoted as a triple, i.e.:

() , ,
 = | | | → → → →

U
 : (1)

where is a set of relations between and ,
and | demotes alternative relations.

Abstract systems can be classified into two
categories known as the closed and open systems.
Most practical and useful systems in nature are
open systems in which there are interactions be-
tween the system and its environment. However,
in order to develop the theoretical framework of
abstract systems, the closed systems in which
there is no interaction with the external envi-
ronment will be modeled first in the following
subsection.

3078

On System Algebra

the mathematical model of closed
systems

The axiom of the abstract system theory is based
on the Object-Attribute-Relation (OAR) model
(Wang, 2007b, 2007d; Wang & Wang, 2006c), in
which the architecture of a system object Os can
be modeled by a set of attributes A and a set of
binary relations R among A and Os, i.e.:

(,) sO A R (2)

Encompassing both architectures and behav-

iors of a system on the basis of Equation 2, an
abstract closed system without interactions with
the environment can be formally described as
follows.

Definition 3. A closed system S on U is a 4-tuple,
i.e.:

 (,)S C R, B, Ω (3)

where

• C is a nonempty set of components of the
system, C = {c1, c2, …, cn} ⊆ Þ U.

• R is a nonempty set of relations between
pairs of the components in the system, R =
{r1, r2, …, rm} ⊆ C × C.

• B is a set of behaviors (or functions), B =
{b1, b2, …, bp}⊆ Þ U.

• Ω is a set of constraints on the memberships
of components, the conditions of relations,
and the scopes of behaviors, Ω = {ω1, ω2,
…, ωq}.

According to Definition 3, a closed system S =
(C, R, B, Ω) on U can be illustrated in Figure 1.

It is noteworthy that system behaviors B is the
most broad set of system actions implemented
or embodied on the given layout of the systems,
including any kind of system functions, interac-
tions, and communications. This is the major
difference that distinguishes an abstract system
from other mathematical structures such as a set,
lattice, group, or concept (Wang, 2008b).

Lemma 2. A closed system S = (C, R, B, Ω) is
an asymmetric (directed) and reflective system
because the relations R in it are constrained by
the following rules:

Figure 1. The abstract model of a closed system

 R1

 R2

 S
U

 C1 B1

 Ω1

 R1

 C2 B2

 Ω2

 R2

 3079

On System Algebra

a. Asymmetric:

 ∀a, b ∈ C ∧ a ≠ b ∧ r ∈ R, r(a, b)
 r(b, a) (4)

b. Reflective:

 ∀c ∈ C, r(c, c) ∈ R (5)

Corollary 1. The maximum number of binary
relations nr between all pairs of the nc compo-
nents in a closed system S = (C, R, B, Ω) can be
determined as follows:

2# #()r cn R C C n (6)

if all reflective self-relations are not considered, nr
becomes the maximum number of binary relations
of fully connected systems, n’r, i.e.:

' ' (1)r r c c cn n n n n (7)

Example 1. According to Corollary 1, the creation
of relations in a closed system is solely determined
by the number of components possessed in the
system. This property can be illustrated in Figure
2, where denotes a system composition for both
closed or open systems, which will be formally
explained later. The relations of the three closed
systems 1S , 2S , and S are as follows, observing

that all pairwise relations are asymmetric or
different:

1 1 1

2 2 2
1 2

2

() 3 9; () 2 4;

() 5 25

r c r

r

n S n n S

n S

and

1 1 1

2

1

2

' () 9 3 6;

' () 4 2 2; ' () 25 5 20

r r c

r r

n S n n

n S n S

the mathematical model of open
systems

Most practical systems in the real world are not
closed. That is, they need to interact with exter-
nal world known as the environment Θ in order
to exchange energy, matter, and/or information.
Such systems are called “open systems.” Typi-
cal interactions between an open system and the
environment are inputs and outputs.

Contrary to that the relations of a closed
system are defined on the Cartesian product of
internal components, the set of relations R of an
open system needs to be extended to include both
internal relations Rc and external (input/output)
relations Ri and Ro, i.e.:

= { }c i oR R R R∪ ∪ (8)

Figure 2. Creation of relations in open and closed systems

 C21 C11

 C22 C12 C13

 ⇒

 S = S1 S2 S2 S1

 ∆R12

 C2 C3 C5

 C1 C4

3080

On System Algebra

Definition 4. An open system S on U is a 7-tuple,
i.e.:

(, ,), = { }
(, ,)

c i o

c i o

S C R, B, R R , R , R
= C R , R , R , B,

Ω Θ

Ω Θ

 (9)

where the extensions of entities beyond the closed
system as given in Definition 3 are as follows:

• Θ is the environment of S with a nonempty
set of components CΘ outside C, i.e., Θ = CΘ
 U .

• Rc = C × C is a set of internal relations.
• Ri ⊆ CΘ × C is a set of external input rela-

tions.
• Ro ⊆ C × CΘ is a set of external output rela-

tions.

An open system S = (C, Rc, Ri, Ro, B, Ω, Θ)
can be illustrated in Figure 3.

Lemma 3. An open system S(C, Rc, Ri, Ro, B, Ω,
Θ) on U is an asymmetric and reflective system
because its relations Rc, Ri, and Ro are constrained
by the following rules:

a. Internally asymmetric:

 ∀a, b ∈ C ∧ a ≠ b ∧ r ∈ Rc, r(a,b)
 r(b,a) (10)

b Externally asymmetric:

 ∀a ∈ C ∧ ∀x ∈ CΘ ∧ r ∈ Ri ∨ r ∈ Ro, r(x,a)
 r(a,x) (11)

c. Reflective:

 ∀c ∈ C, r(c, c) ∈ Rc (12)

Corollary 2. The maximum number of binary
relations nr and n’r in an open system S(C, Rc,
Ri, Ro, B, Ω, Θ) is determined by the numbers of
internal relations Rc as well as external relations
Ri and Ro, i.e.:

2

() # # #

2() (2)

c i o
r

c c c c c c

n S R R R

n n n n n n (13)

' () () (2)

(2 1)
r r c c c c c

c c c

n S n S n n n n n

n n n

 (14)

Figure 3. The abstract model of an open system

 S

 U

 C1 B1

 Ω1

 R1

 C2 B2

 Ω2

 R2

 Θ

 Ri
1

 Ri
2

 Ro
1

 Ro
2

 Rc
1 Rc

1

 3081

On System Algebra

Example 2. According to Corollary 2, the creation
of relations in an open system is solely determined
by the number of components possessed in the
system and its environment. This property can also
be illustrated in Figure 2, where S1 is treated as
the open system and S2 as the environment Θ:

 () (2)

3(3 2 2) 21
r c c cn S n n n

and

' () ()

21 3 18
r r cn S n S n

According to Corollaries 1 and 2, as well as

Examples 1 and 2, it is apparent that either a closed
or an open system may result in a huge number of
relations nr and the exponential increases of com-
plexity, when the number of components possessed
in them is considerably large. Therefore, system
algebra is introduced to formally and efficiently
manipulate abstract and general systems.

Definition 5. A system algebra SA on a given
universal system environment U is a triple, i.e.:

r c

(, ,) =
 ({ , } , { , },)c i o

SA S OP
C R , R , R , B,

Θ

• • Θ

 (15)

where OP = {•r, •c}are the sets of relational and
compositional operations on abstract systems.

System algebra provides a denotational math-
ematical means for algebraic manipulations of
abstract systems. System algebra can be used
to model, specify, and manipulate generic “to
be” and “to have” type problems, particularly
system architectures and high-level system de-
signs, in computing, software engineering,
system engineering, and cognitive informatics.
The relational and compositional operations on
abstract systems will be formally described in
the following sections.

ProPertIes oF AbstrAct
sYstems

taxonomy of systems

Systems as the most complex entities in the physi-
cal and abstract worlds may be classified into vari-
ous categories according to the key characteristics
of their components (C), relations (R), behaviors
(B), constraints (Ω), and/or environments (Θ). A
summary of the system taxonomy is shown in
Table 1, according to Definitions 3 and 4.

Table 1 shows that all types of systems fit the
unified framework of system taxonomy. There
are hybrid systems that may fall in two or more
categories, such as a dynamic nonlinear system
and a discrete fuzzy social system. The types of
systems may also classified by their magnitudes
as described in the following subsection.

magnitude of systems

Abstract and real-world systems may be very small
or extremely large (Qian et al, 1990; Rosen, 1977).
Therefore, a formal model of system magnitudes
is needed to classify the size properties of systems
and their relationship with other basic system
attributes. In order to derive such a model, a set
of measures on system sizes, magnitudes, and
complexities is introduced next.

Definition 6. The size of a system Ss is the number
of components encompassed in the system, i.e.:

#s cS C n (16)

Definition 7. The magnitude of a system Ms is the
number of asymmetric binary relations among
the nc components of the system including the
reflexive relations, i.e.:

2= # = #()s r cM R n C C n (17)

3082

On System Algebra

Table 1. Taxonomy of systems

System
Key Characteristics

Components (C) Relations
(R) Behaviors (B) Environment

(Θ)

1 Concrete Natural or real
entities

2 Abstract Mathematical or
virtual entities

3 Physical Natural entities
4 Social Humans
5 Finite #C ≠ ∞
6 Infinite #C = ∞

7 Closed Ri = ∅ ∧ Ro

= ∅

8 Open Ri ≠ ∅ ∧ Ro

≠ ∅
9 Static Invariable
10 Dynamic Variable
11 Linear Linear functions

12 Nonlin-
ear

Nonlinear func-
tions

13 Continu-
ous

Continuous func-
tions

14 Discrete Discrete functions
15 Precise Precise functions
16 Fuzzy Fuzzy functions

17 Determi-
nate

Response pre-
dictable to same
stimulates

18 Indeter-
minate

Response unpre-
dictable to same
stimulates

19 White-
box Observable Transparent Fully observable

20 Black-
box Unobservable Non-trans-

parent
Partially observ-
able

21 Intelli-
gent Autonomic Adaptive

22 Non-in-
telligent Imperative Nonadaptive

23 Main-
tainable Fixable Recoverable

24
Non-
main-
tainable

Nonfixable Nonrecoverable

 3083

On System Algebra

If all self-reflective relations are ruled out in nr,
the pure number of binary relations M’s in the
given system is determined as follows:

2' - (- 1)s s c c c c cM M n n n n n (18)

Lemma 4. The pure number of binary relations
M’s equals to exactly two times of the number of
pairwise combinations among nc, i.e.:

2(- 1)
' (- 1) 2 2

2 C
c

c c
s c c n

n n
M n n

 (19)

where the factor 2 represents the asymmetric
binary relation r, i.e., arb ≠ bra.

The magnitude of a system determines its
complexity. The complexities of systems can be
classified based on if they are fully or partially con-
nected. The former is the theoretical upper-bound
complexity of systems in which all components
are potentially interconnected with each other
in all n-nary ways, 1 ≤ n ≤ nc = #C. The latter is
the more typical complexity of systems where
components are only pairwisely connected.

Definition 8. The complexity of a fully connected
system Cmax is a closure of all possible n-nary
relations R*, 1 ≤ n ≤ nc, among all components
of the given system nc = #C, i.e.:

2

*

0
1 1 1

2

2 2 2 2 2

C
r

r

r r c s

n
k

max n
k

n n n M

C R

 (20)

where Cmax is also called the maximum complexity
of systems.

According to Definition 8, the closure of all
possible n-nary relations R* may easily result
in an extremely huge degree of complexity for
a system with few components. For example,
when nc = 10, Cmax = 2101. This explains why most

of the real-world systems are really too hard to
be modeled and handled in conventional models
and techniques.

It is noteworthy that almost all functioning
systems are partially connected, because a fully
connected system may not represent or provide
anything meaningful. Therefore, the complexity
of partially connected systems can be simplified
as follows on the basis of Definition 8.

Definition 9. The complexity of a partially con-
nected system Cr is determined by the number of
asymmetric binary relations M’s of the system,
i.e.:

2

' 2 (- 1)C
c

r s c cn
C M n n

 (21)

where Cr can be referred to the relational com-
plexity of systems.

The extent of system magnitudes (Wang,
2006d, 2007c) can be classified at seven levels
known as the empty, small, medium, large, giant,
immense, and infinite systems from the bottom
up. A summary of the relationships between
system magnitudes, sizes, internal relations,
and complexities can be described in the system
magnitude model, shown in Table 2.

Table 2 indicates that the complexity of a
small system may easily be out of control of hu-
man cognitive manageability. This leads to the
following theorem.

Theorem 1. The holism complexity of systems
states that within the 7-level scale of system
magnitudes, known as the empty, small, medium,
large, giant, immense, and infinite systems, almost
all systems are too complicated to be cognitively
understood or mentally handled as a whole, except
small systems or those that can be decomposed
into small systems.

According to Theorem 1, the basic principle
for dealing with complicated systems is system

3084

On System Algebra

decomposition or modularity, in which the com-
plexity of a lower level subsystem must be small
enough to be cognitively manageable. Details
of system decomposition theories and the art of
system architectures will be developed in the
following sections.

relAtIonAl oPerAtIons on
sYstems

The relational operations of abstract systems are
static and comparative operations that do not
change the systems involved. The relational opera-
tions on abstract systems are described below.

Lemma 5. The relational operations •r in system
algebra encompasses 6 comparative operators

for manipulating the algebraic relations between
abstract systems, i.e.:

r { } (22)

where the relational operators stand for indepen-
dent, related, overlapped, equivalent, subsystem,
and supersystem, respectively.

Algebraic relations of closed
systems

Relationships between two closed systems can be
independent, equivalent, being subsystem, and
being super system. The four relational operations
of closed systems are defined as follows.

Table 2. The system magnitude model

Lev-
el Category

Size of
systems

(Ss = nc)

Magni-
tude

of systems

(Ms = nr =
nc

2)

Relational complexity
of systems

((-))1r cC ncn

Maximum com-
plexity

of systems
(Cmax = 2

2 cn)

1 The empty
system (O) 0 0 0 -

2 Small
system [1, 10] [1, 102] [0, 90] [2, 2100]

3 Medium
system

(10,
102] (102, 104] (90, 0.99 • 104] (2100, 210,000]

4 Large
system

(102,
103] (104, 106] (0.99 • 104, 0.999 • 106] ∞

5 Giant sys-
tem

(103,
104] (106, 108] (0.999 • 106, 0.9999 •

108] ∞

6 Immense
system

(104,
105] (108, 1010] (0.9999 • 108, 0.99999

•1010] ∞

7 The infinite
system (U)

∞ ∞ ∞ ∞

 3085

On System Algebra

Definition 10. Two closed systems 1S and 2S are
independent, denoted by , if both their compo-
nent sets and relation sets are disjoint, i.e.:

 1 2(,) (,)1 1 1 1 2 2 2 2

1 2 1 2

S C R , B , S C R , B ,
C C R R

Ω Ω

∩ = ∅ ∧ ∩ = ∅

 (23)

Definition 11. Two closed systems 1S and 2S are
equivalent, denoted by =, if all sets of compo-
nents, relations, behaviors, and constraints are
identical, i.e.:

 (,) = (,)

1 1 1 1 1 2 2 2 2 2

1 2 1 2 1 2 1 2

S C R , B , S C R , B ,
C C R R B B

Ω Ω

= ∧ = ∧ = ∧ Ω = Ω (24)

Definition 12. A subsystem S ' is a system that
is implicated in another system S , denoted by
, i.e.:

 (,) (,)
' ' ' '

S' C R, B, S C R, B,
C C R R B B

Ω Ω

⊆ ∧ ⊆ ∧ ⊆ ∧ Ω ⊆ Ω

 (25)

The aforementioned definition indicates that a
subsystem of a closed system is a coherent part
with all integrated components, internal/input/
output relations, behaviors, constraints, and the
environment.

Definition 13. A supersystem S is a system that
consists of one or more subsystems S’, denoted
by , i.e.:

 (,) (', ' ')
' ' ' '

S C R, B, S' C R', B ,
C C R R B B

Ω Ω

⊆ ∧ ⊆ ∧ ⊆ ∧ Ω ⊆ Ω

 (26)

Algebraic relations of open
systems

Relationships between two open systems can be
independent, overlapped, related, equivalent, be-
ing subsystem, and being supersystem. The six
compositional operations of open systems are
defined as follows.

Definition 14. Two open systems S1 and S2 are in-
dependent, denoted by , if both their component
sets and external relation sets are disjoint, i.e.:

Ω ΘR ,
Ω ΘR , (, ,)

(, ,)

c i o
1 1 1 1 1 1 1 1

c i o
2 2 2 2 2 2 2 2

i i
1 2 1 2

o o
1 2

S C R , R , B ,
S C R , R , B ,

C C R R
R R
∩ = ∅ ∧ ∩ =

∅ ∧ ∩ = ∅

(27)

Definition 15. Two open systems S1 and S2 are
overlapped, denoted by Π, if their component sets
are joint, i.e.:

R ,
Ω ΘR ,

(, ,)

(, ,)

c i o
1 1 1 1 1 1 1 1

c i o
2 2 2 2 2 2 2 2

1 2

S C R , R , B ,
S C R , R , B ,

C C

∏

Ω Θ

∩ ≠ ∅ (28)

Definition 16. Two open systems S1 and S2 are re-
lated, denoted by ↔, if either the sets of their input
relations or output relations are overlapped, i.e.:

Ω Θ

Ω Θ

1 1

(, ,)

(, ,)

() ()

c i o
1 1 1 1 1 1 1 1

c i o
2 2 2 2 2 2 2 2

i 0 i 0
1 2 2 1

S C R , R , R , B ,
S C R , R , R , B ,

R R R R- -

↔

∩ ≠ ∅ ∨ ∩ ≠ ∅ (29)

where (R0
1)

-1 or (R0
2)

-1 denotes an inverse relation,
i.e., ∀a ∈ C1 ∧ b ∈ C2, r(a, b) ∈ R0

1 ⇒ r(b, a) ∈(Ri
2)

= (R0
1)

-1.
 It is noteworthy that, by definition, there is no

closed system that is related or overlapped.

Definition 17. Two open systems S1 and S2 are
equivalent, denoted by =, if all sets of components,
relations, behaviors, constraints, and environments
are identical, i.e.:

 (, ,) =

(, ,)

c i o
1 1 1 1 1 1 1 1

c i o
2 2 2 2 2 2 2 2

c c i i o
1 2 1 2 1 2 1

o
2 1 2 1 2 1 2

S C R , R , R , B ,
S C R , R , R , B ,
C C R = R R = R R =
R B = B = =

Ω Θ

Ω Θ

= ∧ ∧ ∧

∧ ∧ Ω Ω ∧ Θ Θ

(30)

3086

On System Algebra

Definition 18. A subsystem S’ is a system that is
implicated in another system S, denoted by ,
i.e.:

'(', ' ', ')
(, ,)
'

' '

c' i' o'

c i o

c' c i' i o'

o '

S C R , R , R , B ,
S C R , R , R , B,
C C R R R R R

R B B =

Ω Θ

Ω Θ

⊆ ∧ ⊆ ∧ ⊆ ∧

⊆ ∧ ⊆ ∧ Ω ⊆ Ω ∧ Θ Θ

 (31)

The above definition indicates that a subsystem
of an open system is a coherent part of it with
all integrated components, internal/input/output
relations, behaviors, and constraints. However,
they share the same environment.

Definition 19. A supersystem S is a system that
consists of one or more subsystems S’, denoted
by , i.e.:

 (, ,)
'(', ' ', ')

'
' '

c i o

c' i' o'

c' c i' i o'

o '

S C R , R , R , B,
S C R , R , R , B ,

C C R R R R R
R B B =

Ω Θ

Ω Θ

⊆ ∧ ⊆ ∧ ⊆ ∧

⊆ ∧ ⊆ ∧ Ω ⊆ Ω ∧ Θ Θ

 (32)

relations between open and closed
systems

Although, the previous subsections analyze the
relations of closed and open systems separately,
it is noteworthy that closed and open systems are
transformable, when the environment of them is
treated as a supersystem as well. This notion can
be described in the following theorem and corol-
laries on the basis of Definitions 3 and 4.

Theorem 2. The equivalence between open and
closed systems states that an open system S is
equivalent to a closed system S , or vice versa,
when its environment ΘS or Θ

S is conjoined,
respectively, i.e.:

S

S

 = S

S =

S

S

 (33)

Theorem 2 can be proved by observing the
embedded relation of close and open systems as
illustrated in Figure 3. According to Theorem 2,
the following properties of equivalence between
closed and open systems can be derived.

Corollary 3. Any subsystem kS of a closed system
S is an open system, i.e.:

∀

kS ⊆ S ⇒ Ri
k ≠ ∅ ∧ Ro

k ≠ ∅ ∧ Θk = Cs ≠ ∅
 (34)

Corollary 4. Any supersystem S of a given set of
n open systems Sk, conjoining with their environ-
ments Θk, 1 ≤ k ≤ n, is a closed systems, i.e.:

i o
S S SR R

1

, , ()

n

k k k k
k

S S SR

 (35)

where
1

n

k
k

SR
=

 is an operator known as the big-R
notation (Wang, 2002, 2008a, 2008b, 2008c) that
denotes a repetitive behavior or recurrent structure
as defined in real-time process algebra (RTPA)
(Wang, 2002, 2003, 2006a, 2006c, 2007a, 2007c,
2008a, 2008d).

comPosItIonAl
oPerAtIons on sYstems

This section describes how abstract systems and
their relations as modeled in previous sections
may be manipulated by an algebraic system. The
compositional operations of system algebra are dy-
namic and integrative operations that manipulate
all systems involved in parallel. Compositional
operations on abstract systems provide a set of
fundamental mathematical means to construct
complex systems on the basis of simple ones or
to derive new systems on the basis of exiting
ones.

Lemma 6. The compositional operations •c in
system algebra encompasses 9 associative opera-

 3087

On System Algebra

tors for manipulating the algebraic compositions
among abstract systems, i.e.:

c { , , }

 (36)

where the compositional operators stand for sys-
tem inheritance, tailoring, extension, substitute,
difference, composition, decomposition, aggrega-
tion, and specification, respectively.

system Inheritance

Definition 20. The inheritance of a closed system

2S from a given system 1S , denoted by ⇒, is the

creation of the new system 2S by reproducing 1S
, i.e.:

1 1 1 1 1 2 2 2 2 2

2 2 2 2 2 2 1 2

1 2 1 2 1

(, , ,) (, , ,)

(, , , | ,

, ,)

S C R B S C R B

S C R B C C R

R B B

 (37)

where 1S is called the parent system, 2S the child
system.

Similarly, the inheritance of open systems can
be defined as follows.

c i o c i o

c i o c c

c i' o'

R , R , R , R , R , R ,

R , R , R , R R

R , R , R ,

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 1 2 1

2 1 1 2 2 1 2 1

2 1 2 1 2 1

1 1 1 1 1 1 1

(, , ,) (, , ,)

(, , , | , ,

 { }, { },

 , ,)

 | | (, ,

i i o o

S C B S C B

S C B C C

R R C C R R C C

B B

S C B '
1 1 1 2 1

'
1 1 1 2 1 1 2

, ' | { },

 { }, ')

i i

o o

R R C C

R R C C C

 (38)

Box 1.

1

11 1 1

11 1 1 1

1

 (, , ,)

(, , , | , , { ()},

 { ()}, , ,)

 | | (,

n
c i o

i
i

n n n n
c i o c c i i

i i i i
ii i i

n n n nn
o o

i i i i i
ii i i i

n
c i

i i i i
i

S S C R , R , R ,B

S C R , R , R ,B C C R R R R C C

R R C C B B

S C R , R , R

R

R

R

R

=

== = =

== = = =

=

⇒ Ω Θ

Ω Θ = = = ∪ ×

= ∪ × = Ω = Ω Θ = Θ

'

'

, , ' | { },

 { }, ')

o i i
i i i i i i i

o o
i i i i i

,B R R C C

R R C C C

Ω Θ = ∪ ×

= ∪ × Θ = Θ ∪

 (39)

Box 2.

3088

On System Algebra

Definition 21. The inheritance of an open system
S2 from the parent system S1, denoted by ⇒, is the
creation of the new system S2 by reproducing S1,
and the establishment of new associations between
them, see Box 1, where || denotes that an open system
inheritance creates new associations between S1 and
S2 in parallel via (Ro

1, R
i
2) and (Ro

2, R
i
1).

Definition 22. The multiple inheritance of an open
system S from n parent systems S1, S2, …, Sn, denoted
by ⇒, is an inheritance that creates the new system
S via a set of n conjoint systems and establishes new
associations among them, see Box 2.

system tailoring

Definition 23. The tailoring of a closed system 2S
from the parent system 1S , denoted by , is a special
system inheritance that creates the new system 2S

based on 1S with the removal of specific subsets of
components C ′, behaviors B′, and constraints Ω′,
see Box 3.

Similarly, the tailoring of open systems can be
defined as follows.

Definition 24. The tailoring of an open system S2
from the parent system S1, denoted by , is a special
system inheritance that creates the new system S2
based on S1 with the removal of specific subsets of
components C ′, behaviors B′, and constraints Ω′;
and at the same time, it establishes new associations
between them, see Box 4.

system extension

Definition 25. The extension of a closed system 2S
from the parent system 1S , denoted by , is a special

 c c

R , R ,

R , R R

1 1 1 1 1 2 2 2 2 2

2 2 2 2 2 2 1 2 1 1

2 1 2 1

(, ,) (, ,)

(, , | \ ', \ { '}

 \ ', \ ')

S C B S C B

S C B C C C C C

B B B

 (40)

Box 3.

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 1 2 1 1

2 1 1 2 2 1 2 1

2 1 2 1 2 1

1 1

(, , ,) (, , ,)

(, , , | \ ', \{ '},

 { }, { },
 \ ', \ ',)

 | | (,

c i o c i o

c i o c c

i i o o

S C R , R , R ,B S C R , R , R ,B
S C R , R , R ,B C C C R R C C

R R C C R R C C
B B B

S C

Ω Θ ⇒ Ω Θ

Ω Θ = = ×

= ∪ × = ∪ ×
= Ω = Ω Ω Θ = Θ

'
1 1 1 1 1 1 1 1 2 1

'
1 1 1 2 1 1 2

, , ' | { },

 { }, ')

c i' o' i i

o o

R , R , R ,B R R C C
R R C C C

Ω Θ = ∪ ×

= ∪ × Θ = Θ ∪

 (41)

Box 4.

 3089

On System Algebra

system inheritance that creates the new system 2S
based 1S with additional subsets of components C′,
behaviors B′, and constraints Ω′, see Box 5.

Similarly, the extension of open systems can be
defined as follows.

Definition 26. The extension of an open system S2
from the parent system S1, denoted by , is a special
system inheritance that creates the new system S2
based S1 with additional subsets of components C′,
behaviors B′, and constraints Ω′; and at the same
time, it establishes new associations between the
two systems, see Box 6.

system substitution

Definition 27. The substitute of a closed system

2S
from the parent system 1S , denoted by , is a flexible
system inheritance that creates the new system 2S
based on 1S with the new subsets of components
C′c2, behaviors B′c2, and constraints Ω′c2 to replace
the corresponding inherited ones C′c1, B′c1, and Ω′c2
that share the same identifiers, see Box 7. Where
C′S1 ⊂ C1 ∧ C′S2 ⊂ C2 ∧ #C′S1 = #C′S2; B′S1 ⊂ B1
∧ B′S2 ⊂ B2 ∧ #B′S1 = #B′S2; and Ω′S1 ⊂ Ω1 ∧ Ω′S2
⊂ Ω2 ∧ #Ω′S1 = #Ω′S2. Similarly, the substitute of
open systems can be defined as follows.

 c c

R , R ,

R , R R

1 1 1 1 1 2 2 2 2 2

2 2 2 2 2 2 1 2 1 1

2 1 2 1

(, ,) (, ,)

(, , | ', { '}

 ' , ')

S C B S C B

S C B C C C C C

B B B

 (42)

Box 5.

c i o c i o

c i o c c

R , R , R , R , R , R ,

R , R , R , R R

R

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 1 2 1 1

2 1 1 2 2 1 2 1

2 1 2 1 2 1

1 1 1

(, , ,) (, , ,)

(, , , | ', { '}

 { }, { },

 ' , ',)

 | | (,

i i o o

S C B S C B

S C B C C C C C

R R C C R R C C

B B B

S C c i' o', R , R , '
1 1 1 1 1 1 1 2 1

'
1 1 1 2 1 1 2

, , ' | { },

 { }, ')

i i

o o

B R R C C

R R C C C

 (43)

Box 6.

3090

On System Algebra

Definition 28. The substitute of an open system S2
from the parent system S1, denoted by , is a flex-
ible system inheritance that creates the new system
S2 based on S1 with the new subsets of components
C′c2, behaviors B′c2, and constraints attributes Ω′c2
to replace the corresponding inherited ones C′c1,
B′c1, and Ω′c2 that share the same identifiers; and
at the same time, it establishes new associations
between the two concepts, see Box 8. Where C′S1
⊂ C1 ∧ C′S2 ⊂ C2 ∧ #C′S1 = #C′S2; B′S1 ⊂ B1 ∧ B′S2
⊂ B2 ∧ #B′S1 = #B′S2; and Ω′S1 ⊂ Ω1 ∧ Ω′S2 ⊂ Ω2
∧ #Ω′S1 = #Ω′S2.

Binary tailoring, extension, and substitution
can also be extended to corresponding n-nary
operations, similar to that of inheritance as given
in Definitions 22.

system composition

As a preparation to describe the important prop-
erty of system relations, the mathematical calculus
of incremental union between sets of relations is
introduced below (Wang, 2006c, 2007c).

Definition 29. An incremental union of two sets
of relations R1 and R2, denoted by , are a union
of R1 and R2 plus a newly generated incremental
set of relations ∆R12, i.e.:

 1 2 1 2 12R R R R R (46)

where

 12 1 12 2R R R R , but 12 1 2R R R .

1 2 1 2

1 2 1 2

1 1 1 1 1 2 2 2 2 2

2 2 2 2 2 2 1 2 1 1 1

2 1 2 1

(, ,) (, ,)

(, , | (\ ') ' , (\ (')) ('),

 (\ ') ' , (\ ') ')

c c
S S S S

S S S S

S C R ,B S C R ,B

S C R ,B C C C C R R C C C C

B B B B

Ω ⇒ Ω

Ω = ∪ = × ∪ ×

= ∪ Ω = Ω Ω ∪ Ω

 (44)

Box 7.

S S

1 2

1 2

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 1

2 1 1 1 2 1 1 2

2 1 2 1 2 1

(, , ,) (, , ,)

(, , , | (\ ') ' ,

(\{ ' }) { ' }, { },

 { }, (\

c i o c i o

c i o
S S

c c i i

o o

S C R , R , R ,B S C R , R , R ,B
S C R , R , R ,B C C C C

 R R C C C C R R C C

R R C C B B B

Ω Θ ⇒ Ω Θ

Ω Θ = ∪

= × ∪ × = ∪ ×

= ∪ × =

1 2 1 22 1 2 1

' '
1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 2

1 1 2

') ' , (\ ') ' ,)

 | | (, , , ' | { }, { },
 ')

S S S S

c i' o' i i o o

B

S C R , R , R ,B R R C C R R C C
C

∪ Ω = Ω Ω ∪ Ω Θ = Θ

Ω Θ = ∪ × = ∪ ×
Θ = Θ ∪

 (45)

Box 8.

 3091

On System Algebra

The number of the incremental relations ∆R12
generated in the incremental union can be deter-
mined as stated in the following theorem.

Theorem 3. The maximum number of newly
gained relations ∆R12 obtained during the incre-
mental union of two sets of relations is a product
of the numbers of elements of the two sets #C1
and #C2, i.e.:

1 212 1 22(# #) 2)c cR C C n n (47)

Proof: Because ∆R12 is the difference between the
relations of the newly generated entire system #R
and those of the independent systems #R1 and #R2,
according to Corollaries 1 and 2, Theorem 3 is
proved by the following inference process:

1 2 1 2

1 1 2 2 1 2

1 2

12 1 2
2 2 2

2 2 2 2

= # (# +#)

() ()

(2) ()

2

c c c c

c c c c c c

c c

R R R R

n n n n

n n n n n n

n n (48)

The incremental union of relations reveals an
important property of systems, which indicates
that the merge of two systems results in new re-
lations, behaviors, functions, and/or constraints
that are not belong to any original individual
subsystems. Theorem 3 can be used to predict the
maximum numbers of newly established relations,
behaviors, and/or constraints in a composition
of two systems. According to Theorem 3, the

maximum incremental system gain equals to the
number of by-directly interconnection between all
components in both S1 and S2, i.e., 2(#C1 • #C2).

Definition 29 can be extended to n-nary incre-
mental unions for multiple sets of relations.

Definition 30. The n-nary incremental union for
multiple sets of relations,

1

n

i
i

R
=

 ,

is a series of cumulative binary incremental unions
as in Box 9.

Based on the calculus of incremental union
of sets of relations, system compositions can be
defined as follows.

Definition 31. The composition of two closed
systems

1S and

2S , denoted by , results in a
super system S that is formed by union of sets of
components and environments, as well as incre-
mental union of sets of relations, behaviors, and
constraints, respectively, see Box 10.

Theorem 4. The system fusion principle states
that new relations ∆R12, new behaviors (func-
tions) ∆B12, and new constraints ∆Ω12, generated
in system compositions are solely a property of
the new super system S , but not belong to any of
the independent subsystems, i.e.:

1

1 1

1 2 12 3 2 '3 1',

(), 1

(...(()) ...)

n n

i i j ij
i i

n n n

R R R R j i

R R R R R R R

R
-

= =

-

∪ ∪ ∆ = +

= ∪ ∪ ∆ ∪ ∪ ∆ ∪ ∪ ∪ ∆

 (49)

Box 9.

3092

On System Algebra

 12 12 1 12 2()R S R S R S		E E 	E 	 (51.a)

 12 12 1 12 2()B S B S B S		E E 	E	
 (51.b)

 12 12 1 12 2()S S S		E E 	E	
 (51.c)

where E denote a membership relation of a given
set in a system.

The discovery in Theorems 3 and 4 reveal that
the nature of system utilities can be rigorously
explained as the newly gained relations ∆R12, as
well as behaviors ∆B12 and constraints ∆Ω12, dur-
ing the composition of two or more systems. The
empirical awareness of this key system property
has been intuitively or qualitatively described
in the literature of system science (Ellis & Fred,
1962; G. J. Klir, 1992). However, Theorems 3
and 4 are the first mathematical explanation of
the mechanism of system gains during system
compositions (Wang, 2006b, 2007c).

More generally, Definition 31 and Theorem 4
can be extended to open systems.

Definition 32. The composition of two open sys-
tems S1 and S2, denoted by , results in a super

system S that is formed by simple conjunctions both
of sets of components and environments, as well as
incremental unions of sets of relations, behaviors,
and constraints, respectively, see Box 11.

The operation of open system composition
is illustrated in Figure 4, where the generation
of the new relations ∆Rc

1 and ∆Rc
2 in S after the

composition of S1 and S2 can be observed.
System compositions as modeled in Definitions

31 and 32 can be extended to n-nary compositions
as follows.

Definition 33. The composition of multiple open
systems, denoted by

1

n

i
i

S
=
 ,

is an iterative integration of a pair of systems,
which cumulatively creates the new supersystem
S, see Box 12.

The composition of multiple closed systems
is similar to Definition 33, which can be tailored
from Equation 53.

System composition at the top level is a com-
plicated algebraic operation that integrates two or

1 1 1 1 1 2 2 2 2 2

1 2 1 2 1 2 1 2

1 2 1 2 12

1 2 12 1 2 12

(, , ,) (, , ,)

(, , , | , , ,)

(, , , | , ,

 ,)

S C R B S C R B

S C R B C C C R R R B B B

S C R B C C C R R R R

B B B B

 (50)

Box 10.

 3093

On System Algebra

, ,

c i o c i o

c i o c c c i i i

o o o

c i' o'

R , R , R , R , R , R ,

R , R , R ,

R , R , R ,

1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2

1 2 1 2 1 2

1 2 1 2 1 2 1 2
2

'

i=1

(, , ,) (, , ,)

(, , ,) | , , ,

 , , ,)

 | | (, , , ' | i
i i i i i i i i i

S C B S C B

S C B C C C R R R R R R

R R R B B B

S C B RR

c i o c c c c

i i i i o o o o

c

R , R , R ,

R ,

'

1 2 1 2 12

1 2 12 1 2 12

1 2 12 1 2 12 1 2
2

i=1

{ },

 { }, ')

 (| , ,

 , ,

 , ,)

 | | (,

i
i i

o o
i i i i i

i i i

R C C

R R C C C

S C B C C C R R R R

R R R R R R R R

B B B B

S CR i' o'R , R , '

'

, , ' | { },

 { }, ')

i i
i i i i i i i i

o o
i i i i i

B R R C C

R R C C C

 (52)

Box 11.

Figure 4. The composition of two open systems

 U

 S1

 C11 B11

 Ω11

 R11

 C12 B12

 Ω12

 R12

 Ri
11

 Ri
12

 Ro
11

 Ro
12

 Rc
12 Rc

11
 S2

 C21 B21

 Ω21

 R21

 C22 B22

 Ω22

 R22

 Ri
21

 Ri
22

 Ro
21

 Ro
22

 Rc
22 Rc

21

 Ri
1

 Ri
2

 Ro
2

 Ro
1

 Θ1 Θ2

 Θ
 S

∆Rc
1

∆Rc
2

1

1 11

1 1 1 1

n

i=1

(, , ,) (, , ,)

= (, , , | , , ,

 , , ,)

 | | (,

n
c i o c i o

i i i i i i i i
i

n n n
c i o c c i i

i i i
i ii

nn n n
o o

i i i i
i i i i

c i'
i i i i

S C R , R , R ,B S C R , R , R ,B

S C R , R , R ,B C C R R R R

R R B B

S C R , R , R

=

= ==

= = = =

Ω Θ Ω Θ

Ω Θ = = =

= = Ω = Ω Θ = Θ

'

'

, , ' | { },

 { }, ')

o' i i
i i i i i i i

o o
i i i i i

R ,B R R C C

R R C C C

Ω Θ = ∪ ×

= ∪ × Θ = Θ ∪

 (53)

Box 12.

,

3094

On System Algebra

more systems into a supersystem with a hierarchi-
cal architecture. There are three basic types of
system structural relations in system composition
known as parallel (||), serial (→), and nested ()
as shown in Figure 5. Complex system compo-
sitions can be represented by a combination of
these three meta-architectural relations between
subsystems. The syntaxes and semantics of these
three system relations in system compositions can
be referred to related definitions in RTPA (Wang,
2002, 2003, 2006c, 2007c, 2008a, 2008d).

According to Definition 33, a system can be
integrated from the bottom up by a series of com-
positions, level-by-level, in a system hierarchy.

Example 3. A composed system S(C, R, B, Ω ,Θ)
as given in Figure 6 can be formally described as
follows:

(, ,) || || ... || 1 2 xS C R, B, S S SΩ Θ

in which the subsystems of S can be refined as in
Box 13.

system difference

Definition 34. The difference between a closed sys-
tems S and its subsystem 1S , denoted by , results in
a closed subsystem 2S that is formed by the difference
of sets of components (C1), and the differences of the
internal relations, behaviors, and constraints (R1,
B1, Ω1) with their incremental counterparts (∆R12,
∆B12, ∆Ω12), see Box 14.

According to Definition 34, a difference of a
subsystem from a system S , will result in the re-
moval of not only the given subsystem but also all

Figure 5. Basic types of system structural relations in system compositions

No. Type of composition Syntax Example

1 Parallel S1 || S2

S S1 || S2 || … || Sn

 S1 S2 … Sn

2 Serial S1 → S2

S S1 → S2 → … → Sn

 S1 S2 … Sn

3 Nested S1 S2

S S1 S2 … Sn
 … S1

 … S2

 … Sn

 …

 …

 …

 3095

On System Algebra

(, ,) || || (|| ... ||)|| ||

(, ,)

(, ,)

1 1 1 1 1 1 11 12 13 111 11x 12 13

2 2 2 2 2 2 21 22

x x x x x x x1 x11

S C R , B , S S S S S S S

S C R , B , S S

S C R , B , S S

Ω Θ =

Ω Θ →

Ω Θ

Box 13.

Figure 6. The hierarchical structure of system compositions

 S1 S2 Sx

 S11 S12 S13 S21 S22

 S

 Sx1

 Sx11 S111 S11x …

 …

R, R ,

R ,

 1 1 1 1 1

2 2 2 2 2 2 1 2 1 12

2 1 12 2 1 12

(, ,) (, ,)

(, , | \ , \ (),

 \(), \ ())

S C B S C B

S C B C C C R R R R

B B B B

 (54)

Box 14.

interrelations and incremental behaviors between
the subsystem and other subsystem in it.

Similarly, the difference of open systems can
be defined as follows.

Definition 35. The difference between an open
systems S and its subsystem S1, denoted by , re-
sults in an open subsystem S2 that is formed by the
difference of sets of components and I/O relations

3096

On System Algebra

(C1, Ri
1, Ro

1), and the differences of the internal
relations, behaviors, and constraints (Rc

1, B1, Ω1)
with their incremental counterparts (∆Rc

12, ∆B12,
∆Ω12), see Box 15.

The operation of open system difference can
also be illustrated by Figure 4, where S1 and all
related I/O relations should be removed in the
operation S2 = S S1,.

system decomposition

A system decomposition is an inverse operation of
system composition that breaks up a system into
two or more subsystems. System decomposition

c i o c i o

c i o c c c c

i i i o o o

R , R , R , R , R , R ,

R , R , R ,

 1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 2 1 2 1 12

2 1 2 1 2 1 12

2 1 12 2 1

(, , ,) (, , ,)

(, , , | \ , \ (),

 \ , \ , \ (),

 \(),)

S C B S C B

S C B C C C R R R R

R R R R R R B B B B

 (55)

Box 15.

1

' ' '

1
'

(, , ,) (, , ,)

{ (, , , , , , ' | { },

 { }, ')

 || (, , ,) (,

n
c i o c i o

i i i i i i i i
i

n
c i o i i

i i i i i i i i i i i
i

o o
i i i i i

c i o
i i

S C R , R , R ,B S C R , R , R ,B

S C R R R B R R C C

R R C C C
S C R , R , R ,B S C

R
=

=

Ω Θ Ω Θ

Ω Θ = ∪ ×

= ∪ × Θ = Θ ∪

Ω Θ

, ,)
 }

c i o
i i i i i iR , R , R ,B Ω Θ

 (56)

Box 16.

can be described based on the concept of system
difference, which is an inversed operation of the
incremental union of sets.

Definition 36. The decomposition of an open
systems S, denoted by , is to break up S into two
or more subsystems at a given level of the system
hierarchy by one of the compositional relations Rc
= {||, →, }, see Box16.

As specified in Definition 36, the decomposition
operation results in the removal of all internal re-
lations ,1 ,c

ij i jR C C i j n∆ = × ≤ ≤ that are no longer
belong to any of its subsystems.

 3097

On System Algebra

Similarly, the decomposition of a closed sys-
tem into multiple subsystems can be defined as
follows.

Definition 37. The decomposition of a closed
system S , denoted by , is to break up S into two
or more subsystems at a given level of the system
hierarchy by one of the compositional relations Rc
= {||, →, }, see Box17.

Definitions 36 and 37 indicate that either an
open or a closed system can be resolved from the
top down by a series of decompositions, level-by-
level, in the system hierarchy. It is noteworthy that
both open and closed system decompositions result
in a set of open subsystems.

system Aggregation

Definition 38. The aggregation of a closed system
S from a set of n peer systems S i, 1 ≤ i ≤ n, denoted
by , is an aggregation of S with the elicitation
of interested subsets of components C’i, behaviors
B’i, and constraints Ω’i, see Box 18. Similarly, the
aggregation of open systems can be defined as
follows.

Definition 39. The aggregation of an open system
S from a set of n peer systems Si, 1 ≤ i ≤ n, denoted
by , is an aggregation of S with the elicitation
of interested subsets of components C’i, behaviors
B’i, and constraints Ω’i; and at the same time, it
establishes new associations among all aggregated

1

1

(, ,) (, ,)

{ (, , , , , , | (), (),)

 || (, ,) (, ,)
 }

n

i i i i i
i

n
c i o i o

i i i i i i i i i i i i i
i

i i i i i

S C R,B S C R ,B

S C R R R B R C C R C C C

S C R,B S C R ,B

R
=

=

Ω Ω

Ω Θ = × = × Θ =

Ω Ω

 (57)

Box 17.

1

1

1 1

(, ,) (, ,)

(, , | ' , ,

 ' , ')

n

i i i i i
i

n

i i
i
n n

i i i i
i i

S C R,B S C R ,B

S C R,B C C C R C C

B B B C C

R
=

=

= =

Ω Ω

Ω = ⊆ = ×

= ⊆ Ω = ⊆

 (58)

Box 18.

3098

On System Algebra

systems, see Box 19. System aggregation is also
known as system elicitation.

According to Definitions 32 and 39, the differ-
ence between system composition and aggregation
is that the former constructs a new system by
integrating a set of entire systems as subsystems
while the latter constructs a new system by elicit-
ing interested subsets of components, behaviors,
and/or constraints from a set of individual and
independent systems.

System Specification

A system specification is an inverse operation of
system aggregation. System specification is usu-
ally operated in a series of refinements.

Definition 40. The specification of a closed sys-
tem S 0 by a set of n refined systems S i, 1 ≤ i ≤ n,
denoted by , is a specification of S 0 with a total
order of a series of refinements by increasingly

specific and detailed components Ci, behaviors
Bi, and constraints Ωi, see Box 20.

Similarly, the specification of open systems
can be defined as follows.

Definition 41. The specification of an open sys-
tem S0 by a set of n refined systems Si, 1 ≤ i ≤ n,
denoted by , is a specification of S0 with a total
order of a series of refinements by increasingly
specific and detailed components Ci, behaviors
Bi, and constraints Ωij; and at the same time, it
establishes new associations among all refining
systems, see Box 21.

System specification is a refinement process
where more specific and detailed components,
behaviors, and constraints are developed in a
consistent and coherent top-down hierarchy. The
major tasks of system specifications are system
architecture (component) and behavior specifica-
tions, which can be further refined by the Com-

1

1

1 1

1 1

(, , ,) (, , ,)

(, , , | ' , { },

 ({ }), ({ }),

 ' , ' ,

n
c i o c i o

i i i i i i i i
i

n
c i o c

i i
i

n n
i i o o

i i i i
i i
n n

i i i i
i i

S C R , R , R ,B S C R , R , R ,B

S C R , R , R ,B C C C R C C

R R C C R R C C

B B B C C C

R
=

=

= =

Θ
= =

Ω Θ Ω Θ

Ω Θ = ⊆ = ×

= ∪ × = ∪ ×

= ⊆ Ω = ⊆ Θ ⊆ ∪ Θ

1
n

'

i=1
'

)

 | | (, , , ' | { },

 { }, ')

n

i
i

c i' o' i i
i i i i i i i i i i i

o o
i i i i i

S C R , R , R ,B R R C C

R R C C C

R
=

Ω Θ = ∪ ×

= ∪ × Θ = Θ ∪

 (59)

Box 19.

 3099

On System Algebra

ponent Logical Models (CLMs) and processes
as provided in RTPA (Wang, 2002, 2003, 2006a,
2006c, 2007c, 2008a, 2008d).

conclusIon

A new mathematical structure of abstract systems
has been presented as the most complicated math-

ematical entities beyond sets, functions, concepts,
and processes. A formal and rigorous treatment
of abstract systems as well as their taxonomy and
properties has been described. System algebra has
been introduced as a set of relational and com-
positional operations for manipulating abstract
systems and their composing rules. The former
have been elicited as the algebraic operations of
independent, related, overlapped, equivalent,

Ω =

2 1 0 0 0 0 0
n

0 0 0 0 0 0 1 0 0 0
1

0 1 0 1
1 1

(...) (, ,)

(, , | (), (),

 (), ())

n

i i
i

n n

i i i i
i i

S S S S C R ,B

S C R ,B C C C R C C

B B B B B

R

R R

-
=

- -
= =

Ω

Ω = ⊂ = ×

= ⊂ ⊂

 (60)

Box 20.

R RΩ =

2 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 0 0 0
1

0 0 0 0
1 1

0 1 0
1 1

(...) (, , ,)

(, , , | (), { },

 ({ }), ({ }),

 (), (

c i o
n

n
c i o c

i i
i

n n
i i o o

i i i i
i i
n n

i i i
i i

S S S S C R , R , R ,B

S C R , R , R ,B C C C R C C

R R C C R R C C

B B B B

R -
=

= =

- -
= =

Ω Θ

Ω Θ = ⊂ = ×

= ∪ × = ∪ ×

= ⊂

1 0 1 2

'
0

1
'

0

), . ..)

 | | (, , , ' | { },

 { }, '))

i n

n
c i' o' i i

i i i i i i i i i i i
i

o o
i i i o i i

B

S C R , R , R ,B R R C C

R R C C C

R
=

⊂ Θ = Θ = Θ = = Θ

Ω Θ = ∪ ×

= ∪ × Θ = Θ ∪

 (61)

Box 21.

3100

On System Algebra

subsystem, and supersystem. The latter have been
identified as the algebraic operations of inheri-
tance, tailoring, extension, substitute, difference,
composition, decomposition, aggregation, and
specification. A wide range of applications of
system algebra has been recognized in cognitive
informatics, system science, system engineering,
computing, and software engineering. System
algebra has formed a fundamental theory for
denoting the rigorous semantics of conventional
object-oriented design notations and method-
ologies such as UML in software and intelligent
system engineering.

AcKnowledGment

The author would like to acknowledge the Natu-
ral Science and Engineering Council of Canada
(NSERC) for its partial support to this work. The
author would like to thank anonymous reviewers
for their valuable comments and suggestions.

reFerences

Ashby, W. R. (1958). Requisite variety and implica-
tions for control of complex systems. Cybernetica,
1, 83-99.

Ashby, W. R. (1962) Principles of the self-organiz-
ing system. In von H. Foerster & G. Zopf (Eds.),
Principles of self-organization (pp. 255-278).
Oxford, England: Pergamon.

Eigen, M., & Schuster, P. (1979). The hypercycle:
A principle of natural self-organization. Berlin,
Germany: Springer.

Ellis, D. O., & Fred, J. L. (1962). Systems philoso-
phy. Prentice Hall.

Ford, J. (1986). Chaos: Solving the Unsolvable,
predicting the unpredictable. In Chaotic dynamics
and fractals. Academic Press.

Haken, H. (1977). Synergetics. New York:
Springer-Verlag.

Heylighen, F. (1989). Self-organization, emer-
gence and the architecture of complexity. In
Proceedings of the First European Conference on
System Science (AFCET) (pp. 23-32). Paris.

Klir, G. J. (1992). Facets of systems science. New
York: Plenum Press.

Klir, R. G. (1988). Systems profile: the emer-
gence of systems science. Systems Research,
5(2), 145-156.

Prigogine, I., & Nicolis, G. (1972). Thermodynam-
ics of evolution. Physics Today, 25, 23-28.

Rapoport, A. (1962). Mathematical aspects of
general systems theory. General Systems Year-
book, 11, 3-11.

Skarda, C. A., & Freeman, W. J. (1987). How
brains make chaos into order. Behavioral and
Brain Sciences, 10.

von Bertalanffy, L. (1952). Problems of life: An
evolution of modern biological and scientific
thought. London: C. A. Watts.

Wang, Y. (2002). The real-time process algebra
(RTPA). The International Journal of Annals of
Software Engineering, 14, 235-274.

Wang, Y. (2003). Using process algebra to describe
human and software system behaviors. Brain and
Mind, 4(2), 199-213.

Wang, Y. (2005). System science models of
software engineering. In Proceedings of the
Eighteenth Canadian Conference on Electrical
and Computer Engineering (CCECE’05) (pp.
1802-1805). Saskatoon, Saskatchewan, Canada:
IEEE CS Press.

Wang, Y. (2006a). Cognitive informatics and
contemporary mathematics for knowledge repre-
sentation and manipulation (Invited plenary talk).
In Proceedings of the First International Confer-

 3101

On System Algebra

ence on Rough Set and Knowledge Technology
(RSKT’06) (LNAI 4062, pp. 69-78). Chongqing,
China: Springer.

Wang, Y. (2006b). On abstract systems and system
algebra. In Proceedings of the Fifth IEEE Inter-
national Conference on Cognitive Informatics
(ICCI’06) (pp. 332-343), Beijing, China: IEEE
CS Press.

Wang, Y. (2006c, March). On the informatics
laws and deductive semantics of software. IEEE
Transactions on Systems, Man, and Cybernetics
(C), 36(2), 161-171.

Wang, Y. (2007a). Keynote speech, on theoretical
foundations of software engineering and denota-
tional mathematics. In Proceedings of the Fifth
Asian Workshop on Foundations of Software (pp.
99-102). Xiamen, China: BHU Press.

Wang, Y. (2007b). The OAR model of neural
informatics for internal knowledge representa-
tion in the brain. The International Journal of
Cognitive Informatics and Natural Intelligence,
1(3), 64-75.

Wang, Y. (2007c). Software engineering founda-
tions: A software science perspective. In CRC
Series in Software Engineering: Vol. 2. CRC
Press.

Wang, Y. (2007d). The theoretical framework of
cognitive informatics. The International Journal
of Cognitive Informatics and Natural Intelligence,
1(1), 1-27.

Wang, Y. (2008a, April). Deductive semantics
of RTPA. The International Journal of Cogni-
tive Informatics and Natural Intelligence, 2(2),
95-121.

Wang, Y. (2008b, April). On concept algebra: A
denotational mathematical structure for knowl-
edge and software modeling. The International
Journal of Cognitive Informatics and Natural
Intelligence, 2(2), 1-19.

Wang, Y. (2008c). On the big-R notation for de-
scribing iterative and recursive behaviors. The
International Journal of Cognitive Informatics
and Natural Intelligence, 2(1), 17-28.

Wang, Y. (2008d, April). RTPA: A denotational
mathematics for manipulating intelligent and
computing behaviors. The International Journal
of Cognitive Informatics and Natural Intelligence
(IJCINI), 2(2), 44-62.

Wang, Y., & Wang, Y. (2006). On cognitive in-
formatics models of the brain. IEEE Transactions
on Systems, Man, and Cybernetics (C), 36(2),
203-207.

Zadeh, L. A. (1965). Fuzzy sets and systems. In J.
Fox (Ed.), Systems theory (pp. 29-37). Brooklyn,
NY: Polytechnic Press.

Zadeh, L. A. (1973). Outline of a new approach
to analysis of complex systems. IEEE Trans. on
Sys., Man and Cyb., 1(1), 28-44.

This work was previously published in the International Journal of Cognitive Informatics and Natural Intelligence, edited by
Y. Wang, Volume 2, Issue 2, pp. 20-43, copyright 2008 by IGI Publishing (an imprint of IGI Global).

3102

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.27
A Cognitive Informatics

Reference Model of
Autonomous Agent Systems

(AAS)
Yingxu Wang

University of Calgary, Canada

AbstrAct

Despite the fact that the origin of software agent
systems has been rooted in autonomous artifi-
cial intelligence and cognitive psychology, their
implementations are still based on conventional
imperative computing techniques rather than au-
tonomous computational intelligence. This paper
presents a cognitive informatics perspective on
autonomous agent systems (AAS’s). A hierarchi-
cal reference model of AAS’s is developed, which
reveals that an autonomous agent possesses intel-
ligent behaviors at three layers known as those of
imperative, autonomic, and autonomous from the
bottom up. The theoretical framework of AAS’s is
described from the facets of cognitive informat-
ics, computational intelligence, and denotational
mathematics. According to Wang’s abstract in-
telligence theory, an autonomous software agent

is supposed to be called as an intelligent-ware,
shortly, an intelware, parallel to hardware and
software in computing, information science, and
artificial intelligence.

IntroductIon

A software agent is an intelligent software sys-
tem that autonomously carries out robotic and
interactive applications based on goal-driven
cognitive mechanisms. The studies on software
agent are rooted in the essences of computing
science and cognitive science such as automata
theory (von Neumann, 1946, 1958, 1963, 1966;
Shannon, 1956), Turing machines (Turing, 1950),
cognitive psychology (Newell, 1990; Sternberg,
1997; Anderson and Rosenfeld, 1998; Matlin,
1998), artificial intelligence (McCarthy, 1955,

 3103

A Cognitive Informatics Reference Model of Autonomous Agent Systems (AAS)

1963; McCulloch, 1943, 1965; Barr and Feigen-
baum, 1981), computational intelligence (Poole
et al., 1997; Wang, 2008a), and decision theories
(Wald, 1950; Newell and Simon, 1972; Berger et
al., 1990; Bronson and Naadimuthu, 1997; Wang
and Ruhe, 2007; Wang, 2008b).

The history towards software agents may be
traced back to the work as early as in the 1940s.
J. McCarthy, W. McCulloch, M.L. Minsky, N.
Rochester, and C.E. Shannon proposed the term
Artificial Intelligence (AI) (McCarthy, 1955, 1963;
McCulloch, 1943, 1965). S.C. Kleene analyzed
the relations of automata and nerve nets (Kleene,
1956). Then, Bernard Widrow developed the
technology of artificial neural networks in the
1950s (Widrow and Lehr, 1990). The concepts
of robotics (Brooks, 1970) and expert systems
(Giarrantans and Riley, 1989) were developed
in the 1970s and 1980s, respectively. In 1992,
the notion of genetic algorithms was proposed
by J.H. Holland (Holland, 1992). Then, distrib-
uted artificial intelligence and intelligent system
technologies emerged since late 1980s (Bond
and Gasser, 1988; Kurzweil, 1990; Chaib-Draa
et al., 1992; Meystel and Albus, 2002, Meystel
and Albus, 2002).

The origin of the term autonomous agent
is based on Carl Hewitt and his colleagues’
artificial intelligence actor models proposed in
1973 (Hewitt et al., 1973, 1991). Then, as a novel
approach of artificial intelligence, agent tech-
nologies have been proliferated since the early
1990s (Foner, 1993; Genesereth and Ketchpel,
1994; Hayes-Roth, 1995; Axelrod, 1997; Huhns
and Singh, 1997; Wooldridge and Jenings, 1995;
Wooldridge, 2002, Wang, 2003b). Pattie Maes per-
ceived that a software agent is a process that lives
in the world of computers and networks and that
can operate autonomously to fulfill a set of tasks
(Maes, 1991). Dimitris N. Chorafas described
a software agent as a new software paradigm
of things that think (Chorafas, 1998). Software
agents are characterized by knowledge, learning,

reasoning, and adaptation, which are rational to
the extent that their behaviors are predictable by
given goals and the solution environment (Russell
and Norvig 1995; Poole, Mackworth, and Goebel
1997; Nilsson 1998).

Multi-agent systems are proposed in (Wittig,
1992; Wellman, 1999) as distributed intelligent
systems (Bond and Gasser, 1988) in which each
node is an autonomous software agent. The key
technology of autonomous agent systems is how
a variety of heterogeneous agents allocate their
roles, coordinate their behaviors, share their
resources, and communicate their information,
beliefs, and needs (Maes, 1991). The interaction
mechanisms of multi-agent systems, such as co-
operation, negotiation, belief reconciliation, infor-
mation sharing, and distributed decision making,
are identified as important issues in the design and
implementation of multi-agent systems.

Autonomic computing is one of the fundamen-
tal technologies of software agents, which is a
mimicry and simulation of the natural intelligence
possessed by the brain using general computers.
Autonomic computing was first proposed by
IBM in 2001, where it is perceived that “Auto-
nomic computing is an approach to self-managed
computing systems with a minimum of human
interference. The term derives from the body’s
autonomous nervous system, which controls key
functions without conscious awareness or involve-
ment (IBM, 2006).” Various studies on autonomic
computing have been reported following the IBM
initiative (Kephart and Chess, 2003; Murch, 2004;
Wang, 2004).

According to Wang’s abstract intelligence
theory (Wang, 2008a, 2009), software agents
are a paradigm of abstract and computational
intelligence, which is a subset of or an applica-
tion-specific virtual brain. Behaviors of a software
agent are mirrored human behaviors. Therefore,
a software agent may be more accurately named
as an intelligent-ware, shortly, an intelware,
parallel to hardware and software in computing,

3104

A Cognitive Informatics Reference Model of Autonomous Agent Systems (AAS)

information science, and artificial intelligence. In
this notion, intelware will be treated as a synonym
of an autonomous agent system.

This paper presents a coherent theoretical
framework of autonomous agent systems (AAS’s)
or intelware from the facets of cognitive informat-
ics, computational intelligence, and denotational
mathematics. The nature of software agents and
intelware is elaborated. A reference model of
AAS with intelligent behaviors at three layers
known as those of imperative, autonomic, and
autonomous is developed from the bottom up.
The theoretical framework of AAS’s/intelware
is presented on the basis of cognitive informatics
and computational intelligence theories. A set of
denotational mathematics is introduced in order
to provide a fundamental mathematical means for
formally and rigorously dealing with the highly
complicated architectures and intricate behaviors
of AAS’s and intelware.

the nAture oF soFtwAre
AGents And IntelwAre

Definition 1. A software agent, or more actually
an intelware, is an intelligent software system that
autonomously carries out robotistic and interac-
tive applications based on goal-driven cognitive
mechanisms.

On the basis of Definition 1, an autonomous
agent is a software agent that possesses high-level
autonomous ability and behaviors beyond conven-
tional imperative computing technologies.

Definition 2. An Autonomous Agent System (AAS)
is a composition of distributed agents that pos-
sesses autonomous computing and decision mak-
ing abilities as well as interactive communication
capability to peers and the environment.

The classification of agent/intelware technolo-

gies can be described in Table 1, where I and O
denote the inputs/outputs of a given AAS. When
both input event (I) and output behavior (O) are
constant, it denotes a routine intelware; while
when both I/O are variable, it represents the most
complicated autonomous intelware. Otherwise,
the combinations of variable event/constant
behavior and constant event/variable behaviors
indicate an algorithmic or autonomic intelware,
respectively.

In Table 1, the routine and algorithmic AAS’s
may be implemented by computational impera-
tive behaviors. However, the autonomic AAS’s
should be implemented by autonomic computing,
as that of the autonomous AAS’s by autonomous
mechanisms and behaviors.

Behavior (O)
Constant Variable

Event
(I)

Constant Routine Autonomic
Variable Algorithmic Autonomous

Table 1. Classification of intelware / AAS’s

 3105

A Cognitive Informatics Reference Model of Autonomous Agent Systems (AAS)

the reFerence model oF
IntelwAre/Autonomous AGent
sYstems

The reference model of intelware/AAS’s is a hier-
archical model with three layers known as those
of imperative, autonomic, and autonomous be-
haviors. This section elaborates the mathematical
models of the imperative and intelligent behaviors
of intelware/AAS’s in the layered reference model
of agent intelligence.

the hierarchical behavioral model of
Intelware/AAs’s

Behaviorism is a doctrine of psychology and
cognitive informatics that describes the associa-
tion between a given stimulus and an observed
response of human brains and AAS’s. Cogni-
tive informatics reveals that human and AAS
behaviors may be classified into four categories
known as the perceptive, cognitive, instructive,
and reflective behaviors (Wang, 2007b).

The reference model of AAS’s (RMAAS) is
a hierarchical behavioral model of agent intelli-
gence as illustrated in Figure 1. In the RMAAS
model, the hierarchy of agent behaviors can be
divided into the imperative, autonomic, and
autonomous layers. Conventional computing
machines are implemented only by imperative
behaviors. However, the autonomic computing
systems and AAS’s are implemented by advanced
cognitive behaviors. Imperative computing is an
enclosure of instructive and passive behaviors.
The autonomic computing is an enclosure of in-
ternally motivated behaviors beyond those of the
imperative space. The autonomous computing is
an enclosure of perceptive- and inference-driven
behaviors beyond those of both imperative and
autonomic computing. More formal descriptions
of the three types of behaviors of AAS’s will be
presented in the following subsections.

the Imperative behavioral layer of
Intelware/AAs’s

According to the RMAAS model as illustrated in
Figure 1, the imperative behavioral intelligence
of intelware and AAS’s can be formally modeled
and elaborated in this subsection.

Definition 3. The imperative behavioral layer
of AAS’s, BI, is a set of instruction-based be-
haviors such as the event-driven behaviors (Be),
time-driven behaviors (Bt), and interrupt-driven
behaviors (Bint), i.e.:

BI {Be, Bt, Bint} (1)

An imperative system implemented with BI
may do nothing unless a specific program is
loaded, in which the stored program transfers a
general-purpose computer to a specific intelligent
application. The imperative system is a passive
system that implements deterministic, context-
free, and stored-program controlled behaviors.

Definition 4. An event is an abstract variable that
represents an external stimulus to a system or the
occurring of an internal change of status, such as
an action of users, an updating of the environment,
and a change of the value of a control variable.

The types of events that may trigger a behavior
can be classified into operational (@eS), time (@
tTM), and interrupt (@int) events, where @ is
the event prefix, and S, TM, and ⊙ the type suf-
fixes, respectively. The interrupt event is a kind
of special event that models the interruption of
an executing process, the temporal handover of
controls to an Interrupt Service Routine (ISR),
and the return of control after its completion.

Definition 5. An interrupt, denoted by , is a par-
allel process relation in which a running process

3106

A Cognitive Informatics Reference Model of Autonomous Agent Systems (AAS)

P is temporarily held by another higher priority
process Q via an interrupt event @int at the
interrupt point , and the interrupted process
will be resumed when the high priority process
has been completed, i.e.:

P Q P || (@int Q)	 	 (2)

where and denote an interrupt service and
an interrupt return, respectively.

In general, all types of events, including the
operational events, timing events, and interrupt
events, are captured by the system in order to
dispatch a designated behavior.

Definition 6. An event-driven behavior Be, denoted
by e , is an imperative process in which the ith
behavior in term of a designated process Pi is
triggered by a predefined event @eiS, i.e.:

 e
=1

(@)R
n

e i i
i

B e P S (3)

where the big-R notation is a mathematical calcu-
lus that denotes a sequence of repetitive/iterative
behaviors or a set of recurring structures (Wang,
2007a).

Definition 7. A time-driven behavior Bt, denoted
by t , is an imperative process in which the ith
behavior in term of process Pi is triggered by a
predefined point of time @tiTM, i.e.:

 t
=1

(@)R
n

t i i
i

B t P TM (4)

where @tiTM may be a system timing or external
timing event.

Figure 1. The hierarchical reference model of autonomous agent systems (RMAAS)

Imperative
behaviors

Autonomic
behaviors

Autonomous
behaviors Autonomic

computing
Natural

intelligence

 BI={Be, Bt, Bint} BAC ={Bg, Bdm} ∪ BI
 BA={Bp, Binf} ∪ BI ∪ BAC

Traditional
computing

Autonomous
agent system

 3107

A Cognitive Informatics Reference Model of Autonomous Agent Systems (AAS)

Definition 8. An interrupt-driven behavior Bint,
denoted by int, is an imperative process in which
the ith behavior in term of process Pi is triggered
by a predefined system interrupt @inti, i.e.:

=1

(@)R
n

int i int i
i

B int P (5)

As a summary, an imperative computing
system can be described as follows.

Definition 9. An Imperative Computing (IC)
system is a passive system that implements de-
terministic, context-free, and stored-program
controlled behaviors.

the Autonomic behavioral layer of
Intelware/AAs’s

According to the RMAAS model as illustrated in
Figure 1, the autonomic behavioral intelligence
of intelware and AAS’s can be formally modeled
and elaborated in this subsection.

Definition 10. The autonomic behavioral layer
of AAS’s, BC, is a set of internally motivated and
self- generated behaviors such as the goal-driven
behaviors (Bg) and decision-driven behaviors (Bd)
on the basis of the imperative layer BI , i.e.:

{ , }
{ , , , , }

C g d I

e r int g d

B B B B
B B B B B

∪
=

 (6)

Definition 11. A goal-driven behavior Bg, denoted
by g , is an autonomic process in which the ith
behavior in term of process Pi is generated by the
system itself, rather than be given, corresponding
to the goal @giST, i.e.:

 g
=1

(@)R
n

g i i
i

B g P ST (7)

where the goal, denoted by gST, is a triple, i.e.:

 gST = (P, Ω, Θ) (8)

in which that P = {p1, p2, …, pn} is a finite nonempty
set of purposes or motivations, Ω is a finite set of
constraints for the goal, and Θ is the environment
of the goal.

Definition 12. A decision-driven behavior Bd,
denoted by d , is an autonomic process in which
the ith behavior in term of process Pi is generated
by a given decision @diST, i.e.:

 d
=1

(@d)R
n

d i i
i

B P ST (9)

where the decision, denoted by dST, is a selected
alternative a ∈ from a nonempty set of alterna-
tives , based on a given set of criteria C, i.e.:

d = f (, C)
 = f: × C → , ≠ ∅ (10)

Definition 13. An Autonomic Computing (AC)
system is an intelligent system that implements
nondeterministic, context-dependent, and adap-
tive behaviors based on goal- and decision-driven
mechanisms.

The autonomic systems do not rely on instruc-
tive and procedural information, but are dependent
on internal status and willingness that formed by
long-term historical events and current rational or
emotional goals (Wang, 2007d).

the Autonomous behavioral layer of
Intelware/AAs’s

According to the RMAAS model as illustrated in
Figure 1, the autonomous behavioral intelligence
of intelware and AAS’s can be formally modeled
and elaborated in this subsection.

Definition 14. The autonomous behavioral layer
of AAS’s, BA, is a set of autonomously generated

3108

A Cognitive Informatics Reference Model of Autonomous Agent Systems (AAS)

behaviors by internal cognitive processes such as
the perception-driven behaviors (Bp) and inference-
driven behaviors (Binf) on the basis of the imperative
space BI and the autonomic space BC, i.e.:

{ , }
{ , , , , , , }

A p inf I C

e t int g d p inf

B B B B B
B B B B B B B

∪ ∪
=

 (11)

The new forms of behaviors covered in the
autonomous layer can be elaborated as follows.

Definition 15. A perception-driven behavior Bp,
denoted by p , is a cognitive process in which the
ith behavior in term of process Pi is generated by
the result of a perceptive process @piPC, i.e.:

i=1

(@)R
n

p i p iB p P PC (12)

where PC stands for a type of process, and the per-
ception result pPC is an outcome of the cognitive
process of perception that an AAS may generate.

Inferences are cognitive processes that reason
about a possible causality from given premises
based on known causal relations between a pair
of cause and effect proven true by empirical
arguments, theoretical inferences, or statistical
regulations.

Definition 16. An inference-driven behavior Binf,
denoted by inf, is a cognitive process in which the
ith behavior in term of process Pi is generated by
the result of an inference process @infiPC, i.e.:

=1

(@)R
n

inf i inf i
i

B inf P PC (13)

where formal inferences can be classified into the
deductive, inductive, abductive, and analogical
categories, as well as modal, probabilistic, and
belief theories (Wang, 2007e).

As shown in Definition 16 and Figure 1, an
AAS implemented on BA extends the conventional
behaviors BI and BC to more powerful and intel-
ligent behaviors, which are generated by internal
and autonomous processes such as the perception
and inference processes. With the possession of
all the seven forms of intelligent behaviors in BA,
the AAS may advance closer to the intelligent
power of human brains.

relationships between the Agent
behaviors of Intelware/AAs’s at the
three layers of rmAAs

Contrasting Definitions 3, 10, and 14, the following
relationships among the three-layer agent intel-
ligent behaviors can be established on the basis of
the RMAAS model as illustrated in Figure 1.

Theorem 1. The relationships of the impera-
tive behaviors BI, autonomic behaviors BC, and
cognitive behaviors BA of intelware or AAS’s are
hierarchical and inclusive, i.e.:

BI ⊆ BC ⊆ BA (14)

Theorem 1 and Definition 14 indicate that any
lower layer behavior of an intelware or AAS is a
subset of those of a higher layer. In other words,
any higher layer behavior is a natural extension
of those of lower layers as shown in Figure 1.
Therefore, the necessary and sufficient conditions
of AAS’s, CAAS, are the possession of all behaviors
at the three layers.

Corollary 1. The behavioral model of intelware
or AAS, §AASST, can be logically modeled by
a set of parallel processes that encompasses the
imperative behaviors BI, autonomic behaviors
BC, and autonomous behaviors BA from the bot-
tom-up, i.e.:

 3109

A Cognitive Informatics Reference Model of Autonomous Agent Systems (AAS)

inf

§ (, ,)
 { (, ,)
 | | (, , , ,)
 | | (, , , , , ,)
 }

I C A
e t int
e t int g d

e t int g d p

AAS B B B
B B B
B B B B B
B B B B B B B

=
ST

/ / BI
/ / BC
/ / BA

 (15)

where || denotes a parallel relation in RTPA.

theoretIcAl FoundAtIons oF
IntelwAre/AAs’s

Recent research reveals that the foundations of
agent technologies root in cognitive informatics,
denotational mathematics, and computational
intelligence (Wang, 2002a, 2003b, 2008a). Along
with the latest advances in cognitive informat-
ics, non-imperative autonomous agent systems
known as intelware and cognitive computers are
emerging. This section explores the theoretical
foundations of AAS’s and intelware. The latest
development of fundamental theories and tech-
nologies underpinning AAS’s and intelware are
highlighted.

denotational mathematics for AAs’s

Applied mathematics can be classified into two
categories known as analytic and denotational
mathematics (Wang, 2002b, 2007a, 2008a,
2008c). The former are mathematical structures
that deal with functions of variables as well as
their operations and behaviors; while the latter
are mathematical structures that formalize rigor-
ous expressions and inferences of system archi-
tectures and behaviors with abstract concepts,
complex relations, and dynamic processes. The
denotational and expressive needs in cognitive
informatics, computational intelligence, software
engineering, and knowledge engineering have led
to new forms of mathematics collectively known
as denotational mathematics.

Definition 17. Denotational mathematics is a
category of expressive mathematical structures
that deals with high-level mathematical entities
beyond numbers and simple sets, such as abstract
objects, complex relations, behavioral informa-
tion, concepts, knowledge, processes, intelligence,
and systems.

The term denotational mathematics is first
introduced by Yingxu Wang in the emerging
discipline of cognitive informatics (Wang, 2002a,
2007a, 2008c). Typical paradigms of denotational
mathematics are comparatively presented in Table
1, where their structures, mathematical entities,
algebraic operations, and usages are contrasted.
The paradigms of denotational mathematics as
shown in Table 1 are concept algebra (Wang,
2008d), system algebra (Wang, 2008e), and Real-
Time Process Algebra (RTPA) (Wang, 2002b,
2008f).

The emergence of denotational mathemat-
ics is driven by the practical needs in cognitive
informatics, computational intelligence, comput-
ing science, software science, and knowledge
engineering, because all these modern disciplines
study complex human and machine behaviors and
their rigorous treatments. Among the new forms
of denotational mathematics, concept algebra is
designed to deal with the abstract mathematical
structure of concepts and their representation and
manipulation in knowledge engineering. System
algebra is created to the rigorous treatment of
abstract systems and their algebraic relations
and operations. RTPA is developed to deal with
series of behavioral processes and architectures
of human and systems.

Denotational mathematics provides a powerful
mathematical means for modeling and formalizing
AAS’s. Not only the architectures of AAS’s, but
also their dynamic behaviors can be rigorously
and systematically manipulated by denotational
mathematics. Applications of denotational mathe-

3110

A Cognitive Informatics Reference Model of Autonomous Agent Systems (AAS)

N
o.

Pa
ra

di
gm

St
ru

ct
ur

e
M

at
he

m
at

ic
al

 e
nt

iti
es

A
lg

eb
ra

ic
 o

pe
ra

tio
ns

U
sa

ge

1
C

on
ce

pt

al
ge

br
a

P
O

r
c

(
,

 ,
)

=
({

,
,

},

{

,
},

)

c
i

o

C

C
A

C

O
A

R
, R

, R
Θ

•
•

Θ

(
,

,
,

,
)

c
i

o
c

O
A

R
R

R

r
{

}
•

c
{

,
}

-
+

•
⇒

⇒
⇒

⇒

A
lg

eb
ra

-
ic

 m
a-

ni
pu

la
-

tio
ns

 o
n

ab
st

ra
ct

co

nc
ep

ts

2
Sy

st
em

al

ge
br

a
r

c

(
,

 ,
)

=
({

,
},

 {

,
},

)

c
i

o
SA

 S

O
P

C
R

, R
, R

, B
,

Θ
•

•
Θ

(

,
 ,

)
c

i
o

S
 C

R
, R

, R
, B

, Ω
Θ

r
{

}
•

∏

c
{

,
,

}
-

+
•

⇒
⇒

⇒
⇒

A
lg

eb
ra

-
ic

 m
a-

ni
pu

la
-

tio
ns

 o
n

ab
st

ra
ct

sy

st
em

s

3

R
ea

l-t
im

e
pr

oc
es

s
al

ge
br

a
(R

TP
A

)

T
P

(
,

 ,
)

RT
PA

N

{ ,@
,@

,@
,

}
e

t
in

t
s

N,
Z, R

, S
, B

L, B
, H

, P
, T

I, D
, D

T,
RT

, S
T

S
TM

BL
T

R

 {
→

,
,

|,
|…

|…
,

* R
, R

+
,

i R
,

,

, |
|,

, |
||,

»,

,
 t,

 e,

 i}

A
lg

eb
ra

-
ic

 m
a-

ni
pu

la
-

tio
ns

 o
n

ab
st

ra
ct

pr

o-
ce

ss
es

Table 2. Paradigms of denotational mathematics

 3111

A Cognitive Informatics Reference Model of Autonomous Agent Systems (AAS)

matics in cognitive informatics and computational
intelligence have been elaborated with a wide
range of real-world case studies (Wang, 2008a,
2008c), which demonstrate that denotational
mathematics is an ideal mathematical means for
dealing with concepts, knowledge, behavioral
processes, and human/machine intelligence in
ASS’s and intelware.

cognitive Informatics theories of
AAs’s

Cognitive informatics is the transdisciplinary
enquiry of cognitive and information sciences
that investigates into the internal information
processing mechanisms and processes of the brain
and natural intelligence, and their engineering
applications via an interdisciplinary approach
(Wang, 2002a, 2003a , 2003b, 2006, 2007a,
2007b, 2007c, 2007d). According to the abstract
intelligence theory (Wang, 2008a, 2009), because
cognitive informatics investigates the internal in-
formation processing mechanisms and processes
of the brain and natural intelligence, its research
results underlie the engineering applications of
AAS’s. Cognitive informatics reveals that artificial
intelligence (AI) is a subset of natural intelligence
(NI) (Wang, 2007a, 2007b). Therefore, AAS’s
may be referred to the natural intelligence and
behavioral mechanisms of human beings.

A Layered Reference Model of the Brain
(LRMB) is developed (Wang, et al., 2006) that
reveals the logical model of NI and a coherent
set of cognitive mechanisms. LRMB presents a
systematical view toward the formal description
and modeling of architectures and behaviors of
AAS’s, which are created to extend human capa-
bility, reachability, and/or memory capacity. The
LRMB model explains the functional mechanisms
and cognitive processes of the natural intelligence
with 39 cognitive processes at seven layers known
as the sensation, memory, perception, action,
meta-cognitive, meta-inference, and higher cog-
nitive layers from the bottom up. LRMB elicits

the core and highly repetitive recurrent cognitive
processes from a huge variety of life functions,
which may shed light on the study of the fundamen-
tal mechanisms and interactions of complicated
mental processes as well as AAS’s, particularly
the relationships and interactions between the
inherited and the acquired life functions as well
as those of the subconscious and conscious cogni-
tive processes. The cognitive model of the brain
can be used as a reference model for goal- and
inference-driven technologies in AAS’s.

Definition 18. The cognitive model of the kernel
of an AAS or intelware, AASk, can be described
as a real-time intelligent system with an inherited
Agent Operating System AOS and a set of Agent
Intelligent Behaviors AIB in parallel, i.e.:

AASk AOS || AIB (16)

Definition 19. The Cognitive Models of Memory
(CMM) states that the architecture of human
memory is parallel configured by the Sensory
Buffer Memory (SBM), Short-Term Memory
(STM), Long-Term Memory (LTM), Conscious
Status Memory (CSM), and Action-Buffer Memory
(ABM), i.e.:

(
 | |
 | |
 | |
 | |
)

CMM LTM
STM
CSM
SBM
ABM

 (17)

The CMM model provides a neural informatics
foundation of natural intelligence. With the CMM
model, the broad sense of an AAS, AAS’, can be
described by mimicking the abstract architecture
and mechanisms of the brain.

Definition 20. The cognitive model of AAS’s, AAS,
is represented by a real-time intelligent system
that encompasses the intelware and the CMM as
well as their interactions, i.e.:

3112

A Cognitive Informatics Reference Model of Autonomous Agent Systems (AAS)

 | |
 (
 | |
)
 || (
 | |
 | |
 | |
 | |
)

AAS Intelware
CMM

AOS
AIB

LTM
STM
CSM
SBM
ABM

=

 (18)

Eq. 18 indicates that although intelware is
considered the center of AAS’s, the memories
are essential to enable it to properly function,
and to keep temporary and permanent results
physiologically retained and retrievable.

computational Intelligence
theories of AAs’s

According to the abstract intelligence theory
(Wang, 2008a, 2009), intelligence is perceived
as the driving force or the ability to acquire and
use knowledge and skills, or to reason in problem
solving. It was conventionally perceived that only
human beings possess higher-level intelligence.
However, the development of computers, robots,
intelligent systems, and AAS’s indicates that
intelligence may also be created or implemented
by machines and man-made systems.

Definition 21. Intelligence, in the narrow sense,
is a human or a system ability that transforms
information into behaviors; and in a broad sense,
it is any human or system ability that autono-
mously transfers the forms of abstract informa-
tion between data, information, knowledge, and
behaviors in the brain.

Definition 22. The Generic Abstract Intelligence
Model (GAIM), as shown in Figure 2, represents
abstract intelligence in four forms known as the
perceptive, cognitive, instructive, and reflective
intelligence, corresponding to the specific forms
of cognitive information and their memories.

The GAIM indicates that different forms of
intelligence are the driving force that transfers
between a pair of abstract objects in the brain such
as data (D), information (I), knowledge (K), and
behavior (B). It is noteworthy that each abstract
object is physiologically retained in a particular
type of memories as given in the CMM model.
This is the neural informatics foundation of natu-
ral intelligence, and the physiological evidences
of why natural intelligence can be classified into
four forms as shown in Figure 2.

According to Definitions 21 and 22, compu-
tational intelligence is a paradigm of abstract

Figure 2. The generic abstract intelligence model (GAIM)

 K
ltm

 Ii

Stimuli

 I
stm

 D
sbm

 B
Abm

Enquiries

 Behaviors
 Ir

 Ip – Perceptive intelligence

 Ic

 Ip

 Ic – Cognitive intelligence Ii – Reflective intelligence
 Ii – Instructive intelligence

 3113

A Cognitive Informatics Reference Model of Autonomous Agent Systems (AAS)

Figure 3. The computational intelligence model of AAS

The Computational Intelligent Model of AAS

§AASST AOSST // Agent operating system
 || AIBST // Agent intelligent behaviors
 = { // AOSST

 <SEST:
-1

0

n

ptr
R

=P
SENSORS[ptrP]ST> // Layer 1: Sensation engine

 || <MEST:
5

0addr
R

=P
MEM[addrP]ST> // Layer 2: Memory engine

 = <SBMST || STMST || CSMST || LTMST || ABMST>

 || <PEST:
7

0i
R

=P
PROC[iN]ST> // Layer 3: Perception engine

 = <AttentionST || MotivationST || EmotionST || AttitudeST
 || SensOfSpatialityST || SensOfTimeST || SensOfMotionST>

 || <AEST:
-1

0

SERVOn

ptr
R

=

H

P
SERVOS[ptrP]ST> // Layer 4: Action engine

 || <CEST:
10

0i
R

=P
PROC[iN]ST > // Layer 5: Meta-cognition engine

 = <ObjectIdentificationST || AbstractionST || ConceptEstablishmentST
 || SearchST || CategorizationST || ComparisonST || MemorizationST
 || QualificationST || QuantificationST || SelectionST>

|| <IEST:
6

0i
R

=P
PROC[iN]ST > // Layer 6: Meta-inference engine

 = <DeductionST || InductionST || AbductionST || AnalogyST
 || AnalysisST || SynthesisST>

|| <HCEST:
7

0i
R

=P
PROC[iN]ST > // Layer 7: Higher cognition engine

 = <ComprehensionST || LearningST || PlanningST || ProblemSolvingST
 || DecisionMakingST || CreationST || PattenRecognitionST>

|| <§tTM> // Relative clock
 }

 || { // AIBST

|| <
-1

0

en

k
R

=

N

N
@ekS PkST> // Event-driven behaviors (Be)

|| <
-1

0

tn

k
R

=

N

N
@tkTM PkST> // Time-driven behaviors (Bt)

|| <
int -1

0

n

k
R

=

N

N
@intk PkST> // Interrupt-driven behaviors (Bint)

|| <
-1

0

tn

k
R

=

N

N
@gkST PkST> // Goal-driven behaviors (Bg)

|| <
-1

0

tn

k
R

=

N

N
@dkST PkST> // Decision-driven behaviors (Bd)

|| <
-1

0

tn

k
R

=

N

N
@pkST PkST> // Perception-driven behaviors (Bp)

|| <
int -1

0

n

k
R

=

N

N
@infkST PkST> // Inference-driven behaviors (Binf)

 }

3114

A Cognitive Informatics Reference Model of Autonomous Agent Systems (AAS)

intelligence. Computational intelligence models
human intelligence by computational methodolo-
gies and cognitively inspired models.

Definition 23. The computational intelligence
model of AAS’s and intelware, §AASST, is a paral-
lel structure represented by the Agent Operating
System (AOSST) and a set of agent intelligence
represented by the Agent Intelligent Behaviors
(AIBST), as shown in Figure 3.

The GAIM and §AASST model reveal that
NI and AI share the same cognitive informatics
foundations on the basis of abstract intelligence.
The compatible intelligent capability states that
NI, AI, AAS’s, and intelware are compatible by
sharing the same mechanisms of intelligent capa-
bility and behaviors. In other words, at the logical
level, NI of the brain shares the same mechanisms
as those of AI and computational intelligence.
The differences between NI and AI are only
distinguishable by the means of implementation
and the extent of intelligent ability. Therefore, the
studies on NI and AI in general, and intelware and
AAS’s in particular, may be unified into a coherent
framework based on cognitive informatics and
computational intelligence, which are formalized
by denotational mathematics.

conclusIon

This paper has presented a coherent theoretical
framework of Autonomous Agent Systems (AAS),
known as intelware, from the facets of cognitive
informatics, computational intelligence, and deno-
tational mathematics. A reference model of AAS
has been developed with three-layer intelligent
behaviors known as the imperative, autonomic,
and autonomous agent intelligence from the bot-
tom up. It has been recognized that the charac-
teristics of an AAS is its perception-driven and
inference-driven behaviors beyond the imperative

and autonomic ones as provided by conventional
imperative and autonomic computing.

In order to formally and rigorously deal with
the highly complicated architectures and intricate
behaviors of intelware and AAS’s, a new math-
ematical means known as denotational mathemat-
ics has been developed. Typical paradigms of
denotational mathematics have been introduced
such as concept algebra, system algebra, and
RTPA. The findings of this work, particularly the
necessary and sufficient conditions of imperative
and autonomous computing, and the abstract intel-
ligence model of natural and artificial intelligence,
have formed a solid foundation for explaining
and developing advanced autonomous computing
systems and their engineering applications.

AcKnowledGment

The author would like to acknowledge the sup-
port of the Natural Sciences and Engineering
Research Council of Canada (NSERC) to this
work. The author would like to thank the valu-
able comments and suggestions of the reviewers
and colleagues.

reFerences

Anderson, J.A. and E. Rosenfeld, eds. (1988).
Neurocomputing: Foundations of Research,
Cambridge.

Axelrod, R. (1977), The Complexity of Coopera-
tion: Agent-Based Models of Competition and
Collaboration, Princeton Univ. Press, Princeton,
NJ.

Barr, A. and E. A. Feigenbaum, eds. (1981),
The Handbook of Artificial Intelligence, Vol. 1.
Stanford and Los Altos, CA: HeurisTech Press
and Kaufmann.

 3115

A Cognitive Informatics Reference Model of Autonomous Agent Systems (AAS)

Berger, J. (1990), Statistical Decision Theory
– Foundations, Concepts, and Methods, Springer-
Verlag.

Bond, A.H. and L. Gasser (1988), Readings
in Distributed Artificial Intelligence, Morgan
Kaufmann, San Mateo, CA.

Bronson, R. and G. Naadimuthu (1997), Schaum’s
Outline of Theory and Problems of Operations
Research, 2nd ed., McGraw-Hill, NY.

Brooks, R.A. (1970), New Approaches to Robot-
ics, American Elsevier, NY, 5, 3-23.

Chaib-Draa, B. Moulin, R. Mandiau, and P. Mil-
lot, (1992), Trends in Distributed Artificial Intel-
ligence, Artificial Intelligence Review 6, 35-66.

Chorafas, D.N. (1998), Agent Technology Hand-
book, McGraw-Hill, NY.

Foner, L. (1993), What ís an Agent, Anyway? A
Sociological Case Study, Agents Memo 93-01,
MIT Media Lab, Cambridge, MA.

Genesereth, M.R. and S.P. Ketchpel (1994),
Software Agents, Communications of the ACM,
37 (7), 48-53.

Giarrantans, J. and G. Riley (1989), Expert Sys-
tems: Principles and Programming, PWS-KENT
Pub. Co., Boston.

Hayes-Roth, B. (1995), An Architecture for Adap-
tive Intelligent Systems, Artificial Intelligence,
72(1-2), 329-365.

Hewitt, C., R. Bishop, and R. Steiger (1973), A
Universal Modular Actor Formalism for Artificial
Intelligence, Proc. 3rd Int. Joint Conf. on Artificial
Intelligence, Stanford, CA, Aug.

Hewitt, C. and J. Inman (1991), DAI Betwixt
and Between: From Intelligent Agents to Open
Systems Science, IEEE Trans. on System, Man,
and Cybernetics, Nov/Dec.

Holland, J.H. (1992), Genetic Algorithms, Scien-
tific American, 267, 66-72.

Huhns, M., and M. Singh, eds. (1997). Readings
in Agents, Kaufmann, San Francisco.

IBM (2006), Autonomous Computing White Pa-
per: An Architectural Blueprint for Autonomous
Computing, 4th ed., June, 1-37.

Jennings, N.R. (2000), On Agent-Based Soft-
ware Engineering, Artificial Intelligence, 17(2),
277-296.

Kephart, J. and D. Chess (2003), The Vision of
Autonomic Computing, IEEE Computer, 26(1),
Jan, 41-50.

Kleene, S.C. (1956), Representation of Events by
Nerve Nets, in C.E. Shannon and J. McCarthy eds.,
Automata Studies, Princeton Univ. Press, 3-42.

Kurzweil, R. (1990). The Age of Intelligent Ma-
chines. Cambridge, MA, MIT Press.

Maes, P. ed. (1991), Designing Autonomous
Agents: Theory and Practice from Biology to En-
gineering and Back, London, The MIT press.

Matlin, M.W. (1998), Cognition, 4th ed., Harcourt
Brace College Publishers, Orlando, FL.

McCarthy, J., M.L. Minsky, N. Rochester, and
C.E. Shannon (1955), Proposal for the 1956
Dartmouth Summer Research Project on Artificial
Intelligence, Dartmouth College, Hanover, NH,
USA, http://www.formal.stanford.edu/jmc/his-
tory/dartmouth/dartmouth.html.

McCarthy, J. (1963), Situations, Actions, and
Causal Laws, Memo 2, Stanford University Ar-
tificial Intelligence Project, Stanford, CA.

McCulloch, W. S., and W. Pitts. (1943). A Logi-
cal Calculus of the Ideas Immanent in Nervous
Activity, Bulletin of Mathematical Biophysics
5, 115–137.

3116

A Cognitive Informatics Reference Model of Autonomous Agent Systems (AAS)

McCulloch, W.S. (1965), Embodiments of Mind,
MIT Press, Cambridge, MA.

Meystel, A.M. and J.S. Albus (2002), Intelligent
Systems, Architecture, Design, and Control, John
Wiley & Sons.

Murch, R. (2004), Autonomic Computing, Person
Education, London.

Newell, A. (1990), Unified Theories of Cognition,
Harvard University Press, Cambridge, MA.

Newell, A., and H.A. Simon (1972), Human
Problem Solving, Prentice-Hall Englewood
Cliffs, NJ.

Nilsson, N. J. (1998), Artificial Intelligence: A New
Synthesis, Morgan Kaufmann, San Mateo, CA.

Poole, D., A. Mackworth, and R. Goebel. (1997).
Computational Intelligence: A Logical Approach.
Oxford: Oxford University Press, Oxford, UK.

Russell, S.J., and P. Norvig. (1995), Artificial
Intelligence: A Modern Approach, Prentice-Hall,
Englewood Cliffs, NJ.

Shannon, C.E. ed. (1956), Automata Studies,
Princeton University Press, Princeton.

Sternberg, R.J. (1997), The Concept of Intelligence
and the its Role in Lifelong Learning and Success,
American Psychologist, 52(10), 1030-1037.

Turing, A.M. (1950), Computing Machinery and
Intelligence, Mind, 59, 433-460.

von Neumann, J. (1946), The Principles of Large-
Scale Computing Machines, reprinted in Annals
of History of Computers, 3(3), 263-273.

von Neumann, J. (1958), The Computer and the
Brain, Yale Univ. Press, New Haven.

von Neumann, J. (1963), General and Logical
Theory of Automata, A.H. Taub ed., Collected
Works, Vol. 5, Pergamon, 288-328.

von Neumann, J. and A.W. Burks (1966), Theory
of Self-Reproducing Automata, Univ. of Illinois
Press, Urbana IL.

Wald, A. (1950), Statistical Decision Functions,
John Wiley & Sons.

Wang, Y. (2002a), Keynote: On Cognitive Infor-
matics, Proc. 1st IEEE International Conference
on Cognitive Informatics (ICCI’02), Calgary,
Canada, IEEE CS Press, August, 34-42.

Wang, Y. (2002b), The Real-Time Process Algebra
(RTPA), Annals of Software Engineering: An
International Journal, 14, USA, 235-274.

Wang, Y. (2003a), Cognitive Informatics: A New
Transdisciplinary Research Field, Brain and
Mind: A Transdisciplinary Journal of Neuro-
science and Neurophilosophy, 4(2), 115-127.

Wang, Y. (2003b), Keynote: Cognitive Informat-
ics Models of Software Agent Systems, Proc. 1st
International Conference on Agent-Based Tech-
nologies and Systems (ATS’03), Univ. of Calgary
Press, Calgary, Canada, August, 25.

Wang, Y. (2004), Keynote: On Autonomic Com-
puting and Cognitive Processes, Proc. 3rd IEEE
International Conference on Cognitive Informat-
ics (ICCI’04), Victoria, Canada, IEEE CS Press,
August, 3-4.

Wang, Y. (2006), Keynote: Cognitive Informatics
- Towards the Future Generation Computers that
Think and Feel, Proc. 5th IEEE International
Conference on Cognitive Informatics (ICCI’06),
Beijing, China, IEEE CS Press, July, 3-7.

Wang, Y. (2007a), Software Engineering Founda-
tions: A Software Science Perspective, CRC Book
Series in Software Engineering, Vol. II, Aurebach
Publications, NY., USA.

Wang, Y. (2007b), Keynote: Cognitive Informatics
Foundations of Nature and Machine Intelligence,

 3117

A Cognitive Informatics Reference Model of Autonomous Agent Systems (AAS)

Proc. 6th International Conference on Cognitive
Informatics (ICCI’07), IEEE CS Press, Lake
Tahoe, CA., Aug., 3-12.

Wang, Y. (2007c), The Theoretical Framework of
Cognitive Informatics, International Journal of
Cognitive Informatics and Natural Intelligence,
IGI, USA, 1(1), Jan., 1-27.

Wang, Y. (2007d), Exploring Machine Cognition
Mechanisms for Autonomic Computing, Inter-
national Journal on Cognitive Informatics and
Natural Intelligence, March, 1(2), i - v.

Wang, Y. (2007e), The Cognitive Processes of
Formal Inferences, International Journal of
Cognitive Informatics and Natural Intelligence,
IGI, USA, Dec., 1(4), 75-86.

Wang, Y. (2008a), Keynote: On Abstract Intelli-
gence and Its Denotational Mathematics Founda-
tions, Proc. 7th IEEE International Conference
on Cognitive Informatics (ICCI’08), Stanford
University, CA., USA, IEEE CS Press, August,
5-15.

Wang, Y. (2008b), Toward a Generic Mathematical
Model of Abstract Game Theories, Transactions
of Computational Science, 2, Springer, June,
205-223.

Wang, Y. (2008c), On Contemporary Denotational
Mathematics for Computational Intelligence,
Transactions of Computational Science, 2,
Springer, June, 6-29.

Wang, Y. (2008d), On Concept Algebra: A Deno-
tational Mathematical Structure for Knowledge
and Software Modeling, International Journal of
Cognitive Informatics and Natural Intelligence,
IGI, USA, April, 2(2), 1-19.

Wang, Y. (2008e), On System Algebra: A Denota-
tional Mathematical Structure for Abstract System
modeling, International Journal of Cognitive

Informatics and Natural Intelligence, IGI, USA,
April, 2(2), 20-42.

Wang, Y. (2008f), RTPA: A Denotational Math-
ematics for Manipulating Intelligent and Com-
putational Behaviors, International Journal of
Cognitive Informatics and Natural Intelligence,
IGI, USA, April, 2(2), 44-62.

Wang, Y. (2009). On Abstract Intelligence:
Toward a Unified Theory of Natural, Artificial,
Machinable, and Computational Intelligence,
International Journal of Software Science and
Computational Intelligence, IGI, USA, Jan.,
1(1), 1-18.

Wang, Y. and G. Ruhe (2007), The Cognitive Pro-
cess of Decision Making, International Journal of
Cognitive Informatics and Natural Intelligence,
IGI, USA, March, 1(2), 73-85.

Wang, Y., Y. Wang, S. Patel, and D. Patel (2006),
A Layered Reference Model of the Brain (LRMB),
IEEE Trans. on Systems, Man, and Cybernetics
(C), March, 36(2), 124-133.

Wellman, M.P. (1999), Multiagent Systems,
in R.A. Wilson and C.K. Frank eds., The MIT
Encyclopedia of the Cognitive Sciences, MIT
Press, MA.

Widrow, B. and M.A. Lehr (1990), 30 Years of
Adaptive Neural Networks: Perception, Madeline,
and Backpropagation, Proc. of the IEEE, Sept.,
78(9), 1415-1442.

Wittig, T. ed. (1992), ARCHON: An Architec-
ture for Multi-Agent Systems, Ellis Horwood,
London.

Wooldridge, M. and N. Jennings (1995), Intelligent
Agents: Theory and Practice, The Knowledge
Engineering Review 10(2), 115-152.

Wooldridge, M. (2002), An Introduction to Mul-
tiagent Systems, John Wiley & Sons.

This work was previously published in the International Journal of Cognitive Informatics and Natural Intelligence, edited by
Y. Wang, Volume 3, Issue 1, pp. 1-16, copyright 2009 by IGI Publishing (an imprint of IGI Global).

3118

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.28
A Genetic Algorithm-Based

QoS Analysis Tool for
Reconfigurable

Service-Oriented Systems
I-Ling Yen

University of Texas at Dallas, USA

Tong Gao
University of Texas at Dallas, USA

Hui Ma
University of Texas at Dallas, USA

AbstrAct

Reconfigurability is an important requirement
in many application systems. Many approaches
have been proposed to achieve static/dynamic
reconfigurability. Service-oriented architecture
offers a certain degree of reconfigurability due
to its support in dynamic composition. When
system requirements change, new composition
of services can be determined to satisfy the new
requirements. However, analysis, especially
QoS based analysis, is generally required to
make appropriate service selections and service

configurations. In this chapter, we discuss the
development of QoS-based composition analy-
sis techniques and propose a QoS specification
model. The specification model facilitates QoS-
based specification of the properties of the Web
services and the requirements of the application
systems. The composition analysis techniques can
be used to analyze QoS tradeoffs and determine
the best selections and configurations of the Web
services. We develop a composition analysis
framework and use the genetic algorithm in the
framework for composition decision making. The
framework currently supports SOA performance

 3119

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

analysis. The details of the genetic algorithm for
the framework and the performance analysis
techniques are discussed in this chapter.

IntroductIon

Reconfigurability is an important feature that is
required in many modern application systems
(Aksit & Choukair, 2003). For example, avionics
systems, intelligent vehicle control systems, and
remote monitoring systems frequently require
dynamic adaptability so that the system can adapt
to changes due to the failure of system compo-
nents, reduced power level, unexpected operating
conditions, and so forth. Also, some systems are
multiple-mission and mission-specific, that is,
they have to handle a class of missions that have
similar system requirements but they also require
adaptations to satisfy mission-specific needs.

Service-oriented architecture (SOA) is an
ideal vehicle for achieving reconfigurability
(Tsai, Song, Paul, Cao, & Huang, 2004). Desired
functionalities can be achieved in SOA by dy-
namically composing appropriate services. Many
research works focus on Web service composi-
tion (BEA et al., 2002; Hamadi & Benatallah,
2003; Sirin, Parsia, & Hendler, 2004). Most of
these investigate various language issues. Busi-
ness process execution language (BPEL) is an
XML-based language for specifying the busi-
ness processes and interaction protocols. Web
services are then composed together to meet the
specified functional requirements. The concept
of semantic Webs extends the current Web with
well-defined meanings for each Web service to
facilitate their compositions. Based on semantic
Webs, Sirin et al. (2004) have proposed a service
composition tool including two main modules,
namely, a composer and an inference engine. A
user can interact with the composer to generate the
composition and filter the results. The inference
engine is a Web ontology language (OWL; W3C,
2004a) reasoner. The OWL reasoner searches

the related services for the generated composi-
tion. Petri net-based algebra has also been used
to help the composition by modeling the control
flow. These composition methods can be used for
adapting a system to new functional requirements
(by composing a new set of services to achieve
the modified functionalities).

Service composition generally focuses on
composition of Web services to achieve some
desired functionality. To achieve reconfiguration,
new compositions can be derived for the modified
functionalities. Actually, many adaptive systems
require reconfigurability in terms of quality of
service (QoS) behaviors. For example, some un-
manned systems allow degraded QoS when some
system failures occur. Many systems tradeoff the
quality of their outputs versus the execution time
to cope with periods of heavy loads or conten-
tions for resources. In SOA-based systems, QoS
reconfiguration can be achieved by, for example,
selecting different services among those provid-
ing the same functionalities but, perhaps, having
different QoS behaviors. Thus, systems can be
dynamically assembled to fit the changing func-
tional as well as QoS requirements.

Though SOA provides a convenient framework
for reconfigurability, advanced techniques are still
required to achieve actual adaptation (dynamic or
static). For example, when the functional require-
ments of a system are modified, it is necessary to
decompose the new requirements and then find
the matching services in order to compose the
new system. Similarly, when the QoS require-
ments of a system are modified due to changes
in the execution environment, it is necessary to
reconfigure the current services or choose new
services to satisfy the new QoS requirements.
To determine the correct service selections and
configurations, it is necessary to analyze the QoS
behaviors of the composed system.

The focus of this chapter is on QoS-based
system reconfiguration. The goal is to develop
analysis techniques and tools to facilitate static
and dynamic system QoS behavior analysis such

3120

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

that correct decisions regarding service selections
and configurations can be made. The next section,
SOA Background, introduces the SOA concept.
The QoS Specification Model section presents
the QoS specification model, and the Analysis
of Adaptive SOA Systems section describes the
analysis process of adaptive SOA systems. Then
the composition analysis framework and genetic
algorithm-based decision support are presented
in the Composition Analysis Framework and
the Genetic-Algorithm-Based Decision Sup-
port sections, respectively. And, the associated
performance analysis method for SOA system
is introduced the Performance Analysis section.
The next section after that is Case Study, and
finally, the Conclusion section summarizes this
chapter.

soA bAcKGround

The SOA concept is probably one of the most
significant software engineering concepts after
the currently widely adopted object-oriented tech-
nologies. The SOA term expresses the software
architectural concept and essentially a collection
of services. In SOA, each service encapsulates
certain information and data to implement the
functionality, and such service can then be con-
sumed by clients in other applications through
the exposed interfaces. These services com-

municate with each other to achieve the system
requirements. SOA is an architecture style which
is distributed, loosely coupling, highly interoper-
able between the services, hence, will maximize
system flexibility and independent evolvability.
Also, due to the potential of reuse and dynamic
composition of core services, SOA offers high
system reusability and reconfigurability. Legacy
systems can be wrapped and reused without sig-
nificant changes, while new applications can be
incorporated into the architecture easily.

Web service-based SOA is a specialized re-
alization of SOA (W3C, 2002). In this specific
SOA, Web service (WS) takes the concept of the
service and delivers the service over the Web
using the technologies such as XML, simple
object access protocol (SOAP), Web services
description language (WSDL), and universal
description, discovery, and integration (UDDI).
SOAP provides a way to communicate between
the services which are implemented in different
programming languages, different technologies,
and run on different operating systems. WSDL
provides a standard format to describe the Web
services by using XML. UDDI is a repository
which stores the information of the Web services
and facilitates publishing and finding of the Web
services.

Web service-based SOA adopts register-find-
bind-invoke paradigm which is shown in Figure
1. In this paradigm, service provider registers the

Figure 1. Web services system model

Service Consumer Bind (SOAP)
Invoke (SOAP)

Query
(SOAP)

Find
(SOAP)

Register
(WSDL)

Service Provider

UDDI Registry

 3121

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

Web services in the public UDDI registry and pub-
lishs the Web services. Service consumer searches
in the public UDDI registry and finds the desired
Web services, then binds and invokes it.

Web service composition enable user to rapidly
build a system or create a process by assembling
individual Web services. Through specifying
some details of the composition, such as when
to invoke the appropriate Web services, the call-
ing sequence of the Web services, the developer
can implement the needed tasks. To facilitate
the composition, several Web service composi-
tion languages are proposed, including business
process execution language for Web services
(BPEL4WS, also called BPEL; BEA Systems et
al., 2002) and OWL-based Web Service Ontology
(OWL-S; W3C, 2004b).

BPEL provides an abstract business protocol
to facilitate the specification of compositions.
A BPEL process specifies a set of partners and
their interactions and invocation sequence. Each
partner is a unit in the process and it is linked to
the process via a partner link. The BPEL process
coordinates with all involved clients and Web
services and interacts with them, coordinates the
execution sequence to achieve the desired goal.
The process specification is kept at the abstract
level, and it only specifies the relations and
exchanged messages between partners without
considering the internal details of the partner.
With certain extensions, the BPEL process can
be used to flexibly specify service composition
and allows each partner to be associated with
alternate Web services.

OWL-S provides a set of markup language
constructs for describing the properties and
capabilities of the Web services. It facilitates the
automated Web service discovery, composition,
and execution. It supports similar features as
BPEL does for composition specification. OWL-S
is widely used in semantic Web community while
BPEL is used commonly in business sectors.

Qos sPecIFIcAtIon model

The QoS behavior of a WS-based system can
be adapted due to three factors, including: (1)
resource allocation, (2) selection of different
services that offer the same functionalities, and
(3) tuning QoS control parameters within the ser-
vices. First, for resource allocation, we consider
allocating available physical platforms to involved
services. Services with higher access rates in the
system may be replicated on multiple platforms
while multiple services with lower access rates
may share a single platform. Second, different
services implementing the same functionality may
yield different QoS tradeoffs. Thus, appropriate
selection of the services can help with achieving
the QoS goals of the applications. Third, each
service may be reconfigurable in terms of its QoS
behavior. Some QoS control parameters within a
service unit can be tuned to control the tradeoffs of
the QoS behavior. For example, a search program
may obtain better results when given more time
and the tradeoffs between time and output quality
can be controlled by certain parameters within
the program. Here, all three types of adaptivity
for QoS analysis and reconfiguration in SOA
systems are considered.

The goal of QoS-based composition analysis
for reconfigurable SOA systems is to determine
the best configuration for the system based on
system QoS requirements. The configuration
should consider the three adaptation factors,
resource allocation, Web service selection, and
QoS control parameter determination. To achieve
QoS-based composition analysis, it is neces-
sary to first establish the model for QoS related
specifications. For example, the QoS behavior of
the application system is derived from the QoS
behavior of individual Web services. Thus, QoS
behavior of the Web services to be considered
for composing the application systems should be
known a priori to facilitate the analysis. Also, it
is necessary to specify the QoS requirements of

3122

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

the application systems and based on which the
satisfatory system configuration can be deter-
mined. In this section, we step-by-step introduce
the model for QoS specification.

Qos Attribute vector

To support all QoS-related specifications, the first
step is to define the set of QoS attributes that need
to be measured. Some standard QoS attributes
include time and resource consumption metrics.
Some application-specific QoS attributes include,
for example, picture quality for image compression
algorithms, precision of a relaxation based compu-
tation, and so forth. Consider a system S. Let QS
= (q1, q2, ..., qN) denote the quality attribute vector
of S, where QS includes N quality attributes. For
different Web services, different quality attribute
vectors may be considered. When specifying the
QoS requirements of S, QS should be defined first.
Note that the quality attribute vectors of the Web
services that compose S may not have exactly the
same elements, and they may be different from
QS. When performing composition analysis, the
quality attributes that are of interests are the
overall system quality attributes (which is QS). If
a Web service has additional quality attributes,
they can simply be ignored. If a Web service does
not contribute to a certain quality attribute in QS,
then, a null value can be assigned to it.

system Qos requirements

Let ΓS denote the system QoS requirements for
system S. ΓS is defined on QS. Generally, system
QoS requirements can be in the form of constraints
that has to be satisfied and/or objectives that
should be optimized. Let ΓS = (O, R), where O =
(o1, o2, …) is the set of objectives, and R = (r1, r2,
…) is the set of constraints. An objective oi is an
optimization function defined on one or more QoS
attributes in QS. For example, maximize(q1) and
minimize (aq2 + bq3) are possible QoS objectives.

A constraint ri specifies a specific QoS constraint
that need to be satisfied, and it is also defined on
one or more QoS attributes in QS. For example,
ri may specify that the power consumption of the
system should be within 100 walts per unit time,
denoted as ri: q3 ≤ 100 walts/sec, where q3 is the
power consumption quality attribute.

The goal of the system is to satisfy all the QoS
constraints while obtaining optimal solutions in
terms of the QoS objectives. Since there may be
multiple objectives, the Pareto-optimal solutions
can be considered.

service composition

The application system S is composed of Web
services. We can use BPEL to specify the composi-
tion of services. In order to specify the functional
requirements and associated candidate Web ser-
vices of the partner, we extend the definition of
the “partner” in BPEL by adding the tags “func-
tional_req” and “associated_ws” respectively.
Let ΩS denote the composition specification for
system S. ΩS consists of a set of partners, {ωi | 1
≤ i ≤ M}. The functionality of each partner ωi is
specified using the “functional_req” tag. From the
functional specification, the actual Web services
can be selected to instantiate a partner. Partner
ωi can be instantiated by mi Web services, wsi,j
| 1 ≤ j ≤ mi, which are included in the “associ-
ated_ws” tag of ωi.

Qos Properties of the Individual web
services

To facilitate QoS analysis and system configura-
tion decision making, it is necessary to know the
QoS properties of individual Web services and
how to compose them to derive the QoS behavior
of the composed system. The QoS property of a
Web service is generally a function of the input and
the operation environment parameters. For a re-
configurable Web service, the control parameters

 3123

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

in the Web service program also impact its QoS
property. Consider the candidate Web services,
wsi,j, for all i and j, for composing the system S. Let
Ii,j

ws denote the set of input parameters, Ei,j
ws denote

the set of operation environment parameters, and
Xi,j

ws denote the set of configurable parameters for
wsi,j. Ii,j

ws is specified by the parameters in client
requests. Ei,j

ws can be, for example, the platform
capability. For a given set of Ii,j

ws, Ei,j
ws, and Xi,j

ws
values, the properties of wsi,j in terms of quality
attribute qi can be measured. Let *Vi,j

ws = (1Vi,j
ws,

2Vi,j
ws, …, NVi,j

ws) denote the QoS properties of
wsi,j, where kVi,j

ws is the QoS property of wsi,j in
terms quality attribute qk.

kVi,j
ws is a function of

Ii,j
ws, Ei,j

ws, and Xi,j
ws, i.e., kVi,j

ws can be expressed
as kVi,j

ws(Ii,j
ws, Ei,j

ws, Xi,j
ws). kVi,j

ws is actually a set of
QoS measurement data collected based on vari-
ous Ii,j

ws, Ei,j
ws, and Xi,j

ws or a function representing
the QoS measurement data. In this chapter, we
assume that the measurement data can be fitted
to a function.

A configurable parameter is a parameter in a
Web service that, when adjusted, can impact the
measurements of one or more of the QoS attributes.
Different QoS properties of a Web service and the
composed system can be obtained by tuning the
configurable parameters. For example, the itera-
tion number in a relaxation algorithm can be the
control parameter to balance the tradeoffs between
execution time and computation precision. The set
of configurable parameters Xi,j = (xi,j

1, xi,j
2, …) is

the tunable parameters for Web service wsi,j and
it includes χi,j parameters.

Qos Property composition

As discussed earlier, how to compose QoS proper-
ties of the individual Web services to derive QoS
behavior of the composed system is also a neces-
sary entity in QoS-based composition analysis and
service configuration decision making. However,
the model for QoS property composition depends
on the quality attributes and a specific property
composition algorithm needs to be defined for each

individual quality attribute. The details regarding
the QoS property composition algorithms will be
discussed in details in the Genetic Algorithm-
Based Decision Support section.

Resource Specification

Resource allocation can have a significant impact
on QoS behavior of the system. QoS properties
of each Web service depends on the operation
environment Ei,j

ws, which, in turn, depends on
the resources allocated to the Web service. In
this chapter, the resource allocation problem only
considers the allocation of Web services to hard-
ware platforms. Also, heterogeneous platforms are
assumed. Multiple platforms may be allocated to
a heavily loaded Web service. Let RS = {rs1, rs2,
…, rsL} denote the set of L resources (platforms)
in the system. The configuration decision maker
needs to allocate the L platforms to the M Web
services that are selected for the M partners.

AnAlYsIs oF AdAPtIve soA
sYstems

The major goal for QoS-based composition analy-
sis process is to determine the best composition of
Web services, their configurations, and mapping
of the services to hardware platforms. A general
analysis process is illustrated in Figure 2.

In this QoS-based composition analysis pro-
cess, the candidate configuration is first deter-
mined and then analyzed. After analysis, either
some potentially better configurations are further
considered or the best candidate configuration is
selected. More details of each of the steps is given
in the following.

select the candidate web services

Each partner ωi may be instantiated by multiple
candidate Web services wsi,j, 1 ≤ j ≤ mi. In this

3124

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

step, one of the Web services need to be selected
for each partner in the system.

select the Configurable Parameters

Some of the Web services wsi,j may be reconfigu-
rable and has a set of configurable parameters
Xi,j

ws = (xi,j
1, xi,j

2, …). Each configurable parameter
has a value range. In this step, a specific value in
the value range is selected for each configurable
parameter.

select the resource Allocations

In this step, a specific resource allocation that
maps the Web services to the platfoms in RS is
determined.

Analyze the Configuration

After selecting the specific Web services for
each partner, setting each of the configurable
parameters, and allocating of the platforms to
Web services, the configuration of the system is
fixed. Based on the configuration and the com-
ponent properties of the selected Web services,
a QoS property composition algorithm is ap-
plied to derive the overall system behavior. The
result is then evaluated to determine whether it
is satisfatory.

Select the Preferred Configurations

If the QoS behavior of the composed system
is not satisfactory, then new configurations are

Figure 2. QoS analysis process for adaptive SOA systems

Select the candidate web services

Select the configurable
parameters

Select the resource
allocations

Select the preferred configuration
according to Analysis Result Set

Has better
configuration

Y

N

?

Analyze the configuration

 3125

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

generated and evaluated repeatedly. The process
terminates either after a number of iterations or
after a satisfactory solution is selected. The final
solution is then used for system configuration.

the comPosItIon AnAlYsIs
FrAmeworK

The goal of the composition analysis process
is to find Pareto-optimal configurations for the
given SOA system specifications. A composition
analysis framework has been developed to realize
the QoS analysis process. The architecture of the
framework is shown in Figure 3. The framework
includes a specfication parser, a genetic-algorithm
based decision support unit, and various composi-
tion analysis algorithms. The specification parser
parses the “system composition specification”,
“system QoS requirements”, and “service QoS

properties”. The parsed information is integrated
and sent to the genetic-algorithm based decision
support unit. The genetic-algorithm based deci-
sion support unit provides efficient composition
decision making.

The genetic algorithm-based decision support
unit is responsible for configuration selection,
including the steps “select the candidate Web
services”, “select the configurable parameters”,
and “select the resource allocations”. The selected
configurations are passed to the framework. Then
the framework invokes the appropriate QoS com-
position analysis algorithm and pass the selected
configuration to it for analysis. The analysis results
are then passed back to the decision support unit
and the decision support unit either continues to
generate new candidate configurations or selects
the configuration as the final decision.

QoS composition analysis process may involve
the analysis of various QoS attributes, such as

Figure 3. The architecture of the composition analysis framework

Composition Analysis Framework

System
QoS

Requirements

Genetic algorithm-based
Decision Support Unit

Performance
Composition

Algorithm

Reliability
Composition

Algorithm
 ...

Candidate
Configurations

Service
QoS

Properties

System
Composition
Specification

Specification Parser

3126

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

performance, reliability, and so forth. Since the
analysis of different QoS attributes requires dif-
ferent methods and the QoS analysis algorithms
are highly application-dependent, the composition
analysis framework provides a registry table to
allow users to plug-in application-specific analysis
algorithms. The user can register a QoS property
composition algorithm to the framework through
the publicly exposed interface. Currently, the
algorithm for performance analysis of the SOA
is available.

GenetIc AlGorIthm-bAsed
decIsIon suPPort

We use a genetic algorithm-based process for the
decision support unit in the composition analysis
framework. The genetic algorithm is responsible
for candidate configuration generation and opti-

mal decision making. An outline of the genetic
algorithms is shown in Figure 4. It begins with
the initialization phase which randomly selects a
set of individuals to form the initial population.
An individual represents a solution or, for our
specific problem, a configuration. A population,
in turn, is a group of individuals. Each individual
is composed of a sequence of genes. For our
problem, the genes can represent a configurable
parameter, selection of a Web service for a part-
ner, and a specific allocation of platforms. The
initial population is called the first generation.
The individuals in the population are evaluated
using a fitness function. For example, in the model
discussed in the QoS Specification Model section,
the performance and/or other quality attributes
are measured to evaluate the fitness of the con-
figurations. Based on the evaluation results, the
generic “selection” operator is used to select the
better individuals as parents. From the parents,

Figure 4. Genetic algorithm outline

Initialize Population

QoS Analysis

Crossover

Mutation

Selection

End?
N

Y

 3127

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

the “crossover” and “mutation” operators are ap-
plied to generate a new generation of population.
The process is repeated until a satisfactory set of
solutions are obtained.

In the next sub-section, we introduce the
background for multi-objective evolutionary algo-
rithms. The mapping of the composition analysis
process to the evolutionary algorithm paradigm
is discussed in the Mapping the Composition
Analysis Problem to the Genetic Algorithm sub-
section. The detailed algorithms are discussed in
the Genetic Algorithm for Composition Analysis
sub-section.

multi-objective evolutionary
Algorithms (moeA)

The composition analysis process has some dif-
ficulties, including the conflicting objectives, the
exponential search space, and a mix of continuous
and discrete configurable parameters of the Web
services. The classical search algorithms, such as
linear programming and gradient search, are not
efficient for the multi-objective problems (Deb,
1995). Randomized algorithm can be used to deal
with the problem such as local minimal trap but
it is very inefficient. The genetic algorithm is a
partly randomized exploratory procedure based
on biological evolution. Specifically, the multi-
objective evolutionary algorithms (MOEA) is a
specialized genetic algorithm commonly used to
find the Pareto-optimal solutions.

The main objective of the MOEAs is to quickly
converge to the true Pareto-optimal front with a
widely spread solution set. Initial ones, such as
MOGA (Fonseca & Fleming, 1993), non-domi-
nated sorting genetic algorithm (NSGA) (Srinivas
& Deb, 1994), and niched Pareto genetic algorithm
(NPGA) (Hamadi et al., 2003) realize this objective
using non-dominated sorting along with a niching
mechanism. These algorithms have shown some
successes in finding Pareto optimal solutions. In
Zitzler, Deb, and Thiele (2000), the elitism con-
cept is introduced and has been shown to have

significant impact on performance improvement.
Elitism is a strategy to preserve the better solutions
for new population generation. Many subsequent
algorithms, for example, NSGA-II (Deb, Pratap,
Agarwal, & Meyarivan, 2002), Pareto envelope-
based selection (PESA) (Corne, Knowles, & Oates,
2000), and strength Pareto evolutionary algorithm
2 (SPEA2) (Zitzler, Laumanns, & Thiele, 2002)
apply the elitism strategy and demonstrate sub-
stantial performance improvements.

In Deb et al. (2002), an elitism-based algorithm,
NSGA-II, along with improvements in diversity
preservation and constraint handling, has been
proposed. It has been shown that the algorithm
outperforms Pareto archived evolution strategy
(PAES) and SPEA (Zitzler & Thiele, 1999) in terms
of finding a diverse set of solutions and converg-
ing toward the true Pareto-optimal set. Khare,
Yao, and Deb (2003) compared the scalability of
NSGA-II, PESA, and SPEA2 with respect to the
number of objectives (2 to 8). PESA was shown to
be the best in terms of converging to the Pareto-
optimal front, but it does not have good diversity
maintenance. Both SPEA2 and NSGA-II have
good performance in terms of convergence and
diversity maintenance, but NSGA-II runs much
faster than SPEA2. Thus, NSGA-II is chosen to be
the algorithm for the composition analysis process,
more specifically, to generate and select promis-
ing system configurations. Some modifications
are made to adapt NSGA-II to the composition
analysis problem and to achieve problem-specific
improvements.

mapping the composition Analysis
Problem to the Genetic Algorithm

To map the composition analysis problem to the
genetic algorithm flow, it is necessary to first de-
termine the individuals and genes. In the Genes
and Individuals for Configuration Representation
sub-section, the design of individuals and genes
for the composition analysis problem is given.
To evaluate the individuals, the fitness function

3128

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

should be defined next. The fitness function is
discussed in the QoS Analysis Algorithms sub-
section.

Genes and Individuals for Configuration
Representation

QoS-based SOA composition process supports
adaptation in terms of resource allocation, Web
service selection, and configurable parameter con-
figuration within services. Thus, each individual
includes three types of genes: one represents
resource allocation, one represents service selec-
tion, and one represents configurable parameter
setting. Figure 5 illustrates the different types
of genes.

One individual includes L genes which
comprise the allocation representations for the
L resources in RS. Each gene represents the al-
location of a resource rsi, denoted as A(rsi). A(rsi)
is an integer value from 1 to M. A(rsi) = k denotes
that rsi is allocated to the Web service instantiat-
ing partner ωk. It is assumed that resources are
independent of the Web services and assumed
that these resources can be allocated to any Web
services, that is, Web services are not resource

dependent. Also, it is assumed that each resource
can only be allocated to a single Web service.
Hence, the number of resource, L, is greater than
or equal to the number of partners, M.

For each partner, a gene is used to represent
the selection of the instantiating Web service
and there are a total of M such genes. Let I(ωi)
denote the gene for service selection. Since ωi
can be instantiated by Web services wsi,j, 1 ≤ j ≤
mi, I(ωi) is the index of the Web service selected
for instantiating ωi and its value range is from
1 to mi. In other words, if I(ωi) = j, then wsi,j is
selected to realize ωi.

For the configurable parameters within in-
dividual services, each gene, denoted as D(xi,j

k),
represents a setting of the corresponding con-
figurable parameter xi,j

k, where xi,j
k is a tunable

parameter in Web service wsi,j. For wsi,j, there
are χi,j configurable parameters. Thus, there are
a total of ∑i,j χi,j genes representing configurable
parameter settings. Each D(xi,j

k) has its own data
type and value range. The data type and value
range definitions for xi,j

k are defined in the Web
service QoS property specification and can be
retrieved to define D(xi,j

k).

Figure 5. Mapping of the system configurations

A(rs1) A(rs2) … A(rsL)
I(1) I(2) … I(M)
D(x1,1

1) D(x1,1
2) …

D(x1,2
1) D(x1,2

2) …
…

D(x2,1
1) D(x2,1

2) …
…

D(xM,1
1) D(xM,1

2) …
…

 L genes representing resource allocation
 M genes representing service selection

 1,2 genes representing settings of c.p. in ws1,2

 2,1 genes representing settings of c.p. in ws2,1

 3129

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

QoS Analysis Algorithms

The individuals in a population are evaluated
using the fitness functions. The fitness functions
are defined and realized by QoS analysis algo-
rithms. Essentially, each individual represents a
specific configuration of the system (selection and
configuration of the Web services and resource al-
location for them). Based on the configuration, the
overall system properties, such as performance,
reliability, and so forth, are determined. In this
chapter, we use performance metric as an example
to illustrate the QoS Analysis. The performance
analysis for the SOA systems is discussed later
in the Performance Analysis section.

Genetic Algorithm for composition
Analysis

In this section, we discuss the detailed algorithms
in the GA paradigm. The overall genetic algorithm

is discussed in the NSGAII-CAA sub-section. The
GA operations, including selection, crossover,
and mutation, are discussed in Selection Opera-
tor, Mutation Operator, and Crossover Operator
sub-sections, respectively.

NSGAII-CAA

The algorithm NSGAII-CAA (non-dominated
sorting genetic algorithm II – composition analysis
algorithm) is a modified version of NSGA-II. It is
specifically adapted for the composition analysis
process with some performance improvement fea-
tures. The algorithm is shown in the following.

Algorithm 1 follows closely the general genetic
algorithm flow. In the following sub-sections, the
major steps specifically designed for the composi-
tion analysis process are discussed.

 Algorithm NSGAII-CAA

Input: Ns: population and initial elite set size
 D: generation number
Output: Pr: result non-dominated set

1 Initialize population P0
2 QoS analysis on P0
3 Create empty elite set P0′
4 d := 0
5 while (d < D) do
6 generate a new elite set P d+1′ := NSGAII-crowding-pick (Pd, Pd′, Ns)
7 generate the new population Pd+1 := Mutation(Recombination(BTS(Ns, Pd+1′)))
8 QoS analysis on Pd+1
9 d := d + 1
10 end while
11 Pr := non-dominated-set (Pd′)

Algorithm 1.

3130

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

Selection Operator

For selecting promising configurations in a
population, a comparision standard has to be pro-
vided. NSGA-II uses the crowding pick approach
(NSGAII-crowding-pick). First, each individual
is assigned a priority using non-dominated sort.
Then, the individuals are further sorted using
the crowding distance sort. Non-dominated sort
first identifies the non-dominated solutions and
gives them the highest priority and, after prior-
ity assignment, moves them out of the set. Then
the non-dominated solutions of the remaining
individuals are identified and given the second
highest priority. This process continues until
priorities are assigned to all the individuals.
Based on each objective, the crowding distance
computation first sorts the individuals with the
same priority according to their values. The
distances are normalized cross objectives by
equalizing the maximum distances (between
the highest and lowest values) of the objectives

and proportionately adjusting the distances of all
pairs of adjacent individuals. For each individual,
the distances for all the objectives are summed
together. The individual with a larger distance
value gets a higher priority.

Based on the priorities, the best individuals
can be picked to form the elite set, which stores
a fixed number of best individuals ever generated
and serves as the mating pool for next generation.
Initially, the elite set is empty. For every gen-
eration, the population and the elite set from the
previous generation are merged into one set. Ns
individuals with the highest priorities are picked
from the set to form the new elite set, where Ns
is the population size. For a J-objective problem
with population size Ns, NSGA-II has a storage
requirement of O(Ns

2) and time complexity of
O(J Ns

2).
The NSGAII-CAA algorithm uses a binary

tournament selection (BTS) algorithm to select
Ns individuals from the elite set to generate a
new set, from which the new generation can be

 Algorithm BTS

Input: Ns: population size
 P: elite set
Output: P′: result new population

1 i := 0
2 while (i < Ns) do
3 randomly pick up two configurations s1, s2 from P
4 if s1 has higher priority
5 put s1 in P′
6 else
7 put s2 in P′
8 i := i + 1
9 end while

Algorithm 2.

 3131

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

produced by recombination and mutation. Each
time two individuals are randomly picked from
the elite set and one individual with the higher
priority is selected. It continues till Ns individu-
als are selected. The complete BTS algorithm
(Algorithm 2) is shown as follows.

Mutation Operator

In a mutation process, a new individual is gener-
ated from a randomly picked configuration by
slightly modifying it. The probability of muta-
tion of one individual is controlled by a mutation
rate, which is normally set as 1/Ns where Ns is
the population size. In the case study to be dis-
cussed later, the mutation rate is set as 0.01. For
the individual to be mutated, the mutation point
is chosen randomly and the gene of the mutation
point is modified. For our specific problem, a
random value in a pre-determined range of the
chosen gene is used to replace the existing value.
Each configurable parameter should have a fixed
range so that a random value can be selected for
the corresponding gene.

Crossover Operator

While mutation generates a new individual from
one parent, crossover process exchanges the
genes of one or more parents to reproduce new
individuals. We use one-point recombination due
to its effectiveness and simplicity. Similar to the
mutation process, the crossover point for recom-
bination of two individuals is generated randomly.
The one-point recombination process exchanges
the genes of two parents on and after the crossover
point to reproduce two offsprings.

PerFormAnce AnAlYsIs

We use the Markov chain model to assess the
performance for the SOA-based system (Bose,
2001). The SOA-based system consists of multiple

Web services that may invoke one another (assume
that there is no cyclic invocation). So the system
is modeled as a multi-tier client-server system,
which include multiple levels of client-server
subsystems. In the following sub-sections, we
first review the Markov model for performance
analysis in the Markov Model for Performance
Analysis sub-section. Then, in the Performance
Analysis for SOA Systems sub-section, the method
used for performance analysis for SOA system is
introduced. Finally, in A Performance Analysis
Example sub-section, an example is given to il-
lustrate the performance analysis method.

markov model for Performance
Analysis

Consider a simple client-server system. Let q
denote the server queue. Assume that the server
has service time ts and request arrival rate λ. Also,
let n denote the average population at the server.
From the Markov model, we have (Bose, 2001):

Utilization: = st⋅ ,

Average response time:
()

 =
1

stt
−

,

Average population:
()

 =
1

n
−

.
 (1)

If the load on the server is very high, the server
may become a bottleneck. To deal with this prob-
lem, a server may be replicated, that is, multiple
resources are allocated to that server. In this case,
we use the M/M/m queuing model to compute the
system performance, which has the following
performance characteristics (Bose, 2001).

Utilization: ' = st
m
⋅

,

Average response time:
()

' Q
s

s

P
t t

m t
= +

−
,

 (2)

3132

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

where PQ denotes the probability that all m servers
are busy and p(0) denotes the probability that the
queue length is 0. We have

() ()0 1'
! 1 '

m
Q

p
P m

m
= ⋅ ⋅

−
,

() ()
()

()
1

1

0

' '
0

! 1 ' !

m im

i

m m
p

m i

−
−

=

 ⋅ ⋅
 = +

 ⋅ −
∑

Average population:
()

' ' =
1 'Qn P ⋅
−

Performance Analysis for soA
systems

In the Markov Model for Performance Analysis
sub-section, it is assumed that the arrival rates for
the input ports of each Web service are known.
When one Web service uses services provided
by other Web services, it forms the client-server
relationship. A Web service ws1,1, for some re-
quests, may invoke another Web service ws2,1,
but for some other requests, may invoke Web
service ws3,1, and for yet some other requests, may
simply serve them locally. Also, a request may
be propagated through several layers of service
invocation. Thus, each request has a service path.
To facilitate performance analysis, it is necessary
to compute the effective arrival rate for each
Web service in the system, and the computation
is based on the invocation paths and the arrival
rates from the real clients.

The SOA composition specification specifies
the service architecture, including the partners
and the links. The QoS specification for the in-
dividual services includes several essential parts:
(1) for each partner, the arrival rates for its input
ports should be specified if it takes input from
real clients; (2) for each partner, the distribution
of client requests that are forwarded to each of
the output ports should also be specified; and (3)
for each Web service, the service rate should be
specified.

We assume that the client arrival rates follows
a Poisson distribution. Also, we assume that the
service rate of each Web service has an expo-
nential distribution or is constant. In addition,
assume that the arrival rate λi for partner ωi is
less than the service rate 1/ti,j of the Web service
wsi,j which instantiates ωi. Thus, the output from
each partner follows a Poisson distribution with
rate λi. We also assume that if ωi, after processing
the requests, forwards the requests to other part-
ners, then the probability for the requests going
to different partners follows a uniform random
distribution. Consider the case that partner ωi
has a request arrival rate λi and the probability
that ωi forwards a request to ωj is pi,j. Then, the
effective arrival rate for partner ωj has a Possion
distribution with average arrival rate λi*pi,j. From
the effective arrival rate, the response time for
each Web service can be computed based on the
Markov model discussed in the Markov Model
for Performance Analysis sub-section.

To compute the response time of client requests
in terms of the overall system, we need to con-
sider the individual paths of the requests flowing
through the service hierarchy. First, according to
the effective arrival rate, the response time for
each service can be computed. For each path, the
response time of the requests can be computed by
adding together the response times of the multiple
tiers that a request has to go through. The aver-
age response time of the overall system is the
expected value of the response times of all the
paths in the service architecture. The algorithm
of computing the average response time is shown
in Algorithms 3 and 4.

In the SOA based system, the link delay also
affects the performance of the system. A link can
be viewed as a network service unit. In the QoS
property specifications of the individual services,
the link delay can be specified either as a fixed
latency or a specific distribution.

 3133

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

A Performance Analysis example

Here, an example is given to illustrate the perfor-
mance analysis algorithm.

The example system is shown in Figure 6.
The performance analysis is based on a given

system configuration, thus, each partner in the
system has been instantiated by certain Web
service which is specified in Figure 6, such as
ω1 is instantiated by ws1,1. The specification for
each Web service, partner, and link are also
given in Figure 6. For example, the arrival rate λ

 Algorithm computeTotalAverageResponseTime

Input: : Initial arrival rate of the system
Output: T : TotoalAverageResponseTime

1 Find the starting web service wsi,j of the system
2 recursivePerformanceAnalysis (wsi,j,)

Algorithm recursivePerformanceAnalysis

Ni,j: The number of the partners which Web Service wsi,j sends request to
 The requests sent by wsi,j are indexed into 0 to Ni,j−1

Input: wsi,j : Web Service to be processed
 i : The effective arrival rate of wsi,j

Output: t : The response time of wsi,j

1 if (Web Service wsi,j is empty)
2 return
3 if (Web Service wsi,j isn’t replicated)
4 Compute the response time ti,j of wsi,j using M/M/1 formula (1)
5 else
6 Compute the response time ti,j of wsi,j using M/M/m formula (2)
7 T += (i /) * t
8 j := 0
9 while (j < Ni,j)
10 Find the Web Service wsj,k which the request j goes
11 Compute the effective arrival rate j of wsj,k
12 recursivePerformanceAnalysis(wsj,k, j)
13 endwhile

Algorithm 3.

Algorithm 4.

3134

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

of partner ω1 is 0.01/ms and the service time t1,1
for Web service ws1,1 (instantiates ω1) is 50 ms.
Also, from Figure 6, we can see that the service
flow is initiated at ω1. Requests from partner ω1
are forwarded to different partners, where 70%
are forwarded to partner ω3 and 30% to ω2. After
receiving the responses from partner ω2 and ω3,
partner ω1 sends the requests to partner ω9 .The
possible paths for the requests include ω1-ω2-ω5-
ω9-ω10-ω11, ω1-ω2-ω6-ω8-ω9-ω10-ω11, etc. Here, we
assume that the transmission time of the requests
and responses between any two partners is a
constant value, namely, 20 ms.

First, we compute the response time for path
ω1-ω3-ω7-ω4. From the properties of partner ω1 and
partner ω3 in Figure 6, the effective arrival rate
of partner ω3 from partner ω1 can be computed

as 0.7*λ. The requests are processed by Web
service ws3,4 (instantiates ω3) with the service
time t3,4 = 80 ms. Then requests from partner ω3
are forwarded to partner ω7 and gets processed
by Web service ws7,1 (instantiates ω7). Because
the requests from partner ω3 are all forwarded to
partner ω7, the effective arrival rate is the same
as partner ω3, namely, 0.7*λ. After receiving the
responses from partner ω7, partner ω3 sends the
requests to partner ω4. Similarly, the effective
arrival rate of partner ω4 is 0.7*λ. Based on the
effective arrival rate, the response time of Web
service ws3,4 is computed as 182 ms. Similarly,
the response times of Web service ws7,1 and ws4,1
are 333 ms and 103 ms, respectively.

Then look at path ω1-ω2-ω5 and ω1-ω2-ω6-ω8.
As can be seen, Web service ws2,2 (instantiates

Figure 6. An example system for performance analysis

2

1 (ws1,1) 3 (ws3,4)

8 (ws8,1)

7 (ws7,1)

4 (ws4,1)

5 (ws5,1)

6 (ws6,1)

 11 (ws11,1)

30%

70%

10%

90%

t2,2 = 300 ms

t3,4 = 80 ms

t7,1 = 100 ms

t5,1 = 100 ms

t8,1 = 70 ms

t4,1 = 60 ms

t10,1 = 200 ms t11,1 = 50 ms t9,2 = 100 ms

 = 0.01/ms

t6,1 = 200 ms 2 (ws2,2)

10
9 (ws9,2) 10

10 (ws10,1)

t1,1 = 50 ms

 3135

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

ω2) is replicated. It has an arrival rate 0.3*λ and
the service time t3,2 for Web service ws2,2 is 300
ms. Since Web service ws2,2 is replicated by 2,
we compute the response time of Web service
ws2,2 using M/M/m (here m = 2) queuing model.
Then, 10% of the requests from partner ω2 are
forwarded to partner ω5 and 90% to partner ω6.
So the effective arrival rates of partners ω5 and
ω6 are 0.1*0.3*λ and 0.9*0.3*λ. The requests
forwarded to partner ω6 are processed further
by Web service ws8,1 (instantiates ω8). Thus, the
response times of all Web services (ws2,2, ws5,1,
ws6,1, ws8,1) are computed and they are 423 ms,
103 ms, 435 ms, and 86 ms respectively.

After receiving the responses from partner
ω2 or partner ω3, partner ω1 sends the requests
to partner ω9. Since partner ω1 receives all the
responses from partner ω2 and partner ω3 and all
the responses follow Poisson distribution, the ef-
fective arrival rate of the responses for partner ω1
is λ. The requests from partner ω1 get processed
by Web service ws9,2 (instantiates ω9). We com-
pute the response time of Web service ws9,2 using
M/M/m (here m = 2) queuing model due to the
replication of Web service ws9,2 by 2. Then requests
from partner ω9 are forwarded to partner ω10 and
gets processed by Web service ws10,1 (instantiates
ω10). Web service ws10,1 is replicated by 3, so the
response time of Web service ws10,1 is computed
using M/M/m (here m = 3) queuing model. Finally
the requests are forwarded to partner ω11 and are
processed by Web service ws11,1 (instantiates ω11).
Thus, the response times of all Web services (ws9,2,
ws10,1, ws11,1) are computed and they are 150 ms,
333 ms, 100 ms, respectively.

Note that the possible paths for the requests
include ω1-ω2-ω5-ω9-ω10-ω11, ω1-ω2-ω6-ω8-ω9-
ω10-ω11, ω1-ω3-ω7-ω4-ω9-ω10-ω11. The average
response time for path ω1-ω2-ω5-ω9-ω10-ω11 is
computed as 100+423+103+150+333+100+10*20
= 1509 ms. Similarly, the average response time
for path ω1-ω2-ω6-ω8-ω9-ω10-ω11 is computed as
100+423+435+86+150+333+100+12*20 = 1867ms
and the average response time for path ω1-ω3-ω7-

ω4-ω9-ω10-ω11 is computed as 100+182+333+103+1
50+333+100+12*20 = 1541 ms. Thus, the average
response time of the overall system is 0.3*0.1*1509
+ 0.3*0.9*1867 + 0.7*1541 = 1625 ms.

cAse studY

We use the example system shown in Figure 6 as
a case study to illustrate the composition analysis
approach. Let S denote the example system.

system QoS Specification

In the example system S, the QoS attribute vec-
tor QS = (q1, q2), where q1 represents time and q2
represents accuracy. The system QoS require-
ments include the objectives O = (o1, o2) and R =φ,
where o1 is “minimize (q1)” and o2 is “maximize
(q2)”. Here, q1 represents response time. For com-
position specification, we have ΩS = {ωi | 1 ≤ i ≤
11}. The set of Web services for each partner is
shown in Table 1. For example, Web service ws1,1
is associated with partner ω1, Web services ws2,1,
ws2,2 are associated with partner ω2, Web services
ws3,1, ws3,2, ws3,3, ws3,4 are associated with partner
ω3, and so forth.

For simplicity, we do not consider the execu-
tion environment Ei,j

ws for Web services wsi,j and
the input parameter set Ii,j

ws, for all i, j, in the
example system S. The configurable parameter
set Xi,j

ws of each involved Web services wsi,j are
specified in Table 2. For example, Web service
ws1,1 has two configurable parameters x1,1

1, x1,1
2,

Web service ws2,1 has one configurable parameter
x2,1

1, Web service ws3,2 doesn’t have configurable
parameters, and so forth.

The QoS property functions of the Web ser-
vices are shown in Table 3. Since we have quality
attributes q1 and q2, correspondingly, we have
QoS property functions 1Vi,j

ws and 2Vi,j
ws, where

1Vi,j
ws represents the time property function and

2Vi,j
ws represents the accuracy property function.

Note that 1Vi,j
ws and 2Vi,j

ws are functions of the

3136

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

Table 1. Partners and associated Web services

Partner Web Service Partner Web Service Partner Web Service
ω 1 ws1,1 ω 5 ws5,1, ws5,2, ws5,3 ω 9 ws9,1, ws9,2

ω 2 ws2,1, ws2,2 ω 6 ws6,1 ω 10 ws10,1, ws10,2

ω 3

ws3,1, ws3,2, ws3,3,
ws3,4

ω 7 ws7,1, ws7,2 ω 11 ws11,1

ω 4 ws4,1 ω 8 ws8,1

Table 2. The configurable parameter set of individual Web service specification

Partner
Web

Service
Configurable

Parameter Set
Partner

Web
Service

Configurable
Parameter Set

ω 1 ws1,1 X1,1
ws = (x1,1

1, x1,1
2) ω 6 ws6,1 X6,1

ws = φ

ω 2

ws2,1 X2,1
ws = (x2,1

1)
ω 7

ws7,1 X7,1
ws = φ

ws2,2 X2,2
ws = (x2,2

1) ws7,2 X7,2
ws = (x7,1

1,x7,2
2)

ω 3

ws3,1 X3,1
ws = (x3,1

1) ω 8 ws8,1 X8,1
ws = φ

ws3,2 X3,2
ws = φ

ω 9

ws9,1 X9,1
ws = φ

ws3,3 X3,3
ws = φ ws9,2 X9,2

ws = (x9,2
1)

ws3,4

X3,4
ws =

(x3,4
1,x3,4

2,x3,4
3) ω 10

ws10,1 X10,1
ws = (x10,1

1,x10,1
2)

ω 4 ws4,1 X4,1
ws = φ ws10,2 X10,2

ws = φ

ω 5

ws5,1 X5,1
ws = (x5,1

1)

ω 11 ws11,1 X11,1
ws = φws5,2 X5,2

ws = φ

ws5,3 X5,3
ws = (x5,3

1,x5,3
2)

configurable parameters Xi,j
ws (it is assumed that

the impacts of Ii,j
ws and Ei,j

ws are not considered).
Since the service time of the Web services follows
the exponential distribution, we have

() ()
(), ,

1

1
, ,

, ,

1, 1
ws

i j i j

t
Xws ws

i j i j ws
i j i j

V t X e
X

− ×

= − ×
.

 3137

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

Note that µi,j(Xi,j
ws) denotes the service rate

of wsi,j,

() ()(), ,
, , ,

1ws
i j i j ws

i j i j i j

X
t X

=

,

and here we assume that the configurable param-
eters in Xi,j

ws impacts the average service rate. In
Table 3, µi,j(Xi,j

ws) for each Web service wsi,j is given.
Property functions 2Vi,j

ws for all Web services wsi,j
are also given in Table 3. It is also a function of
the configurable parameters in Xi,j

ws. Here, the

value range of the configurable parameters in
Xi,j

ws is 0 to 10.
Consider the Web services ws2,1 as an example.

The property functions of ws2,1 are

() ()
()1

2,1

1
2* + 2801

2,1 1
2,1

11
2* + 280

t
xwsV t e

x

 − ×

 = − ×

and

()2 2 0.5
2,1 2,10.31*()wsV t x= .

Table 3. QoS properties of individual Web service specification

Partner Web Service µi,j(Xi,j
ws) 2Vi,j

ws

ω1 ws1,1 0.5*x1,1
1 + 3*x1,1

2 + 10 0.63*(x1,1
2)0.2

ω2 ws2,1 2*x2,1
1 + 280 0.31*(x2,1

1)0.5

ws2,2 5*x2,2
1 + 250 0.63*(x2,2

2)0.2

ω3 ws3,1 3*x3,1
1 + 50 0.31*(x3,1

1)0.5

ws3,2 130 0.98
ws3,3 200 0.96
ws3,4 3*x3,4

1 + x3,4
2 + 2*x3,4

3 + 20 0.39*(x3,4
1)0.4

ω4 ws4,1 60 0.92
ω5 ws5,1 3*x5,1

1 + 70 0.31*(x5,1
1)0.5

ws5,2 90 0.99
ws5,3 x5,3

1 + x5,3
2 + 80 0.63*(x5,3

2)0.2

ω6 ws6,1 200 0.96
ω7 ws7,1 100 0.98

ws7,2 3*x7,2
1 + x7,2

2 + 60 0.39*(x7,2
1)0.4

ω8 ws8,1 70 0.92
ω9 ws9,1 120 0.94

ws9,2 2*x9,2
1 + 80 0.5*(x9,2

1)0.3

ω10 ws10,1 2*x10,1
1 + x10,1

2 + 160 0.63*(x10,1
 2)0.2

ws10,2 170 0.93
ω11 ws11,1 50 0.97

3138

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

The resources in the example system S is
RS = {rs1, rs2, …, rs15}, including 15 platforms.
We assume that all the platforms have the same
computation power.

Configuration and Gene mapping

We map the specification for S given in the System
QoS Specification sub-section to the genetic algo-
rithm paradigm. An example individual for S is
given in Figure 7. The genes for selection of Web
services are given in the second line. For example,
I(ω1) = 1 represents that ws1,1 instantiates ω1. The
genes for resource allocation are given in the first
line. We can see that, for example, rs1 hosts Web
service ws1,1 since A(rs1) = 1 and I(ω1) = 1. The re-
maining genes are for the configurable parameter
settings, one line per partner (actually, the Web
service that instantiates the partner). For example,
x1,1

2 = 9, it means the first configurable parameter
x1,1

2 of the Web service ws1,1 is set to 9.
Some other parameters for the genetic al-

gorithm are as follows. The population size Ns
and elite set size P are set to 100. The number
of generations D is set to 60. These settings are
determined based on the convergence speed and
output quality we observed.

Performance Analysis

Each system configuration is analyzed by the
performance composition algorithm. For the
system configuration shown in Figure 7, the
service time and accuracy of each Web service,
which instantiates the corresponding partner in
the example system, are computed according to
the configuration mapping and QoS properties
of individual Web service specification shown
in Table 3. For example, Web service ws1,1 is
selected to instantiate partner ω1. The service
time and accuracy of ws1,1 are 0.5*0 + 3*9 + 10
= 37 ms and 0.63*(9)0.2 = 0.98, here x1,1

1 = 0, x1,1
2

= 9. Similarly, Web service ws11,1 is selected to
instantiate partner ω11. Since Web service ws11,1
doesn’t have configurable parameters, the service
time and accuracy of ws11,1 are fixed, namely, 50
ms and 0.97, respectively. The average response
time of this example system with the given
configuration is then computed according to the
algorithm “computeTotalAverageResponseTime”
presented in the Performance Analysis for SOA
Systems sub-section and the result is 1412 ms.
To compute the accuracy of client requests in
terms of the overall system, we consider the
individual paths of the requests flowing through

Figure 7. Mapping of the system configurations

A(rs1)=1 A(rs2)=2 … A(rs15)=3
I(1)=1 I(2)=1 I(3)=2 … I(11)=1
D(x1,1

1)=0 D(x1,1
2)=9

…
D(x5,1

1)=2
…

D(x10,1
1)=0 D(x10,1

2)=9
…

 3139

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

the service hierarchy. For each path, the accuracy
of the requests can be computed by multiplying
together the accuracy of the multiple tiers that a
request has to go through. The accuracy of the
overall system is the summation of the accuracy
of all the paths in the service architecture. The
accuracy of the example system with the given
configuration is 0.12.

Analysis results

For the example system, we consider the trad-
eoffs of the two QoS objectives—response time
and accuracy. Figure 8 shows the Pareto front
for the two objectives. There are many possible

configurations to meet the functional and QoS
requirements of the system S and the Pareto front
are the configurations that are better than the
eliminated solutions in at least one of the objec-
tives. As we can see, in order to obtain higher
accuracy, we need longer execution time. Each
point in Figure 8 corresponds to a configuration.
For example, the configuration corresponding to
the point pointed by the arrow in Figure 8 is given
in the corresponding box. In this configuration, the
configurable parameters for the Web service ws1,1
are set to: x1,1

1 = 0.0, x1,2
2 = 9.0, etc. The average

response time of the system S is 1531 millisecond
and accuracy of the system S is 69.96%.

Figure 8. The relationship between accuracy and response time

3140

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

Based on the analysis results, the system can be
adapted statically and/or dynamically according to
the modified QoS requirements. When the execu-
tion environment or operation condition changes,
the system simply searches for the configuration(s)
that satisfy the new requirements and constraints.
From the case study, we can see that the framework
can be used to effectively analyze QoS tradeoffs.
The GA algorithm generally converges very fast
and, hence, can be used for efficient adaptation
decision making.

conclusIon

In this chapter, we have presented the QoS analysis
process to facilitate dynamic reconfiguration in
SOA-based systems. We consider the selections
and configurations of Web services to compose
a system. We also consider the resource alloca-
tion for Web services. The goal is to find the best
configurations that satisfy the changing QoS
requirements. A case study is used to validate the
feasibility of our QoS-based composition analysis
techniques and tools.

There are many research directions that can be
explored further. The most important direction is
to further develop techniques and tools for general
QoS behavior analysis. For example, reliability,
availability, and so forth, are also important QoS
attributes. Currently, we are developing compo-
sitional analysis techniques to compute system
reliability based on the reliability of individual
services. Other QoS attributes will also be con-
sidered. Though some quality attributes are very
difficult to assess and/or to compose, we plan to
investigate these attributes and develop some
common mechanisms for thorough analysis.

Dynamic reconfiguration requires the analysis
process to be performed in real time so that the
adaptation can be completed in a timely way.
For the case study discussed in this chapter, the
configuration analysis takes close to one second.
For large-scale systems, the analysis process may

take longer. Thus, it is necessary to investigate
mechanisms for achieving real-time performance.
For example, special composition analysis service
sites can be offered and analysis can be done
off-line and results can be provided efficiently
to the clients.

We also plan to extend the toolset and develop
a complete suite of tools to facilitate QoS analysis
of SOA-based systems. We will consider more
complicated service architectures and various
composition mechanisms. Also, analysis algo-
rithms for various QoS attributes will be incor-
porated.

reFerences

Aksit, M., & Choukair, Z. (2003). Dynamic, adap-
tive and reconfigurable systems overview and
prospective vision. In the Proceedings of the 23rd
International Conference on Distributed Comput-
ing Systems Workshop, Providence, Rhode Island,
USA, May 19-22 (pp. 84-89). Los Alamitos, CA:
IEEE Computer Society.

BEA Systems, IBM, Microsoft, SAP AG, & Siebel
Systems. (2002). Business process execution
language for Web services. Retrieved May 2005,
from http://www-128.ibm.com/developerworks/
library/specification/ws-bpel/

Bose, S. K. (2001). An introduction to queueing
systems. New York: Kluwer/Plenum Publishers.

Corne, D. W., Knowles, J. D., & Oates, M. J. (2000).
The pareto envelop-based selection algorithm for
multiobjective optimization. In M. Schoenauer et
al. (Eds.), Parallel problem solving from nature
– PPSN VI (pp. 839-848). Berlin: Springer.

Deb, K. (1995). Optimization for engineering
design: Algorithms and examples. New Delhi:
Prentice-Hall.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan,
T. (2002). A fast and elitist multiobjective genetic

 3141

A Genetic Algorithm-Based QoS Analysis Tool for Reconfigurable Service-Oriented Systems

algorithm: NSGA-II. IEEE Transactions on Evo-
lutionary Computation, 6(2), 182-197.

Fonseca, C. M., & Fleming, P. J. (1993). Genetic
algorithms for multiobjective optimization: For-
mulation, discussion and generalization. In S.
Forrest (Ed.), Proceedings of the Fifth Interna-
tional Conference on Genetic Algorithms, UIUC,
July 17-22 (pp 416-423). San Mateo, CA: Morgan
Kaufmann.

Hamadi, R., & Benatallah, B. (2003). A petri-net-
based model for Web service composition. In K.-
D. Schewe, & X. Zhou (Eds.), Proceedings of the
Fourteenth Australasian Database Conference
on Database Technologies, Adelaide, Australia,
February 4-7 (pp. 191-200). Australia: Australian
Computer Society Inc.

Khare, V., Yao, X., & Deb, K. (2003). Perfor-
mance scaling of multi-objective evolutionary
algorithms. In M. Carlos Fonseca, P. J. Fleming,
E. Zitzler, K. Deb, & L. Thiele (Eds.), Proceedings
of the 2nd International Conference on Evolu-
tionary Multi-Criterion Optimization (EMO’03),
Faro, Portugal, April 8-11 (pp. 376-390). Portugal:
Springer.

Sirin, E., Parsia, B., & Hendler, J. (2004). Filtering
and selecting semantic Web services with inter-
active composition techniques. IEEE Intelligent
Systems, 19(4), 42-49.

Srinivas, N., & Deb, K. (1994). Multiobjective
optimization using nondominated sorting in
genetic algorithms. Evolutionary Computation,
2(3), 221-248.

Tsai, W. T., Song, W., Paul, R., Cao, Z., & Huang,
H. (2004). Services-oriented dynamic recon-

figuration framework for dependable distributed
computing. In the Proceedings of the 28th Annual
International Computer Software and Applica-
tions Conference, Hong Kong, China, September
28-30 (pp. 554-559). Los Alamitos, CA: IEEE
Computer Society.

W3C (2002). Web services. Retrieved May 2005,
from http://www.w3.org/2002/ws/

W3C (2004a). OWL. Retrieved May 2005, from
http://www.w3.org/TR/2004/REC-owl-features-
20040210/

W3C (2004b). OWL-S. Retrieved May 2005, from
http://www.w3.org/Submission/OWL-S/

Zitzler, E., Deb, K., & Thiele, L. (2000). Com-
parison of multiobjective evolutionary algorithms:
Empirical results. Evolutionary Computation,
8(2), 173-195.

Zitzler, E., Laumanns, M., & Thiele, L. (2002).
SPEA2: Improving the strength pareto evolution-
ary algorithm for multiobjective optimization. In
K. C. Giannakoglou et al. (Eds.), Proceedings of
the EUROGEN2001 Conference: Evolutionary
methods for design, optimization and control
with application to industrial problems, Athens,
Greece, September 19-21 (pp. 95-100). Barcelona,
Spain: International Center for Numerical Methos
in Engineering (CIMNE).

Zitzler, E., & Thiele, L. (1999). Multiobjective
evolutionary algorithms: A comparative case
study and the strength pareto approach. IEEE
Transactions on Evolutionary Computation,
3(4), 257-271.

This work was previously published in Advances in Machine Learning Applications in Software Engineering, edited by D.
Zhang & J. Tsai, pp. 121-146, copyright 2007 by IGI Publishing (an imprint of IGI Global).

3142

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.29
Fuzzy Logic Classifiers and

Models in Quantitative
Software Engineering

Witold Pedrycz
University of Alberta, Canada

Giancarlo Succi
Free University of Bolzano, Italy

AbstrAct

The learning abilities and high transparency are
the two important and highly desirable features of
any model of software quality. The transparency
and user-centricity of quantitative models of soft-
ware engineering are of paramount relevancy as
they help us gain a better and more comprehensive
insight into the revealed relationships character-
istic to software quality and software processes.
In this study, we are concerned with logic-driven
architectures of logic models based on fuzzy
multiplexers (fMUXs). Those constructs exhibit
a clear and modular topology whose interpreta-
tion gives rise to a collection of straightforward
logic expressions. The design of the logic models
is based on the genetic optimization and genetic
algorithms, in particular. Through the prudent
usage of this optimization framework, we address

the issues of structural and parametric optimiza-
tion of the logic models. Experimental studies
exploit software data that relates software metrics
(measures) to the number of modifications made
to software modules.

IntroductIon: modelInG
soFtwAre Products And
Processes

The important objectives of quantitative software
engineering revolve around building models that
help express software quality in terms of some
software metrics (measures) (Canfora, García,
Piattini, Ruiz, & Visaggio, 2005; Cant, Jeffery,
& Henderson-Sellers, 1995; Chhabra, Aggarwal,
& Singh, 2004; Lanubile & Visaggio, 1997; Lee,
1993; Offutt, Harrold, & Kolte, 1993; Poels &

 3143

Fuzzy Logic Classifiers and Models in Quantitative Software Engineering

Dedene, 2000). There have been numerous ap-
proaches to such modeling pursuits. In addition
to some “standard” linear and non-linear regres-
sion models, we can witness other techniques
exploiting neural networks, machine learning,
neural networks and fuzzy sets (Ebert, 1994, 1996;
Mantere & Alander, 2005; Pedrycz, Han, Peters,
Ramanna, & Zhai, 2001; Pedrycz & Succi, 2005;
Pedrycz, Succi, Musílek, & Bai, 2001; Reformat,
Pedrycz, & Pizzi, 2003; Thwin & Quah, 2005).

There are several compelling reasons behind
studying different approaches to modeling soft-
ware processes and software products.

• Typically, the available software data are
quite limited yet they may involve a sig-
nificant number of variables; in this sense,
their sparse character requires careful at-
tention.

• As the models produce results to be pre-
sented to the user (designers, managers,
testers, etc.), it is highly advisable to assure
high transparency (user-centricity) of the
overall modeling process. In particular, this
feature supports an interpretation of results
and reveals relationships between software
metrics and software quality.

• Software processes are human-oriented and
not governed by any laws of physics. This
strongly suggests considering modeling
practices realized at some abstract levels
engaging logic constructs.

• It is highly advisable to develop models in
such a way that they could accommodate
heterogeneous input information not neces-
sarily being confined to numeric data.

• The models should be endowed with a
significant level of flexibility and learning
mechanisms to accommodate commonly
encountered non-linear relationships and
potential variability of the individual proj-
ects and software products.

Being aware of these main objectives, we may
conclude that ideally the modeling framework
should support the development of models in
such a way that they combine a high degree of
plasticity and learning abilities with an evident
transparency and a significant level of interpret-
ability. Interestingly enough, we could state
without any exaggeration that the fundamentals
of such modeling are inherently rooted in the
world of multi-valued or fuzzy logic. The un-
derlying logic nature of the models makes them
transparent, and this transparency contributes to
a highly interpretative insight into experimental
data. The agenda of fuzzy modeling is inherently
associated with the transparency of fuzzy models.
While this facet of modeling has already started to
gain visibility and properly balance the otherwise
accuracy-driven fuzzy models, there are still a
number of fundamental issues as to the definition
of interpretability itself, granularity of models
vis-à-vis the characteristics of experimental data,
and assessment of the readability of the structure
of the model itself (Reformat et al., 2003).

Two-valued logic forms a well-known bound-
ary case of the fuzzy logic. The design of digital
systems comes with a diversity of well-established,
highly efficient, and scalable architectures and
related development algorithms. By acknowl-
edging a point of view that the two-valued logic
is just a special case of fuzzy logic, we are then
somewhat tempted to generalize or reformulate
the already existing architectures and design
practices of digital systems and cast them in the
framework of fuzzy logic. This point of view is
the crux of this approach to the development of
fuzzy logic models. We focus on a certain standard
technique of implementation of combinational
systems by means of multiplexers (the approach
which results in an array of multiplexers imple-
menting any Boolean function); see McCluskey
(1986) and generalize this concept to the world
of fuzzy logic. In essence, we are concerned with
the three main phases: (1) building a generic

3144

Fuzzy Logic Classifiers and Models in Quantitative Software Engineering

structure of a fuzzy multiplexers; (2) developing
models (networks) exploiting fuzzy multiplexers
as their building components (we will be referring
to them as networks of fuzzy multiplexers); and (3)
designing such networks with the aid of methods
of structural and parametric optimization.

As emphasized, the embedding principle
(where fuzzy logic subsumes two-values logic
and inherits from its fundamental constructs),
makes that this starting point of view becomes
especially justifiable and appealing considering
that multiplexers have been commonly used in the
design of digital systems and come with a well-
developed design methodology (Ciletti, 1999).

The organization of the material is structured
in a way that reflects the research agenda outlined
earlier. First, we introduce a basic processing mod-
ule of a fuzzy multiplexer (fMUX) and discuss
its characteristics (the Fuzzy Multiplexer as a
Generic Processing Unit section). This naturally
leads us to the networks formed by fuzzy multi-
plexers, A Realization of the Network of fMUXs
section, relates their structure to the expansion
theorem by Shannon, and emphasizes the nature
of the function decomposition completed in this
manner. The General Development Environ-
ment of the Network-Interfaces Issues section
is concerned with the general development of
fMUX networks and serves as a pre-requisite
to the comprehensive discussion on the design
of the networks. The Development of the fMUX
Networks section concentrates on the genetic
optimization of the networks using which we
address an issue of their structural optimization
(concerned with a selection of an optimal subset
of input variables) and parametric learning. The
discussion covers architectural considerations of
GAs as well as presents the underlying genetic
operators pertinent to the optimization realized
here. Experimental results dealing with synthetic
and software data are included in the Experimental
Studies section.

The terminology used here adheres to the
standards encountered in two-valued logic, digital

systems, and fuzzy logic. The logic operators are
modeled via t- and t-conorms. If not stated other-
wise, we use two standard realizations of t- and
t-conorms coming in the form of a product and
probabilistic sum. An overbar denotes a comple-
ment treated in a usual way encountered in logic
(that is x = 1-x).

FuzzY multIPleXer As A
GenerIc ProcessInG unIt

We are concerned with the development of logic-
based models of data in the unit hypercube. More
precisely, such models realize logic transforma-
tions that map the unit hypercubes (say [0,1]n) into
[0,1] and come with some well-defined semantics.
We require that such mapping is made modular
meaning that it is formed on a basis of a collection
of some generic processing units (nodes). The basic
processing node, referred to as a fuzzy multiplexer
(fMUX), realizes a mapping from [0,1]2 into [0,1]
that comes in the following form

xcxcy 10 ∗+∗= (1)

where the logic operations (* and +) are imple-
mented using some t- and t-conorms. For the sake
of completeness of the presentation, let us recall
that by a t-norm we mean a two argument func-
tion t: [0,1]2 –>[01,] such that it is monotonic, as-
sociative, distributive, and satisfies two boundary
conditions of the form 0tx =0 and 1tx =x for all
x in [0,1]. For any t-conorm all these conditions
hold true while the boundary condition reads as
0sx =x and 1sx =1. Given these t- and t-conorm
realizations, (1) is governed by the expression

tx)(c s)xt(cy 10= (2)

The structure of (1) can be schematically il-
lustrated as visualized in Figure 1. The variable
(x) standing in the earlier-mentioned expression
plays a role of a switching (selection or select)

 3145

Fuzzy Logic Classifiers and Models in Quantitative Software Engineering

variable that allows two fixed information inputs
(c0 or c1) to affect the output. The degree to which
the produced result depends on these fixed infor-
mation values is controlled by the select variable.
To emphasize the role played by all these signals,
we use a concise notation y = fMUX(x, c) where

c (=[c0 c1]) denotes a vector of the information
inputs. In the two boundary conditions the select
variable may assume, we produce a binary switch
(as being used in digital systems). It means that if
x =1 then y = c1. Likewise the value of x set up to
0 leads to the output being equal to c0 meaning
that the value of c0 is transferred to the output of
the device.

Figure 2 includes a series of plots of the char-
acteristics of the fuzzy multiplexer being treated
as a function of x; noticeable is a fact that different
configurations of the values of the information
inputs (c0 and c1) give rise to different non-linear
input-output relationships of the device. By choos-
ing a certain value of the select input, we logically
“blend” the two constant logic values present at
the information inputs. The detailed non-linear
form of the relationship depends on the use of the
t-norms and t-conorms. In the specific example
illustrated in Figure 2, the t-norm is realized as
a product operator that is atb = ab while the t-
conorm is treated as the probabilistic sum, asb =
a + b – ab, a,b ∈ [0,1].

Using fuzzy multiplexers, we can easily form
cascade structures (networks) as commonly

Figure 1. A schematic view of the fuzzy multiplexer
with one select input (x) and two fixed information
inputs (c0 and c1)

x

y

c0

c1

fMUX

Figure 2. Input-output characteristics of the fuzzy multiplexer for selected values of c0 and c1, y =
fMUX(x,c1,c0):

 a - c0=0.9 c1=0.8
 b- c0=0.2, c1=0.8
 c – c0=1.0, c1=0.0
 d- c0=0.6, c1=0.3

0 0.5 1
0

0.5

11

0

0.8)

0.8)

0.3)

a

b c

d

3146

Fuzzy Logic Classifiers and Models in Quantitative Software Engineering

encountered in the two-valued logic constructs
(digital systems). An example of a two-layer
structure, a network of fMUXs is displayed in
Figure 3. The input-output characteristics of the
network that are regarded as a function of the
select signals x1 and x2 are shown in Figure 4.
Depending upon the numeric values in the vector
of the information inputs (c), we encounter vari-
ous types of non-linearities. Figure 5 includes the
corresponding characteristics for the minimum
and maximum operations; it becomes apparent
that the piece-wise character of the relationships
becomes predominant. Regarding the notation,

Figure 3. A two-layer network of fuzzy multiplex-
ers

Figure 4. 3D plots of the input-output characteristics of the fMUX for selected combinations of the
parameters and t- and t-conorms: c = [0.7 0.8 0.9 0.5] (a); c = [0.1 0.8 0.9 0.5] (b); c = [0.7 0.8
1 0] (c); c=[1 1 1 1] (d)

 (a) (b)

(c) (d)

c

x1
x2

y

w w,

w w,

w w,

w w,

 3147

Fuzzy Logic Classifiers and Models in Quantitative Software Engineering

Figure 3, the switching variables as listed from
left to right visualize their location across the
network with the last variables being the one
realizing the final switching.

A reAlIzAtIon oF the networK
oF FmuXs

The functional module of the fuzzy multiplexer
introduced earlier is a generic building block that

can be efficiently used to construct larger struc-
tures. Its functionality is minimal (in the sense
we have here only a single switching variable, that
is x). If we are dealing with more variables (x1,
x2, …,xn), the resulting structure is formed as a
regular multi-level architecture composed of the
basic fMUXs as visualized in Figure 6. Noticeably
at each level of the network, we assign a single
selection variable. Moreover at each level of the
network, the number of multiplexers doubles;
the output layer comprises one multiplexer, the

Figure 5. 3D plots of the characteristics of the fMUX for selected combinations of the parameters; here
t- and t-conorms are realized as a minimum and maximum: c = [0.7 0.8 0.9 0.5] (a); c = [0.1 0.8 0.9
0.5] (b); c = [0.7 0.8 1 0] (c); c=[1 1 1 1] (d)

(a) (b)

(c) (d)

ww ww,

ww ww,

ww ww,

ww ww,

3148

Fuzzy Logic Classifiers and Models in Quantitative Software Engineering

layer next to it two multiplexers, the next one four
units, and so forth. With the substantial number of
select variables, we can envision some scalability
problems (and these have to be addressed at the
design phase).

The fMUX network comes with an interesting
motivation and exhibits a clear interpretation. As
functionality is concerned, it is instructive to go
back to the two-valued logic which clearly reveals
a rationale behind the use of such networks of mul-
tiplexers (Kohavi, 1970). Consider a two-variable
Boolean function f(x1, x2). According to the classic
Shannon expansion theorem, the function can be
written down as a sum of products, that is

)]1,1(fxf(0,1)x[x)]0,1(fxf(0,0)x[x
,1)f(xx,0)f(xx)x,f(xy

112112

121221

+++=
+==

 (3)

In essence c = [f(0,0) f(1,0) f(0,1) f(1,1)] be-
comes a vector of constant information inputs
here; these numeric values uniquely define the
given Boolean function.

This successive expansion of the Boolean
function maps directly on the two-level structure
of the multiplexers; the information inputs to the
multiplexer are the functions of one variable,
namely f(x1,0) and f(x1,1), which are realized by the
two multiplexers in the first layer of the network.
Here, f(0,0), f(1,0), and so forth, are the information
inputs to these multiplexers. The network of the
fuzzy multiplexers is just a generalization of this
fundamental result to fuzzy functions defined in
the unit interval.

When it comes to the interpretation, the net-
work exhibits several interesting properties. We
start with the input layer. The outputs of these
fMUXs are just logic expressions of a single

Figure 6. Network architecture built with the use of the basic functional modules of fuzzy multiplexers;
for illustrative purposes, shown are only three layers of the network

c

x1

x2

y

c0

c7

x3

 3149

Fuzzy Logic Classifiers and Models in Quantitative Software Engineering

input (select) variable (being more specific, the
variable and its complement). In the sense of
involving only one variable, they are general.
There are also a lot of them (especially if we are
dealing with the multi-player network). In this
sense, what becomes realized at the first layer is
just a list of partial realizations of the function,
and the outputs there can be treated as general-
ized variables. In the subsequent layers, these are
specialized (by involving another variable), and
their number becomes reduced.

the GenerAl develoPment
envIronment oF the
networK-InterFAces Issues

The fuzzy multiplexer completes a logic-based
processing of input variables and realizes a
certain logic-driven mapping between input and
output spaces. As they interact with a physical
world whose manifestation does not arise at the
level of logic (multi-valued) signals, it becomes
apparent that there is a need for some interface

of the model. Such interfaces are well known in
fuzzy modeling. They commonly arise under a
name of fuzzifiers (granular coders) and defuzzi-
fiers (granular decoders). The role of the coder
is to convert a numeric input coming from the
external environment into the internal format of
logic membership grades associated with each
input variable. This can be shown in the form
outlined in Figure 7.

The choice of the fuzzy sets coming as the
components of the interfaces is essential to the
performance of the fuzzy models. In particular,
this concerns: (1) the number of fuzzy sets and
(2) their membership functions. The number of
fuzzy sets implies a certain level of granularity
of the model while the form of the membership
function could help in further parametric opti-
mization of the model.

In this study, we consider one of the simplest
scenarios. While being quite straightforward, this
design alternative exhibits interesting properties,
supports computational simplicity and implies
a significant level of the interpretability of the
model.

Figure 7. A general-layered structure of fuzzy modeling; the granular decoder is used in case of several
networks of fuzzy multiplexers

Network of
fMUXs

granular encoder (fuzzifier)

3150

Fuzzy Logic Classifiers and Models in Quantitative Software Engineering

For an input variable that assumes values in the
range of [a, b], let us consider two fuzzy sets with
triangular membership functions defined as

A1(x) = (x-a)/(b-a) (4)

and

A2 (x) = 1- (x-a)/(b-a) (5)

Evidently, the family {A1, A2} forms a fuzzy
partition of the space as A1(x) + A2(x) =1. These
two fuzzy sets overlap at the level of 0.5. The
linear model of membership is quite common and
simple to interpret. It is also highly legitimate in
all those cases where we do not have any addi-
tional knowledge about the problem at hand. We
can look at these membership functions from a
different standpoint. The linear normalization of
the input variable from the interval of [a, b] to the
unit interval [0,1] is just expressed by (4) so in
essence A1 is a result of such normalization. A2
complements A1. A1 is monotonically (linearly)
increasing while A2 is monotonically (linearly)
decreasing.

the develoPment oF the FmuX
networKs

In this section, we discuss some general design
scenarios and envision their suitability in the
development of the fMUX networks.

selecting Among General design
scenarios

The development of the fMUX networks entails
two fundamental design scenarios:

1. If we consider all input variables (x1, x2,
…, xn) to be used in the development of
the system then the values of the entries

of the vector c=[c0 c1 c2 ck…] have to be
estimated

2. If the number of the input variables is high
(and this implies a high dimensionality of
c along with all drawbacks of learning we
envision under such circumstances), the
design of the network has to involve a selec-
tion of an optimal subset of the variables and
a simultaneous estimation of the pertinent
vector of constants (c).

In the first scenario, we can use a standard
gradient-based learning. It is straightforward;
for a given structure (that is the variables being
specified in advance along with their arrangement
within the network), a detailed form of a perfor-
mance index to be minimized (Q), specific models
of t- and t-conorms, the gradient of Q taken with
respect to c navigates the optimization process
realized throughout the search space,

Q(iter)1)(iter ccc ∇−=+ (6)

where c(iter) denotes the values of the input con-
stants at a certain iteration step (iter); β > 0 is a
learning factor implying an intensity of adjust-
ments of the values of c. The gradient of Q can
be easily determined. In spite of that, there could
be some potential shortcomings of this learning
scheme. The most profound one comes with a
high dimensionality of the network. If there are a
significant number of the variables in the problem,
the computed gradient assumes low values. As a
result, the learning becomes very inefficient. Note
also that the dimensionality of the input vector
is equal to 2n and this expression gives rise to a
prohibitively high dimensionality quite quickly
even for relatively small values of “n”. In light
of these, it is very likely that the gradient-based
methods will come with a limited applicability
and we have to proceed with caution when dealing
with the increased problem dimensionality.

 3151

Fuzzy Logic Classifiers and Models in Quantitative Software Engineering

The second design scenario involves an opti-
mization of the structure (selection of variables)
that helps handle the dimensionality problem in
an efficient manner. The parametric optimization
concerning the vector of the co-efficients in some
reduced format becomes then more efficient. We
may also envision frequent situations in which
not all variables become essential to the design
of the logic mapping (the same holds in pattern
recognition where a stage of feature selection
becomes a necessity). With the structural and
parametric optimization at hand, we have to
confine ourselves to some techniques of global
and structural optimization. An appealing way to
follow is to consider genetic algorithms (GAs).

Genetic development of the fmuX
networks

Having recognized the primary design objectives,
we now concentrate on the details of the underly-
ing genetic optimization. GAs (Goldberg, 1989;
Michalewicz, 1996) are well-documented in the
literature including a long list of their numerous
applications to neuro-fuzzy systems. Bearing
this in mind, we elaborate on the fundamental
architecture of the GA, its parameters, and discuss
some implementation details.

Figure 8. The structure of the fMUX network and its genetic representation (a) and details of the coding
of the subset of the input variables (b) through ranking and using the first n’ entries of the sub-string

Network of
fMUXs

Representation of
information inputs (2n’)

Select variables

Representation of
information inputs (2n’)

n=5 0.65 0.21 0.98 0.32 0.55 0.76

3 6 1 5 4 2 Ranking

n’=3; three variables
selected (that is 3, 6, 1) 3 6 1 5 4 2

(a)

(b)

3152

Fuzzy Logic Classifiers and Models in Quantitative Software Engineering

Genotype Representation

The proposed genotype is a direct reflection of
the structure of the fMUX network. We consider
a floating point coding as this results in compact
chromosomes. Let us assume that the number of
input variables to be used in the network is given
in advance and equal to n’ where n’ < n. The
chromosome consists of two sub-strings of real
numbers. The first block (sub-string) contains 2n’
values of the information inputs, vector. The sec-
ond block (with n inputs) deals with the subset of
the variables to be used in the design. The details
are schematically visualized in Figure 8.

As far as the structure of network is concerned,
it is instructive to discuss a way in which the
select variables are coded in the second block
of the chromosome. The second portion of the
chromosome corresponds to the subset of the
original inputs that are chosen as select variables
and requires some processing before being used
to identify the structure of the network. As the
entries of the chromosome are real-coded, the
likelihood of encountering two identical entries is
zero (to be on the safe side, we can always break a
tie randomly). With the pre-defined number of the
inputs (n’), we then use only the first n’ entries of
the chromosome, and this produces the sequence
of the input variables. The entries are ranked (in
the increasing order), and the first n’ entries of the
sub-string are used to choose among all variables.
This ordering is directly mapped onto the network
where the first variable is the one switching the
first layer of the network.

N.B. One could easily optimize the number
of the subset of the input variables (n’) instead of
supplying it externally yet this does not to seem
to be very attractive. It is perhaps more justifiable
to do a systematic search by sweeping n’ from 1
to n. In essence, this systematic search helps us
assess approximation and generalization abilities
of the networks and get a better sense as to the
plausible subset of the variables.

When it comes to the selection process, we use
an elitist ranking selection (Michalewicz, 1996).
This selection mechanism means that individuals
to be selected for the next generation are based on
their relative rank in the population, as determined
by the fitness function. The best individual from
each generation is always carried over to the next
generation (elitist mechanism) meaning that the
solution found so far during the genetic optimiza-
tion is guaranteed to never disappear.

The mutation operator is a standard construct
encountered in a number of genetic algorithms, cf.
. 0. Given an individual string a = [a1,a2,…,a2n], we
generate a new string a’ = [a1’,a2’, …,a2n’] where
ai’, i=1, 2,…,2n, is a random number confined
in the range of [0,1] and subject to the following
replacement (mutation) rule: ai is mutated that is
replaced by ai’ with some probability of mutation
(pm) otherwise the entry of the chromosome is left
intact, that is ai’=ai.

The crossover operation is realized as the BLX-
0.5 crossover operator (Baker, 1985; Eshelman &
Schaffer, 1993; Goldberg, 1991; Herrera, Lozano,
& Verdegay, 1998) which is carried out as follows.
Given are two individuals a = [a1, a2, …, a2n] and
b = [b1, b2, …, b2n]. The resulting offsprings are
formed in the form a’ = [a1’, a2’, …, a2n’] and b’ =
[b1’, b2’, … , b2n’], where ai’, bi’, i=1,2,…,2n, are
random numbers located in the range [max(0,
mini-0.5I), min(1, maxi+0.5I)]. Here, mini = min
(ai, bi), maxi = max (ai, bi), and I = maxi - mini.
This particular crossover operation provides a
good balance between using the information of
the parents and avoiding premature convergence.
The crossover operator ensures that all values of
the generated offspring are confined to the unit
interval [0, 1]. The operator is employed with prob-
ability of crossover, pc, otherwise the individuals
are left unchanged a’=a and b’=b.

Fitness Function

The fitness function quantifies how the network
approximates the data and is taken as

 3153

Fuzzy Logic Classifiers and Models in Quantitative Software Engineering

Q
Q1
+

−

with Q being a sum of squared errors between the
target values (experimental output data) and the
corresponding outputs of the network. The other
option is the standard root mean squared error
(RMSE). A small positive constant ε standing in
the denominator of the earlier expression assures
that the fitness function remains meaningful even
for Q = 0 (which in practice never occurs).

eXPerImentAl studIes

In the experimental part of the study, we start
with some illustrative material dealing with
Boolean expressions and then move on to the
software data.

realization of boolean Functions

In this experiment, we are concerned with Boolean
data; this helps us compare the result produced

Table 1. Structure of the multiplexer network and associated errors; by the classification error, we mean
the number of mismatches between the binary (that is subjected to some threshold) output of the network
and the data

Number of
variables 1 2 3 4 5

Order of
variables x3 x5, x3 x3, x5, x2 x4, x3, x2, x5

x4, x1,
x2,x5,x3

MSE 0.478 0.408 0.354 1.29*10-4 2.09*10-5

Classification
error 3 2 4 0 0

Figure 9. Values of the information inputs; observe that their distribution is highly bimodal with the
values of information inputs being close to 1 or 0 with a very few exceptions

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00

1 3 5 7 9 11 13 15

3154

Fuzzy Logic Classifiers and Models in Quantitative Software Engineering

by the fuzzy multiplexer with the solutions ob-
tained using standard techniques used to design
digital systems. The data set comprises of 12
input-output pairs of binary data with 5 inputs
and a single output,

(x(k)-y(k)): ([1 0 0 0 0] 0), ([1 0 0 0 1] 1), ([1 0 0
1 0] 1), ([1 0 0 1 1] 1), ([1 1 1 0 0] 1),
([1 1 1 0 1] 0), ([1 1 1 1 0] 1), ([1 1 1 1 1] 1), ([1 1
0 0 0] 0), ([1 1 0 0 1] 1),
([1 1 0 1 0] 0), ([1 1 0 1 1] 0)

The development of the network is completed
for a varying number of inputs starting from one
variable and ending up with all the variables. The
results are summarized in Table 1.

From this table (based on the values of the
classification error), it becomes obvious that
four variables are optimal for the problem. The
resulting inputs are shown in Figure 9. With the
threshold value of 0.5, we are left with eight sig-
nificant inputs. Noticeably, all those very close to
1 identify the min terms existing in the data. The
one extra here with the value equal to 0.61 (and
still deemed relevant) corresponds to the combina-
tion of the inputs equal to 0100 (that is 5234 xxxx

), and it is subsumed by the remaining sum of
the minterms. Alluding to the problem variables
being identified by the genetic algorithm, it is
interesting to note that x1 has been eliminated. It
is not surprising at all noting that it fixed at 1 and
thus becomes redundant in the problem. For this
optimal number of the inputs, Figure 10 shows
how GA performs in terms of the optimization;
evidently most learning occurs at the beginning
of the process, and this becomes evident for the
best individual as well as the average fitness in
the population.

The second example is shown here to visualize
the effectiveness of the genetic optimization. The
binary data describe a three-dimensional XOR
problem. With the population of 50 chromosomes,
50 generations, the mutation rate of 0.05, and cross-
over rate equal to 0.8, the ideal result is obtained
after a few initial generations. As expected, the
information inputs are either close to 1 or become
practically equal to zero (Figure 11).

experiments with software data

In the ensuing comprehensive suite of experi-
ments, we consider a well-documented MIS data

Figure 10. Fitness function (average and best
individual) in successive generations

Figure 11. Information inputs of the network of
fuzzy multiplexers

0.4

0.5

0.6

0.7

0.8

0.9

1

1 300 Generation no.

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8

 3155

Fuzzy Logic Classifiers and Models in Quantitative Software Engineering

set (Munson & Khoshgoftaar, 1996) which has
already been used in other experimentation with
models of quantitative software engineering. The
dataset includes software modules described by a
collection of typical software metrics and associ-
ated number of changes made to the corresponding
module. For the purpose of this experimentation,
we focused only on the selected software measures
leaving some others out (such as, e.g., number of
characters, number of code characters, number
of comments); refer to Table 2.

For further experimentation, we eliminated
one data point for which the number of changes
was overly high (98) in comparison to the rest of
the data and which could easily skew up the entire
picture. Note that the average number of changes
was 7.25. In the learning process, we use 60% of
randomly selected data. The rest (40%) is left for
testing purposes. The t- and t-conorm are imple-
mented as the product and probabilistic sum.

As discussed in The General Development
Environment of the Network-Interfaces Issues
section, the software measures were linearly
normalized to the unit interval. The evolution-
ary optimization was realized with the following
parameters of the GA whose values are quite

typical and quite similar to those found in the
literature, namely

size of population –300,
number of generations – 500,
mutation rate – 0.05,
crossover rate – 0.8

As a matter of fact, it is worth noting that
those parameters could be fine-tuned, however
the process might be quite tedious and geared
only towards a specific dataset.

In the series of experiments, we modified the
number of allowed input variables starting from
a single software metrics and moving on to the
entire set. The results are reported in terms of the
performance index (RMSE) for the training and
testing set as well as the corresponding subsets
of the variables (see Table 3).

We observe that the performance index on the
training set achieves the minimum for two and
three variables. With the increase of the dimen-
sionality, there is some increase in the values of
the performance index. Given this, we may regard
the two software metrics, that is, the number of
lines of code, and the estimated program length

Table 2. A collection of software metrics (measures) used in the experiments

Software metrics notes
x1 Number of lines of code, including comments

x2 Program length
N = N1 + N2; N1- the total
number of operators, N2-total
number of operands

x3 Estimated program length

n1log 2n1 + n2log 2n2 n1-the
number of unique operators,
n2 – the number of unique
operators

x4 Jensen’s estimator of program length (log 2n1)! + (log 2n2)!
x5 McCabe cyclomatic complexity number number of decision nodes +1
x6 Belady’s bandwidth metric average level of nesting

3156

Fuzzy Logic Classifiers and Models in Quantitative Software Engineering

Table 3. Results of genetic optimization of the logic model of the network of fuzzy multiplexers (the switching
variables are listed starting from the first layer of the fuzzy multiplexers in the overall architecture)

Number of input variables 1 2 3 4 5 6

Software metrics and their arrangement x1

x1
x3

x1
x5
x3

x1
x4
x3
x5

x3
x1
x4
x6
x5

x4
x1
x3
x5
x6
x2

Performance index (training data) 5.42 5.37 5.37 5.41 5.53 5.76

Figure 12. The detailed architecture of the network with the values of the inputs to the fuzzy multiplexers;
shown are also the input-output characteristics of the networks for the two software metrics

0.00

0.92

Number of
lines of

code

 0.00

0.62

0.37

1.00

Number of
lines of

code

Estimated
program length

ff,

(a)

(b)

 3157

Fuzzy Logic Classifiers and Models in Quantitative Software Engineering

to form a suitable subset of software metrics. By
adding the third metrics, that is, McCabe cyc-
lomatic complexity, we are not witnessing any
improvement (the performance index stays the
same). As a matter of act, the performance index
on the testing set reaches 8.09 for two metrics
and 5.37 for the suite of the three metrics. The
topologies of the networks with a single input
and two inputs along with their characteristics
are visualized in Figure 12.

The findings are intuitively appealing as far
as the specific software metrics are concerned
and their occurrence in the overall expression.
In the case of the single input, the number of
lines of code is a fairly compelling indicator of
possible changes. The logic expression identifies
a direct relationship between the increase in the
values of this metrics and the resulting increase
in the number of changes made to the software
module. This observation is drawn from the
logic expression; see Figure 12, y = 0.92 t x1 =
0.92 x1 (as the t-norm has been implemented as
the product operator). This relationship is linear
as illustrated in Figure 12. Given the underlying
logic of the fuzzy multiplexer, one could infer
that the increase of the number of lines of code
leads to the increase of the number of changes
in the code. With the two inputs, we observe
that the x1 is the first switching variable and the
results produced at the first layer are combined
by the fuzzy multiplexer guided by x3 (estimated
program length). The logic expression govern-
ing the relationships is intuitively appealing:
roughly speaking, the increase in the number of
changes occurs when both the number of lines
and the estimated program length are increasing
or at least one of them with the more significant
impact caused by the high number of lines. This
slightly asymmetric behavior is also reflected in
Figure 12.

conclusIons

We have introduced a logic-driven architecture of
fuzzy models based on a concept of fuzzy multi-
plexers (fMUXs). fMUXs are direct generaliza-
tions of fundamental building blocks encountered
in two-valued (digital) logic and being used in a
design process therein. The design of the fMUX
networks has been carried in the framework of
genetic optimization. The GA is effectively used
at the level of structural and parametric optimi-
zation. It is worth stressing that the structural
optimization becomes indispensable in case of
multi-variable problems. The selected (optimized)
subset of input variables leads to an efficient di-
mensionality reduction of the problem and helps
concentrate on the most significant variables.
With this regard, the resulting transparency of
the model is also worth emphasizing. Given the
topology of the network itself and the processing
therein, its structure becomes highly interpre-
table. Any fMUXs construct is translated into a
coherent logical description of the experimental
data being used in its development. Taking full
advantage of this aspect, we were able to reveal and
quantify immediate links between some software
metrics and the quality of the software product
(in our case, it related to the number of changes
that were made to the software modules). We
emphasize that the network of fMUXs translates
into a logic description of experimental software
data we used in their development. Given the
form of the input interface that linked the data
with the logic processing realized through two
linear membership functions, we came up with
an interesting and highly readable semantics of
the relationships conveyed by the logic model.
In essence, the logic model endowed with this
type of interface expresses “gradual” dependen-
cies between the inputs (software metrics) and
some ensuing effects (the number of changes)
and quantifies the strength of these relationships

3158

Fuzzy Logic Classifiers and Models in Quantitative Software Engineering

(which is done with the use of the numeric values
of the data inputs of the fMUXs positioned at the
input layer of the network).

reFerences

Baker, J. E. (1985). Adaptive selection methods
for genetic algorithms. In J. J. Grefenstette (Ed.),
Proceedings of the First International Conference
on Genetic Algorithms (pp. 101-111). Mahwah,
NJ: L. Erlbaum Associates.

Canfora, G., García, F., Piattini, M., Ruiz, F.,
& Visaggio, C. A. (2005). A family of experi-
ments to validate metrics for software process
models. Journal of Systems and Software, 77(2),
113-129.

Cant, S. N., Jeffery, D. R., & Henderson-Sell-
ers, B. (1995). A conceptual model of cognitive
complexity of elements of the programming
process. Information and Software Technology,
37(7), 351-362.

Chhabra, J. K. , Aggarwal, K. K., & Singh, Y.
(2004). Measurement of object-oriented software
spatial complexity. Information and Software
Technology, 46(10), 689-699.

Ciletti, M. D. (1999). Modeling, synthesis and
rapid prototyping with the Verilog HDL. Upper
Saddle River, NJ: Prentice Hall.

Ebert, C. (1994). Rule-based fuzzy classification
for software quality control. Fuzzy Sets and
Systems, 63(3), 349-358.

Ebert, C. (1996). Fuzzy classification for software
criticality analysis. Expert Systems with Applica-
tions, 11(3), 323-342.

Eshelman, L. J., & Schaffer, J. D. (1993). Real-
coded genetic algorithms and interval schemata.
In D. Whitley (Ed.), Foundations of genetic algo-

rithms 2 (pp. 187-202). San Mateo, CA: Morgan
Kaufmann Publishers.

Goldberg, D. E. (1989). Genetic algorithms in
search, optimization, and machine learning.
Boston, MA: Addison-Wesley.

Goldberg, D. E. (1991). Real-coded genetic algo-
rithms, virtual alphabets, and blocking. Complex
Systems, 5, 139-167.

Herrera, F., Lozano, M., & Verdegay J. L. (1998).
Tackling real-coded genetic algorithms: Opera-
tors and tools for behavioral analysis. Artificial
Intelligence Review, 12, 265-319.

Kohavi, Z. (1970). Switching and finite automata
theory. New York: McGraw-Hill.

Lanubile, F., & Visaggio, G. (1997). Evaluating
predictive quality models derived from software
measures: Lessons learned. Journal of Systems
and Software, 38, 225-234.

Lee, H. (1993). A structured methodology for
software development effort prediction using the
analytic hierarchy process. Journal of Systems
and Software, 21(2), 179-186.

Mantere, T., & Alander, J. T. (2005). Evolution-
ary software engineering: A review. Applied Soft
Computing, 5(3), 315-331.

McCluskey, E. J. (1986). Logic design principles.
Englewood Cliffs, NJ: Prentice Hall.

Michalewicz, Z. (1996). Genetic algorithms +
data structures = evolution programs (3rd ed.).
Heidelberg: Springer-Verlag.

Munson, J., & Khoshgoftaar, T. M. (1996). Soft-
ware metrics for reliability assessment. In M.
R. Lyu (Ed.), Handbook of software reliability
engineering (pp. 493-530). New York: McGraw
Hill.

 3159

Fuzzy Logic Classifiers and Models in Quantitative Software Engineering

Offutt, A. J., Harrold, M. J., & Kolte, P. (1993). A
software metric system for module coupling. Jour-
nal of Systems and Software, 20(3), 295-308.

Pedrycz, W., Succi, G., Musílek, P., & Bai, X.
(2001). Using self-organizing maps to analyze
object-oriented software measures. Journal of
Systems and Software, 59(1), 65-82.

Pedrycz, W., Han, L. , Peters, J. F., Ramanna, S.,
& Zhai, R. (2001). Calibration of software qual-
ity: Fuzzy neural and rough neural computing
approaches. Neurocomputing, 36(1-4), 149-170.

Pedrycz, W., & Succi, G. (2005). Genetic granular
classifiers in modeling software quality. Journal
of Systems and Software, 76(3), 277-285.

Poels, G., & Dedene, G. (2000). Distance-based
software measurement: Necessary and sufficient
properties for software measures. Information and
Software Technology, 42(1), 35-46.

Reformat, M., Pedrycz, W., & Pizzi, N. J. (2003).
Software quality analysis with the use of compu-
tational intelligence. Information and Software
Technology, 45(7), 405-417.

Thwin, M. M. T., & Quah, T.-S. (2005). Appli-
cation of neural networks for software quality
prediction using object-oriented metrics. Journal
of Systems and Software, 76(2), 147-156.

This work was previously published in Advances in Machine Learning Applications in Software Engineering, edited by D.
Zhang & J. Tsai, pp. 148-167, copyright 2007 by IGI Publishing (an imprint of IGI Global).

3160

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 7.30
A Formal Verification and
Validation Approach for
Real-Time Databases

Pedro Fernandes Ribeiro Neto
Universidade do Estado do Rio Grande do Norte, Brazil

Maria Lígia Barbosa Perkusich
Universidade Católica de Pernambuco, Brazil

Hyggo Oliveira de Almeida
Federal University of Campina Grande, Brazil

Angelo Perkusich
Federal University of Campina Grande, Brazil

AbstrAct

Real-time database-management systems provide
efficient support for applications with data and
transactions that have temporal constraints, such
as industrial automation, aviation, and sensor
networks, among others. Many issues in real-time
databases have brought interest to research in this
area, such as: concurrence control mechanisms,
scheduling policy, and quality of services man-
agement. However, considering the complexity

of these applications, it is of fundamental impor-
tance to conceive formal verification and valida-
tion techniques for real-time database systems.
This chapter presents a formal verification and
validation method for real-time databases. Such
a method can be applied to database systems de-
veloped for computer integrated manufacturing,
stock exchange, network-management, and com-
mand-and-control applications and multimedia
systems. In this chapter, we describe a case study
that considers sensor networks.

 3161

A Formal Verification and Validation Approach for Real-Time Databases

IntroductIon

Nowadays, the heterogeneity of platforms, dis-
tributed execution, real-time constraints, and
other features are increasingly making software
development a more complex activity. Besides,
the amount of data to be managed is increasing
as well. Taken together, complexity and data
management are causing both risk and cost of
software projects to get higher.

Database management systems are used to
manage and store large amounts of data efficiently.
However, when both data and transactions have
timing restrictions, real-time databases (RTDB)
are required to deal with real-time constraints
(Ribeiro-Neto, Perkusich, & Perkusich, 2004).
For an RTDB, the goal is to complete transactions
on time, while maintaining logical and temporal
consistency of the data. For real-time systems,
correct system functionality depends on logical
as well as on temporal correctness. Static analy-
sis alone is not sufficient to verify the temporal
behavior of real-time systems. To satisfy logical
and temporal consistency, concurrency control
techniques and time-cognizant transactions pro-
cessing can be used, respectively. The last occurs
by tailoring transaction management techniques
to explicitly deal with time.

The real-time ability defines nonfunctional
requirements of the system that must be con-
sidered during the software development. The
quality assurance of real-time systems is neces-
sary to assure that the real-time ability has been
correctly specified. Imprecise computation is
used as a technique for real-time systems where
precise outputs are traded off for timely responses
to system events. For that, formal models can be
created to verify the requirement specifications,
including the real-time specifications (Ribeiro-
Neto, Perkusich, & Perkusich, 2003).

Validation as well as verification can be car-
ried out by simulation model. With the simulation
model, a random sample will be selected from
the input domain of the test object, which is then

simulated with these chosen input values. After
that, the results obtained by this execution are
compared with the expected values. Thus, a simu-
lation model is as a dynamic technique, that is a
technique that contains the execution of the test
object. One major objective of simulation models
is error detection (Herrmann, 2001).

The main motivation for this research is the
fact that methods to describe conceptual models
of conventional database systems cannot be
directly applied to describe models of real-time
database systems. It occurs because these models
do not provide mechanisms to represent temporal
restrictions that are inherent to real-time systems.
Also, most of the available models focus on the
representation of static properties of the data. On
the other hand, complex systems, such as real-time
databases, also require the modeling of dynamic
properties for data and information. Therefore,
the development of methods to design real-time
databases with support for both static and dynamic
modeling is an important issue.

In the literature, there are few works for
real-time database modeling that allow a formal
analysis, considering verification and validation
characteristics. The existing tools for supporting
modeling process especially do not present simu-
lation capacity. The unified modeling language
(UML) approach presents a number of favorable
characteristics for modeling complex real-time
systems, as described in Selic and Rumbaugh
(1998) and Douglass (2004). UML also is used
for modeling object-oriented database systems.
However, the existing tools for UML modeling
do not present simulation capacity.

This chapter describes a formal approach to
verify and validate real-time database systems.
The approach consists of the application of the five
steps: (1) building an object model; (2) building
a process model; (3) generating an occurrence
graph; (4) generating a message-sequence chart;
and (5) generating a timing diagram. The two
first steps include static and dynamic analysis,
respectively. The following steps allow the user

3162

A Formal Verification and Validation Approach for Real-Time Databases

to validate the model. Hierarchical coloured Petri
nets (HCPNs) are used as the formal language
to describe RTDB models (Jensen, 1998). The
proposed approach can be applied to different
domains, such as computer-integrated manufac-
turing, stock exchanges, network management,
command-and-control applications, multimedia
systems, sensor networks, and navigation sys-
tems. In this chapter, we describe a case study
considering sensor networks. Sensor networks
are used to control and to monitor the physical
environment and sensor nodes may have differ-
ent physical sensors and can be used for different
application scenarios.

The remainder of this chapter is presented as
follows. First, a background is presented, to ease
the comprehension of approach. Concepts about
RTDB, quality of services and HCPNs are defined.
Second, the formal verification and validation
approach for real-time databases is described
as well as a sensor network case study. Third,
future trends are presented. Finally, conclusions
are presented.

bAcKGround

real-time databases (rtdb)

The real-time database-management systems
must provide the characteristics of conventional
databases besides assuring that the real-time con-
straints are imposed on both the data and transac-
tions. These constraints arise in applications where
the transactions must meet deadlines.

The amount of applications that benefit from
the utilization of RTDB is increasing as well. This
increase is a consequence of the proliferation of
embedded systems that includes both systems that
are similar to those present in personal comput-
ers and smaller systems with a minimal memory
and calculator capacity, such as those present in
mobile devices.

An RTDB is required when: The volume of
data is large; responses depend on multiple values;
responses to aperiodic events are required; and
there are constrained timing requirements. The
correctness in real-time databases implies: sat-

Figure 1. Real-time database systems

A Formal Verification and Validation Approach for Real-Time Databases 99

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

requirements. The correctness in real-time databases implies: satisfying all usual consis-
tency constraints; executing transactions within timing constraints; and satisfying
temporal consistency of the data. The real-time data and transactions are also defined.
The data items reflect the state of the environment. The transactions are classified with
respect to their deadlines, such as hard, soft, or firm; arrival-pattern — periodic,
aperiodic, sporadic; and data-access-pattern — read-only, write-only and update. In
Figure 1, a schema illustrating the properties of the RTDB is shown.

Data Properties

The data correctness in RTDB is assured by logical and temporal consistency. The real-
time data can be classified into static and dynamic. The correctness of static data is
guaranteed by the logical consistency, since is has not become outdated. The dynamic
data may change continuously to reflect the real-world state, such as object positions,
physic measure, stock market, and so on. Each dynamic datum has a timestamp of the
latest update and the data can be divided into base data and derived data. A derived
datum can be derived from various base data (Kang, 2001).
The external consistency of dynamic data is defined using validity intervals to assure
the consistency between the state represented by the database content and the actual
state of environment. The validity intervals are of two types as follows (Kang, 2001):

• Absolute validity interval (avi) is defined between the environment state and the
value reflected in the database. The data x is considered temporally inconsistent
if (now - timestamp(x) > avi(x)), where now is the actual time of system, timestamp
is the time of the latest update of data.

Figure 1. Real-time database systems

� Data management
� Transaction support
� Concurrency control
� Query processing

Traditional database systems

� Scheduling algorithms
� Imprecise computation
� Priority assigment
� Resource reservation

Real-time systems

Real-time database systems

 3163

A Formal Verification and Validation Approach for Real-Time Databases

isfying all usual consistency constraints; execut-
ing transactions within timing constraints; and
satisfying temporal consistency of the data. The
real-time data and transactions are also defined.
The data items reflect the state of the environ-
ment. The transactions are classified with respect
to their deadlines, such as hard, soft, or firm;
arrival-pattern — periodic, aperiodic, sporadic;
and data-access-pattern — read-only, write-only
and update. In Figure 1, a schema illustrating the
properties of the RTDB is shown.

Data Properties

The data correctness in RTDB is assured by
logical and temporal consistency. The real-time
data can be classified into static and dynamic.
The correctness of static data is guaranteed by
the logical consistency, since is has not become
outdated. The dynamic data may change continu-
ously to reflect the real-world state, such as object
positions, physic measure, stock market, and so
on. Each dynamic datum has a timestamp of the
latest update and the data can be divided into base
data and derived data. A derived datum can be
derived from various base data (Kang, 2001).

The external consistency of dynamic data
is defined using validity intervals to assure the
consistency between the state represented by the
database content and the actual state of environ-
ment. The validity intervals are of two types as
follows (Kang, 2001):

• Absolute validity interval (avi) is defined
between the environment state and the
value reflected in the database. The data x is
considered temporally inconsistent if (now
- timestamp(x) > avi(x)), where now is the
actual time of system, timestamp is the time
of the latest update of data.

• Relative validity interval (rvi) is defined
among the data used to derive other data.
Consider a data item y is derived from a data

set R={x1,x2,...,xk}. y is temporally consistent
if the if the data in R that the compose are
temporally valid and the |timestamp(xi R)
- timestamp(xj 0 R) | ≤ rvi(y). This measure
arises to produce derived data from data
with the approximate time.

The dynamic data are represented by
x:(value,avi,timestamp) and will be temporally
consistent. If both absolute and relative valid-
ity interval are satisfied. Consider the example
where a data item t, with avi(t)=5, reflect the
current temperature and the data item p represent
the pressure with avi(p)=10. The data item y is
derived from data set R={t,p} and have relative
validity interval rvi(y)=2. If the actual time is
50, then (a) t:(25,5,45) and p:(40,10,47) are tem-
porally consistent because as absolute validity
interval as relative validity interval is valid. But,
(b) t:(25,5,45) and p:(40,10,42) are not temporally
consistent, because only the absolute validity
interval is assured.

Transaction Properties

The real-time transactions are characterized along
three dimensions based on the nature of transac-
tions in real-time database systems: the nature of
real-time constraints, the arrival pattern, and the
data-access type.

• Real-time constraints: The real-time
constraints of transactions are related to
the effect of missing its deadline and can
be categorized in hard, firm and soft. Hard
deadlines are those that may result in a ca-
tastrophe if the deadline is missed. These
are typically critical systems, such as a
command delayed to stop a train causing a
collision.

 To complete a transaction with a soft dead-
line after its time constraint is undesirable.
However, soft deadlines missed can commit

3164

A Formal Verification and Validation Approach for Real-Time Databases

the system performance. The transactions
with firm deadline will be aborted if its
temporal constraints are lost.

• Arrival pattern of transactions: The ar-
rival pattern of transactions refers to time
interval of execution. Generally, the transac-
tions are periodically executed in real-time
databases, since they are used to record the
device reading associated to the environ-
ment or to manipulate system events. The
arrival pattern can be aperiodic, where there
is not a regular time interval between the
executions of transactions. The transactions
also can execute in random time. However,
there is a minimal time interval between
the executions of transactions.

• Data access type: In relation to data ac-
cess, the transactions are categorized as:
write transactions (or sensors), update
transactions, and read transactions. The
write transactions obtain the state of the
environment and write into the database.
The update transactions derive new data
and store them in the database. Finally, the
read transactions read data from database
and send them.

In the database, it is necessary to guarantee

the same views, of the same data item, for differ-
ent transactions. This property is called internal
consistency and is assured by the ACID properties.
ACID is an acronym for atomicity, consistency,
isolation, and durability. These properties are
defined for a real-time database as follows:

• Atomicity: Is applied for subtransactions,
where a subtransaction must be whole ex-
ecuted or neither step must be considered
of them.

• Consistency: The transaction execution
must always change the consistent state of
a database in another consistent state. An
imprecision limited in the internal consis-

tency can be permitted in order to meet the
temporal constraints of transactions.

• Isolation: The actions of a transaction can
be visible by other transactions before it
commits.

• Durability: The actions of a transaction
need not be persistent, since both data and
transactions have temporal validity.

Concurrency Control

The negotiation between logical and temporal
consistency, a concurrency-control technique
should be capable of using knowledge about the
application to determine which transactions can be
executed concurrently. Such a technique, named
semantic concurrency control, allows increasing
the concurrent execution of transactions (method
invocation). Based on the knowledge of the appli-
cation the designer must define which transactions
may be concurrently executed and when. Defin-
ing compatibilities between the executions of the
transactions does this. Therefore, this technique
allows relaxing the ACID properties.

Transactions in real-time do not need to be
serialized, especially updated transactions that
record information from the environment. How-
ever, the consequence of relaxing serialization is
that some imprecision can be accumulated in the
database, and in the vision of the database.

An object-oriented semantic concurrency
control technique, described in DiPippo (1995),
named semantic-lock technique, allows logical
and temporal consistency of the data and transac-
tions and allows the negotiation among them. The
technique also allows the control of the impreci-
sion resulting from the negotiation. The concur-
rency control is distributed among the objects,
and a compatibility function, says CF for short,
is defined for each pair of methods for database
objects. CF is defined as follows:

CF(mati ,minv) = Boolean Expression → IA

 3165

A Formal Verification and Validation Approach for Real-Time Databases

where mati represents the method that is being
executed and, minv represents the method that
was invoked. The Boolean Expression can be
defined based on predicates involving values of
the arguments of the methods, the database at-
tributes, and the system in general. IA is defined
by an expression that evaluates the accumulated
imprecision for the attributes of the database object
and for the arguments of the methods.

The consequence of using such a concurrency
control is that more flexible scheduling for trans-
actions can be determined than those allowed by
serialization. Besides, that technique can specify
and limit some imprecision that may appear in the
system due to relax of the serialization.

Quality of Service (QoS) Management

In a real-time database, the QoS management
can help to verify both the correctness and per-
formance of a system, through functions and
performance metrics. This is necessary, since the
real-time transactions have temporal constraints.
Therefore, we consider transactions correct only
if they finish within their deadlines using valid
data.

The functions defined are the functions of
specification, mapping, negotiation, and moni-
toring. The function specification defines which
QoS parameters are available and determines their
syntax and semantics. The mapping function has
to be provided to translate the QoS requirements
expressed.

The role of a QoS negotiation mechanism is to
determine an agreement for the required values of
the QoS parameters between the system and the
users or applications. A QoS negotiation protocol
is executed, every time a new user or application
joins an active session, to verify whether the sys-
tem has enough resources to accept the new user
or application request without compromising the
current performance. This function usually em-
ploys several QoS mechanisms to fulfill its task,
such as: admission control is used to determine

whether a new user can be served, while resource
reservation has to be called as soon as the user is
admitted, in order to guarantee the requested ser-
vice quality. The negotiation function has the role
of the compability function, described above.

We define two performance metrics to guar-
antee the RTDB performance. These metrics are
shown as follows:

1. Number of transactions that miss the
deadline in relation to the amount of
transactions that finish with success (Pt):
This metric set up the rate of missed deadline
of transactions that can be allowed during
a time interval. The metric is defined as:

 where Pt is the amount of transactions that
miss the deadline (MissedDeadline) in rela-
tion to the amount of transactions that finish
with success (FinishTransactions).

2. Upper imprecision of data (Impr): Is the
threshold of imprecision admitted in the data
item for it to be considered logically valid.
Impr is defined as:

 where CurrentValue is the value of data item
stored in database and Imp is the index of
amount of imprecision admitted.

hcPn-based modeling

Hierarchical Coloured Petri Nets

Hierarchical coloured Petri nets (HCPNs) are an
extension of coloured Petri nets (CPNs) (Jensen,
1998) and are a suitable modeling language for
verifying systems, as they can express concur-
rency, parallelism, nondeterminism, and different
levels of abstraction.

3166

A Formal Verification and Validation Approach for Real-Time Databases

In Figure 2, a Petri net is illustrated, where
hierarchical levels are allowed. These hierarchi-
cal levels are possible due to the inclusion of two
mechanisms: substitution transitions and fusion
places. A substitution transition is a transition
that will be replaced by a CPN page. The page
to which the substitution transition belongs is
called a superpage and the page represented by the
transition is called the subpage. The association
between subpages and superpages is performed
by means of sockets and ports.

Sockets are all the input and output places
of the transition in the superpage. Ports are the
places in the subpage associated to the sockets.
The ports can be input, output, or input-output.
For simulation and state, space-generation sockets
and ports are glued together and the resulting
model is a flat CPN model. The fusion places are
physically different but logically only one forming
a fusion set. Therefore, all the places belonging
to a fusion set have always the same marking.
A marking of a place is the set of tokens in that
place in a given moment. The marking of a net

is the set of markings of all places in the net at a
given moment (Jensen, 1998).

Indeed, these two additional mechanisms,
substitution transitions and fusion places, are
only graphical, helping in the organization and
visualization of a CPN model. They favor the
modeling of larger and more complex systems
by giving the designer the ability to model by
abstraction, specialization, or both.

Design/CPN Tools

Design/CPN (Jensen et al.,1999) is a tool package
supporting the use of HCPN. The Design/CPN
tool has four integrated parts:

1. The CPN editor supports construction,
modification, and syntax check of CPN
models.

2. The CPN simulator supports interactive
and automatic simulation of CPN models.

3. The occurrence graph tool supports con-
struction and analysis of occurrence graphs

Figure 2. Coloured Petri net

A Formal Verification and Validation Approach for Real-Time Databases 103

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

2. Upper imprecision of data (Impr): Is the threshold of imprecision admitted in the
data item for it to be considered logically valid. Impr is defined as:

*
100

 =
ImpImpr CurrentValue

where CurrentValue is the value of data item stored in database and Imp is the index
of amount of imprecision admitted.

HCPN-Based Modeling

Hierarchical Coloured Petri Nets

Hierarchical coloured Petri nets (HCPNs) are an extension of coloured Petri nets (CPNs)
(Jensen, 1998) and are a suitable modeling language for verifying systems, as they can
express concurrency, parallelism, nondeterminism, and different levels of abstraction.
In Figure 2, a Petri net is illustrated, where hierarchical levels are allowed. These
hierarchical levels are possible due to the inclusion of two mechanisms: substitution
transitions and fusion places. A substitution transition is a transition that will be
replaced by a CPN page. The page to which the substitution transition belongs is called
a superpage and the page represented by the transition is called the subpage. The
association between subpages and superpages is performed by means of sockets and
ports.

Figure 2. Coloured Petri net

Sub-page

Super-page

Input Port

Output Port

Socket

Socket

Substitution Transition

Fusion
Place

Fusion
Place

 3167

A Formal Verification and Validation Approach for Real-Time Databases

for CPN models (also known as state spaces
or reachability graphs/trees).

4. T he per fomance too l suppor t s
simulation=based performance analysis of
CPN models.

The design/CPN package is one of the most
used Petri net tools. Design/CPN supports CPN
models with complex data types (colour sets)
and complex data manipulations (arc expressions
and guards), both specified in the functional
programming language Standard ML(Jensen et
al., 1999).

reAl-tIme dAtAbAse
verIFIcAtIon And vAlIdAtIon
method

The formal verification and validation method
for real-time database systems consists of the
application of the following steps, as illustrated
in Figure 3, which are detailed in this section:

1. Build an object model: It is used to specify
the requirements and identify the main
components of the system. It is also used
to model static properties of objects, such
as attributes, operations, and logical and
timing constraints. In any way, the object
model defines the discourse universe to the
process model.

2. Build a process model: It is used to model
both functional and dynamic properties of
objects. The functional properties define the
object operations, while the dynamic prop-
erty represents the temporal interactions of
objects and its answers to the events. The
process model is composed of the operations
identified in the object model.

3. Generate an occurrence graph: It is a rep-
resentation of the state space of the HCPN
model.

4. Generate a message sequence chart: They
are generated for each scenario, considering
a possible execution sequence.

Figure 3. Real-time database verification and validation method

A Formal Verification and Validation Approach for Real-Time Databases 105

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

1. Build an object model: It is used to specify the requirements and identify the main
components of the system. It is also used to model static properties of objects, such
as attributes, operations, and logical and timing constraints. In any way, the object
model defines the discourse universe to the process model.

2. Build a process model: It is used to model both functional and dynamic properties
of objects. The functional properties define the object operations, while the
dynamic property represents the temporal interactions of objects and its answers
to the events. The process model is composed of the operations identified in the
object model.

3. Generate an occurrence graph: It is a representation of the state space of the HCPN
model.

4. Generate a message sequence chart: They are generated for each scenario,
considering a possible execution sequence.

5. Generate a timing diagram: It is a diagram to show the timing constraints in time
sample.

Build an Object Model

In the object model each object is a unique entity. Objects with the same data structure
(attributes) and behavior (operations), in the context of the particular application

Figure 3. Real-time database verification and validation method

1 2 3

45

Process
Model

Object
Model

Simulation

Model

Verification

Validation

Requirement

Occurrence
Graph

Message
Sequence Chart

Timing
Diagram

3

2

1

0
3 6 9 12 15 18 21 24

3168

A Formal Verification and Validation Approach for Real-Time Databases

5. Generate a timing diagram: It is a dia-
gram to show the timing constraints in time
sample.

build an object model

In the object model each object is a unique entity.
Objects with the same data structure (attributes)
and behavior (operations), in the context of the
particular application environment are grouped
into an object class. Classes can be grouped in
a hierarchical structure. Classes may have attri-
butes; the attributes are structural properties of
classes that can have both logical and temporal
constraints; the relationships are the links be-
tween the classes; the operations are functions
or procedures applicable to the class attributes,
and the method is the implementation of an op-
eration (Rumbaugh, Blaha, Premerlani, Eddy, &
Lorensen, 1991).

The object model consists of a set of: class
diagram, object diagram, and data dictionary.
The class diagrams have shown the general de-
scription of the system, while the object diagrams
shown object instances. The data dictionary de-
fines whole entities modeled (class, associations,
attributes, operations).

The object model begins with the problem dec-
laration analysis and has the following steps:

1. Identification of the objects: The external
actors and objects that interact with the sys-
tem are identified as the problem context.
Elements of the object model that emerge
from the analysis of the real problem are
directly mapped into logical objects. Each
instance of an object is assumed to be unique.
The objects in an object class have a unique
identity that separates and identifies them
from all other object instances.

2. Identification of relationships among
objects: A conceptual relationship among
instances of classes. Associations have car-

dinality including one-to-one, one-to-many,
and many-to-many. Most object-oriented
texts do not address the nature of an asso-
ciation (i.e., mandatory or optional), except
in the definition of the object behavior.

3. Addition of attributes to objects: a data
value that can be held by the objects in a
class. Attributes may be assigned to differ-
ent data types (e.g., integer).

4. Use of generalizations to observe simi-
larities and differences: the essential
characteristics of an object or class, ignoring
irrelevant features, providing crisply defined
conceptual boundaries. This maintains a
focus upon identifying common character-
istics among what may initially appear to
be different objects. Abstraction enhances
reusability and inheritance.

5. Identification of operations: the direct
manipulation of an object, categorized as:
Constructor: create an object and/or initial-
ize. Destructor: free the state of an object
and/or destroy the object. Modifier: alter the
state of the object. Selector: access and read
the state of an object. Iterator: access all
parts of an object in a well-defined order.

6. Identification of concurrent operations:
In this step, the designer analyzes the system
to discover which operations need to be
executed concurrently and in that condi-
tion this occurs. In follow, it is defined the
function that details the situations which the
operations can be executed concurrently.

7. Identification of both logical and temporal
constraints: The designer must declare both
logical and temporal constraints to objects.
These constraints define the correct states of
each object. Thus, the constraints are defined
as predicates that include the attributes value,
time, and so on. For instance, the absolute
validity interval defined to real-time data,
in the Background section, expresses a
temporal constraint to data objects.

 3169

A Formal Verification and Validation Approach for Real-Time Databases

build a Process model

The process model captures both functional and
dynamic properties of objects. This model is
used in the analysis, design, and implementation
phases of the software-development life cycle.
These phases can be tackled concurrently, using
hierarchical coloured Petri nets. HCPNs are used
to analyze the system behavior. In this model, the
objects are described through HCPN modules (or
pages) that are defined from object models. Then,
for each object that contains operations identified
in the model, a HCPN module is created, where
the correspondent operations are modeled. We
use the design/CPN tool package (Jensen et al.,
1999) for HCPN modeling. For that, the following
steps must be performed:

1. Identification of the objects in HCPN: In
this step, all of the objects in the object model
are identified, and for each object identified
an HCPN module is constructed.

2. Identification of functions for each object:
The operations that must be executed by each
object are identified. What each object must
execute is analyzed without considering its
implementation.

3. Definition of the interface for each object:
The interface of each object is declared,
indicating the methods with its respective
argument of input and output, the constraints
defined to the classes, besides functions
that describe the compatibility between
methods.

4. Definition of the internal structure of
each object: The methods detailed in the
interface of objects are described, satisfy-
ing the requisites identified in the phase of
identification of the objects.

occurrence Graph (oG)

The occurrence graph tool is closely integrated
with the design/CPN tool package (Jensen et al.,

1999). The basic idea behind occurrence graphs
is to make a directed graph with a node for each
reachable marking and an arc for each occurring
binding element. OGs are directed graphs that
have a node for each reachable marking and an
arc for each binding element. An arc binding the
marking node that the binding element associated
occurs at each marking node resultant of occur-
rence (Jensen, 1998).

The OG has a large number of built-in standard
queries, such as Reachable, which determines
whether there is an occurrence sequence between
two specified markings, and AllReachable, which
determines whether all the reachable markings
are reachable from each other. These queries can
be used to investigate all the standard properties
of a HCPN. In addition to the standard queries,
there are a number of powerful search facilities
allowing formulating nonstandard queries. The
standard queries require no programming at all.
The nonstandard queries usually require that
2-5 programming lines of quite straightforward
ML code.

Through an occurrence graph, it is possible to
verify the properties inherent to the model. The
occurrence graph tool allows obtaining reports
with general properties about the model. These
reports contain information about the graph and
metaproperties that are utilities for comprehen-
sion of model behavior in HCPN. For instance:
boundness properties, which supply the upper
and lower limit of tokens that each net place can
contain, besides marking limits for each place;
liveness properties, which shown the markings
and transitions that are dead (not precede none
other marking) and which transitions are live
(appear in some occurrence sequence started of
the initial marking of the net). Occurrence graphs
can be constructed with or without considering
time or code segments.

When an occurrence graph has been con-
structed using the design/CPN it can be analyzed
in different ways. The easiest approach is to use
the Save Report command to generate a standard

3170

A Formal Verification and Validation Approach for Real-Time Databases

report providing information about all standard
CPN properties:

• Statistics: Size of occurrence graph
• Boundedness properties: Integer and mul-

tiset bounds for place instances
• Home properties: Home markings
• Liveness properties: Dead markings, dead/

live transition instances
• Fairness properties: Impartial/fair/just

transition instances

To use the OG tool, the user simply enters
the simulator and invokes the Enter Occ Graph
command (in the file menu of design/CPN). This
has a similar effect as Enter Simulator. It creates
the occurrence graph code, that is, the ML code
necessary to calculate, analyze, and draw occur-
rence graphs. Moreover, it creates a new menu,
called Occ. This menu contains all the commands
which are used to perform the calculation and
drawing of occurrence graphs.

Generate a message sequence chart
(msc)

MSC is a graphical and textual language for the
description and specification of the interactions

between system components. Message sequence
charts may be used for requirement specification,
simulation and validation, test-case specification
and documentation of real-time systems.

As illustrated in Figure 4, the MSC comprises
the QoS functions, the transactions with its opera-
tions, and the RTDB. In this method, the use of
MSC is primordial, since it is possible to verify the
properties of real-time database by representing
the transactions properties and data properties,
both with temporal constraints. Also, it is possible
to validate the behavior of objects, its relationships,
and the situations where concurrent access to the
RTDB occurs through the object operations. To
generate the MSC, we use the “smc.sml” library
of the design/CPN tool package.

Generate a timing diagram (td)

The design/CPN performance tool for facilitating
simulation-based performance analysis of HCPN
generates the timing diagram. In this context,
performance analysis is based on the analysis of
data extracted from a HCPN model during simu-
lation. The Performance tool provides random
number generators for a variety of probability
distributions and high-level support for both data
collection and for generating simulation output.

Figure 4. Description of message sequence chart

A Formal Verification and Validation Approach for Real-Time Databases 109

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generate a Timing Diagram (TD)

The design/CPN performance tool for facilitating simulation-based performance analysis
of HCPN generates the timing diagram. In this context, performance analysis is based on
the analysis of data extracted from a HCPN model during simulation. The Performance
tool provides random number generators for a variety of probability distributions and
high-level support for both data collection and for generating simulation output. The
random number generators can be used to create more accurate models by modeling
certain probability distribution aspects of a system, while the data collection facilities
can extract relevant data from a CPN model.
Before data can be collected from a HCPN model, it is necessary to generate the
performance code, that is, the ML code that is used to extract data from the HCPN model.
The design/CPN performance tool can then be used to generate performance reports as
a time diagram.

Case Study: Real-Time Database for Sensor Networks

Case Study Overview

A sensor network is considered as application domain to the case study, where the
method proposed is applied. For this case study, a scenario where the environment
monitored must have a steady temperature is described. The upper and lower bound for
temperature is defined. Sensors are placed in the environment with the objective of
acquiring and storing the temperature values.
Periodically, data stored in the sensors are sent to a real-time database server, through
sensors transactions. The data obtained has temporal validity and the transactions have

Figure 4. Description of message sequence chart

 3171

A Formal Verification and Validation Approach for Real-Time Databases

The random number generators can be used to
create more accurate models by modeling certain
probability distribution aspects of a system, while
the data collection facilities can extract relevant
data from a CPN model.

Before data can be collected from a HCPN
model, it is necessary to generate the performance
code, that is, the ML code that is used to extract
data from the HCPN model. The design/CPN
performance tool can then be used to generate
performance reports as a time diagram.

case study: real-time database for
sensor networks

Case Study Overview

A sensor network is considered as application
domain to the case study, where the method pro-
posed is applied. For this case study, a scenario
where the environment monitored must have a
steady temperature is described. The upper and
lower bound for temperature is defined. Sensors
are placed in the environment with the objective of
acquiring and storing the temperature values.

Periodically, data stored in the sensors are sent
to a real-time database server, through sensors
transactions. The data obtained has temporal
validity and the transactions have a deadline.
The server is updated in order to allow histori-
cal queries. The architecture of the case study is
illustrated in Figure 5.

Applying the Proposed Method

Building the Object Model

According to the steps defined to obtain the object
model, we have:

1. Identification of the objects: The objects
identified in the model are the sensors BD-
Sensor_RT1 and BDSensor_RT2, and the
real-time database server, called BDWare-
housing.

2. Identification of relationships among
objects: The sensors send data to the server
through transactions. Each sensor updates
the server, while the server is updated by
various sensors.

Figure 5. Architecture of the sensor network case study

110 Neto, Perkusich, de Almeida, & Perkusich

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

a deadline. The server is updated in order to allow historical queries. The architecture
of the case study is illustrated in Figure 5.

Applying the Proposed Method

Building the Object Model
According to the steps defined to obtain the object model, we have:

1. Identification of the objects: The objects identified in the model are the sensors
BDSensor_RT1 and BDSensor_RT2, and the real-time database server, called
BDWarehousing.

2. Identification of relationships among objects: The sensors send data to the server
through transactions. Each sensor updates the server, while the server is updated
by various sensors.

3. Addition of attributes to objects: The data item X acquired by the sensor is
composed of the following attributes: Value is the content of data item; avi is the
absolute validate interval; timestamp is the late update time; and sensor identifies
which sensor acquired the data. The attributes of the data item stored in the real-
time database server has the fields: Tp, which is the data item processed; Qtde,
which is the value that will be updated in the server; Avi, which is the absolute
validate interval; Tsp, which is the late update time; sensor, which identifies the
sensor that acquired the data; Imp, which is the accumulated imprecision; and Milr,
which is the limit of Imp.

4. Use of generalization to observe similarities and differences: This step is
unnecessary for this model, due to existence of only two objects.

Figure 5. Architecture of the sensor network case study

Environm ent

Controlling System Controlled System

Clock (Real-T ime Constra ints)

Operator'
s

Console

X:(Tp,Q tde,Avi
Tsp,Im p,M ilr)

RTDB
Transactions
M anagem ent

Negotiation
Function

Negotiation
Function

BDSensor_RT1

X:(value,avi,
tim estam p,

sensor)

Negotiation
Function

BDSensor_RT2

X:(value,avi,
tim estam p,

sensor)

A T

A T
BDW arehousing

C T L o r C T I

A T

A T
C T H

3172

A Formal Verification and Validation Approach for Real-Time Databases

3. Addition of attributes to objects: The data
item X acquired by the sensor is composed
of the following attributes: Value is the con-
tent of data item; avi is the absolute validate
interval; timestamp is the late update time;
and sensor identifies which sensor acquired
the data. The attributes of the data item
stored in the real-time database server has
the fields: Tp, which is the data item pro-
cessed; Qtde, which is the value that will
be updated in the server; Avi, which is the
absolute validate interval; Tsp, which is the
late update time; sensor, which identifies the
sensor that acquired the data; Imp, which
is the accumulated imprecision; and Milr,
which is the limit of Imp.

4. Use of generalization to observe similari-
ties and differences: This step is unneces-

sary for this model, due to existence of only
two objects.

5. Identification of operations: The sensors
aim at acquiring data of the external envi-
ronment (method AT) and these data can be
read by long and snapshot queries (method
CTL and method CTI, respectively). Long
queries are performed in a time interval, and
snapshot queries are performed in an abso-
lute time. The real-time database server has
historical data obtained by sensors (method
AT), and allows one to query this historical
data (method CTH).

6. Identification of concurrent operations:
The BDSensor_RT1 and BDSensor_RT2
object has two negotiation functions that
represent two different types of concur-
rency. The first situation is observed when

Figure 6. Object model

A Formal Verification and Validation Approach for Real-Time Databases 111

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

5. Identification of operations: The sensors aim at acquiring data of the external
environment (method AT) and these data can be read by long and snapshot queries
(method CTL and method CTI, respectively). Long queries are performed in a time
interval, and snapshot queries are performed in an absolute time. The real-time
database server has historical data obtained by sensors (method AT), and allows
one to query this historical data (method CTH).

6. Identification of concurrent operations: The BDSensor_RT1 and BDSensor_RT2
object has two negotiation functions that represent two different types of
concurrency. The first situation is observed when the data item is being acquired
and a query is invocated. The second situation of concurrency is possible when
a query is running and an acquisition operation begins. In the BDWarehousing,
three negotiation functions define the concurrence between the transactions.
Besides the situations defined to the sensors, it is possible that two update
operations try to access the same data item, where the sensor is updating the item
and an applicative program is changing this data.

7. Identification of both logical and temporal constraints: In the sensor, the con-
straints defined to the data are: The type and the absolute validity interval of them.

Figure 6. Object model

 3173

A Formal Verification and Validation Approach for Real-Time Databases

the data item is being acquired and a query
is invocated. The second situation of concur-
rency is possible when a query is running
and an acquisition operation begins. In the
BDWarehousing, three negotiation func-
tions define the concurrence between the
transactions. Besides the situations defined
to the sensors, it is possible that two update
operations try to access the same data item,
where the sensor is updating the item and an
applicative program is changing this data.

7. Identification of both logical and temporal
constraints: In the sensor, the constraints
defined to the data are: The type and the
absolute validity interval of them. The con-
straints defined to the server are: the type
of data item and the performance metrics
Pt and Impr, described in this chapter.

The QoS management is performed by the
functions: specification, mapping, and monitoring,
in addition to the negotiation function defined for
the objects. Figure 6 illustrates the object model
for the case study.

Building the Process Model

According to the steps defined to obtain the pro-
cess model, we have:

1. Identification of the objects in HCPN:
In this first step, the objects are identified
from the object model for the the HCPN
modules.

2. Identification of functions for each ob-
ject: The sensor object implements the
mechanisms of acquisition and stored data,
besides reading the content stored. The real-
time database server object implements the
update and reading of the database.

3. Definition of interface for each object: In
the HCPN module of sensor, the interface is
defined by the methods: AT, CTL, and CTI
and by attribute X that represents a record.
The interface of the HCPN module to the
server object indicates the methods AT and
CTH and the attribute DB that represent a
record with the fields defined to the data
item stored in the server.

Figure 7. Process model

A Formal Verification and Validation Approach for Real-Time Databases 113

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generating the Occurrence Graph
For the real-time database modeled, the full standard report follows. According to the
report, we have the full generation in 47 seconds, with 6,713 nodes and 22,867 arcs.

Statistics

 Occurrence Graph
 Nodes: 6,713
 Arcs: 22,867
 Secs: 47
 Status: Full

Some places are shown in the boundedness properties. The place ObjetoBD’ObjetoBDP
represents the repository of data and it has the limit of 1 token. Two different combina-
tions to the token in this place are represented in report.

 Boundedness Properties

 Best Integers Bounds Upper Lower
 ObjetoBD'ObjetoBDP 1 1 1

Best Upper Multi-set Bounds
 ObjetoBD'ObjetoBDP 1 1`{nr = t1,vrr = 10,avir = 10,tsr = 33,impr = 1,milr =
8}++ 1`{nr = t1,vrr = 10,avir = 10,tsr = 39,impr = 1,milr = 8}

In liveness properties, we have 24 dead markings, that is, there are 24 different ways to
the net stopping. In relation to dead transition, there is only one

Figure 7. Process model

 Menu

Hierarchy Declaration Active Performance

Negotiation1 Negotiation2

BDWarehousing

Database Server

Specification

UpdateS1 UpdateS2 UpdateS3 Update

MonitoringS1 MonitoringS2 MonitoringS3 MonitoringUp

ReturnS1 ReturnS2 ReturnS3 ReturnTS1

Sensor1 Sensor2 Sensor3

sensor1 sensor2 sensor3

3174

A Formal Verification and Validation Approach for Real-Time Databases

4. Definition of internal structure for each
object: The internal structure is a hierarchi-
cal coloured Petri net to model the methods
declared in the interface of the object.

The overview of the process model is illustrated
in Figure 7. The HCPN modules are:

• Declaration: This represents the declara-
tions, that is, the functions, types, and so
on.

• BDWarehousing: It is the database serv-
er.

• Negotiation1 and Negotiation: This rep-
resents the negotiation functions.

• Specification: It is the module where the
temporal parameters are specified.

• Sensor1, Sensor2, and Sensor3: This rep-
resents the modules for sensors.

• UpdateS1, UpdateS2, and UpdateS3:
These are the sensors’ transactions that
update the server.

• MonitoringS1, MonitoringS2, and Moni-
toringS3: They are the monitoring functions
related to each sensor transaction.

• Update and MonitoringUp: These modules
are for the update transaction (only read)
and the monitoring function defined for it.

• Active and Performance: These are control
modules.

Generating the Occurrence Graph

For the real-time database modeled, the full stan-
dard report follows. According to the report, we
have the full generation in 47 seconds, with 6,713
nodes and 22,867 arcs (see Box 1).

Some places are shown in the boundedness
properties. The place ObjetoBD’ObjetoBDP
represents the repository of data and it has the
limit of 1 token. Two different combinations to
the token in this place are represented in report
(see Box 2).

Box 1.

Box 2.

A Formal Verification and Validation Approach for Real-Time Databases 113

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generating the Occurrence Graph
For the real-time database modeled, the full standard report follows. According to the
report, we have the full generation in 47 seconds, with 6,713 nodes and 22,867 arcs.

Statistics

 Occurrence Graph
 Nodes: 6,713
 Arcs: 22,867
 Secs: 47
 Status: Full

Some places are shown in the boundedness properties. The place ObjetoBD’ObjetoBDP
represents the repository of data and it has the limit of 1 token. Two different combina-
tions to the token in this place are represented in report.

 Boundedness Properties

 Best Integers Bounds Upper Lower
 ObjetoBD'ObjetoBDP 1 1 1

Best Upper Multi-set Bounds
 ObjetoBD'ObjetoBDP 1 1`{nr = t1,vrr = 10,avir = 10,tsr = 33,impr = 1,milr =
8}++ 1`{nr = t1,vrr = 10,avir = 10,tsr = 39,impr = 1,milr = 8}

In liveness properties, we have 24 dead markings, that is, there are 24 different ways to
the net stopping. In relation to dead transition, there is only one

Figure 7. Process model

 Menu

Hierarchy Declaration Active Performance

Negotiation1 Negotiation2

BDWarehousing

Database Server

Specification

UpdateS1 UpdateS2 UpdateS3 Update

MonitoringS1 MonitoringS2 MonitoringS3 MonitoringUp

ReturnS1 ReturnS2 ReturnS3 ReturnTS1

Sensor1 Sensor2 Sensor3

sensor1 sensor2 sensor3

A Formal Verification and Validation Approach for Real-Time Databases 113

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Generating the Occurrence Graph
For the real-time database modeled, the full standard report follows. According to the
report, we have the full generation in 47 seconds, with 6,713 nodes and 22,867 arcs.

Statistics

 Occurrence Graph
 Nodes: 6,713
 Arcs: 22,867
 Secs: 47
 Status: Full

Some places are shown in the boundedness properties. The place ObjetoBD’ObjetoBDP
represents the repository of data and it has the limit of 1 token. Two different combina-
tions to the token in this place are represented in report.

 Boundedness Properties

 Best Integers Bounds Upper Lower
 ObjetoBD'ObjetoBDP 1 1 1

Best Upper Multi-set Bounds
 ObjetoBD'ObjetoBDP 1 1`{nr = t1,vrr = 10,avir = 10,tsr = 33,impr = 1,milr =
8}++ 1`{nr = t1,vrr = 10,avir = 10,tsr = 39,impr = 1,milr = 8}

In liveness properties, we have 24 dead markings, that is, there are 24 different ways to
the net stopping. In relation to dead transition, there is only one

Figure 7. Process model

 Menu

Hierarchy Declaration Active Performance

Negotiation1 Negotiation2

BDWarehousing

Database Server

Specification

UpdateS1 UpdateS2 UpdateS3 Update

MonitoringS1 MonitoringS2 MonitoringS3 MonitoringUp

ReturnS1 ReturnS2 ReturnS3 ReturnTS1

Sensor1 Sensor2 Sensor3

sensor1 sensor2 sensor3

 3175

A Formal Verification and Validation Approach for Real-Time Databases

In liveness properties, we have 24 dead mark-
ings, that is, there are 24 different ways to the net
stopping. In relation to dead transition, there is
only one FCObjetoBDLeAt’AvaliaFCLeAt. This
transition is dead, since neither conflict occurred
when a read transaction was executing and a write
transaction was invocated (see Box 3).

Generating the Message Sequence Chart

In Figure 8, we have the MSC generated consider-
ing the scenario with two sensors acquiring the
same data item.

• Sensor1: writes periodically in the local
database, the release time is 1 time unit (t.u.)
and the period is 3 t.u.

• Sensor2: writes periodically in the local
database, the release time is 9 t.u., and the
period is 9 t.u.

Moreover, there are two write transactions
and one read transaction.

• Update 1: Periodically updates the data-
base server object with respect to the data
in Sensor1. The release time is 3 t.u., the

Box 3.

Figure 8. Message sequence chart

114 Neto, Perkusich, de Almeida, & Perkusich

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

FCObjetoBDLeAt’AvaliaFCLeAt. This transition is dead, since neither conflict occurred
when a read transaction was executing and a write transaction was invocated.

Liveness Properties

 Dead Markings: 24 [6713,6712,6711,6710,6703,...]
 Dead Transitions Instances: FCObjetoBDLeAt'AvaliaFCLeAt 1

Generating the Message Sequence Chart
In Figure 8, we have the MSC generated considering the scenario with two sensors
acquiring the same data item.

• Sensor1: writes periodically in the local database, the release time is 1 time unit
(t.u.) and the period is 3 t.u.

• Sensor2: writes periodically in the local database, the release time is 9 t.u., and the
period is 9 t.u.

Moreover, there are two write transactions and one read transaction.

Figure 8. Message sequence chart

114 Neto, Perkusich, de Almeida, & Perkusich

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

FCObjetoBDLeAt’AvaliaFCLeAt. This transition is dead, since neither conflict occurred
when a read transaction was executing and a write transaction was invocated.

Liveness Properties

 Dead Markings: 24 [6713,6712,6711,6710,6703,...]
 Dead Transitions Instances: FCObjetoBDLeAt'AvaliaFCLeAt 1

Generating the Message Sequence Chart
In Figure 8, we have the MSC generated considering the scenario with two sensors
acquiring the same data item.

• Sensor1: writes periodically in the local database, the release time is 1 time unit
(t.u.) and the period is 3 t.u.

• Sensor2: writes periodically in the local database, the release time is 9 t.u., and the
period is 9 t.u.

Moreover, there are two write transactions and one read transaction.

Figure 8. Message sequence chart

3176

A Formal Verification and Validation Approach for Real-Time Databases

computational time is 2 t.u., the deadline is
12 t.u., and the period is 12 t.u.

• Update 2: Periodically updates the database
server object for sensor2. The release time
is 9 t.u., the computational time is 4 t.u., the
deadline is 18 t.u., and the period is 18 t.u.

• Query: Periodically queries the real-time
database-server application. The release
time is 3 t.u., the computational time is 6
t.u., the deadline is 12 t.u., and the period
is 12 t.u.

The release time is the moment when all the
necessary resources to the execution of the trans-
action and sensors are available. Starting from
this moment the transaction will be ready to be
executed. The computation time is the processing
time necessary to execute it. The deadline defines
the maximum transaction execution period.
Finally, the period defines the periodicity of the
transaction and sensor.

In the MSC, it is also possible to verify the
QoS functions, where the negotiation between
transactions conflicting and the time properties
are visible during whole lifetime of a system.

Generating the Timing Diagram

In Figure 9, the timing diagram for the execution
of transactions and sensors is presented. In this
figure, it is possible to see a representation of
the timing model execution for both transactions
and sensors, where the execution is represented
by rectangles.

In the vertical axis, the transactions and the
sensors are represented. In the horizontal axis the
release time and the periods for both, transactions
and sensors, and computational times and deadline
for transactions are represented. For each transac-
tion, we consider three states: start; processing,
and committing. The start of the execution of
a transaction is illustrated by a dotted line rect-
angle. The processing is represented by a filled
rectangle, and the committing by a continuous
line rectangle. For the sensor, we only show the
state processing.

In the vertical axis, the Update 1 transaction
is represented in 1. The Update 2 transaction is
represented in 2. The Query transaction is repre-
sented in 3. The sensor1 is represented in 4, and
the sensor2 in 5.

Figure 9. Timing diagram

A Formal Verification and Validation Approach for Real-Time Databases 115

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

• Update 1: Periodically updates the database server object with respect to the data
in Sensor1. The release time is 3 t.u., the computational time is 2 t.u., the deadline
is 12 t.u., and the period is 12 t.u.

• Update 2: Periodically updates the database server object for sensor2. The release
time is 9 t.u., the computational time is 4 t.u., the deadline is 18 t.u., and the period
is 18 t.u.

• Query: Periodically queries the real-time database-server application. The release
time is 3 t.u., the computational time is 6 t.u., the deadline is 12 t.u., and the period
is 12 t.u.

The release time is the moment when all the necessary resources to the execution of the
transaction and sensors are available. Starting from this moment the transaction will be
ready to be executed. The computation time is the processing time necessary to execute
it. The deadline defines the maximum transaction execution period. Finally, the period
defines the periodicity of the transaction and sensor.
In the MSC, it is also possible to verify the QoS functions, where the negotiation between
transactions conflicting and the time properties are visible during whole lifetime of a
system.

Generating the Timing Diagram
In Figure 9, the timing diagram for the execution of transactions and sensors is presented.
In this figure, it is possible to see a representation of the timing model execution for both
transactions and sensors, where the execution is represented by rectangles.
In the vertical axis, the transactions and the sensors are represented. In the horizontal
axis the release time and the periods for both, transactions and sensors, and computa-
tional times and deadline for transactions are represented. For each transaction, we
consider three states: start; processing, and committing. The start of the execution of

Figure 9. Timing diagram

 Frequency and Time of Transactions Execution

U
pd

at
e/

Q
ue

ry
/S

en
so

rs

Time (Time Unit)

0

1

2

3

4

5

6

7

3 6 9 12 15 18 21 24 27 30 33 36

Computation time=4,period=12,deadline=12
Computation time=4,period=18,deadline=12
Computation time=6,period=12,deadline=12

Sensor1, period=6
Sensor2, period=9

 3177

A Formal Verification and Validation Approach for Real-Time Databases

Future trends

As for future trends, we believe that our method
should be applied to other application domains.
Also, the method can be expanded in order to
add more functionality and graphs. Depending
on the application domain, the method could be
customized and its phases adapted according to
the domain features.

Moreover, automatic code generation could
be considered. It would be useful to ensure that
the programming code for the software is accord-
ing to the verified and validated model. In this
context, we are currently developing an automatic
code generator from HCPN model to the Java
programming language.

conclusIon

In this chapter we presented a method for real-
time database verification and validation. The
main objective of this method is to make pos-
sible the identification of whole components of a
system for modeling, analyzing, verifying, and
validating them.

The method is based on a model developed
using hierarchical coloured Petri nets. The compu-
tational tool used to generate the model, verifying
the properties and generating graphs for validation
by users was the design/CPN tool package.

Using the proposed method, a real system can
be studied without the danger, expense, or incon-
venience of the manipulation of its elements. It is
performed through the analysis of the system’s
conceptual model and the application of guidelines
which drive the developer in the validation and
verification activity.

When dealing with complex systems, the
process of analysis, verification, and validation
needs to be automated. However, the utilization of
mathematical models is primordial, which allows
automatic verification and validation. It makes it

possible to identify various potential deficiencies
in the conceptual model, such as contradictions,
ambiguity, redundancy, so forth.

reFerences

DiPippo, L. C. (1995). Semantic real-time ob-
ject-based concurrency control. PhD thesis,
Department of Computer Science and Statistics,
University of Island, Kingston, RI.

Douglass, B. P. (2004). Real time UML: Advances
in the UML for real-time systems (3rd ed.). Boston:
Addison-Wesley.

Herrmann, J. (2001). Guideline for validation &
verification real-time embedded software systems.
Software Development Process for Real-Time
Embedded Software Systems (DESS), D 1.6.2,
V 01.

Jensen, K. (1998). An introduction to the practi-
cal use of coloured Petri nets. In W. Reisig &
G. Rozenberg (Eds.), Lectures on Petri nets II:
Applications, Lecture Notes in Computer Science
(vol. 1, pp. 237-292). Berlin, Heidelberg, Germany:
Springer-Verlag.

Jensen, K. (1999). Design/CPN 4.0. Meta Soft-
ware Corporation and Department of Computer
Science, University of Aarhus, Denmark. Re-
trieved May 19, 2006, from http://www.daimi.
aau.dk/designCPN/

Kang, K. D. (2001). qRTDB: QoS-sensitive
real-time database. PhD thesis, Department
of Computer Science, University of Virginia,
Charlottesville.

Ribeiro-Neto, P. F., Perkusich, M. L. B., & Perku-
sich, A. (2003). Real-time database modeling
considering quality of service. In Proceedings
of the 5th International Conference on Enterprise
Information Systems, Angers, France (vol. 3, pp.
403-410).

3178

A Formal Verification and Validation Approach for Real-Time Databases

Ribeiro-Neto, P. F., Perkusich, M. L. B., & Perku-
sich, A. (2004). Scheduling real-time transactions
for sensor networks applications. In Proceedings
of the 10th International Conference on Real-Time
Computing Systems and Applications (RTCSA),
Gothenburg, Sweden (pp. 181-200). Berlin, Hei-
delberg, Germany: Springer-Verlag.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy,
F., & Lorensen, W. (1991). Object-oriented

modeling and design. Upper Saddle River, NJ:
Prentice-Hall.

Selic, B., & Rumbaugh, J. (1998). Using UML for
modeling complex real-time systems. In LCTES
’98: Proceedings of the ACM SIGPLAN Workshop
on Languages, Compilers, and Tools for Embed-
ded Systems (pp. 250-260). Berlin, Heidelberg,
Germany: Springer-Verlag.

This work was previously published in Verification, Validation and Testing in Software Engineering, edited by A. Dasso, pp.
111-135, copyright 2007 by IGI Publishing (an imprint of IGI Global).

Section VIII
Emerging Trends

This section highlights research potential within the field of software applications while exploring
uncharted areas of study for the advancement of the discipline. Chapters within this section highlight
evolutions in social software, state-of-the-art agile software methods, and modeling large software sys-
tems. These contributions, which conclude this exhaustive, multi-volume set, provide emerging trends
and suggestions for future research within this rapidly expanding discipline.

3180

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8.1
Social Software Trends

in Business:
Introduction

Peter Burkhardt
IBM, USA

AbstrAct

Social networking and Web 2.0 are the hottest
words in technology right now; but is there more
than just hype? This chapter will define and de-
scribe social software and Web 2.0, separate their
true concepts from the marketing and buzz, and
follow by identifying what might be next for this
dynamic technology space. After establishing
the social software and Web 2.0 concepts, this
chapter identifies the value that they can bring to
a company when used in a business context and
the shortcomings or pitfalls. This chapter will
set the foundation for subsequent discussions of
social software and Web 2.0 for specific industry
applications.

IntroductIon

Social software is the hottest topic in the technol-
ogy space right now. It is nearly impossible to avoid
hearing about Web 2.0 and social networking in

mainstream media publications and broadcast
news—and it is not just technology magazines or
TV shows either. For example, just about every
recent issue of Time magazine has had an article
on Web 2.0, social networking, or something
related to those buzzwords.

It is not just the mainstream media that are
picking up on this hot topic. The technology itself
is being used to tout both its unmatched potential
and its less-often-mentioned shortcomings. Web
2.0 is providing the ability for evangelists and
skeptics across the globe to weigh in and have
equal voice on the very platform they are using
to deliver their opinions and thoughts. For those
not in the know, this seems like an opportunity
that can only be missed at one’s own peril.

Every new Web site is clamoring to be known
as a Web 2.0 or social networking site and be the
next big buzz. Gone are the days when it was good
enough to provide a store front on the Internet and
generate millions of dollars in sales. These days,
you have to have the ability to connect people,
provide consumer ratings systems, and allow ev-

 3181

Social Software Trends in Business

erything to be tagged and commented on. Users
have become more fickle and will quickly move
on to another Web site that enlists more Web
2.0 feel and functionality. Casual Internet users
have evolved and do not want to just browse for
information; they want to project themselves, get
connected to others, and interact or collaborate.

Likewise, traditional corporations are clamor-
ing to put Web 2.0 and social software to work
for their own benefit as well. Many managers and
executives have said that they need to implement
Web 2.0 and social software to have a competitive
advantage and not be left behind by the competi-
tion. However, many will also admit that they are
not quite sure what Web 2.0 really is or what social
software really does for their business.

As a result of all this recent press and the
amazing amount of hype surrounding Web 2.0
and social software, there are many who believe
that these are new concepts (which they use in-
terchangeably), have only recently come to frui-
tion, and have been made available in the last few
years. However, like most things, the application
of social networking in software is just a new ap-
plication of a concept that has existed for quite
some time. Web 2.0 has been more of a gradual
evolution than the instantaneous explosion that
the hype would have one believe.

To help one understand where the social
software market trend is going, it is extremely
important to remove the hype and understand
its underlying concepts and history. Only after
understanding the foundation concepts of social
software can one truly define its value in the
marketplace and what social software means to
a corporation. The remainder of this chapter will
answer the question “What is social software?”
and discuss its value to businesses. Subsequent
chapters will proceed to examine the relevance
of social software and its value as applied in the
context of specific business and educational ap-
plications.

bAcKGround

One of the most common issues that leads to confu-
sion in this space and obfuscates the ability to see
the value in social software is the interchangeable
usage of terms. Just about everyone who talks
and writes about this technology space freely
and openly substitutes terms such as Web 2.0,
social networking, and collaboration as though
they all mean the same thing. This only serves
to make this market space appear more nebulous
than it needs to be and confuses those who are
not already knowledgeable on the topic.

Perhaps all of this confusion should be an
indicator that there is more marketing hype than
substance in the social software trend. However,
there are also examples and data to substantiate
the validity of the use of social software for the
benefit of business. The reality of the situation is
that it is quite a bit of both. While there is true
business value to be derived from social software,
it takes the ability to see through the “buzzword
bingo” that regularly occurs.

This is not to say that all terms have been
clearly defined to date either. There are many
experts in this space who still cannot seem to
reach agreement on what certain terms, such as
Web 2.0, really mean. Therefore, it is important
to establish some definitions in order to build our
social software foundation of understanding and
to see the business benefits of social software.

social networking

Contrary to recent technology hype, social net-
working is a sociology concept that has evolved
from sociology studies in the late 1800s and con-
tinues to mature even today. While the first studies
of social networks may not have been deemed as
such, the coining of the term social network and
the analysis thereof became more mainstream
and evolved rapidly within the sociology field in
the 1950s to 1970s.

3182

Social Software Trends in Business

A social network is a grouping of personal re-
lationships that each of us establishes. As opposed
to other types of networks, the value of a social
network is not in the nodes on the network, which
in this case are people, but are in the relationships
themselves. Social networking, therefore, is the
act of building one’s social network. People rely
heavily on these relationships to help them with
everyday tasks, such as making decisions, forming
opinions, and/or finding information:

Our heavy reliance on other people for informa-
tion and learning is one of the most consistent
and robust findings in the social sciences. It also
matches our intuition and lived experience in
organizations: other people are critical to our
ability to find information, learn how to do our
work, and develop professionally. (Cross, Abrams,
& Parker, 2004, p. 152)

As a result, one of the many uses of a social
network is in conjunction with, and as a precursor
to, collaboration. Leveraging one’s social network
vastly improves the ability to collect the right
people and information upon which to collaborate
toward a common goal. While social networking
is a strong precursor for collaboration, the same
cannot be said for the relationship when examined
in the inverse order.

social software

Building upon this definition then, social software
is about using technology, and more specifically
computer software, to support the process of
social networking. It is important to note that the
software itself is not performing the activity of
social networking. The software is simply being
leveraged to support and facilitate the creation and
maturation of relationships between individuals,
otherwise known as social networking.

The value of social software lies in its ability
to do two things. First, it helps to cross traditional
barriers that keep individuals from creating rela-

tionships. In a corporate environment this could
be departmental organization, where people in
different departments do not normally talk to
each other. The purpose of the software is not
to overcome the department structure, but to
acknowledge the boundaries and then cross them
in order to connect people.

Second, social software assists people to better
leverage their existing relationships in order to find
knowledge. By exposing contextual relationships
between individuals, it can assist in helping to
streamline the process of identifying who should
be included in a collaborative effort or who knows
where to find the knowledge that is being sought.
Many people easily confuse this area of value with
expertise management. In reality, this may lead
to someone eventually locating an expert; how-
ever, it is not expertise location in itself because
the determination of the expert qualifications is
inferred, at best, in social software.

social network Analysis

Social network analysis (SNA) is a way of iden-
tifying and understanding social linkages and
relationships between people. Through the un-
derstanding of these relationships, we can then
assess information flows and communication
breakdowns in a social network. When applied to
a business, this information can then be leveraged
to identify where talent and expertise could be
better applied, how work gets done in a company,
and where bottlenecks exist for processes, deci-
sion making, and information flow.

SNA starts with gathering relationship infor-
mation through a series of interviews, question-
naires, and company communication data. After
the information has been gathered, it is analyzed
to uncover the relationships that exist within an
organization. More specifically, the analysis ex-
amines the nodes or actors that are in the network,
the relationships between the actors, and the at-
tributes that may be affecting those relationships.
As a result of the analysis, an organization will

 3183

Social Software Trends in Business

have a better understanding of how things hap-
pen and can take actions to increase productivity,
efficiency, and/or innovation. Corporate mergers
and acquisitions are a prime example of how SNA
can benefit a business. After performing an SNA,
the two businesses can be organized and melded
together in a way that takes advantage of the most
efficient processes and people in each business.

collaboration

Collaboration is defined by Merriam-Webster’s
Online Dictionary (“Collaboration,” n.d.) as “to
work jointly with others or together especially in an
intellectual endeavor.” Collaboration is about more
than one person (a team, a group, etc.) working
together toward a common goal. There have been
many types of software in the past that support
collaboration, mainly in the business environment.
However, the fault of these applications was that
they assumed that the identification of the people
being brought together to collaborate had already
been conducted. While the tools facilitated the
collaboration, they did not ensure that the teams
had the right people involved in the collaboration
or all of the most appropriate information to col-
laborate upon. Recent increased focus on social
networks has demonstrated their importance as
a precursor to collaboration and helped to expo-
nentially increase the value of collaboration.

While collaboration software has been avail-
able in the corporate or enterprise space for quite
some time (e.g., Lotus Notes, Domino), it has not
been prevalent in the public domain and available
to end users independent of organizational affili-
ation. As a result, individuals have had a tough
time leveraging the Internet for collaboration in
the public domain. That trend is starting to change
as new technologies like wikis provide individu-
als with the ability to organize and collaborate
toward a common goal in the public domain. The
impact of domains is discussed in greater detail
later in this chapter.

web 2.0

Web 2.0 is the most commonly heard term in the
social software trend and the most confusing. Even
the experts disagree on the definition. O’Reilly
Media is accredited with the creation of the term
Web 2.0 during a conference brainstorming session
in 2004 between O’Reilly Media and MediaLive
International (O’Reilly, 2005).

In short, Tim O’Reilly (2006, p.1) states, “Web
2.0 is the business revolution in the computer
industry caused by the move to the internet as
platform, and an attempt to understand the rules
for success on that new platform.” It is meant to
refer to the second generation of the Internet and
is composed of seven core principles.

1. The Web as a platform
2. Harnessing collective intelligence
3. Data as the next Intel Inside
4. End of the software release cycle
5. Lightweight programming models
6. Software above the level of a single de-

vice
7. Rich user experiences

Web 2.0 has, without a doubt, become the
hottest buzzword today in the technology space
and has just about every company and Web site
clamoring to claim that they are or use Web 2.0.
However, there is also a great deal of misunder-
standing, or lack of understanding, as to what
Web 2.0 really means when you start to boil
down the term.

Critics have stated that Web 2.0 is merely a
buzzword, skips over important evolutionary
changes to the Web by declaring itself the second
generation, does not really have much substance
to it, and has yet to produce any meaningful or
truly important results. One important critic is Tim
Berners-Lee, the inventor of the World Wide Web.
In an interview in July 2006, Berners-Lee was
asked if it was fair to say that “Web 1.0 was about
connecting computers and making information

3184

Social Software Trends in Business

available; and Web 2 is about connecting people
and facilitating new kinds of collaboration.” His
response was

Totally not. Web 1.0 was all about connecting
people. It was an interactive space, and I think
Web 2.0 is of course a piece of jargon, nobody
even knows what it means. If Web 2.0 for you is
blogs and wikis, then that is people to people.
But that was what the Web was supposed to be
all along. And in fact, you know, this Web 2.0,
quote, it means using the standards which have
been produced by all these people working on
Web 1.0. (Laningham, 2006, p. 1)

In clarifying the definition of Web 2.0, Tim
O’Reilly (2006, p. 1) subsequently had this to
say: “Ironically, Tim Berners-Lee’s original
Web 1.0 is one of the most ‘Web 2.0’ systems out
there—it completely harnesses the power of user
contribution, collective intelligence, and network
effects.” So, to summarize the attempts at Web
2.0 definition, O’Reilly coins the concept of Web
2.0 as the next generation of the Internet, gets
challenged on that statement, and then clarifies it
by saying that the first generation of the Internet
is the perfect example of the second generation
of the Internet. If that does not confuse people,
nothing will.

While there may never be a solid definition for
this nebulous concept, for the sake of argument, I
will define how Web 2.0 fits into the Internet today
in order to discuss it in the context of business.
Web 2.0 is a technology concept, unlike social
networking (which is a sociology concept). Web
2.0 refers to a style or method for combining ex-
isting technologies to empower people. A list of
the technologies commonly combined under the
Web 2.0 banner is discussed in the next section
of this chapter.

The idea is to make the usage of software ap-
plications and Web sites faster, easier, and more
intuitive for users. This is accomplished through
three general thrusts. First, Web 2.0 leverages

the power of end users’ computers to improve
the responsiveness of the user interface (UI) of
Web applications. As opposed to previous Web
application architecture, where all layers of an
application were combined on centralized servers,
Web 2.0 moves some of the application logic and
management of the UI to the client on the end user’s
computer. Second, by separating the content from
the UI design, users can focus on the publishing
and exchange of information without having to
know the UI programming required to publish
the information. Third, by improving the UI to
be more dynamic and responsive, users’ attention
is drawn to the application and their experience
is greatly improved.

These improvements to software applications
and Web sites did not happen overnight, though.
Many software applications use numbers to
indicate versions of the software, with newer
versions meant to replace older versions through
an installation process. This is where Web 2.0 is
very misleading. By using the 2.0 nomenclature
associated with software product releases, one
might think that Web 2.0 is meant to replace Web
1.0 or is the next version of the Web. This could
not be further from the truth. There have been
many significant milestones in the evolution of
the Web since its inception. The Web continues
to change on a regular basis as a result of new
ways for combining technologies and concepts,
not in a disjointed, iterative manner, but in a
smooth evolution.

In reality, Web 2.0 is really nothing new. It is
simply a way of recombining and repackaging
existing technologies that have been around for
quite some time. There are no truly fundamental
differences between the technologies used in Web
1.0 and Web 2.0. A brief examination of the most
common technologies that are associated with the
Web 2.0 banner is included below.

technologies within web 2.0

The hypertext markup language (HTML) has
been around since the creation of the Internet.

 3185

Social Software Trends in Business

This language is used to create and format the
content that is included on Web pages.

The extensible markup language (XML) is a
programming language that allows a developer to
define content and specific tags that surround the
content. Like HTML, the content can be format-
ted through the use of tags. However, XML also
allows the programmer to create his or her own
tags and then find and manipulate content through
the tags that are associated with the content.

Cascading style sheets (CSS) are used to
describe the presentation of a document written
in HTML or XML. For each style that is defined
in the markup language, CSS tells the client how
to display that style. For example, CSS would
define that the Header style should be displayed
in a bold 12-point font.

JavaScript is a cross-platform scripting lan-
guage that can be used in a server or client envi-
ronment to manipulate data and objects. It is most
commonly used for client-side Web development
to create a more dynamic user experience with
a Web page.

Asynchronous JavaScript and XML (AJAX)
is a development technique used on Web sites that
combines the use of JavaScript and XML to create
a more interactive user experience. The concept is
to separate the user interface from data in order to
be able to exchange data with the server without
having to refresh the entire user interface. As a
result, the Web page becomes more responsive.
AJAX is a key part of Web 2.0 because of its
ability to greatly improve the user interface of
applications and make them more dynamic.

Really simple syndication (RSS) is a method
for publishing information in a structured feed
format (usually in XML). This allows clients and
other software applications to subscribe to and
receive timely information updates. Many people
use feed readers to subscribe to a number of Web
sites and have the updates aggregated into a single
interface. RSS is part of Web 2.0 because of its
ability to exchange data in a structured but easily
consumable manner between applications.

ATOM is another publishing format that is
similar to RSS, but is more robust and flexible. It
is based on XML and, while not as widely used
as RSS, is gaining market adoption. Like RSS,
ATOM is part of Web 2.0 because of its ability to
exchange data in a structured but easily consum-
able manner between applications.

JavaScript object notation (JSON) is a light-
weight computer data interchange format. It is a
subset of the JavaScript programming language
and is commonly used within AJAX as an alter-
native to using XML.

Tags are keywords that users of a particular
application can associate with a piece of content in
that application. For example, if a user is posting a
blog entry about what he or she ate for breakfast,
that entry might be tagged with the keywords
orange juice, toast, breakfast, and eggs so that
other users searching on those keywords will
find the blog entry. Users can also tag content
created by others.

A folksonomy is a taxonomy where the tags and
categorization of data are created and updated in
a dynamic way by the consumers of the content.
Folksonomies are part of Web 2.0 because they
give the responsibility of creating the tags and
associating them with the content to the users
of the system.

A weblog (blog) is a Web site that is essentially
a journal posted on the Web. The most common
uses for the journal are either personal publish-
ing, or commentary or news on a particular topic.
Blogs are part of Web 2.0 because they enable
common users to publish their thoughts and have
their voices heard without the need to know how
to program Web pages.

Wikis are server software that allows for one
or more users to work together to create and edit
content. Many wikis serve as a place for mul-
tiple people or communities to come together to
collaborate on a particular topic. Wikis are part
of Web 2.0 because of their ability to facilitate
collaboration between users.

3186

Social Software Trends in Business

A podcast is a radio-style broadcast that is
recorded and made available for users to down-
load onto their computers, iPods, or MP3 players.
Users generally find and subscribe to podcasts
from Web sites as a method to keep up with the
information being disseminated on the site. Pod-
casts are a very valuable tool to both mobile and
office workers because they provide the ability to
access audio information (e.g., presentations) at
the convenience of the listener. Podcasts are part
of Web 2.0 because of their ability to be easily
created and disseminated by users without costly
equipment or extensive experience.

Mashups are Web sites or applications that take
multiple data sources and bring them together to
provide specialized or situational value. Mashups
are part of Web 2.0 because of their ability to
let regular users create valuable situational ap-
plications without having to perform extensive
application development.

enterprise 2.0

Enterprise 2.0 is a recently identified term that is
used to refer to the application of Web 2.0 and so-
cial networking concepts in an enterprise business
context. First coined by Andrew McAfee (2006b,
p. 1), “Enterprise 2.0 is the use of emergent social
software platforms within companies, or between
companies and their partners or customers.”

McAfee (2006a) opines that these new Web
2.0 and social software may replace traditional
communications methods in companies because of
their ability to make tacit knowledge available to
more employees. While it is still too early to tell if
this will come to pass, there are some businesses
that have taken advantage of them in addition to
traditional communications methods.

Anything 2.0

In perpetuating the Web 2.0 moniker, many have
started taking the 2.0 label and using it on the end
of anything that they wish to express as exciting,

new, and/or cutting edge (i.e., Media 2.0, Manu-
facturing 2.0, etc.). Due to the Web 2.0 buzz, this
tactic certainly brings attention where desired.
However, like Web 2.0, it does still leave people
wondering what the differences from the previ-
ous version are and what is so new and great. In a
way, this also detracts from the Web 2.0 concept
itself because it further reinforces the notion that
anything 2.0 is more hype than results.

do You belIeve the hYPe?

With all of the excitement surrounding the Web
2.0 and social software phenomenon, many busi-
nesses are in the position of deciding whether they
should jump on the Web 2.0 and social software
bandwagon or sit this one out. It is not an easy
choice when you are a business. The stakes are
high and a gamble in the technology space that
does not pay off can have quite an effect on the
company’s bottom line. On the other side of the
coin, if the company decides to sit it out and
then its competitors can leverage the trend, the
company is at a competitive disadvantage in the
marketplace and could be equally penalized on
the bottom line of the fiscal reports. So, what is a
company to do? Should it buy into the hype and
take the risk? Is there really something to this
social software trend or is this just an example
of the emperor’s new clothes?

Social software is not a panacea or silver
bullet. It will not solve all problems that a busi-
ness entity has and instantly make things run
smoothly while adding millions of dollars to the
company’s bottom line. It will not instantly resolve
tensions in the organization between groups or
make people instantly start talking to everyone
that they should be talking to. It will not unravel
issues with a supply chain or instantly create a
distribution network for a product, and it will not
result in all of the corporate knowledge being
made available online so the company can do
more with less people.

 3187

Social Software Trends in Business

Social software can be used to help surface
innovative ideas, respond to customers more dy-
namically, and cross departmental and organiza-
tional boundaries where appropriate to get things
accomplished. It can assist in rapid growth, the
hiring of new talent, and employee retention. It
can reduce the loss of tacit corporate knowledge
through natural attrition and retirement. It can
also improve productivity and allow employees,
partners, and customers to do more, faster.

Interestingly enough, there are some teams
sometimes found in businesses that may seem
like they would be ripe to quickly adopt social
software and leverage its capabilities. Contrary
to what one might assume, these teams may have
the hardest time accepting and adjusting to social
software. Two examples of this situation might
be with the research and development (R&D) and
knowledge management (KM) teams.

Research and development teams have been
the staple of innovation in many organizations
for the last century. Business entities hire the
brightest and most creative minds and give them
the funding and freedom to come up with the
next set of great innovations that will make the
company a success. It is probably not surprising
that when the opportunity is created to have others
provide innovation and exercise their creativity,
R&D may feel a bit like its mission is threatened.
However, this is not really the case as experience
has shown that R&D is still greatly needed, but
its role might slightly change. Instead of being the
source of all innovation, it may now participate
in the innovation instead of lead, and take on the
greater importance by proving the innovation.

Likewise, a knowledge management team
may also feel a bit threatened by social software.
The reason for this is that the KM team has a
wealth of experience in organizing and managing
corporate knowledge. Members probably have
a rich background in working with knowledge
management and collaborative software, and lots
of experience in creating information taxonomies.
So, the concept of folksonomies may seem to go

against everything on which they have worked for
the past decade. Again, social software does not
make the team obsolete, though; it simply changes
the team’s role. Social software will allow users
to connect and leverage relationships, but it is not
a replacement for knowledge management and
does not address important aspects of knowledge
management, such as the storage and availability
of information. Instead, it is a compliment to
knowledge management.

Social software is currently in the peak-of-
inflated-expectations phase of its hype cycle
(Understanding Hype Cycles, n.d.). It is not the
be-all, end-all in the technology space that some
make it out to be. However, it can bring very real
results to a business. A business will most likely
not use it in all of the ways that it is being used on
the social networking Internet sites. If a business
takes the time to understand the fundamental
concepts behind Web 2.0 and social software,
the underlying value propositions associated with
each, and select the ones that are appropriate, it
can put them to work for the business.

While the benefits are undeniable, many will
struggle with measuring those benefits. Most busi-
nesses today use objective numbers to measure
success. Companies look at things such as revenue,
profit, and expenses at the macro level, and sales
quotas, wages, product volume delivered, hours
worked, and other measurements at the micro
level to measure and track progress. In the case
of social software, though, the focus is the human
element, not finances or output measured.

The problem with measuring the value of
social software and social networking is the ex-
treme difficulty of putting an objective measure
on a subjective topic. It is just not possible to put
a direct measurement on human elements, like
relationships or tacit knowledge. For example, a
company may deploy a social software environ-
ment to help with recruiting new employees.
The system will help new employees to grow
their network more quickly, which they can, in
turn, use to locate knowledge faster. But how

3188

Social Software Trends in Business

does the company measure that? Any attempt
to quantify that value into a dollar amount will
need to include a number of assumptions and
mostly fictional, best-guess estimates. Inevitably,
this is an inaccurate method of measurement, at
best, and is usually fraught with skewed data and
meaningless results.

Social software may have a direct effect on the
company’s bottom line, but the direct correlation
between social software and items in the general
ledger may never be numerically established.
Social networking is about personal relationships
and personal relationships are about people. In
order to make the investment in social software,
a company has to value their employees, partners,
and customers and be ready to make an invest-
ment in people.

FIndInG And APPlYInG the
vAlue oF socIAl soFtwAre
For busIness

It is a good first step to identify that there is
value in using social software to support daily
interactions and relationships between individu-
als working at or with a business. However, that
is not quite enough to harness that value and
put it to work for the business. Not all aspects
or implementation methods of social software
are appropriate for a business. Likewise, not all
existing social networking applications that are
available on the Internet are appropriate for use in
a business environment. Some sites like LinkedIn
(http://www.linkedin.com) offer some value to
employees by allowing them to make contacts in
other businesses for sales or marketing reasons.
Others require more examination and may not
necessarily be appropriate.

The very first area of examination must be
the concept of, for lack of a better word, what I
will call domains. In this area of examination, the
individual’s use of the Internet will be referred
to as the public domain; the business IT environ-

ment, including use of the Internet to work with
customers and partners, will be the enterprise do-
main. It is extremely important to understand the
differences between these domains, the nuances
of each domain, and the behavior and motivation
of users in each domain. These differences and
characteristics will have a profound impact on
leveraging social software in a business.

The public domain can largely be characterized
as having recreational users with minimal affilia-
tions. Most users will be independent individuals
using the Internet for personal use. While many
voluntarily identify themselves appropriately,
anonymity is entirely possible and is leveraged
by some. Their purpose for use will most likely
be associated with serving self-interests. This is
the domain where many of the most popular social
networking sites are currently active. Sites like
MySpace (http://www.myspace.com), Facebook
(http://www.facebook.com), Flickr (http://www.
flickr.com), and others are focused on serving the
self-interests of individuals by providing services
to connect with each other on an independent,
individual level.

The enterprise domain can be characterized as
having professional users associated or affiliated
with businesses or professional organizations.
This association of user with business or profes-
sional organization is usually readily indicated in
the identity that is used online. The purpose of
use will most likely be associated with serving
either the associate business or the professional
life (e.g., career) of the user and is expected to be
used in a professional manner. This is the domain
where the traditional business IT communications,
financial, sales, marketing, and similar systems
are located. Applications such as company e-mail,
financial software, collaboration software, portals,
supply chain management, and intercompany ap-
plications are focused on providing value to the
business by facilitating business functions.

The purpose of social software remains the
same independent of domain, but the way that
social software is valued and, as a result, leveraged

 3189

Social Software Trends in Business

is quite different in each domain. Public-domain
users value social software for its ability to fa-
cilitate relationships that are self-interest focused.
Businesses value social software for its ability to
facilitate relationships that benefit the needs of
the business. Therefore, businesses do not see a
lot of value in having users join MySpace to cre-
ate a profile and keep up with people’s hobbies,
likes, and dislikes, but public-domain users do.
However, businesses do see a lot of value in us-
ing this same concept to provide profiles of their
employees that identify their skills, professional
affiliations, areas of expertise, and tags for the
purpose of locating people with particular skills
or knowledge.

To get the most value from social software,
businesses should not try to duplicate the most
popular Web sites that exist in the public domain
and bring them into the enterprise domain. Instead,
businesses need to examine the social software
and Web sites in the public domain, understand
why they are popular and what functions they
offer that could be useful to the business, and
then implement those functions in areas of their
business that will provide the greatest benefit.

For example, podcasting got its start as a way
for an audio blog to be taken off line and listened
to on personal media devices. This was quickly
adopted by the media industry and leveraged to
provide audio files such as radio broadcasts and
audio journalistic articles for subscribers to listen
to on their personal media devices while discon-
nected. Since then, many businesses have taken a
close look at the concept of podcasting as a way
to use audio and sometimes video files to deliver
information in a quick and asynchronous way to
users. As a result, businesses have been able to
leverage the concept to accommodate increas-
ingly time-constrained employees, partners, and
customers with important presentations, training,
recorded meetings, and even sales and market-
ing materials that are available when they want,
where they want. It is even being used to overcome
language and cultural barriers by allowing people

the ability to pause and listen multiple times to
a recording that may be in a second language
to them. This greatly increases comprehension
and the effectiveness of the information being
delivered.

Most importantly, businesses need to un-
derstand that all of the individual added value
social software brings to the table roll up under
one umbrella. The social software trend is about
empowering people. Through this empowerment,
a business achieves the maximum potential from
social software. Freeing people from traditional
business control of information and organization
and giving them tools that they need to make their
voices, thoughts, and ideas heard while transcend-
ing boundaries is the value that social software
brings to the table.

If a business is satisfied with its current busi-
ness process and thinks there is no room for
improvement, social software is not for it. If it
is not interested in improving customer services
and does not care about suggestions for cutting
operating costs, social software is not for it. If a
business is not concerned about employee mo-
rale or overcoming communication and cultural
barriers, it need not examine social software for
its business. If it has all of the innovation that it
needs and does not want to find new sources of
ideas or better know what its customers need,
social software is unnecessary.

However, if a business does care about all of
these things, and arguably every business should,
then social software brings a great deal of value to
the initiatives, not by traditional formal programs
or structured initiatives, but through unstructured
approaches to tapping into normally unheard
ideas. Every company has employees with ideas
about how to refine processes that they work with
on a daily basis to be more efficient or how to cut
wasteful spending. There are plenty of custom-
ers and business partners that are willing, and
even anxious, to tell a business exactly what they
need, how to improve a product, or even become
involved with the design and innovation process in

3190

Social Software Trends in Business

order to contribute their experience and require-
ments. It is through empowering the people and
letting their contributions be heard that the great
advances are made.

Fostering innovation in a company is one of
the most highly touted uses for social software in
business. Empowerment through social software
can have a profound effect: “Research and develop-
ment projects fail more often than they succeed.
In fact, out of every 10 R&D projects, five are
flops, three are abandoned and only two ultimately
become commercial successes” (Rizova, 2006,
p. 49). Traditional business approaches to R&D
put the source and responsibility for innovation
squarely on the shoulders of a single structured
department. The brightest minds would be hired
to work in this department—people with master’s
and doctorate degrees and a history of research-
ing, being innovative, and capturing their results
in academic papers and prototypes.

Does it not seem that there is something fun-
damentally wrong with this approach? It is not
reasonable to assume that only the people who
work in the R&D department can be creative
or should be allowed to be creative. Most busi-
nesses would agree that there are other people in
a company or who work for business partners and
customers who are creative. In the overwhelming
majority of cases, most businesses do not have
the capacity, tools, or methods in place to hear
and capture the innovation from those additional
sources. That is where social software can sup-
port the process. As a rudimentary example,
if a business were to implement blogs for their
employees and allow them to start expressing
their thoughts, frustrations, wishes, ideas, and
more, there is plenty of innovation that could be
harvested from the blogs and ultimately turned
into valuable business assets.

Another major area of benefit under the em-
powerment umbrella is the ability to provide easier
access for users to find, use, and integrate data
sources. For example providing RSS or ATOM
feeds to key business systems allows a user to

aggregate that information to a place that is easy
to scan and keep up with (much like scanning the
headlines of a newspaper). This makes users more
aware and knowledgeable about the business as
a whole and makes them more effective in their
tasks relating to the business. It also increases
their efficiency because what once took an hour of
time to seek out multiple data sources and review
or interact with them now takes a fraction of the
time because they are summarized in a single
location. Another example would be to provide
users with the ability to create a mashup so that
they can generate reports or create situational ap-
plications that are context sensitive and specific to
their task at hand. By putting this capability in the
users’ hands, a business removes the shackles of
having to request and wait for the IT department
to create the needed application or reports.

Additionally, many of the Web 2.0 technology
aspects of social software trends provide for a
more interactive and responsive user experi-
ence in working with data. By improving the
user experience of interacting with the data, two
things occur. First, users are comfortable using
the software and prone to use it more extensively.
Second, as power users leverage the software
more, additional users will be drawn into using
the software through both necessity and word of
mouth. This is known as “viral” adoption of the
social software system because usage spreads like
a virus instead of through traditional IT mandate
or formal marketing.

concerns About socIAl
soFtwAre In the enterPrIse

By removing the traditional business structure
and empowering people through such an open
solution, most businesses will be legitimately
concerned about corporate information security.
This is yet another aspect of social software in
the enterprise domain that is not an issue or con-
sideration in the public domain. The very thought

 3191

Social Software Trends in Business

of accidentally exposing internal confidential
information is something that will immediately
send business IT security departments into a full
panic. Realistically, there is a balance to be struck
between providing openness and ensuring that
truly confidential information does not wind up
freely available to all.

This balance is struck by understanding which
boundaries are going to be crossed by using social
software, recognizing the implications of crossing
each boundary, and putting the proper guidance
and security in place for each. Most businesses
already have corporate information guidelines
that can be easily extended to cover social soft-
ware. For example, users should understand that
there are different conduct guidelines that apply
to blogs only available on a business’s internal
network vs. blogs available on the company’s
public Web site. On the internal blog location,
the boundaries being crossed are internal (e.g.,
between departments), with users having the same
association (the business) and therefore needing
less rigorous guidelines because all users are
business employees and working toward the same
general business goal. Users should be able to post
almost any content with a few exceptions (i.e., no
customer names, no personal attacks, etc.). As a
result, there may be plenty of blog entries that
complain about business processes or strategy,
share ideas for new products or solutions, and
share personal information.

However, this type of content would not be
appropriate to be posted on the business’ public
Web site. Externally available social software
crosses the boundaries between the business and
partners, customers, and the general public. As a
result, there are additional guidelines that should
be applied to address the different associations and
affiliations of users of the social software. In this
situation, blogs or wikis might be used to publicize
new or little-known information about products or
solutions and work together with customers and
partners on advancing nonconfidential business
ideas. Additionally, guidelines will need to be

established to deal with information posted by
those with negative intentions. These guidelines do
not include constructive criticism, but instead are
directed toward malicious content and spam.

Most users will intuitively realize what content
is appropriate to be posted in social software based
on the boundaries that are being crossed. This
does not mean that there is no need for a busi-
ness to deal with exceptions. For example, what
happens when someone creates a blog entry that
negatively talks about another department in the
organization? That is probably not so bad if it is
an individual’s blog and is expressing the thoughts
of the individual. It helps bring an issue to the
surface so that it can be addressed and resolved,
and everyone can move on. However, what hap-
pens if this same entry were to appear in a group
or team blog? The author’s name posting the entry
is explicit, but how does this reflect on the entire
team that owns the blog? Members might not all
feel this way about the other department, but now
these negative thoughts are projected as coming
from the entire team. Perhaps in this situation,
it is not appropriate and the author should move
the entry to his or her personal blog or remove
the posting altogether. There is no right answer
to these types of scenarios, but some guidelines
for working with these situations should be es-
tablished and publicized to the users of the social
software.

Social software also raises privacy concerns
in the enterprise domain, but not in the public
domain. Most social software solutions work
based on a voluntary participation basis, empow-
ering the user to contribute, but not mandating
participation in the usage of the software. While
this type of opt-in participation does eliminate
many of the privacy issues that might be as-
sociated, there are some social software (more
specifically, social network analysis) tools that
analyze corporate communications data to extract
social relationship data and make that available.
Some would consider this an invasion of privacy

3192

Social Software Trends in Business

and even have the feeling of the business’s “big
brother” watching.

However, there is another perspective that data
in corporate communications tools belongs to the
corporation and not the individual. Additionally,
most of these types of social software will analyze
only cursory information in the communications
data (e.g., e-mail headers, but not the body) and
store or transmit only the analysis itself, not the
data being analyzed. Businesses have to comply
with national employee privacy laws that address
the types of employee data that can be made
available and used by the business. It is important
to always make sure that the business is in full
compliance with these laws.

In many businesses, social software is viewed
by some as a way for employees to waste time.
Initially, some do not see the inherent value in
social software, but instead think that it will
make the company less productive because us-
ers will spend all their time working on things
of no value to the business. Those same people
are starting to have a realization that they need
to use this technology, but are not quite sure just
what should be done about it.

This is nothing more than a case of history
repeating itself. This same opinion was voiced by
many when e-mail first emerged as a new com-
munication tool. It was often viewed by many as
a way for people to waste their time sending each
other frivolous messages. This same opinion was
then applied to the Internet, where users would
presumably while away their hours surfing the
Internet. Most recently, this same approach has
been applied to instant messaging. Many view
it as a kid’s toy and a way for people to waste
time chatting with their friends about nothing in
particular. In each of these cases, the naysayers
have been proved wrong and each technology has
become an integral part of the way business is
done on a daily basis. In fact, all of the previous
technologies mentioned here have moved into
the critical path for businesses and many do not
know how they ever operated without them. Social

software is destined to follow this same path and
become an integral part of doing business.

Future trends

Is there a Web 3.0? Will Web 2.0 one day go the way
of Web 1.0? The real question is not whether Web
2.0 will be usurped, as it is only natural that the
evolution of the Web continues. The real question
is what will be next. At this point, there are two
concepts that look to be the most promising and
are gaining a large amount of interest. However,
they are only conceptual at this point and there
has not yet been any real traction in making the
concepts into a reality.

The Semantic Web refers to a vision for the
Web to become a medium for machines to be
able to understand, relate, and compile informa-
tion without human intervention: “It is envisaged
to smoothly interconnect personal information
management, enterprise application integration,
and the global sharing of commercial, scientific
and cultural data” (W3C [World Wide Web Con-
sortium] Advisory Committee, 2007, p. 1). The
current configuration of the Web supports the
linking and interaction of Web sites, but requires
human interaction to interpret the data that is on
the Web site. In the Semantic Web, individual
pieces of data that are available on the Web are
surrounded by descriptive tags that allow comput-
ers to understand relationships between pieces
of data, as well as the properties of those pieces
of data.

By making individual pieces of data readable
and understandable to computers, the Semantic
Web will truly transition the Web as we know it
today from a collection of interacting Web sites
to an unbelievable mass of data that is free to be
combined and integrated. Allowing machines the
ability to combine individual pieces of data will
lead to the ability for machines to begin to perform
tasks on behalf of humans. For example, a human
currently has to submit a query on Google and

 3193

Social Software Trends in Business

then review the results to find the result that best
fits the context with which they are interested. In
the Semantic Web, a machine would be able to
query and review the results for the appropriate
context to return to the human.

While the Semantic Web has been discussed
as early as 1999, critics have cited that there has
not been a great amount of progress made on the
Semantic Web coming to fruition over the past 9
years. Also, concerns of privacy and censorship
would have been raised because of the ability for
machines to understand the data that they are com-
municating. If this understanding were in place,
computers could be made to more rigidly filter or
display that data without human approval.

Another direction for the future centers on
opening up the individualized social networking
Web sites. Many sites now require users to regis-
ter and then maintain their connections to others
within the site. This causes a lot of frustration
and extra work when users move to a different
social networking site and have to reenter all of
their information and connections to friends. Not
to mention that their friends might not even be
part of the new site; then they have to convince
their friends to move over as well. This is a very
Web site focused approach to social networking
and only a fraction of how true social networking
works outside of computers.

To address this issue, there has been much
discussion about the Social Graph. The Social
Graph refers to a visual mapping of all of our
social interactions and connections as human be-
ings. As opposed to having connections to others
maintained on a Web-site-by-Web-site basis, it
has been proposed that there be one open Social
Graph created to manage connections between
anyone and everyone. The Social Graph would
also take care of maintaining a single identity for
a user. The identity and connections could then be
mapped to and leveraged by any Web site without
having to recreate and store this information in
a proprietary way.

This Social Graph further evolves the Internet
from a space of interconnected Web sites to a
space for interconnected people. After all, users
may care about information or knowledge in a
contextual and periodic nature (for business use,
for personal use, etc.), but care about relationships
to others (family, friends, colleagues, etc.) on a
constant basis.

In both the Semantic Web and the Social Graph,
it is proposed that the Internet move away from
a set of connected Web pages and documents
and focus connections more on people and data.
This shift in direction will prove to be another
powerful evolution because it will expose data
and relationships at a much more granular level,
thereby paving the way for a new level of con-
textual application. It would not be surprising to
see some combination of these two notions in
the future.

conclusIon

Social software and Web 2.0 are the hottest top-
ics on the Internet. As they continue to draw an
incredible amount of attention through the media
and online traffic, there is also a great amount of
confusion being perpetuated. The intermixing and
interchangeable use of terms is, at best, confusing
people and leaving others thinking that the social
software trend is all smoke and mirrors. While
some of the hype surrounding Web 2.0 and social
software is just that, there is value in the concepts
that underlie the trend.

Just like the value of the social network lies
in the relationship between people, instead of
the people themselves, the value of defining the
terms associated with the social software trend
lies in their relationships. Social networking
is about the relationships between people. It is
about bringing people and knowledge together
and better leveraging what you know about who
you know. Collaboration is about formalizing the
group established through a social network into

3194

Social Software Trends in Business

a team to work toward a common goal. Web 2.0
is the technology that is being used to empower
and facilitate the social networking and, in some
cases, the ensuing collaboration.

Many businesses are starting to examine the
social software and Web 2.0 trend in order to see
how it can add value to their business:

Much like late 1997, when technology spe-
cialists were getting asked by senior executives
“What is the Internet, exactly, why is it a big deal,
and what’s our Internet strategy?” The question
now is “What’s Web 2.0/Enterprise 2.0/social
media, exactly, why is it a big deal, and what’s
our W2.0/E2.0/social media strategy?” (McAfee,
2007, p. 1)

Social software is about relationships and
relationships are about people. In order to fully
leverage the social software trend, a company
needs to value its human resources and be pre-
pared to invest in people. There may never be
a direct correlation between the deployment of
social software and the bottom line of the ledger
sheet (without a few bits of creatively fictional
logic), but the company will surely see the value
reflected in subjective measures, like customers’
satisfaction, increased productivity, enhanced cost
cutting, improved employee morale, and more.
All of these factors will translate to an improved
financial bottom line.

Businesses will need to apply the concepts
behind the social software trend to areas of their
business where they can be effectively used to
unlock and open up the business and provide a
voice to users. By empowering users, social soft-
ware will allow for new sources of innovation and
collaboration. According to a 2006 IBM Global
CEO study (IBM Global Services, 2006), only
17% of CEOs ranked internal R&D as a source
for new ideas. This means that overwhelmingly,
businesses will be looking to customers, part-
ners, and other company sources for the ideas
and innovation that will power the future of their
business.

Unlocking all of this value will not come with-
out some challenges. It is encouraging, however,
to know that those challenges can be overcome.
Issues of security, privacy, and adoption of social
software will emerge within businesses. Never-
theless, these issues have emerged with previous
technologies, such as e-mail or the Internet itself,
and have been addressed accordingly.

Now that we have had a look at how social
software trends can impact businesses, subse-
quent chapters will examine how elements of
social software are being adopted by businesses
in different industry segments.

reFerences

Collaboration. (n.d.). Merriam-Webster’s Online
Dictionary. Retrieved December 15, 2007, from
http://www.m-w.com/dictionary/collaboration

Cross, R., Abrams, L., & Parker. (2004). A re-
lational view of learning: How who you know
effects what you know. In M. L. Conner & J.
G. Clawson (Eds.), Creating a learning culture:
Strategy, technology, and practice (pp. 152-168).
Cambridge University Press.

IBM Global Services. (2006). Expanding the
innovation horizon: Global CEO study 2006.
Retrieved December 15, 2007, from http://
www-935.ibm.com/services/us/gbs/bus/html/
bcs_ceostudy2006.html

Laningham, S. (2006). developerWorks inter-
views: Tim Berners-Lee. Retrieved December
15, 2007, from http://www.ibm.com/developer-
works/podcast/dwi/cm-int082206.html

McAfee, A. (2006a). Enterprise 2.0: The dawn of
emergent collaboration. MIT Sloan Management
Review, 4(3), 21-28.

McAfee, A. (2006b). Enterprise 2.0, version 2.0.
Retrieved December 15, 2007, from http://blog.
hbs.edu/faculty/amcafee/index.php/faculty_am-
cafee_v3/enterprise_20_version_20

 3195

Social Software Trends in Business

McAfee, A. (2007). How to hit the Enterprise
2.0 bullseye. Retrieved December 15, 2007,
from http://blog.hbs.edu/faculty/amcafee/index.
php/faculty_amcafee_v3/how_to_hit_the_enter-
prise_20_bullseye

O’Reilly, T. (2005). What is Web 2.0? Retrieved
December 15, 2007, from http://www.oreillynet.
com/pub/a/oreilly/tim/news/2005/09/30/what-is-
web-20.html

O’Reilly, T. (2006). Web 2.0 compact definition:
Trying again. Retrieved December 15, 2007,
from http://radar.oreilly.com/archives/2006/12/
web_20_compact.html

Rizova, P. (2006). Are you networked for success-
ful innovation? MIT Sloan Management Review,
47(2), 49-55.

Understanding hype cycles. (n.d.). Retrieved
December 15, 2007, from http://www.gartner.
com/pages/story.php.id.8795.s.8.jsp

W3C (World Wide Web Consortium) Advisory
Committee. (2007). Semantic Web activity state-
ment. Retrieved December 16, 2007, from http://
www.w3.org/2001/sw/Activity.html

This work was previously published in Social Software and Web 2.0 Technology Trends, edited by P. Deans, pp. 1-16, copyright
2009 by Information Science Reference (an imprint of IGI Global).

3196

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8.2
Social Software and Language

Acquisition
Sarah Guth

Università degli studi di Padova, Italy

Corrado Petrucco
Università degli studi di Padova, Italy

AbstrAct

This chapter describes how the social software
tools that characterize Web 2.0, such as wikis
and blogs, can be used as a valid substitute for
more traditional Learning Management Systems
in the context of e-learning and blended learn-
ing language courses. First, we will give a brief
overview of how the educational arena is changing
and the role social software can play in promot-
ing these changes. Then we will describe two
experimental courses carried out at the University
of Padova using social software. The chapter
ends with a discussion of the role of these tools
in formal education. The aim of the chapter is to
show how these tools allow language educators
to take network-based language teaching beyond
the limits of planned classroom activities, offering
students new opportunities to access and produce
real language in real situations.

IntroductIon

The evolution of e-learning and computer-assisted
language learning (CALL) is inherently connected
to the evolution of technology and theories on
language learning pedagogy intertwined with
ways in which society changes. The advent of
the Internet in the 1990s led to a shift toward a
focus on authentic communication, task-based
learning, and network-based language teaching
(NBLT) using sociocognitive approaches. NBLT
involves a shift from learners’ interaction with
computers to interaction with other humans
via the computer (Kern & Warschauer, 2000).
Whereas the Internet was initially a place where
information and knowledge were delivered by
“experts” and information was simply retrieved,
toward the end of the 1990s, the Web started to
become a place where users, everyday people,
produced and shared content in ever-growing
global communities. Contrary to the dominant
epistemology of Western culture according to

 3197

Social Software and Language Acquisition

which knowledge is created and transmitted by
experts, the new way of using the Internet was
based on the concept of the “wisdom of the crowds”
(Surowiecki, 2005). In 2003, Tim O’Reilly and
Dale Dougherty dubbed this new revolution “Web
2.0” (O’Reilly, 2005).

Web 2.0 is characterized by what can generi-
cally be called “social software”: different types
of software that enable people to collaborate
and create and join online communities. What
is particularly interesting is the widespread use
these tools have achieved in a very short time,
especially among young people, the so-called
Digital Natives (Prensky, 2001) or Net Generation
(Oblinger & Oblinger, 2005). Whether people are
using these tools to express their creativity (You-
Tube, Flickr), to share their thoughts (MySpace,
blogs), or to share their knowledge (Wikipedia),
they are creating and participating in online social
networks in a way that was not imaginable just
a few years ago.

The aim of this chapter is to argue that not only
can language educators not ignore this revolution,
but they should embrace it. The benefits of using
social software for language learning go beyond
simply providing new tools students can use to
communicate. They promote social networking
on a global scale and knowledge sharing and
creation beyond the classroom, thereby giving
students opportunities to access, use, and produce
authentic language in real-world contexts. In this
chapter, we will first provide a brief overview of
the implications of Web 2.0 and social software for
education in a general context. This information
served as the foundation for an action research
project that was started at the University of Pa-
dova in the spring semester, 2006. We will then
describe the second stage of the project, which
involved the use of wikis, Skype, blogs, and other
Web 2.0 tools in an advanced English as a Foreign
Language (EFL) course. Though the research is
not yet complete, the initial results are positive
and confirm results from other studies. Finally,

the chapter ends with a discussion of the future
of these tools in education.

web 2.0 And socIAl soFtwAre
For educAtIonAl PurPoses

The educational arena today is finding it necessary
to react and adapt to the shift from an industrial to
a knowledge-based economy. We are now living in
an information society where the way knowledge
is created and organized and the very nature of
knowledge have changed. The ways knowledge is
represented have always been strongly influenced
by the tools used to express it. Today it is impos-
sible to think of knowledge without associating
it with tools such as search engines, Web sites,
repositories of learning objects, and more recently,
social software tools such as blogs and wikis.
Today’s students need to learn how to operate
effectively in today’s information overload and, at
the same time, how to become creators of knowl-
edge. Upon graduation, they will find themselves
looking for work in a global knowledge-based,
networked economy where they will need to be
skilled in collaborative and creative project-based
work and critical thinking (Bruns & Humphreys,
2005). At the same time, we must also help stu-
dents develop “the resources and skills necessary
to engage with social and technical change, and
to continue learning throughout the rest of their
lives” (Owen et al., 2006, p. 3). Language acqui-
sition especially is a lifelong process that cannot
end with traditional education, but rather must
be cultivated throughout life.

The advent and success of Web 2.0 technolo-
gies have led many to speak of e-learning 2.0.
Much of the focus during the first decade of e-
learning was on the tools, or learning management
systems (LMS), through which material could be
delivered while less focus was given to the actual
pedagogy to be used. We can distinguish between
two approaches to information and communica-
tions technology (ICT): a technology-centered

3198

Social Software and Language Acquisition

approach and a learner-centered approach (Mayer,
2005). The former generally fails to lead to lasting
improvements in education. A learner-centered
approach, on the other hand, can help students
and teachers learn and teach through the aid
of technology with a focus on how ICT can be
used as an aid to human cognition helping stu-
dents solve complex tasks and deal with today’s
information overload. Not only has the quantity
and kind of information students access today
expanded exponentially in the last few years, but
the way they interact with the information and
the global communities creating it has changed
dramatically as well.

As suggested by Bonaiuti (2007), this change
has two specific characteristics: a shift from formal
learning to informal learning and a shift from
content-based learning to collaborative learning.
Pedagogy based on a social-constructivist ap-
proach and supported by tools readily available
online and part of the everyday lives of students
can help create an active learning environment in
which students and instructors work together to
solve problems contextualized in the real world.
What’s more, in this context, the collaboration
does not stop outside the classroom, but rather
flows over into personal lives and develops through
the use of social software tools such as blogs,
wikis, and forums. To do this, an effort must
be made to try to integrate formal and informal
learning (Cross, 2006). This is certainly not a
new idea (Dewey, 1965), but it is one that is worth
experimenting with through the social interactions
mediated through the Web, which thus becomes
a powerful zone of proximal development able
to organize knowledge in multiple and flexible
contexts (Spiro et al., 1991). It is a model that
follows a participative approach to knowledge
creation (Sfard, 1998) and is closely tied to social
constructivism (Brown, Collins & Duguid, 1989;
Jonassen, 2000) by which learning is above all an
active process that is socially situated and aimed
at solving real problems. Rather than refer to this
new trend as e-learning 2.0, Futurelab1 proposes

the term “c-learning,” which could be intended
as “community learning, communicative learn-
ing or collaborative learning, [because] at its
heart learning is a social process” (Owen et al.,
2006, p. 11).

Social software follows the c-learning trend.
The use of social software in education focuses
on activities rather than applications (i.e., all those
activities that involve sharing knowledge [blogs],
collaboratively creating knowledge [wikis], and
managing knowledge [social bookmarking]). In
education, adopting social software has several
advantages with respect to other computer-medi-
ated communication tools.

1. Enabling communication among many
people beyond the classroom: Unlike
many closed LMSs, social software tools
give students the opportunity to interact
with experts and novices alike on a global
scale beyond planned classroom activities.

2. Providing new ways to share and create
content: These tools provide ways to share
and create content in systematic, organized
ways (e.g., blogs, photo sharing on Flickr at
http://www.flickr.com/, and video sharing
on YouTube at http://www.youtube.com/).
They also offer students the opportunity
to share knowledge beyond the classroom
through, for example, public wikis. The
process of sharing knowledge often involves
the process of transforming tacit knowledge
into explicit knowledge, which is where true
learning takes place.

 Some social software tools make it possible
to collaboratively collect and index informa-
tion in such a way that not only is it easier
for users to access their own resources, but
it is also possible to share them with others
in the community and exploit other users’
online searches. In this way, they function
as a filter for the information overload on the
Web (e.g., social bookmarking on http://del.
icio.us and social annotation on http://www.

 3199

Social Software and Language Acquisition

diigo.com). This is what Giger (2006) has
called “participation literacy” (i.e., it is no
longer the individual that filters information,
but the collectivity). Another useful tool for
filtering information is feed aggregators;
syndication makes it possible for informa-
tion to come to you rather than you going
to it. Some tools offer remote hosting (e.g.,
Bloglines at http://www.bloglines.com/),
which means users can access their feeds
from any computer, while others are installed
locally on a user’s computer (e.g., Sage, an
extension for Mozilla Firefox at http://sage.
mozdev.org/).

4. Integrating many types of media (audio,
video, images): With the growing number
of free tools to create multimedia, the in-
crease in the number of sites dedicated to
sharing these resources, and the spread of
broadband, students now have the possibility
to better express their ideas and creativity
by integrating audio, video, and images into
the contents they create online.

When several social software tools are used
together, students learn how to learn by (1) tak-
ing on responsibility for managing the social
software tools; (2) working cooperatively and
learning from each other; and (3) developing
online research skills (Mejias, 2006). All of these
activities enhance a student’s sense of responsi-
bility and collaboration, both of which can help
foster autonomy. If students learn how to exploit
the Web for their autonomous language learning
in the context of online communities, they will be
able to continue the language acquisition process
in their informal learning as well. Social software
tools take the practice of NBLT beyond the limits
of the language learning classroom into the global
communities of Web 2.0.

In the next section, we will describe how these
tools were aggregated and used in an advanced
EFL course at the University of Padova.

blended eFl courses usInG
socIAl soFtwAre

In spring of 2006, an action research project was
set up to study the potential of social software
to effectively teach blended learning courses for
English as a Foreign Language (EFL). The first
stage involved an experimental course that was
held at the Faculty of Engineering using blogs and a
wiki to conduct an upper-intermediate EFL course.
Overall, students proved to be highly motivated
by using these tools, participated actively, and
were satisfied with the course. A careful study
of the empirical data corpus led to a redesigning
of the course for 28 second-year EFL students in
a graduate course in International Communica-
tions Studies as the second stage in the project.
The year-long course was divided into two se-
mester-long courses: TulanePadovaXchange, a
telecollaboration project (Belz, 2005; O’Dowd,
2005) with Italian language students at Tulane
University in the United States and EFL students
at the University of Padova, and BloggingEnglish,
a course aimed at exploring the potential of Web
2.0 tools for autonomous and collaborative lan-
guage learning in the other semester. In order to
work more effectively, students were divided into
two groups of 14. One group did the exchange in
the first semester, while the other did the blog-
ging course; the groups switched courses in the
second semester.

Various data sources were used in the research
study, including the following: participant obser-
vation (teacher’s field notes), posts in students’
personal blogs, transcripts of students’ online
correspondence on the wiki and recordings of
their Skype conversations, informal interviews,
comparison of students’ writing at various
points throughout the course, and end-of-course
questionnaires. As the courses were blended and
students were asked to reflect weekly on their
learning process in their personal blogs, it was
possible to read students’ impressions and then
discuss them in class as the courses progressed.

3200

Social Software and Language Acquisition

In this way, the instructor was able to check her
interpretations of the data with students.

In the following paragraphs, we will describe
each course’s structure, language learning aims,
and preliminary results. This is followed by a brief
description of how assessment was carried out.

Padova-tulane exchange:
telecollaboration on a wiki

Telecollaboration projects have been carried out in
recent years using many tools, from simple e-mail
exchanges to specifically designed software (e.g.,
Cultura) (Furstenberg et al., 2001). Regardless of
the tool chosen, “the underlying rationale is to
provide the members of each parallel class with
cost-effective access to and engagement with age
peers who are expert speakers of the language
under study in an effort to increase intercultural
awareness as well as linguistic proficiency, to in-
crease the authentication of foreign language use
in the tutored setting, and to broaden the range of
discourse options and subject positions available
to classroom learners of language” (Belz, 2005, p.
1). Using a wiki as a platform offers advantages
that other tools do not. A wiki offers the pos-
sibility to create an ever-growing repository of
cultural knowledge that can be used and re-used
by students in various learning contexts over time
(Godwin-Jones, 2004). Furthermore, writing on
a wiki involves collective authoring, which by
its very nature requires significant amounts of
reading and peer correction. Students can also
use the revision history function available on
most wikis to keep track of changes in a piece of
writing over time, promoting close reading, revi-
sion, and tracking of drafts in order to focus on
writing as a process rather than a product (Lamb,
2004). Therefore, a telecollaboration project called
TulanePadovaXchange was set up between the
University of Padova and Tulane University us-
ing a wiki (http://tulanepadova.pbwiki.com/) and
Skype to add an oral component to the course.
The course was blended; students had one two-

hour face-to-face lesson a week for 10 weeks
(one semester) and were expected to do four to
six hours online per week.

The Exchange

During the first semester, students spent sev-
eral weeks exchanging messages on the wiki
based on the outcomes of tasks proposed by
the Cultura model. Each group of two or three
peers had a page they used as one might use a
discussion thread in a forum (see Figure 1). Two
advantages, however, to using the wiki were (1)
all of the information exchanged was present on
the same page and, therefore, easier to access for
reflection and (2) all of the students could see the
other groups’ exchange pages so they could learn
not only from their own peers but from the other
exchanges as well. Due to scheduling difficulties,
the Skype exchanges took place outside of class
time and, at most, students had three 15-minute
conversations.

In the second semester, the teachers in the
United States and Italy managed to organize
one hour a week in the respective language labs
when students could meet online so that rather
than carrying out the exchanges on partner wiki
pages, all exchanges took place orally via Skype
interviews. The sixth and final meeting was a
videoconference between the two groups car-
ried out using Skype. A significant increase in
involvement and motivation took place on both
sides of the Atlantic in the second semester.
Although students communicated frequently on
the wiki in the first semester, the focus of their
exchanges seemed to lack purpose leading to a
decrease in motivation throughout the course. The
exchange was not an integral part of the Ameri-
can students’ grade or coursework, but rather an
additional activity. During the second semester,
the teachers in the United States and Italy chose
three topics students were to explore (recycling,
alternative energy resources, and water resources)
and integrated the exchange into both course syl-

 3201

Social Software and Language Acquisition

labi. The regular use of Skype in the language lab
also increased motivation since students in the
two institutions had previously been given very
few opportunities to speak in the target language
and even fewer to speak with native speakers. All
the peer conversations were placed online after
each exchange in both streaming format and as
downloadable MP3 files offering students on both
sides of the Atlantic the opportunity to listen not
only to their own conversations but to their peers’
as well, as was the case with the wiki pages in
the first semester. In her blog, one student noted
that “one of the most positive aspects of Skype
exchanges is that we can all benefit from every
single conversation, that is, not only from the
exchange with our American conversation part-
ner, but also from the other exchanges: each of
us can learn from the experience made by other
students. Therefore… the more we listen and
talk to our peers, the more we learn…!” Finally,
as O’Dowd (2007) found, the students realized

the benefits of telecollaboration with respect to
traditional culture learning materials: “[T]he on-
line exchanges provided learners with a different
type of knowledge. … As opposed to objective
factual information, the accounts which students
received from their partners were of a subjective
and personalized nature” (p. 146).

The Interculture Wiki Pages

The culture pages in the wiki were developed
exclusively by the Italian students in English as
the writing component in the course.

During the first semester, the Italian students
were given the freedom to create and develop
wiki pages on a topic of interest to them based
on issues that came up during the asynchronous
exchanges with their American peers. Once pages
had been created, students were then encouraged,
and eventually forced, to read and edit each other’s
pages. When students create their own pages,

Figure 1. Example of a wiki page for peer exchanges; two Italian students and one American student
exchange messages in their native languages

3202

Social Software and Language Acquisition

they maintain a strong sense of ownership. In
Lund and Smordal’s (2006) wiki experience, the
authors state, “[L]earners did not immediately
embrace any notion of collective ownership or
epistemology but continued a practice where the
institutionally cultivated individual ownership
persisted” (p. 41). Indeed, writing collectively
did not come naturally, and students had to be
guided through the process. Collective author-
ing gives students an opportunity to focus on the
writing process (e.g., from collecting information
to organizing, rereading, and doing a final edit.
They eventually learn that it is actually easier to
correct a peer’s work and find where meaning
is unclear (Berg, 1999) rather than correct their
own contributions. The comment function in the
wiki allowed students to asynchronously negotiate
content and structure.

An attempt was made in the second semester
to encourage collective authoring by creating
the following six wiki pages for the students to
develop: Recycling in Italy/the USA, Alternative
Energy Resources in Italy/the USA, and Water

Resources in Italy/the USA. The Italian students
had to collectively develop the Italian page as
preparation for the Skype exchanges (see Figure
2) and then, based on the information exchanged
with their American partners, had to develop
the American page. An analysis of the six wiki
pages shows significant improvements in their
ability to collaborate and write collectively with
this organization. For example, they learned to
propose structure before writing and discuss
which part of that structure each individual stu-
dent was interested in developing. The benefit
of working asynchronously is that students must
critically read what has been written by others
before contributing. As one student commented,
“Thanks to this task I was obliged to search some
news and first of all … READ, READ, READ!
My colleagues had already written some generic
aspects and so I could begin my discovery from
that.” In the second semester, there was much more
knowledge sharing as students were developing
only six pages and developing them together.
Nonetheless, they still felt strong ownership for

Figure 2. Example of a wiki page before the final edit; each page had the same structure: introduction,
table of contents, contents

 3203

Social Software and Language Acquisition

their personal contributions and had difficulty
editing each other’s work, as was the case in the
first semester. The overall feeling toward the
end of the experience was, however, positive.
As one student commented, “Developing our
six wiki pages and conversing every week with
my American peer made me understand the
importance of ‘learning-by-doing’, co-operation
and negotiation and, most importantly, made me
reflect on the close, triple connection existing
between the communicative function of language,
the use of technology and the process of creating
and sharing knowledge.”

Finally, one of the main aims of the project
proved successful during the shift from the first
to the second semester: creating a repository of
shared knowledge. Students during the second
semester continued to contribute to the wiki cre-
ated during the first semester. Rather than being
a hindrance to production (i.e., “let’s copy what
they’ve done”), reading what other students had
written and experienced proved to be motivating
for students during the second semester. It is the
intention of the authors that the wiki continue to
grow with future semesters in such a way that
students continue to learn from their peers’ ex-
perience, avoid some of the pitfalls encountered,
and help the repository of intercultural knowledge
grow and improve.

Language Learning

The three linguistic aims established at the begin-
ning of the course were:

• To improve students’ reading skills and vo-
cabulary in the target language by reading
messages written by native speakers of the
target language.2

• To improve students’ written accuracy in the
target language via production of contents
in a wiki in the target language.

• To develop students’ speaking fluency in the
target language via interviews in Skype.

During the first semester, students were asked
to carry out their asynchronous text exchanges
in their native language in order to provide each
other with accurate, authentic language and to
have the freedom to fully express their ideas
regarding their culture. The most commonly
cited benefit was the opportunity to learn “real”
language, new idioms, slang words, and so forth,
which students then reproduced when developing
their wiki pages.

The questionnaires and focus groups (self-as-
sessment) and a careful analysis of the corpus of
written (wiki) and spoken (Skype recordings) text
confirmed that the second two aims were achieved
in both semesters. The second aim involves im-
proving reading skills as well, since before you
add a contribution to a wiki, you must first care-
fully read what others have already written. As
one student commented, “Collaborative writing
is a very stimulating activity, it fosters multi-
steps collaboration (reading, writing-integrating)
between wiki-contributors.” Furthermore, given
the nature of the tasks, students had to do a sig-
nificant amount of searching and reading online
to develop the factual contents of their wiki pages.
During the second semester, as they developed
three pages about Italy, they had to practice their
abilities to read in Italian and then produce new
knowledge in English. One student commented,
“Finding pages in Italian is not only a translation
exercise but it involves many other skills, such
as reading, summarizing, writing, thinking in a
critical way, etc.” Finally, accuracy regards not
only linguistic accuracy, but also issues such as
structure, content, and plagiarism. An analysis
of the development of the wiki pages throughout
the second semester course shows that with each
new page (of the total six), students’ abilities to
structure the pages, organize the information, and
provide references improved. Final feedback on
linguistic accuracy was provided by the teacher.
In groups, students then had to make a final edit
of assigned pages.

3204

Social Software and Language Acquisition

There is no doubt that the opportunity to
speak on Skype improved students’ confidence
in speaking in English and ability to express
themselves in English. They learned how to deal
with uncomfortable pauses, ask for clarification
when they did not understand, and, in the process,
learn new words and expressions. As one student
wrote in her blog, “Skyping pushes me to enrich
my vocabulary because, at first, my aim was that
of speaking with a native in order to improve my
English; now, I want to communicate, convey
ideas and for doing so, I must express myself in
a more appropriate way.” What is more interest-
ing, however, is that this process also helped them
learn how to communicate more effectively with
non-native speakers of Italian, as students con-
versed in both languages. Italian students are not
accustomed to speaking to non-native speakers of
Italian who are trying to communicate in Italian.
At first, many found it frustrating, but they became
much more aware of the importance of the role
of the native speaker when communicating with
non-native speakers. For example, they learned
to speak more slowly, how to piece together the
disjointed sentences their American peers were
producing, and understand the American students’
pronunciations in Italian. Given the growing num-
ber of immigrants in Italy, this can be considered
a particularly important social skill.

BloggingEnglish: Reflecting on
social software and language
learning

Many blended language courses are carried out
using forums or other tools in traditional, closed
LMSs to promote communication. However, if
current language learning aims to offer students
authentic opportunities for accessing and produc-
ing language, we asked ourselves if blogs and other
Web 2.0 tools were not more suitable. According
to Ferdig and Trammell (2004), “[K]nowledge
construction is discursive, relational and con-
versational in nature. Therefore, as students ap-

propriate and transform knowledge, they must
have authentic opportunities for publication of
knowledge” (p. 1). Blogs do just this if they are
public, which means they can be read by anyone
on the Web. This gives students a real audience
for their writing, beyond the teacher and the class-
room, which in turn increases students’ sense of
ownership and responsibility for what they write
(Godwin-Jones, 2004). Furthermore, the journal-
like nature of blogs and the fact that posts are
archived and can be retrieved promote reflective
analysis of their writing (Bryant, 2006; Ferdig &
Trammell, 2004). Finally, though at first blogs may
appear to be all about writing, they are first and
foremost about reading. Therefore, an advanced
ESL course, called BloggingEnglish (http://www.
bloggingenglish1.blogspot.com/) was designed
using a blog and e-tivities (Salmon, 2002) that
focus on familiarization with Web 2.0 tools.

the course

The course was blended, and students had one
two-hour face-to-face lesson a week for 10 weeks
(one semester) and were expected to do four to six
hours online per week. The course blog was used
as a substitute for the forums found on traditional
LMSs, and students developed their own personal
blogs as a place where they could reflect on their
learning experience, express their own creativ-
ity, and interact with their classmates. This was
believed to be important because, as Godwin-
Jones (2006) states, “[I]t is possible to create a
more student-centred learning environment using
blogs, particularly if students create blogs that
they control and whose content they own” (p. 13).
Throughout the 10-week course, students were
given weekly e-tivities to complete, either on the
course blog or on their own personal blogs.

The course had three main objectives:

• Students will develop competency in the use
of blogs, wikis, social bookmarking, Web

 3205

Social Software and Language Acquisition

syndication, and other Web 2.0 tools, and
explore their potential for language learn-
ing.

• Students will improve their written commu-
nicative fluency in English and their reflec-
tive and critical thinking skills by publishing
their thoughts, opinions, and reactions on a
course blog and on a personal blog.

• Students will develop their practical research
skills using online information networks
as they look for, find, and share online re-
sources.

Each week students were faced with a new
Web 2.0 tool with the aim of helping them improve
their information literacy skills and participation
literacy skills (Giger, 2006) (i.e., how to exploit
the knowledge of other Web users and share their
knowledge in global communities) (see Table
1). They were encouraged to find blogs where
the blogger regularly posted useful information
and resources with regard to language learning
or their future professions (e.g., as translators or
tourism professionals) and podcasts containing
regularly updated audio files useful for develop-

ing listening skills. Students learned how to use a
feed aggregator to have updated information from
blogs and other Web sites come to them rather than
having to regularly check all the sites they had
found. They learned how to participate in social
bookmarking (i.e., to exploit the Web sites other
members of the community had already found
and add their own contributions). They discov-
ered how to effectively use sites like YouTube to
practice their listening skills in an interesting,
personalized way by choosing topics of particular
interest to them (see Figure 3 for the e-tivity on
YouTube and Figure 4 for a student’s post on her
personal blog and a peer’s comment). Toward the
end of the course, two e-tivities were dedicated
to contributing to an existing public wiki. These
tasks helped students understand not only that they
could gain from other people sharing knowledge
but that they too had knowledge to share. As one
student commented at the end of the tasks, “We
are given the great opportunity to ‘tell the world’
what we’ve learned so far during the English
course.” In other words, students learned to create
knowledge, share knowledge, and benefit from
the sharing of knowledge of other Web 2.0 users.

e-tivity 1 Let’s get started To become familiarized with the course blog; introduc-
tions

e-tivity 2 Exploring the blogosphere To learn how to exploit the blogosphere as a source of
information

e-tivity 3 Developing your own blog To develop a space to express your own creativity and
opinions

e-tivity 4 Social bookmarking To learn how to save all the resources you find on the
Web and exploit those found by others

e-tivity 5 Feeds and feed aggregators To learn how to have selected updated information
come to you

e-tivity 6 YouTube To learn how to exploit video online for language
learning and discussion

e-tivity 7 Let’s wiki on a public wiki
To experiment with writing on a public wiki

e-tivity 8 Cleaning up the wiki

e-tivity 9 PLEs To develop a mindmap of your personal learning
environment

Table 1. Weekly e-tivities in the second semester

3206

Social Software and Language Acquisition

The final e-tivity aimed to have students stop and
reflect on what they had done and learned by in-
dividually developing a mindmap (using the open
source software FreeMind) of their own personal
learning environment (PLE) and publishing it on
their personal blogs. A PLE is “a combination
of the formal and informal tools and processes
we use to gather information, reflect on it, and
do something with it, which is essentially what
we mean when we talk about learning” (Martin,
2007). This seemed an appropriate way to end a
course on social software as these tools are flex-
ible and can be personalized, and as such allow

students to develop their own platforms for their
informal learning.

Students found that being faced with a new tool
each week was challenging. The general reaction
was initially frustration and a sense of not being
able to accomplish the task. These 24-year-old
Italian students are not, in fact, Digital Natives,
and there was no overlap with what they did in
the classroom and their personal lives, as most
had never seen a blog and none had ever used a
wiki, social bookmarking, or feed aggregators.
This initial frustration, however, inevitably turned
into appreciation for what the new tools had to

Figure 3. Example of an e-tivity based on Salmon’s model (2002): spark, purpose, task, respond, time-
line. The figure shows e-tivity 6 on exploring YouTube. All students completed the optional part of the
task (3)

 3207

Social Software and Language Acquisition

offer and an understanding that they were not so
difficult to use. A typical entry in students’ per-
sonal blogs was one student’s reaction to learning
how to use the feed aggregator: “As has already
happened with the previous e-tivities, when we
were asked to learn to use new tools, this time I
had little problems at first as well. Anyway, after
hesitating and being a bit ‘angry,’ I’m now able to
use another tool, and this thanks to my English
teacher and e-tivities.”

language learning

A typical reaction of students at the beginning
of the course was “What does this have to do

with language learning?” An analysis of the data
proves that it can have much to do with language
learning, especially reading and writing. As Will
Richardson (2004) states in his blog on educa-
tional blogging, “Blogging starts with reading.
… blogging, at base, is writing down what you
think when you read others. … The tool requires
writing. The act requires reading. Without reading,
you’re just writing, not blogging.” They developed
their reading skills through searching on the
Internet to complete the tasks (“I’ve never read
so much!” was one comment) and reading each
other’s posts before commenting on the course
blog or each other’s personal blogs. Furthermore,
although “writing a weblog appears in the first

Figure 4. Example of a student post following an e-tivity and peer comments using the comment func-
tion; in this screenshot, the student is responding to e-tivity 6 (see Figure 3); the comment exchange
demonstrates how the students are developing a community of learners

3208

Social Software and Language Acquisition

instance to be a form of publishing, … as time
goes by, blogging resembles more and more a
conversation” (Downes, 2004, p. 24). Not only
did students send comments to each other’s posts
in their personal blogs and on the course blogs,
engaging them in asynchronous conversation,
but comments were also received from strangers
on all the personal blogs. Receiving comments
from the outside helped students become aware
of the fact that they were not only writing for
their peers and teacher, but for a global audience
as well. Students felt more responsible for what
they were writing when they realized anybody
could read what they were writing.

Blogging is also, of course, about writing.
Students had to write regularly during the course
in the form of blog posts and comments. The
teacher provided feedback on the language used
in the blog posts, and improvements in accuracy
took place throughout the course as a result of the
feedback. Based on a genre analysis of blogs and
online publishing in general, students learned how
to be concise and clear and effectively organize
their blog posts into small, well-structured read-
able pieces of information. In their questionnaires,
students also mentioned having improved their
ability to use different registers (blog, peer feed-
back, public wiki) and to write more quickly under
time pressure. Since blogging involves connecting
information to the rest of the Web, students learned
to create links to other pages and cite sources of
information or images they found on the Web. In
this process, they became aware of the importance
of attribution and respecting copyright or copyleft,
as is the case of Creative Commons, a series of
licenses from which an author of any artistic work
can choose to allow others to use their work in
various ways. Finally, whereas writing on their
blogs entailed using relatively informal language,
writing on a public wiki where anyone could
read or edit their contributions required students
to use more formal language and respect sound
academic practice. The wiki used, EduTech Wiki

(http://edutechwiki.unige.ch/en/Main_Page), is
a wiki on educational technologies hosted at the
University of Geneva. It is beyond the scope of
this chapter to compare the differences in student
writing on the TulanePadova wiki and the public
EduTech Wiki3. However, it is worth pointing out
that by being able to compare the two experiences,
students came to the overall conclusion that al-
though more challenging, having a real audience
makes them take their writing more seriously. As
one second-semester student wrote:

[C]ontributing to EduTech Wiki is a good way to
make students more responsible and aware of what
they’re writing. Here anyone can access the pages
and contribute to them, while last semester this
didn’t happen. Writing for a public audience helps
us improving our languages, our style and—as in
this case—our content (in the sense that maybe
we are more careful in looking for sources, links,
and information, and in deciding which of them
are more reliable than the other ones).

In other words, the change in audience from
peers and teacher to any potential Web user influ-
ences student writing.

Finally, it is important to point out that four
students have continued blogging in English since
the end of the course. They have changed the names
of their blogs but continue to explore the potential
of Web 2.0 and participate in discussions with each
other and other bloggers through comments. These
students have successfully integrated what they
learned in the course into their postgraduation,
informal language learning process.

Assessment

In a context where students are encouraged to
work in groups, collaboration must be taken into
consideration in assessment. According to John-
son and Johnson (in Swan, Shen & Hiltz, 2006),

 3209

Social Software and Language Acquisition

“The key to successful cooperative learning is
maintaining both individual accountability, in
which students are held responsible for their own
learning, and positive interdependence, in which
students reach their goals if and only if the other
students in the learning group also reach theirs”
(p. 47). In other words, not only do activities have
to be developed in such a way so as to promote
group work and responsibility, but also, at least in
a formal academic context where students place
a lot of importance on grades, collective work
must be assessed. Therefore, both courses used
continuous assessment and weekly feedback that
considered both individual and collective work
as well as a final project. Based on the work by
Meijas (2006), different percentages were assigned
to the various aspects to be assessed. At the start
of the course, the grading scheme and rubrics were
demonstrated and discussed with the students so
they knew what was expected of them.

For the wiki course, the percentages were as
follows:

1. Participation (individual grade – exchanges
with American peers): 25%

2. Participation (individual grade – wiki con-
tributions and editing): 25%

3. Editing the wiki (collective grade – accu-
racy): 25%

4. Final paper/presentation (individual grade
– accuracy): 25%

As can be seen, 75% of the final grade is
individual, as this is still considered of primary
importance at the university. Nonetheless, the
grids used to weekly assess the two participa-
tion grades take into consideration collaboration
skills (e.g., whether or not the contents of their
exchanges and wiki pages responded to what
their peers had said or done). Both communica-
tive fluency and linguistic accuracy were taken
into consideration. In other words, attempts were
made to find a balance between individual and

collective grades and between assessment of flu-
ency and accuracy.

For the blogging course, the percentages aimed
at encouraging active participation in knowledge
creation and sharing.

1. Distributed research (links posted to del.
icio.us): 10%

2. Individual analysis (reflection and con-
tent–communicative fluency): 40%

3. Final paper (individual grade–accuracy):
25%

4. Comments to classmates’ posts (quality of
peer assessment): 10%

5. Editing the public wiki (collective grade–ac-
curacy): 15%

Here, 20% of the final grade was based on
students’ abilities to share, collaborate, and do
peer review (e.g., distributed research, comments);
40% on their individual abilities to effectively
carry out the activities and reflect on their learn-
ing experience (e.g., blog posts); and 25% on
their individual performances and 15% on group
work (e.g., editing the public wiki). Accuracy was
considered in only 40% of the grade, while 60%
focused on fluency. This choice was based on the
fact that throughout their studies, Italian students
focus mainly on accuracy and very little on com-
municative fluency. Many students commented on
how much they appreciated the opportunity to be
able to just communicate in English. Furthermore,
the instructor expected students to emulate the
communicative techniques used in the tools they
were exploring as part of the course.

In order to keep track of student participa-
tion during both courses, grids were used that
included task achievement, quality (on a scale
of 1 to 10 based on predefined rubrics), and any
additional comments. This allowed the instruc-
tor to provide weekly qualitative feedback and
mid-term feedback as well as to easily calculate
the final grade.

3210

Social Software and Language Acquisition

dIscussIon

Numerous studies on network-based language
teaching (Kern & Warschauer, 2000) have begun
to show the benefits of using networked technolo-
gies in the foreign language classroom to connect
humans to other humans. As new technologies
have developed and Web 2.0 has taken hold, the use
of social software in promoting these practices is
simply the next step. Never before have language
learners had similar opportunities not only to
access authentic language but also to participate
in the creation of authentic language in real con-
texts. Given the fact that many of these tools are
free, offer remote hosting, and are easy to use,
experimenting with them becomes plausible for
any language teacher. In the context of the projects
discussed in this chapter, for example, the teacher
developed both courses without the assistance of
a technician or the use of institutional servers.
Furthermore, students can develop personal col-
laborative learning environments (e.g., through
blogging and social bookmarking) that they can
continue to exploit after courses are finished. In
other words, rather than being contained within
a closed institutional environment, students can
create their own personal learning environments
(Attwell, 2007; Wilson, 2006) suited to their own
specific language learning styles and needs, and
transferable to informal learning.

There are, however, institutional hurdles to
overcome. Up until now, many institutions have
integrated social software tools into their closed
Learning Management Systems (LMS) or installed
them on closed university servers. In many ways,
this seems to imply simply using social software
tools to do what can already be done with other
tools in LMSs. An LMS is a centralized environ-
ment controlled by an administrator and most often
accessible to a limited community of users where
the learning process takes place in times and ways
that have been established by an instructor. This
paradigm tends to promote traditional transmis-
sive pedagogy where the learner has a relatively

passive role and cannot take control over his or
her own learning. However, today most educators
recognize the need for students to become more
autonomous and responsible for organizing their
own learning. This replication of social software
in closed environments works against the very
potential of social software, which reaches its full
potential when there is a large user base. As has
already been stated, combining various tools not
only encourages students to take responsibility
for their own learning, but also, if these tools are
open, to continue using them once their formal
education is complete.

Another issue, which seems particularly
relevant in Anglo-Saxon contexts where copy-
ing and cheating have serious consequences, is
destigmatizing collaboration: “[I]t is no longer
cheating to find out from or gain the advice of
other people or to use information sources not
already in your head” (Owen et al., 2006, p. 49).
If resource sharing and peer assessment are en-
couraged and an emphasis is placed on developing
skills to learn how to judge resources, paraphrase,
and reference electronic sources, then students can
gather knowledge from different sources, even
their peers, and produce valid academic content.
In this way, students learn to learn from one an-
other and the larger Web 2.0 community, thereby
developing their participation literacy.

conclusIon

This chapter has attempted to offer an introduction
to the use of social software in language acqui-
sition. First, we considered the changes that are
currently taking place in education toward more
collaboration, responsibility, and autonomy for
students in both formal and informal learning con-
texts. We discussed ways in which social software
can help meet these new needs. Then we described
two blended learning courses carried out at the
University of Padova with advanced EFL students,
one involving the use of a wiki and Skype in a

 3211

Social Software and Language Acquisition

telecollaboration project with Tulane University
in the United States, and the other involving the
use of blogs and other social software tools to
help promote autonomous language learning. The
initial results, which are quite positive, and a de-
scription of how assessment was carried out were
presented. Finally, the challenges of using social
software in formal education were discussed. In
order to achieve the true benefits of using social
software in education, institutions and teachers
will have to shift from a focus on individual work
within the boundaries of a classroom or course
to a focus on collective and collaborative work
beyond institutional confines.

reFerences

Attwell, G. (2007). Personal learning environ-
ments—The future of eLearning?. eLearning
Papers, 2(1), 1–8. Retrieved April 25, 2007, from
http://www.elearningeuropa.info/files/media/me-
dia11561.pdf

Belz, J. (2005). Telecollaborative language study:
A personal overview of praxis and research.
Proceedings of the 2004 NFLRC Symposium:
Distance Education, Distributed Learning, and
Language Instruction. Retrieved October 13,
2006, from http://www.nflrc.hawaii.edu/net-
works/nw44/belz.htm

Berg, E.C. (1999). The effects of trained peer
response on ESL students: Revision types and
writing quality. Journal of Second Language
Writing, 8(3), 215–241.

Bonaiuti, G. (Ed.). (2007). E-learning 2.0: Il
futuro dell’apprendimento in rete, tra formale e
informale. I quaderni di Form@re n. 6. Retrieved
May 10, 2007, from http://www.erickson.it/erick-
son/repository/pdf/PRODUCT_1205_PDF.pdf

Brown, J.S., Collins, A., & Duguid, P. (1989).
Situated cognition and the culture of learning.
Educational Researcher, 18(1), 32–42.

Bruns, A., & Humphreys, S. (2005). Wikis in
teaching and assessment—The M/Cyclopedia
project. Proceedings of at the 2005 International
Symposium on Wikis, San Diego, California.
Retrieved July 15, 2006, from http://snurb.info/
files/Wikis%20in%20Teaching%20and%20Ass
essment.pdf

Bryant, T. (2006). Social software in academia.
Educause Quarterly, 29(2), 61–64. Retrieved
September 9, 2006, from http://www.educause.
edu/apps/eq/eqm06/eqm0627.asp

Cross, J. (2006). Informal learning: Rediscovering
the natural pathways that inspire innovation and
performance. San Francisco, CA: Wiley.

Dewey, J. (1965). Democrazia ed educazione.
Firenze, Italia: La Nuova Italia.

Downes, S. (2004). Educational blogging. Edu-
cause Review, 39(5), 14–26. Retrieved August
22, 2006, from http://www.educause.edu/apps/
er/erm04/erm0450.asp

Ferdig, R.E., & Trammell, K.D. (2004). Content
delivery in the “blogoshpere.” THE Journal, Feb-
ruary 2004. Retrieved September 19, 2006, from
http://www.thejournal.com/articles/16626

Furstenberg, G., Levet, S., English, K., & Mail-
let, K. (2001). Giving a virtual voice to the silent
language of culture: The CULTURA project.
Language Learning & Technology, 5(1), 55–102.
Retrieved May 11, 2007, from http://llt.msu.edu/
vol5num1/furstenberg/default.html

Giger, P. (2006). Participation literacy [licentiate
thesis]. Karlskrona, Sweden: Blekinge Institute
of Technology. Retrieved from http://www.par-
ticipationliteracy.com/

Godwin-Jones, R. (2004). Blogs and wikis: En-
vironments for on-line collaboration. Language
Learning & Technology, 7(2), 12–16. Retrieved
September 24, 2006, from https://llt.msu.edu/vol-
7num2/emerging/

3212

Social Software and Language Acquisition

Godwin-Jones, R. (2006). Tag clouds in the blogo-
sphere: Electronic literacy and social networking.
Language Learning & Technology, 10(2), 8–15.
Retrieved September 24, 2006, from https://llt.
msu.edu/vol10num2/emerging/

Jonassen, D. (2000). Learning as activity. Pro-
ceedings of the Meaning of Learning Project,
Learning Development Institute, Presidential
Session at AECT, Denver, Colorado.

Kern, R., & Warschauer, M. (2000). Network-
based language teaching: Concepts and practice.
New York: Cambridge University Press.

Lamb, B. (2004). Wide open spaces: Ready or
not. Educause Review, 39(5), 36–48. Retrieved
September 15, 2006, from http://www.educause.
edu/ir/library/pdf/ERM0452.pdf

Lund, A., & Smordal, O. (2006). Is there a space
for the teacher in a wiki? Proceedings of the
2006 International Symposium on Wikis, Odense,
Denmark. Retrieved September 9, 2006, from
http://www.wikisym.org/ws2006/proceedings/
p37.pdf

Martin, M. (2007). My personal learning envi-
ronment. Blog post from The Bamboo Project:
educate, advocate, innovate, collaborate on April
11, 2007. Retrieved April 26, 2007, from http://
michelemartin.typepad.com/thebambooproject-
blog/2007/04/my_personal_lea.html

Mayer, R. (Ed.). (2005). The Cambridge handbook
of multimedia learning. New York: Cambridge
University Press.

Mejias, U. (2006). Teaching social software with
social software. Innovate, 2(5). Retrieved Septem-
ber 19, 2006, from http://www.innovateonline.
info/index.php?view=article&id=260

Oblinger, D., & Oblinger, J. (2005). Educating
the Net Generation. Educause e-book. Retrieved
on October, 4, 2007, from http://www.educause.
edu/educatingthenetgen

O’Dowd, R. (2005). Negotiating sociocultural
and institutional contexts: The case of Span-
ish-American telecollaboration. Language and
Intercultural Communication, 5(1), 40–56.

O’Dowd, R. (2007). Evaluating the outcomes
of online intercultural exchange. ELT Journal,
61(2), 144–152.

O’Reilly, T. (2005). What is Web 2.0: Design pat-
terns and business models for the next generation
of software. O’Reilly.com Web site. Retrieved
January 10, 2007, from http://oreillynet.com/
pub/a/oreilly/tim/news/2005/09/30/what-is-web-
20.html?page=1

Owen, M., Grant, L., Sayers, S., & Facer, K.
(2006). Social software and learning. Futurelab
Web site. Retrieved April 25, 2007, from http://
www.futurelab.org.uk/research/opening_educa-
tion/social_software_01.htm

Prensky, M. (2001). Digital natives, digital immi-
grants. On the Horizon, 9(5), 1–6. Retrieved April
4, 2007, from http://www.marcprensky.com/writ-
ing/Prensky%20-%20Digital%20Natives,%20Di
gital%20Immigrants%20-%20Part1.pdf

Richardson, W. (2004). Reading and Blogging.
Weblogg-ed Web site. Retrieved October 10, 2006,
from http://weblogg-ed.com/2004/03/31

Salmon G. (2002). E-tivities: The key to active
online learning. London and Sterling, VA: Kogan
Page Limited.

Sfard, A. (1998). On two metaphors for learning
and the dangers of choosing just one. Educational
Researcher, 27(2), 4–13.

Spiro, R.J., Feltovich, P.J., Jacobson, M.J., &
Coulson, R.L. (1991). Cognitive f lexibility,
constructivism and hypertext: Random access
instruction for advanced knowledge acquisition
in ill-structured domains. Educational Technol-
ogy, 31(5), 24–33.

 3213

Social Software and Language Acquisition

Surowiecki, J. (2005). The wisdom of crowds:
Why the many are smarter than the few and how
collective wisdom shapes business, economies,
societies and nations. Doubleday.

Swan, K., Shen, J., & Hiltz, S.R. (2006). As-
sessment and collaboration in online learning.
Journal of Asynchronous Learning Networks,
10(1), 45–62. Retrieved May 10, 2006, from
http://www.sloan-c.org/publications/JALN/
v10n1/v10n1_5swan.asp

Wilson, S. (2006). PLE Workshop, Cetis PLE
Event in Manchester (UK). Retrieved April 24,
2007, from http://www.cetis.ac.uk/members/
scott/blogview?entry=20060609211909

KeY terms

Blog: Simply defined, a blog, or weblog is a sort
of online journal organized in reverse chronologi-
cal order, where a person writes about his or her
thoughts and interests, including providing links
to relevant resources on the Web. Most blogs al-
low readers to leave comments. There are many
types of blogs, from very personal journals to
educational blogs. Various types of media, from
audio to video to images, can often be integrated
into a text blog.

Feed Aggregators: A client software that
allows users to receive syndicated Web content
from any type of Web site that uses feeds such
as newspaper Web sites, blogs, podcasts, and
so forth. In other words, rather than having to
regularly check Web sites for updated informa-
tion through the use of feeds (RSS, XML RSD,
XML Atom), updated information is sent to the
feed aggregator so users have only one place to
check for updated content. Users can decide how
much of the updated information they would like
to receive in the aggregator (e.g., a few lines or
the entire text) and whether or not to receive just
text or other media as well. Users can also go di-
rectly to the Web sites from the aggregator. Feed

aggregators provide a useful tool for managing
the information overload on the Internet.

Informal Learning: Learning that takes
place outside of institutionally defined contexts;
for example, learning on the job and in one’s per-
sonal life. It can be associated with other concepts
such as lifelong and continuous learning, both of
which are becoming more important in today’s
information society.

Network-Based Language Teaching
(NBLT): NBLT involves teaching languages
through the use of computers that are connected
to one another in either local or global networks.
NBLT allows students to interact with speakers
of the target language without having to physi-
cally meet with them. In NBLT, the main focus
is on authentic communication via the computer
and the Internet. Social software offers new op-
portunities for NBLT.

Participation Literacy: Whereas information
literacy refers to a person’s ability to effectively
manage information, participation refers to the
competences required to effectively participate in
Web 2.0 environments. In other words, participa-
tion literacy involves learning the social skills
needed to take part in online communities.

Social Bookmarking: Social bookmarking
Web sites allow users to store, classify, share,
and search their own Internet bookmarks as well
as those of other community members by using
tags (folksonomies). Most services offer remote
hosting so that users can access their bookmarks
from any computer. Social bookmarking can serve
as a filter for the information overload on the
Internet. When users search on these Web sites,
they are not searching the entire Web using an
algorithm, as is the case on most search engines,
but rather they are viewing Web sites that other
users have found to be useful and taken the time
to save and describe, and for which they have
chosen semantically classified tags.

3214

Social Software and Language Acquisition

Social Software: A generic term used to
describe various types of software that enable
people to collaborate and create, and join online
communities. The tools can promote various
types of communication: synchronous one-to-
one (instant messaging), synchronous one-to-
many (Skypecasts), asynchronous one-to-many
(blogs), asynchronous many-to-many (wikis), or
asynchronous many-to-one (feed aggregators).
These tools allow users to share and create con-
tent, collaboratively create and edit content and/or
manage content.

Web 2.0: A term used to contrast the World
Wide Web in the 1990s as a collection of Web sites
produced by experts, institutions, and companies
(the read-only Web) with the changes that took
place starting with the 21st century where Web
applications allow end users to create and share
content on the Web (the read-write Web).

Wiki: A software application that allows the
creation and development of interlinked Web

pages; any user can create new pages and edit
existing pages. Wikis, therefore, are an effective
tool for collaborative authoring, collective learn-
ing, and project-based work.

endnotes

1 Futurelab is a not-for-profit organization
researching innovation in education, incu-
bating new ideas, communicating thinking
and practice, etc. and can be found at http://
www.futurelab.org.uk/

2 There was no informal written communica-
tion in the second semester so the first aim
only applied to the first semester.

3 See Guth, S. (2007). Wikis in Education:
Is Public Better? Paper presented at Wiki-
Sym’07 October 21–23, 2007, Montréal,
Québec, Canada. Retrieved 06 November
2007 from http://ws2007.wikisym.org/
space/GuthPaper.

This work was previously published in Handbook of Research on E-Learning Methodologies for Language Acquisition, edited
by R. de Cássia Veiga Marriott and P. Lupion Torres, pp. 424-442, copyright 2009 by Information Science Reference (an
imprint of IGI Global).

 3215

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8.3
Activity-Oriented Computing

João Pedro Sousa
George Mason University, USA

Bradley Schmerl
Carnegie Mellon University, USA

Peter Steenkiste
Carnegie Mellon University, USA

David Garlan
Carnegie Mellon University, USA

AbstrAct

This chapter introduces a new way of thinking
about software systems for supporting the activi-
ties of end-users. In this approach, models of user
activities are promoted to first class entities, and
software systems are assembled and configured
dynamically based on activity models. This
constitutes a fundamental change of perspec-
tive over traditional applications; activities take
the main stage and may be long-lived, whereas
the agents that carry them out are plentiful and
interchangeable. The core of the chapter de-
scribes a closed-loop control design that enables
activity-oriented systems to become self-aware
and self-configurable, and to adapt to dynamic
changes both in the requirements of user activities
and in the environment resources. The chapter

discusses how that design addresses challenges
such as user mobility, resolving conflicts in ac-
cessing scarce resources, and robustness in the
broad sense of responding adequately to user
expectations, even in unpredictable situations,
such as random failures, erroneous user input,
and continuously changing resources. The chapter
further summarizes challenges and ongoing work
related to managing activities where humans and
automated agents collaborate, human-computer
interactions for managing activities, and privacy
and security aspects.

IntroductIon

Over the past few years, considerable effort has
been put into developing networking and middle-

3216

Activity-Oriented Computing

ware infrastructures for ubiquitous computing,
as well as in novel human-computer interfaces
based on speech, vision, and gesture. These
efforts tackle ubiquitous computing from two
different perspectives—systems research and
HCI research—hoping to converge and result in
software that can support a rich variety of success-
ful ubiquitous computing applications. However,
although examples of successful applications
exist, a good understanding of frameworks for
designing ubiquitous computing applications is
still largely missing.

A key reason for the lack of a broadly ap-
plicable framework is that many research efforts
are based on an obsolete application model. This
model assumes that ubiquitous computing applica-
tions can support user activities by packaging, at
design time, a set of related functionalities within
a specific domain, such as spatial navigation,
finding information on the Web, or online chat-
ting. However, user activities may require much
diverse functionality, often spanning different
domains. Which functionalities are required to
support an activity can only be determined at
runtime, depending on the user needs, and may
need to evolve in response to changes in those
needs. Examples of user activities targeted by
ubiquitous computing are navigating spaces such
as museums, assisting debilitated people in their
daily living, activities at the office such as produc-
ing reports, as well as activities in the home such
as watching a TV show, answering the doorbell,
or enhancing house security.

This chapter introduces activity-oriented
computing (AoC) as a basis for developing more
comprehensive and dynamic applications for
ubiquitous computing. Activity-oriented comput-
ing brings user activities to the foreground by
promoting models of such activities to first class
primitives in computing systems.

In the remainder of this chapter, the section
on background presents our vision for activity-
oriented computing and compares it with related
work. Next we discuss the main challenges of this

approach to ubiquitous computing. Specifically,
we discuss user mobility (as opposed to mobile
computing), conflict resolution and robustness,
mixed-initiative control, human-computer inter-
action, and security and privacy.

The main body of the chapter presents our work
towards a solution. Specifically, we discuss soft-
ware architectures for activity-oriented computing
and how to address the challenges of mobility and
robustness, as well as the options to model user
activities. The chapter ends with a discussion of
future directions concerning human-computer
interactions, and the tradeoff between ubiquity
and security and privacy.

bAcKGround

The vision of AoC is to make the computing
environment aware of user activities so that
resources can be autonomously managed to op-
timally assist the user. Activities are everyday
actions that users wish to accomplish and that
may be assisted in various ways by computing
resources in the environment. Done right, AoC
will allow users to focus on pursuing their activi-
ties rather than on configuring and managing the
computing environment. For example, an AoC
system could reduce overhead by automatically
customizing the environment each time the user
wishes to resume a previously interrupted long-
lived activity, such as preparing a monthly report,
or organizing a party.

To help make this vision concrete, the fol-
lowing examples illustrate possible applications
of AoC:

• Elderly care: Rather than relying on
hardcoded solutions, AoC enables domain
experts such as doctors and nurses to “write
prescriptions” for the activities of monitor-
ing the health of the elderly or outpatients.
Such descriptions enable smart homes to
take charge of those activities, collaborating

 3217

Activity-Oriented Computing

with humans as appropriate. For example,
the heart rate of an elderly person may be
monitored by a smart home, which takes
responsibility to alert family members when
alarming measurements are detected. Who
gets alerted and the media to convey the alert
may depend on contextual rules, such as the
seriousness of the situation, as prescribed by
the doctor; the elder’s preferences of who to
contact, who is available, who is closer to
the elder’s home, whether sending an SMS
appropriate, and so forth.

• Entertainment: While others have explored
the vision that music, radio, or television can
follow occupants as they move through the
house, activity-oriented computing enables
a more general approach. Entertainment
can be defined as an activity, allowing
preferences and constraints to be specified,
and underlying services to be shared, such
as tracking people, identifying and using
devices in various rooms. For example, the
same location services used for home secu-
rity activities can be used for entertainment;
the television that can be used for entertain-
ment can also be used for displaying images
of a visitor at the front door.

• Home Security: Many homes have a se-
curity system that uses sensors to detect
burglary attempts and fires. They are stand-
alone systems with limited capabilities; for
example the system is typically either on or
off and control is entirely based on a secret
code. If the security system were built as an
activity service, it could be an open system
with richer functionality. For example:
 A richer set of control options, for

example, based on fingerprint readers
or voice recognition. These methods
may be more appropriate for children
or the elderly.

 More flexibility (e.g., giving neighbors
limited access to water the plants when
the homeowners are on vacation, the

ability to control and interact with
the system remotely, or incorporate
cameras that ignore dogs).

 Remote diagnosis, for example, in
response to an alarm, police or fire re-
sponders may be able to quickly check
for false alarms through cameras.

• Doorbell: A very simple activity is re-
sponding to somebody ringing the doorbell.
Today’s solution is broadcast; the doorbell is
loud enough to alert everybody in the house
and then people decide independently or
after coordination (through shouting!) how
to respond. In activity-oriented computing, a
doorbell activity carried out by the hallway
selects a person, based on their current loca-
tion, current activity, and age. If the visitor
can be identified, it might be possible to have
the person who is being visited respond.
Also, the method of alerting the person can
be customized, for example, using a (local)
sound, displaying a message on the televi-
sion screen, or flashing the lights. Finally,
if nobody is home, the doorbell service can
take a voice message or, if needed, establish
a voice or video link to a house occupant
who might be available in their office or
car. Activities such as answering the phone
could be handled in a similar way, that is
replace the broadcast ringing by a targeted,
context-aware alert.

what is Activity-oriented computing

Activity-oriented computing adopts a funda-
mental change of perspective over traditional
applications in that activities take the main stage
and may be long-lived, whereas the agents that
carry them out are plentiful and interchangeable;
how activities are best supported will evolve over
time, depending on the user’s needs and context.
In AoC, activities are explicitly represented and
manipulated by the computing infrastructure.

3218

Activity-Oriented Computing

Broadly speaking, this has two significant ad-
vantages.

First, it enables explicit reasoning about user
activities: which activities a user may want to
carry out in a particular context; what functional-
ity (services) is required to support an activity;
what are the user preferences relative to quality of
service for each different activity; which activities
conflict; which have specific privacy or security
concerns, and so forth.

Second, it enables reasoning about the op-
timal way of supporting activities, through the
dynamic selection of service suppliers (agents)
that implement specific functions relevant to the
activity. Thanks to the explicit modeling of the
requirements of activities and of the capabilities
of agents, the optimality of such assignment
may be addressed by quantitative frameworks
such as utility theory. Also, by raising the level
of abstraction above particular applications or
implementations, activity models make it easier
to target a broad range of concrete implementa-
tions of similar services in different devices, in
contrast to solutions based on mobile code (more
in the Challenges section, below).

related work

Early work in ubiquitous computing focused on
making certain applications ubiquitously avail-
able. For that, it explored OS-level support that
included location sensing components to automati-
cally transfer user interfaces to the nearest display.
Examples of this are the work on teleporting X
Windows desktops (Richardson, Bennet, Mapp,
& Hopper, 1994) and Microsoft’s Easy Living
project (Brumitt, Meyers, Krumm, Kern, & Sha-
fer, 2000). This idea was coupled with the idea
of desktop management to treat users’ tasks as
sets of applications independent of a particular
device. Examples of systems that exploit this idea
are the Kimura project (MacIntyre et al., 2001),
which migrates collections of applications across
displays within a smart room, and earlier work in

aura that targets migration of user tasks across
machines at different locations (Wang & Garlan,
2000). Internet Suspend-Resume (ISR) requires
minimal changes to the operating system to mi-
grate the entire virtual memory of one machine
to another machine (Kozuch & Satyanarayanan,
2002). These approaches focus on making ap-
plications available ubiquitously, but do not have
a notion of user activity that encompasses user
needs and preferences, and therefore do not scale
to environments with heterogeneous machines
and varying levels of service.

More recent work seeks to support cooperative
tasks in office-like domains, for example ICrafter
(Ponnekanti, Lee, Fox, & Hanrahan, 2001) and
Gaia (Román et al., 2002); as well as domain-
specific tasks, such as healthcare (Christensen
& Bardram, 2002) and biology experiments, for
example, Labscape (Arnstein, Sigurdsson, &
Franza, 2001). This research shares with ours
the goal of supporting activities for mobile users,
where activities may involve several services in
the environment, and environments may contain
heterogeneous devices. However, much of this
work is predicated on rebuilding, or significantly
extending, operating systems and applications to
work over custom-built infrastructures. In contrast
the work described in this chapter supports user
activities with a new software layer on top of
existing operating systems, and accommodates
integration of legacy applications.

Focusing on being able to suspend and resume
existing activities in a ubiquitous environment
does not go all the way toward the vision of pro-
viding ubiquitous assistance for user activities.
Such support can be divided into two categories:
1) helping to guide users in conducting tasks; and
2) performing tasks, or parts of tasks, on behalf of
users. An early example of the first category is the
Adtranz system (Siewiorek, 1998), which guides
technical staff through diagnosing problems in a
train system. More recent work concentrates on
daily life, often for people with special needs,
such as the elderly, or those with debilitated health

 3219

Activity-Oriented Computing

(Abowd, Bobick, Essa, Mynatt, & Rogers, 2002;
Intille, 2002).

Research on automated agents takes assistance
one step further by enabling systems to carry out
activities on behalf of users. Examples of this
are the RETSINA framework (Sycara, Paolucci,
Velsen, & Giampapa, 2003), with applications in
domains such as financial portfolio management,
e-commerce and military logistics; and more
recently the RADAR project (Garlan & Schmerl,
2007), which focuses on the office domain, auto-
mating such tasks as processing e-mail, scheduling
meetings, and updating Web sites.

Consumer solutions for activities in the home
are beginning to emerge, mainly from the in-
creasing complexity of configuring home theater
equipment. Universal remote controls, such as
those provided by Logitech, allow users to define
activities such as “Watch DVD,” which choose the
input source for the television, output of sound
through the home theater system, and choosing
the configuration of the DVD player (Logitech).
However, in these solutions, activities are bound to
particular device and device configurations—the
activities themselves must be redefined for dif-
ferent equipment, and it is not possible for the
activities to move around different rooms in the
home, or to allow different levels of service for
the same activity.

In this chapter, we discuss the potential and
the challenges of having software systems using
activity models at runtime. Specifically, we focus
on the benefits of using activity models for en-
abling users to access their activities ubiquitously,
and for delegating responsibility for activities to
automated agents.

chAllenGes

Activity-oriented computing raises a number of
challenges that must be addressed by any adequate
supporting infrastructure and architecture.

• User mobility: As users move from one
environment to another—for example,
between rooms in a house—activities may
need to migrate with the users, tracking their
location and adapting themselves to the local
situation. A key distinction between user
mobility in AoC and previous approaches is
that no assumptions are made with respect
to the users having to carry mobile devices,
or to the availability of a particular kind of
platform at every location. Since different
environments may have very different re-
sources (devices, services, interfaces, etc.)
a critical issue is how best to retarget an
activity to a new situation. For example, an
activity that involves “watching a TV show”
can be changed into “listening” when the
user walks through a room that only offers
audio support. Solving this problem requires
the ability to take advantage of context in-
formation (location, resource availability,
user state, etc.), as well as knowledge of the
activity requirements (which services are
required, fidelity tradeoffs, etc.) to provide
an optimal use of the environment in support
of the activity.

• Conflict resolution: Complicating the
problem of automated configuration and
reconfiguration is the need to support mul-
tiple activities—both for a single user and
between multiple users. If an individual
wants to carry out two activities concur-
rently that may need to use shared resources,
how should these activities simultaneously
be supported? For example, if the user is
engaged in entertainment, should the door-
bell activity interrupt that activity? Similar
problems exist when two or more people
share an environment. For example, if two
users enter the living room hoping to be
entertained, but having different ideas of
what kind of entertainment they want, how
can those conflicts be reconciled? Solving
this problem requires (a) the ability to detect

3220

Activity-Oriented Computing

when there may be conflicts, and (b) the
ability to apply conflict resolution policies,
which may itself require user interaction.

• Mixed-initiative control: The ability to ac-
complish certain kinds of activities requires
the active participation of users. For example,
the door answering activity, which might be
associated with a house, requires occupants
of the house to respond to requests from the
house to greet a visitor. Since humans exhibit
considerably more autonomy and unpredict-
ability than computational elements, it is
not clear how one should write the activity
control policies and mechanisms to allow
for this. Standard solutions to human-based
activities (such as work-flow management
systems) are likely not to be effective, since
they assume users will adhere to predeter-
mined plans to a much higher degree than
is typically the case in the kinds of domains
targeted by ubiquitous computing.

• Security and privacy: Some security
and privacy issues can be solved through
traditional mechanisms for security, but
others are complicated by key features of
ubiquity; they include rich context infor-
mation, and user mobility across public or
shared spaces such as a car, or an airport
lounge. In a multi-user environment with
rich sources of context information (such
as a person’s location), an important issue
is how to permit appropriate access to and
sharing of that information. Furthermore,
which guarantees can be made to a user
that wishes to access personal activities in
a shared space? What mechanisms can back
such guarantees? Are there deeper issues
than the exposure of the information that
is accessed in a public space? Is it possible
that all of a user’s information and identity
may be compromised as a consequence of
a seemingly innocuous access at a public
space?

• Human-computer interaction: Many of
the activities that a ubiquitous computing
environment should support will take place
outside of standard computing environment
(such as a networked office environment). In
such environments, one cannot assume that
users will have access to standard displays,
keyboards, and pointing devices. How then
can the system communicate and interact
with users effectively? What should be
the role of emerging technologies such as
augmented reality and natural interaction
modalities such as speech, gesture, and am-
bient properties such as light and smell?

While the challenges above stem from the
problem domain, we now turn to the challenges
associated with building a solution for AoC.

• Activity models. The first challenge is to
define what kinds of knowledge should be
imparted in systems to make them aware of
user activities. Specifically, what should be
the contents and form of activity models?
What should be the semantic primitives
to compose and decompose activities? At
what level of sophistication should activity
models be captured? Presumably, the more
sophisticated the models, the more a system
can do to assist users. For example, to help
users with repairing an airplane or with
planning a conference, a significant amount
of domain knowledge needs to be captured.
But obviously, capturing such knowledge de-
mands more from users (or domain experts)
than capturing simple models of activities.
Is there an optimal level of sophistication to
capture activity models—a sweet spot that
maximizes the ratio between the benefits
of imparting knowledge to systems and the
costs of eliciting such knowledge from users?
Or is it possible to have flexible solutions that
allow incremental levels of sophistication
for representing each activity, depending

 3221

Activity-Oriented Computing

on the expected benefits and on the user’s
willingness to train the system?

• System design. Systems that support AoC
should be capable of dynamic reconfigura-
tion in response to changes in the needs of
user activities. Ideally, such systems would
also be aware of the availability of resources
in the environment and respond to changes in
those. The questions then become: What is an
appropriate architecture to support activity-
oriented computing? What responsibilities
should be taken by a common infrastructure
(middleware) and which should be activity-
or service-specific? What are the relevant
parameters to guide service discovery
(location, quality of service, etc.) and how
should discovery be geographically scoped
and coordinated? Can activity models be
capitalized to handle the heterogeneity of the
environment, self-awareness and dynamic
adaptation? Furthermore, what operations
might be used to manage activities: suspend
and resume, delegate, collaborate, others?
What should be the operational semantics
of each of these operations?

• Robustness. In AoC, robustness is taken in
the broad sense of responding adequately
to user expectations, even in unpredictable
situations, such as random failures, errone-
ous user input, and continuously changing
resources. First of all, should adequacy be
a Boolean variable—either the system is
adequate or it is not—or can it be quanti-
fied and measured? Specifically, are there
system capabilities and configurations that
are more adequate than others to support a
user’s activity? If so, can measures of ad-
equacy be used to choose among alternatives
in rich environments? For example, is the
user better served by carrying out a video
conference on a PDA over a wireless link,
or on the wall display down the hall?

towArds A solutIon

To address the challenges identified above, we
decided to start with relatively simple models of
activities and address concrete problems where
the advantages of AoC could be demonstrated.
This section summarizes our experience of about
six years at Carnegie Mellon University’s project
aura. Initially, this research targeted the smart
office domain, and later extended to the smart
home domain (more below).

Designing systems for AoC brings up some
hard questions. What makes those questions espe-
cially challenging, is that to answer them, we need
to reexamine a significant number of assumptions
that have been made about software for decades.
Not surprisingly, our own understanding of how
to answer those questions continues to evolve.
This section is organized around the set of solu-
tion-related challenges identified above; namely,
system design, activity models, and robustness.

system design

The first research problem we focused on, start-
ing around the year 2000, was user mobility
in the smart office domain. Here, activities (or
tasks) typically involve several applications and
information assets. For instance, for preparing
a presentation, a user may edit slides, refer to
a couple of papers on the topic, check previous
related presentations, and browse the web for new
developments. An example of user mobility is that
the user may start working on the presentation at
his or her office, continue at the office of a col-
laborator, and pick the task up later at home.

The premise adopted for user mobility is that
users should not have to carry a machine around,
just as people normally don’t carry their own chairs
everywhere. If they so desire, users should be able
to resume their tasks, on demand, with whatever
computing systems are available. This premise is
neither incompatible with users carrying mobile
devices, nor with mobile code. Ideally, the capa-

3222

Activity-Oriented Computing

bilities of any devices or code that travel with the
user contribute to the richness of the environment
surrounding the user, and therefore contribute
to a better user experience. A discussion of why
solutions centered on mobile devices, mobile code,
or remote computing (such as PC Anywhere) are
not entirely satisfactory to address user mobility
can be found in (J.P. Sousa, 2005).

Designing a solution to support user mobility
is made harder by the heterogeneity of devices
where users may want to resume their activities,
and by dynamic variations in the resources and
devices available to the user. Even in a fairly
restricted office domain, it is common to find
different operating systems, offering different
suites of applications (e.g., Linux vs. PC vs. Mac).
In a broader context, users may want to carry
over their activities to devices with a wide range
of capabilities, from handhelds to smart rooms.
In addition to heterogeneity, mobile devices are
subject to wide variations of resources, such as
battery and bandwidth. Ideally, software would
automatically manage alternative computing

strategies based on user requirements and on the
availability of resources. Moreover, in heavily
networked environments, remote servers may
constantly change their response times and even
availability. Ideally, users should be shielded as
much as possible from dealing with such dynamic
variations.

Before describing an architecture for sup-
porting user mobility as outlined above, Table
1 clarifies the terminology used throughout this
chapter, since although the terms are in common
use, their interpretation is far from universal.

Our starting point for supporting user mobility
was to design an infrastructure, the aura infra-
structure, that exploits knowledge about a user’s
tasks to automatically configure and reconfigure
the environment on behalf of the user. Aura is best
explained by a layered view of its infrastructure
together with an explanation of the roles of each
layer with respect to task suspend-resume and
dynamic adaptation.

First, the infrastructure needs to know what
to configure for; that is, what a user needs from

task An everyday activity such as preparing a presentation or writing a report. Carrying out
a task may require obtaining several services from an environment, as well as accessing
several materials.

environment The set of suppliers, materials and resources accessible to a user at a particular location.

service Either (a) a service type, such as printing, or (b) the occurrence of a service proper, such
as printing a given document. For simplicity, we will let these meanings be inferred from
context.

supplier An application or device offering services – for example, a printer.

material An information asset such as a file or data stream.

capabilities The set of services offered by a supplier, or by a whole environment.

resources Are consumed by suppliers while providing services. Examples are: CPU cycles, memory,
battery, bandwidth, and so forth.

context Set of human-perceived attributes such as physical location, physical activity (sitting,
walking…), or social activity (alone, giving a talk…).

user-perceived
state of a task

User-observable set of properties in the environment that characterize the support for the
task. Specifically, the set of services supporting the task, the user-level settings (prefer-
ences, options) associated with each of those services, the materials being worked on,
user-interaction parameters (window size, cursors…), and the user’s preferences with
respect to quality of service tradeoffs.

Table 1. Terminology

 3223

Activity-Oriented Computing

the environment in order to carry out his or her
tasks. Second, the infrastructure needs to know
how to best configure the environment; it needs
mechanisms to optimally match the user’s needs
to the capabilities and resources in the environ-
ment.

In our architecture, each of these two sub-prob-
lems is addressed by a distinct software layer: (1)
the Task Management layer determines what the
user needs from the environment at a specific time
and location; and (2) the Environment Manage-
ment layer determines how to best configure the
environment to support the user’s needs.

Table 2 summarizes the roles of the software
layers in the infrastructure. The top layer, task
management (TM), captures knowledge about
user needs and preferences for each activity. Such
knowledge is used to coordinate the configuration
of the environment upon changes in the user’s
task or context. For instance, when the user at-
tempts to carry out a task in a new environment,
TM coordinates access to all the information
related to the user’s task, and negotiates task sup-
port with environment management (EM). Task
Management also monitors explicit indications
from the user and events in the physical context
surrounding the user. Upon getting indication
that the user intends to suspend the current task

or resume some other task, TM coordinates sav-
ing the user-perceived state of the suspended
task and recovers the state of the resumed task,
as appropriate.

The EM layer maintains abstract models of
the environment. These models provide a level of
indirection between the user’s needs, expressed in
environment-independent terms, and the concrete
capabilities of each environment.

This indirection is used to address both hetero-
geneity and dynamic change in the environments.
With respect to heterogeneity, when the user needs
a service, such as speech recognition, EM will find
and configure a supplier for that service among
those available in the environment. With respect to
dynamic change, the existence of explicit models
of the capabilities in the environment enables au-
tomatic reasoning when those capabilities change
dynamically. The Environment Management
adjusts such a mapping automatically in response
to changes in the user’s needs (adaptation initi-
ated by TM), and changes in the environment’s
capabilities and resources (adaptation initiated by
EM). In both cases adaptation is guided by the
maximization of a utility function representing
the user’s preferences (more in the section on
Robustness, below).

layer mission roles

Ta
sk

 M
an

ag
em

en
t

what
does the
user need

monitor tasks, contexts and preferences

map tasks to needs for services in an environment

for complex tasks: decomposition, plans, context dependencies

E
nv

ir
on

m
en

t
M

an
ag

em
en

t how to
best con-
figure the
environ-

ment

monitor environment capabilities and resources

map service needs and user-level state of tasks to available suppliers

ongoing optimization of the utility of the environment relative to user task

E
nv

. support
the user

tasks

monitor relevant resources

fine grain management of QoS/resource tradeoffs

Table 2. Summary of the software layers in aura

3224

Activity-Oriented Computing

The environment layer comprises the applica-
tions and devices that can be configured to support
a user’s task. Configuration issues aside, these
suppliers interact with the user exactly as they
would without the presence of the infrastructure.
The infrastructure steps in only to automatically
configure those suppliers on behalf of the user.
The specific capabilities of each supplier are
manipulated by EM, which acts as a translator
for the environment-independent descriptions of
user needs issued by TM. Typically, suppliers are
developed by wrapping existing applications. Our
experience in wrapping over a dozen applications
native to Windows and Linux has shown that it is
relatively easy to support setting and retrieving
the user-perceived state (Balan, Sousa, & Saty-
anarayanan, 2003; J.P. Sousa, 2005).

This layering offers a clean separation of con-
cerns between what pertains to user activities and
what pertains to the environment. The knowledge
about user activities is held by the TM and travels
with the user to each environment in which he or
she wishes to carry out activities. The knowledge
about the environment stays with the EM and can
be used to address the needs of many users.

A significant distinction of this approach to
user mobility is that it does not require code or
devices to travel with the user. A generic piece of
code, Prism, in the TM layer becomes an aura for
a user by loading models of user activities. Those
models are encoded in XML for convenience of
mobility across heterogeneous devices (more in
the section on Activity Models, below).

extending to the home environment

Although the layered perspective played an impor-
tant role in clarifying the separation of concerns
and protocols of interaction, it captures only the
case where users consume services, and software
components provide them.

In the smart home domain, software could take
responsibility for activities, and users might be
asked to contribute services for those activities.

For example, a smart home might take charge of
the home’s security and ask a human to lock the
windows when night falls. Other examples of
activities include a user watching a TV show, a
user checking on a remote family member, the
main hallway facilitating answering the door,
and the home keeping a comfortable temperature.
These examples prompted us to realize that any
domain entity could have an aura, and that an
aura might find itself on either the supplying or
the consuming side, or both. Specifically, auras
can be associated with:

• People including individual residents, or
groups, such as a resident’s parents, or the
entire family.

• Spaces, such as the main hallway, living
room or the entire home. Spaces of interest
are not necessarily disjoint.

• Appliances, such as a TV, phone, table or
couch. Appliances have a well-defined pur-
pose and may have a range of automation
levels, from fairly sophisticated (a smart
refrigerator), to not automated at all (an old
couch).

• Software applications, such as a media
player, a video conferencing app, or a people
locator. Applications run on general purpose
devices, and which applications are available
on one such device define the purpose that
the device may serve.

Figure 1 shows the run-time architectural
framework for an activity-oriented system. The
boxes correspond to types of components, and the
lines to possible connectors between instances of
those types.1 Part (a) shows our initial understand-
ing based on the smart office domain, and part (b)
shows the more general framework. Contrasting
the two, it is now clear that the TM corresponded
to an aura (of users) that consumed services but
supplied none; and suppliers corresponded to
auras of software that supplied services, but
consumed none.

 3225

Activity-Oriented Computing

In the new architectural framework, when an
aura boots up, it first locates the EM (see the sec-
tion on Service Discovery, below) and then may
engage on the service announcement & activa-
tion protocol (SAAP) to announce any services
that its entity provides, as well as on the service
request protocol (SRP) to discover services that
are relevant to support the entity’s activities. Once
the services in other auras are actually recruited
by the EM, using the SAAP, the consumer aura
and the supplier auras interact via the service use
protocol (SUP) to reconstruct the user-perceived
state of the activity.

Figure 2 shows an example of an architecture
that was dynamically created to respond to the
needs of a user, Fred, at a particular place, Fred’s
home. The boxes correspond to run time compo-
nents (autonomous processes that may be deployed
in different devices) rather than denoting code

packaging, and the lines correspond to connec-
tors, that is, actual communication channels that
are established dynamically as the components
are created. The diagram represents two kinds of
components: auras, with rounded corners, and the
EM, and it visually identifies the different kinds
of interaction protocols between the components
(see Figure 1).

The instance of the architecture in the ex-
ample is the result of Fred’s aura interacting with
the EM to recruit two suppliers: the TV and the
phone’s auras, after interpreting Fred’s needs
for the desired activity. This architecture may
evolve to adapt to changes in Fred’s needs, and
in the figure, Fred’s aura is also shown as being
recruited by the home’s aura to get Fred to open
the front door.

Service Announcement & Activation Protocol

Service Request Protocol

Service Use Protocol

TM

Supplier

EM

SAAP

SUP

SRP

(a)

Aura

EM

SAAP

SUP

SRP

(b)

TM

Supplier

EM
Aura

EM

Figure 1. Architectural framework

Service Announcement & Activation Protocol

Service Request Protocol

Service Use Protocol EM

Fred’s Aura

phone’s Aura
TV’s Aura

home’s Aura

Figure 2. Snapshot of the architecture of one system

3226

Activity-Oriented Computing

context Awareness

An important decision is how to enable context
awareness in activity-oriented computing. Ad-
dressing context awareness can be decomposed
into three parts—sensing context, distributing
contextual information, and reacting to context.
We start by discussing the latter.

Potentially, all domain entities, and therefore
their auras, might want to react to context. A user’s
aura may change the requirements on an activity,
or change which activities are being carried out
depending on context such as user location, or
whether the user is sitting alone at the office, driv-
ing a car, or having an important conversation with
his or her boss. Suppliers contributing services
to an activity may want to change modalities of
those services based on context. For example,
an application that shows confidential informa-
tion may hide that information automatically if
someone else is detected entering the room; or an
application that requires text or command input
may switch to speech recognition if the user needs
to use his or her hands, say, for driving a vehicle.
The EM may change the allocation of suppliers
for a given activity based on user location. For
example, if the user is watching a TV show while
moving around the house, different devices may be
allocated: the TV in the living room, the computer
monitor at the home office, etc. The upshot of this
is that contextual information should be accessible
to all the boxes in the architecture.

Initially, we thought that a dedicated part in the
infrastructure would be in charge of gathering and
distributing contextual information; there would
be a Context Management component/layer in
each environment, just like there is an Environ-
ment Management. However, both the contextual
information and the policies for distributing such
information are associated with each user and
not really with the environment where that user
happens to be. Therefore, auras are the hub of
knowledge about the entities they represent.

Whenever a component wishes to obtain
contextual information about entity X, it will
ask X’s aura. X’s aura itself may use a variety
of mechanisms to gather information about X.
For example, since physical location of a space
is normally a non-varying property, the aura
for a home can read the home’s location from
a configuration file. In contrast, the aura for an
application running on a cell phone equipped
with GPS might obtain the application’s location
from the device’s GPS. The aura for a person P
typically obtains P’s contextual information via
contextual information services (CIS).

Unlike sensors specific to devices or spaces,
CIS’s are fairly generic. Specifically, devices such
as a thermometer attached to a wall, or a window
sensor for detecting whether that window is open
or closed, are accessed only by the auras of the
corresponding physical spaces. In contrast, given
a training set with a person’s face, a generic face
recognizer may be able to track that person’s lo-
cation inside an office building by using cameras
spread over rooms and halls.

CISs are integrated into the architecture using
the same protocols for discovery and activation
as other services, which allows for gracefully
handling of activity instantiation in both sensor-
rich environments, such as a smart building, and
in depleted environments, such as a park.

While CIS components release information
based on generic premises such as the rule of
law (e.g., only an authenticated aura for X or a
law enforcement agent with a warrant can obtain
information about X), the auras themselves are re-
sponsible for knowing and enforcing their entity’s
privacy policies regulating whom to release which
information. As an example of distribution policy,
a user may authorize only a restricted group of
friends to obtain his or her current location.

service discovery

In the initial architectural framework (Figure 1.a),
service discovery is coordinated by the environ-

 3227

Activity-Oriented Computing

ment management layer. When we expanded the
focus of our research to the smart home domain,
around the year 2004, we revisited the problem
of service discovery. Among the questions that
prompted this revisiting are: are there real ad-
vantages in brokering discovery? What are the
relevant parameters to guide service discovery
(location, quality of service, etc.)? How can dis-
covery be geographically scoped? Would some
measure of physical distance be enough for such
scoping? Can discovery be scoped by geographi-
cal areas that are meaningful to the user? We
elaborate on these below.

This first question is what should be the strategy
for discovery. Many activities in the smart home
domain involve entities performing services for
other entities, and it is up to auras to find and
configure the services required by their entities.
For example, for watching a TV show, Fred will
need some entity to play the video stream for him.
Fred’s aura takes care of finding and configuring
such an entity in Fred’s vicinity (for instance the
TV in the living room,) and to change the video
stream to other convenient entities whenever Fred
moves around the home (a TV in the kitchen, a
computer in the office, etc.).

One candidate solution would be to have auras
broadcast service availability and/or service re-
quests. However, service discovery in ubiquitous
computing involves not just matching service
names or capabilities but, ideally, it would find
optimal services in terms of attributes such as
desired levels of quality of service, user prefer-
ences, proximity, and so forth. Furthermore, scop-
ing the search would be constrained by network
administration policies regarding broadcast (see
below). Also, it is hard to establish trust based on
broadcast mechanisms.

Because finding the optimal entities to per-
form services is both a non-trivial problem and
common across auras, there are clear engineering
advantages in factoring the solution to this problem
out of individual auras and into a dedicated piece
of the infrastructure. Specifically, the benefits

of introducing Environment Managers (EMs) as
discovery brokers include:

• Separation of concerns: It is up to special-
ized service brokers to know how to find
the optimal entities to provide services,
while each aura retains the responsibility
of knowing what services are required by
their entity’s activities at each moment.
By providing a separate locus for optimal
discovery in EMs, auras can focus on the
task-specific knowledge required to interact
with other auras, once they are identified.

• Efficiency: EMs can cashe service an-
nouncements, thereby improving the latency
of processing a service request, and reduc-
ing the network traffic required to locate a
service, whenever one is requested.

auras register the services offered by the entity
they represent with an EM. Each service posting
includes the type of service and all attributes of
the offering entity that characterize the service.
For example, Fred’s aura announces that Fred is
capable of answering the door (service type,) along
with Fred’s contextual attributes pertaining to his
current location and whether he is busy. Although
Fred’s aura might know about Fred’s blood pres-
sure, that wouldn’t be directly relevant for his
ability to answer the door. As another example,
the aura for a printer announces its ability to print
documents, along with the printer’s location,
pages per minute and queue length (contextual
and quality of service attributes).

auras may request an EM to find services,
as needed by the activities of the entities they
represent. Service discovery is guided by optimal-
ity criteria in the form of utility functions over
the attributes of the service suppliers and of the
requesting entity. Specifically a service request
is of the form:

find x : service | y • max u(p
x
, p

y
)

3228

Activity-Oriented Computing

This means: find a set of entities x, each
capable of supplying a service, given the
requestor entity y, such that a utility function u
over the properties of y and of the elements of x
is maximized. The following are examples with
simple utility functions:

Track Fred’s location. Upon startup, Fred’s
aura issues:

find x
1
:people-locating | Fred

 That is, find x
1
 capable of providing a people

locating service for Fred.

Follow-me video. When Fred wishes to watch
a soccer game while moving around the house,
his aura issues:

find x
1
:video-playing | Fred · min x

1
.loca-

tion – Fred.location

That is, find a video player closest to Fred. In
this case, maximizing the utility corresponds to
minimizing the physical distance between Fred
and the video player.

Doorbell. When the doorbell is pressed by
someone, the aura for the main hallway issues:

find x
1
:door-answering, x

2
:notifying | hall-

way

· x
1
.busy = no & min (x

1
.location – hallway.

location

+ x
1
.location – x

2
.location)

That is, find a notifying mechanism and a door
answerer that is not busy and both closest to the
hallway and to the notifying mechanism.

Utility functions are quantitative representa-
tions of usefulness with respect to each property.
Formally, selecting a specific value of a property,
such as x1.busy = no, is encoded as a discrete
mapping, specifically:

ux1·busy(yes) 0, ux1·busy(no) 1

For properties characterized by numeric val-
ues, such as the distance to the hallway, we use
utility functions that distinguish two intervals:
one where the user considers the quantity to be
good enough for his activity, the other where the
user considers the quantity to be insufficient.
Sigmoid functions, which look like smooth step
functions, characterize such intervals and pro-
vide a smooth interpolation between the limits
of those intervals. Sigmoids are easily encoded
by just two points; the values corresponding to
the knees of the curve that define the limits good
of the good-enough interval, and bad of the in-
adequate interval. The case of “more-is-better”
qualities (e.g., accuracy) are as easily captured as
“less-is-better” qualities (e.g., latency) by flipping
the order of the good and bad values (see (Sousa,
Poladian, Garlan, Schmerl, & Shaw, 2006) for the
formal underpinnings).

In the case studies evaluated so far, we have
found this level of expressiveness for utility func-
tions to be sufficient.

scoping service discovery

The second question is how service discovery can
be scoped in a way that is meaningful to the user.
Specifically, many searches take place in the user’s
immediate vicinity, such as the user’s home.

However, neither physical distance nor network
range are good parameters to scope discovery. For
example, if the user’s activity asks for a device
to display a video, the TV set in the apartment
next door should probably not be considered,
even though it might be just as close as other
candidates within the user’s apartment, and be
within range of the user’s wireless network as
well. To be clear, once a set of devices is scoped
for discovery, physical distance may be factored
in as a parameter for optimality (see above).

Furthermore, sometimes users may want to
scope discovery across areas that are not contigu-

 3229

Activity-Oriented Computing

ous. For example, suppose that Fred is at a coffee
shop and wants to print an interesting document he
just found while browsing the internet. Fred may
be willing to have the document printed either at
the coffee shop, or at Fred’s office, since Fred is
heading there shortly. A printer at a store down
the street may not be something that Fred would
consider, even though it is physically closer than
Fred’s office.

The question about scoping service discovery
can then be refined into (a) if not by distance
or network boundaries, how can the range of
one environment be defined? and (b) how to
coordinate discovery across non-contiguous
environments?

When an aura directs a discovery request to an
EM, by default, discovery runs across all services
registered with that EM. That is, the range of an
environment is defined by the services that reg-
istered with its EM. The question then becomes,
how does an aura know with which EM it should
register its services? For example, how would the
aura for the TV set in Fred’s living room know to
register its services with the EM in Fred’s apart-
ment, and not with the neighbor’s?

Auras resolve their physical location into the
network address of the appropriate EM by us-
ing the environment manager binding protocol
(EMBP).2 This service plays a similar role to the
domain naming service in the internet, which
resolves URI/URLs into the network address
of the corresponding internet server. Physical
locations are encoded as aura location identifiers
(ALIs), with structure and intent similar to uni-
versal resource identifiers (URIs) in the internet.
Like URIs, ALIs are a hierarchical representation
meant to be interpreted by humans and resolved
automatically. For example, ali://pittsburgh.
pa.us/zip-15000/main-street/1234/apt-6 might
correspond to Fred’s apartment; and ali://aura.
cmu.edu/wean-hall/floor-8/8100-corridor to a
particular corridor on the 8th floor of Wean Hall
at Carnegie Mellon University.

Requests for discovery across remote and/or
multiple environments can be directed to the lo-
cal EM, which then coordinates discovery with
other relevant EMs (more below). The following
are examples of such requests. When Fred is at
home and wishes to print a document at the office,
his aura would issue a request like:

find x:printing | Fred • u(…)

 @ ali://aura.cmu.edu/wean-hall/floor-8/8100-

corridor

Or, if Fred wanted to consider alternatives
either at home or at his office:

find x:printing | Fred • u(…)

 @ ali://aura.cmu.edu/wean-hall/floor-8/8100-

corridor,

 ali://pittsburgh.pa.us/zip-15000/main-

street/1234/apt-6

Or, if Fred wanted to search a number of adja-
cent environments, such as all the environments
in his office building:

find x:printing | Fred • u(…)

 @ ali://aura.cmu.edu/wean-hall

Any such requests are directed by the requestor
aura to the local EM, which then resolves such
requests in three steps:

1. Use the EMBP to identify the EMs that cover
the desired region.

2. Obtain from such EMs all the service de-
scriptions that match the requested service
types.

3. Run the service selection algorithms over
the candidate set of services.

Activity models

What to include in activity models is ultimately
determined by the purpose that those models are

3230

Activity-Oriented Computing

meant to serve. In some applications of activity
models the goal is to assist users with learning
or with performing complex tasks. Examples
of these are applications to automated tutoring,
expert systems to help engineers repair complex
mechanisms, such as trains and airplanes, and
automated assistants to help manage complex
activities such as organizing a conference (Garlan
& Schmerl, 2007; Siewiorek, 1998). For these
kinds of applications, models of activities may
include a specification of workflow, as a sequence
of steps to be performed, and cognitive models
of the user.

In the smart office domain, we experimented
with enabling users to suspend their ongoing ac-
tivities and resume them at a later time and/or at
another location, possibly using a disjoint set of
devices. For that purpose, the models capture user
needs and preferences to carry out each activity.
Specifically, such models include of a snapshot
of the services and materials being used during
the activity, as well as utility theory-based models

of user preferences (for details on the latter, see
(Sousa et al., 2006)).

Figure 3 shows a grammar for modeling activi-
ties, or tasks, as a set of possibly interconnected
services. This grammar follows a variant of the
Backus-Naur Form (BNF, see for instance (ISO,
1996)). To simplify reading the specification, we
drop the convention of surrounding non-terminal
symbols with angle brackets, and since the task
models are built on top of XML syntax, we aug-
ment the operators of BNF with the following:

E ::= t: A; C

defines a type E of XML elements with tag t,
attributes A, and children C, where t is a ter-
minal symbol, A is an expression containing
only terminals (the attribute names), and C is an
expression containing only non-terminals (the
child XML elements). In this restricted use of
BNF, whether a symbol is a terminal or non-ter-
minal is entirely established by context. So, for
instance the rule:

Task ::= auraTask: id;
Prefs {ServiceSnapshot | MaterialSnapshot | Config}

ServiceSnapshot ::= service: id type;
 Settings
MaterialSnapshot ::= material: id;
 State

Config ::= configuration: name weight;
 { Service | Connection }

Service ::= service: id;
 {Uses}
Uses ::= uses: materialId;

Connection ::= connection; id type;
 Attach QoSPrefs
Attach ::= attach: ;
 From To
From ::= from: serviceId port;
To ::= to: serviceId port;

Figure 3. Grammar for specifying task models

 3231

Activity-Oriented Computing

Book = book: year ISBN; Title {Author}

allows the following as a valid element:

<book year=”2004” ISBN=”123”>

 <title>...</title>

 <author>...</author>

 <author>...</author>

</book>

Specifically, in Figure 3, a task (model) is an
XML element with tag auraTask, with one id
attribute, and with one Prefs child, followed by
an arbitrary number of ServiceSnapshot,
MaterialSnapshot, and Config children.
A task may be carried out using one of several
alternative service configurations of services.

Services stand for concepts such as edit text,
or browse the web, and materials are files and
data streams manipulated by the services. A
service may manipulate zero or many materi-
als; for instance, text editing can be carried out
on an arbitrary number of files simultaneously.
That relationship is captured by the Uses clauses
within the Service element.

The snapshot of the user-perceived state of the
task is captured in the Settings and State
elements. The Settings element captures the
state that is specific to a service, and shared by all
materials manipulated by that service, while the
State element captures the state that is specific
to each material. A detailed discussion of this
grammar can be found in (Sousa, 2005).

Figure 4 shows one example of a task model
for reviewing a video clip, which formally is a
sentence allowed, or generated, by the gram-
mar in Figure 3. This example was captured
while running the infrastructure described in
the section on System Design. The user defined
two alternative configurations for this task: one
including both playing the video and taking notes,
the other, playing the video alone. Both services
use a single material: play video uses a video file,
with material id 11, and edit text uses a text file,

with material id 21. The user-perceived state of
the task is represented as the current service set-
tings, under each service, and the current state of
each material. For instance, the state of the video
includes the fact that the video is stopped at the
beginning (the cursor is set to 0 time elapsed),
and it indicates the position and dimensions of
the window showing the video.

Extending to the Home Environment

In the smart home domain, in addition to support-
ing suspend/resume of activities, we wanted to
enable users to delegate responsibility for some
activities to auras. Examples of the latter activi-
ties include managing intrusion detection for the
home, finding a person to answer the door for a
visitor, or assisting with monitoring elder family
members.

The research questions then become: is the
services and materials view of activities adequate
in the smart home domain? For enabling auras to
take responsibility for activities, which concepts
should activity models capture?

The usefulness of capturing the services
needed for an activity seems to carry over well
into the smart home domain. For example, in
the case of the doorbell scenario, the activity
of answering the door requires finding services
such as notification can be supplied by devices
such as a telephone, a TV, a buzzer, etc., and door
answerer, which can be supplied by a qualified
person (e.g., not a toddler). Selecting the suppliers
for such services is guided by the home owner’s
preferences encoded in the activity model, which
may include things such as the door needs to
be answered within a certain time, and that the
notification service should be in close proximity
to the candidate door answerer.

A prototype of this case study has shown that
these models can handle sophisticated policies
of configuration (e.g., excluding children from
answering the door, or specifying criteria for
proximity) and that they trivially accommodate the
dynamic addition of new notification devices.

3232

Activity-Oriented Computing

<auraTask id="34">
 <preferences>
 <service template="default" id="1"/>
 <service template="default" id="2"/>
 </preferences>
 <service type="play Video" id="1">
 <settings mute="true"/>
 </service>
 <material id="11">
 <state>
 <video state="stopped" cursor="0"/>
 <position xpos="645" ypos="441"/>
 <dimension height="684" width="838"/>
 </state>
 </material>
 <service type="edit Text" id="2">
 <settings>
 <format overtype="0"/>
 <language checkLanguage="1"/>
 </settings>
 </service>
 <material id="21">
 <state>
 <cursor position="31510"/>
 <scroll horizontal="0" vertical="7"/>
 <zoom value="140"/>
 <spellchecking enabled="1" language="1033"/>
 <window height="500" xpos="20" width="600" mode="min" ypos="100"/>
 </state>
 </material>
 <configuration name="all" weight="1.0">
 <service id="2">
 <uses materialId="21"/>
 </service>
 <service id="1">
 <uses materialId="11"/>
 </service>
 </configuration>
 <configuration name="only video" weight="0.7">
 <service id="1">
 <uses materialId="11"/>
 </service>
 </configuration>
</auraTask>

Figure 4. Example task model for reviewing a video clip

This prototype also highlighted two funda-
mental differences between the kinds of activities
supported in the smart-office domain and the
ones we target in the smart-home domain. The
first difference is that, while in the office domain
services were only provided by automated agents
(software), now people may also be asked to pro-
vide services. This has implications on how auras

control service supply, since people are much
more likely than software to do something totally
different than what they are being asked. In the
example, after being notified to answer the door,
a person may get sidetracked and forget about it.
It is up to the responsible aura to monitor whether
or not the service is being delivered, and react to a
“fault” in a similar way as it would in the case of

 3233

Activity-Oriented Computing

faulty software: by seeking a replacement (more
in the section on Robustness).

The second difference is that, in the smart
home domain, auras may take the responsibility
for activities; this is related to the question above
of which concepts to capture in activity models to
enable that to happen. In the smart office domain,
when a fault cannot be handled, for example, if a
suitable replacement cannot be found for a faulty
supplier, the problem is passed up to the entity
responsible for the activity, that is, the user. If an
aura is to be truly responsible for an activity, it
must be take charge of such situations as well.

One way of addressing a hurdle in one activity,
is to carry out another activity that circumvents
the hurdle. In the example, if the hallway aura
cannot find a person to answer the door, it may
take a message from the visitor, or initiate a phone
call to the person being visited.

A simple enhancement of activity models to
allow this is to support the specification of condi-
tions to automatically resume or suspend activi-
ties. Such conditions are expressed as Boolean
formulas over observation of contextual infor-
mation. For example, if everyone left the house,
resume the intrusion detection activity.

For these models to cover situations as the
one where a person could not be found to answer
the door, contextual information needs to be rich
enough to include semantic observations, such as
“the door could not be open for a visitor.”

Another scenario where we tested this ap-
proach is the elder care scenario. The aura for
Susan, Fred’s grandmother, runs a perpetual
task that recruits a heart monitor service for her.
Susan defined under which conditions her aura
should trigger the task of alerting the family.
When defining such conditions, Susan takes into
consideration her physician’s recommendations,
but also conditions under which she may desire
privacy. Fred’s aura runs a perpetual task of
monitoring contextual postings by Susan’s aura.
It is up to John to (a) define that posting such a
notification should trigger the task of alerting him,

and (b) define the means employed by his aura
to carry out such a task. For example, if Fred is
at the office, his aura sends an instant message
to Fred’s computer screen; otherwise, it sends a
text message to Fred’s cell phone.

While these are simple scenarios, they illus-
trate the ability to chain activities, and to direct
the exact behavior of activities, by capturing con-
ditions on contextual information in the models
of activities. Such conditions are associated to
the operations of either resuming or suspending
activities, and can be monitored by auras to auto-
matically initiate the corresponding operation.

Formally, condition-action primitives can be
used to express the same space of solutions than
other more sophisticated approaches, such as
models of activities based on workflow notations,
or on hierarchical decomposition of activities.
Which approach would be more suitable for end-
users to express and understand such models is
an open research problem.

robustness

The term robustness in activity-oriented comput-
ing is interpreted very broadly: is the system’s
behavior consistent with the users’ expectations,
even under unanticipated circumstances. In this
section, we first use the examples in the Back-
ground section to identify key robustness require-
ments. We then look at the challenges associated
with supporting robust operation, distinguishing
between general challenges and challenges that
are specific to the home environment. Finally,
we summarize some results showing how we
support robust tasks in an office environment
and discuss how these results can be extended
to support activities in the home.

Properties

In daily use, the system should correctly identify
the users’ intent and should support a wide vari-

3234

Activity-Oriented Computing

ety of activities in a way that is consistent with
their preferences and policies. If users observe
unexpected behavior, the system should be able to
explain its behavior. This will increase the users’
confidence in the system and will allow the system
to improve over time. For example, by adjusting
preferences and policies, either manually by the
user or automatically by the system (case-base
reasoning) the system’s future behavior can be
made to better match user intent. Similarly, the
system should be able to engage users if input
is confusing or unexpected. Ideally, the system
would be able to recognize undesirable or unsafe
actions, for example, a child opening the door
for a stranger.

The above properties must also be maintained
as the system evolves and under failure conditions.
For example, when new services or devices are
added (e.g., camera and face recognition software
is added to support the doorbell scenario) or
become unavailable (e.g., the license for the face
recognition software expired), the system should
automatically adapt to the available services.

challenges

When we looked at how to support user activities
and tasks in different environments (e.g., work in
an office, daily activities in the home, or guiding
visitors in a museum), we found that several key
challenges are shared across these environments.
These generic challenges include capturing and
representing user intent, discovering and man-
aging services and devices (suppliers), and opti-
mizing resources allocation to maximize overall
system utility. All these functions should be adap-
tive, that is, automatically adapt to changes in the
computational and physical environment and to
changes in the goals and preferences of users.

Each environment also adds its own challenges.
For example, activities in homes are device-cen-
tric (e.g., displays, sound) or include physical
actions that involve people (e.g., opening doors).
Managing and allocating such “resources” is

very different from an office environment, where
tasks are computer-centric and are supported by
executing applications that use a variable amount
of resources (network bandwidth, CPU, battery
power). Similarly, the interactions with users are
very different in the home (discreet interface for
non-experts) and the office (keyboard/mouse/dis-
play used by computer knowledgeable users).

Robustness in an Office
environment

In order to achieve robustness in a smart-office
environment, we have designed, implemented
and evaluated an infrastructure that uses utility
theory to dynamically select the best achievable
configuration of services, even in the face of
failures and coming online of better alternatives
(Sousa et al., 2006).

Robustness is achieved through self-adapta-
tion in response to events ranging from faults, to
positive changes in the environment, to changes in
the user’s task. Self-adaptation is realized through
a closed-loop control system design that senses,
actuates, and controls the runtime state of the
environment based on input from the user. Each
layer reacts to changes in user tasks and in the
environment at a different granularity and time-
scale. Task Management acts at a human perceived
time-scale (minutes), evaluating the adequacy
of sets of services to support the user’s task.
Environment Management acts at a time-scale of
seconds, evaluating the adequacy of the mapping
between the requested services and specific sup-
pliers. Adaptive applications (fidelity-aware and
context-aware) choose appropriate computation
tactics at a time-scale of milliseconds.

Let us illustrate the behavior of the system
using the following scenario. Fred is engaged in
a conversation that requires real-time speech-
to-speech translation. For that task, assume the
aura infrastructure has assembled three services:
speech recognition, language translation, and
speech synthesis. Initially both speech recognition

 3235

Activity-Oriented Computing

and synthesis are running on Fred’s handheld.
To save resources on Fred’s handheld, and since
language translation is computationally intensive,
but has very low demand on data-flow (the text
representation of each utterance), the transla-
tion service is configured to run on a remote
server. We now discuss how the system adapts
in response to faults, variability in resource and
service availability, and changes in the user’s task
requirements:

• Fault tolerance. Suppose now that there is
loss of connectivity to the remote server, or
equivalently, that there is a software crash
that renders it unavailable. Live monitoring
at the EM level detects that the supplier for
language translation is lost. The EM looks
for an alternative supplier for that service,
for example, translation software on Fred’s
handheld, activates it, and automatically
reconfigures the service assembly.

• Resource and fidelity-awareness. Com-
putational resources in Fred’s handheld are
allocated by the EM among the services
supporting Fred’s task. For computing op-
timal resource allocation, the EM uses each
supplier’s spec sheet (relating fidelity levels
with resource consumption), live monitoring
of the available resources, and the user’s
preferences with respect to fidelity levels.
Resource allocation is adjusted over time.
For example, suppose that during the social
part of the conversation, Fred is fine with a
less accurate translation, but response times
should be snappy. The speech recognizer,
as the main driver of the overall response
time, gets proportionally more resources
and uses faster, if less accurate, recognition
algorithms (Balan et al., 2003).

• Adaption. Adaptation is also needed to
deal with changes in resource availability.
Each supplier issues periodic reports on
the Quality of Service (QoS) actually be-
ing provided—in this example, response

time and estimated accuracy of recogni-
tion/translation. Suppose that at some point
during the conversation, Fred brings up
his calendar to check his availability for a
meeting. The suppliers for the speech-to-
speech translation task, already stretched
for resources, reduce their QoS below what
Fred’s preferences state as acceptable. The
EM detects this “soft fault,” and replaces
the speech recognizer by a lightweight
component, that although unable to provide
as high a QoS as the full-fledged version,
performs better under sub-optimal resource
availability. Alternatively, suppose that at
some point, the language translation supplier
running on the remote server (which failed
earlier) becomes available again. The EM
detects the availability of a new candidate
to supply a service required by Fred’s task,
and compares the estimated utility of the
candidate solution against the current one.
If there is a clear benefit, the EM automati-
cally reconfigures the service assembly. In
calculating the benefit, the EM factors in a
cost of change. This mechanism introduces
hysteresis in the reconfiguration behavior,
thus avoiding oscillation between closely
competing solutions.

• Task requirements change. Suppose that
at some point Fred’s conversation enters a
technical core for which translation accuracy
becomes more important than fast response
times. The TM provides the mechanisms to
allow Fred to quickly indicate his new prefer-
ences; for instance, by choosing among a set
of preference templates. The new preferences
are distributed by the TM to the EM and all
the suppliers supporting Fred’s task. Given
a new set of constraints, the EM evaluates
the current solution against other candidates,
reconfigures, if necessary, and determines
the new optimal resource allocation. The
suppliers that remain in the configuration,
upon receiving the new preferences, change

3236

Activity-Oriented Computing

their computation strategies dynamically,
for example, by changing to algorithms
that offer better accuracy at the expense of
response time.

Suppose that after the conversation, Fred wants
to resume writing one of his research papers.
Again, the TM provides the mechanisms to detect,
or for Fred to quickly indicate, his change of task.
Once the TM is aware that the conversation is over
it coordinates with the suppliers for capturing the
user-level state of the current task, if any, and with
the EM to deactivate (and release the resources
for) the current suppliers. The TM then analyses
the description it saved the last time Fred worked
on writing the paper, recognizes which services
Fred was using and requests those from the EM.
After the EM identifies the optimal supplier as-
signment, the TM interacts with those suppliers
to automatically recover the user-level state where
Fred left off. See Sousa and Garlan (2003) for a
formal specification of such interactions.

extending to the home environment

We are currently enhancing this solution to provide
robust support for activities in the home. While
the key challenges are the same (e.g., optimizing
utility, adapting to changes, etc.), extensions are
needed in a number of areas.

First, activities in the home are very differ-
ent from tasks in the office. For example, since
some activities in the home involve physical
actions, people must be involved (e.g., to open
a door), that is, people become suppliers of ser-
vices. Moreover, some tasks are not associated
with individuals, but with the home itself (e.g.,
responding to the doorbell or a phone call). This
change in roles means that it is even more critical
to make appropriate allocations since the cost of
mistakes is much higher; for example, people will
be much less willing to overlook being person-
ally inconvenienced by a wrong decision, than
when a suboptimal application is invoked on
their computer.

Second, many activities in the home involve
the use of devices that are shared by many people,
or involve deciding who should perform a certain
action. This means that the Task Manager will
typically need to balance the preferences and
goals of multiple users. An extreme example is
conflicts, for example, when multiple users would
like to use the same device. In contrast, tasks in
the office typically involve only personal resources
(e.g., a handheld) or resources with simple sharing
rules (e.g., a server).

Third, the methods for interaction with the
system will be much different in the home. Even
on a handheld, Fred had access to pull down
menus and a keyboard to reliably communicate
with the system. For the home environment, we
are exploring natural modalities of interaction,
which are less intrusive, but more ambiguous
(more in the section on Future Research).

Finally, uncertainty will play a more signifi-
cant role in the home, for example, because of
unpredictable behavior when people are asked
to perform services, or due to ambiguity caused
by primitive I/O devices. Work in progress is
extending the utility optimization components
to explicitly consider uncertainty.

Future reseArch

Some of the challenges identified in this chapter
are the topic of undergoing and future work, such
as research on the kinds of knowledge to capture
in activity models so to support mixed-initiative
control, including delegation and collaboration
among human and automated agents. Below we
summarize our current work on human-computer
interaction and on security and privacy for AoC
systems.

user Interfaces for managing
Activities

Human-computer interaction in the office domain
currently uses one de-facto standard modality,

 3237

Activity-Oriented Computing

based on keyboards, pointing devices, and win-
dows-based displays. In a more general ubiquitous
computing setting, natural modalities such as
speech and gesture may be highly desirable, but
they also may lead to ambiguity and misunder-
standing. For example, if Fred points at a TV where
a soccer game is playing and leaves the room, does
that mean that Fred wants to keep watching the
game while moving around the house, that the
TV should pause the game until Fred returns, or
that the TV should be turned off?

Rather than trying to pick a privileged modality
of interaction, we take the approach that interac-
tions between humans and auras may have many
channels that complement and serve as alternatives
to each other. For example, users might indicate
their intention to suspend an activity verbally, but
might sometimes prefer a graphical interface to
express a sophisticated set of contextual condi-
tions for when an activity should be automatically
resumed. The research questions then become:
what are appropriate modalities for each kind of
interaction? Is there a role for explicit interac-
tions, as well as for implicit interactions based on
sensing and inference? Can different modalities
be coordinated, contributing to disambiguate
user intentions? What mechanisms can be used
to detect and recover from misunderstandings?
What are specific technologies that can be har-
nessed in the home?

To support explicit interactions, we started ex-
ploring technologies such as Everywhere Displays
and RFID. The Everywhere Displays technology
uses a digital camera to track down the location
of a user, and then uses a projector to project an
image of the interface onto a surface near the
user (Kjeldsen, Levas, & Pinhanez, 2004). The
feedback loop through the camera allows the
image to be adjusted for certain characteristics
of the surface, such as color and tilt. The user
interacts with this image by performing hand
motions over the image, which are then recog-
nized via the camera. This technology supports a
metaphor similar to the point-and-click metaphor,

although fewer icons seem to be feasible relative
to a computer screen, and a rich set of command
primitives, such as double clicking or selecting a
group of objects, seems harder to achieve.

RFID technology supports a simple form of
tangible interfaces (Greenberg & Boyle, 2002).
For example, RFID tags can be used to create
tangible widgets for activities. In the example
where Fred is watching the game on TV, Fred
may bind an activity widget with the show play-
ing on the TV by swiping the widget near the TV.
That activity may be activated in other rooms
by swiping the activity widget by a reader in the
room, or deactivated it by swapping the widget
again, once activated (see demo video at (Sousa,
Poladian, & Schmerl, 2005)).

tradeoff between ubiquity and
security

The big question to be answered is: can ubiquity
be reconciled with goals of security and privacy?
There seems to be a tradeoff between the openness
of ubiquitous computing and security assurances.
The very meaning of ubiquity implies that users
should be enabled to use the services offered by
devices embedded in many different places. But
how confident can users be that those devices,
or the environment where they run, will not take
advantage of the access to the user’s information
to initiate malicious actions?

Rather that taking an absolute view of security
and privacy, we argue that there are different re-
quirements for different activities. For example,
the computing environment at a coffee shop could
be deemed unsafe to carry out online financial
transactions, but acceptable for sharing online
vacation photos with a friend.

In essence, this is a problem of controlling
access; ideally, a ubiquitous computing environ-
ment would gain access only to the information
pertaining to the activities that a user is willing to
carry out in that environment, and none other.

3238

Activity-Oriented Computing

Unfortunately, existing solutions for control-
ling access are not a good fit to this problem
because they make a direct association between
identity and access. Specifically, once a user
authenticates, he gains access to all the infor-
mation and resources he is entitled to, and so
does the computing environment where the user
authenticated.

A candidate solution would be to associate
access control to the cross-product of users and
environments; in the example, user Fred at the
coffee shop would get access to a limited set of
activities, but user Fred at his office would get
access to a wide range (possibly all) of Fred’s
activities. A serious problem with this solution
is that it would require the pre-encoding of all
the types of environments where the user might
want to access his or her activities.

Another candidate solution would be for us-
ers to have multiple identities; Fred at the coffee
shop would use an identity that has access to the
vacation photos, but not to online banking. This
solution has two obvious problems; first, separat-
ing the activities and associated information for
the different identities may not be clear cut, and
may quickly become cumbersome for moderately
high numbers of activities. Second, if users are
given the freedom to define new identities and
the corresponding access controls, does that
mean that every user should be given security
administration privileges?

We are currently investigating an access con-
trol model centered on the notion of persona. A
user is given one identity and may define multiple
personae associated with that identity. The user
may freely associate activities with personae in
a many-to-many fashion, and may also define
which credentials are required to activate each
persona. This model has a number of benefits,
as follows.

First, it allows users to manage which ac-
tivities are seen by an arbitrary environment (by
authenticating specific personae) while drawing

a clear boundary on the administrative privileges
of each user.

Second, users may draw on rich forms of au-
thentication to make the overhead of authentication
proportionate to the security requirements. For
example, for activating Fred’s financial persona,
Fred may require two forms of id to be presented,
such as entering a password and scanning an id
card, while for his social persona, a weak form
of authentication, such as face or voice recogni-
tion, will suffice.

Third, the model offers users a coherent view of
the personal workspace centered on their identity,
while enabling users to expand the set of acces-
sible activities at will, by providing the credentials
required to activate the desired personae.

conclusIon

The key idea of Activity-oriented Computing
(AoC) is to capture models of user activities and
have systems interpret those models at run time.
By becoming aware of what user activities entail,
systems can do a better job at supporting those
activities, either by facilitating access to the ac-
tivities while relieving users from overhead such
as configuring devices and software, or by taking
responsibility for parts or whole activities.

This chapter described the authors’ work on
building systems to support AoC. It discussed how
those systems may address challenges inherent
to the problem domain, such as user mobility
and conflict resolution, as well as challenges
that are entailed by building the systems them-
selves. Specifically, (a) defining what to capture
in activity models (b) designing systems that do
a good job at supporting user activities while ad-
dressing the challenges in the problem domain,
and (c) making those systems robust, self-aware,
self-configurable, and self-adaptable. The chapter
dissected those challenges, identified specific re-
search questions, and described how the authors

 3239

Activity-Oriented Computing

answered these questions for the past six years, as
their understanding of the issues improved.

The main contributions of this work are as
follows:

• Pragmatic models of user activities that en-
able mobile users to instantiate activities in
different environments, taking advantage of
diverse local capabilities without requiring
the use of mobile devices, and retaining the
ability to reconstitute the user-perceived
state of those activities

• Mechanisms that enable scoping service
discovery over geographical boundaries
that are meaningful to users, and which can
be specific to each activity and be freely
defined

• A utility-theoretic framework for service
discovery that enables optimization of so-
phisticated, service-specific models of QoS
and context properties

• A robustness framework, based on the same
utility-theoretic framework, that departs
from the traditional binary notion of fault
and uniformly treats as an optimization
problem faults, “soft faults” (unresponsive-
ness to QoS requirements,) and conflicts in
accessing scarce resources

• Closed-loop control that enables systems to
become self-aware and self-configurable,
and to adapt to dynamic changes in both
user/activity requirements and environment
resources

• A software architecture that harmoniously
integrates all the features above, additionally
(a) integrating context sensing according to
the capabilities of each environment, and
(b) coordinating adaptation policies with
applications that may contain their own
fine-grain mechanisms for adaptation to
resource variations

This chapter also summarized ongoing and
future work towards addressing other challenges,

namely, supporting activities where human and
automated agents collaborate (mixed-initiative
activities), exploring human-computer interac-
tion modalities for AoC in ubiquitous comput-
ing environments, and investigating models for
security and privacy.

AcKnowledGment

This material is based upon work supported by
the National Science Foundation under Grant
No. 0615305

reFerences

Abowd, G., Bobick, A., Essa, I., Mynatt, E., &
Rogers, W. (2002). The Aware Home: Develop-
ing Technologies for Successful Aging. Paper
presented at the AAAI Workshop on Automation
as a Care Giver, Alberta, Canada.

Arnstein, L., Sigurdsson, S., & Franza, R. (2001).
Ubiquitous Computing in the Biology Laboratory.
Journal of Lab Automation (JALA), 6(1), 66-70.

Balan, R. K., Sousa, J. P., & Satyanarayanan,
M. (2003). Meeting the Software Engineering
Challenges of Adaptive Mobile Applications
(Tech. Rep. No. CMU-CS-03-111). Pittsburgh,
PA: Carnegie Mellon University.

Brumitt, B., Meyers, B., Krumm, J., Kern, A.,
& Shafer, S. (2000). EasyLiving: Technolo-
gies for intelligent environments. In Gellersen,
Thomas (Eds) Proceedings of the 2nd Int’l Sym-
posium on Handheld and Ubiquitous Computing
(HUC2000), LNCS 1927, (pp. 12-29), Bristol, UK:
Springer-Verlag.

Christensen, H., & Bardram, J. (2002, Septem-
ber). Supporting Human Activities – Exploring
Activity-Centered Computing. In Borriello and
Holmquist (Eds.) Proceedings of the 4th Inter-
national Conference on Ubiquitous Computing

3240

Activity-Oriented Computing

(UbiComp 2002), LNCS 2498, (pp. 107-116),
Göteborg, Sweden: Springer-Verlag.

Garlan, D., & Schmerl, B. (2007). The RADAR
Architecture for Personal Cognitive Assistance.
International Journal of Software Engineering
and Knowledge Engineering, 17(2), in press.

Greenberg, S., & Boyle, M. (2002). Customiz-
able physical interfaces for interacting with
conventional applications. In Proceedings of the
15th Annual ACM Symposium on User Interface
Software and Technology (UIST 2002) (pp. 31-
40). ACM Press.

Intille, S. (2002). Designing a home of the future.
IEEE Pervasive Computing, 1(2), 76-82.

ISO. (1996). Extended Backus-Naur Form (No.
ISO/IEC 14977:1996(E)). Retrieved on from
http:// www.iso.org: International Standards
Organization

Kjeldsen, R., Levas, A., & Pinhanez, C. (2004).
Dynamically Reconfigurable Vision-Based User
Interfaces. Journal of Machine Vision and Ap-
plications, 16(1), 6-12.

Kozuch, M., & Satyanarayanan, M. (2002). Inter-
net Suspend/Resume. Paper presented at the 4th
IEEE Workshop on Mobile Computing Systems
and Applications, available as Intel Research
Report IRP-TR-02-01.

Logitech, I. Logitech Harmony Remote Controls.
Retrieved on from http://www.logitech.com

MacIntyre, B., Mynatt, E., Voida, S., Hansen,
K., Tullio, J., & Corso, G. (2001). Support for
Multitasking and Background Awareness Using
Interactive Peripheral Displays. In ACM User
Interface Software and Technology (UIST’01),
pp. 41-50, Orlando, FL.

Ponnekanti, S., Lee, B., Fox, A., & Hanrahan,
P. (2001). ICrafter: A Service Framework for
Ubiquitous Computing Environments. In Abowd,
Brumitt, Shafer (Eds) 3rd Int’l Conference on

Ubiquitous Computing (UbiComp 2001), LNCS
2201, pp. 56-75. Atlanta, GA: Springer-Verlag.

Richardson, T., Bennet, F., Mapp, G., & Hopper,
A. (1994). A ubiquitous, personalized computing
environment for all: Teleporting in an X Windows
System Environment. IEEE Personal Communi-
cations Magazine, 1(3), 6-12.

Rochester, U. The Smart Medical Home at the
University of Rochester. Retrieved on from http://
www.futurehealth.rochester.edu/smart_home

Román, M., Hess, C., Cerqueira, R., Ranganathan,
A., Campbell, R., & Narhstedt, K. (2002). Gaia:
A Middleware Infrastructure for Active Spaces.
IEEE Pervasive Computing, 1(4), 74-83.

Siewiorek, D. (1998). Adtranz: A Mobile Comput-
ing System for Maintenance and Collaboration.
In Proceedings of the 2nd IEEE Int’l Symposium
on Wearable Computers (pp. 25-32). IEEE Com-
puter Society.

Sousa, J. P. (2005). Scaling Task Management
in Space and Time: Reducing User Overhead in
Ubiquitous-Computing Environments (Tech. Rep.
No. CMU-CS-05-123). Pittsburgh, PA: Carnegie
Mellon University.

Sousa, J. P., & Garlan, D. (2003). The aura
Software Architecture: an Infrastructure for
Ubiquitous Computing (Tech. Rep. No. CMU-
CS-03-183). Pittsburgh, PA: Carnegie Mellon
University.

Sousa, J. P., Poladian, V., Garlan, D., Schmerl, B.,
& Shaw, M. (2006). Task-based Adaptation for
Ubiquitous Computing. IEEE Transactions on
Systems, Man, and Cybernetics, Part C: Applica-
tions and Reviews, Special Issue on Engineering
Autonomic Systems, 36(3), 328-340.

Sousa, J. P., Poladian, V., & Schmerl, B. (2005).
Project aura demo video of the follow me scenario.
Retrieved from http://www.cs.cmu.edu/~jpsousa/
research/aura/followme.wmv

 3241

Activity-Oriented Computing

Sycara, K., Paolucci, M., Velsen, M. v., & Giam-
papa, J. (2003). The RETSINA MAS Infrastruc-
ture. Joint issue of Autonomous Agents and MAS,
Springer Netherlands, 7(1-2), 29-48.

Wang, Z., & Garlan, D. (2000). Task Driven
Computing (Tech. Rep. No. CMU-CS-00-154).
Pittsburgh, PA: Carnegie Mellon University.

endnotes

1 For generality, the protocols of interaction
were renamed from previous architecture

documentation (e.g. Sousa & Garlan, 2003,
Sousa, 2005). For instance, the EM—Sup-
plier protocol is now the Service Announce-
ment and Activation Protocol (SAAP).
Since these protocols were already based on
peer-to-peer asynchronous communication,
no changes were implied by the transition
to the new perspective of the architectural
framework.

2 As discussed in the subsection on context
awareness, there is a variety of mechanisms
for auras to obtain their physical location,
or more precisely, the location of their cor-
responding entities.

This work was previously published in Advances in Ubiquitous Computing: Future Paradigms and Directions, edited by S.
Mostefaoui, Z. Maamar, and G. Giaglis, pp. 280-315, copyright 2008 by IGI Publishing (an imprint of IGI Global).

3242

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8.4
Integration Concept for

Knowledge Processes, Methods,
and Software for SMEs

Kerstin Fink
University of Innsbruck, Austria

Christian Ploder
University of Innsbruck, Austria

AbstrAct

Small and medium-sized enterprises (SMEs) are
a vital and growing part of any national economy.
Like most large businesses, SMEs have recog-
nized the importance of knowledge management.
This Chapter investigates the use of knowledge
processes and knowledge methods for SMEs.
The learning objectives of this Chapter are to
assess the role of knowledge management and
knowledge processes in SMEs. Furthermore, the
reader should be able to describe major knowledge
management programs in SMEs and assess how
they provide value for organizations. Empirical
studies conducted by the authors show that for
SMEs, only four knowledge processes are impor-
tant: (1) knowledge identification, (2) knowledge
acquisition, (3) knowledge distribution and (4)
knowledge preservation. Based on the research
result of several empirical studies, an integration

concept for knowledge processes, knowledge
methods, and knowledge software tools for SMEs
is introduced and discussed.

IntroductIon

The academic literature on knowledge manage-
ment has become a major research field in differ-
ent disciplines in the last decade (Davenport &
Prusak, 1998). Through knowledge management,
organizations are enabled to create, identify
and renew the company’s knowledge base and
to deliver innovative products and services to
the customer. Knowledge management is a pro-
cess of systematically managed and leveraged
knowledge in an organization. For Mockler and
Dologite (2002, p. 18) knowledge management
“refers to the process of identifying and gener-
ating, systematically gathering and providing

 3243

Integration Concept for Knowledge Processes, Methods, and Software for SMEs

access to, and putting in use anything and ev-
erything which might be useful to know when
performing some specified business activity. The
knowledge management process is designed to
increase profitability and competitive advantage
in the marketplace”. Before implementing a
knowledge integration concept, there must be a
common understanding of the term knowledge,
its characteristics, and its impact on knowledge
management. The multi-faceted nature of the term
knowledge is reflected in a variety of definitions
(Kakabadse, Kouzmin, & Kakabadse, 2001, p.
138). Davenport and Prusak (1998) use the term
“knowledge in action” to express the character-
istics of the term knowledge management in a
way it is valuable for the company and to capture
it in words because it resists in the minds of the
humans and their action. Davenport and Prusak
(1998, pp. 6) identify five key components that
describe the term knowledge management:

1. The first component is experience. Knowl-
edge develops over time, and it builds on
the lifelong learning and training practice
of an employee. Experience has a historical
perspective, and it is based on the skills the
knowledge-worker applies to familiar pat-
terns to make connections between these
links.

2. The second component of the term knowl-
edge is “ground truth” (Davenport & Pru-
sak, 1998) which is a term used by the U.S.
Army’s Center for Army Lessons Learned
(CALL). CALL used the term “ground truth”
to express experiences that come from the
ground rather than from theories and gen-
eralizations. “Ground truth” refers to the
way that the people involved know what
works and what does not. CALL experts’
take part in real military situations, and
they pass their observations to the troops
through videotapes or photos. The success
of this knowledge management approach
lies in “After Action Review” programs

which try to cover the gap between what
happened during an action and what was
supposed to happen. This reflection process
helps uncover disparities and differences

3. The third component is complexity. The skill
to solve complex problems and the ability to
know how to deal with uncertainties distin-
guish an expert from a normal employee.

4. A forth characteristic of knowledge is judg-
ment. An expert can judge new situations
based on experience gained over time.
Furthermore, they have the ability to refine
them through reflection. Knowledge, in this
sense, is a living system that interacts with
the environment.

5. Finally, knowledge is about heuristics and
intuition. An expert acts based on their
intuitive knowledge.

Knowledge is tacit, action-oriented, sup-
ported by rules, and it is constantly changing.
In a global and interconnected society, it is more
difficult for companies to know where the best
and most valuable knowledge is, thus it becomes
more difficult to know what the knowledge is. A
successful implementation of knowledge man-
agement only can be achieved in a culture that
supports knowledge sharing and transfer. An
appropriate organizational culture can empower
effective knowledge management. The organiza-
tional culture of a company consists of its shared
values or norms which are transmitted through
common beliefs and feelings, regularities of
behavior, and historical processes. Trompenaars
and Hampden-Turner (2006, p. 6) define culture
as a group of people concerned with problem
solving processes and reconciliation dilemmas.
Culture itself has three different levels. The first,
and highest level, is national culture or regional
society; the second level describes organiza-
tional culture, and, finally, professional culture
focuses on the knowledge of specific groups. A
knowledge culture is the most important value for
the implementation of knowledge management,

3244

Integration Concept for Knowledge Processes, Methods, and Software for SMEs

because organizational knowledge resides in the
culture, structure and individuals who make up
the organization.

Besides culture and networking, the objec-
tive for knowledge management technology is
the creation of a connected environment for the
exchange of knowledge (Mentzas, Apostolou,
Young, & Abecker, 2001). These new software
products facilitate communication and interac-
tion among people as well as among people and
systems. Mentzas et al. (2001, p. 95) discuss two
key components that are required to support the
sharing of information and knowledge:

• Collaboration facilities for knowledge
workers are mainly the domain of group-
ware products. Other technology examples
in this group are email systems, workflow
automation, discussion groups, document
management, shared databases, scheduling
and calendar functions.

• Discovery facilities are required for search-
ing and retrieval purposes. Knowledge
workers are in constant need of finding and
accessing information and knowledge from
other experts. A wide variety of information
sources support the finding of expertise,
and they include the Internet, corporate
Intranets, legacy systems and corporate
local area networks (LANs).

Knowledge management is more than the
technological solutions provided to give people
access to better and more relevant information
(Wang & Plaskoff, 2002, p. 113). It is important
that the design of the knowledge management
systems reflects the mindset of the knowledge
workers and their way of offering highly quali-
tative knowledge solutions with quick solution
processes. An effective knowledge management
system must integrate people, processes, technol-
ogy and the organizational structure.

Historically, knowledge management focused
on the domain of larger organizations. Conse-

quently issues of culture, networking, organiza-
tional structure and technological infrastructure
have been examined upon the implementation
of knowledge management initiatives in large
multi-national organizations and seem to give
little relevance (Delahaye, 2003) to small and
medium enterprises (SMEs). However, the suc-
cess and growth of SMEs depends on how well
they manage the knowledge of their knowledge
workers. Managers in SMEs have to recognize
that the uniqueness and creativity of each knowl-
edge worker will lead to customer satisfaction
and the success of the SMEs. Dezouza & Awazu
(2006) point out that SMEs have to compete
with know-how in order to gain competitive
advantages. As SMEs do not have much money
to spend on knowledge management initiatives,
knowledge must be leveraged so that goals can
be achieved in an effective and efficient manner.
There are several research articles dealing with
knowledge management in SMEs (2001), but only
a few empirical studies have been conducted to
see the impact of knowledge processes in them.
McAdam & Reid (2005) concluded that the time
is right for knowledge management within the
SME-sector. The results of their comparative
study of large organizations and SMEs showed
that both have much to gain from the development
of knowledge management systems. Salojärvi,
Furu & Sveiby (Dunkelberg & Wade, 2007)
concluded that SMEs should be able to enhance
their performance and competitive advantages
by a more conscious and systematic approach to
knowledge management.

There are several quantitative (2007, p. 240)
and qualitative definitions of the term SME
depending on regional and national differences.
Street & Cameron (Fink & Ploder, 2007a, 2007b)
conducted a literature review from 1990 until
2002 to analyze the current status of SMEs and
found a variety of definitions of SMEs with the
following clustering: individual characteristics
of the entrepreneur, organizational character-
istics of the SME, relationship characteristics,

 3245

Integration Concept for Knowledge Processes, Methods, and Software for SMEs

performance characteristics, strategic planning
characteristics or relationship characteristics. In
2000, the European Council set the clear strategic
goal for the European Union (EU) of becoming
“the most competitive and dynamic economy in
the world, capable of sustaining economic growth
with more and better jobs and greater social cohe-
sion” by the year 2010 (ec.europa.eu/growthand-
jobs). SMEs are playing a key role in European
economic performance because they account for
a high proportion of the Gross Domestic Product
(GDP) and employ some two thirds of the European
workforce. According to the OECD Small and
Medium Enterprise Outlook 2005 (www.oecd.
org) SMEs are very important for strengthening
economic performances. They represent over 95
percent of enterprises in most OECD countries,
and generate over half of private sector devel-
opment. Looking at the European countries of
Austria and Switzerland including Liechtenstein
a similar SME landscape can be found. Accord-
ing to the Austrian Statistical Year Book (www.
statistik.at) and the Austrian Institute for SMEs
Research (www.kmuforschung.ac.at) in the year
2006, 99.7 percent of companies in Austria, or
297,800, were SMEs. According to the data from
CHSME (www.kmu.admin.ch), 99.7 percent of
the companies in Switzerland are SMEs.

In the United States (US), the definition of small
business is set by a government department called
the Small Business Administration (SBA) Size
Standards Office. The SBA uses the term “size
standards” to indicate the largest a concern can be
in order to still be considered a small business. It
must also be independently owned and operated.
Unlike the European Union, which has simple
definitions applied to all industries, the United
States has chosen to set size standards for each
individual industry. This distinction is intended
to better reflect industry differences. SMEs are
also of high importance for in the US Economy.
Similar to Europe, more than 97 percent of the
firms in the US can be defined as SME.

A comparable influence of SMEs on economic
value can be found in the report of the Asia-Pacific
Economic Cooperation (www.apec.com), where
about 90 percent of enterprises are SMEs. During
their 2006 meeting in Beijing the members agreed
to strengthen SME ś competitiveness for trade and
investment. For example, SMEs account for more
than 95 percent of companies in Australia. Of the
624,010 SMEs in Australia, more than two thirds
employ between one and four people. A further
180,880 SMEs employ between five and 19 people
meaning that 93.5 percent of people employed by
SMEs in Australia are employed by what can be
described as ‘micro-SMEs’, namely companies
with fewer than 20 employees.

In section two the authors introduce an integra-
tion concept for the implementation of knowledge
management systems in SMEs by taking the
knowledge processes, knowledge methods and
supporting knowledge software tools into consid-
eration. Section three discusses future research
and describes objectives.

InteGrAtIon concePt For
KnowledGe mAnAGement In
smes

research Framework and sme
Definition

This section focuses on discussing the integra-
tion concept for SMEs. Our research findings
(2006) indicate that SMEs need only four key
knowledge processes (1) Knowledge Identifica-
tion, (2) Knowledge Acquisition, (3) Knowledge
Distribution and (4) Knowledge Preservation and
therefore the authors propose a knowledge layer
concept designed specifically for implementing
knowledge management in SMEs. The empiri-
cal studies conducted by the authors combine
the concepts of knowledge processes as well as
knowledge methods for SMEs in a single study.
The key objective of this section is the matching

3246

Integration Concept for Knowledge Processes, Methods, and Software for SMEs

of knowledge methods to knowledge processes
in these companies. Figure 1 illustrates the re-
search process for modeling knowledge processes
in SMEs and assigning knowledge methods to
each of the four key processes with supporting
software tools. The basic research model is the
“building block” approach by Probst, Raub &
Romhardt (Laudon & Laudon, 2006) with their
description of the knowledge processes (Figure
1, layer 1). Involved are eight components that
form two cycles, one inner cycle and one outer
cycle. Among other knowledge process models
(2006), the building block approach of Probst,

Raub & Romhardt (Edwards & Kidd, 2003) has
the advantage that it is well known in European
companies, including SMEs, and furthermore it
has a unique and complete design.

The authors use the definition of SMEs of the
European Commission 2006 for their research de-
sign. The European Commission analyzes SMEs
by using the following three characteristics: (1)
number of employees, (2) annual turnover and (3)
total assets. Characterized through these three
factors, the European Commission differenti-
ates between (1) middle enterprises [fewer than
250 employees and less than EURO 50 million

Figure 1. Knowledge integration layer concept for SMEs

 3247

Integration Concept for Knowledge Processes, Methods, and Software for SMEs

annual turnover or less than EURO 43 million
total assets], (2) small enterprises [fewer than 50
employees and less than EURO 10 million an-
nual turnover or less than EURO 10 million total
assets] and (3) micro enterprises [fewer than 10
employees and less than EURO 2 million annual
turnover or less than EURO 2 million total assets].
Figure 2 illustrates the European Commission’s
definition of SMEs. Focusing on this definition,
the authors follow the research view of a quanti-
tative perspective of SMEs. This means, that all
enterprises with fewer than 250 employees and
less than EURO 50 million annual turnover or
less than EURO 43 million total assets in Austria
and Switzerland including Liechtenstein are the
target population. In figure 1 layer 2 symbolizes
the quantitative view of the SME definition.

Knowledge Processes Approaches
(layer 1)

Business process modeling (Davenport & Prusak,
1998) has become a major research field in the
information systems discipline in the last ten years.

Davenport sees the term business process as “a
structured, measured set of activities designed
to produce a specified output from a particular
customer or market” (Probst et al., 2006; Rao,
2004). However, in recent years, not only busi-
ness process management, but also knowledge
management has been developing into a new
research field (2003, p. 124). The term knowledge
process modeling comes from the linking of these
two research fields. Key features of knowledge
intensive processes can be described as follows:
diversity of sources and media, variance and
dynamic development of the process organiza-
tion, plentiful process participants with different
expertise, use of creativity, high level of innova-
tion and influence on the area of the decision.
Edwards and Kidd (2000) used the following
five characteristics to emphasize that knowledge
management and business process management
should be integrated:

• Knowledge management is important for
business if the initiative implies an advantage

Figure 2. SME definition according to the European Commission definition

3248

Integration Concept for Knowledge Processes, Methods, and Software for SMEs

for the customers. The idea of implementing
the customer’s requests – may be internal
or external – is the basis for including the
customer.

• Knowledge doesn’t follow business borders.
Business processes also model activities
carried out by global trading companies and
lay the foundations for modeling knowledge
intensive processes.

• Knowledge management can only be effi-
cient if it follows a structured model. Busi-
ness processes are modeled by structured
actions and they are necessary to deduce
knowledge intensive processes.

• The success of knowledge management
depends on the measurement of knowledge.
There is a similarity to the measurement of
business processes. The measurement of
the knowledge potential provides a central
position and biases the success.

• Knowledge management is affected by a
holistic approach. Every part of the business
process modeling is important for success
but every aspect should be considered.

In addition, knowledge management and busi-
ness process modeling initially focused on large
companies. The knowledge economy has to shift
from focusing on large companies to small and
medium-sized enterprises (SME) because of their
importance for industrial economies. The main
reason behind today’s change of focus is that
all businesses depend on methods and tools of
knowledge management in order to gain competi-
tive advantages and to deal with the knowledge
potential of their employees.

The basic research model is the “building
block” approach by Probst, Raub & Romhardt
(2006) with their description of the knowledge
processes (Figure 1, layer 1). Involved are eight
components that form two cycles, one inner cycle
and the other outer cycle. The inner cycle is com-
posed of six key knowledge processes:

• Knowledge Identification is the process of
identifying external knowledge for analyz-
ing and describing the company’s knowledge
environment.

• Knowledge Acquisition refers to what forms
of expertise the company should acquire
from outside through relationships with cus-
tomers, suppliers, competitors and partners
in co-operative ventures.

• Knowledge Development is a building block
which complements Knowledge Acquisi-
tion. It focuses on generating new skills,
new products, better ideas and more effi-
cient processes. Knowledge Development
includes all management actions consciously
aimed at producing capabilities.

• Knowledge Distribution is the process of
sharing and spreading knowledge which is
already present within the organization.

• Knowledge Utilization consists of carrying
out activities to ensure that the knowledge
present in the organization is applied pro-
ductively for its benefit.

• Knowledge Preservation is the process
where the selective retention of informa-
tion, documents and experience required
by management takes place.

In addition, there are two other processes
in the outer cycle, Knowledge Assessment and
Knowledge Goals, which provide the direction to
the whole knowledge management cycle:

• Knowledge Assessment completes the cycle,
providing the essential data for strategic
control of knowledge management.

• Knowledge Goals determine which capabili-
ties should be built on which level.

Knowledge Processes in smes
(layer 2 and 3)

The research method for the identification of
knowledge processes in SMEs were expert

 3249

Integration Concept for Knowledge Processes, Methods, and Software for SMEs

interviews or what Gillham (Gillham, 2000, p.
64) referred to as “elite interviewing”. This kind
of interviewing is chosen to address someone
in a special position or an expert. Gillham lists
several characteristics of open-ended interviews
(Davenport & Prusak, 1998; Ruggels, 1997):

• The respondents will know more about the
topic and the setting than the interviewer.
Sometimes they can even tell the interviewer
what questions to ask.

• By virtue of their authority and experience,
they will have their own structuring of their
knowledge. They will not allow an interview
for which they have to answer a series of
questions addressed at them.

• The best thing the interviewer can hope for
is a response to a topic raised.

• The experts can be particularly informative
about the location of documents, records, or
other experts.

• The experts will expect some control over
the interviewer, and they also will demand
a level of accountability and feedback.

These five characteristics of elite interviews
also apply to the interview situation for the
knowledge processes in SMEs. The managers
or company owners were highly motivated to
articulate their view of knowledge processes and
wanted to share their personal position about the
key knowledge processes. The first interview
session was conducted in 2004 and was limited
to Austrian SME managers. This study was the
proving ground for the future procedure of the
empirical studies in 2005/2006/2007. The research
hypothesis was:

Hypothesis: SMEs need a simple knowledge
process model in order to implement knowledge
management successfully.

The second interview session was conducted
from December 2005 to February 2006 (Figure 1,

layer 2). The research method was the elite inter-
view. The data sample ranged from all industry
sectors in which SMEs could be found in Austria
at this time with a special focus on enterprises
in the of consulting and information technology
sector. The survey subjects were CIOs (Chief
information officer) and CEOs (Chief executive
officer) in Austrian and Swiss SMEs as these are
recognized as proficient in answering questions
concerning knowledge management (1980, p.
21). The data sample of 36 interviewees was the
proving ground for asking open ended questions.
The data was analyzed by content analysis defined
by Krippendorf (Davenport & Prusak, 1998) as
“a research technique for making replicable and
valid inferences to the content”. The interview
sessions lasted approximately one hour and the
authors were the interviewers. The result of the
Austrian and Swiss research showed clearly that
in both countries only four knowledge processes
identified in the Probst, Raub & Romhardt (2006)
model are ranked as important for the implemen-
tation of knowledge management in SMEs (see
Figure 1, layer 3):

• Knowledge identification: In SMEs it is
highly important to identify the key sources
of knowledge, experiences and know-how
in order to stay competitive on the market.

• Knowledge Acquisition: The know-how
of SMEs resides in many cases in the head
of the experts or knowledge worker.

• Knowledge distribution: This process fo-
cuses on the sharing of explicit and implicit
knowledge between knowledge workers
in SMEs. As SMEs are characterized by
smaller groups, a knowledge sharing culture
which facilitates the exchange of knowledge
with other groups and utilizes knowledge
tools and mechanisms is especially impor-
tant.

• Knowledge preservation: It is well rec-
ognized that the most critical asset of any
company are the sum of its collective knowl-

3250

Integration Concept for Knowledge Processes, Methods, and Software for SMEs

edge and intellectual property (Laudon &
Laudon, 2006; Schwartz, 2006). Knowledge
preservation and growth of this asset requires
effective knowledge management through-
out SMEs, so as to make sure that the right
information is available to the right people
when they need it. In addition, the managers
of the SMEs in our study pointed out that
the process of knowledge disposal is also
relevant for SMEs with the objective of not
overloading the information flow between
the individuals. From the content analysis
of the expert interviews with Austrian and
Swiss managers, knowledge disposal can be
identified as an integrated part of knowledge
preservation.

There were no significant differences in the
answers given by the managers of SMEs in Aus-
tria and Switzerland. In general, it can be stated
that SMEs are satisfied with only four knowledge
processes instead of the original framework with
eight building blocks. This implies that hypothesis
1 is verified. These four key knowledge processes
and the basic framework they provide for assign-

ing knowledge methods in SMEs will be part of
our future research.

Knowledge methods (layer 4)

Based on a literature review (Fink & Ploder,
2007b) a list of existing knowledge methods which
support one of the four key knowledge processes
was developed (Figure 1, layer 4). The objective
of this empirical study was to find out which of
the methods are most relevant for SMEs. The
data sample of 587 enterprises was stochasti-
cally appointed from the target population. It
was average allocated across the federal states
of Austria, Switzerland to get a representative
result. In Austria there are 535,031 SMEs and in
Switzerland/Liechtenstein there are 308,819. The
online questionnaire was carried out in summer
2006 after a pre-test with 30 respondents. The
respondents were divided into seven industry sec-
tors. 60 percent were from the three key industries:
industry, information & consulting and trade &
handcraft, with the remaining 40 percent dispersed
over various other industries. Figure 3 lists the
key methods for the four knowledge management

Figure 3. List of knowledge methods

 3251

Integration Concept for Knowledge Processes, Methods, and Software for SMEs

processes, which are stored in the knowledge
method repository (Figure 1, layer 5) and can be
extended to new knowledge methods.

Knowledge software-support
(layer 5)

In a next step, the objective was to match a cost-
efficient software product to each knowledge
method which is usable in practice. In the research
design the focus was on Freeware and Shareware
software tools in order to fulfill the presetting
of cost-efficient software support. An online re-
search method was used which resulted in a list
of evaluated cost-efficient software products. The
evaluation of each software product was conducted
by applying the ISO/IEC 9126 norm. The Quality
Model of the norm is divided into two parts which
are important for the evaluation of the software
products to support knowledge methods:

• the internal and the external quality of the
software as well as

• the quality for use.

The ISO norm (see Figure 4) lists five charac-
teristics to evaluate software products: (1) func-
tionality, (2) reliability, (3) usability, (4) efficiency
and (5) assignability. For each characteristic a
different number of items were assessed by a
likert scale from -2 up to +2. The process used
by the authors to make the assessment is shown
in the appendix. The data sample of the Quality
Model included more than 200 different software
products. A key research finding was that some of
the software products cannot be used in practice
because their quality is inadequate. Finally there
were 45 software products which are suitable for
use in SMEs.

Table 1 gives an overview of all methods sup-
porting the four knowledge processes for SMEs
and the corresponding cost-efficient software
tools. Table 1 also lists the absolute number of

Functionality ISO
Ranking Reliability ISO

Ranking Usability ISO
Ranking Efficiency ISO

Ranking

Accuracy 2 Maturity 2 Comprehensibility 1 Time Responsibility 1

Adequacy 2 Fault Tolerance 1 Learnability and
Usability 2 Resource Respon-

sibility 1

Interoperability 1

Subtotal 5 3 3 2

Assignability ISO
Ranking Process Knowledge Acquisition

Installation 1 Method Brainstorming

Conformance 1 Software Concept X7

Compatibility 2

Subtotal 4 Ranking 17

Costs 149 EURO

Disk Space 74,7 MB

License License for 1 User

Annotation supporting tablet computers, great functional range

Figure 4. Example of ISO 9126-1

3252

Integration Concept for Knowledge Processes, Methods, and Software for SMEs

rank-
ing Supporting cost-efficient software products Iso rank-

ing
ranking
survey

Knowledge Identification

Knowledge Balance 92 no cost-efficient software product, Office similar products

Balanced Scorecard 89 no cost-efficient software product, Office similar products

Skandia Navigator 74 no cost-efficient software product, commercial Software

Market - Asset Value - Method -5 no cost-efficient software product, Office similar products

Tobin’s q -15 no cost-efficient software product, Office similar products

Knowledge Acquisition

Search Engine 232 Google Desktop Search; MSN Toolbar; Yahoo Dektop Suche not possible 25; 12; 10

Brainstorming 225 Brainstorming Toolbox; Concept X7 6;17 44; 88

Knowledge Network 203 no cost-efficient software product

Mind Mapping 195 Free Mind; Think Graph, Tee Tree Office 16; 12; 8 69; 53; 28

eMail System 134 Pegasus Mail; Thunderbird Mail; Amicron Mailoffice 2.0 21; 21; 12
63; 165;
26

Scenario Technique 126 no cost-efficient software product, Office similar products

System Simulation 98 no cost-efficient software product, commercial Software

Business Game 91 Gamma 15 75

Synektik -17 no cost-efficient software product, commercial Software

Knowledge Distribution

eMail System 185 Pegasus Mail; Thunderbird Mail; Amicron Mailoffice 2.0 16; 12; 8
63; 165;
26

Handbook FAQs 159 no cost-efficient software product, Office similar products

Communities of Practice 152 no cost-efficient software product, Office similar products

Groupware 139 eGRoupware1.2; AlphaAgent 1.6.0; Tiki CMS - Groupware 15; 14; 16 40; 26; 24

Questionnaire 110 Easy Survey 10 61

Best Practice 108 no cost-efficient software product, Office similar products

Checklist 103 CUEcards 2000 8 128

Lessons Learned 103 no cost-efficient software product, Office similar products

Knowledge Maps 82 InfoRapid KnowledgeMap 13 69

Story Telling 42 no cost-efficient software product, Office similar products

Chatroom 29 Skype; MSN, ICQ not possible 71; 33; 25

Microarticle 2 no cost-efficient software product, Office similar products

Knowledge Preservation

Database 242 MySQL; MSDE 86; 44

Mind Mapping 200 Free Mind; Think Graph, Tee Tree Office 16; 12; 8 69; 53; 28

Document Management
System 195 Office Manager; UDEX dotNETContact; QVTutto 15; 15; 14 74; 35; 22

Checklist 164 CUEcards 2000 8 128

Content Management 126 CONTEX; ContentKit; VIO MATRIX 16; 13; 13 0; 47; 13

Table 1. Ranking of cost-efficient software products (2006, p. 50ff)

continued on following page

 3253

Integration Concept for Knowledge Processes, Methods, and Software for SMEs

each method in the likert scale. The ranking of
each method is the calculated value based on the
likert scale. The “ISO Ranking” illustrates the
assessment of the software based on the Quality
Model. The absolute frequency with which the
software was named by the respondents can be
seen in the last column.

Knowledge Balance (92) was ranked highest
among the methods for the first process of the
identification of knowledge. 56% of SMEs think
that this is the best method. Further methods are the
Balanced Scorecard (89) and the Skandia Naviga-
tor (74). The methods Market-Asset Value-Method
(-5) and Tobiǹ s q (-15) were rated by less than
30% to be of good use in SMEs.

Brainstorming (225) and Knowledge Network
(203) are popular methods for the acquisition of
knowledge. Mind Mapping (195), eMail Systems
(134), Scenario Technique (126) and System
Simulation (98) are also suitable methods for this
knowledge process, while Business Games (91)
are also a possibility. The method of “Synektik”
was rated very low because of its complexity. The
absolute star for the acquisition of knowledge
was the Search Engine (232) with over 70% for
efficient use in SMEs. In this case the Google
Desktop Search Engine was the prior selection
software. 60% of the respondents chose eMail-
Systems which can be supported by the software
Thunderbird1.5. For Brainstorming a good tool is
Concept X7, while for Mind Mapping the tools
Free Mind (42%) and Think Graph (41%) were
rated highly. As support software to a Business
Game 64% rated Gamma was well

As illustrated in Table 1 the methods eMail-
System (185), Handbook FAQs (159), Communi-
ties of Practice (152), Groupware (139), Ques-
tionnaire (110) and Best Practice (108) are the
favorites for the distribution of knowledge. It has
to be pointed out that the methods Micro Article
(2) and Chatroom (29) are rated not as well in the
survey. The software products for the methods
of transferring knowledge are InfoRapid sup-
porting Knowledge Maps, EasySurvey support-
ing Questionnaire, Skype and MSN supporting
Chatroom, eGroupware1.2 and AlphaAgent1.6.0
supporting Groupware, CUCards 2000 support-
ing Checklists and Pegasus Mail, Thunderbird1.5
and Amicron Mailoffice 2.0 for the support of
eMail-Systems.

Databases (242) are a recognized method
of the knowledge preservation process. 80%
of the SMEs think that they will organize their
knowledge with databases. Mind Mapping (200),
Document Management System (195) and Check-
lists (164) are further efficient methods. Content
Management Systems (126), Project Review (122),
Expert Systems (74) and Conceptualization (40)
are methods which can be chosen but are not the
favorite choice. Neural Network (-10) is not an
adequate method for preserving knowledge in
an SME. There were many different software
products to support this process. MySQL is
the favorite database software followed by the
MSDE from Microsoft. Document management
can be done by the Office Manager, the UDEX
dotNETContact or the QVTutto. There are also
software tools for the other methods which are
described in Table 1.

Project Review 122 no cost-efficient software product, Office similar products

Experts System 74 KnowIT; KnowME 10; 7 38; 52

Conceptualization 40 no cost-efficient software product

Neural Network -10 no cost-efficient software product, commercial Software

Table 1. continued

3254

Integration Concept for Knowledge Processes, Methods, and Software for SMEs

conclusIon And sectIon
objectIves

In the future the research area will be expanded
from Austria, Germany and Switzerland to other
key members of the European Union as well as
to the U.S. and Asia-Pacific area. Furthermore,
in future research work the authors will focus
on knowledge diffusion to the dissemination of
explicit knowledge captioned in SMEs from many
sources. The diffusion of knowledge through an
effective SME website creates benefits not only
to the enterprise itself but also to customers and
suppliers as well as to new alliances. Empirical
studies conducted by Ordanini show that the
website is the only solution which has been used
by the majority of SMEs, while the adoption of a
highly-sophisticated website is a relevant matter
for only 10 percent or 20 percent of SMEs. The
use of information technology, especially web-

sites, is recognized as a critical success factor for
knowledge management initiatives in the SME
sector (Wong & Aspinwall, 2005). Wong (2005)
sees information technologies as a key enabler
for the implementation of knowledge manage-
ment and considers factors such as the simplicity
of technology, ease of use, suitability for users’
needs, relevancy of knowledge content, and stan-
dardization of a knowledge structure as key factors
for knowledge diffusion in the development of
a knowledge management systems. Knowledge
diffusion through websites is a dominant factor
for successful knowledge initiatives. The central
research question of this section can be described
as follows: How can SMEs spread their knowledge
competencies through their websites? For success-
ful knowledge diffusion (Fink & Ploder, 2007a)
in SMEs the authors propose a three-dimensional
theoretical framework as shown in figure 5: (1)

Figure 5. Three-dimensional framework for knowledge diffusion

 3255

Integration Concept for Knowledge Processes, Methods, and Software for SMEs

Data/Information/Knowledge Dimension, (2)
Technical-oriented Dimension and (3) Social-
cognitive Dimension.

The major learning objectives of this chapter
are:

• Identification and description of contempo-
rary approaches to knowledge management
in SMEs.

• Assessing contemporary knowledge pro-
cesses that are required for successful
implementation of knowledge management
in SMEs.

• Identification of major knowledge methods
supporting the key knowledge processes in
SMEs: identification, acquisition, dissemi-
nation, preservation referring to the layer
concept

• Discussion of the impact of cost-efficient
software support for knowledge initia-
tives.

• Analyzing the relationship of knowledge
transfer through SME websites.

In summary, it can be stated that the use of
an integration concept can help SMEs leverage
their core competencies by promoting the sharing
of information and knowledge inside and outside
their organization. The impact of cost-efficient
software products for knowledge management
facilitates business models based on simple
knowledge processes. The knowledge process
model highlights specific processes in the business
where competitive advantages can be achieved
and knowledge management systems will have
a greater impact. The integration concepts view
knowledge management in SMEs as a holistic
approach where primary knowledge processes
are directly related to knowledge methods and
software tools.

reFerences

Davenport, T., & Prusak, L. (1998). Working
knowledge: how organizations manage what they

know. Boston, MA: Harvard Business School
Press.

Delahaye, D. (2003). Knowledge Management in
a SME. International Journal of Organisational
Behaviour, 9(3), 604-614.

Dezouza, K., & Awazu, Y. (2006). Knowledge
Management at SMEs: Five peculiarities. Journal
of Knowledge Management, 10(1), 32-43.

Dunkelberg, W., & Wade, H. (2007). Overview:
Small Business Optimism. NFIB Small Business
Economic Trends, 1-12.

Edwards, J., & Kidd, J. (2003). Bridging the
Gap from the General to the Specific by Linking
Knowledge Management to Business Process
Management. In V. Hlupic (Ed.), Knowledge and
Business Process Management. Hershey: Idea
Group Publishing.

Fink, K., & Ploder, C. (2007a). A comparative
Study of Knowledge Processes and Methods in
Austrian and Swiss SMEs. In H. Österle, J. Schelp
& R. Winter (Eds.), Proceedings of the 15th
European Conference on Information Systems
(ECIS2007). St. Gallen.

Fink, K., & Ploder, C. (2007b). Knowledge
Process Modeling in SME and Cost-Efficient
Software Support: Theoretical Framework and
Empirical Studies. In M. Khosrow-Pour (Ed.),
Managing Worldwide Operations and Commu-
nications with Information Technology. Hershey:
IGI Publishing.

Gillham, B. (2000). Case Study Research Meth-
ods. London/New York: Continuum.

Kakabadse, N., Kouzmin, A., & Kakabadse, A.
(2001). From Tacit Knowledge to Knowledge Man-
agement: Leveraging Invisible Assets. Knowledge
and Process Management, 8(3), 137-154.

Krippendorf, K. (1980). Content Analysis, 5.
Beverly Hills: Sage Publication.

Laudon, K. C., & Laudon, J. P. (2006). Manage-
ment information systems: managing the digital

3256

Integration Concept for Knowledge Processes, Methods, and Software for SMEs

firm (9th ed.). Upper Saddle River, NJ: Pearson/
Prentice Hall.

McAdam, R., & Reid, R. (2001). SME and large
Organization Perception of Knowledge Man-
agement: Comparison and Contrast. Journal of
Knowledge Management, 5(3), 231-241.

Mentzas, G., Apostolou, D., Young, R., & Abecker,
A. (2001). Knowledge Networking: a Holistic
Solution for Leveraging Corporate Knowledge.
Journal of Knowledge Management, 5(1), 94-
106.

Mockler, R., & Dologite, D. (2002). Strategically-
Focused Enterprise Knowledge Management. In
D. White (Ed.), Knowledge Mapping & Manage-
ment (pp. 14-22). Hershey: IRM Press.

Ordanini, A. (2006). Information Technology and
Small Businesses: Antecedents and Consequences
of Technology Adoption. Massachusetts: Edward
Elgar Publishing.

Probst, G., Raub, S., & Romhardt, K. (2006).
Wissen Managen, 5. Wiesbaden: Gabler Verlag.

Rao, M. (2004). Knowledge Management: Tools
and Techniques. Oxford: Elsevier.

Ruggels, R. (1997). Knowledge Management
Tools. Boston: Butterworth-Heinemann.

Salojärvi, S., Furu, P., & Sveiby, K. (2005).
Knowledge management and growth in Finnish
SMEs. Journal of Knowledge Management,
9(2), 103-122.

Schwartz, D. (2006). Encyclopedia of Knowledge
Management. Hershey: Idea Group Publishing.

Street, C., & Cameron, A. (2007). External Re-
lationships and the Small Business: A Review of
Small Business Alliance and Network Research.
Journal of Small Business Management, 45(2).

Trompenaars, F., & Hampden-Turner, C. (2006).
Riding the waves of culture: understanding cul-
tural diversity in business (2. reprint. with corr.
ed.). London: Brealey.

Wang, F., & Plaskoff, J. (2002). An Integrated
Development Model for KM. In R. Bellaver & J.
Lusa (Eds.), Knowledge Management Strategy
and Technology (pp. 113-134). Boston: Artech
House.

Wong, K. (2005). Critical success factors for
implementing knowledge management in small
and medium enterprises Industrial Management
& Data Systems, 105(3), 261-279.

Wong, K., & Aspinwall, E. (2005). An empirical
study of the important factors for knowledge-man-
agement adoption in the SME sector. Journal of
Knowledge Management, 9(3), 64-82.

KeY terms

Enterprise: Considered to be any entity
engaged in an economic activity, irrespective
of its legal form. This includes, in particular,
self-employed persons and family businesses
engaged in craft or other activities, along with
partnerships or associations regularly engaged
in economic activities. The category of micro,
small and medium-sized enterprises (SME) is
made up of enterprises which employ fewer than
250 persons and which have an annual turnover
not exceeding EURO 50 million, and/or an an-
nual balance sheet total not exceeding EURO 43
million. Within the SME category, a small enter-
prise is defined as an enterprise which employs
fewer than 50 persons and whose annual turnover
and/or annual balance sheet total does not exceed
EURO 10 million. Within the SME category, a
micro enterprise is defined as an enterprise which
employs fewer than 10 persons and whose annual
turnover and/or annual balance sheet total does
not exceed EURO 2 million.

Knowledge Distribution: Can be defined
as the transfer of knowledge within and across
settings, with the expectation that the knowledge
will be “used” conceptually (as learning, enlight-
enment, or the acquisition of new perspectives

 3257

Integration Concept for Knowledge Processes, Methods, and Software for SMEs

or attitudes) or instrumentally (in the form of
modified or new practices.). There are those
who see distribution as having other legitimate
outcomes. Some of these outcomes include: (1)
increased awareness; (2) ability to make informed
choices among alternatives and (3) the exchange
of information, materials or perspectives.

Knowledge Integration Concepts: Aim to
customize knowledge processes and knowledge
methods for SMEs in a single enterprise solu-
tion platform. Enterprise application such as
knowledge management systems are designed
to support the SME orientation of business and
knowledge processes to that the SMEs can oper-
ate efficiently.

Knowledge Management: Can be seen as the
overall dealing with knowledge. Knowledge is a
fluid mix of framed experience, values, contex-
tual information, and expert insight that provides
a framework for evaluating and incorporating
new experiences and information. It originates
and is applied in the minds of those who know.
In organizations, it often becomes embedded
not only in documents or repositories but also in
organizational routines, processes, practices and
norms (Davenport & Prusak, 1998).

Knowledge Management Systems: A fast
growing area of corporate software investment.
Contemporary technologies such as Portals,
Content Management Systems, Search engines,
ontologies help managers and employees in their
daily decisions and processes. At each level of the
organization, knowledge management systems
support the major knowledge processes of the
business.

Knowledge Methods: Support knowledge
processes and are designed to add value to these
within organizations. Depending on the identifi-
cation of industry specific knowledge processes,
SMEs have to choose from a knowledge method re-
pository the corresponding knowledge method.

Knowledge Processes: Accelerate the
company’s business processes while ensuring
compliance with the knowledge of the employ-
ees. Knowledge processes concentrate on the
identification, acquisition, dissemination and
preservation of knowledge in order to gain com-
petitive advantages and enhance the value of the
company. Organizations have to use the ability to
incorporate their knowledge into their business
processes.

This work was previously published in Handbook of Research on Enterprise Systems, edited by J.N.D. Gupta, S. K. Sharma,
and M.A. Rashid, pp. 185-200, copyright 2009 by Information Science Reference (an imprint of IGI Global).

3258

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8.5
Adaptive Computation Paradigm
in Knowledge Representation:

Traditional and Emerging Applications

Marina L. Gavrilova
University of Calgary, Canada

AbstrAct

The constant demand for complex applications, the
ever increasing complexity and size of software
systems, and the inherently complicated nature
of the information drive the needs for develop-
ing radically new approaches for information
representation. This drive is leading to creation
of new and exciting interdisciplinary fields that
investigate convergence of software science and
intelligence science, as well as computational sci-
ences and their applications. This survey article
discusses the new paradigm of the algorithmic
models of intelligence, based on the adaptive
hierarchical model of computation, and presents
the algorithms and applications utilizing this
paradigm in data-intensive, collaborative environ-
ment. Examples from the various areas include
references to adaptive paradigm in biometric
technologies, evolutionary computing, swarm
intelligence, robotics, networks, e-learning,
knowledge representation and information system
design. Special topics related to adaptive models

design and geometric computing are also included
in the survey.

IntroductIon

Adaptive computing focuses on the methodology
and implementation of algorithms and systems
that can adjust to different situations and cir-
cumstances. An adaptive system may change its
own behavior depending on the goals, tasks, and
other features of individual users and the environ-
ment. Adaptivity is important for ubiquitous and
pervasive computing, and as it will be shown in
this survey, plays an important role in a variety
of traditional as well as emerging areas, such as
biometric technologies, evolutionary computing,
swarm intelligence, robotics, networks, e-learn-
ing, knowledge representation and information
system design.

The constant demand for complex applica-
tions, the ever increasing complexity and size of
software systems, and the inherently complicated

 3259

Adaptive Computation Paradigm in Knowledge Representation

nature of the information drive the needs for
developing radically new approaches for informa-
tion representation and processing. This drive is
leading to creation of new and exciting interdis-
ciplinary fields that investigate convergence of
software science and intelligence science, as well
as computational sciences and their applications.
As can be seen from the definition, the driving
force behind the need for adaptive paradigm is
variety of situations, variability in backgrounds
and needs of different user groups or applications.
This survey article presents the new paradigm of
the algorithmic models of intelligence, based on
the adaptive hierarchical model of computation,
and presents the algorithms and applications utiliz-
ing this paradigm in data-intensive, collaborative
environment.

AdAPtIve methods In
terrAIn modelInG

For a long time, researchers were pressed with
questions on how to model real-world objects
realistically, while at the same time preserving
efficiency, quality and operability requirements.
The examples from the area of computer graphics
and terrain modeling showcase the concept per-
fectly. Over the past twenty years, a grid, mesh,
TIN, k-d trees, and Voronoi based methods for
model representation were developed (Bonnefoi
and Plemenos 2000, Gold and Dakowicz 2006,
Cohen-Or and Levanoni 1996, Duchaineauy et.
al. 1997, Franc and Skala 2002, Iglesis 2002,
Kolingerová 2002). Most of these were however
static methods, not suitable for rendering dynamic
scenes or preserving higher level of details (see
Figure 1.). In 1997, first methods for dynamic
model representation: Real-time Optimally
Adapting Mesh (ROAM) and Progressive Mesh
(PM), were developed (Duchaineauy 1997).
However, even with the further improvements
(Li et. a. 2003), these methods were not capable
of dealing with large amount of complex data or

significantly varied level of details (see Figure 2.).
The main difference between terrain visualized
using static and adaptive methods is the size and
distribution of the triangles – in Figure 1, it is
clearly seen that the patches of similar triangles
are used throughout the various terrain features,
while Figure 2 uses adaptive methods to decide on
the most appropriate triangle sizes based on the
curvature and distance from the viewer. However,
this method is still not sufficient for dealing with
all variety of terrain features, nor it is fast enough
to be used in real-time.

Recently, the adaptive multi-resolution tech-
nique for real-time terrain rendering was devel-
oped (Apu and Gavrilova 2005). The method
is characterized by the efficient representation
of massive underlying terrain, utilizes efficient
transition between detail levels, and achieves
frame rate constancy ensuring visual continuity.
The method is based on the adaptive loop subdi-
vision and recursive split operation (see Figure
3.), implemented with the use of novel S-Queue
operations ordering data structure.

Furthermore, a novel approach based on adap-
tive dynamic viewer-dependent level of details
(LOD), utilizing the above strategy, was developed
for real-time terrain rendering. The approach
uses mesh regularity operator and LOD control
parameters to achieve fast recursive seamless
patch stitching, ensure geometric regularity, im-
prove rendering quality, provide multi-resolution
storage and allow for rendering and transmission
of massive data sets (see Figure 4).

More formally, the process can be described as
follows. A mesh M can be viewed as a piecewise
linear surface. It is defined as a pair (K, V) where
V ⊂ R3 is the set of vertices and K is a simplicial
complex specifying the connectivity of the mesh
simplices (the adjacency of the vertices, edges and
faces). A combinatorial k-simplex of K is the (k +
1) element subset of K. Therefore the 0-simplices
{i} ∈ K are called vertices, the 1-simpices {i, j}
∈ K are called edges, and the 2-simplices {i, j, l}
∈ K are called faces.

3260

Adaptive Computation Paradigm in Knowledge Representation

Figure 1. A static mesh (40,000 triangles)

Figure 2. Real-time optimally adaptive mesh (25,000 triangles)

Figure 3. Adaptive loop subdivision and recursive split operations

 3261

Adaptive Computation Paradigm in Knowledge Representation

A mesh can be considered as higher dimen-
sional generalization of the concept of graph used
in a variety of graphics applications. For instance,
a mesh M = (K, V) defines a graph G = (V, ℘)
where V is the set of vertices in M and ℘ is the
1-simplices of K. Therefore G is the minimum
unrestricted topological realization of M. Nev-
ertheless, higher simplices of K (i.e. faces) could
be reconstructed from G by means of a convex
combinatorial relationship of the transitive closure
of ℘. For example, a triangulation of the mesh
could be obtained from the transitive closure of
edges defining a mesh M.

Mesh optimization is the process of reducing
a mesh M0 to a mesh Mk, where Mk contains less
number of vertices and geometric primitives (i.e.
triangles) than M0. The goal is to find Mk such
that the no other mesh M'k exists, which repre-
sent a better approximation of the mesh M0. In
practical applications, it is sufficient to converge
to any of the optimal solutions. There are many
variations of mesh optimization techniques.
Intuitively, mesh optimization is a compression
method for geometric models with large details.

In computer graphics, various processes such as
regular tessellations, polygonized spline surfaces,
polygonized parametric surfaces, polygonized
implicit surfaces, range scanned surfaces and
subdivision surfaces generate polygonal meshes
to render or store the object. In most cases, these
meshes consist of a large number of geometric
primitives. In order to render them or store them
efficiently, one needs to reduce the number of
primitives significantly. This process of simplifica-
tion must be performed in a way such that the loss
of details is minimal while conforming as much
as possible to the specified criteria.

The novel approach to mesh optimization
based on adaptive dynamic viewer-dependent
level of detail method was developed in (Apu
and Gavrilova 2005). The introduced data struc-
ture, called Adaptive Loop Subdivision (ALS),
can intuitively be viewed as a special filter that
increases the details and smoothness properties
of a mesh. It is a subdivision method based on
triangle meshes. In general, every triangle in the
base mesh Mi is split into four inner triangles (see
Figure 4b). Each vertex position is adjusted ac-

Figure 4. Varied Mesh regularity operator and LOD control parameters

(a) 0, 1, 4curv dist u= = = (b) 0, 1, 6curv dist u= = = (c) 0, 1, 8curv dist u= = =

(d) 1, 0, 4curv dist u= = = (e) 1, 0, 6curv dist u= = = (f) 1, 0, 8curv dist u= = =

3262

Adaptive Computation Paradigm in Knowledge Representation

cording to a combinatory mask. The refined mesh
Mi+1 contains exactly four times the number of
triangles than Mi. This four to one augmentation
of LOD is a direct correspondent to the refinement
of Haar wavelet.

Standard subdivision technique was first
introduced by Loop in 1987 (Loop, 1987) in his
Master’s Thesis. It became widely acceptable
and numerous improvements were suggested
subsequently. However, the scheme does not allow
local refinements. If one triangle is subdivided
without the neighboring triangles, cracks will
become visible. The new ALS scheme allows
a way to repair those cracks without noticeable
visual artifacts through the following conditions
imposed on subdivision procedure:

1. If fi are the faces adjacent to the face f in Mi
and ℑ: F(Mi) → Z is a function correspond-
ing to the LOD of a face (F(Mi)) is the set of
faces of Mi) then:

 ∀i(neighbor(f, fi) → 0 ≤ | ℑ(f) - ℑ(fi)| ≤ 1

2. A face f can be subdivided if and only if
ℵ(f) = 1; ℵ: F(Mi) → {0, 1}. Here,

0; if f is a T-face

()
1; otherwise

f ℵ =

3. Let ∏: F(Mi) → F(Mi-1) be the parent relation
ship of a face. That is f' = ∏(f) if and only
if f in Mi has been generated by splitting f'.
The following condition must hold:

 ∀fi ∀fj = ((ℵ(fi) = 0) ∧ (ℵ(fj) = 0) ∧
neighbor(fi, fj) → (ℑ(fi) ≠ ℑ(fj)) ∨ (∏(fi) =
∏(fj)))

These constrains are the prime directives of
the developed ALS method. They enforce the
regularity of the scheme and ensures that no thin
triangle is introduced. Their application leads to
fine results shown in Figure 4 as well as numerous

other advantages. ALS scheme was subsequently
successfully used not only for terrain visualiza-
tion, but in geographical information systems,
motion planning and computer simulation ap-
plications.

AdAPtIve methodoloGY In
trAdItIonAl APPlIcAtIons

Adaptive Geometric methods

At the same time as adaptive methods were making
their way in the area of terrain rendering, the re-
newed interest to topology-based data structures,
Voronoi diagram and Delaunay triangulation in
particular, has grown significantly (Okabe et.al.
1992). The key developments on both conceptual
and implementation level are regularly presented
at the International Symposium on Voronoi
Diagrams in Science and Engineering Confer-
ence Series. Utilization of these developments in
molecular modeling, bioinformatics and robotics
promotes further stimulus to research on adaptive
and dynamic problems. Thus, article (Gold and
Dakowicz 2006) studies dynamic ship naviga-
tion visualization system using kinetic Voronoi
diagram as an underlying concept. Utilization of
the dynamic Voronoi diagram for 3D robot plan-
ning and navigation is studies in (Kolingerova
2005). Adaptive Voronoi diagram based approach
to swarm simulation is presented in (Apu and
Gavrilova 2006). These developments lead the
way toward utilization of adaptive hierarchical
models in computational geometry.

Recently, some preliminary results on utili-
zation of computational geometry techniques in
biometrics began to appear, such as research on
image processing using Voronoi diagrams (Asano
2006, Liang and Asano 2004), work on utilizing
Voronoi diagram for fingerprint synthesis (Bebis
1999), and studies on 3D modeling of human
faces using triangular mesh (Li and Jain 2005).
Some interesting results were recently obtained

 3263

Adaptive Computation Paradigm in Knowledge Representation

in the BTLab, University of Calgary, through the
development of topology-based feature extraction
algorithms for fingerprint matching, 3D facial
expression modeling and iris synthesis (Wang
et. al. 2005, Wecker et. al. 2006, Bhattachariya
and Gavrilova 2006).

Adaptive Image Processing and
visualization

Adaptive image processing is one of the most
important techniques in visual information pro-
cessing, especially in image restoration, filtering,
enhancement, and segmentation. While existing
literature presents some important aspects of the
issue, there were no works that would treat the
problem from a viewpoint that is directly linked
to human perception – until the book “Adaptive
Image Processing: A computational Intelligence
Perspective Book“ appeared (William et. al. 2001).
This comprehensive collection of references treats
adaptive image processing from a computational
intelligence viewpoint, relating neural networks,
fuzzy logic, and evolutionary computation to
adaptive image processing. Based on the funda-
mentals of human perception, this book also gives
a detailed account of computational intelligence
methods and algorithms for adaptive image pro-
cessing in regularization, edge detection, vision

and any area where intelligent visual information
processing is required.

Adaptive processing has been tightly linked
not only to image processing, but to computer
graphics and scientific visualization. In (Lopse
et.al. 2002), authors provide an algorithm for
computing a robust adaptive polygonal ap-
proximation of an implicit curve in the plane.
The approximation is adapted to the geometry of
the curve because the length of the edges varies
with the curvature of the curve. Robustness is
achieved by combining interval arithmetic and
automatic differentiation.

Another example is adaptive visualization area
of research, which is often explored in connection
with geographical, urban or medical applications.
A variety of engineering disciplines use large
high-resolution geometric models whose com-
putational requirements exceed current computer
hardware capacities. The research presented in
(Lu and Hammersley 2000) describes an adap-
tive visualization solution for interactively build-
ing such models. While adaptive visualization
techniques have conventionally been applied to
existing complete models, their method provides
adaptive visualization of models while still un-
der construction, through a clever utilization of
multiresolution methods.

Figure 5. Planar Voronoi diagram representation

3264

Adaptive Computation Paradigm in Knowledge Representation

A common application of adaptive paradigm
can be found in the area of medical imaging. A
common active contour (snake) model is a popular
choice for medical imaging applications, how-
ever the article by (Shen and Davatzikos 2000)
goes further in exploring adaptive paradigm in
this context. They propose a clever approach to
geometric design and the structure of the model
through adaptive method for carrying out model
deformations in the most reliable way. Specifi-
cally, authors suggest to use an attribute vector to
characterize the geometric structure around each
point of the snake model, which allows to deform
to nearby edges with considering geometric
structure. They also provide an adaptive-focus
statistical model which allows the deformation of
the active contour in each stage to be influenced
by the most reliable matches. Finally, they propose
the deformation mechanism that is robust to lo-
cal minima and is based on evaluating the snake
energy function on segments of the snake at a
time, instead of individual points. The approach
is novel and unique, and is proven to perform
very well experimentally.

Adaptive Information systems

The current fast evolution in the areas of software,
hardware and networks suggests that it will be
possible to offer access to information systems
through variety of interactive means, including
computers, notebooks, PDA’s, cellular phones,
game consoles, GPS devices etc. Thus, this va-
riety of technologies and information available
required creation of a flexible environment to
support adaptive interaction and services accord-
ing to changing requirements, interfaces, devices,
communication and user needs.

One of the research initiatives that started in
2002 was devoted specifically to this problem.
The Multichannel Adaptive Information Systems
project (MAIS) was funded by Basic Research
Funds of the Italian Department of Education and
involved six Universities and industry collabora-

tions. The project research areas were information
systems, database systems, human computer in-
teraction, computer networks and telecommunica-
tion, hardware design, middleware, management
engineering, with the focus on adaptive computing
paradigm. Adaptive e-services, adaptive portable
devices and adaptive networks were at the focus
of the research. The prototype applications of the
methods were developed in the areas of tourism,
education, and risk management in archeology.

Another relevant project is described in (Doerr
1999). Authors state that one way to increase soft-
ware system adaptability is to allocate resources
dynamically at run-time rather than statically at
design time. For example, fine-grained run-time
allocation of processor utilization and network
bandwidth creates an opportunity to execute
multi-modal operations. Thus, this allocation
strategy enhances adaptability by combining
deterministic and non-deterministic function-
ality. Authors next showcase that adaptability
is essential to improve versatility and decrease
lifecycle maintenance costs for embedded real-
time systems.

Adaptive networks

As already seen from the above applications,
the driving force behind the need for adaptive
paradigm is variety of situations, variability in
backgrounds and needs of different user groups
or applications. The further expansion of Internet
communications, not only for electronic exchange
of ideas, but also as a means of collecting a wide
range of information, has lead to a variety of other
applications besides e-learning. Thus, electronic
commerce, Internet transactions, collaborative
newsgroups, facebooks, on-line teleconferencing
are all rapidly developing. However, one of the
problems is the difference in information available
to network users. Network systems and services
are becoming increasingly complex and diverse,
and the processes involved in accessing required
information are growing ever more advanced.

 3265

Adaptive Computation Paradigm in Knowledge Representation

As a result, the information disparity that arises
from the presence or absence of knowledge about
networks and computers is becoming a problem
that cannot be overlooked. Another problem is
one that is derived from changes and increases
in communications traffic.

The key to dealing with the above challenges
is user adaptability and adaptability to changes in
communication demand. User adaptability means
that the user does not conform to the conditions
of the network, but rather the network adapts
instantaneously to the user environment and to
service needs, which change with every passing
moment. Adaptability to changes in communica-
tion demand means that the network configuration
and equipment functions change dynamically to
absorb the introduction of new services and macro-
fluctuations in traffic. NTT Laboratories is one
of the organizations that combines knowledge,
expertise and application research in the area of
adaptive networks, which constantly change their
functions and configurations to respond imme-
diately to changes in the environment, and to be
the network platform of the Information Sharing
Society of the future. Their key terms to describe
the research in adaptive networks is Intellect,
Evolution, and Simple & Seamless.

AdAPtIve methods In
emerGInG AreAs

biometrics and Adaptive
computing

Adaptive techniques have made their way in
emerging scientific areas such as biometric
computing. In information technology, biomet-
ric refers to a study of physical and behavioral
characteristics with the purpose of person iden-
tification. In recent years, the area of biometrics
has witnessed a tremendous growth, partly as a
result of a pressing need for increased security,
and partly as a response to the new technological

advances that are literally changing the way we
live. Availability of much more affordable storage
and the high resolution image capturing devices
have contributed to accumulating very large
datasets of biometric data. On the other hand, it
also created significant challenges driven by the
higher than ever volumes and the complexity of
the data, that can no longer be resolved through
acquisition of more memory, faster processors or
optimization of existing algorithms. This justifies
the need for the development of a new concept for
biometric data storage and visualization based on
adaptive paradigm.

It is obvious to anyone who works in the area
of biometric computing that the problem is not
trivial. It is not enough to simply fill the existing
deficiency in data representation and visualization
through application of advanced results from the
areas of computational geometry and computer
graphics. The backbone of the methodology is
in the application of adaptive hierarchical data
representation to achieve flexible and versatile
data representation, fast data retrieval, reliable
matching, easy updates and smooth and continu-
ous data processing.

To achieve this objective, we suggest a novel
way to represent complex biometric data (e.g. a
bitmap, a graphics file, a set of vectors, a polygonal
curve) through the organization of the data in a
hierarchical tree-like structure. Such organization
is similar to Adaptive Memory Subdivision (AMS)
representation (see Figure 6).

AMS is a hybrid method based on the combina-
tion of traditional hierarchical tree structure with
the concept of expanding or collapsing tree nodes,
depending on the amount of information and level
of detail (LOD) that needs to be represented.
Spatial quad-tree is used to hold the information
about the system, as well as the instructions on
how to process this information. Expansion is
realized through the spatial subdivision technique
that refines the data and increases LOD, and col-
lapsing is realized through the merge operation
that simplifies the data representation and makes

3266

Adaptive Computation Paradigm in Knowledge Representation

it more compact. The greedy strategy is used to
optimally adapt to the best representation based
on the user requirements, amount of available data
and resources, and required LOD. This power-
ful technique enables to achieve compact data
representation with required LOD. For instance,
it enables to efficiently store and retrieve minor
details of the facial image (e.g. scars, wrinkles)
or detailed patterns of the compared irises.

Adaptive methods have been studied for
increasing hand geometry reliability while new
processing algorithms, such as symmetric real
Gabor filters, have been used to decrease the com-
putational cost involved in iris pattern recognition
(Sanchez-Reillo et. Al. 1999). This work explores
adapting these methods to small embedded sys-
tems, and proposes the design of new biometric
systems, where the users template is stored in a
portable storage media for added security. Such
media could be used to store sensitive information,
for instance related to user’s health records, and
proposed adaptive access methods are devised to
avoid the reading of this data unless the biometric
verification has been performed.

While the above research is aimed at increase
reliability and security of biometric data, another
highly interesting direction is merging adaptive
paradigm with multimodal biometric fusion.
Multimodal biometric is intended to utilize bio-
metric information obtained by multiple sensors

and from multiple sources in order to increase
authentication reliability. The paper by (Veera-
machaneni 2003) introduces a new Adaptive
Multimodal Biometric Fusion Algorithm(AMBF)
algorithm, which is a combination of Bayesian
decision fusion technique and a particle swarm
optimization method. A Bayesian framework is
typically used to fuse decisions received from
multiple biometric sensors. The optimal rule is a
function of the error cost and a priori probability
of an intruder. This Bayesian framework formal-
izes the design of a system that can adaptively
increase or reduce the security level. Particle
swarm optimization searches the decision and
sensor operating points (i.e. thresholds) space
to achieve the desired security level. The opti-
mization function aims to minimize the cost in
a Bayesian decision fusion. The particle swarm
optimization algorithm results in the fusion rule
and the operating points of sensors at which the
system can work. The swarm algorithm can eas-
ily handle the scalability issue as the number of
sensors increases and efficiently search through
the highly large fusion rule search space.

The presented method successfully merges
two highly interesting and important paradigms:
adaptive method based on evolutionary computing
and multimodal biometric system with Beyesian
decision rule. As a result, it can successfully ad-
dress the varying security needs and user access

Figure 6. Adaptive Memory Subdivision (AMS) model

Split

Merge

Split

Merge

1v 2v

4v3v

g SME

(a) Base Patch LOD=0 Shaded
Region is a primitive cluster

(b) After first split, LOD=1 (c) Subsequent refinements of
ASM primitive clusters

 3267

Adaptive Computation Paradigm in Knowledge Representation

requirements in a biometric system. The authors
report that the adaptive algorithm allows to achieve
desired security level and to seemingly switch
between different rules and sensor operating
points for varying user needs.

The adaptive approach can be successfully
sued not only for biometric modeling but also in
synthesis of the biometric data. A combination of
the method with multi-resolution approach, suit-
able for extracting details of the model at different
scales of resolution, is a promising new direction
of research which can be used to complement the
missing information or to recreate the model. The
method performs the high-level detail extraction
and capturing of the model characteristics, and
then applies this information for synthesis of new
biometric data. This novel approach has shown a
high potential in a recent study on iris synthesis
(Wecker et.al. 2006). Moreover, adaptive learning
method can assist in examining extracted features,
retrieval patterns, and dynamic updates with the
purpose of making the model more flexible.

Adaptive methods in robotics

Another highly important and rapidly developing
area of research, that encompasses artificial intel-
ligence, engineering, vision, geometric processing
and decision-making, is robotics. Adaptive robots
is an area of research that studies the design of
robots that function in a changing environment
by using high-level cognitive abilities and/or
adaptive behaviors. The Dutch AIBO team,
composed by research groups from the DECIS
Lab and Universities of Amsterdam, Delft, Twente
and Utrecht, is the leading force behind research
on collaborative robot behavior and intelligent
behavior of the team of robots, through robot soc-
cer simulation and applied studies (Wong et. al.
2001). Exploring adaptive paradigm in a variety of
areas essential to success of this project, including
adaptive robot vision, adaptive navigation and
adaptive learning are just some of the examples
of the current state-of-the art research related

to this project. Adaptive methods to improve
self-localization in robot soccer were devised
in (Dahm and Ziegler 2003). The authors utilized
adaptive strategies to improve the reliability and
performance of self-localization in robot soccer
with legged robots. Adaptiveness is the common
feature of the presented algorithms and has proved
essential to enhance the quality of localization
by a new classification technique as well as to
increase the confidence level of information about
the environment. Cooperative strategy based
on adaptive Q-learning for robot soccer was
developed in (Hwang et.al. 2004). The strategy
developed enabled robots to cooperate with each
other to achieve the objectives of offense and
defense. Through the mechanism of learning, the
robots learned from experiences in either suc-
cesses or failures, and utilized these experiences
to improve the performance. The cooperative
strategy is based on a hierarchical architecture.
An adaptive Q-learning method showed to allow
more flexibility in learning that the traditional
Q-learning approach, especially in the context
of cooperative strategy.

Adaptive Knowledge
representation and learning

Adaptive Knowledge Representation and Rea-
soning Conference (AKRR) is one of the unique
events devoted completely to the emerging
paradigm of adaptive knowledge representa-
tion. The forum is concerned with all adaptive
aspects related to knowledge representation and
reasoning. Specifically, such areas as adaptive
systems in economic sciences and organizational
theory, new generation of semantic web, adap-
tive systems in medical education, research and
practice, and adaptive machine translation are
within the conference scope.

The idea of utilizing adaptive methods in
e-learning is not new. One of the first articles
on the subject that appeared in 1998 describes
web-based educational applications that are

3268

Adaptive Computation Paradigm in Knowledge Representation

expected to be used by very different groups of
users (Brusilovsky 1998). Thus, authors argue
that such a system needs to adapt to users with
very different backgrounds, prior knowledge of
the subject and learning goals, without human
assistance. They next describe an approach for
developing adaptive electronic textbooks and
present InterBook—an authoring tool based on
this approach which simplifies the development
of adaptive electronic textbooks on the Web.

An extensive research in the area of adaptive
learning was undertaken since that time. One
example is the research on knowledge representa-
tion in the area of learning design and adaptive
learning, presented in (Kravcik and Gasevic
2006). The authors deal with learning design and
adaptation, and state that the procedural knowl-
edge is highly important. They examine the degree
of reusability and interoperability of procedural
knowledge in the current adaptive educational
hypermedia systems, and discuss several useful
strategies and techniques, including informal
scripts, system encoding, elicited knowledge, and
standardized specifications.

hierarchical models in cognitive
Informatics

As it has been seen in the previous sections, adap-
tive computing heavily relies on hierarchical mod-
els of knowledge representing various natural and
artificial phenomena. Such models can represent,
for instance, complex three-dimensional terrain
patterns, evolutionary behaviour of a swarm of
living organisms, or an intricate structure of a
web-linked virtual library. As it was recently
discovered at the front line of the cognitive science
and cognitive informatics research, hierarchical
cognitive models can be also efficiently use to
study internal information and knowledge pre-
sentation in human brains (Wang 2007).

It is commonly accepted that memory is the
foundation of all forms of natural intelligence.
Neural Informatics (NeI) is a branch of cognitive

informatics, where memory is recognized as the
foundation and platform of any natural or artificial
intelligence (Wang 2003). While traditionally the
Long-Term Memory (LTM) is perceived as static
and fixed in adult brains, recent discoveries in neu-
roscience and cognitive informatics indicate that
LTM is dynamically reconfiguring, particularly at
the lower levels of the neural clusters (Wang 2007).
The article explains the memory establishment,
enhancement, and evolution, which are typical
functions of the brain, are not limited to only
childhood developmental stage; thus the more
complex, dynamic model is necessary to represent
such functions. In order to achieve this task, the
pioneering theory is presented in the article that is
based on the concept of the Hierarchical Neural
Cluster (HNC) Model of Memory. Furthermore,
the Object-Attribute-Relation (OAR) model is
introduced to formally represent the structures of
internal information and knowledge acquired and
learned in the brain (Wang 2007). The OAR model
explains the mechanisms of internal knowledge
and information representation, as well as their
physical and physiological meanings, and allows
to better understand learning mechanisms and
help to develop more powerful algorithms for a
variety of complex problems faced by scientists
everyday.

conclusIon

The article presented a comprehensive survey of
the new paradigm of the algorithmic models of
intelligence, based on the adaptive hierarchical
model of computation. It started with the adap-
tive methods for terrain modeling, and presented
methodically the adaptive paradigm in geometric
computing, biometric, robotics, image process-
ing and vision, knowledge representations,
information systems, e-learning and networks.
Illustrations were further provided to explain
some concepts related to adaptive information
processing and models. Aside from the areas

 3269

Adaptive Computation Paradigm in Knowledge Representation

covered in the survey, there constantly appear a
variety of new and emerging applications utiliz-
ing adaptive models of computations. It is our
hope that this survey inspires readers to further
in-depth study of the exciting topic of adaptive
computations.

reFerences

Apu, R. and Gavrilova, M.L. “Adaptive Spatial
Memory Representation for Real-Time Motion
Planning,” 3IA’2005 Int. Conf. on Comp. Graphics
and Artificial Intelligence, France pp.21-32,
2005

Apu, R. and Gavrilova, M.L. “Battle Swarm:
An Evolutionary Approach to Complex Swarm
Intelligence,” 3IA Int. C. Comp. Graphics and
AI, Eurographics, Limoges, France, pp. 139-150,
2006

Asano, T. “Aspect-Ratio Voronoi Diagram with
Applications,” ISVD 2006, IEEE, pp. 32-39,
2006

Bardis,G., Miaoulis, G. and Plemenos, D.
“Learning User Preferences at the Declarative
and Geometric Description Level,” 3IA’2005,
Limoges (France), May 11-12, 2005

Bebis G., Deaconu T. and Georiopoulous, M.
“Fingerprint Identification using Delaunay
Triangulation,” ICIIS 99, Maryland, pp. 452-459,
1999

Bhattachariya, P. and Gavrilova, M.L.. “CRYSTAL
- A new density-based fast and efficient clustering
algorithm”, IEEE-CS Press, ISVD 2006, pp. 102-
111, Banff, AB, Canada, July 2006

Bonnefoi, P.F. and Plemenos, D. “Constraint
satisfaction techniques for declarative scene
modelling by hierarchical decomposition,”
3IA’2000, Limoges (France), May 3-4, 2000

Brusilovsky, P., Eklund, J. and Schwarz, E., “Web-
based education for all: a tool for development
of adaptive courseware,” Computer Networks
and ISDN Systems, Volume 30, Issues 1-7, pp.
291-300, 1998

Capelli R., Maio, D. and Maltoni D. “Synthetic
Fingerprint-Database Generation,” ICPR 2002,
Canada, vol 3, pp 369-376, 2002

Cohen-Or, D. and Levanoni, Y. “Temporal
continuity of levels of detail in Delaunay
triangulated terrain,” Visualization’96, pp. 37-42.
IEEE Press, 1996

Dahm, I. and Ziegler, J. “Adaptive Methods to
Improve Self-localization in Robot Soccer,” LNCS
2752, pps. 393-408, 2003

Doerr, B.S., Venturella, T., Jha, R., Gill, C.D. and
Schmidt, D.C., “Adaptive Scheduling for Real-
time, Embedded Information,” in Proceedings of
the 18th IEEE/AIAA Digital Avionics Systems
Conference, 10 pages, 1999

Duchaineauy, M. et. al., “ROAMing Terrain:
Real-Time Optimally Adapting Meshes,” IEEE
Visualization ’97, pp. 81-88, 1997

Franc, M. and Skala, V. “Fast Algorithm for
Triangular Mesh Simplification Based on Vertex
decimation,” CCGM2002 Proceedings, Lecture
Notes in Computer Science, Springer, 2002

Gavrilova, M.L. Computational Intelligence:
A Geometry-Based Approach, Book, in series
Studies in Computational Intelligence, Springer-
Verlag, to appear in 2008

Gold, C. and Dakowicz, M. “Kinetic Voronoi/
Delaunay Drawing Tools”, ISVD 2006, IEEE-CS,
pp. 76-84, Banff, Canada, 2006

Hwa ng, K .S . , Ta n , S .W. a nd Che n ,
C.C. “Cooperative strategy based on adaptive
Q-learning for robot soccer systems,” IEEE
Transactions on Fuzzy Systems Volume: 12,
Issue: 4, pp. 569- 576, 2004

3270

Adaptive Computation Paradigm in Knowledge Representation

Iglesias, A. “Computer Graphics Techniques for
Realistic Modeling, Rendering, and Animation
of Water. Part I: 1980-88.” Int. Conf. on
Computational Science (2) 2002, 181-190, 2002

Kawaharada, H. and Sugihara, K. “Compression
of Arbitrary Mesh Data Using Subdivision
Surfaces,” IMA Conference on the Mathematics
of Surfaces 2003, 99-110, 2003

Kolingerova I. “Probabilistic Methods for
Triangulated Models,” 8th Int. Conference on
Computer Graphics and Artificial Intelligence
3IA 2005, Limoges, France, 93-106, 2005

Kravcik, M. and Gasevic, D. “Knowledge
Representation for Adaptive Learning Design,”
Proceedings of Adaptive Hypermedia. June,
Dublin, Ireland, 11 pages, 2006

Li S., Liu X. and Wu E., “Feature-Based Visibility-
Driven CLOD for Terrain,” In Proc. Pacific
Graphics 2003, pp 313-322, IEEE Press, 2003

Li, S. and Jain, A. Handbook of Face Recognition.
Springer-Verlag 2005

Liang X.F. and Asano T. “A fast denoising method
for binary fingerprint image,” IASTED, Spain,
pp. 309-313, 2004

Loop, C. T. Smooth Subdivision Surfaces Based
on Triangles. Masters Thesis, University of Utah,
Department of Mathematics. 1987

Lopes, H., Oliveira, J.B. and de Figueiredo, L.H.
“Robust adaptive polygonal approximation of
implicit curves,” Computers & Graphics Volume
26, Issue 6, pp. 841-852, 2002.

Lu, H. and Hammersley, R. “Adaptive visualization
for interactive geometric modeling in geoscience,”
the 8th International Conference in Central
Europe on Computer Graphics, Visualization and
Interactive Digital Media 2000, p.1, Feb. 2000

Luo, Y. and Gavrilova, M.L.. “3D Facial model
synthesis using Voronoi Approach,” IEEE-CS

proceedings, ISVD 2006, pp. 132-137, Banff, AB,
Canada, July 2006

Medioni, G. and Waupotitsch, R. “Face recognition
and modeling in 3D,” IEEE Int. Workshop on
Analysis and Modeling of Faces and Gestures,
pp. 232-233, 2003

Moriguchi, M. and Sugihara, K. “A new
initialization method for constructing centroidal
Voronoi Tessellations on Surface Meshes,” ISVD
2006, IEEE-CS Press, pp. 159-165, 2006

Okabe, A., Boots, B. and Sugihara, K. Spatial
tessellation concepts and applications of Voronoi
diagrams, Wiley & Sons, Chichester, England,
1992

Perry, S.W., Wong H.S. and Guan, L. Adaptive
Image Processing: A computational Intelligence
Perspective, CRC Press, 9 volumes, 272 pages,
2001

Sanchez-Reillo, R., Sanchez-Avila, C. and
Gonzalez-Marcos, A. “Multiresolution Analysis
and Geometric Measures for Biometric
Identification Systems,” Secure Networking
Proceedings, LNCS, Volume 1740, p. 783, 1999

Shen, S. and Davatzikos, C. “An Adaptive-
Focus Deformable Model Using Statistical and
Geometric Information,” IEEE Transactions on
Pattern Analysis and Machine Intelligence Vol.
22 No. 8 pp. 906-913 August 2000

Veeramachaneni, K., Osadciw, L.A. and Varshney,
P.K. “Adaptive Multimodal Biometric Fusion
Algorithm Using Particle Swarm,” SPIE, vol 5099,
pp. 211, Orlando, Florida, April 21- 25, 2003

Wang, Y. “Cognitive informatics: A new
transdisciplinary research field.” Brain and Mind:
A Transdisciplinary Journal of Neuroscience and
Neurophilosophy, 4(2), 115-127, 2003

Wang, Y. “The OAR Model of Neural Informatics
for Internal Knowledge Representation in the
Brain”, Int’l Journal of Cognitive Informatics and

 3271

Adaptive Computation Paradigm in Knowledge Representation

Natural Intelligence, 1(3), 66-77, July-September,
2007

Wang, H., Gavrilova, M.L., Luo, Y. and Rokne,
J. “An Efficient Algorithm for Fingerprint
Matching”, ICPR 2006, Int. C. on Pattern
Recognition, Hong Kong, IEEE-CS , 2006

Wecker, L., Samavati, F. and Gavrilova, M.L.
“Iris Synthesis: A Multi-Resolution Approach,”
GRAPHITE 2005, ACM Press, in association
with SIGGRAPH, pp. 121-125, 2005

Wong, C.C., Chou, M.F., Hwang, C.P., Tsai, C.H.
and Shyu, S.R. “A method for obstacle avoidance
and shooting action of the robot soccer,” Robotics
and Automation, proceedings ICRA. IEEE
International Conference, pp 3778- 3782 vol.4
2001

Yanushkevich, S., Wang, P., Srihari, S. and
Gavrilova, M.L. Image Pattern Recognition:
Synthesis and Analysis in Biometrics, Book,
World Scientific, 452 pages, 2006

This work was previously published in the International Journal of Software Science and Computational Intelligence, Vol. 1,
Issue 1, edited by Y. Wang, pp. 87-99, copyright 2009 by IGI Publishing (an imprint of IGI Global).

3272

Chapter 8.6
Agile Software Methods:

State-of-the-Art

Ernest Mnkandla
Monash University, South Africa

Barry Dwolatzky
University of Witwatersrand, South Africa

Copyright © 2009, Idea Group Inc., distributing in print or electronic forms without written permission of IGI is prohibited.

AbstrAct

This chapter is aimed at comprehensively analyz-
ing and defining agile methodologies of software
development from a software quality assurance
perspective. A unique way of analyzing agile
methodologies to reveal the similarities that the
authors of the methods never tell you is introduced.
The chapter starts by defining agile methodologies
from three perspectives: a theoretical definition, a
functional definition, and a contextualized defini-
tion. Then an agile quality assurance perspective
is presented starting from a brief review of some
of the traditional understandings of quality as-
surance to the innovations that agility has added
to the world of quality. The presented analysis
approach opens a window into an understanding
of the state-of-the-art in agile methodologies and
quality, and what the future could have in store
for software developers. An understanding of
the analysis framework for objectively analyzing
and comparing agile methodologies is illustrated
by applying it to three specific agile methodolo-
gies.

IntroductIon

Agile software development methodologies have
taken the concepts of software quality assurance
further than simply meeting customer require-
ments, validation, and verification. Agility innova-
tively opens new horizons in the area of software
quality assurance. A look at the agile manifesto
(Agile Alliance, 2001) reveals that agile software
development is not just about meeting customer
requirements (because even process-driven
methodologies do that), but it is about meeting
the changing requirements right up to the level
of product deployment. This chapter introduces
a technique for analyzing agile methodologies in
a way that reveals the fundamental similarities
among the different agile processes.

As for now, there is a reasonable amount of
literature that seeks to describe this relatively new
set of methodologies that have certainly changed
the way software development is done. Most of the
existing work is from the authors of the methodolo-
gies and a few other practitioners. What lacks is

 3273

Agile Software Methods: State-of-the-Art

therefore a more balanced evaluation comparing
what the original intents of the authors of agile
methodologies were, to the actual things that have
been done through agile methodologies over the
last few years of their existence as a group, and
the possible future applications.

While most of those who have applied agile
methods in their software development projects
have gained margins that are hard to ignore in the
areas of product relevance (a result of embrac-
ing requirements instability) and quick delivery
(a result of iterative incremental development),
some have not joined this new fun way to de-
velop software due to a lack of understanding the
fundamental concepts underlying agile method-
ologies. Hence, this chapter intends to give the
necessary understanding by comprehensively
defining agile methodologies and revealing how
agile methodologies have taken software quality
assurance further than traditional approaches. The
second concern resulted from more than three
years of research into agile methodology practices
where the author discovered that the individual
agile methods such as extreme programming,
scrum, and lean development etc. are not that
different from each other. The apparent differ-
ence is because people from different computing
backgrounds authored them and happen to view
the real world differently. Hence, the differences
are not as much as the authors would like us to
believe. The evaluation technique introduced here
will reveal the similarities in a novel way and
address the adoption concerns of agile method-
ologies. This also reveals what quality in an agile
context means.

chAPter objectIves

The objective of this chapter is to introduce you to
the fundamentals of analyzing agile methodolo-
gies to reveal the bare bones of agile development.
After reading this chapter, you will:

• Understand three approaches to the defini-
tion of agile methodologies (i.e., a theoreti-
cal definition, a functional definition, and
a contextualized definition).

• Understand the state-of-the-art in agile
methodologies.

• Understand the presented framework for
objectively analyzing and comparing agile
methodologies.

• Understand the meaning of software quality
assurance in an agile context.

bAcKGround

This section will start by defining agile meth-
odologies based on what people say about agile
methodologies, what people do with agile method-
ologies, and what agile methodologies have done
to the broad area of software development.

deFInInG AGIle methodoloGIes

The agile software development methodologies
group was given the name “agile” when a group
of software development practitioners met and
formed the Agile Alliance (an association of
software development practitioners that was
formed to formalize agile methodologies) in
February 2001. The agile movement could mark
the emergence of a new engineering discipline
(Mnkandla & Dwolatzky, 2004a) that has shifted
the values of the software development process
from the mechanistic (i.e., driven by process
and rules of science) to the organic (i.e., driven
by softer issues of people and their interactions).
This implies challenges of engineering complex
software systems in work environments that are
highly dynamic and unpredictable.

3274

Agile Software Methods: State-of-the-Art

theoretIcAl deFInItIon

After the first eWorkshop on agile methodologies
in June 2002, Lindvall et al. (2002) summarized
the working definition of agile methodologies
as a group of software development processes
that are iterative, incremental, self-organizing,
and emergent. The meaning of each term in the
greater context of agility is shown next.

1. Iterative: The word iterative is derived
from iteration which carries with it con-
notations of repetition. In the case of agile
methodologies, it is not just repetition but
also an attempt to solve a software problem
by finding successive approximations to the
solution starting from an initial minimal
set of requirements. This means that the
architect or analyst designs a full system
at the very beginning and then changes
the functionality of each subsystem with
each new release as the requirements are
updated for each attempt. This approach
is in contrast to more traditional methods,
which attempt to solve the problem in one
shot. Iterative approaches are more relevant
to today’s software development problems
that are characterized by high complexity
and fast changing requirements. Linked
with the concept of iterations is the notion of
incremental development, which is defined
in the next paragraph.

2. Incremental: Each subsystem is developed
in such a way that it allows more require-
ments to be gathered and used to develop
other subsystems based on previous ones.
The approach is to partition the specified
system into small subsystems by functional-
ity and add a new functionality with each
new release. Each release is a fully tested
usable subsystem with limited functionality
based on the implemented specifications.
As the development progresses, the usable
functionalities increase until a full system
is realized.

3. Self-organizing: This term introduces a
relatively foreign notion to the management
of scientific processes. The usual approach
is to organize teams according to skills and
corresponding tasks and let them report to
management in a hierarchical structure. In
the agile development setup, the “self-orga-
nizing” concept gives the team autonomy
to organize itself to best complete the work
items. This means that the implementation of
issues such as interactions within the team,
team dynamics, working hours, progress
meetings, progress reports etc. are left to the
team to decide how best they can be done.
Such an approach is rather eccentric to the
way project managers are trained and it re-
quires that the project managers change their
management paradigm all together. This
technique requires that the team members
respect each other and behave professionally
when it comes to what has been committed
on paper. In other words management and the
customer should not get excuses for failure
to meet the commitment and there should be
no unjustified requests for extensions. The
role of the project manager in such a setup
is to facilitate the smooth operation of the
team by liaising with top management and
removing obstacles where possible. The
self-organizing approach therefore implies
that there must be a good communication
policy between project management and the
development team.

4. Emergent: The word implies three things.
Firstly, based on the incremental nature of
the development approach the system is
allowed to emerge from a series of incre-
ments. Secondly, based on the self-organiz-
ing nature a method of working emerges
as the team works. Thirdly, as the system
emerges and the method of working emerges
a framework of development technologies
will also emerge. The emergent nature
of agile methodologies means that agile

 3275

Agile Software Methods: State-of-the-Art

software development is in fact a learning
experience for each project and will remain
a learning experience because each project is
treated differently by applying the iterative,
incremental, self-organizing, and emergent
techniques. Figure 1 sums up the theoretical
definition of agile methodologies.

The value of agility is in allowing the concepts
defined above to mutate within the parameters set
by the agile values and principles (For details on
agile values and principles see the agile manifesto
at http://www.agilealliance.org. . There is always
a temptation to fix a framework of software de-
velopment if success is repeatedly achieved, but
that would kill the innovation that comes with
agile development.

FunctIonAl deFInItIon

Agile methodologies will now be defined ac-
cording to the way some agile practitioners have
understood them as they used them in real world
practice.

The term “agile” carries with it connotations
of flexibility, nimbleness, readiness for motion,
activity, dexterity in motion, and adjustability
(Abrahamsson, Salo, Ronkainen, & Warsta, 2002).
Each of these words will be explained further
in the context of agility in order to give a more
precise understanding of the kinds of things that
are done in agile development.

• Flexibility: This word implies that the rules
and processes in agile development can be
easily bended to suit given situations without
necessarily breaking them. In other words,
the agile way of developing software allows
for adaptability and variability.

• Nimbleness: This means that in agile
software development there must be quick
delivery of the product. This is usually done
through the release of usable subsystems
within a period ranging from one week to
four weeks. This gives good spin-offs as the
customer will start using the system before
it is completed.

• Readiness for motion: In agile develop-
ment, the general intention is to reduce

Figure 1. Definition of agility © copyright Ernest Mnkandla PhD thesis University of the Witwa-
tersrand

Agile
methodologies

Iterative Incremental self-organizing emergent

Planned
modification
of parts of
the system.

Assists with
modification

of design and
requirements.

develop
parts of

the system
 seperately

and integrate.
Assists with
improving

overall
methodology.

the set of tools,
techniques,

development
environment, and

requirements
emerge in

the process.

the team has the
responsibilty
of organizing
its internal
dynamics.

3276

Agile Software Methods: State-of-the-Art

all activities and material that may either
slow the speed of development or increase
bureaucracy.

• Activity: This involves doing the actual
writing of code as opposed to all the plan-
ning that sometimes takes most of the time
in software development.

• Dexterity in motion: This means that there
must be an abundance of skills in the activ-
ity of developing code. The skills referred
to are the mental skills that will arm the
developers for programming challenges and
team dynamics.

• Adjustability: This is two fold; firstly there
must be room for change in the set of activi-
ties and technologies that constitute an agile
development process, secondly the require-
ments, code, and the design/architecture
must be allowed to change to the advantage
of the customer.

According to Beck (1999), agile methodolo-
gies are a lightweight, efficient, low-risk, flexible,
predictable, scientific, and fun way to develop
software. These terms will be defined in this
context to give a functional perspective of agile
development.

• Lightweight implies minimizing everything
that has to be done in the development pro-
cess (e.g., documentation, requirements, etc.)
in order to increase the speed and efficiency
in development. The idea of minimizing
documentation is still a controversial one
as some assume agility to mean no docu-
mentation at all. Such views are however not
unfounded because some agile extremists
have expressed connotations of zero docu-
mentation claiming that the code is sufficient
documentation. As agile methodologies
approach higher levels of maturity minimiz-
ing documentation has evolved to generally
imply providing as much documentation as
the customer is willing pay for in terms of
time and money.

• Efficient means doing only that work that
will deliver the desired product with as little
overhead as practically possible.

• Low-risk implies trading on the practical
lines and leaving the unknown until it is
known. In actual fact, all software develop-
ment methodologies are designed to reduce
the risks of project failure. At times, a lot of
effort is wasted in speculative abstraction of
the problem space in a bid to manage risk.

• Predictable implies that agile methodolo-
gies are based on what practitioners do all the
time, in other words the world of ambiguity
is reduced. This however does not mean
that planning, designs, and architecture of
software are predictable. It means that agil-
ity allows development of software in the
most natural ways that trained developers
can determine in advance based on special
knowledge.

• Scientific means that the agile software
development methodologies are based on
sound and proven scientific principles. It
nevertheless remains the responsibility of
the academia to continue gathering empirical
evidence on agile processes because most
of the practitioners who authored agile
methodologies seem to have little interest
and time to carryout this kind of research.

• Fun way because at last developers are al-
lowed to do what they like most (i.e., to spend
most of their time writing good code that
works). To the developers, agility provides a
form of freedom to be creative and innova-
tive without making the customer pay for
it, instead the customer benefits from it.

Schuh (2004) defines agile development as

a counter movement to 30 years of increasingly
heavy-handed processes meant to refashion com-
puter programming into software engineering,
rendering it as manageable and predictable as
any other engineering discipline.

 3277

Agile Software Methods: State-of-the-Art

On a practical perspective, agile methodolo-
gies emerged from a common discovery among
practitioners that their practice had slowly drifted
away from the traditional heavy document and
process centered development approaches to
more people-centered and less document-driven
approaches (Boehm & Turner, 2004; Highsmith,
2002a; Fowler, 2002). There is a general mis-
conception that there is no planning or there is
little planning in agile processes. This is due to
the fact that the agile manifesto lists as one of
its four values the preference for responding to
change over following a plan (Agile Alliance,
2001). In fact, planning in agile projects could
be more precise than in traditional processes it
is done rigorously for each increment and from
a project planning perspective agile methodolo-
gies provide a risk mitigation approach where
the most important principle of agile planning is
feedback. Collins-Cope (2002) lists the potential
risks as: risks of misunderstandings in functional
requirements, risks of a deeply flawed architecture;
risks of an unacceptable user interface; risks of
wrong analysis and design models; risks of the
team not understanding the chosen technology et
cetera. Feedback is obtained by creating a work-
ing version of the system at regular intervals or
per increment according to the earlier planning
effort (Collins-Cope, 2002).

Besides dealing with the most pertinent risks
of software development through incremental
development, agile methodologies attack the
premise that plans, designs, architectures, and
requirements are predictable and can therefore
be stabilized. Agile methodologies also attack
the premise that processes are repeatable (High-
smith, 2001; Schwaber & Beedle, 2002). These
two premises are part of fundamental principles
on which traditional methodologies are built, and
they also happen to be the main limitations of the
traditional methodologies.

Boehm et al. (2004) view agile methodologies
as a challenge to the mainstream software develop-
ment community that presents a counter-culture

movement, which addresses change from a radi-
cally different perspective. All agile methodolo-
gies follow the four values and 12 principles as
outlined in the agile manifesto.

conteXtuAl deFInItIon

From these definitions of agile methodologies, a
contextual definition can be derived which looks
at what agility means in terms of certain specific
software engineering concepts. Examples of that
would be concepts are software quality assurance,
software process improvement, software process
modeling, and software project management. Ag-
ile methodologies will now be defined according
to these concepts. Since this book is specifically
focused on agile software quality assurance the
definition of agile software quality assurance will
be given in more detail.

AGIle soFtwAre QuAlItY
AssurAnce

This section starts by summarizing the traditional
definitions of quality and then presents a summary
of the work that has been done in the area of agil-
ity and quality. References to older literature on
software quality are not intended to be exhaus-
tive, but to be simply present a fare baseline for
evaluating software quality perspectives in the
modern processes. The authors are aware of a
number of initiatives in research and academic
institutions where evaluation of quality concepts
is performed on some agile practices.

deFInInG QuAlItY

Have you ever wondered what Joseph Juran
generally considered to be a quality legend would
have said about agile processes and the quality
movement? Well, this is what he said about the

3278

Agile Software Methods: State-of-the-Art

ISO 9000 when he was asked by Quality Digest
if he thought ISO 9000 had actually hindered the
quality movement; “Of course it has. Instead of
going after improvement at a revolutionary rate,
people were stampeded into going after ISO 9000,
and they locked themselves into a mediocre stan-
dard. A lot of damage was, and is, being done”
(QCI International, 2002).

According to Juran, quality is fitness for
use, which means the following two things: “(1)
quality consists of those product features that
meet the needs of the customers and thereby
provide product satisfaction. (2) Quality consists
of freedom from deficiencies” (Juran & Gryna,
1988).

Philip Crosby, who developed and taught con-
cepts of quality management, whose influence can
be found in the ISO 9000:2000 standard, which
differs from the 1994 standard in the context of
each of the eight principles, defines quality as
conformance to requirements and zero defects
(Crosby, 1984).

ISO 9000 defines quality as the totality of
characteristics of an entity that bear on its ability
to satisfy stated or implied needs. Where “stated
needs” means those needs that are specified as
requirements by the customer in a contract, and
‘implied needs’ are those needs that are identi-
fied and defined by the company providing the
product. These definitions of quality have a
general bias towards the manufacturing indus-
try although they should in general apply to all
products, nevertheless, software products are
rather complex hence they should be defined in
a slightly different way.

Weinberg defines quality simply as “the value
to some people” (Weinberg, 1991) and some have
expanded on that to mean the association of qual-
ity with human assessment, and cost and benefit
(Hendrickson, 2004).

Some software engineers have defined soft-
ware quality as follows:

1. Meyer (2000) defines software quality ac-
cording to an adapted number of quality
parameters as defined by McCall (1977),
which are correctness, robustness, extend-
ibility, reusability, compatibility, efficiency,
portability, integrity, verifiability, and ease
of use.

2. Pressman, who derives his definition from
Crosby, defines quality as a “conformance
to explicitly stated functional requirements,
explicitly documented development
standards, and implicit characteristics that
are expected of all professionally developed
software” (Pressman, 2001).

3. Sommerville (2004) defines software quality
as a management process concerned with
ensuring that software has a low number
of defects and that it reaches the required
standards of maintainability, reliability,
portability, and so on.

4. van Vliet (2003) follows the IEEE definition
of quality as stated in the IEEE Glossary of
Software Engineering Terminology, which
defines quality assurance in two ways as:
“(1) A planned and systematic pattern of
all actions necessary to provide adequate
confidence that the item or product conforms
to established operational, functional, and
technical requirements. (2) A set of activities
designed to evaluate the process by which
products are developed or manufactured”
(IEEE, 1990). van Vliet’s perspective then
combines this definition with the analysis
of the different taxonomies on quality.

5. Pfleeger (2001) aligns her perspective with
Garvin’s quality perspective, which views
quality from five different perspectives
namely; the transcendental meaning that
quality can be recognized but not defined,
user view meaning that quality is fitness
for purpose, manufacturing meaning that
quality is conformance to specification,
product view meaning that quality is tied
to inherent product characteristics, and

 3279

Agile Software Methods: State-of-the-Art

the value-based view meaning that quality
depends on the amount the customer is
willing to pay for the product.

6. Bass (2006) argues that the common practice
of defining software quality by dividing it
into the ISO 9126 (i.e., functionality, reli-
ability usability, efficiency maintainability,
and portability) does not work. His argu-
ment is that “in order to use a taxonomy,
a specific requirement must be put into a

category” (Bass, 2006). However, there are
some requirements that may be difficulty
to put under any category, for example,
“denial of service attack, response time for
user request, etc.” What Bass (2006) then
proposes is the use of quality attributing
general scenarios.

From an agile perspective, quality has been
defined by some practitioners as follows:

Table 1. Agile quality techniques as applied in extreme programming

Technique Description
Refactoring Make small changes to code, Code behaviour must

not be affected, Resulting code is of higher quality
(Ambler, 2005).

Test-driven
development

Create a test, Run the test, Make changes until the
test passes (Ambler, 2005).

Acceptance
testing

Quality assurance test done on a finished system,
Usually involves the users, sponsors, customer,
etc. (Huo, Verner, Zhu, & Babar, 2004).

Continuous
integration

Done on a daily basis after developing a number
of user stories. Implemented requirements are
integrated and tested to verify them. This is an
important quality feature.

Pair
programming

Two developers work together in turns on one
PC, Bugs are identified as they occur, Hence the
product is of a higher quality (Huo et al., 2004).

Face-to-face
communication

Preferred way of exchanging information about a
project as opposed to use of telephone, email, etc.
Implemented in the form of daily stand-up
meetings of not more than twenty minutes (Huo
et al, 2004). This is similar to the daily Scrum
in the Scrum method. It brings accountability
to the work in progress, which vital for quality
assurance.

On-site
customer

A customer who is a member of the development
team, Responsible for clarifying requirements
(Huo et al., 2004).

Frequent
customer
feedback

Each time there is a release the customer gives
feedback on the system, and result is to improve
the system to be more relevant to needs of the
customer (Huo et al., 2004).
Quality is in fact meeting customer requirements.

System
metaphor

Simple story of how the system works (Huo et al.,
2004), Simplifies the discussion about the system
between customer/ stakeholder/ user and the
developer into a non-technical format. Simplicity
is key to quality.

3280

Agile Software Methods: State-of-the-Art

McBreen (2003) defines agile quality assur-
ance as the development of software that can
respond to change, as the customer requires it to
change. This implies that the frequent delivery of
tested, working, and customer-approved software
at the end of each iteration is an important aspect
of agile quality assurance.

Ambler (2005) considers agile quality to be a
result of practices such as effective collaborative
work, incremental development, and iterative
development as implemented through techniques
such as refactoring, test-driven development,
modelling, and effective communication tech-
niques.

To conclude this section, Table 1 gives a sum-
mary of the parameters that define agile quality as
specifically applied in extreme programming--a
popularly used agile methodology. These aspects
of agile quality have eliminated the need for heavy
documentation that is prescribed in traditional
processes as a requirement for quality. Quality
is a rather abstract concept that is difficult to de-
fine but where it exists, it can be recognized. In
view of Garvin’s quality perspective there may
be some who have used agile methodologies in
their software development practices and seen
improvement in quality of the software product
but could still find it difficult to define quality in
the agile world.

evAluAtInG QuAlItY In AGIle
Processes

So can we evaluate quality assurance in agile
processes? This can be done through:

• The provision of detailed knowledge about
specific quality issues of the agile pro-
cesses.

• Identification of innovative ways to improve
agile quality.

• Identification of specific agile quality tech-
niques for particular agile methodologies.

Literature shows that Huo et al. (2004) devel-
oped a comparison technique whose aim was to
provide a comparative analysis between quality
in the waterfall development model (as a repre-
sentative of the traditional camp) and quality in
the agile group of methodologies. The results of
the analysis showed that there is indeed quality
assurance in agile development, but it is achieved
in a different way from the traditional processes.
The limitations of Huo et al.’s tool however, are
that the analysis:

• Singles out two main aspects of quality
management namely quality assurance and
verification and validation.

• Overlooks other vital techniques used in
agile processes to achieve higher quality
management.

• Agile quality assurance takes quality issues
a step beyond the traditional software quality
assurance approaches.

Another challenge of Huo et al.’s technique is
that while the main purpose of that analysis was
to show that there is quality assurance in agile
processes, it does not make it clear what the way
forward is. Agile proponents do not seem to be
worried about comparison between agile and
traditional processes as some of the more zealous
“agilists” believe that there is no way traditional
methods can match agile methods in any situation
(Tom Poppendieck, personal e-mail 2005).

The evaluation described in this section im-
proves on (Huo et al., 2004) framework by further
identifying some more agile quality techniques
and then in an innovative way identifies the agile
process practices that correspond to each tech-
nique. The contribution of this evaluation is the
further identification of possible practices that can

 3281

Agile Software Methods: State-of-the-Art

Table 2. Mapping software quality parameters to agile techniques

Software Quality
Parameters

Agile Techniques Possible Improvements

Correctness Write code from minimal
requirements. Specification
is obtained by direct com-
munication with the cus-
tomer. Customer is allowed
to change specification.
Test-driven development.

Consider the possibility of
using formal specification
in agile development,
Possible use of general
scenarios to define require-
ments (note that some
development teams are
already using this).

Robustness Not directly addressed in
agile development.

Include possible extreme
conditions in requirements.

Extendibility A general feature of all OO
developed applications.
Emphasis is on techni-
cal excellence and good
design. Emphasis also on
achieving best architecture.

Use of modeling tech-
niques for software archi-
tecture.

Reusability A general feature of all OO
developed applications.
There are some arguments
against reusability of agile
products (Turk, France,
& Rumpe, 2002; Weisert,
2002).

Develop patterns for agile
applications.

Compatibility A general feature of all OO
developed applications.

Can extra features be
added for the sake of com-
patibility even if they may
not be needed? This could
contradict the principle of
simplicity.

Efficiency Apply good coding stan-
dards.

Encourage designs based
on the most efficient algo-
rithms

Portability Practice of continuous
integration in extreme pro-
gramming.

Some agile methods do not
directly address issues of
product deployment. Solv-
ing this could be to the
advantage of agility.

Timeliness Strongest point of agility,
Short cycles, quick deliv-
ery, etc.

Integrity Not directly addressed in
agile development.

Verifiability Test-driven development is
another strength of agility.

Ease of use Since the customer is part
of the team, and customers
give feedback frequently,
they will most likely rec-
ommend a system that is
easy to use.

Design for the least quali-
fied user in the organiza-
tion.

3282

Agile Software Methods: State-of-the-Art

be done to improve on the already high quality
achievements enjoyed by agile processes.

technIQues

The parameters that define software quality from a
top-level view can be rather abstract. However, the
proposed technique picks each of the parameters
and identifies the corresponding agile techniques
that implement the parameter in one way or anoth-
er. Possible improvements to the current practice
have been proposed by analysing the way agile
practitioners work. Of great importance to this
kind of analysis is a review of some of the intuitive
practices that developers usually apply which may
not be documented. You may wonder how much
objectivity can be in such information. The point
though is that developers tell their success stories
at different professional forums and some of the
hints from such deliberations have been captured
in this technique without following any formal
data gathering methodology. The authors believe
that gathering of informal raw data balances the
facts especially in cases where developers talk
about their practice. Once the data is gathered
formally, then a lot of prejudices and biases come
in and there will be need to apply other research
techniques to balance the facts. Tables 2 and 3
summarize the evaluation approach.

In formal software quality management, qual-
ity assurance activities are fulfilled by ensuring
that each of the parameters listed in Table 2 are
met to a certain extent in the software develop-
ment life cycle of the process concerned. A brief
definition of each of these parameters is given
according to Meyer (2000):

• Correctness: The ability of a system to per-
form according to defined specification.

• Robustness: Appropriate performance of
a system under extreme conditions. This is
complementary to correctness.

• Extendibility: A system that is easy to adapt
to new specification.

• Reusability: Software that is composed of
elements that can be used to construct dif-
ferent applications.

• Compatibility: Software that is composed
of elements that can easily combine with
other elements.

• Efficiency: The ability of a system to place
as few demands as possible to hardware
resources, such as memory, bandwidth used
in communication and processor time.

• Portability: The ease of installing the
software product on different hardware and
software platforms.

• Timeliness: Releasing the software before
or exactly when it is needed by the users.

• Integrity: How well the software protects
its programs and data against unauthorized
access.

• Verifiability: How easy it is to test the
system.

• Ease of use: The ease with which people of
various backgrounds can learn and use the
software.

soFtwAre Process
ImProvement

A bigger-picture view of agile processes leads to a
notion that agile methods are a group of processes
that have reduced the development timeframe of
software systems and introduced innovative tech-
niques for embracing rapidly changing business
requirements. With time, these relatively new
techniques should develop into mature software
engineering standards.

soFtwAre Process modelInG

The agile perspective to software process mod-
eling is that whether formal or informal when

 3283

Agile Software Methods: State-of-the-Art

approaches to modeling are used the idea is to
apply modeling techniques in such a way that
documentation is minimized and simplicity of
the desired system is a virtue. Modeling the agile
way has led to breakthroughs in the application of
agile methods to the development of large systems
(Ambler, 2002)

soFtwAre Project
mAnAGement

The agile approach to managing software projects
is based on giving more value to the developers
than to the process. This means that manage-
ment should strive to make the development
environment conducive. Instead of worrying
about critical path calculation and Gantt chart
schedules, the project manager must facilitate
face-to-face communication, and simpler ways
of getting feedback about the progress of the
project. In agile development there is need to
be optimistic about people and assume that they
mean good hence give them space to work out
the best way to accomplish their tasks. It is also
an agile strategy to trust that people will make
correct professional decisions about their work
and to ensure that the customer is represented in
the team throughout the project.

the AGIle methodoloGY
evAluAtIon FrAmeworK

All agile methodologies have striking similarities
amongst their processes because they are based
on the four agile values and 12 principles. It is
interesting to note that even the authors of agile
methodologies no longer emphasize their meth-
odology boundaries and would use practices from
other agile methodologies as long they suit a given
situation (Beck & Andres, 2004). In fact, Kent
Beck in his extreme programming (XP) master
classes frequently mentions the errors of extrem-

ism in the first edition of his book on XP (Beck,
1999). A detailed review of agile methodologies
reveals that agile processes address the same is-
sues using different real life models.

The evaluation technique presented in this
chapter reveals, for example, that lean develop-
ment (LD) views software development using
a manufacturing and product development
metaphor. Scrum views software development
processes using a control engineering metaphor.
Extreme programming views software develop-
ment activities as a social activity where develop-
ers sit together. Adaptive systems development
(ASD) views software development projects
from the perspective of the theory of complex
self-adaptive systems (Mnkandla, 2006).

Tables 3 to 6 summarize the analysis of agile
methodologies. Only a few of the existing agile
methodologies have been selected to illustrate the
evaluation technique. The first column from the
left on Tables 3, 4, and 5 lists some methodology
elements that have been chosen to represent the
details of a methodology. There is a lot of sub-
jectivity surrounding the choice of methodology
elements. It is not within the scope of this chapter
to present a complete taxonomy of methodolo-
gies. For more detailed taxonomies see Avison
and Fitzgerald (2003), Boehm et al. (2004),
Glass and Vessey (1995), and Mnkandla (2006).
Therefore, the elements used here were chosen
to reveal the similarities amongst different agile
methodologies. The importance of revealing these
similarities is to arm the developers caught up in
the agile methodology jungle wondering which
methodology to choose. While the methodology
used in your software development project may
not directly lead to the success of a project and
may not result in the production of a high qual-
ity product use of a wrong methodology will
lead to project failure. Hence, there is in wisdom
selecting a correct and relevant process. Most
organization may not afford the luxury of using
different methodologies for each project though
that would be ideal for greater achievements. It

3284

Agile Software Methods: State-of-the-Art

also sounds impractical to have a workforce that
is proficient in many methodologies. Sticking to
one methodology and expect it to be sufficient
for all projects would also be naïve (Cockburn,
2000). This evaluation technique therefore gives
software development organizations an innovative
wit to tailor their development process according
to the common practices among different agile
methodologies. The advantage is to use many
methodologies without the associated expenses
of acquiring them.

There is a need to understand in detail each
agile methodology that will be analyzed so as to
reveal the underlying principles of the methodol-
ogy. This technique gives the background details
as to why the methodology was developed in the
first place. An answer to this question would reveal
the fundamental areas of concern of the methodol-
ogy and what fears the methodology addresses.
The prospective user of the methodology would
then decide whether such concern area is relevant
to their project. Identifying what problems the
methodology intends to solve is another concern
of this evaluation. Some methodologies have a
general bias toward solving technical problems
within the development process (i.e., extreme
programming deals with issues such as how
and when to test the code). There are other agile
methodologies that solve project management
problems (i.e., Scrum deals with issues such as
how to effectively communicate within a project).
Yet other agile methodologies solve general agile
philosophy problems (i.e., Crystal deals with issues
such as the size of the methodology vs. the size of
the team and the criticality of the project. There
may be other agile methodologies that solve a mix
of problems right across the different categories
mentioned here for example Catalyst puts some
project management aspects into XP (see www.
ccpace.com for details on Catalyst).

Evaluation of each methodology should also
reveal what sort of activities and practices are
prevalent in the methodology. This should assist
prospective users of the methodology to determine

the practices that could be relevant to their given
situation. This evaluation technique reveals that
some of the practices from different methodolo-
gies actually fulfill the same agile principles and it
would be up to the developers to decide which prac-
tices are feasible in their situation. Therefore, the
implication is that at the level of implementation
it becomes irrelevant which agile methodology
is used, for more on this concept see Mnkandla
(2006). Another aspect of agile methodologies
revealed by this evaluation technique is what the
methodology delivers at the end of the project.
When a developer looks for a methodology, they
usually have certain expectations about what
they want as an output from the methodology.
Hence, if the methodology’s output is not clearly
understood problems may result. For example if
the developer expects use of the methodology to
lead to the delivery of code and yet the aim of the
methodology is in fact to produce a set of design
artifacts such as those delivered by agile model-
ing this could lead to some problems. Finally,
this evaluation technique also reveals the domain
knowledge of the author of the methodology. In
this phase of analysis, there is no need to men-
tion any names of the authors but simply to state
their domain expertise. The benefit of revealing
the background of the methodology author is to
clarify the practical bias of the methodology, which
is usually based on the experience, and possible
fears of the methodology’s author.

Tables 3 to 5 give a summary of the analysis
of specific agile methodologies to illustrate how
this analysis technique can be used for any given
agile methodologies.

AnAlYzInG scrum

Scrum has been in use for a relatively longer
period than other agile methodologies. Scrum,
along with XP, is one of the more widely used
agile methodologies. Scrum’s focus is on the
fact that “defined and repeatable processes only

 3285

Agile Software Methods: State-of-the-Art

work for tackling defined and repeatable problems
with defined and repeatable people in defined and
repeatable environments” (Fowler, 2000), which
is obviously not possible. To solve the problem of
defined and repeatable processes, Scrum divides a
project into iterations (which are called Sprints) of
30 days. Before a Sprint begins, the functionality
required is defined for that Sprint and the team
is left to deliver it. The point is to stabilize the
requirements during the Sprint. Scrum empha-
sizes project management concepts (Mnkandla &
Dwolatzky, 2004b) though some may argue that
Scrum is as technical as XP. The term Scrum is
borrowed from Rugby: “A Scrum occurs when
players from each team clump closely together…in
an attempt to advance down the playing field”
(Highsmith, 2002b). Table 3 shows application
of the analysis technique to Scrum.

AnAlYzInG leAn develoPment

Lean software development like dynamic systems
development method and Scrum is more a set
of project management practices than a definite

process. It was developed by Bob Charette and
it draws on the success that lean manufacturing
gained in the automotive industry in the 1980s.
While other agile methodologies look to change
the development process, Charette believes that
to be truly agile, there is need to change how
companies work from the top down (Mnkandla
et al., 2004b). Lean development is targeted at
changing the way CEOs consider change with
regards to management of projects. LD is based
on lean thinking whose origins are found in lean
production started by Toyota Automotive manu-
facturing company (Poppendeick & Poppendeick,
2003). Table 4 shows application of the analysis
technique to LD.

AnAlYzInG eXtreme
ProGrAmmInG

Extreme programming (XP) is a lightweight
methodology for small-to-medium-sized teams
developing software based on vague or rapidly
changing requirements (Beck, 1999). In the second
version of XP, Beck extended the definition of XP

Table 3. Analyzing scrum methodology

Elements Description
Real Life
Metaphor

Control engineering.

Focus Management of the development process.
Scope Teams of less than 10, but is scalable to larger teams.
Process Phase 1: planning, product backlog, & design.

Phase 2: sprint backlog, sprint.
Phase 3: system testing, integration, documentation, and
release.

Outputs Working system.
Techniques Sprint, scrum backlogging (writing use cases).
Methodology
Author (two)

1. Software developer, product manager, and industry
consultant.
2. Developed mobile applications on an open technology
platform. Component technology developer. Architect of
advanced internet workflow systems.

3286

Agile Software Methods: State-of-the-Art

to include team size and software constraints as
follows (Beck et al., 2004):

• XP is lightweight: You only do what you
need to do to create value for the custom-
er.

• XP adapts to vague and rapidly changing
requirements: Experience has shown that
XP can be successfully used even for project
with stable requirements.

• XP addresses software development con-
straints: It does not directly deal with project
portfolio management, project financial
issues, operations, marketing, or sales.

• XP can work with teams of any size: There
is empirical evidence that XP can scale to
large teams.

Software development using XP starts from
the creation of stories by the customer to describe
the functionality of the software. These stories are
small units of functionality taking about a week
or two to code and test. Programmers provide
estimates for the stories, the customer decides,
based on value and cost, which stories to do first.
Development is done iteratively and incremen-
tally. Each two weeks, the programming team
delivers working stories to the customer. Then
the customer chooses another two weeks worth

of work. The system grows in functionality, piece
by piece, steered by the customer. Table 5 shows
application of the analysis technique to XP.

A wAlK throuGh the AnAlYsIs
technIQue

Each of the methodology elements as represented
in Tables 3 to 5 will be defined in the context of
this analysis approach.

methodoloGY’s reAl lIFe
metAPhor

This element refers to the fundamental model/
metaphor and circumstances that sparked the
initial idea of the methodology. For example
watching the process followed by ants to build an
anthill could spark an idea of applying the same
process to software development.

methodoloGY Focus

The focus of the methodology refers to the spe-
cific aspects of the software development process
targeted by the methodology. For example, agile

Table 4. Analyzing lean development methodology

Elements Description
Real Life Metaphor Manufacturing and product development.
Focus Change management.

Project management.
Scope No specific team size.
Process Has no process.
Outputs Provides knowledge for managing projects.
Techniques and Tools Lean manufacturing techniques.
Methodology Author Research engineer at the US Naval Under-

water Systems Center, author of software
engineering books and papers, advisory
board in project management.

 3287

Agile Software Methods: State-of-the-Art

modeling targets the design aspects of the software
development process and also considers issues
of how to model large and complex projects the
agile way.

methodoloGY scoPe

This element outlines the details to which the
methodology’s development framework is spelled
out. This is where the methodology specifies
what it covers within a project. The importance
of this parameter is to help the user to identify
the list of tasks that the methodology will help
manage. Remember a methodology does not
do everything but simply gives guidelines that
help in the management of a project. The scope
of a software development project is relevant in
determining the size of the team.

methodoloGY Process

This parameter describes how the methodology
models reality. The model may be reflected in the
life cycle or development process of the meth-
odology. The model provides a means of com-
munications, captures the essence of a problem
or a design, and gives insight into the problem
area (Avison et al., 2003). The importance of this
parameter is that it gives the user a real worldview
of the series of activities that are carried out in
the development process.

methodoloGY outPuts

This parameter defines the form of deliverables to
be expected from the methodology. For example
if an organization purchased lean development

Table 5. Analyzing extreme programming

Elements Description
Real Life Metaphor Social activity where developers sit together.
Focus Technical aspects of software development.
Scope Less than ten developers in a room. Scalable

to larger teams.
Process Phase 1: Writing user stories.

Phase 2: Effort estimation, story prioritiza-
tion.
Phase 3: Coding, testing, integration testing.
Phase 4: Small release.
Phase 5: Updated release.
Phase 6: Final release (Abrahamsson et al,
2002).

Outputs Working system.
Techniques and Tools Pair programming, refactoring, test-driven

development, continuous integration, system
metaphor.

Methodology Authors
(two)

1. Software developer (Smalltalk). Strong
believer of communication, reflection, and
innovation. Pattern for software. Test-first
development.
2. Software developer (Smalltalk). Director
of research and development. Developed the
Wiki. Developed Framework for Integrated
Test (Fit).

3288

Agile Software Methods: State-of-the-Art

methodology today, would they get code from
application of the methodology, or would they get
some documents, etc (Avison et al., 2003). Each
agile methodology will give different outputs
hence the user can choose the methodology that
gives them the output they require.

technIQues And tools

This parameter helps the user to identify the tech-
niques and tools applicable to the methodology.
Tools may be software applications that can be
used to automate some tasks in the development
process, or they can be as simple as whiteboards
and flip charts. In fact, it is the use of tools that
makes the implementation of a methodology
enjoyable. Organizations therefore tend to spend
a lot of money acquiring tools and training staff
on tools. As technology evolves and new tools
emerge, more acquisitions and training are usu-
ally done. However, most agile methodologies do
not specify tools and most agile practitioners use
open source tools, which reduces potential costs
on software tools.

Each methodology has its own techniques
that may be relevant or irrelevant to the problem
at hand. Examples of techniques in extreme

programming would be pair programming, and
the scrum meeting in Scrum methodology. The
user then analyzes these techniques in relation
to the present project, to determine need for the
techniques and include variations that will be part
of tailoring the methodology.

methodoloGY Author

This parameter defines the domain knowledge
of the methodology author. The benefit of doing
this is to clarify the background from which the
methodology was conceived. There is no need
to mention the name of the author or a detailed
biography of the methodology author.

Table 6 summarizes the phase of the analysis
where all the practices are brought together and
similar practices are identified across different
methodologies.

Table 6 classifies the practices using the su-
perscripts 1, 2, 3, 4, and 5. The practices with
the same superscript implement the same agile
principle.

• “1” represents practices that deal with plan-
ning issues such as requirements gathering.
The three methods shown here use different

Table 6. Identifying similarities among the practices

Practices
XP The planning process1, small releases2, metaphor, test-

driven development2, story prioritization3, collective
ownership3, pair programming3, forty-hour work week3,
on-site customer4, refactoring5, simple design5, and con-
tinuous integration5.

LD Eliminate waste1, minimize inventory1, maximize flow2,
pull from demand2, meet customer requirements2, ban
local optimization2, empower workers3, do it right the
first time4, partner with suppliers4, and create a culture of
continuous improvement5.

Scrum Capture requirements as a product backlog1, thirty-day
Sprint with no changes during a Sprint2, Scrum meeting3,
self-organizing teams3, and Sprint planning meeting4.

 3289

Agile Software Methods: State-of-the-Art

terms but the principle is to capture minimal
requirements in the simplest available way
and start coding.

• “2” represents practices that deal with im-
provement of quality in terms of meeting
the volatile requirements.

• “3” represents practices that facilitate freely
working together of developers, effective
communication, empowered decision-mak-
ing, and team dynamics issues.

• “4” represents practices that deal with quick
delivery of the product.

• “5” represents practices that deal with agile
quality assurance property of ensuring that
the product is improved continuously until
deployment.

When the similar practices are identified, the
developers can then decide to select and tailor
some practices to their environment according
to relevance, and project and customer priorities.
You will notice that the choice of the activities of
the development process according to this analy-
sis have shifted from focusing on the individual
methodologies to a focus on practices.

Issues And controversIes
surroundInG AGIle
develoPment

software development common
Ground

This section looks at issues that are done in a
similar way among different software develop-
ment methodologies. Most software development
processes in use today involve some of the follow-
ing activities: planning, estimation, and schedul-
ing of the tasks, design, coding, and testing, and
deployment and maintenance. What varies among
the different processes is the sequence followed
in implementing each of the phases, and the level
of detail to which each phase is carried out. Some

methodologies may implement all of the activities
and some partial methodologies may specialize
in just a few. The other difference is in the way
the process values the people involved in the de-
velopment activities and what value is attached to
the customer in relation to what needs to be done.
These differences mark the major boundaries
among software development methodologies.

Agile development higher Ground

This section looks at issues that are done in a
peculiar way by agile methodologies. The role of
the domain expert in agile methodologies is rather
unique. Software development experts with practi-
cal experience in this field have a lot of knowledge
that can be classified as tacit knowledge due to
the fact that it is gained through practice and is
not written down in any form. Tacit knowledge is
difficult to quantify hence this concept remains
quite subjective in the implementation of agile
methodologies. However, the strength of using
tacit knowledge rests in the team spirit that puts
trust on experts to do what they know best within
their professional ethics. This in fact is what
differentiates the “agile movement” from other
development processes. Another hot issue about
agile development is the concept of self-organizing
teams. This concept means that agile develop-
ment teams are allowed to organize themselves
the best way they want in order to achieve the
given goals. As a result of applying this concept,
managing agile projects becomes different from
the traditional approaches to project management.
The role of a project manager becomes more of a
facilitator than a controller. Detailed discussions
on what has become known as “agile project
management” can be found in Highsmith (2004)
and Schwaber (2004) and at http://finance.groups.
yahoo.com/group/agileprojectmanagement/.

Agile methodologies also emphasize on light
documentation. This concept has been quite
controversial since agile methodologies started.
The main reason for the controversy is that the

3290

Agile Software Methods: State-of-the-Art

traditional methodologies have always associated
documentation with proper planning, software
quality assurance, deployment, user training,
maintenance, etc. Agile methodologists however,
believe that documentation should be minimum
because of the associated expenses. In agile
methodologies, the general belief is that correctly
written code is sufficient for maintenance. The
Test first technique, which was originally an XP
practice and is now widely applied in other agile
methodologies is another peculiar agile practice
(though its origins may be from earlier processes).
The test first technique is a software develop-
ment approach that implements software design
through writing tests for each story before the
code is written. The test code then amounts to
design artifacts and replaces the need for design
diagrams etc.

challenges Faced by Agile
development

This section looks at issues that are still grey areas
to agile methodologies. One of the interesting
issues about agility is what is going to happen
to the issues of innovative thinking embedded
in agile development as the processes attain
higher and higher levels of maturity and quality
assurance. Are we going to see a situation where
agility retires and fails to be agile? Another area
of software development that is always heavily
debated at agile gatherings is the area of how to
cost projects that are developed the agile way.
The main difficulty is estimating the cost of an
entire project based on iterations. There has been
some effort towards dealing with this challenge
especial at big agile conferences, for example
the extreme programming and agile processes
in software engineering held in Europe once per
year (see www.XP2006.org). Another example
is the Agile Development Conference also held
once per year in the USA (see www. agiledevel-
opmentconference.com).

As agile processes begin to enter grounds such
as enterprise architecture, patterns, and software
reuse, their software process jacket is getting
heavier and heavier and if this is not watched
by agile proponents we might have a situation
sometime in the future where another software
development revolution emerges to maintain the
legacy of agility.

the Future trends oF AGIle
soFtwAre develoPment

Agile methodologies are certainly moving toward
higher levels of maturity due to a number of
things. The first contribution to agile maturity is
the availability of comprehensive sources of sim-
ple descriptive and analytical information about
agile methodologies. The second contribution to
agile maturity is the growth in academic research
interest in agility, which has resulted in a lot of
empirical data being collected and scientifically
analyzed to prove and disprove anecdotal data
about agile processes. The third contribution to
agile maturity is the massive exchange of practical
experiences amongst the different practitioners
involved in agile software development. The gen-
eral direction of the agile movement seems to be
towards more and more demand for the adoption
of agile practices by the larger organizations that
have been traditionally associated with traditional
processes. There have been reports of higher de-
mands for agile consultancy and training as more
and more organizations adopt agile development
practices, Poppendieck (personal communication,
November 07, 2005) said there was more demand
in North America, Europe, and even Japan where
his book on lean software development sold more
than ten thousand copies. Another interesting
development by the agile alliance is their offer
to sponsor agile research. This will certainly go
a long way in boosting the process maturity of
agile methodologies.

 3291

Agile Software Methods: State-of-the-Art

conclusIon

In this chapter, an overview of agile methodologies
was presented without going into the details of
describing each existing agile methodology. The
focus of the chapter was to provide an informed
review of agile methodologies that included a
comprehensive definition of what agility and agile
quality assurance is all about. The approach to
the definition as presented in this chapter was to
give a theoretical definition, which is the perspec-
tive of those who are philosophical about agile
methodologies, a practical definition, which is the
perspective of those who are on the development
work floors, and a contextual definition, which is
a perspective based on the different contexts of
the activities of the software development process.
In order to enhance understanding of the agile
processes, an analysis model was presented. The
philosophy of this technique is to cut deep into
each given agile methodology and reveal the core
values, principles, and practices of the methodol-
ogy so as to compare the common activities among
different agile processes. The aim of doing such
an analysis is to provide a technique for striking
the balance between these two extremes: “getting
lost in the agile methodology jungle and holding
onto one methodology.” The benefit of using this
analysis method is the attainment of a deeper
understanding of all the agile methodologies
analyzed. This should lay the ground for train-
ing and adoption of agile methodologies from a
generic point of view rather than worrying about
individual agile methodologies.

reFerences

Abrahamsson, P., Salo, O., Ronkainen, J., &
Warsta, J. (2002). Agile software development
methods: Review and analysis. VVT Publications,
(478), 7-94.

Agile Alliance. (2001). Manifesto for agile soft-
ware development. Retrieved May 2, 2005, from
http://www.agilemanifesto.org

Ambler, S. W. (2002). Agile modeling. John Wiley
and Sons.

Ambler, S. W. (2003). Agile database techniques:
Effective strategies for the agile software devel-
oper (pp. 3-18). John Wiley & Sons.

Ambler, S. (2005). Quality in an agile world.
Software Quality Professional, 7(4), 34-40.

Avison, D. E., & Fitzgerald, G. (2003). Information
systems development: Methodologies techniques
and tools. McGraw-Hill.

Bass, L. (2006, January). Designing software
architecture to achieve quality attribute
requirements. Proceedings of the 3rd IFIP Summer
School on Software Technology and Engineering
(pp. 1-29). South Africa.

Beck, K. (1999). Extreme programming ex-
plained: Embrace change (pp. 10-70). Reading,
MA: Addison-Wesley.

Beck, K., & Andres, C. (2004). Extreme program-
ming explained: Embrace change. Addison-Wes-
ley Professional.

Boehm, B., & Turner, R. (2004). Balancing agility
and discipline: A guide for the perplexed (1st ed.,
pp. 165-194, Appendix A). Addison-Wesley.

Brandt, I. (1983). A comparative study of infor-
mation systems development methodologies,
Proceedings of the IFIP WG8.1 Working Confer-
ence on Feature Analysis of Information Systems
Design Methodologies. In T. W. Olle, H. G. Sol,
& C. J. Tully (Eds.), Information systems design
methodologies: A feature analysis (pp. 9-36).
Amsterdam: Elsevier.

Cockburn, A. (2000). Selecting a project’s meth-
odology. IEEE Software, 64-71.

3292

Agile Software Methods: State-of-the-Art

Cohen, D., Lindvall, M., & Costa, P. (2003). Agile
software development (pp. 11-52). Fraunhofer
Center for Experimental Software Engineering,
Maryland, DACS SOAR 11 Draft Version.

Collins-Cope, M. (2002). Planning to be agile?
A discussion of how to plan agile, iterative, and
incremental developments. Ratio Technical Li-
brary White paper. Retrieved January 20 from
http://www.ration.co.uk/whitepaper_12.pdf

Fowler, M. (2000). Put your process on a diet.
Software Development, 8(12), 32-36.

Fowler, M. (2002). The agile manifesto: Where it
came from and where it may go. Martin Fowler
article. Retrieved January 26, 2006, from http://
martinfowler.com/articles/agileStory.html

Glass, R. L., & Vessey, I. (1995). Contemporary
application domain taxonomies. IEEE Software,
63-76.

Hendrickson, E. (2004). Redefining quality,
Retrieved January 12, 2006, from http://www.
stickyminds.com/sitewide.asp?Function=edetai
l&ObjectType=COL&ObjectId=7109

Highsmith, J. (2001). The great methodologies
debate: Part 1: Today, a new debate rages: Agile
software development vs. rigours software devel-
opment. Cutter IT Journal, 14(12), 2-4.

Highsmith, J. (2002a). Agile software develop-
ment: Why it is hot! (pp. 1-22). Cutter Consortium
white paper, Information Architects.

Highsmith, J. (2002b). Agile software development
ecosystems (pp. 1-50). Addison-Wesley.

Highsmith, J. (2004). Agile project management.
Addison-Wesley.

Huo, M., Verner, J., Zhu, L., & Babar, M. A.
(2004). Software quality and agile methods.
Proceedings of the 28th Annual International
Computer Software and Applications Conference
(COMPSAC04). IEEE Computer.

IEEE. (1990). IEEE standard glossary of software
engineering terminology. IEEE Std 610.12.

Juran, J. M., & Gryna, F. M. (1988). Juran’s qual-
ity control handbook. Mcgraw-Hill.

Lindvall, M., Basili, V. R., Boehm, B., Costa, P.,
Dangle, K., Shull, F., Tesoriero, R., Williams, L.,
& Zelkowitz, M. V. (2002). Empirical findings in
agile methods. Proceedings of Extreme Program-
ming and agile Methods: XP/agile Universe (pp.
197-207).

Marick, B. (2001). Agile methods and agile test-
ing. STQE Magazine, 3(5).

McBreen, P. (2003). Quality assurance and testing
in agile projects. McBreen Consulting. Retrieved
January 12, 2006, from http://www.mcbreen.
ab.ca/talks/CAMUG.pdf

Meyer, B. (2000). Object-oriented software
construction (pp. 4-20). Prentice Hall PTR.

Mnkandla, E., & Dwolatzky, B. (2004a). Balanc-
ing the human and the engineering factors in
software development. Proceedings of the IEEE
AFRICON 2004 Conference (pp. 1207-1210).

Mnkandla, E., & Dwolatzky, B. (2004b). A sur-
vey of agile methodologies. Transactions of the
South Africa Institute of Electrical Engineers,
95(4), 236-247.

Mnkandla, E. (2006). A selection framework for
agile methodology practices: A family of meth-
odologies approach. PhD thesis, University of
the Witwatersrand, Johanneburg.

Pfleeger, S. L. (2001). Software engineering:
Theory and practice. Prentice Hall.

Poppendeick, M., & Poppendeick, T. (2003).
Lean software development: An agile toolkit for
software development managers (pp. xxi-xxviii).
Addison Wesley.

Pressman, R. S. (2001). Software engineering a
practitioner’s approach. McGraw-Hill.

 3293

Agile Software Methods: State-of-the-Art

QCI International. (2002). Juran: A life of qual-
ity: An exclusive interview with a quality legend.
Quality Digest Magazine. Retrieved January 12,
2006, from http://www.qualitydigest.com/aug02/
articles/01_article.shtml

Schuh, P. (2004). Integrating agile development
in the real world (pp. 1-6). MA: Charles River
Media.

Schwaber, K., & Beedle, M. (2002). Agile soft-
ware development with SCRUM (pp. 23-30).
Prentice-Hall.

Schwaber, K. (2004). Agile project management
with Scrum. Microsoft Press.

Sol, H. G. (1983). A feature analysis of information
systems design methodologies: Methodological
considerations. Proceedings of the IFIP WG8.1
Working Conference on Feature Analysis of Infor-
mation Systems Design Methodologies. In T. W.
Olle, H. G. Sol, & C. J. Tully (Eds.), Information
systems design methodologies: A feature analysis
(pp. 1-7). Amsterdam: Elsevier.

Sommerville, I. (2004). Software engineering.
Addison-Wesley.

Turk, D., France, R., & Rumpe, B. (2002).
Limitations of agile software processes. Proceed-
ings of the Third International Conference on
eXtreme Programming and Agile Processes in
Software Engineering (pp. 43-46).

van Vliet, H. (2003). Software engineering: Prin-
ciples and practice. John Wiley & Sons.

Weinberg, G. M. (1991). Quality software manage-
ment (Vol. 1), Systems Thinking. Dorset House.

Weisert, C. (2002). The #1 serious flaw in extreme
programming (XP). Information Disciplines,
Inc., Chicago. Retrieved January 2006, from
http://www.idinews.com/Xtreme1.html

This work was previously published in Agile Software Development Quality Assurance, edited by I. Stamelos and P. Sfetsos,
pp. 1-22, copyright 2007 by Information Science Reference (an imprint of IGI Global).

3294

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8.7
Bridging the Gap between Agile
and Free Software Approaches:

The Impact of Sprinting

Paul J. Adams
Sirius Corporation Ltd., UK

Andrea Capiluppi
University of Lincoln, UK

AbstrAct

Agile sprints are short events where a small team
collocates in order to work on particular aspects
of the overall project for a short period of time.
Sprinting is a process that has been observed
also in Free Software projects: these two para-
digms, sharing common principles and values
have shown several commonalities of practice.
This article evaluates the impact of sprinting
on a Free Software project through the analysis
of code repository logs: sprints from two Free
Software projects (Plone and KDE PIM) are as-
sessed and two hypotheses are formulated: do
sprints increase productivity? Are Free Software
projects more productive after sprints compared
with before? The primary contribution of this
article is to show how sprinting creates a large
increase in productivity both during the event,

and immediately after the event itself: this argues
for more in-depth studies focussing on the nature
of sprinting.

IntroductIon

Agile and Free Software development have
received rapid growth in popularity, both as
development paradigms and as research topics.
In theory they are very different concepts; the
latter, strictly speaking, being just a licensing
paradigm with implications for code reuse and
redistribution.

The interface between Agile and Free Software
is very interesting and a fertile area in which not
much rigorous research has been carried out to
date. Some comparative studies have been made
in the past, but given the scarcity of data from

 3295

Bridging the Gap between Agile and Free Software Approaches

Agile processes, most of the studies have remained
on the surface of theoretical discussions (Koch,
2004)(Warsta and Abrahamsson, 2003). Empirical
attempts have been also made to measure, on an
empirical basis, the degree of agility within other
development paradigms (Adams, Capiluppi and
deGroot, 2008).

This article examines and compares the Free
Software and Agile approaches by observing
typical Agile practices when deployed within
Free Software teams: in particular, it reports on
the Plone and KDE PIM projects, where sprinting
(Beck, 1999) is commonly used by developers
to focus the activity for a limited period of time.
Sprinting allows developers to meet in person,
get to know each other and create the basis for
collaborating more effectively in a distributed
environment (During, 2006). In previous works,
the PyPy and the Zope projects have been reported
to use sprinting regularly within their projects
(Sigfridsson, Avram, Sheehan and Sullivan,
2007), and its use is advocated as an “applied
(...) idea of Agile development to the very difficult
problem of distributed software development”
(Goth, 2007).

What past literature has not provided yet is a
quantitative evaluation of the impact of sprinting
on productivity of developers: what has instead
been reported is that traditional productivity

metrics could fail in capturing the effects of the
interactions among developers within sprints
(Goth, 2007). In order to tackle this issue, this
article explores the use of automatic measures
to determine the productivity of developers both
before and after the sprinting efforts. A research
hypothesis has been formulated as follows: when
quantitatively evaluating sprinting, the productiv-
ity of developers will display higher values after a
sprint than before it. If the null hypothesis can be
rejected, this result could prove useful to others in
the Free Software communities, encouraging them
to adopt this practice and to focus their efforts
within a constrained period of time to increase
their productivity.

This article is structured as follows: Section
2 introduces the context of the work, explaining
how the Agile and Free Software paradigms share
some of their process characteristics. Section 3
reports on the methodology, the attributes and the
definitions used throughout the article. Section 4
describes how sprinting is accomplished within
the two reported case studies, while Section 5
summarises the main findings of measuring the
effects of sprinting on developers productivity.
Since this work reports on empirical analysis of
public data, Section 6 will report on the threats to
validity. Finally Section 7 will conclude the article,
and illustrate avenues of further research.

Figure 1. The open development model

Passive Users

Active Users

Co-Developers

Core Developers

3296

Bridging the Gap between Agile and Free Software Approaches

sPrInts wIthIn the AGIle
develoPment

As an activity, sprinting has its roots within the
Agile development, specifically the SCRUM de-
velopment model (Schwaber and Beedle, 2001).
The SCRUM model is not a method per se, in
that it does not prescribe specific practices to be
followed in the release cycle. Within SCRUM,
the principal period of development is focused
during the sprints. Typically, a sprint would be
a short period of development, typically 4 to 6
weeks (although they can be shorter). Within this
period, developers would work to solve a specific
and well-focused problem, such as the addition
of a new set of functionality. Normally a sprint-
ing team is collocated, with a dedicated manager
who monitors progress on a daily basis in a short
stand-up meeting.

As described, this model is in great contrast to
the open development approach, as found within
many Free Software projects. Again, the Free
Software model does not prescribe specific prac-
tices, just how contributions should be handled.
Originally Eric Raymond argued for what he called
the “bazaar’’ model of development (Raymond,
1999). In this model contributions to the code
may be made by anyone whilst concurrently this
openness leads to many people discovering and
fixing bugs. In practice this is not what is found
(Crowston, Annabi, Howison and Massango,
2004). Instead it is more common to have a model
with a “cathedral’’ component at its center, man-
aged by core developers. This model is shown in
Figure 1. It has been also shown that some Free
Software projects show transitions between one
stage to the other, and that this transition can be
started by explicit actions of the core develop-
ers of a Free Software project (Capiluppi and
Michlmayr, 2007).

At the centre of the model are the core develop-
ers, who are typically long-term contributors to a
project and drive its development. They are the de
facto management of Free Software developments.

Other contributors to a project typically move in
towards the centre of the model from the outside,
where they began as users of the software.

Despite the commercial nature of the Agile
approach, sprinting practices have been adopted
by Free Software teams: given the differences as
described above, and due to the unique nature of
this model, Free Software developers have so far
preferred to maintain the Free Software name
instead of using the much more structured “Ag-
ile’’ term to define their approach (Goth, 2007),
even when blended with tools coming from other
development approaches.

emPIrIcAl APProAch

The following concepts and attributes have been
used to extract data from the two Free Software
projects, and used to compare the effectiveness
of their sprinting practices:

• Commit: the atomic action of developers

checking in one or more files (being source
code or other) into a central repository. Both
the Plone and the KDE PIM projects store
the source code and other artifacts within
similar Configuration Management Systems
(subversion), therefore the same scripts were
used to extract the relevant information out
of each project.

• Lines of code (LOCs): in this study, the
number of lines of code (LOCs) of each
commit is also recorded. They will be used
in conjunction with the commits to describe
the output produced by Free Software de-
velopers.

• Productivity: in its most basic definition,
it evaluates the amount of work produced
during an observed period. Considering the
information stored in configuration manage-
ment systems, the productivity was in first
instance evaluated by taking the amount of
commits in a day. Secondly, the LOCs of the

 3297

Bridging the Gap between Agile and Free Software Approaches

commits were also extracted, to provide a
clearer picture of the productivity of devel-
opers during sprints.

• Sprint duration: since their inception,
sprints are considered one of the core
practices within the SCRUM development
model (Beck, 1999). Short periods of focused
development work, preceded by a precise set
of requirements both by stakeholders and
final users, are at the core of the practice.
Within this work, the sprints are character-
ised by evaluating the time (in days) when
the sprints were held. The measurement of
productivity was evaluated not only in each
of the sprint periods, but also one week (i.e.,
7 days) before and one week after those
events.

Kde PIm and Plone

The KDE website1 hosts a large number of Free
Software projects under a common name which
together form both a desktop environment and
associated application software, primarily for
Unix-like operating systems. The complete project
repository is roughly 50GB large and has grown
steadily, along with contributors, since the project’s
launch over ten years ago. The KDE repository has
somewhere in the order of 300 projects, ordered
by application domain, one of which is Personal
Information Management (PIM). KDE as a whole
lists more than 1500 developers as committers in
its Subversion CMS; considering the KDE PIM
project alone, an overall of 380 committers are
traceable in its evolution history.

Plone2 is a Free Software content management
system based upon the Zope web application
server. Written in Python, it can run on all major
platforms. As a project it is much smaller than
KDE with 163 accounts in the project repository.
Although Plone is focussed on one particular
product, development is subdivided into teams
working on specific issues within the system: css,
programmed logic, work flow management, etc.

GQm: Goal Question metric

The Goal-Question-Metric (GQM) method evalu-
ates whether a goal has been reached, by associat-
ing that goal with questions that explain it from
an operational point of view, and providing the
basis for applying metrics to answer these ques-
tions (Basili, Caldiera and Rombach, 1994). The
aim of the method is to determine the information
and metrics needed to be able to draw conclusions
on the achievement of the goal.

In the following, we applied the GQM method
to first identify the overall goal of this research;
we then formulate a number of hypotheses related
to the two Free Software projects and their sprint-
ing methods; and finally we collected adequate
productivity metrics to determine whether the
goal was achieved.

• Goal: The long-term objectives of this
research are both to assess the presence,
and to evaluate the efficacy of Agile pro-
cesses within a Free Software development
paradigm. If confirmed on these initial case
studies, the results should be made public to
other Free Software projects, in order to take
advantage of Agile practices and tools.

• Question: The aim of this study is to estab-
lish the efficacy of an Agile practice (sprint-
ing) within the Free Software paradigm.
The productivity of the two Free Software
systems will be studied: based on the “pro-
ductivity’’ and “sprint duration’’ attributes
defined above, two research hypotheses were
formulated:

 HP1: There is a difference between the aver-
age productivity of Free Software projects
and the productivity as achieved during the
sprints.

 HP2: In the presence of sprinting, there

is a difference in the productivity of Free
Software developers between the periods

3298

Bridging the Gap between Agile and Free Software Approaches

immediately before and immediately after
the selected sprints.

• Metrics: based on the number of sprints
actually performed during the lifecycle of
the two projects, 6 sprints were selected from
each project, and the productivity evaluated
during the week before the sprint, during the
sprint duration, and during the week after
the sprint.

A summary of the research hypotheses is
displayed in Table 1: the null and the alternative
counterparts are formulated, as well as the metrics
used to assess the hypothesis, and the type of test
conducted to evaluate the hypothesis.

sprinting in Free software
Projects

As one might expect, the implementation of
sprinting varies between different Free Software
projects. Even when the activities are similar, the
frequency and motivation can be very different. A
common value for all the observed sprints in the
Free Software approach has been the location of
these sprints: being it a distributed development,
the face-to-face meetings have been typically
run alongside main Free Software conferences,
or developers meet-ups (During, 2006). In this
section the sprinting practices of Plone and KDE
PIM are described: one of the authors has been
involved in the development of the KDE PIM,

while directly collaborating with several develop-
ers from the other.

sprinting in Plone

Since early 2003 there have been 32 Plone proj-
ect sprints. Typically these involve less than 10
developers. However, as sprints have become
more regular, so has the number of sprinters
increased with meetings growing to be as large
as 120 registrants3. These larger meetings are
a-typical in that they are not, in themselves, one
sprint alone. Instead, they are a gathering of many
sprint meetings. Here, this larger type of meeting
is described based upon observation of a sprint
held in October 2007.

Each team, within the larger event, works on
an individual subcomponent of the entire sys-
tem: work flow, cascading style sheets, ZODB,
etc. These teams set their own daily targets and
share them with the entire sprint team in a short
meeting at the beginning of the day. A similar
meeting is held at the end of the day in order to
convey progress made. In general, these Plone
sprints are focused on the rapid introduction of
new functionality to the system and optimisation
of existing functionality. Some Plone sprints have
also had a shared focus on system documentation.
Six sprints (out of 32) were randomly selected
between 2003 and 2007, with sprint durations
varying from 3 to 8 days. A summary of the
sprints’ dates (in ISO format) and their durations
is displayed in Table 2.

Hypo Null Alternative Metrics Test

HP1
Productivity during sprints
is larger than the baseline
productivity

Productivity is larger
during sprints Commits-per-day (C) Csprints > Cbaseline

HP2
Productivity after the sprints is
larger than productivity after
the sprints

Productivity after the
sprints is equal to before Commits-per-day (C) Cafter > Cbefore

Table 1. Summary of the research hypotheses and the applied tests

 3299

Bridging the Gap between Agile and Free Software Approaches

sprints in Kde-PIm

The sprints of this project have been held annu-
ally since 2003. As with the Plone sprints they
are generally larger than an Agile sprint, typi-
cally with around 15 developers. However, unlike
Plone sprints, there is no structure (explicit or
otherwise) to each day and the primary focus of
the event is not on coding, although this is one
of the activities4.

The annual KDE PIM plays a specific role
within the product release cycle. KDE PIM de-
velopment, like KDE as a whole, is based upon
a 6 month release cycle for major releases. Minor
releases for bug fixing and small amounts of new
functionality happen monthly. The KDE PIM
sprints occur at the beginning of one of these
release cycles and is primarily focused with plan-
ning the next release.

In order to be consistent with the Plone case,
six sprints were selected between 2003 and 2008,
with reported shorter sprint durations, varying
from 3 to 4 days. This corresponds to all of the
sprints happened within the KDE PIM project:
details of these sprint dates are in Table 2.

sprint Impact: setting base rates

The impact that a particular event may have on
the development cycle is inevitably hard to as-
sess without insider knowledge of what may be
happening within that project at that time. There
are, however, simple metrics that can be applied
to public data sources in order to produce results
which are indicative of the impact of an event
(i.e., sprinting) without needing to know specifi-
cally what has occurred. As reported above, the
Configuration Management servers of the two
studied projects have been analysed to extract the
amount of commits recorded in the development
activities. The number of commits per day was
then used as a means of assessing productivity
before and after development sprints, as well as
within the sprint period.

As a start, a simple means of establishing any
trends in commit rates is to plot the commit rates
for the entire project history. Example for KDE
PIM and Plone development are given in Figure
2 and Figure 3.

Figure 2 shows the distribution of commits-
per-day in the Plone project. From this distribution,

Table 2. Summary of the dates of the sprints in Plone and KDE PIM

Project / Event Start Date End Date Duration
(days)

Plone

Sprint 1 2003-05-09 2003-05-11 3

Sprint 2 2004-09-16 2004-09-19 4

Sprint 3 2005-02-20 2005-02-27 8

Sprint 4 2005-03-24 2005-03-27 4

Sprint 5 2006-04-23 2006-04-29 7

Sprint 6 2007-02-17 2007-02-20 4

KDE
PIM

Sprint 1 2003-01-03 2003-01-05 3

Sprint 2 2004-01-02 2004-01-05 4

Sprint 3 2005-01-06 2005-01-09 4

Sprint 4 2006-01-06 2006-01-08 3

Sprint 5 2007-01-12 2007-01-15 4

Sprint 6 2008-02-01 2008-02-03 3

3300

Bridging the Gap between Agile and Free Software Approaches

it is also possible to evaluate an overall average
commit rate of 10 commits per day, and a median
value is 6. Since the distribution of Figure 2 is
clearly not uniform, using the global average
and median as base rates could produce spurious
results. It was therefore decided to use different
base rates of productivity for the various sprints:
the base rates were in fact computed only during
the year when the sprint happened, and are sum-
marised in Table 3.

Similar to the Plone plot of commits, Figure 3
shows that largely due to an increase in activity
between late 2003 and early 2006, KDE PIM has
an average commit rate of 10 (31,214 commits
assessed over 2,853 days), with a median value

of 8. As there have only ever been 6 KDE PIM
sprints, they were all assessed in the same manner
as the Plone sprints. The dates are shown in Table
2. As seen above for the Plone system, different
base rates were used to assess whether the effect
of sprinting could be visible on the productivity
of developers (Table 3).

Productivity during the sprints

In order to tackle the first research hypothesis
(HP1), an approach to measuring the impact of
sprints upon project development is to compare
the commit rate during the sprints to the base
rate established in the previous section. In the

Figure 2. Growth of commits-per-day in plone

Figure 3. Growth of commits-per-day in KDE PIM

02/02 06/03 10/04 03/06 07/07

0

20

40

60

80

100

120

140

160

180

200

time

co
m

m
its

02/99 06/00 10/01 03/03 07/04 12/05 04/07

0

10

20

30

40

50

60

70

80

90

100

time

co
m

m
its

 3301

Bridging the Gap between Agile and Free Software Approaches

next subsections, the productivities of the two
selected projects are evaluated during the six
sprints, and compared to the base rates of the
appropriate year. The test of the hypothesis HP1
is based on the principle of majority: if the major-
ity of sprints achieve a larger productivity with
respect to the yearly base rate, the null hypothesis
will be rejected.

effects of sprinting – Plone

Figure 4 shows the commits per day for the 6
randomly selected sprints and the context weeks
before and after: a vertical line divides the context
week before the sprint from the sprint itself. Since
the sprints have different durations, no common
vertical line is displayed between the end of the
sprint and the context week after it. As an example,
the data for sprint 4 in Figure 4 displays 18 points:
7 points for the week before the sprint, 4 for the
sprint duration, and 7 for the week after.

For each sprint, the average productivity and
the median were recorded during each sprint
duration, and compared with the base rates of the
productivity within Plone. A summary of these
results is shown in Table 4. As visible, in general
the productivity during the six sprints in Plone has
not increased, when compared with the base rates
(depicted in bold within the Table), apart from two
events where the values are greatly larger. One of
the possible explanations is that Plone sprints have
a large amount of participants turning up for the

meetings, and coordination problems could arise
which could make the productivity decrease.

The amount of lines of code in a day (i.e.,
LOCs-per-day) was also evaluated during the
sprints of Plone, in order to test whether the
commits-per-day and the LOCs-per-day trends
followed the same pattern. Table 5 summarises
the results: the Plone case shows that the average
LOCs-per-day metrics follow the same pattern
also seen in commits-per-day: in the presence of
more commits, the Plone system experienced an
increased productivity in LOCs, as compared to
the week immediately after the sprint.

effects of sprinting: Kde PIm

Shows the commits per day for the 6 randomly
selected sprints and the context weeks before and
after. As done above, the productivity of KDE
PIM developers was recorded during the sprints,
and evaluated against the base rates (Table 4). As
visible in the table, the majority of the sprints in
KDE PIM achieve a larger productivity (either as
medians, averages, or both) than the base counter-
parts. Differently from the Plone case, KDE PIM
sprints tend to gather the same developers to work
on the selected requirements, and this could be re-
flected on the improved productivity during these
events. KDE PIM sprints are generally starting
with a commit rate lower than that of the project
base rate. However a crucial difference between
the KDE PIM and Plone sprints is that KDE PIM

Plone KDE PIM

Base Rates Year Median Average Year Median Average

Sprint 1 2003 4 5,97 2003 12 12,9

Sprint 2 2004 4 4,75 2004 20 20,57

Sprint 3 2005 6 7,97 2005 11 13,26

Sprint 4 2005 6 7,97 2006 7 9,67

Sprint 5 2006 7 8,32 2007 12 16,42

Sprint 6 2007 12 19,1 2008 15 20,37

Table 3. Different base rates of commits-per-day for the two projects

3302

Bridging the Gap between Agile and Free Software Approaches

sprints are not only more consistent at improving
productivity, but they are also successfully raising
the commit rate above the base.

As done for the Plone case, the amount of
LOCs-per-day in KDE PIM was evaluated during
the sprints, as compared to the week immediately
after the sprint, and the results reported in Table 5.
The KDE PIM case shows that the LOCs-per-day
metric follows the same pattern of commits-per-
day: the three sprints where data of LOCs was
available (sprint 4, 5 and 6) achieved a higher rate
of LOCs-per-day than the weeks immediately
after them. Sprints 1, 2 and 3, due to the recent
conversion to Subversion, have no data available
regarding the LOCs involved in the commits.

Productivity after the sprints

The study of the first research hypothesis above
showed a mixed picture: the development of Plone
does not achieve (overall) an increased productiv-
ity during sprints with respect to its base rates of
effort. Instead, the KDE PIM productivity during
sprints largely differs from its average, showing a
very focused development process during certain
periods of the project’s lifecycle.

The second research hypothesis was designed
in order to assess how the process of development
reacted after the sprinting event, and to ascertain
whether the productivity before was impacted by
the event itself, showing a clear increase after
the event. For each sprint the average commits
per day, and their medians, were noted for the
week immediately before and immediately after
the sprint. As a base line for this hypothesis, one
would expect an increased productivity after
the event, when compared with the period just
before it. The results of this analysis are shown
in Table 6.

Productivity after the sprints: Plone

Comparing the base rate medians and averages
with the sprints’ achievements, Table 6 shows that

the productivity has not steadily increased after
the event, as compared with the period before
the event: sprint 1, 2 and 3 clearly show that the
overall activity, in terms of commits per day, not
only dropped after the sprints, compared to just
before; but it also decreased to lower levels than the
overall base rates for the Plone project itself.

By analysing the remaining sprints, two addi-
tional findings were instead revealed: first, the high
productivity accomplished during the sprints 4 and
6, was not paired to a similar productivity after
the sprint effort (see Table 4). Second, in either
the median or average, or both the measurements,
an increase of productivity is detected after the
event. An explanation for that was given by Plone
insiders, revealing that sprints were more and
more effective, as long as the use of this practice
became clearer and more diffused. In summary,
these results are indicative of sprints improving
the productivity of the project as a whole, but the
null hypothesis of HP2 could not be rejected for
Plone: in the majority of cases, the productivity of
developers is not larger after sprints as compared
to before the sprints.

Productivity after the sprints:
Kde PIm

Table 6 confirms for KDE PIM what was already
learned from the analysis of the sprint effort. All
the studied sprints experienced an increase of
either the median or the average productivity, or
both. In the majority of the sprints, differently
from the Plone case, the week after these sprints
also accomplished a higher productivity than the
observed base rates for the project itself.

An interpretation for that is the increased focus
of the development work as a result of the sprint
events. Therefore the null hypothesis could not be
rejected: in the majority of cases, the productiv-
ity of KDE PIM developers after the sprints was
higher than before.

As a more general message, Plone and KDE
PIM share the same pattern: after the sprints

 3303

Bridging the Gap between Agile and Free Software Approaches

developers increase their efforts as compared
to before the sprints. Also, the sprinting events
serve as gatherings of exceptional productivity:
even simple metrics like the one proposed in this
article can be used to share knowledge, motivate
and reinforce standard rates of effort.

threats to validity

The following aspects have been identified which
could lead to threats to validity of the present
empirical study:

• Productivity: This metric as discussed
above (number of commits per day) is lim-
ited by its fragility; there are a large series
of events which may affect this figure. The
major consideration in the applicability of this
metric is the requirement of other community
knowledge in order to provide qualitative
explanation for the measurements. Commit-
per-day is a sensitive measurement and can be
affected by many external forces, e.g.~lower

Figure 4. Commits during plone sprints

commit rates are probable on public holidays.
Commits-per-day can also be affected by
many internal forces, e.g.~reaction to a se-
curity flaw in the codebase may increase the
commit rate. As a result the observer must
be careful to understand the full context of
commit rates within the project and around
the dates of the events being assessed.

• Context Periods: The commit examination
period, i.e.~one week before and one week
after the sprint, could be problematic. Some
developers could skew the distribution with
many exogenous causes: they could profuse
very little effort just before the sprint as they
prepare for travel, or on the other hand, some
developers might do a lot beforehand to make
their code look better.

• KDE PIM Timings: The evaluation of KDE
PIM sprints is problematic due to their timing.
Each KDE PIM sprint occurs within around
the first week of a new year. It is possible
that the productivity for the week before a
KDE PIM sprint is reduced in this new year
period.

3304

Bridging the Gap between Agile and Free Software Approaches

Further worK And
conclusIon

This article provided a research study into the
increasing phenomenon of mixed software de-
velopment paradigms, when blending together
some aspects, practices or shared tools. From

the theoretical standpoint, both the Agile and
Free Software methodologies have been studied
in the past, and several shared concepts have
been identified. The Agile paradigm has been
deemed as the “commercial’’ counterpart of the
Free Software approach in many respects, and
Free Software developers have been reported in

Figure 5. Commits during KDE PIM Sprints

Median Average Test of HP1 – Com-
mits-per-dayBaseline Sprint Baseline Sprint

Plone

Sprint 1 4 3,5 5,97 3.5 x x

Sprint 2 4 2,5 4,75 2,5 x x

Sprint 3 6 2.5 7,97 3.25 x x

Sprint 4 6 39.5 7,97 42.5 √ √

Sprint 5 7 1 8,32 2.25 x x

Sprint 6 12 117.5 19,1 105.5 √ √

KDE
PIM

Sprint 1 12 13 12,9 14 √ √

Sprint 2 20 18.5 20,57 18.25 x x

Sprint 3 11 68,5 13,26 63.75 √ √

Sprint 4 7 35 9,67 29.33 √ √

Sprint 5 12 20 16,42 19 √ √

Sprint 6 15 28 20,37 28.71 √ √

Table 4. Average commits-per-day during plone and KDE PIM Sprints

 3305

Bridging the Gap between Agile and Free Software Approaches

the past to have adopted Agile techniques and
practices. Still, no rigorous studies have been
carried out to evaluate the results and the effects
when a development approach (i.e., Free Software)
incorporate a practice (sprinting) belonging to
another paradigm (i.e., Agile).

Recent empirical research has looked beyond
the usual data sources for indicators of qual-
ity within Free Software development projects.
As such, measuring aspects of the developer
community has become of interest (SQO-OSS,
2008). Within this article, commits-per-day was

Table 5. LOCs-per-day in the sprints, as compared with the seven days immediately after the sprints.
For the first three KDEPIM sprints, and the fifth Plone sprint, no LOCs data is available from the SVN
servers.

Average

During
the sprint

7 days after
the sprint

Test of HP2
– LOCs per day

Plone

Sprint 1 0.63 8.29 x

Sprint 2 3.33 0 √

Sprint 3 32.18 28.83 √

Sprint 4 458.84 0 √

Sprint 5 N/A N/A -

Sprint 6 70.22 55.59 √

KDE
PIM

Sprint 1 N/A N/A -

Sprint 2 N/A N/A -

Sprint 3 N/A N/A -

Sprint 4 173.92 84.87 √

Sprint 5 151.05 95.92 √

Sprint 6 102.61 17.24 √

Before After
Test of HP2

Median Average Median Average

Plone

Sprint 1 4.5 7.25 3.5 3.5 x x

Sprint 2 1 1.25 0 0 x x

Sprint 3 3 3.25 2 2.71 x x

Sprint 4 7 6.5 11 15 √ √

Sprint 5 7 5 5 13.5 x √

Sprint 6 20 31 38 57 √ √

KDE PIM

Sprint 1 7 7.71 12 12 √ √

Sprint 2 7 7.29 8 8.43 √ √

Sprint 3 24 18.71 21 20.57 x √

Sprint 4 6 10 19 16.71 √ √

Sprint 5 7 6.57 5 8.57 x √

Sprint 6 11 13.14 28 28.71 √ √

Table 6. Summary of results for the test of hypothesis 2

3306

Bridging the Gap between Agile and Free Software Approaches

presented as a simple metric for developers pro-
ductivity and it was shown how it can be used to
measure the impact of events within the release
cycle, specifically developer sprints. Through this
metric, it was also possible to characterise an Free
Software project based on its “base rates’’, i.e. the
global average and median of the accomplished
productivity.

Two Free Software projects were selected
for study, Plone and KDE PIM: the rationale of
this selection was based on a reported use of the
sprinting practices in the two projects, and insider
knowledge was available due to one author being
part of one of the projects. The first project had
a larger number of sprinting events, attended by
an increasing amount of developers. The second
had sprint events just once in a year, and overall
only 6 events have been recorded. Two research
hypothesess were formulated: first, the produc-
tivity during the sprinting events increases with
respect to the base rates observed in a Free Soft-
ware project. Second, the sprinting event has a
follow-up effect on productivity, and the amount
of commits per day increases after the events,
compared to the period before.

Results and insider knowledge showed a
composite picture: the Plone project had just 2
sprints during which the productivity increased
over the base rates, whereas all the KDE PIM
events produced a larger amount of commits per
day than the average. It was reported also that
Plone meetings hosted an increasing numbers
of developers, which could hint a higher cost of
coordination of efforts. On the other hand, results
showed that within Plone, the sprint events have
lately started to show an increasing productivity
after the event (compared to before), whereas the
earlier meetings did not achieve the same levels.
The sprints in KDE PIM, instead, always increased
the rate of commits per day: less frequent, and more
focused meetings have been deemed responsible
for this pattern.

Further work has been identified in further
studying the quality of the alleged increased

productivity: the code committed during the
events should be analysed in order to assess its
quality compared to the average baseline within
the project. Its complexity should also be assessed:
Free Software developers should consider whether
to commit large amounts of new code, but with
higher complexity, or to commit smaller portions,
but with an overall lower complexity. assessed:
Free Software developers should consider whether
to commit large amounts of new code, but with
higher complexity, or to commit smaller portions,
but with an overall lower complexity.

reFerences

Cameron, Lynne (2003). Challenges for ELT from
the expansion in teaching children. ELT Journal,
57, 105 – 112.

P. Adams, A. Capiluppi, and A. de Groot. De-
tecting agility of Free Software projects through
developer engagement. In Proceedings of the
4th International Conference on Open Source
Systems, 2008.

K. Beck. Extreme Programming Explained:
Embrace Change. Addison-Wesley Professional,
October 1999.

A. Capiluppi and M. Michlmayr. From the ca-
thedral to the bazaar: An empirical study of the
lifecycle of volunteer community projects. In J.
Feller, B. Fitzger- ald, W. Scacchi, and A. Silitti,
editors, Open Source Development, Adoption and
Innovation, pages 31–44. International Federation
for Information Processing, Springer, 2007.

K. Crowston, H. Annabi, J. Howison, and C.
Massango. Effective work practices for software
engineering: Free/libre open source development.
In ACM Workshop on Interdisciplinary Software
Engineering Research, 2004.

B. During. Sprint driven development: Agile
methodologies in a distributed open source project

 3307

Bridging the Gap between Agile and Free Software Approaches

(pypy). In P. Abrahamsson, M. Marchesi, and G.
Succi, editors, XP, volume 4044 of Lecture Notes
in Computer Science, pages 191–195. Springer,
2006.

G. Goth. Sprinting toward open source develop-
ment. IEEE Softw., 24(1):88–91, 2007.

S. Koch. Agile principles and open source soft-
ware development: A theoretical and empirical
discussion. In Extreme Programming and Agile
Processes in Software Engineering: Proceedings
of the 5th International Conference XP 2004, num-
ber 3092 in Lecture Notes in Computer Science
(LNCS), pages 85–93. Springer Verlag, 2004.

E. Raymond. The Cathedral and the Bazaar,
chapter The Cathedral and the Bazaar. O’Reilly
& Associates, Inc., 1999.

K. Schwaber and M. Beedle. Agile Software
Development with Scrum. Prentice Hall, October
2001.

A. Sigfridsson, G. Avram, A. Sheehan, and D. K.
Sullivan. Sprint-driven development: working,
learning and the process of enculturation in the
pypy community. In J. Feller, B. Fitzgerald, W.
Scacchi, and A. Sillitti, editors, OSS, volume 234
of IFIP, pages 133–146. Springer, 2007.

The SQO-OSS Project Consortium. D7 – Novel
Quality Assessment Techniques, February
2008.

J. Warsta and P. Abrahamsson. Is open source
software development essentialy an agile method?
In 3rd Workshop on Open Source Software En-
gineering, 2003.

F.Wilcoxon. Individual comparisons by ranking
methods. Biometrics Bulletin, 1(6):80–83, 1945.

endnotes
1 http://www.kde.org/
2 http://plone.org/
3 Plone Naples sprint: http://www.openplans.

org/projects/plone-conference-2007/sprint
4 The details here are based upon information

derived from an interview held in 2008 with
Adriaan de Groot, Vice President of KDE
e.V.

This work was previously published in International Journal of Open Source Software & Processes, Vol. 1, Issue 1, edited by
S. Koch, pp. 58-71, copyright 2009 by IGI Publishing (an imprint of IGI Global).

3308

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8.8
Agile SPI:

Software Process Agile
Improvement—A Colombian

Approach to Software Process
Improvement in Small

Software Organizations

Julio A. Hurtado
University of Cauca Colombia, Colombia

Francisco J. Pino
University of Cauca Colombia, Colombia

Juan C. Vidal
University of Cauca Colombia, Colombia

César Pardo
University of Cauca Colombia, Colombia

Luís Eduardo Fernández
University of Cauca Colombia, Colombia

AbstrAct

This chapter presents Agile SPI, a framework in
which the main goal is to motivate small and me-

dium size enterprises (SMEs) towards improving
and certifying their software development pro-
cesses. This framework was born in the SIMEP-
SW project where a software process improvement
model for supporting process improvement in the

 3309

Agile SPI

Colombian software industry context was built.
We present Agile SPI, its origin, development,
principles, architecture, main components, and
the initial experiences.

IntroductIon

Nowadays, the software industry represents an
important economical activity; it offers different
possibilities for business and it aims to be a great
opportunity for developing countries. In Latin
American countries, the software industry is usu-
ally immature; companies face an undisciplined
process and that means quality is unpredictable
(Mayer&Bunge, 2004). Not only will it be im-
possible to plan and manage quality without a
mature environment, but also when we achieve
it, we will not know why and we could not repeat
it (Hurtado, Pino, & Vidal, 2006). The Latin
American software industry has grown smoothly,
so the generation of strategies for achieving the
software process improvement (SPI) environment
that would allow organizations to take advantage
of effective software processes. Software quality
assurance through software process improvement
is one of the strategies software companies could
engage in with two goals: the first one is to improve
the quality process so that they can get into a new
market, and the second one is the need for their
processes, like administrative units, to become
more efficient and effective (Pino, Garcia, Ruiz,
& Piattini, 2006).

One of the characteristics of the Latin Ameri-
can software industry is that it is mainly formed
by small and medium size enterprises (SMEs).
Most of these companies did not have a defined
software process improvement project basically
due to the great initial investment required and
the disadvantage of their personnel competitive-
ness on the software process areas. The special
characteristics of small companies cause that
processes improvement programmes must be
applied of a way particular and visibly different

from the typical way the great organizations do it,
this is not as simple as the fact to consider these
programmes as versions to minor scale of great
organizations (Richardson, 2001; Storey, 1982).

Agile SPI (Hurtado et al., 2006) is a framework
SPI based on a strategy for institutionalization
the software process in the small organizations
context. For the process to be sustained, process
behaviour needs to be integrated into the orga-
nization’s culture. A process is institutionalized
when it is followed consistently and performed
naturally by everyone involved in performing the
process activities. This will happen when the SME
has in place a framework for software process
improvement appropriate, for that reason Agile
SPI is composed by three components:

Two light models, a light reference model and
an evaluation model, with a set of processes
which are typically used by the Colombian
small software organizations.
Agile process for supporting a project SPI. A
process SPI model for guiding a SPI program
of way agile. A process definition model for
supporting the implementations of improve-
ments.

In the context of the SIMEP_SW1 project, a
pilot experience was carried out in order to vali-
date the theoretical results of this research. Some
programs SPI in a Colombian software develop-
ment companies was implemented according
to the guidelines suggested by Agile SPI. The
results were analysed for validating our model
and improving it.

In the second section is presented the back-
ground. The third section presents the Agile SPI
origins including a description of the SIMEP-
SW project and its developing. Agile SPI, its
principles, architecture and main components
are presented in the fourth section. The study
cases are presented in the fifth section. Finally,
the sixth section presents the main conclusions
and describes perspectives.

•

•

3310

Agile SPI

bAcKGround

The software industry is characterised for a
fast product innovation but not by the process
refinement. Software process improvements are
required to increase the productivity of software
companies. Generally, it is the aim to increase the
quality of the produced software and to keep bud-
get and time. Quality models for software process
improvements were developed in context of large
organisations and multinational companies. In the
Latin American software industry, there are many
problems in a SPI efforts because they are based
on models created for others contexts (geographi-
cal, human, sizes of organizations, technologies
used, process users and others factors). In some
countries like Colombia, most of the organizations
are small, with undisciplined behaviour, ad hoc
process and absence of process focus. The same
situation is presented in most of the countries of
the world, even in development countries exists
a great capacity in small enterprises. The models
and technologies associated to the process must
be adapted to the organization's needs. The qual-
ity models usually do not consider the factors of
success for the companies, such as profitability,
competitiveness, strategy of market and satisfac-
tion of users (Conradi & Fuggetta, 2002).

The traditional frameworks focuses the ef-
forts for the discipline and the risk reduction.
Nowadays, the software products looks for the
competitiveness: faster, better, and cheaper. Inside
the focus of SPI models, Conradi and Fuggetta
(2002) present three differences: process assess-
ment, process refinement, and process innovation.
Models like CMMI contribute to assessment and
refinement focus, however the Quality Improve-
ment Paradigm (QIP) contributes to innovation
focus through the reuse concept. Printtzel and
Conradi (2001) presented a taxonomy in order
to compare the SPI frameworks based on some
causal relations between process quality and
process quality. They compare CMMI, ISO, ISO/
IEC 15504, QIP, Experience Factory (EF), Gode

Question Metric (GQM), and Software Process
Improvement for better Quality (SPIQ). This
strategy was important for defining the causal
relations for Agile SPI.

Latin American countries have been concerned
in recent years about software quality and develop-
ment processes in their own industry, becoming
as a main feature in increasing product quality
(Bedini, Llamosa, Pavlovic, & Steembecker,
2005). For example, the “MoProSoft” model from
Mexico and the “MR.MPS” from Brazil, amongst
others that could be mentioned.

In Mexico, the MoProSoft model has been
developed - “Modelo de Procesos para la In-
dustria de Software” (Oktaba, 2005) (Processes
Model for the Software Industry). This model
is based on ISO 9001:2000, ISO/IEC 15504-
2:1998 y CMM. MoProSoft aims to provide the
software industry in Mexico with a model based
on the best international practices. This model
is at the same time easy to understand, simple to
apply and economical to adopt. It seeks to assist
organizations in standardizing their practices, in
the assessment of their effectiveness and in the
integration of ongoing improvement. MoProSoft
defines three process categories: organizational,
management, and operation. It specifies three parts
for each process categories: a general definition,
practices, and a guide for adjustments. A tenet of
its improvement strategy is that the organization
should establish its own strategy for the setting
up of the processes defined by the model. The
processes should evolve in alignment with the
suggestions for improvement. The organization’s
strategic plan will be reached with increasingly
ambitious goals being set all the time. In this way
the organization can reach maturity progressively,
by this ongoing and continual improvement in
its processes.

In Brazil, the MPS.BR project (Weber, Araújo,
Rocha, Machado, Scalet, & Salviano, 2005)
has been developed. Its basis lies in ISO/IEC
12207:2002, CMMI e ISO/IEC 15504:2003.
The MPS.BR project has two models: a Refer-

 3311

Agile SPI

ence Model for the software improvement pro-
cess– MR_MPS along with a Business Model for
the software improvement process– MN_MPS.
MN_MPS defines the elements and interactions
involved in the certification of the organization
by implementing MR_MPS in two ways: first
one for an organization and second one for a
group of organizations together (thus managing
to make it more affordable for SMEs). MR_MPS
is made up of maturity levels, along with an as-
sessment model. The maturity level is organized
in two dimensions: capability and process. The
process maturity is classified into seven levels:
optimized, managed quantitatively, defined,
almost completely defined, partially defined,
managed, and partially managed. Process areas
are attributed to each maturity level based on the
levels of CMMI. This is so as to ensure a gradual
and fully appropriate implementation in Brazilian
SMEs. The implementation level of the practices,
associated with each process area, is evaluated
by means of indicators.

In the previous models have been set out ex-
plicitly no improvement strategy for guiding an
improvement process. Agile SPI improvement
strategy is based on providing the organization
with an agile process which supports the basis
for addressing a SPI Program.

In Blowers and Richardson (2006); Garcia,
Graettinger, and Kost (2006); Scott, Jeffery,
Carvalho, D’Ambra, and Rutherford (2001);
Wangenheim, Weber, Rossa Hauck, and Trentin
(2006), among others, are observed others related
efforts to software process improvement in small
software organizations.

Agile SPI was developed inside to SIMEP-SW
project (An Integrated System for the Improve-
ment of Software Development Processes), be-
tween the 2004 to 2006 years, supported by the
University of Cauca, Colciencias and some Small
enterprise of South Colombian.

Agile SPI - Process is an agile process of
software processes improvement, which can be
used as guide for the implementing of a software

process improvement program in SMEs. Agile
SPI - Process takes as premise the precepts of the
Agile Manifesto and the requirements for a light
SPI, which have been adapted to the necessities
of a software processes improvement program for
small software enterprises. These are:

The highest priority is to satisfy the client’s
necessity through the early and continuous
delivery of significant improvements to the
development process because of Agile SPI
- Process provides a light and agile process
of software processes improvement.
There are not stable requirements of improve-
ment. For this reason, the diagnosis is a key
phase. Even so, requirements of improvement
that arise will be prioritized and welcomed
as it is feasible to carry out them.
To give frequently improvements of the soft-
ware process.
An improvement program with Agile SPI
- Process should be based on the effective
collaboration among the consultants, the
improvement group, the top management, the
development group, the SQA group, market-
ing and other dependences related with the
SPI project.
To build projects around motivated individu-
als toward the improvement of individual,
group, and organizational processes. To give
them the opportunity and the support that
they need and to offer to them trust so that
they carry out the tasks.
The most efficient and effective form of com-
municating round trip information inside an
improvement team is through face-to-face
conversation.
The maturity of process, as the average per-
formance of the projects, should be the main
measure of the progress improvement. The
base measurements to measure the perfor-
mance are the productivity and the quality.

1.

2.

3.

4.

5.

6.

7.

3312

Agile SPI

Agile SPI - Process promotes the sustained
development. The work must be continuous
and indefinite.
Agile SPI - Process promotes a technical and
management infrastructure, appropriate to
support the process improvement.
Agile SPI - Process promotes the conforma-
tion of a dynamic organizational infrastruc-
ture, based on objectives, not in control
strategies.
Agile SPI - Process promotes the continuous
learning as a key discipline. The objective of
this discipline is to allow knowing the work,
to meditate about this and to adjust the work
through short and concise iterations.
Agile SPI - Process promotes the effective
conformation of the teams proposed by its
infrastructure, it worries about the quality
of the human work to carry out.

Agile SPI aims to support process improve-
ment for the Colombian software industry. Its
main goal was to motivate small and medium
size companies towards improving and certify-
ing their development processes. The framework
must include practical recommendations for
process implementation, in order to facilitate
their internalisation by a person when following
the process and institutionalisation by organiza-
tions when everyone follows the common process
and the process discipline is enforced, and also
it should consider a tool for process definition.
In the context of the SIMEP-SW project, a pilot
experience was carried out in order to apply the
theoretical results of this research. Inside these
project researchers of University of Cauca and
some small enterprise worked for to analyse,
design, and proof the different models and strate-
gies for improve the local industry in the Popayán
and Cali cities. Some strategies was adopted in
addition to the Agile Model, requirements for a
company to achieve a maturity level CMMI us-
ing: agile practices, adoption of reuse strategies
like software product line and adoption of agile

8.

9.

10.

11.

12.

methods for implementing some practices, and
a collaborative focus for improve the humans
process. The most important contribution of
SIMEP-SW project was its participation in the
project Competisoft Project2. This new project
supported by CYTED aims “To increase the com-
petitiveness level of the Latin American Software
SMEs by means of the creation and diffusion a
methodologic framework.

Framework Agile sPI for software
Process Improvement

Agile SPI is a framework based on models light-
weight, international standards, agile improve-
ment, and agile practices. Agile SPI promotes an
improvement with lacking of agility, promotes
the agility with quality and recognizes in the
innovation the most promissory source for the
improvement of all the aspects that involves a
process: people, methods, techniques, and tools.
The SMEs will be able to create its processes, if
these do not exist, following its principles and
needs, or will be able to follow the cycles and the
models, if it is supporting a process previously
defined and wants to improve it. The improve-
ment focuses in the quality of the product and
the productivity of the organization, from which
to organize by disciplines it aims towards the
securing of the quality of the product and that
to maintain the process agile and to innovate in
their components is the principles that move the
productivity. The discipline give reliability in
the process, a mature process offers to certain
degree of reliability on the accomplishment of a
project in the organization as far as the reach of
its goals of quality and costs. The agility and the
innovation are present to support the feature in
which the traditionally mature processes never
will consider, under this approach the process
must be agile with the purpose of being able to
be reconciled to a SME with its time and resource
restrictions. And of course, the process must be

 3313

Agile SPI

defined and institutionalised, and prudentially
controlled.

Agile sPI Architecture

Agile SPI is an integral model for the Software
Process Improvement that exhibits the following
characteristic: the main focus is SME. In this
kind of organisations there are a great interest
in innovating as far as products or services, but
not as far as the organization processes. The
processes are ad-hoc, light or chaotic, there is not
great motivation in improving this aspect. Agile
SPI was created like a framework for support-
ing improvement in software SME. Usually, the
quality assurance is more focused to the test than
to have a complete program of quality control.
In the best of the cases the quality assurance is
focused to control processes instead of facilitat-
ing its improvement. The academy is looking for
new forms of development, nevertheless is more
focused in the technologies than in the processes
or methodologies. The improvement of process
is considered a remote work, reaching for a great
companies. It isn’t known that the improvement
is possible from teams and its members up to
enterprise level. The universities that distribute
the work related to the improvement show the

models of quality, their interpretation and all the
required infrastructure to do it, this can motivate
to work to improve the state-of-the-art, but it don’t
to change the state of the practice.

The Agile SPI architecture has been influenced
by the structure of models defined by SEI and
ISO, but considering others quality models of
processes well-known internationally. Agile SPI
structure has a main components of an improve-
ment program: an improvement guide and models
for supporting, Agile SPI - Light Quality Model
and Agile SPI - Light Metrics Model. There are
two dynamic elements of the static structure: the
conceptual model Framework SPD (Software Pro-
cess Definition) and the improvement process. The
Figure 1 depicted the Agile SPI architecture.

Due to the context SME, Agile SPI is a complete
framework (it is not a model that says what makes
lack, but like complementing the process). It is
functional, its application facilitate the complete
operation of an improvement program. It search
be understandable, to guarantee his learning and
application: therefore it is simple and clear. It aims
to be usable, that implies that the strategy must
be clear, intuitive, flexible and adjustable to the
needs. It aims to motivate, that implies that the
improvements must be visible in short periods, it
is necessary the sufficient motivation to guarantee

Figure 1. Agile SPI architecture

3314

Agile SPI

that the improvement project has continuity. It
aims to implement a model for applying in the
SME, that is to say, to apply the model must be
viable (economically) and feasible (attainable).
The flexibility of Agile SPI is based on its models
independence. Agile SPI can be used in different
contexts with several models.

The framework Agile SPI presents the follow-
ing components:

A guide for an improvement program called
Agile SPI Process. It is a process that guides
the efforts of a SME towards the adjustment of
a software process adequate to its necessities.
This process is the framework of reference
for the management of the improvement
projects, the framework includes a method,
models, infrastructure, techniques, and the
tools of support.
A light quality model for Agile SPI. Agile SPI
Light Quality Model integrated process and
product, and that guides the organization of
the people and the teams, the disciplines and
the areas of work associated to the definition,
application and improvement of the process
towards a defined maturity level. Defining a
set of processes which are typically used by
the Colombian SME’s. It allows to identify
and diagnose problems of the industry as far
as the process and that allows to planning
the improves according to a process refer-
ence model.
A light measurement model for Agile SPI.
Agile SPI Light Measurement Model allows
to measure: the performance of the process in
the projects in which it is applied, to improve
the estimations of the projects through the
measurement of the effort, the maturity of the
this and improvement of the process within
the framework of a program SPI.
A conceptual and technological frame for
the definition, visualization and applica-
tion of processes, Agile SPI - Conceptual
Framework. This conceptual frame is based

•

•

•

•

on metamodel SPEM - Software Process
Engineering Metamodel, this frame is the
conceptual base on which SPI and the tools
of support are supported to all the models of
Agile SPI. This conceptual framework al-
lows to relate elements of process, with the
elements of the quality model, with the model
of evaluation, the measurement model. For
example, the disciplines concept is a separat-
ing element of areas of the process and the
structure of Agile SPI are defined based on
this concept.

Agile sPI Focused on disciplines
and Process components

Agile SPI allows to organize an improvement
project, very integrated with the development
projects, and each organizational and technical
change is to handle through an experience with
the purpose of visualizing in an isolated way, if
the improvement really has been done. The im-
provement project follows a process of defined
by Agile SPI - Agile Process, this is organized
by small iterations, in which the different disci-
plines participates in a greater or smaller degree
of intensity. Agile SPI is based on the concept
of discipline like representative areas of process
like approach of assurances. In the approach of
refinement of the process Agile SPI defines the
concept of capacity, which usually measures the
quality degree of a discipline with respect to a
quality model or process model. See Figure 2.

Agile SPI define three dimensions for improve-
ment: capability, innovation, and agility with the
following causal relationship:

F1 (Disc ipl i ne)→F2 (Capaci t y)→
Quality(Process)→ Quality (Product)
F1’ (Component Process)→F2’(Innovation in
Component)→Quality (Process) → Quality
(Product)
F1’’ (Discipline)→F2’’(Agility on Disci-
pline)→Performance(Process)→Productivity

•

•

•

 3315

Agile SPI

(Project).
F1’’’(Component Process)→F2’’’ (Learn-
ing in component)→Quality (Process) &&
Performance (Process)→Quality (Product)
& Productivity (Project).

Therefore F1 + F1’+ F1’’+ F1’’’ ⇔
Quality(Product) & Productivity (Project)

The process components are created, evolved
and replaced according to the results of the evalu-
ation and the priorities of each organization. The
improvement is visualized by disciplines and
components of process. The improvements are
organized by iterations that lean in the technol-
ogy of processes to manage the configuration of
process.

the Agile sPI: Process life cycle

Agile SPI – Process is an agile and light process
of software processes improvement, which can be
used as guide for the execution of a software pro-
cesses improvement program in small and medium
enterprises (SMEs). Light because enterprises like
the SMEs which possess certain characteristics
as: low resources, light processes, small human
resource, limited economic availability, and so
forth, need a model that supports an improvement
program that consider the real characteristics of
their industry, besides offering quick results in
their improvement programs.

Agile SPI – Process is an iterative and incre-
mental process is based on improvement cases,
which has the feature of throwing quick results
of improvement because it allows to create mini
improvement programs that include improvement
cases inside a global improvement program. The
improvement cases are atomic units of improve-
ment in the processes areas that have been selected
to be improved either because the enterprise fol-
lows a certification or because for it its priority
is to improve a specific process.

•
Obtaining quick improvement results will

allow in consequence to the improvements to
be visible from the early phases of the improve-
ment project, more agile and quicker as the mini
improvement programs finish depending on the
prioritize criteria that the enterprise has defined
previously. This seeks to maintain the personnel’s
motivation toward the improvement program,
through permanent improvement results, remov-
ing the risks of the project in the first phases, to
focus the major effort in the areas that the enter-
prise considers more important for its business.
The life cycle is highly influenced by the itera-
tive and incremental life cycle models present in
many development processes such as RUP, XP,
Scrum, among others; since the improvement
projects cover extensive requirements and they
impact the whole organizational structure of any
enterprise, some characteristics of these models
have been adapted to create a complete, agile, and
less bureaucratic improvement process and sensi-
tive to the related activities with the management
(meetings, documents, infrastructure, etc.).

Agile SPI – Process allows the parallelism
between iterations or improvement programs,
being very advantageous because improvements
can be developed in processes areas where an
evident independence exists. In the certification
processes, the appraisal before the beginning of
an improvement program is very important, since
this allows estimating which processes areas the
enterprise has and which is their maturity level.
Currently many tools exist with which the process
areas of an enterprise can be appraised according
to a particular quality model, for example: CMMI
(SEI, 2002) in its continuous or staged version,
ISO/IEC 15504 (ISO_15504-2, 2004; ISO_15504-
5, 2006), ISO 9001-2000 (ISO_9001, 2000), and
others. In this aspect Agile SPI – Process can
be used independently of the quality model and
evaluation method, for example this it can be
used if a continuous or staggered CMMI has been
selected or if the choice is ISO 15504.

3316

Agile SPI

Agile SPI – Process also includes, documents,
and explains a set of disciplines to any improve-
ment process that can be applied in smaller or
bigger measure in each one of the phases in
which several iterations can be developed, for
this we were based on the Software Development
Unified Process. When we identify in Agile SPI
– Process the disciplines to be developed in each
one of the improvement process phases, we are
assuring that personnel involved in the improve-
ment program will be able to visualize in major
detail the behaviours and activities that should
be developed inside an improvement program.
We have considered as vital disciplines in any
improvement program: Training, Improvement
Management, Evaluation, Analysis, Design,
Installation, Process Configuration Management
and Learning.

the Agile sPI - Process Phases

Agile SPI - Process describes a process of software
processes improvement in five phases, next we
will see each one of them:

The Figure 3 presents to Agile SPI – Process
phases: installation, diagnostic, formulation,
improvement, and revision of the program.

• Phase 1 —Installation: This is the begin-
ning phase for Agile SPI - Process. Mo-
tivation should exist in the organization
to undertake a plan of improvement of its
processes. In this phase a proposal of im-
provement is created based on the business
needs, which will help to guide to the orga-
nization through each one of the following
phases, this proposal must be approved by
the management to guarantee this way the
assignment of the necessary resources for
the improvement project. During this phase
some objectives also are defined, which are
established from the enterprise needs. Be-
sides a feature very important in Agile SPI
- Process is offering a guide in the improve-
ment of software processes, also provides a
management infrastructure, which describes
the way in which committed people are or-
ganized inside the improvement effort; this
infrastructure organizes the improvement

Figure 2. Example of discipline in Agile SPI framework.

 3317

Agile SPI

effort keeping in mind a management team
(MT), a processes technology team (PTT),
and improvement teams (ITs); these teams
have been influenced by the infrastructure
proposed by IDEAL, complementing it with
the creation of effective groups proposed
by the methodology TSP (Team Software
Process), adapted by Agile SPI - Process
like TSPI (Team Software Process Improve-
ment) and some of the features in the ad-
ministration of a project using the SCRUM
methodology.

• Phase 2—Diagnostic: In this phase, a pro-
gram has already begun toward the improve-
ment of processes and the work that here is
realized is fundamental for the realization of
the following phases. An appraisal is realized
to know the general state of the enterprise
processes, besides an analysis of the results
that will allow establishing the priority of
the improvement cases, allowing this way
to create one of the main products of this
phase known as “improvement general guide
or plan.”

• Phase 3—Formulation: In this phase, the
most high-priority cases of improvement (1
or 2) are taken to improve according to the
results of the appraisal made in the previous
phase and the planning of a first improvement
iteration is realized, this with the purpose of
finding a measure of the effort that serves
as base for the estimate of the effort that the
rest of the improvement project will take to
carry out.

• Phase 4 —Improvement: In the improve-
ment phase of Agile SPI - Process the

whole effort of the improvement cases is
managed based on the estimate made in the
improvement execution plan created in the
previous phase and consequently the plans
corresponding to the different iterations of
the process areas to improve or to create
are developed. A document should exist
where it is registered the execution of the
test pilots, the evaluation of the new process
areas or the new improvement that has been
realized. If the pilot plans have been devel-
oped satisfactorily it is necessary to create
acceptance and institutionalisation plans of
the new processes in the enterprise.

• Phase 5 —Revision: In this phase, a feed-
back is made before starting the beginning
phase again. In this phase all the learned
lessons and the metrics developed to measure
the accomplishment of the objectives serve
like knowledge base or source of informa-
tion for people involved in the following
improvement cycle. With all the gathered
information the realized work should be
evaluated and all the elements related with
the execution of the program SPI should be
corrected or adjusted, how for example the
established infrastructure, the used meth-
ods, the communication channels and if the
solutions to the identified problems were the
appropriate ones.

(1). Installation

(2). Diagnostic

(3). Formulation.

(4). Improvement

(5). Revision

Figure 3. Agile SPI: Process phases modeled under SPEM

3318

Agile SPI

Iterations in Agile sPI - Process
and their correspondence with the
scrum development Process

Iteration in Agile SPI - Process is a mini cycle
improvement that allows advancing the develop-
ment and management of a set of improvement
cases in an independent way. The iteration is the
integrative concept between phases and disci-
plines. The phases can be decomposed in time
and space (teams) for iterations, and an iteration,
being itself a guide of improvement, is defined
starting from a set of disciplines according to
the phase where it is and to the characteristics of
the improvement project. Iterations in Agile SPI
- Process is a very important part in the Software
Processes Improvement because this way inde-
pendent improvements can be developed, and so
to deliver quicker improvements. The key resides
in developing iterations in areas that are indepen-
dent of others, this way the work in them can be
achieved in parallel, and the work of improvement
that in them is developed doesn’t cause problems;
nevertheless it is necessary to keep in mind that
a dependence can exist among areas, in that case

it is necessary to study which is the impact that
could create a improvement case and based on
this to order the way of how improvements will
be developed in the other improvement cases.

The iterations for the improvement cases in
the diagnostic, formulation, and improvement
phases can be developed in a similar way to the
Scrum development process with its sprints, in
each one of them there are three phases: pregame,
game, and postgame, which we have called them
pre-improvement, improvement, and post-im-
provement.

Improvement cases can be seen as Sprint Back-
log (Improvement Requirements List), which have
been divided in smaller improvement tasks, and
these in their entirety and respective correspon-
dence would conform a specific area that would
be seen as a prioritised list of features required
by the improvement, which has been obtained
thanks to the appraisal achieved to the enterprise;
in relation to the SCRUM development process this
list of features is created starting from the client’s
requirements and is called Product Backlog (Initial
Improvement Requirements List).

In Figure 4 is showed how the iterations in Agile
SPI - Process are developed. In the pre-improve-

Figure 4. Iterations in Agile SPI – Process

 3319

Agile SPI

ment phase the appraisal discipline is developed
for the creation of the product accumulation or
delay registry (initial improvement requirements
list). After prioritising the areas to improve, an
improvement requirements list is created through
the evaluation of each area, which allows defining
an order for each one of the improvement itera-
tions to execute. It is important the assistance of
dependences net to order in a detailed way the
improvements to achieve in the selected areas.
The dependences net allow identifying the im-
provement cases or the number of iterations to
develop for each area. The improvement cases
are the activities that compose the area.

After identifying the improvement cases that
compose the area and ordering them through de-
pendences net, the next is the analysis and design
of the new or improved process and its respective
installation and documentation.

Agile SPI - Process also adapts and proposes
techniques and practices for the teams confor-
mation and management, it exemplifies the net
of dependences that can exist between areas or
practices that they compose depending of the
quality model and the way of treating this char-
acteristic. It also documents and identifies the
milestones and workproducts resultants of these
and it proposes some control and management
templates for the improvement process, all this
inside a guide that doesn’t seek to be an extensive
model but a friendly, easy to use, and agile process
of software processes improvement independent
of the quality model and evaluation methods, and
the most important: adapted to the characteristics
of the Colombian software industry and in general
Latin America.

At the moment, Agile SPI - Process is in its
verification stage, we are achieving improvement
programs in some small enterprises of our region,
which have demonstrated from the beginning a
great interest to improve their processes after
they knew the advantages that it can bring to the
quality of their products, as well as the benefit of
having an international certification. With this

process for the software processes improvement
we seek to help to the enterprises not only of our
region but also of Latin America to reach a level
that allows them to compete with companies
like the American and European in software
development.

studY cAse: APPlYInG AGIle
sPI In A smAll soFtwAre
orGAnIzAtIon

This section aims to present the applying the
framework Agile SPI in the organization SIDEM
Ltda (http://www.sidemltda.com) - Colombia.

sIdem ltda.

Sidem Ltda. is an organization in Cauca’s Valley,
from the Cali City, Colombia. This organization
is dedicated to production, integration, mainte-
nance, supporting and consulting of Information
Systems, using multiplatform design to support the
constant challenges of productive processes.

Nowadays, Sidem Ltda. account with more of
300 clients in Colombia, using his management
and financial solution. These solutions allowed to
this organization to be classified by the “Cámara
de Comercio de Occidente” like enterprising in-
dustrialists of the Cauca’s Valley and to position
itself like one of the best organizations in the
Colombian south.

experience with sIdem ltda.

Previous View to the Software
Improvement Process

At the beginning six years ago, Sidem Ltda. was
a small organization with four people, which
one developed several activities. There were not
defined roles or positions in a specific way and
the software process was not documented. Two

3320

Agile SPI

years ago, Sidem Ltda. is growing because ac-
count with 18 persons: one person is in charge to
assign activities of client support, 11 development
engineers, 2 persons in marketing and manage-
ment area, 2 people in quality area, and 2 persons
in management jobs.

In Sidem Ltda there are not areas defined in a
clear way, we just found defined one organizational
structure of the organization with some activities
and persons assigned to them, overlapping among
them and without documents. For that reason,
there are chaos and immaturity process without
relation. Almost all the time, the activities are not
finished in time, budget and quality, because it is
necessary to attend other problems and activities,
which wastes too much time.

As a first step, Sidem Ltda created a Quality
Team composed by 2 people. This team was cre-
ated because:

Defining software development activities
Madding documents about development
process
Establishing control activities on the develop-
ment process.

But, due to problems inside Sidem Ltda, the
Quality Team finished madding another activities
and that first effort was lost.

Any way, we founded another effort for im-
proving process. Sidem Ltda there was imple-
mented two projects with adoption UP Methodol-
ogy and UML. The results obtained were a very
good results for the team project. These results
showed a better management and planning of
the activities.

Initial Phase

First, we made an install meeting with Sidem Ltda.
The Sidem manager presented the organization
and necessities. Also, he was concerned about
immature process, bad development methodolo-

•
•

•

gies, problems with estimating time and cost and
chaos generated in management and development
of projects.

The SIMEP-SW Team explained that an
improvement project could be one of the most
important solutions and decisions that Sidem
Ltda should take and support. Consequently, the
organization decided to initiate an improvement
project based on the components of the Frame-
work Agile SPI.

The SIMEP-SW Team proposed: 2 researchers
to develop the appraisal on CMMI, 1 researcher
in charged to obtain the development process
implicit in the organization and 2 researchers in
charge to manage all the Improvement Program
based on Agile SPI Process, 1 researcher as a
leader team.

At the same way, Sidem Ltda assigned an
Improvement Team, working as a management
bridge for supporting all the necessities during the
Improvement Program. Fits, schedules, meetings,
and necessary material in each meeting program.
Each meeting should be programmed with two
weeks before, with the objective of having a suit-
able management time.

When the two teams were ready for starting
activities, we started a training about:

Bases of Agile SPI Process.
Reference Model CMMI.
Presenting study cases.

After of training to the people, the SIMEP-SW
Team prepared a plan or proposal of improvement
with: objectives of improvement, the identified
necessities of business, the necessary resources,
roles and people, strategies in the development of
the objectives, a schedule of work, and possible
risks in the course of the project. Finally, we
presented the improvement program to Sidem
Ltda and we installed it.

•
•
•

 3321

Agile SPI

diagnose Phase

In order to know the current state of Sidem Ltda
the SIMEP-SW Team made an appraisal in Level
2 CMMI, using SPQA Web Tool, which we would
obtain an overview in the process capacity. With
this process baseline, we could apply evaluations
more detailed. In according to the results and rec-
ommendations generated by SPQA.WEB Tool:

In a general way, acceptable requirement
management. Then it is necessary an im-
provement of this area because this allows
to collect and to control requirements, and to
avoid deviations throughout the development
of products.
Project Planning, Project tracing and sub-
contract management are in a low degree
of implementation. In consequence, the
organization cannot control its development
processes.
Quality Assessment, configuration manage-
ment and metrics are not implemented in the
organization.

With the appraisal results, it was established
a meeting with the objective to obtain the areas
that should be improve. Finally, we obtained the
next conclusion:

cmmI engineering Area

First Iteration: Management Requirements
and Development Requirements.
Second Iteration: Technical Solution and
Product Integration.
Third Iteration: Validation and Verification

Later, we began the training activities
about:

CMMI Engineering Area
Management Requirements and Development
Requirements

•

•

•

•

•

•

•
•

The work product about to improvement pro-
gram was updated and new dates were specified.
We planned evaluation activities in process areas
selected. With the evaluation results, we designed
a improvement plan based on the priorities selected
by Sidem Ltda. Consequently, we generated a
work product, which was communicated in all
the organization, the objective was to establish a
feeling of responsibility in the areas selected.

Formulation Phase

Nowadays, the Improvement Project in the orga-
nization Sidem Ltda is in this phase.

Once we made formulation of improvement
cases, we will prepare the design of improved
process. We will implement pilot proof. After
studying of the impact, if the improvement is
positive and advisable for the Sidem Ltda Process,
we will deployment in formal way all of the new
improved process.

This study case presents the results of one first
stage or cycle for the first period of a improvement
project. In this study case until now the deployment
of Agile SPI Process has been made during eight
weeks. Two weeks for Installing, two weeks in
diagnose phase and four weeks for the formulation
phase. We hoped that the Improvement Project
will continue and that always represent one of
the primary targets of the Sidem Ltda.

learned lessons

The following lessons have been learned as a
result of application Agile SPI Process:

The management leader must agree in apply-
ing Agile SPI - Process and promoting.
Communicate to all organization about the
applying Agile SPI - Process.
Develop tasks in a smooth way.
It is important to obtain results quickly to
maintain motivation in the improvement
program.

•

•

•
•

3322

Agile SPI

The improvement process must be planned,
be managed and the necessary resources for
their development are due to assign.
Good communication between organization
team leader and improvement team leader.
If the personnel available in the organization
is limited, then to make sure that parity in the
assigned work exists.
There is a confusion between processes and
structure.
The organization not always knows clearly
his processes.
Many organizations have a implicit process,
it is necessary to document.
Training about modelling of the business
process and the development process.
It is not necessary planning objectives of
improvement that will not be carried out.
If an improvement first cycle has not all sup-
port and commitment, it is better to choose
not to generate negative experiences in or-
ganization with unsuccessful improvement
programs.
The improvement process does not have to be
left, to be suspended, or diminished because
of other events, this it must be considered of
greater or equal importance than the projects
or diverse situations that can be presented in
the organization.

conclusIons And
PersPectIves

The software process in the organizations requires
evolution and maturity to approach to its differ-
ent stakeholders and continues improvement and
Assessment. Therefore, they have arisen different
kinds of Frameworks normally named like Quality
Models and Improvements methods for supporting
SPI strategies. In this paper we had presented Agile
SPI, a framework based on models lightweight,
international standards, agile improvement, and

•

•

•

•

•

•

•

•

•

•

agile practices. Agile SPI is mainly influenced by
the SMEs, the agile manifest, Conradi-Fuggetta
thesis, and the existent and well-know models.
Agile SPI includes a flexible infrastructure based
on Discipline concept of SPEM and define five
contexts for applying itself. The initial improve-
ment is measured by the product quality and
the project productivity, and then by the process
capability and agility. Agile SPI is differenced
of others Frameworks due and this is complete
respect to the models, is flexible due a permits the
inclusion of other models and was designed for
SME industry. Agile SPI respect to other Latin-
American initiatives is different because include
a improvement model. This model permits apply
the framework to an improvement program.

AcKnowledGment

This work has been funded by the following
projects: SIMEP_SW financed by Colciencias
and University of the Cauca; COMPETISOFT
(506AC287) financed by CYTED and MECENAS
(PBI06-0024) granted by the “Junta de Comuni-
dades de Castilla-La Mancha.”

reFerences

Bedini, A., Llamosa, A., Pavlovic, M., & Steem-
becker, K. (2005). Quality software map of South
America. In Proceedings of the 1st International
Research Workshop for Process Improvement in
Small Settings, Pittsburgh, PA (pp. 216-227).

Blowers, R., & Richardson, I. (2006). The ca-
pability maturity model (SW and integrated)
tailored in small indigenous software industries.
In Proceedings of the 1st International Research
Workshop for Process Improvement in Small
Settings, Pittsburgh, Carnegie Mellon University
(pp. 175-181).

 3323

Agile SPI

Conradi, R., & Fuggetta, A. (2002, July/August).
Improving software process improvement. IEEE
Software, 19(4), 92-99.

Garcia, S., Graettinger, C., & Kost, K. (2006).
Proceedings of the 1st International Research
Workshop for Process Improvement in Small
Settings, 2005 (Special report CMU/SEI-2006-
SR-001), Pittsburgh, Software Engineering
Institute. Retrieved December 14, 2007, from
http://www.sei.cmu.edu/pub/documents/06.re-
ports/pdf/06sr001.pdf

Hurtado, J., Pino, F., & Vidal, J. (2006). Software
process improvement integral model: Agile SPI
(Tech. Rep. No. SIMEP-SW-O&A-RT-6-V1.0).
Popayán, Colombia, Universidad del Cauca-
Colciencias. ()

ISO_15504-2. (2004). ISO/IEC 15504-2:2003/
Cor.1:2004(E). Information technology: Process
assessment, Part 2: Performing an assessment.
Geneva: International Organization for Stan-
dardization.

ISO_15504-5. (2006). ISO/IEC 15504-5:2006(E).
Information technology: Process assessment,
Part 5: An exemplar process assessment model.
Geneva: International Organization for Stan-
dardization.

ISO_9001. (2000). ISO 9001:2000. Quality man-
agement systems: Requirements. Geneva: Inter-
national Organization for Standardization.

Mayer&Bunge. (2004). Panorama de la Indu-
stria del Software en Latinoamérica. Brasil:
Mayer&Bunge Informática LTDA. Retrieved
December 14, 2007, http://www.mbi.com.
br/200409_panorama_industria_software_amer-
ica_latina.pdf

Oktaba, H., (2005). Modelo de Procesos para
la Industria de Software - MoproSoft - Versión
1.3, Agosto de 2005. NMX-059/01-NYCE-2005.

Ciudad de México: Organismo Nacional de
Normalización y Evaluación de la Conformidad
- NYCE. Retrieved December 14, 2007, from
http://www.normalizacion-nyce.org.mx/php/
loader.php?c=interes.php&tema=21

Pino, F., Garcia, F., Ruiz, F., & Piattini, M. (2006).
A lightweight model for the assessment of soft-
ware processes. In Proceedings of the European
Systems & Software Process Improvement and
Innovation (EuroSPI 2006), Joensuu, Finland
(pp. 7.1-7.12).

Printzell, C., & Conradi, R. (2001). A taxonomy
to compare SPI frameworks. Paper presented at
the Software Process Technology 8th European
Workshop (EWSPT 2001), Witten, Germany (Vol.
2077, pp. 217-235). Springer.

Richardson, I. (2001, September). Software
process matrix: A small company SPI model.
Software Process: Improvement and Practice,
6(3), 157-165.

Scott, L., Jeffery, R., Carvalho, L., D’Ambra,
J., & Rutherford, P. (2001). Practical software
process improvement: The IMPACT Project. In
Proceedings of the Australian Software Engineer-
ing Conference (pp. 182-189).

SEI. (2002). CMMI for systems engineering/
software engineering (Version 1.1). Pittsburgh:
Software Engineering Institute (SEI). Retrieved
December 14, 2007, from http://www.sei.cmu.
edu/cmmi/

Storey, D. J. (1982). Entrepreneurship and the
new firm. Croom Helm.

Wangenheim, C. G. v., Weber, S., Rossa Hauck,
J. C., & Trentin, G. (2006, January). Experiences
on establishing software processes in small com-
panies. Information and Software Technology,
pp. 1-11.

3324

Agile SPI

Weber, K., Araújo, E., Rocha, A., Machado, Scalet,
D., & Salviano, C. (2005). Brazilian software
process reference model and assessment method.
Computer and Information Sciences, 3733, 402-
411. Berlin/Heidelberg: Springer.

endnotes

1 SIMEP_SW: An Integrated System for
Software Process Improvement

2 COMPETISOFT (Process Improvement for
Promoting Iberoamerican Software Small
and Medium Enterprises Competitiveness)
project financed by CYTED.

This work was previously published in Software Process Improvement for Small and Medium Enterprises: Techniques and
Case Studies, edited by H. Oktaba; M. Piattini, pp. 177-192, copyright 2008 by Information Science Reference (an imprint of
IGI Global).

 3325

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8.9
Machine Learning and
Value-Based Software

Engineering
Du Zhang

California State University, USA

AbstrAct

Software engineering research and practice thus
far are primarily conducted in a value-neutral set-
ting where each artifact in software development
such as requirement, use case, test case, and defect,
is treated as equally important during a software
system development process. There are a number
of shortcomings of such value-neutral software
engineering. Value-based software engineering is
to integrate value considerations into the full range
of existing and emerging software engineering
principles and practices. Machine learning has
been playing an increasingly important role in
helping develop and maintain large and complex
software systems. However, machine learning
applications to software engineering have been
largely confined to the value-neutral software
engineering setting. In this paper, the general mes-
sage to be conveyed is to apply machine learning
methods and algorithms to value-based software
engineering. The training data or the background

knowledge or domain theory or heuristics or bias
used by machine learning methods in generat-
ing target models or functions should be aligned
with stakeholders’ value propositions. An initial
research agenda is proposed for machine learning
in value-based software engineering.

IntroductIon

Software engineering research and practice
thus far are mainly conducted in a value-neutral
setting where each artifact in software develop-
ment such as a requirement, a use case, a test
case, a defect, and so forth, is treated as equally
important during a software system development
process (Boehm, 2006a). There are a number
of shortcomings of such value-neutral software
engineering (Biffl et al. 2006): (1) its exclusion of
economics, management sciences, cognitive sci-
ences, and humanities from the body of knowledge
needed to develop successful software systems;

3326

Machine Learning and Value-Based Software Engineering

(2) its delimitation of software development by
mere technical activities; and (3) its failure to
explicitly recognize the fact that software systems
continue to satisfy and conform to evolving hu-
man and organizational needs is to create value.
Value-based software engineering (VBSE) is to
integrate value considerations into the full range
of existing and emerging software engineering
principles and practices so as to increase the re-
turn on investment (ROI = (benefits–costs)/costs)
for the stakeholders and optimize other relevant
value objectives of software projects (Biffl et al.
2006; Boehm, 2006a, Wang, 2007).

Machine learning (ML) has been playing an
increasingly important role in helping develop
and maintain large and complex software sys-
tems. However, machine learning applications to
software engineering have been largely confined
to the value-neutral software engineering setting
(Zhang, 2000; Zhang & Tsai, 2003; Zhang & Tsai,
2005; Zhang & Tsai, 2007, Wang, 2008). In this
paper, the general message we attempt to convey
is to apply ML methods beyond the value-neutral
software engineering setting and to VBSE. The
training data or the background knowledge or
domain theory or heuristics or bias used by ML
methods in generating target models or functions
for software development and maintenance should
be aligned with stakeholders’ value propositions
(SVPs) and business objectives. Even though the
transition to VBSE from the traditional value-
neutral setting is necessarily evolutionary because
not all the theories, infrastructures, methodologies
and tools for VBSE have been fully developed
yet, there are a number of agenda items for VBSE
(Boehm, 2006a).

The goal of the road map in VBSE is to make
software development and maintenance decisions
that are better for value creation (Boehm, 2006a).
On the other hand, the hallmark of ML is that it
results in an improved ability to make better deci-
sions. VBSE offers a fertile ground where many
software development and maintenance tasks can
be formulated as ML problems and approached in

terms of ML methods. The purpose of this paper
is to describe an initial research agenda for ML
applications to VBSE with regard to the identified
areas in VBSE (value-based requirement engi-
neering, architecting, design and development,
verification and validation, planning and control,
risk/quality/people managements, and a theory of
VBSE (Boehm, 2006a)).

The rest of the paper is organized as follows.
Section 2 offers an overview of the related work.
Section 3 highlights some important concepts
in VBSE. In Section 4, we describe an initial
research agenda for ML applications in VBSE.
Finally Section 5 concludes the paper with remark
on future work.

relAted worK

In this section, we provide a brief account for
some of the major and emerging software devel-
opment paradigms which are related to the main
theme of this paper. The intent is to highlight
the state-of-the-art in the software development
landscape and to delineate differences between
the existing approaches and the one advocated
in this paper.

Besides machine learning in (value-neutral)
software engineering (MLSE), there are a number
of related and emerging software development
paradigms: search-based software engineering
(SBSE), evidence-based software engineering
(EBSE), model-based software engineering
(MBSE), artificial intelligence in software engi-
neering (AISE), and computational intelligence in
software engineering (CISE). Figure 1 highlights
their similarities and differences.

mlse

ML falls into the following broad categories:
supervised learning, unsupervised learning,
semi-supervised learning, analytical learning,
reinforcement learning, and multi-agent learning.

 3327

Machine Learning and Value-Based Software Engineering

Each of the categories in turn includes various
learning methods. Supervised learning deals with
learning a target function from labeled examples.
Unsupervised learning attempts to learn patterns
and associations from a set of objects that do not
have attached class labels. Semi-supervised learn-
ing is learning from a combination of labeled and
unlabeled examples. Analytical learning relies
on domain theory or background knowledge to
learn a target function. Reinforcement learning is
concerned with learning a control policy through
reinforcement from an environment. Multi-agent
learning is an extension to single-agent leaning.
There are of course many emerging learning
methods such as argument based machine learn-
ing, interactive learning, and so forth.

In software development, there are processes,
products and resources (Fenton & Pfleeger, 1997).
Processes are collections of software related
activities, such as constructing specification, de-
tailed design, or testing. Products refer to artifacts,
deliverables, documents that result from a process
activity, such as a specification document, a de-
sign document, or a segment of code. Resources

are entities required by a process activity, such
as personnel, software tools, or hardware. The
aforementioned entities have internal and external
attributes. Internal attributes describe an entity
itself, whereas external attributes characterize
the behavior of an entity (how the entity relates
to its environment).

A partial list of ML applications in value-
neutral software engineering includes (Zhang,
2000; Zhang & Tsai, 2003; Zhang & Tsai, 2005;
Zhang & Tsai, 2007): (1) Predicting or estimat-
ing measurements for either internal or external
attributes of software development processes,
products, or resources (e.g., quality, size, cost,
effort). (2) Discovering either internal or ex-
ternal properties of the processes, products, or
resources (e.g., loop invariants, objects, normal
operation boundary, equivalent mutants, process
models, architecture information, aspects). (3)
Transforming products to accomplish some desir-
able or improved external attributes (e.g., serial
programs to parallel ones, improving software
modularity). (4) Synthesizing or generating
various products (e.g., evolutionary testing for

Figure 1. Emerging software development paradigms

3328

Machine Learning and Value-Based Software Engineering

generating test data, project management rules
and schedules, design repair knowledge, design
schemas, programs/scripts/agents). (5) Reusing
products or processes (e.g., similarity comput-
ing, locating/adopting software to specifications,
generalizing program abstractions, clustering
of components). (6) Enhancing processes (e.g.,
extracting specifications from software, acquir-
ing specification consistent with scenarios). (7)
Managing products (e.g., managing knowledge
for software development process).

There were many different ML methods uti-
lized in the aforementioned applications (instance-
based learning and case-based reasoning, neural
networks, decision trees, genetic algorithms, ge-
netic programming, inductive logic programming,
explanation-based learning, Bayesian learning,
concept learning, analytic learning, support vector
machines, multiple instance learning, active learn-
ing, clustering, association rules, and expectation
maximization) (Zhang, 2000; Zhang & Tsai, 2003;
Zhang & Tsai, 2005; Zhang & Tsai, 2007). A
common property in the existing ML applications
is that the software engineering issues were tack-
led solely from technical or logical perspectives
(involving mappings and transformations, for
instance) without the value dimension being taken
into consideration (e.g., how to increase ROI for
the stakeholders and optimize other relevant value
objectives of software projects). The training data
or the background knowledge or domain theory
or heuristics or bias used by the ML methods in
generating target functions did not contain any
value propositions.

sbse

SBSE treats software development tasks as a
search problem with regard to a set of constraints
and a search space of possible solutions (Clark
et al, 2003; Harman & Jones, 2001). It relies on
evolutionary algorithms, gradient ascent/descent,
particle swarm intelligence, simulated annealing,
tabu search or colony optimization techniques to

tackle the software development or maintenance
tasks. So far its applications have included the fol-
lowing areas in software engineering: requirement
engineering, project planning, cost estimation,
maintenance, reverse engineering, refactoring,
program comprehension, service oriented tasks,
quality assessment, and testing (structural, func-
tional, non-functional, state-based properties,
robustness, stress, security, mutation, regression,
interaction, integration, and exception). Value
considerations are not explicitly incorporated into
the search process.

ebse

EBSE is geared toward improving the decision
making process related to software development
and maintenance by integrating current best evi-
dence from research with practical experience and
human values (Dyba, Kitchenham & Jorgensen,
2005; Kitchenham, Dyba & Jorgensen, 2004).
There are five main steps in EBSE as delineated
in (Dyba, Kitchenham & Jorgensen, 2005; Kitch-
enham, Dyba & Jorgensen, 2004): (1) Translate a
relevant problem or need of information into an
answerable question. (2) Glean the literature for
the best available evidence that can be used to
answer the question. (3) Assess the evidence for
its validity, impact, and applicability. (4) Combine
the appraised evidence with practical experience,
and stakeholders’ values and circumstances to
make decisions. (5) Evaluate performance and
find ways to improve it. One important strength
of EBSE is that it does take into consideration
the SVPs.

mbse

MBSE is centered on software models, modeling,
and model transformation technologies. It is a
disciplined approach to developing and extending
a product family. The software models provide
the necessary information to support, economi-
cally and effectively, future changes to a software

 3329

Machine Learning and Value-Based Software Engineering

product family. By focusing on models that capture
and consolidate developers’ understanding of a
family of software products, reusable assets can
be developed that satisfy a wide variety of uses
and can be utilized to analyze existing software to
quickly compose or synthesize new solutions for
subsequent products in a product family (Brown,
Iyengar & Johnston, 2006; MBSE, 2008; Sendall
& Kozacaynski, 2003). The goal is to achieve the
benefits of reuse, shorter time to market, product
maintainability and higher quality. However, value
considerations are not prominently factored into
the paradigm.

MBSE consists of two parallel engineering
processes: domain engineering and application
engineering, and sanctions the concepts of product
families, a production system, and software as-
sets (the reusable resources needed in application
engineering such as domain models, software
architectures, design standards, communication
protocols, code components and application
generators).

Domain engineering is a process of analysis,
specification and implementation of software
assets in a domain which are used in the develop-
ment of multiple software products. Application
engineering is a process that develops software
products from software assets.

Many organizations have model-based devel-
opment paradigm in place: Microsoft’s Software
Factory (Greenfield & Short, 2004), Lockheed
Martin’s Model Centric Software Development
(Waddinggton & Lardieri 2006), and NASA
JPL’s Defect Detection and Prevention (Feather
et al, 2008).

cIse

In CISE (or software engineering with compu-
tational intelligence), soft computing techniques
such as fuzzy sets, neural networks, genetic algo-
rithms, genetic programming and rough sets (or
combinations of those individual technologies)
are utilized to tackle software development issues

recently [Khoshgoftaar, 2003a; Khoshgoftaar,
2003b; Lee, 2003a; Lee, 2003b; Pedrycz & Peters,
1998). The results have been largely confined to
the value-neutral setting.

AIse

The application of some general artificial in-
telligence techniques to software engineering
(AISE) has produced some encouraging results
(Mendonca & Sunderhaft, 1999; Mostow, 1985;
Partridge, 1998; Rich & Waters, 1986; Tsai &
Weigert, 1993). Some of the successful AI tech-
niques include: knowledge-based approach, auto-
mated reasoning, expert systems, heuristic search
strategies, temporal logic, planning, and pattern
recognition. Again the results thus far have been
obtained in the value-neutral setting.

vbse

The essence in VBSE is that the approach aims at
aligning software development and maintenance
with customer requirements and strategic business
objectives. It offers a framework where SVPs are
incorporated into the technical and managerial
decisions made during software development
and maintenance (Biffl et al. 2006; Grunbacher
et al, 2006).

Value includes product, process and resource
attributes. Value attributes include: profits (gen-
erated from products), strategic positioning in
market share, utility, relative worth, reputation,
customer loyalty, innovation technology, cost re-
duction, quality of life, improved productivity.

An emerging agenda of issues in VBSE has
been proposed in (Boehm, 2006a), that includes
the following areas:

• Value-based requirements engineering.
The key objectives include recognition of
success-critical stakeholders, elicitation of
SVPs, and reconciliation of SVPs.

3330

Machine Learning and Value-Based Software Engineering

• Value-based architecturing. The goals are to
iron out the discrepancy between a system’s
objectives and achievable architectural solu-
tions.

• Value-based design and development. The
goals are to ensure that a software system’s
objectives and its value considerations are
embodied in the software’s design and de-
velopment practices.

• Value-based verification and validation. The
objectives are to ascertain that a software
solution meets its value objectives and that
V&V tasks are sequenced and prioritized as
investing activities.

• Value-based planning and control. The
objectives in this area are to incorporate
the value delivered to stakeholders into the
product planning and control techniques.

• Value-based risk management. How to factor
the value considerations into principles and
practices for risk identification, analysis,
prioritization, and mitigation is the main
focus in this area.

• Value-based quality management. The goals
are to prioritize desired software quality
considerations with respect to SVPs.

• Value-based people management. The tasks
involve building stakeholder team, manage
expectations, and reconcile SVPs.

A number of concepts need to be in place
to facilitate ML applications in VBSE. Of the
important and useful concepts is the one about
Pareto modules.

Figure 2 depicts a reported study in (Bullock,
2000) where the dotted line reflects the value-
neutral practice in which an automated test data
generation tool assumes that all tests have the same
value. The Pareto curve for the empirical data,
on the other hand, displays the actual business
value where one of the fifteen customer services
accounted for 50% of all billing revenues.

We refer to module(s) that realizes a service of
such a high positive impact on the system’s ROI
as Pareto modules. They are the most important
modules of a software system with regard to
its product value. How modules contribute to
a product’s overall value hinges on reconciled
SVPs.

For a given software system Ω, we can define
a set MΩ of modules, a valuation function υ, and
a value set V as follows:

Figure 2. Pareto distribution for varying test case value

% of
Value

for
Compact
Customer

Billing

Automated test
generation tool
- all tests have equal value

Actual business value

Customer Type

 3331

Machine Learning and Value-Based Software Engineering

MΩ = {mi | mi ∈ Ω };
υ: MΩ → [0, 1];
V = {υ(mi) | mi ∈ MΩ }

The valuation function υ can be defined by
SVPs and has the following properties:

• 0 < υ(mi) ≤1, for all i;
• Σ υ(mi) = 1.

We define a partially ordered set (V, ≤) where
≤ is a binary order relation on V and satisfies
reflexivity, anti-symmetry and transitivity for all
elements in V. We say that υ(mp) is a principal
element for (V, ≤) if we have the following:

∀υ(mj)∈V [υ(mj) ≤ υ(mp)]
1

We use ρ to denote the principal module as
specified by υ(mp). We define a principal-element-
ordered subset V[mi, ρ] of V and its cumulative value
µ[mi, ρ] as follows:

V[mi, ρ] = V - {υ(mk) | υ(mk) ≤ υ(mi)}
µ[mi, ρ] = Σ υ(mj) ∈ V[mi, ρ]

Now we are in a position to formally define
the concept of Pareto modules.

Definition 1. Given a threshold value τ ∈ (0, 1],
we identify a principal-element-ordered subset
V[mi, ρ] such that τ = µ[mi, ρ]. Modules in V[mi, ρ] are
referred to as Pareto modules with regard to τ.

If τ < µ[mi, ρ] but removing any mj from µ[mi, ρ]
would result in τ > µ[mi, ρ], then the condition of τ
= µ[mi, ρ] is relaxed to that of τ ≤ µ[mi, ρ].

In practice, to identify the Pareto modules, we
can apply the Pareto principle as follows: (1) ar-
range modules according to the descending order
of their value contributions to the total product
value; (2) calculate cumulative percentages of con-
tribution with regard to all the modules; (3) draw
a line graph based on the cumulative percentages

and modules involved; and (4) identify the most
valuable modules with regard to an established
threshold value.

The next set of useful concepts pertains to
modules with varying defect densities. Item four
on the software defect reduction top ten list in
(Boehm & Basili, 2001) indicates that “About 80%
of the defects come from 20% of the modules, and
about half the modules are defect free.” Thus,
there are three types of modules here in terms of
defect density measure: defect-intensive modules
that refer to those 20% of the modules causing
the bulk (80%) of defects, defect-prone modules
that are the next 30% of modules containing
the remaining 20% of defects, and defect-free
modules that include the rest 50% of modules.
In practice, there are different ways to specify
the criteria for defect-intensive and defect-prone
modules. Here we describe a possible way to
define modules with varying defect densities that
is based on the software Constructive Quality
Model COQUALMO (Huang & Boehm, 2006;
Steece, Chulani & Boehm, 2002).

In COQUALMO, there are two components:
a defect introduction sub-model that estimates
the rates at which software requirements, design
and code defects are introduced, and a defect
removal sub-model. Let KSLOC stand for thou-
sand source line of code. The calibrated baseline
(nominal) defect introduction rates DIRnom in
COQUALMO are given in Table 1 (Boehm et al,
2000; Huang & Boehm, 2006; Steece, Chulani
& Boehm, 2002):

Thus the total of the nominal defect intro-
duction rate for a software system is 60 defects/
KSLOC. Multiplying the baseline rates with
the size of a software system provides the total
number of defects introduced in each of the three
categories (requirements, design, and coding) and
summing them up returns the total number of
nominal defects introduced into a software system.
We use NDIΩ to denote it2. Scaling NDIΩ down
to the module level (e.g., if a module m has a size
of 100 SLOC, then its nominal coding defects are

3332

Machine Learning and Value-Based Software Engineering

scaled down to 3 accordingly), let NDIm denote
the nominal defects introduced into a module m
and TDIm the actual total number of defects in m.
we can define defect-intensive and defect-prone
modules using NDIm as follows.

Definition 2. A module m is defect-intensive if
its defect introduction rates (in some or all three
categories) are higher than the nominal rates
DIRnom. Therefore, we have TDIm > NDIm .

Definition 3. A module m is defect-prone if its
defect introduction rates (in some or all three
categories) are lower than the nominal rates
DIRnom. Therefore, we have TDIm ≤ NDIm .

There is another dimension about the nature
of defects. Item five on the software defect reduc-
tion top ten list in (Boehm & Basili, 2001) states
that “About 90% of the downtime comes from, at
most, 10% of the defects.” We refer to those 10%
of the defects as impact defects.

Definition 4. Impact defects (or high risk defects)
are those defects that result in loss of human life
or high financial loss. This translates into the
Required Reliability (RELY) ratings of Extra High,
Very High and High according to the Constructive
Cost Model (COCOMO) II (Boehm et al, 2000),
and rough Mean Time Between Failures (MTBF)
of one million hours, 300K hours and 10K hours,

respectively (Boehm et al, 2004; Huang & Boehm,
2006).

Definition 5. Non-impact defects are those defects
that result in moderate recoverable loss, easily
recoverable loss or slight inconvenience. They
have the RELY ratings of Nominal, Low and Very
Low, and the MTBF of 300 hours, 10 hours and 1
hour, respectively (Huang & Boehm, 2006).

The definitions of the aforementioned concepts
will pave the way for ML to be utilized in various
VBSE agenda issues. Further effort will be needed
to fully develop concepts that accommodate com-
prehensive ML applications in VBSE.

reseArch AGendA For ml In
vbse

In this section, we first discuss some general issues
on how to calibrate ML methods for VBSE tasks.
Using Boehm’ VBSE agenda in (Boehm, 2006a)
as a roadmap, we then describe some preliminary
agenda items on how ML can help with the goals,
objectives and tasks in VBSE.

how to calibrate ml methods

ML methods formulate various general hypoth-
eses, models and target functions through either

Type of Defects DIRnom

Requirements defects DIRnom(req) = 10/KSLOC
Design defects DIRnom(des) = 20/KSLOC
Coding defects DIRnom(cod) = 30/KSLOC

Table 1. Nominal defect introduction rates

 3333

Machine Learning and Value-Based Software Engineering

observed training data, or some background
knowledge or domain theory, or a combina-
tion of both. The generalization process during
leaning also hinges on certain adopted bias or
heuristics.

To calibrate ML methods for VBSE tasks, the
fundamental issue is how to incorporate SVPs
from the business value level into the technical
level details of ML model generation process.
Specifically, this translates into the following is-
sues: how to use SVPs to select data features and
to group training data, how to incorporate SVPs
into domain knowledge representation, how to pri-
oritize rules, based on SVPs, in domain knowledge
during model generation, how to include SVPs in
defining search bias, how to use different value
attributes in defining domain-specific biases for
the search process, how to utilize SVPs in defining
hypotheses and constraining hypothesis space,
how to factor SVPs into ensemble construction
and classification combination process when en-
semble learning is used to generate models, and
how the value concept plays a role in defining ML

method-specific heuristics (e.g., fitness function,
information gain measure).

value-based requirements
engineering

For the objectives in value-based requirements
engineering, techniques such as business case
analysis, requirements prioritization and release
prioritization have proven to be effective (Boehm,
2006a).

ML methods can be utilized to assist busi-
ness case analysis, and requirements and release
prioritization. Specifically, ML methods can be
used to predict or estimate software cost, software
size, software development efforts, and release
prioritization and timing. These prediction, es-
timation or cost models would help stakeholders
gain insight on what capabilities are not feasible
with regard to budget, schedule and technology
constraints, which features of a system are most
important and attainable, and which aggregate of
capabilities will meet stakeholders’ critical needs

Figure 3. Calibrating ML methods for VBSE

3334

Machine Learning and Value-Based Software Engineering

given the resource constraints. This in turn will
assist stakeholders in prioritizing and reconcil-
ing potential conflicting value propositions.
Possible ML methods for generating the models
include: decision trees, Bayesian learning, neural
networks, genetic algorithms, genetic program-
ming, case-based reasoning, and inductive logic
programming.

Value-Based Verification and
validation

The key techniques in value-based V&V are value-
based and risk-based testing techniques (Boehm,
2006a). Central to those techniques is how to align
SVPs with the technical level details in test con-
struction and execution and how to sequence and
prioritize testing activities as investing activities
(Ramler, Biffl & Grunbacher, 2006).

Since we have the following concepts in place:
Pareto modules, defect-intensive and defect-prone
modules, impact and non-impact defects (see
Section 3), we can use an SVPs-based approach
to identify modules of the aforementioned types
and decompose the overall test data generation
process for a given software system into a sequence
of test data generation cycles with each focusing
on some specific testing objective(s). Based on
the types of modules and the types of defects, we
have a landscape of possible testing scenarios as
shown in Figure 4.

The dotted area indicates Pareto modules
that can also be defect-intensive, defect-prone, or
defect-free modules, and that can intersect with
impact or non-impact defects.

From a value-based standpoint, to improve the
return on investment, we want to make sure to first
maximize the success rate of Pareto modules and

Figure 4. Possible testing scenarios

 3335

Machine Learning and Value-Based Software Engineering

to minimize the chance of having impact defects
that devastate the value contribution. Afterwards,
attention can be focused on non-impact defects
and non-Pareto modules. Thus, a prioritization of
cycles can be generated that is driven by the value
consideration and allows the most critical modules
with regard to SVPs to be thoroughly tested first.
For instance, we may have the following prior-
ity groups: (1) the top priority is to thoroughly
test Pareto modules with impact defects; (2) the
next priority is to devote attention to modules
with impact defects; (3) the third priority group
is to deal with Pareto modules with non-impact
defects or defect-free Pareto modules; and (4) the
last priority group consists of modules with non-
impact defects or defect-free modules3.

For each cycle, a number of ML methods can
be utilized to generate test cases for different
classes of modules. Some possible ML methods
include: genetic algorithms (McMinn, 2004),

genetic programming, inductive logic program-
ming and rule-based active learning.

There are a number of issues here: how many
cycles are needed, what goes to each cycle, and
how cycles are prioritized.

value-based risk management

There are a number of techniques for value-based
risk management: the risk-based “how-much-is-
enough” techniques, the risk-based analysis for
project predictability, the risk-based simulation,
and the risk-based testing techniques (Boehm,
2006a).

A pivotal concept in risk management is the
risk exposure (RE) involved in a prescribed course
of actions. RE is defined as follows:

RE = P(L) × S(L)

Figure 5. Sweet spots for different risk exposure profiles

3336

Machine Learning and Value-Based Software Engineering

where P(L) is the probability of loss L, and S(L)
is the size of loss. L can be defined based on any
value attribute as discussed in Section 3. In the risk
exposure profile analysis (Boehm, 2006b), there is
a dichotomy between planning and market share
as the value attribute: inadequate planning results
in little delay to capture market share but high RE
due to oversights and rework (REP in Figure 5);
excessive planning reduces the chance of major
problems but at the expense of high RE because
of time-to-market delays (REM in Figure 5).

ML methods can be used to help find the “sweet
spot” for different risk profiles and different risk
exposure profiles (see Figure 5). Depending on
the circumstances, either inductive learning, or
analytical learning, or a combination of inductive
and analytical learning can be deployed.

value-based design and
development

To ensure that a system’s objectives and its value
considerations are embodied in the software’s
design and development practices, the software
traceability techniques play an important role
(Boehm, 2006a). During the software develop-
ment process, many artifacts are produced and
maintained: documents, requirements, design
models, test scenarios, and so forth. Trace depen-
dencies are to identify relationships among those
artifacts and the quality of the trace dependencies
should reflect the value of the artifacts they attempt
to bridge. This is vital for a number of reasons,
from documentation, program understanding, im-
pact analysis, consistency checking, reuse, quality
assurance, user acceptance, error reduction, cost
estimation, to customer satisfaction.

ML methods can be used to establish value-
based trace dependencies among different arti-
facts. Methods such as instance-based learning
(case-based reasoning), inductive logic program-
ming, rule-based learning would lend themselves
to the task.

value-based Quality management

ML methods can be used to generate predictive
models for identifying high risk or fault prone
components as an integral part of the quality
management. Because of the need to align desired
quality properties with SVPs, value considerations
should be, directly or indirectly, involved in
defining or contributing to those quality proper-
ties. SVPs should also help prioritize the desired
quality factors.

ML methods that are appropriate for the task
include: decision trees, genetic programming,
neural networks, case-based reasoning, inductive
logic programming, and concept learning.

conclusIon

VBSE offers a new software development para-
digm that recognizes the importance of business
and customer value considerations. It tackles the
decision making process in software development
and maintenance from a value-based perspective.
In this paper, we discuss the issue of ML appli-
cations to VBSE. Because ML applications to
software engineering thus far have been largely
confined to the value-neutral setting, we reviewed
the landscape in the field and took a closer look
at the emerging agenda for VBSE to find out
how ML can be positioned to play a larger role
in VBSE. We propose some guideline on how to
calibrate ML methods to accommodate the value
considerations that are so critical in accomplish-
ing VBSE agenda items. Using Boehm’ VBSE
roadmap as a guide, we describe some preliminary
agenda items on how ML can help with the goals,
objectives and tasks in VBSE.

The take-home message of this work is two-
fold: VBSE offers a ROI-conscious approach to
software development and maintenance, and ML
has an active and important role to play in various
agenda items in VBSE.

 3337

Machine Learning and Value-Based Software Engineering

The viability of ML applications in VBSE
hinges on the outcomes of empirical studies,
which will be pursued as our future work. How
to solidify SVPs into various ML methods is an
open issue worth studying.

reFerences

Biffl, S., et al. (2006). Value-Based Software
Engineering. Berlin: Springer.

Boehm, B., et al. (2000). Software Cost Estimation
with COCOMO II. New Jersey: Prentice Hall.

Boehm, B., & Basili, V. R. (2001). Software
Defect Reduction Top 10 List. IEEE Computer,
34(1), 135-137.

Boehm, B., et al. (2004). The ROI of Software
Dependability: the iDAVE Model. IEEE Software,
21(3), 54-61.

Boehm, B. (2006a). Value-Based Software En-
gineering: Overview and Agenda. In S. Biffl et
al (Ed.), Value-Based Software Engineering (pp.
3-14). Berlin: Springer.

Boehm, B. (2006b). Value-Based Software
Engineering: Seven Key Elements and Ethical
Considerations. In S. Biffl et al (Ed.), Value-Based
Software Engineering (pp. 109-132). Berlin:
Springer.

Brown, A., Iyengar, S., & Johnston, S. (2006). A
Rational Approach to Model-Based Development.
IBM Systems Journal, 45(3), 463-480.

Bullock, J. (2000). Calculating the Value of Test-
ing. Software Testing and Quality Engineering,
May/June issue, 56-62.

Clark, J. et al. (2003). Reformulating Software
Engineering as A Search Problem. IEE Proceed-
ings – Software, 150(3), 161-175.

Dyba, T., Kitchenham, B. A., & Jorgensen, M.
(2005). Evidence-Based Software Engineering for
Practitioners. IEEE Software, 22(1), 58-65.

Feather, M., et al. (2008). A Broad, Quantitative
Model for Making Early Requirements Decisions.
IEEE Software, 25(2), 49-56.

Fenton, N. E., & Pfleeger, S. L. (1997). Software
Metrics. Boston: PWS Publishing Company.

Greenfield J., & Short, K. (2004). Software Fac-
tories: Assembling Applications with Patterns,
Models, Frameworks, and Tools. Indianapolis,
IN: Wiley Publishing.

Grunbacher, P., Koszegi, S. & Biffl, S. (2006).
Stakeholder Value Proposition Elicitation and
Reconciliation. In S. Biffl et al (Ed.), Value-Based
Software Engineering (pp. 133-154). Berlin:
Springer.

Harman, M. & Jones, B. (2001). Search-Based
Software Engineering. Information and Software
Technology, 43(14), 833-839.

Huang, L., & Boehm, B. How Much Software
Investment is Enough: A Value-Based Approach.
IEEE Software, 23(5), 88-95.

Khoshgoftaar, T. (2003a). Software Engineer-
ing with Computational Intelligence, Berlin:
Kluwer.

Khoshgoftaar, T. (2003b), Special Issue on Qual-
ity Engineering with Computational Intelligence.
Software Quality Journal, 11(2).

Kitchenham, B. A., Dyba, T., & Jorgensen, M.
(2004). Evidence-Based Software Engineering.
In Proceedings of International Conference on
Software Engineering, Edinburgh, pp.273-281.

Lee, J. (2003a). Software Engineering with Com-
putational Intelligence, Berlin: Springer-Verlag.

3338

Machine Learning and Value-Based Software Engineering

Lee, J. (2003b). Special Issue on Software Eng
with Computational Intelligence. Information
and Software Technology, 45(7).

McMinn, P. (2004). Search-based Software Test
Data Generation: A Survey. Software: Testing,
Verification and Reliability, 14(2), 105-156.

Mendonca, M. & Sunderhaft, N. L. (1999). Min-
ing Software Engineering Data: A Survey. DACS
State-of-the-Art Report, http://www.dacs.dtic.
mil/techs/datamining/.

Mostow, J. (1985). Special issue on artificial intel-
ligence and software engineering. IEEE Trans.
SE, 11(11), 1253-1408.

MBSE (accessed 2008). http://www.sei.cmu.
edu/mbse/index.html.

Partridge, D. (1998). Artificial Intelligence and
Software Engineering, Boston: AMACOM.

Pedrycz, W., & Peters, J. F. (1998). Computational
Intelligence in Software Engineering. Singapore:
World Scientific Publisher.

Ramler, R., Biffl, S., & Grunbacher, P. (2006).
Value-Based Management of Software Testing.
In S. Biffl et al (Ed.), Value-Based Software En-
gineering (pp. 225-244). Berlin: Springer.

Rich, C. & Waters, R. (1986). Readings in Artifi-
cial Intelligence and Software Engineering, San
Francisco: Morgan Kaufmann.

Sendall, S. & Kozacaynski, W. (2003). Model
Transformation: the Heart and Soul of Model-
Driven Software Development. IEEE Software,
20(5), 42-45.

Steece, B. Chulani, S., & Boehm, B. (2002). De-
termining Software Quality Using COQUALMO.
In Case Studies in Reliability and Maintenance,
W. Blischke and D. Murphy (Ed.), Hoboken, NJ:
John Wiley & Sons.

Tsai, J. J. P. & Weigert, T. (1993). Knowledge-Based
Software Development for Real-Time Distributed
Systems, Singapore: World Scientific Pub.

Waddinggton, D. & Lardieri, P. (2006). Model-
Centric Software Development. IEEE Computer,
39(2), 28-29.

Wang, Y. (2007). Software Engineering Foun-
dations: A Software Science Perspective. CRC
Book Series in Software Engineering, Vol.2. NY:
Auerbach Publications.

Wang, Y. (2008). The Theoretical Framework
and Cognitive Process of Learning, ACM Trans-
actions on Autonomous and Adaptive Systems,
2(4), Dec.

Zhang, D. (2000). Applying Machine Learning
Algorithms in Software Development. Proceed-
ings of Monterey Workshop on Modeling Software
System Structures, Santa Margherita Ligure, Italy,
pp.275-285.

Zhang, D. & Tsai, J. J. P. (2003). Machine Learn-
ing and Software Engineering. Software Quality
Journal, 11(2), 87-119.

Zhang, D. & Tsai, J. J. P. (2005). Machine Learning
Applications in Software Engineering, Singapore:
World Scientific Publishing Co.

Zhang, D. (2006). Machine Learning in Value-
Based Software Test Data Generation. Pro-
ceedings of the Eighteenth IEEE International
Conference on Tools with AI, Washington DC,
pp.732-736.

Zhang, D. (2008). A Value-Based Framework
for Software Evolutionary Testing. Submitted
for publication.

Zhang, D. & Tsai, J. J. P. (2007). Advances in
Machine Learning Applications in Software En-
gineering, Hershey, PA: Idea Group Publishing.

 3339

Machine Learning and Value-Based Software Engineering

endnotes

1 If there are several principal elements in V,
we can use other criteria to designate one
for the discussion.

2 Even though a better estimate calls for
adjusting the total defect number in each
category with a different calibration constant
and a different quality adjustment factor (an
aggregate of 22 defect introduction driv-

ers about the characteristics of platform,
product, personnel and project) (Boehm,
et al. 2000), for our purpose in identifying
modules with different defect density, we
simply use nominal defect introduction
estimate as the measure.

3 The reason to include defect-free modules
(Pareto or non-Pareto) is because of the
need to test for other performance related
criteria.

This work was previously published in the International Journal of Software Science and Computational Intelligence, edited
by Y. Wang, Volume 1, Issue 1, pp. 112-125, copyright 2009 by IGI Publishing (an imprint of IGI Global).

3340

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8.10
An Operational Semantics of

Real-Time Process
Algebra (RTPA)

Yingxu Wang
University of Calgary, Canada

Cyprian F. Ngolah
University of Calgary, Canada, & University of Buea, Republic of Cameroon

AbstrAct

The need for new forms of mathematics to ex-
press software engineering concepts and entities
has been widely recognized. Real-time process
algebra (RTPA) is a denotational mathematical
structure and a system modeling methodology
for describing the architectures and behaviors
of real-time and nonreal-time software systems.
This article presents an operational semantics of
RTPA, which explains how syntactic constructs
in RTPA can be reduced to values on an abstract
reduction machine. The operational semantics
of RTPA provides a comprehensive paradigm of
formal semantics that establishes an entire set
of operational semantic rules of software. RTPA
has been successfully applied in real-world sys-
tem modeling and code generation for software

systems, human cognitive processes, and intel-
ligent systems.

IntroductIon

Real-time process algebra (RTPA) is a denotation-
al mathematical structure and a system modeling
methodology for describing the architectures and
behaviors of real-time and nonreal-time software
systems (Wang, 2002, 2003, 2006a, 2006b, 2007a,
2008a-c). RTPA provides a coherent notation
system and a rigorous mathematical structure
for modeling software and intelligent systems.
RTPA can be used to describe both logical and
physical models of systems, where logic views
of the architecture of a software system and its
operational platform can be described using the

 3341

An Operational Semantics of Real-Time Process Algebra (RTPA)

same set of notations. When the system architec-
ture is formally modelled, the static and dynamic
behaviors that perform on the system architectural
model, can be specified by a three-level refinement
scheme at the system, class, and object levels in a
top-down approach. Although CSP (Hoare, 1978,
1985), the timed CSP (Boucher & Gerth, 1987;
Fecher, 2001; Nicollin & Sifakis, 1991), and other
process algebra (Baeten & Bergstra, 1991; Milner,
1980, 1989) treated a computational operation as a
process, RTPA distinguishes the concepts of meta
processes from complex and derived processes
by algebraic process operations.

Definition 1: Operational semantics of a program-
ming language or a formal notation system is the
semantics perceived on a given virtual machine,
known as the abstract reduction machine, that de-
notes the semantics of programs or formal system
models by its equivalent behaviors implemented
on the reduction machine.

One way to define an operational semantics

for a language or formal notation system is to
provide a state transition system for the language,
which allows a formal analysis of the language and
permits the study of relations between programs
(Jones, 2003; Plotkin, 1981; Schneider, 1995). An
alternative way is to describe the operations of
the language on an abstract deductive machine
whose operations are precisely defined (Sloneger
& Barry, 1995; Winskel, 1993). In operational
semantics, the reduction machine is a virtual
machine that is adopted for reducing a given
program to values of identifiers modeled in the
machine by a finite set of permissible operations
(Louden, 1993; McDermid, 1995).

This article presents a comprehensive op-
erational semantics for RTPA on the basis of
an abstract reduction machine, which defines
inference rules for repetitively reducing a system
model in RTPA into the computational values of
identifiers and data objects. The abstract syntaxes

of RTPA are introduced, and the reduction ma-
chine of RTPA is elaborated. Based on these, the
operational semantics of 17 RTPA meta processes
and 17 RTPA process relations are systematically
developed. A comparative analysis of a set of
comprehensive formal semantics for RTPA may
be referred to (Wang, 2007a). The deductive se-
mantics of RTPA is presented in Wang (2006a,
2008b). The denotational semantics of RTPA is
reported in Tan and Wang (2008).

the AbstrAct sYntAX oF rtPA

On the basis of the process metaphor of software
systems, abstract processes can be rigorously
treated as a mathematical entity beyond sets, rela-
tions, functions, and abstract concepts. RTPA is a
denotational mathematical structure for denoting
and manipulating system behavioral processes
(Wang, 2002, 2003, 2006a, 2006b, 2008a-c).
RTPA is designed as a coherent algebraic system
for software and intelligent system modeling,
specification, refinement, and implementation.
RTPA encompasses 17 meta processes and 17
relational process operations.

Definition 2: RTPA is a denotational mathematical
structure for algebraically denoting and manipu-
lating system behavioural processes and their
attributes by a triple, that is:

(, ,)RTPA T P N (1)

where

• T is a set of 17 primitive types for modeling
system architectures and data objects;

• P a set of 17 meta processes for modeling
fundamental system behaviors;

• R a set of 17 relational process operations for
constructing complex system behaviors.

3342

An Operational Semantics of Real-Time Process Algebra (RTPA)

Detailed descriptions of T, P, and R in RTPA
will be extended in the following subsections
(Wang, 2007a).

the meta Processes of software
behaviors in rtPA

RTPA adopts the foundationalism in order to
elicit the most primitive computational processes
known as the meta processes. In this approach,
complex processes are treated as derived pro-
cesses from these meta processes based on a set
of algebraic process composition rules known as
the process relations.

Definition 3: A meta process in RTPA is a primitive
computational operation that cannot be broken
down to further individual actions or behaviors.

A meta process is an elementary process that
serves as a basic building block for modeling
software behaviors. Complex processes can be
composed from meta processes using process
relations. In RTPA, a set of 17 meta processes
has been elicited from essential and primary
computational operations commonly identified in
existing formal methods and modern program-
ming languages (Aho, Sethi, & Ullman, 1985;
Higman, 1977; Hoare et al., 1986; Louden, 1993;

No. Meta Process Nota-
tion Syntax

1 Assignment := y := exp
2 Evaluation

exp →
3 Addressing ⇒ id ⇒ MEM[ptrP]
4 Memory allocation ⇐ id ⇐ MEM[ptrP]
5 Memory release id MEM[⊥]
6 Read MEM[ptrP] x

7 Write
 x MEM[ptrP]

8 Input | PORT[ptrP] | x
9 Output | x | PORT[ptrP]

10 Timing @

@tTM @§tTM
TM = yy:MM:dd	 		
 | hh:mm:ss:ms
 | yy:MM:dd:hh:mm:ss:ms

11 Duration
 @tnTM §tnTM + ∆nTM

12 Increase ↑ ↑(n)
13 Decrease ↓ ↓(n)
14 Exception detection ! ! (@eS)
15 Skip ⊗ ⊗
16 Stop
17 System § §(SysIDST)

Table 1. The meta processes of RTPA

 3343

An Operational Semantics of Real-Time Process Algebra (RTPA)

Wilson & Clark, 1988; Woodcock & Davies, 1996).
Mathematical notations and syntaxes of the meta
processes are formally described in Table 1.

Lemma 1: The essential computing behaviours
state that the RTPA meta process system P encom-
passes 17 fundamental computational operations
elicited from the most basic computing, that is:

P = {:=, , ⇒, ⇐, , , , |, |, @, , ↑, ↓, !, Ä, , §}
P = {:=, , ⇒, ⇐, , , , |, |, @, , ↑, ↓, !, Ä, , §} (2)

As shown in Lemma 1 and Table 1, each meta
process is a basic operation on one or more oper-
ands such as variables, memory elements, or I/O
ports. Structures of the operands and their allow-
able operations are constrained by their types as
described in previous sections. It is noteworthy
that not all generally important and fundamental
computational operations, as shown in Table 1, had
been explicitly identified in conventional formal
methods. For instances, the evaluation, address-
ing, memory allocation/release, timing/duration,
and the system processes. However, all these are
found necessary and essential in modeling system
architectures and behaviors.

Process operations of rtPA

Definition 4: A process relation in RTPA is an
algebraic operation and a compositional rule
between two or more meta processes in order to
construct a complex process.

A set of 17 fundamental process relations
has been elicited from fundamental algebraic
and relational operations in computing in order
to build and compose complex processes in the
context of real-time software systems. Syntaxes
and usages of the 17 RTPA process relations are
formally described in Table 2. Deductive seman-
tics of these process relations may be referred to
(Wang, 2006a, 2007a, 2008a).

Lemma 2: The software composing rules state
that the RTPA process relation system R encom-
passes 17 fundamental algebraic and relational
operations elicited from basic computing needs,
that is:

R = {→, , |, |…|…,
*R , R+

,
iR , , , ||, ∯,

|||, », , t, e, i} (3)

the type system of rtPA

A type is a set in which all member data objects
share a common logical property or attribute. The
maximum range of values that a variable can as-
sume is a type, which is associated with a set of
predefined or allowable operations. A type can
be classified as primitive and derived (complex)
types. The former is the most elemental types that
cannot further divided into simpler ones; the latter
is a compound form of multiple primitive types
based on given type rules. Most primitive types
are provided by programming languages; while
most user defined types are derived ones.

Definition 5: A type system specifies data object
modeling and manipulation rules in computing.

The 17 RTPA primitive types in computing
and human cognitive process modeling have
been elicited from works in (Cardelli & Wegner,
1985; Martin-Lof, 1975; Mitchell, 1990; Stubbs &
Webre, 1985; Wang, 2002, 2003, 2007a), which is
summarized in the following lemma.

Lemma 3: The primary types of computational
objects state that the RTPA type system T encom-
passes 17 primitive types elicited from fundamental
computing needs, that is:

T {N, Z, R, S, BL, B, H, P, TI, D,DT, RT, ST, @eS, @tTM,
@int, sBL} (4)

where the primitive types stand for natural number,
integer, real, string, Boolean, byte, hexadecimal,

3344

An Operational Semantics of Real-Time Process Algebra (RTPA)

pointer, time, date, date/Time, run-time determin-
able type, system architectural type, random event,
time event, interrupt event, and status.

In Lemma 3, the first 11 primitive types are

for mathematical and logical manipulation of data
objects in computing, and the remaining six are
for system architectural modeling. More rigorous
description of RTPA type rules may be referred
to (Wang, 2007a).

the reductIon mAchIne oF
rtPA

A reduction machine is an abstract machine that
defines inference rules for repetitively reducing
language constructs until a solid value or behavior
is obtained. Reduction machines model the op-
erational semantics of a given language or formal
notation system in three components: specification,
control, and store. In other words, an operational

Table 2. The process relations and algebraic operations of RTPA

Process Relation Notation Syntax
1 Sequence → P → Q

2 Jump
 P Q

3 Branch | expBL = T → P
| ~ → Q

4 Switch
|
…
|

 exp =
 i → Pi
| ~ →
 where ∈ {N, Z, B, S}

5 While-loop *R exp =
R

F

BL T
P

6 Repeat-loop R+ P →
exp =
R

F

BL T
P

7 For-loop iR
1

n

i
R

N

N

P(iM)

8 Recursion
0

i n
R
N N

PiM PiM-1

9 Function call P F
10 Parallel || P | | Q
11 Concurrence ⊙ P ⊙Q
12 Interleave ||| P ||| Q
13 Pipeline » P » Q
14 Interrupt P Q
15 Time-driven dispatch t @tiTM t Pi

16 Event-driven dispatch e @eiS e Pi

17 Interrupt-driven dispatch i @intj i Pj

 3345

An Operational Semantics of Real-Time Process Algebra (RTPA)

semantics describes how the control of the machine
reduces a given specification to values of variables
and how the memory (store) is changed during the
execution of the specification.

In the operational semantics approach, the
underlying target machine that operates and
implements the semantic rules is modeled by an
abstract reduction machine. A program and its
behavior space or the semantic environment are
realized by the target computer. An abstract model
of a generic reduction machine as the system
platform for embodying software semantics can
be modeled below.

Definition 6: The reduction machine, §, is an
abstract logical model of the executing platform
of a target machine denoted by a set of parallel
or concurrent computing resources as shown in
Figure 1.

As shown in Figure 1, the reduction machine §
for operational semantics is the executing platform

that controls all the computing resources of an
abstract target machine. The system is logically
abstracted as a set of processes and underlying
resources, such as the memory, ports, variables,
statuses, and the system clock. A process is dis-
patched and controlled by the system §, which
is triggered by various external, system timing,
or interrupt events. The reduction machine of
RTPA is not only the platform of the computing
resources such as processes, memory, ports, and
system clocks, but also the implementation of
the computing mechanisms such as system dis-
patches, timing, interrupt handling, and system
event captures.

Definition 7. The semantic environment of the de-
duction machine, Θ, is the entire set of identifiers
and their combinations declared and constrained
in the abstract reduction machine, that is:

Θ (I, T, V, A)
 = I × T × V × A (5)

Figure 1. The abstract model of the RTPA deduction machine

 § = SysIDS ::

 { <
-1

0

procn

i
R

=

N

N
 PiST> // Processes

 || <
-1

0

Memn

addr
R

=

H

P
MEM[ptrP]RT> // Memory

 || <
-1

0

Portn

ptr
R

=

H

P
PORT[ptrP]RT> // Ports

 || <§tTM> // The system clock

 || <
-1

0

en

k
R

=

N

N
@eiS Pk> // Event-driven dispatch

 || <
-1

0

tn

k
R

=

N

N
@tkTM Pk> // Time-driven dispatch

 || <
int -1

0

n

k
R

=

N

N
§intk Pk > // Interrupt-driven dispatch

 || <
-1

0

Vn

i
R

=

N

N
ViBL> // System variables

 || <
-1

0

Sn

i
R

=

N

N
SiBL> // System states

 }

3346

An Operational Semantics of Real-Time Process Algebra (RTPA)

where I is a nonempty set of identifies, T is a set
of types corresponding to each identifier in I, V
is a set of values corresponding to each identifier
in I, and A is a set of addresses corresponding to
each identifier in I.

The semantic environment Θ can be divided
into three subcategories known as the operational
environment Θop, system environment Θsys, and
interrupt environment Θint, that is:

Θ Θop ∪ Θsys ∪ Θint (6)

where only the operational environment Θop is
controllable by users and applications.

Definition 8. An inference rule in operational
semantics, Ros, is a formal structure in which a
propositional conclusion C is derived based on
a set of given true premises P, that is:

Premise(s)
ConclusionOSR P C= (7)

where P and C are usually Boolean propositions.
However, C can be a sequence of behavioral
processes.

The semantic environment Θ forms the con-
text of inference rules in operational semantics.
Therefore, the following convention is adopted
in all notations of inference rules:

< P || Θ > ⇒ < ∅ || Θ′> (8)

where || denotes a parallel relationship between
a process or an expression P and its underlying
semantic environment Θ, ⇒ denotes a transition
between a pair of semantic items, ∅ denotes
an empty operation and/or the completion of a
preceding process, and Θ’ denotes an updated
semantic environment as a result of the operation
or effect of a process.

Definition 9. The evaluations of an identifier id
on its type t, value v, and address addr in Θ can
be denoted as follows:

(||)
(||)

(||)

id

id

id

t T id
v V id

addr A id

Θ

Θ

Θ (9.a-c)

where id ∈ I Θ, or simply denoted id ∈ Θ when
there is no confusion.

oPerAtIonAl semAntIcs oF
rtPA metA-Processes

Using the reduction machine as defined in pre-
ceding section, the operational semantics for the
17 meta processes of RTPA can be described as
follows.

Definition 10. The reduction rule for the assign-
ment process of RTPA, yRT := expRT, in operational
semantics is shown in Box 1. The assignment rule
indicates that an assignment transfers the value

< Θ
, ,T(||) = T(||)

<(:=) || > (V() = V()) || '
exp y exp y

y exp y exp
∈Θ Θ Θ
Θ ⇒ >

RT RT RT RT
RT RT RT RT

 (Rule 1)

Box 1.

 3347

An Operational Semantics of Real-Time Process Algebra (RTPA)

of expRT into yRT whenever both variables’ types
are identical or equivalent.

Definition 11. The reduction rule for the Boolean
evaluation process of RTPA, expBL → BL , in

operational semantics is shown in Box 2, where
| denotes a pair of alternative rules.

The above rule for Boolean evaluation can be
extended to more general cases where numeri-

Box 2.

Box 3.

Box 4.

Box 5.

= Θ

= Θ

→ Θ

→ Θ

, , , || V() || '

<() || > | | '
, , , || V() || '

|
<() || > | | '

sys

sys

exp exp exp
exp exp

exp exp exp
exp exp

∈ Θ < Θ > ⇒ >

⇒ < = Θ >
∈ Θ < Θ > ⇒ >

⇒ < = Θ >

BL T F BL BL T

BL BL BL T
BL T F BL BL F

BL BL BL F

 (Rule 2.a)

Θ >

= Θ→ Θ

, , ={ , , , } , () ||
V() || '

<() || ' > || '
sys

exp n exp
exp n

exp exp n

∈Θ ⊂ Θ < → Θ > ⇒
< =

⇒ < >

N Z R B

 (Rule 2.b)

= Θr i⇒ Θ

, , () || || '
<() || > A () || '

id ptr id ptr
id pt d ptr

∅∈Θ < ⇒ Θ > ⇒ < Θ >
⇒ < >

S P S P
S P S P

 (Rule 3)

,

,]

, , MEM[]
 || '

 <(MEM[]) || >
A() [size()-1 || '

id ptr n id ptr

id ptr
id ptr ptr

∅

+

∈ Θ < ⇐ > ⇒
< Θ >

⇐ Θ ⇒
< = Θ >

S P

S P P

N S P RT

S P RT
RT

 (Rule 4)

3348

An Operational Semantics of Real-Time Process Algebra (RTPA)

cal evaluations are needed. The reduction rule
for the numerical evaluation process, exp
→ , in operational semantics is shown in Box
3,where is a numerical type, i.e., = {N, Z, R,
B} ⊂ T Θ.

It is noteworthy that, although the evaluation
process does not affect Θop, but it changes Θsys.

Definition 12. The reduction rule for the address-
ing process of RTPA, idS ⇒ ptrP, in operational
semantics is shown in Box 4.

Definition 13. The reduction rule for the memory
allocations process of RTPA, idS ⇐ MEM[ptrP]RT,
in operational semantics is shown in Box 5, where

size(RT) is the length of a certain type of variable,
RT, in bytes, which is implementation specific.

Definition 14. The reduction rule for the memory
release process of RTPA, idS MEM[⊥]RT, in
operational semantics is shown in Box 6, where ⊥
denotes an empty or unassigned value.

Definition 15. The reduction rule for the read pro-
cess of RTPA, MEM[ptrP]RT xRT, in operational
semantics isshown in Box 7.

Definition 16. The reduction rule for the write pro-
cess of RTPA, MEM[ptrP]RT xRT, in operational
semantics is shown in Box 8.

Box 6.

free ,

]

, , MEM[]
 || '

<(MEM[]) || > { MEM MEM[A()
A() size()-1 || ' (A() || '' }

id ptr id

id id
id id

∅

+

∈ Θ < > ⇒
< Θ >
Θ ⇒ < ∪

Θ > → < = Θ >

S P

S

S S

S RT

S RT
RT

 (Rule 5)

Box 7.

= Θ
∅ Θ, , MEM ,<(MEM[]) || > < || ' >

<(MEM[]) || > {<(MEM[]) || '
x ptr ptr x

ptr x x ptr
∈ Θ Θ ⇒

Θ ⇒ >
RT P RT P RT RT

P RT RT RT P RT

 (Rule 6)

Box 8.

, , MEM ,<(MEM[ptr] x) || > < || ' >
<(MEM[ptr] x) || > {<(MEM[] || '
x ptr

ptr x
∈ Θ Θ ⇒ ∅ Θ

Θ ⇒ = > Θ >
RT P RT P RT RT

P RT RT P RT RT

 (Rule 7)

 3349

An Operational Semantics of Real-Time Process Algebra (RTPA)

Definition 17. The reduction rule for the input pro-
cess of RTPA, PORT[ptrP]RT| xRT, in operational
semantics is shown in Box 9.

Definition 18. The reduction rule for the output
process of RTPA, xRT | PORT[ptrP]RT, in opera-
tional semantics is shown in Box 10.

Definition 19. The reduction rule for the timing
process of RTPA, @tTM @§tTM, in operational
semantics is shown in Box 11.

Definition 20. The reduction rule for the duration
process of RTPA,@tTM∆ §tTM +∆dZ, in operational
semantics is shown in Box 12.

Box 9.

, , PORT ,<(PORT[]) || > < || '>
<(PORT[]) || > {<(PORT[]) || '

x ptr ptr x
ptr x x ptr

∈ Θ Θ ⇒ ∅ Θ
Θ ⇒ = Θ >

RT P RT P RT | RT
P RT | RT RT P RT

 (Rule 8)

Box 10.

, , PORT ,<(PORT[ptr] x) || > < || '>
<(PORT[ptr] x) || > {<(PORT[] || '
x ptr

ptr x
∈ Θ Θ ⇒ ∅ Θ

Θ ⇒ = > Θ >
RT P RT P RT | RT

P RT | RT P RT RT

 (Rule 9)

Box 11.

Θ Θ

 =

,§ , ,<(@ = §) || ' ,
<(@ @ §) || > < || '>, < || > < || '>

<(@ @ §) || > {<(@ §) || '>

t t d t t
t t P

t t t t

∆ ∈ >
Θ ⇒ ∅ Θ Θ ⇒ ∅ Θ

Θ ⇒ Θ →

TM TM Z TM TM

TM TM

TM TM TM TM

 @ || '' }t P< Θ >TM

 (Rule 10)

Box 12.

∆ Θ T

∅ Θ

=

,§ , , <(§ +) || ' ,
<(@ t §t + d) || > < || ' >, < || > < || '>
<(@ § +) || > {<(@ § +) || ' >

t t d t t d
P

t t d t t d

∆ ∈ Θ = ∆ Θ >
∆ ∆ Θ ⇒ Θ ⇒ ∅ Θ

∆ ∆ Θ ⇒ →

TM TM Z TM TM Z

TM TM Z

TM TM Z TM M Z

 @ || '' }t P< Θ >TM

 (Rule 11)

3350

An Operational Semantics of Real-Time Process Algebra (RTPA)

Definition 21. The reduction rule for the increase
process of RTPA, ↑(xRT), in operational semantics
is shown in Box 13.

Definition 22. The reduction rule for the decrease
process of RTPA, ↓(xRT), in operational semantics
is shown in Box 14.

Definition 23. The reduction rule for the ex-
ceptional detection process of RTPA, !(@eS), in
operational semantics is shown in Box 15, where
CRTST is the standard output device of the reduc-
tion machine for displaying system information
in the type of strings.

Definition 24. The reduction rule for the skip
process of RTPA, ⊗, in operational semantics is
shown is:

Θ ⇒ sys < || > < || ' ∅ Θ > (Rule 15)

As defined above, the rule for the skip process
of RTPA is an axiom, which does nothing function-
ally from users’ point of view, but jumps to a new
point of process by changing the control variables
of program execution sequence in Θ'sys.

Definition 25. The reduction rule for the stop
process of RTPA, ⊙, in operational semantics is
as follows:

∅ Θ < || > < || ' Θ ⇒ = ∅ > (Rule 16)

The rule for the stop process in RTPA is an
axiom, which terminates the current system and

Box 13.

↑ Θ
, { , , , , , } ,<((x)) || > < || '>

<(()) || > {<(1) || '
x

x x x
∈ Θ ∈ ⊂ Θ ↑ Θ ⇒ ∅ Θ

⇒ = + Θ >
RT RT N B H Z P TM RT

RT RT RT

 (Rule 12)

Box 14.

↓ Θ
∅ Θ

-

, { , , , , , } ,<(()) || > < || ' >
<(()) || > {<(1) || '

x x
x x x

∈ Θ ∈ ⊂ Θ ↓ Θ ⇒
⇒ = Θ >

RT RT N B H Z P TM RT
RT RT RT

 (Rule 13)

Box 15.

Θ ⇒S P

, ,CRT , A(CRT) || ' ,
 <(!(@e)) || > < || '>

<(!(@)) || > {<(PORT[] @) || '

e ptr ptr

e ptr e

∈ Θ < = Θ >
Θ ⇒ ∅ Θ

= Θ >

S P P P ST

S
S S

 (Rule 14)

 3351

An Operational Semantics of Real-Time Process Algebra (RTPA)

releases all existing identifiers and their values in
the environment.

Definition 26. The reduction rule for the system
process of RTPA, §(SysIDS), in operational semantics
is shown in Box 16.

The rule for the system process in RTPA is an
axiom, which does nothing functionally from users’
point of view, but it creates the system identifier and
allocates necessary resources to the newly created
system.

oPerAtIonAl semAntIcs oF
Process relAtIons

RTPA process relations are rules of algebraic
operations of processes, which describe how
the meta processes can be combined to form
complex processes. The operational semantics
of the 17 process relations of RTPA is elaborated
in this section on the platform of the reduction
machine.

Definition 27. The reduction rule for the sequential
process of RTPA, P → Q, in operational semantics
is shown in Box 17.

Definition 28. The reduction rule for the jump
process of RTPA, P Q, in operational semantics
is shown in Box 18.

Definition 29. The reduction rule for the branch
process of RTPA, expRT → P| ~→ Q, in opera-
tional semantics is shown in Box 19, where | denotes
a pair of alternative sub-rules dependent on given
conditions.

Definition 30. The reduction rule for the switch pro-
cess of RTPA, expiRT → Pi| ~→⊗, in operational
semantics is shown in Box 20, where
n

i =1
R

N

N

denotes a set of recurrent structures.

The operational semantics of iterations are
presented in the following definitions. It is note-
worthy that iterations were diversely interpreted
in literature (Louden, 1993; McDermid, 1991).
Although the decision point may be denoted by
branch constructs, most existing operational se-
mantic rules failed to express the key semantics
of “while” and the rewinding action of loops.
Further, the semantics for more complicated types
of iterations, such as the repeat-loop and for-loop,
are rarely found in the literature.

Box 16.

∅ ΘD I<
§

>

§() || > < || ' ({ }),
 () , () (, , ,),
 () ()

SysI SysID
t SysID = v SysID

a SysID A SysID

Θ ⇒ = ∪
= = ⊥ ⊥ ⊥ ⊥

=

S
S

 (Rule 17)

3352

An Operational Semantics of Real-Time Process Algebra (RTPA)

Box 17.

<P || > < || '>, <Q || > < || '>
<() || > {<P || '> <Q || ''>}P Q

Θ ⇒ ∅ Θ Θ ⇒ ∅ Θ
→ Θ ⇒ Θ → Θ

 (Rule 18)

Box 18.

∅ Θ
> Θ

<P || > < || ' , <Q || > < || ' >

<() || > {<P || '> < || ' ' >

 <Q || '' ' >}
sys

sys

P Q
Θ ⇒ ∅ Θ ⇒ ∅ Θ

Θ ⇒ Θ → ∪ Θ →

Θ ∪ Θ

 (Rule 19)

Box 19.

Q Q

Q P

, < || > < || > < || '>
< | ~ > < || '>
,< || > < || > < || '>|

< | ~ > < || '>

exp exp exp P
exp P

exp exp exp Q
exp P

∈Θ Θ ⇒ Θ ⇒ ∅ Θ
→ → ⇒ Θ

∈Θ Θ ⇒ Θ ⇒ ∅ Θ
→ → ⇒ Θ

BL BL BL
RT

BL BL BL
RT

T

F

 = ,

 = ,

 (Rule 20)

Box 20.

→ →

p P→ →

P P

⇒ Θ

n

i =1

i i

n

i =1

i i

[1,

, , < || > 1 ,

< || > < || '

< P | ~ > < || '
, , < || >],

< || > < || >
|

< P | ~ > < ||

R

R

i

i

i n exp exp i i n

ex
i n exp exp i i n

P

exp

∉

∈ Θ Θ ⇒ ≤ ≤

Θ ⇒ Θ >

>
∈ Θ Θ ⇒

Θ ⇒ Θ

⇒

N

N

N

N

RT RT N

RT

RT RT N

RT

N N N N

N N N N

 = ,

 = ,

 ' sysΘ >

 (Rule 21)

 3353

An Operational Semantics of Real-Time Process Algebra (RTPA)

Definition 31. The reduction rule for the while-loop
process of RTPA,

exp =
R P

F

BL T
,

in operational semantics is shown in Box 21, where
the while-loop is defined recursively on Θ.

The above rule indicates that, when a Boolean
expression expBL in the environment Θ is true, the
execution of the loop body P as a process for an
iteration under Θ can be reduced to the same loop
under an updated environment Θ’, which is resulted

by the last execution of P; When expBL = F in Θ,
the loop is reduced to a termination or exit ⊗.

Definition 32. The reduction rule for the repeat-
loop process of RTPA,

exp =
RP P→

F

BL T
,

in operational semantics is shown in Box 22.

The above rule indicates that the semantics of a
repeat-loop process is semantically equivalent to the
sequential composition of P and a while-loop.

Box 21.

Θ ⇒R RP P

Θ ⇒

exp = exp =

exp =

, < || > <P || > < || '>
< || > {<P || '> < || ' >}

, < || > < || ' >
|

< || > < || ' >R
sys

sys

exp exp exp

exp exp exp

P

∈ Θ Θ ⇒ Θ ⇒ ∅ Θ

Θ → Θ

∈ Θ Θ ⇒ Θ

Θ

F F

BL T BL T

F

BL T

BL BL BL T

BL BL BL F

 = ,

 = ,

 (Rule 22)

Box 22.

→ Θ

Θ →R RΘ ⇒P P

⊗ ΘΘ ⇒

exp =

exp = exp =

, <P || > < || ' >
< || > {<P || '>

< || '> <P || ' > < || ''> (
< || ' > {<P || ''> < || ''>}

< || '> <
 |

R
exp

P P

exp exp

exp exp

∈ Θ Θ ⇒ ∅ Θ

⇒ Θ →

Θ ⇒ Θ ⇒ ∅ Θ

Θ

Θ ⇒

F

BL T

F F

BL T BL T

BL

BL BL T

BL BL F

 = ,

 = ,

exp =

 || ' >

< || ' > < || ' >

)
}

R
sys

sysP

⊗ Θ
F

BL T

 (Rule 23)

3354

An Operational Semantics of Real-Time Process Algebra (RTPA)

Definition 33. The reduction rule for the for-loop
process of RTPA,

n

=1
()R

i
P i

N
N ,

in operational semantics is shown in Box 23.

The above rule indicates that the semantics
of a for-loop process is semantically equivalent
to a sequence of n serial processes. The semantic
rule of for-loop processes may also be defined
recursively as that of the while-loop rule as shown
in Box 24.

Box 23.

∅ Θ

N N

= Θ

i

n

=1

'

, 1 , <P || > < || ' >

< () || > {< (1) || '>

 < (2) || ''> ...
 < () || >}

R
i

n

i n i n

P i P i

P i
P i n

∈ Θ ≤ ≤ Θ ⇒

Θ ⇒ = Θ →

= Θ → →
N

N N N N

N

N N

,

 (Rule 24)

Definition 34. The reduction rule for the func-
tion call process of RTPA, P F, in operational
semantics is shown in Box 25.

Definition 35. The reduction rule for the recursion
process of RTPA, P P, in operational semantics
is shown in Box 26.

The semantic rule of recursion processes may
also be defined iteratively as that of the for-loop
rule as shown in Box 27, where the base process
P0 should be able to be reduced to a constant.

Box 24.

∅ Θ

R RP i

Θ ⇒

i
n n

i=1 =1

n

=1

< (1) || > <P || > < || ' >

< || > {<P || '> 1 < || '>}

< (1) || > < || ' >
|

< || > < || ' >R

i i

sys

sysi

i n

i P

i n

P

≤ ≤ Θ ⇒ Θ ⇒

Θ ⇒ Θ → < = + > → Θ

≤ ≤ Θ ⇒ ⊗ Θ

⊗ Θ

N N

N

N BL

N N

N BL

T

F

 ,

 ,

 (Rule 25)

Box 25.

Θ ⇒
Θ Θ

<P || > {<P' || ' > <P'' || ''>}, <F || > < || ' >

< || > {<P' || ' > <F || ''> <P'' || '''>}P F
Θ ⇒ Θ → ⇒ ∅ Θ

Θ → Θ → Θ

 (Rule 26)

 3355

An Operational Semantics of Real-Time Process Algebra (RTPA)

Definition 36. The reduction rule for the parallel
process of RTPA, P || Q, in operational semantics
is shown in Box 28, where S1 and S2 are two ad-
ditional synchronization processes introduced
by the system.

The parallel process rule models the process

relation with the single-clock multi-processor
(SCMP) structure. In other words, it behaves in
a synchronized system or a common environ-
ment.

Definition 37. The reduction rule for the con-
current process of RTPA, P Q∫∫ , in operational

semantics is shown in Box 29, where C1 and C2
are two additional communication processes in-
troduced in two separated system environments
ΘP and ΘQ .

The concurrent processes model the process

relation with the multi-clock multi-processor
(MCMP) structure. In other words, it behaves in
an asynchronized system or a separated environ-
ments linked by the communication means.

Definition 38. The reduction rule for the interleave
process of RTPA, P ||| Q, in operational semantics
is shown in Box 30.

Box 26.

Θ Θ

<P || > {<P' || ' > <P'' || ''>}, <P || > < || ' >
< || > { <P' || ' > < || ''> <P'' || '''>}P P P P

Θ ⇒ Θ → ⇒ ∅ Θ
Θ ⇒ Θ → Θ → Θ

 (Rule 27)

Box 27.

-1 0

1
-1

=

, 1 < || > < || '>,
< || > () || >R

i i

i i i

i n

i n i n P P P const

P P P P

∈ Θ ≤ ≤ Θ ⇒ Θ =

Θ ⇒ < → Θ

N N

N N
N N

N N N N N

, ,

 (Rule 28)

Box 28.

∅ Θ

1

2

1

2

<P || > < || ' >, <Q || > < || ' >, <S || >

 < || >, <S || > < || >

 <(P || Q) || > {<S || >

<S || ' '' ' >}

<P || '>
<Q || ''>

sys

sys

Θ ⇒ ∅ Θ Θ ⇒ ∅ Θ Θ ⇒

Θ ⇒ ∅ Θ

Θ ⇒ Θ

Θ ∪ Θ ∪ Θ

→ Θ →
→ →

→ Θ →

 (Rule 29)

3356

An Operational Semantics of Real-Time Process Algebra (RTPA)

The rule of interleave processes models the
process relation with the single-clock single-
processor (SCSP) structure in a synchronized
environment.

Definition 39. The reduction rule for the pipeline
process of RTPA, P Q, in operational semantics
is shown in Box 31.

The rule of pipeline processes shows that from
the functional point view, a pipeline process rela-

Box 29.

1

2

1

2

<P || > < || ' >, <Q || > < || ' >,

<C || { || }> < || { || }>,

<C || { || }> < || { || }>

 <() || { || }> {<C || { || }>

 < C || { ' ||
<P || ' >
<Q || ' >

P P Q Q

P Q P Q

P Q P Q

P Q P Q

P
P

Q

P Q

Θ ⇒ ∅ Θ Θ ⇒ ∅ Θ

Θ Θ ⇒ ∅ Θ Θ

Θ Θ ⇒ ∅ Θ Θ

Θ Θ ⇒ Θ Θ

Θ Θ
→ Θ →

→ →
→ Θ →

∫∫
' }>}Q

 (Rule 30)

Box 30.

n

i =1

n

i =1
n

i =1

i , n ,1 i n ,<P || > < || >,

<Q || > <Q || >

<(|||) || > (< || > < || ')

R

R

R

i i

i i

i i i i

P

P Q P Q

∈ Θ ≤ ≤ Θ ⇒ Θ

Θ ⇒ Θ

Θ ⇒ Θ → Θ >

N

N
N

N
N

N

N N N N

 (Rule 31)

Box 31.

∅ Θ

n

P Q P Q P P Q Q P Qi =1
O , I , i , n , o = i ,o O , i I , #O = #I ,

<P || > < || '>}, <Q || > < || ' >
< || > {< || '> < || '' }

R

P Q P Q

∈ Θ ∈ ∈

Θ ⇒ ∅ Θ Θ ⇒
Θ ⇒ Θ → Θ >

N

N
N N

 (Rule 32)

 3357

An Operational Semantics of Real-Time Process Algebra (RTPA)

tion is equivalent to a sequential relation as long
as the corresponding outputs OP and inputs IQ are
one-to-one coupled between the two processes.

Definition 40. The reduction rule for the interrupt
process of RTPA, P Q, in operational semantics
is shown in Box 32, where the interrupt semantic
environment Θint is a subset of Θ as defined in
Equation 6.

The rule of interrupt processes shows that the
main environment Θ is protected when an inter-

rupt occurs. However, the interrupt subroutine Q
may affect Θ via global or shared variables and
data structures after its completion.

Definition 41. The reduction rule for the time-
driven process of RTPA, @tkTM Pk, in operational
semantics is shown in Box 33.

The rule of time-driven processes models
a top level system dispatching behavior where
the system transfers control to a process Pk after
capturing a corresponding timing event @tkTM;

Box 32.

P Q

<P || > {<P' || ' > <P'' || ''>},
<Q || > < || ' >

<() || > {<P' || '>
 <Q || ' >
 <P'' || '' ' >}

int int

int

int

Θ ⇒ Θ → Θ
Θ ⊂ Θ ⇒ ∅ Θ

Θ ⇒ Θ →
Θ →
Θ ∪ Θ

 (Rule 33)

Box 33.

t P

Θ Θ

n

k =1

, , ,1 ,

<P || > < || '>,<§ || > <§ || '>

<(@ P) || > {<§ || > < || '> <§ || ''>}

R
k

k

k k k

k n t k n

P

∈ Θ ≤ ≤

Θ ⇒ ⇒ Θ

Θ ⇒ Θ → Θ → Θ

N

N

N N TM N N

TM
 (Rule 34)

Box 34.

Θ Θ

n

k =1

, , ,1 ,

<P || > < || '>,<§ || > <§ || '>

<(@e P) || > {<§ || > < || ' > <§ || ''>}

R
k

k

k k k

k n e k n

P

P

∈ Θ ≤ ≤

Θ ⇒ ⇒ Θ

Θ ⇒ Θ → Θ → Θ

N

N

N N S N N

S
 (Rule 35)

3358

An Operational Semantics of Real-Time Process Algebra (RTPA)

upon its completion, it returns the control of system
resources and the environment to the system.

Definition 42. The reduction rule for the event-
driven process of RTPA, @ekTM Pk, in operational
semantics is shown in Box 34.

The rule of event-driven processes models
the second type of top level system dispatching
behaviors, where the system transfers control
to a process Pk after capturing a corresponding
event @ekS; upon its completion, it returns the
control of system resources and the environment
to the system.

Definition 43. The reduction rule for the inter-
rupt-driven process of RTPA, @intk Pk, in
operational semantics is shown in Box 35.

The rule of interrupt-driven processes models
the third type of top level system dispatching
behaviors, where the system transfers the con-
trol to an interrupt subroutine Pk after capturing
a corresponding interrupt event @intk ; upon
its completion, it returns the control of system
resources and the environment to the system.

conclusIon

The operational semantics of Real-Time Process
Algebra (RTPA) has been developed in this article,
which explains how syntactic constructs in RTPA
can be reduced to values on an abstract reduction
machine. The operational semantics of RTPA has
provided a comprehensive paradigm of formal
semantics, which extends the conventional express
power of operational semantics to an entire set
of semantic rules for complicated RTPA process
structures and their algebraic operations. Espe-
cially, the operational semantics of the parallel,
concurrent, and system dispatches have been
formally and systematically elaborated.

RTPA has been presented as both a denotation-
al mathematical structure and a system modeling
methodology for describing the architectures and
behaviors of real-time and nonreal-time software
systems. The formal semantics of RTPA has helped
to the comprehension and understanding of the
RTPA syntactical and semantic rules as well as its
expressive power in software engineering, cogni-
tive informatics, and computational intelligence.
RTPA has been used not only in software system
specifications, but also in human and intelligent
system modeling.

Box 35.

t P

Θ Θ

n

int intk =1

int int

, , ,1 ,

<P || > < || ' >,<§ || > <§ || '>

<(@ P) || > {<§ || > < || ' > <§ || ' >}

R
k

k

k k k

k n int k n

P

in

∈ Θ ≤ ≤

Θ ⇒ ⇒ Θ

Θ ⇒ Θ → Θ → Θ ∪ Θ

N

N

N N N N

 (Rule 36)

 3359

An Operational Semantics of Real-Time Process Algebra (RTPA)

AcKnowledGment

The authors would like to acknowledge the Natu-
ral Science and Engineering Council of Canada
(NSERC) for its partial support to this work. We
would like to thank the anonymous reviewers for
their valuable comments and suggestions.

reFerences

Aho, A.V., Sethi, R., & Ullman, J.D. (1985).
Compilers: Principles, techniques, and tools. New
York: Addison-Wesley Publication Co.

Baeten, J.C.M. & Bergstra, J.A. (1991). Real time
process algebra. Formal Aspects of Computing,
3, 142-188.

Boucher, A. & Gerth, R. (1987). A timed model
for extended communicating sequential processes.
Proceedings of ICALP’87, Springer LNCS, 267.

Cardelli, L. & Wegner, P. (1985). On understanding
types, data abstraction and polymorphism. ACM
Computing Surveys, 17(4), 471-522.

Fecher, H. (2001). A real-time process algebra
with open intervals and maximal progress. Nordic
Journal of Computing, 8(3), 346-360.

Higman, B. (1977). A comparative study of pro-
gramming languages, 2nd ed. MacDonald.

Hoare, C.A.R. (1978). Communicating sequential
processes. Communications of the ACM, 21(8),
666-677.

Hoare, C.A.R. (1985). Communicating sequential
processes. London: Prentice-Hall International.

Jones, C. B. (2003). Operational semantics: Con-
cepts and their expression. Information Process-
ing Letters, 88(1-2), 27 – 32.

Louden K.C. (1993). Programming languages:
Principles and practice. Boston: PWS-Kent
Publishing Co.

Martin-Lof, P. (1975). An intuitionistic theory
of types: Predicative part. In H. Rose & J. C.
Shepherdson (Eds.), Logic Colloquium 1973,
NorthHolland.

McDermid, J. (Ed.) (1991). Software engineer’s
reference book. Oxford, UK: Butterworth Heine-
mann Ltd.

Milner, R. (1980). A calculus of communicating
systems, LNCS #92. Springer-Verlag.

Milner, R. (1989). Communication and concur-
rency. Englewood Cliffs, NJ: Prentice-Hall

Mitchell, J.C. (1990). Type systems for pro-
gramming languages. In J. van Leeuwen (Ed.),
Handbook of theoretical computer science (pp.
365-458). North Holland.

Nicollin, X. & Sifakis, J. (1991). An overview and
synthesis on timed process algebras. Proceedings
of the 3rd International Computer Aided Verifica-
tion Conference, pp. 376-398.

Plotkin, G. (1981). A structural approach to
operational semantics. Technical Report DAIMI
FN-19, Aarhus University, Denmark.

Schneider, S. (1995). An operational semantics
for timed CSP. Information and Computation,
116(2), 193-213.

Slonneger, K., & Barry, L.K. (1995). Formal syn-
tax and semantics of programming languages: A
laboratory based approach, (Chapter 8), Reading,
MA: Addison-Wesley Publishing Company.

Stubbs, D.F. & Webre, N.W. (1985). Data struc-
tures with abstract data types and Pascal. Mon-
terey, CA: Brooks/Cole Publishing Co.

Tan, X. & Wang, Y. (2008). A denotational se-
mantics of real-time process algebra (RTPA). The
International Journal of Cognitive Informatics
and Natural Intelligence (IJCINI), 2(3).

Tan, X., Wang, Y., & Ngolah, C.F. (2006). Design
and implementation of an automatic RTPA code

3360

An Operational Semantics of Real-Time Process Algebra (RTPA)

generator. Proceedings of the 19th Canadian
Conference on Electrical and Computer Engi-
neering (CCECE’06), Ottawa, ON, Canada, May,
pp. 1605-1608.

Wang, Y. (2002). The real-time process algebra
(RTPA). Annals of Software Engineering: An
International Journal, 14, 235-274.

Wang, Y. (2003). Using process algebra to describe
human and software system behaviors. Brain and
Mind, 4(2), 199–213.

Wang, Y. (2006a). On the informatics laws and
deductive semantics of software. IEEE Transac-
tions on Systems, Man, and Cybernetics (C),
36(2), 161-171.

Wang, Y. (2006b). Cognitive informatics and
contemporary mathematics for knowledge rep-
resentation and manipulation, invited plenary
talk. Proceedings of the 1st International Confer-
ence on Rough Set and Knowledge Technology
(RSKT’06), LNAI #4062, Springer, Chongqing,
China, July, pp. 69-78.

Wang, Y. (2007a). Software engineering founda-
tions: A software science perspective. New York:
Auerbach Publications.

Wang, Y. (2007b). The theoretical framework of
cognitive informatics. International Journal of
Cognitive Informatics and Natural Intelligence
(IJCINI), 1(1), 1-27.

Wang, Y. (2007c). On theoretical foundations of
software engineering and denotational mathemat-
ics, keynote speech. Proceedings of the 5th Asian
Workshop on Foundations of Software, BHU
Press, Xiamen, China, pp. 99-102.

Wang, Y. (2008a). RTPA: A denotational math-
ematics for manipulating intelligent and com-
putational behaviors. International Journal of
Cognitive Informatics and Natural Intelligence
(IJCINI), 2(2), 44-62.

Wang, Y. (2008b). Deductive semantics of RTPA.
International Journal of Cognitive Informatics and
Natural Intelligence (IJCINI), 2(2), 95-121.

Wang, Y. (2008c). On the Big-R notation for describ-
ing iterative and recursive behaviors. International
Journal of Cognitive Informatics and Natural
Intelligence (IJCINI), 2(1), 17-28.

Wang, Y. & King, G. (2000). Software engineering
processes: Principles and applications, CRC series
in software engineering, Vol. I. CRC Press.

Wilson, L.B. & Clark, R.G. (1988). Comparative
programming language. Wokingham, UK: Ad-
dison-Wesley Publishing Co.

Winskel, G. (1993). The formal semantics of
programming languages. MIT Press.

Woodcock, J. & Davies, J. (1996). Using Z: Speci-
fication, refinement, and proof. London: Prentice
Hall International.

This work was previously published in International Journal of Cognitive Informatics and Natural Intelligence, edited by Y.
Wang, Volume 2, Issue 3, pp. 71-89, copyright 2008 by IGI Publishing (an imprint of IGI Global).

 3361

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8.11
Validation and Verification of

Software Systems Using Virtual
Reality and Coloured Petri Nets

Hyggo Oliveira de Almeida
Federal University of Campina Grande, Brazil

Leandro Silva
Federal University of Campina Grande, Brazil

Glauber Ferreira
Federal University of Campina Grande, Brazil

Emerson Loureiro
Federal University of Campina Grande, Brazil

Angelo Perkusich
Federal University of Campina Grande, Brazil

AbstrAct

Validation and verification techniques have been
identified as suitable mechanisms to determine if
the software meets the needs of the user and to
verify if the software works correctly. However,
the existing verification techniques do not support
friendly visualization. Also, validation techniques

with friendly visualization mechanisms do not
allow the verification of the system’s correctness.
In this chapter, we present a method for the valida-
tion and verification of software systems through
the integration of formal methods and virtual
reality. Furthermore, a software tool associated
with such a method is also described along with
an embedded system case study.

3362

Validation and Verification of Software Systems Using Virtual Reality and Coloured Petri Nets

IntroductIon

The complexity of software systems is increasing
and, consequently, making it more difficult and
necessary to determine if they work correctly. In
the context of the currently applied development
techniques and processes, tests are commonly
used for validating software, but they cannot
ensure that the software is in accordance with
important behavioral properties, such as robust-
ness or safety requirements.

Verification techniques aim to detect and aid
the designer to correct mistakes during the soft-
ware development, being useful when defining
whether the software satisfies its requirements
and specifications. Through formal modeling and
verification methods, it is possible to determine
if the system works correctly while considering
all possible behaviors.

On the other hand, validation techniques
determine if the software meets the needs of the
user (Fuhrman, Djlive, & Palza, 2003). Thus, a
graphical and friendly visualization of the system
model is very useful in validating software in
different domains. However, even though most of
the formal modeling techniques have their own
graphical representations, such as automata and
Petri nets, they do not allow a friendly visualiza-
tion and, subsequently, validation of the system’s
behavior. Without such friendly visualization, the
final user needs to understand formal modeling
concepts, which are not easily understood by
nonengineers.

Coloured Petri nets (CPN) (Jensen, 1992)
are used to model and verify the correctness of
software systems, and virtual reality modeling
language (VRML) (International Organization
for Standardization, 1998) is applied to validate
the software behavior considering the user ac-
ceptance.

We will present a software platform for manag-
ing the integration of CPN and VRML, easing the
application of the proposed method. In order to

illustrate the use of the method and the platform,
an embedded software case study is presented.
Finally, related approaches and concluding re-
marks are discussed.

Using the proposed method, it is possible to
separate the formal verification and the validation
activities of the system, allowing the verification
of its correctness while still giving a friendly
visualization for the final user. Moreover, the
proposed tool aids the developers in integrating
the CPN formal and the friendly VRML models,
hiding the integration complexity.

bAcKGround

As we have said in the preceding section, the
verification and validation phases of the approach
we present here are based on coloured Petri nets
and the VRML language. Therefore, in order to
provide a better understanding of the next sec-
tions, it is desirable to present some background
information.

coloured Petri nets

Petri nets are a formal method with a graphical
representation used to model concurrent systems.
With Petri nets, it is possible to specify and verify
properties like precedence relation and deadlocks,
among others. The graphical representation of a
Petri net is a bipartite graph composed of places
and transitions. Arcs connect places to transitions
and transitions to places but never places to places
or transitions to transitions. Each place can have
zero or several tokens at a given moment. This
is called the marking of the place. Therefore, the
marking of a Petri net model is the set of markings
of all places at a given moment. The transitions
represent the actions that can take place.

Different extensions to the Petri nets formalism
exist, such as timed Petri nets (Wang, 1998) and
coloured Petri nets. In the context of this chap-

 3363

Validation and Verification of Software Systems Using Virtual Reality and Coloured Petri Nets

ter, the hierarchical coloured Petri nets (HCPN),
an extension of the coloured Petri nets, is the
formalism we have used in our approach. The
HCPN formalism has been used in the verifica-
tion of many kinds of systems. Analysis of mobile
distributed protocols (Zaslavsky, Yeo, Lai, &
Mitelman, 1995), verification of multiagent plans
(Almeida, Silva, Perkusich, & Costa, 2005) and
embedded systems (Silva & Perkusich, 2005),
and simulation of network management systems
(Christensen & Jepsen, 1991) are some of the
practical uses of HCPN.

Hierarchical coloured Petri nets incorporate
data types and hierarchy concepts to ease the
modeling task. In HCPN, a system is represented
by a set of nonhierarchical CPN models, and each
of these models is called a CPN page. Hierarchical
characteristics are achieved due to the inclusion
of two mechanisms: substitution transition and
fusion places. The former is a transition that is
replaced by a CPN page. The page to which the
substitution transition belongs is called a superp-
age. The page represented by such a transition is
called a subpage. Subpages and superpages are
associated by means of sockets and ports. Fusion
places are places that are graphically distinct but
logically the same. Two or more fusion places
form a fusion set and all the places in a fusion
set always have the same marking.

Indeed, these two additional mechanisms,
substitution transition and fusion places, are
only graphical, helping in the organization and
visualization of a CPN model. They favor the
modeling of larger and more complex systems
by giving the designer the ability to model by
abstraction, specialization, or both. Moreover, the
modeling activities in CPNs are supported by a
set of computational tools named Design/CPN1
(Christensen & Mortensen, 1996). These tools
provide a graphical environment for the editing
and syntax checking, as well as analysis methods
like simulation and verification of CPN models.

virtual reality modeling
technologies

Different virtual modeling technologies exist. In
this section, we outline some of these technologies
by exposing their main characteristics.

VRML2 is a platform-independent language
for modeling three-dimensional (3D) worlds. The
intent of its creators was to allow 3D scenes to be
visualized through the World Wide Web even over
low-bandwidth connections. It became the de facto
approach for providing 3D content on the web.
Furthermore, as 3D modeling tools were able to
export files to the VRML language, non-VRML
experts, like architects and mechanical engineers,
were able to build their 3D models and export
them to the Web. This characteristic has allowed
the usage of VRML in several branches of acad-
emy and industry, such as chemical-molecules
validation (Casher, Leach, Page, & Rzepa, 1998),
virtual buildings modeling (Ferreira, et al., 2004),
mathematical functions visualization (Wang &
Saunders, 2005), robot simulation (Rohrmeier,
2000), terrains representation (Reddy, Iverson,
& Leclerc, 1999), and manufacturing systems
(Krishnamurthy, Shewchuk, & McLean, 1998;
Silva & Perkusich, 2003).

In a general way, VRML worlds are tree-like
structures, as illustrated in Figure 1. Almost
everything in VRML is viewed as a node. Cyl-
inders, spheres, lights and even colors, are some
examples of VRML nodes. However, these nodes
have no behavior associated with them. It means
that, 3D scenes composed only of VRML nodes
are static. Therefore, in order to embed some
dynamics in such scenes, three further mecha-
nisms have been provided: sensors, routes, and
scripts. A sensor, as its name indicates, senses
the changes of a specific feature, such as time and
mouse clicking. The information gathered by a
sensor can be redirected to the other nodes in the
3D world through routes. These routes, therefore,

3364

Validation and Verification of Software Systems Using Virtual Reality and Coloured Petri Nets

act like event-dispatching mechanisms. Finally,
scripts, also considered nodes, are the ways by
which the developer manipulates the objects of
a VRML scene.

Although VRML scripts are, most of the time,
written in the JavaScript language (Goodman &
Morrison, 2004), this is not the only option. It is
also possible to implement such scripts by using
the Java language. This can be performed through
a mechanism called external authoring interface
(EAI). EAI provides a set of Java classes that
communicate with a VRML browser in order to
manipulate a 3D world. The difference between
these approaches is that in the second one the code
of the script is separated from the VRML file. As
we will show later in this chapter, this feature
will be essential for the validation approach we
are proposing.

The Java 3D3 (Selman, 2002) API is part of
Sun’s JavaMedia suite and is devoted to the con-
struction of Java applications and applets filled
with 3D graphics. Like in VRML, Java 3D scenes
are structured in a tree-like way. Therefore, each
object in a scene is viewed as node of the tree.

Through Java 3D, it is possible to control the shape,
color, and transparency of objects. Furthermore,
it allows the developer to define how such objects
move, rotate, shrink, stretch, and morph as time
goes by. Environmental manipulations are also
possible, by defining background images, lighting
modes, and even fog effects.

Internally, Java 3D uses the system native
libraries, such as Direct3D and Open GL, to
speed up performance. It provides applications
with three different rendering modes: immediate,
retained, and compiled-retained. The basic dif-
ference between these modes is concerned with
performance, where the immediate mode is the
slowest one and the compiled-retained is the fast-
est. Each of these modes has its own advantages,
and therefore, the choice of which mode to use
will depend on the application.

Extensible 3D graphics (X3D)4 is both a
language, based on extensible markup language
(XML), and a format for creating and interchang-
ing 3D content. As the X3D is compatible with the
VRML specification, X3D files can be modeled
using either X3D or VRML syntax.

Figure 1. The structure of a VRML world

 3365

Validation and Verification of Software Systems Using Virtual Reality and Coloured Petri Nets

Different from the previously presented
technologies, X3D is embedded with the notion
of profiles, each one providing a specific set of
characteristics. The profiles are based on a com-
ponentized architecture, allowing the insertion of
new components to support features not provided
by the profile. This allows the definition of profiles
targeted to specific fields, for example, medical
and automobile visualizations.

The structure of a virtual world in X3D is
similar to that of Java 3D and VRML, that is,
a tree-like model. From the functional perspec-
tive, X3D provides many of the functionalities
of VRML and Java 3D, such as scripts, lighting,
materials, and animations. However, an interest-
ing feature of X3D is the possibility of building
virtual worlds by composing objects entirely from
other scenes or locations on the Web.

vAlIdAtIon And verIFIcAtIon
method

In the context of our method for software veri-
fication and validation, we have defined three

roles: CPN Developer, VRML Developer, and
Final User. Based on these roles, some steps for
verifying and validating the software have been
defined. Figure 2 illustrates such separation of
roles in a macro view of our method.

The CPN Developer knows how to model and
verify the system according to its requirements
using coloured Petri nets. The CPN Developer
aims at proving that the specification is correct.
In case of modeling, he or she must identify the
global system behavior and model it using arcs,
places, and transitions. In general, each transition
represents an occurrence of a system execution
(e.g., an event, a process, etc.). Therefore, firing a
transition or a set of transitions simulates a system
behavior. For example, the firing of a transition
named “input” may simulate the fact that the
user inputs data on the system. When verifying
the system, the specification modeling is proved
correct for all possible behaviors.

The VRML Developer knows how to model
and validate the system. However, unlike the
CPN Developer, the VRML Developer aims at
final user validation. For that, he or she must
model the system as simply as possible, yet still

Figure 2. Separation of roles

3366

Validation and Verification of Software Systems Using Virtual Reality and Coloured Petri Nets

in accordance with the specification. The VRML
modeling must be performed based on the events
defined as transitions by the CPN Developer.
Thus, the VRML Developer is responsible for
correlating CPN and VRML events.

The Final User knows how the system works.
He or she is responsible for specifying the system
and validating if the system modeled is the one
specified previously. For that, the Final User must
describe the system requirements and visualize
the VRML model in determining if it covers the
requirements.

In what follows, we describe a set of steps for
validating and verifying systems using CPNs and

VRML. Each step is related to a specific role. In
Figure 3, the phases of the method are depicted.
A simple manufacturing system is used for il-
lustrating the application of each phase (Silva &
Perkusich, 2003).

System Specification (Final User)

The specification of the system is the first and main
phase. Functional and nonfunctional requirements
are described and, based on them, the modeling
can be performed. A manufacturing system is a
system organized into cells. Each cell has one or
more related machines and a transport system. Two

Figure 3. Verification and validation method

 3367

Validation and Verification of Software Systems Using Virtual Reality and Coloured Petri Nets

kinds of transport systems are considered: those
inside cells and those outside cells. For simplicity,
in this example the focus is on production and
transport issues. In Figure 4, the architecture of
the manufacturing system is illustrated.

cPn modeling (cPn developer)

The system is modeled using hierarchical coloured
Petri nets. The Design/CPN tools set should be
used in this phase. The result of this activity is a

set of CPN models that can be simulated and later
verified. Figure 5 illustrates the CPN modeling
for the manufacturing system, presenting the
places and transitions that are used to model the
system specification.

vrml modeling (vrml developer)

In the third phase, the system is modeled using
VRML. Any VRML modeling tool can be used to
perform this activity. This modeling is usually sim-

Figure 4. Simple manufacturing system

Figure 5. CPN modeling for the manufacturing system

3368

Validation and Verification of Software Systems Using Virtual Reality and Coloured Petri Nets

pler and friendlier than the CPN modeling, since
the objective is to validate the system according
to the user needs. Figure 6 illustrates the VRML
modeling for the manufacturing system.

Integration of models (vrml
developer)

The fourth step involves the correlation between
the CPN and VRML events. The result of this

activity is a map structure that represents the
integration of the CPN and VRML models. For
example, the event of firing a transition in the
CPN model could represent a VRML event, such
as a sphere moving. Figure 7 illustrates the cor-
relation of events for the manufacturing systems.
The correlated events are named CO, IV, OCB,
and OV.

After the system-modeling phases, the system
can be verified and validated. The generated

Figure 6. VRML modeling for the manufacturing system

Figure 7. Correlating events for the manufacturing system models

Input

Buffer

Manufacturing

System

Conveyor

Belt

Output

Buffer

Machine 1

 3369

Validation and Verification of Software Systems Using Virtual Reality and Coloured Petri Nets

models are used in the system-verification and
the system-validation activities. Such activities
are described below.

System Verification (cPn developer)

In the fifth phase, the system is verified through
the CPN models created during the CPN-modeling
phase. Such models are passed to Design/CPN
tools, in order to verify the correctness of the
system according to behavioral properties using
verification techniques such as model checking.
Modeling and verification guidelines for CPNs
using the Design/CPN tools and model checking
can be found in Almeida et al. (2005).

system validation (Final user)

In the last step, the system is validated through
both the CPN and VRML models. A simulation
of the system through the VRML models is
performed based on the events generated by the
simulation of the CPN models. Each event gener-
ated by the CPN model and defined as a “mapped
event” in the integration-of-models activity can
change the state of the VRML world. Thus, it is

possible to visualize the behavior of the CPN-
model simulation through the friendly VRML
graphical animations.

A soFtwAre PlAtForm For
InteGrAtInG vrml And cPn

In order to make the application of the steps for
the validation and verification of software systems
easier, a software platform is described here.

The CPN/VRML Software Platform man-
ages the integration of VRML and CPN models.
For that, the Design/CPN tool is used for CPN
modeling and simulation, and a Java-compliant
VRML browser is used for the model visualiza-
tion. The architecture of the software platform is
presented in Figure 8, and the integration steps are
described below, considering the event correlation
performed in the integration-of-models phase.

1. The CPN Module is responsible for receiving
event notifications from the Design/CPN
simulation tools. During the simulation, each
event is announced for the CPN Module. The
communication is performed via sockets.

Figure 8. Software-platform architecture

3370

Validation and Verification of Software Systems Using Virtual Reality and Coloured Petri Nets

2. The CPN Module extracts the CPN model
information using the Comms/CPN library
(Gallasch & Kristensen, 2001) and forwards
the event notifications to the mapping mod-
ule.

3. The Mapping Module retrieves from the
XML mapping files the VRML events that
are related to the CPN event.

4. The Mapping Module forwards the iden-
tification of the VRML events that should
be announced through a VRML-Java pack-
age.

5. Finally, the VRML Module updates the vir-
tual world according to the CPN simulation
events, allowing a friendly visualization
of the CPN model. The External Author-
ing Interface mechanism, described in the
“Background” section, is used to manipulate
the VRML view.

cAse studY:
A comPonent-bAsed embedded
AutomAtIon And control
sYstem

In this section the application of the proposed
method and software platform for validating and
verifying a component-based embedded automa-
tion and control system is described.

System Specification

In Figure 9, the architecture of the embedded sys-
tem, which is based on the framework structure
introduced in Perkusich, Almeida, and Araújo
(2003) is illustrated.

The entities shown in this figure are: sensors
and actuators, client applications (CAs), the em-
bedded module, and the real-time server. Sensors
and actuators are not described since their roles
in the architecture are clear. Client applications,
in turn, represent application front-ends that
access the services of the real-time server, like

a Web application. Since Web-based software
architectures are well-defined, a more detailed
discussion about client applications is omitted
from this chapter.

Embedded Module

The embedded module is a real-time system that
interacts with the physical environment by means
of the sensors and actuators, as well as distributed
devices connected by a real-time TCP/IP net-
work. The hardware components of the module
receive events or alarms from sensors and write
information in a shared-data area. Then, software
components can read such alarm and event infor-
mation, convert them to an adequate format, and
send them to the real-time server.

On the other hand, the real-time server can
request for an actuator through the software com-
ponents that write the request in the shared-data
area. Thus, hardware components can read the
requests from a shared area and send them to the
specific actuators. The internal architecture for
the embedded module is shown in Figure 10.

Since the focus of this chapter is on the
validation and verification of software systems,
the software components that belong to such
infrastructure are depicted in Figure 11 and are
detailed in what follows.

Figure 9. Architecture of the real-time embedded
automation and control application

 3371

Validation and Verification of Software Systems Using Virtual Reality and Coloured Petri Nets

• I/O interpreter: The I/O interpreter medi-
ates the communication between software
components and information in a shared
area. It also interprets the information recov-
ered from the shared area and instantiates
objects that represent such information. On
the other hand, the I/O interpreter receives
information from the components as objects,
translates them to the shared-data language,
and then writes them in the shared area. The
type of information present in the shared
area may vary according to the sensor and
actuators that are being used.

• Data converter: The data converter imple-
ments data conversion specific algorithms
defined by the application. The data are

converted from the I/O interpreter language
to the specific application language. For
example, when the I/O interpreter returns
an object with a binary content, the data con-
verter may transform it into an object with
a decimal content, if this is the application
format. The data conversion also depends
on the type of information.

• Synchronizer: The synchronizer imple-
ments the synchronous communication
among the software components of the
embedded module and the software com-
ponents of the real-time server. As said
before, a real-time TCP/IP network is used.
This component acts as a bridge between
the two sides of the distributed application,
and all the requests, or the response for the
requests, issued between the real-time server
and the embedded module occur through
this component.

• Device controller: The device controller
implements the initialization, tests, and lib-
eration of devices connected to the interfaces
of the embedded module. Such services are
executed based on the requests submitted
by the Device Controller to the shared area
through the interpreter.

Real-Time Server

The real-time server can be a personal or industrial
computer that manages the network. It runs the

Figure 11. Software components infrastructure for the embedded module

Figure 10. Internal architecture of the embedded
module

3372

Validation and Verification of Software Systems Using Virtual Reality and Coloured Petri Nets

Linux/RT real-time operating system (Abbott,
2003). The internal architecture of the real-time
server is shown in Figure 12. The software
components that belong to the real-time-server
infrastructure are briefly described as follows.

• Synchronizer: The synchronizer imple-
ments the communication on the real-time-
server side. The implementation is similar
to the embedded-module synchronizer.

• Data controller: The data controller pro-
vides data-flow control for the system (i.e.,
read, write, and parameter forwarding) based
on the implementation of the services that
are made available by the UI Module.

• UI module: The user-interface module
provides an interface for the services
implemented by the software components,
so that they can be used by the application
connected to the Internet.

cPn modeling

In Figure 13, the CPN model for the embedded
module is shown. The places, arcs, and transitions
that model the I/O-interpreter, Data-converter,
Synchronizer, and Device-controller modules are
depicted in this figure. The complete description of

the CPN modeling for this case study is presented
in Silva and Perkusich (2005).

vrml modeling

Figure 14 illustrates the VRML modeling of
the real-time embedded automation and control
application. The software components detailed
earlier and the communication among them have
been modeled using VRML nodes. Box nodes,
with their names modeled with Text nodes, repre-
sent the software components; whereas Cylinder
nodes represent the communication among the
components.

The “System Validation” section will detail
how the dynamic features (i.e., data exchange
among the components and data processing) of
the system are simulated in VRML.

Integration of models

Some VRML events have been created in order
to allow the integration between the CPN and
VRML models. Such events are implemented in
JavaScript and they are grouped into a Script node
through VRML input events. In Listing 1, the
JavaScript function that implements the VRML-
event behavior correlated to the CPN transition
UIModule is presented. Such an event simulates
the data exchange between the Data Controller
and the UI Module of the Real-time Server.

The rtsDataControllerToUIModule function
forwards the received event value to the input
event communicateForward of the Cylinder
situated between the Data Controller and the UI
Module. Besides, this function also forwards the
value true to the input event showDataExchange
of the UI Module.

The other VRML events are similarly imple-
mented. The complete mapping between the CPN
transitions and the correlated VRML events is
presented in Table 1.

Figure 12. Software components infrastructure
for the real-time server

 3373

Validation and Verification of Software Systems Using Virtual Reality and Coloured Petri Nets

System Verification

Suppose that the sensors send an initial signal
when the system is turned on or a new device is
plugged in. Also, suppose that the system performs
some task when it receives this kind of message
and sends an acknowledgment, a calibration, or
even an initialization message to the sensor. Such
a scenario is illustrated in Figure 15.

When a sensor sends an initialization signal,
the Data Converter sends it to the Device Con-

troller to perform the associated control tasks.
Since the simulation captures a single execu-
tion sequence or information flow in the model,
the expected sequence or flow may have been
violated. Thus, we must verify the scenario for
all possible situations based on model checking
(Clarke, Emerson, & Sistla, 1986) to guarantee
that the expected flow has always been satisfied.
For that, the desired system properties should be
described in a propositional temporal logic such
as computation tree logic (CTL) (Clarke et al.).

Figure 13. CPN modeling for the embedded module

3374

Validation and Verification of Software Systems Using Virtual Reality and Coloured Petri Nets

Its semantic is defined with respect to paths in a
Kripke structure. A path on such a structure is an
infinite sequence of states (s0; s1; …) such that si+1
is reached from si for all i ≥ 0. The CTL formula
AGϕ means that for all paths starting from s0, ϕ
holds at every state along those paths. In other
words, ϕ holds globally. The CTL formula AFϕ
means that for all paths starting from s0, ϕ holds
at some state along the path. In other words, ϕ
is inevitable.

Considering the scenario shown in Figure 15,
we must prove that when some device sends an
initialization message, the flow will be through
the device controller. To prove this scenario,

two atomic propositions PA and PB are used.
The proposition PA is true if there is a token
in place IODConIn, illustrated in Figure 13.
The proposition PB is true if there is a token in
place DConOutDevC, also illustrated in Figure
13. The CTL formula to prove this scenario is
shown below:

AG (PA → AF (PB))

Therefore, the formula is true if PA is true
and PB is true in the future. It means that if
there is a token in the data converter input, this
token is sent to device controller input, which

Figure 14. VRML modeling for the real-time embedded automation and control application

Listing 1. Function that implements the VRML event for the transition UIModule

function rtsDataControllerToUIModule(value, timestamp) {
RTSDataControllerTOUIModuleCylinder.communicateForward = value;
UIModuleComponent.showDataExchange = true;

}

Data C onverter

IO Interpreter Synchronizer Device C ontroller

Embedded Module

UI Module

Data C ontroller

Synchronizer

Real-Time Server

 3375

Validation and Verification of Software Systems Using Virtual Reality and Coloured Petri Nets

is the component that implements control tasks
such as initialization, calibration, and changing
devices working parameters. The evaluation of
this formula to true means that this part of the
model behaves as expected for all possibilities of
model execution. We can proceed with the same
reasoning to prove that the flow of information
back to the device also behaves as expected for
all possibilities.

system validation

The validation of the real-time embedded au-
tomation and control application is performed
through the CPN and VRML models. The final
user visualizes the interaction among the soft-
ware components through the events generated
by the CPN model and through a friendly user
interface provided by the VRML model. The

Table 1. Mapping between the CPN transitions and the correlated VRML events

Figure 15. Data converter flow to control signal

3376

Validation and Verification of Software Systems Using Virtual Reality and Coloured Petri Nets

system validation becomes easier for the final
user, since the VRML model entities are more
abstract than the CPN model entities. In what
follows, it is described how the dynamic features
of the system are modeled in VRML.

The data exchange among the components
is simulated through oriented Cone nodes (situ-
ated inside the Cylinder nodes), depending on
the direction of the data flow. For example, in
Figure 16, the data exchange between the Data
Controller and the UI Module is presented: the
Cone nodes are directed to the UI Module com-

ponent, representing a data flow from the Data
Controller to the UI Module. Besides, the Sphere
node at the UI Module component represents the
data that are sent from the Data Controller to the
UI Module.

Another feature modeled for the system is data
processing, which occurs within the software
components. For that, a Text node with the word
“Processing” is displayed at the bottom right of the
current processing component and the letter “P”
is displayed at the Sphere node, which represents
the data being processed. In Figure 17, the data

Figure 16. VRML modeling for data exchange among components

Figure 17. VRML modeling for data processing among components

 3377

Validation and Verification of Software Systems Using Virtual Reality and Coloured Petri Nets

processing within the Synchronizer component
of the Real-time Server is illustrated.

relAted APProAches

Some related approaches are discussed in this
section. A short description showing their fea-
tures is presented along with some comparisons
with our work.

Kindler and Páles (2004) present a prototype
tool that allows the 3D visualization of Petri-net
models, called PVNis. Such a tool is based on
the Petri net kernel (PNK) (Weber & Kindler,
2003) and uses Java 3D for implementing the
3D-visualization. The approach used by this tool
is based on the equipment of the Petri net with
information on the physical objects used for 3D-
visualization. The physical objects are included
in the Petri net model. A 3D model representing
the shape of the object and an animation function
representing the behavior of the object must be
created for each place of the Petri net that cor-
responds to a physical object.

There is no method for validation and verifica-
tion associated with this tool. Its purpose is only
to provide the visualization of Petri net models
in a 3D way. Therefore, there is also no effort to
integrate the validation process through the 3D-
visualization, with the verification process, or
through the Petri net model. Such activities are
realized separately.

Bardohl, Ermel, and Ribeiro (2000) introduce
ideas towards visual specification and animation
of Petri net-based models. In this work, the anima-
tion of algebraic high-level (AHL) nets (Padberg,
Ehrig, & Ribeiro, 1995), which are a combination
of place-transition nets and algebraic specifica-
tions (Ehrig & Mahr, 1985), is described. For that
the animation, transformation rules are applied to
the behavior rules (semantically equivalent to the
transitions of the net) of an AHL net model, gen-
erating an animation view from the model. Such
a view allows the visualization of the behavior of
the system in a domain-specific layout.

In a Petri net Editor,the user defines the trans-
formation rules from the Petri-net view to the
animation view. In this way, there is no separa-
tion of the roles concerned with the use of this
approach. Either the user that knows Petri nets
must know the visual-modeling language or the
visual modeler must know Petri nets. Finally, it
seems the visual-modeling language is not as
full-featured as VRML.

conclusIon And Future
trends

This chapter describes a method for the verifica-
tion and validation of software systems using
coloured Petri nets (CPN) and VRML. The
method is defined over three separated roles: the
CPN Developer, responsible for CPN issues; the
VRML Developer, responsible for VRML issues;
and the Final User, responsible for specifying and
validating the system.

According to the proposed method, the system
is modeled using CPN and VRML based on its
requirements. Next, the CPN and VRML events
are correlated in order to allow the CPN model
simulation to control the VRML model simulation.
For that, we propose a software tool that is used
to correlate CPN and VRML events.

We describe the method as a set of phases for
modeling and verification. The application of
each phase is illustrated using a flexible manu-
facturing-system example. This makes it easier
to understand the implementation of our method.
As a real case study, we described the validation
and verification of an embedded software system
using the proposed method and platform.

The main future trend in the context of software
verification and validation related to our work
is to provide mechanisms for reducing the gap
between validation and verification techniques.
In this chapter, we propose a method and a tool
that reduce such a gap, promoting the integration
between VRML and CPN developers, still obtain-

3378

Validation and Verification of Software Systems Using Virtual Reality and Coloured Petri Nets

ing software verification and friendly software
validation.

However, for some domains, the integration
can be improved. For example, a VRML-compo-
nent library for a specific domain may be created.
Thus, when verifying and validating software
for such domain, the integration tool could gen-
erate the VRML model based on the name of
the component events. This automatic approach
would reduce the effort on mapping CPN events
to VRML ones.

On the other hand, verification tools could be
improved in order to provide friendly mechanisms
for visualizing what is being verified. It will be
very important to the large-scale use of verification
techniques in the context of industrial software
engineering.

In this future, we plan to apply our method
for validating and verifying software in other
domains, focusing on complex interaction-centric
ones (e.g., multiagent systems, as in Weiss, 2000,
and workflow management systems, as in van der
Aalst & van Hee, 2002). The validation of these
systems through VRML may be primordial.

reFerences

Abbott, D. (2003). Linux for embedded and real-
time applications. Oxford, UK: Newnes.

Almeida, H., Silva, L., Perkusich, A., & Costa, E.
(2005). A formal approach for the modelling and
verification of multiagent plans based on model
checking and Petri nets. In R. Choren, A. Garcia,
C. Lucena, & A. Romanovsky (Eds.), Software
engineering for multi-agent systems III: Research
issues and practical applications (Vol. 3390, pp.
162-179). Berlin, Germany: Springer-Verlag.

Bardohl, R., Ermel, C., & Ribeiro, L. (2000). To-
wards visual specification and animation of Petri
net based models. In Proceedings of the Workshop
on Graph Transformation Systems (GRATRA ’00)
(pp. 22-31). Berlin, Germany.

Casher, O., Leach, C., Page, C. S., & Rzepa,
H. S. (1998). Virtual reality modelling language
(VRML) in chemistry. Chemistry in Britain,
34(9), 26.

Christensen, S., & Jepsen, L. O. (1991, June 17-19).
Modelling and simulation of a network manage-
ment system using hierarchical coloured Petri
nets. In E. Moseklide (Ed.), Modelling and Simu-
lation, 1991: Proceedings of the 1991 European
Simulation Multiconference, the Panum Institute
Copenhagen, Denmark. San Diego, CA: Society
for Computer Simulation International.

Christensen, S., & Mortensen, K. H. (1996).
Design/CPN ASK-CTL manual. Denmark: Uni-
versity of Aarhus.

Clarke, E. M., Emerson, E. A., & Sistla, A. P.
(1986). Automatic verification of finite-state
concurrent systems using temporal logic speci-
fications. ACM Transactions on Programming
Languages and Systems, 2(8), 244-263.

Ehrig, H., & Mahr, B. (1985). Fundamentals of
algebraic specification 1: Equations and initial
semantics. Berlin, Germany: Springer-Verlag.

Ferreira, G. V., Loureiro, E. C., Nogueira, W. A.,
Gomes, A. A., Almeida, H. O., & Frery, A. (2004).
Uma abordagem baseada em componentes para a
construção de edifícios virtuais (in Portuguese).
In Proceedings of VII Symposium on Virtual Real-
ity-SVR 2004 (Vol. 7, pp. 279-290). Porto Alegre,
Brazil: Sociedade Brasileira de Computação.

Fuhrman, C., Djlive, F., & Palza, E. (2003).
Software verification and validation within the
(rational) unified process. In Proceedings of the
Software Engineering Workshop, 2003, 28th An-
nual NASA Goddard (pp. 216 - 220). Washington,
DC: IEEE Computer Society.

Gallasch, G., & Kristensen, L. M. (2001). Comms/
CPN: A communication infrastructure for external
communication with Design/CPN. In K. Jensen
(Ed.), 3rd Workshop and Tutorial on Practical

 3379

Validation and Verification of Software Systems Using Virtual Reality and Coloured Petri Nets

Use of Coloured Petri Nets and the CPN Tools
(CPN’01) (pp. 75-90). Denmark: DAIMI PB-554,
Aarhus University.

Goodman, D., & Morrison, M. (2004). JavaScript
bible. Hoboken, NJ: John Wiley & Sons.

International Organization for Standardization.
(1998). ISO/IEC 14772-1:1998: Information tech-
nology — Computer graphics and image process-
ing — The Virtual Reality Modeling Language
— Part 1: Functional specification and UTF-8
encoding. Geneva, Switzerland: International
Organization for Standardization.

Jensen, K. (1992). Coloured Petri nets. Basic
concepts, analysis methods and practical use
(Vol. 1). Berlin, Germany: Springer-Verlag.

Kindler, E., & Páles, C. (2004, June 21-25). 3D-
visualization of Petri net models: Concept and
realization. In J. Cortadella & W. Reisig (Eds.),
Applications and Theory of Petri Nets 2004:
Proceedings of the 25th International Conference,
ICATPN 2004, Bologna, Italy (Vol. 3099, pp. 464-
473). Berlin, Germany: Springer-Verlag.

Krishnamurthy, K., Shewchuk, J., & McLean, C.
(1998, May 18-20). Hybrid manufacturing system
modeling environment using VRML. In J. J. Mills
& F. Kimura (Eds.), Information infrastructure
systems for manufacturing II, IFIP TC5 WG5.3/5.7
Third International Working Conference on the
Design of Information Infrastructure Systems
for Manufacturing (DIISM ’98), Fort Worth, TX
(Vol. 144, pp. 163-174). London: Kluwer.

Padberg, J., Ehrig, H., & Ribeiro, L. (1995). Al-
gebraic high-level net transformation systems.
Mathematical Structures in Computer Science,
5(2), 217-256.

Perkusich, A., Almeida, H., & Araújo, D. (2003).
A software framework for real-time embedded
automation and control systems. In Proceedings
of Emerging Technologies and Factory Automa-
tion, 2003 (ETFA ’03) IEEE Conference (Vol. 2,

pp. 181-184). Washington, DC: IEEE Computer
Society.

Reddy, M., Iverson, L., & Leclerc, Y. G. (1999).
Enabling geographic support in virtual reality
modeling with GeoVRML. Cartography and Geo-
graphic Information Science, 26(3), 180-182.

Rohrmeier, M. (2000). Web based robot simula-
tion using VRML. In J. A. Joines, R. R. Barton,
K. Kang, & P. A. Fishwick (Eds.), Proceedings
of the 32nd Winter Simulation Conference (pp.
1525-1528). San Diego, CA: Society for Computer
Simulation International.

Selman, D. (2002). Java 3D programming. Green-
wich, UK: Manning Publications.

Silva, L., & Perkusich, A. (2003). Uso de realidade
virtual para validação de modelos de sistemas
flexíveis de manufatura (in Portuguese). Anais do
VI Simpósio Brasileiro de Automação Inteligente.
São Paulo, Brazil.

Silva, L., & Perkusich, A. (2005). A model-based
approach to formal specification and verification
of embedded systems using coloured Petri nets. In
C. Atkinson, C. Bunse, H. G. Gross, & C. Peper
(Eds.), Component-based software development
for embedded systems (vol. 3778, pp. 35-58).
Berlin, Germany: Springer-Verlag.

van der Aalst, W., & van Hee, K. (2002). Workflow
management: Models, methods, and systems:
Cooperative information systems. Cambridge,
MA: MIT Press.

Wang, J. (1998). Timed Petri nets: Theory and
applications. London: Kluwer Academic.

Wang, Q., & Saunders, B. (2005). Web-based 3D
visualization in a digital library of mathematical
functions. In Proceedings of the Tenth Interna-
tional Conference on 3D Web Technology (pp.
151-157). New York: ACM Press.

Weber, M., & Kindler, E. (2003). The Petri net
kernel. In H. Ehrig, W. Reisig, G. Rozenberg, &

3380

Validation and Verification of Software Systems Using Virtual Reality and Coloured Petri Nets

H. Weber (Eds.), Petri net technology for com-
munication-based systems: Advances in Petri
nets (Vol. 2472, pp. 109-124). Berlin, Germany:
Springer-Verlag.

Weiss, G. (Ed.). (2000). Multiagent systems — A
modern approach to distributed artificial intel-
ligence. Cambridge, MA: MIT Press.

Zaslavsky, A., Yeo, L., Lai, S., & Mitelman, B.
(1995). Petri nets analysis of transaction and sub-
mitter management protocols in mobile distributed
computing environment. In Proceedings of the 4th
International Conference on Computer Communi-
cations and Networks (ICCCN ’95) (pp. 292-299).
Washington, DC: IEEE Computer Society.

endnotes

1 Design/CPN can be downloaded at http://
www.daimi.au.dk/designCPN/

2 VRML resources such as editors and brows-
ers are available at http://www.vrmlsite.
com/

3 The official site of Java 3D is available at
https://java3d.dev.java.net

4 The official site of X3D is available at http://
www.web3d.org

This work was previously published in Verification, Validation and Testing in Software Engineering, edited by A. Dasso, pp.
28-54, copyright 2007 by IGI Publishing (an imprint of IGI Global).

 3381

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8.12
Software Component

Survivability in
Information Warfare

Joon S. Park
Syracuse University, USA

Joseph Giordano
Air Force Research Laboratory, USA

AbstrAct

The need for software component survivability
is pressing for mission-critical systems in in-
formation warfare. In this chapter, we describe
how mission-critical distributed systems can
survive component failures or compromises
with malicious codes in information warfare. We
define our definition of survivability, discuss the
survivability challenges in a large mission-criti-
cal system in information warfare, and identify
static, dynamic, and hybrid survivability models.
Furthermore, we discuss the trade offs of each
model. Technical details and implementation
of the models are not described in this chapter
because of space limitations.

IntroductIon

As information systems became ever more com-
plex and the interdependence of these systems
increased, the survivability picture became more
and more complicated. The need for survivabil-
ity is most pressing for mission-critical systems
in information warfare. When components are
exported from a remote system to a local system
under different administration and deployed in
different environments, we cannot guarantee the
proper execution of those remote components in
the current run-time environment. Therefore,
in the run time, we should consider component
failures (in particular, remote components) that
may occur due to poor implementation, during
integration with other components in the system,

3382

Software Component Survivability in Information Warfare

or because of cyber attacks. Although advanced
technologies and system architectures improve
the capability of today’s systems, we cannot
completely avoid threats to them. This becomes
more serious when the systems are integrated
with commercial off-the-shelf (COTS) products
and services, which typically have both known
and unknown vulnerabilities that may cause
unexpected problems and that can be exploited
by attackers trying to disrupt mission-critical
services (Kapfhammer, Michael, Haddox, &
Colyer, 2000). Organizations, including the De-
partment of Defense (DoD), use COTS systems
and services to provide office productivity, In-
ternet services, and database services, and they
tailor these systems and services to satisfy their
specific requirements. Using COTS systems and
services as much as possible is a cost-effective
strategy, but such systems—even when tailored
to the specific needs of the implementing organi-
zation—also inherit flaws and weaknesses from
specific COTS products and services that are used.
Therefore, we need reliable approaches to ensure
survivability in mission-critical systems that must
rely on commercial services and products in a
distributed computing environment.

Definitions of survivability were introduced by
previous researchers (Knight & Sullivan, 2000;
Lipson & Fisher, 1999). We define survivability
as the capability of an entity to continue its mis-
sion even in the presence of damage to the entity
(Park, Chandramohan, Devarajan, & Giordano,
2005). An entity ranges from a single software
component (object), with its mission in a distrib-
uted computing environment, to an information
system that consists of many components to sup-
port the overall mission. An entity may support
multiple missions.

The damage caused by cyber attacks, system
failures, or accidents, and whether a system can
recover from this damage (Jajodia, McCollum,
& Ammann, 1999; Knight, Elder, & Du, 1998;
Liu, Ammann, & Jajodia, 2000), will determine
the survivability characteristics of a system. A

survivability strategy can be set up in three steps:
protection, detection and response, and recov-
ery (Park & Froscher, 2002). To make a system
survivable, it is the mission of the system rather
than the components of the system. This implies
that the designer or assessor should define a set
of critical services the system must provide in
order to fulfill the mission. In other words, they
must understand what services should be surviv-
able by the mission and what functions of which
components in the system should continue to
support the system’s mission.

In this article, we focus on the survivability
of mission-critical software components down-
loaded on the Internet. We assume that all soft-
ware components are susceptible to malicious
cyber attacks or internal failures. Cyber attacks
may involve tampering with existing source code
to include undesired functionality (e.g., Trojan
horses), or replacing a genuine component with
a malicious one. When using such components,
particularly in mission-critical applications in
information warfare, we must check to see if the
component was developed by a trusted source,
and whether the code has been modified in
an unauthorized manner since it was created.
Furthermore, we should check to see if the com-
ponent is functioning in an expected way. If all
these conditions are satisfied, we call it “trusted
component sharing.”

chAllenGes to soFtwAre
survIvAbIlItY In A
mIssIon-crItIcAl sYstem

Typically, an application running at an enterprise
level may span more than one organization. Figure
1 shows an example of a distributed application
that spans multiple organizations. The figure
depicts three organizations interconnected to
form a large enterprise-computing environment.
In the real world, there may be more than two or
three organizations connected to form a large

 3383

Software Component Survivability in Information Warfare

enterprise, and some of the organizations in the
enterprise may provide specialized services that
other organizations do not provide (e.g., Depart-
ment of Homeland Security). In the figure, for
example, components in Organizations 1 and 3
are involved in application X. In this example the
application running in Organization 3 downloads
necessary components for some special features
that it lacks. These components are dynamically
downloaded from remotely administered hosts (in
Organization 1 in the example) and run locally.
This situation becomes complex when one must
administer components downloaded from dispa-
rate administrations. For instance, Figure 1 shows
that a user under Organization 3’s administration

can dynamically download software components
under Organization 1’s administration. From this
point forward, the software running in Organi-
zation 3 should cooperate with the downloaded
components that originated from different admin-
istrations. To employ autonomous administration,
the local administrator must perform the extra
job of dealing with interoperability problems and
failures of or attacks via external components.

Based on the typical scenario described above,
we identify the following generic challenges for
software survivability in large distributed mis-
sion-critical systems.

Challenge 1. An autonomous mechanism to
support component survivability between dif-

Figure 1. A distributed application spanning multiple organizations

�0�

Software Component Survivability in Information Warfare

Figure 1 shows that a user under Organization 3’s
administration can dynamically download software
components under Organization 1’s administration.
From this point forward, the software running in Or-
ganization 3 should cooperate with the downloaded
components that originated from different adminis-
trations. To employ autonomous administration, the
local administrator must perform the extra job of
dealing with interoperability problems and failures
of or attacks via external components.

Based on the typical scenario described above,
we identify the following generic challenges for
software survivability in large distributed mission-
critical systems.

Challenge 1. An autonomous mechanism to support
component survivability between different organiza-
tions or systems is needed due to the fact that no single
administrator can control every aspect (e.g., software
component testing and implementation) of the vari-
ous systems used in an enterprise. This is an inherent

challenge because many systems, including those from
different organizations, are integrated within current
distributed computing environments. This implies that
a remote component may have failures or malicious
code that could affect a local computing environment.
Unfortunately, a remote component cannot be tested
in a local environment until runtime.

Challenge 2. Testing software components before
deployment cannot detect or anticipate all of the pos-
sible failures or attacks that may manifest themselves
during run time, especially when external components
are integrated. Some failures are detected only when
the components are deployed and integrated with other
components in the operational environments. Exist-
ing faults in one component can be triggered by other
components during runtime. Furthermore, since we
cannot simply assume that all the participating orga-
nizations followed proper testing procedures for their
software components, we need a new component-test
mechanism that can test the component in the actual

Figure 1. A distributed application spanning multiple organizations

3384

Software Component Survivability in Information Warfare

ferent organizations or systems is needed due to
the fact that no single administrator can control
every aspect (e.g., software component testing
and implementation) of the various systems used
in an enterprise. This is an inherent challenge
because many systems, including those from
different organizations, are integrated within
current distributed computing environments.
This implies that a remote component may have
failures or malicious code that could affect a local
computing environment. Unfortunately, a remote
component cannot be tested in a local environ-
ment until runtime.

Challenge 2. Testing software components
before deployment cannot detect or anticipate
all of the possible failures or attacks that may
manifest themselves during run time, especially
when external components are integrated. Some
failures are detected only when the components
are deployed and integrated with other compo-
nents in the operational environments. Existing
faults in one component can be triggered by other
components during runtime. Furthermore, since
we cannot simply assume that all the participat-
ing organizations followed proper testing pro-
cedures for their software components, we need
a new component-test mechanism that can test
the component in the actual run-time environ-
ment—especially for components downloaded
from different environments. The test criteria can
vary, based on current applications or run-time
environments, even for the same component. The
remote component may cause an interoperability
problem in a different run-time environment,
although it passed its original test.

Challenge 3. In a distributed mission-criti-
cal system, we must check whether a remote
component has been altered in an unauthorized
manner, especially if it contains malicious codes,
such as Trojan Horses, viruses, or spyware, before
malicious codes are activated in the run-time
environment. For instance, in Figure 1, when
different organizations collaborate for a common
enterprise but are competitors in the market, each

organization should check the components from
other organizations before they are used in the
local environment. Furthermore, if a component
includes any malicious codes, but the functionality
of the original code is still needed for the system,
we cannot simply reject the entire component.
Instead, we should safely retrieve only the original
code, enervating the malicious code.

Challenge 4, Currently available redundancy-
based static approaches cannot solve the problem
completely. If one component has failed because of
reason R1, then the rest of the redundant compo-
nents will fail for the same reason. It is only a mat-
ter of time before every redundant component is
compromised for the same reason, especially when
those components are identical. Furthermore, the
strength of the redundancy-based approaches
depends on the prepared redundancy, which
brings up the question of “how many” redundant
components we need to provide. Technically, one
could maintain as many redundant components
as necessary for a critical service. However, if
the initially selected component is running in its
normal state—meaning there is no need to use
other redundant components as the component is
not defective or compromised—the cost for run-
ning the redundant components has been wasted.
In this situation, the resource efficiency is low,
and the maintenance cost is high. Therefore, for
mission-critical systems in information warfare, a
dynamic technique is needed to detect and analyze
the possible faults and attacks in the components
and fix/immunize these components on-the-fly.

Challenge 5. Even if we know the reasons
for and the locations of the software failures or
attacks, in most currently available recovery ap-
proaches in distributed computing environments,
changing the component’s capability (e.g., for
immunization) in run time is difficult, especially
when the source code is not available (which is
not an uncommon situation). When dealing with
component failures, we are concerned with the
problem of how to fix these failed components.
One possibility is to modify the source code ac-

 3385

Software Component Survivability in Information Warfare

cording to the identified failures; however, this
approach is possible only if the source code for
that component is available. In the case of COTS
components and other components downloaded
from externally administered systems, the source
code is often unavailable. Although some source
codes are available to the public, if they are
poorly documented, it will hardly be possible to
modify the source code effectively. Furthermore,
many mission-critical systems do not tolerate
the suspension of operation for code debugging
and recompilation. One must, therefore, employ
other techniques to achieve the goal of fixing
failed components on-the-fly—without access to
the source code—in order for the mission of the
component to continue.

suPPort mechAnIsms For
soFtwAre survIvAbIlItY

component recovery

Barga, Lomet, Shegalov, and Weikum (2004) in-
troduced a framework for an application-indepen-
dent infrastructure that provides recovery of data,
messages, and states in Web-based applications.
The framework requires an interaction contract
between two components that specifies the joint
behavior of those two interacting components.
An application component can be replayed from
an earlier installed state and arrive at the same
state as in its prefailure incarnation. It masks
from users the failures of clients, application
servers, or data servers only if the replay could
recover the component. Unfortunately, however,
there are many component failures that cannot
be fixed simply by replays. With this approach,
a component may go back to the state before the
failure; however, it cannot proceed further from
that failure point again, unless the reason for the
failure is fixed. Therefore, the component is not
able to continue its mission. Furthermore, this ap-
proach does not consider malicious codes that are

already included in the components. Similarly, the
state-based recovery approaches for client-server
systems were introduced by Freytag Cristian,
and KŁhler (1987) and Barga, Lomet, Baby, and
Agrawal (2000), and for databases by Liu et al.
2000) and Jajodia et al. (1999).

Ring, Esler, and Cole (2004) introduced self-
healing mechanisms for kernel system compro-
mises in run time, which analyze the system call
table and enable the compromised addresses to
return to their original values, terminate hidden
processes, remove hidden files, and block hid-
den connections. As with state-based recovery,
these can recover a compromised system to its
state before the failure or attack and prevent the
situation from getting worse. However, like the
state-based approach, this approach does not fix
the fundamental reason for the problem or let the
system go to further states. Also, the scope of the
work is within a kernel module in Linux.

Dowling and Cahill (2004) introduced the idea
of K-components for self-adaptive decentralized
systems. By using a component interface defini-
tion language called K-IDL, the definitions of
component states and adaptation actions are used
by decision-making programs to reason about and
adapt component operation. Programmers can
specify adaptation contracts for their local envi-
ronments. However, this limits the overall robust-
ness of the adaptive systems because, typically,
programmers do not know all the possible adaptive
options in various computing environments in
which their components will be running. When
the components are used in a large distributed
application, which is the scope of our work, this
approach is especially not scalable.

Helsinger, Kleinmann, and Brinn (2004)
introduced a multitiered control framework be-
tween high-level observable metrics and low-level
control actions for distributed multiagent systems
that are composed of distributed autonomous
agents interacting on a peer-to-peer basis. The
framework imposes intermediate measurers of
performance (MOPs) that measure the contri-

3386

Software Component Survivability in Information Warfare

butions of different components and actions to
higher-level functions. They observe the behaviors
at one level and seek to manage those behaviors
by taking control actions at a lower level, such
as by restarting dead agents or load balancing by
moving agents between hosts. Assuming that each
agent will be developed correctly and trusted,
this framework can improve the availability of
agents and may optimize load balancing. How-
ever, the framework may not comply properly
when the components have internal failures or
are compromised by malicious codes, which is
not unusual in a real mission-critical distributed
system in information warfare.

component test

Existing technologies for identifying faulty com-
ponents are more or less static in nature. One of
these approaches employs black-box testing of
the components. In this technique, behavioral
specifications are provided for the component
to be tested in the target system. This technique
treats the target component as a black box and can
be used to determine how the component behaves
anomalously. Traditionally, black-box testing is
done without knowledge of the internal workings
of the component tested. Normally, black-box test-
ing involves only input and output details of the
component, while information on how the output
is arrived at is not needed. The main disadvantage
of this technique is that the specifications should
cover all the details of the visible behavior of the
components, which is impractical in many situ-
ations. Another approach employs a source-code
analysis, which depends on the availability of the
source code of the components. Software testabil-
ity analysis employs a white-box testing technique
that determines the locations in the component
where a failure is likely to occur. Unlike black-
box testing, white-box testing allows the tester
to see the inner details of the component, which
later helps him to create appropriate test data. Yet
another approach is software component depend-

ability assessment, a modification or testability
analysis that thoroughly tests each component.
These techniques are possible only when the
source code of the components is available.

In the past, Kapfhammer et al. (2000) have
employed a simple behavioral specification uti-
lizing execution-based evaluation. This approach
combines software fault injection (Avresky, Arlat,
Laprie, & Crouzet, 1996; Hsueh, Tsai, and Iyer,
1997; Madeira, Costa, and Vieira, 2000) at compo-
nent interfaces and machine learning techniques
to: (1) identify problematic COTS components and
(2) to understand these components anomalous
behavior. They isolated problematic COTS com-
ponents, created wrappers, and introduced them
into the system under different analysis stages
to uniquely identify the failed components and
to gather information on the circumstances that
surrounded the anomalous component behavior.
Finally, they preprocessed the collected data and
applied selective machine learning algorithms
to generate a finite state machine to better un-
derstand and to increase the robustness of faulty
components. In other research (Chen, Kiciman,
Fratkin, Fox, & Brewer, 2002; Voas & McGraw,
1998), the authors developed a dynamic prob-
lem determination framework for a large J2EE
platform, employing a fault-detection approach
based on data-clustering mechanisms to identify
faulty components.

comPonent survIvAbIlItY
models

In this section, we identify static, dynamic, and
hybrid models for software survivability and
discuss their trade offs. Technical details and
implementation of these models are available in
our previous publications (Park & Chandramo-
han, 2004; Park et al., 2005). We describe our
approaches using client and server components
in a typical distributed environment.

 3387

Software Component Survivability in Information Warfare

static survivability model

The survivability of this model is based on redun-
dant components, prepared before the operation,
to support critical services continuously in a
distributed client-server environment. Redundant
servers can be located in the same machine, in
different machines in the same domain or even
in different domains. Existing approaches, such
as dynamic reconfiguration, can be associated
with this static model. Although the term “dy-
namic” is used in the terminology, it belongs to
the static model, according to our definition, as
long as the available components are generated
before the operation starts. The same service can
be provided by identical components (e.g., copies
of the original servers) or by different components
that are implemented in various ways. Isolated
redundancy (in different machines or domains)
usually provides higher survivability because
the replaced component can be running in an
uninfected area. For instance, if the redundant
components are distributed in different network
places, then the services provided by those com-
ponents can be recovered in the event of network
failures, in different environments. However, if
there is a failure within a component, replacing
that component with an identical copy is not effec-
tive, because identical components are vulnerable
to the same failure.

dynamic survivability model

In this model, unlike the static model, there is no
redundant component. Components with failures
or malicious codes are replaced by dynamically
generated components on-the-fly and deployed in
run time when required. Furthermore, this model
allows replacement of the infected components
with immunized components, if possible, which
enables it to provide more robust services than
the static model.

Basically, when failures or malicious codes
are detected in a component, the corresponding

factory generates an immunized component and
deploys it into a safe environment, while the moni-
tor issues a command to shut down the old com-
ponent. The concept of “factory” was originally
introduced as one of the commonly used design
patterns in the object-oriented design. If we do
not know the exact reason for the failures or types
of malicious codes, or if it is hard to immunize
components against known failures or malicious
codes, we can simply replace the infected com-
ponent with a new one in a safe environment. We
call this a generic immunization strategy, which is
effective against cyber attacks. If a component (a
machine or a whole domain) is under attack, the
generic immunization strategy suggests generat-
ing a new copy of the component and deploying
it in a new environment that is safe from attack.
Although this approach supports service avail-
ability continuously, the new component might
still be susceptible to the same failures or attacks.
Therefore, an immunized component, if possible,
would provide a more robust survivability.

the hybrid model

The hybrid survivability model combines the
features of the above two models. The dynamic
model has an inherent disadvantage in terms of
service downtime. The recovery process can range
from seconds to a few minutes. This downtime
drawback will cause major problems in mission-
critical systems in information warfare because
there will be no service available for clients during
the recovery period. On the other hand, the static
model has inherent disadvantages in terms of
resource efficiency, adaptation, and robustness.

To compensate for the weaknesses in the two
models, we incorporated the idea of a hybrid
model. At the beginning of the operation, an
array of n redundant components is initiated as
described in the static model approach. These
redundant servers will be used as a buffer while
a more robust server is generated and deployed by
the dynamic model approach. When a server fails

3388

Software Component Survivability in Information Warfare

because of an attack or internal failure, the buffer
servers will take over the service for a brief period
until the new immunized server is initialized.
Since all of the buffer servers are susceptible to
the same failures or attacks, it is a matter of time
before the redundant servers are also infected for
the same reason, especially when those servers
are identical. Therefore, if the transition period is
long, multiple buffer servers may be used before
the immunized server is ready. The hybrid model
ensures the availability of service to the client and
provides more robust services in the end. However,
this model needs more complex implementations
than the two models previously discussed.

trade offs

In the static survivability model there are n num-
bers of redundant servers running in parallel that
are deployed even before the operation starts. If
one server fails, the broker delegates incoming
requests to another server in the remaining server
pool. Since the redundant components are ready
to be used (unlike those in the dynamic model)
during the failure or attack, the service downtime
is relatively shorter than in the dynamic model.
The implementation of the static survivability
model is comparatively simpler than the dynamic
or the hybrid model. In the static survivability
model, it is unnecessary to maintain a server
component factory, whose main job is to replace
faulty server components with immunized ones.
On the other hand, the static model has inherent
disadvantages in terms of resource efficiency,
adaptation, and robustness.

The hybrid model combines the logic of both
the static and dynamic models. Here, if the monitor
finds a fault in one of the server components, it
informs the factory (as in the dynamic model) to
replace the faulty component with an immunized
one, and, in the meantime, it also sends a message
to the broker to temporarily deploy a redundant
component (as in the static model) until the new
immunized component is built and deployed.

Since the dynamic and hybrid models are able
to build immunized components, they are more
robust than the static model. The static model
uses more memory resources than the dynamic
model to maintain the redundant server compo-
nents, making it less resource-efficient than the
dynamic model. But this resource efficiency is
accompanied by higher downtime in the dynamic
model. The hybrid model is a balance between
the static and dynamic models in terms of its
resource efficiency.

conclusIon

In this chapter, we have described how mission-
critical distributed systems can survive component
failures or compromises with malicious codes in
information warfare. We defined our definition
of survivability, discussed the survivability chal-
lenges in a large mission-critical system in infor-
mation warfare, and identified static, dynamic,
and hybrid survivability models. Furthermore, we
discussed the trade offs of each model. Technical
details and implementation of the models are not
described here because of space limitations.

Components can be immunized based on the
generic or specific strategies provided by the
monitors. If the monitor figures out the reasons
for the failures or types of attacks on the com-
ponents, it can provide specific strategies to the
corresponding component factories. The level of
immunization depends on the monitor’s capabil-
ity. The more powerful monitoring mechanisms
and their communication channels between
other components can provide more resistance to
failures and attacks. Analyzing specific reasons
for unexpected failures in run time is another
challenge. Monitors can cooperate with other
monitors, and different monitors are in charge of
different interests. To detect and analyze types
of attacks, the monitors can be associated with
existing intrusion detection systems, which is
also part of our future work.

 3389

Software Component Survivability in Information Warfare

reFerences

Avresky, D. R., Arlat, J., Laprie, J.-C., & Crouzet,
Y. (1996). Fault injection for formal testing of
fault tolerance. IEEE Transactions on Reliability,
45(3), 443-455.

Barga, R. S., Lomet, D. B., Baby, T., & Agrawal,
S. (2000). Persistent client-server database ses-
sions. In Proceedings of the 7th International
Conference on Extending Database Technology:
Advances in Database Technology (pp. 462-477).
Konstanz, Germany.

Barga, R., Lomet, D., Shegalov, G., & Weikum, G.
(2004). Recovery guarantees for Internet applica-
tions. ACM Transactions on Internet Technology
(TOIT), 4(3), 289-328.

Chen, M. Y., Kiciman, E., Fratkin, E., Fox, A.,
& Brewer, E. (2002). Pinpoint: Problem deter-
mination in large, dynamic Internet services.
In Proceedings of International Conference on
Dependable Systems and Networks (DSN) (pp.
595-604). Washington, DC.

Dowling, J., & Cahill, V. (2004). Self-managed
decentralized systems using k-components and
collaborative reinforcement learning. In Pro-
ceedings of the 1st ACM SIGSOFT workshop
on self-managed systems (WOSS) (pp. 39-43).
New York.

Freytag, J. C., Cristian, F., & KŁhler, B. (1987).
Making system crashes in database application
programs. In Proceedings of the 13th International
Conference on Very Large Data Bases (pp. 407-
416). Brighton, UK.

Helsinger, A., Kleinmann, K., & Brinn, M. (2004).
A framework to control emergent survivability
of multi agent systems. In Proceedings of the 3rd
International Joint Conference on Autonomous
Agents and Multiagent Systems (AAMAS) (pp.
28-35). Washington, DC.

Hsueh, M.-C., Tsai, T. K., & Iyer, R. K. (1997).
Fault injection techniques and tools. Computer,
30(4), 75-82.

Jajodia, S., McCollum, C., & Ammann, P. (1999).
Trusted recovery. Communications of the ACM,
42(7), 71-75.

Kapfhammer, G., Michael, C., Haddox, J., &
Colyer, R. (2000). An approach to identifying and
understanding problematic cots components. In
Proceedings of the Software Risk Management
Conference (ISACC). Reston, VA.

Knight, J., Elder, M., & Du, X. (1998). Error
recovery in critical infrastructure systems. In
Proceedings of the Computer Security, Depend-
ability, and Assurance (CSDA) Workshop. Wil-
liamsburg, VA.

Knight, J., & Sullivan, K. (2000). Towards a
definition of survivability. In Proceedings of the
3rd Information Survivability Workshop (ISW).
Boston.

Lipson, H., & Fisher, D. (1999). Survivability:
A new technical and business perspective on
security. Proceedings of the New Security Para-
digms Workshop (NSPW), Caledon Hills, Ontario,
Canada.

Liu, P., Ammann, P., & Jajodia, S. (2000). Re-
writing histories: Recovering from malicious
transactions. Distributed and Parallel Databases,
8(1), 7-40.

Madeira, H., Costa, D., & Vieira, M. (2000). On
the emulation of software faults by software fault
injection. In Proceedings of the International
Conference on Dependable Systems and Networks
(DNS) (pp. 417-426). Washington, DC.

Park, J. S., & Chandramohan, P. (2004). Compo-
nent recovery approaches for survivable distrib-
uted systems. In Proceedings of the 37th Hawaii
International Conference on Systems Sciences
(HICSS-37). Big Island, HI.

3390

Software Component Survivability in Information Warfare

Park, J. S., Chandramohan, P., Devarajan, G., &
Giordano, J. (2005). Trusted component sharing
by runtime test and immunization for survivable
distributed systems. In Proceedings of the 20th
IFIP International Conference on Information
Security (IFIP/SEC 2005). Chiba, Japan.

Park, J. S., & Froscher, J. N. (2002). A strategy for
information survivability. In Proceedings of the
4th Information Survivability Workshop (ISW).
Vancouver, Canada.

Ring, S., Esler, D., & Cole, E. (2004). Self-healing
mechanisms for kernel system compromises. In
Proceedings of the 1st ACM SIGSOFT workshop
on self-managed systems (WOSS) (pp. 100-104).
New York.

Voas, J. M., & McGraw, G. (1998). Software fault
injection: Inoculating programs against errors.
Wiley Computer Publishing.

KeY terms

Commercial Off-the-Shelf (COTS): These
software systems are developed to interoperate

with existing systems without the need for cus-
tomization and available for sale to public.

Software Component: This reusable soft-
ware element provides predefined services and
can communicate with other components with
relatively little effort.

Spyware: This software program monitors a
user’s computer activity surreptitiously or collects
sensitive information about users or organizations
without their knowledge.

Survivability: This refers to the capability
of an entity to continue its mission even in the
presence of damage to the entity.

Trojan Horse: A rogue software program
installed on the victim’s machine that can run
secretly with the user’s privileges.

Trusted Component: This software compo-
nent has not been modified by an unauthorized
manner, since it was created by a trusted source
and functions in an expected way.

Virus: This software program attaches itself
to other programs, propagating itself in this
way, and does something, usually malicious and
unexpected.

This work was previously published in Cyber Warfare and Cyber Terrorism, edited by L. Janczewski & A. Colarik, pp. 403-411,
copyright 2008 by Information Science Reference (an imprint of IGI Global).

 3391

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8.13
A Novel Application of the

P2P Technology for
Intrusion Detection

Zoltán Czirkos
Budapest University of Technology and Economics, Hungary

Gábor Hosszú
Budapest University of Technology and Economics, Hungary

IntroductIon

The importance of the network security problems
come into prominence by the growth of the Inter-
net. This article presents a new kind of software
that uses the network itself to protect the hosts
and increase their security. The hosts running
this software create an application level network
(ALN) over the Internet (Hosszú, 2005). Nodes
connected to this ALN check their operating
systems’ log files to detect intrusion attempts.
Information collected this way is then shared
over the ALN to increase the security of all peers,
which can then make the necessary protection
steps, for example, blocking network traffic by
their own firewall.

Different kinds of security software utilizing
the network were also written previously (Snort,
2006). The novelty of Komondor is that its cli-

ent software entities running in each host create
a peer-to-peer (P2P) overlay network (Czirkos,
2006). Organization is automatic; it requires no
user interaction. This network model ensures
stability, which is important for quick and reliable
communication between nodes. By this build-
up, the system remains useful over the unstable
network.

the ImPortAnce oF the
P2P communIcAtIons

The Internet-based communication technology
enabled people to share information with anybody
in seconds. This has brought benefits to people
spanning many spheres from social services to
education (Frasz, 2005). Probably the best example
of such extended network of content sharing is

3392

A Novel Application of the P2P Technology for Intrusion Detection

the P2P that allows users to download media files
off other computers free of charge. Once content
enters the Internet, it can be downloaded by an
unlimited number of people.

One of the latest steps in the steady advances
in P2P technologies is the release of new P2P
technologies in 2005 that enable a user commu-
nity to filter out mislabeled or corrupt files (Goth,
2005). One approach to build a more trustworthy
P2P overlay is the application credence (Sirer &
Walsh, 2005). It rates a certain network object
instead of a given peer node for trustworthiness.
The reason is that nodes can be inhabited by vari-
ous people over time, but the data in the object
itself does not change. This system uses a secure
and anonymous voting mechanism. Over time,
users with similar votes or the legitimacy of a
file will dynamically form a kind of community
enabling enough correlation of trust. Similarly, a
user that systematically answers contrarily will
get an equally significant negative weighting;
however, an inconsistent voter will have less
statistical weight. In such a way, the more users
who join credence overlay, the more accurate an
overall rating each file will receive.

The trend of the P2P systems is building more
resilient services. Centralized solutions are fragile,
since a single link breakage in the network can cut
access to the whole service. P2P enables higher
ability to construct overlays that self-organizes
and recovers from failures.

Another interesting and important feature of
the development process of the P2P technology
is that the most successful projects are open
sources such as LimeWire, which is a Gnutella
client with rapidly growing popularity (Bildson,
2005). Its business model has two sides. One
version is free, however, advertising-supported,
and the other is ad-free, but the users must pay
for it. LimeWire guarantees no bundled software
with downloads. The open source property of
the LimeWire encourages its users to monitor its
development. The largest competitor of LimeWire
is BitTorrent, which is very efficient in sharing

large files (BitTorrent, 2006). Its users upload
portions of required documents to a requester
instead of forcing one client to upload the whole
file many times.

the Problem oF the IntrusIon

Computers connected to networks are to be pro-
tected by different means (Kemmerer & Vigna,
2002). Information stored on a computer can be
personal or business character, private or confi-
dential. An unauthorized can person can therefore
steal it; its possible cases are shown in Table 1.

We have to protect not only our data, but
also our resources. Resources are not necessar-
ily hardware only. Typical types of attack are to
gain access to a computer to initiate other attacks
from it. This is to make the identification of the
attacker more difficult because this way the next
intruded host in this chain sees the IP address of
the previous one as its attacker.

Stored data can not only be stolen, but changed.
Information modified on a host is extremely
useful to cause economic damage to a company.
The attacker can alter or obstruct its functioning
properly and cause damage.

Intrusion attempts, based on their purpose,
can be of different methods. But these methods
share things in common, scanning networks ports
or subnetworks for services, and making several

Table 1. The types of the information stealth

• An unauthorized person gains access to a
host.

• Monitoring or intercepting network traffic
by someone.

• An authorized but abusive user.

 3393

A Novel Application of the P2P Technology for Intrusion Detection

attempts in a short time. This can be used to detect
these attempts and to prepare for protection.

Simple, low strength passwords are also a
means of security holes. These are used by the
so-called dictionary method, trying to log into
the system with common names or proper names
as somebody’s password. They are of a relatively
small number and easily guessable.

The attacker can also be trying to find re-
sources through security holes. With this type
of action, whole ranges of network addresses are
scanned for a particular service having a bug or
just being badly configured. The port number is
fixed here. An example for this is scanning for
an open e-mail (SMTP) relay to send junk mail
anonymously.

A common feature of the attack methods de-
scribed above is that the attacker makes several
attempts against a host. The Komondor software
developed by us uses this as a base. As one host
running the Komondor detects an intrusion at-
tempt and shares the address of the attacker on
the overlay network, the other ones can prepare
and await the same attacker in safety, who will
usually arrive sooner or later.

Traditionally, organizations have relied on
their firewall to enforce their corporate policies.
To stop the use of P2P file sharing, organizations
may add a rule that denies outbound ports not re-
quired for business (Sorensen & Richards, 2004).
Unfortunately, many of the P2P applications today
use a “port-hopping” method of communication to
circumvent firewall rule sets that limit outbound
connections to specifically allowed ports. If the
firewall restricts the ports permitted to establish
outbound connections to only the essential ports,
such as port 80 (HTTP) and port 25 (SMTP), the
P2P application modifies the port that it uses to
communicate with other P2P nodes to use these
ports allowed through the firewall.

To effectively detect this type of P2P applica-
tion traffic in an environment requires the use
of a device that can examine the contents of the
packets allowed through the firewall. Intrusion

detection systems (IDS) were designed to satisfy
this need. These systems are designed to moni-
tor network traffic to look for known signature
attack patterns and/or deviations from protocol
specifications that represent malicious intent.
When potentially malicious traffic is observed,
they generate an alert. More importantly, these
“detection” technologies lack the capabilities to
effectively prevent this traffic, leaving the burden
with the administrator to manually investigate
and respond.

wAYs oF ProtectIon

The P2P based file sharing software can cause
various security problems. There are file sharing
programs, which install further software known
as spyware. Spyware monitors the browsing
habits of the user and then sends the collected
information to third parties. Typically, the user
gets advertisements based on the data collected
by the spyware. This kind of software can be hard
to sense and to clean from the system. Before in-
stalling any file sharing program, the user should
buy antivirus software that can detect the already
downloaded spyware on the user’s hard drive and
prevent the operating system from downloading
further spyware programs.

The active network vulnerability scanners
such as the NMAP (2006), Nessus (2005), and
ISS Scanner (ISS Scanner, 2005) send packets or
communicate in some manner with the systems
they are auditing. Naturally, they are bound by the
physical limitations of the networks and systems
they are auditing to send and receive these packets.
In other words, scanning can take a long time,
especially for large networks (Deraison, Gula, &
Hayton, 2005).

In some rare cases, the act of probing may
cause instability in the audited system. Network
devices such as routers and switches may also
be affected by large numbers of port scans, host
enumeration, and vulnerability testing. Also,

3394

A Novel Application of the P2P Technology for Intrusion Detection

networks change all too often. After the scan has
been finished, it slowly becomes out of date as
the network changes.

Active network vulnerability scanners may
also have a political stigma within large organiza-
tions. For a variety of reasons, a system adminis-
trator may feel that there is no need to have a third
party scan their systems. To compensate for this,
a passive vulnerability scanner can be deployed
in a manner to watch these “off limits” networks
and report on their vulnerabilities.

Passive vulnerability scanning is the process
of monitoring network traffic at the packet layer to
determine topology, services, and vulnerabilities
(Deraison et al., 2005). The passive scanners,
such as NeVO, monitor for client and server vul-
nerabilities of a specific network through direct
analysis of the packet stream. As NeVO observes
network packets, it builds a model of the active
hosts on a network and their services. For example,
observing a TCP port 25 SYN-ACK packet from
one of the monitored hosts will cause NeVO to
reevaluate the network model.

 NeVO uses different methods to determine if
a host is alive and what the host is. It reconstructs
both sides of a network conversation and then
analyzes the data for evidence of specific client
or server vulnerabilities. Unique client and serv-
ers for protocols such as HTTP, SMTP, and FTP
have unique strings which identify the version
of the service. NeVO also makes use of passive
operating system identification by monitoring
SYN packets which may be emitted by the system
during network usage. Each operating system,
such as Windows or Linux, builds its SYN packets
in its own unique way, and this can be used to
distinguish between some specific types.

Passive vulnerability scanning is not a replace-
ment for active vulnerability scanning, but it is
a very efficient technology. When it is deployed
on its own, the passive vulnerability scanner will
produce very interesting information about the
security profile of a monitored network. However,
this is by no means a full view of network security.

When deployed together, both methods will ef-
ficiently detect vulnerabilities and changes to the
monitored networks (Deraison et al., 2005).

The ability to correctly identify the attacks
on the Internet is very important. The exchange
of alert information between organizations can
greatly supplement the knowledge obtained from
local monitors (Locasto, Parekh, Keromytis, &
Stolfo, 2005). The IDS usually operates within one
administrative domain. Therefore, information
about the global state of network attack patterns is
usually unexamined. However, global information
exchange can help organizations in ranking and
addressing threats, which they would not have
otherwise identified.

In order to construct an efficient IDS, a lot of
problems must be solved before intrusion alert
data can be safely distributed among cooperat-
ing organizations. For example, distributing all
alert information in a P2P overlay quadratically
increases bandwidth requirements. Also, informa-
tion exchange between cooperating organizations
must be carefully managed, since confidential
network information can be distributed with the
alert information by chance.

There are developments to construct a P2P
system that can detect and identify attacks in a
distributed manner. Krugel, Toth, and Kerer (2001)
proved that only a small number of information
exchanges need to be exchanged to determine
an attack in progress. Their results confirm that
a P2P solution is feasible and usable for creating
decentralized IDS. They supposed that the attack
signatures are known by the systems before the
intrusion takes place. The DOMINO overlay sys-
tem (Yegneswaren, Barford, & Jha, 2004) applies
the Chord document routing protocol (Stoica,
Morris, Karger, Kaashoek, & Balakrishnan, 2001)
to disseminate alert data based on a hash of the
source IP address. The DShield project uses a
centralized repository to receive intrusion alerts
from a lot of distributed sources (Ullrich, 2005).
The DShield supports the exchange of information
among administrative domains, too.

 3395

A Novel Application of the P2P Technology for Intrusion Detection

AlGorIthms used In the
develoPed sYstem

This section introduces a novel method, which
utilizes the results of the existing IDS methods
and efficiently combines the individual security
solutions of the operating systems with the P2P
technology to construct an overlay of the devel-
oped client programs running on individual hosts.
The most important algorithms making up the
proposed system will also be presented.

• Creating a stable overlay network to share
information.

• Reports of intrusions should spread as fast
as possible over the network.

• Decentralized system, redundant peers.
• Masking the security holes of each peer based

on the reports.

Table 2. The design goals of the proposed sys-
tem

Figure 1. Architecture of the Komondor system

Figure 2. Attack against a Komondor node

3396

A Novel Application of the P2P Technology for Intrusion Detection

The use of the peer-to-peer network model
for this purpose is new in principle. Test results
proved its usefulness, with its aid were not
only simulated, but also real intrusion attempts
blocked. The design goal of the system is listed
in Table 2.

The proposed method is implemented in soft-
ware called Komondor, which got its name from
the famous Hungarian guard dog. The Komondor
software is intended to mask the security holes
of services provided by the host, not to repair
them. For this, it does not need to know about
the security hole in detail. It can provide some
protection in advance, but only if somewhere on
the network an intrusion was already detected.
It does not fix the security hole, but keeps the
particular attacker from further activity. If the
given security hole is already known, it is worth
rather fixing that itself.

The inner architecture of Komondor is pre-
sented in Figure 1. Different hosts run the uniform
copies of this program, monitoring the occurring
network intrusion attempts. If one of the peers
detects an attempt on a system supervised, it
takes two actions:

1. Strengthens the protection locally, by con-
figuring the firewall to block the offending
network address.

2. Informs the other peers about the attempt.

Komondor nodes protect each other this way. If
an intrusion attempt was recorded by a node, the
other ones can prepare for the attack in advance.
This is shown in Figure 2.

Information about intrusion attempts is col-
lected by two means: intrusion detected by the
node in question or intrusion detected by another
one. The first working version of Komondor
monitors system log files to collect information.
These log files can contain various error messages,
which may refer to an intrusion attempt. Possible
examples are log-in attempt with an inexistent

user name or several attempts to download an
inexistent file through a HTTP server (Czirkos,
2005). The actual topology and related data of the
Komondor overlay is continuously displayed on
the Komondor project page (Czirkos, 2006).

conclusIon

The article reviewed some security-related prob-
lems of the P2P virtual networks and presented
many useful and applicable approaches, which
address the problem of the intrusion detection.
A novel application of P2P theory was also in-
troduced that helps the users of this system to
increase security of their hosts.

The developed system is easy to use; the
nodes organize the P2P overlay automatically
and do not need any user interaction. It proves
the reasonability of a security application utiliz-
ing local protection and P2P theory together.
The dependability of a P2P overlay ensures that
intrusion alerts will reach all hosts which need
protection. The self-organizing property of such
an overlay also ensures that it will remain func-
tional in an environment with a high number of
network link failures.

reFerences

Bildson, G. (2005). LimeWire home page. Re-
trieved February 26, 2008, from http://www.
limewire.com/english/content/home.shtml/

BitTorrent. (2006). Bittorrent home page. Re-
trieved February 26, 2008, from http://www.
bittorrent.com

Czirkos, Z. (2005, November 11). Development
of P2P based security software [in Hungarian].
In Proceedings of the Conference of Scientific
Circle of Students (Second Award), Budapest,
Hungary.

 3397

A Novel Application of the P2P Technology for Intrusion Detection

Czirkos, Z. (2006). The Komondor project page
with dynamic monitoring of the Komondor
overlay. Budapest University of Technology &
Economics, Department of Electron Devices.
Retrieved February 26, 2008, from the http://jutas.
eet.bme.hu

Deraison, R., Gula, R., & Hayton, T. (2005). Pas-
sive vulnerability scanning: Introduction to NeVO.
Tenable Network Security. Retrieved February 26,
2008, from http://www.tenablesecurity.com

Frasz, A. (2005). Download this article. The Plat-
form, 4(2). AEA Consulting. Retrieved February
26, 2008, from http://www.aeacondulting.com

Goth, G. (2005). A (P2)Perfect Storm. IEEE
Distributed Systems Online, 6(5).

Hosszú, G. (2005). Mediacommunication based
on application-layer multicast. In S. Dasgupta
(Ed.), Encyclopedia of virtual communities and
technologies (pp. 302-307). Hershey, PA: Idea
Group Reference.

ISS Scanner. (2005). The ISS Scanner home page.
Retrieved February 26, 2008, from http://www.
iss.net

Kemmerer, R. A., & Vigna, G. (2002). Intrusion
detection: A brief history and overview. Security
& Privacy-2002., Supplement to Computer Maga-
zine. IEEE Computer Society, pp. 27-30.

Krugel, C., Toth, T., & Kerer, C. (2001, December).
Decentralized event correlation for intrusion
detection. Paper presented at the International
Conference on Information Security and Cryp-
tology (ICISC).

Locasto, M.E., Parekh, J.J., Keromytis, A.D.,
& Stolfo, S.J. (2005, June 15-17). Towards col-
laborative security and P2P intrusion detection.
In Proceedings of the 2005 IEEE Workshop on
Information Assurance Security, United States
Military Academy, West Point, NY (pp. 30-36).

Nessus. (2005). The Nessus home page. Retrieved
February 26, 2008, from http://www.nessus.org

NMAP. (2006). NMAP free security scanner,
tools & hacking resources. Retrieved February
26, 2008, from http://www.insecure.org/

Sirer, E.G., & Walsh, K. (2005). Credence home
page. Cornell University. Retrieved February 26,
2008, from http://www.cs.cornell.edu/People/egs/
credence/

Snort. (2006). Snort: The de facto standard for
intrusion detection/prevention. Retrieved Febru-
ary 26, 2008, from http://www.snort.org

Sorensen, S., & Richards, S. (2004). Preventing
peer-to-peer file sharing activity: Mitigating
the risks with Juniper Networks NetScreen-IDP
product line. Juniper Networks, Inc. Retrieved
February 26, 2008, from http://www.juniper.net

Stoica, I., Morris, R., Karger, D., Kaashoek, F., &
Balakrishnan, H. (2001, August). Chord: A scal-
able peer-to-peer lookup service for Internet ap-
plication. In Proceedings of ACM SIGCOMM.

Ullrich, J. (2005). Dshield home page. Retrieved
February 26, 2008, from http://www.dshield.
org/

Yegneswaran, V., Barford, P., & Jha, S. (2004,
February). Global intrusion detection in the
DOMINO overlay system. Paper presented in the
ISOC Symposium on Network and Distributed
Systems Security.

KeY terms

Active Network Vulnerability Scanner: Such
systems send packets and communicate in some
manner with the systems they are auditing.

Application Level Network (ALN): The
applications, which are running in the hosts,

3398

A Novel Application of the P2P Technology for Intrusion Detection

can create a virtual network from their logical
connections. This is also called overlay network.
The operations of such software entities are not
able to understand without knowing their logical
relations. ALN software entities usually use the
P2P model, not the client/server model, for the
communication.

Client/Server Model: A communicating way,
where one host has more functionality than the
other. It differs from the P2P model.

Firewall: This is a host or router which
provides a strict gateway to the Internet for a
subnetwork, checking traffic and maybe dropping
some network packets.

Intrusion Detection System (IDS): Exam-
ines the contents of the packets allowed through
the firewall. It monitors network traffic to look
for known signature attack patterns. When the

malicious traffic is observed, the IDS generates
an alert.

Overlay Network: The applications, which
create an ALN, work together and usually follow
the P2P communication model.

Passive Network Vulnerability Scanner:
Monitors network traffic at the packet layer to
determine topology services. They also try to
identify the vulnerabilities of the client and the
server in a specific network through direct analysis
of the packet stream.

Peer-to-Peer (P2P) Model: A communication
way where each node has the same authority and
communication capability. They create a virtual
network, overlaid on the Internet. Its members
organize themselves into a topology for data
transmission.

This work was previously published in Encyclopedia of Information Communication Technology, edited by A. Cartelli & M.
Palma, pp. 616-621, copyright 2009 by Information Science Reference (an imprint of IGI Global).

 3399

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8.14
Reducing the Complexity

of Modeling Large Software
Systems

Jules White
Vanderbilt University, USA

Douglas C. Schmidt
Vanderbilt University, USA

Andrey Nechypurenko
Siemens AG, Germany

Egon Wuchner
Siemens AG, Germany

AbstrAct

Model-driven development is one approach to
combating the complexity of designing software
intensive systems. A model-driven approach al-
lows designers to use domain notations to specify
solutions and domain constraints to ensure that the
proposed solutions meet the required objectives.
Many domains, however, require models that are
either so large or intricately constrained that it is
extremely difficult to manually specify a correct
solution. This chapter presents an approach to
provide that leverages a constraint solver to pro-

vide modeling guidance to a domain expert. The
chapter presents both a practical framework for
transforming models into constraint satisfaction
problems and shows how the Command Pattern
can be used to integrate a constraint solver into
a modeling tool.

IntroductIon

Model-driven development (MDD) (Ledeczi,
2001a; Kent, 2002; Kleppe, Bast, & Warmer,
2003; Selic, 2003) is a promising paradigm for

3400

Reducing the Complexity of Modeling Large Software Systems

software development that combines high-level
visual abstractions—specific to a domain—with
constraint checking and code-generation to sim-
plify the development of a large class of systems
(Sztipanovits & Karsai, 1997). MDD tools and
techniques help improve software quality by
automating constraint checking (Sztipanovits
& Karsai, 1997). For example, in developing a
software system for an automobile, automated
constraint checking can be performed by the
MDD tool to ensure that components connected
by the developer, such as the antilock braking
system and wheel RPM sensors, send messages
to each other using the correct periodicity. An
advantage of model-based constraint checking
is that it expands the range of development er-
rors that can be caught at design time rather than
during testing.

Compilers for third-generation languages
(e.g., Java, C++, or C#) can be viewed as a form
of model-driven development (Atkinson & Kuhne,
2003). A compiler takes the third-generation pro-
gramming language instructions (model), checks
the code for errors (e.g., syntactic or semantic
mistakes), and then produces implementation
artifacts (e.g., assembly, byte, or other executable
codes). A compiler helps catch mistakes during the
development phrase and automates the translation
of the code into an executable form.

Domain-specific Modeling Languages
(DSML) (Ledeczi, 2001a) are one approach to
MDD that use a language custom designed for
the domain to model solutions. A metamodel is
developed that describes the semantic type sys-
tem of the DSML. Model interpreters traverse
instances of models that conform to the metamodel
and perform simulation, analysis, or code genera-
tion. Modelers can use a DSML to more precisely
describe a domain solution, because the modeling
language is custom designed for the domain.

MDD tools for DSMLs accrue the same
advantages as compilers for third-generation
languages. Rather than specifying the solution in
terms of third-generation programming languages

or other implementation-focused terminology,
however, MDD allows developers to use notations
specific to the domain. With a third-generation
programming language approach (such as speci-
fying the solution in C++), high-level informa-
tion (such as messaging periodicity or memory
consumption) is lost. Because a C++ compiler
does not understand messaging periodicity (i.e.,
it is not part of the “domain” of C++ programs)
it cannot check that two objects communicate at
the correct rate.

With an MDD-based approach, in contrast,
DSML developers determine the granularity of
the information captured in the model. High-level
information like messaging periodicity can be
maintained in the solution model and used for
error checking. By raising the level of abstrac-
tion for expressing design intent, more complex
requirements can be checked automatically by
the MDD tool and assured at design time rather
than testing time (Sztipanovits & Karsai, 1997), as
seen in Figure 1. In general, errors caught during
the design cycle are much less time consuming
to identify and correct than those found during
testing (Fagan, 1999).

As model-based tools and methodologies
have developed, however, it has become clear
that there are domains where the models are so
large and the domain constraints so intricate that
it is extremely hard for modelers to handcraft
correct or high quality models. In these domains,
MDD tools that provide only solution-correctness
checking via constraints provide few real benefits
over the third-generation programming language
approach. Even though higher-level requirements
can be captured and enforced, developers must
still find ways of manually constructing a model
that adheres to these requirements.

Distributed real-time and embedded (DRE)
systems are software intensive systems that
require guaranteed execution properties (e.g.,
deadlines), communication across a network, or
must operate with extremely limited resources.
Examples of DRE systems include automobile

 3401

Reducing the Complexity of Modeling Large Software Systems

safety and aircraft autopilot systems. Inher-
ent complexities in DRE systems is their large
model sizes and the combinatorial nature of
their constraints—not code construction per se.
Specifying the deployment of software compo-
nents to Electronic Control Units (ECUs, which
are the automotive equivalent of a CPU) in a
car, while observing configuration and resource
constraints, can easily generate solution spaces
with millions or more possible deployments. For
these large modeling problems, it is impractical
(if not impossible) to create a complete and valid
model manually.

To illustrate the complexities of scale, consider
a group of 10 components that must be deployed
to one of 10 ECUs within a car. There are 9^9 =
387,420,489 unique deployments that could be
tried. Part of the complexity of a DRE system
model is how quickly the solution space grows as
the number of model elements increases. Figure
2 depicts the speed at which the solution space
grows for our automotive example.

Clearly, any approach to finding a deployment
that observes the constraints must be efficient and
employ a form of pruning to reduce the time taken
to search the solution space. A manual approach
may work for a model with five or so elements.
As shown in Figure 2, however, the solution space
can increase rapidly as the number of elements
grows, which render manual solutions infeasible
for nontrivial systems.

Each component in an automobile typically
has multiple constraints governing its placement.
For example, an Antilock Braking System (ABS)
must be hosted by a controller at least a certain
distance from the perimeter of the car to enhance
survivability in a crash. Moreover, the ABS will
have requirements governing the CPU, memory,
and bus bandwidth available on its host. When
these constraints are considered for all the compo-
nents, it becomes hard for modelers to handcraft
correct solutions. The example in Figure 2 only
has nine components and nine control units. Real
automotive models typically contain 80 or more

Figure 1. Complexity of identifiable errors in-
creases with level of abstraction

Figure 2. Number of unique deployments vs.
model size

3402

Reducing the Complexity of Modeling Large Software Systems

control units and hundreds of components. In
models of this scale, manual approaches simply
cannot handle the large numbers of possibilities
and the complexity of the constraints.

The remainder of this chapter is organized
as follows. The Background section illustrates
the specific challenges of using MDD tools for
these types of complex domains; The Modeling
Guidance section presents techniques based
on integrating constraint solvers into modeling
environments that can be used to address these
challenges; The Future Research Directions sec-
tion describes future trends in modeling software
intensive systems; and the final section presents
concluding remarks.

bAcKGround

current modeling languages
and tool Infrastructure

There are a plethora of technologies and standards
available for building MDD tools. This section
explores some of the main frameworks, tools, and
specifications that are available to develop model-
driven processes for software systems.

domain-Independent modeling
languages

On one end of the MDD tool spectrum are Uni-
fied Modeling Language (UML) (Fowler & Scott,
2000) based tools, such as IBM’s Rational Rose
(Quatrani, 2003), that focus on building UML
and UML-profile (Fowler & Scott, 2000) based
models. When using UML, all models and lan-
guages must be specializations of the UML lan-
guage. UML provides a single generic language
to describe all domains. The advantage of the
domain-independent approach of UML-based
tools is the increased interoperability between
modeling platforms that can be obtained by de-
scribing models using a single modeling language

and the wide acceptance of the language. New
languages can be constructed on top of UML by
defining profiles, which are language extensions.
UML is based on the MOF metamodel specified
by the OMG.

UML is well established in software develop-
ment. More recently, numerous extensions to the
language based on profiles have been developed.
SecureUML (Lodderstedt, Basin, & Doser, 2002)
provides security-related modeling capabilities
to UML. Embedded UML (Martin, Lavagno, &
Louis-Guerin, 2001) is another profile available
for UML that provides DRE-specific extensions,
such as timing properties of components. The
UML extension approach allows developers to
customize the language to meet the application
domain, while still maintaining (some degree of)
compatibility between tools.

Domain-Specific Modeling
languages

On the other end of the MDD tool spectrum are
domain-specific modeling language (DSML)
(Ledeczi, 2001a) tools. In contrast to UML,
DSML tools do not necessarily share a common
metamodel or language format. This freedom
allows DSMLs to have greater expressivity and
handle domains (such as warehouse management,
automotive design, and product line configura-
tion), that contain concepts (such as spatial at-
tributes) that are not easily expressed and visual-
ized using UML-based tools. The drawback of
DSMLs, however, is that choosing a language
generally ties a development process not only to
a specific way of representing the model but also
generally to a specific tool. Although the loss of
interoperability can be problematic, transforma-
tions can be written to convert between model
formats and still achieve tool interoperability. In
many cases, the greater expressivity gained by
using a DSML can greatly improve the usability
of the MDD tool.

 3403

Reducing the Complexity of Modeling Large Software Systems

tools for building dsmls

To build a DSML, a metamodeling language must
be used to define the syntax of the language. A
metamodel describes the rules that determine the
correctness of a model instance and specifies the
types that can be created in the language. The
OMG’s current standard is the Meta-Object Fa-
cility (MOF) (Object Management Group, 2007)
language. MOF provides a metamodel language,
similar to UML, that can be used to describe other
new languages. MOF itself is recursively defined
using MOF. MOF is a specification and therefore
is not wedded to a particular tool infrastructure
or language technology. Many DSMLs can be
described using MOF.

Another popular metamodeling language
is the Eclipse Modeling Framework’s (EMF)
(Moore, 2004) Ecore language. Ecore has nearly
identical language constructs to MOF but is a
concrete implementation rather than a standard
specification. Developers can describe DSMLs
using Ecore (Moore, 2004) and then leverage EMF
to automatically generate Java data structures to
implement the DSML. EMF also possesses the
capability to generate basic tree-based graphical
editing facilities for Eclipse that operate on the
Java data structures produced by EMF.

Complex diagram-like visualizations of
EMF-based modeling languages can be developed
using the Graphical Editor Framework (GEF) for
Eclipse (Moore, 2004). GEF provides the funda-
mental patterns and abstractions for visualizing
and interacting with a model. Editors can be de-
veloped using GEF that allow modelers to draw
connections to create associations, nest elements
to develop containment relationships, and edit
element attributes. GEF editors are based on the
Model, View, Controller (MVC) pattern (Gamma,
Helm, Johnson, & Vlissides, 1995). GEF, however,
requires complex graphical coding.

The Graphical Modeling Framework (GMF)
(Graphical Modeling Framework, 2007), is higher
level framework, built on top of GEF, that simpli-

fies the development of graphical editors. GMF
automates the construction of the controller por-
tion of GEF editors and provides a set of reusable
view classes. MVC controllers are developed
using GMF by creating complex XML files that
map elements and their attributes to views in the
model. GMF takes the XML mappings of elements
to views and generates controllers that developers
can use to synchronize the model and view of the
MDD tool automatically.

Even with the powerful development frame-
works presented thus far, developing a visual MDD
tool requires significant effort. Metaprogram-
mable modeling environments (Ledeczi, 2001a)
help alleviate this effort by allowing developers
to specify the metamodel for a DSML visually.
After the visual specification for the language
is complete, the metaprogrammable modeling
environment can automatically generate the ap-
propriate code and configure itself to provide
graphical editing capabilities for the modeling
language.

Metaprogrammable modeling environ-
ments also provide complex remoting, model
traversal, library, and other capabilities that are
hard to develop from scratch. Two examples of
these environments are the Generic Modeling
Environment (GME) (Ledeczi, 2001b), which a
windows-based metaprogrammable MDD tool,
and the Generic Eclipse Modeling System (GEMS)
(Generic Eclipse Modeling System, 2007), a part
of the Eclipse Generative Modeling Technolo-
gies (GMT) project. The main tradeoff in using
metaprogrammable modeling environments is
that they tend to provide less flexibility in the
visualization of the model.

constraint checking with ocl

Many modeling techniques rely on a constraint
specification language to provide correctness
checking rules that are hard to concisely describe
using a graphical language. Certain types of
constraints that specify conditions over multiple

3404

Reducing the Complexity of Modeling Large Software Systems

types of modeling elements, not necessarily related
through an interface or inheritance, are more
naturally expressed using a textual constraint
specification language. The constraint language
rules are run against instances of the UML, EMF,
or other models to ensure that domain constraints
are met. Constraint failures are returned to the
modeler through the use of popup windows or
other visual mechanisms.

The OMG Object Constraint Language (OCL)
(Warmer & Kleppe, 1998) is a standard constraint
specification for modeling technologies. OCL
allows developers to specify invariants, precondi-
tions, and postconditions on types in the modeling
language. For example, the OCL constraint:

context ECU
inv: self.hostedComponents->collect(x
 | x.requiredRAM)->sum() < self.RAM

can be used to check that the sum of the RAM
demands of the components hosted by an ECU
do not exceed the available RAM on the ECU.
The first line of the OCL rule defines the context
or the type to which the OCL rule should be
applied. The second part of the rule, beginning
with “inv,” defines the invariant condition for
the rule. When there is a change to a property
of a modeling element of the context type, the
invariant conditions for the rules applicable to the
element must be checked. Invariants that do not
hold after the modification are flagged as errors
in the MDD tool.

OCL works well for localized constraints
that check the correctness of the properties of a
single modeling element. As described earlier,
however, the rule can only be used to check the
correctness of the state of a modeling element and
not to derive valid states for a modeling element,
which is a process called backward chaining
(Ginsberg, 1989). In a modeling context, back-
ward chaining is a process whereby the MDD
tool deduces correct modeling actions based on
the domain constraints. For example, if it were

possible to use the above OCL rule to backward
chain, a MDD tool could not only determine
whether or not an ECU was in a correct state but
also, given the current state of an ECU, produce
a list of components that could be hosted by the
ECU without violating the rule.

For software systems with global constraints
and large models, the inability of traditional
modeling and constraint checking approaches,
such as OCL, to not only flag errors but deduce
solutions limits the utility of model-based develop-
ment approaches. Backward chaining (providing
modeling guidance) becomes more important as
domains become more complex, and where it is
thus harder to handcraft solutions.

emerging modeling challenges

Deriving Solutions that Meet a Global
Constraint

The increasing proliferation of DRE systems is
leading to the discovery of further hard modeling
problems. These domains all tend to exhibit prob-
lems, such as scheduling with resource constraints
(Yuan & Nahrstedt, 2003), that are exponential
in complexity because they are different types of
NP problems. A key challenge in developing ef-
fective and scalable DSMLs and models for these
domains is deriving the overall organization and
architecture of MDD tools and software platforms
that can simultaneously meet stringent resource,
timing, or cost constraints.

Mobile devices are a domain that have become
widely popular and typically exhibit tight resource
constraints that must be considered when design-
ing software (Forman & Zahorjan, 1994). Software
design decisions, such as the CPU demand of the
application, often have physical impacts on the
device as well. For example, the scheduling of
and workload placed on the CPU can affect the
power consumed by the device. Poor scheduling
or resource allocation decisions can therefore limit
battery life (Yuan & Nahrstedt, 2003).

 3405

Reducing the Complexity of Modeling Large Software Systems

Determining the appropriate scheduling poli-
cies and application design decisions to handle the
resource constraints of mobile devices is critical.
Without the proper decisions, devices can have
limited battery life and usability. Scheduling with
resource constraints, however, is an NP problem
(Cormen, Rivest, Leiserson, & Stein, 1990) and
thus cannot be solved manually for nontrivial
problems.

Adhering to Nonfunctional
Requirements

Another challenge of DRE systems is that they
often exhibit numerous types of nonfunctional
QoS requirements that are hard to handle manu-
ally. For example, in automotive development,
an application may have communication timing
constraints on the real-time components (e.g.,
antilock braking control), resource constraints
on components (e.g., infotainment systems), and
feature requirements (e.g., parking assistance)
(Weber & Weisbrod, 2002). In environments
with this range of QoS requirements, a correct
design must solve numerous complex problems
and solve them in a layered manner so the solu-
tions are compatible.

For example, the placement of two compo-
nents on particular ECUs may satisfy a timing
constraint but cause a resource constraint failure
for another component, such as the infotainment
system. Not only must modelers be able to solve
numerous types of individually challenging
problems, therefore, but they must be able to find
solutions that meet all of the requirements.

Another area where complex constraints are
common is in configuration management, which is
key in emerging software development paradigms,
such as product-lines (Jaaksi, 2002) and feature
modeling (Antkiewicz & Czarnecki, 2006). In
these domains, applications are built from reus-
able software components that interact through
a common set of interfaces or framework. Ap-
plications are assembled using existing software

assets for specific requirement sets. For example,
in mission critical avionics product lines, such as
Boeing Bold Stroke (Schmidt, 2002), the correct
software component to update the HUD display is
selected based on the timing, memory, and other
requirements of the particular airframe to which
the software is being deployed. Configuration-
driven domains exhibit the same characteristics
of computationally complex constraints that drive
overall system organization as other complex
domains.

The remainder of this chapter presents an
approach to using a constraint solver integrated
into a modeling environment to address these chal-
lenges. First, the chapter introduces the types of
modeling assistance that can be provided to help
alleviate these challenges. Second, the chapter
illustrates how a constraint solver can be used
to provide these types of modeling assistance.
Finally, an architecture for integrating Prolog into
a modeling environment as a constraint solver is
described.

modelInG GuIdAnce

This section illuminates the challenges of model-
ing software intensive systems and then presents
an approach to providing modelers with model-
ing guidance from a constraint solver. Specific
emphasis is placed on how modeling guidance
can be used to reduce the complexity of modeling
software intensive systems. Finally, the chapter
illustrates how a constraint solver can be integrated
into a graphical modeling tool.

measuring domain complexity

The complexity of modeling an arbitrary do-
main can be measured along the following three
axes:
• Typical model size in elements: Large mod-

els are harder to work with using a manual
approach. Clearly, modelers are more apt to

3406

Reducing the Complexity of Modeling Large Software Systems

make mistakes managing—and much more
likely to have trouble visualizing—a domain
with hundreds of model elements than one
with dozens of model elements.

• Degree of global constraint: Global con-
straints, such as resource constraints, that
are dependent on multiple modeling steps or
the order of modeling steps make a domain
much harder to work with. For example, a
constraint requiring the deployment of an
ABS component to a single ECU at a cer-
tain distance from the perimeter of the car
is relatively easy to solve. It is much harder
to solve constraints of an ABS component
requiring its deployment to two ECUs, both
a minimum distance from the outside of the
car and a minimum distance from each other
(for fault tolerance guarantees).

• Degree of Optimality Required: Optimal-
ity is hard to achieve with a manual modeling
approach. In many domains, such as manu-
facturing, a small increase in the cost of a
solution can lead to a dramatic increase in
the overall cost of manufacturing when the

millions of units affected by the change are
considered. Many solutions must therefore
be tried to find the best one. Domains that
require optimal or good answers are much
more challenging to model.

The three axes described above can be used
to categorize and evaluate different modeling
domains. The difficulty of modeling a domain
can be viewed as the distance of the domain from
the origin when plotted according to its degree
of global constraint, degree of required model
optimality, and typical model size, as shown in
Figure 3.

Key challenges of complex
domains

The key reasons that manual modeling approaches
do not scale as a modeling domain moves further
and further along the axes, shown in Figure 3,
away from the origin is:

1. When there are thousands, millions, billions,
or more possible ways that a model can be
constructed and few correct ones, finding
a valid solution is hard.

2. A valid solution may not be a good solution
in these domains. Often, a modeler may find
a solution that is valid but is far from the
optimal solution. Automation and numeri-
cal methods, such as the Simplex method
(Nelder & Mead, 1965), are needed to ef-
ficiently search the solution space and find
good candidates. A human modeler cannot
effectively search a solution space manually
once it grows past a certain magnitude.

3. For large models, manual construction
methods, such as pointing and clicking to
intricately connect hundreds or more com-
ponents, are tedious and error prone.

4. Often, global constraints rely on so much
information that not all of the relevant bits of

Figure 3. Axes of measuring modeling complexity

 3407

Reducing the Complexity of Modeling Large Software Systems

information can be seen at once. When not
all of the information can be seen, modelers
cannot make an informed decision.

Another difficulty of highly combinatorial
domains is that although modelers may create a
model that satisfies the domain constraints, the
model may be considered poor in quality. For
example, a modeler creating a deployment of
components to ECUs could easily select a scheme
that utilized far more ECUs than the true minimum
number required to host the set of components.
For domains, such as automotive manufacturing,
each modeling decision can have significant cost
consequences for the final solution. For example,
if a model can be constructed that uses three
fewer control units to host the car’s components
and consequently saves $100 in manufacturing
costs, millions of dollars in overall cost reduction
for all cars of this make that are manufactured
can be achieved. In these cases, it is crucial to
not only find a correct solution but to find a cost
effective one.

The difficulty of finding a good solution
is that with large models and complex global
constraints, modelers are lucky to find any valid
solution. Because finding a single solution is
incredibly challenging, it becomes infeasible or
cost prohibitive to produce scores of valid solu-
tions and search for an optimal one. Even if the
set of valid solutions is large, there are numerous
numerical methods to search for a solution with a
given percentage of optimality. These methods,
however, all rely on the ability to generate large
numbers of valid solutions and are not possible
without automation.

In domains with large models and intricate
constraints, modelers must be able to see hundreds
of modeling moves into the future to satisfy a
global constraint or optimize a cost. The more
localized a modelers decisions are and the less
distant they peer into the future, the less chance
there is that a correct or good solution will be

found. Good local decisions, also known as
“greedy decisions,” do not necessarily produce
a globally good decision.

For example, consider a simple model that
determines the minimum number of ECUs needed
to host a set of components. Assume that there
are two types of ECUs, one that costs $10 and
can host 2 components and another that costs
$100 and can host 42 components. If modelers are
deploying using a myopic view and not peering
into the future, they will select many $10 ECUs
and create a solution that costs $210, rather than
looking ahead and choosing two $100 controllers
for a final cost of $200. Making a series of locally
good decisions may not produce the overall best
decision (Cormen et al., 1990).

solution: Integrating constraint
solvers and mdd tools

An MDD tool provides a visual language for a
developer to build a solution specification. An
instance of a visual model contains modeling
entities or elements, similar to OO classes, and
different visual queues (e.g., connections, con-
tainment) specifying relationships between the
elements. For example, a connection between
a component and an ECU specifies deployment
in the automotive modeling example from the
Introduction section.

The key objective of a modeler is to add the
right model entities and relationships between the
entities so that they create a solution that meets
the application requirements. Modelers express
relationships between entities by drawing connec-
tions between them, placing entities within each
other for containment, or other visual means. For
each relationship that a modeler creates between
entities, such as deployment, the modeler must
find the right source and target for the relationship
so that the relationship satisfies any constraints
placed on it. In the example of deploying com-
ponents to ECUs, the modeler must only draw

3408

Reducing the Complexity of Modeling Large Software Systems

a connection from a component to an ECU that
has the OS and resource capabilities to support
the component.

As has been shown in the Introduction, Back-
ground, and Measuring Domain Complexity
sections, the large size of DRE models and their
complex constraints can make manually finding
the right endpoints for these relationships, such
as deployment, infeasible. To address the scal-
ability challenges of manual modeling approaches
presented in the aforementioned sections, this
section outlines how a constraint solver can be
integrated with an MDD tool to help automate the
selection of endpoints for relationships between
model entities.

In the context of modeling, a constraint solver
is a tool that takes as input one or more model ele-
ments, a goal that the user is attempting to achieve,
and a set of constraints that must be adhered to
while modifying the elements to reach the goal.
As output, the constraint solver produces a new
set of states for the model elements that achieves
the desired goal while adhering to the specified
constraints. For example, a set of components
can be provided to a constraint solver along
with the deployment requirements (constraints)
of the components. The goal can then be set to
“all components connected to an ECU.” The
constraint solver will in turn produce a mapping
of components to ECUs that satisfies the deploy-
ment constraints.

The remainder of this section first outlines
the different type of modeling assistance that an
MDD tool and integrated constraint solver can
provide to a user. Next, the section discusses how
a user’s actions in an MDD tool can be translated
into constraint satisfaction problems (CSPs) so that
a constraint solver can be used to automatically
derive the correct endpoints for the relationships
the user wishes to create. Finally, the section il-
lustrates an architecture for integrating Prolog as
a constraint solver into an MDD tool.

modeling Assistance

There are two types of constraint solver guidance
that can be used to help modelers produce solu-
tions in challenging domains: local guidance and
batch processes. Local guidance is a mechanism
whereby the constraint solver is given a relation-
ship and one endpoint of the relationship and
provides a list of valid model entities that could
serve as the other endpoint for the relationship.
One example is that a constraint solver could be
provided a deployment relationship and a com-
ponent and return the valid ECUs that could be
attached to the other end of the connection. This
type of local guidance for deploying components
is shown in Figure 4.

The second type of modeling guidance is for
deriving endpoints for a group of relationships so
that the group as a whole satisfies a global con-
straint. An example of a batch process would be to
connect each component to an ECU in a manner
such that the no ECU hosts more components
than its resources can support. A batch process
takes an overall goal that the modeler is trying
to achieve, such as all components connected to
an ECU, and creates a series of relationships on

Figure 4. Local modeling guidance

 3409

Reducing the Complexity of Modeling Large Software Systems

behalf of the user to accomplish that goal. By of-
fering both local guidance and batch processes,
a MDD tool can help users to accomplish both
small incremental refinements to a model and large
goals covering multiple modeling steps.

Local Guidance

Local guidance helps modelers correctly com-
plete a single modeling step. A single modeling
step is defined as the creation of one relationship
between two modeling elements. Local guidance
can be implemented as a visual queue that shows
the modeler the valid endpoints for a relationship
that he or she is creating. For example, when a
modeler creates a connection from a component to
an ECU to specify where a component is deployed,
the modeler must first click on the component
modeling element to initiate the connection. When
the connection is initiated, the constraint solver
can be used to solve for the valid deployment loca-
tions for the component and the model elements
corresponding to these deployment locations can
be highlighted in the model.

Challenges 3 & 4 from the section Key Chal-
lenges of Complex Domains can be addressed with
local guidance. By identifying the model elements
that are valid target endpoints of the modeling ac-
tion a user is performing, a modeling tool can use
visual queues (e.g., highlighting, filtering, etc.) to
show the user only the information relevant to the
action. Furthermore, the modeling tool can use
the list of valid targets to both help the modeler
identify valid solutions (helping address challenge
1 of Key Challenges of Complex Domains) and
to prevent the user from applying an action to an
invalid target endpoint (addressing challenge 3
of Key Challenges of Complex Domains). With
a traditional MDD approach, the correctness of
a user’s action is checked after completion and
thus the user may have to do and undo an action
multiple times before the correct target endpoint
is found. By finding valid solutions before a

modeler completes a modeling action, the tool
can preemptively constrain (e.g., veto modeling
actions) what modeling elements the action can
be applied to and prevent tedious and error-prone
manual solution searching.

Local guidance can not only provide sugges-
tions of correct endpoints of a relationship but
can provide rankings of the local optimality of
each of the endpoints. For example, deployment
locations could be ranked by the resource slack
available on them so that modelers are led to
choose deployment targets with sufficient free
resources. This manner of local guidance provides
a greedy strategy to modeling guidance. At each
step, modelers are led towards a solution that
provides the greatest immediate benefit to the
model’s correctness.

Correct solutions to modeling transactions of
a single modeling step can be found using local
guidance. In some cases, only considering single
step transactions will not produce a solution that
satisfies global constraints. For example, if model-
ers can add ECUs as needed to deploy components
to, local guidance can produce a solution that is
correct with respect to the constraints, although not
necessarily optimal. If, however, ECUs cannot be
added to the model and the local strategy guides
the modeler to a solution where no ECU has free
resources and several components are undeployed,
the global constraints cannot be met.

Although a greedy strategy may not produce
optimal results for certain types of CSPs, such as
bin-packing, in many cases these localized strate-
gies can provide a lower bound on the optimality
of the final solution. With bin-packing, a First Fit
Decreasing (FFD) (Coffman, Galambos, Martello
& Vigo, 1998) packing strategy that sorts items
to be placed into bins by their size and nondeter-
ministically selects the first bin that can hold the
item will guarantee that the solution never uses
more than ~1.87 times as many bins as the optimal
solution. Providing a lower bound on the quality
of the solution that a modeler can produce can

3410

Reducing the Complexity of Modeling Large Software Systems

be extremely important in some domains, such
as automotive manufacturing, where you want to
minimize risk or cost. Although not guaranteed,
a localized strategy may in fact arrive at an op-
timal or nearly optimal solution. Moreover, local
guidance is substantially less computationally
complex than providing a global maximum and
can be implemented easily with a number of the
approaches discussed later in this section.

Batch Processes

Global constraints require the correct completion
of numerous modeling steps and are typically
not amenable to user intervention. For global
strategies, therefore, batch processes guided by
constraint solvers can be used to create multiple
relationships to bring the model into a correct
state. The key differentiator between local guid-
ance and a batch process is that local guidance
deals with modeling transactions involving a
single relationship while batch processes oper-
ate on modeling transactions containing two
or more relationships. The larger the number of
relationships in the transaction, generally the
more complicated it is to complete.

One possible batch process for the compo-
nent-to-ECU deployment tool could take each
component in the model and create a connection
to an ECU in the model to specify a deployment
location. Local guidance would produce a single
deployment connection for a single component.
By increasing the size of the modeling transaction
to consider the deployment locations of multiple
components, the batch process can use the con-
straint solver to guarantee that if a possible solu-
tion is found, it utilizes only the ECUs currently
in the model. By expanding the transaction size
that the solver operates on, the batch process al-
lows it to make model modifications that are not
locally optimal, but lead to a globally optimal or
globally correct solution.

Batch processes help address challenges 1, 2,
& 3 of the section Key Challenges of Complex

Domains. First, a batch process can correctly com-
plete large numbers of modeling actions on behalf
of the user, eliminating tedious and error-prone
manual modeling (addressing challenge 3). Sec-
ond, a constraint solver can create both a correct
and an optimal solution that can be enacted by a
batch process on behalf of the modeler (addressing
challenge 1). By tuning the parameters used by
the constraint solver, as is discussed in the section
Transforming Non-functional Requirements into
Constraint Satisfaction Problems, the modeler
can guarantee both optimality and correctness
(addressing challenge 2).

transforming nonfunctional
requirements into constraint
satisfaction Problems

To integrate local and batch process guidance
from a constraint solver, a model and the actions
that modelers can perform on the model must be
transformed into a series of constraint satisfaction
problems (CSPs). This transformation allows the
MDD tool to translate the actions of users into
queries for a constraint solver. Valid satisfac-
tions of the CSPs correspond to correct ways of
completing a modeling action, such as creating
a connection.

A CSP is a set of variables and constraints over
the values assigned to the variables. For example,
X < Y < 6 is a CSP with integer variables X and
Y. Solving a CSP is finding a set of values (a la-
beling) for the variables such that the constraints
hold true. The labeling X = 3, Y=4, is a correct
labeling of X < Y < 6. A constraint solver takes
a CSP as input and produces a labeling (if one
exists) of the variables. Solvers may also produce
labelings that attempt to maximize or minimize
variables. For example, X = 4, Y =5, is a labeling
that maximizes the value of X.

For the deployment example, a deployment
of a set of components to a set of ECUs can be
viewed as a binary matrix where the cell at row i
and column j is 1 if and only if the ith component

 3411

Reducing the Complexity of Modeling Large Software Systems

is deployed to the jth ECU (and 0 otherwise). Each
cell can be represented as an independent variable
in a CSP. Thus, each variable Dij determines if
the ith component is deployed to the jth ECU.
Finding a correct labeling of the values for the
D variables creates a deployment matrix that can
be used to determine where components should
be placed.

Assume that the ABS (antilock braking system)
component and the WheelRPMs components must
be deployed to the same ECU. Also assume that
the ABS component must be placed on an ECU
at least 3 feet from the perimeter of the car. This
series of deployment constraints can be translated
in a CSP model. Let the ABS component be the
0th component and the WheelRPMs component
be the 1st component. First, the constraint that the
ABS component be deployed to the same ECU as
the WheelRPMs component is encoded as (D0j
= 1) → (D1j = 1). Next, for each ECU, a constant
Distj can be created to store the distance of the
jth ECU from the perimeter of the car. Using
these constants, the constraint on the placement
of the ABS component relative to the perimeter
of the car can be encoded as (D0j = 1) → (Distj
≥ 3). If this CSP is input into a constraint solver,
the solver will label the variables and produce a
deployment matrix that is guaranteed to be correct
with respect to the deployment constraints.

A constraint solver can also be used to derive
a solution with a certain degree of optimality.
Assume that N components need to be deployed
to one or more of M ECUs using as few ECUs as
possible. A new variable UsedECUs can be intro-
duced to store the total number of ECUs used by
a solution. The constraint UsedECUs = ∑Dij for
all i from 0..N and all j from 0..M. The solver can
then be asked to produce a labeling of the variables
Dij that minimizes the variable UsedECUs. The
solver will in turn produce a valid deployment of
the components to ECUs that also minimizes the
total number of ECUs used.

Constraint solvers typically offer a number of
solution optimization options. The options range

from maximizing or minimizing a function to us-
ing a fast approximation algorithm that guarantees
a specific worst-case percentage of optimality.
Depending on the constraint solver settings used,
a modeler can guarantee the optimality of a model
or trade a certain percentage of model optimality
for significantly reduced solving time. In contrast,
a manual modeling approach provides no way to
guarantee correctness, optimality, a percentage
of optimality, or a tradeoff between optimality
and solution time. For software intensive systems
where optimality is important, allowing model-
ers to tune these parameters is a key advantage
of using a constraint solver-integrated modeling
approach.

One goal of using a constraint solver is to
produce better solutions than a human modeler
can create manually and to produce good solutions
more reliably. When a solver uses either optimal
or approximation algorithms, the solver’s solution
has a known and guaranteed worst case solution
quality. In contrast, there is no guarantee on the
solution quality with a manual approach.

As shown in Figure 5, the nonfunctional re-
quirements for the software system must first be

Figure 5. Transforming a model into a constraint
satisfaction problem

3412

Reducing the Complexity of Modeling Large Software Systems

collected and documented (step 1). Each nonfunc-
tional requirement must then be translated into
a CSP, such as a system of linear equations (step
2). At this point, the data from the model, such as
ECU distances to the car perimeter, are collected
and bound to variables in the CSP produced in the
previous step (step 3). Next, the CSP with some
bound variables (such as resource demands) and
some unbound variables (such as the Dij variables
in Figure 5) are input into the constraint solver (step
4). The constraint solver then produces bindings
for the unbound variables and maps them back
to changes in the model (step 5).

A crucial element for creating the right trans-
lation from nonfunctional requirements to a set
of CSPs is the abstraction used to decompose the
model into the variables and facts (i.e., bound
variables) that the CSPs operate on. For example,
should ECU and component be present in the
formulation of the CSP to represent the bin-pack-
ing of the model’s resources? The metamodel of
a language, as described in Background section,
provides the terminology and syntactic rules for
a modeling language. Because the metamodel
contains a precise definition of the relevant types
in a modeling language it is ideal for identifying
the key concepts that the CSPs should use. The
metamodel of a modeling language can be viewed
as a set of model entities and the role-based rela-
tionships between them. By using this abstraction
based on entities and role-based relationships,
a model can be conveniently decomposed for
processing by a constraint solver. The idea of
relationships between elements is the same as the
widely used Resource Description Framework’s
predicate/argument format.

The role-based relationships of an entity rep-
resent both its properties (such as available CPU)
and its associations (such as hosted components).
Each entity can be decomposed into a unique ID
and a set of role-based relationships associated
with the ID. A requirement, such as “a compo-
nent is only deployed to an ECU with the correct
OS” can be translated into a CSP involving the

Deployment, and OS relationships of a compo-
nent and ECU. The variables of the CSP for this
requirement would be the component and ECU
that are being associated through the Deployment
relationship. The constraint would be that the OS
relationship of the component and the ECU had
the same value (i.e., the same OS).

Associating Modeling Actions with the
Constraint Solver

An important integration question is how/when
to invoke the constraint solver and what CSPs
and variable bindings should be passed to it. The
goal is to use the constraint solver to provide
local guidance and batch processes to bind the
endpoints of relationships in the model. A con-
straint solver requires a CSP, a set of unbound
variables (e.g., unbound endpoints), and a set of
bound variables to produce a list of endpoints
for relationships. Thus, users’ actions and model
state must be interpreted to find the correct
CSPs, model entities, and unbound endpoints to
pass to the solver. By defining the right formal
model of the process by which users’ actions are
interpreted and translated into input data for the
constraint solver, the integration process can be
more cleanly defined. This section presents a
formal abstraction for a user’s interaction with a
modeling tool and shows the point in the formal
specification at which the constraint solver can
be integrated and used to automate relationship
endpoint binding decisions.

Modeling actions are transactions that take
one or more elements of the model and modify
the endpoints of the selected elements’ role-based
relationships. Creating a deployment connection
takes a component (the source of the connection)
and sets the endpoint of its TargetECU relation-
ship. In the Local Guidance and Batch Processes
sections, a modeling action was defined as a
transaction by the user that takes a relationship
and sets its source and target entities. More for-
mally, a modeling action is a function, action(X,

 3413

Reducing the Complexity of Modeling Large Software Systems

R, E), that takes a model element X, a relationship
of the element, R, and produces an endpoint for
that relationship E, as shown in Figure 6.

The goal of a traditional MDD tool is to take
the input produced by the user, such as mouse
clicks, and translate them into the values for X,
R, and E to update the model. With a traditional
MDD tool, the values for E are explicitly bound by
modelers. A MDD tool integrated with a constraint
solver not only provides this traditional explicit
binding capability but also provides a constraint
solver binding process, in which the constraint
solver deduces the proper endpoints for relation-
ships on behalf of the modeler.

The GEF and EMF frameworks can be used
to illustrate how X, R, and E are actually imple-
mented in a modeling framework. GEF provides
an MVC framework for displaying and editing
EMF models. In GEF, each possible user action,
such as connecting two elements with a line in
the graphical model, is represented with a Com-
mand object. The command object is a part of the

Command Pattern (Gamma et al., 1995), which
encapsulates actions that can affect a model in
an object. When the user clicks on an element
and then presses the delete key, GEF constructs
a DeleteCommand, sets the command’s argument
to be the element that was click on, and then calls
the command’s execute() method, which deletes
the element from the EMF model. When the user
wishes to create a connection, the user selects the
connection tool from a tool palette. Selecting the
connection tool causes GEF to construct a Con-
nectionCommand. When the user clicks on the
first element for the connection, GEF passes the
element to the ConnectionCommand as the source
argument. When the user clicks on the endpoint
for the connection, GEF passes the command
the endpoint as the target argument and calls
the command’s execute() method, which creates
the connection between the two elements. Tool
implementers create Command objects to specify
how each possible user action is translated into
changes of the underlying EMF model.

Figure 6. Diagram of a modeling transaction

3414

Reducing the Complexity of Modeling Large Software Systems

With GEF’s command pattern, R is deter-
mined by the type of Command object that GEF
instantiates. In the deployment example, when
the user selects the DeploymentConnection tool,
GEF creates a corresponding DeploymentCon-
nectionCommand object. The Command knows
(because it is coded into the command object’s
execute method) that it is modifying the Tar-
getECU relationship of its source argument. The
command also knows that its source argument
is the X variable in the action(X,R,E) function.
Finally, the command knows that its target end-
point represents the E variable. Each Command
object is used to translate a graphical user action
(e.g., adding a connection) into values for X, R,
and E. The Command is also responsible for
modifying the R relationship between X and E
in its execute method. The execute() method of
a DeploymentConnectionCommand is shown in
the Java code below:

public class DeploymentConnectionCommand
extends Command{

 //apply action(X,R,E)
 public void execute() {
 Component source = (Component)this.get-
Source(); //the X
 ECU target = (ECU)this.getTarget(); //the E

 //the R relationship (targetECU) between X and
E is set here
 source.setTargetECU(target);
 }
}

In the modified binding process for E, each
relationship R is associated with a CSP specify-
ing what is considered a correct value for E. For
example, a component could specify that a correct
value for its TargetECU’s E value requires that
the chosen E value and the component both have
the same OS type. When a user input is translated

Figure 7. A diagram of a modeling transaction with a constraint solver

 3415

Reducing the Complexity of Modeling Large Software Systems

into values for X and R, a constraint solver inte-
grated MDD tool uses the CSP associated with R
to automatically derive values for E on behalf of
the user. In Figure 5, the CSP was found in step
2, the values for X and R were produced in step
4 and the bindings for E were delivered by the
constraint solver in step 5. The modified modeling
transaction process can be seen in Figure 7.

In the first step, the user selects a tool or ac-
tion that will be applied to the model. The tool
determines the R value or relationship that will be
modified by the user’s actions. In the second step,
the user clicks on a modeling element to initiate a
connection and hence modify a relationship in the
underlying model. The element that the user clicks
on becomes the X value that will be passed to the
constraint solver. In the third step, the modeling
environment looks up the correct CSP that must
be satisfied by the endpoints of the relationship
specified by the R value. The modeling environ-
ment then passes this CSP, the X, and R values
to the solver. The solver finds the endpoints that
satisfy the CSP and returns these endpoints as
possible E values. Finally, the E values are pre-
sented graphically to the user.

The GEF DeploymentConnectionCommand
can be modified to incorporate this new process
by which the constraint solver chooses the value
for E. The Command creation and initial argu-
ment setting remains unchanged. However, after
the source of the connection has been set, the
constraint solver can be invoked to solve for a
value for E. If a value is returned, the execute()
method can be called immediately. The new
DeploymentConnectionCommand is:

public class DeploymentConnectionCommand
extends Command{

 public void setSource(Object obj) {
 this.source = obj;

 //the X
 Component source = (Component)obj;

 //call the solver to find valid values for E
 List endpoints = this.solver.findEndpoints(source.
getId(),
 “targetECU”);

 //if there is only one possible value, go ahead
and execute
 if(endpoints.size() == 1){
 setTarget(endpoints.get(0));
 execute();
 }
 else if(endpoints.size() > 0) {
 //otherwise, show the user valid E values by
 //modifying their background color
 for(Object obj : endpoints)
 ((ECU)obj).setBackgroundColor(Color.yel-
low);
 }
else {
 //notify the user that there are no
 //possible deployment locations for the Com-
ponent
 source.setBackgroundColor(Color.red);
}
 }

 //apply action(X,R,E)
 public void execute() {
 Component source = (Component)this.get-
Source(); //the X
 ECU target = (ECU)this.getTarget(); //the E

 //the R relationship (targetECU) between X and
E is set here
 source.setTargetECU(target);
 }
}

In the modified DeploymentConnectionCom-
mand, immediately after GEF sets the source of the
connection, the command invokes the constraint
solver to find valid endpoints. If exactly one end-
point is found, the setTarget method is called with
that endpoint and the Command is executed. If
more than one valid endpoint is found, each valid
target has its background color changed to yellow
(a visual queue). If there is no possible deployment
location for the Component, its background color
is changed to red.

3416

Reducing the Complexity of Modeling Large Software Systems

In a traditional process, the user would be re-
quired to click first on the source element, decide
on a valid deployment location for the source,
and then click on the deployment location. With
the modified Command object, the object itself
attempts to determine the valid targets (E) using
the constraint solver. The Command can then
automatically complete the action on the user’s
behalf, if there is exactly one possible endpoint.
If there is more than one possible endpoint, the
Command can highlight those endpoints for the
user. If no endpoints are found, the Command
can notify the user by changing the Component’s
background color to red.

In many situations, the user will wish to find
a valid endpoint for a specified R relationship
for every member of a set of modeling elements.
For example, the user may wish to select some
or all of the Components and have the solver
find a valid target ECU for every Component
such that no global deployment constraint, such
as resource consumption, is violated. Using the
GEF framework, a new BatchDeploymentCom-
mand can be created.

Just as with other GEF commands, the Batch-
DeploymentCommand can have a tool palette
entry associated with it that the user can select.
When the user selects the corresponding tool
entry, the BatchDeploymentCommand is created.
The batch command takes a group of modeling
elements, which the user specifies through a
group selection, and creates a connection for each
member of the group to a valid ECU. The Java
code for the BatchDeploymentCommand is:

public class BatchDeploymentCommand extends
Command{

 public void execute() {
 //the set of Xs
 Component[] sources = (Component[])this.
getSources();

 //the solver deduces an E for each X
 Object[] targets = this.solver.findValidTargets(
sources,
 “targetECU”);

 if(targets != null){
 for(int i = 0; i < targets.length; i++) {
 sources[i].setTargetECU((ECU)targets[i]);
 }
 }
 }
}

constraint solver and mdd tool
Integration Frameworks

There are a large number of optimization, con-
straint solver, and inference engines available for
use with local guidance and batch processes. As
noted in Van Hentenryck and Saraswat (1996),
however, automating the formulation of real prob-
lems in a suitable form for efficient algorithmic
processing is hard. Transforming an arbitrary
graphical model, a modeling action, and a set of
modeling constraints into a CSP for a constraint
solver is tedious and error-prone. Integrating the
results of the solver back into a MDD tool and
providing interactive capabilities is also hard. Each
of the five steps from the section Transforming
Non-functional Requirements into Constraint Sat-
isfaction Problems may require substantial effort.
By choosing the right approach and architecture,
however, the difficulty of leveraging a constraint
solver in a modeling environment can be reduced
substantially.

The following are five important properties of
an architecture for integrating a constraint solver
with a MDD tool:

1. Solver frameworks must respect domain-
specific concepts from the MDD tool and
provide a flexible mechanism for translating
nonfunctional requirements into CSPs using
domain notations. MDD tool users should

 3417

Reducing the Complexity of Modeling Large Software Systems

be able to specify constraints in a language
or notation that mirrors the domain rather
than a system of linear equations and makes
mapping requirements to a CSP easier.

2. The local guidance and batch processes
should lead modelers toward solutions
that are considered optimal or good
based on quality metrics from the domain.
Whenever possible, solvers should be used
to iterate through multiple valid solutions
and suggest only those considered most
optimal. Modelers should be able to plug-in
custom formulas for measuring optimality
in the target domain and the tool should be
able to present multiple suggestions based
on various types of optimization.

3. The constraint solver integration should
automate tedious and complex modeling
tasks, such as solving for and assigning
values for global constraints, performing
repetitive localized decisions, or provid-

ing feedback to modelers to suggest valid
modeling decisions.

4. The solver framework must accommo-
date long-running analyses for problem
instances that cannot be solved online. For
large optimization problems, such as finding
the lowest cost assignment of components
to ECUs, the constraint solver may need
several hours or days to find a solution. In
cost-critical situations, such as manufactur-
ing, allowing the solver the extra time to
find the best solution can be critical.

With a constraint-solver integrated modeling
environment, a user goes through an iterative
process of specifying portions of a model, add-
ing or refining nonfunctional requirements as
constraints, and using the constraint solver to
automate model construction and optimization.
Figure 8 illustrates the modeling processing with
an integrated constraints solver.

Figure 8. A modeling cycle with constraint solver integration

3418

Reducing the Complexity of Modeling Large Software Systems

Figure 9. Execution of a ROCs batch process shown in GEMS

Figure 10. Transforming model elements into prolog facts

In the first step, a user specifies the initial
model entities in the solution. In the second step,
the user adds constraints for the requirements of
the solution into the MDD tool. During the third
phase, the user invokes the constraint solver, using
local-guidance or a batch process, to find valid

endpoints for various relationships in the model.
Finally, in the fourth step, the valid endpoints
found by the constraint solver are shown to the
modeler using visual queues, such as highlighting
valid entities.

 3419

Reducing the Complexity of Modeling Large Software Systems

A Prolog-based Approach to
constraint solver Integration

Choosing a constraint solver is one of the driv-
ing forces in the process of transforming a set
of nonfunctional requirements into a CSP. Each
solver will generally have a unique representation
of the problem in its native format. The choice of
solver therefore affects how the transformation
from nonfunctional requirements to a concrete
representation of a CSP is performed. Many
types of solvers are available and implemented
in a number of languages. The remainder of this
section presents an approach we have developed,
called Role-based Object Constraints (White,
Nechypuren, Wuchner, & Schmidt, 2006), to
providing local guidance and batch processes
based on Prolog (Bratko, 1986).

Using ROCs, we have implemented constraint-
solver integrated modeling tools for automated

product line variant selection (White, 2007a),
component to ECU deployment in automobiles
(White et al., 2006), and aspect weaving (Nechy-
purenko, Wuchner, White & Schmidt, 2007).
Our implementation of ROCs is integrated with
the Generic Eclipse Modeling System (GEMS)
(White, 2005), a part of the Eclipse Generative
Modeling Tools (GMT) project. A screenshot of a
batch process executing in our GEMS- based de-
ployment modeling tool is shown in Figure 10.

Prolog is a declarative programming language
that allows programmers to define a Knowledge
Base (KB) (also known as a fact set) and a group
of rules that implement a set of CSPs (see Side-
bar 1). Prolog can then evaluate these rules and
determine if they can be satisfied by the known
facts. Prolog uses a predicate syntax, where rules
can be defined as predicates that resolve to the
satisfaction of a conjunction of other predicates.
Rules are akin to methods that check if a constraint
over a set of variables holds true.

Predicate rules can be used to check constraints,
by invoking the rule with all variables bound, in
which case Prolog replies with whether or not the
rule or CSP evaluates to true. If variables are left
unbound when the rule is invoked, however, Pro-
log uses backward chaining to produce bindings
from the KB of the unbound variables that will
satisfy the CSP. Prolog therefore provides a key
degree of flexibility because it can be used both
to check constraints (similar to OCL described
in the section Constraint Checking with OCL) or
to derive solutions to the CSPs.

The remainder of this section presents an ap-
proach to integrating Prolog into a modeling tool.
Prolog was chosen because it has a readable textual
syntax as opposed to the linear-equation-based
syntax of other possible solvers. Using Prolog,
however, does trade some speed for readability
and ease of use. Prolog also is a widely used and
supported programming language for constraint
solving and numerous existing solvers and librar-
ies are available in Prolog.

Sidebar 1. Prolog

Prolog is a logic programming language that allows
developers to specify a set of facts or Knowledge
Base and then create rules specifying logical asser-
tions or constraints on the facts. Prolog rules take one
or more input variables, denoted by variable names
with capital letters, and specify a series of logical
assertions on these variables, other facts, or rules
in the KB. When a Prolog rule is invoked with only
bound variables, meaning all variables have values
assigned to them, Prolog returns whether or not the
logical assertions contained within the rule hold true.
An important capability of Prolog is that if a rule is
invoked with some unbound variables, Prolog will
attempt to find bindings of those variables from the
facts in the KB that satisfy the logical assertions
in the rule. When constraints are implemented as
Prolog rules, Prolog can deduce valid bindings for
the variables that the constraints restrict.

3420

Reducing the Complexity of Modeling Large Software Systems

Transforming Models into Prolog
Knowledge Bases

Integrating Prolog as a constraint solving engine
involves capturing the state of the model and trans-
lating it into a Prolog KB, as seen in Figure 11. For
the deployment of components to ECUs example
from the Introduction section, the components,
ECUs, and their resources must be translated into
predicate facts in Prolog. Generally, predicates
are created that relate a unique key or ID of each
model element to various properties that the model
element possesses. This concept is similar to the
use of pointers and allows the flattening of an
object-oriented model into a predicate KB.

Developers must select the format of the predi-
cates used to translate the model into a Prolog
KB. One approach is to use a consistent set of
Prolog predicates across modeling languages
and customize them by adding domain-specific
information into the variables the predicates
operate on. For example:

self_type(1, ecu).
self_attribute(1, available_cpu, 29).
self_attribute(1, available_memory, 25).
self_attribute(1, name, ‘ECU_1’).

describes a set of Prolog facts that provide a
general predicate format applicable to a range
of model types. This set of facts asserts that the
element with ID “1” is of type “ecu.” The facts
also assert that the element has three attributes:
available_cpu, available_memory, and name,
with values: “29,” “25,” and “ECU_1,” respec-
tively. Different modeling languages can be ac-
commodated by changing the second argument of
the predicates, the attribute name, which is being
defined. The tradeoff of using a general format,
however, is it violates the first design criterion
described in the section Constraint Solver and
MDD Tool Integration Frameworks, that is,
offering a domain-specific interface. The predi-
cates do not vary across domains, which makes
it harder for a domain expert to understand how
they relate the concepts from his or her domain.

Figure 11. Invoking requirement rules to find relationship endpoints

 3421

Reducing the Complexity of Modeling Large Software Systems

Rather than using terminology specific to the
deployment of components to ECUs (e.g., ecu,
available_memory, etc.), the predicates are based
on describing the attributes and types.

A more domain-specific approach is to create
custom predicates for each modeling language to
mirror the notation from the domain. For example,
the same set of facts can be rewritten as:

ecu(1).
ecu_available_cpu(1, 29).
ecu_available_memory(1, 25).
ecu_name(1, ‘ECU_1’).

which provides a more domain-specific interface.
The main drawback of this format, however, is
that introspection is not possible, that is, rules
cannot query for all of the properties of an arbi-
trary element. When translating nonfunctional
requirements into Prolog rules, domain-specific
predicates are generally more advantageous be-
cause they allow the production of more compact
and readable rules. Introspection is also typically
not needed for writing CSPs in Prolog.

To identify the domain-specific predicates to
use for the KB, the metamodel for a modeling
language can be viewed as a set of model entities
and the role-based relationships between them. For
each entity, a unique id and a predicate statement
specifying the type associated with the entity. For
example, each ECU in the model is transformed
into the predicate statement ecu(id), where id is
the unique id for the ECU. For each instance of a
role-based relationship in the model, a predicate
statement is generated that takes the id of the
first participating entity and the id of the entity
to which the first entity is being related.

For example, if a component, with id 23, has
a TargetECU relationship with an ECU, with id
25, the predicate statement targetECU(23,25) is
generated. This predicate statement specifies that
the entity with id 25 is a TargetECU of the entity
with id 23. Each KB provides a domain-specific
set of predicate statements. As a model is ma-

nipulated in its graphical editor, the Prolog KB is
updated using assert/1 and retract/1 statements,
which add and remove facts from the Prolog KB,
respectively.

Mapping Nonfunctional Requirements
to Prolog Rules

Using a domain-specific knowledge base, model-
ers can specify nonfunctional requirements in the
form of Prolog rules for each type of metamodel
relationship. These constraints semantically
enrich the model to indicate the nonfunctional
requirements of a correct model. They are used by
constraint solvers to deduce solutions to local guid-
ance and batch process problems. For example,
consider the following constraint to check whether
an ECU is a valid ECU of a component:

is_a_valid_component_targetECU(Component,
ECU) :-
 component_requiredOS(Component, OS),
 ecu_providedOS(ECU, OS).

This constraint, which checks to ensure that
the OS required by the component matches the
OS provided by the ECU, can be used to check a
component-ECU combination, that is:

is_a_valid_component_targetECU(component_
23, ecu_25).

by assigning the Component variable the value
“component_23” and the ECU variable the value
“ecu_25.” The rule can also be used to find valid
ECUs that can play the TargetECU role for a
particular component using Prolog’s ability to
deduce the correct solution

is_a_valid_component_targetECU(component_
23, ECU)

by leaving the ECU variable unbound (unbound
variables are begin with capital letters). In this
example, the ECU variable will be bound to the

3422

Reducing the Complexity of Modeling Large Software Systems

ID’s of the ECUs in the KB that have the same
OS as the component. This example shows how
the nonfunctional requirement rules can be used
both to check and to deduce solutions.

The role-based relationships present in the
metamodel not only produce domain-specific
predicates but also serve as the glue between
graphical modeling actions, such as creating con-
nections, and the constraint solver. The nonfunc-
tional requirement rules that developers create
can be associated with role-based relationships
in the metamodel as seen in Figure 12.

When a model element is clicked on to initi-
ate a change (step 1), the metamodel is consulted
to determine the role-based relationship (step 2)
affected by the change. The corresponding non-
functional requirement rules can then be obtained
(step 3) and executed by Prolog (step 4) to check
the validity of the change.

To provide local guidance, the nonfunctional
requirement rules associated with metamodel
relationships can be executed with unbound
variables to deduce endpoints for the relationship.
For example, if a user begins creating a deploy-
ment connection originating from a component,
the MDD tool can deduce that the deployment
connection will set the TargetECU relationship of
the component and execute the is_a_valid_com-
ponent_targetECU rule with only the originating
component bound as an argument. Prolog will
then return bindings for the ECUs variable of
the rule that are valid deployment targets for the
component.

In a graphical modeling environment that
does not include a constraint solver, graphical
actions, such as mouse clicking and movement,
are translated into changes in the underlying ob-

M
et

am
od

el

ecu /
connection

tool

(1)	A 	too l	is 	chosen 	
and 	a 	m ode l	en tity 	is 	
c licked 	on.

(2)	T he 	re la tionsh ip 	
be ing 	m od ified 	is 	
de rived 	from 	the 	
m etam ode l.

R
eq

ui
re

m
en

ts
R

ul
esrelationship :

hosted
components

(3)	T he 	requ irem en t	
ru le 	is 	found 	in 	the 	
ru le 	base.

is_a_valid_hosted
_component

Pr
ol

og

(4)	T he 	ru le 	is 	
execu ted 	by	P ro log 	to 	
find 	va lid 	endpo in ts 	
fo r	the 	re la tionsh ip.

valid r
elationship

endpoints

Figure 12. Invoking requirement rules to find relationship endpoints

 3423

Reducing the Complexity of Modeling Large Software Systems

ject graph of the model. By adding a constraint
solver, graphical actions are translated into
proposed model modification transactions and
then the proposed transactions are turned into
CSPs and solved. Users can therefore modify the
model directly as in a traditional approach and
use graphical actions to initiate constraint solvers
that modify the model on their behalf.

In the connection creation example from the
Local Guidance section, a modeler’s mouse-click
on the source component is translated into the ini-
tiation of a connection from the component. This
connection initiation proposal is then used to query
the metamodel to determine the relationship that is
being modified on the component. Next, the CSPs
or nonfunctional requirement rules that are bound
to the relationship are obtained and finally they
are executed in the constraint solver to find valid
bindings for the unbound variables. The bindings
produced represent the valid completions of the
modeling transaction. These valid bindings can be
returned to the user as graphical proposals, such
as highlighting model elements, or committed as
changes to the underlying model.

conclusIon

For large-scale DRE systems, traditional model-
ing approaches allow developers to raise the level
of abstraction used for solution specification and
illuminate design flaws earlier in the development
cycle. Many DRE systems, however, have expo-
nential design constraints, extremely large model
sizes, or other complexities that make it hard to
handcraft a model of a solution. For these types of
challenging domains, automated design guidance
based on the design constraints is needed.

A constraint solver can be integrated into a
modeling environment to provide design guid-
ance for complex domains. As shown in section
Modeling Guidance, using the concepts of local
guidance and batch processes a constraint solver
can help modelers perform both single and mul-
tistep modeling activities.

The lessons learned from our ROCs approach,
described in the section Modeling Guidance, to
integrating a Prolog constraint solver with the
GEMs modeling environment are:

• Constraints can be used for reasoning
by a constraint solver. A constraint solver
improves solution quality not by checking
manually produced solutions, but by actively
guiding a user toward a correct solution.
The solver helps ensure that users do not
produce an incorrect solution, rather than
just notifying them if their solutions are
invalid.

• User actions can be abstractly modeled
as functions. User interactions with MDD
tools can be viewed as a function that takes
a set of modeling elements and maps the
endpoints of a specific relationship of the
elements to an endpoint explicitly pro-
vided by users. A constraint solver can be
integrated into a modeling environment by
dynamically choosing the endpoints for the
relationships with the constraint solver rather
than requiring endpoints to be explicitly
enumerated by the modeler. Local guidance
and batch processes can be used to produce
the endpoints for relationships, as described
in the section Local Guidance.

• Constraint solvers should be reused. Writ-
ing a constraint solver is hard. Developers of
model-driven processes should therefore fo-
cus on integrating existing constraint solvers
or constraint solving languages. Prolog is a
good choice for a general purpose constraint
solving language that can be integrated, as
shown in the section A Prolog-based Ap-
proach to Constraint Solver Integration.

• Debugging constraint conflicts or over
constrained systems is hard. When no valid
solution to a CSP can be found, deriving why
a solution can’t be found can be complex.
With global constraints, the cause of the
failure can be the overall organization of the

3424

Reducing the Complexity of Modeling Large Software Systems

solution, and thus it is difficult to provide a
meaningful explanation to the modeler.

• Constraint solvers typically perform well
in practice. Although many optimization
and constraint satisfaction problems are
combinatorialy complex, constraint solvers
typically can solve them in a reasonable
time frame. Constraint solvers can use ap-
proximation algorithms to quickly produce
solutions that are good but not optimal.

• The complexity of a constraint satisfaction
problem is dependent on each problem
instance. Certain instances of a type of con-
straint satisfaction problem will be easier to
solve than others. Predicting which instances
are challenging is hard. Although it is hard
to predict which instances are challenging,
constraint solvers often work well on all
instances in domains that humans manually
produce solutions for.

As MDD tools continue to develop and capture
more useful design decisions for larger and more
complex applications, constraint solving and other
design automation techniques will become more
important. Design automation should not only
improve design quality but should also help to
allow model-driven processes to scale to handle
next-generation models with significantly more
complexity.

The tools and code presented in this chapter
are a part of the Generic Eclipse Modeling System
(GEMS). GEMS is an opensource project available
from http://www.sf.net/projects/gems.

Future reseArch dIrectIons

This section describes the emerging trends in the
development of software intensive systems, how
these trends will affect software development
methodologies, and what future research will be
needed to address future development problems.

The future trends are presented in the context of
MDD. Particular emphasis is placed on how these
trends will impact the use of constraint solvers
in software development.

capturing design rules

Model-driven technologies are raising the level of
abstraction for software development by enabling
developers to express higher-level, more domain-
specific intentions in the solution specifications
they produce. These intentions have traditionally
been captured through documentation, such as
text files or MS Word documents. With MDD
technologies, developers can formally specify
the design goals and rules that traditionally could
only be expressed in documentation, in the solu-
tion specification.

In the past, conventional tools could not docu-
ment the rules that led a developer to make design
decisions in a rigorous manner that could be used
for automated design assistance. For example,
implementation-based software development
methodologies, such as coding a solution in C++,
could not capture communication rate information,
memory consumption, minimum distance from the
car’s perimeter, or other constraint information in
a form that could drive application organization.
With an MDD approach, however, a designer
can specify that a connection needs to provide a
guaranteed messaging rate rather than the type of
connection that should be used, that is, designers
can specify why one connection type should be
preferred over another connection type.

Various MDD tools are developing that can
utilize this design information. The Compo-
nent Utilization and Test Suite (CUTS) (Hill &
Gokhale, 2007) is an MDD tool that allows de-
velopers to empirically evaluate system designs
before they are implemented. Other tools, such
as J2EEML (White, 2007b), provide the ability
to perform analysis on adaptive applications and
anticipate conflicting design goals. Finally, feature

 3425

Reducing the Complexity of Modeling Large Software Systems

modeling tools (Antkiewicz et al., 2007) provide
the capability to capture software component
commonality and variability requirements and
enforce them during system design.

utilizing design Information to
Provide Automated design
Assistance

Automation can be applied to help guide design-
ers to better solutions by formally capturing the
goals of the application or why designers chose
particular design decisions. MDD tools, and
specifically domain-specific modeling languages,
have allowed developers to tailor the solution
specification to include information pertinent to
their domain. As MDD technologies increase the
breadth of information that can be distilled from
designers into a solution specification, a wealth of
new design guidelines or constraints will become
available for constraint solving.

An emerging area of research therefore in-
volves the integration of automated reasoning
systems with MDD tools. In particular, the reuse
of existing constraint solver, decision assistance,
and other guidance mechanisms across will be
an important software development goal. These
solver and decision assistance mechanisms are
costly to produce and thus will benefit from
greater portability between MDD tool infrastruc-
tures, such as the Eclipse Modeling Framework,
Microsoft DSL tools (Microsoft, 2007), and the
Generic Modeling Environment.

One challenge of leveraging constraint solv-
ers in a modeling environment is mapping the
domain requirements to CSPs that can be used
for automated solving. These mappings are often
complex and tightly coupled to individual solver
and metamodel formats, despite the fact that re-
quirement types, such as resource requirements,
occur across multiple domains. Current solu-
tions for transforming requirements into CSPs
tightly couple the translation to a specific solver

or metamodel and require costly reinvention and
rediscovery of existing mappings. Additional work
is needed ensure that the complex mappings from
requirements to CSPs can be templatized and
reused across applications.

Model transformation techniques are devel-
oping rapidly and may provide a mechanism
for future decoupling of CSPs from solvers and
provide portability through translation. The At-
las Transformation Language (ATL) (Jouault &
Kurtev, 2005) provides powerful transformation
capabilities as well as compilation to bytecode.
Other emerging approaches include Open Archi-
tecture Ware (oAW) (Open Architecture Ware,
2007). Finally, templatization approaches are
also viable, such as those proposed by Willans,
Sammut, Maskeri, and Evans (2002).

constraint solver Guided
software reuse

Significant advances in the area of software reuse
will drive the need for integrating constraint solv-
ers and MDD tools. These advances are evident
in the increased use of commercial-off-the-shelf
(COTS) components (Schmidt, 2002) rather than
customized proprietary solutions. In particular,
using COTS components in the DRE systems
domain requires constraint solvers because ap-
plications in this domain often have exponential
constraints that must be met by selecting and
assembling COTS components together with
proprietary components into a final composite
application.

The selection of components is an example of
a CSP. Developers must take the requirements of
an application in a DRE system, the capabilities
of the COTS and proprietary components, and
find a set of compatible components, possibly
from numerous vendors, that will satisfy both
the functional and complex nonfunctional con-
straints. Moreover, components may have complex

3426

Reducing the Complexity of Modeling Large Software Systems

configuration needs, such as setting messaging
policies, to enable them to function properly. Solv-
ing these challenging CSPs will require the use of
constraint solvers to select components based on
high-level design criteria captured in models.

COTS components will require further de-
velopment and standardization in how metadata,
such as messaging periodicity, is captured and
disseminated to tools. Standardization will al-
low for greater interoperability between tools.
A standard metadata format will also provide
component developers with a consistent method-
ology for documenting component requirements,
dependencies, and capabilities.

Services have seen the most standardization
in metadata descriptions. The Resource Descrip-
tion Framework (RDF) (Lassila & Swick, 1999)
and the Web Services Description Language
(WSDL) are emerging as promising standards
for describing services. Other approaches, such
as those presented by O’Sullivan, Edmond, and
Ter Hofstede (2002), focus on capturing the non-
functional aspects of services. Formal methods
for describing components are also emerging,
such as those proposed by Poizat, Royer, and
Salaun (2004).

reFerences

Antkiewicz, M., & Czarnecki, K. (2006, Octo-
ber). Framework-specific modeling languages
with round-trip engineering. In Proceedings of
the ACM/IEEE 9th International Conference
on Model Driven Engineering Languages and
Systems (MoDELS), Genoa, Italy.

Atkinson, C., & Kuhne, T. (2003). Model-driven
development: A Metamodeling Foundation. IEEE
Software, 20(5), 36-41.

Bratko, I. (1986). Prolog programming for
artificial intelligence. Reading, MA: Addison-
Wesley.

Coffman, E., Galambos, G., Martello, S., &
Vigo, D. (1998). Bin packing approximation
algorithms: Combinatorial analysis. Handbook
of combinatorial optimization. Norwell, MA:
Kluwer Academic.

Cormen, T.H., Rivest, R.L. Leiserson, C.E., &
Stein, C. (1990). Introduction to algorithms.
Cambridge, MA: MIT Press.

Fagan, M. (1999). Design and code inspections
to reduce errors in program development. IBM
Systems Journal, 38(2/3), 258-287.

Forman, G., & Zahorjan, J. (1994). The chal-
lenges of mobile computing. IEEE Computer,
27(4), 38-47.

Fowler, M., & Scott, K. (2000). UML distilled.
Reading, MA: Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1995). Design patterns: Elements of reusable
object-oriented software. Reading, MA: Ad-
dison-Wesley.

Ginsberg, M. (1989). A circumscriptive theorem
prover. Artificial Intelligence, 32(2), 209-230.

Graphical Modeling Framework. (2007). Re-
treived March 23, 2008, from http://www.eclipse.
org/gmf

Hill, J. H., & Gokhale, A. (2007, to appear).
Model-driven engineering for development-time
QoS validation of component-based software sys-
tems. In Proceeding of International Conference
on Engineering of Component Based Systems,
Tuscon, AZ.

Jaaksi, A. (2002). Developing mobile browsers in
a product line. IEEE Software, 19(4), 73-80.

Jouault, F., & Kurtev, I. (2005, October). Trans-
forming Models with ATL. In Proceedings of the
Model Transformations in Practice Workshop at
MoDELS, Montego Bay, Jamaica.

Kent, S. (2002, May). Model driven engineering. In

 3427

Reducing the Complexity of Modeling Large Software Systems

Proceedings of Integrated Formal Methods: Third
International Conference, Turku, Finland.

Kleppe, A., Bast, W., & Warmer. B. (2003). The
model driven architecture: Practice and promise.
New York: Addison-Wesley.

Lassila, O., & Swick, R. (1999). Resource descrip-
tion framework (RDF) model and syntax. World
Wide Web Consortium.

Ledeczi, A. (2001a). The generic modeling envi-
ronment. In Proceedings of the Workshop on Intel-
ligent Signal Processing, Budapest, Hungary.

Ledeczi, A., Bakay, A., Maroti M., Volgysei P.,
Nordstrom, G., Sprinkle, J., & Karsai, G. (2001b).
Composing domain-specific design environments.
IEEE Computer, 34(11), 44-51.

Lodderstedt, T., Basin, D., & Doser, J. (2002). Se-
cureUML: A UML-based modeling language for
model-driven security. UML, 2460, 426-441.

Martin, G., Lavagno, L., & Louis-Guerin, J.
(2001). Embedded UML: A merger of real-time
UML and co-design. In Proceedings of the 9th
International Symposium on Hardware/Software
Codesign, Copenhagen, Denmark.

Microsoft Domain-Specific Language Tools.
(2007). Retrieved March 23, 2008, from http://
msdn2.microsoft.com/en-us/vstudio/aa718368.
aspx

Moore, B. (2004). Eclipse development using
the graphical editing framework and the eclipse
modeling framework. Boca Raton, Florida: IBM,
International Technical Support Organization.

Nechypurenko, A., Wuchner, E., White, J., &
Schmidt, D.C. (2007). Application of aspect-based
modeling and weaving for complexity reduction
in the development of automotive distributed
real-time embedded systems. In Proceedings of
the Sixth International Conference on Aspect-
oriented Software Development. Vancouver,
British Columbia.

Nelder, J., & Mead, R. (1965). A simplex method
for function minimization. Computer Journal,
7(4), 308-313.

Object Management Group. (2007). Meta object
facility (MOF), version 1.4. Retrieved March 23,
2008, from http://www.omg.org/docs/formal/02-
04-03.pdf

Open Architecture Ware. (2007). Retrieved March
23, 2008, from www.openarchitectureware.org

O’Sullivan, J., Edmond D., & Ter Hofstede, A.
(2002). What’s in a service? Towards accurate
description of non-functional service proper-
ties. Distributed and Parallel Databases, 12(2),
117-133.

Poizat, P., Royer, J., & Salaun, G. (2004, June).
Formal methods for component description,
coordination and adaptation. In Proceedings of
the 1st International Workshop on Coordination
and Adaptation Techniques for Software Entities,
Oslo, Norway.

Quatrani, T. (2003). Visual modeling with rational
rose and UML. Reading, MA: Addison-Wesley.

Schmidt, D.C. (2002). Middleware for real-time
and embedded systems. Communications of the
ACM, 45(6), 43-48.

Selic, B. (2003). The pragmatics of model-driven
development. IEEE Software, 20(5), 19-25.

Sztipanovits, J., & Karsai, G. (1997). Model-
integrated computing. IEEE Computer, 30(4),
110-111.

Van Hentenryck, P., & Saraswat, V. (1996). Stra-
tegic directions in constraint programming. ACM
Computing Surveys, 28(4), 701-726.

Warmer, J., & Kleppe, A. (1998). The object con-
straint language: Precise modeling with UML.
Boston, MA: Addison-Wesley.

3428

Reducing the Complexity of Modeling Large Software Systems

Weber, M., & Weisbrod, J., (2002). Requirements
engineering in automotive development-experi-
ences and challenges. In Proceedings of the IEEE
Joint International Conference on Requirements
Engineering, Essen, Germany.

White, J. (2005). The generic eclipse modeling
system. Retrieved March 23, 2008, from http://
www.sf.net/projects/gems

White, J., Gokhale, A., & Schmidt, D.C. (2007a).
Simplifying autonomic enterprise Java Bean ap-
plications via model-driven development: A case
study. Journal of Software and System Modeling,
7(1), 3-23.

White, J., Schmidt, D. C., Mulligan S. (2007,
June). The generic eclipse modeling system. In
Proceedings of the Model-Driven Development
Tool Implementer's Forum at TOOLS '07. Zurich,
Switzerland.

White, J., Nechypurenko, A., Wuchner, E., &
Schmidt, D.C. (2006). Intelligence frameworks
for assisting modelers in combinatorically chal-
lenging domains. In Proceedings of the Workshop
on Generative Programming and Component
Engineering for QoS Provisioning in Distributed
Systems, Portland, OR.

White, J., Schmidt, D.C., Wuchner, E., & Nechy-
purenko, A. (2007b). Automating product-line
variant selection for mobile devices. In Proceed-
ings of the 11th Annual Software Product Line
Conference (SPLC), Kyoto, Japan.

Willans, J.S., Sammut, P., Maskeri, G., & Evans,
A. (2002). The precise UML group.

Yuan, W., & Nahrstedt, K. (2003). Energy-efficient
soft real-time CPU scheduling for mobile multi-
media systems. In Proceedings of the 19th ACM
Symposium on Operating Systems Principles,
Bolton Landing, NY.

AddItIonAl reAdInG

Bast, W., Kleppe, A.G., & Warmer, J.B. (2003).
MDA explained: The model driven architecture:
Practice and promise. Boston, MA: Addison-
Wesley.

Beckert, B., Keller, U., & Schmitt, P.H. (2002).
Translating the object constraint language into
first-order predicate logic. In Proceedings of
VERIFY, Copenhagen, Denmark.

Bézivin, J. (2001). From object composition to
model transformation with the MDA. In Proceed-
ings of the 39th International Conference on the
Technology of Object-Oriented Languages and
Systems, Santa Barbara, CA.

Bézivin, J. (2004). In search of a basic principle
for model-driven engineering. Novatica, 5(2).

Bézivin, J. (2005). On the unification power of
models. Software and Systems Modeling, 4(2),
171-188.

Bézivin, J., Farcet, N., Jezequel, J.M., Langolis, B.,
& Pollet, D. (2003). Reflective model-driven en-
gineering. In Proceedings of the 6th International
Conference on the Unified Modeling Languages
and Applications, San Francisco, CA.

Budinsky, F. (2003). Eclipse modeling framework.
Boston, MA: Addison-Wesley.

Clocksin, W.F., & Mellish, C.S. (1984). Program-
ming in prolog. New York: Springer-Verlag

Coplien, J.O., & Schmidt, D.C. (1995). Pattern
languages of program design. New York: ACM
Press/Addison-Wesley.

Czarnecki, K., & Eisenecker, U.W. (2000). Genera-
tive programming: Methods, tools, and applica-
tions. New York: ACM Press/Addison-Wesley.

Frankel, D. (2003). Model-driven architecture.
New York: John Wiley.

 3429

Reducing the Complexity of Modeling Large Software Systems

Gray, J., Bapty, T., Neema, S., Schmidt, D.C.,
Gokhale, A., & Natarajan, B. (2002). An approach
for supporting aspect-oriented domain model-
ing. In Proceedings of the Second International
Conference on Generative Programming and
Component Engineering, Pittsburgh, PA.

Gray, J., Bapty, T., Neema, S., & Tuck, J. (2001).
Handling crosscutting constraints in domain-
specific modeling. Communications of the ACM,
44(10), 87-93.

Hillier, F.S. (2004). Introduction to operations
research. New York: McGraw-Hill.

Kang, K.C., Kim, S., Lee, J., Kim, K., Shin, E.,
& Huh, M. (1998). FORM: A feature-oriented
reuse method with domain-specific reference
architectures. Annals of Software Engineering,
5(1), 143-168.

Mannion, M. (2002). Using first-order logic for
product-line model validation. In Proceedings of
the Second International Conference on Software
Product-lines. San Diego, CA.

Mellor, S.J. (2004). MDA distilled: Solving the
integration problem with the model driven archi-
tecture. Boston, MA: Addison-Wesley.

Northrup, L., Feiler, P., Gabriel, R.P., Goodenough,
J., Linger, R., Longstaff, T., et al. (2006). Ultra-

large-scale systems: The software challenge of the
future. Pittsburgh, PA: Carnegie Mellon Software
Engineering Institute.

Selic, B., & Rumbaugh, J. (1998). Using UML
for modeling complex real-time systems. Lecture
Notes in Computer Science, 1474(1), 250-260.

Sterling, L.S., & Shapiro, E.Y. (1994). The art
of prolog: Advanced programming techniques.
Cambridge, MA: MIT Press.

Van Hentenryck, P. (1989). Constraint satisfac-
tion in logic programming. Cambridge, MA:
MIT Press.

Vaziri, M., & Jackson, D. (2000). Some shortcom-
ings of OCL, the object constraint language of
UML. In Proceedings of the 34th International
Conference on the Technology of Object-Oriented
Languages and Systems, Santa Barbara, CA.

Warmer, J.B., & Kleppe, A.G. (2003). Getting
your models ready for MDA. Boston, MA: Ad-
dison-Wesley.

White, J., Czarnecki, K., Schmidt, D.C., Lenz,
G., Wienands, C., Wuchner, E., & Fiege, L.
(2007). Automated model-based configuration
of enterprise Java applications. In Proceedings of
the Enterprise Computing Conference (EDOC)
2007, Annapolis, MD.

White, J., Schmidt, D.C., Wuchner, E., & Nechypu-
renko, A. (2007). Automating product-line variant
selection for mobile devices. In Proceedings of the
11th Annual Software Product Line Conference
(SPLC), Kyoto, Japan.

This work was previously published in Designing Software-Intensive Systems: Methods and Principles, edited by P. Tiako, pp.
372-400, copyright 2009 by Information Science Reference (an imprint of IGI Global).

3430

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8.15
Heuristics and Metrics for

OO Refactoring:
A Consolidation and Appraisal of

Current Issues

Steve Counsell
Brunel University, UK

Youssef Hassoun
University of London, UK

Deepak Advani
University of London, UK

AbstrAct

Refactoring, as a software engineering disci-
pline, has emerged over recent years to become
an important aspect of maintaining software.
Refactoring refers to the restructuring of software
according to specific mechanics and principles.
While in theory there is no doubt of the benefits
of refactoring in terms of reduced complexity and
increased comprehensibility of software, there are
numerous empirical aspects of refactoring which
have yet to be addressed and many research ques-
tions which remain unanswered. In this chapter,
we look at some of the issues which determine

when to refactor (i.e., the heuristics of refactor-
ing) and, from a metrics perspective, open issues
with measuring the refactoring process. We thus
point to emerging trends in the refactoring arena,
some of the problems, controversies, and future
challenges the refactoring community faces. We
hence investigate future ideas and research po-
tential in this area.

IntroductIon

One of the key software engineering disciplines
to emerge over recent years is that of refactoring

 3431

Heuristics and Metrics for OO Refactoring

(Foote & Opdyke, 1995; Fowler, 1999; Hitz &
Montazeri, 1996; Opdyke, 1992). Broadly speak-
ing, refactoring can be defined as a change made
to software in order to improve its structure.
The potential benefits of undertaking refactor-
ing include reduced complexity and increased
comprehensibility of the code. Improved compre-
hensibility makes maintenance of that software
relatively easy and thus provides both short-term
and long-term benefits. In the seminal text on the
area, Fowler (1999) suggests that the process of
refactoring is the reversal of software decay and,
in this sense, any refactoring effort is worthwhile.
Ironically, Fowler also suggests that one reason
why developers do not tend to undertake refactor-
ing is because the perceived benefits are too “long
term.” Despite the attention that refactoring has
recently received, a number of open refactoring
issues have yet to be tackled and, as such, are
open research concerns. In this chapter, we look
at refactoring from two perspectives.

This first perspective relates to the heuristics
by which refactoring decisions can be made. Given
that a software system is in need of restructuring
effort (i.e., it is showing signs of deteriorating reli-
ability), IS project staff are faced with a number
of competing choices. To illustrate the dilemma,
consider the question of whether completion of
a large number of small refactorings is more
beneficial than completion of a small number of
large refactorings. A good example of the former
type of refactoring would be a simple “rename
method,” where the name of a method is changed
to makes its purpose more obvious. This type of
refactoring is easily done. An example of the latter,
more involved refactoring, would be an “extract
class” refactoring where a single class is divided
to become two. This type of refactoring may be
more problematic because of the dependencies of
the original class features.

As well as the decision as to “what” to refactor,
we also look at the equally important decision as
to “when” we should refactor. Throughout all of

our analysis, we need to bear in mind that refactor-
ing offers only a very small subset of the possible
changes a system may undergo at any point in its
lifetime. We return to this theme later on.

Combined with the need to choose refactorings
and the timing of those refactorings, the need to be
able to measure the refactoring process is also im-
portant. Software metrics (Fenton, 1996) provide
a mechanism by which this can be achieved. A
metric can defined as any quantifiable or qualita-
tive value assigned to an attribute of a software
artefact. The second perspective thus relates to the
type of metric applicable for determining firstly,
whether a refactoring is feasible, which of compet-
ing refactorings are most beneficial and how the
effects of carrying out refactoring have impacted
on the software after it has been completed. In
terms of “when” to refactor, a metrics program
implemented by an organization may provide
information on the most appropriate timing of
certain refactorings according to metric indicators
as, for example, a rapid and unexplained rise in
change requests.

For both perspectives investigated, there are
a large number of issues which could possibly
influence their role in the refactoring process.
For example, most refactorings can at best only
be achieved through a semi-automated process.
For example, the decision on how to split one
class into two can only be made by a developer
(and aided by tool support once that decision
has been made). Some metrics are subject to
certain threats to their validity and are thus are
largely inappropriate for judging the effect of a
refactoring; the lines of code (LOC) metric is a
good example of such a metric because of the
unclear definition of exactly what a line of code
is (Rosenberg, 1997). In our analysis, we need to
consider these issues.

The objectives of the chapter are three-fold.
Firstly, to highlight the current open issues in
the refactoring field. In particular, some of the
associated problems that may hamper or influence

3432

Heuristics and Metrics for OO Refactoring

any refactoring decision. Secondly, to highlight
the role that software metrics of different types
can play in the refactoring process and the in-
terplay between refactoring mechanics and the
measurement of refactoring. Throughout this
chapter we appeal to a number of previous em-
pirical studies to inform and support our ideas
and opinions. A final objective of the chapter is
to identify potential future research possibilities
and concerns considering some of the problems
and issues outlined.

The strategy we adopt for our analysis is as
follows. We believe strongly that past and ongo-
ing empirical evidence from a range of different
systems provides the best mechanism for analyz-
ing and achieving the goals of the chapter. Those
goals are firstly, to distill from current empirical
thinking (studies and metrics) the elements which
impact on the theoretical and practical aspects of
refactoring; secondly, to present that evidence in a
relevant, interesting and meaningful way. Finally,
to propose a set of heuristics from that evidence
which we feel will be of value to refactoring prac-
titioners, project managers, and researchers alike.
We also feel that the results will be of interest to
the wider software engineering community in
terms of informing our understanding of change
patterns and trends.

The chapter is arranged as follows. In the
next section, we describe background and related
work in the field of refactoring and discuss our
viewpoint in a broad sense. Next, we focus on
the “what” aspects of refactoring, drawing on
previous empirical studies in the area to decide
what refactorings to apply. We then look at the
“when” of refactoring; when should we apply
refactorings? Next, we summarize the heuristics
presented in the chapter (in particular, those in
previous sections) and then we describe some
future research directions in the refactoring field.
Finally, we draw some conclusions.

bAcKGround

We view three interrelated areas as particularly
relevant to our analysis; theory and the mechanics
of refactoring, practical application and motivation
of empirical studies of refactoring and finally, work
in the metrics field. By “mechanics” of refactoring
we mean the prescribed steps that need to be ap-
plied to complete a refactoring (Fowler, 1999).

refactoring theory and mechanics

There are a number of works relevant specifically
to refactoring that have contributed to the field
and which could be said to be seminal. In terms
of early work in the area, the main text and from
which we will draw significantly in this chapter
is that of Fowler (1999). In this text, Fowler de-
scribes the mechanics of 72 different refactorings
and assorted “bad smells” in code. Bad smells in
code have a special significance to the work in
this chapter. According to Fowler, the key indica-
tor of when refactoring is overdue is when code
starts to “smell.” An example of a bad smell is an
inordinately long method and is thus an obvious
candidate for splitting in two.

In the same text, Fowler categorizes the 72
refactorings according to four areas. These are
whether a refactoring: makes method calls sim-
pler, organizes data, moves features amongst
objects, or deals with generalization. The Ph.D.
work of Opdyke (1992), work by Johnson and
Foote (1988) and Foote and Opdyke (1995) has
also been instrumental in promoting refactoring
as a discipline and demonstrating the viability of
the refactoring approach. As well as investigat-
ing the “what” and “when” of refactoring, we
also illustrate potential areas for novel empirical
research to build on these foundations.

Most of the early refactoring literature focused
on Java and Smalltalk as the target languages. The
unique features of object-oriented (OO) languages
(e.g., encapsulation and inheritance) make refac-

 3433

Heuristics and Metrics for OO Refactoring

toring a particularly interesting challenge for the
developer. For example, encapsulation issues and
the need to conform to sound OO principles means
that there is frequently a need to apply relatively
simple refactorings. For example, the “encapsulate
field” refactoring modifies the declaration of a field
from public to private. The motivation according
to Fowler (1998) is that:

One of the principal tenets of object-orientation is
encapsulation, or data hiding. This says that you
should never make your data public. (p. 206)

In the next section, we provide evidence that
shows developers (for the C++ language) do not
seem to attach importance to getting encapsula-
tion “right”; the key (and worrying) point is that
refactoring may require the breaking down of
“bad developer habits.”

In terms of the OO inheritance feature, there
are a number of challenges for the developer.
For example, ensuring that methods and fields
are declared and used in the most appropriate
place of an inheritance hierarchy. The “pull up
field” refactoring for example requires that a
field in a subclass is moved up to its superclass.
According to Fowler, the motivation for this
refactoring is that “two subclasses have the same
field”. In this case, the field in question should be
moved to the superclass to avoid duplication of
that field. This is a relatively simple refactoring
related to inheritance. A less simple refactoring
is the “pull up method” refactoring, where two
identical methods are moved from subclasses to
their superclass (again to avoid duplication of
behaviour). Both the mechanics and testing effort
required is significantly greater for the latter type
of refactoring.

empirical studies

The benefits of refactoring are therefore clear
in terms of qualitative (subjective) values. In
terms of empirical studies, recent work by Naj-

jar, Counsell, Loizou, and Mannock (2003) has
shown that refactoring can deliver both quan-
titative and qualitative benefits; the refactoring
“replacing constructors with factory methods” of
Kerievsky (2002) was analyzed. The mechanics
of the refactoring require a class to have its mul-
tiple constructors converted to normal methods,
thus eliminating the code “bloat” which tends to
occur around constructors. The moved methods
thus have new, more meaningful names. Results
showed quantitative benefits in terms of reduced
lines of code due to the removal of duplicated as-
signments in the constructors as well as potential
qualitative benefits in terms of improved class
comprehension.

In Najjar, Counsell, and Loizou (2005), the
problems associated with a simple refactoring
such as the encapsulate field (EF) was studied. To
investigate the EF refactoring, samples of classes
were chosen from five different Java systems
and the potential for applying the mechanics
of the refactoring investigated. Results showed
certain potential for applying the refactoring per
se. In other words, no shortage of opportunity
was found for applying the refactoring; public
attributes were found in a number of classes in
each system. However, three features exhibited
by the five systems suggest that applying the EF
refactoring is not as straightforward or applicable
as it first seems. Firstly, the number of dependent
classes requiring changes as a result of applying the
refactoring may prohibit the refactoring; secondly,
the large number of classes with zero attributes
would seem to render the refactoring almost re-
dundant. Finally, the features of the inheritance
hierarchy in each system pose a dilemma with
the use of the protected declaration (as opposed
to private). A final finding was the practical trade-
off and applicability of the EF refactoring when
considering different application domains. Some
of the systems studied were more amenable to the
EF refactoring than others.

Recent work by Advani, Hassoun, and Coun-
sell (2005b) describes the results of an empirical

3434

Heuristics and Metrics for OO Refactoring

study of the trends across multiple versions of
open source Java software. A specially developed
software tool extracted data related to each of
fifteen refactorings from multiple versions of
seven Java systems according to specific criteria.
Results showed that, firstly, the large majority
of refactorings identified in each system were
the simpler, less involved refactorings. Very
few refactorings related to structural change in-
volving an inheritance relationship were found.
Secondly, and surprisingly, no pattern in terms
of refactorings across different versions of the
software was found. Results thus suggested
that developers tend to carry out simple “core”
refactorings at the method and field level, but not
as part of larger structural changes to the code
(i.e., at the class level). The research in the same
paper highlights an important refactoring issue.
It is unlikely that we will be able to identify
whether those “core” refactorings were done in
a conscious effort by the developer to refactor, or
as simply run-of-the-mill changes as part of the
usual maintenance process. In other words, the
question, “do developers refactor without realising
it?” needs to be addressed. This then raises the
question as to whether refactoring is subsumed
by usual changes typically made by developers.
Despite these issues, we feel that identification of
the major refactoring categories is a starting point
for understanding the types of change typically
made by developers and the inter-relationships
between changes typically made by developers.
The same paper identified refactorings accord-
ing to specific rules and heuristics. Developing
heuristics for undertaking refactorings based on
system change data has also been investigated by
Demeyer, Ducasse, and Nierstrasz (2000).

strategy used for empirical studies

The empirical studies described as part of this
chapter and from which we draw data were all
undertaken over the past seven years. For each
study, there was at least one underlying objective

and/or hypothesis; as we describe each study, we
point out what these were. This chapter represents
an interleaving and distillation of these studies
in a purely refactoring context. For one or two
studies, the hypotheses were not stated from the
outset. For example, it is difficult to reason about
when most refactorings are likely to occur. On
the other hand, hypotheses about cohesion and
how human subjects would rate class cohesion
are far easier to compose.

Many of the metrics used in the studies were
collected manually and, wherever possible, col-
lected automatically using tailored software. For
example, the study described in the fourth section
used human subjects as a basis and data from that
study could only be collected from hand-written
scripts. Data such as number of class attributes
and methods, on the other hand, can easily be
collected automatically. Where data was collected
automatically, it was always verified afterwards
through human inspection.

The threats to the validity of each study
were also considered. For example, we tried to
choose systems for each study that gave as wide
a cross-section of application types as possible.
We also tried to choose systems which were
industrial-sized and which were developed by
professional software engineers. Of course, we
can never study too many systems and so many
of results need to be supported by other studies
in other research using other systems to build up
a knowledge base in the area concerned. We have
also provided evidence from both Java and C++
systems as a way of reflecting trends in different
OO languages. Finally, we have included a variety
of statistical techniques in this chapter; we chose
different techniques for different studies as a way
of highlighting the salient features we were trying
to demonstrate.

Automation and metrics

In terms of related work on automating the search
for refactoring trends, research by Tokuda and Ba-

 3435

Heuristics and Metrics for OO Refactoring

tory (2001) has shown that three types of design
evolution, including that of hot-spot identification,
are possible. A key result of their work was the
automatic (as opposed to hand-coded) refactoring
of fourteen thousand lines of code. Finally, the
principles of refactoring are not limited to object-
oriented languages. Other languages have also
been the subject of refactoring effort including
that of visual basic (Arsenovski, 2004).

A central feature of our analysis is the use of
metrics to quantitatively capture the features of
the system under study. Many metrics have been
proposed and used for analyzing object-oriented
and procedurally-based software both theoreti-
cally and empirically (Bieman & Ott., 1994;
Briand, Devanbu, & Melo, 1997; Chidamber &
Kemerer, 1994; Hitz & Montazeri, 1996). In most
previous studies, we have used simple counts of
the number of the class feature “number of attri-
butes.” Metrics play a central role in allowing us
to measure features of systems at different levels
of abstraction whether at the class or method
level). In all the studies previously mentioned
and studies we draw on in this chapter, metrics
play a part.

Finally, as well as the need to understand
“what” and “when” to refactor, it is also impor-
tant to point to one other key motivation for our
analysis of refactoring in this chapter. An earlier
investigation by some of the authors to identify
suitable candidates for refactoring failed for one
simple reason. It highlighted obvious candidates
for refactoring according to obvious criteria
such as large numbers of class methods and at-
tributes. Inspection of the same classes revealed
very few opportunities for refactoring, because
classes with large numbers of features often have
those features for a good reason. For example, we
found one class with several hundred attributes, a
class called PageAttribute.MediaType. This class
contained an attribute for each type of paper and
other form of media (e.g., A4, A3, etc.). Refactoring
this class would have been counterproductive in
terms of benefits obtained, even it though it was

identified according to specific refactorings and
bad smells therein (e.g., large method, large class,
and primitive obsession (Fowler, 1999). In the next
section, we investigate the issue of “what” should
be refactored and in the section following that the
question of “when” refactoring should be done.
We use results from previous empirical studies
to support our arguments.

the “whAt” oF reFActorInG

One of the most fruitful research areas in recent
years has been that of an empirical study. Carrying
out empirical studies helps us to understand more
in a quantitative and qualitative sense about how
systems and the people using those behave (Bie-
man, Straw, Wang, Munger, & Alexander, 2003;
Briand, Bunse & Daly, 2001; Counsell, Swift &
Mendes, 2002; Harrison, Counsell & Nithi, 2000;
Ostrand, Weyuker, & Bell, 2004). A multitude
of empirical studies have thus been carried out
covering all aspects of software engineering and
related computer science fields. A particularly
interesting area of empirical studies have been
those which shed light on or which show how well
stated theory stands up in practice. In this section
we describe empirical experiences from which
we can learn about rules and heuristics of what
to refactor. In particular, we highlight some of the
problems associated with refactoring observed
through some of these empirical studies. More
specifically, we highlight separately the empiri-
cal reality or refactoring and the applicability of
refactorings thereof.

To facilitate an understanding of code features
which the empirical studies try to evaluate, the
following is a definition of a class APoint that
models the operations of two coordinates x and
y and two further attributes a and z. The class
has a single attribute of each type of declaration
(public, private and protected) and inherits from a
class called BasePoint. It has a single constructor
called APoint and a single method CalcDistance.

3436

Heuristics and Metrics for OO Refactoring

It is coupled to BasePoint through inheritance and
to MathType via the return type in the method
CalcDistance. We could also say that this class
is reasonably cohesive because the methods are
meaningful, operate on the same data and are
named meaningfully. Although a simple class, the
features demonstrate some of the major elements
which empirical studies in later sections tackle
in an empirical sense.

public class APoint extends BasePoint {
 public int x, y;
 private int a;
 protected int z;

 // constructor
 public APoint (int a, int x, int y, int z) {
 this.a = a;
 this.x = x;
 this.y = y;
 this.z = z;
 }

 public MathType CalcDistance() {
 return((x* y * a) + z);
 }

}

In the next section we investigate how the
empirical reality is often different to the perceived
reality with evidence to support the claims. We
look at each study from a refactoring perspec-
tive.

the empirical reality

The applicability of certain refactorings relies, to
a large extent, on the features of the application
in question being present in that application. In
the study where we replaced multiple construc-
tors with a catchall constructor (Najjar, Counsell,
Loizou, & Mannock, 2003), the study would have
been impossible had every class had just a single

constructor. The “what” to refactor is therefore
dependent on the features of the refactoring being
present in the systems under consideration. In
subsequent sections, we use the terms “attribute”
and “field” interchangeably.

zero Attribute classes

Figure 1 shows one of the results from the analysis
of the “encapsulate field” refactoring (Fowler,
1999). The purpose of the study from which the
data is taken was to empirically investigate the
potential for simple refactorings. We wanted to
show that even perceived trivial refactorings posed
certain problems. Figure 1 shows the percentage
of classes with zero attributes in samples taken
from five Java systems.

One of the key impediments to this refactoring
was thus the high percentage of zero-attribute
classes found from the samples taken from each
system. The applications ranged from a graph
drawing package with the lowest proportion of
zero-attribute classes (System 1) to the Swing
class library (System 5) with the largest.

Table 1 shows summary data for the largest of
the five systems investigated in the same research.
It also shows the number of public features from
the same sample. It shows that 52 of the classes
from the sample size of 63 had zero attributes.
Only 11 classes had more than one public at-
tribute. Opportunities for the encapsulate field
refactoring are thus limited to those 11 classes.
The study thus cast doubt on the viability of even
simple refactorings such as EF.

Another feature of the systems investigated
in Najjar, Counsell, and Loizou (2005) is the
existence of certain key classes (Counsell, Swift
& Tucker, 2005). One obstacle to a decision as to
what to refactor is the existence of certain class
features which on the face of it, are excellent
candidates for refactoring. One key indicator of
a class which suggests it needs refactoring is a
class with a large number of attributes. However,
inspection of the class revealed it to require each

 3437

Heuristics and Metrics for OO Refactoring

of those attributes as part of its essential function-
ality. The other problem with key classes is that
they tend to have a large number of dependent
classes. The purpose and underlying hypothesis
of the investigation in Najjar et al. (2005) was to
establish the problems associated with dependent

classes; we believe that the larger the number
of dependent classes, the harder it is, generally
speaking, to refactor.

Inspection of the samples of classes chosen
from System 3 (another library system) showed
it to comprise a class called StrictMath, with

Figure 1. Five systems and the percentage of zero-attribute classes

Table 1. Summary data for the Swing library

Table 2. Summary of dependencies for the Swing library

Sample Size 63
Classes with >= 1 public attr. 11
Classes with zero attributes 14
Classes with zero public attrs. 52
Max number of public attrs. 80

Sample Size 63
Median no. of dependencies 1
Max. no. of dependencies 14
Mean no. of dependencies 2.73

3438

Heuristics and Metrics for OO Refactoring

112 attributes and 38 methods. Equally, System
1 (GraphDraw) has a class called GraphCanvas
with 66 attributes and 63 methods.

Table 3 shows the summary data for the Swing
system and shows that one class has 14 dependent
classes. The important point about key classes
is that while they may be eminently suitable for
refactoring, the problem of dependent classes
renders the process as problematic.

The conclusions we can draw from the data in
Tables 1 and 2 relevant to the refactoring theme
are that firstly, in many cases, the decision about
refactoring is made for us by nature of the system
itself. Deciding what to refactor is a decision aided
partly by features of the systems themselves. If
there are no attributes, then the number of poten-
tial refactorings is reduced significantly. In fact,
the following are some of the refactorings which
become impossible as a result:

• Encapsulate field: The declaration of a field
is changed from public to private.

• Move field: “A field is, or will be, used by
another class more than the class on which
it is defined.”

• Rename field: A field is renamed to make
its purpose more obvious.

• Push Down field: “A field is used only by
some subclasses.” The field is moved to those
subclasses.

• Pull Up field: “Two subclasses have the
same field.” In this case, the field in question
should be moved to the superclass.

Secondly, the problem is more acute that the
five refactorings above would suggest. The first
three refactorings of the five listed are often
part of larger refactorings (we will return to this
principle in detail later). For example, the move
field is part of the mechanics of the move method
refactoring; if there are no attributes, then this is
likely to make the move method process simpler.
Absence of class features eliminates one refac-
toring and thus makes others simpler. Finally, in
the existence of certain key classes may present
a false impression of refactoring potential.

ease of Automation

In a previous study described in Advani, Hassoun,
and Counsell (2005b), we automatically extracted
data about refactorings from seven Java systems
of different types using a software tool (Advani,
Hassoun, & Counsell, 2005a). The purpose of

Table 3. Categorization of changes made to 52 Java classes

Change Type Total Distribution Max. Mean
New method added 32 7 14 0.62
Method call added 45 9 32 0.85
Parameter in method call added
or modified

32 19 9 0.62

Method signature modified 51 26 14 0.98
“If” added or modified 67 14 11 1.26

 3439

Heuristics and Metrics for OO Refactoring

the study was to investigate the potential for
identifying refactorings automatically using a
tool and some of what we perceived was common,
popular refactorings. To do this, we developed
rules for extracting refactoring data from the
source code. For example, to detect whether the
“Move Field” refactoring had taken place in the
transition from one release to the next, the tool
checked whether:

1. A field (name, type) that appeared in a class
type (belonging to older version) appeared
to be missing, that is, dropped from the
corresponding type of a later version.

2. The field (name, type) did not appear in any
superclass or subclass of the original type.

3. A similar field (name, type) appeared to
have been added to another type (belonging
to later version).

The mechanics of this refactoring are quite
straightforward, and, therefore, we could easily
automate it. According to Fowler, moving state
and behaviour between classes is the essence of
refactoring. However, certain refactorings can
only be achieved through manual means and at
best a tool can only assist. Consider the case of the
“substitute algorithm” (SA) refactoring. The SA
refactoring substitutes an algorithm for one which
is clearer. The example given by Fowler is a series
of “if” statements which can simply be replaced
with a loop and an array. In the same way that
the EF refactoring was relatively straightforward,
the SA requires only that the code is changed and
then run against a set of tests to ensure that the
change has worked. However, changing code to
meet the same requirements cannot be achieved
by an automated process alone. There needs to
be a manual component to the process.

In previous work (Counsell, Hassoun, John-
son, Mannock, & Mendes, 2003), it has been
shown that the majority of the changes made to a
Java Library system were to “if” conditions (yet
interestingly not to “while” or “for” loops). The

changes made to a set of fifty-two Java library
classes over a three year period were investigated.
The research attempted to support the hypothesis
that certain types of changes made to Java code
fall into distinct trends and, furthermore, are likely
to be made at a high level of abstraction (i.e., at
the method signature and parameter level).

Table 3 shows the distribution of changes
categorized as part of the study in Counsell et
al. (2003). The 67 additions or modifications to
“if” statements were attributable to just fourteen
classes. The maximum value in this table denotes
the greatest number of changes of that type found
for any single class. It shows that 32 new methods
were added over the period to the classes studied.
Interestingly, these 32 new methods were ac-
counted for by only seven classes of the 52.

The problem from a refactoring point of view
comes from two sources. Firstly, it is impossible
for a tool to decide whether one section of code
is functionally the same as another section of
code unless it knows about the semantics of what
each section of code does. Syntactically, we can
make a wide range of observations about two
sections of code. However, it would be virtually
impossible to trace an instance of an SA refactor-
ing (whether manually or automatically). This is
particularly true if the change to the algorithm
was complex in nature. In other words, and very
much a topical refactoring issue, is that the most
popular refactorings in the study described seem
to be those which we cannot automate very easily.
Secondly, the SA algorithm is likely to incorporate
other refactorings; for example, the add parameter
refactoring which may mask the SA refactoring
even further. The lesson in terms of heuristics
and relevant to the chapter is therefore that for
convenience and speed (since developer time and
resources are valuable and limited), refactorings
which can be supported by a tool are likely to be
a better investment of a developer's time. Some
refactorings have no mechanics and this in turn
make those refactorings difficult to apply.

3440

Heuristics and Metrics for OO Refactoring

the role of Inheritance

Inheritance is claimed to be a fundamental
principle of the OO paradigm. It is supposed to
bring benefits in terms of reuse and inheritance
hierarchy models information in a way which is
easily understood and maintained. Despite the
potential benefits of using inheritance, a number
of studies have shown that the claims about ease
of maintenance can be questioned (Briand et al.,
2001; Counsell, Loizou, et al., 2002a).

In another recent study by the authors, it has
been observed that the number of refactorings
related to the category “dealing with generaliza-
tion” were a very small part of the total overall
number of refactorings. A tool was used to extract

refactoring information from multiple versions
of seven Java systems. The purpose of the study
was to identify trends in core refactorings across
a wide range of systems. Table 4 illustrates the
number of refactorings extracted across the seven
systems and n versions categorised according to
the “dealing with generalization” type identified
by Fowler.

It also shows the totals for that refactoring/
version in the final row. Between versions 3-4,
only 41 of the 236 refactorings were attributed to
this category. Only 6 occurrences of the extract
subclass were found in all versions of the systems
(looking across the row). Clearly, the lack of in-
heritance-based refactorings is evident from Table
4. The large number of zero values suggests that

Table 4. Inheritance-based refactorings across multiple versions of seven Java systems

Table 5. Location of Java classes in the inheritance hierarchy

Refactoring Type 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10
Push Down Method 0 0 1 0 1 0 0 0 4
Extract Subclass 0 2 3 0 1 0 0 0 0
Pull Up Field 0 1 7 0 2 4 0 0 0
Extract Superclass 0 2 10 0 8 1 0 0 2
Push Down Field 0 16 3 0 7 0 0 0 0
Pull Up Method 0 9 17 0 24 5 0 0 10
Total 89 151 236 8 67 61 17 7 51

System Leaf Classes % of Total

Drawing Tool 5 2.45
Framework 34 20.06
Java Library 44 38.72
Compiler 73 32.59
Swing 577 54.59

 3441

Heuristics and Metrics for OO Refactoring

across versions, inheritance-based refactorings
are not common. The worrying trend is that the
result suggests that developers avoid complex
refactorings in favour of simpler refactorings
(which accounted for the majority of the values
in the final row of Table 4).

Evidence of the limited role that inheritance
can play in the determination of refactorings can
be found in Table 5. It shows that for the same
five systems analyzed in Najjar et al. (2005), a
high proportion of classes (except those for the
drawing tool) are leaf classes, that is, have no
subclasses. This feature should make the classes
at leaves easier to refactor since, in theory they
have less dependencies than classes with their
own subclasses.

This would certainly apply to the encapsulate
field refactoring where there are no subclasses
dependent on the field in question. The same
however could not be said of any refactoring
which requires parts of the class to be moved
— the methods of the class may use inherited
features and this may cause problems.

The key lesson in terms of the chapter is
that in certain circumstances, some refactorings
may be trivial and easily completed. The same
situation may however make other refactorings
prohibitively expensive in terms of developer
time and effort. Generally speaking, it seems
that inheritance refactorings are so involved
that they are avoided by developers. In the next
section, we discuss the related issues of coupling
and cohesion.

cohesion and coupling

We have seen already that one of the key impedi-
ments to refactoring for even a simple refactoring
is the role that dependencies between classes plays.
An accepted software engineering principle is that
developers should try to make classes as cohesive
as possible and that those classes should contain
minimal coupling (Pressman, 2005). In the metrics
community, cohesion is often associated with ease

of comprehension. If a class is cohesive, then in
theory it should be easy to understand. If a class
is uncohesive then the purpose of the class is not
obvious and it is difficult to understand what the
purpose of that class is.

The best known of the cohesion metrics is
that proposed by Chidamber and Kemerer (C&K)
— the lack of cohesion of the methods of a class
LCOM (Chidamber et al., 1994). The LCOM
metric views a class as cohesive if the instance
variables are distributed in such a way that all
methods use all instance variables. Equally, a
class is viewed as uncohesive if the use of instance
variables amongst the methods of a class are dis-
joint. Various other metrics have been proposed
to measure cohesion, but, as of yet, there is no
general consensus on cohesion metric. In other
words, we have no accepted way of measuring
the benefit of a refactoring such as “extract class”
whose purpose is to remove code from one class
to make the source class more cohesive.

In terms of other related work, a number of
attempts have been made to capture cohesion
through software metrics. As well as the C&K
LCOM metric, the cohesion amongst the methods
of a class metric (CAMC) by Bansiya, Etzkorn,
Davis, and Li (1999) based on the overlap of pa-
rameters used by a class was found to correlate
with LCOM and the views of three developers
on what constituted cohesion. Hitz and Montaz-
eri (1996) also propose metrics for measuring
cohesion (as well as coupling). Bieman and Ott
(1994) demonstrated the measurement of func-
tional cohesion in C software. Finally, Briand et
al. (1998) propose a framework for measurement
of OO cohesion and conclude that many of the
cohesion metrics proposed are in most cases not
validated theoretically and even fewer validated
empirically.

In terms of refactoring, high cohesion would
seem to be a synonym for high comprehensibil-
ity. If a class is cohesive, then the class will be
easier to understand and modify. We note that
any measure of cohesion based on the attributes

3442

Heuristics and Metrics for OO Refactoring

of a class cannot be assessed if the class has no
attributes. In this chapter, we adopt the stance
that coupling is a far better indicator of compre-
hensibility than any measure of cohesion. High
coupling will make refactorings more difficult to
apply. Lower coupling will make them easier to
apply. This brings into question the whole issue
of the coupling and cohesion interplay.

As part of an earlier study into OO (C++) cohe-
sion, the correlation between coupling given by
the number of associations metric (NAS) metric
and a component of a metric called normalised
hamming distance (NHD) metric was analyzed.
The NAS represents the number of couplings of
a class and can be counted as the number of lines
emerging from a class on a UML class diagram.
The NHD is based around the inter-relation-
ship between the parameters of the methods of
a class in a similar vein to the CAMC metric.
The purpose of the study was to investigate the
hypothesis that, in an OO sense, cohesion and
coupling were so interrelated that one could be
substituted for another.

Table 6 shows the strong relationship between
the key component of our cohesion metric P
(number of unique object “P”arameters in the
class as a whole) and NAS metric; the results
are a summary of the results from the study in
Counsell, Swift, et al. (2002). Correlation at the
1% level is asterisked by the value in each case.
We thus adopt the stance that firstly, coupling has
a strong relationship with cohesion (where method

parameters are assumed to be a key component of
class cohesion). Secondly, that unlike coupling,
cohesion is a subjective issue and cannot be mea-
sured objectively.

Reduced coupling has also been a claim of
certain refactorings. For example, the motivation
behind the “move field” refactoring is that “a field
is, or will be, used by another class more than the
class on which it is defined. It therefore makes
sense to move that field to the class which needs to
most and eliminate the coupling. Various metrics
have been defined to measure coupling (Briand et
al., 1997; Chidamber et al., 1994). The difficulty
arises when the decision as to what represents too
much coupling has to be made. For certain applica-
tions, a high level of coupling may be necessary.
There is also the problem that certain types of
coupling are more of a feature in some applica-
tions than others. A GUI-based system (with a
high dependence on inheritance) lends itself well
to a structure incorporating frames, panels and
dialog boxes, all of which share certain generic
properties. Although some amount of work has
been done on finding an optimal level of coupling
(El Emam, Benlarbi, Goel, Melo, Lounis & Rai,
2002), further empirical studies need to be carried
out before a consensus can be reached.

When making refactoring decisions, we there-
fore suggest that coupling should be the prime
determinant of which refactorings to carry out. We
should choose refactorings which can be measured
in reduced levels of coupling rather than aiming

Table 6. Pearson, Kendall and Spearman’s correlation coefficients (NAS vs. P)

System Pearson’s Kendall’s Spearman’s

Framework 0.59* 0.61* 0.69*
Compiler 0.41 0.28 0.30
Graph Editor 0.83* 0.62* 0.79*

 3443

Heuristics and Metrics for OO Refactoring

for high cohesion. Furthermore, in assessing the
post-impact of any refactoring, coupling not co-
hesion should be used where possible. We accept
that many refactorings involve no coupling issues
and for these refactorings, the decision amongst
competing refactorings may require subjective
judgements.

Another point in terms of the overall chapter
is that we should always look for refactorings
which provide quantifiable benefits. In the next
section, we address the issue of when to refactor;
that is, we have looked at “what” to refactor, but
the “when” is equally important.

the “when” oF reFActorInG

The decision as to when to refactor is as important
a decision as to what to refactor. Fowler suggests
that rather than being one large concerted effort,
refactoring should be done in little bursts. He also

suggests that a developer does not decide to refac-
tor; the developer refactors because he/she wants to
achieve something else and doing that “something
else” requires that they refactor first. Similarly,
Beck (2000) urges developers to refactor when
the system tells them to, not through speculation
alone. Very little research has empirically tackled
the issue of when we should refactor.

To support the arguments about when to
refactor, we return to the study of the seven open
source Java systems analyzed in Advani et al.
(2005b). The first question which arises is whether
there any patterns within the systems studied as
to “when” refactoring is carried out. Figure 2
shows that for the Antlr system, the majority of
refactorings happen at versions 2-3 and 3-4. It is
noticeable that some refactorings (particularly
inheritance-based refactorings) are few and far
between. Figure 3 for the same system shows the
same trend for the HSQLDB system and similarly
for the JasperReports system in Figure 4. In each

Figure 2. Refactorings for the Antlr system across five versions

268 Counsell, Hassoun, & Advani

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 2. Refactorings for the Antlr system across five versions

Figure 3. Refactorings for the HSQLDB system across four versions

0

1

2

3

4

5

6

7

Add
Meth

od
Para

mete
r

Enc
ap

su
lat

eD
ow

nc
as

t

Hide
Meth

od

Pull
UpF

iel
d

Pull
UpM

eth
od

Pus
hD

ow
nF

iel
d

Pus
hD

ow
nM

eth
od

Rem
ov

eM
eth

od
Param

ete
r

Ren
am

eFiel
d

Ren
am

eMeth
od

Enc
ap

su
lat

eFiel
d

Mov
eField

Mov
eMeth

od

Extr
ac

tS
up

erC
las

s

Extr
ac

tS
ub

Clas
s

Antlr

Antlr270VS271.xml
Antlr271VS272.xml
Antlr272VS273.xml
Antlr273VS274.xml
Antlr274VS275rc1.xml

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Add
Meth

od
Para

mete
r

Enc
ap

su
lat

eD
ow

nc
as

t

Hide
Meth

od

Pull
UpF

iel
d

Pull
UpM

eth
od

Pus
hD

ow
nF

iel
d

Pus
hD

ow
nM

eth
od

Rem
ov

eM
etho

dP
ara

mete
r

Ren
am

eF
iel

d

Ren
am

eMeth
od

Enc
ap

su
lat

eF
ield

Mov
eField

Mov
eMeth

od

Extr
ac

tS
up

erC
las

s

Extr
ac

tS
ub

Clas
s

HSQLDB

HSQLDB161VS170.xml
HSQLDB170VS171.xml
HSQLDB171VS17211.xml
HSQLDB17211VS1731.xml

3444

Heuristics and Metrics for OO Refactoring

Figure 3. Refactorings for the HSQLDB system across four versions

Figure 4. Refactorings for the JasperReports system across four versions

268 Counsell, Hassoun, & Advani

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 2. Refactorings for the Antlr system across five versions

Figure 3. Refactorings for the HSQLDB system across four versions

0

1

2

3

4

5

6

7

Add
Meth

od
Para

mete
r

Enc
ap

su
lat

eD
ow

nc
as

t

Hide
Meth

od

Pull
UpF

iel
d

Pull
UpM

eth
od

Pus
hD

ow
nF

iel
d

Pus
hD

ow
nM

eth
od

Rem
ov

eM
eth

od
Param

ete
r

Ren
am

eFiel
d

Ren
am

eMeth
od

Enc
ap

su
lat

eFiel
d

Mov
eField

Mov
eMeth

od

Extr
ac

tS
up

erC
las

s

Extr
ac

tS
ub

Clas
s

Antlr

Antlr270VS271.xml
Antlr271VS272.xml
Antlr272VS273.xml
Antlr273VS274.xml
Antlr274VS275rc1.xml

0

10

20

30

40

50

60

70

80

90

100

110

120

130

Add
Meth

od
Para

mete
r

Enc
ap

su
lat

eD
ow

nc
as

t

Hide
Meth

od

Pull
UpF

iel
d

Pull
UpM

eth
od

Pus
hD

ow
nF

iel
d

Pus
hD

ow
nM

eth
od

Rem
ov

eM
etho

dP
ara

mete
r

Ren
am

eF
iel

d

Ren
am

eMeth
od

Enc
ap

su
lat

eF
ield

Mov
eField

Mov
eMeth

od

Extr
ac

tS
up

erC
las

s

Extr
ac

tS
ub

Clas
s

HSQLDB

HSQLDB161VS170.xml
HSQLDB170VS171.xml
HSQLDB171VS17211.xml
HSQLDB17211VS1731.xml

Heuristics and Metrics for OO Refactoring 269

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 4. Refactorings for the JasperReports system across four versions

Figure 5. Refactorings across versions of the seven systems

0

1

2

3

4

5

6

Add
Meth

od
Para

meter

Enc
ap

su
lat

eD
ow

nc
as

t

Hide
Meth

od

Pull
UpF

iel
d

Pull
UpM

eth
od

Pus
hD

ow
nF

iel
d

Pus
hD

ow
nM

eth
od

Rem
ov

eM
eth

od
Param

ete
r

Ren
am

eF
iel

d

Ren
am

eM
eth

od

Enc
ap

su
lat

eF
iel

d

Mov
eField

Mov
eMeth

od

Extr
ac

tS
up

erC
las

s

Extr
ac

tS
ub

Clas
s

JasperReports

JasperReports060VS061.xml
JasperReports061VS062.xml
JasperReports062VS063.xml

Total refactorings (all versions)

0

50

100

150

200

250

Versions (1-2, 2-3...)

To
ta

l

 3445

Heuristics and Metrics for OO Refactoring

of the figures, there seems to be a trend of refac-
toring being undertaken at earlier stages of the
system’s life rather than at later versions.

Figure 5 shows the cumulative values of refac-
torings across time for all seven systems studied.
It supports the results for the individual systems
and shows that the bulk of refactorings tend to
occur not at the earliest stages of a system, but
around versions 2-3 and 3-4.

The evidence from Figures 2, 3, and 4 therefore
supports the view that in terms of the need for
refactoring, a system starts to degrade or decay
after 3 or 4 versions.

The conclusion we can draw from the evidence
in Figures 2, 3, 4, and 5 is that contrary to what
Fowler states would be the best time to refactor
(at constant intervals), there seems to be a peak
around versions 3-4 for the systems studied in
terms of when refactoring takes place. From
Figure 5, it is also noticeable that after version
3-4, there is a dramatic drop in the number of
refactorings. Although the study described relates
to only seven systems, we feel that the results
give useful evidence of the type of refactoring
trends in systems.

Of course, we have no means of predicting the
trend in refactoring beyond the versions studied,
and it would be as unreasonable to suggest that
there would not be any more peaks. Although
the empirical evidence suggests that we need
to devote refactoring efforts at early stages of
the system’s lifetime, we would urge consistent
refactoring throughout the period of a system's
life. Of course, more empirical studies need to
be undertaken before we can draw any concrete
conclusions.

monitoring Growth

One of the key benefits of carrying out refactor-
ing is reduced class complexity. For example, the
motivation behind the “extract class” refactoring
is that a class should be split into two classes
because it is becoming too large to understand
easily. In other words, the class is becoming too
complex. One current issue is therefore that as a
result of carrying out refactoring, we may well
attain improved comprehension, but the difficulty
arises when we try to measure that benefit. One
conclusion is thus that if a class has zero attributes,

Figure 5. Refactorings across versions of the seven systems

Heuristics and Metrics for OO Refactoring 269

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written
permission of Idea Group Inc. is prohibited.

Figure 4. Refactorings for the JasperReports system across four versions

Figure 5. Refactorings across versions of the seven systems

0

1

2

3

4

5

6

Add
Meth

od
Para

meter

Enc
ap

su
lat

eD
ow

nc
as

t

Hide
Meth

od

Pull
UpF

iel
d

Pull
UpM

eth
od

Pus
hD

ow
nF

iel
d

Pus
hD

ow
nM

eth
od

Rem
ov

eM
eth

od
Param

ete
r

Ren
am

eF
iel

d

Ren
am

eM
eth

od

Enc
ap

su
lat

eF
iel

d

Mov
eField

Mov
eMeth

od

Extr
ac

tS
up

erC
las

s

Extr
ac

tS
ub

Clas
s

JasperReports

JasperReports060VS061.xml
JasperReports061VS062.xml
JasperReports062VS063.xml

Total refactorings (all versions)

0

50

100

150

200

250

Versions (1-2, 2-3...)

To
ta

l

3446

Heuristics and Metrics for OO Refactoring

then it affects the number of refactorings which
can be carried out and also the means by which we
can measure the outcome of any refactoring. One
of the other key potential benefits of refactoring
is a reduction post-refactoring in the number of
lines of code. However, the lines of code added
to a class together with the number of changes
that have been applied to a class may give a good
indication of the potential for refactoring.

A previous study by Bieman et al. (2003)
investigated the hypothesis that large, object-
oriented classes were more susceptible to change
than smaller classes. The measure of change
used in the study was the frequency with which
the features of a class had been changed over a
specific period of time. From a refactoring per-
spective, the frequency of class change in terms
of its versions is of real value. However, since for
any relatively simple refactoring, multiple classes
may be changed without any net increase in class
(and hence overall system) size, we contest that
including number of added lines of code in the
assessment gives a better impression of which
classes are most volatile and hence more suitable
candidates for refactoring.

We thus support the view that refactoring
should be applied to classes with a high growth
rate as well as a high change frequency. To support
our investigation, data relating to changes from
161 Java classes were used as an empirical basis.
Our results supported the conclusion of Bieman
et al. (2003) relating to the change-proneness of
large classes. Finally, we believe refactoring effort
is most economically applied to classes which
have both a high number of versions and a large
increase in added lines of code over their lifetime.
The “when” to refactor should be informed by
sudden changes to the system.

A high frequency of changes made to an
object-oriented class may suggest that the class
was poorly written and hence required a large
amount of maintenance effort applied to it. In a
refactoring sense, frequency of change takes on
a different meaning. It is thus likely that refactor-

ing will not significantly increase the number of
physical lines of code in the system since most
refactorings require either modifications to cur-
rent code or corresponding deletions for each
insertion required by the refactoring. The extract
class refactoring is one example where code is
removed from one class to become a class in its
own right without any significant net increase in
system size. In the recent study by Bieman et al.,
number of class changes was used as the measure
of change-proneness for five C++ systems. While
we believe that there is merit in using number of
changes as a measure of class volatility, we believe
that classes which have had a large number of
changes made to them (i.e., have many versions)
and which have had significant numbers of lines of
code added to them are better potential candidates
for refactoring. A previous study by some of the
authors collected the change data and growth in
class size from one hundred and sixty one Java
classes. It was found that much more information
about the growth f the system could be gleaned by
using both number of changes and changes in the
lines of code in those classes. Basing the choice
of classes for refactoring on alarming increases
in class size supports the dictum of Beck which
urges developers to refactor when the system tells
them to, not through speculation alone.

experimental evidence

The obvious experimental means of establishing
whether comprehension has improved is to carry
out a formal experiment using developers, but
any experiment is subject to certain threats to
validity. For example, the level of experience of
the subjects used may influence the results. The
measurement of experience is also itself subject
to a range of criticisms.

Often, a refactoring is accompanied by a re-
duction in the number of lines of code. This was
a feature of the refactoring undertaken as part
of Najjar et al. (2003). The “replace construc-
tors with factory methods refactoring” removed

 3447

Heuristics and Metrics for OO Refactoring

duplicate lines in constructors which had arisen
due to code “bloat” (Fowler, 1999). However, the
lines of code (LOC) metric has been subject to a
range of criticisms (Rosenberg, 1997) and so any
refactoring which reduces the number of LOC is
subject to the same criticism.

Table 7 illustrates the role that size and, in this
case, comment lines can have on the perception
of cohesion by subjects taking part in a controlled
experiment (Counsell et al., 2005). Twenty-four
subjects with varying levels of experience were
asked to rate on a scale 1-10 how cohesive they
thought a set of ten C++ classes (10 represents the
most cohesive class, and 1 the least cohesive). The
24 subjects were each given a set of the ten C++
class header files being analyzed. The ten classes
were chosen at random from two industrial-sized
C++ systems. The only restriction placed on the
choice of these classes was that there had to be a
relatively broad range of class size and make-up,
but at the same time not too wide a range as to
bias the outcome of the study.

Table 7 shows the “Position” of the classes in
terms of the rating of cohesion by experienced sub-
jects. Class ApplnDialog was thus rated the least

cohesive and class ArcList the most cohesive. The
Number of Comment Lines (NCL) in the class is
followed by the position rated by subjects without
experience. For example, class ApplnDialog was
ranked the seventh most cohesive class. Class
BagItem was rated most cohesive by subjects
without experience. The number of methods in
the class (NMC) also included in the table is a
measure of the size of the class.

Table 7 also shows that classes with relatively
larger numbers of comment lines were generally
considered by the experienced subjects to be
cohesive. The same is true of the inexperienced
group. Clearly, the top two classes in terms of
comment lines were ranked relatively highly in
terms of their cohesion values (by the inexperi-
enced group). This would seem to indicate that
comment lines are an aid to the assessment of
cohesion. However, in saying this, an allied factor
(or even the critical factor) may be the low NAS
values found for those classes.

In other words, on the one hand, size and
growth are important in our determination of
when to refactor, but there may be features which
do not contribute to size necessarily, but yet are

Table 7. Summary data for an empirical cohesion study

Position Class Name NCL Position
(Inexp,)

NMC

1. ApplnDialog 0 7 5
2. Alert 0 5 7
3. Dialog 2 8 4
4. CycleItem 0 2 14
5. Arc 29 10 5
6. Bitmap 0 3 22
7. BagItem 3 1 11
8. Assoc 3 4 11
9. ArcList 47 9 9
10. DDGNodePtrList 54 5 9

3448

Heuristics and Metrics for OO Refactoring

crucial to the mechanics of most refactorings
(i.e., coupling). In the next section we describe
a previous analysis carried out to see if, in an
empirical sense, one refactoring triggers other
refactorings.

A dependency Analysis

As part of our refactoring research, we developed
a dependency diagram which showed the inter-re-
lationships between the 72 refactorings originally
stated by Fowler. The diagram was developed by
hand using Fowler’s text as a basis. As a result of
producing this graph, it becomes possible to see
the likely implications of undertaking a specific
refactoring in terms of how many other potential
refactorings either must be carried out or may
be carried out at the same time. In terms of the
question about “when” and “what” to refactor, we
must accept the possibility that one refactoring
may embrace n other refactorings, and this would
be an important consideration in the choice of
both what and when to refactor.

For example, for the “Encapsulate Field”
refactoring, Fowler (1998) himself suggests that
one possible implication of the refactoring is that
once he had completed encapsulate field he would
look for methods that use the new methods (i.e.,
accessors needed for the encapsulated field) “to
see whether they fancy packing their bags and
moving to the new object with a quick Move
Method” (p. 206).

The encapsulate field refactoring thus has only
one possible “dependency.” From a developer’s
point of view, the encapsulate field is an attractive
and relatively easy refactoring to complete. The
“add parameter” refactoring falls into the same
category as the encapsulate field refactoring. It
does not need to use any other refactorings. The
only other refactoring that it may consider using
is the “introduce parameter object” refactoring
where groups of parameters which naturally go
together are replaced by an object.

The extract subclass refactoring, on the other
hand, requires the use of six (possible) other
refactorings, two of which are mandatory. It has
to use “push down method” and “push down field”
as part of its mechanics. It may (under certain
conditions) also need to use the “rename method,”
“self encapsulate field,” “replace constructor
with factory method,” and “replace conditional
with polymorphism” refactorings. The extract
superclass refactoring requires a similar number
of refactorings to be considered. In fact, for most
of the refactorings involving a restructuring of
the inheritance hierarchy, the mechanics are
lengthy (requiring many steps and testing along
the way).

connections between refactorings

One explanation for the result found in Advani et
al. (2005b) (i.e., the high values for simple refac-
torings and the low values for more “complex”
refactorings) could be attributed to the relative
effort required in terms of activities required to
complete the refactoring. The testing effort of more
complex refactorings has also to be considered;
the more changes made as part of the refactor-
ing then other things remaining equal, the more
testing would be required.

In terms of whether refactorings are somehow
linked, we can see from Table 8 that when the
extract superclass refactoring is evident, the pull
up method is also a feature for those versions. The
mechanics of the extract superclass refactoring
insist that pull up method is part of that refactor-
ing. Equally, there seems to be evidence of pull
up field for the same refactoring, also a part of
the extract superclass refactoring. Rename field
and method also seem to feature when extract
superclass is carried out; rename method (but
not rename field) play an important role in the
extract superclass refactoring. The rename field
refactoring is not specified in Fowler’s text. This
is interesting since it suggests that may be some

 3449

Heuristics and Metrics for OO Refactoring

effects of refactoring which aren’t covered by the
refactoring according to Fowler.

Extract subclass also requires use of the rename
method refactoring, which may explain the high
numbers for that refactoring. To try and explain
the high numbers of rename field refactoring,
one theory may be that developers automatically
change the name of fields when methods are
“pulled up” (in keeping with the corresponding
change of method name). A conclusion that we
can draw is that there may well be relationships
between some of the fifteen refactorings in line
with the mechanics specified by (Fowler, 1999).
However, we suggest that most of the simple
refactorings were not as part of any larger refac-
toring, based on the very low number of “larger”
refactorings. When considering refactoring, we
have to understand the implications of carrying
out what may appear to be a straightforward
refactoring. In the next section, we summarize
and distill the heuristics that the previous two
sections have presented.

summary of heuristics

In the third and fourth sections, we identified a
number of experiments and empirical studies as
a means of demonstrating firstly, what should be

refactored and secondly, when refactoring should
be undertaken. A number of key indicators were
identified as a result, most based on data from
those studies. In this section, we summarize and
distill the heuristics and metrics identified in the
third and fourth sections. We begin by proposing
six heuristics which we feel could be applied in
a refactoring sense.

Heuristics

The first heuristic that we propose is Look at the
trends in class features and class dependencies of
your system before you attempt any refactoring.
Many systems have evolved to contain very few
of the features that lend themselves to refactor-
ing. For example, the relatively low number of
attributes, severely restricting the possibility of
refactorings related to attributes. The same can
be said of key classes, that is, those classes which
have many dependencies. Care should be exer-
cised in any refactoring because of the potential
for mistakes.

The second heuristic that we propose is Accept
that automation is realistic for a relatively small
subset of refactorings. Many of the more complex
refactorings can only be achieved manually with
tool support. The example which we used was

Table 8. Breakdown of related refactorings from study in Advani et al. (2005b)

Refactoring Type 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10
Pull Up Field 0 1 7 0 2 4 0 0 0
Extract Superclass 0 2 10 0 8 1 0 0 2
Extract Subclass 0 2 3 0 1 0 0 0 0
Pull Up Method 0 9 17 0 24 5 0 0 10
Rename Method 19 15 71 6 16 21 1 2 16
Rename Field 31 22 137 0 2 5 1 1 10

3450

Heuristics and Metrics for OO Refactoring

that of the Substitute Algorithm refactoring.
Identifying what code has been changed and how
is best undertaken manually. Tools can help, but
only as support.

The third heuristic that we propose is Within
an inheritance hierarchy, dependencies of de-
scendent class should be a prime consideration
in making any refactoring decision. Many of the
relatively simple refactorings proposed by Fowler
are complicated by the need to account for affected
classes in the inheritance hierarchy.

The fourth heuristic that we propose is
Coupling (rather than cohesion) should be the
feature of a class we aim to optimise. Cohesion
is a subjective concept and for any refactoring,
we should try to eliminate where possible any
subjectivity.

The fifth heuristic that we propose is Consistent
effort should be applied to the refactoring process
whenever possible; growth of the system should
also be monitored. Despite the fact that empirical
evidence suggests a surge in refactorings at version
3-4 of a system, we would encourage a smooth
and consistent use of refactoring techniques.

Finally, we propose that: When considering
any refactoring, we need to appreciate that other
refactorings may also be necessary due to a de-
pendency between refactorings. There is some
empirical evidence of a nesting of refactorings;
this may have implications for the cost both in time
and financially of making a refactoring change.

metrics

From the analysis of the different empirical
studies, and in the same sense that we proposed
heuristics for refactoring, we can propose six
metrics which would provide the refactorer with
an indication of “what” to refactor and “when”
to refactor. These can be summarized as:

1. The number of attributes (public, private
and protected)

2. The number of methods (public, private and
protected)

3. Number of descendents of a class in the
inheritance hierarchy

4. Number of classes to which a particular class
is coupled

5. Changes in LOC to classes
6. Changes in “the number of changes” applied

to a class

Interestingly, the set of six metrics include both
product metrics, aimed at the static program code
(metrics 1-4) and process metrics, aimed at what
happens to the program over its lifetime (metrics
5-6). We note also that the metrics should be used
in combination and not in isolation. For example,
metrics 1 and 2 are very often related in terms of
refactoring mechanics. Metric 4 includes inheri-
tance coupling (metric 3), and as we suggested in
the fourth section, metrics 5 and 6 should both
be used to target classes growing at a relatively
higher rate than other classes. Finally, the existence
of key classes (the third section) embraces and
requires the monitoring of all six metrics. (It is
noteworthy that metrics 2-4 have corresponding
equivalents in the C&K set of metrics and metric
1 is used in the computation of the LCOM metric,
also of C&K.) In the next section, we point to
future directions in the refactoring sense.

Future dIrectIons

Some of the issues outlined in previous sections
have tended to cast doubt on the viability of certain
refactorings. Some have shown how quantitative
and qualitative benefits can accrue from undertak-
ing refactorings. Some of the issues have shown
that we should focus on the coupling levels of the
classes as a mechanism for deciding whether to
refactor or not. The first area which the refactor-
ing area could benefit from is a series of tools to
guide the refactoring process. These tools should

 3451

Heuristics and Metrics for OO Refactoring

indicate the quantitative and qualitative effects
of carrying out that refactoring in terms of other
refactorings also applicable; simulating the effect
and mechanics would provide the developer with
valuable information about the structure and state
of the application being considered. Software
metrics could be used at each stage of the refactor-
ing mechanics to inform any such decision. This
may help in the quest for “what” to refactor. The
metrics which guide this process would need to
be chosen carefully, however.

In terms of when to refactor, we would en-
visage that useful future research would be to
investigate the key indicators which would help
the development staff to know that refactoring
is overdue. For example, if a subset of classes
appears to require a disproportionate amount of
maintenance effort then this should be a warning
signal to the development staff.

In terms of whether to refactor (are the costs
outweighed by the benefits?), a significant piece
of research, already started by the authors, and
a relatively short-term future direction would be
to identify the relationships between the differ-
ent refactorings (including those herein) and the
occurrence of faults. In other words, is there a
correlation between, let us say, the changes made
to method signatures and consequent occurrence
of faults directly related to that change? This
research could lead to a refactoring order which
states the relative possibility of faults arising
should a particular refactoring be made. On the
other hand, it may also indicate typical areas for
refactoring effort to be directed and invested.

A further future direction would be use of ap-
propriate intelligent data analysis techniques for
simplifying computationally difficult problems.
Identification of many of the more complex refac-
torings, for example, the Substitute Algorithm
refactoring (third section) are very difficult to au-
tomate; they would require some form of heuristic
search to be tackled effectively. Future research
could investigate the potential for applying the
different algorithms in a refactoring sense. Such

techniques may also be able to provide predictive
features for estimating the likely impact of under-
taking a single or combination of refactorings. Use
of simulation techniques may also be a fruitful
research topic in this context for demonstrating
the benefits of refactoring. Software metrics could
play a key role in this sense.

This chapter has used a series of ongoing
experiments and empirical studies as a basis of
many of its claims. Finally, an important direction
which the empirical research community should
take in the future is thus to build up a body of
experimental knowledge from which we can learn
about refactoring (in general), the possibilities for
applying new refactorings and the dissemination
of information about refactoring. This knowledge
should form a freely-available repository of data
and other resources to inform the process of what
and when to refactor.

conclusIon

In this chapter, we have tried to show how em-
pirical studies have informed our understanding
of refactoring. More empirical studies of various
types need to be undertaken to build up a body of
knowledge about refactoring before any conclu-
sions can be drawn. We have also not included
in this chapter any discussion about the role and
relationship that refactoring has with the occur-
rence of faults. In other words, does not under-
taking certain types of refactoring cause faults
to arise? Equally, does refactoring uncover faults
through the extra testing necessary as part of the
refactoring mechanics?

In this chapter, we have also hypothesized on
a number of occasions that developer habits may
cause systems to deteriorate such that refactoring
is then necessary. Future research directions may
also include an analysis of developer habits as a
good indication of where systems are beginning
to decay. We have also described some of the
current open issues in the field of refactoring. We

3452

Heuristics and Metrics for OO Refactoring

have investigated the features of refactoring and
looked at the area from two perspectives. Firstly,
we attempted to answer the question of “what” to
refactor and looked at a number of issues from an
empirical viewpoint which either lend themselves
or do not lend themselves to refactoring. We have
also investigated the question of “when” to refactor.
Secondly, we have shown that empirical evidence
suggests that refactoring is done in bursts towards
the start of the system’s lifetime, rather than as
Fowler suggests that refactoring needs constant
and consistent effort.

Finally, the question which we haven’t been
able to answer in this chapter is the relationship
between refactorings as we’ve described them and
the wide range of other changes made to software
as part of the run-of-the-mill maintenance process.
This could be an interesting area of potential
research, not least because of the discussion
on the link between certain refactorings in the
previous section.

The key conclusions from this chapter are
that we need a good understanding of the fea-
tures and trends in systems at different levels of
detail before we should attempt refactoring. The
decision on which refactorings to carry out also
needs to be planned carefully since they will
require significant effort both in their mechanics
and subsequent testing effort. We also feel that
development staff should “listen” to the system
and use metrics to provide information on what
is happening to a system and hence inform the
refactoring process. Ultimately, we would want
to minimize the amount of time developers spend
carrying out maintenance. Although refactoring
takes time and effort, the general consensus is
that effort expended in the short-term will provide
real benefits in the long-term.

reFerences

Advani, D., Hassoun, Y., & Counsell, S. (2005a).
Heurac: A heuristic-based tool for extracting

refactoring data from open-source software
versions (Tech. Rep. No. BBKCS-05-03-01).
SCSIS-Birkbeck, University of London.

Advani, D., Hassoun, Y., & Counsell, S. (2005b).
Refactoring trends across N versions of N Java
open source systems: An empirical study (Tech.
Rep. No. BBKCS-05-03-02). SCSIS-Birkbeck,
University of London.

Arsenovski, D. (2004). Refactoring — elixir of
youth for legacy VB code. Retrieved April 15,
2006, from http://www.codeproject.com/vb/net/
Refactoring_elixir.asp

Bansiya, J., Etzkorn, L., Davis, C., & Li, W.
(1999, January) A class cohesion metric for ob-
ject-oriented designs. Journal of Object-Oriented
Programming, 47-52.

Beck, K. (2000). Extreme programming explained:
Embrace change. Boston: Addison-Wesley.

Bieman, J., Straw, G., Wang, H., Munger, P. W.,
& Alexander, R. (2003, September 3-5). Design
patterns and change proneness: An examination
of five evolving systems. In Proceedings of the
9th International Software Metrics Symposium
(Metrics 2003), Sydney, Australia (pp. 40-49).

Bieman, J., & Ott., L. (1994). Measuring func-
tional cohesion. IEEE Transactions on Software
Engineering, 20(8), 644-657.

Briand, L., Bunse, C., & Daly, J. (2001). A
controlled experiment for evaluating quality
guidelines on the maintainability of object-ori-
ented designs. IEEE Transactions on Software
Engineering, 27(6), 513-530.

Briand, L., Daly, J., & Wust, J. (1998). A unified
framework for cohesion measurement in object-
oriented systems. Empirical Software Engineer-
ing Journal, 3(1), 65-117.

Briand, L., Devanbu, P., & Melo, W. (1997, May
17-23). An investigation into coupling measures
for C++. In Proceedings of the 19th International

 3453

Heuristics and Metrics for OO Refactoring

Conference on Software Engineering (ICSE 97),
Boston (pp. 412-421).

Chidamber, S. R., & Kemerer, C. F. (1994). A
metrics suite for object-oriented design. IEEE
Transactions on Software Engineering, 20(6),
467-493.

Counsell, S., Hassoun, Y., Johnson, R., Mannock,
K., & Mendes, E. (2003, June16-18). Trends in
Java code changes: The key identification of
refactorings. In Proceedings of the ACM 2nd
International Conference on the Principles and
Practice of Programming in Java, Kilkenny,
Ireland (pp. 45-48).

Counsell, S., Loizou, G., Najjar, R., & Mannock,
K. (2002a). On the relationship between encapsu-
lation, inheritance and friends in C++ software.
In Proceedings of the International Conference
on Software System Engineering and Its Applica-
tions (ICSSEA’02), Paris.

Counsell, S., Swift, S., & Mendes, E. (2002b).
Comprehension of object-oriented software co-
hesion: The empirical quagmire. In Proceedings
of the IEEE International Workshop on Program
Comprehension (pp. 27-29), Paris, France.

Counsell, S., Swift, S., & Tucker, A. (2005). Subject
perceptions of object-oriented cohesion: An em-
pirical study (Tech. Rep. No. BBKCS-05-03-03).
SCSIS-Birkbeck, University of London.

Demeyer, S., Ducasse, S., & Nierstrasz, O. (2000,
Ocotober 15-19). Finding refactorings via change
metrics. In Proceedings of the ACM Conference
on Object-oriented Programming Systems Lan-
guages and Applications (OOPSLA), Minneapolis,
MN (pp. 166-177).

El Emam, K., Benlarbi, S., Goel, N., Melo, W.,
Lounis, H., & Rai, S. N. (2002). The optimal class
size for object-oriented software. IEEE Transac-
tions on Software Engineering, 28(5), 494-509.

Fenton, N., & Pfleeger, S. (1996). Software met-
rics: A rigorous and practical approach. London:
Thomson International Publishing.

Foote, B., & Opdyke, W. (1995). Life cycle and
refactoring patterns that support evolution and
reuse. In J. O. Coplien & D. C. Schmidt (Eds.),
Pattern languages of programs. Boston: Ad-
dison-Wesley.

Fowler, M. (1999). Refactoring (improving the
design of existing code). Addison-Wesley.

Harrison, R., Counsell, S., & Nithi, R. (2000). Ex-
perimental assessment of the effect of inheritance
on the maintainability of object-oriented systems.
Journal of Systems and Software, 52, 173-179.

Hitz, M., & Montazeri, B. (1996). Chidamber and
Kemerer’s metrics suite: A measurement theory
perspective. IEEE Transactions on Software
Engineering, 11(4), 267-271.

Johnson, R., & Foote, B. (1998, June-July). Design-
ing reusable classes. Journal of Object-Oriented
Programming, 1(2), 22-35.

Kerievsky, J. (2002). Refactoring to patterns,
industrial logic. Retrieved April 15, 2006, from
http://www.industriallogic.com

Najjar, R., Counsell, S., & Loizou, G. (2005).
Encapsulation and the vagaries of a simple
refactoring: An empirical study (Tech. Rep. No.
BBKCS-05-03-02). SCSIS-Birkbeck, University
of London.

Najjar, R., Counsell, S., Loizou, G., & Mannock,
K. (2003, March 26-28). The role of constructors in
the context of refactoring object-oriented software.
In Proceedings of the Seventh European Confer-
ence on Software Maintenance and Reengineering
(CSMR ’03), Benevento, Italy (pp. 111-129).

Opdyke, W. (1992). Refactoring object-oriented
frameworks. PhD thesis, University of Illinois.

3454

Heuristics and Metrics for OO Refactoring

Ostrand, T., Weyuker, E., & Bell, R. (2004, July
11-14). Where the bugs are. In Proceedings of
the ACM SIGSOFT International Symposium
on Software Testing and Analysis (pp. 86-96),
Boston.

Pressman, R. (2005). Software engineering: A
practitioner’s approach (6th ed.). Maidenhead,
UK: McGraw-Hill.

Rosenberg, J. (1997, November 5-7). Some mis-
conceptions about lines of code. In Proceedings
of the 4th IEEE International Software Metrics
Symposium, Albuquerque, New Mexico (pp.
137-142).

Tokuda, L., & Batory, D. (2001). Evolving object-
oriented designs with refactorings. Automated
Software Engineering, 8, 89-120.

This work was previously published in Object-Oriented Design Knowledge: Principles, Heuristicsand Best Practices, edited
by M. Piattini, pp. 250-281, copyright 2007 by IGI Publishing (an imprint of IGI Global).

 3455

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8.16
Model-Driven Software

Refactoring
Tom Mens

University of Mons-Hainaut, Belgium

Gabriele Taentzer
Philipps-Universität Marburg, Germany

Dirk Müller
Chemnitz University of Technology, Germany

AbstrAct

In this chapter, we explore the emerging research
domain of model-driven software refactoring.
Program refactoring is a proven technique that
aims at improving the quality of source code.
Applying refactoring in a model-driven software
engineering context raises many new challenges
such as how to define, detect and improve model
quality, how to preserve model behavior, and so
on. Based on a concrete case study with a state-of-
the-art model-driven software development tool,
AndroMDA, we explore some of these challenges
in more detail. We propose to resolve some of
the encountered problems by relying on well-
understood techniques of meta-modeling, model
transformation and graph transformation.

IntroductIon

In the current research and practice on software
engineering, there are two very important lines of
research for which tool support is becoming widely
available. The first line of research is program
refactoring, the second one is model-driven
software engineering. To this date, however,
the links and potential synergies between these
two lines of research have not been sufficiently
explored. This will be the main contribution of
this chapter.

model-driven software engineering

In the realm of software engineering, we are
witnessing an increasing momentum towards the

3456

Model-Driven Software Refactoring

use of models for developing software systems.
This trend commonly referred to as model-driven
software engineering, emphasizes on models as
the primary artifacts in all phases of software
development, from requirements analysis over
system design to implementation, deployment,
verification and validation. This uniform use
of models promises to cope with the intrinsic
complexity of software-intensive systems by
raising the level of abstraction, and by hiding
the accidental complexity of the underlying
technology as much as possible (Brooks, 1995).
The use of models thus opens up new possibilities
for creating, analyzing, manipulating and
formally reasoning about systems at a high level
of abstraction.

To reap all the benefits of model-driven
engineering, it is essential to install a sophisticated
mechanism of model transformation, that enables
a wide range of different automated activities such
as translation of models (expressed in different
modeling languages), generating code from
models, model refinement, model synthesis or
model extraction, model restructuring etc. To
achieve this, languages, formalisms, techniques
and tools that support model transformation are

needed. More importantly, their impact on the
quality and semantics of models needs to be
better understood.

Program refactoring

Refactoring is a well-known technique to improve
the quality of software. Martin Fowler (1999) de-
fines it as “A change made to the internal structure
of software to make it easier to understand and
cheaper to modify without changing its observ-
able behavior”.

The research topic of refactoring has been
studied extensively at the level of programs (i.e.,
source code). As a result, all major integrated
software development environments provide
some kind of automated support for program
refactoring.

As a simple example of a program refactoring,
consider the refactoring Extract Method, one of
the more than 60 refactorings proposed by Fowler.
Essentially, it is applied to a method in which part
of the method body needs to be extracted into a
new method that will be called by the original one.
The situation before this program refactoring on
a piece of Java source code is shown in Figure

 protected LectureVO[] handleFindLecture
 (java.lang.String title, domain.Weekday day, domain.Time time)
 throws java.lang.Exception
* { SearchCriteria c = new SearchCriteria();
* c.setDay(day);
* c.setTitle(title);
* c.setTime(time);
 Collection coll =
 getLectureDao().findLecture(LectureDao.TRANSFORM_

LECTUREVO,c);
 LectureVO[] lectures = new LectureVO[coll.size()];

Figure 1. Java source code example before applying the Extract Method program refactoring (©2007
Tom Mens, UMH. Used with permission)

 3457

Model-Driven Software Refactoring

1, the situation after is shown in Figure 2. The
code lines that differ between both versions are
marked with an asterisk.

For program refactoring, a wide variety of
formalisms has been proposed to gain a deeper
understanding, and to allow formal analysis.
One of these formalisms is graph transformation
theory (Mens et al., 2005). We mention it here
explicitly, as we will show later in this chapter how
this formalism can be applied to support model
refactoring as well. It is, however, not our goal
to provide a detailed overview of existing work
on program refactoring here. For the interested
reader, we refer to a detailed survey of the state-of-
the-art in this domain (Mens & Tourwé, 2004).

model-driven software refactoring

A natural next step seems to explore how the idea
of refactoring may be applied in a model-driven

software development context. We will refer to this
combination as model-driven software refactor-
ing and we will explore the ramifications of this
synergy in the current chapter.

One of the straightforward ways to address
refactoring in a model-driven context is by
raising refactorings to the level of models, thereby
introducing the notion of model refactoring, which
is a specific kind of model transformation that
allows us to improve the structure of the model
while preserving its quality characteristics. To
the best of our knowledge, Sunyé et al. (2001)
were the first to apply the idea of refactoring
to models expressed in the Unified Modeling
Language (UML).

A simple yet illustrative example of a UML
model refactoring is shown in Figure 3. It depicts a
class model in which two classes having attributes
of the same type have been identified. The model
refactoring consists of removing the redundancy

 protected LectureVO[] handleFindLecture
 (java.lang.String title, domain.Weekday day, domain.Time

time)
 throws java.lang.Exception
* { SearchCriteria c = this.initialise(title,day,time);
 Collection coll =
 getLectureDao().findLecture(LectureDao.TRANSFORM_

LECTUREVO,c);
 LectureVO[] lectures = new LectureVO[coll.size()];
 return (LectureVO[])coll.toArray(lectures); }
* protected SearchCriteria initialise
* (java.lang.String title, domain.Weekday day, domain.Time

time)
* throws java.lang.Exception
* { SearchCriteria c = new SearchCriteria();
* c.setDay(day);

Figure 2. Java example after applying the Extract Method refactoring (©2007 Tom Mens, UMH. Used
with permission)

3458

Model-Driven Software Refactoring

by introducing an abstract super class of both
classes, and moving up the attribute to this new
super class.

The above example may look simple, but
it should be seen in a more general context,

which makes dealing with model refactorings
considerable less trivial. Consider the scenario
depicted in Figure 4. It clearly illustrates the
potentially high impact a simple refactoring may
have on the software system. We assume that a

Figure 3. Example of a model refactoring on UML class diagrams (©2007 Tom Mens, UMH. Used with
permission)

Figure 4. A scenario for model-driven software refactoring (©2007 Tom Mens, UMH. Used with
permission)

 3459

Model-Driven Software Refactoring

model is built up from many different views,
typically using a variety of different diagrammatic
notations (e.g., class diagrams, state diagrams,
use case diagrams, interaction diagrams, activity
diagrams, and many more). We also assume that
the model is used to generate code, while certain
fragments of the code still need to be implemented
manually. Whenever we make a change (in this
case, a refactoring) to a single view or diagram
in the model (step 1 in Figure 4), it is likely that
we need to synchronize all related views, in order
to avoid them becoming inconsistent (step 2 in
Figure 4) (Grundy et al., 1998). Next, since the
model has been changed, part of the code will
need to be regenerated (step 3 in Figure 4). Finally,
the manually written code that depends on this
generated code will need to be adapted as well
(step 4 in Figure 4).

stAte-oF-the-Art In model
reFActorInG

At the level of models, research on refactoring
is still in its infancy. Little research has been
performed on model refactoring, and many open
questions remain that are worthy of further in-
vestigation. For example, the relation between
model refactoring and its effect on the model
quality remains a largely unanswered question.
From a practical point of view, only very few tools
provide integrated support for model refactoring.
Also, the types of models for which refactoring
is supported is very limited.

In research literature, mainly UML models
are considered as suitable candidates for model
refactoring (Sunyé et al., 2001; Astels, 2002;
Boger et al., 2002). In particular, refactoring
of class models (e.g., UML class diagrams) has
been investigated by various researchers. The
advantage of such models is that they provide
a representation that is relatively close to the
way object-oriented programs are structured.
As such, many of the refactorings known from

object-oriented programming (Fowler, 1999) can
be ported to UML class diagrams as well. For
example, the refactoring shown in Figure 1 can
also be considered as a class diagram refactoring,
since a new method is created that will be visible in
a class diagram. Of course, additional techniques
are needed in order to ensure traceability and
consistency between class diagrams and their
corresponding source code when applying class
diagram refactorings (Bouden, 2006).

When it comes to reasoning about the
behavior preservation properties of class
diagram refactorings, however, things become
more difficult for various reasons. The main
problem is that class diagrams provide an
essentially structural description of the software
architecture. Hence, behavioral information has
to be expressed in a different way, either by
resorting to OCL constraints, behavioral models
(e.g., state diagrams or interaction diagrams), or
by program code.

With respect to refactoring of behavioral
models, not much work is available. We are
only aware of a few approaches that address the
problem of refactoring state diagrams, and try
to prove their behavior preservation properties
in a formal way. Van Kempen et al. (2005) use a
formalism based on CSP to describe statechart
refactorings, and show how this formalism can
be used to verify that a refactoring effectively
preserves behavior. Pretschner and Prenninger
(2006) provide a formal approach for refactoring
state machines based on logical predicates and
tables. Integrating these ideas into tool support is
left for future work. Apart from some limitations
imposed by the formalisms used, a more general
problem is that there is still no generally accepted
formal semantics for (UML) state diagrams. Many
different interpretations exist and, obviously, this
has an important effect on how the behavior is
formally defined.

Though research on model refactoring is still in
its infancy, a number of formalisms have already
been proposed to understand and explore model

3460

Model-Driven Software Refactoring

refactoring. Most of these approaches suggest
expressing model refactoring in a declarative
way. Van Der Straeten et al. (2004) propose
to use description logics; Van Der Straeten &
D’Hondt (2006) suggest the use of a forward-
chaining logic reasoning engine to support
composite model refactorings. Gheyi et al. (2005)
specify model refactorings using Alloy, a formal
object-oriented modeling language. They use its
formal verification system to specify and prove
the soundness of the transformations. Biermann
et al. (2006) and Mens et al. (2007) use graph
transformation theory as an underlying foundation
for specifying model refactoring, and rely on the
formal properties to reason about and analyze
these refactorings.

An important aspect of refactoring in a
model-driven software development context
that is typically neglected in research literature
is how it interferes with code generation. Most
contemporary tools for model-driven software
development allow generating a substantial
part of the source code automatically from the
model, while other parts still need to be specified
manually (see Figure 4). This introduces the need
to synchronize between models and source code
when either one of them changes. How such
synchronization can be achieved in presence
of automated refactoring support is a question
that has not been addressed in detail in research
literature. If a model is being refactored, how
should the corresponding source code be modified
accordingly? Vice versa, if source code is being
refactored, how will the models be affected? These
are the kind of questions that will be addressed
in this chapter. To this extent, we will report on
our experience with AndroMDA, a state-of-the-
art tool for model-driven software development
based on UML.

motIvAtInG eXAmPle:
model-drIven develoPment
wIth AndromdA

This section presents the model-driven devel-
opment of a small web application for a simple
university calendar. We will develop this calendar
in two iteration steps using AndroMDA1. First the
underlying data model is designed and a web ap-
plication with a default web presentation is gener-
ated. Second, application-specific services and the
web presentation are developed with AndroMDA.
This means that use cases are defined and refined
by activity diagrams that can use controllers and
services. The development is not hundred percent
model-driven, since service and controller bodies
have to be coded by hand.

For both iteration steps, we first present the
UML model using the AndroMDA profile and then
discuss a refactoring step useful in that context.

Getting started with developing a
university calendar using
AndromdA

One of the main tools for model-driven software
development is AndroMDA. Its transformation
engine is structured by cartridges. A number of
pre-defined cartridges is already available real-
izing the generation of web applications from
UML models. We illustrate model-driven software
development based on AndroMDA by the example
of a very simple university calendar.

In principle, the model-driven development
process of AndroMDA is based on use cases. But in
this initial example, we start with an even simpler
way of using AndroMDA. We just design the
underlying data model and AndroMDA generates
a complete web application with a default web
presentation from that.

A web application generated by AndroMDA
has a three-tier architecture consisting of a service

 3461

Model-Driven Software Refactoring

layer building up on a data base, controllers using
the services defined, and a web presentation. The
underlying data model, services and controllers are
defined by an UML class diagram. Additionally,
visual object classes are modeled, which are used
for presenting data to the user, decoupled from
the internal data model.

An example of an AndroMDA class diagram
is shown in Figure 5. It depicts a simple data
model for a university calendar. We can observe
that the basic entities are Rooms that can be
occupied for giving a Lecture or a Seminar. Based
on this class diagram, AndroMDA can generate
a default web interface for managing lectures,
seminars and rooms. Users can add and delete
instances, change attribute values and perform
searches. The webpage for managing lectures is
shown in Figure 6.

The UML profiles used in connection with
AndroMDA can be considered as a domain-
specific language, dedicated to the generation

of web applications. This is achieved by giving
a specific semantics to UML models by relying
on that dedicated UML profiles. They extend the
semantics of the UML by introducing specific
stereotypes, to which additional constraints and
tagged values are attached. For example, the
stereotype «Entity» attached to a class is used to
represent a data entity to be stored in a database.
If, additionally, the «Manageable» stereotype is
used, it causes AndroMDA to generate a default
web presentation for managing the corresponding
entities. The use of such manageable entities has
been illustrated in Figure 5.

First refactoring of the university
calendar

Due to their compactness, large parts of An-
droMDA UML models are used for generating
user interfaces. Thus, model refactorings in this
context are likely to cause changes in user inter-

Figure 5. Data model for a simple university calendar (©2007 Tom Mens, UMH. Used with
permission)

3462

Model-Driven Software Refactoring

faces as well. Following Fowler (1999) in a strict
sense, refactorings should not change the user
interface of software, since they are supposed to
“preserve the observable behavior”. This strict
interpretation of refactoring, however, makes
little sense if applied in a model-driven software
development context, due to the side-effects that
model refactorings may cause on the generated
code, especially user interfaces. Thus, Fowler’s
definition of refactoring should be interpreted
in a more liberal way, in the sense that it should
not change the functionality offered by software.
Modifications to the usability of the software
or to other non-functional properties (such as
interoperability, portability, reusability, adapt-
ability and the like) should be allowed, if the goal
of these modifications is to improve the software
quality.

In the remainder of this section we will show
a concrete refactoring on our university calendar
case study to clarify what refactoring can mean in
the context of model-driven development.

Since «Entity» classes Lecture and Seminar
contain several attributes in common (see Figure
5), it would make sense to refactor this data
model by adding a new abstract superclass, called
Course, and pulling up all common attributes to
this new class. The result of this refactoring is
shown in Figure 7.

Note that tagged value @andromda.hibernate.
inheritance has to be set to interface for restricting
the management facilities for courses to searching
functionalities only.

When regenerating a web application from the
refactored data model in Figure 7, most of the user
interface remains unaltered. But a new webpage

Figure 6. Webpage for managing lectures (©2007 Tom Mens, UMH. Used with permission)

 3463

Model-Driven Software Refactoring

will appear for managing courses, as shown in
Figure 8. Because of the tagged value attached
to Course, this webpage only offers search
functionality, but does not allow the addition or
deletion of course instances.

In the example explained in section 3.1, all
application code is generated from the model.
Thus, refactoring the model alone appears to
be sufficient to refactor the whole software
application. However, it should be noted that, due

to the refactoring applied to the model, the behavior
has been changed slightly, since AndroMDA has
generated a new kind of webpage.

Developing Application-Specific Use
cases with AndromdA

In this section, we will consider additional ste-
reotypes and tagged values in the AndroMDA
UML profile, but only as far as we need them to

Figure 7. Data model for a simple university calendar after having applied the Pull Up Attribute
refactoring (©2007 Tom Mens, UMH. Used with permission)

3464

Model-Driven Software Refactoring

develop our example. For a complete overview
of all available stereotypes and how to use them
we refer to the AndroMDA website.

«Service» is a class stereotype used to specify
application-specific services. These services
typically use one or more entities that store the
data used by the services. For the model-driven
development of a web presentation, we extend the
model by use cases that are refined by activity
diagrams. This model part describes the web
presentation and its usage of controllers based on
services. The development is not hundred percent
model-driven, since service and controller bodies
have to be coded by hand.

To illustrate the development of specific web
applications we reconsider the university calendar
and develop a specific use case diagram for lectures
(see Figure 9). Use case Search lectures has two

stereotypes being «FrontEndUseCase», which
determines the use case to be visible to the user
in form of a webpage, and «FrontEndApplication»,
which defines this use case to be the starting
one.

Use case Search lectures is refined by an
activity diagram that supports a search activity
and the presentation of filtered lectures (see
Figure 10). Activity Search lectures is an
internal activity that calls the controller method
showLectures(). Activity Present lectures has
stereotype «FrontEndView» implying that this
activity models a webpage. Both activities are
connected by two transitions arranged in a cyclic
way. After calling method showLectures() the
result is transferred to the webpage by signal
show, which has the resulting value object array
as parameter. Signal search and its parameters

Figure 8. Webpage for managing courses (©2007 Tom Mens, UMH. Used with permission)

 3465

Model-Driven Software Refactoring

are used to model the web form for filtering the
lectures.

The class model in Figure 5 is again used as
data model. To show lectures, a special value object
class for lectures is used, which is specified by
stereotype «ValueObject» (see Figure 11). This

makes sense in terms of encapsulation (think
of security, extensibility, etc.) and corresponds
to the layered model-view-controller approach.
Necessary information of the business layer is
packaged into so-called “value objects”, which
are used for the transfer to the presentation layer.

Figure 9. Example of a use case model in AndroMDA (©2007 Tom Mens, UMH. Used with
permission)

Figure 10. Example of an activity diagram specifying the Search lectures use case (©2007 Tom Mens,
UMH. Used with permission)

3466

Model-Driven Software Refactoring

Figure 11. Value Object and Criteria classes (©2007 Tom Mens, UMH. Used with permission)

Figure 12. Service and controller classes (©2007 Tom Mens, UMH. Used with permission)

 3467

Model-Driven Software Refactoring

Passing real entity objects to the client may pose
a security risk. Do you want the client application
to have access to the salary information inside
the Lecturer entity?

An attribute room of type String was added
to LectureVO in order to allow a connection to
the unique number of the Room class. Since
value objects are used at the presentation layer,
the types used are primitive ones; entity types
are not used in that layer. A dependency relation
between an entity and a value object is used to
generate translation methods from the entity to
its corresponding value object. Moreover, search
criteria can be defined by a class of stereotype
«Criteria».

Method showLectures() that is called from
activity Search lectures in Figure 10, is defined
in LectureController, a class that relies on class
LectureService. This class is stereotyped as

«Service» and relies on entities Lecture and Room
(see Figure 12). However, the bodies of service and
controller methods cannot be modeled, but have
to be coded directly by hand. For example, the
implementation of service method findLecture()is
shown in Figure 1. Because of special naming
conventions of AndroMDA it has to be named
handleFindLecture().

The web application generated by AndroMDA
from the complete model given in the previous
figures (together with manually written code
parts) produces the webpage shown in Figure 13.
Please note that the names used as page title, in
the search form and for the buttons are generated
from the model.

Figure 13. Webpage for searching lectures (©2007 Tom Mens, UMH. Used with permission)

3468

Model-Driven Software Refactoring

Figure 14. Value Object and Entity classes after renaming (©2007 Tom Mens, UMH. Used with
permission)

Figure 15. Webpage for searching lectures after renaming (©2007 Tom Mens, UMH. Used with
permission)

 3469

Model-Driven Software Refactoring

Further refactoring of the university
calendar

As a second model refactoring2, we will discuss
the renaming of attribute time	to startime based
on the model given in Section 3.3. We will argue
that this refactoring affects the usability of the
generated software. The refactoring is primarily
performed on entity class Lecture, but since there
is a value object class LectureVO for that entity,
the corresponding value class attribute time has
to be renamed into starttime, too (see Figure 14).
The same is true in SearchCriteria. Thus, the
standard refactoring method Rename Attribute
becomes domain-specific and affects several
classes in this domain-specific context.

Since the value object attribute is not used
directly in other parts of the model, the model
does not have to be updated any further. But the
hand-written code (given in Figure 1) is affected,
since accessor method setTime() is no longer
available after regenerating the code. Thus, it
has to be renamed as well, by calling method
setStarttime() instead. After having performed
this refactoring, the webpage for searching
lectures has been changed slightly. As a result,
the usability is affected, though not dramatically,
since the column named “Time” of the presented
table presented has changed into “Starttime” (see
Figure 15).

Based on the analysis of both model
refactorings carried out in this section, we can
derive the following important preliminary
conclusions:

• Generic model refactorings need to be
adapted and refined in order to work properly
in a domain-specific modeling language.

• Model refactorings may also affect, and
require changes to the hand-written source
code.

• Model refactorings may change external
qualities as perceived by the user, such as
usability aspects.

chAllenGes In model-drIven
soFtwAre reFActorInG

In this section, we will discuss some important
challenges in model refactoring that have to do
with the relation between model refactoring and
model quality. It is not our ambition to solve all
these challenges in the current chapter. In Sec-
tions 5 and 6 we will therefore only focus on those
challenges that we consider being most urgent
and most important and we will exemplify our
proposed solution using the case study introduced
in the previous section.

model Quality

A first challenge is to provide a precise defini-
tion of model quality. A model can have many
different non-functional properties or quality
characteristics that may be desirable (some ex-
amples are: usability, readability, performance
and adaptability). It remains an open challenge
to identify which qualities are necessary and suf-
ficient for which type of stakeholder, as well as
how to specify these qualities formally, and how
to relate them to one another.

Since the main goal of refactoring is to improve
certain aspects of the software quality, we need
means to assess this quality at the model level
in an objective way. On the one hand, this will
allow software modelers to identify which parts
of the model contain symptoms of poor quality,
and are hence potential candidates for model
refactoring. On the other hand, quality assessment
techniques can be used to verify to which extent
model refactorings actually improve the model
quality.

One of the ways to assess model quality is by
resorting to what we will call model smells. These
are the model-level equivalent of bad smells, a
term originally coined by Kent Beck in (Fowler,
1999) to refer to structures in the code that suggest
opportunities for refactoring. Typical model

3470

Model-Driven Software Refactoring

smells have to do with redundancies, ambiguities,
inconsistencies, incompleteness, non-adherence
to design conventions or standards, abuse of the
modeling notation, and so on. A challenge here is
to come up with a comprehensive and commonly
accepted list of model smells, as well as tool
support to detect such smells in an automated
way. What is also needed is a good understanding
of the relation between model smells and model
refactoring, in order to be able to suggest, for any
given model smell, appropriate model refactorings
that can remove this smell.

A second way to assess and control model
quality is by resorting to model metrics. In analogy
with software metrics (Fenton & Pfleeger, 1997)
they are used to measure and quantify desirable
aspects of models. It remains an open question,
however, how to define model metrics in such a
way that they correlate well with external model
quality characteristics. Another important issue
is to explore the relation between model metrics
and model refactoring, and in particular to assess
to which extent model refactorings affect metric
values. These issues have been addressed by
(Demeyer et al., 2000; Du Bois, 2006; Tahvildari
& Kontogiannis, 2004) though mainly at code
level.

A final way to improve model quality is by
introducing design patterns, which are proven
solutions to recurring problems (Gamma et al.,
1994). At code level, Kerievsky (2004) explored
the relation between refactorings and design
patterns. It remains to be seen how similar results
may be achieved at the level of models.

Kamthan (2004) provided a quality framework
for UML models. It systematically studies the
quality goals, how to assess them, as well as
techniques for improving the quality, similar to
the ones discussed above.

model synchronization

With respect to model refactoring, one of the key
questions is how it actually differs from program

refactoring. Can the same ideas, techniques and
even tools used for program refactoring be ported
to the level of models? If not, what is it precisely
that makes them different?

One answer to this question is that models
are typically built up from different views, using
different types of diagrams, that all need to be
kept consistent. This in contrast to programs, that
are often (though not always) expressed within a
single programming language.3

Perhaps a more important difference is
that models are abstract artifacts whose main
purpose is to facilitate software development by
generating a large portion of the source code that
would otherwise need to be written manually.
However, full code generation is unfeasible
in practice for most application domains. The
additional challenge therefore consists in the need
to synchronize and maintain consistency between
models and their corresponding program code,
especially when part of this program code has been
specified or modified manually. In the context of
model transformation, this implies that automated
model refactorings (or other transformations)
may need to be supplemented with code-level
transformations in order to ensure overall
consistency. Vice versa, program refactorings
may need to be supplemented with model-level
transformations to ensure their consistency.

Though no general solutions exist yet, the
problem of model synchronization and model
consistency maintenance is well known in
literature. For example, (Van Gorp et al., 2003)
discuss the problem of keeping the UML models
consistent with their corresponding program
code. (Correa & Werner, 2004) explain how
OCL constraints need to be kept in sync when
the class diagrams are refactored and vice versa.
Egyed (2006) proposes an incremental approach to
model consistency checking that scales up to large
industrial models. Liu et al. (2002) and Van Der
Straeten & D’Hondt (2006) rely on a rule-based
approach for detecting and resolving UML model
inconsistencies, respectively. Van Der Straeten et

 3471

Model-Driven Software Refactoring

al. (2003) bear on the formalism of description
logics to achieve the same goal. Mens et al.
(2006) propose to resolve inconsistencies in an
incremental fashion by relying on the formalism of
graph transformation. Grundy et al. (1998) report
on how tool support can be provided for managing
inconsistencies in a software system composed
of multiple views. Goedicke et al. (1999) address
the same problem by relying on the formalism of
distributed graph transformation.

behavior Preservation

Another important challenge of model refactor-
ing has to do with behavior preservation. By
definition, a model refactoring is supposed to
preserve the observable behavior of the model it
is transforming. In order to achieve this, we need
a precise definition of “behavior” in general, and
for models in particular. In addition, we need
formalisms that allow us to specify behavioral
invariants, i.e., properties that need to be preserved
by the refactoring. The formalism should then
verify which of these invariants are preserved by
the model refactoring. Although formal research
on behavior preservation is still in its infancy, in
Section 2 we already pointed to a few approaches
that carried out initial research in this direction.
Another approach that is worthwhile mentioning
is the work by Gheyi et al. (2005). They suggest
specifying model refactorings in Alloy, an ob-
ject-oriented modeling language used for formal
specification. It can be used to prove semantics-
preserving properties of model refactorings.

A more pragmatic way to ensure that the
behavior remains preserved by a refactoring is by
resorting to testing techniques. Many researchers
have looked at how to combine the ideas of testing
with model-driven engineering (Brottier et al.,
2006; Mottu et al., 2006). Test-driven development
is suggested by the agile methods community as
good practice for writing high-quality software.
In combination with refactoring, it implies that
before and after each refactoring step, tests are

executed to ensure that the behavior remains
unaltered.

Domain-Specific Modeling

A final challenge is the need to define model
refactorings in domain-specific extensions of
the UML (such as AndroMDA), or even in dedi-
cated domain-specific modeling languages. These
refactorings should be expressible in a generic yet
customizable way. Indeed, given the large number
of very diverse domain-specific languages, it is
not feasible, nor desirable, to develop dedicated
tools for all of them from scratch.

Zhang et al. (2004) therefore proposed a
generic model transformation engine and used
it to specify refactorings for domain-specific
models. Their tool is implemented in the Generic
Modeling Environment (GME), a UML-based
meta-modeling environment. A model refactoring
browser has been implemented as a GME plug-in.
Their tool enables the automation and user-defined
customization of model refactorings using ECL
(Embedded Constraint Language), an extension
of the declarative OCL language with imperative
constructs to support model transformation. As an
example of the expressiveness of their approach,
they illustrated how it can be applied to class
diagrams, state diagrams and Petri nets. The
solution that we will explore later in this chapter is
related, in the sense that we will propose a generic
approach for UML-based model refactoring based
on graph transformation concepts.

In general, the main challenge remains
to determine, for a given domain-specific
modeling language, which transformations can
be considered as meaningful refactorings. On the
one hand, they will need to preserve some notion
of “behavior” and, on the other hand, they need
to improve some quality aspect. These notions of
behavior and quality can differ widely depending
on the domain under study. For domains that do
not refer to software (e.g., business domains,
technical domains, etc.) it is much harder to come

3472

Model-Driven Software Refactoring

to a meaningful definition of behavior, implying
that the notion of refactoring would become much
harder to define in that context.

Analyzing model refactorings

Even more advanced support for model refactor-
ings can be envisaged if we have a precise means
to analyze and understand the relationships be-
tween refactorings. This will enable us to build up
complex refactorings from simpler ones; to detect
whether refactorings are mutually exclusive, in
the sense that they are not jointly applicable and
to analyze causal dependencies between refac-
torings. These techniques have been explored
in detail by Mens et al. (2007), and promise to
offer more guidance to the developer on what
is the most appropriate refactoring to apply in
which context. A short introduction to this line
of research will be given in Section 6.

motIvAtInG eXAmPle revIsIted

In Section 3 two concrete model refactorings have
been applied to AndroMDA models: pulling up
an attribute into a new superclass and renaming
an entity. In this section, we explore some more
refactorings for AndroMDA models.4 We start by
considering a set of “standard” model refactor-
ings widely used to restructure class diagrams.
As it will turn out, most of these refactorings
have side-effects due to constraints imposed by
AndroMDA’s code generator. Therefore, these
model refactorings need to be customized to take
into account more domain-specific information.
Next to these “standard” refactorings, we will also
discuss entirely new “domain-specific” refactor-
ings for AndroMDA models.

In the following, we will take a slightly broader
view, and we discuss three categories of model
transformations as follows:

(1) model refactorings that do not affect the
user interface at all;

(2) model refactorings that do affect the user
interface with respect to the usability, but
that do not affect what the user can do with
the application;

(3) model transformations that also affect the
actual behavior/functionality of the applica-
tion.

The latter category does not contain
refactorings in the strict sense of the word, but it
is nevertheless useful and necessary to deal with
them. For example, it could be the case that what
is perceived as a normal refactoring will actually
extend the behavior as a side effect of the code
generation process.

Pull up Attribute

When pulling up an attribute to a super class, as
explained in Section 3.2, the code generator will
generate a new webpage corresponding to this
super class, with search functionality for each
manageable entity. Thus, this model transforma-
tion belongs to category (3).

rename

The refactoring example in Section 3.4 is con-
cerned with renaming an attribute of an entity
class. This refactoring affects the user interface,
if the entity is manageable. In this case, one of
the columns in the table of the webpage has been
renamed. Furthermore, in case that the entity class
comes along with a value object class that is de-
rived from the entity class, a renaming of an entity
attribute has to be accompanied by a renaming
of the corresponding attribute in its value object
class. If, in addition, this value object attribute is
used in some activity diagram, the name has to
be adapted there as well. Furthermore, this value
object attribute can occur in hand-written code,

 3473

Model-Driven Software Refactoring

which implies that renaming has to be performed
also in that part of the code.

A similar situation would arise if we renamed
the entity class itself, as it would be reflected by a
change in the title of the corresponding webpage
for manageable entities. In case that the renamed
entity class comes along with a value object class
whose name is derived from the entity class
name (e.g., in Figure 14, “LectureVO” is derived
from “Lecture” by suffixing “VO”), renaming
has to be accompanied by a renaming of its
corresponding value object class. Furthermore,
the renaming has to be propagated as discussed
for attributes. In all cases presented, although the
user interface changes slightly, the functionality
of the application is not affected. Hence, these
refactorings belong to category (2).

Similar to entities, use cases can be renamed
as well. This might have an effect on activity
diagrams, since AndroMDA supports the
connection of several activity diagrams via use
case names. For example, an end activity of one
activity diagram may be named as a use case,
which means that the control flow would continue
at the start activity of the corresponding activity
diagram. In the generated web applications, use
cases are listed on the right-hand side of each
webpage. Again, a renamed use case would
change the usability of the web application, but
not its functionality, so the refactoring belongs
to category (2).

In summary, we see that renaming in
AndroMDA may have a high impact. Due to
the fact that the code generator automatically
produces new types of elements based on the
names of existing elements, a seemingly simple
change (in casu renaming) will propagate to many
different places. A tool that would implement
this model refactoring would therefore need to
take these issues into account to ensure that the
renaming does not lead to an inconsistent model
or code. Furthermore, because the changes affect
hand-written code, the refactoring may require a
certain amount of user interaction.

create value object

A domain-specific refactoring for AndroMDA
models is the creation of value objects for entities.
An example is visually represented in Figure 16.
Given a class with stereotype «Entity» (for ex-
ample, class Lecture), a new class with stereotype
«Value Object» is created and the entity class
becomes dependent on this new class. The value
object class is named after its entity class followed
by suffix “VO” (for example, value object class
LectureVO). The entity attributes are copied to
the value object class, keeping names and types,
by default. If internal information should be hid-
den from the client, the corresponding attribute
would not be copied. This refactoring belongs to
category (1) and does not affect any other part
of the model, since the value object class is only
created without being used yet.

merge services

Another domain-specific model refactoring is
Merge Services. It takes two «Service» classes
and merges them as well as all their incoming
and outgoing dependencies. Consider the fol-
lowing example where both a LecturService	
and RoomService exist (see Figure 17). If we do
not consider remote services and have only one
controller class, it does not make sense to have
two service classes. Therefore, both should be
merged into LectureService. After refactoring,
the controller class will have only one outgoing
dependency. As a result, the hand-written code
for the controller method will be affected. Nev-
ertheless, this restructuring will not modify the
external behavior, so users of the generated web
application will not notice any change. Hence,
this refactoring falls into category (1).

split Activity

The front-end of a web application is modeled by
use cases and activity diagrams. A refactoring

3474

Model-Driven Software Refactoring

Figure 16. Example of the domain-specific model refactoring CreateValueObject (©2007 Tom Mens,
UMH. Used with permission)

Figure 17. Service classes LectureService	and RoomService with dependencies (©2007 Tom Mens,
UMH. Used with permission)

 3475

Model-Driven Software Refactoring

like the splitting of activities into two consecutive
ones, linked by a transition, can directly affect
the web presentation. If the original activity was
a «FrontEndView», the corresponding webpage
is split into two pages. If an internal activity was
split, this refactoring has to be accompanied by a
splitting of the corresponding controller method
called. In the first case, the refactoring belongs
to category (2), in the second case it belongs to
category (1).

extract method

Extract Method is a refactoring from the standard
catalogue established by Fowler. In the context
of model-driven development, and AndroMDA
in particular, it can have new effects. Consider
the scenario in Figure 19. First, we perform the
extract method refactoring to the hand-written
code, as illustrated in Figure 2 where a method,
called initialise(), is extracted from a given service

method handleFindLecture. To reflect this change
at model level, we modify the class diagram by
adding the extracted method to the class Lecture-
Service as well (see Figure 18). Consequently, the
code generator will generate extra code for this
method, which requires the manually written code
to be adapted to make it consistent again. In par-
ticular, method initialise()needs to be renamed into
handleInitialise(), because this is the convention
used by the code generator: all service methods
need to be prefixed with “handle” at source code
level. We can use this knowledge to constrain the
Extract Method refactoring to make it domain-
specific: When extracting a method, the name that
the user needs to provide for the extracted method
needs to follow the naming conventions imposed
by the code generator. Not doing so will cause the
precondition of the refactoring to fail.

The above scenario is generalized and
visualized in Figure 19. It shows how a refactoring
at source code level (step 1) may require

Figure 18. Changes to the class diagram as a result of applying the Extract Method program refactoring
(see Figure 2) (©2007 Tom Mens, UMH. Used with permission)

3476

Model-Driven Software Refactoring

synchronization of the corresponding model (step
2) which, after regenerating the code (step 3)
involves another modification to the hand-written
part of the code (step 4). The last step is not needed,
if the user obeys the naming convention for the
new method as discussed above.

sPecIFYInG And AnAlYzInG
model reFActorInGs

In Section 5, the important challenge of domain-
independent support for model refactoring was
discussed. A possible formalism that can be
used to specify and also analyze refactorings
is the theory of graph transformation (Ehrig et
al. 2006). Compared to other approaches it has
a number of advantages: it allows one to specify
program refactorings and model refactorings
for various languages in a uniform and generic
way, by representing the software artifact under
consideration as a graph, and by specifying the
refactorings as graph transformation rules. In ad-

dition, one can benefit from the formal properties
of graph transformation theory to reason about
refactoring in a formal way. For example, prop-
erties such as termination, composition, parallel
dependencies, and sequential dependencies can
be analyzed.

Since the Eclipse Modeling Framework (EMF)
has become a key reference for model specification
in the world of model-driven development, we
rely our approach to model refactoring on EMF
model transformation. This approach is presented
in Section 6.1. To perform a formal analysis of
EMF transformations we translate them to graph
transformations, which is possible under certain
circumstances. In Section 6.2, a conflict and
dependency analysis of model refactorings is
presented, assuming that the model refactorings
are defined by graph transformation rules.

technical solution

From a technical point of view, we will discuss
how to implement and execute model refactorings.

Figure 19. Another scenario of model-driven software refactoring, initiated by a refactoring of the hand-
written source code (©2007 Tom Mens, UMH. Used with permission)

 3477

Model-Driven Software Refactoring

In particular, we will consider how to realize
model refactoring within the Eclipse Modeling
Framework (EMF). As a prerequisite, a specifi-
cation of the underlying modeling language is
needed, which will be given by a meta-model.
Figure 20 shows an EMF model that represents
a simplified extract of the AndroMDA meta-
model. Figure 21 shows an instance of this EMF
model for the entity class Lecture of the simple
university calendar.

 Biermann et al. (2006) explain in detail
how EMF model refactoring can be expressed
by EMF model transformation. This kind of
model transformation is specified by rules and is
performed in-place, i.e., the current model is directly
changed and not copied. Each transformation rule
consists of a left-hand side (LHS), indicating the
preconditions of the transformation, a right-hand
side (RHS), formulating the post conditions of the
transformations, and optional negative application
conditions (NAC), defining forbidden structures

that prevent application of the transformation
rule. Objects that are checked as precondition
preserved during a transformation are indicated
by colors. Object nodes of the same color present
one and the same object in different parts of a rule.
While attributes in the LHS may have constant
values or rule variables only, they are allowed to
carry Java expressions in the RHS, too. The same
variable at different places in the rules means the
same value at all places. In the following, we use
this approach to EMF model transformation for
specifying UML model refactorings.

In Figure 22 and Figure 23, two model
transformation rules are shown, which both are
needed to perform refactoring Create Value
Object explained in Figure 16 of Section 5. Rule
CreateValueObjectClass is applied once, creating
a new value object class and a dependency of the
entity class on this new class. A class model with
an entity class is needed to create a value object
class and a dependency in between. The name of

Figure 20. Extract of AndroMDA meta-model as EMF model (©2007 Tom Mens, UMH. Used with
permission)

3478

Model-Driven Software Refactoring

Figure 21. Entity class Lecture with attributes in abstract syntax as EMF model instance (©2007 Tom
Mens, UMH. Used with permission)

Figure 22. EMF model transformation rule CreateValueObjectClass for refactoring method Create Value
Object (©2007 Tom Mens, UMH. Used with permission)

 3479

Model-Driven Software Refactoring

Figure 23. EMF model transformation rule CreateValueObjectAttribute for refactoring method Create
Value Object (©2007 Tom Mens, UMH. Used with permission)

Figure 24. Entity class Lecturewith value object class LectureVOin abstract syntax as EMF model
instance (©2007 Tom Mens, UMH. Used with permission)

3480

Model-Driven Software Refactoring

this new value object class is constructed by taking
the entity class name e and adding suffix “VO”.
This rule is applied only if a value object class of
this name has not already been created.

Thereafter, rule CreateValueObjectAttribute is
applied for each of the attributes of the entity class
that should occur also in the value object class.
Each time it is applied, it copies an attribute that
has not yet been copied into the value object.

Applying rule CreateValueObjectClass once
and rule CreateValueObjectAttribute as often
as entity class Lecture has attributes (i.e., four
times in this case) to the EMF model instance
in Figure 21, we obtain the EMF model instance
in Figure 24.

To open up the possibility for analyzing EMF
model refactorings, we translate them to graph
transformations. In this way, the formal analysis
for graph transformation becomes available
for EMF model refactoring. Although EMF
models show a graph-like structure and can
be transformed similarly to graphs, there is an
important difference between both. In contrast
to graphs, EMF models have a distinguished
tree structure that is defined by the containment

relation between their classes. Each class can be
contained in at most one other class. Since an EMF
model may have non-containment references in
addition, the following question arises: What if
a class, which is transitively contained in a root
class, has non-containment references to other
classes not transitively contained in some root
class? In this case we consider the EMF model
to be inconsistent.

A transformation can invalidate an EMF model,
if its rule deletes one or more objects. To ensure
consistent transformations only, rules that delete
objects or containment links or redirect them, have
to be equipped with additional NACs.

Formal solution

As an illustration of how refactoring dependency
analysis may increase the understanding of refac-
toring, consider the following scenario. Assume
that a software developer wants to know which
refactoring rules need to be applied in order to
restructure a software system. Typically, many
different refactoring rules may be applicable, and
it is not easy to find out what would be the most

Figure 25. Sequential dependencies computed by AGG for a representative set of refactorings implemented
as graph transformations (©2007 Tom Mens, UMH. Used with permission)

 3481

Model-Driven Software Refactoring

optimal way to apply these rules. Joint application
of some refactoring rules may not be possible due
to parallel dependencies between them, and some
refactoring rules may sequentially depend on
other ones. Graph transformation theory allows
us to compute such dependencies by relying on
the idea of critical pair analysis. The general-
purpose graph transformation tool AGG5 provides
an algorithm implementing this analysis.

Figure 25 gives an example of all sequential
dependencies that have been computed between
a representative, yet simplified, subset of
refactorings expressed as graph transformation
rules. For example, we see that there is a sequential
dependency between the CreateSuperclass
refactoring and the PullUpVariable refactoring.
CreateSuperclass inserts a new intermediate
superclass (identified by node number 2) in
between a class (node 1) and its old superclass
(node 3). PullUpVariable moves a variable
contained in a class up to its superclass. The
dependency between both transformation rules,
as computed by AGG, is visualized in Figure 26.
The effect of applying CreateSuperclass before
PullUpVariable will be that the variable will be
pulled up to the newly introduced intermediate

superclass instead of the old one. As such, there is
a sequential dependency between both refactoring
rules. It is even the case, in this example, that the
application of both refactorings in a different order
will produce a different result.

For a more detailed discussion of how
critical pair analysis can be used to reason about
refactoring dependencies, we refer to (Mens et
al., 2007) that provides a detailed account on
these issues.

related work

Various authors have proposed to use some kind
of rule-based approach to specify model refactor-
ings, so it appears to be a natural choice:

Grunske et al. (2005) show an example
in Fujaba6 of how model refactoring may be
achieved using graph transformation based on
story-driven modeling. Bottoni et al. (2005) use
distributed graph transformation concepts to
specify coherent refactorings of several software
artifacts, especially UML models and Java
programs. Both kinds of artifacts are represented
by their abstract syntax structures. Synchronized
rules are defined to specify not only refactoring

Figure 26. Example of a sequential dependency between the CreateSuperclass and the PullUpVariable
refactoring (©2007 Tom Mens, UMH. Used with permission)

3482

Model-Driven Software Refactoring

on models and programs separately, but to update
also the correlation between different model parts
and program. Synchronized rules are applied in
parallel to keep coherence between model and
program. Considering the special case where
exactly two parts (one model diagram and the
program or two model diagrams) are related, the
triple graph grammar (TGG) approach could also
be used (Schürr 1994; Königs & Schürr 2006).
Originally formulated for graphs, TGGs are also
defined and performed on the basis of MOF models
by the modeling environment MOFLON7.

(Porres, 2003) uses the transformation
language SMW to specify model refactorings.
This script language is also rule-based and
resembles the Object Constraint Language (OCL).
SMW is oriented at OCL for querying patterns,
but also provides basic operations to realize
transformations. A prototypical refactoring tool
for UML models has been implemented based
on SMW.

Van Der Straeten & D’Hondt (2006) suggest
using a rule-based approach to apply model
refactorings, based on an underlying inconsistency
detection and resolution mechanism implemented
in the description logics engine RACER8.

We decided to specify model refactorings
based on EMF model transformation, since EMF
is developing to a standard format for models and
to be compatible with upcoming UML CASE tools
based on EMF. Moreover, our approach opens up
the possibility for analyzing model refactorings,
since EMF model transformations can be
translated to algebraic graph transformations.

summArY

Software complexity is constantly increasing, and
can only be tamed by raising the level of abstrac-
tion from code to models. With the model-driven
software engineering paradigm, automated code
generation techniques can be used to hide the ac-

cidental complexity of the underlying technology
(Brooks, 1995). This enables one to deal with
complex software in a systematic way.

To guarantee high-quality software, it is also
important to address concerns such as readability,
extensibility, reusability and usability of software.
Software refactoring is a proven technique to
reach these goals in a structured, semi-automated
manner.

By integrating the process of refactoring into
model-driven software development, we arrive at
what we call model-driven software refactoring.
Analogously to program refactoring, the first phase
is to determine potential candidates for model
refactorings, which can be obtained using “model
smells” and “model metrics”. The second phase
consists of applying the selected refactorings.
This would be a relatively straightforward issue, if
hundred-percent code generation were achievable.
In practice, for large and complex software
systems, this is not the case. Full code generation
is not even desirable in many situations since – at
least for describing algorithms or data conversions
– source code seems to be more adequate than
behavioral models. An additional difficulty
is the lack of a general accepted semantics of
UML. This makes it very difficult to determine
whether a given model transformation is behavior
preserving, which is the main criterion to decide
whether something can be called refactoring or
not, according to Fowler (1999).

As a feasibility study, we have chosen
AndroMDA to illustrate the model-driven
development of web applications. We illustrated
and discussed a number of standard and domain-
specific restructurings. Since they often change
the observable behavior of the software in some
sense, we explored to what extent they can be
considered as refactorings. All restructurings
were categorized into three groups, ordered by
the fulfillment degree of Fowler’s criterion. The
obtained results show that we should address the
notion of model refactoring with care, and may
serve as suggestions for better tool support:

 3483

Model-Driven Software Refactoring

• We may want to support refactorings that
do not fully preserve behavior, as long as
they improve other important software qual-
ity aspects. This also implies that we need
techniques to assess the effect of a model
transformation on the software quality.

• We need to find a balance between, and
provide user support for the ability to specify
generic model refactorings, and the ability to
adapt and refine these refactorings to work
properly in a domain-specific modeling
language;

• We need to provide an interactive round-trip
engineering approach to refactoring. When
performing model refactorings, it turns out
that manual intervention is frequently re-
quired in order to keep the abstraction levels
of source code and model consistent. Model
refactorings may also affect and require
changes to the hand-written source code.

From a theoretical point of view, we have
suggested to use graph transformation to provide
a formal specification of model refactorings. It has
the advantage of defining refactorings in a generic
way, while still being able to provide tool support
in commonly accepted modeling environments
such as EMF. In addition, the theory of graph
transformation allows us to formally reason
about dependencies between different types of
refactorings. Such a static analysis of potential
conflicts and dependencies between refactorings
can be helpful for the user during the interactive
process of trying to improve the software quality
by means of disciplined model transformations.

Future reseArch dIrectIons

In Section 4, we identified many important chal-
lenges in model-driven software refactoring.
We only worked out some of these challenges in

more detail: the need for a formal specification
of model refactorings, the need to reason about
behavior preservation, the need to synchronize
models and source code whilst applying refactor-
ings, the need to relate and integrate the aspects
of model refactoring and model quality. There are
still many other challenges that remain largely
unaddressed:

When developing large software systems in
a model-driven manner, several development
teams might be involved. In this case, it would be
advantageous if the model could be subdivided
into several parts that could be developed in a
distributed way. Considering refactoring in this
setting, model elements from different submodels
might be involved. Thus, several distributed
refactoring steps have to be performed and
potentially synchronized if they involve common
model parts. Distributed refactoring steps could be
considered as distributed model transformations
(Goedicke et al., 1999; Bottoni et al., 2005).

The usual way to test refactorings is by testing
the code before and after refactoring steps. Clearly,
the code has to satisfy the same test cases before
and after refactoring it. Considering refactoring
within model-driven development, the same
testing procedure should be possible, i.e., test cases
for the generated code before and after refactoring
should produce the same results. As we discussed
within this chapter, model-driven software
refactoring often does not fulfill Fowler’s criterion
in a stringent way. Future investigations should
clarify the impact of this kind of restructuring on
test suites (Van Deursen et al., 2002).

An important pragmatic challenge that has
not been addressed in this chapter has to do with
performance and scalability. Is it possible to
come up with solutions that scale up to industrial
software? Egyed (2006) provided initial evidence
that this is actually the case, by providing an instant
model synchronization approach that scales up to
large industrial software models.

Another interesting research direction is to

3484

Model-Driven Software Refactoring

apply refactorings at the meta-model level. This
raises the additional difficulty of needing to
convert all models that conform to this meta-model
accordingly, preferably in an automated way.

reFerences

Astels, D. (2002). Refactoring with UML. In M.
Marchesi, G. Succi (Eds.), Proceedings of 3rd
International Conference eXtreme Programming
and Flexible Processes in Software Engineering
(pp. 67-70), Alghero, Italy.

Biermann, E., Ehrig, K., Köhler, C., Taentzer,
G., & Weiss, E. (2006). Graphical Definition of
In-Place Transformations in the Eclipse Modeling
Framework. In O. Nierstrasz (Ed.), Proceedings
of International Conference on Model Driven
Engineering Languages and Systems (pp. 425-
439), Lecture Notes in Computer Science 4199,
Heidelberg: Springer.

Boger, M., Sturm, T., & Fragemann, P. (2002).
Refactoring Browser for UML. In M. Marchesi,
G. Succi (Eds.), Proceedings 3rd International
Conference on eXtreme Programming and Flex-
ible Processes in Software Engineering (pp. 77-
81), Alghero, Italy.

Bottoni, P., Parisi-Presicce, F., Mason, G., &
Taentzer, G. (2005). Specifying Coherent Refac-
toring of Software Artefacts with Distributed
Graph Transformations. In P. van Bommel (Ed.),
Handbook on Transformation of Knowledge,
Information, and Data: Theory and Applications
(pp. 95-125). Hershey, PA: Information Science
Publishing.

Bouden, S. (2006). Étude de la traçabilité entre
refactorisations du modèle de classes et refactori-
sations du code. Unpublished masters dissertation,
Université de Montréal, Canada.

Brooks, F. P. (1995). No Silver Bullet: Essence
and accidents of software engineering. In The

Mythical Man-Month: Essays on Software En-
gineering, 20th Anniversary Edition. Reading,
MA: Addison-Wesley.

Brottier, E., Fleurey, F., & Le Traon, Y. (2006).
Metamodel-based Test Generation for Model
Transformations: an Algorithm and a Tool. In
Proceedings 17th International Symposium on
Reliability Engineering (pp. 85-94), IEEE Com-
puter Society.

Correa, A., & Werner, C. (2004). Applying
Refactoring Techniques to UML/OCL Models.
In Proceedings International Conference UML
2004 (pp. 173-187), Lecture Notes in Computer
Science 3273, Heidelberg: Springer.

Demeyer, S., Ducasse, S., & Nierstrasz, O. (2000).
Finding Refactorings Via Change Metrics. In
Proceedings International Conference OOPSLA
2000 (pp. 166-177). ACM SIGPLAN Notices
35(10), ACM Press.

Du Bois, B. (2006). Quality-Oriented Refactoring.
Unpublished doctoral dissertation, Universiteit
Antwepen, Belgium.

Egyed, A. (2006). Instant consistency checking
for the UML. In Proc. International Conference
on Software Engineering (pp. 31-390), ACM.

Ehrig, H, Ehrig, K. Prange, U. & Taentzer, G.
(2006). Fundamental Approach to Graph Trans-
formation. EATCS Monographs, Heidelberg:
Springer.

Ehrig, H., Tsioalikis, A. (2000). Consistency
analysis of UML class and sequence diagrams
using attributed graph grammars. In ETAPS 2000
workshop on graph transformation systems (pp.
77-86).

Fenton, N., & Pfleeger, S. L. (1997). Software
Metrics: A Rigorous and Practical Approach (2nd
edition). London, UK: International Thomson
Computer Press.

Fowler, M. (1999) Refactoring: Improving the

 3485

Model-Driven Software Refactoring

Design of Existing Code. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., & Vlissides,
J. (1994). Design Patterns: Elements of Reus-
able Object-Oriented Languages and Systems.
Addison-Wesley.

Gheyi, R., Massoni, T., & Borba, P. (2005). A Rig-
orous Approach for Proving Model Refactorings.
In Proceedings 20th IEEE/ACM International
Conference Automated Software Engineering
(pp. 372-375). IEEE Computer Society.

Gheyi, R., Massoni, T., & Borba, P. (2005). Type-
safe Refactorings for Alloy. In Proceedings 8th
Brazilian Symposium on Formal Methods (pp.
174-190). Porto Alegre, Brazil.

Goedicke, M., Meyer, T., & Taentzer, G. (1999).
Viewpoint-oriented software development by
distributed graph transformation: Towards a basis
for living with inconsistencies. In Proceedings
International Conference Requirements Engi-
neering (pp. 92-99). IEEE Computer Society.

Grundy, J. C., Hosking, J.G., & Mugridge W. B.
(1998). Inconsistency Management for Multiple-
View Software Development Environments,
IEEE Transactions on Software Engineering,
24(11), 960-981.

Grunske, L., Geiger, L., Zündorf, A., Van Eetvelde,
N., Van Gorp, P., & Varro, D. (2005). Using Graph
Transformation for Practical Model Driven Soft-
ware Engineering. In S. Beydeda, M. Book, & V.
Gruhn (Eds.), Model-driven Software Develop-
ment (pp. 91-118). Heidelberg: Springer.

Kamthan, P. (2004). A Framework for Addressing
the Quality of UML Artifacts. Studies in Com-
munication Sciences, 4(2), 85-114.

Kerievsky, J. (2004). Refactoring to Patterns.
Addison-Wesley.

Königs, A. & Schürr, A. (2006). Tool Integration
with Triple Graph Grammars - A Survey . In R.

Heckel (Ed.), Proceedings of the SegraVis School
on Foundations of Visual Modelling Techniques
(pp. 113-150). Electronic Notes in Theoretical
Computer Science 148, Amsterdam: Elsevier.

Lehman, M. M., Ramil, J. F., Wernick, P. D.,
Perry D. E., & Turski, W. M. (1997). Metrics and
laws of software evolution: The nineties view.
In Proceedings of International Symposium on
Software Metrics (pp. 20-32). IEEE Computer
Society Press.

Liu, W., Easterbrook, S., & Mylopoulos, J. (2002).
Rule-based detection of inconsistency in UML
models. In Proceedings UML Workshop on
Consistency Problems in UML-based Software
Development (pp. 106-123). Blekinge Insitute of
Technology.

Markovic, S., & Baar, T. (2005). Refactoring OCL
Annotated UML Class Diagrams. In L. Briand, C.
Williams (Eds.), Proceedings International Con-
ference Model Driven Engineering Languages
and Systems (pp. 280-294). Lecture Notes in
Computer Science 3713, Heidelberg: Springer

Mens, T. (2006). On the use of graph transforma-
tions for model refactoring. In Generative and
Transformational Techniques in Software Engi-
neering (pp. 219-257). Lecture Notes in Computer
Science 4143, Heidelberg: Springer.

Mens, T., & Tourwé, T. (2004). A Survey of Soft-
ware Refactoring. IEEE Transactions on Software
Engineering, 30(2), 126-162.

Mens, T., Van Eetvelde, N., Demeyer, S., &
Janssens, D. (2005). Formalizing refactorings
with graph transformations. Journal on Software
Maintenance and Evolution, 17(4), 247-276.

Mens, T., Van Der Straeten, R., & D’Hondt,
M. (2006). Detecting and resolving model in-
consistencies using transformation dependency
analysis, In O. Nierstrasz (Ed.), Proceedings
International Conference on Model-Driven
Engineering Languages and Systems (pp. 200-

3486

Model-Driven Software Refactoring

214). Lecture Notes in Computer Science 4199,
Heidelberg: Springer.

Mens, T., Taentzer, G., & Runge, O. (2007). Ana-
lyzing Refactoring Dependencies Using Graph
Transformation. Journal on Software and Systems
Modeling, 6(3), 269-285.

Mottu, J.-M., Baudry, B., & Le Traon, Y. (2006).
Mutation Analysis Testing for Model Transforma-
tions. In Proceedings 2nd European Conference
on Model Driven Architecture – Foundations
and Applications (pp. 376-390). Lecture Notes in
Computer Science 4066, Heidelberg: Springer.

Parnas, D.L. (1994). Software Aging. In Proceed-
ings of International Conference on Software
Engineering (pp. 279-287). IEEE Computer
Society Press.

Porres, I. (2003). Model refactorings as rule-
based update transformations. In: P. Stevens,
J. Whittle, G. Booch (Eds.), In Proceedings of
6th International Conference UML 2003 - The
Unified Modeling Language. Model Languages
and Applications (pp. 159-174). Lecture Notes in
Computer Science 2863, Heidelberg: Springer.

Pretschner, A., & Prenninger, A. (2007). Comput-
ing Refactorings of State Machines, Journal on
Software and Systems Modeling. To appear.

Schürr, A. (1994). Specification of Graph Transla-
tors with Triple Graph Grammars. In: G. Tinhofer
(Ed.), WG94 20th International Workshop on
Graph-Theoretic Concepts in Computer Science
(pp. 151-163). Lecture Notes in Computer Science
903, Heidelberg: Springer.

Spanoudakis, G., & Zisman, A. (2001). Incon-
sistency management in software engineering:
Survey and open research issues. In Handbook of
Software Engineering and Knowledge Engineer-
ing (pp. 329-80). World Scientific

Sunyé, G., Pollet, D., Le Traon, Y., & Jézéquel,
J.-M. (2001). Refactoring UML models, In Pro-
ceedings International Conference Unified Mod-

eling Language (pp. 134-138). Lecture Notes in
Computer Science 2185, Heidelberg: Springer.

Tahvildari, L., & Kontogiannis, K. (2004).
Improving Design Quality Using Meta-Pattern
Transformations: A Metric-Based Approach,
Journal of Software Maintenance and Evolution,
16(4-5), 331-361.

van Deursen, A., & Moonen, L. (2002). The Video
Store Revisited: Thoughts on Refactoring and
Testing, In M. Marchesi, G. Succi (Eds.), Proceed-
ings 3rd International Conference on Extreme
Programming and Flexible Processes in Software
Engineering (pp. 71-76). Alghero, Italy.

van Deursen, A., Moonen, L., van den Bergh,
A., & Kok, G. (2002). Refactoring Test Code, In
G. Succi, M. Marchesi, D. Wells, & L. Williams
(Eds.), Extreme Programming Perspectives (pp.
141-152). Addison-Wesley.

Van Der Straeten, R. (2005). Inconsistency
Management in Model-driven Engineering: An
Approach using Description Logics. Unpublished
doctoral dissertation, Vrije Universiteit Brussel,
Belgium.

Van Der Straeten, R., & D’Hondt, M. (2006).
Model refactorings through rule-based inconsis-
tency resolution. In Proceedings Symposium on
Applied computing (pp. 1210-1217). New York:
ACM Press

Van Der Straeten, R., Mens, T., Simmonds, J.,
& Jonckers, V. (2003). Using description logics
to maintain consistency between UML models.
In Proceedings International Conference on
The Unified Modeling Language (pp. 326-340).
Lecture Notes in Computer Science 2863, Hei-
delberg: Springer.

Van Der Straeten, R., Jonckers, V., & Mens, T.
(2004). Supporting Model Refactorings through
Behaviour Inheritance Consistencies. In T. Baar,
A. Strohmeier, & A. Moreira (Eds.), Proceedings
of International Conference on The Unified Mod-

 3487

Model-Driven Software Refactoring

eling Language (pp. 305-319). Lecture Notes in
Computer Science 3273, Heidelberg: Springer.

Van Gorp, P., Stenten, H., Mens, T., & Demeyer,
S. (2003). Towards automating source-consistent
UML refactorings. In P. Stevens & J. Whittle
& G. Booch (Eds.), Proceedings International
Conference on The Unified Modeling Language
(pp. 144-158). Lecture Notes in Computer Science
2863, Heidelberg: Springer.

Van Kempen, M., Chaudron, M., Koudrie, D., &
Boake, A. (2005). Towards Proving Preservation
of Behaviour of Refactoring of UML Models. In
Proceedings SAICSIT 2005 (pp. 111-118).

Zhang, J., Lin, Y., & Gray, J. (2005). Generic
and Domain-Specific Model Refactoring using a
Model Transformation Engine. In Model-driven
Software Development - Research and Practice
in Software Engineering. Springer.

AddItIonAl reAdInG

General and up-to-date information about graph
transformation can be obtained via the website
http://www.gratra.org/. For those readers wish-
ing to get more in-depth information about what
graph transformation is all about, we refer to
the 3-volume “bible” of graph transformation
research. Volume 1 focuses on its theoretical
foundations; Volume 2 addresses applications,
languages and tools; and Volume 3 deals with
concurrency, parallelism and distribution.

Rozenberg, G. (1997). Handbook of Graph Gram-
mars and Computing by Graph Transformation,
Volume 1. World Scientific.

Ehrig, H., Engels, G., Kreowski, H.-J., & Rozen-
berg G. (1999). Handbook of Graph Grammars
and Computing by Graph Transformation, Volume
2. World Scientific.

Ehrig, H., Kreowski, H.-J., Montanari, U., &
Rozenberg, G. (1999). Handbook of Graph Gram-
mars and Computing by Graph Transformation,
Volume 3, World Scientific.

Background information about model-driven
software engineering can be obtained via the
website http://www.planetmde.org/. This includes
tool support and events devoted to this very active
research domain. Many books on this topic have
been published. In particular, we found the fol-
lowing ones to be very useful and relevant:

Beydeda, S., Book, M., & Gruhn, V. (2005). Mod-
el-Driven Software Development, Springer.

Stahl, T., & Völter, M. (2006). Model-Driven
Software Development, Wiley.

With respect to software evolution research, we
suggest to consult the website http://www.planet-
evolution.org/. Many books on this topic have been
published. In particular, we found the following
ones to be very useful and relevant:

Grubb, P., & Takang, A.A. (2003). Software
Maintenance: Concepts and Practice (Second
Edition). World Scientific.

Madhavji, N. H., Fernandez-Ramil, J., & Perry,
D. (2006). Software Evolution and Feedback:
Theory and Practice. Wiley.

Mens, T., & Demeyer, S. (2008). Software Evolu-
tion. Springer.

Seacord, R., Plakosh, D. & Lewis, G. (2003).
Modernizing Legacy Systems: Software Tech-
nologies, Engineering Processes, and Business
Practices (SEI Series in Software Engineering).
Addison-Wesley.

Regarding software refactoring in particular,

3488

Model-Driven Software Refactoring

we would like to point to some of the early work
on refactoring, which has been published in the
following PhD dissertations:

Griswold, W.G. (1991). Program Restructuring
as an Aid to Software Maintenance. Unpublished
doctoral dissertation, University of Washing-
ton.

Opdyke, W.F. (1992). Refactoring: A Program
Restructuring Aid in Designing Object-Oriented
Application Frameworks. Unpublished doctoral
dissertation, University of Illinois at Urbana-
Champaign.

Roberts, D. (1999). Practical Analysis for Refac-
toring. Unpublished doctoral dissertation, Univer-
sity of Illinois at Urbana-Champaign.

O Cinnéide, M. (2000). Automated Application
of Design Patterns: A Refactoring Approach.
Unpublished doctoral dissertation, Trinity Col-
lege, University of Dublin.

Tichelaar, S. (2001). Modeling Object-Oriented
Software for Reverse Engineering and Refactor-
ing. Unpublished doctoral dissertation, University
of Bern.

There are many useful standards that have been
published for software maintenance and software
evolution. As is frequently the case, some of these
standards may be somewhat outdated compared
to the current state-of-the-art in research:

The ISO/IEC 14764 standard on ̀ `Software Main-
tenance'' (1999)

The IEEE 1219 standard on `̀ Software Mainte-
nance'' (1999)

The ISO/IEC 12207 standard (and its amend-
ments) on `̀ Information Technology - Software
Life Cycle Processes'' (1995)

The ANSI/IEEE 1042 standard on `̀ Software
Configuration Management'' (1987)

endnotes

1 http://galaxy.andromda.org
2 This model refactoring is actually domain-

specific, as will be discussed later in this
chapter.

3 Of course, programs also need to be syn-
chronized with related software artefacts
such as databases, user interfaces, test suites
and so on. Each of these kinds of artefacts
may have been expressed using a different
language.

4 It is not our goal to be complete here.
5 http://tfs.cs.tu-berlin.de/agg
6 http://www.fujaba.de
7 http://www.moflon.org
8 http://www.racer-systems.com

This work was previously published in Model-Driven Software Development: Integrating Quality Assurance, edited by J. Rech
& C. Bunse, pp. 170-203, copyright 2009 by Information Science Reference (an imprint of IGI Global).

 3489

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8.17
Benchmarking in the

Semantic Web
Raúl García-Castro

Universidad Politécnica de Madrid, Spain

Asunción Gómez-Pérez
Universidad Politécnica de Madrid, Spain

AbstrAct

The Semantic Web technology needs to be thor-
oughly evaluated for providing objective results
and obtaining massive improvement in its quality;
thus, the transfer of this technology from research
to industry will speed up. This chapter presents
software benchmarking, a process that aims to
improve the Semantic Web technology and to
find the best practices. The chapter also describes
a specific software benchmarking methodology
and shows how this methodology has been used
to benchmark the interoperability of ontology
development tools, employing RDF(S) as the
interchange language.

IntroductIon

The Semantic Web technology has considerably
improved since the 1990’s, when the first tools

were developed; although it has mainly been
applied in research laboratories, in recent years
companies have started to be interested in this
technology and its application.

To transfer the Semantic Web technology from
the academia, its current niche, to the industrial
world it is necessary that this technology reaches
a maturity level that enables it to comply with the
quality requirements of the industry. Therefore,
the Semantic Web technology needs to be thor-
oughly evaluated both for providing objective
results and for attaining a massive improvement
in its quality.

Until recently, the Semantic Web technol-
ogy was seldom evaluated; now, however, this
technology is widely used and numerous studies
concerning its evaluation have appeared in the
last few years. So now it seems quite necessary
that researchers increase the quality of their
evaluations and improve the technology collec-

3490

Benchmarking in the Semantic Web

tively by benchmarking it, employing for this a
methodological process.

Evaluating and benchmarking this technol-
ogy within the Semantic Web can be quite
costly because most of the people involved do
not know how to carry out these processes and
also because no standard nor agreed methods to
follow now exist. On the other hand, since it is
quite difficult to reuse the results and put into
practice the lessons learnt in previous activities,
it is necessary to develop new methods and tools
every time this technology has to be evaluated
or benchmarked.

Software benchmarking is presented in this
chapter as a continuous process whose aim is to
improve software products, services, and pro-
cesses by evaluating and comparing them with
those considered the best. Although software
evaluations are performed inside the benchmark-
ing activities, benchmarking provides some
benefits that cannot be obtained from evaluations,
as for example, the continuous improvement of
software, or the extraction of the best practices
used to develop the software.

Within the Knowledge Weba European
Network of Excellence a new methodology for
benchmarking Semantic Web technology has
been developed; this methodology is now being
adopted in different benchmarking studies and
applied to the different types of Semantic Web
technologies (ontology development tools, ontol-
ogy alignment tools, ontology-based annotation
tools, and reasoners). The methodology focuses on
the special interests of the industry and research
fields and on their different needs. At the end of
the chapter, we describe how we have followed
this methodology during one of the activities
performed to benchmark the interoperability of
ontology development tools, employing RDF(S)
as the interchange language.

evAluAtIon And
benchmArKInG In the
lIterAture

software evaluation

Software evaluation plays an important role in
different areas of Software Engineering, such as
Software Measurement, Software Experimenta-
tion or Software Testing. In this section, we present
a general view of these areas.

According to the ISO 14598 standard (ISO/
IEC, 1999), software evaluation is the systematic
examination of to which extent an entity is capable
of fulfilling specified requirements; this standard
considers software not just as a set of computer
programs but also as a set of procedures, docu-
mentation and data.

Software evaluation can take place all along
the software life cycle. It can be performed during
the software development process by evaluating
intermediate software products or when the de-
velopment has finished.

Although evaluations are usually carried out
inside the organisation that develops the software,
other independent groups such as users or audi-
tors can also make them. When independent third
parties evaluate software, they are usually very
effective, though their evaluations can become
very expensive (Rakitin, 1997).

The goals of evaluating software vary since
they depend on each specific case, but in general,
they can be summarised (Basili et al., 1986; Park
et al., 1996; Gediga et al., 2002) as follows:

• To describe the software in order to under-
stand it and establish baselines for compari-
sons.

• To assess the software with respect to some
quality requirements or criteria and deter-
mine the degree of quality required from
the software product and its weaknesses.

 3491

Benchmarking in the Semantic Web

• To improve the software by identifying op-
portunities and, thus, improving its quality.
This improvement is measured by compar-
ing the software with the baselines.

• To compare alternative software products
or different versions of a same product.

• To control software quality by ensuring that
it meets the required level of quality.

• To predict new trends in order to take deci-
sions and establish new goals and plans for
accomplishing them.

It is understood that the methods to follow
to evaluate software vary from one author to
another and from one Software Engineering area
to another. However, from the methods proposed
in the areas of a) Software Evaluation (ISO/IEC,
1999; Basili, 1985), b) Software Experimentation
(Basili & Selby, 1991; Perry et al., 2000; Freimut
et al., 2002), c) Software Measurement (Park et
al., 1996; IEEE, 1998), and d) Software Testing
(Abran et al., 2004) we can extract a common
set of tasks that must be carried out in software
evaluations. These tasks are the following:

1. To establish the evaluation requirements by
setting its goals, the entities to evaluate, and
their relevant attributes.

2. To define the evaluation by explaining the
data to collect, the evaluation criteria to
follow, and the mechanisms to collect data
and implement these mechanisms.

3. To produce the evaluation plan.
4. To execute the evaluation and to collect

data.
5. To analyse the collected data.

benchmarking in the literature

In the last decades, the word benchmarking has
become relevant within the business management
community. The most well-known definitions of

the term are those by Camp (1989) and Spendolini
(1992). Camp defines benchmarking as the search
for industry best practices that lead to superior
performance; on the other hand, Spendolini
has expanded Camp’s definition by adding that
benchmarking is a continuous, systematic process
for evaluating the products, services, and work
processes of organisations that are recognised
as representing best practices for the purpose
of organisational improvement. In this context,
best practices are good practices that have worked
well elsewhere, are proven and have produced
successful results (Wireman, 2003).

These definitions highlight the two main
benchmarking characteristics:

• Continuous improvement.
• Search for best practices.

The Software Engineering community does
not share a common benchmarking definition
but several. Here we present some of the most
representative:

• Both Kitchenham (1996) and Weiss (2002)
define benchmarking as a software evalua-
tion method suitable for system comparisons.
Whereas for Kitchenham benchmarking is
the process of running a number of stan-
dard tests using a number of alternative
tools/methods and assessing the relative
performance of the tools in those tests, for
Weiss benchmarking is a method of measur-
ing performance against a standard, or a
given set of standards.

• Wohlin et al. (2002) have adopted the
benchmarking definition from the business
world, that is, they consider benchmarking
as a continuous improvement process that
strives to be the best of the best through the
comparison of similar processes in different
contexts.

3492

Benchmarking in the Semantic Web

software benchmarking

In this section, we have followed the notions
that support continuous improvement and search
for best practices within business management
benchmarking; these notions have led us to con-
sider software benchmarking as a continuous
improvement process instead of as a punctual
activity. Equally important for us are the concept
of comparing software through evaluations and
that of carrying out the benchmarking activity
through a systematic procedure.

All these concepts permit us to define software
benchmarking as a continuous process whose
aim is to improve software products, services,
and processes by systematically evaluating and
comparing them with those considered to be the
best.

This definition, however, does not specify the
type of the entities considered in benchmarking
(software products, services or processes), nor
does it determine the software life-cycle phase
when benchmarking is performed, and nor does
it explain who is responsible for benchmarking.
However, software benchmarking is usually per-
formed on software products already developed
and is executed by their developers.

The reason for benchmarking software prod-
ucts instead of just evaluating them is to gain those
benefits that cannot be obtained from software
evaluations. When we evaluate software we can
observe its weaknesses and its compliance to
quality requirements. If, on the other hand, several
software products are involved in the evaluation,
then we can have a comparative analysis of these
products and provide some recommendations. But
when we benchmark several software products,
in addition to all the benefits commented, we
obtain products that are continuously improved,
recommendations for developers on the practices
used and, from these practices, those that can be
considered the best.

software evaluation in
benchmarking Activities

To evaluate software is not a straightforward
task; however, as this is an issue that has been
thoroughly examined both in theory and practice,
several authors have proposed different recom-
mendations to consider (Basili et al., 1986; Perry et
al., 2000; Freimut et al., 2002; Juristo & Moreno,
2001; Kitchenham et al., 2002).

These recommendations are also applicable
to the software evaluations made during the
benchmarking activities. However, when we have
to define this kind of software evaluations, we
must take into account some additional recom-
mendations.

And the most important recommendation is
that the evaluation of the benchmarking proce-
dure must be an improvement-oriented activ-
ity. Its intended results will not only be used for
comparing the different software products, but
for learning how to improve such products. This
requires that the evaluation yield not only some
comparative results but also that it show the
practices that produced these results.

Another recommendation is that benchmark-
ing evaluations should be as general as possible
since they will be performed by different groups
of people in different locations and on different
software.

Benchmarking is a process driven by a com-
munity; therefore, to gain credibility, effective-
ness and impact, its evaluations should also be
community-driven.

Additionally, benchmarking evaluations
should be reproducible since they are intended
to be used not only by the people participating in
the benchmarking, but by the whole community.
This requires that the evaluation be thoroughly
detailed, providing public data and procedures.

To perform the evaluations consumes sig-
nificant resources; these evaluations, on the other

 3493

Benchmarking in the Semantic Web

hand, must be made by several groups of people.
Therefore, evaluations should be as economical
as possible, employing for this activity common
evaluation frameworks and, when this is not pos-
sible, limiting the scope of the evaluation.

Furthermore, as benchmarking is a continuous
process, benchmarking evaluations should have a
limited scope, leaving other objectives for the next
benchmarking iterations and incrementing pro-
gressively the complexity of the evaluations. We
must add here that a broader evaluation scope does
not entail better results but more resources.

As the next section shows, most of these
recommendations should also be adopted in the
benchmark suites. Therefore, it is advisable to use
benchmark suites in the evaluations.

benchmark suites

A benchmark suite is a collection of benchmarks,
being a benchmark a test or set of tests used to
compare the performance of alternative tools or
techniques (Sim et al., 2003).

A benchmark definition must include the
following:

• The context of the benchmark, namely,
which tools and which of their characteristics
are measured with it (efficiency, interoper-
ability, portability, usability, etc.).

• The requirements for running the bench-
mark, namely, the tools (hardware or soft-
ware), data, or people needed.

• The input variables that affect the execu-
tion of the benchmark and the values that
the variables will take.

• The procedure to execute the benchmark
and obtain its results.

• The evaluation criteria followed to interpret
these results.

A benchmark suite definition must include
the definitions of all its benchmarks. Generally,

all these benchmarks share some of their charac-
teristics, such as context or requirements. These
characteristics, therefore, must be specified at the
benchmark suite level, and not individually for
each benchmark.

desirable Properties of a benchmark
suite

The properties below, which are extracted from
the works of different authors (Bull et al., 1999;
Shirazi et al., 1999; Sim et al., 2003; Stefani et al.,
2003), can help both to develop new benchmark
suites and to assess the quality of the existing
ones before being used.

Although a good benchmark suite should have
most of these properties, each evaluation will
require considering some of them previously.
However, we must not forget that achieving
these properties completely is not possible since
the increment of some properties has a negative
effect on the others.

• Accessibility. A benchmark suite must be ac-
cessible to anyone interested. This involves
providing (a) the necessary software to ex-
ecute the benchmark suite, (b) the software
documentation, and (c) the software source
code to increase transparency. Then the
results obtained from executing the bench-
mark suite should be made public so that
anybody can execute it and then compare
his/her results with those available.

• Affordability. Using a benchmark suite
normally entails a number of costs regarding
human, software, and hardware resources.
Thus, the costs of using a benchmark
suite must be lower than those of defining,
implementing, and carrying out any other
experiments that fulfil the same goal. On
the other hand, the resources consumed in
the execution of a benchmark suite can be
reduced by (a) automating the execution of

3494

Benchmarking in the Semantic Web

the benchmark suite, (b) providing compo-
nents for data collection and analysis, and (c)
facilitating its use in different heterogeneous
systems.

• Simplicity. The benchmark suite must be
simple and interpretable and should be well
documented; therefore, whoever wants to use
it must be able to understand how it works
and the results that it yields. If the benchmark
suite is not transparent enough, its results
will be questioned and may be interpreted
incorrectly. To avoid this, the elements of
the benchmark suite should have a common
structure and use, and common inputs and
outputs. Measurements, on the other hand,
should have the same meanings across the
benchmark suite.

• Representativity. The actions that perform
the benchmarks composing the benchmark
suite must be representative of the actions
normally performed on the system.

• Portability. The benchmark suite should be
executed on a wide range of environments
and should be applicable to as many systems
as possible. Besides, it should be specified at
a high enough level of abstraction to ensure
that it can be transferred to different tools
and techniques and that is not biased against
other technologies.

• Scalability. The benchmark suite should be
parameterised to allow scaling the bench-
marks with varying input rates. In addition,
it should work with tools or techniques of
different levels of maturity and should be
applicable to research prototypes and com-
mercial products.

• Robustness. The benchmark suite must
allow for unpredictable environment behav-
iours and should not be sensitive to factors
irrelevant to the study. When running the
same benchmark suite on a given system and
under the same conditions several times, the
results obtained should not vary consider-
ably.

• Consensus. The benchmark suite must
be developed by experts capable of apply-
ing their knowledge of the domain and of
identifying the key problems. Additionally,
it should be assessed and agreed on by the
whole community.

evAluAtIon And
benchmArKInG wIthIn the
semAntIc web

This section provides an overview of the evalua-
tion and benchmarking trends now occurring in
the Semantic Web area; it also describes to what
extent the evaluation and benchmarking activities
performed on the Semantic Web technology can
be partially or totally reused in different tools,
and the facilities provided for doing so.

To this end, we have performed a survey of the
main conferences on the Semantic Web field and
of the workshops whose main topic is Semantic
Web technology evaluation. We have examined
the proceedings of five conferences: International
Semantic Web Conference (ISWC), European
Semantic Web Conference (ESWC), Asian Se-
mantic Web Conference (ASWC), International
Conference on Knowledge Capture (K-CAP), and
International Conference on Knowledge Engi-
neering and Knowledge Management (EKAW);
and we have studied five workshops: Workshop
on Evaluation of Ontology-based Tools (EON),
Workshop on Scalable Semantic Web Knowledge
Base Systems (SSWS), Workshop on Practical and
Scalable Semantic Systems (PSSS), International
Workshop on Ontology Matching (OM), and
Workshop on Integrating Ontologies (IntOnt). The
survey includes all the papers accepted in these
conferences and workshops from 2000 to 2006.

It is clear that the papers examined, which
were presented in the conferences and workshops
above commented, do not provide exhaustive
information, but they can provide an overview
of the current trends.

 3495

Benchmarking in the Semantic Web

We consider that fulfilling the desirable prop-
erties of a benchmark suite and the recommenda-
tions for defining evaluations in benchmarking
activities, both defined in the previous section, is
an indication of evaluation reusability. And thus,
with these desirable properties and recommenda-
tions in mind we have produced a questionnaire
that should be filled in for each of the selected
papers. As an example, the questions asked for
assessing the portability of an evaluation approach
are the following:

• In which type of tools can the evaluation be
performed?

• Can the evaluation approach be transferred
to other tools?

• On which of the operating systems/platforms
can the evaluation be performed?

Although software evaluations are frequent in
research papers, we focused on those papers where
the evaluation approaches followed are reusable to
a certain extent. However, we did not distinguish
between evaluations that are performed within the
benchmarking activities and evaluations that are
not, nor did we distinguish between these bench-
marking activities that use benchmark suites and
those that do not. Thus, the criteria we followed
to select the papers are:

• The paper describes how to evaluate several
tools, or it shows the results of the evaluation
over several tools, or both.

• The evaluation described in the paper in-
volves more than one tool or is intended to
be applied to more than one tool.

• The evaluation described in the paper is
targeted to software tools or to methods
implemented by some software.

With these criteria we selected 61 papers and
filled in the questionnaire. Of these papers, 21
deal with the description and application of an
evaluation, 7 simply describe an evaluation, and

33 show how an evaluation is made. Among the
papers selected, we included those workshop
papers that present proposals for performing a
common evaluation and the papers written on
this evaluation by the participants together with
the results of their findings.

Figure 1 and Figure 2 show the trend con-
cerning papers related to evaluation that were
published in the last few years. As for the 17
papers presented in the conferences, they have
led us to conclude, first, that the number of pa-
pers increases every year and, second, that no
evaluation-related papers were submitted to the
EKAW and K-CAP conferences; this may occur
because these conferences are more oriented to
knowledge management than to the Semantic
Web. With regard to the 44 papers presented in
workshops, we have noticed that only 7 of them
are regular papers and that the other papers are
either evaluation proposals or evaluation results.
There is a call for participation in evaluations every
year; we have observed that in these evaluations
the number of evaluation contributions varies,
whereas the number of regular papers is more or
less constant.

Our survey shows the results of the reusabil-
ity of the evaluation approaches in which it can
be observed that some of them are positive and
some, negative.

The positive results confirm that, in general,
the evaluation approaches are easy to understand
because they clearly establish both the input data,
according to a common structure, and the evalua-
tion criteria for analysing the results. In addition,
in most cases, performing the evaluations is not
expensive since the evaluation approaches provide
common evaluation frameworks and, quite often,
the whole evaluation or part of it can be automated.
In other cases, however, some software supports
the evaluation, being this software and its source
code usually accessible. Scalability and robustness
have also been taken into account throughout the
evaluations.

3496

Benchmarking in the Semantic Web

The negative results show that most of the
papers deal with a small group of Semantic Web
tools (ontology alignment tools, ontology devel-
opment tools and ontology repositories) and that,

in general, evaluations are not applicable to other
types of tools. Besides, the accessibility of these
evaluations is not high, the procedure to perform
the evaluation is not always clearly defined, and

Figure 1. Evaluation-related papers in conferences

Figure 2. Evaluation-related papers in workshops

 3497

Benchmarking in the Semantic Web

the input data is not always accessible. We can
add that only in a few cases the papers provide
a web page with information on the evaluation.
The input data is not representative of the actions
performed on the system and, occasionally, the
evaluation has been developed and agreed on by a
community. Furthermore, the existing evaluation
approaches are not transferrable and the cost of
performing the evaluation is never considered;
most of the evaluations are defined as one-time
activities. Only in a few cases improvement is a
goal and, quite often, the practices that lead to the
results or improvement recommendations cannot
be obtained directly from these results.

As we mentioned before, each of the questions
of the questionnaire is related to one of the desir-
able properties of a benchmark suite. Therefore,
we have described the reusability of the evalua-
tion presented in each paper taking into account
the number of questions answered positively for
each of these properties. For each paper, we have
calculated the percentage of positive answers
for each dimension and the mean of all these

percentages. The resulting value ranges from 0
(not reusable at all) to 1 (totally reusable). Even
though this is not a robust metric, it gives us a
hint of the reusability of the evaluations.

Figure 3 presents the histogram of the reus-
ability metric used with the 28 papers that describe
how to perform an evaluation over several tools.
The horizontal axis represents the different ranges
of the reusability metric, whereas the vertical axis
represents the number of papers in each range. We
can clearly observe that most of the papers have
low values and are far from the ideal situation.

As a summary of this section we can conclude
that although the number of evaluation and bench-
marking activities is continuously increasing in
the Semantic Web area, such number is still not
good enough to ensure a high quality technol-
ogy, and that the activities carried out involved
just a few types of Semantic Web technologies.
Consequently, the reusability of the evaluation
approaches is not high enough, which is a hin-
drance for their use.

Figure 3. Histogram of the reusability metric

3498

Benchmarking in the Semantic Web

the benchmArKInG
methodoloGY For semAntIc
web technoloGY

This section summarises the benchmarking meth-
odology for Semantic Web technology developed
by the authors in the Knowledge Web European
Network of Excellence. A detailed description of
this methodology can be found in (García-Castro
et al., 2004).

The methodology has been inspired by works
of quality improvement from different fields. The
main inputs for this methodology were the bench-
marking methodologies of the business manage-
ment community and their notions of continuous
improvement and best practices. We have also
taken into account the evaluation and improvement
processes proposed in the Software Engineering
area such as those cited in Section 2.1.

benchmarking Actors

The tasks of the benchmarking process are carried
out by different actors according to the kind of
roles to be performed in each task. The different
types of actors involved are the following:

• Benchmarking initiator. The benchmark-
ing initiator is the member (or members) of
an organisation who makes the first tasks
of the benchmarking process. His/her work
consists in preparing a proposal for carry-
ing out the benchmarking activity in the
organisation and in obtaining the manage-
ment approval to perform it.

• Organisation management. The organi-
sation management plays a key role in the
benchmarking process: this actor must
approve the benchmarking activity and the
changes that result from it. The organization
management must also assign resources to
the benchmarking and integrate the bench-
marking planning into the organisation
planning.

• Benchmarking team. Once the organisa-
tion management approves the benchmark-
ing proposal, the benchmarking team is
composed. Their members have to belong
to the organisation and are responsible for
performing most of the remaining bench-
marking processes.

• Benchmarking partners. The benchmark-
ing partners are the organisations participat-
ing in the benchmarking activity. All the
partners must agree on the steps to follow
during the benchmarking, and their needs
must be considered.

• Tool developers. The developers of the tool
must implement the necessary changes in the
tool to improve it. Some of the developers
may also be part of the benchmarking team
and, if so, care must be taken to minimise
bias.

benchmarking Process

The benchmarking methodology for Semantic
Web technology describes a benchmarking
process together with the main phases to fol-
low when benchmarking this technology and it
also provides a set of guidelines. Therefore, this
methodology has a twofold use: to help carry out
software benchmarking activities, and to know,
at a specific time, which is the actual progress of
a benchmarking activity.

The benchmarking process defined in this
methodology is composed of a benchmarking
iteration that is repeated forever. Each iteration,
as shown in Figure 4, is composed of three phases
(Plan, Experiment and Improve) and ends with a
Recalibration task.

Plan Phase

The Plan phase is composed of the different
tasks that must be performed (1) to prepare the
benchmarking proposal, (2) to obtain support
from the organisation management, (3) to find

 3499

Benchmarking in the Semantic Web

other organisations willing to participate in
benchmarking, and 4) to plan benchmarking.
These tasks are the following:

P1. Goals identification. In this task, the
benchmarking initiator (the member or members
of the organisation who are aware of the need for
benchmarking) must identify the benchmarking
goals according to the goals and strategies of
the organization as well as the benefits and costs
involved in carrying out benchmarking. However,
every organization may have its own goals and
these can be quite different. For example, some
may be interested in assessing the performance
and improving the quality of the software over
its lifetime, others, in comparing their software
with the software that is considered the best,
whereas some others are interested in establishing
or creating standards by analysing the different
existing software.

P2. Software and metrics identification. In
this task, the benchmarking initiator should make
an analysis of the software products developed
in the organisation in order to understand and

document them, identifying the weaknesses and
functionalities that require improvement. Then,
he/she must select the products to be benchmarked,
the functionalities relevant to the study and the
evaluation criteria to follow to assess these func-
tionalities; these criteria must take into account the
organisation’s software, the benchmarking goals,
the benefits and costs identified in the previous
task as well as other factors considered critical
by the organisation, such as quality requirements,
end-user needs, etc.

P3. Participant identification. In this task,
the benchmarking initiator must identify and con-
tact the members concerned with the software and
the functionalities selected (managers, developers,
end users, etc.) and other relevant participants
that do not belong to the organisation (custom-
ers or consultants). The benchmarking initiator
is responsible for organizing the benchmarking
team and, quite often, he is a member of the
team. The team should be small and include those
organisation members whose work and interest
are related to the software, who have a thorough

Figure 4. The software benchmarking methodology

3500

Benchmarking in the Semantic Web

understanding of the software and have gained
valuable experience with it. They must be aware
of the time they will spend in the benchmarking
activity and of their responsibilities, and they
should be trained in the tasks they will have to
perform.

P4. Proposal writing. In this task, the bench-
marking team (and the benchmarking initiator,
if he does not belong to the team) must write a
document with the benchmarking proposal. The
proposal will be used as a reference along the
benchmarking process and must include all the
relevant information on the process: the infor-
mation identified in the previous benchmarking
tasks (goals, benefits, costs, software, metrics,
members involved, and benchmarking team), a
description of the benchmarking process, and a
full detailed description of the benchmarking costs
along with the resources needed. To do this, the
benchmarking team should take into consideration
the different intended readers of the benchmarking
proposal, namely, the organisation managers, the
organisation developers, the members of partner
organisations, and the members of the benchmark-
ing team.

P5. Management involvement. In this task,
the benchmarking initiator must bring the bench-
marking proposal to the organisation manage-
ment. This task is of great significance because
the management approval is required if we want to
continue with the benchmarking process. Manage-
ment support will also be requested in the future,
when the changes required for benchmarking will
have to be implemented, either in the software
or in the organisation processes that affect the
software.

P6. Partner selection. In this task, the
benchmarking team must collect and analyse
information on the software products that are to
be compared with the software selected, and on
the organisations that develop the products. The
benchmarking team must also select the software
employed in the benchmarking study taking into
account its relevance and use in the community

or in the industry, its public availability, how the
software has adopted the latest technological
tendencies, etc. In order to obtain better results
with benchmarking, the software selected should
be the software considered the best. Then, the
benchmarking team must contact the people from
the organisations that develop these software
products to find out whether they are interested in
becoming benchmarking partners. These partners
will also have to establish a team and to take the
proposal to their own organisation management
for approval. During this task, the benchmarking
proposal will be modified by incorporating the
partners’ opinions and requirements. This will
result in an updated proposal that, depending on
the magnitude of the modifications, should be
presented again to each organisation management
for approval.

P7. Planning and resource allocation. In
this task, the organisation managements and the
benchmarking teams must specify the planning
of the remainder of the process, considering the
different resources that will be devoted to it, and
finally they must reach a consensus. This planning
must be given careful consideration and should
be integrated into each organisation planning.

Experiment Phase

The Experiment phase is composed of the tasks
in which the experimentation on the software
products is performed. These tasks are the fol-
lowing:

E1. Experiment definition. In this task, the
benchmarking teams of each organization must
establish the experiment that will be performed
on each of the software products, and then the
members must agree on it. The experiment must
be defined according to the benchmarking goals,
the software functionalities selected, and their
corresponding criteria, as stated in the bench-
marking proposal. The experiment must also
provide objective and reliable software data not
just of its performance, but also of the reasons of

 3501

Benchmarking in the Semantic Web

its performance; in addition, its future reusability
must be also be considered. The benchmarking
teams must determine and agree on the plan-
ning to follow during the experimentation; this
new planning must be decided according to the
benchmarking planning established previously.

E2. Experiment execution. As indicated in
the experimentation planning, explained in the
previous task, the benchmarking teams must
perform the established experiments on their
software products. Then the data obtained from all
the experiments must be compiled, documented,
and written in a common format to facilitate its
future analysis.

E3. Experiment results analysis. In this task,
the benchmarking teams must analyse the results,
detect and document any significant differences
found in them, and determine the practices lead-
ing to these different results in order to identify
whether, among the practices found, some of them
can be considered the best practices. Then, the
benchmarking teams should write a report with
all the findings of the experimentation, that is,
the experimentation results, the differences in
the results, the practices and the best practices
found, etc.

Improve Phase

The Improve phase comprises the tasks where the
results of the benchmarking process are produced
and then communicated to the benchmarking
partners; it also comprises the tasks where, in
several cycles, the improvement of the different
software products takes place. The tasks are the
following:

I1. Benchmarking report writing. In this
task, the benchmarking teams must write the
benchmarking report. This report is intended
to provide an understandable summary of the
benchmarking carried out, and it should be written
bearing in mind its different audiences: manag-
ers, benchmarking teams, developers, etc. The
benchmarking report must include a) an expla-

nation of the process followed, together with all
the relevant information of the updated version
of the benchmarking proposal; and b) the results
and conclusions of the experiments presented in
the experiment report, including the practices
found and highlighting the best practices. The
report should also contain the recommendations
provided by the benchmarking teams for im-
proving the software products according to the
experiment results, the practices found, and the
best practices implemented by the community.

I2. Findings communication. Here, the
benchmarking teams must communicate, in suc-
cessive meetings, the results of the benchmarking
to their organisations and, particularly, to all the
members concerned and identified when planning
benchmarking. The goals of these meetings are:

• To obtain feedback from the members
concerned on the benchmarking process,
the results, and the improvement recom-
mendations.

• To obtain support and commitment from
the organisation members for implementing
the improvement recommendations on the
software.

Any feedback received during these com-
munications must be collected, documented and
analysed. This analysis may finally involve hav-
ing to review the work done and to update the
benchmarking report.

I3. Improvement planning. The last three
tasks of the Improve phase (Improvement plan-
ning, Improvement and Monitor) form a cycle
that must be carried out separately in each or-
ganisation. The benchmarking teams and the
organisation managements must identify, from the
benchmarking report and the monitoring reports,
which are the changes needed to improve their
software products. Besides, they must forecast the
improvements to be achieved after performing
these changes. Both the organisation manage-
ment and the benchmarking team must provide

3502

Benchmarking in the Semantic Web

mechanisms for ensuring improvements in their
organisation and for measuring the software
functionalities. These last mechanisms can be
obtained from the Experiment phase. Then, the
organisation management and the benchmarking
team must establish a planning for improving the
software benchmarked, taking into account the
different resources devoted to the improvement.
This planning must be then integrated into the
organisation planning.

I4. Improvement. It is in this task where the
developers of each of the software product must
implement the necessary changes to achieve the
desired results. For this, they must measure the
state of the software before and after implementing
any changes, using for that purpose the measure-
ment mechanisms provided by the benchmarking
team in the previous task. Then, the developers
must compare the resulting measurements with
those that were obtained before implementing the
changes and with the improvement forecasted.

I5. Monitor. In each organisation, the bench-
marking team must provide software developers
with means for monitoring the organisation’s
software. Software developers must periodically
monitor the software and write a report with the
results of this process. These results may show the
need for new improvements in software and may
also mean the beginning of a new improvement
cycle which involves having to perform again the
two tasks previously mentioned: Improvement
Planning and Improvement.

Recalibration Task

The recalibration task is performed at the end of
each iteration. Here the benchmarking teams must
recalibrate the process by applying the lessons
learnt while performing it. Thus, the organisation
(and the whole community) achieves improvement
not just in the software, but also in the benchmark-
ing process. This recalibration is needed because
both the software and the organisations evolve
and innovate over time.

benchmArKInG the
InteroPerAbIlItY oF
ontoloGY develoPment tools
usInG rdF(s) As the
InterchAnGe lAnGuAGe

This section presents how we have applied the soft-
ware benchmarking methodology, presented in the
previous section, to one important problem of the
Semantic Web: technology interoperability.

Ontologies permit interoperability among
heterogeneous Semantic Web technologies, and
ideally, one could use all the existing technologies
seamlessly. The technologies appear in different
forms (ontology development tools, ontology
repositories, ontology alignment tools, reasoners,
etc.), but although all these tools use different
kinds of ontologies, not all of them share a com-
mon knowledge representation model.

This diversity in the representation formal-
isms of the tools causes problems when the tools
try to interoperate. This is so because the tools
require translating their ontologies from their own
knowledge models to a common model and vice
versa, and these problems occur even when we
employ standard APIs for managing ontologies
in the common knowledge model.

As we have observed in previous workshops
on Evaluation of Ontology-based Tools (EON)
(Sure & Corcho, 2003), interoperability among
different ontology tools is not straightforward.
Finding out why interoperability fails is cumber-
some and not at all trivial because any assumption
made for translating ontologies within one tool
may easily prevent the successful interoperability
with other tools.

To solve this problem, the Knowledge Web
European Network of Excellence organized a
benchmarking of interoperability of ontology de-
velopment tools using RDF(S) as the interchange
language. Its goal was to assess and improve the
interoperability of the tools.

The section that follows describes such bench-
marking activity. The methodology presented in

 3503

Benchmarking in the Semantic Web

the previous section provides the general guide-
lines that can be adapted to this case. So we present
here how this new benchmarking was organized,
the experiments conducted on the participating
tools, and its results.

organising the benchmarking

The goals of benchmarking the interoperability
of ontology development tools are related to the
benefits pursued through it, and these are:

• To evaluate and improve their interoper-
ability.

• To acquire a deep understanding of the
practices used to develop the importers and
exporters of these tools, and to extract from
these practices those that can be considered
the best practices.

• To produce recommendations on their in-
teroperability for users.

• To create consensual processes for evaluat-
ing their interoperability.

These goals concern different communities
that somehow are related to the ontology develop-
ment tools, namely, the research community, the
industrial community, and the tool developers.

Participation in the benchmarking was open
to any organisation irrespective of being a
Knowledge Web partner or not. To involve other

organisations in the process with the aim of hav-
ing the best-in-class tools participating, several
actions were taken:

• The benchmarking proposal, the document
being used as a reference along the bench-
marking, was published as a public web pageb
and included all the relevant information
about the benchmarking: motivation, goals,
benefits and costs, tools and people involved,
planning, related events, and a complete
description of the experimentation and the
benchmark suites.

• Research was carried out on the exist-
ing ontology development tools, both the
freely available and the commercial versions,
which could export and import to and from
RDF(S); In addition, their developers were
contacted. Any tool capable of importing
and exporting RDF could participate in
the benchmarking or will benefit from the
created benchmarks in a near future.

• The interoperability benchmarking was an-
nounced with a call for participation through
the main mailing lists of the Semantic Web
area and through lists specific to ontology
development tools.

Six tools took part in the benchmarking,
three of which are ontology development tools:
KAONc, Protégéd (using its RDF backend), and

Table 1. Ontology tools participating in the benchmarking

Tool Knowledge model Version Developer Experimenter
Corese RDF(S) 2.1.2 INRIA INRIA

Jena RDF(S) 2.3 HP U. P. Madrid
KAON RDF(S) extension 1.2.9 U. Karlsruhe U. Karlsruhe
Sesame RDF(S) 2.0 alpha 3 Aduna U. P. Madrid
Protégé Frames 3.2 beta build 230 Stanford U. U. P. Madrid

WebODE Frames 2.0 build 109 U. P. Madrid U. P. Madrid

3504

Benchmarking in the Semantic Web

WebODEe; the other three are RDF repositories:
Coresef, Jenag and Sesameh. As Table 1 shows, the
tools do not share a common knowledge model
and benchmarking was not always performed by
the tool developers.

The experimentation conducted on the tools
aimed to obtain results for interoperability im-
provement. Therefore, other quality attributes
such as performance, scalability, interoperability,
robustness, etc. were not considered. However,
an approach for benchmarking the performance
and scalability of ontology development tools
can be found in (García-Castro & Gómez-Pérez,
2005).

The experimentation was carried out taking
into account the most common ways of interchang-
ing ontologies that ontology tools provide, such
as the following:

• Interchanging ontologies by exporting them
from a tool into an interchange language and
then importing them into the other tool.

• Using RDF(S) as the interchange language,
and serializing the ontologies into the
RDF/XML syntax. A future benchmarking
activity inside Knowledge Web will cover
the case of using OWL as the interchange
language.

The interoperability of ontology tools using an
interchange language depends on the capabilities
of the tools to import and export ontologies from/
to this language. Therefore, the experimentation
included not only the evaluation of the interoper-
ability but also of the RDF(S) import and export
functionalities.

The evaluation criteria must describe in depth
the import, export and interoperability capabili-
ties of the tools, whereas the experiments to be
performed in the benchmarking must provide
data explaining how the tools comply with these
criteria. Therefore, to obtain detailed information
about these capabilities, we need to know:

• The elements of the internal knowledge
model of an ontology development tool that
can be imported from RDF(S), exported to
RDF(S) and interchanged with other tool, us-
ing RDF(S) as the interchange language.

• The secondary effects of importing, export-
ing, and interchanging these components,
such as insertion or loss of information.

• The subset of elements of the internal
knowledge models that these tools may use
to interoperate correctly.

To obtain these experimentation data, we
defined three benchmark suites that evaluate
the capabilities of the tools (García-Castro et
al., 2006), which were common for all the tools.
Since the quality of the benchmark suites to be
used is essential for the results, the first step was
to agree on the definition of the suites. Then, we
decided to make the import and export experi-
ments before the interoperability one because the
results of the first experiments affected those of
the second.

A benchmark execution comprises (a) the defi-
nition of the expected ontology that results from
importing, exporting or interchanging the ontol-
ogy described in the benchmark, (b) the import,
export, or interchange of the ontology defined
in the benchmark, and (c) the comparison of the
expected ontology with the imported, exported
or interchanged ontology, checking whether there
is some addition or loss of information. The steps
to follow to execute the three benchmark suites
are similar.

The benchmark suites were intended to be
executed manually but, as they contained many
benchmarks, it was highly recommended to
execute them (or part of them) automatically. In
the cases of Corese, Jena, Sesame, and WebODE,
most of the experiment was automated. In the
other cases, it was performed manually.

The benchmarking web pagei contains the
results of the experiments and a complete and

 3505

Benchmarking in the Semantic Web

detailed description of (a) the benchmark suites,
(b) all the files to be used in the experiments, and
(c) the templates for collecting the results.

benchmark suites

The benchmark suites check the correct import,
export and interchange of ontologies that model
a simple combination of ontology components
(classes, properties, instances, etc.). Because one
of the goals of benchmarking is to improve the
tools, the benchmark ontologies are kept simple
on purpose in order to isolate the causes of the
problems and to identify possible problems.

As the ontology tools that participated in
benchmarking had different internal knowledge
models, both the experimentation and the analysis
of the results were based on a common group of
ontology modelling primitives, available both in
RDF(S) and in these tools. On the other hand,
covering this common group exhaustively would
yield a huge number of benchmarks; so we only
considered the components most widely used for
modelling ontologies in ontology development

tools: classes, instances, properties with domain
and range, literals, and class and property hierar-
chies. The remainder of the components has not
been dealt with so far.

The RDF(S) Import Benchmark Suite
contains 82 benchmarksj, which define a simple
RDF(S) ontology serialized in a RDF/XML file,
which must be loaded into the ontology develop-
ment tool.

In order to isolate the factors that affect the
correct import of an ontology, we defined two
types of import benchmarks: one that evaluates
the import of the different combinations of com-
ponents of the RDF(S) knowledge model, and
the other type that evaluates the import of the
different variants of the RDF/XML syntax, as
stated in the RDF/XML specification.

Table 2 shows the categories of the RDF(S)
Import Benchmark Suite, the number of bench-
marks, and the components used. All the RDF(S)
files to be imported can be downloaded from a
single file; besides, templates are provided for
collecting the execution results.

Table 2. Categories of the import benchmarks

Category No. Components used
Class 2 rdfs:Class

Metaclass 5 rdfs:Class, rdf:type
Subclass 5 rdfs:Class, rdfs:subClassOf

Class and property 6 rdfs:Class, rdf:Property, rdfs:Literal
Property 2 rdf:Property

Subproperty 5 rdf:Property, rdfs:subPropertyOf

Property with domain and range 24 rdfs:Class, rdf:Property, rdfs:Literal,
rdfs:domain, rdfs:range

Instance 4 rdfs:Class, rdf:type
Instance and property 14 rdfs:Class, rdf:type, rdf:Property, rdfs:Literal

Syntax and abbreviation 15 rdfs:Class, rdf:type, rdf:Property, rdfs:Literal

3506

Benchmarking in the Semantic Web

 The RDF(S) Export Benchmark Suite
comprises 66 benchmarksk, which describe an
ontology that must be modelled in the tool and
saved to a RDF(S) file.

We have defined two types of benchmarks for
isolating the two factors that affect the correct
export of an ontology: one type evaluates the cor-
rect export of the combinations of components of
the ontology development tool knowledge model,
and the other evaluates the export of ontologies
using concepts and properties whose names have
characters restricted by RDF(S), such as those
characters that are forbidden when representing
RDF(S) or XML URIs.

Table 3 shows the categories of the benchmark
suite. The table contains the number of bench-
marks and the components used in each category.
Templates are also provided for collecting the
execution results.

 Since the factors that affect both the correct
interchange of an ontology (besides the correct
functioning of the importers and exporters) and
the knowledge model (used for defining the
ontologies) are the same as those that affect the

RDF(S) Export Benchmark Suite, the ontologies
described in the RDF(S) Interoperability Bench-
mark Suite are identical to those of the RDF(S)
Export Benchmark Suite.

The evaluation criteria are common for the
three benchmark suites, and are defined as fol-
lows:

• Modelling (YES/NO). The ontology tool can
model the ontology components described
in the benchmark.

• Execution (OK/FAIL). The execution of
the benchmark is normally carried out
seamlessly, and the tool always produces
the expected result. However, when an
execution fails, the following information
is required:
° The causes of the failure.
° The changes performed if the tool had

been previously corrected to pass a
benchmark correctly.

• Information added or lost. The information
added to or lost in the ontology interchange
when executing the benchmark.

Category No. Components used
Class 2 class

Metaclass 5 class, instanceOf
Subclass 5 class, subClassOf

Class and object property 4 class, object property
Class and datatype property 2 class, datatype property, literal

Object property 14 object property
Datatype property 12 datatype property

Instance 4 class, instanceOf
Instance and object property 9 class, instanceOf, object property

Instance and datatype property 5 class, instanceOf, datatype property, literal
URI character restrictions 4 class, instanceOf, object property,

datatype property, literal

Table 3. Categories of the export benchmarks

 3507

Benchmarking in the Semantic Web

In the export and interoperability benchmark
suites, if a benchmark describes an ontology
that cannot be modelled in a certain tool, such
benchmark cannot be executed in the tool, be-
ing the Execution result N.E. (Non Executed).
However, in the import benchmark suites, even
if a tool cannot model some components of the
ontology, it should be able to import the rest of
the components correctly.

Import and export results

The results obtained when importing from and
exporting to RDF(S) depend mainly on the
knowledge model of the tool that executes the
benchmark suite. The tools that natively support
the RDF(S) knowledge model (Corese, Jena and
Sesame, essentially the RDF repositories) do not
need to perform any translation in the ontologies

when importing/exporting them from/to RDF(S).
The RDF repositories import and export cor-
rectly all the combinations of components from/to
RDF(S) because these operations do not require
any translation.

In the case of tools with non-RDF knowledge
models (KAON, Protégé and WebODE, the ontol-
ogy development tools), some of their knowledge
model components can also be represented in
RDF(S), but some others cannot, and these tools
do need to translate ontologies between their
knowledge models and RDF(S). Finally, we must
add that not all the combinations of components
of the RDF(S) knowledge model that have been
considered can be modelled into all the tools, as
Table 4 shows.

Next, we present an analysis of the results of im-
porting and exporting in the ontology development
tools that participated in the benchmarking.

Table 4. Combinations of components modelled by the tools

Combination of components RDF
repos.

KAON Protégé WebODE

Classes Y Y Y Y
...instance of metaclasses Y Y Y N
Class hierarchies without cycles Y Y Y Y
...with cycles Y N N N
Datatype properties without domain or range Y Y Y N
...with multiple domains Y Y N N
...whose range is String Y Y Y Y
...whose range is a XML Schema datatype Y Y N Y
Object properties without domain or range Y Y Y N
...with multiple domains or ranges Y Y N N
...with a domain and range Y Y Y Y
Instances of a single class Y Y Y Y
...of multiple classes Y Y Y N
...related via object or datatype properties Y Y Y Y
...related via datatype properties whose
range is a XML Schema datatype

Y N N Y

3508

Benchmarking in the Semantic Web

Import Results

In general, the ontology development tools im-
port correctly from RDF(S) all or most of the
combinations of components that they model;
they seldom add or lose information. The only
exceptions are:

• Protégé, which presents problems, but only
when it imports classes or instances that are
instances of multiple classes.

• WebODE, which presents problems, but
only when it imports properties with a XML
Schema datatype as range.

When the tools import ontologies with com-
binations of components that they cannot model,
they lose the information about these components.
Nevertheless, these tools usually try to represent
such components partially using for this other
components from their knowledge models. In
most cases, the importing is performed correctly.
The only exceptions are:

• KAON, which causes problems when it
imports class hierarchies with cycles.

• Protégé, which causes problems when it
imports class and property hierarchies
with cycles and properties with multiple
domains.

• WebODE, which causes problems when it
imports properties with multiple domains
or ranges.

When dealing with the different variants of
the RDF/XML syntax, we can observe that the
ontology development tools

• Import correctly resources with the different
URI reference syntaxes.

• Import correctly resources with different
syntaxes (shortened and unshortened) of
empty nodes, of multiple properties, of typed
nodes, of string literals, and of blank nodes.

The only exceptions are: KAON when it
imports resources with multiple properties
in the unshortened syntax; and Protégé
when it imports resources with empty and
blank nodes in the unshortened syntax. Do
not import language identification attributes
(xml:lang) in tags.

Export Results

In general, the ontology development tools export
correctly to RDF(S) all or most of the combina-
tions of components that they model with no loss
of information. In particular:

• KAON causes problems only when it ex-
ports to RDF(S) datatype properties without
range and datatype properties with multiple
domains plus a XML Schema datatype as
range.

• Protégé causes problems only when it ex-
ports to RDF(S) classes or instances that are
instances of multiple classes and template
slots with multiple domains.

When ontology development tools export
components present in their knowledge model that
cannot be represented in RDF(S), such as their own
datatypes, they usually insert new information in
the ontology, but they also lose some.

When dealing with concepts and properties
whose names do not fulfil URI character restric-
tions, each ontology development tool behaves
differently:

• When names do not start with a letter or
"_", some tools leave the name unchanged,
whereas others replace the first character
with "_".

• Spaces in names are replaced by "-" or "_",
depending on the tool.

• URI reserved characters and XML delimiter
characters are left unchanged, replaced by
"_", or encoded, depending on the tool.

 3509

Benchmarking in the Semantic Web

Interoperability results

The RDF repositories (Corese, Jena and Sesame)
interoperate correctly between themselves, be-
cause they always import and export from/to
RDF(S) correctly. This produces that the interop-
erability between the ontology development tools
and the RDF repositories depends only on the
capabilities of the former to import and export
from/to RDF(S); therefore, the results of this
interoperability are identical to those presented
in the previous section.

The import and export results presented in
previous sections indicate that some problems
arise in the process of importing and exporting
ontologies, whereas the interoperability results,
on the other hand, show more problems.

As a general comment we can say that interop-
erability between the tools depends on

a. the correct functioning of their RDF(S)
importers and exporters and

b. the way chosen for serializing the exported
ontologies in the RDF/XML syntax.

Furthermore, we have observed that the prob-
lems affecting any of these factors also affect the
results of not just one but several benchmarks.
This means that, in some cases, to correct a single
import or export problem, or to change the way
of serializing ontologies can produce significant
interoperability improvements.

Below we list the components that can be inter-
changed between the tools. These components are
summarized in Table 5; each column of the table
shows whether the combination of components
can be interchanged between a group of toolsl. The
“-” character means that the component cannot

Table 5. Components interchanged between the tools

Combination of components K-K P-P W-W K-P K-W P-W K-P-W
Classes Y Y Y Y Y Y Y
...instance of a single metaclass Y Y - N - - -
...instance of a multiple metaclasses Y N - N - - -
Class hierarchies without cycles Y Y Y Y Y Y Y
Datatype properties without domain or range Y Y - N - - -
...with multiple domains Y - - - - - -
...whose range is String Y Y Y N N Y N
...whose range is a XML Schema datatype Y - Y - Y - -
Object properties without domain or range Y Y - Y - - -
...with multiple domains or ranges Y - - - - - -
...with a domain and range Y Y Y Y Y Y Y

Instances of a single class Y Y Y Y Y Y Y
...of multiple classes Y N - N - - -
...related via object properties Y Y Y Y Y Y Y
...related via datatype properties Y Y Y N Y Y N
...related via datatype properties whose range is
a XML Schema datatype

- - Y - - - -

3510

Benchmarking in the Semantic Web

be modelled in some of the tools and, therefore,
cannot be interchanged between them.

Interoperability Using the Same Tool

Ontology development tools seem to pose no
problems when the source and the destination of
an ontology interchange are the same tool. The
only exception is Protégé when it interchanges
classes that are instances of multiple metaclasses
and instances of multiple classes; this is so be-
cause Protégé does not import resources that are
instances of multiple metaclasses.

Interoperability between Each Pair of
Tools

The interoperability between different tools varies
depending on the tools. As the detailed interoper-
ability results show, in some cases, the tools are
able to interchange certain components from one
tool to another, but not the other way round.

When KAON interoperates with Protégé, they
can interchange correctly some of the common
components that these tools are able to model.
However, with components such as classes that
are instances of a single metaclass or of multiple
metaclasses, datatype properties without domain
or range, datatype properties whose range is
String, instances of multiple classes, and instances
related through datatype properties, we have
encountered some problems.

When KAON interoperates with WebODE,
they can interchange correctly most of the com-
mon components that these tools can model, but
when they interchange datatype properties with
domain and whose range is String, the results are
not the same.

When Protégé interoperates with WebODE,
they can interchange correctly all the common
components that these tools can model.

Interoperability between All the Tools

Interoperability between KAON, Protégé and
WebODE can be achieved by most of the com-
mon components that these tools can model. The
only components that these tools cannot use are
datatype properties with domain and whose range
is String, and instances related through datatype
properties.

Therefore, interoperability was achieved
among the tools that participated in the bench-
marking by using classes, class hierarchies without
cycles, object properties with domain and with
range, instances of a single class, and instances
related through object properties.

Interoperability Regarding URI
Character Restrictions

Interoperability is low when tools interchange
ontologies containing URI character restrictions
in class and property names. This is so because
tools usually encode some or all the characters
that do not comply with these restrictions, which
provokes changes in class and property names.

recommendations

Recommendations for Ontology
Engineers

This section offers recommendations for ontol-
ogy engineers which use more than one ontology
tool to build ontologies. Depending on the tools
used, the level of interoperability may be higher
or lower, as can be seen in Section 5.4.

If the ontology is being developed bearing in
mind interoperability, ontology engineers should
be aware of the components that can be represented
in the ontology development tools and in RDF(S).
And they should try to use the common knowledge

 3511

Benchmarking in the Semantic Web

components that these tools have so as to avoid
the knowledge losses commented above.

Ontology engineers should also be aware of
the semantic equivalences and differences be-
tween the knowledge models of the tools and the
interchange language. For example, in Protégé,
multiple domains in template slots are considered
the union of all the domains, whereas in RDF(S)
multiple domains in properties are considered the
intersection of all the domains; in WebODE, on
the other hand, instance attributes are local to a
single concept, whereas in RDF(S) properties are
global and can be used in any class.

It is not recommended to name resources using
spaces or any character that is restricted in the
RDF(S), URI, or XML specifications.

When the RDF repositories interoperate,
even though these repositories export and import
correctly to RDF(S), ontology engineers should
consider the limitations that other tools have when
they export their ontologies to RDF(S).

Recommendations for Tool Developers

This section includes general recommendations
for improving the interoperability of the tools
while developing them. In (García-Castro et al.,
2006), we offer full detailed recommendations
regarding the results and practices gathered to
improve each of the participant tools. Although it is
not compulsory to follow these recommendations,
they help correct interoperability problems as we
could observe when we analysed the results.

The interoperability between ontology tools
(using RDF(S) as the interchange language) de-
pends on how the importers and exporters of these
tools work; on the other hand, how these importers
and exporters work depends on the development
decisions made by the tool developers, and these
are different people with different needs. There-
fore, to provide general recommendations for
developers is not straightforward, though some
comments can be extracted from the analysis of
the benchmarking results.

In some occasions, a development decision
will produce interoperability improvement with
some tools and interoperability loss with others.
For example, when exporting classes that are
instances of a metaclass, some tools require that
the class be defined as instance of rdfs:Class,
whereas other tools require the opposite.

Tool developers, therefore, should analyze
the collateral consequences of the development
decisions. Thus, if a datatype is imported as a
class in the ontology, then the literal values of this
datatype should be imported as instances in the
ontology, which would complicate the manage-
ment of these values.

They also should be aware of the semantic
equivalences and differences between the knowl-
edge models of their tool and the interchange lan-
guage; on the other hand, the tools should notify
the user when the semantics is changed.

The first requirement for achieving interop-
erability is that the importers and exporters of
the tools be robust and work correctly when
dealing with unexpected inputs. Although this
is an obvious comment, the results show that
this requirement is not achieved by the tools and
that some tools even crash when importing some
combinations of components.

Above all, tools should deal correctly with the
combinations of components that are present in
the interchange language but cannot be modelled
in them. For example, although cycles in class and
property hierarchies cannot be modelled in some
ontology development tools, these tools should be
able to import these hierarchies by eliminating
the cycles.

If developers want to export components that
are commonly used by ontology development
tools, the components should be completely
defined in the file. This means that metaclasses
and classes in class hierarchies should be defined
as instances of rdfs:Class, properties should be
defined as instances of rdf:Property, etc.

Exporting complete definitions of other com-
ponents can cause problems if these are imported

3512

Benchmarking in the Semantic Web

by other tools. And not every tool deals with
datatypes defined as instances of rdfs:Datatype
in the file, or with rdf:datatype attributes in
properties.

If the document does not define a default
namespace, every exported resource should have
a namespace.

conclusIon

This chapter states the need to evaluate and
benchmark the Semantic Web technology and
provides some references that can be helpful in
these activities. It also presents the authors’ ap-
proach to software benchmarking and compares it
with other existing evaluation and benchmarking
approaches.

We have tried to explain how the benchmark-
ing methodology can help assess and improve
software, whereas the use of benchmark suites
is advisable when performing evaluations in
benchmarking.

One of the strong points we make on bench-
marking is its community-driven approach.
Benchmarking should be performed by the experts
of the community since the benefits obtained after
performing it affect the whole community.

Benchmarking does not imply comparing the
results of the tools but comparing the practices that
lead to these results. Therefore, experimentation
should be designed to obtain these practices as
well as the results.

However, as we have seen, benchmarking is
not the solution to every case. In a preliminary
step, developers would have to asses whether
benchmarking is the correct approach; as bench-
marking is useful when the goals are to improve
the software and to extract the practices performed
by others.

Benchmarking is an activity that takes long
time to perform because it requires tasks that are
not immediate: announcements, agreements, etc.

Therefore, benchmarking activities should start
early in time, and the benchmarking planning
should consider a realistic duration of the bench-
marking and the resources needed for carrying
them out.

We have also shown how we have applied
the benchmarking methodology to a concrete
case in the Semantic Web area: interoperability
of ontology development tools using RDF(S) as
interchange language.

Providing benchmark suites in the benchmark-
ing allows evaluating other tools with RDF(S)
import and export capabilities without their having
to participate in the benchmarking; this can be
useful both while the tools are being developed
and afterwards, when their development has
finished. In addition, the benchmarking results
can be used by ontology development tool us-
ers that may find problems when interchanging
ontologies or may want to foresee the results of
a future interchange.

Although it is not required that the tool de-
velopers participate in the benchmarking and
perform the experiments over their tool, their
involvement facilitates the execution and analysis
of the experimentation results to a large extent.
In all the cases where tool developers carried out
the experimentation over their own tools, a great
improvement occurred before the Improve phase
of the methodology because developers were able
to detect problems and correct their tools while
executing the benchmark suites.

We have observed that the manual execu-
tion of the experiments and the analysis of the
results cause the benchmark suite to be costly.
Consequently, tool developers often automate the
execution of the benchmark suites, but not always.
Another drawback of the manual execution of
experiments is that the results obtained depend
on the people performing these experiments, on
their expertise with the tools, and on their ability
to extract the practices performed.

 3513

Benchmarking in the Semantic Web

Future reseArch dIrectIons

As shown in Section 3, current evaluation and
benchmarking activities over the Semantic Web
technology are scarce and a hindrance to the full
development and maturity of this technology.
The Semantic Web needs to produce methods
and tools for evaluating the technology at great
scale and in an easy and economical way. This
requires defining technology evaluations focusing
on their reusability.

In the last few years, evaluation and bench-
marking efforts have mainly focused on some
types of technologies and on some of their metrics,
namely, the interoperability of ontology develop-
ment tools, the precision and recall of ontology
alignment tools, and the efficiency and scalability
of ontology repositories. But now we think that
new efforts are required, first, to involve other
Semantic Web technologies (ontology learning
tools, ontology annotation tools, ontology popula-
tion tools, etc.) and, second, to broaden the scope
of these evaluations by considering a wider range
of evaluation metrics for the technology (latency,
robustness, security, usability, etc.).

The role of the research community when
defining and performing benchmarking activi-
ties is crucial. Community-driven benchmark-
ing connects experts and allows obtaining high
quality results and increasing the credibility of
the benchmarking and its results.

However, future research must focus on
performing evaluations centred on the user of
the Semantic Web technology. And it would be
advisable to consider audiences from beyond the
research community itself as recipients of the
evaluation results.

reFerences

Abran, A., Moore, J. W., Bourque, P., & Dupuis,
R. (Ed.). (2004). SWEBOK: Guide to the software
engineering body of knowledge. IEEE Press.

Basili, V. R., & Selby, R. W. (1991). Paradigms for
experimentation and empirical studies in software
engineering. Reliability Engineering and System
Safety, 32, 171-191.

Basili, V. R., Selby, R. W., & Hutchens, D. H.
(1986). Experimentation in software engineering.
IEEE Transactions on Software Engineering,
12(7), 733-743.

Basili, V. R. (1985, September). Quantitative eval-
uation of software methodology. In 1st Pan-Pacific
Computer Conference, Melbourne, Australia.

Bull, J. M., Smith, L. A., Westhead, M. D., Henty,
D. S., & Davey, R. A. (1999). A methodology
for benchmarking Java grande applications. In
the ACM 1999 conference on Java Grande (pp.
81-88).

Camp, R. (1989). Benchmarking: The search for
industry best practices that lead to superior per-
formance. Milwaukee, ASQC Quality Press.

Freimut, B., Punter, T., Biffl, S., & Ciolkowski,
M. (2002). State-of-the art in empirical studies.
Technical Report ViSEK/007/E, Visek.

García-Castro, R., & Gómez-Pérez, A. (2005,
November). Guidelines for benchmarking the
performance of ontology management APIs. In
Y. Gil, E. Motta, R. Benjamins, & M. Musen
(Ed.), 4th International Semantic Web Conference
(ISWC2005), 3729 in LNCS, 277-292. Galway,
Ireland: Springer-Verlag.

García-Castro, R., Maynard, D., Wache, H.,
Foxvog, D., & González-Cabero, R. (2004). D2.1.4
Specification of a methodology, general criteria
and benchmark suites for benchmarking ontology
tools. Technical report, Knowledge Web.

García-Castro, R., Sure, Y., Zondler, M., Corby,
O., Prieto-González, J., Paslaru Bontas, E., Nixon,
L., & Mochol, M. (2006). D1.2.2.1.1 Benchmark-
ing the interoperability of ontology development
tools using RDF(S) as interchange language.
Technical report, Knowledge Web.

3514

Benchmarking in the Semantic Web

Gediga, G., Hamborg, K., & Duntsch, I. (2002).
Evaluation of software systems. In Encyclope-
dia of Computer Science and Technology, 44,
166-192.

IEEE. (1998) IEEE Std 1061-1998 IEEE Standard
for a software quality metrics methodology.

ISO/IEC (1999) ISO/IEC 14598-1: Software prod-
uct evaluation - Part 1: General overview.

Juristo, N., & Moreno, A. (2001). Basics of
software engineering experimentation. Kluwer
Academic Publishers.

Kitchenham, B. A., Pfleeger, S. L., Pickard, L.
M., Jones P. W., Hoaglin, D. C., El-Emam, K.,
& Rosenberg, J. (2002). Preliminary guidelines
for empirical research in Software Engineering.
IEEE Transactions on Software Engineering
28(8), 721-734.

Kitchenham, B. (1996). DESMET: A method for
evaluating Software Engineering methods and
tools. Technical Report TR96-09, Department
of Computer Science, University of Keele, Staf-
fordshire, UK.

Park, R. E., Goethert, W. B., & Florac, W. A.
(1996). Goal-driven software measurement - a
guidebook. Technical Report CMU/SEI-96-HB-
002, Software Engineering Institute.

Perry, D. E., Porter, A. A., & Votta L. G. (2000).
Empirical studies of Software Engineering: a
roadmap. In A. Finkelstein (Ed.), The Future of
Software Engineering, 345-355. ACM Press.

Rakitin, S. R. (1997). Software Verification
and Validation, a practitioner’s guide. Artech
House.

Shirazi, B., Welch, L. R., Ravindran, B., Cav-
anaugh, C., Yanamula, B., Brucks, R., & Huh,
E. (1999). Dynbench: A dynamic benchmark
suite for distributed real-time systems. In the 11th
IPPS/SPDP’99 Workshops,1335-1349. Springer-
Verlag.

Sim, S., Easterbrook, S., & Holt, R. (2003). Using
benchmarking to advance research: A challenge
to software engineering. In the 25th Interna-
tional Conference on Software Engineering
(ICSE’03),74-83. Portland, OR.

Spendolini, M. J. (1992). The benchmarking book.
New York, NY: AMACOM.

Stefani, F., Macii, D., Moschitta, A., & Petri, D.
(2003, June). FFT benchmarking for digital signal
processing technologies. In the 17th IMEKO World
Congress. Dubrovnik, Croatia.

Sure, Y., & Corcho, O. (Ed.) (2003). Proceedings
of the 2nd International Workshop on Evalua-
tion of Ontology-based Tools (EON2003), 87 of
CEUR-WS. Florida, USA.

Weiss, A. R. (2002). Dhrystone benchmark:
History, analysis, scores and recommendations.
White paper, EEMBC Certification Laboratories,
LLC.

Wireman, T. (2003). Benchmarking best practices
in maintenance management. Industrial Press.

Wohlin, C., Aurum, A., Petersson, H., Shull, F.,
& Ciolkowski, M. (2002, June). Software inspec-
tion benchmarking - a qualitative and quantitative
comparative opportunity. In the 8th International
Software Metrics Symposium, 118-130.

AddItIonAl reAdInG

Ahmed, P., & Rafiq, M. (1998). Integrated
benchmarking: a holistic examination of select
techniques for benchmarking analysis. Bench-
marking for Quality Management and Technology
5, 225-242.

Basili, V. R., Caldiera, G., & Rombach, D. H.
(1994). The Goal Question Metric approach.
Encyclopedia of Software Engineering, 528-532.
Wiley.

 3515

Benchmarking in the Semantic Web

Basili, V. R. (1993). The experimental paradigm
in Software Engineering: Critical assessment and
future directions. In the International Workshop
on Experimental Software Engineering Issues,
3-12. Springer-Verlag.

Beitz, A., & Wieczorek, I. (2000). Applying
benchmarking to learn from best practices.
Product Focused Software Process Improve-
ment, Second International Conference (PROFES
2000), 59-72.

Brickley, D., Guha, R. V. (Ed.) (2004). RDF Vocab-
ulary Description Language 1.0: RDF Schema.
W3C Recommendation 10 February 2004.

Brown, A., & Wallnau, K. (1996). A framework
for evaluating software technology. IEEE Soft-
ware, 13, 39-49.

Corcho, O. (2005). A layered declarative ap-
proach to ontology translation with knowledge
preservation. Volume 116 of Frontiers in Artificial
Intelligence and its Applications. IOS Press.

Dongarra, J., Martin, J. L., & Worlton, J. (1987).
Computer benchmarking: paths and pitfalls. IEEE
Spectrum, 24(7), 38-43.

Duineveld, A. J., Stoter, R., Weiden, M. R.,
Kenepa, B., & Benjamins V. R. (1999). Won-
dertools? A comparative study of ontological
engineering tools. In the 12th International Work-
shop on Knowledge Acquisition, Modeling and
Management (KAW’99), Banff, Canada: Kluwer
Academic Publishers.

Dujmovic, J. J., (1998). Evaluation and design of
benchmark suites. Chapter 12 in State-of-the-art
in performance modeling and simulation: theory,
techniques and tutorials,287-323. Gordon and
Breach Publishers.

Feitelson, D. G. (2005). Experimental computer
science:The Need for a Cultural Change.

Fenton, N. (1991). Software metrics - a rigorous
approach. Chapman & Hall.

Fenton, N., & Neil, M. (2000). Software metrics:
Roadmap. In the Conference on the future of
Software Engineering, 357-370. ACM Press.

Fernandez, P., McCarthy, I., & Rakotobe-Joel, T.
(2001). An evolutionary approach to benchmark-
ing. Benchmarking: An International Journal,
8, 281-305.

García-Castro, R. (2006). Benchmarking como
herramienta de transferencia tecnológica Invited
talk in the 3er Encuentro Internacional de Inves-
tigadores en Informática. Popayán, Colombia.

García-Castro, R. (2006). Keynote: Towards the
improvement of the Semantic Web technology.
In the Second International Workshop on Scal-
able Semantic Web Knowledge Based Systems
(SSWS2006).

García-Castro, R., & Gómez-Pérez, A. (2006).
Benchmark suites for improving the RDF(S)
importers and exporters of ontology development
tools. In the 3rd European Semantic Web Confer-
ence (ESWC2006), 155-169. LNCS-4011.

García-Castro, R., Gómez-Pérez, A. (2006).
Interoperability of Protégé using RDF(S) as
interchange language. In the 9th International
Protégé Conference.

García-Castro, R. (2006) Keynote: Tecnologías
de la Web Semántica: cómo funcionan y cómo
interoperan. In the 4th Seminario Internacional
Tecnologías Internet. Popayán, Colombia.

García-Castro, R., & Gómez-Pérez, A. (2005). A
method for performing an exhaustive evaluation
of RDF(S) importers. In the Workshop on Scal-
able Semantic Web Knowledge Based Systems
(SSWS2005).

García-Castro, R. (2005). D2.1.5 prototypes
of tools and benchmark suites for benchmark-
ing ontology building tools. Technical report,
Knowledge Web.

3516

Benchmarking in the Semantic Web

Gee, D., Jones, K., Kreitz, D., Nevell, S., O’Connor,
B., & Ness, B. V. (2001). Using performance infor-
mation to drive improvement. Performance-Based
Management Special Interest Group, 6.

Goodman, P. (1993). Practical implementation of
software metrics. McGraw Hill.

Grady, R., & Caswell, D. (1987). Software met-
rics: Establishing a company-wide program.
Prentice-Hall.

Jones, C. (1995, October). Software benchmark-
ing. IEEE Computer, 102-103.

Kitchenham, B., Linkman, S., & Law, D. (1994).
Critical review of quantitative assessment. Soft-
ware Engineering Journal, 9, 43-53.

Kitchenham, B., Pfleeger, S., & Fenton, N. (1995).
Towards a framework for software measurement
validation. IEEE Transactions on Software En-
gineering, 21, 929-944.

Kraft, J. (1997). The Department of the Navy
benchmarking handbook: a systems view. Depart-
ment of the Navy.

Lankford, W. (2000). Benchmarking: understand-
ing the basics. Coastal Business Journal.

Lukowicz, P., Tichy, W. F., Prechelt, L., & Heinz
E.A. (1995). Experimental evaluation in compu-
ter science: A quantitative study. The Journal of
Systems and Software, 28(1),1-18.

Manola, F., & Miller, E. (2004, February 10). RDF
Primer. W3C Recommendation.

OntoWeb (2002). D1.3: A survey on ontology
tools. Technical report, IST OntoWeb Thematic
Network.

Pfleeger, S. L. (1999). Understanding and improv-
ing technology transfer in software engineering.
Journal of Systems and Software 47,111-124.

Sim, S. (2003). A theory of benchmarking with
applications to software reverse engineering.
PhD thesis. University of Toronto.

Sole, T., & Bist, G. (1995). Benchmarking in
technical information. IEEE Transactions on
Professional Communication 38, 77-82.

Tichy, W. (1998). Should computer scientists
experiment more? Computer 31, 32-40.

Wache, H., Serafini, L., & García-Castro, R.
(2004). D2.1.1 survey of scalability techniques
for reasoning with ontologies. Technical report,
KnowledgeWeb.

Wireman, T. (2003). Benchmarking best practices
in maintenance management. Industrial Press.

endnotes

a http://knowledgeweb.semanticweb.org/
b http://knowledgeweb.semanticweb.org/

benchmarking_interoperability/rdfs/
c http://kaon.semanticweb.org/
d http://protege.stanford.edu/
e http://webode.dia.fi.upm.es/
f http://www-sop.inria.fr/acacia/soft/corese/
g http://jena.sourceforge.net/
h http://www.openrdf.org/
i http://knowledgeweb.semanticweb.org/

benchmarking_interoperability/rdfs/
j http://knowledgeweb.semanticweb.org/

benchmarking_interoperability/rdfs/
 rdfs_import_benchmark_suite.html
k http://knowledgeweb.semanticweb.org/

benchmarking_interoperability/rdfs/
 rdfs_export_benchmark_suite.html
l The names of the tools have been shortened

in the heading of the table: KAON=K,
Protégé=P and WebODE=W.

 3517

Benchmarking in the Semantic Web

APPendIX: QuestIons For
dIscussIon

beginner:

1. Which are the main characteristics of bench-
marking?

2. Which is the goal of the Recalibration task
in the benchmarking methodology?

3. Which are the factors that influence the
correct interchange of an ontology between
two Semantic Web tools?

4. When exporting one ontology from an
ontology development tool to RDF(S) hav-
ing interoperability in mind, is it advisable
to export the complete definition of all its
components?

Intermediate:

1. Which are the differences between evalua-
tion and benchmarking?

2. Are the users of the software involved in
the benchmarking?

3. Is management support needed in the Im-
prove phase of the methodology?

4. Which RDF(S) components can be repre-
sented in KAON, Protégé and WebODE?

Advanced:

1. Which resources are needed for performing
a benchmarking activity?

2. Why are there three different evaluation
criteria to define the results of the RDF(S)
Import, Export and Interoperability bench-
mark suites?

3. Why is it not enough to have a single on-
tology representation language to achieve
interoperability between the Semantic Web
technologies?

Practical exercises:

1. Select one conference paper that presents
some evaluation or benchmarking approach
and then evaluate its reusability according to
the desirable properties of a benchmark suite
and the recommendations given for software
evaluation in benchmarking activities.

2. Create a mid-size ontology using one ontol-
ogy development tool. Can you anticipate
the consequences of exporting that ontology
to RDF(S)? And of importing it into another
ontology development tool?

3. Then, export the ontology to RDF(S). Was
your prediction correct? Has it had informa-
tion addition or loss?

4. Finally, import the exported ontology into
the other ontology development tool. Was
your prediction correct? Has it had informa-
tion addition or loss?

Answers to the QuestIons
For dIscussIon

beginner:

1. The main characteristics of benchmarking
are continuous improvement and the search
for best practices.

2. The goal of the Recalibration task is to
improve the benchmarking process by re-
calibrating it and applying the lessons learnt
while performing it.

3. The factors that influence the correct inter-
change of an ontology between two tools
are the combinations of components of the
knowledge model of the ontology develop-
ment tool and the naming of the components
present in the ontology.

4. It is advisable to export the complete
definition of all its components only for

3518

Benchmarking in the Semantic Web

components commonly used by ontology
development tools.

Intermediate:

1. Benchmarking is a continuous process,
whereas an evaluation is a punctual activity.
In addition, benchmarking involves evalu-
ating software but its goals are to obtain a
continuous improvement on the software
and the practices used when developing the
tools.

2. Yes, the users of the software are identified
in the Participant identification task and in
the Findings communication task.

3. Yes, it is needed to implement the necessary
changes in the software and in the organisa-
tion processes affecting the software.

4. Classes, class hierarchies without cycles,
datatype properties with a class as a domain
and a string range, object properties with a
domain and a range, instances of a single

class, instances related by object properties,
and instances related by datatype properties
with a string range.

Advanced:

1. The resources needed are human resources
though some equipment and travel resources
are also required, and these are mainly used
in three tasks: benchmarking organisation,
experimentation definition and execution,
and result analysis.

2. Because these three evaluation criteria are
necessary to represent the different situa-
tions and behaviours that can occur when
two tools interchange one ontology.

3. Because different types of users need dif-
ferent tools; existing tools have different
knowledge representation models; and tools
need to translate their ontologies from their
knowledge models to the common ontology
representation language.

This work was previously published in Semantic Web Engineering in the Knowledge Society, edited by J. Cardoso & M. Lytras,
pp. 341-370, copyright 2009 by Information Science Reference (an imprint of IGI Global).

 3519

Copyright © 2009, IGI Global, distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 8.18
All-Optical Internet:
Next-Generation Network
Infrastructure for E-Service

Applications

Abid Abdelouahab
Multimedia University, Malaysia

Fouad Mohammed Abbou
Alcatel Network Systems, Malaysia

Ewe Hong Tat
Multimedia University, Malaysia

Toufik Taibi
United Arab Emirates University, UAE

AbstrAct

To exploit the unprecedented opportunities offered
by the E-Service Applications, businesses and us-
ers alike would need a highly-available, reliable,
and efficient telecommunication infrastructure.
This chapter provides an insight into building the
next-generation network infrastructure, that is,
the All-Optical Internet. It also reveals the factors
driving the convergence of the Internet Protocol
(IP) and the Wavelength-Division Multiplexing
(WDM) technology. The chapter discusses the

dominant optical networks architectures in an at-
tempt to show the evolution towards the ultimate
all-optical packet-switching network. A special
focus is given to the Optical Burst Switching
(OBS) as a new emerging switching paradigm
and a highly promising technology. OBS network
architecture, burst assembly, signaling and res-
ervation protocols, QoS support, and contention
resolution techniques are presented. Furthermore,
realistic suggestions and strategies to efficiently
deploy OBS are given.

3520

All-Optical Internet

IntroductIon

The Internet is a technology with many proper-
ties that has the potential to influence, and even
transform established ways of conducting busi-
ness, especially Electronic Services, while at the
same time creating entirely new industries and
businesses. The Internet has a profound impact
on the competitive landscape, since it is affecting
the way that firms’ activities are coordinated, how
commerce is conducted, how business commu-
nities are created, and how communications are
defined and performed.

As we are moving towards the Web-dependent
era, the 99 percent or even the 99.99 percent
network reliability would be inadequate for the
mission-critical applications that have genuine
requirements that exceed the typical application
needs.

The e-service applications are typically reliant
on IP data networks that construct the Internet,
which has become a ubiquitous success. Further-
more, the capacity of optical fibers is doubling
annually toward a terabit per second per fiber,
providing strong incentives to exploit the huge
bandwidth of fiber-optic networks, which has
increased considerably with the introduction
of Wavelength-Division Multiplexing (WDM)
technology.

The rapid advancement of optical technologies
and the growing effort to enhance the Internet
Protocol (IP) makes it possible to move from the
current network architecture to an all-optical
Internet, where the network traffic is optically
transmitted, buffered, amplified, and switched
through high performance Internet switches and
routers directly connected using WDM optical
links.

All-oPtIcAl Internet

The Internet is an interconnection of computer
networks that are a combination of hardware

and software, controlled by a set of protocols to
transmit and communicate data. The Internet uses
the TCP/IP protocol suite, where the Transmission
Control Protocol (TCP) is a connection-oriented
end-to-end protocol. TCP is used to create logical
connections between various applications running
on different hosts, prior to executing protocols that
exchange information. TCP relies on the Internet
Protocol (IP) to route the packets (data units that
are routed between an origin and a destination)
through the network. Therefore, the Internet is
simply a massive network of networks.

Depending on the deployed physical technol-
ogy, three network generations can be distin-
guished. The first-generation networks are based
on copper wire or radio; subsequently; the copper
wire (around 10 gigabits per second) was replaced
by a more sophisticated transmission medium, the
optical fiber, which offers an immense bandwidth
(theoretically, 50 terabits per second), low error
rate, high reliability, availability, and maintain-
ability. Additionally, optical fibers feature many
other advantages, for example, lightweight and
small space requirements, resistance to corro-
sive materials, less signal attenuation, and high
immunity to tapping. Having optical fiber as the
transmission medium in the second-generation
networks enhanced the network performance
and throughput; however, this improvement was
restricted by the so-called Electronic Bottleneck.
Electronic bottleneck phenomenon is caused by
the limited processing speed of electronic com-
ponents (a few gigabits per second) deployed in
switches/routers, multiplexers, and end-nodes in
the network. As the electronic processing speed is
at its peak, the solution is to transfer the switch-
ing and routing functions from the electronic
domain to the optical domain. Therefore, the
third-generation networks will be designed as all-
optical networks, where the data are transmitted
all-optically through the network from source to
destination.

 3521

All-Optical Internet

IP and wdm convergence

The success of the Internet and its omnipresence
has made the Internet Protocol (IP) a de facto
standard, and the demand for IP network solutions
has increased exponentially. With the Internet
protocol, voice and video as well as real-time
multimedia traffic could be integrated and trans-
mitted with the data traffic over a single network
infrastructure, providing unprecedented oppor-
tunity for businesses to improve their services,
reduce expenses, and increase their revenues.
With the technological evolution, IP diminished
the boundaries between the computing, enter-
tainment, and the telecom industries, which led
to more customer centric business models. Be-
ing an intermediate layer between an immense
variety of IP-based services and almost all the
layer-2 technologies, IP is more than a revenue-
generating integration layer. IP convergence is
not merely an option; it is inevitably becoming a
business necessity in the Internet-dependent era
and the new customer-centric economy. Such
convergence is best supported by the WDM
technology. WDM, which is conceptually similar
to Frequency Division Multiplexing (FDM), is a
method of transmitting many light beams of dif-
ferent wavelengths simultaneously down the core
of a single optical fiber. Therefore, with WDM
the available bandwidth can be increased without
deploying additional optical fibers. Furthermore,
WDM relieves the effect of electronic bottleneck
by dividing the optical transmission spectrum
into a number of non-overlapping channels; thus,
the electronic components would only work at
their own speed (few gigabits per second) and
not at the aggregated transmission rate. IP/WDM
convergence will eventually be translated to an
efficient, robust, reliable, and feasible all-optical
Internet.

optical switching Paradigms

Several different switching paradigms have been
devised to transfer data over WDM, such as
Optical Circuit Switching (OCS), a wavelength-
routed network (Mukherjee, 1997), Optical Packet
Switching (OPS) (Xu, Perros, & Rouskas, 2001;
Yao, Dixit, & Mukherjee, 2000), and Optical
Burst Switching (OBS) (Qiao & Yoo, 1999).
Wavelength-routed optical networks (currently
deployed) represent a promising technology for
optical networks. However, wavelength-routed
optical networks, which employ circuit switching,
may not be the optimal choice and the most appro-
priate switching paradigm to support the various
requirements of the Internet traffic. Alternatively,
optical packet switching paradigm appears to
be the optimum option. Unfortunately, OPS is
not mature enough to provide a viable solution.
Therefore, a switching technique that provides
granularity in between wavelengths and packets
was shaped, thus occupying the middle of the
spectrum between circuit switching and packet
switching paradigms. Optical burst switching is
a switching technique where the benefits of both
packet-switching networks and circuit-switching
networks are combined; OBS borrows ideas from
both to deliver a completely new functionality.

Optical Circuit Switching

In circuit switching, each sender and receiver are
connected with a dedicated communication path
(circuit), established through one or more interme-
diate switching nodes. The communication path
must be set up between the two end-nodes before
they could communicate. Although circuit switch-
ing is the most familiar technique used to build
communication networks, and even though wave-
length-routed optical networks have already been
deployed, circuit switching may not be the most
appropriate switching technique for the emerging

3522

All-Optical Internet

optical Internet. Circuit-switched networks lack
flexibility and convergence capabilities, which
lead to poor wavelength utilization, especially if
the connection holding time (i.e., the time of data
exchange) is very short; the situation is worsened
by the bursty nature of the data traffic. Therefore,
in order to fully utilize the WDM wavelengths,
a sophisticated traffic grooming mechanism is
needed to statistically multiplex the data coming
from different sources.

Optical Packet Switching

Optical packet switching is an alternative optical
switching paradigm that appears to be the opti-
mum choice. However, with the immature current
optical technology, it is impossible (at least in
short-medium term) to deploy OPS networks vi-
ably. Packet switches usually work synchronously,
where the arriving packets at different input ports
must be aligned before being switched using the
switching fabrics. This process is difficult and
expensive to be implemented fully in the opti-
cal domain. Another operation concern is the
relatively long time in which the optical-switch-
ing fabrics are configured compared to the data
transmission speed. This is clearly demonstrated
using the following example based on the current
developments in the optical technology, consid-
ering an optical packet switch, with a switching
fabric that takes 1 ms to be configured (i.e., set
up a connection from an input port to an output
port). At a data rate of 2.5 Gbps, it takes about
5 μs to transmit a 12,500-bit packet. Therefore,
if a switch operates at the packet level, then less
than 0.5% of the time is used for switching data,
while the rest is wasted in setting up the switch-
ing fabric.

A more prevailing OPS’s deployment issue, is
the realization of the “Store and Forward” concept
that is the requisite idea in packet switching net-
works. To store packets in switches, a buffering
strategy is needed to resolve contentions in the
output ports. Optical switches currently use opti-

cal fibers as Fiber Delay Lines (FDL) to emulate
buffers by delaying packets for a fixed time (Xu
et al., 2001). The FDLs are far away behind the
random access electronic buffers, in term of cost,
performance, and deployment simplicity.

Optical Burst Switching

The concept of burst switching first emerged in
the context of voice communications. OBS is an
adaptation of a stander known as ATM Block
Transfer (ABT) developed by the telecommuni-
cation standardization sector of the International
Telecommunication Union (ITU-T) for burst
switching in Asynchronous Transfer Mode (ATM)
networks. OBS consists of core nodes, built from
optical and electronic components, and edge (In-
gress/ Egress) nodes connected by WDM links.
OBS differs from optical packet switching and the
original burst-switching concept introduced in the
1980’s (Amstutz, 1989; Kulzer & Montgomery,
1984) in a main aspect, that is, the separation of
the control and the data payloads, both in time (i.e.,
the control information is transmitted at an offset
time prior to its corresponding data payload) and
physical space (i.e., the control packets and the data
propagate on different designated channels). In
conventional OBS, there is no need for buffering
and electronic processing of data. Furthermore,
OBS insures efficient bandwidth utilization, since
the bandwidth is reserved only when the data is
to be transferred through the link.

optical components

In order to build an all-optical Internet, different
functional optical elements are required. These
elements could be classified either as “switching”
or “non-switching” components; “switching”
components enable networking, while “non-
switching” components are primarily used on
optical links. However, a simple classification
could be determined by the placement of the op-
tical elements in the system. They can be placed

 3523

All-Optical Internet

either on the transmitting-end, on the link, or on
the receiving-end. In this section, the key optical
communications elements are briefly described.

• Optical fibers: Optical fibers are made of
glass or plastic, and they transmit signals
in the form of light at about two-thirds the
speed of light in a vacuum. In the optical
fibers, the lightwaves (signals) are guided
with a minimum attenuation.

• Light sources and light detectors: At both
ends of an optical transmission system,
light sources and light detectors are found.
At the transmitting-end, the light source
(light emitter) modulates electrical signals
into light pulses. The opposite process, that
is, to modulate light pulses into electrical
signals, is performed by the light detectors
at the receiving-end.

• Optical Amplifiers: To amplify an attenu-
ated optical signal, unlike the conventional
repeaters that perform respectively optical-
electrical conversion, electrical amplifica-
tion, and then electrical-optical conversion,
the optical amplifiers operate completely in
the optical domain. The optical amplifiers
can boost the power levels of the optical
signals. Amplifiers can be classified to two
fundamental amplifier types: Semiconduc-
tor Optical Amplifiers (SOAs) and Doped-
Fiber Amplifiers (DFAs).

• Multiplexers and De-multiplexers: Mul-
tiplexers and De-multiplexers are essential
components in the optical transmission
systems. Multiplexers converge and com-
bine multiple incoming signals into one
beam. The de-multiplexers have the ability
to separate out the combined components of
the beam and discreetly detect the different
signals.

• Optical Add/Drop Multiplexers: Optical
Add/Drop Multiplexers (OADMs) are key
elements on the progress toward the ulti-
mate goal of all-optical networks. Unlike

the multiplexers and de-multiplexers, the
OADMs are capable of adding or removing
one or more wavelengths without the need for
combining or separating all wavelengths.

• Wavelength converters: An optical
wavelength converter is a device capable
of directly translating (converting) data
contained on an incoming wavelength to an-
other wavelength without optical-electrical-
optical conversion. Therefore, wavelength
converters are very important elements in
the deployment of all-optical networks.
Two classes of wavelength converters can
be identified: Optical-Gating Wavelength
Converters and Wave-Mixing Wavelength
Converters.

oPtIcAl burst swItchInG

In this chapter, a comprehensive discussion of
Optical Burst Switching (OBS) is presented. The
OBS networks variants, reservation protocols,
node architecture and switching technology,
Quality of Service provisioning, and contention
resolution techniques are discussed.

obs network Functionality

Optical Burst Switching is a relatively new
switching technique and is still at the definition
phase, which is clearly indicated by the number
of research groups and their publications, spe-
cifically, on new OBS architectures (Callegate,
Cankaya, Xiong, & Vandenhoute, 1999; Dolzer,
2002; Verma, Chaskar, & Ravikanth, 2000; Xu
et al., 2001; Yoo, Qiao, & Dixit, 2001), prototypes
(Baldine, Rouskas, Perros, & Stevenson, 2002),
reservation mechanisms (Detti & Listanti, 2001;
Dolzer, Gauger, Spath, & Bodamer, 2001; Qiao
& Yoo, 2000; Tancevski, Yegnanarayanam,
Castanon, Tamil, Masetti, & McDermott, 2000;
Turner, 1999; Wei, Pastor, Ramamurthy, & Tsal,
1999; Xiong, Vanderhoute, & Cankaya, 2000;

3524

All-Optical Internet

Yoo, Jeong, & Qiao, 1997) and assembly mecha-
nisms (Ge, Callegati, & Tamil, 2000; Hu, Dolzer,
& Gauger, 2003; Vokkarane, Haridoss, & Jue,
2002). However, despite the fact that there is no
standard architecture or a universal definition of
optical burst switching, OBS networks assume
the following general characteristics:

• Granularity: The transmission units (called
bursts) are macro-packets, each of which
should have a duration that is as short as
possible, as it does not require a dedicated
channel, but long enough to be efficiently
switched optically; that is, between the
optical circuit switching and optical packet
switching granularity.

• Separation of control and data: Control
information and data payload propagate on
separate channels (wavelengths).

• One-way reservation: Network resources
are generally allocated in one-way reserva-
tion fashion. That is, bursts (data) are trans-
mitted at an offset time after their control
information without receiving or waiting
for any acknowledgements, to confirm the
switching resources reservation, back from
the destination nodes.

• Variable burst length: The duration (size)
of the data burst may be variable. However,
the burst duration should be long enough
to be efficiently switched in the optical
domain, and short enough to be statistically
multiplexed.

• Optical Buffering/Wavelength conver-
sion: In the conventional implementation
of OBS networks, optical buffers/wave-
length converters are not mandatory in the
intermediate nodes. Thus, the data bursts
would be switched optically from source to
destination, without any delay (buffering),
and using the same wavelength.

Not all of these characteristics need be satisfied
at once and without variation in all OBS imple-

mentations, thus, allowing for design flexibility
and a possible smooth evolution towards the packet
switching technique, when the development on
the optical switching technology matures.

As mentioned before, the model of burst
switching is not new as a concept. Burst-switch-
ing has been already known since the 1980’s.
However, the concept has never been implemented
widely and successfully in conventional electrical
networks. Due to its complexity and high cost,
burst switching could not compete with estab-
lished, flexible, and relatively cheap electronic
packet switching techniques (e.g., Asynchronous
Transfer Mode (ATM)). However, with the intro-
duction of very high-speed optical transmission
techniques, this has changed. It has been agreed
that it is more advantageous, cost effective, and
efficient to keep data in the optical domain and
to avoid optical-electrical-optical conversions. In
view of the fact that all-optical packet switching
techniques are still too complex to be widely
deployed, a hybrid approach is desirable. In this
approach, the data payload (that does not need
to be processed at the core nodes) is kept in the
optical domain, whereas the control information
can go through optical-electrical-optical conver-
sions to be efficiently processed in the electrical
domain. OBS offers exactly that, by separating
the control and the data in the physical space, that
is, the control information and the data propagate
discretely in different designated channels, and
maybe with different data rates. OBS also sepa-
rates the control and the data in time, that is, the
control packet is transmitted at an offset time
prior to its corresponding data. In the buffer-less
core nodes, the offset time is to compensate for
both processing and configuration time, needed
respectively by the control unit to process the
control information and the switching-fabric to
be configured.

Figure 1 shows some of the main components
of an OBS network. There are two types of nodes,
edge (ingress/egress) nodes and core nodes. In
the edge nodes, network traffic is collected from

 3525

All-Optical Internet

access networks and assembled into macro data
units called data bursts (DBs). Core nodes serve as
transit nodes at the core network. Their main task
is to switch bursts (data) all-optically without any
conversion or processing. The switching fabrics
are configured according to the control informa-
tion contained in the Burst Control Packets (BCPs),
which are transmitted as reservation requests at
an offset time ahead of their corresponding data
bursts.

In the literature, various OBS switching pro-
tocols with different tradeoffs can be found. The
OBS switching protocols differ in the choice of
the offset time that can be zero or more, and the
bandwidth reservation and release techniques
(bandwidth holding time).

Three main OBS implementations can be iden-
tified, based on the offset time which is defined
as the interval of time between the transmission
of the first bit of the BCP and the transmission of
the first bit of the data burst. The offset time can
be nil, round-trip dependent, or source-routing
dependent.

• Nil offset time: This OBS implementation
is the closest to optical packet switching,
and it is similar to ATM Block Transfer
and Immediate Transmission (ABT-IT).
The DBs and their corresponding BCPs are
transmitted on different wavelengths and
separated by a zero or a negligible offset time.
The BCPs reserve the network resources

Figure 1. Illustration of optical burst-switched network components

3526

All-Optical Internet

(wavelength and buffer) upon arrival to
the core nodes. The DBs are buffered until
the BCPs are processed and the switching
fabrics are configured. Currently the buffers
are hard-to-implement expensive FDLs that
can buffer the data optically only for a short
fixed time. Therefore, this implementation is
feasible only when the switch configuration
time (including the BCPs processing time)
is very short.

• Round-trip-dependent offset time: The
offset time is equivalent to the round-trip
time, that is, the time between the sending of
a BCP and the receiving of its corresponding
acknowledgment. In this implementation,
a DB is transmitted only after receiving a
positive response (acknowledgment) to its
resource reservation request sent via the
BCP, therefore, guaranteeing an uninter-
rupted all-optical transmission path for the
DB from source to destination. Suffering
from lengthy offset time due to the two-
way propagation delay needed to set up an
end-to-end lightpath before transmitting
the user data, this scheme is the closest to
optical circuit switching.

• Source-routing-dependent offset time:
This implementation is similar to the ATM
Block Transfer and Delayed Transmission
(ABT-DT). The ingress node sends each
control packet, followed by its correspond-
ing data burst after an offset time. Thus,
data bursts are sent without waiting for
any acknowledgment or feedback on the
reservation requests. This one-way reserva-
tion scheme avoids the two-way-reservation
propagation delay in order to reduce the data
waiting time at the ingress nodes. In this
scheme, to efficiently calculate the offset
time, some sort of source routing is used to
determine the number of intermediate nodes
from source to destination.

channel reservation schemes

Under the source-routing-dependent offset
time implementation, four channel reservation
schemes can be identified. Depending on when
the channel reservation starts and ends, the res-
ervation schemes differ in their burst-dropping
performance and their complexity. Accompanied
by the illustration in Figure 2, the schemes are
briefly explained as follows:

• Scheme 1: Each BCP contains the offset
time that separates it from its corresponding
DB, but not the duration of the DB. Thus,
the core nodes reserve a channel as soon as
they receive the BCP (reservation request).
The channel remains reserved until the
core nodes receive a release message that
follows the transmitted DB. Therefore, for
each channel, only an on/off (12/02) flag
should be kept in each core node to indicate
whether the channel is busy (reserved) or free
(available). This scheme is usually referred
to as Explicit Setup and Explicit Release
scheme.

• Scheme 2: Each BCP contains the offset
time that separates it from its corresponding
DB and the duration of that DB. Thus, the
core nodes reserve the channels as soon as
they receive the BCP. Since the end of each
DB is known (calculated using the duration
of the DB), the channels are reserved only
until the end of the DB. This scheme is more
complex than the previous scheme, as each
channel should be associated with a timer,
which indicates when the channel will
become available. This scheme is referred
to as Explicit Setup and Estimated Release
scheme.

• Scheme 3: Similarly to “scheme 1”, each
BCP contains the offset time that separates
it from its corresponding DB, but not the

 3527

All-Optical Internet

duration of the DB, and the reserved chan-
nels are released only when the core nodes
receive the corresponding release messages.
However, the reservation of the channels
starts approximately at the time of the DBs
arrivals. This scheme is referred to as Esti-
mated Setup and Explicit Release scheme.

• Scheme 4: Similarly to “scheme 2”, each
BCP contains both the offset time that sepa-
rates it from its corresponding DB and the
duration of that DB as well. Since both the
beginning and the end of each DB is known
(calculated respectively using the offset and
the duration of the data burst), the reserva-

tion starts at the beginning of the burst and
ends at its end. The reservation process is
controlled using a two-element array that its
elements correspondingly refer to the arrival
and departure time of the burst to/from the
core node. This scheme is referred to as
Estimated Setup and Estimated Release
scheme.

Several signaling protocols were developed
for OBS networks, with different tradeoffs. For
example, Just-In-Time (JIT) was developed by
Wei and McFarland (2000) under Scheme 1. The
Horizon protocol was proposed by Turner (1999)

Figure 2. One-way-based channel reservation schemes

BCP

Offset
time

Data
Burst

Time

Processing time

Ingress core core Egress

Processing
 time

Release
Message

Reservation
time

Scheme 1

BCP

Offset
time

Data
Burst

Time

Processing time

Ingress core core Egress

Reservation
time

Scheme 2

BCP

Offset
time

Data
Burst

Time

Processing time

Ingress core core Egress

Processing
 time

Release
Message

Reservation
time

Scheme 3

BCP

Offset
time

Data
Burst

Time

Processing time

Ingress core core Egress

Reservation
time

Scheme 4

3528

All-Optical Internet

under Scheme 2; under Scheme 4, Just-Enough-
Time (JET) was developed by Qiao and Yoo (1999).
JET was further extended by Gauger, Dolzer,
and Scharf (2002) to be deployed in switches
with optical buffers. For the complete operation
of these signaling protocols, a variety of Chan-
nel Scheduling algorithms were proposed in the
literature. Channel scheduling algorithms are used
by the schedulers in the core nodes to determine
the status of each channel (or possibly the optical
buffer), on which the channel reservation decision
is based. A channel is said to be scheduled, if it is
occupied/reserved by a data burst. The time that a
channel is unscheduled is known as “void”, that is,
the time that the channel is not occupied between
two successive bursts. Schedulers use the informa-
tion associated with the BCPs, for example, offset
time (burst arrival time), and burst length (burst
exit time). In certain Scheduling algorithms, the
schedulers need to keep track of the voids between
scheduled burst. Three main channel scheduling
algorithms can be found in the literature: (1) First
Fit Unscheduled Channel (FFUC) algorithm, (2)
Latest Available Unscheduled Channel (LAUC)
algorithm, and (3) Latest Available Void Filling
(LAVF) algorithm. The implementation and the
working of these algorithms are beyond the scope
of this chapter.

node Architecture and switching
technology

The switching technology is a very critical archi-
tectural aspect in the design of OBS networks.
In order to effectively operate an OBS network
with efficient bandwidth utilization, the switching
time should be negligible compared to the mean
transmission time of the data bursts. Therefore,
both the deployed switching technology and the
mean burst length have to be chosen appropri-
ately. For example, an OBS network using fiber
links at the rate of 10 Gbps to transmit a burst
of about 1 Mbyte cannot adopt Micro Electro-
Mechanical Systems (MEMS) (Suzuki, Otani,

& Hayashi, 2003), since they require switching
times between 1-10 ms, which is greater than the
transmission time of an entire burst. However,
if the mean burst duration is selected properly,
both the Acousto-Optic Tunable Filters (AOTFs)
(Sadot & Boimovich, 1998) and Semiconductor
Optical Amplifiers (SOAs) (Renaud, Bachmann,
& Erman, 1998) could be used as switching tech-
nology for OBS networks, as their switching time
is respectively below 10 μs and 10 ns.

The OBS nodes are classified as edge nodes or
core nodes. Edge nodes (Ingress/Egress) provide
an interface between the OBS network (optical
domain) and legacy access networks. Besides serv-
ing as an interface point between access networks
and OBS, an ingress node should be capable of
performing bursts assembly, BCPs generation,
burst/channel scheduling, and routing. The ingress
architecture is illustrated in Figure 3(a). Gener-
ally an ingress node will contain input interface
cards to legacy networks, BCPs generator, bursts
assembler, scheduler, and optical transmitters. In
addition to the output interface cards, the Egress
node contains bursts disassembler, BCPs proces-
sor/terminator, and optical receivers. Note that a
generic edge node should have the functionalities
of both the ingress and the egress nodes. As
intermediate nodes between the edge nodes, the
core nodes are located inside the OBS network. A
general architecture of OBS core node is shown in
Figure 3(b). The OBS core node (switch) should
be equipped with the capabilities of routing,
bursts switching (optically), and BCPs processing
(electronically). The capabilities of a core node
may be farther extended to provide optical data
buffering and wavelengths conversion.

A generic core node contains the following:

• Optical receivers/transmitters: Reception/
Transmission of the control information and
data bursts; Optical multiplexer and de-mul-
tiplexers: Responsible for optical channels
multiplexing and de-multiplexing;

 3529

All-Optical Internet

• Input/Output interface for BCP: Control
reception/transmission and O/E/O conver-
sions;

• Control packet processing unit: For BCPs
interpretation, channels scheduling, colli-
sion resolution, routing, and optical switch-
ing-fabric control;

• Optical switching fabric: To optically
switch data bursts; And possibly Wavelength
converters and fiber delay lines (FDLs).

data burst Assembly

At the edge node, the burst assembly/disassembly
process is implemented. A very important design
parameter in OBS networks, the assembly process
takes place at the ingress nodes. Burst assembly
(burstification) is the process of aggregating a
number of smaller transport units, for example,
IP packets or ATM cells, into larger transport
units called data bursts. Motivated by the need

Figure 3. (a) Architecture of OBS egress node, (b) Architecture of OBS core node

Control Packet processing
unitO/E

Optical Switch Fabric

In
pu

t F
ib

er
s

O
ut

pu
t F

ib
er

s

W
av

el
en

gt
h

C
on

ve
rte

r

E/O

Multiplexer
Demultiplexer

Data Burst
Data Channel Control Channel

Burst Control Packet Wavelength Converter
Fiber Delay Line (FDL)

(b)

Input Packets Queues

Burst
 Assembler

IP / Frame Relay / ...

ATM

Burst Scheduler

In
te

rfa
ce

C

ar
ds

BCP Generator
 - Channel ID

 - Burst length
 - Offset time
 - Destination
 - QoS ...

Transmitter

Tr
an

sm
itt

er

(a)

3530

All-Optical Internet

of optimizing the switching performance in the
optical domain, larger transport units allow the
switches to switch the same amount of data by
handling less requests, since the ratio between
the control information and transmitted data gets
smaller. Furthermore, the efficiency of optical
switching is improved due to the reduction in
the mean inter-arrival time between the switched
data units (bursts).

Generally, the assembly algorithms are based
on a threshold that could be time, burst-length,
or hybrid time-length threshold. In a single data
burst, the assembled data units may belong to
various upper layer traffic flows, and ultimately
destined to different final destinations; however,
the destination OBS egress node of all the data
units must be the same. The arriving upper layer
packets are stored in appropriate queues (accord-
ing to their egress destination, QoS requirement,
Class of Service (CoS)) in the burst assembler. A
new burst is constructed and its control packet
is generated when the threshold is reached. Ob-
viously, the generated traffic will have variable
burst length and constant inter-arrival time, if
the algorithm operates only based on time as
threshold; however, this may produce excessively
large data bursts if the upper layer traffic streams
are experiencing high loads. Conversely, if the
algorithm operates based on the burst-length
threshold, the inter-arrival time will vary, while
the burst length is maintained constant. Optimally,
a hybrid approach is used, that is, a combination
of the time and length thresholds. In all cases, a
minimum burst-length should be imposed to avoid
too small bursts, which may cause the generation
of too many control packets that may lead to traf-
fic congestion on the control channels. A data
burst is constructed when its length gets bigger
than a pre-defined value, or when the maximum
assembly time is reached; in the later case, data
padding may be applied to bring the data burst to
an appropriate length. Furthermore, a minimum
burst-length should be imposed to avoid too

small bursts, which may cause the generation of
too many control packets that may lead to traffic
congestion in the control channels.

More sophisticated assembly algorithms that
trade-in the simplicity with the flexibility were
proposed in the literature. For example The
Adaptive-Assembly-Period (AAP) Algorithm,
proposed by Cao, Li, Chen, and Qiao (2002). AAP
analyzes current IP traffic statistics and change
the values of thresholds accordingly, which can
reduce the queuing delay in the edge nodes.

The data bursts disassembly (de-burstification)
process is performed by disassemblers at the egress
nodes upon the bursts’ arrival. In the egress-nodes,
the BCPs are processed and terminated, and the
data bursts are disassembled to the initial data
units. The data units are then forwarded to their
final destinations.

Qos support and contention
resolution

The number of users (with different needs) and
electronic applications (with different require-
ments) is growing exponentially on the Internet,
causing the Internet to start suffering from its
own success, in terms of bandwidth and service
differentiation. Using optical infrastructure,
the available capacity limits could be solved by
bandwidth over-provisioning. However, because
IP is a best-effort protocol, there is a need to
incorporate QoS mechanisms and flow control
capabilities.

OBS-QoS Mechanisms

A great effort has been directed to the QoS
provisioning in the Internet, where many QoS
mechanisms were introduced. However, the
mechanisms that worked for electronic packet
switched networks did not find the same success
in optical networks, because of the lack of effi-
cient optical buffers, which reduces the switches’

 3531

All-Optical Internet

scheduling capabilities. In this section, we will
present an overview of the main QoS provisioning
strategies proposed for OBS networks.

• Offset-Based QoS Scheme: Offset-based
QoS (Fan, Feng, Wang, & Ge, 2002) scheme
adds an extra offset time to the basic offset
between the BCP and its corresponding DB.
The additional offset time, called QoS offset,
is to compensate for the processing time of
the BCP. The duration of such a QoS offset
is varied, depending on the priority of the
service class. This scheme is proposed for
JET, whereby higher priority classes have
larger offsets. With this scheme, if a low
priority DB with no additional QoS offset
time and a higher priority DB with a QoS
offset try to make network resources reser-
vation, the DB with the larger offset will be
able to reserve resources in advance, before
the low priority DB. In general, this will
result in a lower burst loss probability of
high priority classes compared to the lower
priority classes.

Although the offset-based QoS scheme does
provide an acceptable service differentiation, it is
faced with some challenges that cannot be ignored.
For example, DBs of high priority classes suffer
longer waiting time (delay) than the data bursts of
low priority classes. Furthermore, the scheme is
non-preemptive that is, as long as low priority DBs
can block optical paths, no complete isolation is
achieved. Yet, starvation of low priority classes is
possible if the offered traffic load of high priority
bursts is high and not controlled.

• Active dropping-based QoS scheme: In
this scheme, a burst dropper (hardware) is
implemented in front of every core node
(Chen, Hamdi, & Tsang, 2001). Dependent
on a dropping policy, some BCPs and their
corresponding DBs are dropped before
reaching the reservation unit. Therefore, the

admission to the outgoing wavelengths is
controlled, enabling the core nodes to locally
control the offered load of certain service
classes to maintain network resources for
other service classes. Active Dropping-based
QoS scheme intervene before congestion
occurs, as the selective dropping of DBs is
initiated according to the data traffic profile
to guarantee that the higher priority classes
have higher chances to make successful res-
ervations. However, this scheme suffers from
a major disadvantage which is the absence
of feedback from the core nodes to the edge
nodes, and thus traffic volume of different
classes cannot be controlled. Furthermore,
isolation between different traffic classes is
not guaranteed. If the offered traffic load of a
low priority class is significantly augmented,
which increases the overall burst loss prob-
ability; burst loss probabilities of all classes
are increased. Therefore, an additional traffic
control mechanism is required.

• Segmentation-based QoS scheme: In seg-
mentation-based QoS scheme (Vokkarane
& Jue, 2002), each data burst is subdivided
into several independent segments. If DBs
contend for the same network resources,
the contention is resolved by discarding
or deflecting some segments of one of the
contending data bursts. The remaining part
of the burst (truncated DB) will be then
forwarded to the downstream nodes where
it will experience either more shortening,
be dropped, or be delivered to the egress
node. Unfortunately, this scheme is imple-
mented at the cost of increasing the size of
the control packets, since the BCP should
at least contain the segments number, the
burst length, and the routing information.

Furthermore, the implementation of burst seg-
mentation strategies is faced by some challenges
and practical issues summarized as follows:

3532

All-Optical Internet

• Switching time (ST): ST is the time needed
to reconfigure the switching fabric. ST
depends on the design and implementation
of the core node and on the used switching
technology. ST may differ from one core
node to another.

• Data burst size: Since the transmission of
DBs depends on the transmission of their
BCPs, the DB length should agree with mini-
mum and maximum length requirements,
to avoid congestion in the control channels.
The same is true for the truncated burst (i.e.,
DB that lost some of its packets).

• Segment Delineation: Since the data bursts
are transmitted all-optically, the segments’
boundaries are transparent to the core
nodes, and their sizes are not reflected in
the BCP.

• Fiber Delay Lines (FDLs): As in Optical
Composite Burst Switching (OCBS) (Detti,
Eramo, & Listanti, 2002), FDLs are needed
to delay the data bursts while their control
packets are being electronically updated
with the new burst size, which increases the
electronic processing time needed before
forwarding the control packet to the next
node.

• Trail-control messages: Generated by the
node where the DB has been truncated, the
trailing control message is needed to indicate
the data burst’s new size to the downstream
nodes, to avoid unnecessary resource reser-
vation, and needless contention resolution
actions.

Contention Resolution

In OCS, each traffic flow is supplied with the
appropriate network resources, precisely with
the necessary bandwidth. Therefore, flows would
not contend for the same network resources in
the core nodes of an OCS network. However,
contention is a major problem in both OPS and
OBS, which are based on multiplexing gain be-

tween the traffic flows. Typically, in electronic
packet switching, this problem is solved using
random access electronic buffers; however, this
solution is far from being feasible in all-optical
networks where optical buffering is yet to be a vi-
able technology. In OBS, contention occurs when
two or more bursts are destined to use the same
channel from the same fiber (i.e., output port) at
the same time. The contention can be resolved
in one of three techniques. The contending burst
can be optically delayed/buffered (time domain),
converted to another channel in the same fiber
(optical domain), or deflected to another output
port (space domain).

• Buffering: One of the most prevailing fac-
tors that have motivated the development of
OBS network is the immaturity of the optical
buffering technology. Therefore, the use of
optical buffers as a contention resolution
technique in the OBS networks is less than
feasible. Nevertheless, several proposals,
and many research activities, were dedicated
to the study of buffering techniques in OBS
networks. Buffering is to delay or to queue
contending bursts instead of dropping them.
If optical-electrical-optical conversion is al-
lowed (i.e., not an all-optical network) then
random access electronic buffers can be used
to buffer the burst for a long time. However,
to implement an all-optical network (i.e.,
the data is maintained in the optical domain
end-to-end), an optical buffering technique
is needed. Optical buffering currently can
only be implemented using Fiber Delay
Lines (FDLs). The time that the bursts can
be delayed is directly proportional to the
length of the FDL. More efficient optical
buffers can be realized through multiple
delay lines of the same or different lengths,
deployed in stages (Chlamtac, Fumagalli,
Kazovsky, Melman, et al., 1996) or in parallel
(Haas, 1993). Such buffers can hold DBs for
variable amounts of time. Recently, designs

 3533

All-Optical Internet

of large optical buffers (Hunter, Cornwell,
Gilfedder, et al., 1998; Tancevski, Castanon,
Callegati, & Tamil, 1999) were proposed
without large delay lines. However, in any
optical buffer architecture, the size of the
buffers and their flexibility is severely con-
strained by physical space and the effects of
fiber dispersion. Therefore, fiber delay lines
could be suitable for prototype switches in
experimental environments, but not for real
and commercial deployments.

• Wavelength conversion: WDM systems
are multiple channel systems. Optical
switches are connected with fiber links that
are expected to carry hundreds of channels
in the near future. This can be exploited to
resolve traffic flow contentions. If two traffic
flows contend for the same channel, one of
the flows can be wavelength-converted to a
free channel, and transmitted on the same
link. It is clear that with this technique the
contentions between data bursts in an OBS
network can be minimized. However, using
wavelength converters will increase the
overall hardware cost of the WDM network,
in addition to the complexity and techni-
cal issues associated with the wavelength
conversion technology itself. Wavelength-
conversion-enabled optical networks can
be categorized to either: (1) networks with
full wavelength conversion (any channel can
be converted/shifted to any other channel);
(2) networks with limited/fixed wavelength
conversion (only limited/fixed channels can
be converted); or (3) networks with sparse
wavelength conversion (not all the network’s
nodes have wavelength conversion capabili-
ties)

• Deflection: To delay (hold) data bursts, an
alternative to the use of FDLs is the use of
fiber links connecting the core nodes. When
two bursts contend for the same output port,
one will be switched to the correct output
port, and the other will be switched (de-

flected) to any other available output port.
Therefore, both bursts are given a chance
to be switched instead of dropping one of
them to resolve the contention. Because the
correct output port leads usually to the short-
est path (networking context) toward the
destination, the bursts that are not switched
to the correct output ports may end up fol-
lowing longer paths to their destinations.
This technique is referred to as “hot-potato”
routing. A drawback of this technique is the
complexity associated with the calculation
of the offset time of the deflected burst since
it will travel on a different path with differ-
ent hop count. Furthermore, the end-to-end
high delays experienced by the deflected
DBs may cause the DBs to be out-of-order
at the destination, or trigger upper layers
retransmission mechanisms. Additionally,
deflecting data bursts because of local con-
gestion may instigate global congestion. In
the literature, deflection routing is studied
on various network topologies, with and
without FDLs.

In all the three aforementioned techniques,
the data bursts are treated as single fused data
units. However, there is another interesting OBS
approach that suggests that the bursts should be
dealt with as a combination of basic transport
units called segments. Each of these segments
may consist of a single packet or multiple packets.
The segments indicate the possible partitioning
points of a burst while the burst is traveling in the
optical domain. With this approach, when a con-
tention occurs, only the overlapping (time aspect)
segments of the contending bursts are dropped,
buffered, deflected, or converted to a different
channel. It has been demonstrated in literature
(Detti et al., 2002; Vokkarane, Jue, & Sitaraman,
2002) that the contention resolution techniques
based on burst segmentation are efficient, and
outperformed the traditional OBS with the “en-
tire-burst-dropping” policy. Unfortunately the

3534

All-Optical Internet

implementation of burst segmentation strategies
is faced by some technical challenges, besides the
complexity added to the algorithms and protocols
on both edge and core nodes.

Flavors of obs networks

Besides the traditional definition presented at the
beginning of this chapter, the following imple-
mentations of OBS can be found in literature;
each implementation has its advantages and
disadvantages.

• OBS with fixed data burst length: In this

implementation of OBS, all data bursts have
the same length. Its major advantage is the
simplification of the switching technique.
However, its disadvantage is the long queu-
ing time of the upper layer packets if there
is no adequate traffic load. An ineffectual
solution to this disadvantage is data pad-
ding. This concept is closely related to the
cell-switching paradigm where the transport
unit is fixed in size.

• OBS with two-way setup: In this imple-
mentation of OBS, a burst will be transmit-
ted only after having received a positive
acknowledgement of its resource reservation
request. Its advantage is the burst-blocking
avoidance in the network’s core nodes. How-
ever, the additional waiting time may cause
buffers to overflow at the network ingress.

• Mandatory FDL/Wavelength Convert-
ers in all nodes: With the disadvantage
of increasing dramatically the cost of the
network, OBS could be implemented with
core nodes that are capable to buffer the data
bursts and/or convert them to any other wave-
length. In this implementation some sort of
store-and-forward routing for optical bursts
is deployed, where each burst is delayed for
a certain time until its corresponding control
information is processed and an appropriate
switching decision is determined, that is, the

burst could be forwarded to an output port,
converted to another wavelength, or simply
dropped.

• OBS networks for Ethernet: Extending
Ethernet services over OBS was proposed
in Sheeshia, Qiao, and Liu (2002) as a more
scalable and bandwidth-efficient imple-
mentation compared to the Ethernet over
Synchronous Optical Network (SONET).
The possible role that OBS will play in the
development of 10-Gbit Ethernet (10GbE)
metropolitan networks was investigated.
OBS was demonstrated as an improved net-
work resource-sharing platform and efficient
transport for Ethernet traffic, particularly if
it is coupled with the Generalized Multipro-
tocol Label Switching (GMPLS).

It is clear that OBS is a technology-driven
paradigm; consequently, the architecture and the
operational policies of the future OBS networks
will be shaped by the upcoming developments in
the multiplexing and switching technologies. The
technology needed to generate and transmit more
than 1,000 high-quality WDM channels with fixed
wavelength spacing is already available. Further-
more, the Waveband Switching (i.e., switching
multiple wavelengths as a single entity) is being
researched. Therefore, the future OBS would be
based on waveband-selective switching or other
more advanced switching technologies. In the
rest of the chapter, an attempt to streamline the
OBS networks that are using burst segmentation
techniques is presented.

stAGed reservAtIon scheme
(srs)

The Staged Reservation Scheme (SRS) (Abid,
Abbou, & Ewe, 2005) is introduced to streamline
previous reservation protocols that are based
on burst segmentation strategy, to increase the
throughput of the core nodes, and to overcome

 3535

All-Optical Internet

some of the limitations associated with the burst
segmentation concept (shown earlier). In SRS the
data burst is divided into equal Data Segments
(DSs). This is an indication to where the DB
might be partitioned, while traveling in the opti-
cal-domain. The DSs have the same attributes and
characteristics as any DB (i.e., each segment may
range from one to several packets, and its length is
reflected in the BCP). The control packets format
was designed to be scalable to high transmission
speeds, and to reflect the DSs’ length in addition
to the DBs’ length.

bcPs Format in srs

The burst control packet format in SRS is rede-
signed and changed from the traditional format
to provide a constant transmission overhead and
to make the BCP scalable to higher speeds, as
it uses the Flow Control and Reservation Bits
(FCRB) as the segments’ length indicator instead
of flags (Detti et al., 2002). The illustration shown
in Figure 4 of the format of the BCP is briefly
presented here.

• FCRB field: Flow Control and Reservation
Bits field is created by the ingress-node to
reflect the permitted segmentations. In the
core-nodes, the SRS-length is multiplied by
the number of 12 in FCRB to obtain the actual

size of the corresponding DB. For example
01112 is an indication that the length of the
DB (or truncated DB) is (3 * SRS-length),
and it might be segmented into three seg-
ments. The size of FCRB is dynamic in that
it may vary from one DB to another, and the
burst assembly algorithm controls it.

• Flag field: The field is a sequence of bits
with a recognizable pattern that identifies
the end of the FCRB field (as its size is not
fixed), and identifies the beginning of the
SRE-length field.

• SRS-length field: The field contains the
length of one DS. However, SRS-length
combined with FCRB provides sufficient
information about the DB’s length and
segmentation. To avoid congestion in OBS
control-channel, SRS-length should comply
with a minimum length (Detti et al., 2002),
which is the minimum permitted data burst
length transmitted over the optical links.
The SRS-length may vary from one DB to
another.

• Other-Info fields: The rest of the fields may
contain routing information (e.g., burst des-
tination address), offset time, and so forth.

By adopting SRS dropping policy, which
will be described in the following subsection, if
a contention is anticipated in the core-nodes, the

Figure 4. Data burst structure and burst control packet format in SRS scheme

Data Segment (DS)Data Segment (DS)Data Segment (DS) Data Segment (DS)

Data Burst (DB)

Burst Control Packet (BCP)

One DS is dropped

Flow Control and Reservation Bits (FCRB)

SRS-Length = 1/m of the DB Length
m = number of Data Segment (DS)
 = number of 12 in the FCRB

Other-Info SRS-Length Flag 1 1 1 1

0 1 1 1

0 1 1Length of the DB = 2 x SRS-Length 0

3536

All-Optical Internet

resources allocation process will not be aborted
(i.e., BCP is dropped and subsequently the cor-
responding DB is entirely discarded). Conversely,
the FCRB field in the corresponding BCP is
updated according to the resources that the core-
node can provide (or free up). Hence, only the
overlapping segments are dropped at the arrival
time, allowing part of the DB to be transmitted
(i.e., the data length that can be handled by the
node at the arrival time) as shown in Figure 5.
Since the BCPs are updated before forwarding
them to the downstream nodes, to reflect the new
DBs’ length, the need for trailing messages is
eliminated, and the contention is resolved at the
BCPs level rather than at the DBs level.

srs dropping Policy

Beside the Switching-Time (ST), the dropping
policy is based on the Overlapping-Time (OT),
and the Contention-Time (CT) (i.e., the aggregated
length (duration) of all the DSs that are entirely or
partly overlapping minus the OT), as illustrated
in Figure 5. The OT may span many DSs from
the contending DBs. Therefore; the overlapping
DSs are dropped alternately one-by-one from
the contending DSs until the CT is reached. This
guarantees a reasonable level of fairness between
the data bursts (i.e., the number of discarded DSs

is distributed among the contending DBs). The
dropping policy rules are formulated in an algo-
rithm that will be presented when the fairness in
network resources allocation in the core nodes
is discussed.

The contention, therefore, is resolved by per-
forming the following three steps:

• Firstly, if (OT + ST) > CT, then a DS is added
to the CT to efficiently contain the ST in
the dropped DSs. The added DS is selected
from the DB with the smallest SRS-length,
or randomly if the contending DSs are equal
in length. The ST is assumed to be much
smaller than the duration of one DS.

• Secondly, if the “SRS-length” is the same
for both contending DBs (i.e., the DSs are
equal in length), then the dropping process
starts from the DS at the tail of the first DB,
not at the head of the contending DB. This
gives fair chance to the packets to arrive
to the destination in the correct sequence
(assuming the retransmission of the lost
packets).

• Thirdly, if the “SRS-length” is not the same
for the contending DBs, then the dropping
process starts at the DS of the shorter DB.
The DS may be at the tail of the first DB
or at the head of the contending DB (as it is

Figure 5. SRS dropping policy with relation to CT, OT, and ST

The first DS of DB2 is dropped
FCRB = 1110 2 in BCP2

The last DS of DB1 is dropped
FCRB = 011111 2 in BCP1

BCP2 for DB2

BCP1 for DB1

DB2

DB1

2

Overlapping
Time

Switching
Time

Data Segment (DS)

3

Contention Time

DS
1

4

DSs dropping order

Other-Info SRS-Length Flag 1 1 1 0

Other-Info SRS-Length Flag 1 1 11 10

 3537

All-Optical Internet

deemed that the amount of transmitted data
has higher priority than its order).

Fairness in resources Allocation in
srs core node

A key parameter in the design of an OBS network
is the maximum and minimum burst size, which
is managed by the edge nodes using the assembly
algorithms. This key parameter is entirely over-
looked by the resource allocation schemes based
on the burst segmentation concept, since no poli-
cies related to the size of the truncated burst (i.e.,
shortened data burst) are implemented, during
the burst segmentation process in the core nodes.
Furthermore, there is no fairness in allocating the
network resources to the contending data bursts
(usually form different sources), as all the seg-
ments are simply discarded from only one burst
to resolve the contention.

A better solution would be selecting evenly
(fairly) the segments to be dropped from both
contending data bursts. Likewise, the truncated
burst size should be monitored at the core nodes,
and guaranteed to be larger than the Minimum
Burst Length (MBL), which is the minimum length
allowed into the network to avoid congestion in
the control channels.

Besides fairness, data burst size, and imple-
mentation simplicity, any proposed technique
should be designed to deal with the switching
time, which is the time needed to configure the
switching fabric (i.e., to switch an output port
from one DB to another). To understand what
follows, the following definitions are provided
and illustrated in Figure 6.

• DBO: Original Data Burst with Arrival time

TOA and Leaving time TOL ,
• DBC : Contending Data Burst with Arrival

time TCA and Leaving time TCL ,
• TDB: Truncated Data Burst (i.e., a DB with

dropped segments),
• N, M: Respectively, the number of segments

in DBO, DBC,
• DS: Data Segment with Length DSL,
• R: the expected number of segments to be

dropped from each data burst\

 -
=

DSL
TT

R OLCA

2

.

When data bursts arrive to a core node, the
technique performs three functions arranged in
three main events. After an initialization (Table
1), the Contention_Detection (Table 2) event is

Figure 6. Illustrations: (a) Segments dropping process, (b) DB structure in SRS-based QoS scheme

n N - 1 N - 2

12M

1DBO

DBC

Segment TOATOL

TCATCL

DSL

Time

Direction of flow

1

4 2

3

1Segments dropping sequence: , , , ...2 3 4

(a)

DS DS DS DSData Burst

(b)

Higher priority data segmentsLower priority data segments

3538

All-Optical Internet

performed; if a contention is detected, then R
(number of segments to be dropped from the
contending data bursts) is calculated, and the
second event is executed. The second event named
Length_of _Truncated_Burst (Table 3) is executed

to guarantee that whatever is left from the data
bursts after dropping some of their segments is
good for transmission over the OBS network. In
this event, if one of the truncated data bursts does
not meet the MBL requirements, then the conten-

Table 1. Initialization

Table 2. Contention detection

Table 3. Length of truncated burst

Initialization
 /* Original data burst length. */
 DBLO = TOL – TOA = N * DSL
 /* Contending data burst length. */
 DBLC = TCL – TCA = M * DSL
 /* Length to be dropped from each data burst. */
 LTD = R * DSL

Event :: Contention_Detection
/* There is a contention if the condition is true */
 IF ((TCA – TOL) < ST) THEN

 R =

 -

2DSL

TT OLCA
 /* calculate R. */

 Execute: Length _of _Truncated_Burst
 END IF
End of Event

Event :: Length _of _Truncated_Burst
/* The truncated burst will be less than the allowed
burst length if the condition is true */
 IF ((DBLO – LTD < MBL) || (DBLC – LTD < MBL)) THEN
 IF (DBLC < DBLO) THEN
 /* DBC is the smallest, therefore, dropped */
 Drop DBC
 ELSE
 /* DBO is the smallest, therefore, dropped */
 Drop DBO
 END IF
 ELSE
 Execute: Even_Resource_Allocation
 END IF
End of Event

 3539

All-Optical Internet

tion is simply resolved by dropping the shortest
data burst in its entirety. However, the third event
is executed if the truncated data bursts are larger
than MBL. The Even_Resource_Allocation (Table
4) is used to resolve the burst contention by dis-
carding the overlapping segments alternatively,
starting from the tail of the original burst, and
then the head of the contending burst as shown
in Figure 6(a).

srs-based Qos scheme

Motivated by the SRS design, its dropping policy,
and the use of the FCRB field, the SRS-based QoS
mechanism is introduced. In this mechanism,
the QoS requirements of the upper layer packets
are defined based on their traffic class. Packets
of the same class and destination are assembled
into the same data segment, which will be labeled
with a priority number accordingly. A data burst
may contain data segments of the same or dif-
ferent priorities. Using an appropriate assembly
algorithm, the data segments are assembled into
data bursts in such a way that the lower priority

data segments envelop the higher priority data
segments as shown in Figure 6(b). To realize the
SRS-based QoS scheme, both the edge nodes and
core nodes must cooperate, using an assembly
algorithm in the edge nodes and the SRS dropping
policy in core nodes.

Assembly Algorithm

Although either timer-based or burstlength-based
assembly algorithm could be used, it is preferred
to use hybrid assembly algorithms. In the hybrid
approach, first a burst length threshold is used
in assembling the data segments; this allows the
control of the data segments size, which must
be fixed and restricted to a maximum length.
(In some cases, data padding may be needed.)
Second, in constructing the data bursts (from
data segments) and to control the packets delay
at the edge nodes, a timer threshold is used; that
is, after a fixed time, all the data segments (could
be of different priorities) destined to the same
egress are assembled into a data burst. The data
bursts are then transmitted to their destinations

Table 4. Even resource allocation

Event :: Even_Resource_Allocation
/* Initialize counter */
i = 1
 DO
 {
 IF (i % 2 = 0) THEN
 /* DBC is reduced by one DS from the burst head*/
 TCA = TCA + DSL
 ELSE
 /* DBO is reduced by one DS from the burst tail*/
 TOL = TOL – DSL
 END IF
 /* Increase the counter i by 1 */
i++
 }
 WHILE ((TCA – TOL) < ST)
End of Event

3540

All-Optical Internet

through the core nodes to undergo the SRS drop-
ping policy.

FCRB for Congestion Control

In the course of discussing the QoS, congestion
in networks appears to cause real problems by
reducing the availability and the throughput of the
network. Congestion is a complex phenomenon,
and it occurs when the traffic load (number of
bursts) on the network begins to approach the
network capacity. Therefore, a congestion control
mechanism is needed to maintain the number of
the bursts being transmitted through the network
within the limits at which the network performance
is acceptable.

By using an explicit congestion avoidance
technique, the edge nodes can use as much of the
network capacity as possible, while reacting to the
congestion in a controlled manner. In the proposed
SRS-based QoS, an explicit signaling technique
is used. In this signaling technique, the bits of
FCRB are used to indicate explicitly the amount
of data (i.e., the number of data segments in the
DB) sent and the arrived amount. This signal-
ing approach can work in one of two directions:
forward (to notify the Egress), or backward (to
notify the Ingress).

• Forward signaling: notifies the egress
node that congestion procedures should be
initiated where applicable for traffic in the
opposite direction of the received bursts. It
indicates the number of the dropped data
segments, and that the received burst has
encountered congested resources. This in-
formation could be sent back to the source
node, and the end system will exercise flow
control on the traffic sources at the higher
layers (e.g., TCP).

• Backward signaling: notifies the ingress
node that congestion procedures should be
initiated where applicable for traffic in the

same direction as the sent bursts. It indicates
the number of data segments dropped, and
that the sent burst has encountered congested
resources. The ingress node will then lower
the number of data segments sent in each DB
to be equal to the number of data segments
that could get through the network to the
destination. Then the number of data seg-
ments is augmented progressively until the
maximum size of the data burst is reached, or
until the FCRB field reports congestion.

summArY

The network infrastructure has a decisive role
in the success of any e-services provider. The
next-generation network infrastructure is ex-
pected to be reliable, efficient, and supported by
robust QoS schemes. The success of IP, with its
flexibility, and the advent of WDM technology,
with its advantages, are behind the widespread
interest in selecting the IP/WDM internetworking
model to build an All-optical Internet. Eventually,
the next-generation network will be an all-opti-
cal Internet where the traffic flows are optically
transmitted, switched/routed, tuned/amplified,
and buffered.

The OBS is a major candidate to be deployed
as the switching paradigm for the Next-Genera-
tion Optical Internet. OBS is flexible, manageable,
and offers a good balance between OPS and OCS.
Furthermore, OBS is amenable for improvement
and expansion whenever the developments in
optical technology permit.

In this chapter, a broad discussion on optical
switching is presented. Many architectural and
design aspects of OBS were reviewed, includ-
ing burst assembly, signaling and reservation
protocols, and QoS provisioning. At the end of
the chapter, the recent work in OBS schemes is
covered; however, the OBS paradigm remains an
open field for more research and improvement.

 3541

All-Optical Internet

reFerences

Abid, A., Abbou, F. M., & Ewe, H. T. (2005).
Staged reservation scheme for optical burst
switching networks. IEICE Electronics Express,
2(11), 327-332.

Amstutz, S. (1989). Burst switching—An update.
IEEE Communication Magazine, 50-57.

Baldine, I., Rouskas, G., Perros, H., & Stevenson,
D. (2002). JumpStart: A just-in-time signaling
architecture for WDM burst switched networks.
IEEE Communications Magazine, 40(2), 82-89.

Callegati, F., Cankaya, H. C., Xiong, Y., & Van-
denhoute, M. (1999). Design issues of optical IP
routers for Internet backbone applications. IEEE
Communications Magazine, 37(12), 124-128.

Cao, X., Li, J., Chen, Y., & Qiao, C. (2002). As-
sembling TCP/IP packets in optical burst switched
networks. In Proceeding of IEEE Globecom.

Chen, Y., Hamdi, M., & Tsang, D. H. K. (2001).
Proportional QoS over OBS networks. In Proceed-
ings of IEEE GLOBECOM 2001, San Antonio.

Chlamtac, I. , Fumagalli, A., Kazovsky, L. G.
, Melman, P. et al. (1996). CORD: Contention
resolution by delay lines. IEEE Journal on Selected
Areas in Communications, 14(5), 1014-1029.

Detti, A., & Listanti, M. (2001). Application of
tell and go and tell and wait reservation strate-
gies in an optical burst switching network: A
performance comparison. In Proceedings of the
8th IEEE International Conference on Telecom-
munications (ICT 2001), Bucharest.

Detti, A., Eramo, V., & Listanti, M. (2002).
Performance evaluation of new technique for
IP support in a WDM optical network: Optical
composite burst switching (OCBS). IEEE Journal
of Lightwave Technology, 20(2), 154-165.

Dolzer, K. (2002). Assured horizon—A new
combined framework for burst assembly and
reservation in optical burst switched networks.
In Proceedings of the European Conference on
Networks and Optical Communications (NOC
2002), Darmstad.

Dolzer, K., Gauger, C., Spath, J., & Bodamer, S.
(2001). Evaluation of reservation mechanisms for
optical burst switching. AEÜ International Jour-
nal of Electronics and Communications, 55(1).

Fan, P. , Feng, C., Wang, Y., & Ge, N. (2002).
Investigation of the time-offset-based QoS
support with optical burst switching in WDM
networks. In Proceeding of IEEE ICC: Vol. 5
(pp 2682-2686).

Gauger, C., Dolzer, K., & Scharf, M. (2002).
Reservation strategies for FDL buffers in OBS
networks. In Proceedings of the IEEE Interna-
tional Conference on Communications.

Ge, A., Callegati, F., & Tamil, L. S. (2000). On
optical burst switching and self-similar traffic.
IEEE Communications Letters, 4(3), 98-100.

Haas, Z. (1993). The “staggering switch”: An
electronically-controlled optical packet switch.
IEEE Journal of Lightwave Technology, 11(5/6),
925-936.

Hu, G., Dolzer, K., & Gauger, C. M.. (2003). Does
burst assembly really reduce the self-similarity. In
Proceedings of the Optical Fiber Communication
Conference (OFC 2003), Atlanta.

Hunter, D. K., Cornwell, W. D., Gilfedder, T. H.
et al. (1998). SLOB: A switch with large optical
buffers for packet switching. IEEE Journal of
Lightwave Technology, 16(10), 1725-1736.

Kulzer, J., & Montgomery, W. (1984, May). Statis-
tical switching architectures for future services.
Paper presented at ISS ’84, Florence.

3542

All-Optical Internet

Mukherjee, B. (1997). Optical communication
networking. McGraw-Hill

Qiao, C., & Yoo, M. (1999). Optical burst switching
(OBS)-A new paradigm for an optical Internet.
Journal of High Speed Networks, 8(1), 69-84.

Qiao, C., & Yoo, M. (2000). Choices, features,
and issues in optical burst switching. Optical
Networks Magazine, 1(2), 37-44.

Renaud, M., Bachmann, M., & Erman, M. (1996).
Semiconductor optical space switches. IEEE Jour-
nal on Selected Topics in Quantum Electronics,
2(2), 277-288.

Sadot, D., & Boimovich, E. (1998). Tunable optical
filters for dense WDM networks. IEEE Commu-
nications Magazine, 36(12), 50-55.

Sheeshia, S., Qiao, C., & Liu, U.J. (2002). Support-
ing Ethernet in optical-burst-switched networks.
SPIE the Journal of Optical Networking, 1(8/9),
299-312.

Suzuki, M., Otani, T., & Hayashi, M. (2003).
Transparent optical networks. In Proceedings
of 2003 5th International Conference: Vol. 1 (pp.
26-31).

Tancevski, L., Castanon, G., Callegati, F., & Tamil,
L. (1999). Performance of an optical IP router
using non-degenerate buffers.In Proceeding of
IEEE Globecom ’99, Rio de Janeiro, Brazil (pp.
1454-1459).

Tancevski, L., Yegnanarayanam, S., Castanon, G.,
Tamil, L., Masetti, F., & McDermott, T. (2000).
Optical routing of asynchronous, variable length
packets. IEEE Journal on Selected Areas in Com-
munications, 18(10), 2084-2093.

Turner, J. S. (1999). Terabit burst switching. Jour-
nal of High Speed Networks, 8(1), 3-16.

Verma, S., Chaskar, H., & Ravikanth, R. (2000).
Optical burst switching: A viable solution for tera-
bit IP backbone. IEEE Network, 14(6), 48-53

Vokkarane, V., Haridoss, K., & Jue, J. (2002).
Threshold-based burst assembly policies for QoS
support in optical burst-switched networks. In
Proceedings of the SPIE Optical Networking and
Communications Conference (OptiComm 2002),
Boston (pp. 125-136).

Vokkarane, V., & Jue, J. (2002). Prioritized rout-
ing and burst segmentation for QoS in optical
burst- switched networks. In Proceeding of OFC
(pp. 221-222).

Vokkarane, V., Jue, J., & Sitaraman, S. (2002).
Burst segmentation: An approach for reducing
packet loss in optical burst switched networks.
IEEE International Conference on Communica-
tions, 5, 2673-2677.

Wei, J. Y., & McFarland, R. I. (2000). Just-in-
time signaling for WDM optical burst switching
networks. Journal of Lightwave Technology,
18(12), 2019-2037.

Wei, J. Y., Pastor, J. L., Ramamurthy, R. S., &
Tsal, Y. (1999). Just-in-time optical burst switch-
ing for multiwavelength networks. In Proceedings
of the 5th IFIP TC6 International Conference on
Broadband Communications (BC ‘99), Hong
Kong (pp. 339-352).

Xiong, Y., Vanderhoute, M., & Cankaya, C.
C. (2000). Control architecture in optical burst
switched WDM networks. IEEE Journal on
Selected Areas in Communications, 18(10),
1838-1851.

Xu, L., Perros, H. G., & Rouskas, G. N. (2001).
Techniques for optical packet switching and
optical burst switching. IEEE Communications
Magazine, 39(1), 136-142.

Yao, S., Dixit, S., & Mukherjee, B. (2000). Ad-
vances in photonic packet switching: An overview.
IEEE Communications, 38(2), 84-94.

Yoo, M., Jeong, M., & Qiao, C. (1997). A high
speed protocol for bursty traffic in optical net-

 3543

All-Optical Internet

works. In Proceedings of the 3rd SPIE Conference
on All-Optical Communication Systems, Dallas
(pp. 79-90).

Yoo, M., Qiao, C., & Dixit, S. (2001). Optical
burst switching for service differentiation in the
next-generation optical Internet. IEEE Commu-
nications Magazine, 39(2), 98-104.

This work was previously published in Architecture of Reliable Web Applications Software, edited by M. Radaideh & H. Al-
Ameed, pp. 323-349, copyright 2007 by IGI Publishing (an imprint of IGI Global).

 �

Index

Volume I, pp. 1-596 • Volume II, 597-1198 • Volume III, 1199-1779 • Volume IV, 1780-2378 • Volume V, 2379-2977 • Volume VI, 2978-3543

A
absolute validity interval 3163,

3168
abstract system modeling 3076
abstract system theory 3077
abstract systems, properties of

3081
abstraction 720, 2652
academia case study 1417
academia features 1414
academia, system-level capabili-

ties 1415
academia, user interface design

1414
acceptance criteria 274
access control list (ACL) 454
access controls, role-based 2777
accessibility 720, 863
accounted attributes 487, 493
ACM Digital Library 2656
acousto-optic tunable filters

(AOTFs) 3528
acquisition process areas 1029
acquisition requirements develop-

ment (ARD) 1029
acquisition technical management

(ATM) 1029
acquisition validation (AVAL)

1029
acquisition verification (AVER)

1029
across course integration 1800
active server page (ASP) 1221,

1222, 1223, 1224, 1225,
1226, 1227, 1230, 1231

activity based costing (ABC)
1373

activity diagrams 697, 2378
activity list 1355
activity-oriented computing

(AoC) 3216, 3217, 3219,
3220, 3221, 3236, 3238,
3239

actor 747
actuators 1433
adaptability 691, 863, 2277
adaptive computing 3258, 3264,

3268
adaptive loop subdivision (ALS)

3261
adaptive maintenance 380
adaptive memory subdivision

(AMS) 3265, 3266
adaptive object model (AOM)

1047
added-value processes 2515
administration of specific projects

(ASP) 978
administration, constraints for

3004
admission control 3165
adoption, leadership style for

2164
adoption, role of motivation 2163
advance organizers 889
advanced planning system (APS)

1799
affordability 720, 863
agents 617, 752
agent applicability 1429

agent autonomy 1433
agent communication languages

(ACLs) 622
agent oriented software engineer-

ing (AOSE) 129
agent percepts 1433
agent taxonomy 1448
agent technology 891
agent typology 1448
agent-oriented software engineer-

ing 773, 793
agents, fitness of 489
agents, roles 1351
agents, types of 1428
agents, working modes of 1352
aggregation 1253, 1255, 1256,

1260, 1261, 1263, 1265,
1266, 1267, 1276, 1327,
2278

aggregation relationships 1318,
1328

Agile Alliance, The 3273
Agile Alliance Manifesto, the

992
agile concepts 2711
agile development 291–308,

2681, 3295, 3296
agile document 185
agile methods 992
agile outsourcing 1001
agile outsourcing projects 997
agile outsourcing projects, chal-

lenges to 1007
agile outsourcing projects, struc-

turing 998

2

Index

agile outsourcing, activities in an
1003

agile practices 992
agile quality 2700
agile scenario transition 318
agile software development

242–265, 834, 865
agile software development meth-

ods 840
agile software reuse 841
agreement management (AM)

1029
Agreement on Trade-Related

Aspects of International
Property (TRIPS) 2841

Airbus Industrie joint venture
2273

Aldata (SCM system) 2550
algebraic high-level (AHL) nets

3377
Alien Language case study 1388,

1389
Alien Language, theoretical view

of 1390
all-optical Internet 3520
amateurism 2333
Amazon.com 2565
American College of Radiology

(ACR) 1184
analysis model 685, 689, 692
analytic hierarchy process (AHP)

2547
analytical learning 3326
analyze online surveys 82
ANCOVA 1542
android mobile 2592
AndroMDA 3460, 3463
annotation language 248
anti-patterns 252, 895
antivirus software 453, 456
Anything 2.0 3186
Apache 23
Apache Foundation 865
APICS (The Society for Opera-

tions Management) 1800
applications 154, 155, 156, 157,

158, 159, 160, 163
application deployment 328, 329,

332, 336, 337, 339, 341,
342

application level network (ALN)
3391, 3397

application program interfaces
(APIs) 1235

application programming inter-
face (API) versions 615

application resiliency 406
application server 618
application specification language

(ASL) 328, 329, 330, 331,
339, 340, 341, 342, 343,
344, 345, 346, 347, 348,
349, 350, 351, 352, 353,
354, 355, 356, 357, 358,
359, 360

architectural challenge 620
architectural smell 252
architecture description language

(ADL) 1286
Arcview extension 1441
arm’s-length pattern 2265
ARNAVAC 1759
arrival pattern 3163, 3164
artifacts 835, 836, 837, 843, 844,

885
artifacts, general 860
artificial intelligence (AI) 128,

129, 131, 132, 136, 148,
149, 151, 438, 1439, 1447

AI techniques to software engi-
neering (AISE) 3329

AI, distributed (DAI) 132
AI, parallel (PAI) 128
AI-based systems 442
artificial neural networks (ANNs)

192
ANN-based models 192
artistic performance support tech-

nology 2330
AS400 2411
ASCII 1749
ASCII files 2347
Asia-Pacific Economic Coopera-

tion (APEC) 1137, 1500
ASIUM 1278
assembly algorithm 3539
assimilation 1659, 1674
ASSIST 1155
association and sequence analysis

1759

Association of Southeast Asian
Nations (ASEAN) 1500

ASEAN Free Trade Area (AFTA)
1500

asynchronous beans 405
asynchronous inspector of

software artifacts (AISA)
1154

asynchronous JavaScript and
XML (AJAX) 391, 410

asynchronous processing 390
asynchronous serial interface

(ASI) 1234
asynchronous task 405
asynchronous task processing

403, 405
asynchronous transfer mode

(ATM) 3522
ATM block transfer (ABT) 3522
atomicity, consistency, isolation,

and durabiliity (ACID)
3164

attributes, accounted 487
attributes, confirmation of 491
attributes, detected 487
attributes, unaccounted 487
audio/video conferencing (AVC)

software 1394
aura location identifiers (ALIs)

3229
auras 3218, 3221, 3222, 3223,

3224, 3225, 3226, 3227,
3228, 3229, 3231, 3232,
3233, 3234, 3237, 3240,
3241

authorship analysis 1205
auto part distributor, summary of

2562
automation 3434
automata, mining 497
automate testing life-cycle meth-

odology (ATLM) 170
automated design assistance 3425
automated software testing 154
automated static 2692
automated testing 155
automatic addressing 1702
automatic test generation 3050
automating software tests 153
automation and metrics 3434
automation management 168
automation tool 160

 3

Index

automation, ease of 3438
automation, requirement-driven

model-based test 169
automatons 497, 498, 501, 502
autonomic behavior 391
autonomic computing 414
autonomous agent systems (AAS)

3102
AAS, cognitive informatics theo-

ries of 3111
AAS, computational intelligence

model of 3113
AAS, computational intelligence

theories of 3112
AAS, denotational mathematics

for 3109
autonomous behavior 1441
Aviation Industry CBT Commit-

tee, the (AICC) 863

B
backlink function 865
backward signaling 3540
bagging 195, 210
balance sheet 698
base-level model 195, 198, 202,

210
batch processes 3408, 3409,

3410, 3412, 3416, 3417,
3419, 3423

Bayesian belief networks (BBN)
193, 210, 2867

BBN-based models 193
Bayesian network trust models

2858
Bayesian reputation systems

2850
bazaar style 976
BCP, input/output interface for

3529
behavior modeling (BM) 689,

1533, 1535, 1541, 2230
BM training, key elements 2235
BM, asynchronous (ABM) 1538,

1539, 1540, 1541, 1542,
1543, 1544, 1545

BM, F2F (FBM) 1538, 1539,
1540, 1541, 1542, 1543,
1544, 1545, 2237

BM, online 2230, 2233
BM, online procedures 2237

BMC Software 169
behavior preservation 3471
belief 748
belief assignments, basic 219
belief functions 219
belief mass, basic (BBM) 196,

197, 198, 199, 203, 204,
205, 206, 208, 209, 219,
221

belief model, transferable (TBM)
199, 220

belief net 193
belief theory models 2852
benchmarking 3489, 3490, 3491,

3492, 3493, 3494, 3495,
3497, 3498, 3499, 3500,
3501, 3502, 3503, 3504,
3505, 3507, 3510, 3511,
3512, 3513, 3514, 3515,
3516, 3517, 3518

benchmark suites 3493, 3494,
3495, 3497, 3505, 3506,
3507, 3512, 3514, 3517

benchmark suites, desirable prop-
erties of 3493

benchmarking activities, software
evaluation in 3492

benchmarking actors 3498
benchmarking methodology

3489, 3498, 3499, 3502,
3512, 3517

benchmarking process 3498
benchmarking, organizing 3503
beta-program 154
bidding pattern 2265
BioDiscovery GeneSight® 1755,

1759
biometrics 3262, 3265
black box testing 2141
Blackberry 2591
Blackboard Architectures 1442
Blackboard® 732–733
black-box models 193
blank lines 2869
blog component 845
BloggingEnglish 3204
BluePages 399
booking pattern 779, 780
Boolean discriminant functions

2716
Boolean expressions 1334, 1344
Boolean expressions, mining 497

Boolean functions 3153
Boolean functions, realization of

3153
Boolean search 1746
boundary class 697
branch count 2869
Brazilian System for the Digital

Television (SBTVD) 2308
British Broadcasting Corporation

(BBC) 1237
broadband file transfer applica-

tions 964
broker pattern 779, 780, 782,

783, 784, 786, 787, 789,
792

BRS approach 1047
budget increase 925
bugs (computer science) 165, 168
bug fixes 3001
bug fixing practices 1079
bug fixing process 1087
bug tracking 165
bug-tracking systems (BTSs)

1200, 1214
BugZilla 1214
build management 295
build process 2693
Bunge, Mario 508, 509, 510, 511,

512, 513, 515, 516, 525,
526, 527

burst control packet (BCP) 3525
business acquisition, new 2597
business architecture document

2525
business artifacts 2518, 2523
business blueprint 1793
business challenges 620
business driver 2412
business glossary 2523
business grid 405
business grid computing 405
business intelligence (BI) 438,

442
BI analytics 1915
business modeling 1915, 2517,

2518, 2523, 2613
business model elements 2610
business modeling discipline

2516
business object model 2522,

2523, 2524
business plan (BP) 2514

4

Index

business processes 1290, 2361,
2376, 2378

business process execution lan-
guage (BPEL) 3119

business process execution
language for Web services
(BPEL4WS) 690

business process management
1479, 1490, 1494, 1496

business process modeling nota-
tion (BPMN) 2729

business process reengineering
(BPR) 442

business risks 2397
business risks, low 2397
business rule templates 1052
business rules 2518
business rules group (BRG) 1045
business rules modeling 1044
business rules on conceptual mod-

eling (BROCOM) 1045
business rules typology 1050
business rules, examples of 2519
business rules-driven object

oriented design (BROOD)
1043

BROOD approach 1048
BROOD business rules modifier

1067
BROOD metamodel 1049
BROOD model editor 1065
BROOD process 1054
BROOD support tool 1064
BROOD tool 1065
business software 2584
business software integration

2592
business to business (B2B) 1479,

1482, 2565
B2B service provider 2895
business to consumer (B2C) 2565
business to employee (B2E) 2404
business undergraduate students

1398
business use case model 2519,

2520, 2521
business vision 2525
buyer coalition formation 1462,

1477

C
C4.5 algorithm 202
caching strategies 390
caching, data 400
caching, database-driven 397
caching, dynamic lightweight

directory access protocol
(LDAP) 401

caching, high-availability applica-
tion layer 397

CALL 1419
Canadian Engineering Accredita-

tion Board (CEAB) 1955
capability maturity model (CMM)

64, 995, 2427, 2514
CMM implementation 2434
CMM integration (CMMI) 2442,

2451, 2452, 2455, 2456,
2459, 2460

CMM process 2434
capability maturity model integra-

tion (CMMI) 1022, 2647
CMMI basics 1024
CMMI constellation approach

1026
CMMI integration perspective

1024
CMMI model 2649
CMMI process categories 1030
CMMI structure 1025
CMMI2sm 2083–2101
capacity and availability manage-

ment (CAM) 1030
capstone project 1557
Capterra’s methodology 2139
capture/playback tools 161
Carsid joint venture 2274
CART 192, 470
CART-LAD 192
CART-LS 192
cascading style sheets (CSS)

1236
CASE tools 1358, 1359
CASE tools 2156
CASE/AMD tools 1359, 1373
case-based reasoning (CBR) 192,

442, 2867
CBR models 192
cathedral style 976
causal analysis and resolution

(CAR) 1027

cause-effect models 1436
CELEBRATE project 2055
centralization 1839, 1840, 1841,

1842, 1843, 1844, 1845
Centre de Recherche et

d’Applications en Traite-
ment de l’Image et du
Signal (CREATIS) 1184

CERN 111
CERT Coordination Center

(CERT/CC©) 465
certified financial planner (CFP)

685, 698
certified in production and inven-

tory management (CPIM)
1800

certified software development
professional (CSDP) 1953

chain of values 2264
chain reaction pattern 563
chaining, backward 194
chaining, forward 194
change management (CM) 2513,

2514
channel optimization 2584
channel optimization challenge

2585
channel reservation schemes

3526
chat programs 1396
chromosome encoding 490
Cisco IOS 462
CISE 3329
claim processing 2597
class diagram 697
class diagram, ontology extraction

from 1255
class hierarchies, aggregated 556
class templates 547
class variable 2868
classification trees 192, 211
Clementine (data mining soft-

ware) 471
client applications (CAs) 3370
client participation 1772
client/server models 3398
client-server system 3131
climate data, nonspatial 1436
closed data standards (CDS)

1658
closed system, abstract model of

3078

 5

Index

closed systems, algebraic rela-
tions of 3084

closed systems, mathematical
model of 3078

cluster analysis 1754
cluster sampling 2868
C-Majeur, screenshot 1238
CMS 2049
COBOL (computer language)

615
code annotation 248
code extraction 384
code inspection 247
code smell 252
code-coverage analyzers 164
code-instrumentors tools 164
cognitive activities 912
cognitive capital 107
cognitive informatics (CI) 911,

3268
cognitive informatics reference

model 3102
cohesion 3441
cohesion principles 720–721,

726, 728–732
collaborate software inspection

1153
collaboration 3183
collaboration services 1709
collaborative activities, evolution

towards 3004
collaborative agents 1441
collaborative software 2194,

2220
collaborative software design

1642
collaborative software design,

requirements gathering in
1642

collaborative work platform 2991
collocated teams 2117, 2119,

2120, 2121, 2127, 2128,
2131

Colombian software industry
3309

coloured Petri nets (CPN) 3174,
3361, 3362, 3365

CPN design 3363, 3367, 3369
CPN developer 3367, 3369
CPN, hierarchical (HCPN) 3363,

3367

CPN modeling 3363, 3367, 3368,
3372

CPN transitions 3375
commercial-off-the-shelf (COTS)

middleware 1288
common object request broker ar-

chitecture (CORBA) 380,
1281, 1283, 1289, 1292,
1308, 1309

common schema 889
CommonKADS 866
communication channels 2168
communication networks 107
communication tools 2082–2101
communitarianism 16, 21
communities of practice (CoPs)

857, 1701
compare suite 1164, 1167, 1168,

1169, 1181
compatibility function 3164
competency management (CM)

2391, 2399, 2408
CM management systems 2394
CM process 2391
CM strategy 2392, 2396, 2407
competition, enhanced 72
competitive intelligence 448
competitive intelligence tools

444
competitive worldview 798, 799
competitive worldview, male-

dominated 799
competitivity 2278
complex decision-making, orga-

nizing 116
complex domains, key challenges

3406
complex software systems 835,

841
complexity pyramid 995
Component Factory (CF) 859
component framework evolution

1296
component frameworks 1281,

1282, 1283, 1284, 1288,
1289, 1290, 1291, 1292,
1295, 1296, 1305

component middleware 1283,
1289, 1292, 1305, 1306,
1308, 1311

component middleware, future
research 1306

component model 596
component object model/distrib-

uted component object
model (COM/DCOM) 380

component recovery 3385
component repositories 1116
component survivability models

3386
component test 3386
component-based embedded auto-

mation and control system
3370

component-based software devel-
opment (CBD) 588, 589,
590, 591, 592, 596, 882

component-based software engi-
neering (CBSE) 1113

composing mixed objects 574
CompositeVisitor pattern 535
composition analysis framework

3118, 3120, 3125, 3126
composition analysis framework,

architecture of 3125
composition analysis problem

3127
comprehensive strategy 2393
computation tree logic (CTL)

3373
computed tomography (CT) 1187
computer aided software engi-

neering (CASE) 1285
computer ethics 2818, 2827
computer game paradigm 1375
computer games 1375, 1376,

1381
computer hardware 1336
computer science (CS) 1550,

1953
computer simulations 2381
computer-aided software engi-

neering (CASE) 1557
computer-based information sys-

tems 687
computer-mediated communica-

tions (CMC) 2117, 2119
computer-supported cooperative

work (CSCW) 448
concept algebra 3055

6

Index

concept networks, abstract 3072
concept networks, concrete 3071
concept networks, hierarchical

models of 3070
concepts, abstract, mathematical

model of 3056
concepts, compositional opera-

tions of 3062
concepts, relational operations of

3061
conceptual model 889
conceptual model-driven software

development (CMDSD)
611, 612, 625

concurrency control 295
confidence in results 202
confidence measure 191, 196,

207, 208, 210
configuration 3124, 3138
configurable parameters 3123,

3124, 3125, 3126, 3128,
3131, 3135, 3137, 3138,
3139

configuration audits 294, 304
configuration control
configuration identification
configuration item 1004
configuration management (CM)

1004, 1027, 1285, 1286,
2361, 2364, 2366, 2372,
3405

configuration representation,
genes and individuals for
3128

configuration status accounting
confirmatory factor analysis

(CFA) 2253, 2254
conflict management style 2203
confusion matrix, the, definition

of 2875
consistency 3164
constellation approach 1026
constellation based maturity lev-

els 1033
constraint checking 3400, 3404
constraint diagram (CD) 638
constraint satisfaction problems

3410, 3411, 3424
constraint solver guided software

reuse 3425
constraint solver integration 3419

constraint solver, associating
modeling actions 3412

constructing models, empirical
approach 2867

constructing models, machine
learning approach 2867

constructive cost model (COCO-
MO) 1363, 1374

COCOMO I 2867
COCOMO II 2867
constructivist learning theory

886, 911
constructivist learning, software

development 910
content delivery subsystem 1512
content management 1704
content personalization 1509
content storage 1512
CONTENTdm (digital media

management software
suite) 1746

contention detection 3538
contention resolution 3532
contention-time (CT) 3536
content-management systems

(CMSs) 438, 441
context templates 878
contextual information services

(CIS) 3226
contextual knowledge 860
contextual variables 2483
contextualized storytelling 1704
continuous integration (CI) 296,

299, 305, 2696
contribution link 750
control classes 697
control packet processing unit

3529
control theory 2120
controller classes 698
conventional database system

3161
cooperation 2082–2101
cooperative adaptation 858
cooperativity 2277
co-optation pattern 2266
coordinability 2277
coordination 2081–2101
coordination contract method

1047
coordination models 685
coordination of processes 1084

coordination theory application
1087

co-production 1915
copyleft 2980, 2984, 2989
copyleft 42, 50
copyright 2841
CORBA component model

(CCM) 1283, 1289, 1290,
1292, 1293, 1310

CORD 1155
core agile practices 997
core node 3536
core templates 878
corrective software maintenance

190
correctness 3282
cost challenges 619
cost estimation 173
cost reduction 926, 2689
cost-benefit decisions 997
cost-efficient software products,

data collection for 1142
cost-efficient software products,

mapping of with knowl-
edge processes 1143

costing aspects 1358, 1361, 1366
costing outputs 1370
COTS integration 1655
countermeasure analysis 758
coupling 2652, 3441
coupling principles 720–721,

726, 728
course content, continuous devel-

opment of 2006
course delivery 1418
course Web content manager

subsystem 1415
course Web page renderer 1416
courseware 1423
courseware development 1404
covert end user development 738
Creative Commons (CC), The

2057, 2978–2990
CC licenses 2049, 2981, 2983,

2989
CC licensing model 2978
CC, inception of 2981
credibility metrics 2868
credibility processes 2867
critical success factors 1360
cross validation 2867, 2868,

2878, 2879

 7

Index

cross-case analysis 1391
crossover operator 3131
cultural diversity 2493
cultural diversity challenges 2493
curriculum diversity, student body

influence on 2000
custom applications, development

of 3004
customer and user involvement

(CUI) 1906, 1908, 1915
customer relationship manage-

ment (CRM) 1915, 2515
CRM process 2515
customers’ lock-in 77
customization 1783, 1797
CVSAnalY tool 1200, 1208
cyber attacks 3382
cybercollaboratories 1642
cybernetics 107
cyclomatic complexity 2869

D
DAML-S 1472
data access type 3164
data analysis 2292
data burst assembly 3529
data burst size 3532
data collection 1091, 2291, 3011
data collection, for cost-efficient

software products 1142
data controller 3372
data converter 3371
data converter flow 3375
data envelopment analysis (DEA)

2963
data extraction 2657
data flow 2155
data flow diagram 1359
data input 156, 158
data management 331, 1409
data mining 1759
data mining software 468
data mining software alternatives

469
data mining software, comparison

and analysis 467
data mining technology 484
data mining, tool selection in

2873
data models 189, 191, 192, 193,

200, 202, 207, 216

data models, base-level 202
data partitions 3000
data pre-processing 2871
data segments 3535
data semantics 1322
data source 393
data sources, identification of and

retrieval 1200
data standards 1657, 1674
data, defect 2869
data, treatment and storage 1211
database management systems

3161
data-collection process 3012
datasets 189, 191, 193, 198, 200,

213, 217, 2865, 3010
datasets, defect, “Nasty” experi-

ments 2869
datasets, defect, “Nice” experi-

ments 2869
Debian GNU/Linux 803
Debian maintainers 1872
Debian Popularity Contest 1870
Debian Women project, The 803
Debian-women 800
decision analysis and resolution

(DAR) 1027
decision rules 1021, 2867
decision rule for investment 1013
decision support systems (DSSs)

687, 705, 1434
decision tools 470, 2549
decision tree learners 2867, 2873
decision trees 191, 195, 202, 212,

213, 216, 217, 2867
decision trees as data models 216
decision trees, evolutionary-based

construction of 216
decomposition link 750
dedicated resources 413
defect (see also bug) 153, 156,

163, 164, 165, 190, 191,
192, 200, 201, 204, 210,
861, 2867, 2869, 2870,
2871, 2875, 2881

defect classification scheme 247
defect detection 2688
defect elimination efforts 190
defect management systems

(DMS) 246, 892
defect prediction 2867
defect prediction model 2878

defect removal process 190
defect tracking 165
defective computer systems 2867
defects, elimination of 202
delegation 2476, 2482
delegation construct structure

2483
Dempster’s combination rule

198, 220
denotational mathematics, para-

digms of 3110
Department of Defense (DoD)

3382
dependency 748
dependency analysis 3448
dependency vulnerability analysis

756
dependent variables 2204
derived works 43
description on demand 864
descriptive markup 180, 181,

182, 184, 185, 186
design decisions 1285
design diagrams 1250, 1251,

1253, 1263, 1273, 1274,
1275

design flaw 252
design patterns 546, 773, 775,

776, 777, 791, 793, 794,
795, 889, 895, 2320

design quality assessment models
2655

design rules, capturing 3424
design size 2652
design view, women-centered

800
detected attributes 487
detected attributes, modification

score for 489
detection methodologies 459
detection strategies 2661
determined cardinality references

1330
determined data semantics 1330
deterministic workload 369, 372
developing countries 1926, 1933
developing nations 1628–1640
development fundamentals 2381
development process areas 1029
development software life cycle

(DSLC) 1557

8

Index

dexterity 3276
DFD, hierarchical 1365
didactic augmentation 858
digital depository, durable 1747
digital divide 95, 100
digital economy 1577
digital imaging and communica-

tions in medicine (DI-
COM) 1182

DICOM application, and informa-
tion models 1185

DICOM file format 1187
DICOM, collected data fields

1190
DICOM, theoretical background

1185
DICOMDIR file format 1188
DICOMDIR file reader, imple-

mentation 1189
digital libraries (DL) 1742, 1749
DL extension service (DLXS)

1746
DL materials 1743
DL software 1742, 1746
DL structure 1742
DL text pagination 1744
digital literacy 1559, 1865
digital logic design 1336
digital rights management (DRM)

2055
digital stored value card 760
digital storytelling association

(DSA) 1703
digital storytelling cookbook

and travelling companion
(DSC) 1707

digital storytelling, adaptive
(adaptive DST) 1705

digital video broadcasting (DVB)
1234

dis-centralised administrative
system 986

discoverability 720
discretionary enhancements 2399
discriminated languages online

799
distributed application spanning

multiple organizations
3383

distributed learning, advanced
(ADL) 863, 864

distributed software development
1081

distribution channel 2586
document engineering 181, 186
Doi Moi policy 1499
domain experts 1123
domain model 1281, 1283, 1284,

1289, 1290, 1294, 1296,
1299, 1300, 1301, 1302,
1303, 1310

domain model evolution tech-
niques 1299

domain modeling 1004
domain requirement 753
domain scoping 885
domain-based model organization

1006
domain-independent modeling

languages 3402
domain-specific modeling (DSM)

330, 352, 353, 354, 357,
359, 1286, 1288, 1290,
1306, 1308, 1310, 1312,
3402, 3425, 3429, 3471

DSM, emerging interest in 1306
DSM languages (DSMLs) 330,

1282, 1283, 1284, 1288,
1289, 1290, 1292, 1293,
1294, 1295, 1296, 1297,
1299, 1300, 1303, 1305,
3400, 3402, 3403

DSML evolution 1297
dot-com crash, the 2566
.NET platform 385
double maintenance 298
Dramatica 1705
DRE systems, component middle-

ware for 1306
DRE systems, future research

1306
DRE systems, MDE tools for

1306
DRM framework 2047
DSpace 1747
DSS approach 1045
DSS, “WaterWare” 1435
DSS, NELUP 1435
DSS, spatial 1434
DTD 1330
DTD graphs 1313, 1331

DTD graphs, extended 1313,
1315, 1319, 1330

DTD graphs, extended, applica-
tion of 1319

Dublin Core Metadata Initiative
(DCMI) 864

Dublin Core Metadata Element
Set 864

durability 863, 3164
DVB-Java (DVB-J) 1236
dynamic enterprise model (DEM)

145
dynamic infrastructure 415
dynamic sensitivity analysis 478
dynamic survivability model

3387
dynamic table data cache 398
dynamically revising learning

plans 1354
Dynapi 1100

E
E2e TM Suite (Red Prairie) 2552
earnings per share (EPS) 1920
ease-of-use 3282, 3419
e-business 2391
e-business context 2392
e-business transformation 2394
E-CHO 2049
Eclipse Public License (EPL) 43
EclipseWiki 865
e-commerce 483, 486, 493
e-commerce, and intelligent soft-

ware agents 1446–1451,
1452–1457

economic regulation 77
e-democracy 117
e-democracy, applications of 112
e-democracy, concept of 112
e-democracy, limitations of 112
e-democracy, social software

perspective 109
edge node 3537
educational technology 709
educational theory 708
educational theory into practice

software (ETIPS) 708,
710

e-entrepreneurship 2564, 2565,
2567

efficiency 691, 926

 9

Index

effort estimation 172, 173
effort estimation data 2869
EFL, blended courses using social

software 3199
Egyptian software firms 2614
e-health 1629, 1631, 1632, 1636,

1637, 1638, 1639
elaboration 2311, 2314, 2320
e-learning 1423, 2047, 2065,

2066, 2069, 2074, 2075,
2397

e-learning management systems
platforms 1409

e-learning software 1381
electronic bottlenecks 3520
electronic program guide (EPG)

1237
embassy pattern 782
embedded constraint language

(ECL) 1302, 1303, 1304,
1305

embedded module 3370
embedded module, internal archi-

tecture 3371
embedded module, software

components infrastructure
3371

empirical reality 3436
empirical studies 3433, 3434
employee life cycle domain 2393
employee self service (ESS) 2398
employee-facing relations 2393
encapsulate field (EF) 3433,

3438, 3448
encapsulation 723, 2652
encryption 1396
end users 736, 739, 740, 741
end user content augmentation

1246
end user development (EUD)

736, 737, 738, 739, 741,
2346

end users, empowerment of 427
endogenous development 975
Engineering Accreditation Com-

mission (EAC) 1957,
1977

Engineers Australia (EA) 1955
English as a foreign language

(EFL) 3199

ensemble-based prediction sys-
tems 190, 191, 197, 198,
200, 207, 208, 210, 213

ensemble-based systems 191,
193, 195, 202

Enterprise 2.0 3186
enterprise information 1804
enterprise information portals

(EIPs) 445, 448
enterprise miner 471
enterprise resource planning

(ERP) 1780, 1797, 1799,
2391, 2400, 2583

ERP implementation issues 1782
ERP implementation, business

case for 1788
ERP software 1786, 1804
ERP software in a firm 1784
ERP software, SAP company

1786
ERP systems 993
ERP, cost of 1782
ERP, TCO of 1782
enterprise resource systems

software implementation
1780, 1780–1797

enterprise service buses (ESBs)
943, 965, 966, 968

enterprise software, teaching
operations management
1798

enterprise systems 1797
enterprise-wide system (ES)

1799
entity classes 697
entity relationship diagrams 2155
entrepreneurship 2565, 2567
environment management (EM)

3223, 3224, 3225, 3226,
3227, 3229, 3235, 3236,
3241

environment manager binding
protocol (EMBP) 3229

environmental artifact 1260
episodic knowledge 1710
episodic knowledge, re-contextu-

alization of 1710
EQAL case study 1302
EQAL MDE tool 1292
equivocality 1643, 1655
e-recruiting 2397

ESB applications, transformation
rules for 961

e-service applications, next gen-
eration network infrastruc-
ture for 3519

essential complexity 2869
ethnography 803
ETIPS case method 710
Euclidean Distance 2872
EUN’s Learning Resources Ex-

change 2047
European Patent Convention

(EPC) 2841
European Patent Office (EPO)

2841
European Schoolnet (EUN) 2046,

2047, 2054
European Telecommunications

Standards Institute (ETSI)
1234

evaluation process 281
event QoS aspect language

(EQAL) 1291, 1292,
1293, 1294, 1296, 1297,
1299, 1302, 1303, 1305

evidence theory 190, 191, 195,
196, 207, 210, 213, 219

evidence theory, basics of 219
evolutionary algorithms (EAs)

214, 3127, 3141
evolutionary computing 214
evolvable software evolution

1047
exclusive patterns 2535
executable domain models 1009
execution teams and team leaders

2512
eXist 1747
expectation management 2166
expectation-maximization (EM)

2723
Experience Factory (EF) 838,

843, 859
experience management (EM)

838, 859, 862
expert choice, procedure of 476,

2554
expert systems 448
expertise location 416
explicit asset 804
exploits 456, 465
export presences 2522

10

Index

extended classroom 1397
extended organization-specific

process model 2537
extendibility 3282
extensibility 720
external authoring interface (EAI)

3364, 3370
external metrics 175, 179
external metrics, product 174
externalization 439, 2533
extract method 3456
extraction of IF-THEN rules 189
extreme programming (XP) 244,

841

F
F/OSSD 597, 598, 599, 600, 601,

602, 603, 604, 605, 606,
607, 608

face to face (F2F) situation 1533,
1534, 1535, 1536, 1537,
1538, 1539, 1540, 1541,
1544

face-to-face (F2F) groups 2212
faculty perspective 1400
fallibility-tolerance 2278
far transfer, delayed (DFT) 2236
far transfer, immediate (IFT)

2236
fault 192, 193
fault-prone (FP) 2715
FCRB field 3535
FCRB for congestion control

3540
Fedora Linux 3 OS community

2049
feminism 798, 803
fetchmail 26
Feynman (OS software) 2056
fiber delay lines (FDLs) 3522,

3532
file discrimination 1202
file protocol specification 497
file sharing, and protection 3393
filtering 2299
finances (FI) process 2515
Finnish Centre for Open Source

Software (COSS) 2052
firewalls 453, 456, 3398
firm deadline 3164
first fit unscheduled channel

(FFUC) 3528

fitness function 214, 3152
flag field 3535
flat file 620
flexibility 72, 259
flood of information 835
flow charts 2155
flow control and reservation bits

(FCRB) 3535
focal element 219
focus group 803
folksonomies 104, 105, 107,

1704
foreign direct investment (FDI)

1498
foreign equity participation 996
foreign exchange trading 664
formal models, testing with 3041
formal models, testing without

3040
formal specifications, testing with

3048
formal specifications, testing

without 3044
for-profit organizations 27
forward signaling 3540
4cRuleBuilder 202
four-selected data mining soft-

ware 1750
four-selected software algorithms

1751
four-selected software, applica-

tions of 1753
fragmentation 465
fragmented market 2395
frame of discernment 219
free access to law movement, the

2803
free documentation license (FDL)

2985
free software (FS) 1584, 1815,

1817, 1820, 1849, 1857,
1859, 1926, 1933, 2569,
2884, 2893, 3294, 3295,
3296, 3297, 3298, 3304,
3305, 3306

FS Foundation (FSF) 2979, 2980
FS movement 1849
FS application development 980
FS as a political philosophy 15
FS development 975
FS philosophy 11–21

FS project management (FSPM)
977

Free Software Factory (FSF) 976
free/libre or open source software

(FLOSS) 1, 30, 85, 86,
87, 88, 89, 90, 91, 92, 93,
96, 97, 98, 99, 100, 797,
800, 801, 803, 1079, 1926,
1933, 2046, 2047, 2050,
2051, 2052, 2053, 2054,
2057, 2890, 2893

FLOSS development teams 1079
FLOSS development, coordina-

tion in 1086
FLOSS phenomenon 1082
FLOSS projects 1199
FLOSS social world 798
free/open source (F/OS) 66, 67,

68, 69, 70, 71, 72, 74, 75,
76, 79, 80, 81

FreeBSD 23
freeware 1820, 2049
frequency division multiplexing

(FDM) 3521
frequent patterns, mining 498
Freshmeat 23
Fujitsu 471
fullpliant 1423
function points 1374, 2867
functionality 60, 153, 154, 156,

157, 164, 179
functional-testing tools 161
fusion places 3166
Future Learning Environment 3

(FLE3) 2057
fuzzy clustering 193, 213
fuzzy logic 3143
fuzzy logic classifiers 3142
fuzzy models 704, 2852
fuzzy models, IT implementation

based on 2461
fuzzy multiplexers (fMUXs)

3142, 3144, 3145, 3146,
3147, 3148, 3149, 3150,
3151, 3154, 3157

fMUX networks, development of
3150

fMUX networks, genetic develop-
ment of 3151

fMUXs, network of 3147
fuzzy set theory, application of

2464

 11

Index

fuzzy sets 3143, 3149, 3150,
3158

fuzzy sets and logic 192
fuzzy-based models 192

G
game design, extrinsic and intrin-

sic 1385
game learning, extrinsic 1383
game model 1381
game model of gameplay and nar-

ratives 1380
game model of gameplay and

rules 1379
game-based language learning

1386
gameplay 1376, 1379
gameplay-oriented intrinsic game

learning 1384
gameplay-oriented learning 1381
games 1225
games, extrinsic 1383
games, intrinsic 1383
gaming, theoretical view of 1376
Gantt chart 1364, 1374
Gantt objects 1364
GAs, optimization using 491
Gcompris (OS software) 2056
gene mapping 3138
general design scenarios 3150
general public license (GPL) 21,

34, 42, 50, 803, 2049,
2339, 2345, 2600, 2836

generic abstract intelligence
model (GAIM) 1102, 3112

generic processing unit 3144
GenericQueueItem 404
genetic algorithms (GAs) 214,

493, 667, 3118, 3120,
3123, 3125, 3126, 3127,
3129, 3138, 3140, 3142,
3151, 3152, 3154, 3158

GA chromosome 216
GA for composition analysis

3129
GA outline 3126
GA-based decision support 3126
GAGP 202
genetic optimization 3142, 3144,

3151, 3152, 3154, 3157

genetic programming (GP) 215
GP optimization 217
GP population 217
genetic programs 2867
genetics 214
genotype representation 3152
genotypes 214
geographic information system

(GIS) 1578
geoprocessing software 1435
GET research projects administra-

tive management module
3000

Ghemical (OS software) 2056
GhostMiner 471
GIMP (OS software) 2051, 2056
global management 2514
global software development

(GSD) 2079–2101
GSD teams 2102–2114
global strategy (GS) 2514
globalization 2498
globally executable MHP (GEM)

1234
GlueTheos 1204
GMT Co. 2268
GNOME (graphical environment)

23, 1867, 1883, 1885,
1891, 1892, 1893, 1894,
1895, 1896, 1897, 1898,
1899, 1902, 1903, 1904

GNU license, 2048, 2052, 2057
GNU toolchain 23
goal dependency 748
goodness of rule 198, 202
Google 2592
Google’s Android Mobile Plat-

form 2592
governance goals 313
governance mechanisms 313
governance model 311
governance process 315
governance solutions 315
Grace (OS software) 2056
graceful degradation 391, 412
granularity 837, 885, 889, 891
graphic user interface (GUI) 103,

108, 3037, 3038, 3039,
3040, 3044, 3051, 3053

GUI testing 3037, 3038
GUI testing, methodology for

3037, 3040

GUI-testing tools 161, 163
graphical modeling framework

(GMF) 1124
graphical modeling language

2525
Greenstone DL Software 1747
grid characteristics/functionalities

930
grid computing 328, 329, 331,

332, 334, 359, 360, 363,
364, 930

gross domestic product (GDP)
1137

ground truth 3243
group heterogeneity 2211
group participation equity 2204
group polarization 2205
group productivity 2207
Groupe des Écoles des Télécom-

munications (GET) 2992
groupware 438, 441, 448

H
Halloween Documents, the 2341
Halstead static code measure

2720, 2869, 2870
Halstead difficulty 2870
Halstead error estimate 2870
Halstead intelligent content 2870
Halstead length 2870
Halstead level 2870
Halstead programming effort

2870
Halstead programming time 2870
Halstead volume 2870
handheld devices 2589
hands up indicator 1401
hardware operations tests 154
hardware-software system 103
HC market applications 2397
HCI models 2312, 2318
HCI theory 2309
HCPN-based modeling 3165
health information systems (HIS)

1629
healthcare 1609, 1611, 1613,

1615, 1626, 1627, 1640
Healthcare Information and Man-

agement Systems Society
(HIMSS) 1613, 1625

hegemony 803

12

Index

Henderson-Sellers Metrics 2652
heuristics 2656, 2660, 3431,

3449
heuristic evaluation 2314
heuristic evaluation approach

2314
heuristics, summary of 3449
hierarchical clustering 1755
hierarchical coloured Petri net

(HCPN) 3162, 3165,
3169, 3177

hierarchical contracting pattern
2265

hierarchical data 3265
hierarchical structure 1202
hierarchies 2652
high benefits 2397
high performance Web applica-

tions 393
high performance Web applica-

tions, approaches to build-
ing 389

higher education, teaching and
learning 1394

HighJump (SCM system) 2550
HIVE data store 611, 620
host-based defenses 453
HTML, dynamic (DHTML) 410
human capital (HC) paradigm

2392
human culture 2157
human engineering 475
human factors 2157
human factors, challenge of 2155
human factors, organizational

change and 2154
human machine interface (HMI)

475
human resources (HR) 1868,

2515
HR management (HRM) 1875,

2391, 2392
HRM, IS/IT 2503
HR practices 2392
HR process 2515
HR strategies 2494
HRMS, worldwide 2409
human transcription 1701
human-based estimation 2867
human-centered systems 835
human-computer interaction

(HCI) 41, 2307

human-engineered systems 834
hybrid model 3387
hybrid trading system 670
HyperCode 1155
Hyperion Digital Media Archive

1747
hypermedia network 891
hypermedia novel (Hymn) 1706
hyperservices 611, 631
hypertext 878

I
i* agent 744
IBM-Intelligent Miner 472
ICICLE 1152
ICT company study, research

process 2290
IDA OS migration guidelines

1565
IDEA method, the 1046
IDREF type attributes 1321,

1322
IDS, challenges to 458, 461
IDS, current examples of 461
IDS, deployment strategies 459,

460
IDS, detection methodologies

459
IDS, lightweight 466
iDTV, current model of 1239
iDTV, definition of 1239
iDTV, future of 1239
iDTV, proposed agenda for 1247
iDTV, software graphics architec-

tures 1233
IEEE Digital Library 2656
IEEE, Learning Technology Stan-

dards Committee (IEEE
LTSC) 863

IF-THEN models, development
and validation of 197

IF-THEN rules 189, 191, 193,
194, 195, 196, 199, 202,
206, 207, 216

IF-THEN rules, concept of 196
IF-THEN rules, validation pro-

cess of 203
Ikea economics 1907
image, access 1743
image, archive 1743
image, working 1743

ImageJ (OS software) 2056
images 1743
IMMEX Software Development

Lab (UCLA) 712
implementation artifact 1253,

1255, 1257, 1259
implicit knowledge 859
IMS Global Learning Consortium

863, 864
IMS learning design 887
in-action reflection 2707
incident and request management

(IRM) 1030
incremental detection system 491
independent (non-class) variables

2868
India, agile outsourcing to 991
India, outsourcing to 993
Indian IT industry 992
Indian IT sector, analysis of 994
Indian software firms, strengths

of 995
Indian suppliers, problems experi-

enced by 997
individual learning 869
individual performance 2521
industrialization period 2
industry of prototypes 2
inference engine 191, 196, 197,

198
Infor (SCM system) 2550
information & communication

technologies (ICTs) 96,
97, 98, 99, 101

information agents 890, 1441
information and communications

technologies (ICT) 2046,
2051, 2052

information diffusion 72
information flood 869
information object description

(IOD) 1186
information overload 1509
information retrieval 1178, 1179,

1180
information retrieval (IR) 441
information server 611
information system life cycle

(ISLC) 1359
information systems 127, 1608,

1610, 1613, 1615, 1618,
1621, 1625, 2247

 13

Index

information systems modeling
764

information systems, experience-
based (EbIS) 862

information technology (IT)
1549, 1714, 2153, 2391

information warfare 3381
inheritance 720
inheritance, role of 3440
in-house applications 3002
in-house specific developments

3002
initial public offering (IPO) 1916
innovation adoption process,

conceptual framework for
1678

innovation support tools 443
input domain 156
input variation 159
input/output (I/O) interpreter

3371
Insight Image Management and

Delivery System 1747
Insightful Miner 472
Insightful-Insightful Miner 472
InspectA 1154
InspeQ 1153
instant messaging (IM) 108, 2652
instructional decisions 709
instructional design metamodel

890
instructional tutoring systems

(ITS) 890
intangible assets 816
intangible organizational assets

804, 807
integrated development environ-

ment 890
integrated model 1364
integrated models, usage of 1041
integrated product life cycle man-

agement 1022
integrated product life cycle man-

agement for software 1022
integrated project management

(IPM) 1027
integrated repository 1367
integration 709
intellectual capital (IC) 804, 805,

806, 807, 816

intellectual property (IP) 804,
805, 806, 807, 808, 811,
815, 816, 2568, 2583,
2599, 2813, 2814, 2815,
2816, 2818, 2819, 2823,
2825, 2826, 2827, 2834

intellectual property rights (IPRs)
78, 1921

intelligent agents 449
intelligent application 836
intelligent miners 472
intelligent software agents 1427,

1433, 1439
intelligent software agents, appli-

cations in focus 1426
intelligent software agents,

e-commerce and 1447–
1451, 1452–1457

intelligent system for electronic
marketplaces (ISEM)
1461, 1463, 1464, 1465,
1468, 1476

intelligent user preference detec-
tion, description of 487

intelligent user preference mining
486

intelligent user preference system,
implementation of 492

Intelware/AAS, autonomic behav-
ioral layer of 3107

Intelware/AAS, autonomous be-
havioral layer of 3107

Intelware/AAS, hierarchical be-
havioral model of 3105

Intelware/AAS, imperative behav-
ioral layer of 3105

Intelware/AAS, theoretical foun-
dations of 3109

interaction design 125, 127
interactive devices at home 1244
interactive digital television

(iDTV) 1233, 1239
interactive high definition (iHD)

1236
interactive television (iTV) 1233
interactivity 926, 996
interchange language 3502
interculture wiki pages 3201
interface agents 1441
interface definition language

(IDL) 382

interface-driven modeling 169
interfaces 329, 334, 335, 337,

339, 340, 345, 347, 350,
351, 356, 357, 359, 361,
362, 2364, 3404, 3420,
3421

internal metrics 174, 179
internal metrics, product 174
internalization 2532
International Semantic Web Con-

ference (ISWC) 3494
International Telecommunication

Union (ITU-T) 3522
Internet 868
Internet as collaboration platform

111
Internet as knowledge networks

110
Internet as political medium 111
Internet conferencing (IC) 1394
Internet organisation 2137
Internet protocol (IP) 1234,

3519–3521
Internet protocol television

(IPTV) 1244
Internet service providers (ISP)

108, 1399
Internet-based applications 103
Internet-based systems 108
interoperability 720, 863, 1458,

1462, 1465, 1468, 1469,
1473, 1475, 1590, 1669,
3489, 3490, 3493, 3502,
3503, 3504, 3507, 3509,
3510, 3511, 3512, 3513,
3516, 3517

interoperability considerations
1669

interoperable software 1557
interrelationships, dynamic 1806
intranets 438, 868
intranet-based systems 440
intrusion detection systems (IDSs)

456, 3391, 3393, 3398
investment allocation 1145
IP and WDM convergence 3521
IP right (IPR) 2835
IPPD addition 1027
Irish National Centre for Technol-

ogy in Education (NCTE)
2052

14

Index

IS, collaborative software in
2194

ISLC modeling, functional ap-
proach 1359

ISLC modeling, object-oriented
approach 1359

ISO 20000 1022, 1040
ISO 20000 basics 1037
ISO 20000 integration 1039
ISO 20000 processes 1037
ISO 9001 995
ISO 9241-11 125, 126, 127
ISO/IEC 20000 1022
ISP provider 1399
IT and management, methods and

tools of (MT-ITM) 2467
IT business value 1915
IT expenditure, “grow the busi-

ness” 2396, 2398, 2399
IT expenditure, “run the business”

2396
IT expenditure, “transform the

business” 2396
IT infrastructure 840, 2346, 2347,

2348, 2349, 2350, 2353,
2354, 2356, 2357

IT investment 2146
IT personnel, global 2494
IT portfolios 2396
IT strategy 1788
IT workforce, global 2493
iterative development 2695
IVA (learning management sys-

tem) 2049

J
J2ME 2592
Japan Bank for International Co-

operation (JBIC) 1499
Java 865
Java 2 platform Enterprise Edition

(J2EE) 385, 394, 405
Java 3D 3364, 3377
Java ArrayList 405
Java code 1127
Java frameworks 869
Java language 3364
Java media framework (JMF)

1225
Java programming language 720,

725–728, 733

Java virtual machine (JVM)
1224, 1235

JavaScript 3372
JavaScript language 3364
JavaScript templates 409
JMS application system 405
joint governance models 2187
joint venture 2272
joint venture pattern 2265, 2275
JPEG (image format) 1749
just-enough-time (JET) 3528

K
K desktop environment (KDE)

803
KC, SECI model of 2618
KDE (graphical environment) 23
KDE Edu (OS software) 2056
key informant method 1853
keyword tagging 1709
Kicq 1100
Klascement (educational portal)

2050
K-maps 1344
k-means algorithm 2715, 2722
K-nearest neighbor (KNN) algo-

rithm 2868, 2872
know-how 860
know-if860
knowledge acquisition (KA) 820,

2643
knowledge acquisition technol-

ogy, symbolic (SKAT)
1759

knowledge and learning manage-
ment (KLM) 837, 842

knowledge and software modeling
3055

knowledge application (KAP)
2644

knowledge assets 2392
knowledge base (KB) 868, 894
knowledge components 871
knowledge creation (KC) 2533,

2644
knowledge discovery 210
knowledge documentation (KD)

2643
knowledge elements 871
knowledge engineering 866
knowledge evolution 822

knowledge extraction 200, 202,
210

knowledge formalizing/storing
821

knowledge in action 3243
knowledge life cycle model 467,

817, 819
knowledge management (KM)

438, 850, 857, 858, 862,
868, 869, 870, 1714,
2084–2101, 2394, 2614

KM and organizational perfor-
mance 2616

KM in software engineering 2529
KM interrelationships 2630
KM management systems 2394
KM patterns 895
KM processes 2614, 2615, 2619,

2628
KM processes 846
KM processes, interrelationships

among 2617
KM software 438
KM software, categories of 445
KM systems 836, 845, 847, 848,

864, 875, 894, 895
KM theory 1700
KM theory, media-centric 1700
KM variables 2623
KM, generalised scalar state 2468
KM in SMEs 3245
knowledge manipulation, concept

algebra for 3070
knowledge map systems 443
knowledge methods (layer 4)

3250
knowledge modeling and descrip-

tion language (KMDL®)
2530, 2531

KMDL® for software engineering
(KMDL®-SE) 2533

KMDL® procedural model 2536,
2537

KMDL® v1.1, associations and
objects of 2532

KMDL®, theoretical foundation
of 2531

KMDL®-SE, analysis of poten-
tials 2534

KMDL®-SE, real-life application
of 2535

knowledge networks 110

 15

Index

knowledge pattern 895
knowledge portals 444, 449
knowledge processes approaches

(layer 1) 3247
knowledge processes in SMEs

(layer 2 and 3) 3248
knowledge processes, data collec-

tion for 1140
knowledge representation 186,

3258, 3267, 3268
knowledge sharing 1724
knowledge sharing, integrated

model of 1714
knowledge sharing, media-centric

1699
knowledge sharing, software

development 1714
knowledge sharing, Web 2.0

1703
knowledge software-support

(layer 5) 3251
knowledge taxonomy 2542
knowledge transfer (KT) 822,

1535, 1536, 1537, 2643
knowledge transfer, far (KFT)

1537, 1541, 1542, 1543,
1544, 1545

knowledge transfer, near (KNT)
1537, 1541, 1542, 1543,
1544, 1545

knowledge use 822
knowledge workers, globally

distributed 2500
knowledge workers, globally

distributed, issues for man-
aging 2493

knowledge, application domain
2253

knowledge, body of 1800
knowledge, declarative 859
knowledge, domain 1251, 1276
knowledge, explicit 2531
knowledge, flux of 868
knowledge, four key processes

1136
knowledge, group, explicit 1735
knowledge, group, tacit 1735
knowledge, individual, explicit

1735
knowledge, individual, tacit 1735
knowledge, loss of 868

knowledge, mathematical model
of 3070

knowledge, organizational 2429
knowledge, preliminary 912
knowledge, procedural 859
knowledge, project processes,

infrastructure, and support-
ing technologies (KPIT)
2467

knowledge, replication of 868
knowledge, six general classes

of 872
knowledge, tacit 859, 2531
knowledge-based approach

817–833
knowledge-based systems (KBSs)

859, 869
knowledge-communication 844
knowledge-creation 844
knowledge-discovery in databases

(KDD) 859
knowledge-intensive business

processes 2528, 2530
knowledge-representation 844
knowledge-usage 844
know-that860
know-what860
know-when860
know-where860
know-who860
know-why860
Kolb’s experiential learning circle

887
Komondor node 3395
Komondor system 3395
Konqueror (Web browser) 23
KooliPlone (content management

system) 2049

L
lack of cohesion of the methods

of a class (LCOM) metric
3441

language acquisition 3196–3214
language for patterns uniform

specification (LePUS) 638
language learning 1376, 1383,

1385, 3203
large scale retailers, summary of

2561
LAS architecture 1708

LAS architecture, simplified
1708

LAS for social software 1708
latency 1292, 1295
latest available unscheduled chan-

nel (LAUC) 3528
latest available void filling

(LAVF) 3528
layout object model (LayOM)

637
LDV Bates 2266
LDV Bates, organization of 2267
leader delegation framework

2477
leader delegation, occurrence and

effects of 2472
learner-learner communication

2707
learner-teacher communication

2707
learning activities 891, 912
learning activity tree 864
learning adjustment 1355
learning alignment 1356
learning by doing 2016
learning components 871, 882,

887, 889
learning content 888
learning cycles, multiple 1736
learning elements 871
learning goals 890
learning management (LM) 857,

858, 862, 868, 870
learning management systems

(LMSs) 732, 1417, 2047,
2048, 2049

learning methods 887
learning objectives 890, 891,

1805
learning objects (LOs) 719–735,

2055
learning organizations (LOs)

2427, 2428, 2434
learning plans 1346
learning plans, appropriate 1353
learning process 1718
learning processes 1345
learning resource exchange (LRE)

2054, 2055
learning software organization

(LSO) 859

16

Index

learning spaces 872, 884, 889,
890

learning theory, media-centric
1701

learning, gradient-based 3150
learning, inquiry-based 1648
learning, online 1534, 1535
learning, organizational 2430
learning, semi-supervised 3326
learning, supervised 3326
learning, unsupervised 3326
least absolute deviation (LAD)

192
least squares (LS) 192
legacy modernization 381
legacy systems, software modern-

ization of 380
legal environment 1584
legal information institutes (LIIs)

2805
lesson plan 1338
lessons learned systems (LLS)

862
library control system 2693
licences, acquirement of 2409
license 2811, 2989
license compatibility 2989
license compatibility table 2985
license selection 2985
licensing, software 2613
life-cycle scenarios 700, 701
lightweight application server

(LAS) 1708
line productivity 2521
linear temporal logic (LTL) 495,

496, 498, 499, 502
Linex 2050
link analysis (LA) 1759
link terms (LT) 1759
Linux 23, 26, 849, 1850, 1853,

1855, 1856, 1857, 1858,
1859, 1938, 2047, 2048,
2049, 2050, 2052, 2054,
2057, 2592

Linux, Red Hat 2608, 2610
LinuxChix 800
liquidity 699
live sequence charts (LSC) 495,

496, 498, 499, 500, 502
LMS market 2409
LMS, building 648–663
LMS, characteristics of 651

LO metadata (LOM) standard
863, 879, 889

LO repositories, digital 720, 732
load, performance, and stress test-

ing tools 164
local guidance 3408, 3409, 3410,

3412, 3416, 3417, 3419,
3421, 3422, 3423

local project team, structure of
937

localization 1590, 1701, 2498
localization, formalized 1701,

1702
localization, practiced 1701
lock-in 1669, 1674
logging 466
logic gate 1344
logic minimization 1344
logical consistency 3161, 3163
logical constraint 3173
logical space 892
LOGIC-Minimiser 1334, 1344
LOGIC-Minimiser, architecture

of 1336
LOGIC-Minimiser, structured

diagram of 1337
LOGIC-Minimiser, usefulness

and benefits of 1338
long-term goals 701
LOs, object-oriented 732–733
low-academic-achievement stu-

dents 2065, 2066
low-risk 3276
L-PEST model 1583
LSC, mining 499
LTL expressions, mining 498
ludology 1376, 1390
ludus rules 1377
LyX 2056

M
machine learning (ML) 466,

2865, 2867, 2868, 2874,
2879, 2880, 3325

machine learning models 2865
machine learning models, cred-

ibility assessment of 2865
machine learning-based models

2865
machine readability 260, 352
machine-readable data 615

MAFRA Toolkit 1461, 1465,
1466

magnetic image resonance (MRI)
1187

mailing lists archives, and forums
1212

maintainer 193
malicious codes 3381
malicious software (malware)

450, 452, 456
malware, self-replicating 451
manageability 720
management and support pro-

cesses 2514
management commitment 1783,

1797
management processes, methods

of supporting 2462
management skills, basic 2579
management structure 936
management techniques, inad-

equate 2380
manager self service (MSS) 2398
managing agent 1352
Manhattan Associates Integrated

Logistics Solutions 2551
manual tests 155
manufacturing database 1803
manufacturing execution system

(MES) 1799
manufacturing resource planning

(MRPII) 1799
many-to-many cardinality 1322
many-to-many relationships 1326
many-to-one cardinality 1321
mapping specification 2351
market and transactional basket

analysis 1759
marketing 2515
Markov chain model 3131
MAS, reputation in 2845
MAS, trust in 2846
MASE (wiki) 858, 865
Maslow’s hierarchy of needs 589,

590, 593, 596
master-slave pattern 644
matchmaker pattern 780, 781
material requirements planning

(MRP) 1799
mathematical structure 3076
maturity model 64, 2433

 17

Index

MBOX 1212
McGrath’s task circumplex 2201
means-ends link 750
measurement and analysis (MA)

1027
measurement reliability 2484
measurement validity 2484
measurers of performance (MOP)

3385
mechanical production 2325
MediaStore 1128
MediaStore architecture 1128
MediaStore service effect specifi-

cations 1129
mediation patterns 780
mediator pattern 780, 781
medical informatics 1610, 1622,

1626
medicine, perinatal 1634
Megaputer 473
Megaputer PolyAnalyst® 5.0

1759
Megaputer TextAnalyst 1171,

1181
Megaputer-PolyAnalyst 473
memory-leak detection tools 163
mentor 799
message sequence chart (MSC)

3167, 3170, 3175
message-driven beans (MDB)

405
messages notification 2399
metaclasses 2270
metacognition 710
metacommunication 2309
metadata 720, 845, 865, 878,

885, 1745, 1749
metadata elements 850
metadata standards 721
metadata, administrative 1745
metadata, automatically derivable

879
metadata, descriptive 1745
metadata, manually entered 879
metadata, structural 1745
metamodels 353, 355, 356, 1281,

1282, 1283, 1284, 1285,
1293, 1296, 1297, 1298,
1299, 1300, 1301, 1302,
1305, 1309, 1311, 2375,
3400, 3402, 3403, 3412,
3421, 3422, 3423, 3425

metamodels, access control 2779,
2780

metamorphic testing 2895
meta-object facility (MOF) 625
metric approach, goal question

2733
metric equations 2865
metrics data program (MDP)

2720
metrics reporting tools 164
microarray databases 1759
micro-didactical arrangement

(MDA) 256
Microsoft Business Solutions

Academic Alliance 1804
Microsoft mobile Internet toolkit

(MMIT) 1223
Microsoft SQL Server Desktop

Environment (MSDE) 650
middle-agents 1433
migrations, server-side 1657
Mind Your Own Business

(MYOB) (accounting soft-
ware) 2583

minimum burst length (MBL)
3537

Ministry of Education (MoE)
2047

Minterms 1344
mission-critical system 3382
mistake-avoidance techniques

2381
MIT License 43
mixer pattern 570
ML methods for VBSE 3333
ML methods, how to calibrate

3332
mobile agent 1441
mobile commerce (m-commerce)

486, 493
mobile controls 1221–1232
mobile platforms 2584, 2591
mobile programming 1221
mobile sales force application

2594
model checking 3369, 3373
model compiler 352, 355, 356,

357
model driven architecture (MDA)

529, 1308, 1311, 3428,
3429

model driven development
(MDD) 433

model driven engineering (MDE)
352

model for automated profile
specification 764

model for developing a market-
place with software agents
(MoDeMA) 1463

model parameters, tuning 2469
model quality 3469
model refactoring, state-of-the-art

3459
model refactorings, specifying

and analyzing 3476
model synchronization 3470
model view control (MVC) 390,

391
model-driven architecture (MDA)

612, 625
model-driven development

(MDD) 959, 1308, 3399,
3400, 3402, 3403, 3404,
3407, 3408, 3409, 3410,
3413, 3415, 3416, 3418,
3420, 3422, 3423, 3424,
3425

MDD framework 942
MDD framework, application

development 959
MDD framework, extensibility

965
MDD tool integration frameworks

3416
MDE tools, future research 1306
MDE-based PLA evolution 1294,

1299
model-driven engineering (MDE)

1280, 1282, 1283, 1284,
1285, 1287, 1288, 1290,
1291, 1292, 1293, 1294,
1299, 1305, 1306, 1307

model-driven performance 1112
model-driven software develop-

ment (MDSD) 612, 625
model-driven software engineer-

ing 3455
model-driven software product-

line architectures 1280
model-driven software refactoring

3455, 3455–3488, 3457

18

Index

model-driven software refactor-
ing, challenges in 3469

modeling assistance 3408
modeling guidance 3399, 3404,

3405, 3408, 3409
modeling languages 1374
modeling organizational patterns

2266
modeling technology, and in-

crease of quality 2731
modeling wizards 352, 353, 354,

355, 356, 357
modeling/designing 2156
modeling language 2776
models 861
models, integration of 3372
modification record 2987
modularity 61, 2278
module design complexity 2869
monitor pattern 780
monitoring growth 3445
monolithic culture 798
Moodle 732, 732–733
Moodle course management sys-

tem (survey program) 82
motivation factor 2163
move field 3438
movement oriented design

(MOD) 1707
Moving Picture Experts Group

(MPEG) 1234
Mozilla 1581
Mozilla Project 1821
MSS technology 2398
multi lingual information frame-

work (MLIF) 1243
multi-agent approach 817–833
multi-agent architectures 795,

1351
multi-agent learning 3326
multi-agent systems (MAS) 128,

195, 774, 1428, 1433,
2843, 2844, 2845, 2846,
2848, 2849, 2850, 2851,
2854, 2855, 2856, 2859,
2860, 2861, 2862

multi-agent systems (MASs)
multi-clock multi-processor

(MCMP) structure 3355
multicriteria analysis 1435
multi-disciplinary team 2512

multilevel analysis 3028
multimedia contents 1709
multimedia contents, authoring

of 1709
multimedia contents, exploration

of 1708
multimedia home platform (MHP)

1234
multimedia messaging service

(MMS) 1234
multimodal modeling 597
multi-objective evolutionary

algorithms (MOEA) 3127,
3141

multiple evaluators 281
multiplexers 3142, 3143, 3144,

3145, 3147, 3149, 3154,
3157

multipoint desktop conferencing
(MDC) systems 1394

multisite coordination 2289, 2298
multi-step patterns 2534
Munich knowledge-management

model 844
mutation 214
mutation operator 3131
MVC, client-side 391, 408, 410
MySQL 23
MySQL 2605, 2610

N
n models 2868
naïve Bayes classifier 2874
narrative-oriented intrinsic game

learning 1384
narrative-oriented learning 1382
narratives 1378
narratology 1376, 1378, 1390
n-ary relationships 1318, 1326
NASA datasets 2865, 2869
NASA defect repositories 2874
NASA metrics data program

(MDP) 2720, 2869
NASA-based defect data 2869
NASA-based defect repository

dataset 2868
Nasty Neighbor test set 2872
National Centre of Pedagogical

Documentation (SCÉRÉN-
CNDP) 2051

natural language processing 1181
natural selection 214
Naval Research Laboratories

(NRL) 200
navigation templates 878
navigational structures 875
n-classes 2868
near transfer (NT) 2236
nearest neighbor algorithm 2872
nearest neighbor approach 2865
nearest neighbor experiments

2871
nearest neighbor-based sampling

2879
nearest-neighbor sampling 2871
nested context language (NCL)

1240
nested iterations 1002
net worth 699
NetBSD 23
Netscape Public License (NPL)

43
network bandwidth savings 411
network effect 1672, 1674
network neutrality 105, 108
network-based defenses 453
network-based language teaching

(NBLT) 3196
network-interfaces issues 3149
network-interfaces issues, general

development environment
of 3149

network-testing tools 164
neural informatics 3268, 3270
neural network training 1755
neural networks 192, 211, 449,

2867, 3143, 3159
NeuralWare NeuralWorks Pre-

dict® 1755, 1759
Neurosolutions 1438
newbie 892
newly industrialized economies

(NIEs) 1500
n-fold cross validation 2867,

2868, 2879
Nice Neighbor test set 2872
Niku (SW tool) 2396
nimbleness 3275
node architecture 3528
nominal defect introduction rates

3332

 19

Index

non-class attributes 2868
non-class variable 2868
noneconomic motivations 106
non-government organization

(NGO) 96, 97, 98, 101,
1579

non-IT client activities 994
non-linear story 1710
nonmonolithic renderer 1245
non-restricted model 1015, 1017
non-restricted model, illustrative

example 1017
non-restricted reuse-costing

model 1021
normalised hamming distance

(NHD) 3442
not fault-prone (NFP) 2715
novice 887
NSGAII-CAA 3129

O
object chain example 566
object chain pattern 566
object chaining 566
object classifier, implementing

572
object composition, hierarchy by

560
object constraint language (OCL)

1047 2518, 2786
object design ontology layer

(ODOL) 531
object factory pattern 577
Object Management Group

(OMG) 1549, 2729
OMG software process engineer-

ing metamodel (SPEM)
1054, 1056

object model 2155
object orientation 721
object request brokers (ORBs)

690
object-classifier template 571
object-oriented (OO) 3432
OO software development pro-

cesses 2153
OO analysis and design (OOAD)

1760
OO languages 506, 510, 512,

514, 523
OO learning approach 733–734

OO programming objects 882
OO software engineering 719–

723, 725–728, 1760
OO design 2656
OO design maturity model 2647
OO metrics 2652
OO processes, perception of

2166
OO refactoring, heuristics and

metrics for 3430
OBS network functionality 3523
OBS networks for Ethernet 3534
OBS networks, flavors of 3534
OBS with fixed data burst length

3534
OBS with two-way setup 3534
OBS-QoS mechanisms 3530
obstetrics 1632
occurrence graph (OG) 3169,

3174
occurrence patterns 2534
ODRL (DRM standard) 2057
office automation 1658, 1674
office automation software 1668
official development assistance

(ODA) 1505
offset time 3528
off-shoring 2115, 2116, 2117,

2118, 2124, 2131, 2132
OG tool 3169
OKO (portal) 2050
Oldenburger Forschungs und

Entwicklungsinstitut für
Informatik-Werkzeuge und
Systeme (OFFIS) 1185

Olive ActivePaper (archive soft-
ware) 1747

OM course 1800
on field sales force 2584, 2588
one place publishing 864
online analytical processing

(OLAP) 449
online company 483
online course methodology 1418
online learning 1346
online learning system 1349
online learning, general frame-

work for 1347
online training modes 2232
online transaction processing

(OLTP) 443

onsite/offsite developers 1009
OntExtract extracts reasonable

ontology 1266
OntExtract, advantages of 1275
OntExtract, assessment 1265
OntExtract, elimination of imple-

mentation artifact 1256
OntExtract, evaluation 1265
OntExtract, implementation 1265
OntExtract, preserving environ-

mental artifact 1259
OntExtract, relevance for practice

1275
ontological sources, design dia-

grams as 1250
ontologies 188, 494, 506, 507,

508, 510, 511, 509, 511,
510, 512, 513, 515, 516,
526, 527, 845, 866, 875,
876, 889, 891

ontologies from Wikis (Wikitolo-
gies) 858

ontology development tools
3502, 3504, 3505, 3506,
3508, 3512, 3517

ontology diagram (OD) 1262
ontology engineers, recommenda-

tions for 3510
ontology extraction 1250, 1253,

1275, 1277
ontology learning 1251, 1276,

1277, 1278
ontology population 3513
ontology refinement 1261
ontology-based templates 851
OP hypotheses 2619
open access publishing 2986,

2989
open and closed systems, creation

of relations 3079
open and closed systems, relations

between 3086
open content 2047, 2989
open data standards (ODS) 1592,

1657
open source definition (OSD)

2601, 2980
Open Source Initiative (OSI) 17,

22, 1549, 1557, 2569,
2600, 2980

20

Index

open source software (OSS)
11–21, 22, 24, 26, 27, 29,
39–51, 82, 466, 597, 610,
865, 1148, 1306, 1557,
1592–1607, 1608, 1625,
1626, 1641, 1657, 1675,
1814, 1822, 1823, 1824,
1825, 1826, 1827, 1828,
1829, 1830, 1831, 1832,
1833, 1835, 1849, 1862,
1863, 1883, 1884, 1885,
1886, 1887, 1891, 1895,
1898, 1902, 1903, 1904,
1905, 1917, 1925, 1933,
1934, 1935, 1937, 1938,
1939, 1940, 1941, 1942,
1943, 1944, 1945, 1946,
1947, 2048, 2050, 2051,
2053, 2338, 2373, 2375,
2564, 2565, 2568, 2583,
2599, 2666, 2835, 2883,
2893

OS environment 2411
OS movement, the 82
OSS adoption 1675
OSS adoption in Hibernia Hospi-

tal 1684, 1686
OSS applications 2991
OSS assimilation, level of 1681
OSS business models 2599
OSS business, development of

2600
OSS business, revenue models in

2599
OSS business, special characteris-

tics of 2602
OSS collaboration tools 2994
OSS culture 2340, 2341, 2342,

2343
OSS deployment within Hibernia

Hospital 1692
OSS development 2671, 3008
OSS development communities

24, 25
OSS elements 2986
OSS evaluation of 52–65
OSS licensing 34, 2601, 2978,

2978–2990, 2983, 2989
OSS projects 3008
OSS reuse 899
OSS, benefits of using 1649

OSS, evaluation of migration
1657

OSS, future of 62
OSS, initial attitudes toward

1662
OSS, model of 2569
OSS, patchwork prototyping with

1641
OSS, Program for Open Standards

and (OSSOS) 2051
open standards 1558, 2047, 2051
open systems, abstract model of

3080
open systems, algebraic relations

of 3085
open systems, composition of

3093
open systems, mathematical

model of 3079
OpenBSD 23
openness, bi-directional 899
OpenOffice.org 1562, 1592–

1607, 2049, 2056
OpenRasmol (OS software) 2056
operations management (OM)

1798
optical add/drop multiplexers

(OADMs) 3523
optical burst switching (OBS)

3519, 3522, 3523
optical character recognition

(OCR) 441
optical character recognition

(OCR) software 1743,
1749

optical circuit switching (OCS)
3521

optical components 3522
optical packet switching (OPS)

3521, 3522
optical receivers/transmitters

3528
optical switching fabric 3529
optical switching paradigms 3521
optimization 665
Oracle 2551
Oracle data mining (ODM) 473,

474
Organisation for Economic Co-

operation and Develop-
ment (OECD) 1137

Organization for the Advance-
ment of Structured Infor-
mation Standards (OASIS)
1658

organization theory 2264
organizational change, human fac-

tors 2154
organizational innovation and

deployment (OID) 1027
organizational learning 869
organizational life cycle processes

1035
organizational modeling 2262
organizational modeling, patterns

for 2262
organizational patterns, partial

evaluation for 2280
organizational performance (OP)

2614, 2616
organizational policies 2258
organizational practice 2258
organizational process definition

(OPD) 1028
organizational process focus

(OPF) 1028
organizational process perfor-

mance (OPP) 1028
organizational service manage-

ment (OSM) 1030
organizational technology learn-

ing 2247, 2252
organizational training (OT) 1028
organizational units 2521, 2522
original component manufactur-

ing (OCM) 2607
outsourcing 1558
outsourcing, drivers for 993
outsourcing, international 1934,

1936, 1937, 1940, 1945
overlapping-time (OT) 3536
overlay network 3398

P
packaged goods industry 2586
packet 3535
Padova-Tulane exchange 3200
paid support 58
Paidea 1377
Paidea rules 1377
pair patterns 780
pair programming 242
Palladio component model 1111,

 21

Index

1111–1135, 1116
Palm operating system 2591
paper sketches 2318
parallel processing 1452
parallel work 296, 297
parameterization 2513
parameters, adapting 2469
Pareto-optimal configuration

3125
Pareto-optimal front 3127
Pareto-optimal solutions 3122,

3127
parse trees 215
partial least squares (PLS) method

2628
patchwork prototyping 1642,

1642–1656, 1655
patchwork prototyping, compari-

son 1651
patchwork prototyping, examples

of 1645
patchwork prototyping, general-

ized approach 1649
patchwork prototyping, limita-

tions 1652
patchwork prototyping, origins

of 1645
patchwork prototyping, OSS

1641
patchwork prototyping, strengths

1652
patent law protection 2832
pattern description language

(PDL) 531
pedagogic considerations 1397
pedagogical agents 890, 891
pedagogical information agent

890
pedagogy, case-based 709
peer-to-peer (P2P) model 3398
P2P network 1906
P2P production 1915
P2P communications 3391
P2P communications, importance

of 3391
P2P technology 3391
PENCIL project 2054
penetration testing 466
People-CMM process areas 2394
perceived ease of use (PEOU)

2236

perceived lack of credibility 2865
perceived usefulness (PU) 2236
performance analysis 3118, 3120,

3126, 3129, 3131, 3132,
3133, 3138

performance analysis example
3133

performance analysis, Markov
model for 3131

performance metrics 3165, 3173
performance prototype 1127
performance testing 157
person occurrence pattern 2538,

2539
personal assistant agent 1352
personal digital assistant (PDA)

1226, 1228, 1229, 1231,
1232, 1247, 2412

personal digital recording (PDR)
1234

personal learning environment
(PLE) 3206

personalization technologies 617
personalized preferred learning

plans 1352, 1353
personnel administration 2392
Petri nets 3166, 3362, 3377
Petri net kernel (PNK) 3377
Petri net model 3377
phenotypes 214
php Easy Survey Package

(phpESP) (survey pro-
gram) 82

PHP Surveyor (survey program)
82

phpGroupware, custom compo-
nents 3001

phpGroupware, development of
custom applications 3004

phpGroupware, low-level compo-
nents 3001

phpGroupware, virtual desktop
2996

Phpmyadmin 1102
PI models 2442
picture archiving and communica-

tion systems (PACS) 1183
Pingo 2049
planning agent 1352
planning game, the 297, 841
Platypus 866

pliant approach 1406
pliant approach overview 1406
pliant architecture 1407
pliant as a tool for consolidating

e-learning management
systems 1409

pliant e-learning capabilities
1408

pliant in teaching, usability 1414
pliant system 1419
pliant, e-learning capabilities

1408
pliant-based software tool 1404,

1404–1425
Plone 2049, 2057
pocket PC 1225, 1228, 1232
policy deployment (PD) 2514
political networks, building and

organizing 114, 116
PolyAnalyst® 5.0 473, 1754
polymorphism 451, 2652
pooling 393
portability 475
portable document format (PDF)

1744, 1749
portal application 2323
portals 438
portfolio management 2395,

2459
Portland Pattern Repository 865
potential development 2397
PowerPoint™ 1401
practice software 708
predictability 2277
prediction rate 197, 202, 205,

207, 208, 217
prediction systems 190, 196, 197,

198, 202, 207, 208, 209,
213

preference rules 2108
premium wage 2519, 2521, 2523
premium wage system 2519
prepaid phone card system 760
Preparing Tomorrow’s Teachers

to Use Technology (PT3)
711

preprocessing, retrieval and pars-
ing 1209

prerequisite pattern 2535
pricing challenges 619
primary life cycle processes 1035

22

Index

Primavera (SW tool) 2396
principle component analysis

(PCA) 2483
prior art 813, 814, 816
probability of a false alarm (PF)

2874
probability of detection (PD)

2874
probability of missing an alarm

(NF) 2874
problem management (PRM)

1030
problem solving, distributed

(DPS) 128
problem-based learning (PBL)

2064–2078
process and product quality assur-

ance (PPQA) 1028
process assessment 3310
process assessment model (PAM)

1024
process capability vs. organization

maturity 1025
process characteristics, effects of

3008
process fragment 2366, 2368
process improvement (PI) 2442
process innovation 3310
process integration 2412
process management top team

2512
process metrics, description of

3013
process modeling 598, 603, 604,

605, 608, 3173
process modeling language

(PML) 605, 606
process owner 2512
process patterns 2538
process patterns, identification of

2538
process reference model (PRM)

1024
process refinement 3310
process relation 2365
process relations, operational

semantics of 3351
process sponsor 2512
process tools 2083–2101
process-centered software

engineering environment
(PSEE) 2513

process-centred support environ-
ment (PSE) 2364, 2366,
2368, 2369, 2370, 2373

process-oriented organizations
2511, 2513

process-oriented organizations,
business modeling in 2510

process-oriented software houses,
reference framework for
2513

product brokering 494
product data management (PDM)

1785
product evaluation 2141
product integration (PI) 1029
product line architecture (PLA)

1281, 1282, 1283, 1284,
1285, 1286, 1288, 1289,
1290, 1291, 1292, 1294,
1295, 1296, 1299, 1303,
1305, 1306

product metrics 172, 2866
product metrics, description of

3014
production blocking 2204
production elaboration 1007
productivity 266
productivity paradigm change

1558
professional development 2587
professional groups 804
program comprehension 495,

496, 503
program instrumentation 503
program refactoring 3455, 3456
program testing 503
program traces 495, 500, 503
program verification 495, 496,

500, 503
programmer learning 910
programming activities 912
programming languages 1225,

1411
Project Alpha 1646
project aura 3221
Project Beta 1648
project completion, general ap-

proach 934
project control 2133
project dedicated Web sites 3000

project failures 2866
project implementation 2462
project management (PM) 993,

2121, 2128, 2132, 2379,
2462

PM tools 1358, 1358–1374, 1359
PM contexts 1414
PM integration (PMI) 1359
PM outputs, “classic” 1369
PM systems (PMS) 892
PM body of knowledge (PM-

BOK) 2442, 2452, 2453,
2460

PM in enterprises 2461
PM, agile (APM) 2442, 2443,

2451, 2452, 2456, 2457,
2458

PM, expert knowledge of 2462
project metrics 2866
project monitoring and control

(PMC) 1028
project performance 2252
project planning (PP) 1028
project preparation 1791
project team 804
project teams, description of

2463
projects, successful 2866
prolog knowledge bases 3420
PROMISE repository 2869
proprietary software (PS) 23, 78
ProSight 2396
prototype FiXplan 693
prototypes, high-fidelity 1642
prototypes, low-fidelity 1643
prototyping, paper 1643, 1655
prototyping, rapid 1642, 1643,

1655, 1655–1656
PS model 2568
public access 2811
public key infrastructure (PKI)

1467, 1468
public legal information 2804,

2811
public sector, efficiency in the 72
Pull Up Field 3438
Push Down Field 3438
pyramid pattern 2264
Python 848, 849, 865

 23

Index

Q
Q-M algorithm 1337
qualitative goal-reasoning mecha-

nism 758
quality 266
quality analyzer, pseudo code for

3053
quality assurance (QA) 291,

2680–2699, 2700
QA, plan-driven 2702
quality defect (QD) 244, 252,

254–255
quality defect discovery 251
quality factors 176
quality impact 277
quality improvement paradigm

(QIP) 3310
quality manual 176, 179
quality metrics 3417
quality model (ISO/IEC 9126),

for the evaluation of soft-
ware products 1141

quality model for object-oriented
design (QMOOD) 2659

quality of group 2207
quality of service (QoS) 3119,

3121, 3122, 3123, 3124,
3125, 3128, 3129, 3132,
3135, 3138, 3139, 3140,
3523

QoS analysis 3121, 3122, 3125,
3126, 3128, 3129, 3140

QoS analysis algorithms 3129
QoS analysis tool 3118
QoS attribute vector 3122
QoS behavior 3119, 3121, 3123,

3124, 3140
QoS management 3165, 3173
QoS parameters 3165
QoS properties of individual Web

service specification 3137
QoS properties of the individual

Web services 3122
QoS property composition 3123
QoS property composition algo-

rithm 3123, 3124, 3126
QoS scheme, offset-based 3531
QoS scheme, segmentation-based

3531
QoS scheme, SRS-based 3539
QoS specification model 3121

QoS support and contention reso-
lution 3530

QoS, active dropping-based
scheme 3531

QoS, system requirements 3122
QoS, system specification 3135
QoS-based composition analysis

3118, 3121, 3123, 3140
QoS-based composition analysis

process 3123 quality plan
176, 179

quality systems, effective 267
quality test 299
quality, cost of 225
quantitative project management

(QPM) 1028
QueueEventHandler 404
QueueManager 404
queuing model 368
queuing network simulation 1126
Quine-McCluskey algorithm

1344

R
RADAR project 3219
random sampling 2868
rapid application development

(RAD) 1644
rational unified process (RUP)

2510, 2511, 2513, 2510,
2515, 2516, 2517, 2518,
2523, 2525, 2526, 2527

RDF 866
RDF data utilization 1521
RDFS 866
RDF-Wiki 866
RE profiles 3335
real-time databases (RTDB)

3160, 3161, 3162, 3164
real-time embedded automation

and control application
3370

real-time process algebra (RTPA)
2915, 2941, 2943

real-time process algebra (RTPA)
3340

real-time process algebra (RTPA)
635–647

real-time server 3371
recalibration task 3502
reconfigurability 3118, 3119

recursion pattern 586
recursive composition 581
refactoring 246, 296, 301, 841,

2656
refactoring annotation language

(RAL) 259
refactoring theory 3430, 3431,

3432, 3443, 3456
refactoring, the “what” of 3435
refactoring, the “when” of 3443
reference model 688
regional grocery chains, summary

of 2561
regression test (retest) 153, 154,

155, 156, 157, 160, 169
regression tree 192, 213
RE-GSD methodology 2104
reinforcement learning 668, 3326
relational database server (RDBS)

2607
relationships 2613
release activity 55
release management 296
relevance patterns 2535
reliability 2624
reliable comprehensive process

automation 2412
remote controlled experiments

(RCL) 2054
rename field 3438
report-writing teams 2486
request for proposal (RFP) 2140,

2147
requirement elicitation 2102–

2114
requirement traceability (RADIX)

1154
requirement understanding 2298
requirement understanding pro-

cess 2289
requirement-oriented team build-

ing 2541
requirements development (RD)

1029
requirements engineering 2161
requirements gathering 127
requirements management

(REQM) 1028
requirements processes 598, 600,

604, 608
requirements-driven methodology

2281

24

Index

research and development (R&D)
1586

research model path coefficients
2257

resilient behavior 391
resistance 2160
resource allocation, even 3539
resource allocations 3124
resource demanding service effect

specifications (RDSEFF)
1118

resource dependency 749
resource description framework

(RDF) 3489, 3490, 3502,
3503, 3504, 3505, 3506,
3507, 3508, 3509, 3510,
3511, 3512, 3513, 3515,
3516, 3517

resource reservation 3165
resource specification 3123
response time 3132, 3134, 3135,

3139
restricted model 1016, 1018
restricted model, illustrative ex-

ample 1018
restricted reuse-costing model

1021
retrospective process 323
RETSINA framework, The 3219
return on investment (ROI) 850,

1590
reusability 719, 838, 843, 849,

858, 863, 887, 1021
reusable learning objects (RLOs)

718
reuse in software engineering

(RISE) 834, 837, 842,
843, 845, 848, 850, 851,
856, 857, 866, 867, 870,
872, 876, 877, 878, 880,
881, 892, 893

reuse models 1015
reuse models, analysis of 1015
reuse, frameworks for 1013
reuse-costing model 1021
reuse-oriented software engineer-

ing 858
reuse-oriented Wiki (Riki) 845,

850, 851, 856, 857, 863,
866, 870, 871, 872, 875,
876, 878, 880, 881, 887,
889, 891, 892

revenue models 2599, 2605, 2613
reverse engineering 388
reverse-engineering algorithms

1323
reverse-engineering methodology

1320
review methods 2656
RFC 822 Standard Format 1213
Rhizome 866
Riki ontology development

(RODent) 876, 877, 878,
879, 889

Riki software system 875
Riki system 898
RISE framework 898
RISE methodology 844
RISE methodology for knowledge

transfer and reuse (RIME)
873

risk exposure (RE) 3335
risk management (RSKM) 1028,

2085–2101, 2381
robustness 3282
role assignment 2710
role communication measure

(RCM) 2709
role management measure

(RMM) 2709
role model 798, 799
role playing game (RPG) 1386
role-based reputation 2853
role-based trust 2859
rolling mill 2274
root directory 1742
rootkits 456
RTDB, formal verification and

validation approach 3160
RTPA meta-processes, operational

semantics of 3346
RTPA methodology for pattern

modeling 639
RTPA process relations 3351
RTPA, abstract syntax of 3341
RTPA, case studies 642
RTPA, design patterns 635–647
RTPA, meta-processes of software

behaviors 3342
RTPA, process operations of

3343
RTPA, reduction machine of

3344

RTPA, type system of 3343
rule management elements 1053
rule phrase 1053
rule template 1053
rule, First Applicable 194
rule, Least Recently Used 194
rule, Most Specific 194
rule, Random 194
rule-based models 191, 193, 194,

195, 196, 202, 210
rules 189, 191, 193, 194, 195,

197, 198, 199, 200, 202,
203, 204, 205, 206, 207,
209

RUP, business modeling in 2515,
2516, 2517, 2518

RUP-based software development
2510

S
sales force management 2585
sales process system 2588
Salford Systems 470
SampleBlockingQueueClient 404
sampling 2868, 2869, 2871,

2879, 2881
sampling, clustered approach

2868
sampling, random approach 2868
sampling, stratified approach

2868
sampling, systematic approach

2868
SAP (SCM system) 2552, 2583
SAP AG 1786
SAP database 1786
SAP implementation model 1791
SAP implementation roadmap

1790
SAP implementation steps 1790
SAP implementation, functional-

ities in 1792
SAP modules 1787
SAP repository 1786
SAP table structure 1787
SAS Corporation 471
SAS Enterprise Miner(TM)

screen shot 1754
SAS text miner 1164, 1167, 1168,

1169, 1178, 1181
SAS® Enterprise Miner(TM)

1759

 25

Index

satisfaction (SAT) 2208, 2236
schedule-control 2381
science and technology studies

(STS) 799
SCORM 864, 882
SCORM activity tree 891
SCORM content aggregation

model 871
SCORM content packages 891
SCORM sequencing and naviga-

tion 887
SCORM sequencing and naviga-

tion model 891
script 154, 155, 157, 158, 159,

160, 161, 164, 165
scripting language 165
Scrum (agile methodology) 3285
scrutiny 1153
second language learning soft-

ware tools 1375
security 41, 620, 1396, 2277
security engineering 743
security function specifications

(SFS) 169
security management 466
security model 762
See5/C5 tool 202
seed categories 2291
seed company 1924
seed developers 1000
segment delineation 3532
SEI/CMM 995
selection operator 3130
self-regulated learning (SRL)

2064–2078
semantic database 1517
semantic heterogeneity 1475
semantic information servers 618
semantic tagging 1709
Semantic Web 529, 611, 612,

613, 615, 616, 617, 618,
619, 620, 621, 623, 624,
625, 626, 627, 631, 632,
633, 1509

Semantic Web layer cake 866
Semantic Web services (SWS)

424
SWS infrastructure 425
SWS systems 421, 431
SWS systems, requirements for

427

SWS systems, special lifecycle
concerns 424

SWS systems, special phase con-
cerns 426

SWS, composition of 429
SWS, modeling and design of

428
Semantic Web technology 3489
Semantic Web technology, bench-

marking methodology for
3498

Semantic Web, benchmarking in
3489

Semantic Web, evaluation and
benchmarking 3494

semantic Wikis 865
semantic zapping services 1708
semantic-lock technique 3164
semantics 889, 2734
semantics, deductive 2915, 2916,

2939, 2940
semantics, formal 2915, 2916,

2923
semantics, potential benefits of

424
semiconductor optical amplifiers

(SOAs) 3528
semiotic engineering 2307, 2308,

2309, 2310
semiotic levels 2797
semiotics 182, 188
semi-structured data 615
senior management perspective

1402
sensor networks 3160, 3162,

3171
sensor networks, real-time data-

base for 3171
sensors 1433
sequence diagram 1250, 1252,

1253, 1254, 1255, 1261,
1262, 1265, 1273, 1274,
1275

sequence diagram 697, 704
servers 693
service announcement & activa-

tion protocol (SAAP)
3225, 3241

service availability 407
service composition 3122
service continuity (SCON) 1030

service delivery (SD) 1030
service effect specification 1118
service oriented architecture

(SOA) 942
service process areas 1030
service request protocol (SRP)

3225
service system development

(SSD) 1030
service time estimation 371
service transition (ST) 1030
service use protocol (SUP) 3225
service-object pair (SOP) 1187
service-oriented application 2894
service-oriented architecture

(SOA) 334, 336, 391,
3118, 3119, 3121, 3125,
3126, 3128, 3129, 3131,
3132, 3138, 3140

SOA background 3120
SOA systems, adaptive 3123
SOA systems, adaptive, analysis

of 3123
SOA systems, adaptive, QoS

analysis process for 3124
SOA systems, performance analy-

sis for 3132
SOA, non-functional aspects of

942
SOA, open 2551
SOA, Web service-based 3120
service-oriented computing, de-

signing for 923
service-oriented systems 3118
service-oriented systems, testing/

evaluation of 429
servlet controller 394
servlets 403
sharable content object 864
shared process areas 1027
shared utility 413
SharePoint Alliance (SPA) 652
SPA, sample subject 658
SHAWN 866
shelfware 161
Siemens Corporate Research

2080–2101, 2087–2101
SIIEE (service intranet-internet in

educational establishments
and schools) 2052

simple and safe collaboration 864

26

Index

simple design 841
simple modeling technology

1478, 1479
simple object access protocol

(SOAP) 381, 388, 3120
SOAP fault specification 406
SOAP service request 383
simple text presentations 1744
simple trust models 2856
single source approach 188
single-clock multi-processor

(SCMP) structure 3355
single-clock single-processor

(SCSP) structure 3356
SLIM (effort estimation model)

2867
Slime Forest case study 1386
Slime Forest, screenshots of 1386
Slime Forest, theoretical view of

1387
small and medium enterprises

(SMEs) 841, 857, 894,
1136, 1137, 1138, 2412,
3245, 3308

SME knowledge toolkit 1145
SMEs, social impact to 1147
SME-type organizations 2412
small business administration

(SBA) 1138
small releases 841
smart-card system 753
smartphone 1226, 1232
Snip Snap 858, 865
Snort (IDS) 462
social interaction 1724, 2706
social network analysis (SNA)

1466, 1467, 1474, 1883,
1885, 1886, 1887, 1889,
1890, 1891, 1902, 3182

social network theory 1838
social networking 101, 1459,

1460, 1461, 1466, 1467,
1469, 1470, 1472, 1473,
1474, 1475, 1836, 1839,
2850, 3181

social patterns 779–782
social presence 2201
social relationships 106
social sciences 106
social software 102, 103, 104,

105, 106, 108, 3180, 3182

social software for business, find-
ing and applying the value
of 3188

social software for educational
purposes 3197

social software platform 105
social software systems 837
social software, concerns about in

the enterprise 3190
social space 892
social structures 794, 795, 1837
socialization 2533
socialization pattern 2539, 2540
socialization pattern, two-step

2539
socialization, externalization,

combination, & internal-
ization (SECI) model 438

socio-cultural context, different
levels of 2499

sociotechnical systems 1642,
1655

SoDIS®, potential limitations of
2187

SoDIS® inspection 2172, 2186
SoDIS® process 2175, 2178
SoDIS® western principles 2183
soft factors 596
softgoal 748
softgoal dependency 749
softlifting 2815, 2827, 2828,

2829
software agents 128, 131,

131–151, 494, 1345, 1441,
2844, 3102

software agent architectures 136
software agent communication

languages 137–138
software agent properties 133–

134
software agent systems 132
software agent transportation

mechanisms 138
software agent typology 135–136
software agent, personal 1509
software architecture 1284, 1307,

1310, 1312, 2363
software architecture models,

performance of 1111
software asset reuse 1250
software attributes 191, 205
software benchmarking 3492

software benchmarking methodol-
ogy 3499

software complexity chain 995
software component 596, 882,

2869, 3390
software component survivability,

information warfare 3381
software components 189, 201,

202, 205, 210
software configuration manage-

ment (SCM) 291, 892
SCM software 2549
SCM software packages 2547
SCM system, metadata 1208
SCM, Oracle E-Business Suite

2551
software cost-estimation tech-

niques 2866
software data 3154
software data models 191
software defect 2867
software defect prediction 2866
software defects 190
software design 82, 1423
software design, class patterns

and templates 546–587
software development 154, 161,

588, 589, 991, 1952, 1953,
1958, 1959, 1967, 1971,
1974, 2004, 2006, 2007,
2009, 2014, 2030, 2031,
2032, 2034, 2041, 2043,
2082–2101, 2493, 2700

software development activities,
outsourcing 995

software development kits
(SDKs) 1183

software development paradigms
3327

software development process
(SDP) 1285, 2307, 2360,
2361, 2362, 2366, 2369,
2377

software development teams 804,
806, 807, 810, 814, 816

software development, bicultural
context 2172

software development, construc-
tivist learning during 910

software development, coordina-
tion in 1086

 27

Index

software development, global
2493, 2494, 2497, 2501

software development, gover-
nance of 309–327

software development, model-
driven 2728

software development, traditional
2701

software engineering (SE) 122,
123, 127, 254, 335, 424,
595, 596, 743, 838, 839,
841, 858, 862, 870, 1549,
1550, 2307, 2308, 2309,
2310, 2360, 2362, 2374,
2375, 2376, 2377, 2378,
2511, 2530, 2865, 2866,
2868, 2869, 2879, 2880

SE artifacts 861
SE aspects 1289, 1307, 1308,

1358
SE Body of Knowledge (SWE-

BOK) 1958, 1960
SE curriculum, restructuring of

1998–2018
SE data 2869
SE, empirical 2865, 2866, 2868,

2879, 2880
SE, evidence-based (EBSE) 3328
SE institute 2427
SE methodology 718
SE organizations 892
SE processes, modeling of 2530
SE, bachelor’s degree program

1951–1978
SE, improvement of 2528
SE, issues of 910
SE maintenance data 200
SE, ML in (MLSE) 3326
SE, model-based (MBSE) 3328
SE, process modeling in 2537
SE, quantitative 3142
SE research and practice 3325
SE, search based (SBSE) 3328
SE, specific types of 888
SE, value-based (VBSE) 3325,

3329
VBSE research agenda in ML

3332
SE2004 1959
software engineers 1952, 1954,

1960, 1969, 1971, 2011,
2015

software evaluation 267, 2140,
2146, 3490, 3491, 3517

software firms, immature 2433
software firms, mature 2433
software graphics architecture

1233
software houses 2514
software houses, reference frame-

work for 2514
software implementation 2309
software industry 1500, 1503
software informalisms 28
software infrastructure program,

shared (SSIP) 1548, 1558
software inspection 245
software license 57, 64
software lifecycle 1282, 2361,

2867
software maintenance 189, 190,

193, 380, 388, 496, 503
software maintenance activities

189
software maintenance data 189,

190
software maintenance data models

190
software maintenance data, intel-

ligent analysis of 189
software maintenance effort pre-

diction models 193
software maintenance process

190
software maintenance, adaptive

190
software maintenance, corrective

190
software maintenance, perfective

190
software maintenance, preventive

190
software manager 2082–2101
software metrics 192, 211, 275,

2866
software models, quality and

2728–2743
software modules 192
software objects 721–725
software organization 2285
software organization study 2285
software pattern description 637

software piracy 1590, 2812,
2814, 2815, 2816, 2817,
2818, 2819, 2820, 2821,
2822, 2823, 2824, 2825,
2826, 2827, 2828, 2829

software process model 598,
608, 610, 996, 2083–2101,
2359, 2360, 2361, 2362,
2363, 2364, 2366, 2370,
2371, 2373, 2374, 2375,
2376, 2377, 2378, 3142

software products 154, 165, 3142
software product metrics 246,

2869
software product quality 223,

2648, 2796
software projects 2247
software project management

(SPM) 2380, 2381, 2382,
2384, 2386, 2388, 2389,
2461, 2462, 2463, 2464,
2465, 2466, 2467, 2468,
2470, 2865

SPM fuzzy model, construction
of 2465

SPM models, possibilities for
creating 2464

SPM theory 2381
SPM, problems of modeling

2462
software project performance

2247
software quality 172, 191, 223,

242–265, 266, 2665, 3142,
3158

software QA (SQA) 247, 251,
2029, 2030, 2659

software quality evaluation 267
software quality fundamentals

223
software quality improvement

236
software quality measurement

235
software quality requirements

222
software reengineering 388
software reuse 838, 841, 856,

1021
software review, and ICTs

1151–1159

28

Index

software semantic theory 2915
software specifications 495, 496,

499, 500, 503
software specifications, mining

495
software survivability 3385
software survivability, challenges

to 3382
software survivability, support

mechanisms for 3385
software systems 1957, 1967,

2003, 2006, 2012, 2014
software system modeling 2943,

2953, 2958
software system, selecting 2142
software systems validation and

verification of 3361
software systems, commercial,

evaluation and selection
of 2138

software systems, large, modeling
3399

software teams 804, 805
software team leader delegation,

virtual 2472
software teams, global, delegation

effects on 2475
software teams, virtual 2472
software teams, virtual, delegation

in 2477
software testing 246
software testing training 2029
software testing, learning environ-

ment 2032
software testing, manual 154
software tools 1558
software training method 2232
software training methods, effec-

tive and affordable 2230
software training, online asyn-

chronous 2233
software training, online synchro-

nous 1533, 1540
software usability 3462
software, agile, development of

2700–2713
software, application 2064–2078
software, asynchronous 1533
software, closed source (CSS) 50,

1657

software, commercial off-the-
shelf (COTS) 589, 590,
591, 596, 1649, 2721,
3382, 3390

software, proprietary (PS) 1926,
1933, 2345, 2568, 2886,
2893

software, selection and evaluation
of 2137

software-development environ-
ment, virtual 2472

software-development life cycle
3169

software-intensive system 1280,
1304

software-intensive system 332
softwarization 1909
soil and water assessment tool

1435
solicitation and supplier agree-

ment development
(SSAM) 1029

source code 23, 78, 1201, 1925,
1933, 2613

source code files, analysis of
1203

source code management (SCM)
1200

source lines of code (SLOC)
2869, 2881

specialization period 3
specification discovery 503
specification mining 495, 496,

497, 503
specified requirements 159
SPI, agile 3308
SPI, agile architecture 3313
SPICE (software process im-

provement and capability
determination, ISO 15504)
1022

SPICE (SPI model) 2647
SPICE basics 1034
SPICE integration 1039
SPICE OPE process group 1040
SPICE/ISO 20000 integration per-

spective 1034
S-PLUS 192
sprinting 3294, 3295, 3296, 3297,

3298, 3299, 3300, 3302,
3303, 3305, 3306

SPSS 471

SPSS mining for clementine 1181
spyware (malware) 456, 3390
SQL Server 2005 474
stability 41
stability analysis 2692
staged reservation scheme (SRS)

3534
SRS core node, fairness in re-

sources allocation 3537
SRS dropping policy 3536
SRS, BCPs format in 3535
SRS-length field 3535
Standish Group, the 2865
StarOffice Desktop Suite 1685,

2052
state machines 1298
statement of work (SOW) 2140
static survivability model 3387
static table data cache 397
STATSGO/SURGO 1441
Stide 462
stochastic process algebra 1125
stochastic sampling with replace-

ment 214
stockMarketLocation 628
Stoneroos program guide, screen-

shot 1238
story engine 1705
storylining suspense 1705
storytelling environments 1705,

1706
storytelling services 1710
strategic alliances 2265
strategic asset (talent) manage-

ment 2392
strategic dependency model 748
strategic planning 2579
strategic rationale model 750,

754
stratified sampling 2868, 2869,

2871
stress test 157
string handling class template

567
structural modeling, linguistic

level 2469
structured classes 1005
structured query language (SQL)

2583, 2607
Structure-in-5 2264, 2266
Structure-in-5 pattern 2269
Structure-in-5, GMT sales 2268

 29

Index

Structure-in-5, LDV Bates as
2267

structuring organizations 2263
STRUTS 394
subject matter expert (SME)

2082–2101
substitution transitions 3166
Subwiki 865
sum of product (SOP) 1335, 1344
supervised clustering 2724
supervised learning algorithm

2868
supplementary business specifica-

tion 2525
supplier agreement management

(SAM) 1029, 1030
supplier manager 2087–2101
supplier relationship management

(SRM) 2515
supply chain management (SCM)

1799, 2415, 2416, 2547,
2548, 2549, 2550, 2551,
2552, 2553, 2554, 2555,
2556, 2557, 2558, 2559,
2560, 2561, 2562

supplying (SP) process 2515
support processes 2514
supporting life cycle processes

1036
SurveyTracker 1160
SurveyTracker e-mail 1160
SurveyTracker e-mail/Web survey

software 1160
SurveyTracker Web software

1160
survivability 3382, 3390
Sustainable Computing Consor-

tium (SCC) 2867
SWAT, parameterization of 1442
Swing class library 3436
switching technology 3528
switching time (ST) 3532, 3536
Symbian platform 2591
synchronized multimedia inte-

gration language (SMIL)
1234

SMIL 2.1 Basic 1241
SMIL 2.1 Extended Mobile 1241
SMIL 2.1 Language 1241
SMIL 2.1 Mobile 1241
SMIL module architecture 1241
syndication 1704

system aggregation 3097
system algebra 3076
system communicability analysis

2309
system composition 3090
system compositions, hierarchical

structure of 3095
system compositions, types of

system structural relations
3094

system configuration 759
system configurations, mapping

of 3138
system decomposition 3096
system design 2361, 3425
system development skills 2253
system difference 3094
system extension 3088
system inheritance 3087
system magnitude model 3081,

3084
system specification 3366, 3370,

3098
system substitution 3089
system tailoring 3088
system validation 3369, 3375
system verification 3369, 3373
systemic thinking 870
systems development 2285
systems development capability

2299
systems development in a soft-

ware organization 2285–
2306

systems development resource
allocation 2299

systems development strategy
2299

systems development, business
value of 2298

systems, compositional operations
3086

systems, relational operations on
3084

systems, taxonomy of 3081, 3082

T
taglet 248
tags 627, 845, 850
tangible score 488
target costing 1374

target organization verification
2525

task agent 890
task dependency 748
task management (TM) 3223,

3224, 3235, 3236
tasks 748
taxonomy 889
t-conorm 3144, 3145, 3150, 3155
TCP/IP network 3370
team competence 2482
team flexibility 2472, 2483
team leader 2483
team leader delegation, effects of

2479
team motivation 2472, 2483
team performance 2483
team relevance pattern 2540,

2541
team satisfaction 2472, 2483
team velocity 321
technical analysis 666
technical development environ-

ment 886
technical solution (TS) 1029
technical space 892
technologic autonomy 975
technological infrastructure 1418
technology adoption 1622, 1659
technology deployment 881
technology path 740
technology selection 932
technology selection strategies

2108
technology studies 799
technology support 2200
technology transfer 2084–2101
templates 845, 875, 878, 879,

880
temporal restriction 3161
ten-fold cross-validation 2865,

2868, 2878
tensions 804
terrain modeling 3259, 3268
territory management 2587
test automation 155
test bed description 371
test case 153, 156, 157, 158, 160,

161, 163, 168, 169
test cases, elaborate 2322
test classes 154
test data, invalidation of 3052

30

Index

test engineer 153, 160, 163, 164,
165

test execution tools 163
test items 889
test oracle 2895
test procedure 154, 157, 158, 163
test scenario 163
test script 153, 157, 158, 159,

160, 161, 164, 165
test set formulation 2871
test stages 152, 161
test suite, building 3044, 3049
test suite, testing the 3047
test support tools 163
test-data extraction tools 163
test-data generators 163
test-development tools 161
test-driven development (TDD)

297, 301
testing scenarios 3334
test-management tools 164
test-procedure generators 163
text categorization 1181
text input 1743
The Architecture Research Facil-

ity (ARF) 200
threads (lightweight processes)

329, 337
three-level refinement scheme

2943, 2945
thumbnail image 1743
TIFF (image format) 1749
Tiger Leap Foundation (TLF)

2048
TikiWiki 866
time evaluation manager 2522
timestamp 3163, 3172
time-to-market (TTM) 2515
timing constraint 3163, 3167,

3168
timing diagram (TD) 3170, 3176
TM (time control) 2400
t-norm 3144, 3145, 3157
tokenization 494
tool developers, recommendations

for 3511
tool integration 1306
tool-supported domain model

migration 1300

total cost of ownership (TCO) 36,
70, 78, 850, 1586, 1591,
1593, 1607, 1930, 1933,
2053

total lines of code 2869
total operands 2870
total operators 2870
TRAC 858, 865, 866
traceability 1285, 1287
trade sale 1916
trail-control messages 3532
transactional domain 2393
transactions, arrival pattern of

3164
transcription 1700
transformation rules 964
transition 2311, 2316, 2322
transmission control protocol

(TCP) 3520
transparency 1591, 3142, 3143,

3157
transparent models 193
travel support system 1507
tree-based models 192
Tripwire 462
Trojan horse (malware) 450, 456,

3390
truncated burst, length of 3538
trust challenges 620
trust engineering 2859
trust models, entropy-based 2857
trust models, probability-based

2857
trust models, reputation-based

2857
trust propagation 2856
trust, issues concerning 2854
trust-building communication

2080–2101
trusted component 3390
t-test 2879
TTM process 2516
tuples 2868

U
UK electricity industry 1478,

1481, 1487, 1494
ultra sound (US) 1187
unaccounted attribute detection

489
unaccounted attributes 487

uncertainty 1643, 1656
undergraduate student 1398
underwriting 2597
unified mathematical model

2915, 2916
unified modeling language (UML)

352, 361, 1285, 1286,
1287, 1302, 1307, 1309,
1374, 1549, 1760, 2362,
2378, 3161, 3402, 3403,
3404, 3426, 3427, 3428,
3429

unifying dissimilar interfaces 555
unique operands 2870
unique operators 2870
unit testing 159
unit testing tools 163
United States Patent and Trade-

mark Office (USPTO)
2841

universal description, discovery,
and integration (UDDI)
381, 388

UDDI repository 383
universal modeling language

(UML) 505, 506, 507,
508, 510, 511, 512, 514,
517, 518, 519, 522, 525,
526, 527, 723–725

UML diagram 702, 913
UML diagram types 1766
UML diagram usage 1764, 1765
UML diagram usage patterns

1766
UML diagram use 1760
UML diagrams, information pro-

vided by 1769
UML diagrams, ontology extrac-

tion from 1263
UML diagrams, role of 1770
UML profile, design of 946
UML tools 1767
UML usage, organizational 1767
UML, respondents not using

1773
universal resource identifiers

(URIs) 3229
University of Limerick (UL)

2086–2101
Unix 23, 82, 803, 849
UOL database 1349
UOL, major components of 1350

 31

Index

UPi 2310, 2317
UPi-Test 2310, 2312, 2317
URI character restrictions,

interoperability regarding
3510

usability 41, 101, 125, 127, 179,
1423

usability engineering 2307, 2308,
2310, 2312

usability inspections methods
2308

usability test 157, 2686
usability-measurement tools 165
use case 153, 156, 158, 2155
use case diagram 696
use case model 696
use case-based model organiza-

tion 1006
use cases diagram 1364
user complaints 2149
user feedback, ranking system

for 489
user interface (UI) 1203, 2307
UI design alternatives 2308
UI design patterns 2320
UI evaluation 2310
UI module 3372, 3374
UIs, evaluating 2307
UIs, evaluation process of 2313
UIs, graphical 2314
user satisfaction 2149
user-based view 267
user-centered design 101
user-interface evaluation 2308
user-oriented quality 278
users management, elements for

1411
utility computing 414

V
validation 776–777
validation (VAL) 1029
validation and verification method

3365
validation case 2593
validation dataset 198
validation techniques 3362
validity interval 3163, 3168,

3173
validity interval, relative 3163
valuation theory 1917

value multiplicity (VM) 1186
value orientations 282
value representation (VR) 1186
value-based architecturing 3330
value-based design and develop-

ment 3330, 3336
value-based people management

3330
value-based planning and control

3330
value-based quality management

3330, 3336
value-based requirements engi-

neering 3329, 3333
value-based risk management

3330, 3335
value-based verification and vali-

dation 3330, 3334
vehicle relationship management

(VRM) 1910
vendor lock-in 1591
venture capitalism (VC) 1917,

1919, 1924
verification (VER) 1029
verification techniques 3361,

3362, 3369
version control system 294
VESA true color library, design

548
view-based access control 2777
VIKO (virtual learning environ-

ment) 2049
VIPER 1394, 1395
VIPER, evaluation of 1398
VIPER, software 1397
Virtual Campfire 1707, 1710
virtual chats 2317
virtual enterprise (VE) 128, 143,

143–146, 145, 149
virtual learning environments

(VLEs), OS 2057
virtual machine 1224
virtual manufacturing enterprise

(VME) 1800, 1804
VME, class activities for 1807
VME, class project in 1808
VME, key OM roles 1809
VME, operating 1804
virtual reality (VR) 3361
VR modeling language (VRML)

3362, 3363, 3368

VRML developer 3367, 3368
VRML events 3375
VRML modeling 3367, 3372
VRML modeling for data ex-

change 3376
VRML modeling for data process-

ing 3376
VRML modeling for the real-time

embedded automation
3374

VRML models 3369
VRML world 3364
VR modeling technologies 3363
virtual team performance 2472
virtual teams 2107–2109,

2118–2119, 2121–2123,
2124–2126, 2128

virtual teams 2472
virtual teams, global 2494, 2495
virus (malware) 457, 3390
virus, polymorphic 451
VisionQuest 1156
visual modeling languages

(VML) 2729
visual specification language

2787
visual text 1164, 1167, 1168,

1178, 1181
vocabulary metrics 2870
Voice Café 1394, 1395
VoiceIP software application

1394
Volere Requirement Specification

Template 878
vulnerability 457
vulnerability scanner, active net-

work 3397
vulnerability scanner, passive

network 3398

W
Waikato Environment for Knowl-

edge Analysis (WEKA)
tool 2874

WEKA (OS data mining soft-
ware) 1759

WEKA’s confusion matrix 2874
WASP model, The 611, 617, 623,

627
waterfall software development

2684

32

Index

wavelength conversion 3533
wavelength-division multiplexing

3519, 3520
Web 2.0 109, 1699
Web 2.0, knowledge sharing

1703
Web 2.0, media centric knowl-

edge sharing 1699
Web 2.0, technologies within

3184
Web applications, data-driven

393
Web browser 2412
Web inspection prototype (WiP)

1154
Web of patterns (WOP) project

538
Web ontology language (OWL)

528, 3119, 3504
Web programming 1411
Web servers 618
Web server configurations 372
Web server software architecture

367
Web server, performance analysis

of 366
Web services (WS) 336, 362,

388, 617, 690, 1232, 2895,
3118, 3120, 3121, 3122,
3123, 3124, 3126, 3128,
3132, 3133, 3134, 3135,
3137, 3138, 3140

WS adapter 382
WS architecture 382
WS consumer 695
WS interface 893
WS provider 695
WS description language (WSDL)

381, 388, 3120
WSDL specification 383
WS identification 385
WS interoperability 380
WS protocol 746
WS, legacy modernization for

381
WS system model 3120
WS, candidate 3123
Web survey software 1160
Web, co-op 1420
Web-based educational tools

1405

Web-based learning 710
Web-based materials 1401
Web-based tools 2399
WebCT 732–733
WebDAV, project documents

repository 2997
Web-enabling environments 380
Web-of-Trust 1467, 1473
whiteboards, interactive 1396,

1401
white-box models 193
Wikis 835, 836, 845, 849, 857,

858, 864, 869, 870, 871,
872, 881, 890, 891, 893,
895

Wiki excerpts publication space
3000

Wiki pages 891
Wiki syntax 882, 891
Wiki systems 842
Wiki technology 898
wiki, telecollaboration on a 3200
WikiDoc 865
Wikitology 845, 876
Windows 32 2411
Windows CE 1222, 1225, 1226,

1227, 1228, 1232
Windows Mobile 1232, 2591
Windows Office 2049
Windows SharePoint Services

(WSS) 650
wireless application protocol

(WAP) 1223
WAP Server 2412
within-team agreement 2484
WORD toolkit 690
WordStat 1164, 1167, 1168,

1173, 1174, 1176, 1181
work breakdown structure 1361
work environment 2498, 2579
work habits 2706
workflow 329, 335, 342, 343,

346, 351, 353, 356, 357,
438, 849, 2361, 2367,
2375, 2377

workflow challenges 620
workflow systems 441
workforce planning 2397
workload characteristics 369
workload, heavy-tailed 370, 374
workuser 106

World Trade Organization (WTO)
1500, 1583, 2841

World Wide Web (WWW) 386,
2565

World Wide Web Consortium
(W3C) 613, 689, 1234

worms (malware) 451, 457
wrapper 381
wrapper pattern 781, 782

X
Xdrawchem 2056
Xfig 2056
Xman, introduction to 3043
Xman, main windows of 3045
Xman, test suite hierarchy 3046
Xman, user interface graph 3048
X3D (extensible 3D graphics)

3364
XHTML (extensible hypertext

markup language) 1235
XML (extensible markup lan-

guage) 381, 1222, 1235,
1313, 1320, 3364

XML document 1331
XML document reverse engineer-

ing 1313
XML documents, determination

of data semantics 1318
XML documents, referential

integrity in 1314
XML elements, implementation

of inheritance 1318
XML file 2351
XML schema, determination of

1318
XMLHttpObject 410
Xplora 2047, 2054, 2055, 2058
Xplora-Knoppix 2055
XSLT 628
XTester, statistics file 3051
XWiki 866

Z
zero attribute classes 3436
Zope (VLE) 2057

	Title
	Editor-in-Chief
	List of Contributors
	Contents
	Preface
	A Historical Analysis of theEmergence of Free CooperativeSoftware Production
	Free Software Philosophy andOpen Source
	Open Source Software Basics:An Overview of a RevolutionaryResearch Context
	Open-Source Software Issues
	Open Source Software:Strengths and Weaknesses
	Open Source SoftwareEvaluation
	On the Role of PublicPolicies SupportingFree/Open Source Software
	Open Source Survey Software
	FLOSSmole:A Collaborative Repository for FLOSSResearch Data and Analyses
	Free/Libre Open SourceSoftware for Bridging theDigital Divide
	Community of Production
	E-Democracy:The Social Software Perspective
	Software Engineering and HCI
	Software Agent Technology:An Overview
	Automated Software Testing
	Software Metricsand Measurements
	A Framework forCommunicability of SoftwareDocumentation
	Intelligent Analysis of SoftwareMaintenance Data
	An Overview of Software QualityConcepts and Management Issues
	Handling of SoftwareQuality Defects in AgileSoftware Development
	Different Viewsof Software Quality
	Software ConfigurationManagement in AgileDevelopment
	Governance of SoftwareDevelopment:The Transition to Agile Scenario
	Domain-Specific Language forDescribing Grid Applications
	Performance Analysis of aWeb Server
	Software Modernization ofLegacy Systems forWeb Services Interoperability
	Approaches to Building HighPerformance Web Applications:A Practical Look at Availability,Reliability, and Performance
	A Survey of DevelopmentMethods for Semantic WebService Systems
	Knowledge ManagementSoftware
	Malicious Software
	Current Challenges in IntrusionDetection Systems
	A Comparison and ScenarioAnalysis of LeadingData Mining Software
	Intelligent User PreferenceMining
	Mining Software Specifications
	Ontology Based Object-OrientedDomain Modeling:Representing Behavior
	An Ontology Based Representationof Software Design Patterns
	Class Patterns and Templates inSoftware Design
	Motivation inComponent-Based SoftwareDevelopment
	Multimodal Modeling, Analysis,and Validation of Open SourceSoftware DevelopmentProcesses*
	Conceptual ModelDriven SoftwareDevelopment (CMDSD) asa Catalyst Methodology forBuilding Sound Semantic WebFrameworks
	Formal Modeling andSpecification of DesignPatterns Using RTPA
	Building an LMS with UbiquitousSoftware
	Development of MachineLearning Software for HighFrequency Trading in FinancialMarkets
	Architecture of an InformationSystem for Personal FinancialPlanning
	Educational Theory IntoPractice Software (ETIPS)
	Engineering ReusableLearning Objects
	Covert End User Development:A Study of Success
	A Social Ontology forIntegrating Security andSoftware Engineering
	Social Structure Based DesignPatterns for Agent-OrientedSoftware Engineering
	Women in the Free/Libre OpenSource Software Development
	Managing Intellectual Capitaland Intellectual Property withinSoftware DevelopmentCommunities of Practice
	Developing KnowledgeManagement Systems froma Knowledge-Based andMulti-Agent Approach
	Human-Centered Designof a Semantically EnabledKnowledge ManagementSystem for Agile SoftwareEngineering
	Riki:A System for Knowledge Transfer andReuse in Software Engineering Projects
	Constructivist Learning DuringSoftware Development
	Designing for Service-OrientedComputing
	A Model-Driven DevelopmentFramework for Non-FunctionalAspects in Service OrientedArchitecture
	An IncrementalFunctionality-Oriented FreeSoftware DevelopmentMethodology
	Agile Outsourcing to India:Structure and Management
	Decision Rule for Investment inFrameworks of Reuse
	Integrated Product Life CycleManagement for Software:CMMI1, SPICE, and ISO/IEC 20000
	BROOD:Business Rules-Driven ObjectOriented Design
	Bug Fixing Practices withinFree/Libre Open SourceSoftware Development Teams1
	Evaluating Performance ofSoftware Architecture Modelswith the Palladio ComponentModel
	Knowledge Management Toolkitfor SMEs
	Information CommunicationTechnology Tools for SoftwareReview and Verification
	SurveyTracker E-Mail/Web Survey Software
	A Survey of Selected SoftwareTechnologies for Text Mining
	A Software Tool for ReadingDICOM Directory Files
	Tools for the Study of theUsual Data Sources found inLibre Software Projects
	Software Platforms for MobileProgramming
	Present and Future of SoftwareGraphics Architectures forInteractive Digital Television
	Design Diagrams asOntological Sources:Ontology Extraction and Utilizationfor Software Asset Reuse
	Evolution in Model-DrivenSoftware Product-LineArchitectures
	Reverse Engineering from anXML Document into anExtended DTD Graph
	LOGIC–Minimiser:A Software Tool to Enhance Teachingand Learning Minimization ofBoolean Expressions
	Assisting Learners toDynamically Adjust LearningProcesses throughSoftware Agents
	Integrating SoftwareEngineering andCosting Aspects withinProject Management Tools
	Developing EnjoyableSecond Language LearningSoftware Tools:A Computer Game Paradigm
	VIPER:Evaluation of an Integrated GroupVoiceIP Software Application forTeaching and Learning inHigher Education
	A Pliant-Based Software Toolfor Courseware Development
	Intelligent Software Agents withApplications in Focus
	Simulation Modelling withinCollaborative Spatial DecisionSupport Systems Using“Cause-Effect” Models andSoftware Agents
	Intelligent Software AgentsAnalysis in E-Commerce I
	Intelligent Software AgentsAnalysis in E-Commerce II
	A Semantic Web-BasedInformation IntegrationApproach for an Agent-BasedElectronic Market
	Electronic Commerce Strategyin the UK Electricity Industry:The Case of Electric Co and DataflowSoftware
	IT and Software Industry inVietnam
	Utilizing Semantic Web andSoftware Agents in a TravelSupport System
	Online Synchronous vs.Asynchronous SoftwareTraining Through theBehavioral Modeling Approach:A Longitudinal Field Experiment
	Rapid Insertion of Leading EdgeIndustrial Strength Softwareinto University Classrooms
	The Migration of PublicAdministrations Towards OpenSource Desktop Software:Recommendations from Research andValidation through a Case Study
	Issues and Aspects of OpenSource Software Usage andAdoption in the Public Sector
	An Empirical Study on theMigration to OpenOffice.orgin a Public Administration
	An Empirical Investigation intothe Adoption of Open SourceSoftware in Hospitals
	Open Source Software:A Key Component of E-Health inDeveloping Nations
	Patchwork Prototyping withOpen Source Software
	Evaluation of a Migration toOpen Source Software
	Open Source SoftwareAdoption:Anatomy of Success and Failure
	Media Centric KnowledgeSharing on the Web 2.0
	Towards an Integrated Model ofKnowledge Sharing in SoftwareDevelopment:Insights from a Case Study
	Digital Library Structure andSoftware
	Comparing Four-Selected DataMining Software
	Dimensions of UMLDiagram Use:A Survey of Practitioners
	Enterprise Resource SystemsSoftware Implementation
	Teaching OperationsManagement withEnterprise Software
	Open Source SoftwareCommunities
	Beyond Development:A Research Agenda for InvestigatingOpen Source Software UserCommunities
	Social Network Structures inOpen Source SoftwareDevelopment Teams
	The Impact of Ideology on theOrganizational Adoption ofOpen Source Software
	Volunteers in Large LibreSoftware Projects:A Quantitative Analysis Over Time
	Applying Social NetworkAnalysis Techniques toCommunity-Driven LibreSoftware Projects
	Open Source SoftwareBusiness Models and CustomerInvolvement Economics
	Investing in Open SourceSoftware Companies:Deal Making from a VentureCapitalist’s Perspective
	Open Source Software:A Developing Country View
	Open Source and Outsourcing:A Perspective on Software Use andProfessional Practices Related toInternational Outsourcing Activities
	How to Create a CredibleSoftware EngineeringBachelors Program:Navigating the Waters of ProgramDevelopment
	Facilitating eLearning withSocial Software:Attitudes and Usage from the Student’sPoint of View
	Continuous CurriculumRestructuring in a GraduateSoftware Engineering Program
	The Influence ofComputer-Based In-ClassExamination Security Softwareon Students’ Attitudes andExamination Performance
	Integrated SoftwareTesting Learning Environmentfor Training Senior-LevelComputer Science Students
	European NationalEducational School Authorities’Actions Regarding OpenContent and Open SourceSoftware in Education
	Enhancing Skills of ApplicationSoftware via Web-EnabledProblem-Based Learningand Self-Regulated Learning:An Exploratory Study
	Globalising SoftwareDevelopment in theLocal Classroom
	A Requirement ElicitationMethodology for GlobalSoftware Development Teams
	Project Quality of Off-ShoreVirtual Teams Engaged inSoftware Requirements Analysis:An Exploratory Comparative Study
	A Case Study on the Selectionand Evaluation of Software foran Internet Organisation
	Planning and Managing theHuman Factors for theAdoption and Diffusion ofObject-Oriented SoftwareDevelopment Processes
	Developing Software in aBicultural Context:The Role of a SoDIS®1 Inspection
	Issues, Limitations, andOpportunities in Cross-CulturalResearch on CollaborativeSoftware in InformationSystems
	Online Behavior Modeling:An Effective and Affordable SoftwareTraining Method
	Lack of Skill Risks toOrganizational TechnologyLearning and SoftwareProject Performance
	Patterns for OrganizationalModeling
	A Multi-MethodologicalApproach to Study SystemsDevelopment in a SoftwareOrganization
	Integrating Usability, Semiotic,and Software Engineering into aMethod for EvaluatingUser Interfaces
	The Work of Art in the Age ofMechanical Production
	Open Source Software andthe Corporate World
	Combining Tailoringand Evolutionary SoftwareDevelopment for RapidlyChanging Business Systems
	Differentiated Process Supportfor Large Software Projects
	Computer-Aided Managementof Software Development inSmall Companies
	A Survey of CompetencyManagement SoftwareInformation Systems in theFramework of HumanResources Management
	Becoming a LearningOrganization in theSoftware Industry:Is CMM the Silver Bullet?
	Agile Practices inProject Management
	Project Management inEnterprises:IT Implementation Based onFuzzy Models
	Occurrence and Effects ofLeader Delegation in VirtualSoftware Teams
	Cultural Diversity Challenges:Issues for Managing GloballyDistributed Knowledge Workers inSoftware Development
	Business Modeling inProcess-Oriented Organizationsfor RUP-Based SoftwareDevelopment
	Improvement of SoftwareEngineering by ModelingKnowledge-IntensiveBusiness Processes
	A Relative Comparison ofLeading Supply ChainManagement SoftwarePackages
	How E-Entrepreneurs Operatein the Context ofOpen Source Software
	Channel Optimization for OnField Sales Force by Integrationof Business Software on MobilePlatforms
	Revenue Models in the OpenSource Software Business
	Knowledge Management andOrganizational Performance inthe Egyptian Software Firms
	A Survey of Object-OrientedDesign Quality Improvement
	Software Qualityand theOpen Source Process
	Agile Software DevelopmentQuality Assurance:Agile Project Management,Quality Metrics, andMethodologies
	Teaching Agile SoftwareDevelopment Quality Assurance
	Software Quality Modeling withLimited Apriori Defect Data
	Integrating Quality Criteria andMethods of Evaluation forSoftware Models
	Software Security Engineering:Towards Unifying Software Engineeringand Security Engineering
	Trusting Computers ThroughTrusting Humans:Software Verification in aSafety-Critical Information System
	Access ControlSpecification in UML
	Ethics in Software Engineering
	Free Access to Law and OpenSource Software
	Ethical, Cultural andSocio-Economic Factors ofSoftware Piracy Determinants ina Developing Country:Comparative Analysis of Pakistani andCanadian University Students
	Legal and EconomicJustification for SoftwareProtection
	How Can We Trust Agents inMulti-Agent Environments?Techniques and Challenges
	Improving Credibility ofMachine Learner Models inSoftware Engineering
	Morality and Pragmatism inFree Software and Open Source
	A Metamorphic TestingApproach for Online Testing ofService-Oriented SoftwareApplications
	Deductive Semantics of RTPA
	RTPA:A Denotational Mathematics forManipulating Intelligent andComputational Behaviors
	Measuring the Efficiency of Freeand Open Source SoftwareProjects Using DataEnvelopment Analysis
	Examining Open SourceSoftware Licenses throughthe Creative CommonsLicensing Model
	Integration of Libre SoftwareApplications to Create aCollaborative Work Platform forResearchers at GET
	Exploring the Effects ofProcess Characteristics onProduct Quality in Open SourceSoftware Development
	A Graphical User Interface (GUI)Testing Methodology
	On Concept Algebra:A Denotational Mathematical Structurefor Knowledge and Software Modeling
	On System Algebra:A Denotational Mathematical Structurefor Abstract System Modeling
	A Cognitive InformaticsReference Model ofAutonomous Agent Systems(AAS)
	A Genetic Algorithm-BasedQoS Analysis Tool forReconfigurableService-Oriented Systems
	Fuzzy Logic Classifiers andModels in QuantitativeSoftware Engineering
	A Formal Verification andValidation Approach forReal-Time Databases
	Social Software Trendsin Business:Introduction
	Social Software and LanguageAcquisition
	Activity-Oriented Computing
	Integration Concept forKnowledge Processes, Methods,and Software for SMEs
	Adaptive Computation Paradigmin Knowledge Representation:Traditional and Emerging Applications
	Agile Software Methods:State-of-the-Art
	Bridging the Gap between Agileand Free Software Approaches:The Impact of Sprinting
	Agile SPI:Software Process AgileImprovement—A ColombianApproach to Software ProcessImprovement in SmallSoftware Organizations
	Machine Learning andValue-Based SoftwareEngineering
	An Operational Semantics ofReal-Time ProcessAlgebra (RTPA)
	Validation and Verification ofSoftware Systems Using VirtualReality and Coloured Petri Nets
	Software ComponentSurvivability inInformation Warfare
	A Novel Application of theP2P Technology forIntrusion Detection
	Reducing the Complexityof Modeling Large SoftwareSystems
	Heuristics and Metrics forOO Refactoring:A Consolidation and Appraisal ofCurrent Issues
	Model-Driven SoftwareRefactoring
	Benchmarking in theSemantic Web
	All-Optical Internet:Next-Generation NetworkInfrastructure for E-ServiceApplications
	Index

